WorldWideScience

Sample records for uv protective effects

  1. UV dose-effect relationships and current protection exposure standards

    International Nuclear Information System (INIS)

    Singh, M.S.; Campbell, G.W.

    1982-04-01

    In this paper we have attempted to quantify the health effects in man of uv-radiation exposure of wavelengths from 240 nm to 320 nm. Exposure to uv in this region could result in the formation of skin cancer or premature aging in man. The induction of cancer by uv radiation results from changes in genetic material. We have used the DNA action spectrum coupled with the uv skin cancer data available in the literature to derive the dose-effect relationships. The results are compared against the current uv protection standards

  2. Protective effects of polyamines against UV-A and UV-B illumination in Physcia semipinnata thalli

    Directory of Open Access Journals (Sweden)

    Esmer Işıl

    2017-04-01

    Full Text Available The damage to DNA induced by UV-A and UV-B and protective effects of the polyamines putrescine (put, spermidine (spd and spermine (spm were investigated on the lichen Physcia semipinnata in the present study. Our results suggest that significant alterations of the photosynthetic quantum yield ratio occurred in response to increased UV-A and UV-B exposure time. The photosynthetic quantum yield ratio gradually decreased in P. semipinnata following exposure to UV-A and UV-B. Physcia semipinnata thalli which were treated with a polyamine in a concentration of 1 mM were not affected by UV-A exposure for 72 h. In the case of UV-B treatment, the protective polyamine dosage was 0.25 mM. We also used the random amplified polymorphic DNA (RAPD technique to detect DNA damage. The main changes observed in the RAPD profiles, which were obtained using 12 RAPD primers, were the appearance or disappearance of different bands and variation of their intensities. The use of at least three different primers allowed detection of specific band patterns in both UV-A- and UV-B-exposed samples treated with polyamines as compared to untreated ones.

  3. Skin Cancer and UV Protection

    Directory of Open Access Journals (Sweden)

    Tarbuk Anita

    2016-03-01

    Full Text Available The incidence of skin cancer is increasing by epidemic proportions. Basal cell cancer remains the most common skin neoplasm, and simple excision is generally curative. On the other hand, aggressive local growth and metastasis are common features of malignant melanoma, which accounts for 75% of all deaths associated with skin cancer. The primary cause of skin cancer is long exposure to solar ultraviolet radiation (UV-R crossed with the amount of skin pigmentation and family genetics. It is believed that in childhood and adolescence, 80% of UV-R gets absorbed while in the remaining, 20 % gets absorbed later in the lifetime. This suggests that proper and early photoprotection may reduce the risk of subsequent occurrence of skin cancer. Reducing the exposure time to sunlight, using sunscreens and protective textiles are the three ways of UV protection. Most people think that all the clothing will protect them, but it does not provide full sun screening properties. Literature sources claim that only 1/3 of the spring and summer collections tested give off proper UV protection. This is very important during the summer months, when UV index is the highest. Fabric UV protection ability highly depends on large number of factors such as type of fiber, fabric surface, construction, porosity, density, moisture content, type and concentration of dyestuff, fluorescent whitening agents, UV-B protective agents (UV absorbers, as well as nanoparticles, if applied. For all of these reasons, in the present paper, the results of UV protecting ability according to AS/NZS 4399:1996 will be discussed to show that standard clothing materials are not always adequate to prevent effect of UV-R to the human skin; and to suggest the possibilities for its improvement for this purpose enhancing light conversion and scattering. Additionally, the discrepancy in UV protection was investigated in distilled water as well as Adriatic Sea water.

  4. Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation.

    Science.gov (United States)

    Slaninova, Eva; Sedlacek, Petr; Mravec, Filip; Mullerova, Lucie; Samek, Ota; Koller, Martin; Hesko, Ondrej; Kucera, Dan; Marova, Ivana; Obruca, Stanislav

    2018-02-01

    Numerous prokaryotes accumulate polyhydroxyalkanoates (PHA) in the form of intracellular granules. The primary function of PHA is the storage of carbon and energy. Nevertheless, there are numerous reports that the presence of PHA granules in microbial cells enhances their stress resistance and fitness when exposed to various stress factors. In this work, we studied the protective mechanism of PHA granules against UV irradiation employing Cupriavidus necator as a model bacterial strain. The PHA-accumulating wild type strain showed substantially higher UV radiation resistance than the PHA non-accumulating mutant. Furthermore, the differences in UV-Vis radiation interactions with both cell types were studied using various spectroscopic approaches (turbidimetry, absorption spectroscopy, and nephelometry). Our results clearly demonstrate that intracellular PHA granules efficiently scatter UV radiation, which provides a substantial UV-protective effect for bacterial cells and, moreover, decreases the intracellular level of reactive oxygen species in UV-challenged cells. The protective properties of the PHA granules are enhanced by the fact that granules specifically bind to DNA, which in turn provides shield-like protection of DNA as the most UV-sensitive molecule. To conclude, the UV-protective action of PHA granules adds considerable value to their primary storage function, which can be beneficial in numerous environments.

  5. Biobased Nanoparticles for Broadband UV Protection with Photostabilized UV Filters

    NARCIS (Netherlands)

    Hayden, D.R.|info:eu-repo/dai/nl/412640694; Imhof, A.|info:eu-repo/dai/nl/145641600; Velikov, K. P.|info:eu-repo/dai/nl/239483472

    2016-01-01

    Sunscreens rely on multiple compounds to provide effective and safe protection against UV radiation. UV filters in sunscreens, in particular, provide broadband UV protection but are heavily linked to adverse health effects due to the generation of carcinogenic skin-damaging reactive oxygen species

  6. Antiradiation UV Vaccine: UV Radiation, Biological effects, lesions and medical management - immune-therapy and immune-protection.

    Science.gov (United States)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    rabbits, 11-12 months old, live weight 3.5-3.7 (n=11), Balb mice, 2-3 months old, live weight 20-22 g (n=33), Wistar rats, 3-4 months old, live weight 180-220 g(n=33). The studies were approved by the Animal Care and Use Committee for ethical animal research equivalent, at each institution. Seven rabbits, ten mice, eleven Wistar rats were vaccinated with a UV antiradiation vaccine. A second group of animals was used as biological control which received vaccine but no UV Radiation and a third group of animals was used as control without any interventions. Before and after UV Radiation, Vaccination with the UV antiradiation vaccine were provided 17 days prior to UV exposure. The animals were irradiated by a DRT-1 UV generator lamp. The dose of irradiation for laboratory, experimental animals was 10-12 * Standard Erythema Dose (SED) at L=283,7 Laboratory animals were placed in to the box with ventilation. Results: Ultraviolet irradiation of the skin was performed with high doses and causes an inflammation or erythema in all experimental animals. However the grade of skin damage and inflammation was significantly different between animals protected by vaccination and non-protected, non-vaccinated animals. Animals UV-irradiated, but who did not receive the antiradiation vaccine suffered from extensive UV skin burns of second or third degree (grade 2-3). However, animals protected with the UV antiradiation vaccine demonstrated much mild forms of skin cellular injury - mainly erythema, first degree skin burns and a few small patches with second degree skin burns (grade 1-2). Discussion: The severity of skin damage depended on area of exposed skin, time and dose of UV irradiation. Skin injury could be divided into 4 major grades: 1. Faint erythema with dry desquamation. 2. Moderate to severe erythema. 3. Severe erythema with blistering, moist desquamation. 4. Toxic epidermal necrolysis. Mild doses of UV radiation and ionizing radiation can induce cell death by apoptosis and

  7. Protective and therapeutic effects of fucoxanthin against sunburn caused by UV irradiation.

    Science.gov (United States)

    Matsui, Mio; Tanaka, Kosuke; Higashiguchi, Naoki; Okawa, Hisato; Yamada, Yoichi; Tanaka, Ken; Taira, Soichiro; Aoyama, Tomoko; Takanishi, Misaki; Natsume, Chika; Takakura, Yuuki; Fujita, Norihisa; Hashimoto, Takeshi; Fujita, Takashi

    2016-09-01

    Mild exposure to ultraviolet (UV) radiation is also harmful and hazardous to the skin and often causes a photosensitivity disorder accompanied by sunburn. To understand the action of UV on the skin we performed a microarray analysis to isolate UV-sensitive genes. We show here that UV irradiation promoted sunburn and downregulated filaggrin (Flg); fucoxanthin (FX) exerted a protective effect. In vitro analysis showed that UV irradiation of human dermal fibroblasts caused production of intracellular reactive oxygen species (ROS) without cellular toxicity. ROS production was diminished by N-acetylcysteine (NAC) or FX, but not by retinoic acid (RA). In vivo analysis showed that UV irradiation caused sunburn and Flg downregulation, and that FX, but not NAC, RA or clobetasol, exerted a protective effect. FX stimulated Flg promoter activity in a concentration-dependent manner. Flg promoter deletion and chromatin immunoprecipitation analysis showed that caudal type homeo box transcription factor 1 (Cdx1) was a key factor for Flg induction. Cdx1 was also downregulated in UV-exposed skin. Therefore, our data suggested that the protective effects of FX against UV-induced sunburn might be exerted by promotion of skin barrier formation through induction of Flg, unrelated to quenching of ROS or an RA-like action. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  8. Protective and therapeutic effects of fucoxanthin against sunburn caused by UV irradiation

    Directory of Open Access Journals (Sweden)

    Mio Matsui

    2016-09-01

    Full Text Available Mild exposure to ultraviolet (UV radiation is also harmful and hazardous to the skin and often causes a photosensitivity disorder accompanied by sunburn. To understand the action of UV on the skin we performed a microarray analysis to isolate UV-sensitive genes. We show here that UV irradiation promoted sunburn and downregulated filaggrin (Flg; fucoxanthin (FX exerted a protective effect. In vitro analysis showed that UV irradiation of human dermal fibroblasts caused production of intracellular reactive oxygen species (ROS without cellular toxicity. ROS production was diminished by N-acetylcysteine (NAC or FX, but not by retinoic acid (RA. In vivo analysis showed that UV irradiation caused sunburn and Flg downregulation, and that FX, but not NAC, RA or clobetasol, exerted a protective effect. FX stimulated Flg promoter activity in a concentration-dependent manner. Flg promoter deletion and chromatin immunoprecipitation analysis showed that caudal type homeo box transcription factor 1 (Cdx1 was a key factor for Flg induction. Cdx1 was also downregulated in UV-exposed skin. Therefore, our data suggested that the protective effects of FX against UV-induced sunburn might be exerted by promotion of skin barrier formation through induction of Flg, unrelated to quenching of ROS or an RA-like action.

  9. UV light induced DNA damages and the radiation protection effects of Lingzi mushroom extract

    International Nuclear Information System (INIS)

    Vo Thi Thuong Lan; Dinh Ba Tuan; Ta Bich Thuan; Tran Bang Diep; Tran Minh Quynh

    2016-01-01

    UV light has strongly influenced on the growth of E. coli as well as caused DNA damages. Configurations of both genomic DNA and pUC 19 plasmids extracted from E. coli were significantly changed by the exposure to UV light of 254 nm and DLT, an extract of Ganoderma lucidum Lingzi mushroom. The results also revealed the radio-protective effects of DLT to UV radiation. By adding 2% DLT to its culturing suspension, the growth of E. coli was significantly decreased, whereas a low DLT amount of about 0.5% slightly improved its growth, indicated that the DLT extract can be used as a promising protective substance against UV radiation. At the molecular level, the radio-protective effects of DLT were observed for both UV treated DNA and protein. Thus, DLT can protect DNA in vivo, but not in vitro. This effect was also observed for Taq polymerase, suggested that the radioprotection effect of DLT may due to it accelerated the degradation of radicals or species that produced in the suspensions during UV exposure. (author)

  10. Ultraviolet-B-effects on plants: Spectra of harmful effects, primary damage and UV protective mechanisms

    International Nuclear Information System (INIS)

    Wellmann, E.; Beggs, C.; Moehle, B.; Schneider-Ziebert, U.; Steinmetz, V.; Koch, U.

    1986-01-01

    In two model systems of higher plants, damage caused by ultraviolet-B-radiation was analysed as to its mechanism of action and the spectral quantum efficiency. These investigations were to provide information on the relevance of such UV effects in cases of increased ultraviolet-B-irradiation owing to the destruction of ozone. The results indicate the very high tolerance of the plants to ultraviolet-B-radiation which obviously is the result of very effective protective mechanisms, and show at the same time that potential damage must already be reckoned with, given the current share of ultraviolet-B-radiation in solar radiation. Should ultraviolet-B-radiation be increased, then indirect damage to the plant from the destruction of ultraviolet protective mechanisms through UV-B-radiation will probably constitute a particular risk. (orig./MG) [de

  11. Effect of emulsification on the skin permeation and UV protection of catechin.

    Science.gov (United States)

    Yoshino, Sachie; Mitoma, Tomoaki; Tsuruta, Keiko; Todo, Hiroaki; Sugibayashi, Kenji

    2014-06-01

    An anti-aging effect may be obtained by skin application of tea catechins (Camellia sinensis) since they have high ultraviolet (UV)-protection activity. In this study, the skin permeation of catechin (C), epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECg) and epigallocatechin gallate (EGCg) was determined and compared, and the effect of emulsification on the skin permeation of C was measured. The UV-protective effect of C was also determined. The in vitro skin permeability of each catechin derivative was determined using side-by-side diffusion of cells. The UV-protective effect of C was determined by applying different concentrations of C to the solution or emulsion on a three-dimensional cultured human skin model or normal human epidermal keratinocytes with UV-irradiation. ECg and EGCg with gallate groups showed lower skin permeability than C, EC and EGC without gallate groups, suggesting that the skin permeability of catechin derivatives may be dependent on the existence of a gallate group. Interestingly, the skin permeation of C was increased by an o/w emulsification. In addition, the C emulsion showed a significantly higher UV-protective effect by C than that with its aqueous solution. These results suggest that the o/w emulsion of catechin derivatives is probably useful as a cosmetic formulation with anti-aging efficacy.

  12. Protective effects of Mengshan green tea and hawk tea against UV-ray irradiation

    International Nuclear Information System (INIS)

    Chen Xiaoming; Ren Zhenglong; Zhang Huaiyu; Tang Zongxiang; Luo Peigao

    2005-01-01

    A group of cultured normal human skin-derived fibroblasts was used as the cell model to investigate protective and repair effects of aqueous extracts of Mengshan green tea and Hawk tea against 320-400 nm UV-ray irradiation, with the methods of MTT colorimetry and LDH release. It was found that the aqueous extracts had strong protective effect on fibroblasts against the UV-rays with dose dependence. There were no significant differences between the two kinds of tea aqueous extracts in a higher concentration of 5 mg/mL, whereas at lower concentrations of 2.5 and 1.25 mg/mL the, green tea aqueous extract was less effective than the hawk-tea aqueous extract in protecting fibroblasts from the UV-ray damage. Meanwhile, it was discovered that the green tea and hawk-tea aqueous extract could repair damages induced by the UV irradiation with dose dependence. But there were no statistically significant differences between the two kinds of aqueous extract. The effects may be related to antioxidant effect of tea polyphenol. (authors)

  13. [Light protection: principles of UV protection].

    Science.gov (United States)

    Stege, H; Mang, R

    2006-05-01

    UV radiation is responsible for the induction of epithelial and melanocytic skin cancer, photoaging, and photodermatoses. UV protection is necessary to prevent damage caused by non-physiologic exposure. UV protection includes not only reduction of sun exposure but also use of sun protective filters, UV protective clothes, DNA repair enzymes, and antioxidant supplementation. Consumers are uncertain about the possibilities and limitations of commercial sun protection measures. Dermatologists must explain protective measures to the general public which continues to believe that UV-tanned skin is healthy. The sunscreen market is a highly competitive but lucrative market. The range of products with different designations and promises makes difficult for both consumers and dermatologists to determine what is sensible UV protection.

  14. Protective effect of poly ({alpha}-L-glutamate) against UV and {gamma}-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Masakazu E-mail: mfuruta@riast.osakafu-u.ac.jp; Huy, Nguyen Quang; Tsuchiya, Akihito; Nakatsuka, Hiroshige; Hayashi, Toshio

    2004-10-01

    We occasionally found that poly ({alpha}-L-glutamate) showed a superior protective effect on enzymes against UV and {sup 60}Co-{gamma} irradiation. We selected papain and {alpha}-amylase as a model enzyme and irradiated the aqueous solution (10 mg/ml) of each enzyme with UV and {sup 60}Co-{gamma} rays in the presence of poly ({alpha}-L-glutamate) ({alpha}-PGA), poly (glucosyl oxyethyl methacrylate (GEMA)), and glucose (1.25% w/v each). The mixture of the three compounds has a significant protective effect on the activity of papain solution showing 40% of remaining activity twice as much as the control containing no additive at the dose of 15 kGy. Among them, {alpha}-PGA showed the highest protecting effect on the both papain and {alpha}-amylase even after 10-kGy irradiation at which 50% of the activity was retained. {alpha}-PGA also showed significant protective activity on {alpha}-amylase against UV both in solution and under dried state.

  15. Protective effect of poly (α-L-glutamate) against UV and γ-irradiation

    International Nuclear Information System (INIS)

    Furuta, Masakazu; Huy, Nguyen Quang; Tsuchiya, Akihito; Nakatsuka, Hiroshige; Hayashi, Toshio

    2004-01-01

    We occasionally found that poly (α-L-glutamate) showed a superior protective effect on enzymes against UV and 60 Co-γ irradiation. We selected papain and α-amylase as a model enzyme and irradiated the aqueous solution (10 mg/ml) of each enzyme with UV and 60 Co-γ rays in the presence of poly (α-L-glutamate) (α-PGA), poly (glucosyl oxyethyl methacrylate (GEMA)), and glucose (1.25% w/v each). The mixture of the three compounds has a significant protective effect on the activity of papain solution showing 40% of remaining activity twice as much as the control containing no additive at the dose of 15 kGy. Among them, α-PGA showed the highest protecting effect on the both papain and α-amylase even after 10-kGy irradiation at which 50% of the activity was retained. α-PGA also showed significant protective activity on α-amylase against UV both in solution and under dried state

  16. NGF protects corneal, retinal, and cutaneous tissues/cells from phototoxic effect of UV exposure.

    Science.gov (United States)

    Rocco, Maria Luisa; Balzamino, Bijorn Omar; Aloe, Luigi; Micera, Alessandra

    2018-04-01

    Based on evidence that nerve growth factor (NGF) exerts healing action on damaged corneal, retinal, and cutaneous tissues, the present study sought to assess whether topical NGF application can prevent and/or protect epithelial cells from deleterious effects of ultraviolet (UV) radiation. Eyes from 40 young-adult Sprague Dawley rats and cutaneous tissues from 36 adult nude mice were exposed to UVA/B lamp for 60 min, either alone or in the presence of murine NGF. Corneal, retinal, and cutaneous tissues were sampled/processed for morphological, immunohistochemical, and biomolecular analysis, and results were compared statistically. UV exposure affected both biochemical and molecular expression of NGF and trkA NGFR in corneal, retinal, and cutaneous tissues while UV exposure coupled to NGF treatment enhanced NGF and trkA NGFR expression as well as reduced cell death. Overall, the findings of this in vivo/ex vivo study show the NGF ability to reduce the potential UV damage. Although the mechanism underneath this effect needs further investigation, these observations prospect the development of a pharmacological NGF-based therapy devoted to maintain cell function when exposed to phototoxic UV radiation.

  17. Development of a safe ultraviolet camera system to enhance awareness by showing effects of UV radiation and UV protection of the skin (Conference Presentation)

    Science.gov (United States)

    Verdaasdonk, Rudolf M.; Wedzinga, Rosaline; van Montfrans, Bibi; Stok, Mirte; Klaessens, John; van der Veen, Albert

    2016-03-01

    The significant increase of skin cancer occurring in the western world is attributed to longer sun expose during leisure time. For prevention, people should become aware of the risks of UV light exposure by showing skin damage and the protective effect of sunscreen with an UV camera. An UV awareness imaging system optimized for 365 nm (UV-A) was develop using consumer components being interactive, safe and mobile. A Sony NEX5t camera was adapted to full spectral range. In addition, UV transparent lenses and filters were selected based on spectral characteristics measured (Schott S8612 and Hoya U-340 filters) to obtain the highest contrast for e.g. melanin spots and wrinkles on the skin. For uniform UV illumination, 2 facial tanner units were adapted with UV 365 nm black light fluorescent tubes. Safety of the UV illumination was determined relative to the sun and with absolute irradiance measurements at the working distance. A maximum exposure time over 15 minutes was calculate according the international safety standards. The UV camera was successfully demonstrated during the Dutch National Skin Cancer day and was well received by dermatologists and participating public. Especially, the 'black paint' effect putting sun screen on the face was dramatic and contributed to the awareness of regions on the face what are likely to be missed applying sunscreen. The UV imaging system shows to be promising for diagnostics and clinical studies in dermatology and potentially in other areas (dentistry and ophthalmology)

  18. Testing of resveratrol microemulsion photostability and protective effect against UV induced oxidative stress.

    Science.gov (United States)

    Juškaitė, Vaida; Ramanauskienė, Kristina; Briedis, Vitalis

    2017-06-27

    Resveratrol is well known for its antioxidant activity and susceptibility to ultraviolet radiation. Development of formulations providing improved stability and relevant drug delivery of resveratrol is still a challenging task. The aim of this study was to determine protective characteristics of formulated microemulsions by evaluating photoisomerization of resveratrol and to investigate the effects of resveratrol on human keratinocyte cells under oxidative stress caused by ultraviolet radiation. Incorporation of resveratrol into microemulsions resulted in increased photostability of active compounds and the results demonstrated that photodegradation of resveratrol was significantly delayed. Results of biopharmaceutical evaluation in vitro demonstrated that up to 60 % of resveratrol was released from microemulsions within 6 hours under a constant release rate profile. In vivo biological testing confirmed the ability of resveratrol to protect cells from oxidative stress and to increase cell viability. It was concluded that microemulsions might be considered in the development of UV light sensitive compounds.

  19. Testing of resveratrol microemulsion photostability and protective effect against UV induced oxidative stress

    Directory of Open Access Journals (Sweden)

    Juškaitė Vaida

    2017-06-01

    Full Text Available Resveratrol is well known for its antioxidant activity and susceptibility to ultraviolet radiation. Development of formulations providing improved stability and relevant drug delivery of resveratrol is still a challenging task. The aim of this study was to determine protective characteristics of formulated microemulsions by evaluating photoisomerization of resveratrol and to investigate the effects of resveratrol on human keratinocyte cells under oxidative stress caused by ultraviolet radiation. Incorporation of resveratrol into microemulsions resulted in increased photostability of active compounds and the results demonstrated that photodegradation of resveratrol was significantly delayed. Results of biopharmaceutical evaluation in vitro demonstrated that up to 60 % of resveratrol was released from microemulsions within 6 hours under a constant release rate profile. In vivo biological testing confirmed the ability of resveratrol to protect cells from oxidative stress and to increase cell viability. It was concluded that microemulsions might be considered in the development of UV light sensitive compounds.

  20. Milk phospholipid's protective effects against UV damage in skin equivalent models

    Science.gov (United States)

    Dargitz, Carl; Russell, Ashley; Bingham, Michael; Achay, Zyra; Jimenez-Flores, Rafael; Laiho, Lily H.

    2012-03-01

    Exposure of skin tissue to UV radiation has been shown to cause DNA photodamage. If this damaged DNA is allowed to replicate, carcinogenesis may occur. DNA damage is prevented from being passed on to daughter cells by upregulation of the protein p21. p21 halts the cells cycle allowing the cell to undergo apoptosis, or repair its DNA before replication. Previous work suggested that milk phospholipids may possess protective properties against UV damage. In this study, we observed cell morphology, cell apoptosis, and p21 expression in tissue engineered epidermis through the use of Hematoxylin and Eosin staining, confocal microscopy, and western blot respectively. Tissues were divided into four treatment groups including: a control group with no UV and no milk phospholipid treatment, a group exposed to UV alone, a group incubated with milk phospholipids alone, and a group treated with milk phospholipids and UV. All groups were incubated for twenty-four hours after treatment. Tissues were then fixed, processed, and embedded in paraffin. Performing western blots resulted in visible p21 bands for the UV group only, implying that in every other group, p21 expression was lesser. Numbers of apoptotic cells were determined by observing the tissues treated with Hoechst dye under a confocal microscope, and counting the number of apoptotic and total cells to obtain a percentage of apoptotic cells. We found a decrease in apoptotic cells in tissues treated with milk phospholipids and UV compared to tissues exposed to UV alone. Collectively, these results suggest that milk phospholipids protect cell DNA from damage incurred from UV light.

  1. Protective effect of lycopene for oxidative damage in human lens epithelial cells induced by UV

    Directory of Open Access Journals (Sweden)

    Jing-Wen Sun

    2016-05-01

    Full Text Available AIM:To investigate the protective effect and possible mechanisms of lycopene for oxidative damage induced by ultraviolet in cultured human lens epithelial cells(HLEC. METHODS:HLEC was subcultured and divided into negative control group, oxidative injury group, lycopene low dose group and lycopene high dose group. Cell viability was assayed by MTT colorimetric. Cell morphological changes were detected by electron microscope. Reactive oxygen species(ROSlevels were detected with DCFH-DA fluorescent probe. Content of superoxide dismutase(SOD, glutathione peroxidase(GSHand malondialdehyde(MDAin supernatants were detected by spectrophotometer. RESULTS:Lycopene could obviously inhibited UV-induced decline in cell activity, reduce UV-induced ROS generation within HLEC, cause SOD, GSH-Px levels increased and MDA levels decreased.CONCLUSION:Lycopene plays its strong antioxidant role in increasing the intracellular SOD and GSH-Px content levels and decreasing MDA levels, which provide reliable experimental basis for prevent and treatment of cataracts.

  2. Preparation, characterization and evaluation of moisturizing and UV protecting effects of topical solid lipid nanoparticles

    Directory of Open Access Journals (Sweden)

    Shiva Golmohammadzadeh

    2012-12-01

    Full Text Available Solid lipid nanoparticles (SLN were recently proposed as carriers for various pharmaceutical and cosmetic actives. These lipid nanoparticles can act as moisturizers and physical sunscreens on their own. Therefore, the full potential of these carriers has yet to be determined. The present study was aimed to determine and compare moisturizing and UV-protecting effects of different solid lipid nanoparticles (SLN prepared by different solid lipids including Glyceryl monostearate (GMS, Precirol® (P and cetyl palmitate (CP as carrier systems of moisturizers and sunscreens. The influence of the size and matrix crystallinity of the solid lipids on the occlusive factor, skin hydration and UV-protection were evaluated by in vitro and in vivo methods. The SLN were prepared by high-shear homogenization and ultrasound methods. Size, zeta potential and morphological characteristics of the samples were assessed by transmission electron microscopy (TEM and thermotropic properties with differential scanning calorimetry (DSC technique. Results of the assessments showed that SLN-CP significantly increases skin hydration and UV-protection, compared to SLN-GMS and SLN-P. It was demonstrated that the size of SLN, crystallinity index of solid lipid in SLN and probably other mechanisms besides the occlusive factor can influence skin hydration and UV-protection indices. Furthermore, findings of the assessments demonstrated significant difference between in vitro and in vivo assessments regarding occlusive factor and moisturizing effects. Findings of the present study indicate that the SLN-CP could be a promising carrier for sunscreens and moisturizers.Nanopartículas lipídicas sólidas (NLS foram, recentemente, propostas como carreadores de vários ativos cosméticos e farmacêuticos. Essas nanopartículas lipídicas podem atuar como hidratantes e protetores solares físicos por si só. Assim sendo, determinou-se o potencial desses carreadores. Os objetivos do

  3. The response of antioxidant systems in Nostoc sphaeroides against UV-B radiation and the protective effects of exogenous antioxidants

    Science.gov (United States)

    Wang, Gaohong; Hu, Chunxiang; Li, Dunhai; Zhang, Delu; Li, Xiaoyan; Chen, Kun; Liu, Yongding

    UV radiation is one of many harmful factors found in space that are detrimental to organisms on earth in space exploration. In the present work, we examined the role of antioxidant system in Nostoc sphaeroides Kütz (Cyanobacterium) and the effects of exogenously applied antioxidant molecules on its photosynthetic rate under UV-B radiation. It was found that UV-B radiation promoted the activity of antioxidant system to protect photosystem II (PSII) and exogenously applied antioxidant: sodium nitroprusside (SNP) and N-acetylcysteine (NAC) had an obvious protection on PSII activity under UV-B radiation. The activity of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7) and content of MDA (malondialdehyde) and ASC (ascorbate) were improved by 0.5 mM and 1 mM SNP, but 0.1 mM SNP decreased the activity of antioxidant system. Addition of exogenous NAC decreased the activity of SOD, POD, CAT and the content MDA and ASC. In contrast, exogenously applied NAC increased GSH content. The results suggest that exogenous SNP and NAC may protect algae by different mechanisms: SNP may play double roles as both sources of reactive free radicals as well as ROS scavengers in mediating the protective role of PSII on algae under UV-B radiation. On the other hand, NAC functions as an antioxidant or precursor of glutathione, which could protect PSII directly from UV-B radiation.

  4. Protective effect of UV-A radiation during acclimation of the photosynthetic apparatus to UV-B treatment

    Czech Academy of Sciences Publication Activity Database

    Štroch, Michal; Materová, Z.; Vrábl, D.; Karlický, Václav; Šigut, Ladislav; Nezval, J.; Špunda, Vladimír

    2015-01-01

    Roč. 96, nov (2015), s. 90-96 ISSN 0981-9428 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LM2010007 Grant - others:EHP(CZ) EHP-CZ02-OV-1-014-2014 Program:CZ02 Institutional support: RVO:67179843 Keywords : barley (Hordeum vulgare L.) * chlorophyll fluorescence * photosynthesis * photosynthetic pigments * UV-A radiation * UV-B radiation Subject RIV: BO - Biophysics Impact factor: 2.928, year: 2015

  5. Subthreshold UV radiation-induced peroxide formation in cultured corneal epithelial cells: the protective effects of lactoferrin

    International Nuclear Information System (INIS)

    Shimmura, Shigeto; Suematsu, Makoto; Shimoyama, Masaru; Oguchi, Yoshihisa; Ishimura, Yuzuru

    1996-01-01

    Acute exposure to suprathreshold ultraviolet B radiation (UV-B) is known to cause photokeratitis resulting from the necrosis and shedding of corneal epithelial cells. However, the corneal effects of low dose UV-B in the environmental range is less clear. In this study, subthreshold UV-B was demonstrated to cause non-necrotic peroxide formation in cultured corneal epithelial cells, which was attenuated by the major tear protein lactoferrin. Intracellular oxidative insults and cell viability of rabbit corneal epithelial cells (RCEC) were assessed by dual-color digital microfluorography using carboxydichlorofluorescin (CDCFH) diacetate bis (acetoxymethyl) ester, a hydroperoxide-sensitive fluoroprobe, and propidium iodode (PI) respectively. The magnitude of UV-induced oxidative insults was calibrated by concentrations of exogenously applied H 2 O 2 which evoke compatible levels of CDCFH oxidation. Exposure of RCEC to low-dose UV-B (2.0 mJ cm -2 at 313 nm, 10.0 mJ cm -2 total UV-B) caused intracellular oxidative changes which were equivalent to those elicited by 240 μM hydrogen peroxide under the conditions of the study. The changes were dose dependent, non-necrotic, and were partially inhibited by lactoferrin ( 1 mg ml -1 ) but not by iron-saturated lactoferrin. Pretreatment with deferoxamine (2 mΜ) or catalase (100 U ml -1 ) also attenuated the UV-induced oxidative stress. The results indicate that UV-B comparable to solar irradiation levels causes significant intracellular peroxide formation in corneal epithelial cells, and that lactoferrin in tears may have a physiological role in protecting the corneal epithelium from solar UV irradiation. (Author)

  6. TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens

    International Nuclear Information System (INIS)

    Popov, A P; Priezzhev, A V; Lademann, J; Myllylae, R

    2005-01-01

    Protecting human skin against harmful UV-B radiation coming from the sun is currently a problem. Due to the decreased thickness of the ozone layer, a more dangerous amount of UV-B light reaches the surface of our planet. This causes increased frequency of skin diseases. Titanium dioxide (TiO 2 ) fine particles are embedded with sunscreens into the skin to effectively attenuate UV-B radiation. This study evaluates the most appropriate size of such particles assuming they are spheres. The distribution of TiO 2 particles within the skin, achieved with topically applied sunscreens, is determined experimentally by the tape-stripping technique. Computer code implementing the Monte Carlo method is used to simulate photon migration within the plain 20 μm thick horny layer matrix partially filled with nano-sized TiO 2 particles. Dependences of harmful UV-B radiation of 307-311 nm absorbed by, backscattered from and transmitted through the horny layer on the concentration of TiO 2 particles are obtained and analysed. As a result, particles of 62 nm are found to be the most effective in protecting skin against UV-B light

  7. Knowledge of outdoor workers on the effects of natural UV radiation and methods of protection against exposure.

    Science.gov (United States)

    Hault, K; Rönsch, H; Beissert, S; Knuschke, P; Bauer, A

    2016-04-01

    The most important but influenceable risk factor in the development of skin cancer is the unprotected exposure to solar ultraviolet (UV) radiation. In order to assure adequate and effective protection against UV exposure, a level of knowledge about solar radiation and its effects is required. The objective of this study was to assess the knowledge of workers in outdoor professions on the effects of natural UV radiation and methods of protection against exposure. Forty outdoor workers were given a standardized questionnaire designed to ascertain their level of knowledge. The majority of participants knew exposure to solar radiation can be detrimental depending on exposure time. Eighty-three percentage recognized that people working regularly in an outdoor environment may be at risk due to high exposure. Long-sleeved clothing plus headgear and sunscreen containing sun-protecting substances were deemed adequate methods of protection by 83% and 85% respectively. Seventy percentage of the outdoor workers were familiar with the definition of the sun protection factor (SPF), yet only 25% correctly identified the amount of sunscreen needed to achieve the SPF as indicated on the product. A mere 8% of participants knew that symptoms of a sunburn first became apparent 3 h after sun exposure and only 18% were able to accurately gauge the amount of time they could spend in the sun before developing one. Although 30% had heard of the ultraviolet index (UVI), only 13% understood that protecting your skin using additional measures is recommended as of UVI 3. Overall, 30% of the outdoor workers thought themselves sufficiently protected against the harmful effects of the sun. While the participants of this study had a basic fundamental understanding of the effects of solar radiation and methods of protection against exposure, there remains an urgent need for further clarification across all demographic groups. © 2016 European Academy of Dermatology and Venereology.

  8. Skin protective effect of guava leaves against UV-induced melanogenesis via inhibition of ORAI1 channel and tyrosinase activity.

    Science.gov (United States)

    Lee, Dong-Ung; Weon, Kwon Yeon; Nam, Da-Yeong; Nam, Joo Hyun; Kim, Woo Kyung

    2016-12-01

    Ultraviolet (UV) irradiation is a major environmental factor affecting photoageing, which is characterized by skin wrinkle formation and hyperpigmentation. Although many factors are involved in the photoageing process, UV irradiation is thought to play a major role in melanogenesis. Tyrosinase is the key enzyme in melanin synthesis; therefore, many whitening agents target tyrosinase through various mechanisms, such as direct interference of tyrosinase catalytic activity or inhibition of tyrosinase mRNA expression. Furthermore, the highly selective calcium channel ORAI1 has been shown to be associated with UV-induced melanogenesis. Thus, ORAI1 antagonists may have applications in the prevention of melanogenesis. Here, we aimed to identify the antimelanogenesis agents from methanolic extract of guava leaves (Psidium guajava) that can inhibit tyrosinase and ORAI1 channel. The n-butanol (47.47%±7.503% inhibition at 10 μg/mL) and hexane (57.88%±7.09% inhibition at 10 μg/mL) fractions were found to inhibit ORAI1 channel activity. In addition, both fractions showed effective tyrosinase inhibitory activity (68.3%±0.50% and 56.9%±1.53% inhibition, respectively). We also confirmed that the hexane fraction decreased the melanin content induced by UVB irradiation and the ET-1-induced melanogenesis in murine B16F10 melanoma cells. These results suggest that the leaves of P. guajava can be used to protect against direct and indirect UV-induced melanogenesis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Efficiency of ocular UV protection by clear lenses.

    Science.gov (United States)

    Rifai, Katharina; Hornauer, Matthias; Buechinger, Ramona; Schoen, Roland; Barraza-Bernal, Maria; Habtegiorgis, Selam; Glasenapp, Carsten; Wahl, Siegfried; Mappes, Timo

    2018-04-01

    Ocular UV doses accumulate all-day, not only during periods of direct sun exposure. The UV protection efficiency of three clear lenses was evaluated experimentally, validated by simulation, and compared to non-UV protection: a first spectacle lens with a tailored UV absorber, a second spectacle lens, minimizing UV back reflections, as well as a third spectacle lens, combining both. A tailored UV-absorber efficiently reduced overall UV irradiance to 7 %, whereas reduction of back-reflections still left UV irradiance at 42 %. Thus, clear lenses with a tailored UV absorber efficiently protect the eye from UV, supplementing sun glasses wear to an all-day protection scenario.

  10. Light Conversion and Scattering in UV Protective Textiles

    Directory of Open Access Journals (Sweden)

    Grancarić Ana Marija

    2014-12-01

    Full Text Available The primary cause of skin cancer is believed to be a long exposure to solar ultraviolet radiation (UV-R crossed with the amount of skin pigmentation in the population. It is believed that in childhood and adolescence 80% of UV-R gets absorbed, whilst in the remaining 20% gets absorbed later in the lifetime. This suggests that proper and early photoprotection may reduce the risk of subsequent occurrence of skin cancer. Textile and clothing are the most suitable interface between environment and human body. It can show UV protection, but in most cases it does not provide full sun screening properties. UV protection ability highly depends on large number of factors such as type of fibre, fabric surface and construction, type and concentration of dyestuff, fluorescent whitening agent (FWA, UV-B protective agents, as well as nanoparticles, if applied. Based on electronically excited state by energy of UV-R (usually 340-370 nm, the molecules of FWAs show the phenomenon of fluorescence giving to white textiles high whiteness of outstanding brightness by reemitting the energy at the blue region (typically 420-470 nm of the spectrum. By absorbing UV-A radiation, optical brightened fabrics transform this radiation into blue fluorescence, which leads to better UV protection. Natural zeolites are rock-forming, microporous silicate minerals. Applied as nanoparticles to textile surface, it scatters the UV-R resulting in lower UV-A and UV-B transmission. If applied with other UV absorbing agents, e.g. FWAs, synergistic effect occurs. Silicones are inert, synthetic compounds with a variety of forms and uses. It provides a unique soft touch, is very resistant to washing and improves the property of fabric to protect against UV radiation. Therefore, the UV protective properties of cotton fabric achieved by light conversion and scattering was researched in this paper. For that purpose, the stilbene-derived FWAs were applied on cotton fabric in wide concentration

  11. Protective effect of gelatin and gelatin hydrolysate from salmon skin on UV irradiation-induced photoaging of mice skin

    Science.gov (United States)

    Chen, Tiejun; Hou, Hu; Lu, Jiaohan; Zhang, Kai; Li, Bafang

    2016-08-01

    The objective of this study was to investigate the effect of gelatin (SG) isolated from salmon skin and its hydrolysate (SGH) on photoaging skin, and the mechanism responsible for anti-photoaging. The average molecular weights of SG and SGH were 65 kDa and 873 Da, respectively. The amino acid compositions of SG and SGH were similar. Both of them were abundant in hydrophobic amino acids. Twenty-five peptides were identified from SGH. SG and SGH could improve UV irradiation-induced pathological changes of macroscopical tissue texture and skin morphology. Hydroxyproline content is an indicator of matrix collagen content, SG and SGH could inhibit the decrease of hydroxyproline content in photoaging skin in a dose dependent manner. In addition, SG and SGH could alleviate UV irradiation-induced oxidative damages to skin by increasing the activities of total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), increasing the content of glutathione (GSH) and decreasing the content of malonaldehyde (MDA). Moreover, SG and SGH could enhance immune regulation system by increasing the thymus index. Thus, the anti-photoaging mechanisms of SG and SGH were by inhibiting the depletion of antioxidant defense components, involving in the synthesis of collagen and enhancing the function of immune system. Besides, SGH showed a better result in protecting skin from photoaging than SG.

  12. The protective effect of some Thai plants and their bioactive compounds in UV light-induced skin carcinogenesis.

    Science.gov (United States)

    de Silva, Madhura B; Tencomnao, Tewin

    2018-05-02

    Skin cancer, represents a major public health concern. While the vast majority is non-melanoma skin cancers, melanomas are mostly responsible for mortality. Solar UVB radiation is mutagenic and carcinogenic. It is primarily responsible for both non-melanoma and melanoma skin cancers via excessive production of reactive oxygen species (ROS), which mediate changes in inflammation and immunity, and have been implicated in all three stages of skin cancer development. Due to their regulatory role in numerous functions of cells, signaling pathways are targets for chemoprevention. The current standards in melanoma therapy are targeted and combination therapies, which, albeit prolong survival responses, are still prone to development of drug resistance. To this extent, drugs of natural origin continue to spark great interest. Thailand has a rich biodiversity of indigenous flora, which have traditionally been used to treat a variety of pathologies. The active components in plant extracts that have medicinal properties, termed 'bioactive compounds,' are efficient chemopreventive agents due to their antioxidant, antimutagenic, anticarcinogenic, and carcinogen detoxification properties. Thai plants and their bioactive compounds have shown protective effects on UV light-induced skin cancer in different experimental models. This warrants further in vivo investigations and translation to clinical studies to determine efficacy and safety, for use as lead compounds in targeted/combination therapy or adjuvant therapy with existing regimes. Coupled with a strategy for prevention, this offers a promising outlook for protection against photocarcinogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. UV-protection of Natural and Synthetic Fabrics by Surface Treatment under the effect of Gamma Irradiation

    International Nuclear Information System (INIS)

    El-Naggar, AW.M.; Zohdy, M.H.; Ali, N.M.

    2008-01-01

    Synthetic and natural fabrics were surface coated with gamma radiation curable novel formulations. These formulations were based on naturally occurring Alum individually and in binary mixture with ZnO beside different functional oligomers and monomers. The physical properties of the treated fabrics were evaluated in terms of ultraviolet protection, moisture regain, and water absorption. Also, the effect of coating formulations on the crystallinity was investigated by X-ray diffraction (XRD). The results of ultraviolet protection factor (UPF) showed that the formulation containing 30% of Alum caused a significant UPF values (50+) according to standard rating over untreated fabrics. When ZnO was incorporated in the formulation, the UPF factor was increased by two folds. A decrease in the moisture regain and water absorption of fabrics was featured with ZnO, however, in case of Alum a decrease followed by an increase was observed. In conclusion, these novel coats could be taken as an nontoxic alternative UV-resist finishing agents for fabrics

  14. UV-blocking spectacle lens protects against UV-induced decline of visual performance.

    Science.gov (United States)

    Liou, Jyh-Cheng; Teng, Mei-Ching; Tsai, Yun-Shan; Lin, En-Chieh; Chen, Bo-Yie

    2015-01-01

    Excessive exposure to sunlight may be a risk factor for ocular diseases and reduced visual performance. This study was designed to examine the ability of an ultraviolet (UV)-blocking spectacle lens to prevent visual acuity decline and ocular surface disorders in a mouse model of UVB-induced photokeratitis. Mice were divided into 4 groups (10 mice per group): (1) a blank control group (no exposure to UV radiation), (2) a UVB/no lens group (mice exposed to UVB rays, but without lens protection), (3) a UVB/UV400 group (mice exposed to UVB rays and protected using the CR-39™ spectacle lens [UV400 coating]), and (4) a UVB/photochromic group (mice exposed to UVB rays and protected using the CR-39™ spectacle lens [photochromic coating]). We investigated UVB-induced changes in visual acuity and in corneal smoothness, opacity, and lissamine green staining. We also evaluated the correlation between visual acuity decline and changes to the corneal surface parameters. Tissue sections were prepared and stained immunohistochemically to evaluate the structural integrity of the cornea and conjunctiva. In blank controls, the cornea remained undamaged, whereas in UVB-exposed mice, the corneal surface was disrupted; this disruption significantly correlated with a concomitant decline in visual acuity. Both the UVB/UV400 and UVB/photochromic groups had sharper visual acuity and a healthier corneal surface than the UVB/no lens group. Eyes in both protected groups also showed better corneal and conjunctival structural integrity than unprotected eyes. Furthermore, there were fewer apoptotic cells and less polymorphonuclear leukocyte infiltration in corneas protected by the spectacle lenses. The model established herein reliably determines the protective effect of UV-blocking ophthalmic biomaterials, because the in vivo protection against UV-induced ocular damage and visual acuity decline was easily defined.

  15. Study on the Protective Effect of a New Manganese Superoxide Dismutase on the Microvilli of Rabbit Eyes Exposed to UV Radiation

    OpenAIRE

    Grumetto, Lucia; Del Prete, Antonio; Ortosecco, Giovanni; Barbato, Francesco; Del Prete, Salvatore; Borrelli, Antonella; Schiattarella, Antonella; Mancini, Roberto; Mancini, Aldo

    2015-01-01

    We present a study on the protective effects against UV radiation of a gel formulation containing a new recombinant form of manganese superoxide dismutase on the conjunctiva and corneal epithelia of rabbit eyes. The integrity of the microvilli of both ocular tissues has been considered as an indicator of the health of the tissues. Samples, collected by impression cytology technique, were added of 80??L of a gel formulation containing superoxide dismutase (2.0??g/mL) and irradiated with UV ray...

  16. Skin protection against UV light by dietary antioxidants.

    Science.gov (United States)

    Fernández-García, Elisabet

    2014-09-01

    There is considerable interest in the concept of additional endogenous photoprotection by dietary antioxidants. A number of efficient micronutrients are capable of contributing to the prevention of UV damage in humans. These compounds protect molecular targets by scavenging reactive oxygen species, including excited singlet oxygen and triplet state molecules, and also modulate stress-dependent signaling and/or suppress cellular and tissue responses like inflammation. Micronutrients present in the diet such as carotenoids, vitamins E and C, and polyphenols contribute to antioxidant defense and may also contribute to endogenous photoprotection. This review summarizes the literature concerning the use of dietary antioxidants as systemic photoprotective agents towards skin damage induced by UVA and UVB. Intervention studies in humans with carotenoid-rich diets have shown photoprotection. Interestingly, rather long treatment periods (a minimum of 10 weeks) were required to achieve this effect. Likewise, dietary carotenoids exert their protective antioxidant function in several in vitro and in vivo studies when present at sufficiently high concentration. A combination of vitamins E and C protects the skin against UV damage. It is suggested that daily consumption of dietary polyphenols may provide efficient protection against the harmful effects of solar UV radiation in humans. Furthermore, the use of these micronutrients in combination may provide an effective strategy for protecting human skin from damage by UV exposure.

  17. Study on the Protective Effect of a New Manganese Superoxide Dismutase on the Microvilli of Rabbit Eyes Exposed to UV Radiation

    Directory of Open Access Journals (Sweden)

    Lucia Grumetto

    2015-01-01

    Full Text Available We present a study on the protective effects against UV radiation of a gel formulation containing a new recombinant form of manganese superoxide dismutase on the conjunctiva and corneal epithelia of rabbit eyes. The integrity of the microvilli of both ocular tissues has been considered as an indicator of the health of the tissues. Samples, collected by impression cytology technique, were added of 80 µL of a gel formulation containing superoxide dismutase (2.0 µg/mL and irradiated with UV rays for 30 minutes and were evaluated with scanning electron microscopy. Wilcoxon test was used to verify the possible occurrence of statistically significant differences between damage for treated and nontreated tissues. Application of gel produces a significant reduction of damage by UV irradiation of ocular epithelia; both epithelia present a significant reduction of damaged microvilli number if treated with the superoxide dismutase gel formulation: the p values (differences between damage found for treated and nontreated both ocular tissues for conjunctiva and cornea samples were p≪0.01 and p≪0.0001, respectively, at confidence level of 95%. The administration of this gel formulation before UV exposure plays a considerable protective role in ocular tissues of rabbit eye with a significant reduction of the damage.

  18. Study on the Protective Effect of a New Manganese Superoxide Dismutase on the Microvilli of Rabbit Eyes Exposed to UV Radiation.

    Science.gov (United States)

    Grumetto, Lucia; Del Prete, Antonio; Ortosecco, Giovanni; Barbato, Francesco; Del Prete, Salvatore; Borrelli, Antonella; Schiattarella, Antonella; Mancini, Roberto; Mancini, Aldo

    2015-01-01

    We present a study on the protective effects against UV radiation of a gel formulation containing a new recombinant form of manganese superoxide dismutase on the conjunctiva and corneal epithelia of rabbit eyes. The integrity of the microvilli of both ocular tissues has been considered as an indicator of the health of the tissues. Samples, collected by impression cytology technique, were added of 80 µL of a gel formulation containing superoxide dismutase (2.0 µg/mL) and irradiated with UV rays for 30 minutes and were evaluated with scanning electron microscopy. Wilcoxon test was used to verify the possible occurrence of statistically significant differences between damage for treated and nontreated tissues. Application of gel produces a significant reduction of damage by UV irradiation of ocular epithelia; both epithelia present a significant reduction of damaged microvilli number if treated with the superoxide dismutase gel formulation: the p values (differences between damage found for treated and nontreated both ocular tissues) for conjunctiva and cornea samples were p ≪ 0.01 and p ≪ 0.0001, respectively, at confidence level of 95%. The administration of this gel formulation before UV exposure plays a considerable protective role in ocular tissues of rabbit eye with a significant reduction of the damage.

  19. Transverse effects in UV FELs

    International Nuclear Information System (INIS)

    Small, D.W.; Wong, R.K.; Colson, W.B.

    1995-01-01

    In an ultraviolet Free Electron Laser (UV FEL), the electron beam size can be approximately the same as the optical mode size. The performance of a UV FEL is studied including the effect of emittance, betatron focusing, and external focusing of the electron beam on the transverse optical mode. The results are applied to the Industrial Laser Consortium's UV FEL

  20. Studies on Coloration and UV Protective Action of Anar Peel (Pomegranate Rind) as an Effective Natural Colorant for Cotton Khadi Fabric

    Science.gov (United States)

    Sinnur, H. D.; Samanta, Ashis Kumar; Verma, D. K.; Kaware, Runali

    2017-10-01

    Besides optimization of conditions of colour extraction from dried anar peel, effect of different single and double mordants, dyeing process variables and UV protective action of anar peels (pomegranate rind i.e. Punica granatum L.) as a natural colourant is studied in this work. Mordants used are potash alum, aluminium sulphate and stannous chloride (as metallic salt mordant) and harda (i.e., myrobolan as natural mordant) from natural source. Relevant results indicate that 50:50 ratio of harda plus potash aluminium sulphate at overall 15% application level offers maximum K/S value and overall good colour fastness than any other combination. After finalizing the mordants, dyeing process variables were studied for standardization of conditions for dyeing cotton khadi fabric with aqueous extract of pomegranate rind. The results indicate that standardized conditions for dyeing are (a) dyeing time : 60 min, (b) dyeing temperature: 80 °C, (c) dye bath MLR : 1:30, (d) dye bath pH : 9.0, (e) max dye concentration : 20% and (f) common salt : 3%. Studies of FTIR, UV scan, Atomic Absorption Spectrophotometry (AAS) and UV Protection Factor (UPF) characters show a medium to good level of ultraviolet protection. Corresponding reaction mechanism amongst mordant/fibre and dye forming giant complex is also reported.

  1. Studies on Coloration and UV Protective Action of Anar Peel (Pomegranate Rind) as an Effective Natural Colorant for Cotton Khadi Fabric

    Science.gov (United States)

    Sinnur, H. D.; Samanta, Ashis Kumar; Verma, D. K.; Kaware, Runali

    2018-06-01

    Besides optimization of conditions of colour extraction from dried anar peel, effect of different single and double mordants, dyeing process variables and UV protective action of anar peels (pomegranate rind i.e. Punica granatum L.) as a natural colourant is studied in this work. Mordants used are potash alum, aluminium sulphate and stannous chloride (as metallic salt mordant) and harda (i.e., myrobolan as natural mordant) from natural source. Relevant results indicate that 50:50 ratio of harda plus potash aluminium sulphate at overall 15% application level offers maximum K/S value and overall good colour fastness than any other combination. After finalizing the mordants, dyeing process variables were studied for standardization of conditions for dyeing cotton khadi fabric with aqueous extract of pomegranate rind. The results indicate that standardized conditions for dyeing are (a) dyeing time : 60 min, (b) dyeing temperature: 80 °C, (c) dye bath MLR : 1:30, (d) dye bath pH : 9.0, (e) max dye concentration : 20% and (f) common salt : 3%. Studies of FTIR, UV scan, Atomic Absorption Spectrophotometry (AAS) and UV Protection Factor (UPF) characters show a medium to good level of ultraviolet protection. Corresponding reaction mechanism amongst mordant/fibre and dye forming giant complex is also reported.

  2. UV-induced effects

    NARCIS (Netherlands)

    Liebsch, M.; Spielmann, H.; Pape, W.; Krul, C.; Deguercy, A.; Eskes, C.A.M.

    2005-01-01

    Regulatory requirements: According to the current Notes for Guidance of the Scientific Committee on Cosmetic Products and Non-Food Products (SCCNFP), cosmetic ingredients and mixtures of ingredients absorbing UV light (in particular UV filter chemicals used, for example, to ensure the light

  3. UV Tanning Equipment | Radiation Protection | US EPA

    Science.gov (United States)

    2017-08-07

    Sun lamps and tanning equipment emit ultraviolet (UV) rays. People who are exposed to UV rays over a long period of time are more likely to develop skin cancer. People with light skin are in more danger because their skin is more sensitive to UV rays.

  4. The effect of fullerols under UV on cell

    International Nuclear Information System (INIS)

    Li Yuguo; Zhao Qunfen; Li Qingnuan; Xu Jingying; Li Wenxin; Ni Jin; Han Ling; Gao Fu

    2004-01-01

    The UV radioprotective effect of fullerols, which was compared with the effect of C 60 -PVP, was studied using cultured L02 cells. The cell survivals were determined by MTT method, SOD and MDA also were studied with chemistric colorimetry. The results showed that fullerols can effectively protect cells from damage induced by UV irradiation. The mechanism could be assosiated with the ability of fullerols to behave as an antioxidant compound, then fullerols protected cell membrane from damage by UV radiation. (authors)

  5. Protection policies for ionizing and UV radiation

    International Nuclear Information System (INIS)

    Bosnjakovic, B.F.M.

    1987-01-01

    Although ultraviolet radiation is generally considered as being part of non-ionizing radiation, the existing similarities with ionizing radiation are too striking to be overseen. A comparison of these two agents is becoming important in view of the increasing awareness of various environmental and health risks and the tendency to develop more uniform risk management policies with respect to the different physical and chemical agents. This paper explores the similarities and differences of UV and ionizing radiation from the point of view of policies either adopted or in development. Policy determinants include, among others, the following factors: biological effects, dosimetric quantities, relative contribution to exposure from different sources, hazard potential of different sources, quantification of detrimental consequences, public perception of the radiation hazards and regulation developments. These factors are discussed

  6. Evaporation of Sunscreen Films: How the UV Protection Properties Change.

    Science.gov (United States)

    Binks, Bernard P; Brown, Jonathan; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-06-01

    We have investigated the evaporation of thin sunscreen films and how the light absorption and the derived sun protection factor (SPF) change. For films consisting of solutions of common UV filters in propylene glycol (PG) as solvent, we show how evaporation generally causes three effects. First, the film area can decrease by dewetting leading to a transient increase in the average film thickness. Second, the film thins by evaporative loss of the solvent. Third, precipitation of the UV filter occurs when solvent loss causes the solubility limit to be reached. These evaporation-induced changes cause the UV absorbance of the film to decrease with resultant loss of SPF over the time scale of the evaporation. We derive an approximate model which accounts semiquantitatively for the variation of SPF with evaporation. Experimental results for solutions of different UV filters on quartz, different skin mimicking substrates, films with added nanoparticles, films with an added polymer and films with fast-evaporating decane as solvent (instead of slow evaporating PG) are discussed and compared with model calculations. Addition of either nanoparticles or polymer suppress film dewetting. Overall, it is hoped that the understanding gained about the mechanisms whereby film evaporation affects the SPF will provide useful guidance for the formulation of more effective sunscreens.

  7. Aerosol effects on UV radiation

    International Nuclear Information System (INIS)

    Koepke, P.; Reuder, J.; Schwander, H.

    2000-01-01

    The reduction of erythemally weighted UV-irradiance (given as UV index, UVI) due to aerosols is analyzed by variation of the tropospheric particles in a wide, but realistic range. Varied are amount and composition of the particles and relative humidity and thickness of the mixing layer. The reduction of UVI increases with aerosol optical depth and the UV change is around 10% for a change aerosol optical depth from 0.25 to 0.1 and 0.4 respectively. Since both aerosol absorption and scattering are of relevance, the aerosol effect depends besides total aerosol amount on relative amount of soot and on relative humidity

  8. UV radiation sources for artificial skin tanning and protection

    International Nuclear Information System (INIS)

    Zivkovic, D.; Hrnjak, M.

    1999-01-01

    UV radiation sources for artificial tanning are more utilized at the last time. UV radiation is not harmless, so there are not safety devices for tanning. If people do not want to avoid exposure to their radiation, than it is necessary to take the prevention measure: strictly dose of UV radiation according to skin type, use of appropriate protective eye-wears and respect for inhibit of some medicaments and some cosmetic products use. (author)

  9. Ozone layer - climate change interactions. Influence on UV levels and UV related effects

    NARCIS (Netherlands)

    Kelfkens G; Bregman A; de Gruijl FR; van der Leun JC; Piquet A; van Oijen T; Gieskes WWC; van Loveren H; Velders GJM; Martens P; Slaper H; NOP; LPI; LLO

    2002-01-01

    Ozone in the atmosphere serves as a partially protective filter against the most harmful part of the solar UV-spectrum. Decreases in ozone lead to increases in ambient UV with a wide variety of adverse effects on human health, aquatic and terrestrial ecosystems and food chains. Human health

  10. Impact of fouling on UV effectiveness

    International Nuclear Information System (INIS)

    Dykstra, T.S.; Chauret, C.

    2002-01-01

    In recent years ultraviolet light has gained in popularity as an attractive disinfection alternative due to its ability to inactivate bacteria and viruses. UV light has the potential to inactivate Cryptosporidium parvum and Giardia lamblia with a very low potential for the formation of harmful disinfection by-products. Previous studies have reported that particulate material present in the water can act to reduce the exposure of UV light to the receiving waters and that the interference of organic particles can serve to protect bacteria and viruses from intended disinfection. Disinfection capacity can also be reduced by organics in the source water that can accumulate on the surface of quartz sleeves. The purpose of this study was to determine the ability of a medium pressure UV light, at drinking water treatment levels, to inactivate MS 2 bacteriophage after a quartz tube has been fouled with organic rich source water for a 12- week period. To this end the inactivation of MS 2 was determined under clean and fouled conditions, in the presence and absence of humic rich water. The effect of lamp age on inactivation was also investigated. The results suggest that organic fouling of a quartz tube has a significant impact on the disinfection capacity of a medium pressure UV lamp. The presence of organics in the source water also plays a significant role in reducing the capacity of UV for bacterial and viral disinfection. Lamp age also seems to have some effect on the efficiency of UV disinfection. (author)

  11. Protective Role of Comfrey Leave Extracts on UV-induced Zebrafish Fin Damage.

    Science.gov (United States)

    Cheng, Chien-Chung; Chou, Chi-Yuan; Chang, Yao-Chin; Wang, Hsuan-Wen; Wen, Chi-Chung; Chen, Yau-Hung

    2014-07-01

    In zebrafish, UV exposure leads to fin malformation phenotypes including fin reduction or absence. The present study evaluated UV-protective activities of comfrey leaves extracts in a zebrafish model by recording fin morphological changes. Chemopreventive effects of comfrey leave extracts were evaluated using Kaplan-Meier analysis and Cox proportional hazards regression. The results showed that (1) the mean times of return to normal fin in the UV+comfrey (50 and 100 ppm) groups were 3.43 and 2.86 days and were quicker compared with that in the UV only group (4.21 days); (2) zebrafish fins in the UV+comfrey (50 and 100 ppm) groups were 2.05 and 3.25 times more likely to return to normal than those in the UV only group; and (3) comfrey leave extracts had UV-absorbance abilities and significantly reduced ROS production in UV-exposed zebrafish embryos, which may attenuate UV-mediated apoptosis. In conclusion, comfrey leaves extracts may have the potential to be developed as UV-protective agents to protect zebrafish embryos from UV-induced damage.

  12. Effects of UV irradiation on a living skin equivalent

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, D; Gay, R J [Organogenesis Incorporated, Camton, MA (United States)

    1993-05-01

    The Living Skin Equivalent is an organotypic coculture composed of human dermal fibroblasts interspersed in a collagen-containing matrix and overlaid with human keratinocytes forming a stratified epidermis. The LSE has a dry, air-exposed epidermal surface suitable for the application of oils, creams and emulsions. The protective effects of an 8% homosylate standard and of five UV-A sunscreens, topically applied to the LSE, were determined and compared with their reported protection factors in human skin. Morphological changes and the release of proinflammatory mediators (interleukin-1-''alpha, tumor necrosis factor-[alpha] and prostaglandin E2) implicated in UV-induced erythema were also demonstrated in the LSE exposed to UV-A or UV-B. The data suggest that the LSE can be used for studying the effects of UV radiation on skin and may have utility for assessing the efficacy of certain sunscreens against UV-B and UV-A. (Author).

  13. Effects of UV irradiation on a living skin equivalent

    International Nuclear Information System (INIS)

    Nelson, D.; Gay, R.J.

    1993-01-01

    The Living Skin Equivalent is an organotypic coculture composed of human dermal fibroblasts interspersed in a collagen-containing matrix and overlaid with human keratinocytes forming a stratified epidermis. The LSE has a dry, air-exposed epidermal surface suitable for the application of oils, creams and emulsions. The protective effects of an 8% homosylate standard and of five UV-A sunscreens, topically applied to the LSE, were determined and compared with their reported protection factors in human skin. Morphological changes and the release of proinflammatory mediators (interleukin-1-''alpha, tumor necrosis factor-α and prostaglandin E2) implicated in UV-induced erythema were also demonstrated in the LSE exposed to UV-A or UV-B. The data suggest that the LSE can be used for studying the effects of UV radiation on skin and may have utility for assessing the efficacy of certain sunscreens against UV-B and UV-A. (Author)

  14. Protective Role of Comfrey Leave Extracts on UV-induced Zebrafish Fin Damage

    OpenAIRE

    Cheng, Chien-Chung; Chou, Chi-Yuan; Chang, Yao-Chin; Wang, Hsuan-Wen; Wen, Chi-Chung; Chen, Yau-Hung

    2014-01-01

    In zebrafish, UV exposure leads to fin malformation phenotypes including fin reduction or absence. The present study evaluated UV-protective activities of comfrey leaves extracts in a zebrafish model by recording fin morphological changes. Chemopreventive effects of comfrey leave extracts were evaluated using Kaplan-Meier analysis and Cox proportional hazards regression. The results showed that (1) the mean times of return to normal fin in the UV+comfrey (50 and 100 ppm) groups were 3.43 and ...

  15. Variations in constitutive and inducible UV-B tolerance; dissecting photosystem II protection in Arabidopsis thaliana accessions.

    Science.gov (United States)

    Jansen, Marcel A K; Martret, Bénedicte Le; Koornneef, Maarten

    2010-01-01

    The rise in ultraviolet-B (UV-B) (280-315 nm) radiation levels, that is a consequence of stratospheric ozone layer depletion, has triggered extensive research on the effects of UV-B on plants. Plants raised under natural sunlight conditions are generally well protected from the potentially harmful effects of UV-B radiation. However, it is mostly unknown to which extent UV protection is constitutive and/or induced. In this study, we have analysed the role of constitutive and inducible protection responses in avoiding UV-B damage to photosystem II of photosynthesis. We have assayed the UV susceptibility of photosystem II in 224 Arabidopsis thaliana accessions from across the Northern hemisphere, and found a continuum of constitutive UV-protection levels, with some accessions being UV sensitive and others UV tolerant. Statistical analysis showed only very weak associations between constitutive UV tolerance and the geographic origin of accessions. Instead, most of the variance in constitutive UV-B protection of photosynthesis is present at the level of local Arabidopsis populations originating in the same geographic and climatic area. The variance in constitutive UV protection is, however, small compared to the amplitude of environmentally induced changes in UV protection. Thus, our data emphasise the importance of inducible responses for the protection of photosystem II against UV-B. Remarkably, the conditions that induce UV-protective responses vary; accessions from lower latitudes were found to switch-on UV defences more readily than those of higher latitudes. Such altered regulation of induction may comprise a suitable adaptation response when levels of a stressor are fluctuating in the short term, but predictable over longer periods.

  16. Plasmid-mediated UV-protection in Streptococcus lactis

    Energy Technology Data Exchange (ETDEWEB)

    Chopin, M.C.; Rouault, A. (Institut National de la Recherche Agronomique, Rennes (France). Lab. de Recherches de Technologie Laitiere); Moillo-Batt, A. (Institut National de la Sante et de la Recherche Medicale (INSERM), Hopital de Pontchaillon, 35 - Rennes (France))

    1985-02-01

    Streptococcus lactis strain IL594 contains 9 plasmids, designated pIL1 to pIL9. On the basis of protoplast-induced curing experiments the authors showed that derivatives containing pIL7 were resistant to UV-irradiation while derivatives lacking pIL7 were sensitive. The pIL7-determined UV-protection was confirmed by co-transfer of the plasmid and of the character into a plasmid-free derivative of S. lactis IL594. Moreover, prophage induction required higher UV-fluence in this derivative carrying pIL7 than in the plasmid-free strain. This is the first report of a plasmid-mediated UV-protection in group N streptococci.

  17. Plasmid-mediated UV-protection in Streptococcus lactis

    International Nuclear Information System (INIS)

    Chopin, M.-C.; Rouault, A.

    1985-01-01

    Streptococcus lactis strain IL594 contains 9 plasmids, designated pIL1 to pIL9. On the basis of protoplast-induced curing experiments the authors showed that derivatives containing pIL7 were resistant to UV-irradiation while derivatives lacking pIL7 were sensitive. The pIL7-determined UV-protection was confirmed by cotransfer of the plasmid and of the character into a plasmid-free derivative of S. lactis IL594. Moreover, prophage induction required higher UV-fluence in this derivative carrying pIL7 than in the plasmid-free strain. This is the first report of a plasmid-mediated UV-protection in group N streptococci. (orig.)

  18. Radical protection by differently composed creams in the UV/VIS and IR spectral ranges.

    Science.gov (United States)

    Meinke, Martina C; Syring, Felicia; Schanzer, Sabine; Haag, Stefan F; Graf, Rüdiger; Loch, Manuela; Gersonde, Ingo; Groth, Norbert; Pflücker, Frank; Lademann, Jürgen

    2013-01-01

    Modern sunscreens are well suited to provide sufficient protection in the UV range because the filter substances absorb or scatter UV radiation. Although up to 50% of radicals are formed in the visible and infrared spectral range during solar radiation protection strategies are not provided in this range. Previous investigations of commercially available products have shown that in addition to physical filters, antioxidants (AO) are necessary to provide protective effects in the infrared range by neutralizing already formed radicals. In this study, the efficacy of filter substances and AO to reduce radical formation in both spectral ranges was investigated after UV/VIS or IR irradiation. Optical properties and radical protection were determined for the investigated creams. It was found that organic UV filters lower radical formation in the UV/VIS range to 35% compared to untreated skin, independent of the presence of AO. Further reduction to 14% was reached by addition of 2% physical filters, whereas physical filters alone were ineffective in the UV/VIS range due to the low concentration. In contrast, this filter type reduced radical formation in the IR range significantly to 65%; similar effects were aroused after application of AO. Sunscreens which contain organic UV filters, physical filters and AO ensure protection in the complete solar spectrum. © 2013 The American Society of Photobiology.

  19. Low-level laser irradiation protects the chick embryo chorioallantoic membrane from UV cytotoxicity

    Directory of Open Access Journals (Sweden)

    Hammami Amira

    2018-01-01

    Full Text Available Low-level laser therapy or photobiomodulation is the medical use of a very low intensity light in the red to near infrared (wavelengths in the range of 630-940 nm. The present work was conducted to explore the effects of both UV and low-level laser irradiation (LLLI on microcirculation using the in vivo model of the chick embryo chorioallantoic membrane (CAM. The effects were assessed by measuring lipid peroxidation and antioxidant enzyme activity. Cell cytotoxicity, survival and intracellular reactive oxygen species (ROS of the CAM were also evaluated. We found that UV irradiation induced alterations of the vessels, leading to bleeding and extravasation. This effect was intensified after 60 min of exposure to UV irradiation, leading to marked edema. UVA irradiation increased cell cytotoxicity as assessed by lactate dehydrogenase (LDH release (56.23% of control and reduced cell viability as assessed by decreased fluorescein diacetate (FDA fluorescence (56.23% of control. Pretreatment with LLLI prior to UV exposure protected the CAM tissue from UV-mediated cell death. This protective effect was supported by the observation of significantly inhibited lipid peroxidation (from 0.3±0.004 for UV, to 0.177±0.012 after LLLI pretreatment, ROS and O2 -production, as indicated by respective dihydrorhodamine (DHR and dihydroethidium (DHE intensities (from 132.78% of control for UVA, to 95.90% of control for L-UV (DHR, and from 127.34% of control for UVA, to 82.03% of control for L-UV (DHE, and by preventing the increase in oxidative activities. LLLI efficiently protected CAM cells from UV-induced oxidative stress and appeared as a safe protective pretreatment against UV irradiation.

  20. Natural dyeing and UV protection of plasma treated cotton

    Science.gov (United States)

    Gorjanc, Marija; Mozetič, Miran; Vesel, Alenka; Zaplotnik, Rok

    2018-03-01

    Raw cotton fabrics have been exposed to low-pressure non-equilibrium gaseous plasma to improve the adsorption of natural dyes as well as ultraviolet (UV) protection factor. Plasma created in a glass tube by an electrodeless radiofrequency (RF) discharge was created either in oxygen or ammonia at the pressure of 50 Pa to stimulate formation of oxygen and nitrogen groups, respectively. The type and concentration of functional groups was determined by X-ray photoelectron spectroscopy (XPS) and morphological modifications by scanning electron microscopy (SEM). The colour yield for curcumin dye was improved significantly for samples treated with ammonia plasma what was explained by bonding of the dye to surface of amino groups. Contrary, the yield decreased when oxygen plasma treatment was applied due to the negatively charged surface that repels the negatively charged dye molecules. The effect was even more pronounced when using green tea extract as the colouring agent. The colour difference between the untreated and ammonia plasma treated sample increased linearly with plasma treatment time reaching the factor of 3.5 for treatment time of 300 s. The ultraviolet protection factor (UPF) was over 50 indicating excellent protection due to improved adsorption of the dye on the ammonia plasma treated samples.

  1. Fabrics Protect Sensitive Skin from UV Rays

    Science.gov (United States)

    2009-01-01

    Late Johnson Space Center engineer Dr. Robert Dotts headed a team to develop cool suits for children suffering from life-threatening sun sensitivities. Dotts hoped to develop ultraviolet-blocking technology in a fabric that -- unlike in a bulky space suit -- could remain comfortable, light, and breathable in the sun and heat. The team worked with SPF 4 US LLC (SPF) of Madison, Wisconsin to design ultraviolet-blocking cool suits, which protect sun-sensitive patients and enable them to experience life outdoors safely. Using knowledge gained during the NASA collaboration, SPF created an entire line of ultraviolet-blocking apparel.

  2. Recent Advances on Endocrine Disrupting Effects of UV Filters

    Directory of Open Access Journals (Sweden)

    Jiaying Wang

    2016-08-01

    Full Text Available Ultraviolet (UV filters are used widely in cosmetics, plastics, adhesives and other industrial products to protect human skin or products against direct exposure to deleterious UV radiation. With growing usage and mis-disposition of UV filters, they currently represent a new class of contaminants of emerging concern with increasingly reported adverse effects to humans and other organisms. Exposure to UV filters induce various endocrine disrupting effects, as revealed by increasing number of toxicological studies performed in recent years. It is necessary to compile a systematic review on the current research status on endocrine disrupting effects of UV filters toward different organisms. We therefore summarized the recent advances on the evaluation of the potential endocrine disruptors and the mechanism of toxicity for many kinds of UV filters such as benzophenones, camphor derivatives and cinnamate derivatives.

  3. UV inactivation: Combined effects of UV radiation and xenobiotics in two strains of Saccharomyces

    International Nuclear Information System (INIS)

    Lochmann, E.R.; Lochmann, G.

    1997-01-01

    The effects of eight chemicals on the inactivation rate of ultraviolet radiation on the colony building capabilities of two strains of Saccharomyces cervisae - a wild type strain and a mutant deficient in excision repair - were studied. The insecticide methoxychlor, the herbicide 2,4-dichlorophenoxyacetic acid, the fungicide pentachlorophenol and its metabolite tetrachlorohydroquinone, as well as the chemicals acrylonitrile and 2,3-dichloro-1-propene have no significant impact on the effects of UV radiation in Saccharomyces cerevisae. Depending on the concentration, trichloroethylene increases the sensitivity to UV radiation. The herbicide paraquat provides efficient protection against UV radiation at concentrations where a toxic effect cannot be observed even without UV. The results were rather similar for both strains. (orig.) [de

  4. Phase separated thermotropic layers based on UV cured acrylate resins. Effect of material formulation on overheating protection properties and application in a solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Resch, Katharina [Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben (Austria); Wallner, Gernot M. [Institute of Materials Science and Testing of Plastics, University of Leoben, Franz-Josef Strasse 18, 8700 Leoben (Austria); Hausner, Robert [AEE - Institut fuer Nachhaltige Technologien (AEE-INTEC), Feldgasse 19, 8200 Gleisdorf (Austria)

    2009-09-15

    This paper focuses on the effect of material composition on the overheating protection properties of thermotropic systems with fixed domains for solar thermal collectors. Numerous functional layers were prepared by a variation of base resin (polyester-, epoxy- or urethane-acrylate) and of thermotropic additives (non-polar and polar waxes) as well as by additive concentration (5 and 7 wt%). A detailed investigation of optical properties, switching temperature and switching process was performed applying UV/Vis/NIR spectroscopy. Thermal transitions of both the thermotropic layers and the additives used were determined by Differential Scanning Calorimetry (DSC). The capability of the produced thermotropic layers to reduce stagnation temperatures in an all-polymeric flat plate collector was evaluated by theoretical modeling. The thermotropic layers showed a hemispheric solar transmittance between 76% and 87% in clear state. Above the switching threshold this transmittance changed by 1-16% to values between 62% and 85%. The layers exhibited switching temperatures between 33 and 80 C. The transition is fully completed within a temperature frame of 10-25 C. Resin types with higher glass transition temperatures were detected to benefit the reduction of the hemispheric solar transmittance above the switching threshold. This reduction was also found to increase with increasing molecular weight of the non-polar additive types. The comparison of the switching performance with the thermal transitions of the additives revealed a good correlation. Theoretical modeling showed that by the use of selected thermotropic layers in the glazing the maximum absorber temperatures can be limited to temperatures below 130 C. (author)

  5. The mechanisms of protection of antioxidants on Nostoc sphaeroides against UV-B radiation

    Science.gov (United States)

    Wang, G. H.

    UV radiation is one of space harmful factor for earth organisms in space exploration In the present work we studied on the role of antioxidant system in Nostoc sphaeroides K u tz Cyanobacteria and the effects of exogenous antioxidant molecules on its photosynthetic rate under UV-B radiation It was found that UV-B radiation decreased the photosynthetic activity of cyanobacterium but promoted the activity of antioxidant system to protect photosystem II PSII and exogenous antioxidant sodium nitroprusside SNP N-acetylcysteine NAC had an obvious protection on PSII activity under UV-B radiation The activity of SOD Superoxide Dismutase EC 1 15 1 1 CAT Catalase EC 1 11 1 6 POD Peroxidase EC 1 11 1 7 and content of MDA and ASC were improved by 0 5mM and 1mM SNP but 0 1mM SNP decreased the activity of antioxide system Exogenous NAC addition decreased the activity of SOD POD CAT and the content MDA and ASC but exogenous NAC addition increased the content of GSH The results suggested that exogenous SNP and NAC may protect algae by different mechanisms in which SNP maybe play double roles as sources of reactive free radicals or ROS scavengers in formation of algae s protection of PSII under UV-B radiation while NAC does function as antioxidant reagent or precursor of glutathione which could protect PSII directly from UV-B radiation Keyword antioxidant system exogenous or endogenous antioxidant Nostoc sphaeroides photosynthesis UV-B radiation

  6. Effect of enhanced UV-B radiation on motile microorganisms

    International Nuclear Information System (INIS)

    Haeder, D.P.

    1985-02-01

    The effect of slightly increased UV-B radiation was studied in four taxonomically very different microorganisms: the gliding prokaryotic cyanobacterium, Phormidium, the unicellular green alga Cosmarium, the flagellate Euglena and the cellular slime mold Dictyostelium. UV-B doses which can be expected as a result of a slight decrease of the protective ozone layer in the stratosphere, do not kill or damage the microorganisms visibly. However, such UV-B doses impair the development, motility and photoorientation of these organisms. Due to the inhibition of these physiological important parameters the organisms cannot respond adequately to the changing factors in their environment, which prevents the survival of the populations. (orig.) [de

  7. Effects of UV radiation on freshwater metazooplankton

    International Nuclear Information System (INIS)

    Tartarotti, B.

    1999-06-01

    There is evidence that fluxes of solar ultraviolet-B radiation (UV-B, 290-320 nm) are increasing over wide parts of the earth's surface due to stratospheric ozone depletion. UV radiation (290-400 nm) can have damaging effects on biomolecules and cell components that are common to most living organisms. The aim of this thesis is to gain a more thorough understanding of the potential impacts of solar radiation on freshwater metazooplankton. To detect UV-vulnerability in zooplankton populations dominating the zooplankton community of two clear-water, high mountain lakes located one in the Austrian Alps and another in the Chilean Andes, the survival of two copepod species was studied. The organisms were exposed to a 10- to 100-fold increase in UV-B radiation compared to those levels found at their natural, maximum daytime distribution. Both species vertically migrate and are pigmented. UV-absorbing compounds with a maximum absorption at ∼334 nm were also detected. Cyclops abyssorum tatricus, a common cyclopoid copepod species of Alpine lakes, was highly resistant to UV-B radiation and no significant lethal effect was observed. The calanoid copepod Boeckella gracilipes, frequent in Andean lakes, had a mortality ∼5 times higher in the treatment receiving full sunlight than in the UV-B excluded treatment (3.2 %) only when exposed for 70 h. The resistance of B. gracilipes was higher than that reported in the literature for the same species suggesting the existence of intraspecific differences in UV sensitivity. Survival, fecundity and development of the zooplankton community of a clear-water, high elevation Andean lake (33 o S) were studied with mesocosms experiments after prolonged UV exposure (48 days). When exposed to full sunlight, the population of the cladoceran Chydorus sphaericus and the rotifer Lepadella ovalis were strongly inhibited by UV-B, whereas both species were resistant to UV-A radiation. Conversely, UV-B radiation had no effect on the survival of the

  8. Influence of yarn folding on UV protection properties of hemp knitted fabrics

    Directory of Open Access Journals (Sweden)

    Kocić Ana A.

    2016-01-01

    Full Text Available In the last years the media have highlighted the damage of the ozone layer and the resulting increase of ultraviolet radiation (UVR reaching the earth’s surface. Prolonged and repeated, both occupational and recreational, sun exposure of the population causes some detrimental effects. Clothing is considered to be one of the most important tools for UV protection. It is generally accepted that synthetic fibres provide a high UV protection capability of textiles, while cellulose fibres (cotton, linen, hemp, viscose have a low UV absorption capacity. However, natural pigments, pectin and waxes in natural cellulose fibers, and lignin in hemp fibers, act as UV absorbers having a favorable effect on UPF of grey-state fabrics. Bearing in mind the trend of reintroduction of hemp fibers as a source of eco-friendly textiles, there is a serious lack of study about the potential of hemp materials in terms of UV protection. Folded yarn is a complex yarn composed of two or more component yarns arranged parallel and twisted together to make a “new quality” yarn. Folding of yarns is an operation undertaken in order to modify single-yarn properties to an appreciable degree. There are very few investigations concerning the relationship between the yarn properties and UV protection effectiveness of the fabric made there from. In addition, there is no any result in the scientific literature about the influence of yarn folding on UV protection properties of textile materials. Having this in mind, for our research the idea was to evaluate the effect of yarn folding in this regard. The plain knitted fabrics composed of single or two-folded hemp yarn were compared in terms of UV protection properties. The Ultraviolet Protection Factor (UPF, as the quantitative measurement of the material effectiveness to protect the human skin against UVR, was determined for the textile materials by in vitro test method according to the European standard EN 13758. The knitted

  9. Biological and medical effects of UV radiation on human health

    International Nuclear Information System (INIS)

    Piazena, H.

    1994-01-01

    Effecsts of UV radiation on human health are discussed. UV radiation is taken up through the skin and eyes. In the case of the eyes, the only known effects are damaging ones (e.g. cataracts). Irradiation of the skin, on the other hand, may either have a prophylactic and therapeutic effect or cause health problems if the exposure is too frequent and/or the dose too high. Positive effects are: Stimulation of the vitamin-D-3 synthesis and the autoimmune system, economisation of blood circulation, higher fitness, and the development of a UV protection system in the skin. Negative effects are: UV erythema, disturbances of the unspecific resistance and the immune system, and photocarcinogenesis. (orig.) [de

  10. [UV Protection Law. Enhancing the protection of minors against health risks from solaria].

    Science.gov (United States)

    Riemer, M

    2006-12-01

    The article reports on a petition to the German Bundestag in the field of UV protection for persons under the age of 18 against the dangers of artificial sunbed tanning for cosmetic purposes. On 16 March 2006 the Parliament agreed to adopt the proposal of the author, after the Ministry of Environment announced it is working on a UV Protection Law for Germany. Furthermore the committee recommended the petition to the government and the parliamentary parties. The UV Protection Law is still in progress, and no draft has yet been published. Therefore, the author explains the difficulties in creating such law from a legal and a public health perspective, pointing out that the split of competence between the federation and the states poses difficulties. He concludes that the German Constitution would allow a sunbed prohibition for minors in public studios and explains why a complete prohibition for the adult population would be disproportionate and unconstitutional.

  11. A novel research model for evaluating sunscreen protection in the UV-A1.

    Science.gov (United States)

    Figueiredo, Sônia Aparecida; de Moraes, Dayane Cristina; Vilela, Fernanda Maria Pinto; de Faria, Amanda Natalina; Dos Santos, Marcelo Henrique; Fonseca, Maria José Vieira

    2018-01-01

    The use of a broad spectrum sunscreen is considered one of the main and most popular measures for preventing the damaging effects of ultraviolet radiation (UVR) on the skin. In this study we have developed a novel in vitro method to assess sunscreens efficacy to protect calcineurin enzyme activity, a skin cell marker. The photoprotective efficacy of sunscreen products was assessed by measuring the UV-A1 radiation-induced depletion of calcineurin (Cn) enzyme activity in primary neonatal human dermal fibroblast (HDFn) cell lysates. After exposure to 24J/cm 2 UV-A1 radiation, the sunscreens containing larger amounts of UV-A1 filters (brand B), the astaxanthin (UV-A1 absorber) and the Tinosorb® M (UV-A1 absorber) were capable of preventing loss of Cn activity when compared to the sunscreens formulations of brand A (low concentration of UV-A1 filters), with the Garcinia brasiliensis extract (UV-B absorber) and with the unprotected cell lysate and exposed to irradiation (Irradiated Control - IC). The Cn activity assay is a reproducible, accurate and selective technique for evaluating the effectiveness of sunscreens against the effects of UV-A1 radiation. The developed method showed that calcineurin activity have the potential to act as a biological indicator of UV-A1 radiation-induced damages in skin and the assay might be used to assess the efficacy of sunscreens agents and plant extracts prior to in vivo tests. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Development of Ultraviolet (UV) Radiation Protective Fabric Using Combined Electrospinning and Electrospraying Technique

    Science.gov (United States)

    Sinha, Mukesh Kumar; Das, B. R.; Kumar, Kamal; Kishore, Brij; Prasad, N. Eswara

    2017-06-01

    The article reports a novel technique for functionization of nanoweb to develop ultraviolet (UV) radiation protective fabric. UV radiation protection effect is produced by combination of electrospinning and electrospraying technique. A nanofibrous web of polyvinylidene difluoride (PVDF) coated on polypropylene nonwoven fabric is produced by latest nanospider technology. Subsequently, web is functionalized by titanium dioxide (TiO2). The developed web is characterized for evaluation of surface morphology and other functional properties; mechanical, chemical, crystalline and thermal. An optimal (judicious) nanofibre spinning condition is achieved and established. The produced web is uniformly coated by defect free functional nanofibres in a continuous form of useable textile structural membrane for ultraviolet (UV) protective clothing. This research initiative succeeds in preparation and optimization of various nanowebs for UV protection. Field Emission Scanning Electron Microscope (FESEM) result reveals that PVDF webs photo-degradative behavior is non-accelerated, as compared to normal polymeric grade fibres. Functionalization with TiO2 has enhanced the photo-stability of webs. The ultraviolet protection factor of functionalized and non-functionalized nanowebs empirically evaluated to be 65 and 24 respectively. The developed coated layer could be exploited for developing various defence, para-military and civilian UV protective light weight clothing (tent, covers and shelter segments, combat suit, snow bound camouflaging nets). This research therefore, is conducted in an attempt to develop a scientific understanding of PVDF fibre coated webs for photo-degradation and applications for defence protective textiles. This technological research in laboratory scale could be translated into bulk productionization.

  13. Variations in constitutive and inducible UV-B tolerance; dissecting photosystem II protection in Arabidopsis thaliana accessions

    NARCIS (Netherlands)

    Jansen, M.A.K.; LeMartret, B.; Koornneef, M.

    2010-01-01

    The rise in ultraviolet-B (UV-B) (280–315 nm) radiation levels, that is a consequence of stratospheric ozone layer depletion, has triggered extensive research on the effects of UV-B on plants. Plants raised under natural sunlight conditions are generally well protected from the potentially harmful

  14. The protective roles of TiO2 nanoparticles against UV-B toxicity in Daphnia magna.

    Science.gov (United States)

    Liu, Jie; Wang, Wen-Xiong

    2017-09-01

    Aquatic environments are increasingly under environmental stress due to ultraviolet (UV) radiation and potential inputs of nanoparticles with intense application of nanotechnology. In this study, we investigated the interaction between UV-B radiation and titanium nanoparticles (TiO 2 -NPs) in a model freshwater cladoceran Daphnia magna. UV-B toxicity to Daphnia magna was examined when the daphnids were exposed to a range of TiO 2 -NPs concentrations with an initial 5 or 10min of 200μW/cm 2 UV-B radiation. In addition, UV-B toxicity was also examined in the presence of TiO 2 -NPs in the body of daphnids. Our results demonstrated that the daphnid mortality under UV-B radiation decreased significantly in the presence of TiO 2 -NPs both in the water and in the body, indicating that TiO 2 -NPs had some protective effects on D. magna against UV-B. Such protective effect was mainly caused by the blockage of UV-B by TiO 2 -NPs adsorption. UV-B produced reactive oxygen species (ROS) in the water and in the daphnids, which was not sufficient to cause mortality of daphnids over short periods of radiation. Previous studies focused on the effects of TiO 2 -NPs on the toxicity of total UV radiation, and did not attempt to differentiate the potential diverse roles of UV-A and UV-B. Our study indicated that TiO 2 -NPs may conversely protect the UV-B toxicity to daphnids. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effects of Na and Ca on particle size; Effect of filtering on UV absorbance

    Data.gov (United States)

    U.S. Environmental Protection Agency — Effects of Na and Ca on particle size; Effect of filtering on UV absorbance. This dataset is associated with the following publication: Bouchard, D., C. Knightes, X....

  16. A new UV-A/B protecting pigment in the terrestrial cyanobacterium Nostoc commune

    International Nuclear Information System (INIS)

    Scherer, S.; Chen, T.W.; Boeger, P.

    1988-01-01

    A new ultraviolet (UV)-A/B absorbing pigment with maxima at 312 and 330 nanometers from the cosmopolitan terrestrial cyanobacterium Nostoc commune is described. The pigment is found in high amounts (up to 10% of dry weight) in colonies grown under solar UV radiation but only in low concentrations in laboratory cultures illuminated by artificial light without UV. Its experimental induction by UV as well as its capacity to efficiently protect Nostoc against UV radiation is reported

  17. Optical Protection Filters for Harmful Laser Beams and UV Radiation

    Science.gov (United States)

    Azim M., Osama A.

    2007-02-01

    Due to the rapid growth of radiation protection applications in various devices and instruments, it is essential to use suitable filters for eye protection of the personal working in the radiation field. Different protection filters were produced to protect from four laser beam wavelengths (at 532nm, 632.8nm, 694nm and 1064nm) and block three UV bands (UVA, UVB, and UVC). The design structure of the required dielectric multilayer filters used optical thin film technology. The computer analyses of the multilayer filter formulas were prepared using Macleod Software for the production filter processes. The deposition technique was achieved on optical substrates (Glass BK-7 and Infrasil 301) by dielectric material combinations including Dralo (mixture of oxides TiO2/Al2O3), and Lima (mixture of oxides SiO2/Al2O3); deposition by an electron beam gun. The output transmittance curves for both theoretical and experimental values of all filters are presented. To validate the suitability for use in a `real world', rather than laboratory test application, full environmental assessment was also carried out. These filters exhibited high endurance after exposing them to the durability tests (adhesion, abrasion resistance and humidity) according to military standards MIL-C-675C and MIL-C-48497A.

  18. Optical Protection Filters for Harmful Laser Beams and UV Radiation

    International Nuclear Information System (INIS)

    Azim M, Osama A.

    2007-01-01

    Due to the rapid growth of radiation protection applications in various devices and instruments, it is essential to use suitable filters for eye protection of the personal working in the radiation field. Different protection filters were produced to protect from four laser beam wavelengths (at 532nm, 632.8nm, 694nm and 1064nm) and block three UV bands (UVA, UVB, and UVC). The design structure of the required dielectric multilayer filters used optical thin film technology. The computer analyses of the multilayer filter formulas were prepared using Macleod Software for the production filter processes. The deposition technique was achieved on optical substrates (Glass BK-7 and Infrasil 301) by dielectric material combinations including Dralo (mixture of oxides TiO2/Al2O3), and Lima (mixture of oxides SiO2/Al2O3); deposition by an electron beam gun. The output transmittance curves for both theoretical and experimental values of all filters are presented. To validate the suitability for use in a 'real world', rather than laboratory test application, full environmental assessment was also carried out. These filters exhibited high endurance after exposing them to the durability tests (adhesion, abrasion resistance and humidity) according to military standards MIL-C-675C and MIL-C-48497A

  19. [Knowledge about UV-radiation and sun protection: survey of adolescents and young adults in Bavaria].

    Science.gov (United States)

    Eichhorn, C; Seibold, C; Loss, J; Steinmann, A; Nagel, E

    2008-10-01

    Identifying deficits in sun protection knowledge and behavior can serve as a starting point for primary prevention interventions. The aim of this study was to investigate knowledge and behavior related to ultraviolet radiation in the population between 14 and 45 years of age in Bavaria, as well as effects of the awareness campaign "Sensible in the Sun". In two Bavarian districts, 545 individuals of the target population completed a telephone survey about risks of UV-radiation, sun protection knowledge and behavior, and effects of the campaign. Sunburn and skin cancer as adverse effects of ultraviolet radiation were named by almost every participant. When asked about protective interventions, 91% mentioned sunscreen and 45-54% clothing, limited stay in the sun and seeking shade at noon. Women were better informed than men, adults better than adolescents. 10.6% were aware of the campaign. In this group, 37.9% had been motivated to consider their sun protective behavior; 13.8% (especially women >30 years) stated they had changed their behavior because of the campaign. There were deficits in knowledge, especially about eye damage and the importance of getting slowly used to UV radiation. Physician advice, but also broadcast and print media, has an effect on UV-related knowledge.

  20. Ecotoxicological effect characterisation of widely used organic UV filters

    International Nuclear Information System (INIS)

    Kaiser, D.; Sieratowicz, A.; Zielke, H.; Oetken, M.; Hollert, H.; Oehlmann, J.

    2012-01-01

    Chemical UV filters are used in sun protection and personal care products in order to protect consumers from skin cancer induced by ultraviolet (UV) radiation. The present study aims to evaluate the effects of three common UV filters butyl-methoxydibenzoylmethane (B-MDM) ethylhexyl-methoxycinnamate (EHMC) and octocrylene (OCR) on aquatic organism, focussing particularly on infaunal and epibentic invertebrates (Chironomus riparius, Lumbriculus variegatus, Melanoides tuberculata and Potamopyrgus antipodarum). Due to their life habits, these organism are especially affected by lipophilic substances. Additionally, two direct sediment contact assays utilising zebra fish (Danio rerio) embryos and bacteria (Arthrobacter globiformis) were conducted. EHMC caused a toxic effect on reproduction in both snails with lowest observed effect concentrations (LOEC) of 0.4 mg/kg (Potamopyrgus antipodarum) and 10 mg/kg (Melanoides tuberculata). At high concentrations sublethal effects could be observed for D. rerio after exposure to EHMC (NOEC 100 mg/kg). B-MDM and OCR showed no effects on any of the tested organism. - Highlights: ► Ecotoxicological effects of common used UV filters on aquatic invertebrates. ► Butyl-methoxydibenzoylmethane, ethylhexyl-methoxycinnamate, and octocrylene used. ► Sediment based test systems. ► Ethylhexyl-methoxycinnamate caused a toxic effect on reproduction in both snails. ► Other substances showed no effects on any of the tested organism. - Ethylhexyl-methoxycinnamate caused a toxic effect on reproduction in both snails. Butyl-methoxydibenzoylmethane and octocrylene showed no effects on any of the tested organism.

  1. Preparation of UV-protective kefiran/nano-ZnO nanocomposites: physical and mechanical properties.

    Science.gov (United States)

    Shahabi-Ghahfarrokhi, Iman; Khodaiyan, Faramarz; Mousavi, Mohammad; Yousefi, Hossein

    2015-01-01

    In this study, we investigated the effect of ZnO nanoparticles (ZN) as a UV-protective agent of kefiran biopolymers. Our results showed that with increasing ZN content, the tensile strength, elongation at break, and tensile energy to break the kefiran film and nanocomposites also increased. Kefiran nanocomposites with a ZN content higher than 2% produced a UV-protective film with good visual properties, low sensibility to water, and low water-vapor permeability. The thermal properties of all specimens, analyzed by DSC, showed that the ZN content had a negative effect on Tg and a positive effect on nanocomposites' melting point. TEM, SEM micrography and XRD spectrum analysis confirmed the hypothesis that ZNs act like a ball bearing, making movement of kefiran chains easier and increasing elongation at break, while simultaneously decreasing the Tg of kefiran nanocomposites. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Bactericidal effectiveness of modulated UV light

    International Nuclear Information System (INIS)

    Bank, H.L.; John, J.; Schmehl, M.K.; Dratch, R.J.

    1990-01-01

    Studies were designed to evaluate the effectiveness of pulsed modulated UV light waveforms for killing bacteria. Exposure of five strains of bacteria to the modulated information encoded in the light decreased the colony population from a confluent lawn to less than 20 colonies. However, approximately 2,000 colonies survived treatment with the same intensity and time of exposure to UV light lacking the modulated information

  3. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation in growth of cv. New Red Fire lettuce

    International Nuclear Information System (INIS)

    Krizek, D.T.; Britz, S.J.; Mirecki, R.M.

    1998-01-01

    The influence of solar UV-A and UV-B radiation at Beltsville, MD, USA, on growth of Lactuca sativa L. (cv. New Red Fire lettuce) was examined during early summer of 1996 and 1997. Plants were grown from seed in plastic window boxes covered with Llumar to exclude UV-A and UV-B, polyester to exclude UV-B, or tefzel (1996) or teflon (1997) to transmit UV-A and UV-B radiation. After 31-34 days, plants grown in the absence of solar UV-B radiation (polyester) had 63 and 57% greater fresh weight and dry weight of tops, respectively, and 57, 72 and 47% greater dry weight of leaves, stems and roots, respectively, as compared to those grown under ambient UV-B (tefzel or teflon). Plants protected from UV-A radiation as well (Llumar) showed an additional 43 and 35% increase, respectively, in fresh and dry weight of tops and a 33 and 33% increase, respectively, in dry weight of leaves and stems, but no difference in root biomass over those grown under polyester. Excluding ambient UV-B (polyester) significantly reduced the UV absorbance of leaf extracts at 270, 300 and 330 nm (presumptive flavonoids) and the concentration of anthocyantins at 550 nm as compared to those of leaf extract from plants grown under ambient UV-A and UV-B. Additional removal of ambient UV-A (Llumar) reduced the concentration of anthocyanins, but had no further effect on UV absorbance at 270, 300 or 330 nm. These findings provide evidence that UV-B radiation is more important than UV-A radiation for flavonoid induction in this red-pigmented lettuce cultivar. Although previous workers have obtained decreases in lettuce yield under enhanced UV-B, this is the first evidence for inhibitory effects of solar UV-A and UV-B radiation on lettuce growth. (au)

  4. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation in growth of cv. New Red Fire lettuce

    Energy Technology Data Exchange (ETDEWEB)

    Krizek, D.T.; Britz, S.J.; Mirecki, R.M. [Climate Stress Laboratory, Beltsville, MD (United States)

    1998-05-01

    The influence of solar UV-A and UV-B radiation at Beltsville, MD, USA, on growth of Lactuca sativa L. (cv. New Red Fire lettuce) was examined during early summer of 1996 and 1997. Plants were grown from seed in plastic window boxes covered with Llumar to exclude UV-A and UV-B, polyester to exclude UV-B, or tefzel (1996) or teflon (1997) to transmit UV-A and UV-B radiation. After 31-34 days, plants grown in the absence of solar UV-B radiation (polyester) had 63 and 57% greater fresh weight and dry weight of tops, respectively, and 57, 72 and 47% greater dry weight of leaves, stems and roots, respectively, as compared to those grown under ambient UV-B (tefzel or teflon). Plants protected from UV-A radiation as well (Llumar) showed an additional 43 and 35% increase, respectively, in fresh and dry weight of tops and a 33 and 33% increase, respectively, in dry weight of leaves and stems, but no difference in root biomass over those grown under polyester. Excluding ambient UV-B (polyester) significantly reduced the UV absorbance of leaf extracts at 270, 300 and 330 nm (presumptive flavonoids) and the concentration of anthocyantins at 550 nm as compared to those of leaf extract from plants grown under ambient UV-A and UV-B. Additional removal of ambient UV-A (Llumar) reduced the concentration of anthocyanins, but had no further effect on UV absorbance at 270, 300 or 330 nm. These findings provide evidence that UV-B radiation is more important than UV-A radiation for flavonoid induction in this red-pigmented lettuce cultivar. Although previous workers have obtained decreases in lettuce yield under enhanced UV-B, this is the first evidence for inhibitory effects of solar UV-A and UV-B radiation on lettuce growth. (au) 34 refs.

  5. Effect of UV irradiation on cutaneous cicatrices

    DEFF Research Database (Denmark)

    Due, Eva; Rossen, Kristian; Sorensen, Lars Tue

    2007-01-01

    The aim of this study was to examine the effect of ultraviolet (UV) irradiation on human cutaneous cicatrices. In this randomized, controlled study, dermal punch biopsy wounds served as a wound healing model. Wounds healed by primary or second intention and were randomized to postoperative solar UV...... postoperatively, UV-irradiated cicatrices healing by second intention: (i) were significantly pointed out as the most disfiguring; (ii) obtained significantly higher scores of colour, infiltration and cicatrix area; and (iii) showed significantly higher increase in skin-reflectance measurements of skin......-pigmentation vs. non-irradiated cicatrices. No histological, immunohistochemical or biochemical differences were found. In conclusion, postoperative UV exposure aggravates the clinical appearance of cicatrices in humans....

  6. Effects of UV radiation on phytoplankton

    Science.gov (United States)

    Smith, Raymond C.; Cullen, John J.

    1995-07-01

    It is now widely documented that reduced ozone will result in increased levels of ultraviolet (UV) radiation, especially UV-B (280-320nm), incident at the surface of the earth [Watson, 1988; Anderson et al., 1991; Schoeberl and Hartmann, 1991; Frederick and Alberts, 1991; WMO, 1991; Madronich, 1993; Kerr and McElroy, 1993], and there is considerable and increasing evidence that these higher levels of UV-B radiation may be detrimental to various forms of marine life in the upper layers of the ocean. With respect to aquatic ecosystems, we also know that this biologically- damaging mid-ultraviolet radiation can penetrate to ecologically- significant depths in marine and freshwater systems [Jerlov, 1950; Lenoble, 1956; Smith and Baker, 1979; Smith and Baker, 1980; Smith and Baker, 1981; Kirk et al., 1994]. This knowledge, plus the dramatic decline in stratospheric ozone over the Antarctic continent each spring, now known to be caused by anthropogenically released chemicals [Solomon, 1990; Booth et al., 1994], has resulted in increased UV-environmental research and a number of summary reports. The United Nations Environmental Program (UNEP) has provided recent updates with respect to the effects of ozone depletion on aquatic ecosystems (Hader, Worrest, Kumar in UNEP 1989, 1991, Hader, Worrest, Kumar and Smith UNEP 1994) and the Scientific Committee on Problems of the Environment (SCOPE) has provided [SCOPE, 1992] a summary of the effects of increased UV radiation on biological systems. SCOPE has also reported [SCOPE, 1993] on the effects of increased UV on the biosphere. In addition, several books have recently been published reviewing various aspects of environmental UV photobiology [Young et al., 1993], UV effects on humans, animals and plants [Tevini, 1993], the biological effects of UV radiation in Antarctica [Weiler and Penhale, 1994], and UV research in freshwater ecosystems [Williamson and Zagarese, 1994]. Several other reviews are relevant [NAS, 1984; Caldwell

  7. From UV Protection to Protection in the Whole Spectral Range of the Solar Radiation: New Aspects of Sunscreen Development.

    Science.gov (United States)

    Zastrow, Leonhard; Meinke, Martina C; Albrecht, Stephanie; Patzelt, Alexa; Lademann, Juergen

    2017-01-01

    Sunscreens have been constantly improving in the past few years. Today, they provide an efficient protection not only in the UVB but also in the UVA spectral region of the solar radiation. Recently it could be demonstrated that 50% of all free radicals induced in the skin due to solar radiation are formed in the visible and infrared spectral region. The good protective efficacy of sunscreens in the UV region prompts people to stay much longer in the sun than if they had left their skin unprotected. However, as no protection in the visible and infrared spectral region is provided, high amounts of free radicals are induced here that could easily exceed the critical radical concentration. This chapter describes how the effect of sunscreens can be extended to cover also the visible and infrared spectral region of the solar radiation by adding pigments and antioxidants with high radical protection factors to the sunscreen formulations.

  8. Quantification of biologically effective environmental UV irradiance

    Science.gov (United States)

    Horneck, G.

    To determine the impact of environmental UV radiation on human health and ecosystems demands monitoring systems that weight the spectral irradiance according to the biological responses under consideration. In general, there are three different approaches to quantify a biologically effective solar irradiance: (i) weighted spectroradiometry where the biologically weighted radiometric quantities are derived from spectral data by multiplication with an action spectrum of a relevant photobiological reaction, e.g. erythema, DNA damage, skin cancer, reduced productivity of terrestrial plants and aquatic foodweb; (ii) wavelength integrating chemical-based or physical dosimetric systems with spectral sensitivities similar to a biological response curve; and (iii) biological dosimeters that directly weight the incident UV components of sunlight in relation to the effectiveness of the different wavelengths and to interactions between them. Most biological dosimeters, such as bacteria, bacteriophages, or biomolecules, are based on the UV sensitivity of DNA. If precisely characterized, biological dosimeters are applicable as field and personal dosimeters.

  9. Enhanced protective properties and UV stability of epoxy/graphene nanocomposite coating on stainless steel

    Directory of Open Access Journals (Sweden)

    H. Alhumade

    2016-12-01

    Full Text Available Epoxy-Graphene (E/G nanocomposites with different loading of graphene were prepared via in situ prepolymerization and evaluated as protective coating for Stainless Steel 304 (SS304. The prepolymer composites were spin coated on SS304 substrates and thermally cured. Transmission Electron Microscopy (TEM and Scanning Electron Microscopy (SEM were utilized to examine the dispersion of graphene in the epoxy matrix. Epoxy and E/G nanocomposites were characterized using X-ray diffraction (XRD and Fourier Transform Infrared (FTIR techniques and the thermal behavior of the prepared coatings is analyzed using Thermogravimetric analysis (TGA and Differential scanning calorimetry (DSC. The corrosion protection properties of the prepared coatings were evaluated using Electrochemical Impedance Spectroscopy (EIS and Cyclic Voltammetry (CV measurements. In addition to corrosion mitigation properties, the long-term adhesion performance of the coatings was evaluated by measuring the adhesion of the coatings to the SS304 substrate after 60 days of exposure to 3.5 wt% NaCl medium. The effects of graphene loading on the impact resistance, flexibility, and UV stability of the coating are analyzed and discussed. SEM was utilized to evaluate post adhesion and UV stability results. The results indicate that very low graphene loading up to 0.5 wt % significantly enhances the corrosion protection, UV stability, and impact resistance of epoxy coatings.

  10. Near UV radiation effect on the lens and retina

    International Nuclear Information System (INIS)

    Zigman, S.

    1987-01-01

    The discussion presented in this paper indicates that the retina of a diurnal animal with a natural UV-absorbing lens (ie: the gray squirrel) is susceptible to near-UV damage from environmental sources only after the lens has been removed. This suggests that it is very important to protect against near-UV exposure of human eyes after cataract surgery

  11. ''Protective'' effect of cells gamma-irradiation at the metaphase of mitosis after UV-irradiation at the S-period

    Energy Technology Data Exchange (ETDEWEB)

    Lebedeva, L I; Chubykin, V L [AN SSSR, Novosibirsk. Inst. Tsitologii i Genetiki

    1975-10-01

    As a result of the ultraviolet irradiation in vitro of the embryo fibroblasts of BALB mice in the S-stage with an incident dose of 40 erg/mm/sup 2/, 20.1% cells showed chromosome aberrations. Additional gamma irradiation of cells in the metaphase of the first mitosis with a dose of 5 krad leads with a high degree of certainty to a decrease to 11.7% in the frequency of aberrant cells observed in the same mitotic stage. The frequency of spontaneous aberrations does not change during the first few minutes after the gamma irradiation of intact cells. The ''protective'' effect of gamma rays cannot be attributed to non-uniform changes in the duration of the mitotic stages for aberrant and normal cells, to the adhesion of chromosome fragments or to the breaking of bridges in the anaphase. The destruction of cells during irradiation is also an unlikely explanation of the observed effect. It is assumed that the decrease in the frequency of aberrations is a result of the previously predicted modification of the processes involved, when potential chromosome damage becomes visible abberations during metaphase.

  12. UV protective zinc oxide coating for biaxially oriented polypropylene packaging film by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, Kimmo, E-mail: kimmo.lahtinen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kääriäinen, Tommi, E-mail: tommi.kaariainen@colorado.edu [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Johansson, Petri, E-mail: petri.johansson@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Kotkamo, Sami, E-mail: sami.kotkamo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Maydannik, Philipp, E-mail: philipp.maydannik@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Seppänen, Tarja, E-mail: tarja.seppanen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kuusipalo, Jurkka, E-mail: jurkka.kuusipalo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Cameron, David C., E-mail: david.cameron@miktech.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland)

    2014-11-03

    Biaxially oriented polypropylene (BOPP) packaging film was coated with zinc oxide (ZnO) coatings by atomic layer deposition (ALD) in order to protect the film from UV degradation. The coatings were made at a process temperature of 100 °C using diethylzinc and water as zinc and oxygen precursors, respectively. The UV protective properties of the coatings were tested by using UV–VIS and infrared spectrometry, differential scanning calorimetry (DSC) and a mechanical strength tester, which characterised the tensile and elastic properties of the film. The results obtained with 36 and 67 nm ZnO coatings showed that the ZnO UV protective layer is able to provide a significant decrease in photodegradation of the BOPP film under UV exposure. While the uncoated BOPP film suffered a complete degradation after a 4-week UV exposure, the 67 nm ZnO coated BOPP film was able to preserve half of its original tensile strength and 1/3 of its elongation at break after a 6-week exposure period. The infrared analysis and DSC measurements further proved the UV protection of the ZnO coatings. The results show that a nanometre scale ZnO coating deposited by ALD is a promising option when a transparent UV protection layer is sought for polymer substrates. - Highlights: • Atomic layer deposited zinc oxide coatings were used as UV protection layers. • Biaxially oriented polypropylene (BOPP) film was well protected against UV light. • Formation of UV degradation products in BOPP was significantly reduced. • Mechanical properties of the UV exposed BOPP film were significantly improved.

  13. Influence of uvA on the erythematogenic and therapeutic effects of uvB irradiation in psoriasis; photoaugmentation effects

    International Nuclear Information System (INIS)

    Boer, J.; Schothorst, A.A.; Suurmond, D.

    1981-01-01

    The effect of repeated exposure to an additive dose of long ultraviolet (uvA) radiation on the erythemogenic and therapeutic effects of middle ultraviolet (uvB) irradiation was investigated in 8 patients with psoriasis. The surface of the backs of these patients was divided into 2 parts, 1 of which received only uvB irradiation 4 times a week and the other uvA + uvB. uvB was provided by Philips TL-12 lamps and uvA by glass-filtered Philips TL-09 lamps. uvA was held constantly at 10 J/cm2, whereas uvB alone were evaluated by 4 tests during the treatment to determine the minimal erythema dose (MED). Test I (at the start of the therapy) showed a photoaugmentative effect which was no longer apparent in Test III (third week). Test III showed a reversal of the ratios of the MEDs of the sites irradiated with the uvA + uvB and uvB (MED A + B/MED B). This is ascribed to the marked pigmentation which appeared after repeated irradiation with the uvA + uvB combination. Comparison showed for the improvement of the psoriasis no distinct differences between uvA + uvB irradiation and uvB alone, but the former had the cosmetic advantage of giving pleasing tan

  14. Interaction of sunscreen TiO2 nanoparticles with skin and UV light: penetration, protection, phototoxicity

    Science.gov (United States)

    Popov, Alexey; Lademann, Jürgen; Priezzhev, Alexander; Myllylä, Risto

    2009-07-01

    Titanium dioxide (TiO2) nanoparticles are extensively used nowadays in sunscreens as protective compounds for human skin from UV radiation. In this paper, such particles are investigated from the viewpoint of penetration into living skin, UV protective properties (compared with silicon (Si) particles) and as sources of free radicals if UV-irradiated. We show that: a) even after multiple applications, the particles are located within the uppermost 3-μm-thick part of the skin; b) the optimal sizes are found to be 62 nm and 55 nm, respectively for TiO2 and Si particles for 310-nm light and, correspondingly, 122 and 70 nm - for 400-nm radiation; c) if applied onto glass, small particles of 25 nm in diameter produce an increased amount of free radicals compared to the larger ones of 400 nm in diameter and placebo itself; however, if applied onto porcine skin in vitro, there is no statistically distinct difference in the amount of radicals generated by the two kinds of particles on skin and by the skin itself. This proves that although particles as part of sunscreens produce free radicals, the effect is negligible in comparison to the production of radicals by skin in vitro.

  15. Ecotoxicological effect characterisation of widely used organic UV filters.

    Science.gov (United States)

    Kaiser, D; Sieratowicz, A; Zielke, H; Oetken, M; Hollert, H; Oehlmann, J

    2012-04-01

    Chemical UV filters are used in sun protection and personal care products in order to protect consumers from skin cancer induced by ultraviolet (UV) radiation. The present study aims to evaluate the effects of three common UV filters butyl-methoxydibenzoylmethane (B-MDM) ethylhexyl-methoxycinnamate (EHMC) and octocrylene (OCR) on aquatic organism, focussing particularly on infaunal and epibentic invertebrates (Chironomus riparius, Lumbriculus variegatus, Melanoides tuberculata and Potamopyrgus antipodarum). Due to their life habits, these organism are especially affected by lipophilic substances. Additionally, two direct sediment contact assays utilising zebra fish (Danio rerio) embryos and bacteria (Arthrobacter globiformis) were conducted. EHMC caused a toxic effect on reproduction in both snails with lowest observed effect concentrations (LOEC) of 0.4 mg/kg (Potamopyrgus antipodarum) and 10 mg/kg (Melanoides tuberculata). At high concentrations sublethal effects could be observed for D. rerio after exposure to EHMC (NOEC 100 mg/kg). B-MDM and OCR showed no effects on any of the tested organism. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Protective effect of (-)-epigallocatechin gallate on ultraviolet b ...

    African Journals Online (AJOL)

    ... EGCg shows dose-dependent protective effect against UV-B-induced damage on hairless mouse skin. Thus, the plant compound can potentially be used as an alternative agent for photoprotection against UV-B exposure. Keywords: UV-B, Green tea EGCg, Photoprotection, Stratum corneum, Mitochondrion, Melanosome ...

  17. Effect of UV-irradiation on rotavirus

    International Nuclear Information System (INIS)

    Smirnov, Y.A.; Kapitulets, S.P.; Kaverin, N.V.; Amitina, N.N.; Ginevskaya, V.A.

    1991-01-01

    The effect of UV-irradiation on the infectivity of the SAll rotavirus was examined. The time behavior of the inactivation of infectivity generally exhibited the one-hit pattern. The effect was studied with respect to two phenomena, viz. the RNA-protein linkage and the formation of uracil dimers. To determine the number of the latter, purified 3 H-uridine-labelled rotavirus was exposed to UV radiation, and the RNA was extracted and analyzed by paper chromatography in the ascending mode. The formation of photodimers was found to be an important mechanism in the rotavirus inactivation on conventional irradiation, whereas RNA-protein linkages were observed on the application of high doses only. (author). 3 figs., 10 refs

  18. Functionalization of Cellulose Fibres with Oxygen Plasma and ZnO Nanoparticles for Achieving UV Protective Properties

    Directory of Open Access Journals (Sweden)

    Katja Jazbec

    2015-01-01

    Full Text Available Low-pressure oxygen plasma created by an electrodeless radiofrequency (RF discharge was applied to modify the properties of cellulosic fibrous polymer (cotton in order to improve adsorption properties towards zinc oxide (ZnO nanoparticles and to achieve excellent ultraviolet (UV protective properties of cotton fabric. The chemical and physical surface modifications of plasma-treated cotton fabric were examined by X-ray photoelectron spectroscopy (XPS and scanning electron microscopy (SEM. The mechanical properties of plasma-treated samples were evaluated, measuring strength and elongation of the fabrics. The quantity of zinc on the ZnO-functionalized cotton samples was determined using inductively coupled plasma mass spectrometry (ICP-MS and the effectiveness of plasma treatment for UV protective properties of cotton fabrics was evaluated using UV-VIS spectrometry, measuring the UV protection factor (UPF. The results indicated that longer plasma treatment times cause higher concentration of oxygen functional groups on the surface of fibres and higher surface roughness of fibres. These two conditions are crucial in increasing the content of ZnO nanoparticles on the fibres, providing excellent UV protective properties of treated cotton, with UPF factor up to 65.93.

  19. UV radiation and its effects. Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    The National Science Strategy Committee for Climate Change was established in 1991 by the New Zealand Minister of Research, Science and Technology. It advises government through the Minister on research priorities and on levels of expenditure appropriate in various topics relating to climate change. An additional role is to promote coordination between research groups and the user communities to ensure an appropriate range of research strategies. To assist with implementing the latter aspects the NSS Committee will organise workshops on specific aspects of atmosphere and climate change, with a broad spectrum of participants. The first of these was the Workshop on UV Radiation and its Effects held in Christchurch on 20-21 May 1993. The workshop had 40 participants, including representatives from specialist science groups, medicine, veterinary science, farming, forestry and environmental groups. This publication will update the interested reader, whether scientist or lay-person, on the current state of knowledge on changing UV radiation levels and potential problems. As the summaries of papers show, research on ozone levels and on UV radiation and its effects is particularly appropriate for New Zealand scientists with their access to sites covering a wide range of latitudes from Antarctica to the Pacific Islands. New Zealand is part of an important international monitoring network, measuring local stratospheric ozone levels and related surface UV radiation levels. There are concerns about increasing UVB levels and the consequent effects on human health, plant and tree growth, and phytoplankton growth in the oceans. Priorities for further work on these areas are included in the summary of the workshop. (author). 13 figs.; 5 tabs

  20. Photomimetic effect of serotonin on yeast cells irradiated by far-UV radiation

    International Nuclear Information System (INIS)

    Fraikin, G.Y.; Strakhovskaya, M.G.; Rubin, L.B.

    1982-01-01

    The effect of serotonin on the survival of far-UV irradiated cells of the yeast Candida guilliermondii was studied. Serotonin was found to have a photomimetic property. Preincubation of cells with serotonin results in protection against far-UV inactivation, whereas the post-radiation treatment with serotonin causes a potentiation of far-UV lethality. Both effects are similar to those produced by near-UV (334 nm) radiation. The observations provide support to the previously proposed idea that photosynthesized serotonin is the underlying cause of the two effects of near-UV radiation, photoprotection and potentiation of far-UV lethality. Experiments with an excision-deficient strain of the yeast Saccharomyces cerevisiae suggest that the effect of serotonin is by its binding to DNA. (author)

  1. MEDICAL AND ENVIRONMENTAL EFFECTS OF UV RADIATION.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND, B.M.

    2001-07-26

    Organisms living on the earth are exposed to solar radiation, including its ultraviolet (UV) components (for general reviews, the reader is referred to Smith [1] and Young et al. [2]). UV wavelength regions present in sunlight are frequently designated as UVB (290-320 nm) and UVA (320-400 nm). In today's solar spectrum, UVA is the principal UV component, with UVB present at much lower levels. Ozone depletion will increase the levels of UVB reaching the biosphere, but the levels of UVA will not be changed significantly [3]. Because of the high efficiency of UVB in producing damage in biological organisms in the laboratory experiments, it has sometimes been assumed that UVA has little or no adverse biological effects. However, accumulating data [4, 5], including action spectra (efficiency of biological damage as a function of wavelength of radiation; see Section 5) for DNA damage in alfalfa seedlings [6], in human skin [7], and for a variety of plant damages (Caldwell, this volume) indicate that UVA can induce damage in DNA in higher organisms. Thus, understanding the differential effects of UVA and UVB wavebands is essential for estimating the biological consequences of stratospheric ozone depletion.

  2. Preventive Long-Term Effects of a Topical Film-Forming Medical Device with Ultra-High UV Protection Filters and DNA Repair Enzyme in Xeroderma Pigmentosum: A Retrospective Study of Eight Cases

    Directory of Open Access Journals (Sweden)

    Sandra Giustini

    2014-09-01

    Full Text Available Skin cancer is common in xeroderma pigmentosum (XP due to a DNA repair mechanisms genetic defect. Ultraviolet (UV exposure is the main cause of increased incidence of actinic keratosis (AK, basal cell carcinoma (BCC and squamous cell carcinoma (SCC observed in XP subjects. Photoprotection is therefore a mandatory strategy in order to reduce skin damage. A topical DNA repair enzyme has been shown to slow down the development of skin lesions in XP. However, there are no data regarding the effects of photoprotection combined with DNA repair strategies in this clinical setting. A film-forming medical device containing the DNA repair enzyme photolyase and very high-protection UV filters (Eryfotona AK-NMSC, Ery is currently available. We report retrospective data regarding the use of Ery in 8 patients (5 women, 3 men with a diagnosis of XP treated for at least 12 consecutive months, comparing the rate of new skin lesions (AK, BCC and SCC during active treatment with Ery and during 12 months just before the use of the product. New AK, BCC and SCC mean lesion numbers during the 1-year Ery treatment were 5, 3 and 0, respectively in comparison with 14, 6.8 and 3 lesions, respectively during the 1-year pre-treatment period. Ery use was associated with a 65% reduction in appearance of new AK lesions and with 56 and 100% reductions in the incidence of new BCC and SCC lesions, respectively. These data suggest that topical use of photoprotection and DNA repair enzyme could help lower skin cancer lesions in XP. Control prospective trials are advisable in this clinical setting.

  3. RESEARCH OF UV-PROTECTIVE ACTIVITY OF FERULIC ACID AS PART OF OINTMENT COMPOSITIONS WITH DIFFERENT PHYSICAL AND CHEMICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    I. L. Abisalova

    2014-01-01

    Full Text Available Cosmetics with the ability to neutralize harmful influence of ultraviolet rays on skin are quite in demand. UV filters in creams composition are divided into two groups: physical and chemical. Antioxidants are used as chemical UV filters. The article presents the results of ferulic acid testing as UV filter in ointment bases with lipophile, hydrophile and lipophilic and hydrophilic properties. The dependence of ferulic acid efficiency from the base type where it was applied was established. The results received are correlated with data about release rate of ferulic acid received in vitro. Ointment bases with such emulsifiers as cetyl alcohol, base emulsifier and Olivem 1000 have the most signified UV protective effect of ferulic acid.

  4. UV protection filters by dielectric multilayer thin films on Glass BK-7 and Infrasil 301

    International Nuclear Information System (INIS)

    Abdel-Aziz, M.M.; Azim, Osama A.; Abdel-Wahab, L.A.; Seddik, Mohamed M.

    2006-01-01

    The increasing use of Ultraviolet (UV) light in medicine, industrial environments, for cosmetic use, and even in consumer products necessitates that greater attention be paid to the potential hazards of this type of electromagnetic radiation. To avoid any adverse effects of exposure to this type of radiation, four suitable protection filters were produced to block three UV bands (UVA, UVB, and UVC). The design structure of the required dielectric multilayer filters was done by optical thin film technology using the absorbing property of UV radiation for the substrates and dielectric materials. The computer analyses of the multilayer filter formulas were prepared using Macleod Software for the production processes. The deposition technique was achieved on optical substrates (Glass BK-7 and Infrasil 301) by dielectric material combinations including Titanium dioxide (Ti 2 O 3 ), Hafnium dioxide (HfO 2 ), and Lima (mixture of oxides SiO 2 /Al 2 O 3 ); deposition being achieved using an electron beam gun. The output results of the theoretical and experimental transmittance values for spectral band from 200 nm to 800 nm were discussed in four processes. To analyze the suitability for use in 'real world' applications, the test pieces were subjected to the durability tests (adhesion, abrasion resistance, and humidity) according to Military Standard MIL-C-675C and MIL-C-48497A

  5. UV protection filters by dielectric multilayer thin films on Glass BK-7 and Infrasil 301

    Science.gov (United States)

    Abdel-Aziz, M. M.; Azim, Osama A.; Abdel-Wahab, L. A.; Seddik, Mohamed M.

    2006-10-01

    The increasing use of Ultraviolet (UV) light in medicine, industrial environments, for cosmetic use, and even in consumer products necessitates that greater attention be paid to the potential hazards of this type of electromagnetic radiation. To avoid any adverse effects of exposure to this type of radiation, four suitable protection filters were produced to block three UV bands (UVA, UVB, and UVC). The design structure of the required dielectric multilayer filters was done by optical thin film technology using the absorbing property of UV radiation for the substrates and dielectric materials. The computer analyses of the multilayer filter formulas were prepared using Macleod Software for the production processes. The deposition technique was achieved on optical substrates (Glass BK-7 and Infrasil 301) by dielectric material combinations including Titanium dioxide (Ti 2O 3), Hafnium dioxide (HfO 2), and Lima (mixture of oxides SiO 2/Al 2O 3); deposition being achieved using an electron beam gun. The output results of the theoretical and experimental transmittance values for spectral band from 200 nm to 800 nm were discussed in four processes. To analyze the suitability for use in 'real world' applications, the test pieces were subjected to the durability tests (adhesion, abrasion resistance, and humidity) according to Military Standard MIL-C-675C and MIL-C-48497A.

  6. Surface reflectance of Antarctic bryophytes and protection from UV and visible light

    International Nuclear Information System (INIS)

    Robinson, S.A.; Wasley, J.; Turnbull, J.

    2000-01-01

    Full text: As well as determining the amount of solar radiation available for photosynthesis, the surface reflectance and absorptance characteristics of plants are their first defence against damaging effects of solar radiation. The solar spectrum can be damaging to plants in many ways. At shorter wavelengths, UV-B (280-320 nm) radiation can cause lesions in nucleic acid and proteins. Excess levels of visible radiation (400-750) can cause photoinhibition whilst high absorbtance of longer wavelengths (>750) leads to increases in temperature that can be detrimental in some environments. The adaptation of surface reflectance properties of vascular plants to particular environments are well known in some ecosystems. For example in desert ecosystems pubescent leaf surfaces that increase reflectance are common and have been demonstrated to be important to protection from photoinhibition. The epidermal characteristics of some plants are also known to change in absorptance, due to the accumulation of specific compounds. For example flavonoids which are effective screens against UV-B radiation, increase upon exposure to UV-B radiation. In this study we surveyed the natural variability in surface reflectance in mosses growing in continental Antarctica. Antarctica is experiencing large increases in incident UV-B radiation due to reductions in concentrations of stratospheric ozone. Additionally over the summer months (November January), when moss is exposed to direct sunlight, levels of visible solar radiation are also high, increasing the likelihood of photoinhibitory damage in moss. Our aim in this study is to describe the natural variability in the surface reflectance characteristics of moss, such that we have a baseline with which to assess future changes in response to changes in global climate, and imposed experimental treatments, and also to develop hypotheses with respect to how mosses have adapted to the cold and arid antarctic environment. Variability in surface

  7. Protection against UV-induced toxicity and lack of mutagenicity of Antarctic Sanionia uncinata

    International Nuclear Information System (INIS)

    Fernandes, A.S; Mazzei, J.L; Oliveira, C.G; Evangelista, H.; Marques, M.R.C.; Ferraz, E.R.A.; Felzenszwalb, I.

    2017-01-01

    Antarctica moss Sanionia uncinata (Hedw.) Loeske is exposed in situ to damaging levels of ultraviolet (UV) radiation. This moss has the ability to respond to UV radiation exposure producing secondary metabolites such as flavonoids, and has been recommended as a potential source of photoprotective compounds and antioxidants. The aim of the present paper was to investigate the free-radical scavenging activity and mutagenic and photomutagenic properties of methanolic (ME), hydroethanolic (HE) and ethanolic (EE) extracts of S. uncinata. The phenolic contents were evaluated by high-performance liquid chromatography (HPLC) and spectrophotometry. The findings showed that ME and EE presented the highest phenolic contents and inhibited free radical-scavenging activity against 2,2′-diphenyl-1 picrylhydrazyl (DPPH) and the HPLC analysis indicated several classes of phenolic acids and flavonoids. The sun protection factors (SPF) were determined by an in vitro method and the results showed significant values. The SPF values of BZ-3 at 50 μg/mL increased significantly in association with ME, HE and EE. The extracts did not induce mutagenicity in auxotrophic Salmonella typhimurium histidine and photomutagenicity was not detected in the TA102 and TA104 strains after exposure to UV-A at doses of up to 6.5 J/cm 2 for the TA102 strain and up to 0.24 J/cm 2 for the TA104 strain. In addition, with the exception of ME, all the extracts induced photoprotective effects in the presence of the TA104 strain at 0.04 J/cm 2 . The present results suggest that S. uncinata extracts did not induce photomutation and showed promise for photoprotection against the photobiological and ROS-inducing effects of the UV-A radiation.

  8. The effect of ultraviolet (UV)-B radiation on primary producers

    International Nuclear Information System (INIS)

    Germ, M.

    2003-01-01

    Ozone layer in stratosphere is thinning and consequently UV-B radiation on the Earth surface is increasing. Although there is a small portion of UV-B radiation in the solar radiation, it has strong influence on organisms. Targets of UV-B radiation and protective mechanisms in primary producers are described. In the framework of the international project we studied the effect of UV-B radiation on blue-greens, algae, mosses, lichens and vascular plants on the National Institute of Biology

  9. Effect of UV irradiation on the apoptosis and necrosis of Jurkat cells using UV LEDs

    Science.gov (United States)

    Inada, Shunko A.; Amano, Hiroshi; Akasaki, Isamu; Morita, Akimichi; Kobayashi, Keiko

    2009-02-01

    Phototherapy is a very effective method for treating most of the incurable skin diseases. A fluorescent light bulb is used as a conventional UV light source for this type of therapy. However, infrared radiation from the light source sometimes causes serious problems on patient's health. In addition, the normal part of the skin is irradiated when a large fluorescent light bulb is used. Moreover, a conventional UV irradiation system is heavy and has a short lifetime and a high electrical power consumption. Therefore, a new UV light source for solving the problems of phototherapy is required. To realize low-power-consumption, lightweight and long-lifetime systems, group III nitride-based UV-A1 light-emitting diodes (LEDs) were investigated. We examined the UV LED irradiation of Jurkat cell, which is a tumor cell and more sensitive to UV light than a healthy cell. The numbers of apoptotic and necrotic cells were confirmed to be the same using a UV LED and a conventional lamp system. The UV LED showed the possibility of realizing a new UV light source for phototherapy.

  10. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth of cucumber

    International Nuclear Information System (INIS)

    Krizek, D.T.; Mirecki, R.M.; Britz, S.J.

    1997-01-01

    The influence of solar UV-A and UV-B radiation at Beltsville, Maryland, on growth and flavonoid content in four cultivars of Cucumis sativus L. (Ashley, Poinsett, Marketmore, and Salad Bush cucumber) was examined during the summers of 1994 and 1995. Plants were grown from seed in UV exclusion chambers consisting of UV-transmitting Plexiglas, lined with Llumar to exclude UV-A and UV-B, polyester to exclude UV-B, or cellulose acetate to transmit UV-A and UV-B. Despite previously determined differences in sensitivity to supplemental UV-B radiation, all four cultivars responded similarly to UV-B exclusion treatment. After 19–21 days, the four cultivars grown in the absence of solar UV-B (polyester) had an average of 34, 55, and 40% greater biomass of leaves, stems, and roots, respectively, 27% greater stem height, and 35% greater leaf area than those grown under ambient UV-B (cellulose acetate). Plants protected from UV-A radiation as well (Llumar) showed an additional 14 and 22% average increase, respectively, in biomass of leaves and stems, and a 22 and 19% average increase, respectively, in stem elongation and leaf area over those grown under polyester. These findings demonstrate the extreme sensitivity of cucumber not only to present levels of UV-B but also to UV-A and suggest that even small changes in ozone depletion may have important biological consequences for certain plant species. (author)

  11. Use of UV-protective windows and window films to aid in the prevention of skin cancer.

    Science.gov (United States)

    Edlich, Richard F; Winters, Kathryne L; Cox, Mary Jude; Becker, Daniel G; Horowitz, Jed H; Nichter, Larry S; Britt, L D; Long, William B; Edlic, Elizabeth C

    2004-01-01

    People are exposed to ambient solar ultraviolet (UV) radiation throughout their daily routine, intentionally and unintentionally. Cumulative and excessive exposure to UV radiation is the behavioral cause to skin cancers, skin damage, premature skin aging, and sun-related eye disorders. More than one million new cases of skin cancer were diagnosed in the United States this year. UV radiates directly and diffusely scattered by the various environmental and atmospheric conditions and has access to the skin from all directions. Because of this diffuse UV radiation, a person situated under a covering, such as the roof of a car or house, is not completely protected from the sun's rays. Because shade structures do not protect effectively against UV radiation, there have been major advances in photoprotection of glass by the development of specially designed photoprotective windows and films. It is the purpose of this collective review to highlight the photoprotective windows and films that should be incorporated into residential, commercial, and school glass windows to reduce sun exposure. Low-emittence (low-E) coatings are microscopically thin, virtually invisible, metal or metallic oxide layers deposited on a window or skylight glazing surface to reduce the U-factor by suppressing radiative heat flow as well as to limit UV radiation. The exclusive Thermaflect coating uses the most advanced, double-layer soft coat technology to continue to deliver top performance for UV protection as well as prevent heat loss in the home. This product blocks 87% of UV radiation and has an Energy Star certification in all climate zones. Tints and films have been another important advance in glass photoprotection, especially in automobiles. Quality widow film products are high-tech laminates of polyester and metallized coatings bonded by distortion-free adhesives. The International Window Film Association provides members with accreditation in solar control films, safety films, and

  12. Protective Role of Intracellular Melatonin Against Oxidative Stress and UV Radiation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Bisquert, Ricardo; Muñiz-Calvo, Sara; Guillamón, José M

    2018-01-01

    Melatonin (Mel) is considered a potent natural antioxidant molecule given its free-radical scavenging ability. Its origin is traced back to the origin of aerobic life as early defense against oxidative stress and radiation. More complex signaling functions have been attributed to Mel as a result of evolution in different biological kingdoms, which comprise gene expression modulation, enzyme activity, and mitochondrial homeostasis regulation processes, among others. Since Mel production has been recently reported in wine yeast, we tested the protective effect of Mel on Saccharomyces cerevisiae against oxidative stress and UV light. As the optimal conditions for S. cerevisiae to synthesize Mel are still unknown, we developed an intracellular Mel-charging method to test its effect against stresses. To assess Mel's ability to protect S. cerevisiae from both stresses, we ran growth tests in liquid media and viability assays by colony count after Mel treatment, followed by stress. We also analyzed gene expression by qPCR on a selection of genes involved in stress protection in response to Mel treatment under oxidative stress and UV radiation. The viability in the Mel-treated cells after H 2 O 2 stress was up to 35% greater than for the untreated controls, while stress amelioration reached 40% for UVC light (254 nm). Mel-treated cells showed a significant shortened lag phase compared to the control cells under the stress and normal growth conditions. The gene expression analysis showed that Mel significantly modulated gene expression in the unstressed cells in the exponential growth phase, and also during various stress treatments.

  13. Protective Role of Intracellular Melatonin Against Oxidative Stress and UV Radiation in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ricardo Bisquert

    2018-02-01

    Full Text Available Melatonin (Mel is considered a potent natural antioxidant molecule given its free-radical scavenging ability. Its origin is traced back to the origin of aerobic life as early defense against oxidative stress and radiation. More complex signaling functions have been attributed to Mel as a result of evolution in different biological kingdoms, which comprise gene expression modulation, enzyme activity, and mitochondrial homeostasis regulation processes, among others. Since Mel production has been recently reported in wine yeast, we tested the protective effect of Mel on Saccharomyces cerevisiae against oxidative stress and UV light. As the optimal conditions for S. cerevisiae to synthesize Mel are still unknown, we developed an intracellular Mel-charging method to test its effect against stresses. To assess Mel’s ability to protect S. cerevisiae from both stresses, we ran growth tests in liquid media and viability assays by colony count after Mel treatment, followed by stress. We also analyzed gene expression by qPCR on a selection of genes involved in stress protection in response to Mel treatment under oxidative stress and UV radiation. The viability in the Mel-treated cells after H2O2 stress was up to 35% greater than for the untreated controls, while stress amelioration reached 40% for UVC light (254 nm. Mel-treated cells showed a significant shortened lag phase compared to the control cells under the stress and normal growth conditions. The gene expression analysis showed that Mel significantly modulated gene expression in the unstressed cells in the exponential growth phase, and also during various stress treatments.

  14. Protective Role of Intracellular Melatonin Against Oxidative Stress and UV Radiation in Saccharomyces cerevisiae

    Science.gov (United States)

    Bisquert, Ricardo; Muñiz-Calvo, Sara; Guillamón, José M.

    2018-01-01

    Melatonin (Mel) is considered a potent natural antioxidant molecule given its free-radical scavenging ability. Its origin is traced back to the origin of aerobic life as early defense against oxidative stress and radiation. More complex signaling functions have been attributed to Mel as a result of evolution in different biological kingdoms, which comprise gene expression modulation, enzyme activity, and mitochondrial homeostasis regulation processes, among others. Since Mel production has been recently reported in wine yeast, we tested the protective effect of Mel on Saccharomyces cerevisiae against oxidative stress and UV light. As the optimal conditions for S. cerevisiae to synthesize Mel are still unknown, we developed an intracellular Mel-charging method to test its effect against stresses. To assess Mel’s ability to protect S. cerevisiae from both stresses, we ran growth tests in liquid media and viability assays by colony count after Mel treatment, followed by stress. We also analyzed gene expression by qPCR on a selection of genes involved in stress protection in response to Mel treatment under oxidative stress and UV radiation. The viability in the Mel-treated cells after H2O2 stress was up to 35% greater than for the untreated controls, while stress amelioration reached 40% for UVC light (254 nm). Mel-treated cells showed a significant shortened lag phase compared to the control cells under the stress and normal growth conditions. The gene expression analysis showed that Mel significantly modulated gene expression in the unstressed cells in the exponential growth phase, and also during various stress treatments. PMID:29541065

  15. l-Ergothioneine Protects Skin Cells against UV-Induced Damage—A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Karolina Bazela

    2014-03-01

    Full Text Available Many changes related to aging at the cellular level may be due to the physiological condition of mitochondria. One of the most common types of damage of mtDNA is the so-called “common deletion” referring to a deletion of 4977 base pairs. In the skin cells this phenomenon probably is caused by oxidative damage of mtDNA induced by UV. The present study was aimed at evaluating the effect of the antioxidant l-ergothioneine on UV-induced damage in skin cells. The effect of l-ergothioneine on the reduced glutathione level was studied. The presence of the “common deletion” in human fibroblasts irradiated with UVA and treated with l-ergothioneine was evaluated by a polymerase chain reaction. We have demonstrated that l-ergothioneine enhanced the level of reduced glutathione and protected cells from the induction of a photoaging-associated mtDNA “common deletion”. In view of our results, l-ergothioneine could be an effective skin care and anti-photoaging ingredient.

  16. Limnoithona sinensis as refuge for bacteria: protection from UV radiation and chlorine disinfection in drinking water treatment.

    Science.gov (United States)

    Lin, Tao; Cai, Bo; Chen, Wei

    2014-11-01

    In this study, we tested the potential of Limnoithona sinensis to provide its attached bacteria refuge against disinfection. The experimental results indicated that in water devoid of zooplankton, both UV radiation and chlorine disinfection significantly decreased the viability of free-living bacteria. In the presence of L. sinensis, however, the attached bacteria could survive and rapidly recover from disinfection. This demonstrated that L. sinensis provided protection from external damage to various aquatic bacteria that were attached to its body. The surviving bacteria remained on L. sinensis after disinfection exposure, which enabled a rapid increase in the bacterial population followed by their subsequent release into the surrounding water. Compared with UV radiation, chlorine disinfection was more effective in terms of inactivating attached bacteria. Both UV radiation and chlorine disinfection had little effect in terms of preventing the spread of undesirable bacteria, due to the incomplete inactivation of the bacteria associated with L. sinensis.

  17. Investigation of vacuum deposited hybrid coatings of protic organic UV absorbers embedded in a silica matrix used for the UV protection of Polycarbonate glazing

    OpenAIRE

    Weber, C.; Schulz, U.; Mühlig, C.; Kaiser, N.; Tünnermann, A.

    2016-01-01

    A study of vacuum-deposited organic-inorganic hybrid coatings for UV protection of polycarbonate is presented. UV-absorbing compounds, which are commonly used for polycarbonate, were embedded in a silica matrix by thermal co-evaporation under high vacuum. In addition to the optical properties of the coatings, the influence of the silica network on the organic UV absorber and the stability of the intramolecular hydrogen bond (IMHB) are discussed. A model is presented to show the interaction be...

  18. UV-irradiation effects on polyester nuclear track detector

    International Nuclear Information System (INIS)

    Agarwal, Chhavi; Kalsi, P.C.

    2010-01-01

    The effects of UV irradiation (λ=254 nm) on polyester nuclear track detector have been investigated employing bulk-etch technique, UV-visible spectrophotometry and infra-red spectrometry (FTIR). The activation energy values for bulk-etching were found to decrease with the UV-irradiation time indicating the scission of the polymer. Not much shift in the absorption edge due to UV irradiation was seen in the UV-visible spectra. FTIR studies also indicate the scission of the chemical bonds, thereby further validating the bulk-etch rate results.

  19. Effects of UV radiation on genetic recombination

    International Nuclear Information System (INIS)

    Vlahovic, K.; Zahradka, D.; Petranovic, M.; Petranovic, D.

    1996-01-01

    We have used the model consisting of Escherichia coli cells and l phage to study the effects of UV radiation on genetic recombination. We found two radiation induced processes that reduce or inhibit genetic recombination. One such process leads to the inability of prophage to excise itself from the irradiated bacterial chromosome by the site-specific recombination. The other process was shown to inhibit a type of general recombination by which the prophage transfers one of its genetic markers to the infecting homologous phage. Loss of the prophage ability to take part in both site-specific and general recombination was shown to develop in recB + but not in recB cells. From this we infer that the loss of prophage recombinogenicity in irradiated cells is a consequence of one process in which RecBCD enzyme (the product of recB, recC and recD genes) plays an essential role. (author)

  20. Effect of UV laser irradiation on tissue

    International Nuclear Information System (INIS)

    Nakayama, Takeyoshi; Kubo, Uichi

    1992-01-01

    Laser-tissue interactions have been investigated through Electron Probe Micro Analysis (EPMA), UV-visible optical absorption and Fourier Transform Infrared Spectroscopy (FTIR). Three excimer lasers, ArF, KrF and XeCl, were used to irradiate tissue; cow thighbone and gelatin thin film. Features of UV laser irradiation are described. (author)

  1. Natural Dyeing and UV Protection of Raw and Bleached/Mercerised Cotton

    Directory of Open Access Journals (Sweden)

    Čuk Nina

    2017-05-01

    Full Text Available Dyeing with natural dyes extracted from curcuma, green tea, avocado seed, pomegranate peel and horse chestnut bark was studied to evaluate the dyeability and ultraviolet (UV blocking properties of raw and bleached/mercerised cotton fabrics. 20 g/l of powdered plant material was extracted in distilled water and used as a dyeing bath. No mordants were used to obtain ecologically friendly finishing. The colour of samples was measured on a refl ectance spectrophotometer, while UV-blocking properties were analysed with UV-Vis spectrophotometer. The results showed that dyeing increased UV protection factor (UPF to all samples, however much higher UPF values were measured for the dyed raw cotton samples. The highest UPF values were obtained on both cotton fabrics dyed with pomegranate peel and green tea extracts, giving them excellent protective properties (UPF 50+. The lowest UPF values were obtained by dyeing cotton with avocado seed extract and curcumin. Dyeing with selected dyes is not stable to washing, so the UV-blocking properties worsen after repetitive washing. However, raw cotton samples retain their very good Uvblocking properties, while bleached/mercerised cotton fabrics do not provide even satisfactory UV-blocking properties. No correlation between CIE L*a*b*, K/S and UPF values were found.

  2. Flavonols Protect Against UV Radiation-Induced Thymine Dimer Formation in an Artificial Skin Mimic.

    Science.gov (United States)

    Maini, Sabia; Fahlman, Brian M; Krol, Ed S

    2015-01-01

    Exposure of skin to ultraviolet light has been shown to have a number of deleterious effects including photoaging, photoimmunosuppression and photoinduced DNA damage which can lead to the development of skin cancer. In this paper we present a study on the ability of three flavonols to protect EpiDerm™, an artificial skin mimic, against UV-induced damage. EpiDerm™ samples were treated with flavonol in acetone and exposed to UVA (100 kJ/m(2) at 365 nm) and UVB (9000 J/m(2) at 310 nm) radiation. Secretion of matrix metalloproteinase-1 (MMP-1) and tumor necrosis factor-α (TNF-a) were determined by ELISA, cyclobutane pyrimidine dimers were quantified using LC-APCI-MS. EpiDerm™ treated topically with quercetin significantly decreased MMP-1 secretion induced by UVA (100 µM) or UVB (200 µM) and TNF-a secretion was significantly reduced at 100 µM quercetin for both UVA and UVB radiation. In addition, topically applied quercetin was found to be photostable over the duration of the experiment. EpiDerm™ samples were treated topically with quercetin, kaempferol or galangin (52 µM) immediately prior to UVA or UVB exposure, and the cyclobutane thymine dimers (T-T (CPD)) were quantified using an HPLC-APCI MS/MS method. All three flavonols significantly decreased T-T (CPD) formation in UVB irradiated EpiDerm™, however no effect could be observed for the UVA irradiation experiments as thymine dimer formation was below the limit of quantitation. Our results suggest that flavonols can provide protection against UV radiation-induced skin damage through both antioxidant activity and direct photo-absorption. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  3. Effect of far-UV and near-UV radiation on the cell surface charge of the protozoan Tritrichomonas foetus

    Energy Technology Data Exchange (ETDEWEB)

    Silva Filho, F C; Elias, C A; Souza, W de

    1986-05-01

    Cell electrophoresis was used to detect the effect of far-UV or near-UV radiation on the cell surface charge of the pathogenic protozoan Tritrichomonas foetus. Either far-UV or near-UV radiation interfered with the surface charge of T. foetus at fluences which inhibited cell growth by 50%. Both UV-radiations induced a significant decrease on surface charge of T. foetus, as evaluated by measurement of its electrophoretic mobility (EPM). Determinations of EPM of protozoa in solution of low ionic strength indicated that the decrease in the EPM induced by far-UV is much less pronounced that that observed for near-UV or control cells.

  4. Multifunctional AgNPs@Wool: colored, UV-protective and antioxidant functional textiles

    Science.gov (United States)

    Shabbir, Mohd; Mohammad, Faqeer

    2018-02-01

    Nanomaterials have great impact on textile industry for multifunctional and smart clothing as per the need of present, and further, green nanotechnology is the current hotspot of research and industrial developments. Silver nanoparticles (AgNPs) are synthesized (in situ) by using natural compounds of plant extracts (naphthoquinones, phenolics/flavonoids, polyphenols) as reducing or stabilizing agents, and simultaneously deposited on wool fabric for coloration, UV protection and antioxidant properties. UV-visible spectroscopy is used to monitor the route of biosynthesis of nanoparticles and transmission electron microscopy for morphological characteristics of synthesized AgNPs. Spherical and almost oval-shaped AgNPs were synthesized by naphthoquinones, polyphenols and flavonoids, respectively. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction pattern (XRD) and Fourier transform infrared spectroscopy were used for the AgNPs@Wool fabrics characterization. SEM-EDX analysis and XRD patterns confirmed the successful deposition of silver nanoparticles on wool. Coloration characteristics in terms of color strength (K/S) and CIEL*a*b*c*h° values, UV protection abilities in terms of UV transmittance and UV protection factor, and % antioxidant activity of AgNPs@Wool are suggestive of good-to-excellent results.

  5. Effects of solar UV-B radiation on aquatic ecosystems

    Science.gov (United States)

    Häder, D.-P.

    phytoplankton will be exposed to solar ultraviolet radiation. This radiation has been shown to affect growth, photosynthesis, nitrogen incorporation and enzyme activity. Other targets of solar UV irradiation are proteins and pigments involved in photosynthesis. Whether or not screening pigments can be induced in phytoplankton to effectively shield the organisms from excessive UV irradiation needs to be determined. Macroalgae show a distinct pattern of vertical distribution in their habitat. They have developed mechanisms to regulate their photosynthetic activity to adapt to the changing light regime and protect themselves from excessive radiation. A broad survey was carried out to understand photosynthesis in aquatic ecosystems and the different adaptation strategies to solar radiation of ecologically important species of green, red and brown algae from the North Sea, Baltic Sea, Mediterranean, Atlantic, polar and tropical oceans. Photoinhibition was quantified by oxygen exchange and by PAM (pulse amplitude modulated) fluorescence measurements based on transient changes of chlorophyll fluorescence.

  6. Gold nanoparticles applications in natural polymer modified for UV protection

    International Nuclear Information System (INIS)

    Silva, Iris O. da; Ladchumananandasivam, Rasiah; Nascimento, Jose H. O. do; Silva, Francisco C. da; Sa, Christiane S. de A.

    2015-01-01

    The protein-based polymers such as milk, such as polylactic acid (PLA) and soya can be cited as examples of substrates used in various fields of engineering, mainly due to its character of biodegradability, generating low environmental impact when compared to chemical polymers to petroleum-based, which take years to decompose in nature. Among these, soy fiber has great application potential because it is a manufactured material base of a residue obtained from the existing folder in the soybean seeds after oil extraction, using resins and chemicals for structural modification. In this work, soy mesh was used to develop a material with ultraviolet protection properties, through the use of nanotechnology. Thus, to connect the gold nanoparticles (NPAu), the fabric had a surface charge modified with the use of chitosan, using 20% of the weight of the material, followed by nanomaterials exhaust process. The NPAu were synthesized via chemical synthesis with sodium nitrate as reducing and stabilizing agent. The analysis of the solution samples were evaluated by absorbance spectroscopy and solid materials through diffuse reflectance spectroscopy and XRD X-ray diffraction. The size of NPAu was evaluated in equipment Zetasizer nanoseries / nanoZ, finding nanoparticles with an average size of 34.59 nm, and also underlined plasmon resonance phenomenon, with peaks between 530 nm and red coloration, and good results from the soundness washes, compared to conventional dyeing. It was found that soy polymer treated with NPAu presented an excellent property with ultraviolet protection factor (UPF) of +50, considered excellent, proving its potential application in the biomedical field. (author)

  7. A new formulation of Bacillus thuringiensis: UV protection and sustained release mosquito larvae studies

    Czech Academy of Sciences Publication Activity Database

    Zhang, L.; Zhang, X.; Zhang, Y.; Wu, S.; Gelbič, Ivan; Xu, L.; Guan, X.

    2016-01-01

    Roč. 6, DEC 22 (2016), č. článku 39425. ISSN 2045-2322 Institutional support: RVO:60077344 Keywords : Bacillus thuringiensis * pest control * UV protection Subject RIV: EE - Microbiology, Virology Impact factor: 4.259, year: 2016 http://www.nature.com/articles/srep39425

  8. Chronic effects of UV on human skin

    International Nuclear Information System (INIS)

    Cesarini, J.P.

    1996-01-01

    Chronic exposures and acute accidents of the skin to UV has been recognized as an important risk for skin cancers in human. Attempts have been made with mathematical models to correlate the ambient UV dose and occupational irradiations with the risk of skin cancers. Development of accurate global measurements of solar irradiance and personal dosimetry is expected in the future in order to reduce the exposure of the general population, to precise the measures to be taken for indoor and outdoor workers. (author)

  9. Ultraviolet/visible and Fourier transform infrared spectroscopic investigations of organic–inorganic hybrid layers for UV protection

    Energy Technology Data Exchange (ETDEWEB)

    Präfke, Christiane, E-mail: christiane.praefke@iof.fraunhofer.de [Fraunhofer Institute of Applied Optics and Precision Engineering, Optical Coatings Department, Albert-Einstein-Straße 7, 07745 Jena (Germany); Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena (Germany); Schulz, Ulrike, E-mail: ulrike.schulz@iof.fraunhofer.de [Fraunhofer Institute of Applied Optics and Precision Engineering, Optical Coatings Department, Albert-Einstein-Straße 7, 07745 Jena (Germany); Kaiser, Norbert, E-mail: norbert.kaiser@iof.fraunhofer.de [Fraunhofer Institute of Applied Optics and Precision Engineering, Optical Coatings Department, Albert-Einstein-Straße 7, 07745 Jena (Germany); Tünnermann, Andreas, E-mail: andreas.tuennermann@iof.fraunhofer.de [Fraunhofer Institute of Applied Optics and Precision Engineering, Optical Coatings Department, Albert-Einstein-Straße 7, 07745 Jena (Germany); Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena (Germany)

    2013-04-01

    A study of vacuum-deposited organic–inorganic hybrid coatings for ultraviolet (UV) protection of polycarbonate is presented. For this purpose, UV-absorbing organic molecules were embedded in a silica matrix by thermal co-evaporation. Typical UV absorbers, namely a benzotriazole, a hydroxyphenyltriazine, and a cyanoacrylate, were used as organic materials. The hybrid layers were investigated by means of ultraviolet/visible (UV/VIS) and Fourier transform infrared spectroscopy (FTIR) concerning their UV/VIS absorption properties and the influence of the silica network on the organic molecules. The porosity and silica–organic interactions are discussed with reference to the infrared spectra. UV irradiation experiments were carried out to demonstrate the UV protection ability of the hybrid layers. Hybrid layers containing the hydroxyphenyltriazine compound showed the best results. - Highlights: ► Vacuum deposited organic–inorganic UV protective coatings for polycarbonate ► Thermal co-evaporation of organic UV absorbing compounds with silica ► Matrix materials and the absorber concentration influence the absorption behavior. ► The coatings on PC show improved UV stability under artificial irradiation. ► The hydroxyphenyltriazine–silica layer shows best UV protection results.

  10. Characterization of ZnO coated polyester fabrics for UV protection

    International Nuclear Information System (INIS)

    Broasca, G.; Borcia, G.; Dumitrascu, N.; Vrinceanu, N.

    2013-01-01

    The textile industry aims to develop fabrics adapted to environmental conditions, in particular to UV radiation. Taking into account the demand for such materials, we prepare an inorganic–organic material, based on ZnO microparticles impregnation of polyester textiles, to perform combined UV-protection properties and high hydrophobicity. Scanning electron microscopy, UV reflectance, Impedance Spectroscopy, contact angle, air permeability, resistance to vapor transfer and tensile strength measurement are used for analysis of the surface and volume properties, related to the performance of the material under environmental conditions, as UV radiation, water and water vapors. The impregnation method ensures a good homogeneity and dispersion of ZnO microparticles into the textile polymeric matrix. The optimum level of impregnation of the fabrics is established to 3–5% ZnO, yielding stable properties, without overloading the fabric. The response of the coated polymer indicates better absorbing the UV radiation and dissipating the surface charge, time stability against UV and higher hydrophobic character, without modification of the mechanical properties, offering enhanced performance and comfort under environmental conditions.

  11. Protective effect of (-)-epigallocatechin gallate on ultraviolet b ...

    African Journals Online (AJOL)

    Purpose: To investigate the protective effect of green tea (-)-epigallocatechin gallate (EGCg) on ultraviolet B (UV-B)-induced skin damages in hairless mice in order to develop a natural sunscreen ... hydrophilic cream has also showed high.

  12. Sunscreen for fish: co-option of UV light protection for camouflage.

    Directory of Open Access Journals (Sweden)

    Kaspar P Mueller

    Full Text Available Many animals change their body pigmentation according to illumination of their environment. In aquatic vertebrates, this reaction is mediated through aggregation or dispersion of melanin-filled vesicles (melanosomes in dermal pigment cells (melanophores. The adaptive value of this behavior is usually seen in camouflage by allowing the animal to visually blend into the background. When exposed to visible light from below, however, dark-adapted zebrafish embryos at the age of 2 days post fertilization (dpf surprisingly display dispersal instead of aggregation of melanosomes, i.e. their body coloration becomes dark on a bright background. Melanosomes of older embryos and early larvae (3-5 dpf on the other hand aggregate as expected under these conditions. Here we provide an explanation to this puzzling finding: Melanosome dispersion in larvae 3 dpf and older is efficiently triggered by ultraviolet (UV light, irrespective of the visual background, suggesting that the extent of pigmentation is a trade-off between threats from predation and UV irradiation. The UV light-induced dispersion of melanosomes thereby is dependent on input from retinal short wavelength-sensitive (SWS cone photoreceptors. In young embryos still lacking a functional retina, protection from UV light predominates, and light triggers a dispersal of melanosomes via photoreceptors intrinsic to the melanophores, regardless of the actual UV content. In older embryos and early larvae with functional retinal photoreceptors in contrast, this light-induced dispersion is counteracted by a delayed aggregation in the absence of UV light. These data suggest that the primary function of melanosome dispersal has evolved as a protective adaption to prevent UV damage, which was only later co-opted for camouflage.

  13. Sunscreen for Fish: Co-Option of UV Light Protection for Camouflage

    Science.gov (United States)

    Mueller, Kaspar P.; Neuhauss, Stephan C. F.

    2014-01-01

    Many animals change their body pigmentation according to illumination of their environment. In aquatic vertebrates, this reaction is mediated through aggregation or dispersion of melanin-filled vesicles (melanosomes) in dermal pigment cells (melanophores). The adaptive value of this behavior is usually seen in camouflage by allowing the animal to visually blend into the background. When exposed to visible light from below, however, dark-adapted zebrafish embryos at the age of 2 days post fertilization (dpf) surprisingly display dispersal instead of aggregation of melanosomes, i.e. their body coloration becomes dark on a bright background. Melanosomes of older embryos and early larvae (3–5 dpf) on the other hand aggregate as expected under these conditions. Here we provide an explanation to this puzzling finding: Melanosome dispersion in larvae 3 dpf and older is efficiently triggered by ultraviolet (UV) light, irrespective of the visual background, suggesting that the extent of pigmentation is a trade-off between threats from predation and UV irradiation. The UV light-induced dispersion of melanosomes thereby is dependent on input from retinal short wavelength-sensitive (SWS) cone photoreceptors. In young embryos still lacking a functional retina, protection from UV light predominates, and light triggers a dispersal of melanosomes via photoreceptors intrinsic to the melanophores, regardless of the actual UV content. In older embryos and early larvae with functional retinal photoreceptors in contrast, this light-induced dispersion is counteracted by a delayed aggregation in the absence of UV light. These data suggest that the primary function of melanosome dispersal has evolved as a protective adaption to prevent UV damage, which was only later co-opted for camouflage. PMID:24489905

  14. Row orientation effect on UV-B, UV-A and PAR solar irradiation components in vineyards at Tuscany, Italy

    Science.gov (United States)

    Grifoni, D.; Carreras, G.; Zipoli, G.; Sabatini, F.; Dalla Marta, A.; Orlandini, S.

    2008-11-01

    Besides playing an essential role in plant photosynthesis, solar radiation is also involved in many other important biological processes. In particular, it has been demonstrated that ultraviolet (UV) solar radiation plays a relevant role in grapevines ( Vitis vinifera) in the production of certain important chemical compounds directly responsible for yield and wine quality. Moreover, the exposure to UV-B radiation (280-320 nm) can affect plant-disease interaction by influencing the behaviour of both pathogen and host. The main objective of this research was to characterise the solar radiative regime of a vineyard, in terms of photosynthetically active radiation (PAR) and UV components. In this analysis, solar spectral UV irradiance components, broadband UV (280-400 nm), spectral UV-B and UV-A (320-400 nm), the biological effective UVBE, as well as the PAR (400-700 nm) component, were all considered. The diurnal patterns of these quantities and the UV-B/PAR and UV-B/UV-A ratios were analysed to investigate the effect of row orientation of the vineyard in combination with solar azimuth and elevation angles. The distribution of PAR and UV irradiance at various heights of the vertical sides of the rows was also studied. The results showed that the highest portion of plants received higher levels of daily radiation, especially the UV-B component. Row orientation of the vines had a pronounced effect on the global PAR received by the two sides of the rows and, to a lesser extent, UV-A and UV-B. When only the diffused component was considered, this geometrical effect was greatly attenuated. UV-B/PAR and UV-A/PAR ratios were also affected, with potential consequences on physiological processes. Because of the high diffusive capacity of the UV-B radiation, the UV-B/PAR ratio was significantly lower on the plant portions exposed to full sunlight than on those in the shade.

  15. The role of coccoliths in protecting Emiliania huxleyi against stressful light and UV radiation

    Science.gov (United States)

    Xu, Juntian; Bach, Lennart T.; Schulz, Kai G.; Zhao, Wenyan; Gao, Kunshan; Riebesell, Ulf

    2016-08-01

    Coccolithophores are a group of phytoplankton species which cover themselves with small scales (coccoliths) made of calcium carbonate (CaCO3). The reason why coccolithophores form these calcite platelets has been a matter of debate for decades but has remained elusive so far. One hypothesis is that they play a role in light or UV protection, especially in surface dwelling species like Emiliania huxleyi, which can tolerate exceptionally high levels of solar radiation. In this study, we tested this hypothesis by culturing a calcified and a naked strain under different light conditions with and without UV radiation. The coccoliths of E. huxleyi reduced the transmission of visible radiation (400-700 nm) by 7.5 %, that of UV-A (315-400 nm) by 14.1 % and that of UV-B (280-315 nm) by 18.4 %. Growth rates of the calcified strain (PML B92/11) were about 2 times higher than those of the naked strain (CCMP 2090) under indoor constant light levels in the absence of UV radiation. When exposed to outdoor conditions (fluctuating sunlight with UV radiation), growth rates of calcified cells were almost 3.5 times higher compared to naked cells. Furthermore, the relative electron transport rate was 114 % higher and non-photochemical quenching (NPQ) was 281 % higher in the calcified compared to the naked strain, implying higher energy transfer associated with higher NPQ in the presence of calcification. When exposed to natural solar radiation including UV radiation, the maximal quantum yield of photosystem II was only slightly reduced in the calcified strain but strongly reduced in the naked strain. Our results reveal an important role of coccoliths in mitigating light and UV stress in E. huxleyi.

  16. Improving Formulations for Biopesticides: Enhanced UV Protection for Beneficial Microbes

    Science.gov (United States)

    As society pushes for environmentally friendly production practices in agriculture, control of insect pests of plants often focuses on developing microbial-based biopesticides. Specific bacteria, fungi, and viruses have the potential to provide effective control of pests when applied to plants usi...

  17. UV effects on bottom ice algae

    International Nuclear Information System (INIS)

    Ryan, K.; Buckley, B.

    1993-01-01

    Antarctic sea ice can be surprisingly transparent to UV radiation, particularly during spring when ozone depletion reaches a maximum. A 5% reduction in photosynthetic production was observed in laboratory experiments for UVB levels expected under the ice at this time. In situ studies modifying the UVB radiation falling onto algae were inconclusive. (author). 5 refs

  18. uv keratoconjunctivitis vs. established dose effect relationships

    International Nuclear Information System (INIS)

    Gulvady, N.U.

    1976-01-01

    A patient who received a uv dose to his eyes 11 times greater than the photokeratitic threshold of Pitts and 4 1 / 2 times the photokeratitic threshold as found by Leach. The patient had severe keratoconjunctivitis for 3 days and did not develop any keratitis

  19. Effect of UV on DNA synthesis in UV-resistant insect cells

    International Nuclear Information System (INIS)

    Styer, S.C.; Meechan, P.J.; Griffiths, T.D.

    1987-01-01

    Insect cells are most resistant to killing by 254 nm ultraviolet light (UV) than mammalian cells. Because they have an active photolyase, it may be possible to generate a higher number of [6-4] PyC lesions per genome, allowing the possibility to distinguish between the effects of [5-6] pyrimidine lesions and the nonphotoreactable [6-4] lesions on DNA replication. IAL-PID2 cells, derived from imaginal wing discs of the Indian meal moth were exposed to UV followed by photoreactivating light (PR) or sham treatment and then analyzed by measuring the incorporation of [/sup 3/H]-thymidine into acid precipitable form. As expected, there was a fluence-dependent decrease in the amount of thymidine incorporated after exposure to UV. The response was similar to that observed in wild type CHO cells (AAS) except that the rate of decline was more rapid. When PR followed UV, there was less of a decline in thymidine incorporation and a more rapid recovery. However, thymidine incorporation did not return to control levels as rapidly as expected if [5-6] lesions were the only lesions involved in the disruption of DNA synthesis after exposure to UV

  20. Effect of uv irradiation on lambda DNA transcription

    Energy Technology Data Exchange (ETDEWEB)

    Ranade, S S [Cancer Research Inst., Bombay (India)

    1977-05-01

    The effect of uv irradiation of template DNA has been studied in vitro in the E.coli RNA polymerase system with native and uv treated lambda DNA. Lambda DNA was more susceptible to uv than was calf-thymus DNA, yet a residual activity was observed at a uv dose of 0.5 x 10/sup 4/ erg/mm/sup 2/. From the kinetic analysis of the reaction and the incorporation of lambda /sup 32/P-labelled nucleoside triphosphates, it seems reasonable to conclude that uv irradiation probably did not affect the DNA initiation sites, recognizable by RNA polymerase. The transcription products made with uv irradiated lambda DNA were asymmetrical, and hybridized to the right half (R) and the left half (L) of lambda DNA with the ratio of R/L=4/1, and they showed a lower hybridizability than the transcripts with native lambda DNA. The initiation sites recognizable by RNA polymerase seemed to be the same on both native and uv irradiated lambda DNA, though the transcription of uv treated lambda DNA appeared to terminate with rather short RNA chains.

  1. Effect of serotonin on the yield of UV-induced thymine dimers in DNA

    International Nuclear Information System (INIS)

    Frajkin, G.Ya.; Strakhovskaya, M.G.; Ivanova, Eh.V.

    1985-01-01

    Using fluorescence method serotonin interaction with DNA is studied and bond constant Ksub(c)=4.2x10 4 M -1 is defined. It is shown that bound serotonin reduces yield of UV-induced thymine dimers. Value of efficient distance of protective serotonin effect constituting part of DNA chain of 4 base pairs, is determined

  2. Effect of UV on building materials in New Zealand

    International Nuclear Information System (INIS)

    Bennett, A.F.

    1993-01-01

    Building materials can be divided into two main classes; organic or polymeric based and inorganic materials. Inorganic materials are in most cases largely unaffected by UV radiation. Many common polymers have bonds sensitive to radiation in the UV region. Absorption of radiation of these wavelengths will lead to excitation of electrons which can lead to isomerisation, chain scissors, cross linking and free radical formation. It is worth noting that the effects of UV radiation are always acting synergistically with other environmental effects. (author). 4 refs., 2 tabs

  3. Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings.

    Science.gov (United States)

    Tripathi, Durgesh Kumar; Singh, Swati; Singh, Vijay Pratap; Prasad, Sheo Mohan; Dubey, Nawal Kishore; Chauhan, Devendra Kumar

    2017-01-01

    The role of silicon (Si) in alleviating biotic as well as abiotic stresses is well known. However, the potential of silicon nanoparticle (SiNP) in regulating abiotic stress and associated mechanisms have not yet been explored. Therefore, in the present study hydroponic experiments were conducted to investigate whether Si or SiNp are more effective in the regulation of UV-B stress. UV-B (ambient and enhanced) radiation caused adverse effect on growth of wheat (Triticum aestivum) seedlings, which was accompanied by declined photosynthetic performance and altered vital leaf structures. Levels of superoxide radical and H 2 O 2 were enhanced by UV-B as also evident from their histochemical stainings, which was accompanied by increased lipid peroxidation (LPO) and electrolyte leakage. Activities of superoxide dismutase and ascorbate peroxidase were inhibited by UV-B while catalase and guaiacol peroxidase, and all non-enzymatic antioxidants were stimulated by UV-B. Although, nitric oxide (NO) content was increased at all tested combinations, but its maximum content was observed under SiNps together with UV-B enhanced treatment. Pre-additions of SiNp as well as Si protected wheat seedlings against UV-B by regulating oxidative stress through enhanced antioxidants. Data indicate that SiNp might have protected wheat seedlings through NO-mediated triggering of antioxidant defense system, which subsequently counterbalance reactive oxygen species-induced damage to photosynthesis. Further, SiNp appear to be more effective in reducing UV-B stress than Si, which is related to its greater availability to wheat seedlings. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Genetics perspective of UV rays and new alternatives for sun protection

    International Nuclear Information System (INIS)

    Vallejo, E.O.; Vargas, N.; Martínez, L.M.; Agudelo, C.A.; Ortiz, I.C.

    2013-01-01

    Ultraviolet (UV), has three different wavelengths: UVA (315-400 nm), UVB (280-315 nm) and UVC (100-280 nm), which impact in different ways on the skin of human beings, and may be responsible of skin aging, burns and cancers. Currently we have multiple sunscreen alternatives, ranging from conventional physical methods to complex molecular mechanisms and inducers of cell repair as Polypodium leucotomos. The purpose of this review is to show the implications of ultraviolet rays on human beings exposed to sunlight and the protection alternatives that are available and show what is to come in photo protection towards the future. (authors) [es

  5. Influence of pre- and post-treatment with caffeine on UV-induced effects in Oedogonium gunnii Wittr

    International Nuclear Information System (INIS)

    Srivastava, Sudha; Sarma, Y.S.R.K.

    1981-01-01

    Zoospores and mature filaments of O.gunnii were treated with 0.05 and 0.25% of caffeine 2 hr prior and immediately after exposure to UV. While the caffeine treatment given 2 hr prior to UV-exposure lowered the percentage of chromosomal aberrations, the same concentrations of caffeine, when employed immediately after UV-exposure, resulted in an increased frequency of chromosomal aberrations. Caffeine appears to act as protective as well as potentiating agent in relation to UV-induced effects both with respect to survival of zoospores and chromosomal aberrations in mature filaments. (author)

  6. Coating fabrics with gold nanorods for colouring, UV-protection, and antibacterial functions

    Science.gov (United States)

    Zheng, Yidan; Xiao, Manda; Jiang, Shouxiang; Ding, Feng; Wang, Jianfang

    2012-12-01

    Gold nanorods exhibit rich colours owing to the nearly linear dependence of the longitudinal plasmon resonance wavelength on the length-to-diameter aspect ratio. This property of Au nanorods has been utilized in this work for dyeing fabrics. Au nanorods of different aspect ratios were deposited on both cotton and silk fabrics by immersing them in Au nanorod solutions. The coating of Au nanorods makes the fabrics exhibit a broad range of colours varying from brownish red through green to purplish red, which are essentially determined by the longitudinal plasmon wavelength of the deposited Au nanorods. The colorimetric values of the coated fabrics were carefully measured for examining the colouring effects. The nanorod-coated cotton fabrics were found to be commercially acceptable in washing fastness to laundering tests and colour fastness to dry cleaning tests. Moreover, the nanorod-coated cotton and silk fabrics show significant improvements on both UV-protection and antibacterial functions. Our study therefore points out a promising approach for the use of noble metal nanocrystals as dyeing materials for textile applications on the basis of their inherent localized plasmon resonance properties.

  7. Effect of coupled UV-A and UV-C LEDs on both microbiological and chemical pollution of urban wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Chevremont, A.-C., E-mail: anne-celine.chevremont@imbe.fr [Aix-Marseille Universite - CNRS, FR ECCOREV, Laboratoire Chimie de l' Environnement (FRE3416), Equipe ' Developpements Metrologiques et Chimie des Milieux' , 3 place Victor Hugo, case 29, 13331 Marseille Cedex 3 (France); Aix-Marseille Universite - CNRS, FR ECCOREV, Institut Mediterraneen de Biodiversite et d' Ecologie marine et continentale (UMR7263), Equipe ' Vulnerabilite des Systemes Microbiens' , Avenue Escadrille Normandie-Niemen, Boite 452, 13397 Marseille Cedex 20 (France); Farnet, A.-M. [Aix-Marseille Universite - CNRS, FR ECCOREV, Institut Mediterraneen de Biodiversite et d' Ecologie marine et continentale (UMR7263), Equipe ' Vulnerabilite des Systemes Microbiens' , Avenue Escadrille Normandie-Niemen, Boite 452, 13397 Marseille Cedex 20 (France); Coulomb, B.; Boudenne, J.-L. [Aix-Marseille Universite - CNRS, FR ECCOREV, Laboratoire Chimie de l' Environnement (FRE3416), Equipe ' Developpements Metrologiques et Chimie des Milieux' , 3 place Victor Hugo, case 29, 13331 Marseille Cedex 3 (France)

    2012-06-01

    Wastewater reuse for irrigation is an interesting alternative for many Mediterranean countries suffering from water shortages. The development of new technologies for water recycling is a priority for these countries. In this study we test the efficiency of UV-LEDs (Ultraviolet-Light-Emitting Diodes) emitting UV-A or UV-C radiations, used alone or coupled, on bacterial and chemical indicators. We monitored the survival of fecal bioindicators found in urban wastewaters and the oxidation of creatinine and phenol which represent either conventional organic matter or the aromatic part of pollution respectively. It appears that coupling UV-A/UV-C i) achieves microbial reduction in wastewater more efficiently than when a UV-LED is used alone, and ii) oxidizes up to 37% of creatinine and phenol, a result comparable to that commonly obtained with photoreactants such as TiO{sub 2}. - Highlights: Black-Right-Pointing-Pointer We test UV-LEDs as an urban wastewater tertiary treatment. Black-Right-Pointing-Pointer UV-A and UV-C are coupled, combining germicidal and oxidative properties of UV. Black-Right-Pointing-Pointer Coupled wavelengths have the most efficient bactericidal effect. Black-Right-Pointing-Pointer Coupling UV-A and UV-C leads to photooxidation of creatinine and phenol.

  8. Effect of coupled UV-A and UV-C LEDs on both microbiological and chemical pollution of urban wastewaters

    International Nuclear Information System (INIS)

    Chevremont, A.-C.; Farnet, A.-M.; Coulomb, B.; Boudenne, J.-L.

    2012-01-01

    Wastewater reuse for irrigation is an interesting alternative for many Mediterranean countries suffering from water shortages. The development of new technologies for water recycling is a priority for these countries. In this study we test the efficiency of UV-LEDs (Ultraviolet-Light-Emitting Diodes) emitting UV-A or UV-C radiations, used alone or coupled, on bacterial and chemical indicators. We monitored the survival of fecal bioindicators found in urban wastewaters and the oxidation of creatinine and phenol which represent either conventional organic matter or the aromatic part of pollution respectively. It appears that coupling UV-A/UV-C i) achieves microbial reduction in wastewater more efficiently than when a UV-LED is used alone, and ii) oxidizes up to 37% of creatinine and phenol, a result comparable to that commonly obtained with photoreactants such as TiO 2 . - Highlights: ► We test UV-LEDs as an urban wastewater tertiary treatment. ► UV-A and UV-C are coupled, combining germicidal and oxidative properties of UV. ► Coupled wavelengths have the most efficient bactericidal effect. ► Coupling UV-A and UV-C leads to photooxidation of creatinine and phenol.

  9. Effects of UV-B irradiation on isoforms of antioxidant enzymes and their activities in red alga Grateloupia filicina (Rhodophyta)

    Science.gov (United States)

    Zhao, Jiqiang; Li, Lixia

    2014-11-01

    Macroalgae in a littoral zone are inevitably exposed to UV-B irradiance. We analyzed the effects of UV-B on isoenzyme patterns and activities of superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), and ascorbate peroxidase (APX) of red algae Grateloupia filicina (Lamour.) C. Agardh. The activities of SOD, CAT, and APX changed in response to UV-B in a time- and dose-dependent manner. POX activity increased significantly under all three UV-B treatments. The enzymatic assay showed three distinct bands of SODI (Mn-SOD), SODII (Fe-SOD), and SODIII (CuZn-SOD) under a low (Luv) and medium (Muv) dose of UV-B irradiation, while SODI and SODIII activities decreased significantly when exposed to a high dose of UV-B irradiation (Huv). The activity of POX isoenzymes increased significantly after exposure to UV-B, which is consistent with the total activity. In addition, a clear decrease in activity of CATIV was detected in response to all the three doses of UV treatments. Some bands of APX isoenzyme were also clearly influenced by UV-B irradiation. Correspondingly, the daily growth rate declined under all the three exposure doses, and was especially significant under Muv and Huv treatments. These data suggest that, although the protection mechanisms of antioxidant defense system are partly inducible by UV-B to prevent the damage, G. filicina has incomplete tolerance to higher UV-B irradiation stress.

  10. Ecological responses to UV radiation: interactions between the biological effects of UV on plants and on associated organisms.

    Science.gov (United States)

    Paul, Nigel D; Moore, Jason P; McPherson, Martin; Lambourne, Cathryn; Croft, Patricia; Heaton, Joanna C; Wargent, Jason J

    2012-08-01

    Solar ultraviolet (UV)-B radiation (280-315 nm) has a wide range of effects on terrestrial ecosystems, yet our understanding of how UV-B influences the complex interactions of plants with pest, pathogen and related microorganisms remains limited. Here, we report the results of a series of experiments in Lactuca sativa which aimed to characterize not only key plant responses to UV radiation in a field environment but also consequential effects for plant interactions with a sap-feeding insect, two model plant pathogens and phylloplane microorganism populations. Three spectrally modifying filters with contrasting UV transmissions were used to filter ambient sunlight, and when compared with our UV-inclusive filter, L. sativa plants grown in a zero UV-B environment showed significantly increased shoot fresh weight, reduced foliar pigment concentrations and suppressed population growth of green peach aphid (Myzus persicae). Plants grown under a filter which allowed partial transmission of UV-A radiation and negligible UV-B transmission showed increased density of leaf surface phylloplane microbes compared with the UV-inclusive treatment. Effects of UV treatment on the severity of two plant pathogens, Bremia lactucae and Botrytis cinerea, were complex as both the UV-inclusive and zero UV-B filters reduced the severity of pathogen persistence. These results are discussed with reference to known spectral responses of plants, insects and microorganisms, and contrasted with established fundamental responses of plants and other organisms to solar UV radiation, with particular emphasis on the need for future integration between different experimental approaches when investigating the effects of solar UV radiation. Copyright © Physiologia Plantarum 2011.

  11. Health hazards of UV radiation

    International Nuclear Information System (INIS)

    Matthes, R.

    1994-01-01

    The author describes the effects and health risks of UV exposure. This includes UV effects on the DNS, the eyes, the immune system, and the skin. Finally, recommendations are given for protection against excessive UV exposure on the basis of the IRPA/INIRC guidelines. (orig.) [de

  12. Effect of far-UV and near-UV radiation on the cell surface charge of the protozoan Tritrichomonas foetus

    International Nuclear Information System (INIS)

    Silva Filho, F.C.; Elias, C.A.; Souza, W. de

    1986-01-01

    Cell electrophoresis was used to detect the effect of far-UV or near-UV radiation on the cell surface charge of the pathogenic protozoan Tritrichomonas foetus. Either far-UV or near-UV radiation interfered with the surface charge of T. foetus at fluences which inhibited cell growth by 50%. Both UV-radiations induced a significant decrease on surface charge of T. foetus, as evaluated by measurement of its electrophoretic mobility (EPM). Determinations of EPM of protozoa in solution of low ionic strength indicated that the decrease in the EPM induced by far-UV is much less pronounced that that observed for near-UV or control cells. (author)

  13. Exposure of Finnish population to solar UV radiation and consequent carcinogenic effects

    Energy Technology Data Exchange (ETDEWEB)

    Huurto, L.; Jansen, C. [Turku Univ. Hospital, Turku (Finland); Jokela, K. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1996-12-31

    Depletion of stratospheric ozone increases irradiance of terrestrial ultraviolet (UV) radiation at short wavelengths, which may be harmful to the human health. To understand quantitatively the risks caused by increasing UV radiation to the Finnish population, the actual UV exposure of the population has to be assessed. It was shown that the snow reflection increases the UV exposure to the face and eyes particularly in the northern Finland. In 1993 exceptionally low ozone levels persisted up to the end of May, which resulted in a theoretical increase in the annual UV dose ranging from 8 % to 13 % in Finland. The maximal increase in the measured erythemally effective dose rate was 34 % on 23 April, when compared with the theoretical normal value. During this study exposure models have been developed. The models have been combined them with Green`s radiation transfer model to estimate annual facial UV doses received by different groups of Finnish population. Also, an updated estimate for increase in skin cancer incidence due to the ozone depletion is presented. It is estimated that the maximal increase in UV doses caused by the depletion of the stratospheric ozone will be 12 % in the first years of the next century in Finland. This may result in increase in skin carcinomas by 20-30 % if the people do not improve their protection against solar UV radiation. At the moment the annual facial UV dose of the Finnish indoor worker varies from 3 % to 6 % of the annual ambient dose. In the worst case an outdoor worker may receive even 16% of the annual ambient dose. However, the doses received by indoor workers during vacation to an untanned skin may be more harmful due to the increased risk of malignant melanoma.

  14. Exposure of Finnish population to solar UV radiation and consequent carcinogenic effects

    Energy Technology Data Exchange (ETDEWEB)

    Huurto, L; Jansen, C [Turku Univ. Hospital, Turku (Finland); Jokela, K [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1997-12-31

    Depletion of stratospheric ozone increases irradiance of terrestrial ultraviolet (UV) radiation at short wavelengths, which may be harmful to the human health. To understand quantitatively the risks caused by increasing UV radiation to the Finnish population, the actual UV exposure of the population has to be assessed. It was shown that the snow reflection increases the UV exposure to the face and eyes particularly in the northern Finland. In 1993 exceptionally low ozone levels persisted up to the end of May, which resulted in a theoretical increase in the annual UV dose ranging from 8 % to 13 % in Finland. The maximal increase in the measured erythemally effective dose rate was 34 % on 23 April, when compared with the theoretical normal value. During this study exposure models have been developed. The models have been combined them with Green`s radiation transfer model to estimate annual facial UV doses received by different groups of Finnish population. Also, an updated estimate for increase in skin cancer incidence due to the ozone depletion is presented. It is estimated that the maximal increase in UV doses caused by the depletion of the stratospheric ozone will be 12 % in the first years of the next century in Finland. This may result in increase in skin carcinomas by 20-30 % if the people do not improve their protection against solar UV radiation. At the moment the annual facial UV dose of the Finnish indoor worker varies from 3 % to 6 % of the annual ambient dose. In the worst case an outdoor worker may receive even 16% of the annual ambient dose. However, the doses received by indoor workers during vacation to an untanned skin may be more harmful due to the increased risk of malignant melanoma.

  15. Conformational Effects of UV Light on DNA Origami.

    Science.gov (United States)

    Chen, Haorong; Li, Ruixin; Li, Shiming; Andréasson, Joakim; Choi, Jong Hyun

    2017-02-01

    The responses of DNA origami conformation to UV radiation of different wavelengths and doses are investigated. Short- and medium-wavelength UV light can cause photo-lesions in DNA origami. At moderate doses, the lesions do not cause any visible defects in the origami, nor do they significantly affect the hybridization capability. Instead, they help relieve the internal stress in the origami structure and restore it to the designed conformation. At high doses, staple dissociation increases which causes structural disintegration. Long-wavelength UV does not show any effect on origami conformation by itself. We show that this UV range can be used in conjunction with photoactive molecules for photo-reconfiguration, while avoiding any damage to the DNA structures.

  16. Photo and biocatalytic activities along with UV protection properties on polyester fabric through green in-situ synthesis of cauliflower-like CuO nanoparticles.

    Science.gov (United States)

    Rezaie, Ali Bashiri; Montazer, Majid; Rad, Mahnaz Mahmoudi

    2017-11-01

    In this paper, a facile environmentally friendly method is introduced for in-situ synthesis and fabrication of cauliflower-like CuO nanoparticles on the polyester fabric to produce photo and biocatalytic activities with UV protection properties on polyester fabric. The ash of burnt leaves and stems of Seidlitzia rosmarinus plant called Keliab was used as a natural and nontoxic alkaline source for simultaneous synthesis of CuO nanoparticles and surface modification of polyester without using any other compounds. The images of field-emission scanning electron microscopy, patterns of energy-dispersive spectroscopy, UV-visible spectrum and X-ray diffraction confirmed successful synthesis and loading of CuO nanoparticles on the polyester fabric. The treated fabrics showed very good antibacterial activities toward two pathogen bacteria including Staphylococcus aureus as a Gram-positive and Escherichia coli as a Gram-negative bacteria with no adverse effects on human dermal fibroblasts based on MTT test. The treated fabrics confirmed significant photocatalytic activity for degradation of methylene blue under sunlight, self-cleaning properties under UV light and also UV protection properties. Further a colorant effect along with an improvement in the wettability and mechanical properties of the treated fabrics were indicated. Overall, this method can be applied as a clean route for producing photo and bio active textiles protecting against UV irradiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Impact of Room Location on UV-C Irradiance and UV-C Dosage and Antimicrobial Effect Delivered by a Mobile UV-C Light Device.

    Science.gov (United States)

    Boyce, John M; Farrel, Patricia A; Towle, Dana; Fekieta, Renee; Aniskiewicz, Michael

    2016-06-01

    OBJECTIVE To evaluate ultraviolet C (UV-C) irradiance, UV-C dosage, and antimicrobial effect achieved by a mobile continuous UV-C device. DESIGN Prospective observational study. METHODS We used 6 UV light sensors to determine UV-C irradiance (W/cm2) and UV-C dosage (µWsec/cm2) at various distances from and orientations relative to the UV-C device during 5-minute and 15-minute cycles in an ICU room and a surgical ward room. In both rooms, stainless-steel disks inoculated with methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), and Clostridium difficile spores were placed next to sensors, and UV-C dosages and log10 reductions of target organisms achieved during 5-minute and 15-minute cycles were determined. Mean irradiance and dosage readings were compared using ANOVA. RESULTS Mean UV-C irradiance was nearly 1.0E-03 W/cm2 in direct sight at a distance of 1.3 m (4 ft) from the device but was 1.12E-05 W/cm2 on a horizontal surface in a shaded area 3.3 m (10 ft) from the device (P4 to 1-3 for MRSA, >4 to 1-2 for VRE and >4 to 0 log10 for C. difficile spores, depending on the distance from, and orientation relative to, the device with 5-minute and 15-minute cycles. CONCLUSION UV-C irradiance, dosage, and antimicrobial effect received from a mobile UV-C device varied substantially based on location in a room relative to the UV-C device. Infect Control Hosp Epidemiol 2016;37:667-672.

  18. A combination of He-Ne laser irradiation and exogenous NO application efficiently protect wheat seedling from oxidative stress caused by elevated UV-B stress.

    Science.gov (United States)

    Li, Yongfeng; Gao, Limei; Han, Rong

    2016-12-01

    The elevated ultraviolet-B (UV-B) stress induces the accumulation of a variety of intracellular reactive oxygen species (ROS), which seems to cause oxidative stress for plants. To date, very little work has been done to evaluate the biological effects of a combined treatment with He-Ne laser irradiation and exogenous nitric oxide (NO) application on oxidative stress resulting from UV-B radiation. Thus, our study investigated the effects of a combination with He-Ne laser irradiation and exogenous NO treatment on oxidative damages in wheat seedlings under elevated UV-B stress. Our data showed that the reductions in ROS levels, membrane damage parameters, while the increments in antioxidant contents and antioxidant enzyme activity caused by a combination with He-Ne laser and exogenous NO treatment were greater than those of each individual treatment. Furthermore, these treatments had a similar effect on transcriptional activities of plant antioxidant enzymes. This implied that the protective effects of a combination with He-Ne laser irradiation and exogenous NO treatment on oxidative stress resulting from UV-B radiation was more efficient than each individual treatment with He-Ne laser or NO molecule. Our findings might provide beneficial theoretical references for identifying some effective new pathways for plant UV-B protection.

  19. Studies on the performance of TiO{sub 2} thin films as protective layer to chlorophyll in Ocimum tenuiflorum L from UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Malliga, P. [Department of Physics, V.V.Vanniaperumal College for Women, Virudhunagar – 626001 (India); Selvi, B. Karunai [Department of Botany, V.V.Vanniaperumal College for Women, Virudhunagar – 626001 (India); Pandiarajan, J.; Prithivikumaran, N. [Nanoscience Lab, Department of Physics, VHNSN College, Virudhunagar – 626001 (India); Neyvasagam, K., E-mail: srineyvas@yahoo.co.in [Department of Physics, The Madura College, Madurai - 625011 (India)

    2015-06-24

    Thin films of TiO{sub 2} were prepared on glass substrates using sol-gel dip coating technique. The films with 10 coatings were prepared and annealed at temperatures 350°C, 450°C and 550°C for 1 hour in muffle furnace. The annealed films were characterized by X – Ray diffraction (XRD), UV – Visible, AFM, Field Effect Scanning Electron Microscopy (FESEM) and EDAX studies. Chlorophyll has many health benefits due to its structural similarity to human blood and its good chelating ability. It has antimutagenic and anticarcinogenic properties. UV light impairs photosynthesis and reduces size, productivity, and quality in many of the crop plant species. Increased exposure of UV light reduces chlorophyll contents a, b and total content in plants. Titanium Dioxide (TiO{sub 2}) is a wide band gap semiconductor and efficient light harvester. TiO{sub 2} has strong UltraViolet (UV) light absorbing capability. Here, we have studied the performance of TiO{sub 2} thin films as a protective layer to the chlorophyll contents present in medicinal plant, tulsi (Ocimum tenuiflorum L) from UV radiation. The study reveals that crystallite size increases, transmittance decreases and chlorophyll contents increases with increase in annealing temperature. This study showed that TiO{sub 2} thin films are good absorber of UV light and protect the chlorophyll contents a, b and total content in medicinal plants.

  20. Studies on the performance of TiO2 thin films as protective layer to chlorophyll in Ocimum tenuiflorum L from UV radiation

    International Nuclear Information System (INIS)

    Malliga, P.; Selvi, B. Karunai; Pandiarajan, J.; Prithivikumaran, N.; Neyvasagam, K.

    2015-01-01

    Thin films of TiO 2 were prepared on glass substrates using sol-gel dip coating technique. The films with 10 coatings were prepared and annealed at temperatures 350°C, 450°C and 550°C for 1 hour in muffle furnace. The annealed films were characterized by X – Ray diffraction (XRD), UV – Visible, AFM, Field Effect Scanning Electron Microscopy (FESEM) and EDAX studies. Chlorophyll has many health benefits due to its structural similarity to human blood and its good chelating ability. It has antimutagenic and anticarcinogenic properties. UV light impairs photosynthesis and reduces size, productivity, and quality in many of the crop plant species. Increased exposure of UV light reduces chlorophyll contents a, b and total content in plants. Titanium Dioxide (TiO 2 ) is a wide band gap semiconductor and efficient light harvester. TiO 2 has strong UltraViolet (UV) light absorbing capability. Here, we have studied the performance of TiO 2 thin films as a protective layer to the chlorophyll contents present in medicinal plant, tulsi (Ocimum tenuiflorum L) from UV radiation. The study reveals that crystallite size increases, transmittance decreases and chlorophyll contents increases with increase in annealing temperature. This study showed that TiO 2 thin films are good absorber of UV light and protect the chlorophyll contents a, b and total content in medicinal plants

  1. UV-radiation and skin cancer dose effect curves

    International Nuclear Information System (INIS)

    Henriksen, T.; Dahlback, A.; Larsen, S.H.

    1988-08-01

    Norwegian skin cancer data were used in an attempt to arrive at the dose effect relationship for UV-carcinogenesis. The Norwegian population is relatively homogenous with regard to skin type and live in a country where the annual effective UV-dose varies by approximately 40 percent. Four different regions of the country, each with a broadness of 1 o in latitude (approximately 111 km), were selected . The annual effective UV-doses for these regions were calculated assuming normal ozone conditions throughout the year. The incidence of malignant melanoma and non-melanoma skin cancer (mainly basal cell carcinoma) in these regions were considered and compared to the annual UV-doses. For both these types of cancer a quadratic dose effect curve seems to be valid. Depletions of the ozone layer results in larger UV-doses which in turn may yield more skin cancer. The dose effect curves suggest that the incidence rate will increase by an ''amplification factor'' of approximately 2

  2. A Multifunctional and Possible Skin UV Protectant, (3R-5-Hydroxymellein, Produced by an Endolichenic Fungus Isolated from Parmotrema austrosinense

    Directory of Open Access Journals (Sweden)

    Lu Zhao

    2016-12-01

    Full Text Available Lichens are considered a great bio-resource because they produce large numbers of secondary metabolites with many biological activities; however, they have not been cultivated under artificial conditions to date. As a result, lichen substances from natural sources are limited and have not been widely utilized in commercial applications. Accordingly, interest in lichen-associated fungi, especially endogenic fungi, has increased. Ultraviolet (UV radiation in sunlight is harmful to human health, resulting in demand for effective UV filtering agents for use in sunscreen. In this study, we purified (3R-5-hydroxymellein, which has UVA absorption activity, from the secondary metabolites of an endolichenic fungus (ELF000039. The antioxidant properties were then assessed by in vitro tests. The antioxidant activity of (3R-5-hydroxymellein was high when compared to the recognized antioxidants ascorbic acid (ASA and butyl hydroxyl anisole (BHA. Moreover, the compound exhibited no cytotoxicity toward mouse melanoma cell lines, B16F1 and B16F10, or the normal cell line, HaCaT. Furthermore, (3R-5-hydroxymellein recovered the damage caused by UVB irradiation and inhibited melanin synthesis. Taken together, these results suggest that (3R-5-hydroxymellein could have an interesting and vital profile to go further development as a multifunctional skin UV protectant.

  3. Protective immunity to UV radiation-induced skin tumours induced by skin grafts and epidermal cells

    International Nuclear Information System (INIS)

    Ronald Sluyter; Kylie S Yuen; Gary M Halliday

    2001-01-01

    There is little evidence that cutaneous dendritic cells (DC), including epidermal Langerhans cells (LC), can induce immunity to UV radiation (UVR)-induced skin tumours. Here, it is shown that cells within skin can induce protective antitumour immunity against a UVR-induced fibrosarcoma. Transplantation of the skin overlying subcutaneous tumours onto naive recipients could induce protective antitumour immunity, probably because the grafting stimulated the tumour Ag-loaded DC to migrate to local lymph nodes. This suggests that cutaneous APC can present tumour Ag to induce protective antitumour immunity. Previously, it has been shown that immunization of mice with MHC class II+ epidermal cells (EC) pulsed with tumour extracts could induce delayed-type hypersensitivity against tumour cells. Here, this same immunization protocol could induce protective immunity against a minimum tumorigenic dose of UVR-induced fibrosarcoma cells, but not higher doses. Epidermal cells obtained from semiallogeneic donors and pulsed with tumour extract could also induce protective immunity. However, presentation of BSA Ag from the culture medium was found to contribute to this result using semiallogeneic EC. The results suggest that LC overlying skin tumours may be able to induce protective immunity to UVR-induced tumours if stimulated to migrate from the skin. Copyright (2001) Australasian Society of Immunology Inc

  4. Cytoprotective effect against UV-induced DNA damage and oxidative stress: role of new biological UV filter.

    Science.gov (United States)

    Said, T; Dutot, M; Martin, C; Beaudeux, J-L; Boucher, C; Enee, E; Baudouin, C; Warnet, J-M; Rat, P

    2007-03-01

    The majority of chemical solar filters are cytotoxic, particularly on sensitive ocular cells (corneal and conjunctival cells). Consequently, a non-cytotoxic UV filter would be interesting in dermatology, but more especially in ophthalmology. In fact, light damage to the eye can be avoided thanks to a very efficient ocular antioxidant system; indeed, the chromophores absorb light and dissipate its energy. After middle age, a decrease in the production of antioxidants and antioxidative enzymes appears with accumulation of endogenous molecules that are phototoxic. UV radiations can induce reactive oxygen species formation, leading to various ocular diseases. Because most UV filters are cytotoxic for the eye, we investigated the anti-UV properties of Calophyllum inophyllum oil in order to propose it as a potential vehicle, free of toxicity, with a natural UV filter action in ophthalmic formulation. Calophyllum inophyllum oil, even at low concentration (1/10,000, v/v), exhibited significant UV absorption properties (maximum at 300nm) and was associated with an important sun protection factor (18-22). Oil concentrations up to 1% were not cytotoxic on human conjunctival epithelial cells, and Calophyllum inophyllum oil appeared to act as a cytoprotective agent against oxidative stress and DNA damage (85% of the DNA damage induced by UV radiations were inhibited with 1% Calophyllum oil) and did not induce in vivo ocular irritation (Draize test on New Zealand rabbits). Calophyllum inophyllum oil thus exhibited antioxidant and cytoprotective properties, and therefore might serve, for the first time, as a natural UV filter in ophthalmic preparations.

  5. Polyhydroxylated fatty alcohols derived from avocado suppress inflammatory response and provide non-sunscreen protection against UV-induced damage in skin cells.

    Science.gov (United States)

    Rosenblat, Gennady; Meretski, Shai; Segal, Joseph; Tarshis, Mark; Schroeder, Avi; Zanin-Zhorov, Alexandra; Lion, Gilead; Ingber, Arieh; Hochberg, Malka

    2011-05-01

    Exposing skin to ultraviolet (UV) radiation contributes to photoaging and to the development of skin cancer by DNA lesions and triggering inflammatory and other harmful cellular cascades. The present study tested the ability of unique lipid molecules, polyhydroxylated fatty alcohols (PFA), extracted from avocado, to reduce UVB-induced damage and inflammation in skin. Introducing PFA to keratinocytes prior to their exposure to UVB exerted a protective effect, increasing cell viability, decreasing the secretion of IL-6 and PGE(2), and enhancing DNA repair. In human skin explants, treating with PFA reduced significantly UV-induced cellular damage. These results support the idea that PFA can play an important role as a photo-protective agent in UV-induced skin damage.

  6. Effect of UV-B radiation on UV absorbing compounds and pigments of moss and lichen of Schirmacher oasis region, East Antarctica.

    Science.gov (United States)

    Singh, J; Gautam, S; Bhushan Pant, A

    2012-12-22

    The survival of Antarctic flora under ozone depletion depends on their ability to acclimate against increasing UV—B radiation by employing photo protective mechanisms either by avoiding or repairing UV—B damage. A fifteen days experiment was designed to study moss (Bryum argenteum) and lichen (Umbilicaria aprina) under natural UV—B exposure and under UV filter frames at the Maitri region of Schirmacher oasis, East Antarctica. Changes in UV absorbing compounds, phenolics, carotenoids and chlorophyll content were studied for continuous fifteen days and significant changes were observed in the UV exposed plants of B. argenteum and U. aprina. The change in the UV absorbing compounds was more significant in B. argenteum (P<0.0001) than U. aprina (P<0.0002). The change in phenolic contents and total carotenoid content was significant (P<0.0001) in both B. argenteum and lichen U. aprina indicating that the increase in UV absorbing compounds, phenolic contents and total carotenoid content act as a protective mechanism against the deleterious effect of UV—B radiations.

  7. Effects of increasing UV-B radiation and atmospheric CO2 on photosynthesis and growth: implications for terrestrial ecosystems

    International Nuclear Information System (INIS)

    Sullivan, J.H.

    1997-01-01

    Increases in UV-B radiation reaching the earth as a result of stratospheric ozone depletion will most likely accompany increases in atmospheric CO 2 concentrations. Many studies have examined the effects of each factor independently, but few have evaluated the combined effects of both UV-B radiation and elevated CO 2 . In general the results of such studies have shown independent effects on growth or seed yield. Although interspecific variation is large, high levels of UV-B radiation tends to reduce plant growth in sensitive species, while CO 2 enrichment tends to promote growth in most C 3 species. However, most previous studies have not looked at temporal effects or at the relationship between photosynthetic acclimation to CO 2 and possible photosynthetic limitations imposed by UV-B radiation. Elevated CO 2 may provide some protection against UV-B for some species. In contrast, UV-B radiation may limit the ability to exploit elevated CO 2 in other species. Interactions between the effects of CO 2 enrichment and UV-B radiation exposure have also been shown for biomass allocation. Effects on both biomass allocation and photosynthetic acclimation may be important to ecosystem structure in terms of seedling establishment, competition and reproductive output. Few studies have evaluated ecosystem processes such as decomposition or nutrient cycling. Interactive effects may be subtle and species specific but should not be ignored in the assessment of the potential impacts of increases in CO 2 and UV-B radiation on plants. (author)

  8. Effectiveness of eye drops protective against ultraviolet radiation.

    Science.gov (United States)

    Daxer, A; Blumthaler, M; Schreder, J; Ettl, A

    1998-01-01

    To test the effectiveness of commercially available ultraviolet (UV)-protective eye drops (8-hydroxy-1-methylchinolinium methylsulphate) which are recommended for protection against both solar and artificial UV radiation. The spectral transmission in the wavelength range from 250 to 500 nm was investigated in 1-nm steps using a high-resolution double monochromator with holographic gratings of 2,400 lines/mm and a 1,000-watt halogen lamp as light source. The transmission spectrum was measured for different values of the layer thickness. The transmission of a liquid layer of about 10 microns, which corresponds to the thickness of the human tear film, shows a cut-off at 290 nm with a transmission of about 25-50% at shorter wavelengths. For wavelengths longer than 290 nm the transmission is higher than 90%. The threshold time ratio for keratitis formation with and without eye drops is above 0.93 considering solar radiation on the earth's surface and above 0.65 considering radiation from arc-welding, respectively. The transmission spectrum of the eye drops under realistic conditions does not show a protective effect against solar UV radiation. However, there exists reduction of UVC radiation in the spectral range typical of artificial UV sources such as arc-welding. We cannot recommend the application of these eye drops as an UV-protective aid against eye damage by solar UV radiation.

  9. Dose effect of the uvsA+ gene product in duplication strains of Aspergillus nidulans

    International Nuclear Information System (INIS)

    Majerfeld, I.H.; Roper, J.A.

    1978-01-01

    Strains of Aspergillus nidulans which carry a particular segment of chromosome I in duplicate - one segment in normal position, the other translocated to chromosome II - are more resistant to uv light than are strains with a balanced haploid genome. A double dose of the uvsA + allele, carried on the duplicate segment, determines this enhanced resistance; this is shown by the descending order of resistance of duplication haploids uvsA + /uvsA + , uvsA1/uvsA + and uvsA1/uvsA1. An unbalanced diploid with three doses of the uvsA + allele also shows greater resistance than a balanced uvsA + //uvsA + diploid. However, in balanced diploids the uvsA1 allele appears to be completely recessive; uvsA + //uvsA + and uvsA + //uvsA1 diploids produce indistinguishable survival curves after uv irradiation. Thus, the uvsA + gene product is not rate-limiting in repair processes in strains with a balanced genome. The rate-limiting effect observed in these unbalanced strains presumably reflects an interaction of the uvsA + product and other functions determined by the rest of the genome. Duplication haploids and normal haploids lose photorepairable lesions at similar rates. This observation may be interpreted to indicate that differences in survival are not due to differences in the efficiency of excision of uv-induced pyrimidime dimers

  10. Effect of UV-B Radiation and Desiccation Stress on Photoprotective Compounds Accumulation in Marine Leptolyngbya sp.

    Science.gov (United States)

    Joshi, Devika; Mohandass, C; Dhale, Mohan

    2018-01-01

    Increased awareness regarding the harmful effects of ultraviolet (UV)-B radiation has led to the search for new sources of natural UV-B protecting compounds. Mycosporine-like amino acids are one of such promising compounds found in several organisms. Cyanobacteria are ideal organisms for isolation of these compounds due to their compatibility and adaptability to thrive under harsh environmental conditions. In the following investigation, we report the production of shinorine in Leptolyngbya sp. isolated from the intertidal region. Based on the spectral characteristics and liquid chromatography-mass spectrometry analysis, the UV-absorbing compound was identified as shinorine. To the best of our knowledge, this is the first report on the occurrence of shinorine in Leptolyngbya sp. We also investigated the effect of artificial UV-B radiation and periodic desiccation on chlorophyll-a, total carotenoids, and mycosporine-like amino acids (MAAs) production. The UV-B radiation had a negative effect on growth and chlorophyll concentration, whereas it showed an inductive effect on the production of total carotenoids and MAAs. Desiccation along with UV-B radiation led to an increase in the concentration of photoprotective compounds. These results indicate that carotenoids and MAAs thus facilitate cyanobacteria to avoid and protect themselves from the deleterious effects of UV-B and desiccation.

  11. Photostabilization of the botanical insecticide azadirachtin in the presence of lecithin as UV protectant

    International Nuclear Information System (INIS)

    Sundaram, K.M.S.; Curry, J.

    1996-01-01

    The phytochemical insecticide, azadirachtin (AZ), undergoes UV‐induced photodegradation. Using the isomer AZ‐A as a standard, its photochemical stability was studied with and without adding lecithin surfactant as a UV protectant. Standard solutions of pure AZ‐A and Margosan‐O ® were prepared in methanol‐hexane with (AZ‐A:lecithin, 1:2 by weight) and without lecithin, applied separately onto glass plates and maple (Acer L.) foliage and exposed to radiant energy under controlled conditions. Noticeable photostabilization of AZ‐A was achieved in the samples containing lecithin compared to AZ‐A samples without the lecithin additive. First‐order kinetic evaluation of the data showed that the DTy 50 (half‐life) and C (rate constant) values for AZ‐A with and without lecithin on glass plates were 5.68 d and 0.122, and 5.42 d and 0.128, respectively. The corresponding values for the Margosan‐0 formulation were 7.37 d and 0.094, and 6.24 d and 0.111. The DT 50 and C values for the pure AZ‐A on maple foliage with and without lecithin were 8.77 d and 0.079, and 6.54 d and 0.106, respectively. The corresponding values for the Margosan‐0 formulation on foliage were 8.35 d and 0.083, and 7.45 d and 0.093. The kinetic data gave quantitative information regarding the photostabilization of AZ‐A in the presence of lecithin. Good UV protection can only be achieved if the additive has the matching X max of AZ‐A. The mechanism of photostabilization of AZ‐A in the presence of lecithin was due to either energy transfer from the excited AZ‐A to lecithin and/or competitive absorption of UV photons by the latter

  12. All Biomass and UV Protective Composite Composed of Compatibilized Lignin and Poly (Lactic-acid)

    Science.gov (United States)

    Kim, Youngjun; Suhr, Jonghwan; Seo, Hee-Won; Sun, Hanna; Kim, Sanghoon; Park, In-Kyung; Kim, Soo-Hyun; Lee, Youngkwan; Kim, Kwang-Jin; Nam, Jae-Do

    2017-03-01

    Utilization of carbon-neutral biomass became increasingly important due to a desperate need for carbon reduction in the issue of global warming in light of replacing petroleum-based materials. We used lignin, which was an abundant, low cost, and non-food based biomass, for the development of all biomass-based films and composites through reactive compatibilization with poly (lactic-acid) (PLA). Using a facile and practical route, the hydrophilic hydroxyl groups of lignin were acetylated to impose the compatibility with PLA. The solubility parameter of the pristine lignin at 26.3 (J/cm3)0.5 was altered to 20.9 (J/cm3)0.5 by acetylation allowing the good compatibility with PLA at 20.2 (J/cm3)0.5. The improved compatibility of lignin and PLA provided substantially decreased lignin domain size in composites (12.7 μm), which subsequently gave transparent and UV-protection films (visual transmittance at 76% and UV protection factor over 40). The tensile strength and elongation of the developed composite films were increased by 22% and 76%, respectively, and the biobased carbon content was confirmed as 96 ± 3%. The developed PLA/lignin composites provided 100% all-biomass contents and balanced optical and mechanical properties that could broaden its eco-friendly applications in various industries.

  13. UV-protected (natural) inflation: primordial fluctuations and non-gaussian features

    Energy Technology Data Exchange (ETDEWEB)

    Germani, Cristiano; Watanabe, Yuki, E-mail: cristiano.germani@physik.lmu.de, E-mail: yuki.watanabe@physik.lmu.de [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-University, Theresienstrasse 37, 80333 Munich (Germany)

    2011-07-01

    We consider the UV-protected inflation, where the inflaton potential is obtained by quantum (one-loop) breaking of a global symmetry into a discrete symmetry. In this model, all coupling scales are sub-Planckian. This is achieved by coupling the inflaton kinetic term to the Einstein tensor such that the friction is enhanced gravitationally at high energies. In this respect, this new interaction makes virtually any potential adequate for inflation while keeping the system perturbative unitary. We show that even if the gravitationally enhanced friction intrinsically contains new nonlinearities, the UV-protected inflation (and any similar models) behaves as a single field scenario with red tilted spectrum and potentially detectable gravitational waves. Interestingly enough, we find that non-Gaussianity of the curvature perturbations in the local form are completely dominated by the nonlinear gauge transformation from the spatially flat to uniform-field gauge and/or by parity violating interactions of the inflaton and gauge bosons. In particular, the parity violating interactions may produce detectable non-Gaussianity.

  14. Effects of UV light and chromium ions on wood flavonoids

    International Nuclear Information System (INIS)

    Molnárné Hamvas, L.; Németh, K.; Stipta, J.

    2003-01-01

    The individual and simultaneous effect of UV light and chromium ions was investigated by spectrophotometric methods on inert surfaces impregnated with quercetin or robinetin. The UV-VIS spectra of the silica gel plates impregnated with these flavonoids were modified characteristically after irradiating ultraviolet light. Even a half an hour of irradiation has caused irreversible changes in the molecule structure. A certain chemical - presumably complexation - was concluded from the change of spectral bands assigned to flavonoids when impregnated with chromic ions. Hexavalent chromium caused more complex changes in the absorption spectra. The differences in the spectra could indicate either the oxidation and decomposition of flavonoids, or some kind of coordination process and the reduction of hexavalent chromium. The simultaneous application of UV light and chromium ions caused more pronounced effects. The complexation process between chromium(III) and flavonoid was completed

  15. Transcriptional and cellular effects of benzotriazole UV stabilizers UV-234 and UV-328 in the freshwater invertebrates Chlamydomonas reinhardtii and Daphnia magna.

    Science.gov (United States)

    Giraudo, Maeva; Cottin, Guillaume; Esperanza, Marta; Gagnon, Pierre; Silva, Amila O De; Houde, Magali

    2017-12-01

    Benzotriazole ultra violet stabilizers (BZT-UVs) are compounds used in many applications and products to prevent photochemical degradation. Despite their widespread presence in aquatic ecosystems and persistence in the environment, there are very limited data on their effects and toxicity, and their modes of action remain largely unknown. The objectives of the present study were to evaluate the chronic effects of 2 BZT-UVs, 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (UV-234) and 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV-328), on the freshwater green algae Chlamydomonas reinhardtii and the freshwater crustacean Daphnia magna. Organisms were exposed to 0.01 and 10 μg/L of UV-234, UV-328, as well as a mixture of the 2 compounds. Life-history endpoints (viability, reproduction, and growth) and oxidative stress-related biomarkers (gene transcription, reactive oxygen species [ROS] production, and lipid peroxidation) were measured. Daphnia magna growth, reproduction, and gene transcription were not impacted by 21-d individual or mixed exposure. After 96-h of exposure, no differences were observed on the cellular viability of C. reinhardtii for either of the 2 BZT-UVs. In the algae, results showed increased ROS production in response to UV-328 and lipid peroxidation following exposure to UV-234. Synergistic effects of the 2 BZT-UVs were evident at the transcriptional level with 2 to 6 times up-regulation of glutathione peroxidase (gp x ) in response to the mixture for all treatment conditions. The transcription of superoxide dismutase (sod), catalase (cat), and ascorbic peroxidase (apx) was also regulated by UV-234 and UV-328 in the green algae, most likely as a result of ROS production and lipid peroxidation. Results from the present study suggest potential impacts of UV-234 and UV-328 exposure on the antioxidant defense system in C. reinhardtii. Environ Toxicol Chem 2017;36:3333-3342. © 2017 Crown in the Right of Canada. Published by

  16. Effect of excess ozone on UV-stimulated tritium oxidation

    International Nuclear Information System (INIS)

    Hasegawa, Kiyoshi; Horii, Kazuhiro; Matsuyama, Masao; Watanabe, Kuniaki.

    1995-01-01

    The authors have reported that the oxidation of tritium is considerably accelerated by irradiating a mixture gas of HT(H 2 )-O 2 with UV-photons, and this UV-stimulated HT oxidation is mainly due to the formation of intermediates such as ozone and activated oxygen species. This suggests that the oxidation will be much more enhanced in the presence of excess ozone in the reaction system. To examine this possibility, effects of the excess ozone on the UV-stimulated HT oxidation was experimentally studied on the one hand, and reaction mechanisms were investigated by developing a computer simulation program applicable to the three-component system of HT(H 2 )-O 2 -O 3 . The formation rate of HTO was measured for gas mixtures consisting of O 2 (75.5 Torr), O 3 (0.5-2% of O 2 ), H 2 (0.1-3% of O 2 ) and HT(H 2 /HT=12000). The experiments showed considerable enhancement of the HTO production rate in the presence of excess ozone by UV-photons from a low pressure mercury lamp(5W). The time course of the reaction was reproduced quite well by computer simulation, indicating that the assumed reaction mechanism is valid. This is also supported by observations that computer simulation reproduced the experimentally observed dependence of ozone decomposition rate on ozone and hydrogen pressures under the UV-irradiation. Those results showed that UV-stimulated HT oxidation was accelerated by about 14000 times in the presence of excess ozone. It strongly suggests that the UV-stimulated oxidation in the presence of excess ozone will be applicable to tritium handling systems as a non-catalytic tritium removal method. (author)

  17. Effects of UV radiation on the UV-VIS absorption spectra of the EAGLE's medium components

    International Nuclear Information System (INIS)

    Bollmann, G.; Redmann, K.

    1990-01-01

    The impact of ultraviolet light on uv/vis absorption spectra of selected individual components of the cell breeding medium according to Eagle (MEM) was investigated. The strongest alterations of light absorption were detected in L-phenylalanin, L-tyrosin and L-tryptophane. Thus, the absorption behaviour of the Eagle (MEM) medium changed post radiationem may be attributed to spectrophotometric alterations of absorption in aromatic amino acids. The results are discussed with regard to the effect on the surface charge of erythrocytes. (author)

  18. Effect of UV Radiation by Projectors on 3D Printing

    Directory of Open Access Journals (Sweden)

    Kovalenko Iaroslav

    2017-01-01

    Full Text Available Polymers that solidify under light radiation are commonly used in digital light processing (DLP 3D printing. A wide range of photopolymers use photoinitiators that react to radiation in range of ultraviolet (UV wavelength. In the present study we provided measurement of radiant fluence in the UV wavelength range from 280 nm to 400 nm for two data projectors and compared effect of radiation on quality of 3D printing. One projector is commonly used DLP projector with high energy lamp. Second one is an industrial projector, in which RGB light emitting diodes (LEDs are replaced by UV LEDs with wattage at the level of 3.6 % of the first one. Achieved data confirmed uneven distribution of radiant energy on illuminated area. These results validate, that undesired heating light causes internal stress inside built models that causes defects in final products.

  19. Epidermal Rac1 regulates the DNA damage response and protects from UV-light-induced keratinocyte apoptosis and skin carcinogenesis

    Science.gov (United States)

    Deshmukh, Jayesh; Pofahl, Ruth; Haase, Ingo

    2017-01-01

    Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways. PMID:28277539

  20. Epidermal Rac1 regulates the DNA damage response and protects from UV-light-induced keratinocyte apoptosis and skin carcinogenesis.

    Science.gov (United States)

    Deshmukh, Jayesh; Pofahl, Ruth; Haase, Ingo

    2017-03-09

    Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways.

  1. Effect of benzimidazol-derivatives on the DNA-protein binding formation after UV-radiation of chromatin

    International Nuclear Information System (INIS)

    Mil', E.M.; Binyukov, V.I.; Zhil'tsova, V.M.; Stolyarova, L.G.; Kuznetsov, Yu.V.

    1991-01-01

    Effect of benzimidazol-derivatives on the DNA-protein binding formation was studied after UV-radiation of chromatin. These derivatives were shown to protect chromatin from UV-induced DNA-protein binding formation. Structural analog contained two aminomethyl residuals sensibilized additional binding formation in chromatin. Results suggested, that benzimidazol interacted with DNA, while aminomethyl groups interacted with protein and sensibilized binding of DNA, whilt aminomethyl groups interacted with protein and sensibilized binding of DNA with histone H1

  2. Effects of UV-B radiation on wax biosynthesis

    International Nuclear Information System (INIS)

    Barnes, J.; Paul, N.; Percy, K.; Broadbent, P.; McLaughlin, C.; Mullineaux, P.; Creissen, G.; Wellburn, A.

    1994-01-01

    Two genotypes of tobacco (Nicotiana tabacum L.) were exposed in controlled environment chambers to three levels of biologically effective ultraviolet-B radiation (UV-B BE ; 280-320nm): 0, 4.54 (ambient) and 5.66 (∼ 25% enhancement) kJ m -2 d -1 . After 28 days, the quantity of wax deposited on leaf surfaces was determined gravimetrically; epicuticular wax chemical composition was determined by capillary gas chromatography with homologue assignments confirmed by gas chromatography-mass spectrometry. Leaf wettability was assessed by measuring the contact angle of water droplets placed on leaf surfaces. Tobacco wax consisted of three major hydrocarbon classes: Straight-chain alkanes (C 27 -C 33 ) which comprised ∼ 59% of the hydrocarbon fraction, containing a predominance of odd-chain alkanes with C 31 as the most abundant homologue; branched-chain alkanes (C 25 -C 32 ) which comprised ∼38% of the hydrocarbon fraction with anteiso 3-methyltriacontane (C 30 ) as the predominant homologue; and fatty acids (C 14 -C 18 ) which comprised ∼ 3% of the wax. Exposure to enhanced UV-B radiation reduced the quantity of wax on the adaxial surface of the transgenic mutant, and resulted in marked changes in the chemical composition of the wax on the exposed leaf surface. Enhanced UV-B decreased the quantity of straight-chain alkanes, increased the quantity of branched-chain alkanes and fatty acids, and resulted in shifts toward shorter straight-chain lengths. Furthermore, UV-B-induced changes in wax composition were associated with increased wettability of tobacco leaf surfaces. Overall, the data are consistent with the view that UV-B radiation has a direct and fundamental effect on wax biosynthesis. Relationships between the physico-chemical nature of the leaf surface and sensitivity to UV-B radiation are discussed. (orig.)

  3. Effects of Ultraviolet (UV) Radiations at Different Wave Lengths on ...

    African Journals Online (AJOL)

    Prof. Ogunji

    The effects of UV-radiation on the bacterial load and yeast viability of palm wine were ... shelf life due to the uncontrolled metabolic activities of yeast and bacteria. .... Process. Biochemistry International 8:23-220. Okafor, N. (2007). Palm Wine ...

  4. Effects of UV-B irradiated algae on zooplankton grazing

    NARCIS (Netherlands)

    Lange, de H.J.; Lürling, M.F.L.L.W.

    2003-01-01

    We tested the effects of UV-B stressed algae on grazing rates of zooplankton. Four algal species ( Chlamydomonas reinhardtii, Cryptomonas sp., Scenedesmus obliquus and Microcystis aeruginosa) were used as food and fed to three zooplankton species ( Daphnia galeata, Bosmina longirostris and

  5. Effects of prolonged UV-B exposure in plants

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... effects of UV radiation on plants and other organisms. .... competitive interactions may also be altered indirectly by ..... lesions show a high degree of evolutionary conservation ... period between anther dehiscence pollination, and there- .... ultraviolet climate and the ecological consequences for higher ...

  6. Effects of UV irradiation and UV/chlorine co-exposure on natural organic matter in water

    International Nuclear Information System (INIS)

    Liu, Wei; Zhang, Zaili; Yang, Xin; Xu, Yiyue; Liang, Yongmei

    2012-01-01

    The effects of co-exposure to ultraviolet (UV) irradiation (with either low- or medium-pressure UV lamps) and free chlorine (chloramine) at practical relevant conditions on changes in natural organic matter (NOM) properties were investigated using four waters. The changes were characterized using the specific disinfection by-product formation potential (SDBPFP), specific total organic halogen formation potential (STOXFP), differential UV absorbance (∆UVA), and size-exclusion chromatography (SEC). The results for exposure to UV irradiation alone and for samples with no exposure were also obtained. The SDBPFPs in all UV-irradiated NOM waters observed were higher than those of non-irradiated samples. UV irradiation led to increases in STOXFPs as a result of chlorination, but no changes, or only small decreases, from chloramination. UV irradiation alone led to positive ∆UVA spectra of the four NOM waters; co-exposure to UV and chlorine gave larger negative ∆UVA spectra than those obtained by chlorine exposure alone. No obvious changes in SEC results were observed for samples only irradiated with UV light; co-exposure gave no detectable changes in the abundances of small fractions for exposure to chlorine only. Both UV photooxidation and photocatalytic oxidation appear to affect the reactivity of the NOM toward subsequent chlorination, and the magnitude of the changes is generally greater for medium-pressure lamps than for low-pressure lamps. These results suggest that applying UV disinfection technology to a particular source may not always be disinfection by-product-problem-free, and the interactions between UV light, chlorine, and NOM may need to be considered. - Highlights: ► We discussed the effects of co-exposure to UV light and chlorine on properties of natural organic matters in waters. ► UV irradiation led to increases in SDBPFP and STOXFP of NOM waters from chlorination. ► We suggest that applying an UV disinfection technology to a particular

  7. The effect of UV stars on the intergalactic medium. II

    International Nuclear Information System (INIS)

    Sonnanstine, A.E.; Hills, J.G.

    1976-01-01

    The effect of ionizing radiation from the UV stars (hot prewhite dwarfs) on the intergalactic medium (IGM) has been investigated. If the UV stars are powered only by gravitational contraction they radiate most of their energy at a typical surface temperature of 1.5 x 10 5 K which produces a very highly ionized IGM in which the elements carbon, nitrogen and oxygen are left with only one or two electrons. This result in these elements being very inefficient coolants. The gas is cooled principally by free-free emission and the collisional ionization of hydrogen and helium. For a typical UV star temperature of T=1.5 x 10 5 K, the temperature of the ionized gas in the IGM is Tsub(g)=1.2 x 10 5 K for a Hubble constant H 0 =75 kms -1 Mpc -1 and a hydrogen density nsub(H)=10 -6 cm -3 . Heating by cosmic rays and X-rays is insignificant in the IGM except perhaps in the H I clouds because when a hydrogen atom recombines in the IGM it is far more likely to be re-ionized by a UV-star photon than by either of the other two types of particles due to the greater space density of UV-star photons and their appreciably larger ionization cross sections. If the UV stars radiate a substantial fraction of their energy in a helium-burning stage in which they have surface temperatures of about 5 x 10 4 K, the temperature of the IGM could be lowered to about 5 x 10 4 K. (Auth.)

  8. Light - Instead of UV Protection: New Requirements for Skin Cancer Prevention.

    Science.gov (United States)

    Zastrow, Leonhard; Lademann, Jürgen

    2016-03-01

    The requirements on sunscreens have essentially changed, since some years ago it was demonstrated that approximately 50% of free radicals, that are formed in the skin by solar radiation, originate from the visible and infrared regions of the solar spectrum. In addition, a critical radical concentration threshold could be found. If this concentration, the free radical threshold value (FRTV), is exceeded, sunburn, immunosuppression and skin cancer may develop. Application of sunscreens and lotions protects against sunburn in the UV region of the solar spectrum and therefore is frequently used to extend people's stay in the sun. However, this behaviour can enhance the concentration of free radicals formed in the visible and infrared regions of the solar spectrum, so that the critical radical threshold is exceeded and the skin may be damaged. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. Low-level laser therapy: Effects on human face aged skin and cell viability of HeLa cells exposed to UV radiation

    Directory of Open Access Journals (Sweden)

    Mezghani Sana

    2015-01-01

    Full Text Available Chronic and excessive exposure to UV radiation leads to photoaging and photocarcinogenesis. Adequate protection of the skin against the deleterious effects of UV irradiation is essential. Low-level laser therapy (LLLT is a light source in the red to near-infrared range that has been accepted in a variety of medical applications. In this study, we explored the effect of LLLT in human face aged skin and the cell viability of HeLa cells exposed to UV radiation. We found that LLLT significantly reduced visible wrinkles and the loss of firmness of facial skin in aging subjects. Additionally, treatment of cultured HeLa cells with LLLT prior to or post UVA or UVB exposure significantly protected cells from UV-mediated cell death. All results showed the beneficial effects of LLLT on relieving signs of skin aging and its prevention and protection of the cell viability against UV-induced damage.

  10. The sun protection factor (SPF) inadequately defines broad spectrum photoprotection: demonstration using skin reconstructed in vitro exposed to UVA, UVBor UV-solar simulated radiation.

    Science.gov (United States)

    Bernerd, Françoise; Vioux, Corinne; Lejeune, François; Asselineau, Daniel

    2003-01-01

    Wavelength specific biological damage has been previously identified in human skin reconstructed in vitro. Sunburn cell and pyrimidine dimers were found after UVB exposure, and alterations of dermal fibroblasts after UVA exposure. These damages permitted us to discriminate UVB and UVA single absorbers. The present study shows that these biological effects can be obtained simultaneously by a combined UVB + UVA exposure using ultraviolet solar simulated light (UV-SSR), which represents a relevant UV source. In addition, the protection afforded by two broad spectrum sunscreen complex formulations was assessed after topical application. These two formulations displayed the same sun protection factor but different UVA protection factors determined by the persistent pigment darkening (PPD) method. Dose response experiments of UVA or UV-SSR showed that the preparation with the highest PF-UVA provided a better protection with regard to dermal damage compared to the other formulation. Using an original UVB source to obtain the UVB portion of SSR spectrum, the preparations provided the same protection. This study strikingly illustrates the fact that the photoprotection afforded by two sunscreen formulations having similar SPF values is not equal with regard to dermal damage related to photoaging.

  11. Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals

    Science.gov (United States)

    Gauger, Tina; Konhauser, Kurt; Kappler, Andreas

    2016-04-01

    Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth.

  12. Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate.

    Science.gov (United States)

    Yang, Yi; Lu, Xinglin; Jiang, Jin; Ma, Jun; Liu, Guanqi; Cao, Ying; Liu, Weili; Li, Juan; Pang, Suyan; Kong, Xiujuan; Luo, Congwei

    2017-07-01

    The frequent detection of sulfamethoxazole (SMX) in wastewater and surface waters gives rise of concerns about their ecotoxicological effects and potential risks to induce antibacterial resistant genes. UV/hydrogen peroxide (UV/H 2 O 2 ) and UV/persulfate (UV/PDS) advanced oxidation processes have been demonstrated to be effective for the elimination of SMX, but there is still a need for a deeper understanding of product formations. In this study, we identified and compared the transformation products of SMX in UV, UV/H 2 O 2 and UV/PDS processes. Because of the electrophilic nature of SO 4 - , the second-order rate constant for the reaction of sulfate radical (SO 4 - ) with the anionic form of SMX was higher than that with the neutral form, while hydroxyl radical (OH) exhibited comparable reactivity to both forms. The direct photolysis of SMX predominately occurred through cleavage of the NS bond, rearrangement of the isoxazole ring, and hydroxylation mechanisms. Hydroxylation was the dominant pathway for the reaction of OH with SMX. SO 4 - favored attack on NH 2 group of SMX to generate a nitro derivative and dimeric products. The presence of bicarbonate in UV/H 2 O 2 inhibited the formation of hydroxylated products, but promoted the formation of the nitro derivative and the dimeric products. In UV/PDS, bicarbonate increased the formation of the nitro derivative and the dimeric products, but decreased the formation of the hydroxylated dimeric products. The different effect of bicarbonate on transformation products in UV/H 2 O 2 vs. UV/PDS suggested that carbonate radical (CO 3 - ) oxidized SMX through the electron transfer mechanism similar to SO 4 - but with less oxidation capacity. Additionally, SO 4 - and CO 3 - exhibited higher reactivity to the oxazole ring than the isoxazole ring of SMX. Ecotoxicity of transformation products was estimated by ECOSAR program based on the quantitative structure-activity relationship analysis as well as by experiments using

  13. Effect of remote clouds on surface UV irradiance

    Energy Technology Data Exchange (ETDEWEB)

    Deguenther, M.; Meerkoetter, R. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    2000-06-01

    Clouds affect local surface UV irradiance, even if the horizontal distance from the radiation observation site amounts to several kilometers. In order to investigate this effect, which we call remote clouds effect, a 3-dimensional radiative transfer model is applied. Assuming the atmosphere is subdivided into a quadratic based sector and its surrounding, we quantify the influence of changing cloud coverage within this surrounding from 0% to 100% on surface UV irradiance at the sector center. To work out this remote clouds influence as a function of sector base size, we made some calculations for different sizes between 10 km x 10 km and 100 km x 100 km. It appears that in the case of small sectors (base size {<=}20 km x 20 km) the remote clouds effect is highly variable: Depending on cloud structure, solar zenith angle and wavelength, the surface UV irradiance may be enhanced up to 15% as well as reduced by more than 50%. In contrast, for larger sectors it is always the case that enhancements become smaller by 5% if sector base size exceeds 60 km x 60 km. However, these values are upper estimates of the remote cloud effects and they are found only for special cloud structures. Since these structures might occur but cannot be regarded as typical, different satellite observed cloud formations (horizontal resolution about 1 km x 1 km) have also been investigated. For these more common cloud distributions we find remote cloud effects to be distinctly smaller than the corresponding upper estimates, e.g., for a sector with base size of 25 km x 25 km the surface UV irradiance error due to ignoring the actual remote clouds and replacing their influence with periodic horizontal boundary conditions is less than 3%, whereas the upper estimate of remote clouds effect would suggest an error close to 10%. (orig.)

  14. UV-B and Mediterranean forest species: Direct effects and ecological consequences

    International Nuclear Information System (INIS)

    Paoletti, E.

    2005-01-01

    Experimental results from plants receiving elevated doses of UV-B radiation generally show that Mediterranean forest species are well protected against increases in UV-B radiation. Natural adaptations to water stress and excess light (elevated concentrations of UV-B screening compounds, leaf hairs, thick cuticle and epidermis), and UV-B responses (thickening of the cuticle, increase in carotenoids) may avoid or counter-balance UV-B radiation damage. This response confirms that Mediterranean forest vegetation is adapted to face oxidative stress factors, such as elevated tropospheric ozone concentrations, drought and high radiation, including UV-B. Nevertheless, in the long term, species-specific and season-specific differential responses in growth, physiology, phenology and reproductive behaviour may alter the interactions between species and lead to slow but important changes in ecosystem structure and function. - Mediterranean plant adaptations against water stress and excess light may also afford protection against UV-B

  15. Energy Effectiveness of Direct UV and UV/H2O2 Treatment of Estrogenic Chemicals in Biologically Treated Sewage

    Directory of Open Access Journals (Sweden)

    Kamilla M. S. Hansen

    2012-01-01

    Full Text Available Continuous exposure of aquatic life to estrogenic chemicals via wastewater treatment plant effluents has in recent years received considerable attention due to the high sensitivity of oviparous animals to disturbances of estrogen-controlled physiology. The removal efficiency by direct UV and the UV/H2O2 treatment was investigated in biologically treated sewage for most of the estrogenic compounds reported in wastewater. The investigated compounds included parabens, industrial phenols, sunscreen chemicals, and steroid estrogens. Treatment experiments were performed in a flow through setup. The effect of different concentrations of H2O2 and different UV doses was investigated for all compounds in an effluent from a biological wastewater treatment plant. Removal effectiveness increased with H2O2 concentration until 60 mg/L. The treatment effectiveness was reported as the electrical energy consumed per unit volume of water treated required for 90% removal of the investigated compound. It was found that the removal of all the compounds was dependent on the UV dose for both treatment methods. The required energy for 90% removal of the compounds was between 28 kWh/m3 (butylparaben and 1.2 kWh/m3 (estrone for the UV treatment. In comparison, the UV/H2O2 treatment required between 8.7 kWh/m3 for bisphenol A and benzophenone-7 and 1.8 kWh/m3 for ethinylestradiol.

  16. Perchlorates on Mars enhance the bacteriocidal effects of UV light.

    Science.gov (United States)

    Wadsworth, Jennifer; Cockell, Charles S

    2017-07-06

    Perchlorates have been identified on the surface of Mars. This has prompted speculation of what their influence would be on habitability. We show that when irradiated with a simulated Martian UV flux, perchlorates become bacteriocidal. At concentrations associated with Martian surface regolith, vegetative cells of Bacillus subtilis in Martian analogue environments lost viability within minutes. Two other components of the Martian surface, iron oxides and hydrogen peroxide, act in synergy with irradiated perchlorates to cause a 10.8-fold increase in cell death when compared to cells exposed to UV radiation after 60 seconds of exposure. These data show that the combined effects of at least three components of the Martian surface, activated by surface photochemistry, render the present-day surface more uninhabitable than previously thought, and demonstrate the low probability of survival of biological contaminants released from robotic and human exploration missions.

  17. Effectiveness of Sunscreen at Preventing Solar UV-Induced Alterations of Human Stratum Corneum

    Science.gov (United States)

    Martinez, O.; Dauskardt, R.; Biniek, K.; Novoa, F.

    2012-12-01

    The outermost layer of the epidermis, the stratum corneum, protects the body from harmful environmental conditions by serving as a selective barrier. Solar ultraviolet (UV) radiation is one of the most common conditions the body encounters and is responsible for many negative skin responses, including compromised barrier function. UV exposure has dramatic effects on stratum corneum cell cohesion and mechanical integrity that are related to its effects on the stratum corneum's intercellular lipids. Hypothesis Sunscreen contains chemicals that absorb UV radiation to prevent the radiation from penetrating the skin. Thus, it is expected that the application of sunscreen on human stratum corneum will reduce UV-induced alterations of human stratum corneum. Procedures/Equipment Human tissue was processed in order to isolate the stratum corneum, the top layer of the epidermis. Double cantilever beam (DCB) testing was used to study the effect of UV radiation on human stratum corneum. Two different types of DCB samples were created: control DCB samples with the application of carrier and UV light to the stratum corneum and DCB samples with the application of sunscreen and UV light to the stratum corneum. For the control sample, one side of the stratum corneum was glued to a polycarbonate beam and carrier was applied. Then, the sample was placed 10 cm away from the UV lamp inside of the environmental chamber and were exposed to UV dosages of about 800 J/cm2. Once this step was complete, a second polycarbonate beam was glued to the other side of the stratum corneum. The steps were similar for the DCB sample that had sunscreen applied and that was exposed to UV light. After gluing one side of the stratum corneum to a polycarbonate beam, Octinoxate sunscreen was applied. The next steps were similar to those of the control sample. All DCB samples were then let out to dry for two hours in a dry box in order for the moisture from the lab to be extracted. Each DCB sample was tested

  18. The effects of binary UV filter mixtures on the midge Chironomus riparius

    International Nuclear Information System (INIS)

    Ozáez, Irene; Morcillo, Gloria; Martínez-Guitarte, José-Luis

    2016-01-01

    Organic ultraviolet (UV) filters are used in a wide variety of products, including cosmetics, to prevent damage from UV light in tissues and industrial materials. Their extensive use has raised concerns about potential adverse effects in human health and aquatic ecosystems that accumulate these pollutants. To increase sun radiation protection, UV filters are commonly used in mixtures. Here, we studied the toxicity of binary mixtures of 4-methylbenzylidene camphor (4MBC), octyl-methoxycinnamate (OMC), and benzophenone-3 (BP-3), by evaluating the larval mortality of Chironomus riparius. Also molecular endpoints have been analyzed, including alterations in the expression levels of a gene related with the endocrine system (EcR, ecdysone receptor) and a gene related with the stress response (hsp70, heat shock protein 70). The results showed that the mortality caused by binary mixtures was similar to that observed for each compound alone; however, some differences in LC50 were observed between groups. Gene expression analysis showed that EcR mRNA levels increased in the presence of 0.1 mg/L 4MBC but returned to normal levels after exposure to mixtures of 4MBC with 0.1, 1, and 10 mg/L of BP-3 or OMC. In contrast, the hsp70 mRNA levels increased after exposure to the combinations tested of 4MBC and BP-3 or OMC mixtures. These data suggest that 4MBC, BP-3, and OMC may have antagonist effects on EcR gene transcription and a synergistic effect on hsp70 gene activation. This is the first experimental study to show the complex patterned effects of UV filter mixtures on invertebrates. The data suggest that the interactions within these chemicals mixtures are complex and show diverse effects on various endpoints. - Highlights: • Chironomus riparius is sensitive to UV filter binary mixtures. • UV filters binary mixtures show antagonism on survival of 4th instar larvae. • BP-3 and OMC antagonize the stimulatory effect of 4MBC on EcR gene. • 4MBC, OMC, and BP-3 induce hsp70

  19. The effects of binary UV filter mixtures on the midge Chironomus riparius

    Energy Technology Data Exchange (ETDEWEB)

    Ozáez, Irene; Morcillo, Gloria; Martínez-Guitarte, José-Luis, E-mail: jlmartinez@ccia.uned.es

    2016-06-15

    Organic ultraviolet (UV) filters are used in a wide variety of products, including cosmetics, to prevent damage from UV light in tissues and industrial materials. Their extensive use has raised concerns about potential adverse effects in human health and aquatic ecosystems that accumulate these pollutants. To increase sun radiation protection, UV filters are commonly used in mixtures. Here, we studied the toxicity of binary mixtures of 4-methylbenzylidene camphor (4MBC), octyl-methoxycinnamate (OMC), and benzophenone-3 (BP-3), by evaluating the larval mortality of Chironomus riparius. Also molecular endpoints have been analyzed, including alterations in the expression levels of a gene related with the endocrine system (EcR, ecdysone receptor) and a gene related with the stress response (hsp70, heat shock protein 70). The results showed that the mortality caused by binary mixtures was similar to that observed for each compound alone; however, some differences in LC50 were observed between groups. Gene expression analysis showed that EcR mRNA levels increased in the presence of 0.1 mg/L 4MBC but returned to normal levels after exposure to mixtures of 4MBC with 0.1, 1, and 10 mg/L of BP-3 or OMC. In contrast, the hsp70 mRNA levels increased after exposure to the combinations tested of 4MBC and BP-3 or OMC mixtures. These data suggest that 4MBC, BP-3, and OMC may have antagonist effects on EcR gene transcription and a synergistic effect on hsp70 gene activation. This is the first experimental study to show the complex patterned effects of UV filter mixtures on invertebrates. The data suggest that the interactions within these chemicals mixtures are complex and show diverse effects on various endpoints. - Highlights: • Chironomus riparius is sensitive to UV filter binary mixtures. • UV filters binary mixtures show antagonism on survival of 4th instar larvae. • BP-3 and OMC antagonize the stimulatory effect of 4MBC on EcR gene. • 4MBC, OMC, and BP-3 induce hsp70

  20. Water-resistant sunscreens for skin protection: an in vivo approach to the two sources of sunscreen failure to maintain UV protection on consumer skin.

    Science.gov (United States)

    Puccetti, G

    2015-12-01

    The water resistance of sunscreen products has taken more importance for the UV protection of consumers involved in water activities and sports. The present work introduces a new in vivo approach to measure the water resistance of sunscreens on the actual skin of subjects, which can be easily applied to salt, chlorine and tap waters. The stress sources of sunscreen films on skin originate from two phenomena: high surface tension stress as the skin transits through the air/water interface and water diffusion into the film immersed in bulk water. The water resistance of sunscreen products is measured on the forearms of subjects by means of a new layered water bath approach that physically separates both stresses. Tape strips are subsequently taken and analysed for UV-A and UV-B optical densities via (1) imaging for remaining filters and (2) in vitro SPF absorption spectra. Water-resistant sunscreens generally perform well when immersed in bulk water even subjected to agitation, but they show a wide range of performances when considering their behaviour at the air/water interface. The differences are more pronounced in salt water than tap water. The results confirm 2 stress origins in sunscreen exposure to water: interfacial surface tension and bulk water diffusion. Polymers bring improvements to the resistance of sunscreens to bulk water but show wide latitude in performances when subject to the water surface tension stress. Globally, a higher loss of filters is observed in the UV-A than in the UV-B, which is attributed to more UV-A filter loss or degradation and thus resulting in a decreased protection in the UV-A. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  1. Evaluation of an economical sunlamp that emits a near solar UV power spectrum for conducting photoimmunological and sunscreen immune protection studies

    International Nuclear Information System (INIS)

    Beasley, D.G.; Roberts, L.K.; Beard, J.; Stanfield, J.W.

    1996-01-01

    Unlike FS-type UVB sunlamps, which have a significant amount of effective immunosuppressive non-solar UV energy at wavelengths below 295 nm, the immunosuppression effectiveness spectrum of UVA-340 sunlamps was nearly identical to that of a solar simulator. The purpose of this study was to evaluate this sunlamp for conducting photoimmunological and sunscreen immune protection studies. Groups of C3H mice were exposed to a range of UVA-340 sunlamp doses (0.25 kJ/m 2 to 20.0 kJ/m 2 ) to establish a dose-response curve and determine the minimum immune suppression dose (MISD) for induction of local-type suppression of contact hypersensitivity (CH). The MISD, defined as the lowest UV dose given to produce ∼ 50% suppression of the CH response in mice, was determined to be 1.0 kJ/m 2 for UVA-340 sunlamps. Immune protection tests on four marketed sunscreen lotions (sun protection factors [SPF] 4, 8, 15 and 30) were then conducted with UVA-340 sunlamps using MISD as the endpoint. The immune protection factors for these sunscreens were equivalent to the level of protection predicted by their labeled SPF. These results are similar to those we have previously obtained using a solar simulator. (author)

  2. Photocatalytic antibacterial effects on TiO2-anatase upon UV-A and UV-A/VIS threshold irradiation.

    Science.gov (United States)

    Wu, Yanyun; Geis-Gerstorfer, Jürgen; Scheideler, Lutz; Rupp, Frank

    2016-01-01

    Photocatalysis mediated by the anatase modification of titanium dioxide (TiO2) has shown antibacterial effects in medical applications. The aim of this study was to investigate the possibility of expanding the excitation wavelengths for photocatalytic antibacterial effects from ultraviolet (UV) into the visible light range. After deposition of salivary pellicle and adhesion of Streptococcus gordonii on anatase, different irradiation protocols were applied to induce photocatalysis: ultraviolet A (UV-A) > 320 nm; ultraviolet/visible (UV-A/VIS) light > 380 nm and > 390 nm; and VIS light 400-410 nm. A quartz crystal microbalance with dissipation (QCM-D) tests and microscopic examination were used to observe the photoinduced antibacterial effects. Salivary pellicle could be photocatalytically decomposed under all irradiation protocols. In contrast, effective photocatalytic attack of bacteria could be observed by UV-A as well as by UV-A/VIS at 380 nm < λ < 390 nm only. Wavelengths above 380 nm show promise for in situ therapeutic antifouling applications.

  3. Development and evaluation of sunscreen creams containing morin-encapsulated nanoparticles for enhanced UV radiation protection and antioxidant activity

    Directory of Open Access Journals (Sweden)

    Shetty PK

    2015-10-01

    Full Text Available Pallavi Krishna Shetty,1 Venkatesh Venuvanka,1 Hitesh Vitthal Jagani,1 Gejjalagere Honnappa Chethan,1 Virendra S Ligade,1 Prashant B Musmade,1 Usha Y Nayak,1 Meka Sreenivasa Reddy,1 Guruprasad Kalthur,2 Nayanabhirama Udupa,1 Chamallamudi Mallikarjuna Rao,1 Srinivas Mutalik1 1Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, 2Division of Clinical Embryology, Kasturba Medical College, Manipal University, Manipal, Karnataka, India Abstract: The objective of present work was to develop novel sunscreen creams containing polymeric nanoparticles (NPs of morin. Polymeric NPs containing morin were prepared and optimized. The creams containing morin NPs were also prepared and evaluated. Optimized NPs exhibited particle size of 90.6 nm and zeta potential of -31 mV. The entrapment efficiency of morin, within the polymeric NPs, was found to be low (12.27%. Fourier transformed infrared spectroscopy and differential scanning calorimetry studies revealed no interaction between morin and excipients. Transmission electron microscopy and atomic force microscopy revealed that the NPs were spherical in shape with approximately 100 nm diameter. Optimized NPs showed excellent in vitro free radical scavenging activity. Skin permeation and deposition of morin from its NPs was higher than its plain form. Different sunscreen creams (SC1–SC8 were formulated by incorporating morin NPs along with nano zinc oxide and nano titanium dioxide. SC5 and SC8 creams showed excellent sun protection factor values (≈40. In vitro and in vivo skin permeation studies of sunscreen creams containing morin NPs indicated excellent deposition of morin within the skin. Morin NPs and optimized cream formulations (SC5 and SC8 did not exhibit cytotoxicity in Vero and HaCaT cells. Optimized sunscreen creams showed excellent dermal safety. SC5 and SC8 creams demonstrated exceptional in vivo antioxidant effect (estimation of catalase, superoxide dismutase, and glutathione in

  4. UV-A enhanced growth and UV-B induced positive effects in the recovery of photochemical yield in Gracilaria lemaneiformis (Rhodophyta).

    Science.gov (United States)

    Xu, Juntian; Gao, Kunshan

    2010-09-02

    The effects of solar UV radiation (280-400 nm) on growth, quantum yield and pigmentation in Gracilaria lemaneiformis were investigated when the thalli were cultured under solar radiation with or without UV for a period of 15 days. Presence of UV-A (315-400 nm) enhanced the relative growth rate, while UV-B (218-315 nm) inhibited it. The positive effect of UV-A and negative effect of UV-B counteracted to result in an insignificant impact of UVR on growth. During the noon period, both UV-A and UV-B resulted in the decrease of maximum quantum yield (Fv/Fm), but UV-B aided in the recovery of the yield in the late afternoon, reflecting that UV-B might be used as a signal in photorepair processes. UV induced the accumulation of UV-absorbing compounds (UVAC) to defend against the harmful UVR. However, the accumulation of UVAC took a much longer time compared to that previously reported, which was probably due to the lower levels of solar radiation and water temperature in the early spring period. Unknown UV-absorbing compounds (UVAC), which peaked at 265 nm, probably the precursor of MAAs (UVAC(325)), accumulated under moderate levels of solar radiation and were transformed to MAAs under higher solar radiation. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  5. Effect of preparation and processing conditions on UV absorbing properties of hydroxyapatite-Fe2O3 sunscreen.

    Science.gov (United States)

    C Teixeira, M A; Piccirillo, C; Tobaldi, D M; Pullar, R C; Labrincha, J A; Ferreira, M O; L Castro, P M; E Pintado, M M

    2017-02-01

    The development of innovative, safe and non-photocatalytic sunscreens is urgently needed, as it is essential to have sunscreen filters offering appropriate UV protection without damaging the environment and/or generating free radicals when in contact with the skin. Hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 , HAp) when substituted with iron has UV protection properties and is not photocatalytic; HAp was used to make a sunscreen filter by treating cod fish bones in an iron-containing solution, and then calcining them at 700°C. Here we present a systematic and advanced study on this material, to obtain a sunscreen with improved UV absorbing properties. Bones were treated with three different iron salts - Fe(II) chloride, Fe(II) lactate and Fe(III) nitrate - under various pH conditions. Results showed that Fe(II) chloride in basic pH led to the most effective iron inclusion. High energy ball milling or ultrasound were investigated to increase surface area and corresponding UV absorption; high energy ball milling treatment led to the best optical properties. The optimum powders were used to formulate UV protection creams, which showed Sun Protection Factor (SPF) values significantly superior to the control cream (up to 4.1). Moreover the critical wavelength (λ crit ) was >370nm (388-389nm) and UVA/UVB ratios were very close to 1. With these properties these sunscreens can be classified as broad UV protectors. Results also showed that combining these powders with other sunscreens (i.e. titanium dioxide), a synergic effect between the different components was also observed. This investigation showed that HAp-based sunscreens of marine origin are a valid alternative to commercial products, safe for the health of the customers and, being non-photocatalytic, do not pose a threat to the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Prevention of the adverse photic effects of peripheral light-focusing using UV-blocking contact lenses.

    Science.gov (United States)

    Kwok, L Stephen; Kuznetsov, Valerian A; Ho, Arthur; Coroneo, Minas T

    2003-04-01

    Peripheral light-focusing (PLF) is an occult form of ultraviolet radiation (UVR) hazardous to the human eye. In PLF, obliquely incident light is refracted from the peripheral cornea to concentrated sites inside the anterior segment. In the current study, the directionality of this phenomenon for UVR and whether PLF is established in outdoor settings exposed to sunlight were investigated. The protection provided by a UV-blocking contact lens was also evaluated. UVA and UVB sensors were placed on the nasal limbus of an anatomically based model eye. The temporal limbus was exposed to a UV light source placed at various angles behind the frontal plane. PLF was quantified with the sensor output. The ensemble was mounted in the orbit of a mannequin head and exposed to sunlight in three insolation environments within the region of Sydney, Australia. PLF for UVA and UVB was determined with no eyewear or with sunglasses and commercially available soft contact lenses, with and without UV-blocking capability. The intensity of UVA peaked at approximately 120 degrees incidence, the level at which the UVB response was also at its maximum. The intensification of UVA was up to x18.3. The intensity of PLF for UVA and UVB was reduced by an order of magnitude by a UV-blocking contact lens, whereas a clear contact lenses had a much lesser effect. Only the UV-blocking contact lens achieved a significant effect on UVA and UVB irradiance in the urban, beach, and mountain locales (P UV-blocking soft contact lenses. Sunglasses may be unable to shield oblique rays, unless side protection is incorporated. Contact lenses can offer UVR protection against all angles of incidence, including the peak-response angle. They can also protect the eye in settings in which the wearing of sunglasses is not feasible or convenient.

  7. Portulaca oleracea extracts protect human keratinocytes and fibroblasts from UV-induced apoptosis.

    Science.gov (United States)

    Lee, Suyeon; Kim, Ki Ho; Park, Changhoon; Lee, Jong-Suk; Kim, Young Heui

    2014-10-01

    Portulaca oleracea extracts, known as Ma Chi Hyun in the traditional Korean medicine, show a variety of biomedical efficacies including those in anti-inflammation and anti-allergy. In this study, we investigate the protective activity of the P. oleracea extracts against UVB-induced damage in human epithelial keratinocytes and fibroblasts by several apoptosis-related tests. The results suggest that P. oleracea extracts have protective effects from UVB-induced apoptosis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. The evaluation of anti-UV effect of silymarin cream based on clinical and pathological findings

    Directory of Open Access Journals (Sweden)

    Ahmadi-Ashtiani HR

    2010-09-01

    Full Text Available "nBackground: Nowadays skin damages caused by ultraviolet (U.V. radiation from the sun were increased; accordingly necessity for safe and inexpensive protective products for reducing the harmful effects of this ray is unassailable. The antiradical, anti irritation and anti-cancer properties of silymarin make it a suitable option for use in cream formulation to investigate its effect on skin disorders caused by U.V. radiation. In this research effect of local application of a cream containing silymarin in prevention of the harmful effects of U.V. radiation on the guinea pig skin were studied and evaluated by using histopathologic and clinical findings. "nMethods: 75 albino guinea pigs were randomly divided into five groups of fifteens. 2cm2 of the back hair was shaven. In the first group no treatment was applied, in the second group vaseline, in group 3 base cream without silymarin extract, in group 4 silymarin extract and in group 5 cream containing silymarin extract were used. "nResults: In clinical assessment, skin scaling, skin irregularity, erythema, skin hyperpigmentation, and edema were observed and in histopathological observation epidermal hyper keratosis, hyperpigmentation, exocytosis, acanthosis, chromatin discoloration in nucleus of epidermal squamous cells, perifolliculitis, dermal vascular hyperemia, edema and dermal thickness, infiltration of plasma cell lymphocytes and eosinophyls into dermis were detected. The statistical comparison of group 1 and group 5 shows statistically significant difference in most indices (p<0.01. "nConclusions: Clinical and histopathologic examinations showed that local application of a cream containing silymarin is effective in prevention of skin damage caused by U.V. radiation in guinea pig's skin; also the results of the clinical and histopathologic observation in this study confirm the enzymatic results in other researches.

  9. Studies on the protection effects of functional foods for skin immune system from radiation damage

    International Nuclear Information System (INIS)

    Yee, Sung Tae; Shin, Seong Hae; Kim, Do Sun; Heo, Ji Yun; Kang, Hye In

    2007-07-01

    We evaluated the protective effects of pilot products (HemoHIM and HemoTonic) on the UV-induced skin immune damages as the following. · Protective effects of HemoHIM and HemoTonic against UV using contact hypersensitivity model - Protection against depression of contact hypersensitivity by administration and skin application of HemoHIM and HemoTonic - Induction of dendritic cell differentiation and maturation by HemoHIM and HemoTonic treatment - Improvement of antigen-presenting activity of dedritic cells by HemoHIM and HemoTonic treatment · Protective effects of HemoHIM and HemoTonic on skin immune system against UV-irradiation - Protection of antigen-presenting activity of dendritic cells under UV-irradiation - In vivo protection of antigen-presenting activity of Langerhans cells in UV-irradiated mice · Protective effects of HemoHIM on UV-induced apoptosis of dendritic cells - Inhibition of cell membrane change, mitochondrial potential change, SubG1 cell population, nuclear condensation, and DNA fragmentation in UV-irradiated dendritic cells · Anti-allergic effects of HemoHIM and HemoTonic in human adipocyte HMC-1 cells - Inhibition of allergic histamine release from adipocytes - Inhibition of secretion of inflammatory cytokines (IL-6, IL-8, TNF-α, GM-CSF) - Inhibition of c-kit, tryptase, FcεRI mRNA expression From these results, the developed functional food products (HemoHIM, HemoTonic) showed the protection and recovery of the immune functions in the UV-irradiated skin. It is suggested that these products may be used as a new functional food or cosmetic material for the protection of skin damage and the promotion of recovery

  10. Studies on the protection effects of functional foods for skin immune system from radiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Sung Tae; Shin, Seong Hae; Kim, Do Sun; Heo, Ji Yun; Kang, Hye In [Sunchon National University, Sunchon (Korea, Republic of)

    2007-07-15

    We evaluated the protective effects of pilot products (HemoHIM and HemoTonic) on the UV-induced skin immune damages as the following. centre dot Protective effects of HemoHIM and HemoTonic against UV using contact hypersensitivity model - Protection against depression of contact hypersensitivity by administration and skin application of HemoHIM and HemoTonic - Induction of dendritic cell differentiation and maturation by HemoHIM and HemoTonic treatment - Improvement of antigen-presenting activity of dedritic cells by HemoHIM and HemoTonic treatment centre dot Protective effects of HemoHIM and HemoTonic on skin immune system against UV-irradiation - Protection of antigen-presenting activity of dendritic cells under UV-irradiation - In vivo protection of antigen-presenting activity of Langerhans cells in UV-irradiated mice centre dot Protective effects of HemoHIM on UV-induced apoptosis of dendritic cells - Inhibition of cell membrane change, mitochondrial potential change, SubG1 cell population, nuclear condensation, and DNA fragmentation in UV-irradiated dendritic cells centre dot Anti-allergic effects of HemoHIM and HemoTonic in human adipocyte HMC-1 cells - Inhibition of allergic histamine release from adipocytes - Inhibition of secretion of inflammatory cytokines (IL-6, IL-8, TNF-alpha, GM-CSF) - Inhibition of c-kit, tryptase, FcepsilonRI mRNA expression From these results, the developed functional food products (HemoHIM, HemoTonic) showed the protection and recovery of the immune functions in the UV-irradiated skin. It is suggested that these products may be used as a new functional food or cosmetic material for the protection of skin damage and the promotion of recovery

  11. Beneficial and Detrimental Effects of UV on Aquatic Organisms: Implications of Spectral Variation

    NARCIS (Netherlands)

    Williamson, C.E.; Neale, P.J.; Grad, G.; Lange, de H.J.; Hargreaves, B.R.

    2001-01-01

    Solar ultraviolet radiation (UVR) may have beneficial as well as detrimental effects on living systems. For example, UV-B radiation (280¿320 nm) is generally damaging, while UV-A radiation (320¿400 nm) may cause damage or stimulate beneficial photorepair of UV-B damage. The nature of both direct and

  12. The effect of UV-B and UV-C radiation on Hibiscus leaves determined by ultraweak luminescence and fluorescence induction [chlorophyll fluorescence induction, ultraweak luminescence

    International Nuclear Information System (INIS)

    Panagopoulos, I.; Bornman, J.F.; Björn, L.O.

    1989-01-01

    The effects of UV-C (254 nm) and UV-B (280-320 nm) on chlorophyll fluorescence induction and ultraweak luminescence (UL) in detached leaves of Hibiscus rosa-sinensis L. were investigated. UL from leaves exposed to UV-B and UV-C radiation reached a maximum 72 h after irradiation. In both cases most of the light was of a wavelength over 600 nm. An increase in the percentage of long wavelength light with time was detected. UV radiation increased peroxidase activity, which also reached a maximum 72 h after irradiation. UV-B and UV-C both reduced variable chlorophyll fluorescence. No effect on the amount of chlorophyll or UV screening pigments was observed with the short-term irradiation used in this investigation. (author)

  13. The Role of Praziquantel- chemoprophylaxis and UV-attenuated Vaccine in Protecting Mice Against S. Mansoni Infection

    International Nuclear Information System (INIS)

    Gad, H.S.M.

    1999-01-01

    Potential control of schistosomiasis rely on multiple and integrated strategies, including vaccine production, chemotherapy and combination between chemotherapy and vaccination. The present work was conducted to evaluate the efficacy of combined PZQ- treatment with PZQ-chemoprophylaxis (PZQ-pretreatment) and UV-attenuated cercarial vaccination for the control of schistosomiasis. In the present work the induced levels of protection induced in vaccinated and vaccinated-PZQ-treated as well as, PZQ-pretreated and PZQ-pretreated followed by PZQ-treatment will be discussed. Results revealed that UV-Irradiated Vaccinated and vaccinated-PZQ-treated and PZQ-pretreated followed by PZQ-treated post challenged groups induced high levels of worm burdens reduction and mild pathological changes in both liver and intestine. Meanwhile, PZQ-pretreated alone failed to induce significant protection

  14. Photosynthesis and pigment production in Liquidambar styraciflua - developmental and UV-B radiation effects

    International Nuclear Information System (INIS)

    Dillenburg, L.R.; Sullivan, J.H.; Teramura, A.H.

    1993-01-01

    Leaf expansion is very sensitive to different environmental stresses. This study describes ontogenetic changes in leaf size and physiology of Liquidambar styraciflua seedlings grown under UV-B irradiance levels simulating 0% (control), 16% (low) and 25% (high) stratospheric ozone reductions. Leaf size, light- and CO 2 -saturated rates of O 2 evolution (A max ), and concentration of chlorophylls (chl), and UV-B absorbing pigments were measured over a 4-week period. Specific leaf weight, A max and chl concentration increased with leaf age, except for a peak in A max at early development. Chlorophyll b concentration increased at a slower rate than chl a. Recently unfurled leaves has the greatest concentration of UV-B absorbing pigments. The effect of UV-B radiation on leaf growth and physiology were small and not dose-dependent. Expansion of leaves exposed to low UV-B was slightly delayed compared to controls (1.663 vs. 1.90 cm 2 /day), but final leaf size was unaffected by UV-B radiation. Physiological effects were less pronounced during the rapid expansion period. High UV-B tended to promote, while low UV-B inhibited accumulation of chl, especially chl a. In contrast, concentration of UV-B absorbing compounds was promoted only by low UV-B. The small inhibitory effects of UV-B on leaf growth and physiology suggests a high tolerance of the species to damaging UV-B radiation

  15. Applicability of UV resistant Bacillus pumilus spore as a human adenovirus surrogate for evaluating the effectiveness of virus inactivation in low-pressure UV treatment systems

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data set includes UV dose, and Bacillus pumilus spore plate counts in colony forming units. This dataset is associated with the following publication: Boczek , L.,...

  16. Effects of multiple viewings of an ultraviolet photo on sun protection behaviors.

    Science.gov (United States)

    Mahler, H I M

    2018-05-02

    To determine whether multiple viewings of one's ultraviolet (UV) facial photo differentially affects subsequent sun protection behaviors relative to a single viewing. Pretest-posttest control group. Southern California college students (N = 151) were randomly assigned to be shown their UV facial photo one time, multiple times over the course of 2 weeks, or not at all. Emotional reactions, perceived susceptibility to skin damage, and sun protection intentions were assessed immediately, and sun protection behaviors were assessed during a surprise telephonic follow-up 1 month later. Immediately after viewing a UV photo of their face, participants reported significantly greater perceived susceptibility to skin damage, greater intentions to engage in future sun protection, and more negative emotions than those who had not seen a UV photo. Moreover, 1 month later, those who had viewed their UV photo were less likely to report having sunbathed and reported significantly greater sun protection than did controls. There were no differences in sun protection behaviors between those who had been shown their UV photo only once during the initial intervention session and those who had been sent their UV photo several times thereafter. However, among those who had been sent their UV photo several times, those who reported having viewed their photo on additional occasions reported significantly greater sun protection behaviors than those who had not. Being randomly assigned to view a UV facial photo multiple times generally neither strengthened nor weakened effects on subsequent sun protection behaviors relative to being shown the photo just once. However, among those who were sent their photo and thus had the option of viewing it more often than they had been assigned to, those who chose to view their photo more frequently also engaged in more sun protection behaviors. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  17. The effect of exposure to enhanced UV-B radiation on the penetration of monochromatic and polychromatic UV-B radiation in leaves of Brassica napus

    International Nuclear Information System (INIS)

    Cen, Y.-P.; Bornman, J.F.

    1993-01-01

    Using quartz optical fibres, penetration of both monochromatic (310 nm) and polychromatic UV-B (280–320 nm) radiation in leaves of Brassica napus L. (cv. Ceres) was measured. Plants were grown under either visible light (750 μmol m −2 s −1 photosynthetically active radiation) or with the addition of 8. 9 KJ m −2 day −1 biologically effective UV-B (UV-B BE ) radiation. Results showed that of the 310 nm radiation that penetreated the leaf, 90% was within the intial one third of the leaf with high attenuation in the leaf epidermis, especially in UV-treated plants. Polychromatic UV-B radiation, relative to incident radiation, showed a relatively uniform spectral distribution within the leaf, except for collimated radiation. Over 30% of the UV-screening pigments in the leaf, including flavonoids, were found in the adaxial epidermal layer, making this layer less transparent to UV-B radiation than the abaxial epidermis, which contained less than 12% of the UV-screening pigments. UV-screening pigments increased by 20% in UV-treated leaves relative to control leaves. Densely arranged epicuticular wax on the adaxial leaf surface of UV-treated plants may have further decreased penetration of UV-B radiation by reflectance. An increased leaf thickness, and decreases in leaf area and leaf dry weight were also found for UV-treated plants. (author)

  18. Does Temperature and UV Exposure History Modulate the Effects of Temperature and UV Stress on Symbiodinium Growth Rates?

    Science.gov (United States)

    Temperature and ultraviolet radiation (UV) alone or in combination are known to inhibit the growth of Symbiodinium isolates. This conclusion was drawn from a number of studies having widely different exposure scenarios. Here we have examined the effects of pre-exposure acclimat...

  19. A SIMPLE EVOLUTIONAL MODEL OF THE UV HABITABLE ZONE AND THE POSSIBILITY OF PERSISTENT LIFE EXISTENCE: THE EFFECTS OF MASS AND METALLICITY

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, Midori; Kamaya, Hideyuki [Department of Earth and Ocean Sciences, School of Applied Sciences, National Defense Academy of Japan Yokosuka, 239-8686 (Japan)

    2016-12-20

    In addition to the habitable zone (HZ), the UV habitable zone (UV-HZ) is important when considering the existence of persistent life in the universe. The UV-HZ is defined as the area where the UV radiation field from a host star is moderate for persistent life existence. This is because UV is necessary for the synthesis of biochemical compounds. The UV-HZ must overlap the HZ when life appears and evolves. In this paper, following our previous study of the HZ, we examine the UV-HZ in cases with a stellar mass range from 0.08 to 4.00 M {sub ☉} with various metallicities during the main sequence phase. This mass range was chosen because we are interested in an environment similar to that of Earth. The effect of metallicity is reflected in the spectrum of the host stars, and we reexamine it in the context of the UV-HZ. The present work shows the effect of metallicity when that in the UV-HZ is less than that in the HZ. Furthermore, we find that the chance of persistent life existence declines as the metallicity decreases, as long as the UV radiation is not protected and/or boosted by any mechanisms. This is because the overlapped region of a persistent HZ and UV-HZ decreases. We find that the most appropriate stellar mass for the persistence of life existence is from 1.0 to 1.5 M {sub ☉} with metallicity Z  = 0.02, and only about 1.2 M {sub ☉} with Z  = 0.002. When Z  = 0.0002, the chance of persistent life existence is very low, assuming that the ocean does not protect the life from UV radiation.

  20. Effects of the UV filter benzophenone-2 on reproduction in fish

    International Nuclear Information System (INIS)

    Weisbrod, Christin J.; Kunz, Petra Y.; Zenker, Armin K.; Fent, Karl

    2007-01-01

    The UV filter benzophenone-2 (BP-2) is largely used in personal care products such as cosmetics and in numerous other materials for UV protection. Like other UV filters, BP-2 has been found to be estrogenic in vitro and in vivo, but potential effects on reproduction of fish are unknown. In this study, we evaluate whether BP-2 affects important reproductive parameters such as fecundity, gametogenesis and secondary sex characteristics. After a pre-exposure period of 19 days, reproductively mature fathead minnows (Pimephales promelas) were exposed to 0.002, 0.1, 1.2, 5.0 and 9.7 mg/L BP-2 for 15 days. BP-2 was accumulated in fish up to 3.1 μg/g body weight. In males, a dose-dependent vitellogenin induction and decrease in the number of nuptial tubercles occurred. Moreover, significant dose-related effects on gonads of male and female fish were observed. At concentrations of 1.2 mg/L and higher, spermatocyte and oocyte development was significantly inhibited in male and female fish, respectively. Testes of exposed males had much fewer spermatocytes and ovaries of exposed females had much fewer mature and more atretic follicles. Reproduction was negatively affected in a dose-dependent manner with a decrease in egg production at 5.0 mg/L and a complete cessation of spawning activity at 9.7 mg/L BP-2. Our findings show significant estrogenic effects of the common UV filter BP-2 on vitellogenin induction, secondary sex characteristics, gonadal development, and reproduction in fish

  1. Mast cell activator compound 48/40 is not an effective adjuvant for UV-attenuated Toxoplasma gondii vaccine.

    Science.gov (United States)

    Li, Xi; Chen, Shengjie; Huang, Shiguang; Lu, Fangli

    2017-08-01

    Toxoplasma gondii (T. gondii, Tg) is a globally distributed parasitic protozoan causing different forms of toxoplasmosis in humans. Mast cells (MCs) play a role during T. gondii infection. Several studies suggest that MC activator compound 48/80 (C48/80) may be an effective vaccine adjuvant resulting in a potent and protective antigen-specific immune response against bacteria or virus infections. The present study was performed to determine whether C48/80 had adjuvant activity for ultraviolet (UV)-attenuated T. gondii vaccine to induce protective immune responses against T. gondii in mouse model. Kunming mice were divided into the following groups: naive mice, naive mice administrated with C48/80 intraperitoneal (i.p.) injection, mice infected by i.p. injection of 10 4 T. gondii RH strain alone (Tg group), mice infected with 10 4 RH tachyzoites plus C48/80 administration (Tg + C48/80), mice immunized with UV-Tg alone, and mice immunized with UV-Tg plus C48/80 administration (UV-Tg + C48/80). All the vaccinated mice were challenged with 10 4 tachyzoites of T. gondii RH strain at the same time as the primary infection. The survival rates, liver histopathologies, liver parasite burdens, and mRNA expression levels of Th1 and Th2 cytokines in the livers and spleens detected by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) were compared among the aforementioned groups after primary infection or challenge infection. The results showed that, compared to the Tg group or Tg + C48/80 group, the UV-Tg + Tg group and UV-Tg + C48/80 + Tg group had significantly prolonged survival time, lower liver histopathological scores, decreased liver parasite burdens, and increased levels of Th1 and Th2 cytokines in the livers and spleens. There was no significant difference of survival time between the UV-Tg + Tg group and the UV-Tg + C48/80 + Tg group; however, the UV-Tg + C48/80 + Tg group showed higher parasite burden, more severe

  2. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Allorent, Guillaume; Lefebvre-Legendre, Linnka; Chappuis, Richard; Kuntz, Marcel; Truong, Thuy B; Niyogi, Krishna K; Ulm, Roman; Goldschmidt-Clermont, Michel

    2016-12-20

    Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast.

  3. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii

    Science.gov (United States)

    Allorent, Guillaume; Lefebvre-Legendre, Linnka; Chappuis, Richard; Kuntz, Marcel; Truong, Thuy B.; Niyogi, Krishna K.; Goldschmidt-Clermont, Michel

    2016-01-01

    Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast. PMID:27930292

  4. UV-vis light transmittance through tinted contact lenses and the effect of color on values.

    Science.gov (United States)

    Osuagwu, Uchechukwu L; Ogbuehi, Kelechi C

    2014-06-01

    To assess the transmittance, in the 200-700nm electromagnetic radiation spectrum, by popularly used tinted soft contact lenses (CLs). The spectra transmittances of ultraviolet (UV)-blocking (I Day Acuvue Define, Freshlook ONE DAY) and non-UV-blocking (Durasoft 3, Tutti, and NeoCosmo) tinted soft CLs were tested. The transmittance of each lens, including nine different colors of Freshlook CL was recorded on spectrophotometer, and the data used to also calculate a UV protection factor (PF) for each lens brand tested, with a higher value indicating a higher level of protection. The UV-blocking CLs significantly reduced UVC, UVB & UVA transmission and thereby meet the American National Standards Institution standard for class 2 UV blockers: a maximum of 30% transmittance of UVA and 5% transmittance of UVB wavelengths. In contrast, the Durasoft 3, Tutti, and NeoCosmo CLs demonstrated negligible UV-blockage. The Acuvue Define CL offered the greatest protection from UVC (PF=69) and UVB (PF=55), but with only 35% luminous transmittance, while the Freshlook CL (especially gemstone green) offered the best protection from UVA (PF=24) and showed about 55% translucency. Overall, the UV-blocking CLs performed equally well across the UV spectrum. Different colors of Freshlook CL transmitted statistically and clinically significantly different amounts of visible light but similar amounts of UVR. Freshlook and Acuvue Define CLs which are designated as UV-blockers significantly reduced UVR transmission to safe levels whereas Tutti, NeoCosmo and Durasoft 3 did not. Transmission within the Freshlook CL family was more dependent on color in the visible light spectrum, but not in the UV-spectrum, where the gemstone green performing best among the tested colors. Copyright © 2013 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  5. Combined effects of enhanced UV-B radiation and nitrogen deficiency on the growth, composition and photosynthesis of rye (Secale cereale)

    International Nuclear Information System (INIS)

    Deckmyn, G.; Impens, I.

    1997-01-01

    The interactive effects of N-deficiency and enhanced UV-B radiation on growth, photosynthesis and pigmentation of rye were studied. The plants were grown for 5 weeks in growth chambers with high (700 μmol m -2 s -2 ) irradiance levels. A 30% difference in UV-B at plant level was achieved by using different thicknesses of UV-B transparent Plexiglass. One half of the plants received optimal N nutrition, while the other received half of this dose. Both enhanced UV-B and N deficiency strongly decreased production (from 24–33%). The combined effect was additive (no interaction) on most parameters, including total dry weight production which was 52% lower than in the control series. Significant interaction was found on the root/shoot ratio. While reduced N supply induced an increase in the ratio at normal UV-B irradiation, under the increased UV-B, N deficiency had no effect on the root/shoot ratio. The reduced biomass due to UV-B was clearly correlated to a reduction in photosynthesis. At optimal N supply the plants increased the production of protective pigments in response to UV-B, but at reduced N supply this response was lacking. The increased N content of the high UV-B/high N plants could be a result of increased flavonoid production as well as changes in light penetration in the canopy. (author)

  6. Preparation of flower-like CuS by solvothermal method and its photodegradation and UV protection

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiao-Sai; Shen, Yong, E-mail: shenyong@sues.edu.cn; Xu, Li-Hui; Wang, Li-Ming; Xing, Ya-Jun

    2016-07-25

    The flower-like CuS with hierarchical structures were synthesized by a solvothermal method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, UV–vis optical absorption spectroscopy and thermogravimetric analysis (TGA) and ultraviolet transmittance analyzer labsphere were used to characterize the as-prepared products. The results of photocatalytic degradation of Methylene blue (MB) demonstrated that the as-prepared flower-like CuS possessed high photocatalytic performance in UV and visible range and its band gap was 1.45 eV. The degradation rate of MB by CuS with the absence of H{sub 2}O{sub 2} was 98.23% and 100% under xenon lamp and Mercury tungsten blended lamp for 30 min, respectively. And a new approach for ultraviolet (UV) protection of cotton fabrics treated by flower-like CuS microspheres was innovatively investigated and the results showed that flower-like CuS was a good UV resistant material. - Highlights: • The flower-like CuS was prepared via solvothermal method. • The as-prepared CuS showed better photodegradation of MB solution under visible region. • The cotton fabric treated by the obtained flower-like CuS was proved to have a potential application in anti-UV field.

  7. [Occupational skin cancer : Prevention and recommendations for UV protection as part of the treatment approved by the public statutory employers' liability insurance].

    Science.gov (United States)

    Rocholl, M; Ludewig, M; Skudlik, C; Wilke, A

    2018-04-27

    In Germany, approximately 2 to 3 million employees work in outdoor professions. They are exceptionally exposed to solar ultraviolet (UV) radiation for a large part of their daily working time. Cumulative UV exposure is associated with a significantly increased risk of skin cancer for outdoor workers from various occupational groups (e. g. landscape and horticulture, agriculture and forestry, fisheries and seafaring, construction and trade, as well as sports teachers, lifeguards and mountain guides). Since 1 January 2015, squamous cell carcinoma and multiple actinic keratosis due to natural UV radiation can be recognised as occupational disease No. 5103 by the German statutory social accident insurance. Reducing cumulative UV exposure is the main prevention aspect of this type of skin damage. Therefore, technical, organisational and personal UV protection measures should be implemented in the professional and private environment. Moreover, they have to be regularly used in an appropriate way. In addition to guideline-oriented therapy, training and counselling of patients with already existing actinic skin damage or a recognised occupational disease No. 5103 is therefore of particular importance. The focus should be on improving the individual UV protection behaviour. This article gives an overview of current recommendations for UV protection in the professional environment. It outlines possible solutions for patient counselling in terms of UV protection in everyday practice.

  8. Protective Effect of Chitin Urocanate Nanofibers against Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    Ikuko Ito

    2015-12-01

    Full Text Available Urocanic acid is a major ultraviolet (UV-absorbing chromophore. Chitins are highly crystalline structures that are found predominantly in crustacean shells. Alpha-chitin consists of microfibers that contain nanofibrils embedded in a protein matrix. Acid hydrolysis is a common method used to prepare chitin nanofibrils (NFs. We typically obtain NFs by hydrolyzing chitin with acetic acid. However, in the present study, we used urocanic acid to prepare urocanic acid chitin NFs (UNFs and examined its protective effect against UVB radiation. Hos: HR-1 mice coated with UNFs were UVB irradiated (302 nm, 150 mJ/cm2, and these mice showed markedly lower UVB radiation-induced cutaneous erythema than the control. Additionally, sunburn cells were rarely detected in the epidermis of UNFs-coated mice after UVB irradiation. Although the difference was not as significant as UNFs, the number of sunburn cells in mice treated with acetic acid chitin nanofibrils (ANFs tended to be lower than in control mice. These results demonstrate that ANFs have a protective effect against UVB and suggest that the anti-inflammatory and antioxidant effects of NFs influence the protective effect of ANFs against UVB radiation. The combination of NFs with other substances that possess UV-protective effects, such as urocanic acid, may provide an enhanced protective effect against UVB radiation.

  9. The effect of UV-filters on the viability of neuroblastoma (SH-SY5Y) cell line.

    Science.gov (United States)

    Broniowska, Żaneta; Pomierny, Bartosz; Smaga, Irena; Filip, Małgorzata; Budziszewska, Bogusława

    2016-05-01

    Topical application of cosmetic products, containing ultraviolet filters (UV filters) are recommended as a protection against sunburns and in order to reduce the risk of skin cancer. However, some UV filters can be absorbed through skin and by consuming contaminated food. Among the chemical UV filters, benzophenone-3 (BP-3), 3-(4-methylbenzylidene)camphor (4-MBC) and 2-ethylhexyl-4-methoxycinnamate (OMC) are absorbed through the skin to the greatest extent. So far, these lipophilic compounds were demonstrated to influence the gonadal and thyroid hormone function, but their effect on central nervous system cells has not been investigated, yet. In the present study, we investigated the effect of some UV filters on cell viability and caspase-3 activity in SH-SY5Y cells. It has been found that benzophenone-2 (BP-2), BP-3, 4-methylbenzophenone (4-MBP) and OMC present in the culture medium for 72h in high concentration (10(-5) and 10(-4)M) and 4-MBC only 10(-4)M produced a significant cytotoxic effect, as determined both by the MTT reduction test and LDH release assay. In contrast to necrotic changes, all tested UV filters increased caspase-3 activity in much lower concentrations (from 10(-8) to 10(-7)M). Proapoptotic properties of the test compounds were positively verified by Hoechst staining. The obtained results indicated that UV filters adversely affected the viability of nerve cells, most likely by enhancing the process of apoptosis. The most potent effect was exerted by BP-3 and 4-MBC and at concentrations that may be reached in vivo. Since human exposure to UV filters is significant these compound should be taken into consideration as one of the possible factors involved in pathogenesis of neurodegenerative diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Association of antioxidative enzymes with the synergistic effect of selenium and UV irradiation in enhancing plant growth

    Directory of Open Access Journals (Sweden)

    T. XUE

    2008-12-01

    Full Text Available Selenium (Se is able to defend human and animal cells against UV(B stress. Higher plants are generally considered not to require Se but to have a low tolerance to it. However, recently it has been demonstrated that Se is able to protect also plants against UV-induced oxidative stress and even to promote the growth of plants subjected to high-energy light. In the present study the effects of Se on antioxidative enzymes possibly associated with this synergistic effect were investigated. Ryegrass and lettuce were grown in soil supplemented with Se at 0, 0.1 or 1.0 mg kg-1 under normal light or subjected to UV episodes. Lipid peroxidation and the changes of antioxidative enzymes were measured at two growing stages. The positive synergistic effect of the lower Se dosage and UV was found to be at least partly associated with the antioxidative role of Se through increased glutathione peroxidase (GSH-Px and catalase (CAT activity, whereas ascorbate peroxidase (APX responded negatively to both factors. The contribution of the other enzymes studied seemed to be plant-specific: glutathione S-transferase (GST increased in both ryegrass assays and superoxide dismutase (SOD in the first lettuce assay. At the higher addition level Se acted as a pro-oxidant and diminished fresh weight yields. UV irradiation alleviated the toxicity coincidently with increase of CAT in ryegrass and SOD in lettuce.;

  11. Polymer-ZnO nanocomposites foils and thin films for UV protection

    International Nuclear Information System (INIS)

    Shanshool, Haider Mohammed; Yahaya, Muhammad; Abdullah, Ibtisam Yahya; Yunus, Wan Mahmood Mat

    2014-01-01

    The damage of UV radiation on human eye and skin is extensively studied. In the present work, the nanocomposites foils and thin films have been prepared by using casting method and spin coating, respectively. Nanocomposites were prepared by mixing ZnO nanoparticles with Polymethyl methacrylate (PMMA) and Polyvinylidene fluoride (PVDF) as polymer matrix. Different contents of ZnO nanoparticles were used as filler in the nanocomposites. UV-Vis spectra showed very low transmittance in UV region that decreases with increase content of ZnO. PVDF/ZnO samples showed the lowest transmittance. The rough surface of PVDF was observed from SEM image. While a homogeneous dispersion of ZnO nanoparticles in PMMA were indicated by FESEM images

  12. Polymer-ZnO nanocomposites foils and thin films for UV protection

    Energy Technology Data Exchange (ETDEWEB)

    Shanshool, Haider Mohammed; Yahaya, Muhammad; Abdullah, Ibtisam Yahya [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Yunus, Wan Mahmood Mat [Department of Physics, Faculty of Science, University Putra Malaysia, 43400 UPM, Serdang (Malaysia)

    2014-09-03

    The damage of UV radiation on human eye and skin is extensively studied. In the present work, the nanocomposites foils and thin films have been prepared by using casting method and spin coating, respectively. Nanocomposites were prepared by mixing ZnO nanoparticles with Polymethyl methacrylate (PMMA) and Polyvinylidene fluoride (PVDF) as polymer matrix. Different contents of ZnO nanoparticles were used as filler in the nanocomposites. UV-Vis spectra showed very low transmittance in UV region that decreases with increase content of ZnO. PVDF/ZnO samples showed the lowest transmittance. The rough surface of PVDF was observed from SEM image. While a homogeneous dispersion of ZnO nanoparticles in PMMA were indicated by FESEM images.

  13. Investigation of lethal and mutagenetic effects of UV-light on Salmonella currying wild and mutant alleles of lex A gene of Escherichia coli in the Salmonella genome

    International Nuclear Information System (INIS)

    Andreeva, I.V.; Tiganova, I.G.; Skavronskaya, A.G.

    1981-01-01

    Inheritance of LexA-gene of Escherichia coli- by Salmonella takes place during intergeneric trunsduction cross of Escherichia coli and Salmonella typhimurium. The presence of LexA-E. coli gene-did not eliminate earlier revealed peculiarity consisting in the absence of UV-induced mutagenesis in most of studied salmonollosis strains. So it is shown that the absence of UV mutagenesis in Salmonella does not result from mutation in LexA-gene. Inheritance of pKM101 by LexA-hybrid provides pronounced UV mutability and protective effect. Inheritance of this plasmid by LexA-hybrid did not result in the appearance of capability for UV-induced mutagenesis and improving UV resistance of bacteria. Thus the plasmids effect on repair and mutagenesis in Salmonella, the same as in E. coli, reveals in LexA-phenotype [ru

  14. Solar UV radiation variations and their stratospheric and climatic effects

    Science.gov (United States)

    Donnelly, R. F.; Heath, D. F.

    1985-01-01

    Nimbus-7 SBUV measurements of the short-term solar UV variations caused by solar rotation and active-region evolution have determined the amplitude and wavelength dependence for the active-region component of solar UV variations. Intermediate-term variations lasting several months are associated with rounds of major new active regions. The UV flux stays near the peak value during the current solar cycle variation for more than two years and peaks about two years later than the sunspot number. Nimbus-7 measurements have observed the concurrent stratospheric ozone variations caused by solar UV variations. There is now no doubt that solar UV variations are an important cause of short- and long-term stratospheric variations, but the strength of the coupling to the troposphere and to climate has not yet been proven.

  15. The Effects of UV Light on the Chemical and Mechanical Properties of a Transparent Epoxy-Diamine System in the Presence of an Organic UV Absorber

    Directory of Open Access Journals (Sweden)

    Saeid Nikafshar

    2017-02-01

    Full Text Available Despite several excellent properties including low shrinkage, good chemical resistance, curable at low temperatures and the absence of byproducts or volatiles, epoxy resins are susceptible to ultra violet (UV damage and their durability is reduced substantially when exposed to outdoor environments. To overcome this drawback, UV absorbers have been usually used to decrease the rate of UV degradation. In this present study, the effects of UV light on the chemical, mechanical and physical properties of cured epoxy structure, as well as the effect of an organic UV absorber, Tinuvin 1130, on the epoxy properties were investigated. Chemical changes in a cured epoxy system as a result of the presence and absence of Tinuvin 1130 were determined using Fourier transform infrared spectroscopy (FT-IR analyses. The effect of Tinuvin 1130 on the surface morphology of the epoxy systems was also investigated by scanning electron microscopy (SEM imaging. Additionally, the glass transition temperatures (Tg before and during UV radiation were measured. After an 800 h UV radiation, mechanical test results revealed that the lack of the UV absorber can lead to a ~30% reduction in tensile strength. However, in the presence of Tinuvin 1130, the tensile strength was reduced only by ~11%. It was hypothesized that the use of Tinuvin 1130, as an organic UV absorber in the epoxy-amine system, could decrease the undesirable effects, arising from exposure to UV light.

  16. Bystander Effect Induced by UV Radiation; why should we be interested? 

    Directory of Open Access Journals (Sweden)

    Maria Widel

    2012-11-01

    Full Text Available The bystander effect, whose essence is an interaction of cells directly subjected to radiation with adjacent non-subjected cells, via molecular signals, is an important component of ionizing radiation action. However, knowledge of the bystander effect in the case of ultraviolet (UV radiation is quite limited. Reactive oxygen and nitrogen species generated by UV in exposed cells induce bystander effects in non-exposed cells, such as reduction in clonogenic cell survival and delayed cell death, oxidative DNA damage and gene mutations, induction of micronuclei, lipid peroxidation and apoptosis. Although the bystander effect after UV radiation has been recognized in cell culture systems, its occurrence in vivo has not been studied. However, solar UV radiation, which is the main source of UV in the environment, may induce in human dermal tissue an inflammatory response and immune suppression, events which can be considered as bystander effects of UV radiation. The oxidative damage to DNA, genomic instability and the inflammatory response may lead to carcinogenesis. UV radiation is considered one of the important etiologic factors for skin cancers, basal- and squamous-cell carcinomas and malignant melanoma. Based on the mechanisms of actions it seems that the UV-induced bystander effect can have some impact on skin damage (carcinogenesis?, and probably on cells of other tissues. The paper reviews the existing data about the UV-induced bystander effect and discusses a possible implication of this phenomenon for health risk. 

  17. Factors affecting UV-B-induced changes in Arabidopsis thaliana L. gene expression: The role of development, protective pigments and the chloroplast signal

    International Nuclear Information System (INIS)

    Jordan, B.R.; James, P.E.; Mackerness, S.A.H.

    1998-01-01

    Gene expression is known to change in response to UV-B radiation. In this paper, we have investigated three factors in Arabidopsis leaves that are likely to influence these changes: development, protective pigments and the 'chloroplast signal'. During late leaf development the major change in pigment composition, after exposure to UV-B radiation, is an increase in UV-absorbing pigments. Chl and Chl a/b ratio do not change substantially. Similarly Chl fluorescence is not altered. In contrast, RNA transcripts of photosynthetic proteins are reduced more in older leaves than in young leaves. To determine the role of flavonoids in UV-B protection, plants of Arabidopsis mutant tt-5, which have reduced flavonoids and sinapic esters, were exposed to UV-B and RNA transcript levels determined. The tt-mutants were more sensitive to UV-B radiation than wild-type. To examine the role of the chloroplast signal in regulating UV-B induced changes in gene expression, Arabidopsis gun mutants (genome uncoupled) have been used. The results show that UV-B-induced down-regulation still takes place in gun mutants and strongly suggests that the chloroplast signal is not required. Overall, this study clearly demonstrates that UV-B-induced changes in gene expression are influenced by both developmental and cellular factors but not chloroplastic factors

  18. Short-term UV-B radiation and ozone exposure effects on aromatic secondary metabolite accumulation and shoot growth of flavonoid-deficient Arabidopsis mutants

    International Nuclear Information System (INIS)

    Ormrod, D.P.; Landry, L.G.; Conklin, P.L.

    1995-01-01

    The presence of UV-absorptive substances in the epidermal cells of leaves is thought to protect mesophyll tissues from the harmful effects of UV-B radiation. We examined the influence of short-term UV-B exposures on UV-absorptive (330 nm) sinapates and flavonols, and on shoot growth of the Arabidopsis wild type ecotype Landsberg erecta and two mutants. 114 deficient in chalcone synthase, and 115, deficient in chalcone/flavonone isomerase. Sequential ozone exposures were used to determine the effects of oxidative stress The levels of sinapates and flavonols on a leaf fresh weight basis increased substantially in the wild type and sinapates increased in the 114 mutant in vegetative vegetative/reproductive transitional and reproductive stage plants in response to short-term (48h) UV-B radiation. When UV-B was discontinued the levels generally decreased lo pre-exposure levels after 48 h in vegetative/reproductive but not in reproductive plants. Exposure to ozone before or alter UV-B treatment did not consistently affect the levels of these UV-absorptive compounds. Dry matter accumulation was less affected by UV-B at the vegetative and reproductive stages than at the vegetative/reproductive stage. At the vegetative/reproductive stage, shoot growth of all 3 genotypes was retarded by UV-B. Growth was not retarded by short-term ozone exposure alone but when exposure to ozone followed UV-B exposure, growth was reduced in all genotypes. Leaf cupping appeared on 115 plants exposed to UV-B

  19. Effect of UV radiation and its implications on carotenoid pathway in Bixa orellana L.

    Science.gov (United States)

    Sankari, M; Hridya, H; Sneha, P; George Priya Doss, C; Ramamoorthy, Siva

    2017-11-01

    The current study was undertaken to analyse the effect of short-term UV-B and UV-C radiations in provoking carotenoid biosynthesis in Bixa orellana. Seeds of B. orellana were germinated and exposed to the short term UV pre-treatment under controlled environmental condition for 5days. The UV treated young seedlings response in pigment contents; antioxidant enzyme activity and mRNA gene expression level were analysed. The pigment content such as chlorophyll was increased in both UV-B and UV-C treated seedlings, but the total carotenoid level was decreased when compared to the control seedlings this can be attributed to the plant adaptability to survive in a stressed condition. The β-carotene level was increased in UV-B, and UV-C treated young seedlings. No significant changes have occurred in the secondary pigment such as bixin and ABA. The activity of the antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase was significantly increased in UV-B treated seedlings when compared to the UV-C treated seedlings and control. The mRNA expression of the genes involved in bixin biosynthesis pathways such as DXS, PSY, PDS, LCY-β, LCY-ε, CMT, LCD, ADH and CCD genes showed different expression pattern in UV-B and UV-C treated young seedlings. Further we analysed the gene co-expression network to identify the genes which are mainly involved in carotenoid/bixin biosynthesis pathway. Form our findings the CCD, LCY, PDS, ZDS and PSY showed a close interaction. The result of our study shows that the short term UV-B and UV-C radiations induce pigment content, antioxidant enzyme activity and different gene expression pattern allowing the plant to survive in the oxidative stress condition. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. UV-B effect on constituents of Azolla caroliniana.

    Science.gov (United States)

    Ibrahim, Mohamed M; Mostafa, Eazaz M

    2007-01-01

    Changes in growth and ultrastructure of Azolla caroliniana in response to elevated UV-B radiation were investigated. Exposure of plants to UV-B radiation for 1, 8, 16, 24 and 48 h exhibited a significant decrease in biomass and relative growth rate. This decrease resulted in an increase in doubling time over the control. Also, Chl a and b contents were significantly decreased especially after 16 h. The reduction was accompanied by a decrease in 5-aminolaevulinic acid content (precursor of chlorophyll). On the other hand, contents of carotenoid and UV-absorbing phenolic compounds (flavonoids and anthocyanins) were increased.

  1. Effect of arsenite on the DNA repair of UV-irradiated Chinese hamster ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee-Chen, S.F.; Yu, C.T.; Jan, K.Y. (Academia Sinica, Taipei, (Taiwan). Institute of Zoology)

    1992-01-01

    Arsenite, an ubiquitous human carcinogen, has been shown to enhance the cytotoxicity, mutagenicity and clastogenicity of UV light in mammalian cells. Arsenite may exert its co-genotoxic effects by inhibiting DNA repair. Results from alkaline sucrose gradient sedimentation show that arsenite did not accumulate UV-induced DNA strand breaks in Chinese hamster ovary (CHO) K1 cells as aphidicolin plus hydroxyurea (HU) did. These data indicate that arsenite did not inhibit the activity of DNA polymerase [alpha] in UV repair. Treatment with arsenite before UV irradiation slightly reduced the DNA strand breaks accumulated by cytosine [beta]-D-arabinofuranoside (AraC) plus HU. This effect implies that arsenite only slightly inhibited the incision of UV-induced DNA adducts. The low molecular weight DNA accumulated by post-UV incubation with AraC plus HU shifted to high molecular weight upon the incubation of cells in drug-free medium, but this shifting was prohibited by the presence of arsenite. This suggests that arsenite inhibited the rejoining of DNA strand breaks. When a pulse-chase labelling procedure was applied on UV-irradiated cells, the chain elongation of nascent DNA was strongly inhibited by post-incubation with arsenite. These data show that arsenite inhibited post-replication repair in UV-irradiated cells. Therefore, the steps inhibited by arsenite in UV-induced cells. Therefore, the steps inhibited by arsenite in UV-induced DNA repair in CHO K1 cells are different from human fibroblasts. (author).

  2. Effect of arsenite on the DNA repair of UV-irradiated Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Lee-Chen, S.F.; Yu, C.T.; Jan, K.Y.

    1992-01-01

    Arsenite, an ubiquitous human carcinogen, has been shown to enhance the cytotoxicity, mutagenicity and clastogenicity of UV light in mammalian cells. Arsenite may exert its co-genotoxic effects by inhibiting DNA repair. Results from alkaline sucrose gradient sedimentation show that arsenite did not accumulate UV-induced DNA strand breaks in Chinese hamster ovary (CHO) K1 cells as aphidicolin plus hydroxyurea (HU) did. These data indicate that arsenite did not inhibit the activity of DNA polymerase α in UV repair. Treatment with arsenite before UV irradiation slightly reduced the DNA strand breaks accumulated by cytosine β-D-arabinofuranoside (AraC) plus HU. This effect implies that arsenite only slightly inhibited the incision of UV-induced DNA adducts. The low molecular weight DNA accumulated by post-UV incubation with AraC plus HU shifted to high molecular weight upon the incubation of cells in drug-free medium, but this shifting was prohibited by the presence of arsenite. This suggests that arsenite inhibited the rejoining of DNA strand breaks. When a pulse-chase labelling procedure was applied on UV-irradiated cells, the chain elongation of nascent DNA was strongly inhibited by post-incubation with arsenite. These data show that arsenite inhibited post-replication repair in UV-irradiated cells. Therefore, the steps inhibited by arsenite in UV-induced cells. Therefore, the steps inhibited by arsenite in UV-induced DNA repair in CHO K1 cells are different from human fibroblasts. (author)

  3. UV Radiation and the Skin

    Directory of Open Access Journals (Sweden)

    Timothy Scott

    2013-06-01

    Full Text Available UV radiation (UV is classified as a “complete carcinogen” because it is both a mutagen and a non-specific damaging agent and has properties of both a tumor initiator and a tumor promoter. In environmental abundance, UV is the most important modifiable risk factor for skin cancer and many other environmentally-influenced skin disorders. However, UV also benefits human health by mediating natural synthesis of vitamin D and endorphins in the skin, therefore UV has complex and mixed effects on human health. Nonetheless, excessive exposure to UV carries profound health risks, including atrophy, pigmentary changes, wrinkling and malignancy. UV is epidemiologically and molecularly linked to the three most common types of skin cancer, basal cell carcinoma, squamous cell carcinoma and malignant melanoma, which together affect more than a million Americans annually. Genetic factors also influence risk of UV-mediated skin disease. Polymorphisms of the melanocortin 1 receptor (MC1R gene, in particular, correlate with fairness of skin, UV sensitivity, and enhanced cancer risk. We are interested in developing UV-protective approaches based on a detailed understanding of molecular events that occur after UV exposure, focusing particularly on epidermal melanization and the role of the MC1R in genome maintenance.

  4. UV-B effects on crops: response of the irrigated rice ecosystem

    International Nuclear Information System (INIS)

    Olszyk, D.; Dai, Q.; Teng, P.; Leung, H.; Luo, Y.; Peng, S.

    1996-01-01

    Increasing ultraviolet-B (UV-B) radiation resulting from depletion of the stratospheric ozone layer could have damaging effects on crops. This paper reviews recent findings on direct effects of UV-B on rice growth and yield as well as indirect effects via impacts on other organisms in the rice (Oryza sativa) agroecosystem. The findings are based on research by scientists at the International Rice Research Institute (IRRI) in Los Baños, the Philippines, and their collaborators in China and the United States; with comparison to research by scientists in other countries. Current results indicate that while enhanced UV-B directly impacts many aspects of rice growth, physiology, and biochemistry under controlled phytotron conditions; in general rice growth and yield are not affected under natural field conditions. The difference in response may be related both to the levels of UV-B exposure used in phytotron vs. field studies and the lower ratio of UV-A to UV-B in the phytotron compared to field. In terms of indirect effects on rice blast disease, enhanced UV-B affected both the fungus itself (Pyricularia grisea) and the susceptibility of the rice plant to the fungus. Based on these data, simulation models estimated potential impacts of higher UV-B levels on blast severity and rice yield in different countries of southeast and east Asia. Ultimately, results from rice studies can be used to identify strategies to minimize any negative effects of UV-B on rice productivity

  5. Effect of the UV modification of α-crystallin on its ability to suppress nonspecific aggregation

    International Nuclear Information System (INIS)

    Ellozy, A.R.; Ceger, Patricia; Wang, R.H.; Dillon, James

    1996-01-01

    Recent studies have shown that structural modifications of α-crystallin during lens aging decrease it's effectiveness as a molecular chaperone. Some of these post-translational modifications have been linked to UV radiation, and this study was undertaken to investigate the effect of UV irradiation on the ability of α-crystallin to suppress nonspecific aggregation. The effect of 3-hydroxykynurenine (3-HK) was also investigated as a model for its glucoside (3-HKG), a main lens chromophore that has been linked to photochemical changes in the human lens. Alpha- and γ-crystallin solutions (1 mg/mL, 1:0.125 wt/wt) were photolyzed (transmission above 295nm) for various time intervals. Thermal denaturation of γ-crystallin with or without α-crystallin was carried out at 70 o C and increases in light scattering were measured at 360 nm. We found that (1) irradiation of γ-crystallin increased its susceptibility to heat-induced scattering. The addition of α-crystallin protects it against thermal denaturation, although its ability to do so decreases the longer γ-crystallin is irradiated and (2) irradiation of α-crystallin decreases its ability to suppress nonspecific aggregation and the presence of 3-HK during irradiation decreases its further. Our results indicate that post-translational modifications of α-crystallin due to UV irradiation affect the sites and mechanisms by which it interacts with γ-crystallin. The kinetics of γ-crystallin unfolding during thermal denaturation were also analyzed. We found that a simple two state model applied for nonirradiated γ-crystallin. This model does not hold when γ-crystallin is irradiated in the prescence or absence of α-crystallin. In these cases, two step or multistep mechanisms are more likely. (Author)

  6. In vivo photoprotective effects of cosmetic formulations containing UV filters, vitamins, Ginkgo biloba and red algae extracts.

    Science.gov (United States)

    Mercurio, D G; Wagemaker, T A L; Alves, V M; Benevenuto, C G; Gaspar, L R; Maia Campos, P M B G

    2015-12-01

    The aim of this study was to assess the photoprotective effects of cosmetic formulations containing UV filters, red algae, Porphyra umbilicalis, extracts and combinations of the extract with vitamins and Ginkgo biloba through the use of in vivo preclinical studies. For this study, 4 groups of 4 hairless mice each were treated with topical formulations applied on the dorsum for 5 days as follows: group 1 - control (no treatment); group 2 - application of the formulation F (sunscreen formulation containing only UV filters); group 3 - application of the formulation FA (sunscreen formulation with red algae extract); and group 4 - application of the formulation FVGA (sunscreen formulation with red algae extract, G. biloba and vitamins A, C and E). The effects of these formulations were evaluated by determining the transepidermal water loss (TEWL) and erythema index. Apoptosis was detected by immunohistochemical staining with anti-p53 and anti-caspase-3 antibodies. The results showed that the formulations protected the skin from erythema when exposed to UV radiation. The group that received the formulation FVGA presented a greater TEWL than did the other groups, suggesting that this formulation was involved in cell renewal. Immunohistochemical analysis showed that UV radiation caused an increase in the expression of p53 and active caspase-3, confirming that the damage caused by UV radiation exposure led to apoptosis. The application of all formulations studied resulted in a statistically significant reduction in the expression of p53 and caspase-3, with a more pronounced effect observed following treatment with FA. In conclusion, extracts from the red algae P. umbilicalis could be considered effective ingredients to be used in sunscreen formulations. The combination of vitamins A, E, C and G. biloba along with red algae extracts can improve significantly the performance of the sunscreens, preventing UV-induced DNA damage and inflammation. Thus, they should be considered

  7. Tanning Salon Compliance Rates in States With Legislation to Protect Youth Access to UV Tanning.

    Science.gov (United States)

    Williams, Melissa S; Buhalog, Brittany; Blumenthal, Laura; Stratman, Erik J

    2018-01-01

    The US Food and Drug Administration has classified tanning beds as carcinogenic. Most states have enacted legislation to prevent or create barriers for minors accessing tanning establishments. Determining tanning salon compliance with legislation would provide an indication of the influence of legislation at preventing exposure to the carcinogen in minors. To investigate compliance rates in the 42 states and the District of Columbia with legislation restricting tanning bed use in minors and to identify differences in compliance based on population, regional location, salon ownership, age group being regulated, and time since the law was enacted. This investigation was a cross-sectional telephone survey conducted between February 1, 2015, and April 30, 2016, by callers posing as minors attempting to schedule a tanning appointment. The setting was tanning salons in the 42 states and the District of Columbia that currently have legislation restricting tanning bed use in minors. Included in the study were 427 tanning salons, 10 randomly selected from each state or territory with tanning legislation. Overall compliance of tanning salons with state tanning legislation and differences in compliance based on community population, regional location, independent vs chain tanning salon, age group being regulated, and time since the law was enacted. Of the 427 tanning salons surveyed, overall noncompliance with state legislation was 37.2% (n = 159). There were more noncompliant tanning salons in rural locations (45.5%; 95% CI, 37.5%-53.7%; P = .009), southern regions of the United States (49.4%; 95% CI, 41.4%-57.4%; P = .001), independently owned salons (43.9%; 95% CI, 37.3%-50.6%; P = .003), states with younger age groups being regulated (53.5%; 95% CI, 45.7%-61.2%; P legislation aimed at limiting tanning bed use among US minors is unsatisfactory, indicating that additional efforts to enforce the laws and education of the harmful effects of UV tanning are

  8. Ultraviolet (UV) disinfection of grey water: particle size effects.

    Science.gov (United States)

    Winward, G P; Avery, L M; Stephenson, T; Jefferson, B

    2008-02-01

    The impact of water quality on the ultraviolet (UV) disinfection of grey water was investigated with reference to urban water reuse. Direct UV disinfection of grey water did not meet the stringent California State Title 22 criteria for unrestricted urban water reuse due to the presence of particulate material ranging from or = 2000 microm in size. Grey water was manipulated by settling to produce fractions of varying particle size distributions and blending was employed post-disinfection to extract particle-associated coliforms (PACs). The efficacy of UV disinfection was found to be linked to the particle size of the grey water fractions. The larger particle size fractions with a mean particle size of 262 microm and above were observed to shield more coliforms from UV light than did the smaller particles with a mean particle size below 119 microm. Up to 70% of total coliforms in the larger particle size fractions were particle-associated following a UV dose (fluence) of 260 mJ.cm(-2) and would remain undetected by standard coliform enumeration techniques. Implications for urban water reuse are discussed and recommendations made for grey water treatment to ensure removal of particle-associated indicator bacteria and pathogens prior to UV disinfection.

  9. Effect of UV-B radiation on biomass production, pigmentation and protein content of marine diatoms

    International Nuclear Information System (INIS)

    Doehler, G.

    1984-01-01

    Several species of marine diatoms were grown at + 18 0 C and + 22 0 C under normal air conditions (0.035 vol.% CO 2 ) at a light/dark alteration of 14.8 h. Intensity of white light was 1 mW (approx.= 5000 lux). An artifical nutrient solution of 35per mille salinity was used. Algae - harvested during exponential growth - were exposed to different intensities of UV-B radiation (439, 717 and 1230 J m -2 m -1 ) for 2 days. UV-B radiation depressed the growth of all tested marine diatoms. Low levels of UV-B resulted in a slight increase of the biomass production (dry weight) compared to not UV-B treated cells. Enhanced UV-B doses caused a diminution of the primary productivity in all species. Algae exposed to UV-B stress showed a marked decrease in the protein and pigment content (chlorophyll a, chlorophyll c 1 + c 2 and carotenoids). In + 22 0 C grown cells of Lauderia annulata and Thalassiosira rotula were more sensitive to UV-B radiation than those cultures grown at + 18 0 C. Bellerochea yucatanensis cells grown at + 22 0 C were less affected after UV-B exposure than at + 18 0 C grown algae. The UV-B sensibility and growth of the individual species varied in a mixture of several marine diatoms. Results were discussed with reference to the UV-B effect on metabolic processes. (orig.)

  10. The Protective Role of Melanin Against UV Damage in Human Skin

    OpenAIRE

    Brenner, Michaela; Hearing, Vincent J.

    2008-01-01

    Human skin is repeatedly exposed to ultraviolet radiation (UVR) that influences the function and survival of many cell types and is regarded as the main causative factor in the induction of skin cancer. It has been traditionally believed that skin pigmentation is the most important photoprotective factor, since melanin, besides functioning as a broadband UV absorbent, has antioxidant and radical scavenging properties. Besides, many epidemiological studies have shown a lower incidence for skin...

  11. Effect of UV-B and high visual radiation on photosynthesis in freshwater (nostoc spongiaeforme) and marine (Phormidium corium) cyanobacteria.

    Science.gov (United States)

    Bhandari, Rupali; Sharma, Prabhat Kumar

    2007-08-01

    Human activity is causing depletion of ozone in stratosphere, resulting in increased UV-B radiation and global warming. However, impact of these climatic changes on the aquatic organism (especially marine) is not fully understood. Here, we have studied the effect of excess UV-B and visible radiation on photosynthetic pigments, fatty acids content, lipid peroxidation, nitrogen content, nitrogen reductase activity and membrane proteins, induction of mycosporine-like amino acids (MAAs) and antioxidant enzymes superoxide dismutase (SOD) and ascorbate peroxidase (APX) in freshwater (Nostoc spongiaeform) and marine (Phormidium corium) cyanobacteria. UV-B treatment resulted in an increase in photosynthetic pigments in Nostoc and decrease in Phormidium, but high light treatment caused photobleaching of most of the pigments in both the species. Unsaturation level of fatty acids of both total and glycolipids remained unchanged in both the cyanobacteria, as a result of UV-B and high light treatments. Saturated fatty acids of total and glycolipids declined slightly in Nostoc by both the treatments. but remained unchanged in Phormidium. No changes in the unsaturated lipid content in our study probably suggested adaptation of the organism to the treatments. However, both treatments resulted in peroxidation of membrane lipids, indicating oxidative damage to lipids without any change in the level of unsaturation of fatty acid in the cell membrane. Qualitative and quantitative changes were observed in membrane protein profile due to the treatments. Cyanobacteria were able to synthesize MAAs in response to the UV-B treatment. Both treatments also increased the activities of SOD and APX. In conclusion, the study demonstrated induction of antioxidants such as SOD and APX under visible light treatment and screening pigment (MAAs) under UV-B treatment, which might protect the cyanobacteria from oxidative damage caused by high light and UV-B radiation.

  12. Effect of degradative plasmid CAM-OCT on responses of Pseudomonas bacteria to UV light

    International Nuclear Information System (INIS)

    McBeth, D.L.

    1989-01-01

    The effect of plasmid CAM-OCT on responses to UV irradiation was compared in Pseudomonas aeruginosa, in Pseudomonas putida, and in Pseudomonas putida mutants carrying mutations in UV response genes. CAM-OCT substantially increased both survival and mutagenesis in the two species. P. aeruginosa strains without CAM-OCT exhibited much higher UV sensitivity than did P. putida strains. UV-induced mutagenesis of plasmid-free P. putida was easily detected in three different assays (two reversion assays and one forward mutation assay), whereas UV mutagenesis of P. aeruginosa without CAM-OCT was seen only in the forward mutation assay. These results suggest major differences in DNA repair between the two species and highlight the presence of error-prone repair functions on CAM-OCT. A number of P. putida mutants carrying chromosomal mutations affecting either survival or mutagenesis after UV irradiation were isolated, and the effect of CAM-OCT on these mutants was determined. All mutations producing a UV-sensitive phenotype in P. putida were fully suppressed by the plasmid, whereas the plasmid had a more variable effect on mutagenesis mutations, suppressing some and producing no suppression of others. On the basis of the results reported here and results obtained by others with plasmids carrying UV response genes, it appears that CAM-OCT may differ either in regulation or in the number and functions of UV response genes encoded

  13. The Effect of Lycopene Preexposure on UV-B-Irradiated Human Keratinocytes

    Science.gov (United States)

    Ascenso, Andreia; Pedrosa, Tiago; Pinho, Sónia; Pinho, Francisco; de Oliveira, José Miguel P. Ferreira; Cabral Marques, Helena; Oliveira, Helena; Simões, Sandra; Santos, Conceição

    2016-01-01

    Lycopene has been reported as the antioxidant most quickly depleted in skin upon UV irradiation, and thus it might play a protective role. Our goal was to investigate the effects of preexposure to lycopene on UV-B-irradiated skin cells. Cells were exposed for 24 h to 10 M lycopene, and subsequently irradiated and left to recover for another 24 h period. Thereafter, several parameters were analyzed by FCM and RT-PCR: genotoxicity/clastogenicity by assessing the cell cycle distribution; apoptosis by performing the Annexin-V assay and analyzing gene expression of apoptosis biomarkers; and oxidative stress by ROS quantification. Lycopene did not significantly affect the profile of apoptotic, necrotic and viable cells in nonirradiated cells neither showed cytostatic effects. However, irradiated cells previously treated with lycopene showed an increase in both dead and viable subpopulations compared to nonexposed irradiated cells. In irradiated cells, lycopene preexposure resulted in overexpression of BAX gene compared to nonexposed irradiated cells. This was accompanied by a cell cycle delay at S-phase transition and consequent decrease of cells in G0/G1 phase. Thus, lycopene seems to play a corrective role in irradiated cells depending on the level of photodamage. Thus, our findings may have implications for the management of skin cancer. PMID:26664697

  14. Effects of UV-C irradiation on development of goldfish embryos

    International Nuclear Information System (INIS)

    Wu Jian; Dai Guifu; Zhang Fengqiu; Lu Lei

    2005-01-01

    Goldfish embryos at five different developmental stages, from fertilized eggs to heat beating stage, were irradiated by UV rays, and hatching rate, darkly pigmented eye rate and abnormal embryo rate of the irradiated embryos were investigated. Being subjected to very low amount (≤3 min.) of the UV irradiation, the embryos earlier than gastrula stage showed hormesis. However, the embryos at gastrula or heart beating stage were very sensitive to UV irradiation, showing just damage effect, which was very strong even at very low amount of the UV irradiation. The results also showed that development of the gastrula embryos irradiated by the UV rays stopped before darkly pigmented eye state, whereas embryos irradiated at heart beating stage by the UV rays could develop to the darkly pigmented eye stage, though they could not hatch out. (authors)

  15. In Vitro Model for Predicting the Protective Effect of Ultraviolet-Blocking Contact Lens in Human Corneal Epithelial Cells.

    Science.gov (United States)

    Abengózar-Vela, Antonio; Arroyo, Cristina; Reinoso, Roberto; Enríquez-de-Salamanca, Amalia; Corell, Alfredo; González-García, María Jesús

    2015-01-01

    To develop an in vitro method to determine the protective effect of UV-blocking contact lenses (CLs) in human corneal epithelial (HCE) cells exposed to UV-B radiation. SV-40-transformed HCE cells were covered with non-UV-blocking CL, UV-blocking CL or not covered, and exposed to UV-B radiation. As control, HCE cells were covered with both types of CLs or not covered, but not exposed to UV-B radiation. Cell viability at 24, 48 and 72 h, after UV-B exposure and removing CLs, was determined by alamarBlue(®) assay. Percentage of live, dead and apoptotic cells was also assessed by flow cytometry after 24 h of UV-B exposure. Intracellular reactive oxygen species (ROS) production after 1 h of exposure was assessed using the dye H(2)DCF-DA. Cell viability significantly decreased, apoptotic cells and intracellular ROS production significantly increased when UVB-exposed cells were covered with non-UV-blocking CL or not covered compared to non-irradiated cells. When cells were covered with UV-blocking CL, cell viability significantly increased and apoptotic cells and intracellular ROS production did not increase compared to exposed cells. UV-B radiation induces cell death by apoptosis, increases ROS production and decreases viable cells. UV-blocking CL is able to avoid these effects increasing cell viability and protecting HCE cells from apoptosis and ROS production induced by UV-B radiation. This in vitro model is an alternative to in vivo methods to determine the protective effect of UV-blocking ophthalmic biomaterials because it is a quicker, cheaper and reliable model that avoids the use of animals.

  16. The cloud effects on UV irradiance modeled in Antarctica

    International Nuclear Information System (INIS)

    Rafanelli, C.; Anav, A.; Ciattaglia, L.; Di Menno, I.; Di Menno, M.; Araujo, J.; Ochoa, H.; Rodriguez, H.

    2004-01-01

    Full text: The measurement of solar UV radiation in Antarctica is very important in order to obtain information about Ozone level, and many spectro radiometers are installed in the area to perform this task. Usually, their use is very difficult in harsh environment like Southern polar regions, and several multichannel radiometers have been installed. The evaluation of the irradiance and total ozone levels are done using analytical models. A new semi-analytical method to estimate the solar UV irradiance at ground, named WL4UV, was developed. Using spectral irradiance values at 4 selected wavelengths in the UV-B and UV-A regions (305, 320, 340 and 380 nm), the solar UV irradiance at ground is evaluated with low percent of error. The applicability of the method has been tested for clear sky but such conditions are not common in Antarctic. This work investigate the applicability of the WL4UV model under cloudy sky conditions. The 4 irradiance necessary for the model were selected from spectrophotometer Brewer measurements carried out in the Argentinean Belgrano II base (77 degrees 52' S and 34 degrees 38' W). Other tests using spectrophotometers, Brewer and SUV 100, located in Ushuaia, (54 degrees 50' S and 68 degrees 19' W), were also too. This project was funded by the PNRA, IIA-DNA and CADIC for funding and supporting the activities. They thank also all the Brewer operators that in these years spent their time in the management of the instrument. Last but not the least they thank all IIA-DNA personnel for the professional help they put in carrying out the activities in all these years. (author)

  17. DYEING SILK FABRICS WITH STINK BEAN POD (PARKIA SPECIOSA HASSK. NATURAL DYE IN THE COLOR FASTNESS AND UV PROTECTION

    Directory of Open Access Journals (Sweden)

    M. MASAE

    2017-07-01

    Full Text Available This paper describes natural dye extracted from stink bean pod (Parkia speciosa Hassk. which was dyed on the silk fabric. The mordants as aluminum potassium sulfate, iron chloride, sodium hydroxide and mud were used to dye fabric using three different dyeing methods: pre-mordanting, meta-mordanting and post-mordanting. The color fastness to washing, water, perspiration, light and crocking of the dyed samples was determined according to AATCC test methods. In this study the UV-protection properties on silk fabrics were investigated. The chemical functional groups of the dyes were characterized by Fourier transform infrared spectroscopy (FTIR. The results revealed that the dyeing silk fabrics with stink beans pod were fair to good fastness to washing and crocking and very poor to poor light fastness with the exception of samples mordanted with iron chloride. The water and perspiration fastness ratings were fair to good. Silk fabrics mordanted with iron chloride and dyed with stink bean usually showed good UV-protection levels even if undyed. These extracts gave polyphenolic, betalain dye and chlorophyll content. Therefore, it was suggested that stink bean pod has the potential in producing functional dyes that could be imparted into the silk dyeing natural colorant system.

  18. Development of Cotton Fabrics with Durable UV Protective and Self-cleaning Property by Deposition of Low TiO2 Levels through Sol-gel Process.

    Science.gov (United States)

    Mishra, Anu; Butola, Bhupendra Singh

    2018-01-19

    In this article, the deposition of TiO 2 on cotton fabric using sol-gel technique has been described. Various process routes (pad-dry-cure, pad-dry-hydrothermal and pad-dry-solvothermal) were examined to impart a stable coating of TiO 2 on fabric. The role of precursor concentration, process temperature and time of treatment were studied to aim at a wash durable, UV protective and self-cleaning property in the treated fabric. EDX and ICP-MS techniques were used to examine the add-on percentage of TiO 2 on cotton fabrics treated via different routes. It has been found that the TiO 2 remains largely amorphous and nondurable if it is given a short thermal treatment. To convert the deposited TiO 2 to its anatase crystal form, a prolonged hydrothermal treatment for at least 3 h needs to be given. TiO 2 deposition levels of less than 0.1% were found to be effective in imparting reasonable degree of UV protection and self-cleaning property to the cotton fabric. The self-cleaning ability of the treated fabric against coffee stain was also studied and was found to be related to the process route and the deposition levels of TiO 2 . © 2018 The American Society of Photobiology.

  19. Photochemically induced deposition of protective alumina coatings onto UV emitting phosphors for Xe excimer discharge lamps

    International Nuclear Information System (INIS)

    Broxtermann, Mike; Jüstel, Thomas

    2016-01-01

    Highlights: • A UV-reactor for the pH induced precipitation of inorganic material is described. • The photolysis of Azide (N_3"−) leads to a steady pH increase used for precipitation. • A UV induced Al(OH)_3 precipitation is used to craft Al_2O_3 coatings onto YPO_4:Bi. • The influence of Al_2O_3 coated onto YPO_4:Bi with different thicknesses is discussed. • SEM, VUV-spectroscopy and ESA measurements were performed on Al_2O_3 coated samples. - Abstract: This work concerns the particle coating of the UV-C emitting phosphor YPO_4:Bi, targeting a stability enhancement of the phosphor material for Xe excimer lamp operation. To this end, the material is coated by the wide band gap material Al_2O_3. In order to obtain a thin and homogeneous coating layer, a novel process based on the photochemical cleavage of NaN_3 in water was developed. This results in a slow and continuous enhancement of the pH value due to ongoing NaOH formation, which results in the precipitation of Al(OH)_3 from an Al_2(SO_4)_3 _× 18H_2O solution. It turned out that the obtained particle coatings are of much better quality, i.e. homogeneity, compared to coatings made from a wet-chemical homogeneous precipitation process. The morphology and electrochemical properties of Al_2O_3 coated YPO_4:Bi are discussed on the basis of optical spectroscopy, ESA measurements, and SEM/EDX investigations.

  20. Photochemically induced deposition of protective alumina coatings onto UV emitting phosphors for Xe excimer discharge lamps

    Energy Technology Data Exchange (ETDEWEB)

    Broxtermann, Mike, E-mail: mike.b@fh-muenster.de; Jüstel, Thomas, E-mail: tj@fh-muenster.de

    2016-08-15

    Highlights: • A UV-reactor for the pH induced precipitation of inorganic material is described. • The photolysis of Azide (N{sub 3}{sup −}) leads to a steady pH increase used for precipitation. • A UV induced Al(OH){sub 3} precipitation is used to craft Al{sub 2}O{sub 3} coatings onto YPO{sub 4}:Bi. • The influence of Al{sub 2}O{sub 3} coated onto YPO{sub 4}:Bi with different thicknesses is discussed. • SEM, VUV-spectroscopy and ESA measurements were performed on Al{sub 2}O{sub 3} coated samples. - Abstract: This work concerns the particle coating of the UV-C emitting phosphor YPO{sub 4}:Bi, targeting a stability enhancement of the phosphor material for Xe excimer lamp operation. To this end, the material is coated by the wide band gap material Al{sub 2}O{sub 3}. In order to obtain a thin and homogeneous coating layer, a novel process based on the photochemical cleavage of NaN{sub 3} in water was developed. This results in a slow and continuous enhancement of the pH value due to ongoing NaOH formation, which results in the precipitation of Al(OH){sub 3} from an Al{sub 2}(SO{sub 4}){sub 3} {sub ×} 18H{sub 2}O solution. It turned out that the obtained particle coatings are of much better quality, i.e. homogeneity, compared to coatings made from a wet-chemical homogeneous precipitation process. The morphology and electrochemical properties of Al{sub 2}O{sub 3} coated YPO{sub 4}:Bi are discussed on the basis of optical spectroscopy, ESA measurements, and SEM/EDX investigations.

  1. Reductone effect on UV-irradiated starved E. coli cells

    International Nuclear Information System (INIS)

    Felzenszwalb, I.; Gomes, R.A.

    1982-01-01

    A starvation-induced resistence enhancement (SIRE) to UV and reductone treatments was observed in repair-profient E. coli cells. The UV-reductone positive interaction, which is possibly related to excision repair mechanisms, was not modified by prestarvation when all cells in culture had completed their round of DNA replication. In irradiated prestarved reductone-treated cells, a decrease in the DNA degradation rate was detected after the removal of reductone and the induction of a lower number of DNA single-strand breaks. The induction kinectics of DNA single-strand breaks in prestarved UV-irradiated and the repair kinetics of these lesions are slower than in non-starved cells. The resistance enhancement demonstrated under these conditions could be justified either by the generation of fewer doubles strand breaks during repair or by the possibility of repair of these lesions. (Author) [pt

  2. Beliefs and Intentions for Skin Protection and UV Exposure in Young Adults

    Science.gov (United States)

    Heckman, Carolyn J.; Manne, Sharon L.; Kloss, Jacqueline D.; Bass, Sarah Bauerle; Collins, Bradley; Lessin, Stuart R.

    2011-01-01

    Objective: To evaluate Fishbein's integrative model in predicting young adults' skin protection, sun exposure, and indoor tanning intentions. Methods: Two hundred twelve participants completed an online survey. Results: Damage distress, self-efficacy, and perceived control accounted for 34% of the variance in skin protection intentions. Outcome…

  3. Effects of Solar UV Radiation and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    Science.gov (United States)

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions...

  4. Effect of UV-B radiation on the marine diatom bellerochea yucatanensis

    International Nuclear Information System (INIS)

    Doehler, G.

    1982-01-01

    There exists no information about the UV-B fluence on several photosynthetic products and nitrogen metabolism. The present report describes the effect of low levels of UV-B radiation on pigments, 14 C- and 15 N-incorporation of the marine diatom Bellerochea yucatanensis. (orig./AJ)

  5. Biological UV-doses and the effect on an ozone layer depletion

    International Nuclear Information System (INIS)

    Dahlback, A.; Henriksen, T.

    1988-08-01

    Effective UV-doses were calculated based on the integrated product of the biological action spectrum and the solar radiation. The calculations included absorption and scattering of UV-radiation in the atmosphere, both for normal ozone conditions as well as for a depleted ozone layer. The effective annual UV-dose increases by approximately 4% per degree of latitude towards the equator. An ozone depletion of 1% increases the annual UV-dose by approximately 1% at 60 o N. A large depletion of 50% over Scandinavia (60 o N) would give this region an effective UV-dose similar to that obtained, with normal ozone conditions, at a latitude of 40 o N (California or the Mediterranean countries). The Antarctic ozone hole increases the annual UV-dose by 20 to 25% which is a similar increase as that attained by moving 5 to 6 degrees of latitude nearer the equator. The annual UV-dose on higher latitudes is mainly determined by the summer values of ozone. Both the ozone values and the effective UV-doses vary from one year to another (within ±4%). No positive or negative trend is observed for Scandinavia from 1978 to 1988

  6. Preirradiation of host (monkey) cells mitigates the effects of UV upon simian virus 40 DNA replication

    International Nuclear Information System (INIS)

    Scaria, A.; Edenberg, H.J.

    1987-01-01

    The authors examined the effects of preirradiation of host (monkey) cells upon the replication of UV-damaged SV40. Control cells and cells preirradiated with low fluences of UV were infected with undamaged SV40, and the immediate effects of a subsequent irradiation were determined. UV inhibited total SV40 DNA synthesis in both preirradiated and control cells, but the extent of inhibition was less in the preirradiated cells. A test fluence of 60 J/m 2 to SV40 replicating in preirradiated cells reduced synthesis only as much as a test fluence of 25 J/m 2 in control cells. The fraction of recently replicated SV40 molecules that re-entered the replication pool and subsequently completed one round of replication in the first 2 h after UV was also decreased less in the preirradiated cells. Thus preirradiation of the host cell mitigates the immediate inhibitory effects of a subsequent UV exposure upon SV40 replication. (Auth.)

  7. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to a combination of lycopene, vitamin E, lutein and selenium and protection of the skin from UV-induced (including photo-oxidative) damage pursuant to Article 13

    DEFF Research Database (Denmark)

    Tetens, Inge

    related to a combination of lycopene, vitamin E, lutein and selenium and protection of the skin from UV-induced (including photo-oxidative) damage. The Panel considers that the combination of lycopene, vitamin E, lutein and selenium is sufficiently characterised. The claimed effect refers to the photo...... could be drawn from this study for the scientific substantiation of the claim. The Panel concludes that a cause and effect relationship has not been established between the consumption of a combination of lycopene, vitamin E, lutein and selenium and protection of the skin from UV-induced (including......-protective activity of the food, delaying the appearance of UV-induced erythema and decreasing its intensity. The target population proposed by the applicant is healthy adults in the general population, and in particular people with sensitive skin. The Panel considers that protection of the skin from UV...

  8. UV EFFECTS IN TOOTH ENAMEL AND THEIR POSSIBLE APPLICATION IN EPR DOSIMETRY WITH FRONT TEETH

    Science.gov (United States)

    Sholom, S.; Desrosiers, M.; Chumak, V.; Luckyanov, N.; Simon, S.L.; Bouville, A.

    2009-01-01

    The effects of ultraviolet (UV) radiation on ionizing radiation biodosimetry were studied in human tooth enamel samples using the technique of electron paramagnetic resonance (EPR) in X-band. For samples in the form of grains, UV-specific EPR spectra were spectrally distinct from that produced by exposure to gamma radiation. From larger enamel samples, the UV penetration depth was determined to be in the 60–120 μm range. The difference in EPR spectra from UV exposure and from exposure to gamma radiation samples was found to be a useful marker of UV equivalent dose (defined as the apparent contribution to the gamma dose in mGy that results from UV radiation absorption) in tooth enamel. This concept was preliminarily tested on front teeth from inhabitants of the region of the Semipalatinsk Nuclear Test Site (Kazakhstan) who might have received some exposure to gamma radiation from the nuclear tests conducted there as well as from normal UV radiation in sunlight. The technique developed here to quantify and subtract the UV contribution to the measured tooth is currently limited to cumulative dose measurements with a component of UV equivalent dose equal to or greater than 300 mGy. PMID:20065706

  9. Combined effects of O3 and UV radiation on secondary metabolites and endogenous hormones of soybean leaves.

    Directory of Open Access Journals (Sweden)

    Bing Mao

    Full Text Available Enhanced ultraviolet radiation (UV and elevated tropospheric ozone (O3 may individually cause reductions in the growth and productivity of important agricultural crops. However, research regarding their combined effects on important agricultural crops is still scarce, especially on changes in secondary metabolites and endogenous hormones, which are important protective substances and signal components that control plant responses to environment stresses. In this study, using an experimental setup of open top chambers, we monitored the responses of seed yield per plant, leaf secondary metabolites and leaf endogenous hormones under the stress of elevated O3 and enhanced UV radiation individually, as well as their combined stress. The results indicated that elevated O3 (110 ± 10 nmol mol-1 for 8 hours per day and enhanced UV radiation (1.73 kJ h-1 m-2 significantly decreased seed yield per plant. Concentrations of rutin, queretin and total flavonoids were significantly increased under the elevated O3 treatment or the enhanced UV radiation treatment or the combination treatment at flowering and podding stages, and concentrations of rutin, queretin and total flavonoids showed significant correlations with seed yield per plant. Concentrations of ABA and IAA decreased under the three treatments. There was a significant positive correlation between the ABA concentration and seed yield and a negative correlation between the IAA concentration and seed yield. We concluded that the combined stress of elevated O3 and UV radiation significantly decreased seed yield per plant. Yield reduction was associated with changes in the concentrations of flavonoids, ABA and IAA in soybean leaves. The effects of the combined O3 and UV stress were always greater than those of the individual stresses alone.

  10. Design, synthesis and biological evaluation of novel hydroxy-phenyl-1H-benzimidazoles as radical scavengers and UV-protective agents.

    Science.gov (United States)

    Bino, Alessia; Baldisserotto, Anna; Scalambra, Emanuela; Dissette, Valeria; Vedaldi, Daniela Ester; Salvador, Alessia; Durini, Elisa; Manfredini, Stefano; Vertuani, Silvia

    2017-12-01

    An ever-increasing incidence of skin neoplastic diseases is registered. Therefore, it is important to protect the skin from the UV radiation that reaches the epidermis and dermis but also to block ROS generated by them. Our attention was attracted in developing new compounds provided with both UV filtering and antioxidant capacities. To this end, 2-phenyl-1H-benzimidazole-5-sulfonic acid (PBSA), a known UV filter, was selected as lead compound for its lack of antioxidant activity, high water solubility and good safety profile. PBSA was sequentially modified introducing hydroxyls on the phenyl ring and also substituting the functional group in position 5 of the benzimidazole ring. At the end of the synthetic study, a new, very potent class of antioxidants has been obtained. Surprisingly some of the developed molecules, while devoid of significant UV-filtering activity was endowed with potent UV-filtering booster capability if associated with known commercial UVB and UVA filters.

  11. Red fluorescence increases with depth in reef fishes, supporting a visual function, not UV protection

    Science.gov (United States)

    Meadows, Melissa G.; Anthes, Nils; Dangelmayer, Sandra; Alwany, Magdy A.; Gerlach, Tobias; Schulte, Gregor; Sprenger, Dennis; Theobald, Jennifer; Michiels, Nico K.

    2014-01-01

    Why do some marine fishes exhibit striking patterns of natural red fluorescence? In this study, we contrast two non-exclusive hypotheses: (i) that UV absorption by fluorescent pigments offers significant photoprotection in shallow water, where UV irradiance is strongest; and (ii) that red fluorescence enhances visual contrast at depths below −10 m, where most light in the ‘red’ 600–700 nm range has been absorbed. Whereas the photoprotection hypothesis predicts fluorescence to be stronger near the surface and weaker in deeper water, the visual contrast hypothesis predicts the opposite. We used fluorometry to measure red fluorescence brightness in vivo in individuals belonging to eight common small reef fish species with conspicuously red fluorescent eyes. Fluorescence was significantly brighter in specimens from the −20 m sites than in those from −5 m sites in six out of eight species. No difference was found in the remaining two. Our results support the visual contrast hypothesis. We discuss the possible roles fluorescence may play in fish visual ecology and highlight the possibility that fluorescent light emission from the eyes in particular may be used to detect cryptic prey. PMID:25030989

  12. Effect of 5-bromouracil and 5-bromo-2-deoxyuridine in combination with 8-azaadenine on UV sensitivity of bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, H.E. (Akademie der Wissenschaften der DDR, Jena. Zentralinstitut fuer Mikrobiologie und Experimentelle Therapie); Golovinsky, E. (Bylgarska Akademiya na Naukite, Sofia)

    1983-01-01

    The presence of 5-bromouracil (BU) as well as 5-bromo-2-deoxyuridine (BUdR) in the cultivation media of bacteria results in the distinct increase of UV sensitivity. With the nucleic acid base analogue 8-azaadenine (8-AA) a similar effect was confirmed, however, not so pronounced. The combined action of BU or BUdR and 8-AA on Escherichia coli, Proteus mirabilis, Bacillus subtilis and Bacillus cereus was investigated. The sensitization effect of BUdR does not increase if 8-AA is present additionally during cultivation. On the contrary, a decrease of sensibilization occurs. This may be caused by the protective effect of the adenine derivative against UV irradiation, if it is present in the cell, but not incorporated into the DNA.

  13. Effect of 5-bromouracil and 5-bromo-2-deoxyuridine in combination with 8-azaadenine on UV sensitivity of bacteria

    International Nuclear Information System (INIS)

    Jacob, H.E.; Golovinsky, E.

    1983-01-01

    The presence of 5-bromouracil (BU) as well as 5-bromo-2-deoxyuridine (BUdR) in the cultivation media of bacteria results in the distinct increase of UV sensitivity. With the nucleic acid base analogue 8-azaadenine (8-AA) a similar effect was confirmed, however, not so pronounced. The combined action of BU or BUdR and 8-AA on Escherichia coli, Proteus mirabilis, Bacillus subtilis and Bacillus cereus was investigated. The sensitization effect of BUdR does not increase if 8-AA is present additionally during cultivation. On the contrary, a decrease of sensibilization occurs. This may be caused by the protective effect of the adenine derivative against UV irradiation, if it is present in the cell, but not incorporated into the DNA. (author)

  14. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV.

    Science.gov (United States)

    Tao, Shasha; Justiniano, Rebecca; Zhang, Donna D; Wondrak, Georg T

    2013-01-01

    Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I), dihydrotanshinone (DHT), tanshinone IIA (T-II-A) and cryptotanshinone (CT)] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1) with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm(2) UVB; 1.53 J/cm(2) UVA). The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities) was significantly attenuated in DHT

  15. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV

    Directory of Open Access Journals (Sweden)

    Shasha Tao

    2013-01-01

    Full Text Available Exposure to solar ultraviolet (UV radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2, a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I, dihydrotanshinone (DHT, tanshinone IIA (T-II-A and cryptotanshinone (CT] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1 with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm2 UVB; 1.53 J/cm2 UVA. The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities was significantly attenuated in DHT

  16. A thermal after-effect of UV irradiation of muscle glycogen phosphorylase b.

    Directory of Open Access Journals (Sweden)

    Valeriya V Mikhaylova

    Full Text Available Different test systems are used to characterize the anti-aggregation efficiency of molecular chaperone proteins and of low-molecular-weight chemical chaperones. Test systems based on aggregation of UV-irradiated protein are of special interest because they allow studying the protective action of different agents at physiological temperatures. The kinetics of UV-irradiated glycogen phosphorylase b (UV-Phb from rabbit skeletal muscle was studied at 37°C using dynamic light scattering in a wide range of protein concentrations. It has been shown that the order of aggregation with respect to the protein is equal to unity. A conclusion has been made that the rate-limiting stage of the overall process of aggregation is heat-induced structural reorganization of a UV-Phb molecule, which contains concealed damage.

  17. Effects of UV-B radiation on tetraspores of Chondrus ocellatus Holm (Rhodophyta), and effects of red and blue light on repair of UV-B-induced damage

    Science.gov (United States)

    Ju, Qing; Xiao, Hui; Wang, You; Tang, Xuexi

    2015-05-01

    We evaluated the effects of red and blue light on the repair of UV-B radiation-induced damage in tetraspores of Chondrus ocellatus Holm. Tetraspores of C. ocellatus were treated with different UV-B radiation levels (0, 36, 72, 108, 144 and 180 J/m2), and thereafter subjected to PAR, darkness, or red or blue light during a 2-h repair stage, each day for 48 days. The diameters and cellular contents of cyclobutane pyrimidine dimmers (CPDs), chlorophyll a (Chl a), phycoerythrin, and UV-B-absorbing mycosporinelike amino acids (MAAs) contents of the tetraspores were determined. Our results show that low doses of UV-B radiation (36 and 72 J/m2) promoted the growth of C. ocellatus; however, increased UV-B radiation gradually reduced the C. ocellatus growth (greater than 72 J/m2). The MAAs (palythine and asterina-330) in C. ocellatus were detected and analyzed by LC/MS. Our results suggest that moderate red light could induce the growth of this alga in aquaculture. In addition, photorepair was inhibited by red light, so there may be some other DNA repair mechanism activated by red light. Blue light promoted the activity of DNA photolyase, greatly improving remediation efficiency. Red and blue lights were found to reduce the capacity of C. ocellatus to form MAAs. Therefore, PAR, red light, and blue light play different roles during the repair processes for damage induced by UV-B radiation.

  18. Effects of the ultraviolet-B radiation (UV-B) on conifers: a review

    International Nuclear Information System (INIS)

    Laakso, K.; Huttunen, S.

    1998-01-01

    The current knowledge on conifer responses to enhanced ultraviolet-B (UV-B) radiation is mainly based on greenhouse or growth chamber experiments of one growing season in duration. However, the biomass losses observed in greenhouses do not occur in field-grown trees in their natural habitats. Moreover, the majority of the 20 conifer species studied have been 1-year-old seedlings, and no studies have been undertaken on mature trees. Fully grown needles, with their glaucous waxy surfaces and thick epidermal cells with both soluble and wall-bound UV-B screening metabolites, are well protected against UV-B radiation. However, it is not known whether these are sufficient protectants in young emerging needles or during the early spring period of high UV-B levels reflected from snow. In order to understand all the mechanisms that result in the protection of conifer needles against UV-B radiation, future research should focus on the epidermal layer, separating the waxes, cuticle and epidermal and hypodermal cells. Parallel studies should consist of wall-bound and soluble secondary metabolite analysis, antioxidant measurements and microscopic observations. (author)

  19. Experimental assessment of cumulative temperature and UV-B radiation effects on Mediterranean plankton metabolism

    KAUST Repository

    Garcia-Corral, Lara S.

    2015-07-07

    The Mediterranean Sea is a vulnerable region for climate change, warming at higher rates compare to the global ocean. Warming leads to increased stratification of the water column and enhanced the oligotrophic nature of the Mediterranean Sea. The oligotrophic waters are already highly transparent, however, exposure of Mediterranean plankton to ultraviolet radiation (UV-B and UV-A) may increase further if the waters become more oligotrophic, thereby, allowing a deeper UV radiation penetration and likely enhancing impacts to biota. Here we experimentally elucidate the cumulative effects of warming and natural UV-B radiation on the net community production (NCP) of plankton communities. We conducted five experiments at monthly intervals, from June to October 2013, and evaluated the responses of NCP to ambient UV-B radiation and warming (+3°C), alone and in combination, in a coastal area of the northwest Mediterranean Sea. UV-B radiation and warming lead to reduced NCP and resulted in a heterotrophic (NCP < 0) metabolic balance. Both UV-B radiation and temperature, showed a significant individual effect in NCP across treatments and time. However, their joint effect showed to be synergistic as the interaction between them (UV × Temp) was statistically significant in most of the experiments performed. Our results showed that both drivers, would affect the gas exchange of CO2−O2 from and to the atmosphere and the role of plankton communities in the Mediterranean carbon cycle.

  20. Experimental assessment of cumulative temperature and UV-B radiation effects on Mediterranean plankton metabolism

    Directory of Open Access Journals (Sweden)

    Lara S. eGarcia-Corral

    2015-07-01

    Full Text Available The Mediterranean Sea is a vulnerable region for climate change, warming at higher rates compare to the global ocean. Warming leads to increased stratification of the water column and enhanced the oligotrophic nature of the Mediterranean Sea. The oligotrophic waters are already highly transparent, however, exposure of Mediterranean plankton to ultraviolet radiation (UV-B and UV-A may increase further if the waters become more oligotrophic, thereby, allowing a deeper UV radiation penetration and likely enhancing impacts to biota.Here we experimentally elucidate the cumulative effects of warming and natural UV-B radiation on the net community production (NCP of plankton communities. We conducted five experiments at monthly intervals, from June to October 2013, and evaluated the responses of NCP to ambient UV-B radiation and warming (+3ºC, alone and in combination, in a coastal area of the northwest Mediterranean Sea. UV-B radiation and warming lead to reduced net community production and resulted in a heterotrophic (NCP<0 metabolic balance. Both UV-B radiation and temperature, showed a significant individual effect in NCP across treatments and time. However, their joint effect showed to be synergistic as the interaction between them (UV x Temp was statistically significant in most of the experiments performed. Our results showed that both drivers, would affect the gas exchange of CO2-O2 from and to the atmosphere and the role of plankton communities in the Mediterranean carbon cycle

  1. Genetic study of resistance to inhibitory effects of UV radiation in rice (Oryza sativa)

    International Nuclear Information System (INIS)

    Sato, T.; Kang, H.S.; Kumagai, T.

    1994-01-01

    Genetic analysis of resistance to the inhibitory effects of UV radiation on growth of rice (Oryza sativa L.) cultivars was carried out. Some experimental plants were grown in visible radiation supplemented with UV radiation containing a large amount of UV-B and a small amount of UV-C in a phytotron, while others were grown without UV radiation. The degree of resistance to UV radiation was estimated in terms of the degree of reduction caused by supplemental UV radiation in the fresh weight of the aboveground plant parts and the chlorophyll content per unit fresh weight. Fresh weight and chlorophyll content in F 2 plants generated by reciprocally crossing cv. Sasanishiki, a cultivar more resistant to UV radiation, and Norin 1, a cultivar less resistant to such radiation exhibited a normal frequency distribution. The heritabilities of these two properties in F 2 plants were low under conditions of non-supplemental UV radiation. Under elevated UV radiation, the F 2 population shifted to the lower range of fresh weight and chlorophyll content, and the means were close to those of Norin 1. The heritabilities of these two properties were the same in the reciprocal crosses, indicating that maternal inheritance was not involved. Inheritance of chlorophyll content per unit fresh weight was further determined in F 3 lines generated by self-fertilizing F 2 plants of Sasanishiki and Norin 1. The results showed that the F 3 population was segregated into three genotypes, namely, resistant homozygotes, segregated heterozygotes and sensitive homozygotes, with a ratio of 1:65:16. It was thus evident that the resistance to the inhibitory effect of elevated UV radiation in these rice plants was controlled by recessive polygenes. (author)

  2. Twomey effect in subtropical stratocumulus clouds from UV depolarization lidar

    NARCIS (Netherlands)

    de Graaf, M.; Brown, Jessica; Donovan, D.P.; Nicolae, D.; Makoto, A.; Vassilis, A.; Balis, D.; Behrendt, A.; Comeron, A.; Gibert, F.; Landulfo, E.; McCormick, M.P.; Senff, C.; Veselovskii, I.; Wandinger, U.

    2018-01-01

    Marine stratocumulus clouds are important climate regulators, reflecting sunlight over a dark ocean background. A UV-depolarization lidar on Ascension, a small remote island in the south Atlantic, measured cloud droplet sizes and number concentration using an inversion method based on Monte Carlo

  3. UV-Curable Hybrid Nanocomposite Coating to Protect Tether Polymer Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA need for coatings to protect and strengthen tether materials for Momentum-exchange Electrodynamic Reboost (MXER) technology, Luminit, LLC,...

  4. Saving Your Students' Skin. Undergraduate Experiments That Probe UV Protection by Sunscreens and Sunglasses.

    Science.gov (United States)

    Abney, James R.; Scalettar, Bethe A.

    1998-01-01

    Describes absorption spectroscopy experiments that allow students to explore the mechanisms by which sunscreens and sunglasses provide protection from ultraviolet radiation. Exposes students to absorption phenomena in an engaging way. (DDR)

  5. Effects of ozone depletion and UV-B radiation on humans and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, K.R. [Guelph Univ., ON (Canada). Centre for Toxicology

    2008-03-15

    This paper summarized current research related to the effects of ultraviolet (UV-B) radiation on human health and the environment. Effects included direct responses in human as well as effects on biogeochemistry and the environmental cycling of substances. UV radiation has many harmful effects on the skin, eyes, and immune systems of humans. Skin cancer is a leading cause of death among fair-skinned populations exposed to UV radiation. The role of UV radiation in cataract formation was discussed, as well as issues related to the suppression of immune responses. The link between sunlight exposure and vitamin D levels in human populations was examined. The effects of UV radiation on terrestrial and aquatic ecosystems were reviewed. Issues related to biogeochemistry and atmospheric processes were discussed. The review suggested that changes in the intensity of solar UV radiation due to ozone depletion will have important repercussions for all organisms on the planet. It was concluded that the combined effects of UV-B radiation and climate change will not be easy to predict. 201 refs., 4 figs.

  6. Ultraviolet-B Protective Effect of Flavonoids from Eugenia caryophylata on Human Dermal Fibroblast Cells

    OpenAIRE

    Patwardhan, Juilee; Bhatt, Purvi

    2015-01-01

    Background: The exposure of skin to ultraviolet-B (UV-B) radiations leads to deoxyribonucleic acid (DNA) damage and can induce production of free radicals which imbalance the redox status of the cell and lead to increased oxidative stress. Clove has been traditionally used for its analgesic, anti-inflammatory, anti-microbial, anti-viral, and antiseptic effects. Objective: To evaluate the UV-B protective activity of flavonoids from Eugenia caryophylata (clove) buds on human dermal fibroblast c...

  7. A novel study on UV protection and antibacterial properties of washed denim garment

    Directory of Open Access Journals (Sweden)

    Pervez Md. Nahid

    2017-01-01

    Full Text Available On this planet, many investigations are applied to switch conventional chemical cloth techniques via eco-pleasant and economically attractive bioprocesses using enzymes. The present study offers an enzymatic washing system using enzyme (Cellzyme SPL H/C for boosting the ultraviolet and antimicrobial undertaking of denim garments. Experimental results showed that the 4.0% o.w.f enzyme awareness furnished a greater UPF than the other concentrations and before washed. Results divulge that enzyme (Cellzyme SPL H/C not handiest preserve the fabric surface from UV degradation but also performed extended degree of antibacterial endeavour in opposition to some species of bacteria that leading to act as a nice antibacterial agent on the denim materials. The enzyme washing healing diminished the skin hairiness and accelerated the skin evenness of the denim fibres as shown by means of SEM measurements.

  8. Lunar electrostatic effects and protection

    International Nuclear Information System (INIS)

    Sun, Yongwei; Yuan, Qingyun; Xiong, Jiuliang

    2013-01-01

    The space environment and features on the moon surface are factors in strong electrostatic electrification. Static electricity will be produced in upon friction between lunar soil and detectors or astronauts on the lunar surface. Lunar electrostatic environment effects from lunar exploration equipment are very harmful. Lunar dust with electrostatic charge may enter the equipment or even cover the instruments. It can affect the normal performance of moon detectors. Owing to the huge environmental differences between the moon and the earth, the electrostatic protection technology on the earth can not be applied. In this paper, we review the electrostatic characteristics of lunar dust, its effects on aerospace equipment and moon static elimination technologies. It was concluded that the effect of charged lunar dust on detectors and astronauts should be completely researched as soon as possible.

  9. An Evaluation of Root Phytochemicals Derived from Althea officinalis (Marshmallow) and Astragalus membranaceus as Potential Natural Components of UV Protecting Dermatological Formulations.

    Science.gov (United States)

    Curnow, Alison; Owen, Sara J

    2016-01-01

    As lifetime exposure to ultraviolet (UV) radiation has risen, the deleterious effects have also become more apparent. Numerous sunscreen and skincare products have therefore been developed to help reduce the occurrence of sunburn, photoageing, and skin carcinogenesis. This has stimulated research into identifying new natural sources of effective skin protecting compounds. Alkaline single-cell gel electrophoresis (comet assay) was employed to assess aqueous extracts derived from soil or hydroponically glasshouse-grown roots of Althea officinalis (Marshmallow) and Astragalus membranaceus, compared with commercial, field-grown roots. Hydroponically grown root extracts from both plant species were found to significantly reduce UVA-induced DNA damage in cultured human lung and skin fibroblasts, although initial Astragalus experimentation detected some genotoxic effects, indicating that Althea root extracts may be better suited as potential constituents of dermatological formulations. Glasshouse-grown soil and hydroponic Althea root extracts afforded lung fibroblasts with statistically significant protection against UVA irradiation for a greater period of time than the commercial field-grown roots. No significant reduction in DNA damage was observed when total ultraviolet irradiation (including UVB) was employed (data not shown), indicating that the extracted phytochemicals predominantly protected against indirect UVA-induced oxidative stress. Althea phytochemical root extracts may therefore be useful components in dermatological formulations.

  10. An Evaluation of Root Phytochemicals Derived from Althea officinalis (Marshmallow and Astragalus membranaceus as Potential Natural Components of UV Protecting Dermatological Formulations

    Directory of Open Access Journals (Sweden)

    Alison Curnow

    2016-01-01

    Full Text Available As lifetime exposure to ultraviolet (UV radiation has risen, the deleterious effects have also become more apparent. Numerous sunscreen and skincare products have therefore been developed to help reduce the occurrence of sunburn, photoageing, and skin carcinogenesis. This has stimulated research into identifying new natural sources of effective skin protecting compounds. Alkaline single-cell gel electrophoresis (comet assay was employed to assess aqueous extracts derived from soil or hydroponically glasshouse-grown roots of Althea officinalis (Marshmallow and Astragalus membranaceus, compared with commercial, field-grown roots. Hydroponically grown root extracts from both plant species were found to significantly reduce UVA-induced DNA damage in cultured human lung and skin fibroblasts, although initial Astragalus experimentation detected some genotoxic effects, indicating that Althea root extracts may be better suited as potential constituents of dermatological formulations. Glasshouse-grown soil and hydroponic Althea root extracts afforded lung fibroblasts with statistically significant protection against UVA irradiation for a greater period of time than the commercial field-grown roots. No significant reduction in DNA damage was observed when total ultraviolet irradiation (including UVB was employed (data not shown, indicating that the extracted phytochemicals predominantly protected against indirect UVA-induced oxidative stress. Althea phytochemical root extracts may therefore be useful components in dermatological formulations.

  11. Synergistic effect of ultrasonic pre-treatment combined with UV irradiation for secondary effluent disinfection.

    Science.gov (United States)

    Jin, Xin; Li, Zifu; Xie, Lanlan; Zhao, Yuan; Wang, Tingting

    2013-11-01

    The ultraviolet (UV) disinfection efficiency is often affected by suspended solids (SS). Given their high concentration or large particle size, SS can scatter UV light and provide shielding for bacteria. Thus, ultrasound is often employed as a pre-treatment process to improve UV disinfection. This work investigated the synergistic effect of ultrasound combined with UV for secondary effluent disinfection. Bench-scale experiments were conducted in using samples obtained from secondary sedimentation tanks. These tanks belonged to three wastewater treatment plants in Beijing that use different kinds of biological treatment methods. Several parameters may contribute to the changes in the efficiency of ultrasound and UV disinfection. Thus, the frequency and energy density of ultrasound, as well as the SS, were investigated. Results demonstrated that samples which have relatively higher SS concentrations or higher percentages of larger particles have less disinfection efficiency using UV disinfection alone. However, the presence of ultrasound could improve the disinfection efficiency because it has synergistic effect. Changes in the particle size distribution and SS concentration notably affected the efficiency of UV disinfection. The efficiency of Escherichia coli elimination can be decreased by 1.2 log units as the SS concentration increases from 16.9 mg/l to 25.4 mg/l at a UV energy density of 40 mJ/cm(2). UV disinfection alone reduced the E. coli population by 3.4 log units. However, the synergistic disinfection of ultrasound and UV could reach 5.4 log units during the reduction of E. coli at a 40 kHz frequency and an energy density of 2.64 kJ/l. The additional synergistic effect is 1.1 log units. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Photomorphogenic effects of UV-B radiation on plants: consequences for light competition

    International Nuclear Information System (INIS)

    Barnes, P.W.; Ballaré, C.L.; Caldwell, M.M.

    1996-01-01

    A combination of field and labotatory studies were conducted to explore the nature of photomorphogenic effects of ultraviolet-B radiation (UV-B; 280–320 nm) on plant morphology and to evaluate the ecological consequences of these alterations in morphology for interspecific competition. Under laboratory conditions, seedlings of cucumber (Cucumis sativus L.) and tomato (Lycopersicon esculentum Mill.) exhibited appreciable (ca. 50%) and rapid (< 3h) inhibition in hypocotyl elongation in response to UV-B exposure. In cucumber, this inhibition was reversible, occurred without any associated changes in dry matter production and was caused by UV-B incident on the cotyledons and not the stem or growing tip. Inhibition of stem elongation in etiolated tomato seedlings occurred at least 3 h prior to the onset of accumulation of UV-absorbing pigments and monochromatic UV supplied against a background of visible radiation revealed maximum effectiveness in inhibition around 300 nm. Collectively, these findings suggest that a specific, but yet unidentified, UV-B photoreceptor is involved in mediating certain morphological responses to UV-B. For mixtures of wheat (Triticum aestivum L.) and wild oat (Avena fatua L.), a common weedy competitor, supplemental UV-B irradiation in the field differentially altered shoot morphology which resulted in changes in canopy structure, light interception and calculated stand photosynthesis. It is argued that, because of its asymmetrical nature, competition for light can potentially amplify the effects of UV-B on shoot morphology and may, therefore, be an important mechanism by which changes in the solar UV-B spectrum associated with stratospheric ozone reduction could alter the composition and character of terrestrial vegetation

  13. UV-B-irradiation effect on growth reactions of phytopathogenic fungus fusarium solani

    International Nuclear Information System (INIS)

    Gushcha, M.Yi.; Dyachenko, A.Yi.; Dmitryijev, O.P.

    2002-01-01

    The UV-B irradiation effect on spore germination and hyphae growth of phythopathogenic fungus Fusarium solani was studied. Spores irradiation by small doses of 0,1 - 1,0 kJ/m 2 results in growth stimulation of primary hyphae. Adaptive effect of UV-B small doses for fungi was shown. Preliminary irradiation in doses of 0,1 - 0,5 kJ/m 2 increased spore radioresistance and diminished the effect of the next damaging dose

  14. Dependence of UV effect on quality of light during raising of seedlings (Lactuca sativa L.)

    International Nuclear Information System (INIS)

    Bogenrieder, A.; Klein, R.

    1978-01-01

    Greenhouse seedlings of Lactuca sativa L. show a decreased rate of photosynthesis under normal outdoor light conditions due to the effect of UV-light. In this study, the relationship between the declining rate of photosynthesis and the amount of UV in the spectrum was investigated. The determination was made in climatized gas exchange chambers under Xenon arc lamps (XBO 2500 W, Osram). The amount of UV in the spectrum was varied by the use of different surface mirrors made by aluminium evaporation. A linear relationship between the amount of UV-light in the spectrum and the rate of decrease of photosynthesis was obtained with 12 hour radiation. The decrease in photosynthesis is less when the plants are raised under UV-light lamps. (orig.) [de

  15. The effect of spermine on spontaneous and UV-induced mutations in Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Prendergast, J.A.; Kamra, O.P.; Nasim, A.

    1984-01-01

    The effect of different concentrations of spermine on spontaneous and UV-induced mutation in the adenine forward mutation system of Schizosaccharomyces pombe was investigated. The effect of spermine on spontaneous mutation was studied in 5 mutator strains (mut 1-4, mut 1-23, mut 2-9, mut 2-20 and mut 3-21) and on UV-induced mutation in a pigmented adenine-requiring strain and its radiation-sensitive derivative (rad 13). The effect of spermine exposure on mutation induction before and after UV irradiation was also investigated. Spermine increased spontaneous forward mutation in the mut 1-4 strain by 47% and enhanced UV-induced forward mutation 2-fold in the rad 13 and normal pigmented strains. No antimutagenic effect of spermine was seen in any of the strains tested. This is in marked contrast to the antimutagenic effect of spermine observed with bacteria. (Auth.)

  16. Mechanisms Of The Dissolution Inhibition Effect And Their Application To Designing Novel Deep-UV Resists

    Science.gov (United States)

    Murata, Makoto; Koshiba, Mitsunobu; Harita, Yoshiyuki

    1989-08-01

    The dissolution inhibition effect and alkaline solubility were investigated for naphthoquinone diazides like 1,2-naphthoquinone diazide (NQD), its 5-sulfonylchloride (NQD-C) and 5-sulfonyloxybenzene (DAM), and for other compounds like sulfonylchlorides, sulfonyl esters, sulfones and a ketone which do not contain a naphthoquinone diazide moiety. As a result, it has turned out that the dissolution inhibition effect does not depend on the specific structure; namely, the naphthoquinone diazide moiety itself, but largely on the alkaline solubility of the compounds added to a novolak resin. An XPS study for the films consisting of a novolak resin and a dissolution inhibitor indicates a formation of an inhibitor-rich protective thin layer on the film surface after immersion of the film in an alkaline developer. In this paper is proposed a new third dissolution inhibition mechanism in addition to the previously reported chemical crosslinking and dipolar interaction; i.e., the alkaline insoluble protective layer inhibits the dissolution of novolak resin at the interface between the film and the developer. A new three-component type deep-UV resist has been also developed as an application of the new mechanism. The resist consists of a novolak resin, 5-diazo Meldrum's acid and a new dissolution inhibitors like phenyltosylate and p-phenylene ditosylate, which successfully improve the residual resist thickness.

  17. Shining Light on Skin Pigmentation: The Darker and the Brighter Side of Effects of UV Radiation†

    Science.gov (United States)

    Maddodi, Nityanand; Jayanthy, Ashika; Setaluri, Vijayasaradhi

    2012-01-01

    The term barrier function as applied to human skin often connotes the physical properties of this organ that provide protection from its surrounding environment. This term does not generally include skin pigmentation. However, skin pigmentation, which is the result of melanin produced in melanocytes residing the basal layer of the skin and exported to the keratinocytes in the upper layers, serves equally important protective function. Indeed, changes in skin pigmentation are often the most readily recognized indicators of exposure of skin to damaging agents, especially to natural and artificial radiation in the environment. Several recent studies have shed new light on a) the mechanisms of involved in selective effects of subcomponents of UV radiation on human skin pigmentation and b) the interactive influences between keratinocytes and melanocytes, acting as ‘epidermal melanin unit’, that manifest as changes in skin pigmentation in response to exposure to various forms of radiation. This article provides a concise review of our current understanding of the effects of the non-ionizing solar radiation, at cellular and molecular levels, on human skin pigmentation. PMID:22404235

  18. Shining light on skin pigmentation: the darker and the brighter side of effects of UV radiation.

    Science.gov (United States)

    Maddodi, Nityanand; Jayanthy, Ashika; Setaluri, Vijayasaradhi

    2012-01-01

    The term barrier function as applied to human skin often connotes the physical properties of this organ that provides protection from its surrounding environment. This term does not generally include skin pigmentation. However, skin pigmentation, which is the result of melanin produced in melanocytes residing in the basal layer of the skin and exported to the keratinocytes in the upper layers, serves equally important protective function. Indeed, changes in skin pigmentation are often the most readily recognized indicators of exposure of skin to damaging agents, especially to natural and artificial radiation in the environment. Several recent studies have shed new light on (1) the mechanisms involved in selective effects of subcomponents of UV radiation on human skin pigmentation and (2) the interactive influences between keratinocytes and melanocytes, acting as "epidermal melanin unit," that manifest as changes in skin pigmentation in response to exposure to various forms of radiation. This article provides a concise review of our current understanding of the effects of the nonionizing solar radiation, at cellular and molecular levels, on human skin pigmentation. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  19. The effect of the operation modes of a gas discharge low-pressure amalgam lamp on the intensity of generation of 185 nm UV vacuum radiation

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru [Russian Academy of Sciences, Joint Institute of High Temperatures (Russian Federation); Drozdov, L. A., E-mail: lit@npo.lit.ru; Kostyuchenko, S. V.; Sokolov, D. V. [ZAO LIT (Russian Federation); Kudryavtsev, N. N.; Sobur, D. A., E-mail: soburda@gmail.com [Moscow Institute for Physics and Technology (Russian Federation)

    2011-12-15

    The effect of the discharge current, mercury vapor pressure, and the inert gas pressure on the intensity and efficiency of the 185 nm line generation are considered. The spectra of the UV radiation (vacuum ultraviolet) transmission by protective coatings from the oxides of rare earth metals and aluminum are investigated.

  20. Effect of heat, UV radiation, and moisture on the decohesion kinetics of inverted organic solar cells

    KAUST Repository

    Rolston, Nicholas; Printz, Adam D.; Dupont, Stephanie R.; Voroshazi, Eszter; Dauskardt, Reinhold H.

    2017-01-01

    Organic solar cells subjected to environmental stressors such as heat, moisture, and UV radiation can undergo significant mechanical degradation, leading to delamination of layers and device failure. This paper reports the effect these stressors

  1. SYMBIODINIUM ISOLATES FROM STONY CORAL: ISOLATION, GROWTH CHARACTERISTICS AND EFFECTS OF UV IRRADIATION

    Science.gov (United States)

    Symbiodinium spp. Isolates from Stony Coral: Isolation, Growth Characteristics and Effects of UV Irradiation (Abstract). J. Phycol. 37(3):42-43.Symbiodinium species were isolated from Montipora capitata, Acropora palmata and two field samples of Porites porites. Cultures ...

  2. Biological effects of N+ ion implantation and UV radiation on streptomyces albus

    International Nuclear Information System (INIS)

    Wu Jian; Dai Guifu

    2005-01-01

    The results of both 30 keV N + ion implantation and UV irradiation of Streptomyces albus showed complicate biological effects. The 'saddle shape' pattern of the dose-dependent curve formed by N + ion implantation with low energy was studied, and it proved that vacuum was not the reason, and the fact, the 'saddle shape' curve may be regarded as a HRS/IRR (hyper-radiosensitivity/increased radiaoresistance) effect caused by low dose irradiation. But Streptomyces albus UV irradiated after vacuum treatment only showed IRR effect or hormesis (survival rate >100%). The streptomycin resistance mutation of Streptomyces albus caused by low energy N + ion implantation and UV irradiation was also studied. the results showed that UV radiation is one effective means for streptomyces albus breeding. (authors)

  3. Welfare Effects of Employment Protection

    NARCIS (Netherlands)

    Belot, M.V.K.; Boone, J.; van Ours, J.C.

    2002-01-01

    Employment protection is often related to costs incurred by the firms when they hire a worker.The stability of the employment relationship, enhanced by employment protection, is also favorable to the productivity of the job.We analyze employment protection focusing on this trade-off between

  4. The effects of UV-B radiation on European heathland species

    International Nuclear Information System (INIS)

    Björn, L.O.; Callaghan, T.V.; Johnsen, I.; Lee, J.A.; Manetas, Y.; Paul, N.D.; Sonesson, M.; Wellburn, A.R.; Coop, D.; Heide-Jørgensen, H.S.; Gehrke, C.; Gwynn-Jones, D.; Johanson, U.; Kyparissis, A.; Levizou, E.; Nikolopoulos, D.; Petropoulou, Y.; Stephanou, M.

    1997-01-01

    The effects of enhanced UV-B radiation on three examples of European shrub-dominated vegetation were studied in situ. The experiments were in High Arctic Greenland, northern Sweden and Greece, and at all sites investigated the interaction of enhanced UV-B radiation (simulating a 15% reduction in the ozone layer) with artificially increased precipitation. The Swedish experiment also involved a study of the interaction between enhanced UV-B radiation and elevated CO 2 (600 ppm). These field studies were supported by an outdoor controlled environment study in the United Kingdom involving modulated enhancement of UV-B radiation in combination with elevated CO 2 (700 ppm). Effects of the treatments on plant growth, morphology, phenology and physiology were measured. The effects observed were species specific, and included both positive and negative responses to the treatments. In general the negative responses to UV-B treatments of up to three growing seasons were small, but included reductions in shoot growth and premature leaf senescence. Positive responses included a marked increase in flowering in some species and a stimulation of some photosynthetic processes. UV-B treatment enhanced the drought tolerance of Pinus pinea and Pinus halepensis by increasing leaf cuticle thickness. In general, there were few interactions between the elevated CO 2 and enhanced UV-B treatments. There was evidence to suggest that although the negative responses to the treatments were small, damage may be increasing with time in some long-lived woody perennials. There was also evidence in the third year of treatments for effects of UV-B on insect herbivory in Vaccinium species. The experiments point to the necessity for long-term field investigations to predict the likely ecological consequences of increasing UV-B radiation. (author)

  5. Effects of Radon and UV Exposure on Skin Cancer Mortality in Switzerland

    Science.gov (United States)

    de Hoogh, Kees; Hauri, Dimitri; Vicedo-Cabrera, Ana M.; Schindler, Christian; Huss, Anke; Röösli, Martin

    2017-01-01

    Background: Skin cancer incidence in Switzerland is among the highest in the world. In addition to exposure to ultraviolet (UV) radiation, radon alpha particles attached to aerosols can adhere to the skin and potentially cause carcinogenic effects. Objectives: We investigated the effects of radon and UV exposure on skin cancer mortality. Methods: Cox proportional hazard regression was used to study the association between exposures and skin cancer mortality in adults from the Swiss National Cohort. Modeled radon exposure and erythemal-weighted UV dose were assigned to addresses at baseline. Effect estimates were adjusted for sex, civil status, mother tongue, education, job position, neighborhood socioeconomic position, and UV exposure from outdoor occupation. Results: The study included 5.2 million adults (mean age 48 y) and 2,989 skin cancer deaths, with 1,900 indicating malignant melanoma (MM) as the primary cause of death. Adjusted hazard ratios (HR) for MM at age 60 were 1.16 (95% CI: 1.04, 1.29) per 100Bq/m3 radon and 1.11 (1.01, 1.23) per W/m2 in UV dose. Radon effects decreased with age. Risk of MM death associated with residential UV exposure was higher for individuals engaged in outdoor work with UV exposure (HR 1.94 [1.17, 3.23]), though not statistically significantly different compared to not working outdoors (HR 1.09 [0.99, 1.21], p=0.09). Conclusions: There is considerable variation in radon and UV exposure across Switzerland. Our study suggests both are relevant risk factors for skin cancer mortality. A better understanding of the role of the UV radiation and radon exposure is of high public health relevance. https://doi.org/10.1289/EHP825 PMID:28686556

  6. Effect of UV-B on enzymes of nitrogen metabolism in the cyanobacterium Nostoc calcicola

    International Nuclear Information System (INIS)

    Kumar, A.; Sinha, R.P.; Häder, D. P.

    1996-01-01

    The effects of ultraviolet-B (UV-B; 280–315 nm) irradiation on nitrogenase and nitrate reductase (NR) activity have been studied in the filamentous and heterocystous N 2 -fixing cyanobacterium Nostoc calcicola. Exposure of cultures to UV-B (5W/m 2 ) for as little as 30 min caused complete inactivation of nitrogenase activity whereas nitrate reductase activity was stimulated twofold in comparison to one exposed to fluorescent white light. GS activity was also inhibited by UV-B treatment, but there was no total loss of activity even after 4 h. NR activity showed a gradual stimulation up to 4 h and thereafter it became constant. Stimulation was also obtained in reductant deficient cultures (12 h incubation in the dark) suggesting independence of NR of PS-II under UV-B. NR activity was also unaffected in the presence of DCMU, a known inhibitor of PS-II. However, both O 2 evolution and 14 CO 2 uptake were completely abolished following 30 min of UV-B treatment. Addition of the protein synthesis inhibitor chloramphenicol (25 μg/mL) to cultures did not show any inhibitory effect on NR activity. SDS-PAGE analysis of UV-B treated cultures elicited gradual loss of protein bands with increasing duration of exposure. Our findings suggest that UV-B irradiance has differential effects on the enzymes of the nitrogen metabolism in the cyanobacterium Nostoc calcicola. Further studies are needed to reveal the exact mechanism involved in the stimulation of NR activity by UV-B. Whether UV-B has a direct effect on NO 2 − accumulation in the cells needs detailed investigation. (author)

  7. UV radiation: sources, effects and risks of human and environmental exposure

    International Nuclear Information System (INIS)

    Eggink, G.J.; Slaper, H.

    1992-01-01

    This paper summarizes the principal results of a review study on UV- -exposure and UV related risks in the Netherlands. Both the present state of affairs and future developments are discussed, the latter partly based on model calculations. The sun is the main UV source to which the whole population is exposed. Solar exposure is estimated to amount at least 90% of the annual UV burden for the Dutch population. For certain groups in the population man made sources are estimated to contribute considerably to the yearly UV dose. Ozone depletion as a result of human activities, growing use of tungsten halogen lamps and increasing application of UV-sources in industry and medicine all tend to increase UV exposure. UV exposure can lead to a wide variety of health effects, among which the induction of skin cancer, skin aging, cataract formation and suppression of immune responses. Risk estimates of these health effects are available for skin cancer and to a lesser extend for cataracts. The estimated UV related skin cancer incidence rate in the Netherlands is 10 -3 per year (15 000 cases), and the associated mortality rate amounts to 6-25·10 -6 per year (90-400 deaths). The ozone depletion presently observed over the past decade (5% in the Netherlands), is expected to lead to an increased annual mortality rate due to skin cancer of 1,3·10 -6 per year. Environmental exposure can influence plant physiology and lead to a decrease of biomass in aquatic as well as terrestrial ecosystems. This may result in adverse effects on the foodweb and biodiversity of ecosystems. Quantitative risk estimates for these effects are very uncertain or lacking. (author)

  8. Effects of Stratospheric Ozone Depletion, Solar UV Radiation, and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    Science.gov (United States)

    Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment...

  9. The effect of UV-light on DNA metabolism of lymphocytes during radiotherapy

    International Nuclear Information System (INIS)

    Klein, W.; Altmann, H.; Klein, H.; Alth, G.; Koren, H.

    1980-02-01

    The effects of gamma plus electron therapy and only gammatherapy, respectively, were investigated in lymphocytes of the peripheral blood of 10 patients with malignancies. The efficiency of DNA repair was tested by an irradiation of the cells with UV light beside radiotherapy. Using only gamma rays for therapy, the effects by UV light were not so pronounced than for using gamma plus electron therapy. (author)

  10. Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica.

    Science.gov (United States)

    Singh, Jaswant; Singh, Rudra P

    2014-01-01

    This study aimed to assess the impacts of ultraviolet-B (UV-B) radiation over a 28-day period on the levels of pigments of Umbilicaria aprina and Bryum argenteum growing in field. The depletion of stratospheric ozone is most prominent over Antarctica, which receives more UV-B radiation than most other parts of the planet. Although UV-B radiation adversely affects all flora, Antarctic plants are better equipped to survive the damaging effects of UV-B owing to defenses provided by UV-B absorbing compounds and other screening pigments. The UV-B radiations and daily average ozone values were measured by sun photometer and the photosynthetic pigments were analyzed by the standard spectrophotometric methods of exposed and unexposed selected plants. The daily average atmospheric ozone values were recorded from 5 January to 2 February 2008. The maximum daily average for ozone (310.7 Dobson Units (DU)) was recorded on 10 January 2008. On that day, average UV-B spectral irradiances were 0.016, 0.071, and 0.186 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. The minimum daily average ozone value (278.6 DU) was recorded on 31 January 2008. On that day, average UV-B spectral irradiances were 0.018, 0.085, and 0.210 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. Our results concludes that following prolonged UV-B exposure, total chlorophyll levels decreased gradually in both species, whereas levels of UV-B absorbing compounds, phenolics, and carotenoids gradually increased.

  11. Protection from UV light is an evolutionarily conserved feature of the haematopoietic niche

    Science.gov (United States)

    Kapp, Friedrich G.; Perlin, Julie R.; Hagedorn, Elliott J.; Gansner, John M.; Schwarz, Daniel E.; O'Connell, Lauren A.; Johnson, Nicholas; Amemiya, Chris; Fisher, David E.; Wolfle, Ute; Trompouki, Eirini; Niemeyer, Charlotte M.; Driever, Wolfgang; Zon, Leonard I.

    2018-01-01

    Haematopoietic stem and progenitor cells (HSPCs) require a specific microenvironment, the haematopoietic niche, which regulates HSPC behaviour. The location of this niche varies across species, but the evolutionary pressures that drive HSPCs to different microenvironments remain unknown. The niche is located in the bone marrow in adult mammals, whereas it is found in other locations in non-mammalian vertebrates, for example, in the kidney marrow in teleost fish. Here we show that a melanocyte umbrella above the kidney marrow protects HSPCs against ultraviolet light in zebrafish. Because mutants that lack melanocytes have normal steady-state haematopoiesis under standard laboratory conditions, we hypothesized that melanocytes above the stem cell niche protect HSPCs against ultraviolet-light-induced DNA damage. Indeed, after ultraviolet-light irradiation, unpigmented larvae show higher levels of DNA damage in HSPCs, as indicated by staining of cyclobutane pyrimidine dimers and have reduced numbers of HSPCs, as shown by cmyb (also known as myb) expression. The umbrella of melanocytes associated with the haematopoietic niche is highly evolutionarily conserved in aquatic animals, including the sea lamprey, a basal vertebrate. During the transition from an aquatic to a terrestrial environment, HSPCs relocated into the bone marrow, which is protected from ultraviolet light by the cortical bone around the marrow. Our studies reveal that melanocytes above the haematopoietic niche protect HSPCs from ultraviolet-light-induced DNA damage in aquatic vertebrates and suggest that during the transition to terrestrial life, ultraviolet light was an evolutionary pressure affecting the location of the haematopoietic niche.

  12. Toxic effects of combined effects of anthracene and UV radiation on Brachionus plicatilis

    Science.gov (United States)

    Gao, Ceng; Zhang, Xinxin; Xu, Ningning; Tang, Xuexi

    2017-05-01

    Anthracene is a typical polycyclic aromatic hydrocarbon, with photo activity, can absorb ultraviolet light a series of chemical reactions, aquatic organisms in the ecosystem has a potential light induced toxicity. In this paper, the effects of anthracene and UV radiation on the light-induced toxicity of Brachionus plicatilis were studied. The main methods and experimental results were as follows: (1) The semi-lethal concentration of anthracene in UV light was much lower than that in normal light, The rotifers have significant light-induced acute toxicity. (2) Under UV irradiation, anthracene could induce the increase of ROS and MDA content in B. plicatilis, and the activity of antioxidant enzymes in B. plicatilis significantly changed, Where SOD, GPx activity was induced within 24 hours of the beginning of the experiment. And the content of GPX and CAT was inhibited after 48 hours. Therefore, the anthracite stress induced by UV radiation could more strongly interfere with the ant oxidative metabolism of B. plicatilis, and more seriously cause oxidative damage, significant light-induced toxicity.

  13. The antimutagenic effect of monoterpenes against UV-irradiation-, 4NQO- and t-BOOH-induced mutagenesis in coli

    Directory of Open Access Journals (Sweden)

    Nikolić Biljana

    2011-01-01

    Full Text Available The aim of this work was to investigate the antimutagenic potential of monoterpenes from sage and basil in Escherichia coli. The mutagenic potential of monoterpenes was pre-screened with Salmonella/microsome reversion assay in strain TA100 and no mutagenic effect was detected. The antimutagenic potential against UV- 4NQO- and t-BOOH induced mutagenesis was evaluated in E. coli K12 and E. coli WP2 by reversion assays. The obtained results indicate that camphor and thujone reduce UV- and 4NQO-induced mutations; myrcene reduces t-BOOH-induced mutations, while eucalyptol and linalool reduce mutagenicity by all tested mutagens. Considering evolutionary conservation of DNA repair and antioxidative protection, the obtained results indicate that further antigenotoxicity studies should be undertaken in eukaryotes.

  14. Combined effects of water, nutrient, and UV-B stress on female fitness in Brassica (Brassicaceae)

    International Nuclear Information System (INIS)

    Conner, J.K.; Zangori, L.A.

    1998-01-01

    Our knowledge of the effects of increased levels of ultraviolet-B radiation (UV-B) on plant fitness is limited mainly to yield studies in a few crop species. Previous greenhouse and garden studies of Brassica have found greater detrimental effects of UV-B on fitness in gardens than in the greenhouse, suggesting the possibility that additional stresses in the field decrease the ability of Brassica to cope with UV-B. Possible interactions between UV-B and water/nutrient stress in determining plant fitness have rarely, if ever, been studied experimentally. Here we report measurements of female fitness in two species of Brassica in an experiment in which both UV-B and levels of water and nutrients were varied in a 2 X 2 factorial design. Water and nutrient stress reduced female fitness in both species, while UV-B caused fitness reductions in only one of the species. There was evidence for interactions between UV-B and water/nutrient stress for only a few of the traits measured; most traits, including those closely related to fitness, showed no evidence of an interaction

  15. A method for evaluation of UV and biologically effective exposures to plants

    International Nuclear Information System (INIS)

    Paris, A.V.; Southern Queensland Univ., Toowoomba, QLD; Wong, J.C.F.; Galea, V.

    1996-01-01

    This paper presents a method for evaluating the UV and biologically effective exposures to a plant canopy during the irradiation of soybean with supplemental levels of UV radiation in a greenhouse study. The method employs four materials as dosimeters that allow evaluation of the UV spectra. The exposures evaluated at three growth stages were less by factors of 0.44, 0.49 and 0.56 compared to the ambient exposures. At the end of the irradiation period, the ambient biologically effective exposure for generalized plant response was higher by 180% compared to that calculated over the canopy. This is the magnitude of the error in UV studies that provide the ambient exposure as a measure of the UV incident on the plant. Additionally, the difference between the ambient and canopy exposures varied during the growth stages. These results indicate that the dosimetric technique applied to evaluating the UV exposures over a plant canopy is a more accurate representation of the UV exposure incidence on a plant than any obtained by measuring the ambient exposures only. (Author)

  16. Effects of the UV filter benzophenone-3 (oxybenzone) at low concentrations in zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Blüthgen, Nancy [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH‐4132 Muttenz (Switzerland); University of Basel, Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, CH-4056 Basel (Switzerland); Zucchi, Sara [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH‐4132 Muttenz (Switzerland); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH‐4132 Muttenz (Switzerland); Swiss Federal Institute of Technology (ETHZ), Department of Environmental Sciences, CH‐8092 Zürich (Switzerland)

    2012-09-01

    Organic UV filters including benzophenone-3 (BP-3) are widely used to protect humans and materials from damage by UV irradiation. Despite the environmental occurrence of BP-3 in the aquatic environment, little is known about its effects and modes of action. In the present study we assess molecular and physiological effects of BP-3 in adult male zebrafish (Danio rerio) and in eleuthero-embryos by a targeted gene expression approach focusing on the sex hormone system. Fish and embryos are exposed for 14 days and 120 hours post fertilization, respectively, to 2.4–312 μg/L and 8.2–438 μg/L BP-3. Chemical analysis of water and fish demonstrates that BP-3 is partly transformed to benzophenone-1 (BP-1) and both compounds are accumulated in adult fish. Biotransformation to BP-1 is absent in eleuthero-embryos. BP-3 exposure leads to similar alterations of gene expression in both adult fish and eleuthero-embryos. In the brain of adult males esr1, ar and cyp19b are down-regulated at 84 μg/L BP-3. There is no induction of vitellogenin expression by BP-3, both at the transcriptional and protein level. An overall down-regulation of the hsd3b, hsd17b3, hsd11b2 and cyp11b2 transcripts is observed in the testes, suggesting an antiandrogenic activity. No histological changes were observed in the testes after BP-3 treatment. The study leads to the conclusion that low concentrations of BP-3 exhibit similar multiple hormonal activities at the transcription level in two different life stages of zebrafish. Forthcoming studies should show whether this translates to additional physiological effects. Highlights: ► Activity of UV filter benzophenone-3 (BP-3) is assessed in zebrafish. ► BP-3 is partly metabolized to benzophenone-1 by adult fish but not embryos. ► Alterations of gene expression are similar in adult males and embryos. ► Gene expression alterations point to multiple hormonal activity of BP-3.

  17. How do environmental and behavioral factors impact ultraviolet radiation effects on health: the RISC-UV Project

    Science.gov (United States)

    Correa, M. P.; Godin-Beekmann, S.; Haeffelin, M.; Saiag, P.; Mahe, E.; Brogniez, C.; Dupont, J. C.; Pazmiño, A.; Auriol, F.; Bonnel, B.

    2009-04-01

    Introduction: RISC-UV is a research project on "Impact of climate change on ultraviolet radiation and risks for health", a research project in which physicists, meteorologists and physicians work together to assess the relative role played by environmental and behavioral factors in the UV-related diseases as skin cancer and vitamin D deficiency. Environmental factors are related to the role played by the alteration in intensity of UV radiation at the Earth's surface resulting from variation in several factors affected by climate change and human activities: stratospheric ozone, cloud cover, aerosols and the reflectivity of the surface. On the other hand, behavioral factors are related to the sun over/underexposure and the correct use of sun-protection (hats, caps, sunglasses, sunscreen lotion, etc.). RISC-UV is organized around three main areas: 1) Organization of a workshop, scheduled for January 2009, which aims to describe the state of the art in the subject within each community and define the requirements of pathologists for epidemiological studies; 2) A pilot study intended to evaluate the consistency between UV measurements delivered simultaneously by satellite-based instruments, ground instruments, radiometers and individual dosimeters. This study is based on measurements campaigns and an analysis of the long-term consistency of data series relating to UV radiation and associated parameters; and 3) Analysis of the weights of medical, behavioral and environmental parameters involved in skin carcinogenesis. A detailed description of these areas can be found in http://www.gisclimat.fr/Doc/GB/D_projects/RISC-UV_GB.html. This presentation focuses on the first results of the UV experimental measurements performed between September 8th and October 8th 2008 in Palaiseau, France (48.7˚ N; 2.2˚ E; 170m - Haeffelin et al., 2005). A second campaign is foreseen for the spring of 2009. The purpose of these campaigns is to obtain, analyze and quantitatively link the

  18. Effect of medium-pressure UV-lamp treatment on disinfection by-products in chlorinated seawater swimming pool waters.

    Science.gov (United States)

    Cheema, Waqas A; Manasfi, Tarek; Kaarsholm, Kamilla M S; Andersen, Henrik R; Boudenne, Jean-Luc

    2017-12-01

    Several brominated disinfection by-products (DBPs) are formed in chlorinated seawater pools, due to the high concentration of bromide in seawater. UV irradiation is increasingly employed in freshwater pools, because UV treatment photodegrades harmful chloramines. However, in freshwater pools it has been reported that post-UV chlorination promotes the formation of other DBPs. To date, UV-based processes have not been investigated for DBPs in seawater pools. In this study, the effects of UV, followed by chlorination, on the concentration of three groups of DBPs were investigated in laboratory batch experiments using a medium-pressure UV lamp. Chlorine consumption increased following post-UV chlorination, most likely because UV irradiation degraded organic matter in the pool samples to more chlorine-reactive organic matter. Haloacetic acid (HAA) concentrations decreased significantly, due to photo-degradation, but the concentrations of trihalomethanes (THMs) and haloacetonitriles (HANs) increased with post-UV chlorination. Bromine incorporation in HAAs was significantly higher in the control samples chlorinated without UV irradiation but decreased significantly with UV treatment. Bromine incorporation was promoted in THM and HAN after UV and chlorine treatment. Overall, the accumulated bromine incorporation level in DBPs remained essentially unchanged in comparison with the control samples. Toxicity estimates increased with single-dose UV and chlorination, mainly due to increased HAN concentrations. However, brominated HANs are known in the literature to degrade following further UV treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effectiveness of ultraviolet light personal protective equipment used ...

    African Journals Online (AJOL)

    Journal of Agriculture, Science and Technology ... (UV) light personal protective equipment (PPE) used by arc welders in the informal sector. ... all had formal education: 31.1% had primary school level as the highest attained education level, ...

  20. Effect of UV irradiation on aflatoxin reduction: a cytotoxicity evaluation study using human hepatoma cell line.

    Science.gov (United States)

    Patras, Ankit; Julakanti, Sharath; Yannam, Sudheer; Bansode, Rishipal R; Burns, Mallory; Vergne, Matthew J

    2017-11-01

    In this proof-of-concept study, the efficacy of a medium-pressure UV (MPUV) lamp source to reduce the concentrations of aflatoxin B 1 , aflatoxin B 2 , and aflatoxin G 1 (AFB 1, AFB 2 , and AFG 1 ) in pure water is investigated. Irradiation experiments were conducted using a collimated beam system operating between 200 to 360 nm. The optical absorbance of the solution and the irradiance of the lamp are considered in calculating the average fluence rate. Based on these factors, the UV dose was quantified as a product of average fluence rate and treatment time. Known concentrations of aflatoxins were spiked in water and irradiated at UV doses ranging from 0, 1.22, 2.44, 3.66, and 4.88 J cm -2 . The concentration of aflatoxins was determined by HPLC with fluorescence detection. LC-MS/MS product ion scans were used to identify and semi-quantify degraded products of AFB 1 , AFB 2 , and AFG 1 . It was observed that UV irradiation significantly reduced aflatoxins in pure water (p UV light may have caused photolysis of AFB 1 , AFB 2 , and AFG 1 molecules. In cell culture studies, our results demonstrated that the increase of UV dosage decreased the aflatoxin-induced cytotoxicity in HepG 2 cells. Therefore, our research finding suggests that UV irradiation can be used as an effective technique for the reduction of aflatoxins.

  1. The effect of UV-B radiation on chloroplast translation in Pisum sativum

    International Nuclear Information System (INIS)

    Raab, M.M.; Jagendorf, A.T.

    1990-01-01

    UV-B radiation has previously been reported to reduce growth, flowering, and net photosynthesis. The present study examines the effect of UV-B radiation on isolated chloroplast of 7-10 day old pea seedlings. Amount of ( 3 H)-Leu incorporated into isolated chloroplasts was measured in the presence or absence of UV-B exposure. Preliminary experiments show a 30% inhibition of protein synthesis in isolated chloroplasts after only 20 mins of UV-B exposure (6.9 J/m 2 /30 min). Percent inhibition of chloroplast translation is directly correlated with UV-B exposure over a 60 min time span. Preliminary studies also show no change in both cold and radiolabeled protein profiles as expressed on 1-D PAGE and autofluorography. Comparative studies on the sensitivity of e - flow vs protein synthesis following UV-B exposure are underway. Further work on the role of oxygen free radicals and the specific site of action of UV-B damage to the translation machinery of chloroplasts will be discussed

  2. Solar UV-B effects on PSII performance in Betula nana are influenced by PAR level and reduced by EDU

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, Helge

    2012-01-01

    -B transparent filter control (Teflon), UV-B-absorbing filter (Mylar) and UV-AB-absorbing filter (Lexan). Ethylenediurea (EDU), a chemical normally used to protect plants against ozone injury, was sprayed on the leaves both in the field and in an additional laboratory study to investigate if EDU mitigated...

  3. Role of cloned carotenoid genes expressed in Escherichia coli in protecting against inactivation by near-UV light and specific phototoxic molecules

    International Nuclear Information System (INIS)

    Tuveson, R.W.; Larson, R.A.; Kagan, J.

    1988-01-01

    Genes controlling carotenoid synthesis were cloned from Erwinia herbicola and expressed in an Escherichia coli strain. Carotenoids protect against high fluences of near-UV (NUV; 320 to 400 nm) but not against far-UV (200-300 nm). Protection of E. coli cells was not observed following treatment with either psoralen or 8-methoxypsoralen plus NUV. However, significant protection of cells producing carotenoids was observed with three photosensitizing molecules activated by NUV (alpha-terthienyl, harmine, and phenylheptatriyne) which are thought to have the membrane as an important lethal target. Protection of carotenoid-producing cells against inactivation was not observed with acridine orange plus visible light but was seen with toluidine blue O plus visible light

  4. Evaluating the combined effects of pretilachlor and UV-B on two Azolla species.

    Science.gov (United States)

    Prasad, Sheo Mohan; Kumar, Sushil; Parihar, Parul; Singh, Anita; Singh, Rachana

    2016-03-01

    The present study assessed the comparative responses of two agronomic species of Azolla (A.microphylla and A. pinnata) exposed to man-made and natural stressors by evaluating biomass accumulation, pigments (chlorophyll a and b and carotenoid contents), photosynthetic activity and nitrogen metabolism. The study was carried out in field where two species of Azolla were cultured and treated with various concentrations (5, 10 and 20 μg ml(-1)) of herbicide; pretilachlor [2-chloro-2,6-diethyl-N-(2-propoxyethyl) acetanilide] and enhanced levels (UV-B1: ambient +2.2 kJ m(-2) day(-1) and UV-B2: ambient +4.4 kJ m(-2) day(-1)) of UV-B, alone as well as in combination. Biomass accumulation, photosynthetic pigments; chlorophyll a, b and carotenoids, photosynthetic oxygen yield and photosynthetic electron transport activities i.e. photosystem II (PS II) and photosystem I (PS I) in both the species declined with the increasing doses of pretilachlor and UV-B radiation, which further declined when applied in combination. The lower doses (5 and 10 μg ml(-1)) of pretilachlor and UV-B (UV-B1 and UV-B2) alone, damaged mainly the oxidation side of PS II, whereas higher dose (20 μg ml(-1)) of pretilachlor alone and in combination with UV-B1 and UV-B2 caused damage to PS II reaction centre and beyond this towards the reduction side. A significant enhancement in respiration was also noticed in fronds of both the Azolla species following pretilachlor and UV-B treatment, hence indicating strong damaging effect. The nitrate assimilating enzymes - nitrate reductase and nitrite reductase and ammonium assimilating enzymes - glutamine synthetase and glutamate synthase were also severely affected when treated either with pretilachlor and/or UV-B while glutamate dehydrogenase exhibited a stimulatory response. The study suggests that both the species of Azolla showed considerable damage under pretilachlor and UV-B treatments alone, however, in combination the effect was more intense. Further, in

  5. Serious complications in experiments in which UV doses are effected by using different lamp heights.

    Science.gov (United States)

    Flint, Stephan D; Ryel, Ronald J; Hudelson, Timothy J; Caldwell, Martyn M

    2009-10-06

    Many experiments examining plant responses to enhanced ultraviolet-B radiation (280-315nm) simply compare an enhanced UV-B treatment with ambient UV-B (or no UV-B radiation in most greenhouse and controlled-environment studies). Some more detailed experiments utilize multiple levels of UV-B radiation. A number of different techniques have been used to adjust the UV dose. One common technique is to place racks of fluorescent UV-emitting lamps at different heights above the plant canopy. However, the lamps and associated support structure cast shadows on the plant bed below. We calculated one example of the sequence of shade intervals for two common heights of lamp racks and show the patterns and duration of shade which the plants receive is distributed differently over the course of the day for different heights of the lamp racks. We also conducted a greenhouse experiment with plants (canola, sunflower and maize) grown under unenergized lamp racks suspended at the same two heights above the canopy. Growth characteristics differed in unpredictable ways between plants grown under the two heights of lamp racks. These differences could enhance or obscure potential UV-B effects. Also, differences in leaf mass per unit foliage area, which were observed in this experiment, could contribute to differences in plant UV-B sensitivity. We recommend the use of other techniques for achieving multiple doses of UV-B radiation. These range from simple and inexpensive approaches (e.g., wrapping individual fluorescent tubes in layers of a neutral-density filter such as cheese cloth) to more technical and expensive alternatives (e.g., electronically modulated lamp control systems). These choices should be determined according to the goals of the particular experiment.

  6. Molecular mechanisms of green tea polyphenols with protective effects against skin photoaging.

    Science.gov (United States)

    Roh, Eunmiri; Kim, Jong-Eun; Kwon, Jung Yeon; Park, Jun Seong; Bode, Ann M; Dong, Zigang; Lee, Ki Won

    2017-05-24

    Whereas green tea has historically been consumed in high quantities in Northeast Asia, its popularity is also increasing in many Western countries. Green tea is an abundant source of plant polyphenols exhibiting numerous effects that are potentially beneficial for human health. Accumulating evidence suggests that green tea polyphenols confer protective effects on the skin against ultraviolet (UV) irradiation-induced acceleration of skin aging, involving antimelanogenic, antiwrinkle, antioxidant, and anti-inflammatory effects as well as prevention of immunosuppression. Melanin pigmentation in the skin is a major defense mechanism against UV irradiation, but pigmentation abnormalities such as melasma, freckles, senile lentigines, and other forms of melanin hyperpigmentation can also cause serious health and aesthetic issues. Furthermore, UV irradiation initiates the degradation of fibrillar collagen and elastic fibers, promoting the process of skin aging through deep wrinkle formation and loss of tissue elasticity. UV irradiation-induced formation of free radicals also contributes to accelerated photoaging. Additionally, immunosuppression caused by UV irradiation plays an important role in photoaging and skin carcinogenesis. In this review, we summarize the current literature regarding the antimelanogenic, antiwrinkle, antioxidant, and immunosuppression preventive mechanisms of green tea polyphenols that have been demonstrated to protect against UV irradiation-stimulated skin photoaging, and gauge the quality of evidence supporting the need for clinical studies using green tea polyphenols as anti-photoaging agents in novel cosmeceuticals.

  7. Gonad protective effect of radiation protective apron in chest radiography

    International Nuclear Information System (INIS)

    Hashimoto, Masatoshi; Kato, Hideyuki; Fujibuchi, Toshiou; Ochi, Shigehiro; Morita, Fuminori

    2004-01-01

    Depending on the facility, a radiation protective apron (protector) is used to protect the gonad from radiation exposure in chest radiography. To determine the necessity of using a protector during chest radiography, we measured the effect of the protector on the gonad in this study. First, using a human body phantom, we measured the absorbed dose of the female gonad with and without the protector, using a thermoluminescence dosimeter (TLD), and confirmed its protective effect. Using the protector, the absorbed dose was reduced to 28±2% and 39±4% for field sizes of 14 x 17 inch and 14 x 14 inch, respectively. Next, we used Monte Carlo simulation and confirmed, not only the validity of the actual measurement values, but also the fact that the influence of radiation on the absorbed dose of the gonad was mostly from scattered radiation from inside the body for the 14 x 17 inch field size, and also from the X-ray tube for the 14 x 14 inch field size. Although a certain protective effect is achieved by using the protector, the radiation dose to the gonad is only a few μGy even without a protector. Thus, the risk of a genetic effect would be as small as 10 -8 . Given that acceptable risk is below 10 -6 , we conclude the use of a radiation protective apron is not necessary for diagnostic chest radiography. (author)

  8. [Gonad protective effect of radiation protective apron in chest radiography].

    Science.gov (United States)

    Hashimoto, Masatoshi; Kato, Hideyuki; Fujibuchi, Toshiou; Ochi, Shigehiro; Morita, Fuminori

    2004-12-01

    Depending on the facility, a radiation protective apron (protector) is used to protect the gonad from radiation exposure in chest radiography. To determine the necessity of using a protector during chest radiography, we measured the effect of the protector on the gonad in this study. First, using a human body phantom, we measured the absorbed dose of the female gonad with and without the protector, using a thermoluminescence dosimeter (TLD), and confirmed its protective effect. Using the protector, the absorbed dose was reduced to 28+/-2% and 39+/-4% for field sizes of 14 x 17 inch and 14 x 14 inch, respectively. Next, we used Monte Carlo simulation and confirmed, not only the validity of the actual measurement values, but also the fact that the influence of radiation on the absorbed dose of the gonad was mostly from scattered radiation from inside the body for the 14 x 17 inch field size, and also from the X-ray tube for the 14 x 14 inch field size. Although a certain protective effect is achieved by using the protector, the radiation dose to the gonad is only a few microGy even without a protector. Thus, the risk of a genetic effect would be as small as 10(-8). Given that acceptable risk is below 10(-6), we conclude the use of a radiation protective apron is not necessary for diagnostic chest radiography.

  9. Effects of UV light disinfection on antibiotic-resistant coliforms in wastewater effluents

    International Nuclear Information System (INIS)

    Meckes, M.C.

    1982-01-01

    Total coliforms and total coliforms resistant to streptomycin, tetracycline, or chloramphenicol were isolated from filtered activated sludge effluents before and after UV light irradiation. Although the UV irradiation effectively disinfected the wastewater effluent, the percentage of the total surviving coliform population resistant to tetracycline or chloramphenicol was significantly higher than the percentage of the total coliform population resistant to those antibiotics before UV irradiation. This finding was attributed to the mechanism of R-factor mediated resistance to tetracycline. No significant difference was noted for the percentage of the surviving total coliform population resistant to streptomycin before or after UV irradiation. Multiple drug resistant to patterns of 300 total coliform isolates revealed that 82% were resistant to two or more antibiotics. Furthermore, 46% of these isolates were capable of transferring antibiotic resistance to a sensitive strain of Escherichia coli

  10. EFFECT OF UV TREATMENT ON THE ANTI NUTRITIONAL FACTORS OF TWO ACCESSIONS OF VELVET BEAN,

    Directory of Open Access Journals (Sweden)

    Balasubiramanian Kamatchi Kala

    2012-02-01

    Full Text Available The effect of UV radiation on the antinutritional factors such as, total free phenolics, tannin, l-dopa, phytic acid, hydrogen cyanide, total oxalate, trypsin inhibitor activity, oligosaccharides and phytohaemagglutinating activity in the seeds of two accessions of velvet bean, Mucuna pruriens var. utilis collected from Karaiyar and Servalaru, Tirunelveli district, Tamil nadu, were investigated. UV treatment on overnight soaked seeds showed increase in the level of total free phenolics and tannins. UV treated raw seeds for 20 minutes reduce the level of L-dopa content of Mucuna pruriens var. utilis white coloured seed coat by 42%, black coloured seed coat by 44% whereas; UV treatment on overnight soaked seeds showed significant (p

  11. Effects of UV-B irradiation on photomovement in the desmid, Cosmarium cucumis

    International Nuclear Information System (INIS)

    Haeder, D.-P.

    1987-01-01

    Monochromatic UV-B irradiation affects neither the absorption nor the fluorescence of the bulk pigments in the desmid Cosmarium cucumis but it impairs photomovement of these organisms at fluence rates which are not higher than the ambient level of solar UV-B irradiation. Photoaccumulations and phototaxis are strongly inhibited especially at wavelengths <= 300 nm while photodispersal at higher white light fluence rates is hardly affected by supplementary UV-B. This effect has important consequences for the growth and survival of populations in their natural environment: these photosynthetic organisms utilize photomovement to find and stay in areas of suitable visible light fluence rates. The UV-B component of solar irradiation both impairs the strategy of the organisms to find a suitable position and the escape mechanism by which the cells move out of areas with too strong white illuminances which photooxidize the bulk pigments and bleach the population within a few days. (author)

  12. Effects of caffeine on DNA repair of UV-irradiated Dictyostelium discoideum

    International Nuclear Information System (INIS)

    Ohnishi, T.; Okaichi, K.; Ohashi, Y.; Nozu, K.

    1981-01-01

    Caffeine enhances the UV-killing of amoeboid cells of NC-4, but UV-irradiated γs-13 is insensitive to caffeine. UV-irradiated NC-4 becomes insensitive to the effect of caffeine during a postirradiation incubation in buffer for about 90 min, but γs-13 remains unchanged in the sensitivity to caffeine throughout the incubation for 180 min. Amoeboid cells of γs-13 can remove pyrimidine dimers as well as NC-4 even in the presence of caffeine. Caffeine inhibits rejoining of strand-breaks of DNA in UV-irradiated NC-4, but the rejoining in γs-13 is insensitive to caffeine. (author)

  13. Effect of elevated CO2, O3, and UV radiation on soils.

    Science.gov (United States)

    Formánek, Pavel; Rejšek, Klement; Vranová, Valerie

    2014-01-01

    In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil N t content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research.

  14. Effect of Elevated CO2, O3, and UV Radiation on Soils

    Directory of Open Access Journals (Sweden)

    Pavel Formánek

    2014-01-01

    Full Text Available In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil Nt content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research.

  15. Effects of UV-B irradiation on growth, survival, pigmentation and nitrogen metabolism enzymes in Cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, R.P.; Hader, D.P. [Institut fuer Botanik und Pharmazeutische Biologie, Friedrich-Alexander Universitaet, Erlangen (Germany); Kumar, H.D.; Kumar, A. [Banaras Hindu University, Varanasi (India)

    1995-12-31

    The effects of artificial UV-B irradiation on growth, survival, pigmentation, nitrate reductase (NR), glutamine synthetase (GS) and total protein profile have been studied in a number of N{sub 2}-fixing cyanobacterial strains isolated from rice (paddy) fields in India. Different organisms show different effects in terms of growth and survival. Complete killing of Anabaena sp. and Nostoc carmium occurs after 120 min of UV-B exposure, whereas the same occurs only after 150 min of exposure in the case of Nostoc commune and Scytonema sp. Growth patterns of the cells treated with UV-B revealed that Nostoc commune and Scytonema sp. are comparatively more tolerant than Anabaena sp. and Nostoc carmium. Pigment content, particularly phycocyanin, was severely decreased following UV-B irradiation in all strains tested so far. In vivo NR activity was found to increase, while in vivo GS activity was decreased following exposure to UV-B for different durations in all test organisms; although complete inhibition of GS activity did not occur even after 120 min of UV-B exposure. (author). 37 refs, 6 figs.

  16. Effects of UV-B irradiation on growth, survival, pigmentation and nitrogen metabolism enzymes in Cyanobacteria

    International Nuclear Information System (INIS)

    Sinha, R.P.; Hader, D.P.; Kumar, H.D.; Kumar, A.

    1995-01-01

    The effects of artificial UV-B irradiation on growth, survival, pigmentation, nitrate reductase (NR), glutamine synthetase (GS) and total protein profile have been studied in a number of N 2 -fixing cyanobacterial strains isolated from rice (paddy) fields in India. Different organisms show different effects in terms of growth and survival. Complete killing of Anabaena sp. and Nostoc carmium occurs after 120 min of UV-B exposure, whereas the same occurs only after 150 min of exposure in the case of Nostoc commune and Scytonema sp. Growth patterns of the cells treated with UV-B revealed that Nostoc commune and Scytonema sp. are comparatively more tolerant than Anabaena sp. and Nostoc carmium. Pigment content, particularly phycocyanin, was severely decreased following UV-B irradiation in all strains tested so far. In vivo NR activity was found to increase, while in vivo GS activity was decreased following exposure to UV-B for different durations in all test organisms; although complete inhibition of GS activity did not occur even after 120 min of UV-B exposure. (author)

  17. Effects of combined X-radiation and UV-radiation on HeLa cells

    International Nuclear Information System (INIS)

    Luible, M.

    1982-01-01

    A combined X-ray-UV irradiation was performed in nonsynchronized HeLa-cells. A pre-irradiation with UV-light, that reduced the survival rate to 42% and the following X-ray radiation yielded a similar dose-effect characteristic as with ordinary X-ray irradiation, only its shoulder was smaller. An additive radiation interaction with the cellular molecular structure was observed. A pre-irradiation with X-rays followed by step-wise UV-irradiation yielded a function similar to the UV-action curve but also with a narrower shoulder. A additive effect could be observed. One can conclude from this that in combined irradiation two interacting processes cause the death of the cells. The gene mutations caused by UV-light lead to cell death. X-rays however cause chromosome breaks, that in an unfavourable combination also lead to cell death. The DNA distorsion caused by the UV-light increases the possibility of misrepair. (orig.) [de

  18. Effect of Elevated CO2, O3, and UV Radiation on Soils

    Science.gov (United States)

    Rejšek, Klement; Vranová, Valerie

    2014-01-01

    In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil Nt content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research. PMID:24688424

  19. UV-C Adaptation of Shigella: Morphological, Outer Membrane Proteins, Secreted Proteins, and Lipopolysaccharides Effects.

    Science.gov (United States)

    Chourabi, Kalthoum; Campoy, Susana; Rodriguez, Jesus A; Kloula, Salma; Landoulsi, Ahmed; Chatti, Abdelwaheb

    2017-11-01

    Water UV disinfection remains extremely important, particularly in developing countries where drinking and reclaimed crop irrigation water may spread devastating infectious diseases. Enteric bacterial pathogens, among which Shigella, are possible contaminants of drinking and bathing water and foods. To study the effect of UV light on Shigella, four strains were exposed to different doses in a laboratory-made irradiation device, given that the ultraviolet radiation degree of inactivation is directly related to the UV dose applied to water. Our results showed that the UV-C rays are effective against all the tested Shigella strains. However, UV-C doses appeared as determinant factors for Shigella eradication. On the other hand, Shigella-survived strains changed their outer membrane protein profiles, secreted proteins, and lipopolysaccharides. Also, as shown by electron microscopy transmission, morphological alterations were manifested by an internal cytoplasm disorganized and membrane envelope breaks. Taken together, the focus of interest of our study is to know the adaptive mechanism of UV-C resistance of Shigella strains.

  20. Effect of Hyperbranched Polymers on Curing Behavior of UV Curable Inks in Inkjet Printing

    Directory of Open Access Journals (Sweden)

    Samane Jafarifard

    2016-07-01

    Full Text Available A high quality and high resolution printing can be rapidly created by inkjet printing technology. Inkjet printing is one of the most economic printing methods and ink waste in this technique is very low. Inkjet process provides printing on any type of substrates. The UV curable inks are special types of printing inks that have been widely used in the last decades. The use of UV curable inks is more attractive in inkjet printing technology in comparison to other methods of printing. The most important advantage of UV curable inks in this method is that they are VOC-free and compatible and have good adhesion on many types of substrates. In this research, the effect of hyperbranched polymers on the curing behavior of UV curable inks was investigated. Two types of hyperbranched polymers with hydroxyl and fatty acid chain terminal groups were used in ink formulations. The effect of hyperbranched polymers on the curing behavior of UV curable ink was investigated by real-time FTIR analysis. The results showed that the hyperbranched polymers could improve curing process by increasing the conversion rate of the third curing stage. All ink formulations containing hyperbranched polymers showed higher conversion than a neat sample. The highest conversion was 77 % for the blend containing a hyperbranched polymer with hydroxyl end groups while the neat sample showed a final conversion of 55%. UV curable inks in inkjet process containing hyperbranched polymers with hydroxyl end groups showed a higher final conversion than neat sample.

  1. The effect of solarradiation and UV photons on the CR-39 nuclear track detector

    International Nuclear Information System (INIS)

    Saad, A.F.

    2003-01-01

    The effects induced in the CR-39 polymer detector by total solar radiation (TSR) and UV photons were investigated. Thr exposure of detector samples to solar photons was carried out according to certain conditions. The TSR exposure period started in the middle of july and lasted unitel 12 th of september. 2000: the hottest months in zagazig, egypt. Another set of detector samples was exposed to UV photons from a UV lamp for different intervals. After UV exposure, these detectors were analysed with an FT-IR sepectrometer of jasco type 5300 in transmission mode. The FT-IR spectra does not show any considerable modifications due to UV irradiation in that detector. The effects of UV light were compared with those of solar radiation containing ultraviolet photons , on the registration properties of this polymer detector. Preliminaryresults revealed a proportionate increase in bluk etch rate of CR-39 detector with the increase of exposure time to the solar radiation. The results indicated that the CR-39 polymer detector can be used as a solar radiation dosimeter

  2. Dissolved organic carbon ameliorates the effects of UV radiation on a freshwater fish

    Energy Technology Data Exchange (ETDEWEB)

    Manek, Aditya K., E-mail: aditya.manek@usask.ca [Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2 SK (Canada); Ferrari, Maud C.O. [Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, S7N 5B4 SK (Canada); Chivers, Douglas P.; Niyogi, Som [Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2 SK (Canada)

    2014-08-15

    Anthropogenic activities over the past several decades have depleted stratospheric ozone, resulting in a global increase in ultraviolet radiation (UVR). Much of the negative effects of UVR in aquatic systems is minimized by dissolved organic carbon (DOC) which is known to attenuate UVR across the water column. The skin of many fishes contains large epidermal club cells (ECCs) that are known to play a role in innate immune responses and also release chemical alarm cues that warn other fishes of danger. This study investigated the effects of in vivo UVR exposure to fathead minnows (Pimephales promelas), under the influence of two sources of DOC: Sigma Aldrich humic acid, a coal based commercial source of DOC and Luther Marsh natural organic matter, a terrigenous source of DOC. Specifically, we examined ECC investment and physiological stress responses and found that fish exposed to high UVR, in the presence of either source of DOC, had higher ECC investment than fish exposed to high UVR only. Similarly, exposure to high UVR under either source of DOC, reduced cortisol levels relative to that in the high UVR only treatment. This indicates that DOC protects fish from physiological stress associated with UVR exposure and helps maintain production of ECC under conditions of UVR exposure. - Highlights: • We examined the combined effect of UV radiation and Dissolved Organic Carbon on fish. • Physiological stress response and epidermal club cell investment were measured. • Fish exposed to high UVR and DOC had higher ECC investment and reduced cortisol levels. • DOC plays a role in protecting fish from physiological stress and maintains ECC production.

  3. Dissolved organic carbon ameliorates the effects of UV radiation on a freshwater fish

    International Nuclear Information System (INIS)

    Manek, Aditya K.; Ferrari, Maud C.O.; Chivers, Douglas P.; Niyogi, Som

    2014-01-01

    Anthropogenic activities over the past several decades have depleted stratospheric ozone, resulting in a global increase in ultraviolet radiation (UVR). Much of the negative effects of UVR in aquatic systems is minimized by dissolved organic carbon (DOC) which is known to attenuate UVR across the water column. The skin of many fishes contains large epidermal club cells (ECCs) that are known to play a role in innate immune responses and also release chemical alarm cues that warn other fishes of danger. This study investigated the effects of in vivo UVR exposure to fathead minnows (Pimephales promelas), under the influence of two sources of DOC: Sigma Aldrich humic acid, a coal based commercial source of DOC and Luther Marsh natural organic matter, a terrigenous source of DOC. Specifically, we examined ECC investment and physiological stress responses and found that fish exposed to high UVR, in the presence of either source of DOC, had higher ECC investment than fish exposed to high UVR only. Similarly, exposure to high UVR under either source of DOC, reduced cortisol levels relative to that in the high UVR only treatment. This indicates that DOC protects fish from physiological stress associated with UVR exposure and helps maintain production of ECC under conditions of UVR exposure. - Highlights: • We examined the combined effect of UV radiation and Dissolved Organic Carbon on fish. • Physiological stress response and epidermal club cell investment were measured. • Fish exposed to high UVR and DOC had higher ECC investment and reduced cortisol levels. • DOC plays a role in protecting fish from physiological stress and maintains ECC production

  4. Protective Effect of (-)-Epigallocatechin Gallate against Photo ...

    African Journals Online (AJOL)

    Methods: HSF cells were incubated in serum-free Dulbecco's Modified Eagle's Medium ... solar UV can be divided into UV A (320–400 nm), .... underlying mechanism of UV radiation damage is ... This work was supported by National Key.

  5. A ΔdinB mutation that sensitizes Escherichia coli to the lethal effects of UV- and X-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mei-Chong W.; Franco, Magdalena; Vargas, Doris M. [Department of Biological Sciences, San Jose State University, San Jose, CA 95192 (United States); Hudman, Deborah A. [Department of Microbiology and Immunology, A.T. Still University, Kirksville College of Osteopathic Medicine, Kirksville, MO 63501 (United States); White, Steven J. [Department of Biological Sciences, San Jose State University, San Jose, CA 95192 (United States); Fowler, Robert G., E-mail: rfowler@sjsu.edu [Department of Biological Sciences, San Jose State University, San Jose, CA 95192 (United States); Sargentini, Neil J. [Department of Microbiology and Immunology, A.T. Still University, Kirksville College of Osteopathic Medicine, Kirksville, MO 63501 (United States)

    2014-05-15

    B strains to UV radiation, but did not sensitize a ΔrecA strain. A comparison of the DNA sequences of the ΔdinB883 allele with the sequences of the Δ(dinB-yafN)882(::kan) and ΔdinB749 alleles, which do not sensitize cells to UV radiation, revealed ΔdinB883 is likely a “gain-of-function” mutation. The ΔdinB883 allele encodes the first 54 amino acids of wild-type DinB followed by 29 predicted residues resulting from the continuation of the dinB reading frame into an adjacent insertion fragment. The resulting polypeptide is proposed to interfere directly or indirectly with UmuDC function(s) involved in protecting cells against the lethal effects of radiation.

  6. The effects of hyaluronan and its fragments on lipid models exposed to UV irradiation.

    Science.gov (United States)

    Trommer, Hagen; Wartewig, Siegfried; Böttcher, Rolf; Pöppl, Andreas; Hoentsch, Joachim; Ozegowski, Jörg H; Neubert, Reinhard H H

    2003-03-26

    The effects of hyaluronan and its degradation products on irradiation-induced lipid peroxidation were investigated. Liposomal skin lipid models with increasing complexity were used. Hyaluronan and its fragments were able to reduce the amount of lipid peroxidation secondary products quantified by the thiobarbituric acid (TBA) assay. The qualitative changes were studied by mass spectrometry. To elucidate the nature of free radical involvement electron paramagnetic resonance (EPR) studies were carried out. The influence of hyaluronan and its fragments on the concentration of hydroxyl radicals generated by the Fenton system was examined using the spin trapping technique. Moreover, the mucopolysaccharide's ability to react with stable radicals was checked. The quantification assay of 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) showed no concentration changes of the stable radical caused by hyaluronan. Hyaluronan was found to exhibit prooxidative effects in the Fenton assay in a concentration dependent manner. A transition metal chelation was proposed as a mechanism of this behavior. Considering human skin and its constant exposure to UV light and oxygen and an increased pool of iron in irradiated skin the administration of hyaluronan or its fragments in cosmetic formulations or sunscreens could be helpful for the protection of the human skin. Copyright 2003 Elsevier Science B.V.

  7. Effects of environmental and artificial UV-B radiation on freshwater prawn Macrobrachium olfersi embryos

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, Evelise Maria [Programa de Pos-Graduacao em Ciencias Morfologicas, Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, 21949-902 Rio de Janeiro, RJ (Brazil); Universidade Federal de Santa Catarina, Departamento de Biologia Celular, Embriologia e Genetica, Campus Universitario, 88040-900 Florianopolis, SC (Brazil); Ammar, Dib [Universidade do Oeste de Santa Catarina, Departamento de Biologia, Campus Universitario, 89600-000 Joacaba, SC (Brazil); Bem, Andreza Fabro de; Latini, Alexandra [Universidade Federal de Santa Catarina, Departamento de Bioquimica, Campus Universitario, 88040-900 Florianopolis, SC (Brazil); Mueller, Yara Maria Rauh [Universidade Federal de Santa Catarina, Departamento de Biologia Celular, Embriologia e Genetica, Campus Universitario, 88040-900 Florianopolis, SC (Brazil); Allodi, Silvana, E-mail: sallodi@histo.ufrj.br [Programa de Pos-Graduacao em Ciencias Morfologicas, Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, 21949-902 Rio de Janeiro, RJ (Brazil)

    2010-06-01

    The recent decrease of the stratospheric ozone has resulted in an increase of ultraviolet-B (UV-B) radiation reaching the Earth's surface. In freshwater ecosystems with transparent water, UV-B rays easily penetrate and potentially cause harmful effects to organisms. In this study, embryos of the prawn Macrobrachium olfersi were used to evaluate the impact of UV-B rays in freshwater environments. We observed three groups of embryos: the first was to assess whether UV-B radiation produced morphological defects and/or biochemical impairments in the laboratory. The second was to check whether embryos with the same impairments as those observed in the laboratory were found in their environment, under natural solar radiation. The third group was the non-irradiated control. The embryos irradiated with 310 mW cm{sup -2} UV-B for 30 min showed morphological alterations similar to those observed in embryos from the environmental control group. The most important effects of the UV-B radiation observed in M. olfersi embryos were morphological (1.2% of the total number of embryos from the environment and 2.8% of the total number of irradiated embryos), pigmentation changes in the eyes (78.0% of the total number of embryos from the environment and 98.9% of the total number of irradiated embryos), and disruption of the chromatophores (46.9% of the total number of embryos from the environment and 95.5% of the total number of irradiated embryos). We also observed an increase in egg volume, which was accompanied by a significant increase in water content in UV-B irradiated groups when compared with aquaria control embryos. In addition, a significant decrease in the mitotic index in eggs exposed to UV-B radiation was detected (0.17 for the embryos from the aquaria control, 0.10 for the embryos of the environmental control, and 0.04 for the irradiated groups). The low levels of NPSH and high levels of TBARS indicated that UV-B rays directly compromised the antioxidant function of

  8. Effects of environmental and artificial UV-B radiation on freshwater prawn Macrobrachium olfersi embryos

    International Nuclear Information System (INIS)

    Nazari, Evelise Maria; Ammar, Dib; Bem, Andreza Fabro de; Latini, Alexandra; Mueller, Yara Maria Rauh; Allodi, Silvana

    2010-01-01

    The recent decrease of the stratospheric ozone has resulted in an increase of ultraviolet-B (UV-B) radiation reaching the Earth's surface. In freshwater ecosystems with transparent water, UV-B rays easily penetrate and potentially cause harmful effects to organisms. In this study, embryos of the prawn Macrobrachium olfersi were used to evaluate the impact of UV-B rays in freshwater environments. We observed three groups of embryos: the first was to assess whether UV-B radiation produced morphological defects and/or biochemical impairments in the laboratory. The second was to check whether embryos with the same impairments as those observed in the laboratory were found in their environment, under natural solar radiation. The third group was the non-irradiated control. The embryos irradiated with 310 mW cm -2 UV-B for 30 min showed morphological alterations similar to those observed in embryos from the environmental control group. The most important effects of the UV-B radiation observed in M. olfersi embryos were morphological (1.2% of the total number of embryos from the environment and 2.8% of the total number of irradiated embryos), pigmentation changes in the eyes (78.0% of the total number of embryos from the environment and 98.9% of the total number of irradiated embryos), and disruption of the chromatophores (46.9% of the total number of embryos from the environment and 95.5% of the total number of irradiated embryos). We also observed an increase in egg volume, which was accompanied by a significant increase in water content in UV-B irradiated groups when compared with aquaria control embryos. In addition, a significant decrease in the mitotic index in eggs exposed to UV-B radiation was detected (0.17 for the embryos from the aquaria control, 0.10 for the embryos of the environmental control, and 0.04 for the irradiated groups). The low levels of NPSH and high levels of TBARS indicated that UV-B rays directly compromised the antioxidant function of the

  9. Sensitivity of Vibrio cholerae cells to lethal and mutagenic effect of UV-irradiation mediated by plasmids

    International Nuclear Information System (INIS)

    Tiganova, I.G.; Evdokimova, N.M.; Aleshkin, G.I.

    1988-01-01

    The effect of UV-irradiation on Vibrio cholerae cells and its changes mediated by the plasmid R245 have been studied. Vibrio cholerae strains 569B and RV31 have been shown to be considerably more sensitive to lethal effect of UV-irradiation as compared with Escherichia coli and Salmonella typhimurium cells. Highly toxigenic strain 569B and practically atoxigenic strain RV31 have the same UV-sensitivity. Lethla effect of UV-irradiation on Vibrio cholerae cells is incresed when the irradiated cells are plated on enriched media. UV-induction of mutations was not registered in plasmidless strains of Vibrio cholerae. Plasmid R245 increase UV-resistance of vibrio cells and makes them UV-mutable

  10. Effect of UV-C irradiation on growth, sporulation and pathogenicity of cochliobolus sativus isolates

    International Nuclear Information System (INIS)

    Jawhar, M.; Arabi, M.I.E.

    1999-12-01

    More than 30 isolates of Cochliobolus sativus, the causal agent of common root rot disease; were collected from different regions of Syria. Seven of them were exposed to UV-C light for 40 or 60 h . at a dose rate of 2.52x10 -3 W/cm 2 . A significant increases in the mycelium growth and sporulation were detected (p<0.001). Within the studied range of UV wave length, these two parameters were increased upon increasing the period of exposure to UV-C light. The pathogenicity of four isolates was evaluated after 60 h. of UV irradiation. The response to UV irradiation varied among these isolates, and resulted in an increase in their virulence level (as assessed by evaluating disease severity on sub-crown internodes). Five barley genotypes possessing different levels of resistance to C. sativus were studied. Arabi Abiad was the most susceptible cultivar whereas, Taka 76 line was moderately susceptible. It is concluded that it is possible to implement the positive effect of low doses of UV-C in stimulating the sporulation of fungi, which are difficult to sporulate on artificial media. (author)

  11. Quercetin oxidation by horseradish peroxidase: The effect of UV-B irradiation

    Directory of Open Access Journals (Sweden)

    Savić Saša R.

    2013-01-01

    Full Text Available Horseradish peroxidase (HRP, a highly-investigated member of the peroxidase family has been known, among many other biological activities, to catalyze the oxidation of flavonoids and phenolic substrates overall, including quercetin. On the other hand, quercetin is very well known for its antioxidant activities, which in the case of UV external radiation is exibited partly in a preventive manner since it is an excellent UV-absorber. Therefore the aim of this investigation is to study quercetin oxidation by HRP in phosphate buffer under the conditions of UV-stress, i.e. continuous, prolonged UV-B irradiation. The results show that while UV-B irradiation affects the activity of HRP, and the overal rate of quercetin oxidation by HRP, it probably has very little effect on it for longer UV-B-irradiation periods (>30 min. [Acknowledgements. This work was supported by the Ministry of Education and Science of the Republic of Serbia under Project No.TR-34012 and OI-172044

  12. Prevention of MHC-alloimmunization by UV-B irradiation in a murine model: effects of UV dose and number of transfused cells

    International Nuclear Information System (INIS)

    Grijzenhout, M.A.; Claas, F.H.J.

    1994-01-01

    The optimal dose of UV-B radiation for prevention of in vivo alloimmunization (AI) against major histocompatibility complex (MHC) antigens was investigated in a murine transfusion model. Two groups with five C57BL/6 mice (H-2 b ) each were transfused at weekly intervals with 1 x 10 5 or 1 x 10 6 DBA/2 (H-2 d ) leucocytes. Both suspensions induced anti-H-2 d antibodies in all mice after the second transfusion. The minimal UV-B dose required for abolition of alloreactivity in the mixed leucocyte reaction (MLR) was 0.6 J/cm 2 . This dose completely prevented the onset of MHC-AI in all five mice transfused with six suspensions containing 1 x 10 5 leucocytes. In contrast, suspensions with 1 x 10 6 leucocytes and exposed to 0.6 J/cm 2 induced immunization in 4/5 mice. Further increase of the dose to 1.8 or 5.4 J/cm 2 did not prevent the onset of MHC-AI. We conclude that the number of leucocytes per transfusion determines the efficacy of UV irradiation for the prevention of MHC-AI. For UV irradiation of human platelet concentrates (PCs) we propose to reduce the number of leucocytes by centrifugation prior to UV exposure. UV-B irradiation of PCs with high numbers of leucocytes may not be effective for prevention of alloimmunization. (Author)

  13. Carcinogenic effect of sequential artificial sunlight and UV-A irradiation in hairless mice. Consequences for solarium 'therapy'

    International Nuclear Information System (INIS)

    Staberg, B.; Wulf, H.C.; Poulsen, T.; Klemp, P.; Brodthagen, H.

    1983-01-01

    The carcinogenic effect of artificial UV sunlight followed by UV-A irradiation in human solaria doses has been studied with the use of the hairless mouse as an animal model. Artificial sunlight exposure alone induced only a moderate skin tumor incidence (animals with at least one tumor) of 0.15 after one year, and UV-A irradiation alone induced no tumor formation. However, the combination of artificial sunlight exposure and subsequent UV-A irradiation significantly increased the tumor incidence to 0.72. We conclude that, in humans, tanning with UV-A for cosmetic purposes may not be an innocuous procedure

  14. Flare-related color effects in UV Ceti stars

    International Nuclear Information System (INIS)

    Flesch, T.R.

    1975-01-01

    The UV Ceti flare stars YZ CMi, BD+16 0 2708, EV Lac, and AD Leo were monitored photoelectrically for flare activity with the 76 centimeter reflecting telescope of the University of Florida's Rosemary Hill Observatory. Observations were carried out from January, 1973 to April, 1975. The instrumentation allowed simultaneous readings to be taken at 3500, 4632, and 6496A with a time resolution of 2 seconds. A total of 15 major events were observed, with 14 of these being observed in all three colors. All events showed the classical fast rise and slower decline that is typical of this type of activity. One event showed peculiar behavior in the red bandpass that may indicate strong dependence of the flare light in some cases on line emission. The data were applied to the fast electron model of flare activity proposed by Gurzadyan. Several serious inconsistencies in the theory were found that would not have been evident in single-channel monitoring. No event could be fitted in all three colors using consistent values of the unknown parameters in the theory. The most serious deficiencies in the theory were the wavelength dependence of the optical depth of the electron cloud and the lack of treatment of line emission behavior. Differential color indices for flare light are calculated and are shown to be essentially constant throughout the entire event for the stronger flares. A color-color plot of the flare light at maximum reveals that 11 of the flares show a linear relation. This relation indicates that the smaller the u-b index, the larger is the b-r index. This is probably directly involved with line emission during flare events. Future research possibilities are discussed, with spectroscopic studies and simultaneous multicolor observations being stressed

  15. Cost Effective Process Monitoring using UV-VIS-NIR Spectroscopy

    International Nuclear Information System (INIS)

    Cipiti, B.; McDaniel, M.; Bryan, S.; Pratt, S.

    2015-01-01

    UV-VIS-NIR Spectroscopy is a simple and inexpensive measurement technology which has been proposed for process monitoring applications at reprocessing plants. The purpose of this work was to examine if spectroscopy could replace more costly analytical measurements to reduce the safeguards burden to the operator or inspector. Recognizing that the higher measurement uncertainty of spectroscopy makes it unsuited for the accountability tanks, the approach instead was to focus on replacing mass spectrometry for random samples that are taken in a plant. The Interim Inventory Verification and Short Inventory Verification (IIV/SIV) at the Rokkasho Reprocessing Plant utilize random sampling of internal process vessels and laboratory measurement using Isotope Dilution Mass Spectrometry (IDMS) to account for plutonium on a timely basis. These measurements are time-consuming, and the low uncertainty may not always be required. For this work, modelling was used to examine if spectroscopy could be used without adversely affecting the safeguards of the plant. The Separation and Safeguards Performance Model (SSPM), developed at Sandia National Laboratories, was utilized to examine the replacement of IDMS measurements with spectroscopy. Modeling results showed that complete replacement of IDMS with spectroscopy lowered the detection probability for diversion by an unacceptable amount. However, partial replacement (only for samples from vessels with low plutonium content) did not adversely affect the detection probability. This partial replacement covers roughly half of the twenty or so sampling points used for the IIV/SIVA cost-benefit analysis was completed to determine the cost savings that this approach can provide based on lower equipment costs, maintenance, and reduction of analysts' time. This work envisions working with the existing sampling system and performing the spectroscopic measurements in the analytical laboratory, but future work could examine incorporating

  16. Effect of Bifidobacterium breve B-3 on skin photoaging induced by chronic UV irradiation in mice.

    Science.gov (United States)

    Satoh, T; Murata, M; Iwabuchi, N; Odamaki, T; Wakabayashi, H; Yamauchi, K; Abe, F; Xiao, J Z

    2015-01-01

    Probiotics have been shown to have a preventative effect on skin photoaging induced by short term UV irradiation, however, the underlying mechanisms and the effect of probiotics on skin photoaging induced by chronic UV irradiation remain unclear. In this study, we investigated the effect of Bifidobacterium breve B-3 on skin photoaging induced by chronic UV irradiation in hairless mice. Mice were irradiated with UVB three times weekly and orally administered B. breve B-3 (2×10(9) cfu/mouse /day) for 7 weeks. Nonirradiated mice and UVB-irradiated mice without probiotic treatment were used as controls. B. breve B-3 significantly suppressed the changes of transepidermal water loss, skin hydration, epidermal thickening and attenuated the damage to the tight junction structure and basement membrane induced by chronic UVB irradiation. Administration of B. breve B-3 tended to suppress the UV-induced interleukin-1β production in skin (P=0.09). These results suggest that B. breve B-3 could potentially be used to prevent photoaging induced by chronic UV irradiation.

  17. The effect of UV-blocking contact lenses as a therapy for canine chronic superficial keratitis.

    Science.gov (United States)

    Denk, Nora; Fritsche, Jens; Reese, Sven

    2011-05-01

    To evaluate the effect of UV-blocking soft contact lenses in treatment for chronic superficial keratitus (CSK). Twenty six dogs with CSK were treated continuously with UV-blocking contact lenses for 6 months. A contact lens was placed on one eye of each dog; the other eye remained without a lens as a control eye. After this primary study, five of the dogs were further treated and they wore then contact lenses in both eyes. Continuously, all patients were concurrently treated topically with cyclosporine. The contact lenses were changed every 4 weeks and an ophthalmic examination performed. Evaluation criteria included corneal alterations as pigmentation, edema, pannus and vascularization. To determine the transmittance characteristics of the contact lenses before and after use, 32 contact lenses were measured with a UV-vis-NIR spectrophotometer. Pigmentation increased in eyes wearing lenses and in control eyes over the evaluation period of 6 months. Corneal edema increased in the eyes wearing lenses, but remained unaffected in the control eyes. A significant difference in the incidence of pannus and the extent of corneal vascularisation could not be evaluated. Adverse effects were noted in six cases (corneal edema and vascularisation, conjunctivitis, blepharospasm). All new lenses studied reduced UV-radiation to a safe level, whereas used lenses did not maintain their transmittance characteristics. No positive effect of UV-blocking contact lenses could be proven with the study design used. © 2011 American College of Veterinary Ophthalmologists.

  18. Additive estrogenic effects of mixtures of frequently used UV filters on pS2-gene transcription in MCF-7 cells

    International Nuclear Information System (INIS)

    Heneweer, Marjoke; Muusse, Martine; Berg, Martin van den; Sanderson, J. Thomas

    2005-01-01

    In order to protect consumers from ultraviolet (UV) radiation and enhance light stability of the product, three to eight UV filters are usually added to consumer sunscreen products. High lipophilicity of the UV filters has been shown to cause bioaccumulation in fish and humans, leading to environmental levels of UV filters that are similar to those of PCBs and DDT. In this paper, estrogen-regulated pS2 gene transcription in the human mammary tumor cell line MCF-7 was used as a measure of estrogenicity of four individual UV filters. Since humans are exposed to more than one UV filter at a time, an equipotent binary mixture of 2-hydroxy-4-methoxy-benzophenone (BP-3) and its metabolite 2,4-dihydroxy benzophenone (BP-1), as well as an equipotent multi-component mixture of BP-1, BP-3, octyl methoxy cinnamate (OMC) and 3-(4-methylbenzylidene) camphor (4-MBC), were also evaluated for their ability to induce pS2 gene transcription in order to examine additivity. An estrogen receptor-mediated mechanism of action was expected for all UV filters. Therefore, our null-hypothesis was that combined estrogenic responses, measured as increased pS2 gene transcription in MCF-7 cells after exposure to mixtures of UV filters, are additive, according to a concentration-addition model. Not all UV filters produced a full concentration-response curve within the concentration range tested (100 nM-1 μM). Therefore, instead of using EC 50 values for comparison, the concentration at which each compound caused a 50% increase of basal pS2 gene transcription was defined as the C50 value for that compound and used to calculate relative potencies. For comparison, the EC 50 value of a compound is the concentration at which the compound elicits an effect that is 50% of its maximal effect. Individual UV filters increased pS2 gene transcription concentration-dependently with C50 values of 0.12 μM, 0.5 μM, 1.9 μM, and 1.0 μM for BP-1, BP-3, 4-MBC and OMC, respectively. Estradiol (E2) had a C50

  19. Effective Reuse of Electroplating Rinse Wastewater by Combining PAC with H2O2/UV Process.

    Science.gov (United States)

    Yen, Hsing Yuan; Kang, Shyh-Fang; Lin, Chen Pei

    2015-04-01

    This study evaluated the performance of treating electroplating rinse wastewater by powder activated carbon (PAC) adsorption, H2O2/UV oxidation, and their combination to remove organic compounds and heavy metals. The results showed that neither the process of PAC adsorption nor H2O2/UV oxidation could reduce COD to 100 mg/L, as enforced by the Taiwan Environmental Protection Agency. On the other hand, the water sample treated by the combined approach of using PAC (5 g/L) pre-adsorption and H2O2/UV post-oxidation (UV of 64 W, H2O2 of 100 mg/L, oxidation time of 90 min), COD and DOC were reduced to 8.2 mg/L and 3.8 mg/L, respectively. Also, the combined approach reduced heavy metals to meet the effluent standards and to satisfy the in-house water reuse criteria for the electroplating factory. The reaction constant analysis indicated that the reaction proceeded much more rapidly for the combined process. Hence, it is a more efficient, economic and environmentally friendly process.

  20. Effects of low dose gamma- and UV-radiation on sea urchin eggs and spermatozoa

    International Nuclear Information System (INIS)

    Czihak, G.K.

    1991-01-01

    The paper outlines the results of a study of the effects of low dose gamma-and UV-irradiation on sea urchin eggs and spermatozoa with particular reference to the effects on the stages of the mitotic cycle and individual susceptibility. (UK)

  1. Effects of Radon and UV Exposure on Skin Cancer Mortality in Switzerland

    NARCIS (Netherlands)

    Vienneau, Danielle; de Hoogh, Kees; Hauri, Dimitri D.; Vicedo-Cabrera, Ana M; Schindler, Christian; Huss, Anke; Röösli, Martin

    2017-01-01

    BACKGROUND: Skin cancer incidence in Switzerland is among the highest in the world. In addition to exposure to ultraviolet (UV) radiation, radon alpha particles attached to aerosols can adhere to the skin and potentially cause carcinogenic effects. OBJECTIVES: We investigated the effects of radon

  2. An UV photochromic memory effect in proton-based WO3 electrochromic devices

    International Nuclear Information System (INIS)

    Zhang Yong; Lee, S.-H.; Mascarenhas, A.; Deb, S. K.

    2008-01-01

    We report an UV photochromic memory effect on a standard proton-based WO 3 electrochromic device. It exhibits two memory states, associated with the colored and bleached states of the device, respectively. Such an effect can be used to enhance device performance (increasing the dynamic range), re-energize commercial electrochromic devices, and develop memory devices

  3. Modifying effect of caffeine on lethality and mutability of Chlamydomonas reinhardii cells following UV irradiation

    International Nuclear Information System (INIS)

    Podstavkova, S.; Vlcek, D.; Miadokova, E.

    1983-01-01

    The modifying effect of caffeine was studied using two standard and two UV-sensitive strains of Chlamydomonas reinhardii Dang. Cell survival and mutation frequency was microscopically evaluated on media without caffeine and on media with 1.5 mM of caffeine. The obtained results were indicative of the stimulating effect of caffeine upon survival in all strains. (author)

  4. Temperature dependence of UV radiation effects in Arctic and temperate isolates of three red macrophytes

    NARCIS (Netherlands)

    van de Poll, W.H.; Eggert, A.; Buma, A.G.J.; Breeman, Arno

    The temperature dependence of UV effects was studied for Arctic and temperate isolates of the red macrophytes Palmaria palmata, Coccotylus truncatus and Phycodrys rubens. The effects of daily repeated artificial ultraviolet B and A radiation (UVBR: 280-320 nm, UVAR: 320-400 nm) treatments were

  5. An UV photochromic memory effect in proton-based WO3 electrochromic devices

    Science.gov (United States)

    Zhang, Yong; Lee, S.-H.; Mascarenhas, A.; Deb, S. K.

    2008-11-01

    We report an UV photochromic memory effect on a standard proton-based WO3 electrochromic device. It exhibits two memory states, associated with the colored and bleached states of the device, respectively. Such an effect can be used to enhance device performance (increasing the dynamic range), re-energize commercial electrochromic devices, and develop memory devices.

  6. Suppressive effects of coffee on the SOS responses induced by UV and chemical mutagens

    International Nuclear Information System (INIS)

    Obana, Hirotaka; Nakamura, Sei-ichi; Tanaka, Ryou-ichi

    1986-01-01

    SOS-inducing activity of UV or chemical mutagens was strongly suppressed by instant coffee in Salmonella typhimurium TA1535/pSK1002. As decaffeinated instant coffee showed a similarly strong suppressive effect, it would seem that caffeine, a known inhibitor of SOS responses, is not responsible for the effect observed. The suppression was also shown by freshly brewed coffee extracts. However, the suppression was absent in green coffee-bean extracts. These results suggest that coffee contains some substance(s) which, apart from caffeine, suppresses SOS-inducing activity of UV or chemical mutagens and that the suppressive substance(s) are produced by roasting coffee beans. (Auth.)

  7. Microemulsion Using Polyoxyethylene Sorbitan Trioleate and its Usage for Skin Delivery of Resveratrol to Protect Skin against UV-Induced Damage.

    Science.gov (United States)

    Yutani, Reiko; Teraoka, Reiko; Kitagawa, Shuji

    2015-01-01

    We examined the phase behavior of various polyoxyethylene sorbitan fatty acid ester (polysorbates)/ethanol/isopropyl myristate (IPM)/150 mM NaCl solution (NaClaq) systems in order to prepare a microemulsion containing a low ratio of ethanol, which is more suitable for in vivo application. Using polyoxyethylene sorbitan trioleate (Tween 85), which has a large lipophilic moiety, as a surfactant component, single-phase domain of the phase diagram was the largest of all the polysorbates examined, and in particular a large oil-rich single-phase domain was obtained. When the ratio of Tween 85 to ethanol was changed from 1 : 1 to 3 : 1, the oil-rich single-phase domain further expanded, which led to a reduced ethanol concentration in the preparation. Thus, we determined the composition of the microemulsion to be Tween 85 : ethanol : IPM : NaClaq=30 : 10 : 53 : 7, and used it for skin delivery of resveratrol. Microemulsion gel was also prepared by adding 6.5% Aerosil) 200 into the microemulsion for ease of topical application. When applied with each vehicle, delivery of resveratrol into guinea pig skin in vitro was significantly enhanced compared with that by IPM, and resveratrol incorporated into the skin by microemulsion gel decreased lipid peroxidation to 29.5% compared with that of the control. Pretreatment of guinea pig dorsal skin with the microemulsion gel containing resveratrol almost completely prevented UV-B-induced erythema formation in vivo. These findings demonstrate that the microemulsion using Tween 85 containing a minimal concentration of ethanol enhanced the skin delivery of resveratrol and the incorporated resveratrol exhibited a protective effect against UV-induced oxidative damage.

  8. Exposure to Non-Extreme Solar UV Daylight: Spectral Characterization, Effects on Skin and Photoprotection

    Directory of Open Access Journals (Sweden)

    Claire Marionnet

    2014-12-01

    Full Text Available The link between chronic sun exposure of human skin and harmful clinical consequences such as photo-aging and skin cancers is now indisputable. These effects are mostly due to ultraviolet (UV rays (UVA, 320–400 nm and UVB, 280–320 nm. The UVA/UVB ratio can vary with latitude, season, hour, meteorology and ozone layer, leading to different exposure conditions. Zenithal sun exposure (for example on a beach around noon under a clear sky can rapidly induce visible and well-characterized clinical consequences such as sunburn, predominantly induced by UVB. However, a limited part of the global population is exposed daily to such intense irradiance and until recently little attention has been paid to solar exposure that does not induce any short term clinical impact. This paper will review different studies on non-extreme daily UV exposures with: (1 the characterization and the definition of the standard UV daylight and its simulation in the laboratory; (2 description of the biological and clinical effects of such UV exposure in an in vitro reconstructed human skin model and in human skin in vivo, emphasizing the contribution of UVA rays and (3 analysis of photoprotection approaches dedicated to prevent the harmful impact of such UV exposure.

  9. Exposure to non-extreme solar UV daylight: spectral characterization, effects on skin and photoprotection.

    Science.gov (United States)

    Marionnet, Claire; Tricaud, Caroline; Bernerd, Françoise

    2014-12-23

    The link between chronic sun exposure of human skin and harmful clinical consequences such as photo-aging and skin cancers is now indisputable. These effects are mostly due to ultraviolet (UV) rays (UVA, 320-400 nm and UVB, 280-320 nm). The UVA/UVB ratio can vary with latitude, season, hour, meteorology and ozone layer, leading to different exposure conditions. Zenithal sun exposure (for example on a beach around noon under a clear sky) can rapidly induce visible and well-characterized clinical consequences such as sunburn, predominantly induced by UVB. However, a limited part of the global population is exposed daily to such intense irradiance and until recently little attention has been paid to solar exposure that does not induce any short term clinical impact. This paper will review different studies on non-extreme daily UV exposures with: (1) the characterization and the definition of the standard UV daylight and its simulation in the laboratory; (2) description of the biological and clinical effects of such UV exposure in an in vitro reconstructed human skin model and in human skin in vivo, emphasizing the contribution of UVA rays and (3) analysis of photoprotection approaches dedicated to prevent the harmful impact of such UV exposure.

  10. Preparation of flower-like CuS by solvothermal method for photocatalytic, UV protection and EMI shielding applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiao-Sai; Shen, Yong, E-mail: shenyong@sues.edu.cn; Xu, Li-Hui; Wang, Li-Ming; Lu, Li-sha; Zhang, Ya-ting

    2016-11-01

    Highlights: • The flower-like CuS was synthesized by a facil solvothermal method. • The as-prepared flower-like CuS showed better solar light-driven photocatalytic activity. • The as-prepared CuS could act as a novel UV blocker. • The flower-like CuS potentially hold promise as electromagnetic shielding material. - Abstract: The flower-like CuS hierarchical structures were synthesized by solvothermal method. The as-prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared(FTIR) spectroscopy, UV–vis optical absorption spectroscopy and thermogravimetric analysis (TGA). The results demonstrated that the as-prepared flower-like CuS with the diameter of 1–5 um was pure hexagonal phase CuS and had well-defined flower-like structures. (1) The as-prepared CuS was proved to possess high photocatalytic performance with band gap of 1.45 eV. The degradation rate of Methylene blue (MB) was up to, 98.26%, 100% after 30 min under UV and visible irradiation. (2)The UPF of cotton fabric treated with CuS reached up to 174 compared with the original untreated fabric with the UPF 20.62. (3) The electromagnetic interference shielding effectiveness (EMI SE) of CuS coating was up to 27–31 dB when the content of CuS increased to 28.6%wt in the frequency of 300 KHz–3 GHz. Furthermore, the influence of reaction conditions on the morphology of the as-prepared CuS was investigated systematically and the possible formation mechanism of the CuS hierarchical structure was also proposed.

  11. Differential effects of hydroxyurea on the survival of UV- and MNNG-treated adenovirus 5

    International Nuclear Information System (INIS)

    Day, R.S. III; Ziolkowski, C.H.J.

    1982-01-01

    The effects of hydroxyurea on plaque formation by UV-irradiated and MNNG-treated adenovirus 5 were investigated. Hydroxyurea blocked the recovery of UV-irradiated viruses in all cases studied, but the effect was less when fibroblasts from a patient with xeroderma pigmentosum were used. This fact supports the notion that hydroxyurea blocks excision repair of UV-produced damage. The recovery of MNNG-treated viruses was not blocked by hydroxyurea when viruses were used to infect normal human fibroblasts, but was blocked if the cell strain used as viral host were deficient in repair of O 6 -methylguanine. To account for these data, we propose that hydroxyurea blocks repair in which DNA polymerases play a role, but does not block repair in which DNA polymerases are not required. (orig.)

  12. Differential effects of hydroxyurea on the survival of UV- and MNNG-treated adenovirus 5

    Energy Technology Data Exchange (ETDEWEB)

    Day, R.S. III; Ziolkowski, C.H.J. (National Inst. for Cancer Research, Bethesda, MD (USA). Nucleic Acid Section)

    1982-01-01

    The effects of hydroxyurea on plaque formation by UV-irradiated and MNNG-treated adenovirus 5 were investigated. Hydroxyurea blocked the recovery of UV-irradiated viruses in all cases studied, but the effect was less when fibroblasts from a patient with xeroderma pigmentosum were used. This fact supports the notion that hydroxyurea blocks excision repair of UV-produced damage. The recovery of MNNG-treated viruses was not blocked by hydroxyurea when viruses were used to infect normal human fibroblasts, but was blocked if the cell strain used as viral host were deficient in repair of O/sup 6/-methylguanine. To account for these data, we propose that hydroxyurea blocks repair in which DNA polymerases play a role, but does not block repair in which DNA polymerases are not required.

  13. Effect of enhanced UV-B radiation on yield and quality of rice

    International Nuclear Information System (INIS)

    Yin Hong; Guo Wei; Mao Xiaoyan

    2009-01-01

    The effects of enhanced UV-B radiation on yield and quality of two rice cuhivars(ShenNong 6014 and ShenNong 265) are studied in potted method. There were three treatments including natural light (TCK), enhanced 5% UV-B radiation (T) and enhanced 10% (T). The results showed that enhanced UV-B radiation decreases yield components, the percentage of brown rice (0.66%-7.06%), head rice rate (5.65%-18.88%), the rate of white rice (22.17%-40.16%), grain area (2.61%-6.25%), fatty acid contents (1.23%-54.19%) and eating quality (1.07%-16.78%) but increasea protein content (4.65%-10.71%) and amylose content of rice (0.56%-4.81%). The effects of T2 was stronger than T1

  14. The effect of UV-C exposure on larval survival of the dreissenid quagga mussel

    Science.gov (United States)

    Stewart-Malone, Alecia; Misamore, Michael; Wilmoth, Siri K.; Reyes, Alejandro; Wong, Wai Hing; Gross, Jackson

    2015-01-01

    The rapid spread of quagga mussels (Dreissena rostriformis bugensis) has lead to their invasion of Lake Mead, Nevada, the largest reservoir in North America and partially responsible for providing water to millions of people in the southwest. Current strategies for mitigating the growth and spread of quagga mussels primarily include physical and chemical means of removing adults within water treatment, delivery, and hydropower facilities. In the present study, germicidal ultraviolet light (UV-C) was used to target the larval stage of wild-caught quagga mussel. The lethal effect of UV-C was evaluated at four different doses, 0.0, 13.1, 26.2, and 79.6 mJ/cm2. Tested doses were determined based on results from preliminary trials. The results demonstrate that germicidal UV-C is effective in controlling the free-swimming life history stages of larval quagga mussels.

  15. The Effect of UV-C Exposure on Larval Survival of the Dreissenid Quagga Mussel.

    Science.gov (United States)

    Stewart-Malone, Alecia; Misamore, Michael; Wilmoth, Siri; Reyes, Alejandro; Wong, Wai Hing; Gross, Jackson

    2015-01-01

    The rapid spread of quagga mussels (Dreissena rostriformis bugensis) has lead to their invasion of Lake Mead, Nevada, the largest reservoir in North America and partially responsible for providing water to millions of people in the southwest. Current strategies for mitigating the growth and spread of quagga mussels primarily include physical and chemical means of removing adults within water treatment, delivery, and hydropower facilities. In the present study, germicidal ultraviolet light (UV-C) was used to target the larval stage of wild-caught quagga mussel. The lethal effect of UV-C was evaluated at four different doses, 0.0, 13.1, 26.2, and 79.6 mJ/cm2. Tested doses were determined based on results from preliminary trials. The results demonstrate that germicidal UV-C is effective in controlling the free-swimming life history stages of larval quagga mussels.

  16. The Effect of UV-C Exposure on Larval Survival of the Dreissenid Quagga Mussel.

    Directory of Open Access Journals (Sweden)

    Alecia Stewart-Malone

    Full Text Available The rapid spread of quagga mussels (Dreissena rostriformis bugensis has lead to their invasion of Lake Mead, Nevada, the largest reservoir in North America and partially responsible for providing water to millions of people in the southwest. Current strategies for mitigating the growth and spread of quagga mussels primarily include physical and chemical means of removing adults within water treatment, delivery, and hydropower facilities. In the present study, germicidal ultraviolet light (UV-C was used to target the larval stage of wild-caught quagga mussel. The lethal effect of UV-C was evaluated at four different doses, 0.0, 13.1, 26.2, and 79.6 mJ/cm2. Tested doses were determined based on results from preliminary trials. The results demonstrate that germicidal UV-C is effective in controlling the free-swimming life history stages of larval quagga mussels.

  17. Effect of UV-irradiation on DNA-membrane complex of Bacillus subtilis

    International Nuclear Information System (INIS)

    Chefranova, O.A.; Gaziev, A.I.

    1979-01-01

    The UV radiation effect on DNA membrane complex of Bacillus subtilis has been studied. Increase of DNA content in the DNA membrane complex in two strains of 168 and recA - and its decrease in the polA - strain are shown. The above effect in the first two stamms is suppressed with caffeine and correlates with the change in protein content in the DNA membrane complex, determined by a radioactive label, but not lipids in other words, fixation of DNA and membrane goes through proteins. Capability of DNA content increase in the DNA membrane complex after UV irradiation and subsequent bacteria incubation in a total medium correlates with the relative sensitivity of stamm UV sensitivity. It is suggested, that the reparation synthesis goes in cells on the membrane and that binding of DNA and the membrane is necessary for the normal DNA reparation process

  18. Is UV-A radiation a cause of malignant melanoma?

    International Nuclear Information System (INIS)

    Moan, J.

    1994-01-01

    The first action spectrum for cutaneous malignant melanoma was published recently. This spectrum was obtained using the fish Xiphophorus. If the same action spectrum applies to humans, the following statements are true: Sunbathing products (agents to protect against the sun) that absorb UV-B radiation provide almost no protection against cutaneous malignant melanoma. UV-A-solaria are more dangerous than expected so far. If people are determined to use artificial sources of radiation for tanning, they should choose UV-B solaria rather than UV-A-solaria. Fluorescent tubes and halogen lamps may have weak melanomagenic effects. Ozone depletion has almost no effect on the incidence rates of CMM, since ozone absorbs very little UV-A radiation. Sunbathing products which contain UV-A-absorbing compounds or neutral filter (like titanium oxide) provide real protection against cutaneous malignant melanoma, at least if they are photochemically inert. 34 refs., 2 figs

  19. Is UV-A radiation a cause of malignant melanoma. Er UV-A aarsak til malignt melanom

    Energy Technology Data Exchange (ETDEWEB)

    Moan, J. (Det Norske Radiumhospital, Oslo (Norway))

    1994-03-01

    The first action spectrum for cutaneous malignant melanoma was published recently. This spectrum was obtained using the fish Xiphophorus. If the same action spectrum applies to humans, the following statements are true: Sunbathing products (agents to protect against the sun) that absorb UV-B radiation provide almost no protection against cutaneous malignant melanoma. UV-A-solaria are more dangerous than expected so far. If people are determined to use artificial sources of radiation for tanning, they should choose UV-B solaria rather than UV-A-solaria. Fluorescent tubes and halogen lamps may have weak melanomagenic effects. Ozone depletion has almost no effect on the incidence rates of CMM, since ozone absorbs very little UV-A radiation. Sunbathing products which contain UV-A-absorbing compounds or neutral filter (like titanium oxide) provide real protection against cutaneous malignant melanoma, at least if they are photochemically inert. 34 refs., 2 figs.

  20. Effect of UV/ozone treatment on the nanoscale surface properties of gold implanted polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Kisić, Danilo; Nenadović, Miloš [INS Vinca, Laboratory of Atomic Physics, University of Belgrade, Mike Alasa 12-14, 11001 Belgrade (Serbia); Štrbac, Svetlana [ICTM Institute of Electrochemistry, University of Belgrade, Njegoseva 12, 11001 Belgrade (Serbia); Adnadjević, Borivoj [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade (Serbia); Rakočević, Zlatko, E-mail: zlatkora@vinca.rs [INS Vinca, Laboratory of Atomic Physics, University of Belgrade, Mike Alasa 12-14, 11001 Belgrade (Serbia)

    2014-07-01

    The effect of ultraviolet (UV) ozone treatment on the surface properties of gold implanted high density polyethylene (HDPE) was investigated at a nanoscale using Atomic Force Microscopy (AFM). HDPE samples were modified by the implantation of gold ions at a dose of 5 × 10{sup 15} ions/cm{sup 2}, using energies of 50, 100, 150, and 200 keV, and subsequently treated with UV/ozone. AFM surface topography images revealed that after UV/ozone treatment, the surface roughness of all Au/HDPE samples increased, while Power Spectral Density function increased only for samples implanted using higher energies, with a maximum for 150 keV. The chemical surface composition was homogenous in all cases, which was evidenced by the appearance of single peaks in the histograms obtained from the phase AFM images. For UV/ozone treated samples, the shift of the peaks positions in the histograms to the higher values of the phase lag with respect to untreated ones indicated the decrease of surface hardness. Besides, a significant change of fractal dimension of surface grains is observed after UV/ozone treatment.

  1. The Effect of UV-B Radiation on Bufo arenarum Embryos Survival and Superoxide Dismutase Activity

    Science.gov (United States)

    Herkovits, J.; D’Eramo, J. L.; Fridman, O.

    2006-01-01

    The exposure of Bufo arenarum embryos to 300–310 nm UV-B at a dose of 4,104 Joule/m2 resulted in 100% lethality within 24 hr while 820 Joule/m2 was the NOEC value for short-term chronic (10 days) exposure. The dose response curves show that lethal effects are proportional with the dose and achieve its highest value within 48 hr post exposure. The superoxide dismutase (SOD) activity in amphibian embryos for sublethal UV-B exposures was evaluated by means of UV-B treatments with 273 (A), 820(B), 1368(C) and 1915(D) Joule/m2 at 2 and 5 hours post irradiation. The SOD activity in units/mg protein in A, B, C and D at 2 hr after treatments were 80.72 ± 14.29, 74.5 ± 13.19, 39.5 ± 6.99 and 10.7 ± 1.89 respectively while for control embryos it was 10.88 ± 1.31. At 5 hr after treatments the SOD values were similar to those found in control embryos. The results confirm the high susceptibility of amphibian embryos to UV-B and point out that the SOD activity is enhanced by low doses of UV-B irradiation achieving significantly higher values than in control embryos at 2 hr post exposure. PMID:16823076

  2. Effects of pimecrolimus versus triamcinolone on Langerhans cells after UV exposure.

    Science.gov (United States)

    Martires, Kathryn J; Domingo, Diana S; Hsia, Andrew; Fu, Pingfu; Cooper, Kevin D; Baron, Elma D

    2011-03-01

    Pimecrolimus is a topical immunomodulator for atopic dermatitis. Concerns regarding malignancy risk resulted in its black box warning in 2006. The purpose of this study is to determine the effects of pimecrolimus on Langerhans cells (LC), mediators of the cutaneous immunity UV-irradiated skin. A RCT was conducted investigating pimecrolimus 1% cream vs triamcinolone 0.1% cream on UV-irradiated epidermal LC on 20 healthy volunteers. Punch biopsies were stained with antibodies to CD1a, HLADR and CD83. Triamcinolone caused more depletion in UV-irradiated CD1a(+) epidermis relative to pimecrolimus treatment. (P=0.030). Using HLA-DR as a pan-marker for APCs, pimecrolimus caused marginally less depletion than triamcinolone (P=0.013). Using anti-CD83 as a maturation marker, UV-irradiated skin treated with pimecrolimus showed more mature LC than skin treated with triamcinolone (P=0.00090). UV-induced changes in LC are minimally affected by pimecrolimus, compared with triamcinolone. © 2010 John Wiley & Sons A/S.

  3. Effect of a new fluorochrome on pre- and post-UV treatment of Taphrina maculans Butler

    International Nuclear Information System (INIS)

    Singh, U.P.; Nagai, S.

    1977-01-01

    Taphrina maculans Butler incites leaf spots disease in turmeric (Curcuma longa L.) plants. The patogen forms two types of colonies namely, salmon-red and creamy-white in the artifical medium when isolated from a single infection spot. Both strains resemble yeasts in morphology. The two strains were subjected to UV irradiation. The salmon-red one showed higher resistance to UV than the white one, presumably due to the presence of a red pigment in the former. When spores of the salmon-red strain were pre-treated with a new fluorochrome Hoechst 33258 the survival decreased. Decreased survival of the salmon-red strain was also oberved during post-treatment which is probably due to the combined effect of UV and dye. The creamy-white strain differs from the salmon-red one in UV sensitivity, and also during combined treatment with UV and dye. During pre-treatment the organism shows more survival than during post-treatment with the fluorochrome. This differential response is discussed in the light of repair mechanisms involved in the organism. (author)

  4. Trichome density and its UV-B protective potential are affected by shading and leaf position on the canopy

    International Nuclear Information System (INIS)

    Liakoura, V.; Stefanou, M.; Manetas, Y.; Cholevas, C.; Karabourniotis, G.

    1997-01-01

    In Olea europaea trichome density and UV-B absorbing compounds of leaf hairs and the lamina proper of leaves located in south-facing, north-facing and the internal of the canopy were positively correlated to the UV-B midday instant irradiance measured in September at these three different positions of the canopy. The correlation between these three parameters and the receiving photosynthetically active radiation (PAR), however, was weaker. In Quercus ilex, trichome density and its UV-B absorbing capacity were considerably higher in the exposed, south-facing leaves, compared to the deeply shaded ones; the UV-B absorbing capacity of the de-haired lamina, however, was the same. In the broad-leaved, alpine rosette of Verbascum speciosum, one could distinguish two areas on the leaves, one exposed and one shaded by the superimposed lamina. Although trichome density and the UV-B absorbing compounds of the de-haired leaf were the same in the two areas, the UV-B absorbing capacity of hairs was considerably increased in the exposed region. In V. speciosum, exposure induced also qualitative changes in the UV-B absorbance profile, apparently due to the formation of new flavonoid compounds absorbing maximally at 345–350 nm. In all other cases, the differences were mainly quantitative. The results support the postulate of a function of leaf hairs as a UV-B radiation screen and suggest that trichome density and/or its UV-B absorbing capacity may depend on irradiance during leaf development

  5. Effect of uvs1, uvs2 and xrs mutations on the radiosensitivity and the induced mitotic recombination frequency in diploid yeast cells

    International Nuclear Information System (INIS)

    Suslova, N.G.; Fedorova, I.V.; Zheleznyakova, N.Yu.

    1975-01-01

    The influence of the loci of radiosensitivity uvs1, uvs2, and xrs in the homozygous state at the diploid level on the sensitivity to UV and ionizing radiation and induced mitotic recombination was studied in the yeast Sacch. cerevisiae. Hypersensitivity to UV irradiation was detected in the diploids uvs2 uvs2 xrs xrs in comparision with the corresponding control. The diploid uvs1 uvs1 uvs2 uvs2 does not differ in UV sensitivity from the diploid uvs1 uvs1 UVS2 UVS2. These facts demonstrate that the uvs1 and uvs2 mutations, on the one hand, and the xrs mutations, on the other, normally control different pathways of elimination of UV-induced damages. It was shown that the diploid uvs2 uvs2 xrs3 xrs3 is far more sensitive to the lethal action of x rays than the control diploid UVS2 UVS2 xrs3 xrs3. Consequently, the mutations uvs2 and xrs3 block different modes of repair of damages induced by ionizing radiation. In all the double-mutant diploids, the frequency of mitotic recombination induced by UV rays increases sharply in comparison with that of the radioresistant diploids UVS UVS XRS XRS and the UV-sensitive diploids uvs2 uvs2 XRS XRS. Possible causes of the observed phenomenon are discussed. It was established that in a diploid homozygous for the loci uvs2 xrs5, the frequency of mitotic recombination induced by x rays increases extremely sharply. This fact confirms the hypothesis that the gene product of the locus uvs2 participates in the repair of DNA after the action of ionizing radiation. (author)

  6. Modelling UV irradiances on arbitrarily oriented surfaces: effects of sky obstructions

    Directory of Open Access Journals (Sweden)

    M. Hess

    2008-07-01

    Full Text Available A method is presented to calculate UV irradiances on inclined surfaces that additionally takes into account the influence of sky obstructions caused by obstacles such as mountains, houses, trees, or umbrellas. With this method it is thus possible to calculate the impact of UV radiation on biological systems, such as, for instance, the human skin or eye, in any natural or artificial environment. The method, which consists of a combination of radiation models, is explained here and the accuracy of its results is demonstrated. The effect of a natural skyline is shown for an Alpine ski area, where the UV irradiance even on a horizontal surface may increase due to reflection from snow by more than 10 percent. In contrast, in a street canyon the irradiance on a horizontal surface is reduced to 30% in shadow and to about 75% for a position in the sun.

  7. Modelling UV irradiances on arbitrarily oriented surfaces: effects of sky obstructions

    Science.gov (United States)

    Hess, M.; Koepke, P.

    2008-07-01

    A method is presented to calculate UV irradiances on inclined surfaces that additionally takes into account the influence of sky obstructions caused by obstacles such as mountains, houses, trees, or umbrellas. With this method it is thus possible to calculate the impact of UV radiation on biological systems, such as, for instance, the human skin or eye, in any natural or artificial environment. The method, which consists of a combination of radiation models, is explained here and the accuracy of its results is demonstrated. The effect of a natural skyline is shown for an Alpine ski area, where the UV irradiance even on a horizontal surface may increase due to reflection from snow by more than 10 percent. In contrast, in a street canyon the irradiance on a horizontal surface is reduced to 30% in shadow and to about 75% for a position in the sun.

  8. Effects of enhanced UV-B radiation on Mentha spicata essential oils

    International Nuclear Information System (INIS)

    Karousou, R.; Grammatikopoulos, G.; Lanaras, T.; Manetas, Y.; Kokkini, S.

    1998-01-01

    In vitro propagated plantlets representing two distinct chemotypes of Mentha spicata, viz. plants producing essential oils rich in piperitone oxide and piperitenone oxide (chemotype I) and rich in carvone and dihydrocarvone (chemotype II), were grown in the field under ambient or ambient plus supplemental UV-B radiation, biologically equivalent to a 15% ozone depletion over Patras (38.3°N, 29.1°E), Greece. Enhanced UV-B radiation stimulated essential oil production in chemotype II substantially, while a similar, non-significant trend was observed in chemotype I. No effect was found on the qualitative composition of the essential oils, whereas the quantitative composition was slightly modified in chemotype I. This is the first investigation reporting an improved essential oil content under UV-B supplementation in aromatic plants under field conditions

  9. Effects of UV-B radiation on leaf hair traits of invasive plants-Combining historical herbarium records with novel remote sensing data.

    Science.gov (United States)

    Václavík, Tomáš; Beckmann, Michael; Cord, Anna F; Bindewald, Anja M

    2017-01-01

    Ultraviolet-B (UV-B) radiation is a key but under-researched environmental factor that initiates diverse responses in plants, potentially affecting their distribution. To date, only a few macroecological studies have examined adaptations of plant species to different levels of UV-B. Here, we combined herbarium specimens of Hieracium pilosella L. and Echium vulgare L. with a novel UV-B dataset to examine differences in leaf hair traits between the plants' native and alien ranges. We analysed scans of 336 herbarium specimens using standardized measurements of leaf area, hair density (both species) and hair length (H. pilosella only). While accounting for other bioclimatic variables (i.e. temperature, precipitation) and effects of herbivory, we examined whether UV-B exposure explains the variability and geographical distribution of these traits in the native (Northern Hemisphere) vs. the alien (Southern Hemisphere) range. UV-B explained the largest proportion of the variability and geographical distribution of hair length in H. pilosella (relative influence 67.1%), and hair density in E. vulgare (66.2%). Corresponding with higher UV-B, foliar hairs were 25% longer for H. pilosella and 25% denser for E. vulgare in records from the Southern as compared to those from the Northern Hemisphere. However, focusing on each hemisphere separately or controlling for its effect in a regression analysis, we found no apparent influence of UV-B radiation on hair traits. Thus, our findings did not confirm previous experimental studies which suggested that foliar hairs may respond to higher UV-B intensities, presumably offering protection against detrimental levels of radiation. We cannot rule out UV-B radiation as a possible driver because UV-B radiation was the only considered variable that differed substantially between the hemispheres, while bioclimatic conditions (e.g. temperature, precipitation) and other considered variables (herbivory damage, collection date) were at similar

  10. Effects of UV-B radiation on leaf hair traits of invasive plants—Combining historical herbarium records with novel remote sensing data

    Science.gov (United States)

    Cord, Anna F.; Bindewald, Anja M.

    2017-01-01

    Ultraviolet-B (UV-B) radiation is a key but under-researched environmental factor that initiates diverse responses in plants, potentially affecting their distribution. To date, only a few macroecological studies have examined adaptations of plant species to different levels of UV-B. Here, we combined herbarium specimens of Hieracium pilosella L. and Echium vulgare L. with a novel UV-B dataset to examine differences in leaf hair traits between the plants’ native and alien ranges. We analysed scans of 336 herbarium specimens using standardized measurements of leaf area, hair density (both species) and hair length (H. pilosella only). While accounting for other bioclimatic variables (i.e. temperature, precipitation) and effects of herbivory, we examined whether UV-B exposure explains the variability and geographical distribution of these traits in the native (Northern Hemisphere) vs. the alien (Southern Hemisphere) range. UV-B explained the largest proportion of the variability and geographical distribution of hair length in H. pilosella (relative influence 67.1%), and hair density in E. vulgare (66.2%). Corresponding with higher UV-B, foliar hairs were 25% longer for H. pilosella and 25% denser for E. vulgare in records from the Southern as compared to those from the Northern Hemisphere. However, focusing on each hemisphere separately or controlling for its effect in a regression analysis, we found no apparent influence of UV-B radiation on hair traits. Thus, our findings did not confirm previous experimental studies which suggested that foliar hairs may respond to higher UV-B intensities, presumably offering protection against detrimental levels of radiation. We cannot rule out UV-B radiation as a possible driver because UV-B radiation was the only considered variable that differed substantially between the hemispheres, while bioclimatic conditions (e.g. temperature, precipitation) and other considered variables (herbivory damage, collection date) were at similar

  11. Effects of UV-B radiation on leaf hair traits of invasive plants-Combining historical herbarium records with novel remote sensing data.

    Directory of Open Access Journals (Sweden)

    Tomáš Václavík

    Full Text Available Ultraviolet-B (UV-B radiation is a key but under-researched environmental factor that initiates diverse responses in plants, potentially affecting their distribution. To date, only a few macroecological studies have examined adaptations of plant species to different levels of UV-B. Here, we combined herbarium specimens of Hieracium pilosella L. and Echium vulgare L. with a novel UV-B dataset to examine differences in leaf hair traits between the plants' native and alien ranges. We analysed scans of 336 herbarium specimens using standardized measurements of leaf area, hair density (both species and hair length (H. pilosella only. While accounting for other bioclimatic variables (i.e. temperature, precipitation and effects of herbivory, we examined whether UV-B exposure explains the variability and geographical distribution of these traits in the native (Northern Hemisphere vs. the alien (Southern Hemisphere range. UV-B explained the largest proportion of the variability and geographical distribution of hair length in H. pilosella (relative influence 67.1%, and hair density in E. vulgare (66.2%. Corresponding with higher UV-B, foliar hairs were 25% longer for H. pilosella and 25% denser for E. vulgare in records from the Southern as compared to those from the Northern Hemisphere. However, focusing on each hemisphere separately or controlling for its effect in a regression analysis, we found no apparent influence of UV-B radiation on hair traits. Thus, our findings did not confirm previous experimental studies which suggested that foliar hairs may respond to higher UV-B intensities, presumably offering protection against detrimental levels of radiation. We cannot rule out UV-B radiation as a possible driver because UV-B radiation was the only considered variable that differed substantially between the hemispheres, while bioclimatic conditions (e.g. temperature, precipitation and other considered variables (herbivory damage, collection date were at

  12. Energy Effectiveness of Direct UV and UV/H2O2 Treatment of Estrogenic Chemicals in Biologically Treated Sewage

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Andersen, Henrik Rasmus

    2012-01-01

    and the UV/H2O2-treatment were investigated in biologically treated sewage for most of the estrogenic compounds reported in wastewater. The investigated compounds included parabens, industrial phenols, sunscreen chemicals and steroid estrogens. Treatment experiments were performed in a flow through set...

  13. Effect of pigment concentration on fastness and color values of thermal and UV curable pigment printing

    Science.gov (United States)

    Baysal, Gulcin; Kalav, Berdan; Karagüzel Kayaoğlu, Burçak

    2017-10-01

    In the current study, it is aimed to determine the effect of pigment concentration on fastness and colour values of thermal and ultraviolet (UV) curable pigment printing on synthetic leather. For this purpose, thermal curable solvent-based and UV curable water-based formulations were prepared with different pigment concentrations (3, 5 and 7%) separately and applied by screen printing technique using a screen printing machine. Samples printed with solvent-based formulations were thermally cured and samples printed with water-based formulations were cured using a UV curing machine equipped with gallium and mercury (Ga/Hg) lamps at room temperature. The crock fastness values of samples printed with solvent-based formulations showed that increase in pigment concentration was not effective on both dry and wet crock fastness values. On the other hand, in samples printed with UV curable water-based formulations, dry crock fastness was improved and evaluated as very good for all pigment concentrations. However, increasing the pigment concentration affected the wet crock fastness values adversely and lower values were observed. As the energy level increased for each irradiation source, the fastness values were improved. In comparison with samples printed with solvent-based formulations, samples printed with UV curable water-based formulations yielded higher K/S values at all pigment concentrations. The results suggested that, higher K/S values can be obtained in samples printed with UV curable water-based formulations at a lower pigment concentration compared to samples printed with solvent-based formulations.

  14. The effect of UV treatment on highly polluted and normal operated swimming pools

    DEFF Research Database (Denmark)

    Spiliotopoulou, Aikaterini; Kaarsholm, Kamilla Marie Speht; Andersen, Henrik Rasmus

    2017-01-01

    Water samples from 2 indoor public swimming pool facilities with significantly different organic matter concentrations in the recirculation were tested to evaluate UV-induced effects on water chemistry. The aim of the study was to investigate the impact of poor water quality due to increased...

  15. Photodamaging mechanism of the eye structure: UV effect on soluble proteins of the lens

    International Nuclear Information System (INIS)

    Korkhmazyan, M.M.; Fedorovich, I.B.; Ostrovskij, M.A.

    1983-01-01

    Damaging effect of UV-radiation on soluble proteins of bull lens has been studied. Irradiation results in lens proteins growing yellow, new absorption bands with the maxima 245 and 305 nm appear. It is shown that during photodamage oxidation of SH-groups takes place and protein aggregates are formed

  16. Health effects of UV-B exposure; with special emphasis on the immune system

    NARCIS (Netherlands)

    Goettsch W; Garssen J; de Gruijl FR; van Loveren H

    1992-01-01

    As a results of a depletion of atmospheric ozone all living organisms on the earth"s surface may be exposed to increased amounts of ultraviolet radiation. In man, ultraviolet radiation (UVR, especially UV-B) can cause, in addition to some beneficial effects like vitaming D formation,

  17. In vitro erythemal UV-A protection factors of inorganic sunscreens distributed in aqueous media using carnauba wax-decyl oleate nanoparticles.

    Science.gov (United States)

    Villalobos-Hernández, J R; Müller-Goymann, C C

    2007-01-01

    This paper describes the in vitro photoprotection in the UV-A range, i.e. 320-400 nm obtained by the use of carnauba wax-decyl oleate nanoparticles either as encapsulation systems or as accompanying vehicles for inorganic sunscreens such as barium sulfate, strontium carbonate and titanium dioxide. Lipid-free inorganic sunscreen nanosuspensions, inorganic sunscreen-free wax-oil nanoparticle suspensions and wax-oil nanoparticle suspensions containing inorganic sunscreens dispersed either in their oil phase or their aqueous phase were prepared by high pressure homogenization. The in vitro erythemal UV-A protection factors (EUV-A PFs) of the nanosuspensions were calculated by means of a sun protection analyzer. EUV-A PFs being no higher than 4 were obtained by the encapsulation of barium sulfate and strontium carbonate, meanwhile by the distribution of titanium dioxide in presence of wax-oil nanoparticles, the EUV-A PFs varied between 2 and 19. The increase in the EUV-A PFs of the titanium dioxide obtained by the use of wax-oil nanoparticles demonstrated a better performance of the sun protection properties of this pigment in the UV-A region.

  18. Association of nuisance filamentous algae Cladophora spp. with E. coli and Salmonella in public beach waters: impacts of UV protection on bacterial survival.

    Science.gov (United States)

    Beckinghausen, Aubrey; Martinez, Alexia; Blersch, David; Haznedaroglu, Berat Z

    2014-05-01

    This study investigated whether filamentous algal species commonly found in nearshore public beach water systems provide protection from natural UV to bacteria present in the same environmental settings. To test this hypothesis, Cladophora spp., a filamentous nuisance algae group causing undesired water quality in the Great Lakes region was selected and its interactions with a non-pathogenic indicator organism Escherichia coli and a pathogenic strain of Salmonella enterica serovar Typhimurium were tested. In laboratory microcosms where the lake environment and natural sunlight conditions were simulated, a 7-log removal of E. coli was observed in only six hours of exposure to UV with an initial seed concentration of 10(3) CFU mL(-1). With the presence of algae, the same log removal was achieved in 16 hours. At higher seed concentrations of 10(5) CFU mL(-1), E. coli survived for two days with an extended survival up to 11 days in the presence of Cladophora spp. S. typhimurium has shown more resilient survival profiles, with the same log removals achieved in 14 and 20 days for low and high seed concentrations respectively, in the absence of algae. Cladophora spp. caused extended protection for S. typhimurium with much less log reductions reported. Algae-mediated protection from UV irradiation was attributed to certain organic carbon exuded from Cladophora spp. In addition, confocal microscopy images confirmed close interaction between bacteria and algae, more prominent with thin filamentous Cladophora spp.

  19. Immunological aspects of the investigation in the effect of external UV-irradiation and UV-irradiated bioliquids of the Langerhans cell

    International Nuclear Information System (INIS)

    Volyanskij, Yu.L.; Marchuk, L.M.; Telepneva, L.G.

    1989-01-01

    The origin and role of the Langerhans cell are considered in the immune response of the organism, as well as in a number of human diseases. It is noted that the antigen-presenting function of this macrophage suffers when taking glucocorticosteroid preparations, at AIDS and large doses of ultraviolet radiation. Therefore, the investigation of the effect of UV-irradiated blood reinfusion on the Langerhans cell will help to determine the possibilities of UV-irradiated blood therapy in treating a wide range of diseases, including AIDS, in the transplantation of organs and tissues. 163 refs.; 2 figs

  20. Effects of stron UV-B radiation on air chemistry and climate; Auswirkungen verstaerkter UV-B-Strahlung auf Luftchemie und Klima

    Energy Technology Data Exchange (ETDEWEB)

    Schoenemeyer, T.; Seidl, W.; Forkel, R.; Kuhn, M.; Wehrhahn, J.; Grell, G.

    1998-07-01

    Effects of enhanced UV radiation on air chemistry, climate and climate change were investigated, and its interactions with other environmental problems like acidification of soil and surface water, reduction in the variety of species, and desertification were gone into. [German] In der vorliegenden Arbeit wurden die bisher vorliegenden Erkenntnisse ueber die Auswirkungen erhoehter UV-Strahlung infolge des Abbaus von Ozon in der Stratosphaere auf Luftchemie und Klima zusammengetragen. Die Problematik wird in ihrer ganzen Breite beleuchtet und dabei deutlich gemacht, ueber welche zahlreichen Mechanismen eine erhoehte UV-Strahlung auch zu Klimaaenderungen fuehren kann. Dies unterstreicht die Notwendigkeit, Verknuepfungen mit anderen Umweltproblemen wie der Versauerung des Bodens und von Gewaessern, der Abnahme der Artenvielfalt sowie der zunehmenden Wuestenbildung herzustellen. (orig.)

  1. Effects of UV, sunlight and X-ray radiation on quiescent human cells in culture

    International Nuclear Information System (INIS)

    Kantor, G.J.

    1986-01-01

    Nondividing human diploid fibroblasts (HDF) in culture have been used to study the effect on cell lethality of ultraviolet light, natural sunlight and X-rays. A lethal effect is defined as cellular degeneration, loss from the culture and inability to exclude vital strains. Far- and mid-UV have a readily observable lethal effect (cell loss), with DNA and DNA damage as the critical target and critical damage respectively. In part, natural sunlight kills cells by a similar mechanism but has an additional lethal effect at longer exposure times. This additional effect is expressed by the retention of the dead cells in culture, in contrast to the UV-induced promotion of cell degeneration and loss. Relatively large doses of X-rays that destroy proliferative capacity, have no detectable lethal effect on the maintenance of non-dividing cells. The biological response of nondividing HDF to radiations from different parts of the electromagnetic spectrum is dissimilar. (author)

  2. Simultaneous effect of UV-irradiation and deformation

    International Nuclear Information System (INIS)

    Turchanyi, G.; Janszky, J.; Racz, S.; Tarjan, I.

    1982-01-01

    The present paper reports on experiments performed on X-ray coloured KCl single crystals by means of dislocation photoconduction. This method makes use of the internal electric field developing in ionic crystals due to charged dislocations during their deformation. The effect of previous illuminations in the visible region on the photocurrent produced by VUV-light was also investigated, a memory effect and changes of the sign of the photocurrents were found under suitable conditions. It was shown that using visible light of high enough intensity the direction of the photocurrent produced by it also changes sign. The problems involved in the dislocation photoconduction method are discussed. (author)

  3. Effects of solar and artificial UV irradiation on motility and phototaxis in the flagellate, Euglena gracilis

    International Nuclear Information System (INIS)

    Haeder, D.-P.

    1986-01-01

    The effect of solar irradiation on the percentage of motile cells, their average speed and their phototactic orientation to white actinic light was studied in the flagellate, Euglena gracilis. Unfiltered solar radiation in midsummer during mid-day at a location near Lisboa, Portugal, was found to impair motility within 2 h. This effect is exclusively due to the UV-B component of the radiation and not due to UV-A, visible light or a temperature increase. Likewise, phototactic orientation was drastically impaired. Reduction of the solar UV-B irradiation by insertion of an ozone-flooded plexiglass cuvette partially reduced the inhibition and covering the cuvettes with glass prevented any decrease in motility and photoorientation. Similar results were found with artificial irradiation (Xe lamps). After inoculation, the motility of the population follows an optimum curve (optimum at 8 days). Also, the UV-B effect on motility was smallest after about one week and increased for younger and older cultures. (author)

  4. The deceptive nature of UVA tanning versus the modest protective effects of UVB tanning on human skin.

    Science.gov (United States)

    Miyamura, Yoshinori; Coelho, Sergio G; Schlenz, Kathrin; Batzer, Jan; Smuda, Christoph; Choi, Wonseon; Brenner, Michaela; Passeron, Thierry; Zhang, Guofeng; Kolbe, Ludger; Wolber, Rainer; Hearing, Vincent J

    2011-02-01

    The relationship between human skin pigmentation and protection from ultraviolet (UV) radiation is an important element underlying differences in skin carcinogenesis rates. The association between UV damage and the risk of skin cancer is clear, yet a strategic balance in exposure to UV needs to be met. Dark skin is protected from UV-induced DNA damage significantly more than light skin owing to the constitutively higher pigmentation, but an as yet unresolved and important question is what photoprotective benefit, if any, is afforded by facultative pigmentation (i.e. a tan induced by UV exposure). To address that and to compare the effects of various wavelengths of UV, we repetitively exposed human skin to suberythemal doses of UVA and/or UVB over 2 weeks after which a challenge dose of UVA and UVB was given. Although visual skin pigmentation (tanning) elicited by different UV exposure protocols was similar, the melanin content and UV-protective effects against DNA damage in UVB-tanned skin (but not in UVA-tanned skin) were significantly higher. UVA-induced tans seem to result from the photooxidation of existing melanin and its precursors with some redistribution of pigment granules, while UVB stimulates melanocytes to up-regulate melanin synthesis and increases pigmentation coverage, effects that are synergistically stimulated in UVA and UVB-exposed skin. Thus, UVA tanning contributes essentially no photoprotection, although all types of UV-induced tanning result in DNA and cellular damage, which can eventually lead to photocarcinogenesis. 2010 John Wiley & Sons A/S. This article is a US Government work and is in the public domain in the USA.

  5. Ultraviolet light protection, enhancement of ultraviolet light mutagenesis, and mutator effect of plasmid R46 in Salmonella typhimurium

    International Nuclear Information System (INIS)

    Mortelmans, K.E.; Stocker, B.A.D.

    1976-01-01

    Plasmid R46 partially protected Salmonella typhimurium, wild type or uvrB or polA, against the lethal effect of ultraviolet (uv) irradiation, but did not protect recA mutants. The plasmid also increased frequency of uv-induced reversion to His + in all tested his point mutants (wild type for uv sensitivity), including amber, ochre, UGA, missense, and frame-shift mutants. Plasmid R46 also increased uv-induced reversion to His + in uvrB and polA strains, but no uv mutagenic effect was detected in R - or R46-carrying recA derivatives of a his(amber) mutant. The spontaneous reversion frequency of his nonsense mutants of all classes, and of some his missense mutants, was increased about 10-fold when the strains carried R46, but the plasmid had no effect on the spontaneous reversion frequency of some other his missense mutations or of reversion rate of his frame-shift mutants (except for two uvrB derivatives of one single-base insertion mutant). The plasmid increased the ability of wild type, polA, and uvrB hosts to support plaque production by uv-irradiated phage, and made strain LT2 his G46 less sensitive to methyl methane sulfonate and to x rays and more responsive to the mutagenic effect of visible-light irradiation. R46 increased spontaneous reversion frequency of a his(amber) rec + strain, but had no such effect in its recA sublines. Since the plasmid in the absence of host recA function fails to produce its mutator effect, or to confer uv protection or to enhance uv mutagenesis, these three effects may be produced via some mechanism involved in recA-dependent deoxyribonucleic acid repair, perhaps by an increase in activity of the ''error-prone'' component of the inducible repair pathway

  6. The effect of UV irradiation on the early development of silkworm embryos, (2)

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro

    1981-01-01

    The development of silkworm eggs irradiated with UV was compared with that of normal eggs. When the eggs were irradiated with UV from the lateral side immediately after oviposition, development was decelerated, but the germ band was produced. The side of the germ band that was irradiated with UV was abnormal with holes, but the opposite side was hole-free and normal. The normal half of the germ band splits longitudinally, but developed along with the abnormal half to form various malformations. When the eggs were irradiated from the ventral side, the ventral part of the germ band was abnormal at the early stage, the germ band did not concentrate to one place, and produced the half-embryos longitudinally divided by the median line. The UV irradiation at the beginning of the blastoderm stage produced similar results. In the areas irradiated by UV, cleavage nuclei invaded into the surrounding protoplasm, and mitotic figures were observed, but the cell number did not increase even with the advance of development unlike normal cells, whereas the sizes of the cells, their nuclei and nucleoli were enlarged, and intercellular space widened so that the cells were no longer in close contact. The germ band cells produced in the non-irradiated area were normal. The above results suggest that when either the protoplasm or the nucleus of a silkworm egg is damaged by UV, the effect first appears as the inhibition of cell division in the germ band, and as the enlargement of the cell, nucleus and nucleoli. It is presumed that this induces the subsequent inhibition of cell differentiation or abnormalities. (Kaihara, S.)

  7. Effect of UV irradiation on the early development of silkworm embryos, (2). Development of irradiated eggs

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y. (Hokkaido Univ., Sapporo (Japan). Faculty of Agriculture)

    1981-02-01

    The development of silkworm eggs irradiated with UV was compared with that of normal eggs. When the eggs were irradiated with UV from the lateral side immediately after oviposition, development was decelerated, but the germ band was produced. The side of the germ band that was irradiated with UV was abnormal with holes, but the opposite side was hole-free and normal. The normal half of the germ band splits longitudinally, but developed along with the abnormal half to form various malformations. When the eggs were irradiated from the ventral side, the ventral part of the germ band was abnormal at the early stage, the germ band did not concentrate to one place, and produced the half-embryos longitudinally divided by the median line. The UV irradiation at the beginning of the blastoderm stage produced similar results. In the areas irradiated by UV, cleavage nuclei invaded into the surrounding protoplasm, and mitotic figures were observed, but the cell number did not increase even with the advance of development unlike normal cells, whereas the sizes of the cells, their nuclei and nucleoli were enlarged, and intercellular space widened so that the cells were no longer in close contact. The germ band cells produced in the non-irradiated area were normal. The above results suggest that when either the protoplasm or the nucleus of a silkworm egg is damaged by UV, the effect first appears as the inhibition of cell division in the germ band, and as the enlargement of the cell, nucleus and nucleoli. It is presumed that this induces the subsequent inhibition of cell differentiation or abnormalities.

  8. Effects of ultraviolet-B radiation (UV-B) on growth and physiology of the dune grassland species Calamagrostis epigeios

    International Nuclear Information System (INIS)

    Tosserams, M.; Rozema, J.

    1995-01-01

    Seedlings of Calamagrostis epigeios were exposed to four levels of UV-B radiation (280-320 nm), simulating up to 44% reduction of stratospheric ozone concentration during summertime in The Netherlands, to determine the response of this plant species to UV-B irradiation. After six weeks of UV-B treatment, total biomass of all UV-B treated plants was higher, compared to plants that had received no UV-B radiation. The increase of biomass did not appear to be the result of a stimulation of net photosynthesis. Also, transpiration rate and water use efficiency were not altered by UV-B at any exposure level. Pigment analysis of leaf extracts showed no effect of enhanced UV-B radiation on chlorophyll content and accumulation of UV absorbing pigments. UV-B irradiance, however, did reduce the transmittance of visible light (400-700 nm) of intact attached leaves, suggesting a change in anatomical characteristics of the leaves. Additionally, the importance of including an ambient UV-B treatment in indoor experiments is discussed

  9. The effects of different UV-B radiation intensities on morphological and biochemical characteristics in Ocimum basilicum L.

    Science.gov (United States)

    Sakalauskaitė, Jurga; Viskelis, Pranas; Dambrauskienė, Edita; Sakalauskienė, Sandra; Samuolienė, Giedrė; Brazaitytė, Aušra; Duchovskis, Pavelas; Urbonavičienė, Dalia

    2013-04-01

    The effects of short-term ultraviolet B (UV-B) irradiation on sweet basil (Ocimum basilicum L. cv. Cinnamon) plants at the 3-4 leaf pair and flowering stages were examined in controlled environment growth chambers. Plants were exposed to 0 (reference), 2 and 4 kJ UV-B m(-2) day(-1) over 7 days. Exposure of basil plants to supplementary UV-B light resulted in increased assimilating leaf area, fresh biomass and dry biomass. Stimulation of physiological functions in young basil plants under either applied UV-B dose resulted in increased total chlorophyll content but no marked variation in carotenoid content. At the flowering stage the chlorophyll and carotenoid contents of basil were affected by supplementary UV-B radiation, decreasing with enhanced UV-B exposure. Both total antioxidant activity (2,2-diphenyl-1-picrylhydrazyl free radical assay) and total phenolic compound content were increased by UV-B light supplementation. Young and mature basil plants differed in their ascorbic acid content, which was dependent on UV-B dose and plant age. UV-B radiation resulted in decreased nitrate content in young basil plants (3-4 leaf pair stage). These results indicate that the application of short-exposure UV-B radiation beneficially influenced both growth parameters and biochemical constituents in young and mature basil plants. © 2012 Society of Chemical Industry.

  10. Expression of chalcone synthase genes in coleoptiles and primary leaves of Secale cereale L. after induction by UV radiation: evidence for a UV-protective role of the coleoptile

    International Nuclear Information System (INIS)

    Haussühl, K.; Rohde, W.; Weissenböck, G.

    1996-01-01

    Four chalcone synthase (CHS; EC 2.3.1.74) clones from rye were isolated and characterized. Two of these clones were used for analysis of CHS gene activities in response to ultraviolet and visible radiation in the coleoptile and the primary leaf of the rye seedling. The time-dependence of CHS gene activation and the spatial distribution of CHS were studied by investigation of enzyme activities and CHS mRNA levels, including in situ RNA hybridization. In the primary leaf strong induction of CHS gene activity was localized in the epidermal layers and only marginally found in the mesophyll. The coleoptile showed an even higher response to UV irradiation, but CHS gene activity was evenly distributed throughout the tissues. It is suggested that, in addition to its function as a mechanical protection for the primary leaf during seed germination and seedling emergence through the soil, the coleoptile may also protect the emerging seedling from harmful radiation

  11. The effect of inorganic precursors on disinfection byproduct formation during UV-chlorine/chloramine drinking water treatment.

    Science.gov (United States)

    Lyon, Bonnie A; Dotson, Aaron D; Linden, Karl G; Weinberg, Howard S

    2012-10-01

    Ultraviolet (UV) disinfection is being increasingly used in drinking water treatment. It is important to understand how its application to different types of water may influence finished water quality, particularly as anthropogenic activity continues to impact the quality of source waters. The objective of this study was to evaluate the effect of inorganic precursors on the formation of regulated and unregulated disinfection byproducts (DBPs) during UV irradiation of surface waters when combined with chlorination or chloramination. Samples were collected from three drinking water utilities supplied by source waters with varying organic and inorganic precursor content. The filtered samples were treated in the laboratory with a range of UV doses delivered from low pressure (LP, UV output at 253.7 nm) and medium pressure (MP, polychromatic UV output 200-400 nm) mercury lamps followed by chlorination or chloramination, in the presence and absence of additional bromide and nitrate. The regulated trihalomethanes and haloacetic acids were not affected by UV pretreatment at disinfection doses (40-186 mJ/cm²). With higher doses (1000 mJ/cm²), trihalomethane formation was increased 30-40%. While most effects on DBPs were only observed with doses much higher than typically used for UV disinfection, there were some effects on unregulated DBPs at lower doses. In nitrate-spiked samples (1-10 mg N/L), chloropicrin formation doubled and increased three- to six-fold with 40 mJ/cm² MP UV followed by chloramination and chlorination, respectively. Bromopicrin formation was increased in samples containing bromide (0.5-1 mg/L) and nitrate (1-10 mg N/L) when pretreated with LP or MP UV (30-60% with 40 mJ/cm² LP UV and four- to ten-fold increase with 40 mJ/cm² MP UV, after subsequent chlorination). The formation of cyanogen chloride doubled and increased three-fold with MP UV doses of 186 and 1000 mJ/cm², respectively, when followed by chloramination in nitrate-spiked samples but

  12. Enhanced Chemical Cleaning: Effectiveness Of The UV Lamp To Decompose Oxalates

    International Nuclear Information System (INIS)

    Ketusky, E.; Huff, T.; Sudduth, C.

    2010-01-01

    Enhanced Chemical Cleaning is a new process scheduled to begin cleaning Savannah River Site High Level Waste Tanks in 2012. It is an improvement over the current chemical cleaning method, in that it minimizes downstream impacts on the High Level Waste System. It is based on a state of the art scale removal process used on the secondary side of nuclear power plants, with modifications to accommodate the unique constraints created by the tanks. Both Enhanced Chemical Cleaning and the scale removal process are founded on dissolving metal oxides/hydroxides using oxalic acid, with subsequent oxalate decomposition via hydroxylation using ozone or peroxide, and UV light as a catalyst. A divergence Enhanced Chemical Cleaning has from nuclear power scale removal is the significantly increased solids concentration during oxalate decomposition. These solids can limit the ability of the UV light to create hydroxyl radicals, either by limiting the ability of the light to penetrate through the solution, or by increasing the fouling rate on the UV light. Both will decrease the overall catalytic effectiveness, thereby decreasing the concentration of formed hydroxyl radicals. The hydroxyl radicals are the driving force behind the oxalate decomposition. To understand the impact of increased solids, testing was performed using a medium pressure UV light inside an ozone supplied Oxalate Decomposition Reactor. Using a dissolved metal sludge simulant with an initial oxalate concentration greater than 12,000 ppm, and an initial pH of about 2.0, the spent acid solution was recirculated through the reactor, while the UV light was allowed to foul. For the first few hours, the oxalate decomposition rate was about 1,300 ppm/hour. After about 3 hours, enough time for the UV lamp to foul, the oxalate decomposition rate decreased to about 500 ppm/hour. The decomposition rate then remained roughly constant for the next 16 hours. Overall, testing showed that the oxalate destruction rate decreased

  13. ENHANCED CHEMICAL CLEANING: EFFECTIVENESS OF THE UV LAMP TO DECOMPOSE OXALATES

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E.; Huff, T.; Sudduth, C.

    2010-01-19

    Enhanced Chemical Cleaning is a new process scheduled to begin cleaning Savannah River Site High Level Waste Tanks in 2012. It is an improvement over the current chemical cleaning method, in that it minimizes downstream impacts on the High Level Waste System. It is based on a state of the art scale removal process used on the secondary side of nuclear power plants, with modifications to accommodate the unique constraints created by the tanks. Both Enhanced Chemical Cleaning and the scale removal process are founded on dissolving metal oxides/hydroxides using oxalic acid, with subsequent oxalate decomposition via hydroxylation using ozone or peroxide, and UV light as a catalyst. A divergence Enhanced Chemical Cleaning has from nuclear power scale removal is the significantly increased solids concentration during oxalate decomposition. These solids can limit the ability of the UV light to create hydroxyl radicals, either by limiting the ability of the light to penetrate through the solution, or by increasing the fouling rate on the UV light. Both will decrease the overall catalytic effectiveness, thereby decreasing the concentration of formed hydroxyl radicals. The hydroxyl radicals are the driving force behind the oxalate decomposition. To understand the impact of increased solids, testing was performed using a medium pressure UV light inside an ozone supplied Oxalate Decomposition Reactor. Using a dissolved metal sludge simulant with an initial oxalate concentration greater than 12,000 ppm, and an initial pH of about 2.0, the spent acid solution was recirculated through the reactor, while the UV light was allowed to foul. For the first few hours, the oxalate decomposition rate was about 1,300 ppm/hour. After about 3 hours, enough time for the UV lamp to foul, the oxalate decomposition rate decreased to about 500 ppm/hour. The decomposition rate then remained roughly constant for the next 16 hours. Overall, testing showed that the oxalate destruction rate decreased

  14. Beneficial Effects of UV-Radiation: Vitamin D and beyond

    Directory of Open Access Journals (Sweden)

    Christian Trummer

    2016-10-01

    Full Text Available Aside from its well-known effects on bone and mineral metabolism, vitamin D may also play an important role in extra-skeletal processes like immunologic diseases, cancer, or cardiovascular diseases. Even though meta-analyses showed that vitamin D supplementation reduces fractures, falls, and overall mortality, its potential benefits did not find universal acclaim. Several health care authorities published Recommended Dietary Allowances (RDAs for vitamin D, most of them ranging from 600 to 800 international units (IU per day, corresponding to a serum level of 25-hydroxyvitamin D of at least 20 ng/mL (50 nmol/L. However, studies conducted in the general population revealed a much lower overall intake of vitamin D than the proposed RDAs. Thus, strategies to increase the vitamin D intake in the general population, e.g., food fortification or vitamin D supplementation, are needed to match the existing evidence and recommendations. Therefore, several currently ongoing projects aim to investigate the effect of vitamin D supplementation in the general population and try to establish food-based solutions to improve vitamin D status.

  15. Effects of 24-epibrassinolide pre-treatment on UV-B-induced changes in the pigment content of pea leaves

    International Nuclear Information System (INIS)

    Dobrikova, A.; Vladkova, R.; Stanoeva, D.; Popova, A.; Velitchkova, M.

    2013-01-01

    In the present work, the effects of 24-epibrassinolide (EBR) on the UV-B-induced changes in the pigment content of pea leaves were studied. Control (non-EBR-treated) and EBR-treated plants were irradiated with UV-B for 3 h and pigment analysis was performed after 24 and 48 h. The results show that EBR spraying of plants 48 h prior to UV-B exposure alleviates its detrimental effect on chlorophyll a and b (Chl a and Chl b) content in comparison with control pea leaves. An increase in carotenoids (Car) and UV-B absorbing compounds was also observed at low dose of UV-B radiation. For the first time, it is shown that UV-B damage effect on control leaves is accompanied by a significant (more than 50%) increase in their pheophytin a (Pheo a) content 48 h after the UV-B exposure and that the EBR pre-treatment prevents the increase of Pheo a content in UV-B irradiated leaves. In addition, it is demonstrated that EBR application modifies UV-B-induced alterations of energy distribution between the main pigment-protein complexes in pea thylakoid membranes

  16. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  17. UV radiation in marine ectotherms: Molecular effects and responses

    International Nuclear Information System (INIS)

    Dahms, Hans-U.; Lee, Jae-Seong

    2010-01-01

    This review summarizes current knowledge on ultraviolet radiation (UVR)-induced cellular and molecular damage in marine ectotherms (invertebrates and fish). UVR impairs sperm motility, reduces fertilization, and causes embryo malformation that in turn affects recruitment and therefore the sustainability of natural populations. The direct molecular effects of UVR are mediated by absorption of certain wavelengths by specific macromolecules and the dissipation of the absorbed energy via photochemical reactions. Most organisms have defense mechanisms that either prevent UVR-induced damage, or mechanisms that repair the damage. Photoprotective pigments, antioxidant defense compounds, and cell cycle development genes are some of the molecules involved in UVR defense. Photoenzymatic repair and nucleotide excision repair are the two primary DNA repair systems in marine ectotherms. We anticipate that toxicogenomic studies will gain importance in UVR research because they can elucidate the primary processes involved in UVR damage and the cellular response to this damage.

  18. Long-term effects of elevated UV-B radiation on photosynthesis and ultrastructure of Eriophorum russeolum and Warnstorfia exannulata

    International Nuclear Information System (INIS)

    Haapala, Jaana K.; Moersky, Sami K.; Saarnio, Sanna; Suokanerva, Hanne; Kyroe, Esko; Silvola, Jouko; Holopainen, Toini

    2010-01-01

    The depletion of stratospheric ozone above the Arctic regions may increase the amount of UV-B radiation to which the northern ecosystems are exposed. In this paper, we examine the hypothesis that supplemental UV-B radiation may affect the growth rate and photosynthesis of boreal peatland plants and could thereby affect the carbon uptake of these ecosystems. In this study, we report the effects of 3-year exposure to elevated UV-B radiation (46% above ambient) on the photosynthetic performance and ultrastructure of a boreal sedge Eriophorum russeolum and a moss Warnstorfia exannulata. The experiment was conducted on a natural fen ecosystem at Sodankylae in northern Finland. The effects of UV-B radiation on the light response of E. russeolum CO 2 assimilation and the maximal photochemical efficiency of photosystem II in a dark-adapted state (F v /F m ) were measured in the field. In addition, the effect of supplemental UV-B radiation on organelles of photosynthetic cells was studied by electron microscopy. The UV-B treatment had no effect on the CO 2 assimilation rate of either species, nor did it affect the structure of the cell organelles. On chlorophyll fluorescence, the UV-B exposure had only a temporary effect during the third exposure year. Our results suggested that in a natural ecosystem, even long-term exposure to reasonably elevated UV-B radiation levels does not affect the photosynthesis of peatland plants. - Research highlights: →Eriophorum russeolum and Warnstorfia exannulata are resistant to UV-B radiation →UV-B exposure does not affect the growth or photosynthesis of E. russeolum →Long-term UV-B exposure has no effect on the ultrastructure of E. russeolum

  19. Global Solar UV Index (invited paper)

    International Nuclear Information System (INIS)

    Repacholi, M.H.

    2000-01-01

    Excessive solar ultraviolet (UV) radiation exposure produces a significant burden of disease to the skin, eyes and immune system. Effective programmes for the reduction of UV exposure are needed to reduce this disease burden and the associated health care costs. The UV index is seen as an effective tool for communicating important protection information to the public through its use in media news and weather information. The index is described and it is suggested that universally common messages should be associated with its ranges. (author)

  20. Variability of pre-vitamin D3 effectiveness of UV appliances for skin tanning.

    Science.gov (United States)

    Sayre, Robert M; Dowdy, John C; Shepherd, James G

    2010-07-01

    While there is limited documentation that certain indoor tanning lamps effectively produce vitamin D, the diversity of such devices has not been extensively surveyed. This study compares the spectral effectiveness of a variety of tanning units, and solar spectra, for ultraviolet (UV) photosynthesis of pre-vitamin D3 (preD3) and UV induced erythema. Well-established techniques exist for the calculation of spectral effectiveness for photobiological responses that have defined action spectra. Using spectroradiometric data from sunlamp measurements, and standard solar reference spectra, we computed effective irradiances using the CIE action spectrum for the production of preD3 in human skin and the ISO/CIE human erythema reference action spectrum. We found, as with sunlight at different times or latitude, the preD3 and erythemal effectiveness of sunlamps varied as a function of the UV-B proportion of the spectrum. Ratios of sunlamp preD3 to erythemal effectiveness ranged from approximately 0.5 to nearly 2.0, similar to ratios for sunlight. Optimal risk to benefit conditions for preD3 from solar UV exposure occurs under high solar altitude, low zenith angle, midday midsummer sunlight. Analogous optimal preD3 exposure conditions are provided by low to intermediate pressure sunlamps with greater UV-B spectral overlap with the preD3 action spectrum. Similar to low altitude or high latitude sunlight, high pressure tanning units, filtered for negligible UV-B emissions, have insignificant vitamin D benefit. We conclude that while vitamin D can be made by both UVB exposure from indoor tanning units and by exposure UVB from sunlight, the effect is also comparably variable. Unlike sunlight, indoor tanning offers privacy and environmental conditions for practical full body exposure, lowering the requisite exposure per skin surface area, and device timers limit the potential of overexposure. Guidance for optimal use of tanning sources for vitamin D benefit is needed. Copyright (c

  1. Inhibition of Photo-Genotoxic Effects of UV Radiation on Human Peripheral Blood Lymphocites by Echinacea Purpurea (L.) Moench Herbal Extract

    International Nuclear Information System (INIS)

    Segvic Klaric, M.; Kosalec, I.; Vladimir-Knezevic, S.; Blazekovic, B.; Milic, M.; Kopjar, N.

    2011-01-01

    Ultraviolet (UV) radiation has many negative effects on human skin, including acute and chronic inflammation and oxidative stress which might cause DNA damage leading to skin photoaging and photocarcinogenesis. It was suggested that intake of phenolic acids, which are active components of some medicinal plants, might reduce DNA damage caused by UV radiation. Therefore, the purpose of this study was to check wheather the pretreatment of human peripheral blood lymphocytes with lyophilisate of Echinacea purpurea (L.) Moench (EH) extract (1 and 10 mg/mL) could reduce or prevent primary DNA damage induced by UVC radiation (253.7 nm) in laboratory conditions. Primary DNA damage was studied using the alkaline comet assay on isolated human blood lymphocytes. Plant extract used in this experiment contains phenolic acids (3.47 %), flavonoids (0.13 %), tannins (0.86 %) and proanthocyanidins (0.26 %). HPLC analysis showed that lyophilisate of EH extract contains 3.65 % of chicoric acid. Exposure of lymphocytes to UV radiation (30 and 60 min) caused a significant increase in the level of primary DNA damage (P < 0.001). Pretreatment of cells with both concentrations of EH was not genotoxic, and successfully protected the cells against the effects of UV radiation (30 min). Both concentrations of EH significantly reduced comet tail length after 60 min of UV radiation, while only pre-treatment with 1 mg/mL significantly reduced the values of tail intensity and tail moment (P < 0.001). Positive results obtained in this study speak in favour of continuing the research on effectiveness of Echinacea purpurea preparations and their potential application in developing cosmetic products for skin protection. (author)

  2. Nanostructured composite films of ceria nanoparticles with anti-UV and scratch protection properties constructed using a layer-by-layer strategy

    International Nuclear Information System (INIS)

    Zhang, Songsong; Li, Jie; Guo, Xianpeng; Liu, Lianhe; Wei, Hao; Zhang, Yingwei

    2016-01-01

    Highlights: • The fabrication of LbL multilayers used functional nanoparticles. • The film structure can be controlled in the nanoscopic range. • The constructed multilayers were transparent in the visible spectral region and presented anti-UV properties. • The multilayers presented scratch protection properties. - Abstract: Rare earth cerium oxide (ceria) nanoparticles have attracted extensive research attention due to their advantageous anti-UV and anti-scratch properties. However, a general and facile method for the fabrication of composite films using ceria and possessing these advantages is still lacking. Here, we report the fabrication of multilayers of ceria and polymeric species poly(styrene sulfonate) (PSS) and poly(diallyl-dimethyl ammonium) (PDDA) via the layer-by-layer deposition strategy. The thickness of the multilayers increased linearly with the number of bilayers, indicating accurate control of the film structure in the nanoscopic range. The constructed multilayers were transparent in the visible spectral region and at the same time presented anti-UV properties. In addition, the multilayers also presented scratch protection properties.

  3. Beneficial effects of solar UV-B radiation on soybean yield mediated by reduced insect herbivory under field conditions.

    Science.gov (United States)

    Mazza, Carlos A; Giménez, Patricia I; Kantolic, Adriana G; Ballaré, Carlos L

    2013-03-01

    Ultraviolet-B radiation (UV-B: 280-315 nm) has damaging effects on cellular components and macromolecules. In plants, natural levels of UV-B can reduce leaf area expansion and growth, which can lead to reduced productivity and yield. UV-B can also have important effects on herbivorous insects. Owing to the successful implementation of the Montreal Protocol, current models predict that clear-sky levels of UV-B radiation will decline during this century in response to ozone recovery. However, because of climate change and changes in land use practices, future trends in UV doses are difficult to predict. In the experiments reported here, we used an exclusion approach to study the effects of solar UV-B radiation on soybean crops, which are extensively grown in many areas of the world that may be affected by future variations in UV-B radiation. In a first experiment, performed under normal management practices (which included chemical pest control), we found that natural levels of UV-B radiation reduced soybean yield. In a second experiment, where no pesticides were applied, we found that solar UV-B significantly reduced insect herbivory and, surprisingly, caused a concomitant increase in crop yield. Our data support the idea that UV-B effects on agroecosystems are the result of complex interactions involving multiple trophic levels. A better understanding of the mechanisms that mediate the anti-herbivore effect of UV-B radiation may be used to design crop varieties with improved adaptation to the cropping systems that are likely to prevail in the coming decades in response to agricultural intensification. Copyright © Physiologia Plantarum 2012.

  4. Isoprenoids emission in Stipa tenacissima L.: Photosynthetic control and the effect of UV light

    International Nuclear Information System (INIS)

    Guidolotti, Gabriele; Rey, Ana; Medori, Mauro; Calfapietra, Carlo

    2016-01-01

    Fluxes of CO_2 and isoprenoids were measured for the first time in Stipa tenacissima L (alfa grass), a perennial tussock grass dominant in the driest areas of Europe. In addition, we studied how those fluxes were influenced by environmental conditions, leaf ontogeny and UV radiation and compared emission rates in two contrasting seasons: summer when plants are mostly inactive and autumn, the growing season in this region. Leaf ontogeny significantly affected both photosynthesis and isoprenoids emission. Isoprene emission was positively correlated with photosynthesis, although a low isoprene emission was detected in brown leaves with a net carbon loss. Moreover, leaves with a significant lower photosynthesis emitted only monoterpenes, while at higher photosynthetic rates also isoprene was produced. Ambient UV radiation uncoupled photosynthesis and isoprene emission. It is speculated that alfa grass represent an exception from the general rules governing plant isoprenoid emitters. - Highlights: • Stipa tenacissima L. is a grass emitting either monoterpenes and isoprene. • The emission has reasonable rates even in senescent leaves. • Isoprene emission is positively correlated with CO_2 assimilation. • Ambient UV radiation uncouples photosynthesis and isoprene emission. • Leaves with lower photosynthetic rates emit only monoterpenes. - We proved for the first time that alfa grass emit both isoprene and monoterpene, and we provide some innovative aspects about the UV effect and the behavior of Stipa tenacissima.

  5. Effects of Vinification Techniques Combined with UV-C Irradiation on Phenolic Contents of Red Wines.

    Science.gov (United States)

    Tahmaz, Hande; Söylemezoğlu, Gökhan

    2017-06-01

    Red wines are typically high in phenolic and antioxidant capacity and both of which can be increased by vinification techniques. This study employed 3 vinification techniques to assess the increase in phenolic compounds and antioxidant capacity. Wines were obtained from Boğazkere grape cultivar by techniques of classical maceration, cold maceration combined with ultraviolet light (UV) irradiation, and thermovinification combined with UV irradiation and changes in phenolic contents were examined. Total phenolic and anthocyanin contents and trolox equivalent antioxidant capacity of wines were measured spectrophotometrically and phenolic contents (+)-catechin, (-)-epicatechin, rutin, quercetin, trans-resveratrol, and cis-resveratrol were measured by High Pressure Liquid Chromatography with Diode Array Detection (HPLC-DAD). As a result of the study, the highest phenolic content except for quercetin was measured in the wines obtained by thermovinification combined with UV irradiation. We demonstrated that the highest phenolic compounds with health effect, total phenolic compounds, total anthocyanin, and antioxidant activity were obtained from thermovinification with UV-C treatment than classical wine making. © 2017 Institute of Food Technologists®.

  6. The effect of UV exposure and heat treatment on crystallization behavior of photosensitive glasses

    Science.gov (United States)

    Kıbrıslı, Orhan; Ersundu, Ali Erçin

    2018-05-01

    In this study, photosensitive glasses in the Na2O-ZnO-Al2O3-SiO2 system with photosensitizing agents (cerium, silver, tin, antimony) and halogenides (NaF and KBr) were synthesized through a conventional melt-quenching technique. The crystallization mechanism was investigated for solely heat-treated and UV-exposed + heat-treated samples using differential thermal analysis (DTA), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) techniques to understand the effect of UV exposure on crystallization behavior of photosensitive glasses. Accordingly, non-isothermal DTA measurements were performed at different heating rates to determine crystallization peak, T p, and onset, T c, temperatures. For solely heat-treated samples, the kinetic parameters such as the Avrami constant, n, and morphology index, m, were calculated as 1 from the Ozawa method indicating surface crystallization and the value of crystallization activation energy was calculated as 944 kJ/mol using modified Kissinger method. On the contrary, bulk crystallization was found to be predominant for UV exposed + heat-treated samples revealing that UV exposure is the primary cause of bulk crystallization in photosensitive glasses.

  7. Effect of UV-irradiation on sol-gel optical films

    International Nuclear Information System (INIS)

    Yang Fan; Shen Jun; Zhou Bin; Wu Guangming; Luo Aiyun; Sun Qi

    2005-01-01

    Sol-gel optical films were deposited on K9 glass and silicon wafer substrates by spin-coating method and a high-pressure mercury lamp was used to perform ultraviolet treating to solidify these films and improve their performance. SEM, AFM, IR and ellipsometer were used to characterize the structure and optical properties of the films. Mechanical property of films was measured by pencil hardness-testing device. Laser damage threshold of films was measured by a Q-switched Nd:YAG high power laser with the wave length of 1064 nm and the pulse width of 15 ns. The results show that UV-irradiation can improve the mechanical property and increase the refractive index of the films. Besides, the nodules on the surface of the films can be changed into pits by UV-irradiation process, so the laser damage threshold of sol-gel thin films will be increased. After UV-irradiation the laser damage threshold of single-layer ZrO 2 film reached 50.6 J/cm 2 (1064 nm, 1 ns). It is found that UV-irradiation is an effective method to avoid the infiltrating between the layers, and the degree of homogeneity of the multilayer films can be improved by this way. (authors)

  8. The injury and cumulative effects on human skin by UV exposure from artificial fluorescence emission.

    Science.gov (United States)

    Tian, Yan; Liu, Wei; Niu, TianHui; Dai, CaiHong; Li, Xiaoxin; Cui, Caijuan; Zhao, Xinyan; E, Yaping; Lu, Hui

    2014-01-01

    The injury and cumulative effects of UV emission from fluorescence lamp were studied. UV intensity from fluorescence lamp was measured, and human skin samples (hips, 10 volunteers) were exposed to low-dose UV irradiation (three times per week for 13 consecutive weeks). Three groups were examined: control group without UV radiation; low-dose group with a cumulative dose of 50 J cm(-2) which was equivalent to irradiation of the face during indoor work for 1.5 years; and high-dose group with 1000 J cm(-2) cumulative dose equivalent to irradiation of the face during outdoor activities for 1 year. Specific indicators were measured before and after UVA irradiation. The findings showed that extending the low-dose UVA exposure decreased the skin moisture content and increased the transepidermal water loss as well as induced skin color changes (decreased L* value, increased M index). Furthermore, irradiated skin showed an increased thickness of cuticle and epidermis, skin edema, light color and unclear staining collagen fibers in the dermis, and elastic fiber fragmentation. In addition, MMP-1, p53 and SIRT1 expression was also increased. Long-term exposure of low-dose UVA radiation enhanced skin photoaging. The safety of the fluorescent lamp needs our attention. © 2014 The American Society of Photobiology.

  9. Ecological and nonhuman biological effects of solar UV-B radiation

    International Nuclear Information System (INIS)

    Worrest, R.C.

    1984-01-01

    Recent studies regarding the impact of UV-B radiation upon ecological and nonhuman biological systems is the subject of the report. For years scientists and laymen alike have causally noted the impact of solar ultraviolet radiation upon the nonhuman component of the biosphere. Stratospheric ozone functions effectively as an ultraviolet screen by filtering out solar radiation in the 220-320 nm waveband as it penetrates through the atmosphere, thus allowing only small amounts of the longer wavelengths of radiation in the waveband to leak through to the surface of the earth. Although this radiation (UV-B radiation, 290-320 nm) comprises only a small fraction (lesser tha 1%) of the total solar spectrum, it can have a major impact on biological systems due to its actinic nature. Many organic molecules, most notably DNA, absorb UV-B radiation which can initiate photochemical reactions. It is life's ability, or lack thereof, to cope with enhanced levels of solar UV-B radiation that has generated concern over the potential depletion of stratospheric ozone

  10. Studies of biological effects of fluoride stannous and UV short in Escherichia coli BH110

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira da C, R., E-mail: rogercosta1@hotmail.com [Federal Institute of Education, Science and Technology of Goias, Campus Uruacu, Rua Formosa Qd 28 e 29, Loteamento Santana, 76400-000 Uruacu, Goias (Brazil)

    2015-10-15

    Full text: The amount of UV rays on the Earth's surface has increased due to depletion of the ozone layer, and this has worried society, since these radiation although not considered ionizing can cause damage to biological membrane and especially to DNA. The DNA has cell repair mechanisms that can work in lesions caused by electromagnetic radiation such as ultraviolet -short (UV C)and agents causing oxidative stress, such as tin salts. Among the repair mechanisms can highlight the adaptive repair, which consists of smaller doses to cells pre-exposure of an oxidizing agent, and when these cells are exposed to larger doses of the agent even if there is a reduction in mortality rate which leads to complete that repair mechanisms are activated in the pre-exposure reducing cell mortality. Several publications have shown the genotoxic effects of stannous salts such as stannous fluoride (SnF{sub 2}), which shows the importance of the study, since these salts are widely used in industry as components in toothpastes and mouthwashes. So we check whether pretreatment with UV C is able to induce adaptive response reducing the cytotoxic effects caused by exposure of the strains to SnF{sub 2}. We use a strain of Escherichia coli BH110 (BH110 E. coli) deficient in three genes (fpg, nfo and xth) involved in the excision repair bases. To verify the induction of adaptive response to strain BH110 was exposed to various doses of UV C and then treated with SnF{sub 2} a concentration of 110 u M. Our results showed that the LD10 of strain BH110 is 20 J/m{sup 2} and pre-treatment with UV C does not seem to induce adaptive repair in BH110 strains. (Author)

  11. The effects of UV light on calcium metabolism in ball pythons (Python regius).

    Science.gov (United States)

    Hedley, J; Eatwell, K

    2013-10-12

    Despite the popularity of keeping snakes in captivity, there has been limited investigation into the effects of UV radiation on vitamin D levels in snakes. The aim of this study was to investigate the effects of UV-b radiation on plasma 25-hydroxyvitamin D3 levels and ionised calcium concentrations in ball pythons (Python regius). Blood samples were taken from 14 ball pythons, which had never been exposed to UV-b light, to obtain baseline 25-hydroxyvitamin D3 levels and ionised calcium concentrations. Blood samples were then taken again from the same snakes 70 days later after one group (Group 1, n=6 females) were exposed to UV-b radiation daily, and the other group (Group 2, n=5 males and 3 females) were exposed to no UV-b radiation. Mean±sd 25-hydroxyvitamin D3 levels on day 0 in Group 1 were 197±35 nmol/l, and on day 70 were 203.5±13.8 nmol/l. Mean±sd 25-hydroxyvitamin D3 levels in Group 2 on day 0 were 77.7±41.5 nmol/l, and on day 70 were 83.0±41.9 nmol/l. Mean±sd ionised calcium levels at day 0 were 1.84±0.05 mmol/l for Group 1, and on day 70 were 1.78±0.07 mmol/l. Mean±sd ionised calcium levels at day 0 were 1.79±0.07 mmol/l for Group 2, and on day 70 were 1.81±0.05 mmol/l. No association was demonstrated between exposure to UV-b radiation and plasma 25-hydroxyvitamin D3 and ionised calcium concentrations. These results may provide baseline parameters for future studies in this and other snake species to determine ability to utilise UV-b light for vitamin D production.

  12. Photo-protective effect of calcipotriol upon skin photoreaction to UVA and UVB

    International Nuclear Information System (INIS)

    Youn, J.I.; Park, B.S.; Chung, J.H.; Lee, J.H.

    1997-01-01

    It has been shown that 1,25-dihydroxyvitamin D 3 has a photo-protective effect against UVB injury in mouse skin and cultured rat keratinocytes by induction of metallothionein (MT). Calcipotriol is a synthetic analogue of 1,25-dihydroxyvitamin D 3 with equi-potent cell regulating properties, but with a lower risk of calcium-related side effects. The aim of the present study was to see whether calcipotriol has a photo-protective property both in vitro and in vivo. We examined the effect of calcipotriol on UV-induced damage of cultured human keratinocytes through a cell viability assay, and measurement of DNA synthesis by cultured keratinocytes, on UV-induced damage of mouse skin and on minimal erythema dose (MED). We found that calcipotriol was protective against UVB-induced reduction in DNA synthetic activity of cultured keratinocytes in relatively low doses (20 and 40 mJ/cm 2 ) of UVB. With photo-testing following application of calcipotriol, five subjects among 10 healthy volunteers and three among six psoriasis patients showed an increase in MED compared with the vehicle-treated site. These findings imply that calcipotriol may be photo-protective and that more extensive studies with various doses of UV irradiation and modes of calcipotriol delivery are required. (au)

  13. Photo-protective effect of calcipotriol upon skin photoreaction to UVA and UVB

    Energy Technology Data Exchange (ETDEWEB)

    Youn, J.I.; Park, B.S.; Chung, J.H. [Seoul National Univ. College of Medicine, Dept. of Dermatology, Seoul (Korea, Republic of); Lee, J.H. [Inha Univ. College of Medicine, Incheon (Korea, Republic of)

    1997-03-01

    It has been shown that 1,25-dihydroxyvitamin D{sub 3} has a photo-protective effect against UVB injury in mouse skin and cultured rat keratinocytes by induction of metallothionein (MT). Calcipotriol is a synthetic analogue of 1,25-dihydroxyvitamin D{sub 3} with equi-potent cell regulating properties, but with a lower risk of calcium-related side effects. The aim of the present study was to see whether calcipotriol has a photo-protective property both in vitro and in vivo. We examined the effect of calcipotriol on UV-induced damage of cultured human keratinocytes through a cell viability assay, and measurement of DNA synthesis by cultured keratinocytes, on UV-induced damage of mouse skin and on minimal erythema dose (MED). We found that calcipotriol was protective against UVB-induced reduction in DNA synthetic activity of cultured keratinocytes in relatively low doses (20 and 40 mJ/cm{sup 2}) of UVB. With photo-testing following application of calcipotriol, five subjects among 10 healthy volunteers and three among six psoriasis patients showed an increase in MED compared with the vehicle-treated site. These findings imply that calcipotriol may be photo-protective and that more extensive studies with various doses of UV irradiation and modes of calcipotriol delivery are required. (au). 21 refs.

  14. Experimental assessment of cumulative temperature and UV-B radiation effects on Mediterranean plankton metabolism

    KAUST Repository

    Garcia-Corral, Lara S.; Martinez Ayala, Juan; Duarte, Carlos M.; Agusti, Susana

    2015-01-01

    . The oligotrophic waters are already highly transparent, however, exposure of Mediterranean plankton to ultraviolet radiation (UV-B and UV-A) may increase further if the waters become more oligotrophic, thereby, allowing a deeper UV radiation penetration and likely

  15. Effective operators in SUSY, superfield constraints and searches for a UV completion

    CERN Document Server

    Dudas, E.

    2015-01-01

    We discuss the role of a class of higher dimensional operators in 4D N=1 supersymmetric effective theories. The Lagrangian in such theories is an expansion in momenta below the scale of "new physics" ($\\Lambda$) and contains the effective operators generated by integrating out the "heavy states" above $\\Lambda$ present in the UV complete theory. We go beyond the "traditional" leading order in this momentum expansion (in $\\partial/\\Lambda$). Keeping manifest supersymmetry and using superfield {\\it constraints} we show that the corresponding higher dimensional (derivative) operators in the sectors of chiral, linear and vector superfields of a Lagrangian can be "unfolded" into second-order operators. The "unfolded" formulation has only polynomial interactions and additional massive superfields, some of which are ghost-like if the effective operators were {\\it quadratic} in fields. Using this formulation, the UV theory emerges naturally and fixes the (otherwise unknown) coefficient and sign of the initial (higher...

  16. Estimation of the effect of increased doses of UV-radiation on functional state and productivity of sheep

    International Nuclear Information System (INIS)

    Ivanov, V.L.; Ipatova, A.G.; Zejnalov, A.A.; Kozlov, V.A.; Sarukhanov, V. Ya.

    2000-01-01

    The results of evaluation of sensitivity and adaptive possibilities of the sheep organism by long impact of increased doses of electromagnetic radiation (EMR) of the UV-range in the experiment by clinical-physiological indices modeling the 25 and 50 % depletion of the Earth ozone layer are presented. It is established that the character of changes in the animals organism depends on the irradiation dose sensitivity of the individual living system organism to the EMR and physiological peculiarities of its protection. However, the functional changes in the cardiovascular, immune and reproduction systems, homeostasis system and substance exchange in the period of chronic irradiation do not effect the development of irreversible pathological changes [ru

  17. Effects of terrestrial UV radiation on selected outdoor materials: an interdisciplinary approach

    Science.gov (United States)

    Heikkilä, A.; Kazadzis, S.; Tolonen-Kivimäki, O.; Meinander, O.; Lindfors, A.; Lakkala, K.; Koskela, T.; Kaurola, J.; Sormanen, A.; Kärhä, P.; Naula-Iltanen, A.; Syrjälä, S.; Kaunismaa, M.; Juhola, J.; Ture, T.; Feister, U.; Kouremeti, N.; Bais, A.; Vilaplana, J. M.; Rodriguez, J. J.; Guirado, C.; Cuevas, E.; Koskinen, J.

    2009-08-01

    Modern polymeric materials possess an ever increasing potential in a large variety of outdoor objects and structures offering an alternative for many traditional materials. In outdoor applications, however, polymers are subject to a phenomenon called weathering. This is primarily observed as unwanted property changes: yellowing or fading, chalking, blistering, and even severe erosion of the material surface. One of the major weathering factors is UV radiation. In spring 2005, the Finnish Meteorological Institute with its research and industrial partners launched a five-year material research project named UVEMA (UV radiation Effects on MAterials). Within the framework of the project, a weathering network of seven European sites was established. The network extends from the Canary Islands of Spain (latitude 28.5°N) to the Lapland of Finland (latitude 67.4°N), covering a wide range of UV radiation conditions. Since autumn 2005, the sites of the network have been maintaining weathering platforms of specimens of different kinds of polymeric materials. At the same time, the sites have been maintaining their long-term monitoring programmes for spectrally resolved UV radiation. Within UVEMA, these data are used for explaining the differences between the degradation rates of the materials at each site and for correlating the UV conditions in accelerated ageing tests to those under the Sun. We will present the objectives of the UVEMA project aiming at deeper understanding of the ageing of polymers and more reliable assessments for their service life time. Methodologies adopted within the project and the first results of the project will be summarized.

  18. Effect of hybrid UV-thermal energy stimuli on inactivation of S. epidermidis andB. subtilis bacterial bioaerosols

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gi Byoung; Jung, Jae Hee; Jeong, Tae Gun; Lee, Byung Uk, E-mail: leebu@konkuk.ac.kr [Aerosol and Bioengineering Laboratory, Department of Mechanical Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-Gu, Seoul, 143-701(Korea, Republic of)

    2010-11-01

    Bioaerosols have become an increasingly important issue due to their harmful effects on human health. As the concern over airborne microorganisms grows, so does the need to develop and study efficient methods of controlling them. In this study, we designed a hybrid system involving ultraviolet (UV) irradiation and thermal energy and investigated its effects on bacterial bioaerosols, followed by a comparison with thermal energy alone and UV irradiation alone. The results show that the hybrid effect caused no variation in the shape of the normalized particle size distributions of S. epidermidis and B. subtilis bioaerosols. However, a physical transport loss of bacterial bioaerosols developed as the temperature inside the glass quartz tube increased. When bacterial bioaerosols were simultaneously exposed to UV irradiation and thermal energy for less than 1.05 s, more than 99% of S. epidermidis bioaerosols were inactivated at 120 {sup o}C with exposure to one UV lamp and at 80 {sup o}C with exposure to two UV lamps; and 93.5% and 98.5% of B. subtilis bioaerosols were inactivated at 280 {sup o}C with exposure to one and two UV lamps, respectively. Moreover, the hybrid UV-thermal stimuli significantly reduced the concentration of ozone, which is a secondary UV-induced pollutant. Our results show that to obtain the same inactivation efficiency, the hybrid UV-thermal stimuli were more efficient than thermal energy alone in terms of energy consumption and produced significantly less ozone than UV irradiation alone. The hybrid stimuli also had higher inactivation efficiency than UV alone. Therefore, these results provide valuable information for the development of new methods for controlling bioaerosols.

  19. Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2017

    Science.gov (United States)

    The Environmental Effects Assessment Panel (EEAP) is one of three Panels of experts that inform the Parties to the Montreal Protocol. The EEAP focuses on the effects of UV radiation on human health, terrestrial and aquatic ecosystems, air quality, and materials, as well as on the...

  20. Sunlight Effects on Immune System: Is There Something Else in addition to UV-Induced Immunosuppression?

    Directory of Open Access Journals (Sweden)

    D. H. González Maglio

    2016-01-01

    Full Text Available Sunlight, composed of different types of radiation, including ultraviolet wavelengths, is an essential source of light and warmth for life on earth but has strong negative effects on human health, such as promoting the malignant transformation of skin cells and suppressing the ability of the human immune system to efficiently detect and attack malignant cells. UV-induced immunosuppression has been extensively studied since it was first described by Dr. Kripke and Dr. Fisher in the late 1970s. However, skin exposure to sunlight has not only this and other unfavorable effects, for example, mutagenesis and carcinogenesis, but also a positive one: the induction of Vitamin D synthesis, which performs several roles within the immune system in addition to favoring bone homeostasis. The impact of low levels of UV exposure on the immune system has not been fully reported yet, but it bears interesting differences with the suppressive effect of high levels of UV radiation, as shown by some recent studies. The aim of this article is to put some ideas in perspective and pose some questions within the field of photoimmunology based on established and new information, which may lead to new experimental approaches and, eventually, to a better understanding of the effects of sunlight on the human immune system.

  1. Sunlight Effects on Immune System: Is There Something Else in addition to UV-Induced Immunosuppression?

    Science.gov (United States)

    Paz, M. L.; Leoni, J.

    2016-01-01

    Sunlight, composed of different types of radiation, including ultraviolet wavelengths, is an essential source of light and warmth for life on earth but has strong negative effects on human health, such as promoting the malignant transformation of skin cells and suppressing the ability of the human immune system to efficiently detect and attack malignant cells. UV-induced immunosuppression has been extensively studied since it was first described by Dr. Kripke and Dr. Fisher in the late 1970s. However, skin exposure to sunlight has not only this and other unfavorable effects, for example, mutagenesis and carcinogenesis, but also a positive one: the induction of Vitamin D synthesis, which performs several roles within the immune system in addition to favoring bone homeostasis. The impact of low levels of UV exposure on the immune system has not been fully reported yet, but it bears interesting differences with the suppressive effect of high levels of UV radiation, as shown by some recent studies. The aim of this article is to put some ideas in perspective and pose some questions within the field of photoimmunology based on established and new information, which may lead to new experimental approaches and, eventually, to a better understanding of the effects of sunlight on the human immune system. PMID:28070504

  2. Photostabilizing of bisphenol A polycarbonate by using UV-absorbers and self protective block copolymers based on resorcinol polyarylate blocks

    NARCIS (Netherlands)

    Diepens, M.; Gijsman, P.

    2009-01-01

    Bisphenol A polycarbonate degrades due to sunlight, humidity and oxygen. In this study two possible techniques to stabilize the polymer were compared, i.e. blending of UV-absorbers (UVAs) into the polymer or using block copolymers based on resorcinol polyarylates. Combination of different analysis

  3. OPTICAL CHARACTERISTICS OF NATURAL WATERS PROTECT AMPHIBIAN POPULATIONS FROM UV-B IN THE US PACIFIC NORTHWEST

    Science.gov (United States)

    Increased exposure to ultraviolet-B (UV-B) radiation has been proposed as a major environmental stressor leading to global amphibian declines. Prior experimental evidence from the US Pacific Northwest (PNW) indicating the acute embryonic sensitivity of at least 4 amphibian specie...

  4. UV and X radiation effects on the stability of calcium halide phosphate phosphors. 1

    International Nuclear Information System (INIS)

    Tews, W.

    1983-01-01

    Intensity losses of several calcium halide phosphate phosphors have been investigated as a function of the time of irradiation with near UV and X radiation. The results show that antimony-containing foreign phases increase such losses. The directly excited manganese centre emission is much more lowered than the sensitized one. Detrimental effects of the 185 nm UV radiation are observable not only in the first minutes of irradiation but also over considerably extended periods. The sensitization effect caused by irradiation in different gases depends on the phosphor, especially on the content of antimony, and can be explained by the sorption of gaseous impurities at the phosphor surface so that the diffusion of photochemical reaction products from the surface is inhibited

  5. Effects of UV-B and heavy metals on nitrogen and phosphorus metabolism in three cyanobacteria.

    Science.gov (United States)

    Yadav, Shivam; Prajapati, Rajesh; Atri, Neelam

    2016-01-01

    Cyanobacteria sp. (diazotrophic and planktonic) hold a major position in ecosystem, former one due to their intrinsic capability of N2-fixation and later because of mineralization of organic matter. Unfortunately, their exposure to variety of abiotic stresses is unavoidable. Comparative analysis of interactive effect of UV-B and heavy metals (Cd/Zn) on nitrogen and phosphorus metabolism of three cyanobacteria (Anabaena, Microcystis, Nostoc) revealed additive inhibition (χ(2) significant p cyanobacteria suggests UV-B-induced structural change(s) in the enzyme/carriers. Metals seem to compete for the binding sites of the enzymes and carriers; as noticed for Anabaena and Microcystis showing change in Km while no change in the Km value of Nostoc suggests non-competitive nutrient uptake. Higher accumulation and more adverse effect on Na(+) and K(+) efflux proposes Cd as more toxic compared to Zn. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ultraviolet-B Protective Effect of Flavonoids from Eugenia caryophylata on Human Dermal Fibroblast Cells.

    Science.gov (United States)

    Patwardhan, Juilee; Bhatt, Purvi

    2015-10-01

    The exposure of skin to ultraviolet-B (UV-B) radiations leads to deoxyribonucleic acid (DNA) damage and can induce production of free radicals which imbalance the redox status of the cell and lead to increased oxidative stress. Clove has been traditionally used for its analgesic, anti-inflammatory, anti-microbial, anti-viral, and antiseptic effects. To evaluate the UV-B protective activity of flavonoids from Eugenia caryophylata (clove) buds on human dermal fibroblast cells. Protective ability of flavonoid-enriched (FE) fraction of clove was studied against UV-B induced cytotoxicity, anti-oxidant regulation, oxidative DNA damage, intracellular reactive oxygen species (ROS) generation, apoptotic morphological changes, and regulation of heme oxygenase-1 (HO-1) gene through nuclear factor E2-related factor 2 antioxidant response element (Nrf2 ARE) pathway. FE fraction showed a significant antioxidant potential. Pretreatment of cells with FE fraction (10-40 μg/ml) reversed the effects of UV-B induced cytotoxicity, depletion of endogenous enzymatic antioxidants, oxidative DNA damage, intracellular ROS production, apoptotic changes, and overexpression of Nrf2 and HO-1. The present study demonstrated for the first time that the FE fraction from clove could confer UV-B protection probably through the Nrf2-ARE pathway, which included the down-regulation of Nrf2 and HO-1. These findings suggested that the flavonoids from clove could potentially be considered as UV-B protectants and can be explored further for its topical application to the area of the skin requiring protection. Pretreatment of human dermal fibroblast with flavonoid-enriched fraction of Eugenia caryophylata attenuated effects of ultraviolet-B radiationsIt also conferred protection through nuclear factor E2-related factor 2-antioxidant response pathway and increased tolerance of cells against oxidative stressFlavonoid-enriched fraction can be explored further for topical application to the skin as a

  7. Effects of UV-B radiation on a hereditary suture cataract in mice

    International Nuclear Information System (INIS)

    Forker, Carina; Wegener, Alfred

    1997-01-01

    UV-B (290-320 nm, λ max = 305 nm) radiation and the Cat2 ns (suture cataract) mutation in mice affect both the anterior lens epithelium and the formation of the suture. A low dose of UV-B radiation (2.2 Jcm -2 ) induces similar anterior subcapsular and cortical lens opacities in wild type as in heterozygous mutant mice. The UV-B treatment of the mutant lenses, however, leads to an increase in the number of epithelial cell layers in the anterior central part as compared to the wild type indicating a more severe form of the cataract formation in mutants. In addition, mutants demonstrate a predisposition for a rupture of the posterior lens capsule, because from 2.9 Jcm -2 and higher, this phenomenon could always be observed in the UV-B treated mutants, but never in the treated wild type mice. The protein biochemical analyses were performed by gel electrophoresis and isoelectric focusing of extracts of total lenses or from defined areas of the lens (lens slice technique). These covered the patterns of those proteins already synthesized before irradiation, which in irradiated lenses in no case evidenced a difference to the untreated control, neither in the wild type nor in the mutants. In contrast, by analysing specifically those proteins, which are synthesized after irradiation, in both treated groups a protein with a molecular mass of about 31 kDa becomes discernable in both treated groups. In addition, the cataractous lenses demonstrate a significantly enhanced overall synthesis of water-soluble proteins after irradiation, which might promote the rupture of the posterior capsule at the posterior pole. The present study offers for the first time the possibility to discriminate between endogeneous (genetic) effects and exogeneous (environmental) effects in cataractogenesis and to study their interactive effects. The first set of experiments demonstrated a clear intensification of the hereditary cataract by the UV-B treatment. The study supports the hypothesis that

  8. Effect of enhanced UV-B radiation on pollen quantity, quality, and seed yield in Brassica rapa (Brassicaceae)

    International Nuclear Information System (INIS)

    Demchik, S.M.; Day, T.A.

    1996-01-01

    Three experiments examined the influence of ultraviolet-B radiation (UV-B; 280-320 nm) exposure on reproduction in Brassica rapa (Brassicacaeae). Plants were grown in a greenhouse under three biologically effective UV-B levels that stimulated either an ambient stratospheric ozone level (control), 16% (open-quotes low enhancedclose quotes), or 32% (open-quotes high enhancedclose quotes) ozone depletion levels at Morgantown, WV, USA in mid-March. In the first experiment,pollen production and viability per flower were reduced by ∼50% under both enhanced UV-B levels relative to ambient controls. While plants under high-enhanced UV-B produced over 40% more flowers than plants under the two lower UV-B treatments, whole-plant production of viable pollen was reduced under low-enhanced UV-B to 34% of ambient controls. In the second experiment, the influence of source-plant UV-B exposure on in vitro pollen from plants was examined and whether source-plant UV-B exposure influenced in vitro pollen germination and viability. Pollen from plants under both enhanced-UV-B was reduced from 65 to 18%. Viability of the pollen from plants grown under both enhanced UV-B treatments was reduced to a much lesser extent: only from ∼43 to 22%. Thus, ambient source-plant pollen was more sensitive to enhanced UV-B levels to fertilize plants growing under ambient-UV-B levels, and assessed subsequent seed production and germination. Seed abortion rates were higher in plants pollinated with pollen from the enhanced UV-B treatments, than from ambient UV-B. Despite this, seed yield (number and mass) per plant was similar, regardless of the UV-B exposure of their pollen source. Our findings demonstrate that enhanced UV-B levels associated with springtime ozone depletion events have the capacity to substantially reduce viable pollen production, and could ultimately reduce reproductive success of B. rapa. 37 refs., 4 figs., 2 tabs

  9. Far-UV-induced dimeric photoproducts in short oligonucleotides: sequence effects

    International Nuclear Information System (INIS)

    Douki, T.; Zalizniak, T.; Cadet, J.

    1997-01-01

    Cyclobutane pyrimidine dimers and pyrimidine (6-4)pyrimidone adducts represent the two major classes of far-UV-induced DNA photoproducts. Because of the lack of appropriate detection methods for each individual photoproduct, little is known about the effect of the sequence on their formaiton. In the present work, the photoproduct distribution obtained upon exposure of a series of dinucleoside monophosphate to 254 nm light was determined. (author)

  10. Comparison of the dose-effect relationship for UV radiation and ionizing radiation

    International Nuclear Information System (INIS)

    Leenhouts, H.P.; Sijsma, M.J.; Chadwick, K.H.

    1990-06-01

    Ionizing radiation and ultraviolet radiation (UV) are both physical agents with mutagenic and carcinogenic properties. However, there are some basic differences in the fundamental mechanism of their interaction with biological material that may have consequences for risk assessment. In this paper the dose-effect relationships for gamma radiation and UV at cellular level will be used to demonstrate the different radio-biological effectiveness of both agents. The results will be discussed in the framework of a biophysical model, based on the assumption that DNA doublestranded lesions are crucial for the cytotoxic action. After exposure to ionizing radiation, the lesions are fixed immediately following irradiation, but after UV exposure the lethal lesions are recognized only in the next DNA synthesis phase. The combination of this concept with the mechanism of lesion induction and the possibility of repair, leads to different dose and time relationships for the radiation effects of both agents. The possible consequences for risk assessment at low levels will be discussed. (author). 9 refs.; 5 figs

  11. Effect of chemical peeling on the skin in relation to UV irradiation.

    Science.gov (United States)

    Funasaka, Yoko; Abdel-Daim, Mohamed; Kawana, Seiji; Nishigori, Chikako

    2012-07-01

    Chemical peeling is one of the dermatological treatments available for certain cutaneous diseases and conditions or improvement of cosmetic appearance of photoaged skin. However, it needs to be clarified whether the repetitive procedure of chemical peeling on photodamaged skin is safe and whether the different chemicals used for peeling results in similar outcomes or not. In this article, we reviewed the effect of peeling or peeling agents on the skin in relation to ultraviolet (UV) radiation. The pretreatment of peeling agents usually enhance UV sensitivity by inducing increased sunburn cell formation, lowering minimum erythematous dose and increasing cyclobutane pyrimidine dimers. However, this sensitivity is reversible and recovers to normal after 1-week discontinuation. Using animals, the chronic effect of peeling and peeling agents was shown to prevent photocarcinogenesis. There is also an in vitro study using culture cells to know the detailed mechanisms of peeling agents, especially on cell proliferation and apoptotic changes via activating signalling cascades and oxidative stress. It is important to understand the effect of peeling agents on photoaged skin and to know how to deal with UV irradiation during the application of peeling agents and treatment of chemical peeling in daily life. © 2012 John Wiley & Sons A/S.

  12. Effect of heat, UV radiation, and moisture on the decohesion kinetics of inverted organic solar cells

    KAUST Repository

    Rolston, Nicholas

    2017-06-15

    Organic solar cells subjected to environmental stressors such as heat, moisture, and UV radiation can undergo significant mechanical degradation, leading to delamination of layers and device failure. This paper reports the effect these stressors have on the mechanical integrity of active layers and interfaces as measured by subcritical debonding tests, and the in situ evolution of defects and fracture processes is characterized. At elevated temperatures below 50 °C in inert conditions, significant device weakening was observed, an effect we attributed to a temperature-induced P3HT:PCBM delamination mechanism from the underlying ZnO. At 50 °C in ambient conditions with UV exposure—selected to better simulate real-world environments—devices were more resistant to fracture because of an interfacial strengthening effect from increased hydrogen bonding where UV-induced Zn(OH)2 formation reinforced the interface with P3HT:PCBM. This photoinduced hydroxylation mechanism was determined from a decrease in the Zn/O ratio with increased UVA or UVB exposure, and hydroxylation was shown to directly correlate with the resistance to fracture in devices.

  13. Tobacco expressing pap1 increases the responses to par and uv-a by enhancing soluble sugars and flavonoids and elevating plant protections

    International Nuclear Information System (INIS)

    Sompornpailin, K.; Kanthang, S.

    2015-01-01

    Five lines of transgenic tobacco over-expressing Production of Anthocyanin Pigment 1 (PAP1) cDNA were analysis of metabolic response against the radiation and their protection of the plant under tissue culture condition. PAP1 transgenic and wild type (WT) plants were treated with the radiations of photosynthetically activate radiation (PAR) or PAR combined with UV-A. All lines of transgenic significantly increased in amounts of p-coumaric acid, naringenin apigenin more than WT under both treatments. Additional UV-A radiating to plant rose up kaempferol content in WT plant (1.5 times) and in PAP1 transgenics (1.8 times). These transgenic plants treated under both conditions had also increased anthocyanin substances (pelargonidin) with significant value after compared to WT. Content of total soluble sugar (TSS) was related to the content of total flavonoids in transgenic. PAR combined with UV-A had a lower induction of the electrolyte leakage percentage and malondialdehyde (MDA) level in the transgenic leaf tissue compared to WT tissue. The metabolic substance levels were considered on its protection of plant cells. In transgenic tissue, the enhancement of apigenin level strongly diminished the increase level of electrolyte leakage while the levels of TSS, p-coumaric acid and naringinin less affected. Moreover, the increase levels of kaempferol and pelargonidin associated with the decrease level of MDA, while the TSS level reversely responded. The PAP1 transgenic increased response of light by adaptation of their metabolites (TSS, p-coumaric acid and flavonoids) consequently enhance parameter indicating protections of the cell. (author)

  14. Protective effect of 4-coumaric acid from UVB ray damage in the rabbit eye.

    Science.gov (United States)

    Lodovici, Maura; Caldini, Silvia; Morbidelli, Lucia; Akpan, Victor; Ziche, Marina; Dolara, Piero

    2009-01-08

    UV-induced oxidation damage seems to play a major role in a number of specific pathological conditions of intraocular tissues, such as cataract formation and retinal degeneration. Therefore, antioxidant and/or scavenger compounds might protect the eyes from UV-induced cellular damage. We previously reported that 4-coumaric acid (4-CA) is able to protect rabbit corneal-derived cells (SIRC) from UVB-induced oxidation damage. In this study we evaluated the protective effect of 4-CA against UVB-induced cell damage in rabbit cornea in vivo. Twelve male New Zealand albino rabbits were used; four rabbits were used as a control and received vehicle in one eye and 4-CA acid in the contralateral eye; eight rabbits were exposed to UVB rays (79.2mJ/cm(2)) and three days before to UV exposure each animal received 1 drop/day of vehicle in one eye and 1 drop/day of vehicle containing 4-CA (164ng) in the contralateral eye. Corneal and sclera tissues were removed and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) levels were measured. Superoxide dismutase (SOD) and xanthine oxidase (XO) activities were determined in aqueous humour. UVB-induced vessel hyper-reactivity was strongly reduced at 4 and 24h after UVB exposure after local treatment with 4-CA, 8-oxodGuo levels, a marker of oxidative DNA damage, were significantly increased (Peyes. Our results indicate that the administration of 4-CA protects eye tissues, thus reducing the harmful effect of UVB radiation at low concentration, probably through its free radical scavenging and antioxidant properties. Therefore, 4-CA may be useful in protecting the eye from free radical damage following UVB exposure from sunlight, UV lamps and welding torches.

  15. Effects of UV-B radiation on growth, photosynthesis, UV-B-absorbing compounds and NADP-malic enzyme in bean (Phaseolus vulgaris L.) grown under different nitrogen conditions.

    Science.gov (United States)

    Pinto, M E; Casati, P; Hsu, T P; Ku, M S; Edwards, G E

    1999-02-01

    The effects of UV-B radiation on growth, photosynthesis, UV-B-absorbing compounds and NADP-malic enzyme have been examined in different cultivars of Phaseolous vulgaris L. grown under 1 and 12 mM nitrogen. Low nitrogen nutrition reduces chlorophyll and soluble protein contents in the leaves and thus the photosynthesis rate and dry-matter accumulation. Chlorophyll, soluble protein and Rubisco contents and photosynthesis rate are not significantly altered by ambient levels of UV-B radiation (17 microW m-2, 290-320 nm, 4 h/day for one week). Comparative studies show that under high nitrogen, UV-B radiation slightly enhances leaf expansion and dry-matter accumulation in cultivar Pinto, but inhibits these parameters in Vilmorin. These results suggest that the UV-B effect on growth is mediated through leaf expansion, which is particularly sensitive to UV-B, and that Pinto is more tolerant than Vilmorin. The effect of UV-B radiation on UV-B-absorbing compounds and on NADP-malic enzyme (NADP-ME) activity is also examined. Both UV-B radiation and low-nitrogen nutrition enhance the content of UV-B-absorbing compounds, and among the three cultivars used, Pinto exhibits the highest increases and Arroz the lowest. The same trend is observed for the specific activity and content of NADP-ME. On a leaf-area basis, the amount of UV-B-absorbing compounds is highly correlated with the enzyme activity (r2 = 0.83), suggesting that NADP-ME plays a key role in biosynthesis of these compounds. Furthermore, the higher sensitivity of Vilmorin than Pinto to UV-B radiation appears to be related to the activity of NADP-ME and the capacity of the plants to accumulate UV-B-absorbing compounds.

  16. Efficient intradermal delivery of superoxide dismutase using a combination of liposomes and iontophoresis for protection against UV-induced skin damage.

    Science.gov (United States)

    Kigasawa, Kaoru; Miyashita, Moeko; Kajimoto, Kazuaki; Kanamura, Kiyoshi; Harashima, Hideyoshi; Kogure, Kentaro

    2012-01-01

    Superoxide dismutase (SOD) is a potent antioxidant agent that protects against UV-induced skin damage. However, its high molecular weight is a significant obstacle for efficient delivery into the skin through the stratum corneum and development of antioxidant activity. Recently, we developed a non-invasive transfollicular delivery system for macromolecules using a combination of liposomes and iontophoresis, that represents promising technology for enhancing transdermal administration of charged drugs (IJP, 403, 2011, Kajimoto et al.). In this study, in rats we attempted to apply this system to intradermal delivery of SOD for preventing UV-induced skin injury. SOD encapsulating in cationic liposomes was subjected to anodal iontophoresis. After iontophoretic treatment, the liposomes were diffused widely in the viable skin layer around hair follicles. In contrast, passive diffusion failed to transport liposomes efficiently into the skin. Iontophoretic delivery of liposomes encapsulating SOD caused a marked decrease in the production of oxidative products, such as malondialdehyde, hexanoyl lysine, and 8-hydroxi-2-deoxyguanosine, in UV-irradiated skin. These findings suggested that functional SOD can be delivered into the skin using a combination of iontophoresis and a liposomal system. In conclusion, we succeeded in developing an efficient intradermal SOD delivery system, that would be useful for delivery of other macromolecules.

  17. EFFECT OF UV IRRADIATION ON THE DYEING OF COTTON FABRIC WITH REACTIVE BLUE 204

    Directory of Open Access Journals (Sweden)

    ROŞU Liliana

    2017-05-01

    Full Text Available Reactive dyes are synthetic organic compounds used on a wide scale in textile industry, for painting materials of different types and compositions (e.g. 100% cotton, wool, natural satin, viscose, synthetic fibres. Reactive dyes are solid compounds (powders completely water soluble at normal temperature and pressure conditions. Their structures contain chromophore groups, which generate colour, and auxochrome groups, which determine the compounds water solubility and the capacity to fix to the textile fiber. Such organic compounds absorb UV-Vis radiations at specific wavelengths, corresponding to maximum absorbtion peaks, in both solution and dyed fiber. The human organism, through the dyed clothing, comes in direct contact with those dyes which can undergo modifications once exposed to UV radiations, having the posibility to reach the organism via cutanated transport. As it is known, the provoked negative effects are stronger during summer when UV radiations are more intense and in order to reduce their intensity dark coloured clothing is avoided. Dyes can be transformed in compounds which are easily absorbed into the skin. Some of these metabolites can be less toxic than the original corresponding dye, whilst others, such as free radicals, are potentially cancerous. Knowledge of the biological effects of the organic dyes, reactive dyes in particular, correlated with their structural and physical characteristics, permanently consists an issue of high scientific and practical interest and its solution may contribute in the diminishing of risk factors and improving of population health. UV radiation influence on the structural and colour modifications of textile materials were studied. Colour modifications are due to structural changes in aromatic and carbonil groups. In most cases photo-oxidative processes were identified in the dye structure. Dyeing was performed using non-irradiated and irradiated cotton painted with reactive blue dye 204.

  18. Effects of extracellular pH on UV-induced K+ efflux from cultured rose cells

    International Nuclear Information System (INIS)

    Huerta, A.J.; Murphy, T.M.

    1989-01-01

    Ultraviolet (UV) light causes a specific leakage of K + from cultured rose cells (Rosa damascena). During K + efflux, there is also an increase in extracellular HCO 3 - and acidification of the cell interior. We hypothesized that the HCO 3 - originated from intracellular hydration of respiratory CO 2 and served as a charge balancing mechanism during K + efflux, the K + and HCO 3 - being co transported out of the cell through specific channels. An alternative hypothesis which would yield similar results would be the counter transport of K + and H + . To test these hypotheses, we studied the effect of a range of external pH values (pH 5-9), regulated by various methods (pH-stat, 100 millimolar Tris-Mes buffer, or CO 2 partial pressure), on the UV-induced K + efflux. Both UV-C (less than 290 nanometers) and UV-B (290-310 nanometers) induced K + efflux with a minimum at about pH 6 to 7, and greater efflux at pH values of 5, 8, and 9. Since pH values of 8 and 9 increased instead of reduced the efflux of K + , these data are not consistent with notion that the efflux of K + is dependent on an influx of H + , a process that would be sensitive to external H + concentration. We suggest that the effect of pH on K + efflux may be mediated through the titration of specific K + -transporting proteins or channels in the plasma membrane. Since we could not detect the presence of carbonic anhydrase activity in cell extracts, we could not use the location of this enzyme to aid in our interpretation regarding the site of hydration of CO 2 . (author)

  19. Using UV photoaged photography to better understand Western Australian teenagers' attitudes towards adopting sun-protective behaviors.

    Science.gov (United States)

    Taylor, Myra F; Westbrook, Dominique; Chang, Paul

    2016-02-01

    This study aimed to determine whether the viewing of a personal photoaged photograph had the capacity to alter Western Australian teenagers' pro-tanning attitudes. Semi-structured interviews were conducted with fifteen teenagers. The teenagers' pro-tanning attitudes prior to viewing their photoaged photograph are encapsulated in the study's central theme: 'You've got to look after your skin and use sunscreen, but I always forget!'. Post-viewing their photoaged facial image many teenagers reiterated their intentions to adopt (when they remembered) skin-protective measures. However, photoaged photography did not alter other teenagers' intention to tan. NEW KNOWLEDGE: Teenagers who choose to continue to tan were aware of the long-term health risks associated with ultra-violet over-exposure. However, their desire remained strong to emulate the media promoted image of bronzed youth being popular individuals. Indeed, the social benefits of being considered attractive to their peers became an attitudinal barrier to the teenagers' adoption of skin-protective behaviours. Those teenagers who changed their pro-tanning attitudes following their viewing of their ultra-violet photoaged photograph did so because of the shock they received when they saw their sun-damaged facial image. This suggests that photoageing photography can be effective with many adolescents because it reduces the cause-and-effect delay that exists between the occurrence of sun-damage and its visual presentation in later-life. Greater effort needs to be focused on increasing teenagers' understanding of how sun-damage occurs, when it is appropriate to apply sunscreen, as well as in changing the prevailing media image of an attractive body being a tanned body.

  20. Phototransformation of membrane lipids and its role in biomembrane function change under the effect of UV-radiation

    International Nuclear Information System (INIS)

    Roshchupkin, D.I.; Anosov, A.K.; Murina, M.A.; Lordkipanidze, A.T.

    1988-01-01

    The papers devoted to the investigation of photochemical transformations of lipid under the effect of UV radiation of biological membranes are reviewed. The mechanism of peroxide photooxidation of mebrane lipid is considered. Data on the effect of antioxidants and the structure state of membranes on the process of peroxide photooxidation of lipid are presented. The problem on the role of this process under the effect of UV-radiation on blood and skin of mammals is discussed. 48 refs.; 4 refs

  1. Effect of UV irradiation on cutaneous cicatrices: a randomized, controlled trial with clinical, skin reflectance, histological, immunohistochemical and biochemical evaluations.

    Science.gov (United States)

    Due, Eva; Rossen, Kristian; Sorensen, Lars Tue; Kliem, Anette; Karlsmark, Tonny; Haedersdal, Merete

    2007-01-01

    The aim of this study was to examine the effect of ultraviolet (UV) irradiation on human cutaneous cicatrices. In this randomized, controlled study, dermal punch biopsy wounds served as a wound healing model. Wounds healed by primary or second intention and were randomized to postoperative solar UV irradiation or to no UV exposure. Evaluations after 5 and 12 weeks included blinded clinical assessments, skin reflectance measurements, histology, immunohistochemistry, and biochemical analyses of the N-terminal propeptide from procollagen-1, hydroxyproline, hydroxylysine, and proline. Twelve weeks postoperatively, UV-irradiated cicatrices healing by second intention: (i) were significantly pointed out as the most disfiguring; (ii) obtained significantly higher scores of colour, infiltration and cicatrix area; and (iii) showed significantly higher increase in skin-reflectance measurements of skin-pigmentation vs. non-irradiated cicatrices. No histological, immunohistochemical or biochemical differences were found. In conclusion, postoperative UV exposure aggravates the clinical appearance of cicatrices in humans.

  2. Applicability of light sources and the inner filter effect in UV/acetylacetone and UV/H{sub 2}O{sub 2} processes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Bingdang; Yang, Minghui [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023 (China); Yin, Ran [Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Zhang, Shujuan, E-mail: sjzhang@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023 (China)

    2017-08-05

    Highlights: • Acetylacetone (AA) could directly use solar irradiation to decolorize dyes. • AA had a wider applicability than H{sub 2}O{sub 2} to a variety of light sources. • The photonic efficiency in the UV/AA process was target-dependent. • An accurate calculation approach for the inner filter effect was developed. - Abstract: Light source is a crucial factor in the application of a photochemical process, which determines the energy efficiency. The performances of acetylacetone (AA) in conversion of aqueous contaminants under irradiation with a low-pressure mercury lamp, a medium-pressure mercury lamp, a xenon lamp, and natural sunlight were investigated and compared with those of H{sub 2}O{sub 2} as reference. In all cases, AA was superior to H{sub 2}O{sub 2} in the degradation of Acid Orange 7. Using combinations of the different light sources with various cut-off and band-pass filters, the spectra responses of the absorbed photons in the UV/AA and UV/H{sub 2}O{sub 2} processes were determined for two colored and two colorless compounds. The photonic efficiency (φ) of the two photochemical processes was found to be target-dependent. A calculation approach for the inner filter effect was developed by taking the obtained φ into account, which provides a more accurate indication of the reaction mechanisms.

  3. Effect of UV irradiation on the shear bond strength of titanium with segmented polyurethane through gamma-mercapto propyl trimethoxysilane.

    Science.gov (United States)

    Sakamoto, Harumi; Hirohashi, Yohei; Doi, Hisashi; Tsutsumi, Yusuke; Suzuki, Yoshiaki; Noda, Kazuhiko; Hanawa, Takao

    2008-01-01

    The objective of this study was to investigate the effect of UV irradiation on shear bond strength between a titanium (Ti) and a segmented polyurethane (SPU) composite through gamma-mercapto propyl trimethoxysilane (gamma-MPS). To this end, the shear bond strength of Ti/SPU interface of Ti-SPU composite under varying conditions of ultraviolet ray (UV) irradiation was evaluated by a shear bond test. The glass transition temperatures of SPU with and without UV irradiation were also determined using differential scanning calorimetry. It was found that the shear bond strength of Ti/SPU interface increased with UV irradiation. However, excessive UV irradiation decreased the shear bond strength of Ti/SPU interface. Glass transition temperature was found to increase during 40-60 seconds of UV irradiation. In terms of durability after immersion in water at 37 degrees C for 30 days, shear bond strength was found to improve with UV irradiation. In conclusion, UV irradiation to a Ti-SPU composite was clearly one of the means to improve the shear bond strength of Ti/SPU interface.

  4. Effect of fungal mycelia on the HPLC-UV and UV-vis spectrophotometric assessment of mycelium-bound epoxide hydrolase using glycidyl phenyl ether.

    Science.gov (United States)

    Dolcet, Marta M; Torres, Mercè; Canela, Ramon

    2016-06-25

    The use of mycelia as biocatalysts has technical and economic advantages. However, there are several difficulties in obtaining accurate results in mycelium-catalysed reactions. Firstly, sample extraction, indispensable because of the presence of mycelia, can bring into the extract components with a similar structure to that of the analyte of interest; secondly, mycelia can influence the recovery of the analyte. We prepared calibration standards of 3-phenoxy-1,2-propanediol (PPD) in the pure solvent and in the presence of mycelia (spiked before or after extraction) from five fungi (Aspergillus niger, Aspergillus tubingensis, Penicillium aurantiogriseum, Penicillium sp. and Aspergillus terreus). The quantification of PPD was carried out by HPLC-UV and UV-vis spectrophotometry. The manuscript shows that the last method is as accurate as the HPLC method. However, the colorimetric method led to a higher data throughput, which allowed the study of more samples in a shorter time. Matrix effects were evaluated visually from the plotted calibration data and statistically by simultaneously comparing the intercept and slope of calibration curves performed with solvent, post-extraction spiked standards and pre-extraction spiked standards. Significant differences were found between the post- and pre-extraction spiked matrix-matched functions. Pre-extraction spiked matrix-matched functions based on A. tubingensis mycelia, selected as the reference, were validated and used to compensate for low recoveries. These validated functions were successfully applied to the quantification of PPD achieved during the hydrolysis of glycidyl phenyl ether by mycelium-bound epoxide hydrolases and equivalent hydrolysis yields were determined by HPLC-UV and UV-vis spectrophotometry. This study may serve as starting point to implement matrix effects evaluation when mycelium-bound epoxide hydrolases are studied. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The effectiveness of UV-C radiation for facility-wide environmental disinfection to reduce health care-acquired infections.

    Science.gov (United States)

    Napolitano, Nathanael A; Mahapatra, Tanmay; Tang, Weiming

    2015-12-01

    Health care-acquired infections (HAIs) constitute an increasing threat for patients worldwide. Potential contributors of HAIs include environmental surfaces in health care settings, where ultraviolet-C radiation (UV-C) is commonly used for disinfection. This UV-C intervention-based pilot study was conducted in a hospital setting to identify any change in the incidence of HAIs before and after UV-C intervention, and to determine the effectiveness of UV-C in reducing pathogens. In a hospital in Culver City, CA, during 2012-2013, bactericidal doses of UV-C radiation (254 nm) were delivered through a UV-C-based mobile environmental decontamination unit. The UV-C dosing technology and expertise of the specifically trained personnel were provided together as a dedicated service model by a contracted company. The incidence of HAIs before and after the intervention period were determined and compared. The dedicated service model dramatically reduced HAIs (incidence difference, 1.3/1000 patient-days, a 34.2% reduction). Reductions in the total number and incidence proportions (28.8%) of HAIs were observed after increasing and maintaining the coverage of UV-C treatments. The dedicated service model was found to be effective in decreasing the incidence of HAIs, which could reduce disease morbidity and mortality in hospitalized patients. This model provides a continuously monitored and frequently UV-C-treated patient environment. This approach to UV-C disinfection was associated with a decreased incidence of HAIs. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  6. Highly Efficient Organic UV Photodetectors Based on Polyfluorene and Naphthalenediimide Blends: Effect of Thermal Annealing

    Directory of Open Access Journals (Sweden)

    Gorkem Memisoglu

    2012-01-01

    Full Text Available A solution-processed organic ultraviolet photodetector (UV-PD is introduced. The active layer of the UV-PD consists of poly(9,9-dioctyl fluorenyl-2,7–yleneethynylene (PFE and N,N′-bis-n-butyl-1,4,5,8- naphthalenediimide (BNDI with a weight ratio of 3 : 1 in chloroform. The effect of thermal annealing on the device properties was investigated from room temperature to 80∘C. The full device structure of ITO/PEDOT:PSS/PFE:BNDI (3 : 1/Al gave responsivity of 410 mA/W at −4 V under 1 mW/cm2 UV light at 368 nm when 60∘C of annealing temperature was used during its preparation. The devices that were annealed over the crystallization temperature of PFE showed a charge transfer resistance increase and a mobility decrease.

  7. Protonation effects on the UV/Vis absorption spectra of imatinib: a theoretical and experimental study.

    Science.gov (United States)

    Grante, Ilze; Actins, Andris; Orola, Liana

    2014-08-14

    An experimental and theoretical investigation of protonation effects on the UV/Vis absorption spectra of imatinib showed systematic changes of absorption depending on the pH, and a new absorption band appeared below pH 2. These changes in the UV/Vis absorption spectra were interpreted using quantum chemical calculations. The geometry of various imatinib cations in the gas phase and in ethanol solution was optim