WorldWideScience

Sample records for uv excitation spectrosscopies

  1. Aftereffect of UV excitation on the ZnS electroluminescent emission

    International Nuclear Information System (INIS)

    Maxia, V.; Muntoni, C.; Murgia, M.

    1980-01-01

    The initial a.c. electroluminescent (EL) emission of ZnS(Cu) previously excited with UV light has been studied. The experiments showed that the EL build-up is made more swift by the preceding UV excitation. This result is ascribed to space charge produced by UV excitation which affects the exchange of electrons between lattice and EL defects. (author)

  2. Near UV-Blue Excitable Green-Emitting Nanocrystalline Oxide

    Directory of Open Access Journals (Sweden)

    C. E. Rodríguez-García

    2011-01-01

    Full Text Available Green-emitting Eu-activated powders were produced by a two-stage method consisting of pressure-assisted combustion synthesis and postannealing in ammonia. The as-synthesized powders exhibited a red photoluminescence (PL peak located at =616 nm when excited with =395 nm UV. This emission peak corresponds to the 5D0→7F2 transition in Eu3+. After annealing in ammonia, the PL emission changed to an intense broad-band peak centered at =500 nm, most likely produced by 4f65d1→4f7 electronic transitions in Eu2+. This green-emitting phosphor has excitation band in the near UV-blue region (=300–450 nm. X-ray diffraction analysis reveals mainly the orthorhombic EuAlO3 and Al2O3 phases. Transmission electron microscopy observations showed that the grains are formed by faceted nanocrystals (~4 nm of polygonal shape. The excellent excitation and emission properties make these powders very promising to be used as phosphors in UV solid-state diodes coupled to activate white-emitting lamps.

  3. Analysis of UV-excited fluorochromes by flow cytometry using near-ultraviolet laser diodes.

    Science.gov (United States)

    Telford, William G

    2004-09-01

    Violet laser diodes have become common and reliable laser sources for benchtop flow cytometers. While these lasers are very useful for a variety of violet and some ultraviolet-excited fluorochromes (e.g., DAPI), they do not efficiently excite most UV-stimulated probes. In this study, the next generation of InGaN near-UV laser diodes (NUVLDs) emitting in the 370-375-nm range have been evaluated as laser sources for cuvette-based flow cytometers. Several NUVLDs, ranging in wavelength from 370 to 374 nm and in power level from 1.5 to 10 mW, were mounted on a BD Biosciences LSR II and evaluated for their ability to excite cells labeled with the UV DNA binding dye DAPI, several UV phenotyping fluorochromes (including Alexa Fluor 350, Marina Blue, and quantum dots), and the fluorescent calcium chelator indo-1. NUVLDs at the 8-10-mW power range gave detection sensitivity levels comparable to more powerful solid-state and ion laser sources, using low-fluorescence microsphere beads as measurement standards. NUVLDs at all tested power levels allowed extremely high-resolution DAPI cell cycle analysis, and sources in the 8-10-mW power range excited Alexa Fluor 350, Marina Blue, and a variety of quantum dots at virtually the same signal-to-noise ratios as more powerful UV sources. These evaluations indicate that near-UV laser diodes installed on a cuvette-based flow cytometer performed nearly as well as more powerful solid-state UV lasers on the same instrumentation, and comparably to more powerful ion lasers on a jet-in-air system, and. Despite their limited power, integration of these small and inexpensive lasers into benchtop flow cytometers should allow the use of flow cytometric applications requiring UV excitation on a wide variety of instruments. Copyright 2004 Wiley-Liss, Inc.

  4. UV Resonant Raman Spectrometer with Multi-Line Laser Excitation

    Science.gov (United States)

    Lambert, James L.; Kohel, James M.; Kirby, James P.; Morookian, John Michael; Pelletier, Michael J.

    2013-01-01

    A Raman spectrometer employs two or more UV (ultraviolet) laser wavel engths to generate UV resonant Raman (UVRR) spectra in organic sampl es. Resonant Raman scattering results when the laser excitation is n ear an electronic transition of a molecule, and the enhancement of R aman signals can be several orders of magnitude. In addition, the Ra man cross-section is inversely proportional to the fourth power of t he wavelength, so the UV Raman emission is increased by another fact or of 16, or greater, over visible Raman emissions. The Raman-scatter ed light is collected using a high-resolution broadband spectrograph . Further suppression of the Rayleigh-scattered laser light is provi ded by custom UV notch filters.

  5. Two-photon excited UV fluorescence for protein crystal detection

    International Nuclear Information System (INIS)

    Madden, Jeremy T.; DeWalt, Emma L.; Simpson, Garth J.

    2011-01-01

    Complementary measurements using SONICC and TPE-UVF allow the sensitive and selective detection of protein crystals. Two-photon excited ultraviolet fluorescence (TPE-UVF) microscopy is explored for sensitive protein-crystal detection as a complement to second-order nonlinear optical imaging of chiral crystals (SONICC). Like conventional ultraviolet fluorescence (UVF), TPE-UVF generates image contrast based on the intrinsic fluorescence of aromatic residues, generally producing higher fluorescence emission within crystals than the mother liquor by nature of the higher local protein concentration. However, TPE-UVF has several advantages over conventional UVF, including (i) insensitivity to optical scattering, allowing imaging in turbid matrices, (ii) direct compatibility with conventional optical plates and windows by using visible light for excitation, (iii) elimination of potentially damaging out-of-plane UV excitation, (iv) improved signal to noise through background reduction from out-of-plane excitation and (v) relatively simple integration into instrumentation developed for SONICC

  6. Fluorescence enhancing under UV-NIR simultaneous-excitation in ZnS:Cu,Mn phosphors

    Directory of Open Access Journals (Sweden)

    L. J. Xie

    2012-12-01

    Full Text Available The fluorescence properties of a long-lasting phosphor, ZnS:Cu,Mn was studied for the first time under simultaneously excitation of both UV and NIR light. Up to 20% fluorescence enhancement of the phosphor was observed. In the present simultaneously-excitation process, broad-band NIR light was absorbed and converted to visible photons via a single-photon upconversion path. We propose that a novel kind of spectral-conversion material with the unique ability to simultaneously convert both UV and NIR photons can be developed and is promising in the application of enhancing the EQE of solar cells.

  7. Study and characterization of phosphors excited in the V UV and UV range by the synchrotron radiation

    International Nuclear Information System (INIS)

    Gerard, I.

    1993-01-01

    A characterization tool using synchrotron radiation as a light source to record excitation spectra of the visible luminescence of phosphors induced by photons in the V UV and UV range, at several temperatures (10 to 300 K), is developed. The absorption and deexcitation mechanisms in Y F 3 , La F 3 and Th F 4 matrices doped with Eu 3+ , Tb 3+ , Dy 3+ and Er 3+ ions and polluted with oxygen ions, are examined; charge transfer bands appear clearly. The 4 f n to 4 f n-1 5 d transition bands are also observed on the excitation spectra of the visible luminescence of these compounds and two processes are proposed to interpret the energy relaxation. In order to determine the candidates for the color plasma display panel, measurements of luminous and external quantum yields for efficient phosphors are carried out. The Y F 3 :Eu 3+ compound is shown as a good candidate for the red emission in color plasma display panels

  8. Rydberg excitation of neutral nitric oxide molecules in strong UV and near-IR laser fields

    International Nuclear Information System (INIS)

    Lv Hang; Zhang Jun-Feng; Zuo Wan-Long; Xu Hai-Feng; Jin Ming-Xing; Ding Da-Jun

    2015-01-01

    Rydberg state excitations of neutral nitric oxide molecules are studied in strong ultraviolet (UV) and near-infra-red (IR) laser fields using a linear time-of-flight (TOF) mass spectrometer with the pulsed electronic field ionization method. The yield of Rydberg molecules is measured as a function of laser intensity and ellipticity, and the results in UV laser fields are compared with those in near-IR laser fields. The present study provides the first experimental evidence of neutral Rydberg molecules surviving in a strong laser field. The results indicate that a rescattering-after-tunneling process is the main contribution to the formation of Rydberg molecules in strong near-IR laser fields, while multi-photon excitation may play an important role in the strong UV laser fields. (paper)

  9. The far-UV spectrum of the low-excitation planetary nebula HD 138403

    OpenAIRE

    Surdej, Jean; Heck, A.

    1982-01-01

    Two high-resolution far-UV spectra of the low-excitation planetary nebula HD 138403 are analyzed which were obtained with the IUE satellite over the wavelength range from 1170 to 2070 A. It is shown that the nebula's far-UV spectrum comprises a stellar continuum on which are superimposed a few emission lines, numerous interstellar absorption lines, and various types of P Cygni profiles. Evidence is examined for substantial mass loss from the central nucleus, with terminal velocities of the or...

  10. Luminescence of Er3+ doped double lead halide crystals under X-ray, UV, VIS and IR excitation

    Science.gov (United States)

    Serazetdinov, A. R.; Smirnov, A. A.; Pustovarov, V. A.; Isaenko, L. I.

    2017-09-01

    Er3+ doped double lead halide crystals incorporate a number of properties making them interesting for practical use in light conducting materials. X-ray excited luminescence (XRL) spectra, photoluminescence (PL) spectra in region of 1.5-3.5 eV, photoluminescence excitation (PLE) spectra (2.75-5 eV) and anti-stokes luminescence (ASL) spectra were measured at room temperature in KPb2Cl5 (KPC) and RbPb2Br5 (RPB) matrices doped with Er3+ (1%) ions and in KPC doped with Er3++ Yb3+ ions(1:3 ratio concentration). Intraconfigurational f→f transitions are observed in Er3+ ions in most of the cases. The concrete spectrum form is strongly dependent on the excitation energy. Under 980 nm excitation upper Er3+ levels are excited, showing upconversional processes. In case of 313 nm (UV) and 365 nm (VIS) excitation self trapped exciton luminescence was detected in RPB crystal. Additional Yb3+ doping ions strongly increase quantum yield under 980 nm excitation and this doping cause insignificant influence on quantum yield under VIS or UV excitation.

  11. Planar UV excilamp excited by a surface barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Guivan, N N [Department of Quantum Electronics, Uzhgorod National University, Pidgirna 46, Uzhgorod 88000 (Ukraine); Janca, J [Department of Physical Electronics, Masaryk University, Kotlarska 2, Brno 61137 (Czech Republic); Brablec, A [Department of Physical Electronics, Masaryk University, Kotlarska 2, Brno 61137 (Czech Republic); Stahel, P [Department of Physical Electronics, Masaryk University, Kotlarska 2, Brno 61137 (Czech Republic); SlavIcek, P [Department of Physical Electronics, Masaryk University, Kotlarska 2, Brno 61137 (Czech Republic); Shimon, L L [Department of Quantum Electronics, Uzhgorod National University, Pidgirna 46, Uzhgorod 88000 (Ukraine)

    2005-09-07

    In this paper, the typical characteristics of a planar excilamp based on KrCl* and XeCl* exciplex molecules are presented. The excitation of the working mixture Kr/Xe/Cl{sub 2} is realized by means of the surface barrier discharge at pressures of 0.1-1 bar. The following properties are measured and discussed: spectra emitted by the plasma in the UV/VIS/NIR spectral range, intensity of emitted light versus total pressure in the discharge, the composition of the working mixture and the power of emitted light. The radiation power versus input electric power, and space distribution of the emitted light including basic electrical parameters of the discharge were also measured. It was shown that the characteristic power of UV radiation emitted in the spectral range 200-400 nm is about 6 mW cm{sup -2} while the efficiency could be about 8%.

  12. A vacuum-UV laser-induced fluorescence experiment for measurement of rotationally and vibrationally excited H2

    NARCIS (Netherlands)

    Vankan, P.J.W.; Heil, S.B.S.; Mazouffre, S.; Engeln, R.A.H.; Schram, D.C.; Döbele, H.F.

    2004-01-01

    An experimental setup is built to detect spatially resolved rovibrationally excited hydrogen molecules via laser-induced fluorescence. To excite the hydrogen molecules, laser radiation is produced in the vacuum UV part of the spectrum. The laser radiation is tunable between 120 nm and 230 nm and has

  13. Long-lived visible luminescence of UV LEDs and impact on LED excited time-resolved fluorescence applications

    International Nuclear Information System (INIS)

    Jin, D; Connally, R; Piper, J

    2006-01-01

    We report the results of a detailed study of the spectral and temporal properties of visible emission from three different GaN-based ultraviolet (UV) light emitting diodes (UV LEDs). The primary UV emission in the 360-380 nm band decays rapidly (less than 1 μs) following switch-off; however, visible luminescence (470-750 nm) with a decay lifetime of tens of microseconds was observed at approximately 10 -4 of the UV intensity. For applications of UV LEDs in time-resolved fluorescence (TRF) employing lanthanide chelates, the visible luminescence from the LEDs competes with the target Eu 3+ or Tb 3+ fluorescence in both spectral and temporal domains. A UV band-pass filter (Schott UG11 glass) was therefore used to reduce the visible luminescence of the UV LEDs by three orders of magnitude relative to UV output to yield a practical excitation source for TRF

  14. Luminescent properties of (Y,Gd)BO3:Bi3+,RE3+ (RE=Eu, Tb) phosphor under VUV/UV excitation

    International Nuclear Information System (INIS)

    Zeng Xiaoqing; Im, Seoung-Jae; Jang, Sang-Hun; Kim, Young-Mo; Park, Hyoung-Bin; Son, Seung-Hyun; Hatanaka, Hidekazu; Kim, Gi-Young; Kim, Seul-Gi

    2006-01-01

    Bi 3+ - and RE 3+ -co-doped (Y,Gd)BO 3 phosphors were prepared and their luminescent properties under vacuum ultraviolet (VUV)/UV excitation were investigated. Strong red emission for (Y,Gd)BO 3 :Bi 3+ ,Eu 3+ and strong green emission for (Y,Gd)BO 3 :Bi 3+ ,Tb 3+ are observed under VUV excitation from 147 to 200 nm with a much broader excitation region than that of single Eu 3+ -doped or Tb 3+ -doped (Y,Gd)BO 3 phosphor. Strong emissions are also observed under UV excitation around 265 nm where as nearly no luminescence is observed for single Eu 3+ -doped or Tb 3+ -doped (Y,Gd)BO 3 . The luminescence enhancement of Bi 3+ - and RE 3+ -co-doped (Y,Gd)BO 3 phosphors is due to energy transfer from Bi 3+ ion to Eu 3+ or Tb 3+ ion not only in the VUV region but also in the UV region. Besides, host sensitization competition between Bi 3+ and Eu 3+ or Tb 3+ is also observed. The investigated phosphors may be preferable for devices with a VUV light 147-200 nm as an excitation source such as PDP or mercury-free fluorescent lamp

  15. Table-top instrumentation for time-resolved luminescence spectroscopy of solids excited by nanosecond pulse of soft X-ray source and/or UV laser

    International Nuclear Information System (INIS)

    Bruza, Petr; Fidler, Vlastimil; Nikl, Martin

    2011-01-01

    The practical applicability of the rare-earth doped scintillators in high-speed detectors is limited by the slow decay components in the temporal response of a scintillator. The study of origin and properties of material defects that induce the slow decay components is of major importance for the development of new scintillation materials. We present a table-top, time-domain UV-VIS luminescence spectrometer, featuring extended time and input sensitivity ranges and two excitation sources. The combination of both soft X-ray/XUV and UV excitation source allows the comparative measurements of luminescence spectra and decay kinetics of scintillators to be performed under the same experimental conditions. The luminescence of emission centers of a doped scintillator can be induced by conventional N 2 laser pulse, while the complete scintillation process can be initiated by a soft X-ray/XUV pulse excitation from the laser-produced plasma in gas puff target of 4 ns duration. In order to demonstrate the spectrometer, the UV-VIS luminescence spectra and decay kinetics of cerium doped Lu 3 Al 5 O 12 single crystal (LuAG:Ce) scintillator excited by XUV and UV radiation were acquired. Luminescence of the doped Ce 3+ ions was studied under 2.88 nm (430 eV) XUV excitation from the laser-produced nitrogen plasma, and compared with the luminescence under 337 nm (3.68 eV) UV excitation from nitrogen laser. In the former case the excitation energy is deposited in the LuAG host, while in the latter the 4f-5d 2 transition of Ce 3+ is directly excited. Furthermore, YAG:Ce and LuAG:Ce single crystals luminescence decay profiles are compared and discussed.

  16. 340nm UV LED excitation in time-resolved fluorescence system for europium-based immunoassays detection

    OpenAIRE

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2017-01-01

    In immunoassay analyzers for in-vitro diagnostics, Xenon flash lamps have been widely used as excitation light sources. Recent advancements in UV LED technology and its advantages over the flash lamps such as smaller footprint, better wall-plug efficiency, narrow emission spectrum, and no significant afterglow, have made them attractive light sources for gated detection systems. In this paper, we report on the implementation of a 340 nm UV LED based time-resolved fluorescence system based on ...

  17. P 8: Table-top instrumentation for time-resolved luminescence spectroscopy of solids excited by soft X-ray from a laser induced plasma source and/or UV-VIS laser

    International Nuclear Information System (INIS)

    Bruza, P.; Fidler, V.; Nikl, M.

    2010-01-01

    The design and use of a novel, table-top UV-VIS luminescence spectrometer with two excitation sources is described: a soft X-ray/XUV pulse excitation from the laser-produced plasma in gas puff target of about 4 ns duration, and a conventional N 2 pulse laser excitation at 337 nm (or any other UV-VIS pulse laser excitation). The XUV plasma source generates photons of either quasi-monochromatic (N target, E = 430 eV) or wide (Ar target, E = 200 ∼ 600 eV) spectral range. A combination of both X-ray/XUV and UV-VIS excitation in one experimental apparatus allows to perform comparative luminescence spectra and kinetics measurements under the same experimental conditions. In order to demonstrate the spectrometer, the UV-VIS luminescence spectra and decay kinetics of cerium doped Lu 3 Al 5 O 12 single crystal (LuAG:Ce) scintillator excited by XUV and UV radiation were acquired. Luminescence of doped Ce 3+ ions was studied under XUV 430 eV excitation from the laser-produced nitrogen plasma, and compared with the luminescence under 337 nm (3,68 eV) UV excitation from nitrogen laser. In the former case the excitation energy is deposited in the LuAG host, while in the latter the 4f-5d transition of Ce 3+ is directly excited. Furthermore, LuAG:Ce single crystals and single crystalline films luminescence decay profiles are compared and discussed. (authors)

  18. Hydrothermal synthesis and luminescent properties of LnPO4:Tb,Bi (Ln=La,Gd) phosphors under UV/VUV excitation

    International Nuclear Information System (INIS)

    Wang Yuhua; Wu Chunfang; Wei Jie

    2007-01-01

    Monoclinic LnPO 4 :Tb,Bi (Ln=La,Gd) phosphors were prepared by hydrothermal reaction and their luminescent properties under ultraviolet (UV) and vacuum ultraviolet (VUV) excitation were investigated. LaPO 4 :Tb,Bi phosphor and GdPO 4 :Tb phosphor showed the strongest emission intensity under 254 and 147 nm excitation, respectively, because of the different energy transfer models. In UV region, Bi 3+ absorbed most energy then transferred to Tb 3+ , but in VUV region it was the host which absorbed most energy and transferred to Tb 3+

  19. Persistent photoconductivity in YBa2Cu3Ox by visible and UV excitation below Tc

    International Nuclear Information System (INIS)

    Markowitsch, W.; Altenburger, A.; LA, W.; Peruzzi, M.; Pedarnig, J.D.; Baeuerle, D.

    2004-01-01

    We studied the persistent photoconductivity in underdoped metallic YBa 2 Cu 3 O x (x∼6.6) by visible and UV excitation above and below T c . The results show that the photodoping effect exists also when the sample is in the superconducting state and that its efficiency is approximately the same as at low temperatures above T c . The dependence of the effect on the temperature where the photodoping is performed is essentially the same for visible light and UV radiation, i.e., a relatively small effect at low temperatures but a significantly larger effect near room temperature. We also observed that the efficiency is somewhat smaller with UV radiation, in contrast to previous results in semiconducting samples

  20. Single-photon cesium Rydberg excitation spectroscopy using 318.6-nm UV laser and room-temperature vapor cell.

    Science.gov (United States)

    Wang, Jieying; Bai, Jiandong; He, Jun; Wang, Junmin

    2017-09-18

    We demonstrate a single-photon Rydberg excitation spectroscopy of cesium (Cs) atoms in a room-temperature vapor cell. Cs atoms are excited directly from 6S 1/2 ground state to nP 3/2 (n = 70 - 100) Rydberg states with a 318.6 nm ultraviolet (UV) laser, and Rydberg excitation spectra are obtained by transmission enhancement of a probe beam resonant to Cs 6S 1/2 , F = 4 - 6P 3/2 , F' = 5 transition as partial population on F = 4 ground state are transferred to Rydberg state. Analysis reveals that the observed spectra are velocity-selective spectroscopy of Rydberg state, from which the amplitude and linewidth influenced by lasers' Rabi frequency have been investigated. Fitting to energies of Cs nP 3/2 (n = 70 -100) states, the determined quantum defect is 3.56671(42). The demodulated spectra can also be employed as frequency references to stabilize the UV laser frequency to specific Cs Rydberg transition.

  1. Luminescent properties of near UV excitable Ba2ZnS3 : Mn red emitting phosphor blend for white LED and display applications

    International Nuclear Information System (INIS)

    Thiyagarajan, P; Kottaisamy, M; Rao, M S Ramachandra

    2006-01-01

    A bright red colour emitting Mn doped Ba 2 ZnS 3 phosphor was prepared by an ecologically acceptable carbothermal reduction method without an inert gas or hazardous gas (H 2 S) environment. The phosphor can be excited with UV wavelength radiation to realize emission in the visible range. X-ray diffraction studies confirm an orthorhombic structure with phase group, pnam. The photoluminescence (PL) emission spectrum shows a broad band with emission maximum at 625 nm under the host excitation of 358 nm, which lies in the near UV region. The concentration of Mn was varied from 0.0025 to 0.20 mole with respect to Zn and the optimum PL emission intensity was obtained at the concentration of 0.01 mole of Mn. The CIE (Commission Internationale de l'Eclairage) colour coordinates measurement (x = 0.654 and y = 0.321) shows that the primary emission is in the red region. The triband phosphors blend containing Sr 5 (PO 4 ) 3 Cl : Eu 2+ (blue), ZnS : Cu,Al (green) and Ba 2 ZnS 3 : Mn (red) shows white light emission under 365 nm excitation having CIE chromaticity (x = 0.292 and y = 0.251). Since phosphor excitation lies in the near UV excitable region, giving a bright red emission, it can be used for applications in near UV phosphor converted white LED lighting and display devices

  2. Luminescent properties of UV excitable blue emitting phosphors MSr4(BO3)3:Ce3+ (M = Li and Na)

    International Nuclear Information System (INIS)

    Guo Chongfeng; Ding Xu; Seo, Hyo Jin; Ren Zhaoyu; Bai Jintao

    2011-01-01

    Research highlights: → Novel blue emitting phosphors borate MSr 4 (BO 3 ) 3 (M = Li or Na) were prepared first. → Luminescent properties of phosphors borate MSr 4 (BO 3 ) 3 (M = Li or Na) were investigated extensively as candidates of blue emitting phosphor used for UV excited LED. → The optimal concentrations of dopant Ce 3+ ions in compound MSr 4 (BO 3 ) 3 (M = Li or Na) were determined as 0.05 for Li and x = 0.09 for Na excited by UV light respectively. - Abstract: A series of Ce 3+ doped novel borate phosphors MSr 4 (BO 3 ) 3 (M = Li or Na) were successfully synthesized by traditional solid-state reaction. The crystal structures and the phase purities of samples were characterized by powder X-ray diffraction. The optimal concentrations of dopant Ce 3+ ions in compound MSr 4 (BO 3 ) 3 (M = Li or Na) were determined through the measurements of photoluminescence spectra of phosphors. Ce 3+ doped phosphors MSr 4 (BO 3 ) 3 (M = Li or Na) show strong broad band absorption in UV spectral region and bright blue emission under the excitation of 345 nm light. In addition, the temperature dependences of emission spectra of M 1+x Sr 4-2x Ce x (BO 3 ) 3 (M = Li or Na) phosphors with optimal composition x = 0.05 for Li and x = 0.09 for Na excited under 355 nm pulse laser were also investigated. The experimental results indicate that the M 1+x Sr 4-2x Ce x (BO 3 ) 3 (M = Li or Na) phosphors are promising blue emitting phosphors pumped by UV light.

  3. Spectral-kinetic characteristics of Pr3+ luminescence in LiLuF4 host upon excitation in the UV-VUV range

    International Nuclear Information System (INIS)

    Stryganyuk, G.; Zimmerer, G.; Shiran, N.; Voronova, V.; Nesterkina, V.; Gektin, A.; Shimamura, K.; Villora, E.; Jing, F.; Shalapska, T.; Voloshinovskii, A.

    2008-01-01

    Spectral-kinetic study of Pr 3+ luminescence has been performed for LiLuF 4 :Pr(0.1 mol%) single crystal upon the excitation within 5-12 eV range at T=8 K. The fine-structure of Pr 3+ 4f 2 →4f 5d excitation spectra is shown for LiLuF 4 :Pr(0.1 mol%) to be affected by the efficient absorption transitions of Pr 3+ ions into 4f 5d involving 4f 1 core in the ground state. Favourable conditions have been revealed in LiLuF 4 :Pr(0.1 mol%) for the transformation of UV-VUV excitation quanta into the visible range. Lightly doped LiLuF 4 :Pr crystals are considered as the promising luminescent materials possessing the efficient Pr 3+3 P 0 visible emission upon UV-VUV excitation. The mechanism of energy transfer between Lu 3+ host ion and Pr 3+ impurity is discussed

  4. UV excitation of single DNA and RNA strands produces high yields of exciplex states between two stacked bases.

    Science.gov (United States)

    Takaya, Tomohisa; Su, Charlene; de La Harpe, Kimberly; Crespo-Hernández, Carlos E; Kohler, Bern

    2008-07-29

    Excited electronic states created by UV excitation of the diribonucleoside monophosphates ApA, ApG, ApC, ApU, and CpG were studied by the femtosecond transient-absorption technique. Bleach recovery signals recorded at 252 nm show that long-lived excited states are formed in all five dinucleosides. The lifetimes of these states exceed those measured in equimolar mixtures of the constituent mononucleotides by one to two orders of magnitude, indicating that electronic coupling between proximal nucleobases dramatically slows the relaxation of excess electronic energy. The decay rates of the long-lived states decrease with increasing energy of the charge-transfer state produced by transferring an electron from one base to another. The charge-transfer character of the long-lived states revealed by this analysis supports their assignment to excimer or exciplex states. Identical bleach recovery signals were seen for ApA, (A)(4), and poly(A) at delay times >10 ps after photoexcitation. This indicates that excited states localized on a stack of just two bases are the common trap states independent of the number of stacked nucleotides. The fraction of initial excitations that decay to long-lived exciplex states is approximately equal to the fraction of stacked bases determined by NMR measurements. This supports a model in which excitations associated with two stacked bases decay to exciplex states, whereas excitations in unstacked bases decay via ultrafast internal conversion. These results establish the importance of charge transfer-quenching pathways for UV-irradiated RNA and DNA in room-temperature solution.

  5. Revisiting NLTE Rovibrational Excitation of CO in UV Irradiated Environments

    Science.gov (United States)

    Zhang, Ziwei; Yang, Benhui H.; Stancil, Phillip C.; Walker, Kyle M.; Forrey, Robert C.; Naduvalath, Balakrishnan

    2018-06-01

    Being the second most abundant molecule in the ISM, CO has been well observed and studied as a tracer for many astrophysical processes. Highly rovibrationally excited CO emission is used to reveal features in intense UV-irradiated regions such as the inner rim of protoplanetary disks, carbon star envelopes, and star forming regions. Collisional rate coefficients are crucial for non-local thermodynamic equilibrium (NLTE) molecular analysis in such regions, while data for high rovibrational levels for CO were previously unavailable. Here we revisit CO excitation properties with comprehensive collisional data including high rovibrational states (up to v=5 and J=40) colliding with H2, H and He, in various NLTE astrophysical environments with the spectral modeling packages RADEX and Cloudy. We studied line ratio diagnostics between low- and high-vibrational transitions with RADEX. Using Cloudy, we investigated molecular properties in complex environments, such as photodissociation regions and the outflow of the carbon star IRC+10216, illustrating the potential for utilizing high rovibrational NLTE analysis in future astrophysical modeling.This work was supported by NASA Grants NNX15AI61G and NNX16AF09G.

  6. Slide-free histology via MUSE: UV surface excitation microscopy for imaging unsectioned tissue (Conference Presentation)

    Science.gov (United States)

    Levenson, Richard M.; Harmany, Zachary; Demos, Stavros G.; Fereidouni, Farzad

    2016-03-01

    Widely used methods for preparing and viewing tissue specimens at microscopic resolution have not changed for over a century. They provide high-quality images but can involve time-frames of hours or even weeks, depending on logistics. There is increasing interest in slide-free methods for rapid tissue analysis that can both decrease turn-around times and reduce costs. One new approach is MUSE (microscopy with UV surface excitation), which exploits the shallow penetration of UV light to excite fluorescent signals from only the most superficial tissue elements. The method is non-destructive, and eliminates requirement for conventional histology processing, formalin fixation, paraffin embedding, or thin sectioning. It requires no lasers, confocal, multiphoton or optical coherence tomography optics. MUSE generates diagnostic-quality histological images that can be rendered to resemble conventional hematoxylin- and eosin-stained samples, with enhanced topographical information, from fresh or fixed, but unsectioned tissue, rapidly, with high resolution, simply and inexpensively. We anticipate that there could be widespread adoption in research facilities, hospital-based and stand-alone clinical settings, in local or regional pathology labs, as well as in low-resource environments.

  7. Evidence for concerted ring opening and C-Br bond breaking in UV-excited bromocyclopropane.

    Science.gov (United States)

    Pandit, Shubhrangshu; Preston, Thomas J; King, Simon J; Vallance, Claire; Orr-Ewing, Andrew J

    2016-06-28

    Photodissociation of gaseous bromocyclopropane via its A-band continuum has been studied at excitation wavelengths ranging from 230 nm to 267 nm. Velocity-map images of ground-state bromine atoms (Br), spin-orbit excited bromine atoms (Br(∗)), and C3H5 hydrocarbon radicals reveal the kinetic energies of these various photofragments. Both Br and Br(∗) atoms are predominantly generated via repulsive excited electronic states in a prompt photodissociation process in which the hydrocarbon co-fragment is a cyclopropyl radical. However, the images obtained at the mass of the hydrocarbon radical fragment identify a channel with total kinetic energy greater than that deduced from the Br and Br(∗) images, and with a kinetic energy distribution that exceeds the energetic limit for Br + cyclopropyl radical products. The velocity-map images of these C3H5 fragments have lower angular anisotropies than measured for Br and Br(∗), indicating molecular restructuring during dissociation. The high kinetic energy C3H5 signals are assigned to allyl radicals generated by a minor photochemical pathway which involves concerted C-Br bond dissociation and cyclopropyl ring-opening following single ultraviolet (UV)-photon absorption. Slow photofragments also contribute to the velocity map images obtained at the C3H5 radical mass, but the corresponding slow Br atoms are not observed. These features in the images are attributed to C3H5 (+) from the photodissociation of the C3H5Br(+) molecular cation following two-photon ionization of the parent compound. This assignment is confirmed by 118-nm vacuum ultraviolet ionization studies that prepare the molecular cation in its ground electronic state prior to UV photodissociation.

  8. A vacuum-UV laser-induced fluorescence experiment for measurement of rotationally and vibrationally excited H2

    International Nuclear Information System (INIS)

    Vankan, P.; Heil, S.B.S.; Mazouffre, S.; Engeln, R.; Schram, D.C.; Doebele, H.F.

    2004-01-01

    An experimental setup is built to detect spatially resolved rovibrationally excited hydrogen molecules via laser-induced fluorescence. To excite the hydrogen molecules, laser radiation is produced in the vacuum UV part of the spectrum. The laser radiation is tunable between 120 nm and 230 nm and has a bandwith of 0.15 cm -1 . The wavelength of the laser radiation is calibrated by simultaneous recording of the two-photon laser induced fluorescence spectrum of nitric oxide. The excited hydrogen populations are calibrated on the basis of coherent anti-Stokes Raman scattering measurements. A population distribution is measured in the shock region of a pure hydrogen plasma expansion. The higher rotational levels (J>5) show overpopulation compared to a Boltzmann distribution determined from the lower rotational levels (J≤5)

  9. Time-resolved UV spectroscopy on ammonia excited by a pulsed CO2 laser

    International Nuclear Information System (INIS)

    Holbach, H.

    1980-07-01

    This work investigates the excitation of ammonia by a pulsed CO 2 laser, in particular the processes associated with collisions with argon. It was prompted by two previous observations: the previously reported infrared multiphoton dissociation of NH 3 under nearly collisionless conditions, and the ill understood excitation mechanism of apparently nonresonant low vibrational levels in the presence of Ar. Based on recent spectroscopic data, all vibrational-rotational levels were determined which are simultaneously excited by different CO 2 laser lines. Transitions between the 1 + and 2 - vibrational levels were also taken into account. The linewidth in these calculations was dominated by power broadening, which generates a half width at half maximum of 0.36 cm -1 at the typical power density of 10 MW/cm 2 . In order to reproduce published experimental absorption data, it proved necessary to take account all transitions within a distance of 20 cm -1 from the laser line. This fact implies in most cases the simultaneous population of a large number of vibrational-rotational levels. The population of levels by absorption or by subsequent collisional processes was probed by time-resolved absorption measurement of vibrational bands and their rotational envelope in the near UV. Time resolution (5...10) was sufficient to observe rotational relaxation within individual vibrational levels. Characteristic differences were found for the various excitation lines. (orig.) [de

  10. Evidence for concerted ring opening and C–Br bond breaking in UV-excited bromocyclopropane

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, Shubhrangshu; Preston, Thomas J.; Orr-Ewing, Andrew J., E-mail: a.orr-ewing@bristol.ac.uk [School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS (United Kingdom); King, Simon J.; Vallance, Claire [Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA (United Kingdom)

    2016-06-28

    Photodissociation of gaseous bromocyclopropane via its A-band continuum has been studied at excitation wavelengths ranging from 230 nm to 267 nm. Velocity-map images of ground-state bromine atoms (Br), spin-orbit excited bromine atoms (Br{sup ∗}), and C{sub 3}H{sub 5} hydrocarbon radicals reveal the kinetic energies of these various photofragments. Both Br and Br{sup ∗} atoms are predominantly generated via repulsive excited electronic states in a prompt photodissociation process in which the hydrocarbon co-fragment is a cyclopropyl radical. However, the images obtained at the mass of the hydrocarbon radical fragment identify a channel with total kinetic energy greater than that deduced from the Br and Br{sup ∗} images, and with a kinetic energy distribution that exceeds the energetic limit for Br + cyclopropyl radical products. The velocity-map images of these C{sub 3}H{sub 5} fragments have lower angular anisotropies than measured for Br and Br{sup ∗}, indicating molecular restructuring during dissociation. The high kinetic energy C{sub 3}H{sub 5} signals are assigned to allyl radicals generated by a minor photochemical pathway which involves concerted C–Br bond dissociation and cyclopropyl ring-opening following single ultraviolet (UV)-photon absorption. Slow photofragments also contribute to the velocity map images obtained at the C{sub 3}H{sub 5} radical mass, but the corresponding slow Br atoms are not observed. These features in the images are attributed to C{sub 3}H{sub 5}{sup +} from the photodissociation of the C{sub 3}H{sub 5}Br{sup +} molecular cation following two-photon ionization of the parent compound. This assignment is confirmed by 118-nm vacuum ultraviolet ionization studies that prepare the molecular cation in its ground electronic state prior to UV photodissociation.

  11. Luminescence of Ce3+ at two different sites in ?-Sr2P2O7 under vacuum ultraviolet-UV and x-ray excitation

    NARCIS (Netherlands)

    Hou, D.; Han, B.; Chen, W.; Liang, H.; Su, Q.; Dorenbos, P.; Huang, Y.; Gao, Z.; Tao, Y.

    2010-01-01

    A series of Ce3+ doped ?-Sr2?2xCexNaxP2O7 phosphor compounds has been prepared using a high-temperature solid-state reaction technique. The luminescence properties under vacuum ultraviolet-UV and x-ray excitation were studied. Luminescence spectra reveal three UV-emitting peaks at about 310, 330,

  12. Nuclear transitions induced by atomic excitations

    International Nuclear Information System (INIS)

    Dyer, P.; Bounds, J.A.; Haight, R.C.; Luk, T.S.

    1988-01-01

    In the two-step pumping scheme for a gamma-ray laser, an essential step is that of exciting the nucleus from a long-lived storage isomer to a nearby short- lived state that then decays to the upper lasing level. An experiment is in progress to induce this transfer by first exciting the atomic electrons with UV photons. The incident photons couple well to the electrons, which then couple via a virtual photon to the nucleus. As a test case, excitation of the 235 U nucleus is being sought, using a high- brightness UV laser. The excited nuclear state, having a 26- minute half-life, decays by internal conversion, resulting in emission of an atomic electron. A pulsed infrared laser produces an atomic beam of 235 U which is then bombarded by the UV laser beam. Ions are collected, and conversion electrons are detected by a channel electron multiplier. In preliminary experiments, an upper limit of 7 x 10 -5 has been obtained for the probability of exciting a 235 U atom in the UV beam for one picosecond at an intensity of about 10 15 W/cm 2 . Experiments with higher sensitivities and at higher UV beam intensities are underway

  13. 340nm UV LED excitation in time-resolved fluorescence system for europium-based immunoassays detection

    DEFF Research Database (Denmark)

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter

    2017-01-01

    In immunoassay analyzers for in-vitro diagnostics, Xenon flash lamps have been widely used as excitation light sources. Recent advancements in UV LED technology and its advantages over the flash lamps such as smaller footprint, better wall-plug efficiency, narrow emission spectrum......, and no significant afterglow, have made them attractive light sources for gated detection systems. In this paper, we report on the implementation of a 340 nm UV LED based time-resolved fluorescence system based on europium chelate as a fluorescent marker. The system performance was tested with the immunoassay based...... on the cardiac marker, TnI. The same signal-to-noise ratio as for the flash lamp based system was obtained, operating the LED below specified maximum current. The background counts of the system and its main contributors were measured and analyzed. The background of the system of the LED based unit was improved...

  14. Quantitative analysis of UV excitation bands for red emissions in Pr3+-doped CaTiO3, SrTiO3 and BaTiO3 phosphors by peak fitting

    International Nuclear Information System (INIS)

    Fujiwara, Rei; Sano, Hiroyuki; Shimizu, Mikio; Kuwabara, Makoto

    2009-01-01

    A quantitative spectral analysis of the ultraviolet (UV) broad excitation bands, which are located in the range 300-400 nm, for red emissions at around 610 nm in Pr-doped CaTiO 3 , SrTiO 3 :Al and BaTiO 3 :Mg phosphors has been carried out using a peak fitting technique. The obtained results demonstrate that the UV broad band of CaTiO 3 :Pr consists of four primary excitation bands centered around 330, 335, 365 and 380 nm and those of both SrTiO 3 :Al and BaTiO 3 :Mg consist of three primary bands centered around 310, 345 and 370 nm. Based on the behavior patterns and the values of the respective primary excitation bands' parameters, i.e. center gravity (λ top ), maximum height (I max ) and full-width at half-maximum (FWHM), the UV-to-red relaxation processes in these titanate phosphors can be explained to be essentially the same, except for the existence of an additional relaxation pathway via electron-trap states in CaTiO 3 :Pr, which gives a characteristic shape of its UV excitation spectrum in the wavelength range of >360 nm

  15. Sub-50 fs excited state dynamics of 6-chloroguanine upon deep ultraviolet excitation.

    Science.gov (United States)

    Mondal, Sayan; Puranik, Mrinalini

    2016-05-18

    The photophysical properties of natural nucleobases and their respective nucleotides are ascribed to the sub-picosecond lifetime of their first singlet states in the UV-B region (260-350 nm). Electronic transitions of the ππ* type, which are stronger than those in the UV-B region, lie at the red edge of the UV-C range (100-260 nm) in all isolated nucleobases. The lowest energetic excited states in the UV-B region of nucleobases have been investigated using a plethora of experimental and theoretical methods in gas and solution phases. The sub-picosecond lifetime of these molecules is not a general attribute of all nucleobases but specific to the five primary nucleobases and a few xanthine and methylated derivatives. To determine the overall UV photostability, we aim to understand the effect of more energetic photons lying in the UV-C region on nucleobases. To determine the UV-C initiated photophysics of a nucleobase system, we chose a halogen substituted purine, 6-chloroguanine (6-ClG), that we had investigated previously using resonance Raman spectroscopy. We have performed quantitative measurements of the resonance Raman cross-section across the Bb absorption band (210-230 nm) and constructed the Raman excitation profiles. We modeled the excitation profiles using Lee and Heller's time-dependent theory of resonance Raman intensities to extract the initial excited state dynamics of 6-ClG within 30-50 fs after photoexcitation. We found that imidazole and pyrimidine rings of 6-ClG undergo expansion and contraction, respectively, following photoexcitation to the Bb state. The amount of distortions of the excited state structure from that of the ground state structure is reflected by the total internal reorganization energy that is determined at 112 cm(-1). The contribution of the inertial component of the solvent response towards the total reorganization energy was obtained at 1220 cm(-1). In addition, our simulation also yields an instantaneous response of the first

  16. Strong broad green UV-excited photoluminescence in rare earth (RE = Ce, Eu, Dy, Er, Yb) doped barium zirconate

    Energy Technology Data Exchange (ETDEWEB)

    Borja-Urby, R. [Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (EMANA), Centro de Investigaciones en Optica A. C., Leon, Gto. 37150 (Mexico); Diaz-Torres, L.A., E-mail: ditlacio@cio.mx [Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (EMANA), Centro de Investigaciones en Optica A. C., Leon, Gto. 37150 (Mexico); Salas, P. [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, A.P. 1-1010, Queretaro, Qro. 76000 (Mexico); Angeles-Chavez, C. [Instituto Mexicano del Petroleo, Ciudad de Mexico, D. F. 07730 (Mexico); Meza, O. [Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (EMANA), Centro de Investigaciones en Optica A. C., Leon, Gto. 37150 (Mexico)

    2011-10-25

    Highlights: > Trivalent rare earth (RE) substitution on Zr{sup 4+} sites in BaZrO{sub 3} lead to band gap narrowing. > RE substitution lead to enhanced blue-green intrinsic emission of nanocrystalline BaZrO{sub 3} > Blue-green hue of BaZrO3:RE depends on RE dopant and excitation UV wavelength > BaZrO3: Dy{sup 3+} PL chromatic coordinates correspond to pure white color coordinates of CIE 1931 model - Abstract: The wet synthesis hydrothermal method at 100 deg. C was used to elaborate barium zirconate (BaZrO{sub 3}) unpurified with 0.5 mol% of different rare earth ions (RE = Yb, Er, Dy, Eu, Ce). Morphological, structural and UV-photoluminescence properties depend on the substituted rare earth ionic radii. While the crystalline structure of RE doped BaZrO{sub 3} remains as a cubic perovskite for all substituted RE ions, its band gap changes between 4.65 and 4.93 eV. Under 267 nm excitation the intrinsic green photoluminescence of the as synthesized BaZrO{sub 3}: RE samples is considerably improved by the substitution on RE ions. For 1000 deg. C annealed samples, under 267 nm, the photoluminescence is dominated by the intrinsic BZO emission. It is interesting to notice that Dy{sup 3+}, Er{sup 3+} and Yb{sup 3+} doped samples present whitish emissions that might be useful for white light generation under 267 nm excitation. CIE color coordinates are reported for all samples.

  17. UV Raman spectroscopy of H2-air flames excited with a narrowband KrF laser

    Science.gov (United States)

    Shirley, John A.

    1990-01-01

    Raman spectra of H2 and H2O in flames excited by a narrowband KrF excimer laser are reported. Observations are made over a porous-plug, flat-flame burner reacting H2 in air, fuel-rich with nitrogen dilution to control the temperature, and with an H2 diffusion flame. Measurements made from UV Raman spectra show good agreement with measurements made by other means, both for gas temperature and relative major species concentrations. Laser-induced fluorescence interferences arising from OH and O2 are observed in emission near the Raman spectra. These interferences do not preclude Raman measurements, however.

  18. Two-photon excitation in chip electrophoresis enabling label-free fluorescence detection in non-UV transparent full-body polymer chips.

    Science.gov (United States)

    Geissler, David; Belder, Detlev

    2015-12-01

    One of the most commonly employed detection methods in microfluidic research is fluorescence detection, due to its ease of integration and excellent sensitivity. Many analytes though do not show luminescence when excited in the visible light spectrum, require suitable dyes. Deep-ultraviolet (UV) excitation (electrophoresis of small aromatic compounds. Various polymers, such as poly(methyl methacrylate), cyclic olefin polymer, and copolymer as well as poly(dimethylsiloxane) were investigated and compared with respect to achievable LOD and ruggedness against photodamage. To demonstrate the applicability of the technique, the method was also applied to the determination of serotonin and tryptamine in fruit samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Development of nanostructured EuAl2O4 phosphors with strong long-UV excitation.

    Science.gov (United States)

    Hirata, Gustavo A; Bosze, Eric J; McKittrick, Joanna

    2008-12-01

    Fueled by the need to develop novel materials for applications in solid state white-emitting lamps we have improved a new low-cost, clean and efficient technique to produce high luminescence phosphors with strong excitation in the long-UV range (350-400 nm) which makes them useful for applications in GaN-based solid state lamps. In this work, pressurized combustion synthesis has been successfully used to develop EuAl2O4 (europium aluminate), a new green photoluminescent material with monoclinic structure. The combustion synthesis reaction conditions can be adjusted to produce either the AlEuO3 orthorhombic phase at low pressures (0.1 MPa), or the new monoclinic EuAl2O4 phase, which is apparently more thermodynamically favorable at higher combustion reaction pressures (1.4 MPa). The luminescent material is a high surface area powder (approximately 50 m2/g) composed mainly of nanostructured needles and plates with 5-10 nm in diameter and 100-150 nm in length. A broad emission peak centered at 530 nm with a decay time of 1.5 approximately 2 ms is obtained at the maximum excitation wavelength lambda(exc) = 370 nm.

  20. 340nm UV LED excitation in time-resolved fluorescence system for europium-based immunoassays detection

    Science.gov (United States)

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2017-02-01

    In immunoassay analyzers for in-vitro diagnostics, Xenon flash lamps have been widely used as excitation light sources. Recent advancements in UV LED technology and its advantages over the flash lamps such as smaller footprint, better wall-plug efficiency, narrow emission spectrum, and no significant afterglow, have made them attractive light sources for gated detection systems. In this paper, we report on the implementation of a 340 nm UV LED based time-resolved fluorescence system based on europium chelate as a fluorescent marker. The system performance was tested with the immunoassay based on the cardiac marker, TnI. The same signal-to-noise ratio as for the flash lamp based system was obtained, operating the LED below specified maximum current. The background counts of the system and its main contributors were measured and analyzed. The background of the system of the LED based unit was improved by 39% compared to that of the Xenon flash lamp based unit, due to the LEDs narrower emission spectrum and longer pulse width. Key parameters of the LED system are discussed to further optimize the signal-to-noise ratio and signal-to-background, and hence the sensitivity of the instrument.

  1. UV dissociation of vibrationally excited UF6

    International Nuclear Information System (INIS)

    Alexandre, M.; Clerc, M.; Gagnon, R.; Gilbert, M.; Isnard, P.; Nectoux, P.; Rigny, P.; Weulersse, J.M.

    1983-01-01

    Before application of laser photodissociation of UF 6 to the separation of uranium isotopes becomes practical, isotopic selectivity should be optimized. We present here results on the cross sections involved in the irradiation of UF 6 simultaneously with infrared and ultraviolet lasers, as a function of wavelengths, fluence and temperature (at 293 K and 105 K, in an adiabatic expansion). The experiment uses a Nd 3+ YAG pumped lithium niobate optical parametric oscillator as a tunable 16 μ light source. Energies of the order of 1 mJ can be obtained with linewidths smaller than 0.1 cm - . The UV source used is based on ND 3+ YAG pumped dye laser and various frequency mixing schemes. At low temperature the frequency variation of the absorbed infrared energy per molecule depends markedly on the IR fluence phisub(IR) with a maximum value varying as phisub(IR)sup(-1/2) and a frequency extension far beyond the low level absorption spectrum. The absorbed vibrational energy leads to a change in the UV cross section comparable with the effect of a rise in temperature. Using this a model is put forward to express the isotopic selectivity 235 U/ 238 U as a function of UV wavelength and IR irradiation conditions. Experimental results agree with this model, and yield to maximum selectivity close to two [fr

  2. Spectroscopy and reactions of vibrationally excited transient molecules

    Energy Technology Data Exchange (ETDEWEB)

    Dai, H.L. [Univ. of Pennsylvania, Philadelphia (United States)

    1993-12-01

    Spectroscopy, energy transfer and reactions of vibrationally excited transient molecules are studied through a combination of laser-based excitation techniques and efficient detection of emission from the energized molecules with frequency and time resolution. Specifically, a Time-resolved Fourier Transform Emission Spectroscopy technique has been developed for detecting dispersed laser-induced fluorescence in the IR, visible and UV regions. The structure and spectroscopy of the excited vibrational levels in the electronic ground state, as well as energy relaxation and reactions induced by specific vibronic excitations of a transient molecule can be characterized from time-resolved dispersed fluorescence in the visible and UV region. IR emissions from highly vibrational excited levels, on the other hand, reveal the pathways and rates of collision induced vibrational energy transfer.

  3. Optical and electron paramagnetic resonance studies of the excited triplet states of UV-B absorbers: 2-ethylhexyl salicylate and homomenthyl salicylate.

    Science.gov (United States)

    Sugiyama, Kazuto; Tsuchiya, Takumi; Kikuchi, Azusa; Yagi, Mikio

    2015-09-26

    The energy levels and lifetimes of the lowest excited triplet (T1) states of UV-B absorbers, 2-ethylhexyl salicylate (EHS) and homomenthyl salicylate (HMS), and their deprotonated anions (EHS(-) and HMS(-)) were determined through measurements of phosphorescence and electron paramagnetic resonance (EPR) spectra in rigid solutions at 77 K. The observed T1 energies of EHS and HMS are higher than those of butylmethoxydibenzoylmethane, the most widely used UV-A absorber, and octyl methoxycinnamate, the most widely used UV-B absorber. The T1 states of EHS, HMS, EHS(-) and HMS(-) were assigned to almost pure (3)ππ* state from the observed T1 lifetimes and zero-field splitting parameters. EHS and HMS with an intramolecular hydrogen bond show a photoinduced phosphorescence enhancement in ethanol at 77 K. The EPR signals of the T1 states of EHS and HMS also increase in intensity with UV-irradiation time (photoinduced EPR enhancement). The T1 lifetimes of EHS and HMS at room temperature were determined through triplet-triplet absorption measurements in ethanol. The quantum yields of singlet oxygen production by EHS and HMS were determined by using time-resolved near-IR phosphorescence.

  4. Combustion synthesis and optical properties of Oxy-borate phosphors YCa4O(BO3)3:RE3+ (RE = Eu3+, Tb3+) under UV, VUV excitation

    International Nuclear Information System (INIS)

    Ingle, J.T.; Gawande, A.B.; Sonekar, R.P.; Omanwar, S.K.; Wang, Yuhua; Zhao, Lei

    2014-01-01

    Graphical abstract: VUV Photoluminescence of YCa 4 O(BO 3 ) 3 : Eu 3+ and YCa 4 O(BO 3 ) 3 : Tb 3+ for PDPs applications. Highlights: • Inorganic Oxy-borate phosphors YCa 4 O(BO 3 ) 3 :Eu 3+ ,Tb 3+ was synthesized by novel solution combustion synthesis. • This single host produces efficient and intense Red and Green color for display applications. • Good agreement with CIE co-ordinates as prescribes by NTCL, for flat panel, PDP display color. • Synthesized materials were characterized using powder XRD, FE-SEM, UV and VUV Spectophotometer. -- Abstract: The inorganic Oxy-borate host phosphors YCa 4 O(BO 3 ) 3 :RE 3+ (RE = Eu 3+ ,Tb 3+ ) were synthesized by a novel solution combustion technique. The synthesis is based on the exothermic reaction between the fuel (Urea) and Oxidizer (Ammonium nitrate). The heat generated in reaction is use for auto combustion of precursors. The structures of the prepared samples were confirmed by powder XRD technique. The photoluminescence properties of the powder samples were investigated under UV and VUV excitation; “The phosphor YCa 4 O(BO 3 ) 3 :Eu 3+ and YCa 4 O(BO 3 ) 3 :Tb 3+ shows strong absorption in UV and VUV region and exhibits intense red and green emission upon excited by 254 nm UV and 147 nm VUV radiation”

  5. Triplet-triplet energy transfer from a UV-A absorber butylmethoxydibenzoylmethane to UV-B absorbers.

    Science.gov (United States)

    Kikuchi, Azusa; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Yagi, Mikio

    2014-01-01

    The phosphorescence decay of a UV-A absorber, 4-tert-butyl-4'-methoxydibenzolymethane (BMDBM) has been observed following a 355 nm laser excitation in the absence and presence of UV-B absorbers, 2-ethylhexyl 4-methoxycinnamate (octyl methoxycinnamate, OMC) and octocrylene (OCR) in ethanol at 77 K. The lifetime of the lowest excited triplet (T1) state of BMDBM is significantly reduced in the presence of OMC and OCR. The observed quenching of BMDBM triplet by OMC and OCR suggests that the intermolecular triplet-triplet energy transfer occurs from BMDBM to OMC and OCR. The T1 state of OCR is nonphosphorescent or very weakly phosphorescent. However, we have shown that the energy level of the T1 state of OCR is lower than that of the enol form of BMDBM. Our methodology of energy-donor phosphorescence decay measurements can be applied to the study of the triplet-triplet energy transfer between UV absorbers even if the energy acceptor is nonphosphorescent. In addition, the delayed fluorescence of BMDBM due to triplet-triplet annihilation was observed in the BMDBM-OMC and BMDBM-OCR mixtures in ethanol at 77 K. Delayed fluorescence is one of the deactivation processes of the excited states of BMDBM under our experimental conditions. © 2013 The American Society of Photobiology.

  6. Resonantly enhanced production of excited fragments of gaseous molecules following core-level excitation

    International Nuclear Information System (INIS)

    Chen, J.M.; Lu, K.T.; Lee, J.M.; Ho, S.C.; Chang, H.W.; Lee, Y.Y.

    2005-01-01

    State-selective dissociation dynamics for the excited fragments of gaseous Si(CH 3 ) 2 Cl 2 following Cl 2p and Si 2p core-level excitations have been investigated by resonant photoemission spectroscopy and dispersed UV/optical fluorescence spectroscopy. The main features in the gaseous Si(CH 3 ) 2 Cl 2 fluorescence spectrum are identified as the emission from excited Si*, Si + *, CH* and H*. The core-to-Rydberg excitations at both Si 2p and Cl 2p edges lead to a noteworthy production of not only the excited atomic fragments, neutral and ionic (Si*, Si + *) but also the excited diatomic fragments (CH*). In particular, the excited neutral atomic fragments Si* are significantly reinforced. The experimental results provide deeper insight into the state-selective dissociation dynamics for the excited fragments of molecules via core-level excitation

  7. Sequential double excitations from linear-response time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Mosquera, Martín A.; Ratner, Mark A.; Schatz, George C., E-mail: g-schatz@northwestern.edu [Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States); Chen, Lin X. [Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States); Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Ave., Lemont, Illinois 60439 (United States)

    2016-05-28

    Traditional UV/vis and X-ray spectroscopies focus mainly on the study of excitations starting exclusively from electronic ground states. However there are many experiments where transitions from excited states, both absorption and emission, are probed. In this work we develop a formalism based on linear-response time-dependent density functional theory to investigate spectroscopic properties of excited states. We apply our model to study the excited-state absorption of a diplatinum(II) complex under X-rays, and transient vis/UV absorption of pyrene and azobenzene.

  8. Search for nuclear excitation by laser-driven electron motion

    International Nuclear Information System (INIS)

    Bounds, J.A.; Dyer, P.

    1992-01-01

    It has been proposed that a nucleus may be excited by first exciting the atom's electrons with UV photons. The incident photons couple to the electrons, which would then couple via a virtual photon to the nucleus. As a test case, experiments with 235 U have been performed. A pulsed infrared laser produces an atomic vapor of 235 U which is then bombarded by a high-brightness UV laser beam. The resulting ions are collected. The first excited nuclear state of 235 U has a 26-min half-life and decays by internal conversion, resulting in emission of an atomic electron. These conversion electrons are detected by a channel electron multiplier. An upper limit of 4.0x10 -5 has been obtained for the probability of exciting the nucleus of a 235 U atom that is in the 248-nm UV beam for 700 fs at an irradiance in the range of 1.0x10 15 to 2.5x10 15 W/cm 2

  9. Red light emitting solid state hybrid quantum dot-near-UV GaN LED devices

    International Nuclear Information System (INIS)

    Song, Hongjoo; Lee, Seonghoon

    2007-01-01

    We produced core-shell (CdSe)ZnSe quantum dots by direct colloidal chemical synthesis and the surface-passivation method-an overcoating of the core CdSe with a larger-bandgap material ZnSe. The (CdSe)ZnSe quantum dots(QDs) play the role of a colour conversion centre. We call these quantum dots nanophosphors. We fabricated red light emitting hybrid devices of (CdSe)ZnSe QDs and a near-UV GaN LED by combining red light emitting (CdSe)ZnSe quantum dots (as a colour conversion centre) with a near-UV(NUV) GaN LED chip (as an excitation source). A few good red phosphors have been known for UV excitation wavelengths, and red phosphors for UV excitation have been sought for a long time. Here we tested the possibility of using (CdSe)ZnSe QDs as red nanophosphors for UV excitation. The fabricated red light emitting hybrid device of (CdSe)ZnSe and a NUV GaN LED chip showed a good luminance. We demonstrated that the (CdSe)ZnSe quantum dots were promising red nanophosphors for NUV excitation and that a red LED made of QDs and a NUV excitation source was a highly efficient hybrid device

  10. UV scale calibration transfer from an improved pyroelectric detector standard to field UV-A meters and 365 nm excitation sources

    Science.gov (United States)

    Eppeldauer, G. P.; Podobedov, V. B.; Cooksey, C. C.

    2017-05-01

    Calibration of the emitted radiation from UV sources peaking at 365 nm, is necessary to perform the ASTM required 1 mW/cm2 minimum irradiance in certain military material (ships, airplanes etc) tests. These UV "black lights" are applied for crack-recognition using fluorescent liquid penetrant inspection. At present, these nondestructive tests are performed using Hg-lamps. Lack of a proper standard and the different spectral responsivities of the available UV meters cause significant measurement errors even if the same UV-365 source is measured. A pyroelectric radiometer standard with spectrally flat (constant) response in the UV-VIS range has been developed to solve the problem. The response curve of this standard determined from spectral reflectance measurement, is converted into spectral irradiance responsivity with UV sources (with different peaks and distributions) without using any source standard. Using this broadband calibration method, yearly spectral calibrations for the reference UV (LED) sources and irradiance meters is not needed. Field UV sources and meters can be calibrated against the pyroelectric radiometer standard for broadband (integrated) irradiance and integrated responsivity. Using the broadband measurement procedure, the UV measurements give uniform results with significantly decreased uncertainties.

  11. Luminescent characteristics of UV excited Sr_0_._5Ca_0_._5TiO_3: Pr"3"+ reddish-orange phosphor

    International Nuclear Information System (INIS)

    Vidyadharan, Viji; Mohan P, Remya; Joseph, Cyriac; Unnikrishnan, N.V.; Biju, P.R.

    2016-01-01

    Pr"3"+ doped Sr_0_._5Ca_0_._5TiO_3 phosphors were synthesised by solid state reaction process. The structure, surface morphology and photoluminescence of the prepared phosphors were analysed using XRD, SEM and photoluminescence spectroscopy respectively. The XRD pattern confirmed orthorhombic perovskite structure of the Sr_0_._5Ca_0_._5TiO_3: x Pr"3"+ phosphor. Agglomeration of particles with irregular shapes is observed from the SEM images. The emission spectra of Sr_0_._5Ca_0_._5TiO_3: x Pr"3"+ phosphor shows the samples can be effectively excited with UV light at 336 nm and exhibit a strong reddish-orange emission at 611 nm. Concentration dependence of emission intensity shows concentration quenching effect on increasing Pr"3"+ concentration after x = 0.1 because of dipole–dipole interaction. Using Blasse's formula, critical distance for energy transfer was calculated. The CIE co-ordinates, CCT, colour purity and luminescence decay of the prepared phosphors were also calculated. These results offer the prepared phosphor as a suitable candidate for various photonic applications. - Highlights: • Sr_0_._5Ca_0_._5TiO_3: x Pr"3"+ perovskite structured phosphors were synthesized. • Under UV excitation, the PL spectra show strong reddish-orange emission. • The emission from "3P_J levels of Pr"3"+ were absent due to the presence of IVCT band. • Concentration quenching due to dipole–dipole interaction was observed. • For x = 0.1, sample shows a maximum emission intensity with 91.7% colour purity.

  12. Uv Laser Excitation for Ultra-Sensitive Photoluminescent Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kastner, J.; Eggenberger, D.; Longnecker, A. [Argonne National Laboratory, Argonne, IL (United States); King, D.; Schutt, D. [Radiation Laboratory, University of Notre Dame, South Bend, IN (United States)

    1967-03-15

    The factor which has limited the sensitivity of photoluminescent dosimetry has been the ''pre-dose'' background which is stimulated during readout by the usual continuous ultra-violet (UV) exposure. The signal-to-noise ratio has only been partially optimized by the selective choice of filters and optical geometry. A microdosimetric system has been conceived and investigated which is potentially capable of sensing extremely low radiation doses (of the order of microrads). This system depends on the little-known fact that the decay time for the visible luminescence, which is a measure of the absorbed dose, is at least ten times longer than the decay of the indistinguishable visible fluorescence (to UV) which is an inherent characteristic of unexposed silver phosphate glasses. The system consists of UV, 3500A, laser beam, with a Pockels cell so that it has complete cut-off in intensity in the order of nanoseconds, and gating circuitry to open the visible light-sensing photomultiplier at a sufficient time delay to prevent it from sensing the ultra-violet or the pre-dose fluorescence which decays within the order of 100 nanoseconds. In this way the signal-to-noise ratio can be vastly improved upon that obtainable by optical means. With this system the authors were easily able to measure quantitatively one milliroentgen of cobalt-60 exposure. They are of the opinion that further improvement in this system should enable them to do track visualization and/or in vivo biological microdosimetry with a spatial resolution of the order of ten microns. (author)

  13. Dual fluorescence excitation spectra of methyl salicylate in a free jet

    Science.gov (United States)

    Heimbrook, Lou Ann; Kenny, Jonathan E.; Kohler, Bryan E.; Scott, Gary W.

    1981-11-01

    Separate fluorescence excitation spectra of the blue- and UV-emitting forms of methyl salicylate cooled in a free-jet expansion are reported. This study represents the first observation of the detailed vibrational structure of these transitions. The two excitation spectra have no features in common, and their intensity patterns are very different. Many individual lines are ˜2 cm-1 wide (nearly laser limited), although in the excitation spectrum of the UV emission, spectral congestion persists at high energies despite the high degree of cooling. (AIP)

  14. UV-light exposure of insulin: pharmaceutical implications upon covalent insulin dityrosine dimerization and disulphide bond photolysis.

    Science.gov (United States)

    Correia, Manuel; Neves-Petersen, Maria Teresa; Jeppesen, Per Bendix; Gregersen, Søren; Petersen, Steffen B

    2012-01-01

    In this work we report the effects of continuous UV-light (276 nm, ~2.20 W.m(-2)) excitation of human insulin on its absorption and fluorescence properties, structure and functionality. Continuous UV-excitation of the peptide hormone in solution leads to the progressive formation of tyrosine photo-product dityrosine, formed upon tyrosine radical cross-linkage. Absorbance, fluorescence emission and excitation data confirm dityrosine formation, leading to covalent insulin dimerization. Furthermore, UV-excitation of insulin induces disulphide bridge breakage. Near- and far-UV-CD spectroscopy shows that UV-excitation of insulin induces secondary and tertiary structure losses. In native insulin, the A and B chains are held together by two disulphide bridges. Disruption of either of these bonds is likely to affect insulin's structure. The UV-light induced structural changes impair its antibody binding capability and in vitro hormonal function. After 1.5 and 3.5 h of 276 nm excitation there is a 33.7% and 62.1% decrease in concentration of insulin recognized by guinea pig anti-insulin antibodies, respectively. Glucose uptake by human skeletal muscle cells decreases 61.7% when the cells are incubated with pre UV-illuminated insulin during 1.5 h. The observations presented in this work highlight the importance of protecting insulin and other drugs from UV-light exposure, which is of outmost relevance to the pharmaceutical industry. Several drug formulations containing insulin in hexameric, dimeric and monomeric forms can be exposed to natural and artificial UV-light during their production, packaging, storage or administration phases. We can estimate that direct long-term exposure of insulin to sunlight and common light sources for indoors lighting and UV-sterilization in industries can be sufficient to induce irreversible changes to human insulin structure. Routine fluorescence and absorption measurements in laboratory experiments may also induce changes in protein

  15. UV-light exposure of insulin: pharmaceutical implications upon covalent insulin dityrosine dimerization and disulphide bond photolysis.

    Directory of Open Access Journals (Sweden)

    Manuel Correia

    Full Text Available In this work we report the effects of continuous UV-light (276 nm, ~2.20 W.m(-2 excitation of human insulin on its absorption and fluorescence properties, structure and functionality. Continuous UV-excitation of the peptide hormone in solution leads to the progressive formation of tyrosine photo-product dityrosine, formed upon tyrosine radical cross-linkage. Absorbance, fluorescence emission and excitation data confirm dityrosine formation, leading to covalent insulin dimerization. Furthermore, UV-excitation of insulin induces disulphide bridge breakage. Near- and far-UV-CD spectroscopy shows that UV-excitation of insulin induces secondary and tertiary structure losses. In native insulin, the A and B chains are held together by two disulphide bridges. Disruption of either of these bonds is likely to affect insulin's structure. The UV-light induced structural changes impair its antibody binding capability and in vitro hormonal function. After 1.5 and 3.5 h of 276 nm excitation there is a 33.7% and 62.1% decrease in concentration of insulin recognized by guinea pig anti-insulin antibodies, respectively. Glucose uptake by human skeletal muscle cells decreases 61.7% when the cells are incubated with pre UV-illuminated insulin during 1.5 h. The observations presented in this work highlight the importance of protecting insulin and other drugs from UV-light exposure, which is of outmost relevance to the pharmaceutical industry. Several drug formulations containing insulin in hexameric, dimeric and monomeric forms can be exposed to natural and artificial UV-light during their production, packaging, storage or administration phases. We can estimate that direct long-term exposure of insulin to sunlight and common light sources for indoors lighting and UV-sterilization in industries can be sufficient to induce irreversible changes to human insulin structure. Routine fluorescence and absorption measurements in laboratory experiments may also induce changes

  16. Electrophoresis microchip with integrated waveguides for simultaneous native UV fluorescence and absorbance detection

    DEFF Research Database (Denmark)

    Ohlsson, Pelle Daniel; Sala, Olga Ordeig; Mogensen, Klaus Bo

    2009-01-01

    Simultaneous label-free detection of UV absorbance and native UV-excited fluorescence in an electrophoresis microchip is presented. UV transparent integrated waveguides launch light at a wavelength of 254 nm from a mercury lamp along the length of a 1-mm. long detection cell. Transmitted UV light...

  17. UV emission properties of thulium-doped fluorozirconate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Piramidowicz, R., E-mail: r.piramidowicz@elka.pw.edu.p [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Telekomunikacja Polska Research and Development Centre, Obrzezna 7, 02-691 Warsaw (Poland); Bok, A.; Klimczak, M.; Malinowski, M. [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland)

    2009-12-15

    In this work, we present our latest results on UV emission in bulk ZBLAN glasses doped with thulium ions, broadening knowledge of the short-wavelength optical properties of this system. We examined a set of samples with different activator concentrations (2500, 10,000, 25,000 and 50,000 ppm) in respect of absorption and short-wavelength emission properties. The concentration-dependant spectra of UV emission from the {sup 1}I{sub 6}+{sup 3}P{sub 0} and {sup 1}D{sub 2} levels and fluorescence dynamics profiles have been recorded and carefully examined under direct (one-photon) excitation, enabling discussion of fluorescence quenching mechanisms and determination of appropriate cross-relaxation rates. According to authors' best knowledge, the three-photon red-to-UV up-conversion has been reported for the first time under excitation of a laser diode.

  18. KCa4(BO33:Ln3+ (Ln = Dy, Eu, Tb phosphors for near UV excited white–light–emitting diodes

    Directory of Open Access Journals (Sweden)

    Allu Amarnath Reddy

    2013-02-01

    Full Text Available A series of doped KCa4(BO33:Ln3+ (Ln: Dy, Eu and Tb compositions were synthesized by solid–state reaction method and their photoluminescent properties were systematically investigated to ascertain their suitability for application in white light emitting diodes. The X–ray diffraction (XRD and nuclear magnetic resonance (MAS–NMR data indicates that Ln3+–ions are successfully occupied the non–centrosymmetric Ca2+ sites, in the orthorhombic crystalline phase of KCa4(BO33 having space group Ama2, without affecting the boron chemical environment. The present phosphor systems could be efficiently excitable at the broad UV wavelength region, from 250 to 350 nm, compatible to the most commonly available UV light–emitting diode (LED chips. Photoluminescence studies revealed optimal near white–light emission for KCa4(BO33 with 5 wt.% Dy3+ doping, while warm white–light (CIE; X = 0.353, Y = 0.369 is obtained at 1wt.% Dy3+ ion concentration. The principle of energy transfer between Eu3+ and Tb3+ also demonstrates the potential white–light from KCa4(BO33:Eu3+,Tb3+ phosphor. Whereas, single Tb3+ and Eu3+–doped systems showed bright green (Tb3+ and red (Eu3+ emissions, respectively. Having structural flexibility along with remarkable chemical/thermal stability and suitable quantum efficiency these phosphors can be promising candidates as white–light–emitter for near UV LEDs.

  19. Excited-State Dynamics of Melamine and Its Lysine Derivative Investigated by Femtosecond Transient Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yuyuan Zhang

    2016-11-01

    Full Text Available Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase and its lysine derivative (a proto-nucleoside using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps, but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state.

  20. Predicting Keto-Enol Equilibrium from Combining UV/Visible Absorption Spectroscopy with Quantum Chemical Calculations of Vibronic Structures for Many Excited States. A Case Study on Salicylideneanilines.

    Science.gov (United States)

    Zutterman, Freddy; Louant, Orian; Mercier, Gabriel; Leyssens, Tom; Champagne, Benoît

    2018-06-21

    Salicylideneanilines are characterized by a tautomer equilibrium, between an enol and a keto form of different colors, at the origin of their remarkable thermochromic, solvatochromic, and photochromic properties. The enol form is usually the most stable but appropriate choice of substituents and conditions (solvent, crystal, host compound) can displace the equilibrium toward the keto form so that there is a need for fast prediction of the keto:enol abundance ratio. Here we demonstrate the reliability of a combined theoretical-experimental method, based on comparing simulated and measured UV/visible absorption spectra, to determine this keto/enol ratio. The calculations of the excitation energies, oscillator strengths, and vibronic structures of both enol and keto forms are performed for all excited states absorbing in the relevant (visible and near-UV) wavelength range at the time-dependent density functional theory level by accounting for solvent effects using the polarizable continuum model. This approach is illustrated for two salicylideneaniline derivatives, which are present, in solution, under the form of keto-enol mixtures. The results are compared to those of chemometric analysis as well as ab initio predictions of the reaction free enthalpies.

  1. Is the photoactive yellow protein a UV-B/blue light photoreceptor?

    NARCIS (Netherlands)

    Carroll, E. C.; Hospes, M.; Valladares, C.; Hellingwerf, K.J.; Larsen, D.S.

    2011-01-01

    UV light below 300 nm is shown to generate the first photocycle intermediate in the blue light photoreceptor Photoactive Yellow Protein. Fluorescence and ultrafast transient absorption measurements indicate two excitation pathways: UV-B absorption by the chromophore and Fluorescence Resonant Energy

  2. On the strong and selective isotope effect in the UV excitation of N2 with implications toward the nebula and Martian atmosphere.

    Science.gov (United States)

    Muskatel, B H; Remacle, F; Thiemens, Mark H; Levine, R D

    2011-04-12

    Isotopic effects associated with molecular absorption are discussed with reference to natural phenomena including early solar system processes, Titan and terrestrial atmospheric chemistry, and Martian atmospheric evolution. Quantification of the physicochemical aspects of the excitation and dissociation processes may lead to enhanced understanding of these environments. Here we examine a physical basis for an additional isotope effect during photolysis of molecular nitrogen due to the coupling of valence and Rydberg excited states. The origin of this isotope effect is shown to be the coupling of diabatic electronic states of different bonding nature that occurs after the excitation of these states. This coupling is characteristic of energy regimes where two or more excited states are nearly crossing or osculating. A signature of the resultant isotope effect is a window of rapid variation in the otherwise smooth distribution of oscillator strengths vs. frequency. The reference for the discussion is the numerical solution of the time dependent Schrödinger equation for both the electronic and nuclear modes with the light field included as part of the Hamiltonian. Pumping is to all extreme UV dipole-allowed, valence and Rydberg, excited states of N(2). The computed absorption spectra are convoluted with the solar spectrum to demonstrate the importance of including this isotope effect in planetary, interstellar molecular cloud, and nebular photochemical models. It is suggested that accidental resonance with strong discrete lines in the solar spectrum such as the CIII line at 97.703 nm can also have a marked effect.

  3. SrAl2O4:Eu2+ (1%) luminescence under UV, VUV and electron beam excitation

    Science.gov (United States)

    Nazarov, M.; Mammadova, S.; Spassky, D.; Vielhauer, S.; Abdullayeva, S.; Huseynov, A.; Jabbarov, R.

    2018-01-01

    This paper reports the luminescence properties of nanosized SrAl2O4:Eu2+ (1%) phosphors. The samples were prepared by combustion method at 600 °C, followed by annealing of the resultant combustion ash at 1000 °C in a reductive (Ar + H2) atmosphere. X-ray diffraction (XRD), photo luminescence (PL) and cathodoluminescence (CL) analysis and thermal stimulated luminescence (TSL) method were applied to characterize the phosphor. For the first time a peak at 375 nm was observed in CL spectra of SrAl2O4:Eu2+ (1%) nanophosphors. Luminescence excitation spectra analysis have shown that this peak is related to crystal defects. Also in TSL curve one strong peak was observed in the region above room temperature (T = 325 K), which is attributed to lattice defects, namely oxygen vacancies. A green LED was fabricated by the combination of the SrAl2O4:Eu2+ (1%) nanosized phosphor and a 365 nm UV InGaN chip.

  4. Luminescence and energy transfer of Tm3+ or/and Dy3+ co-doped in Sr3Y(PO4)3 phosphors with UV excitation for WLEDs

    International Nuclear Information System (INIS)

    Wang, Jiyou; Wang, Jianbo; Duan, Ping

    2014-01-01

    Powder samples Sr 3 Y 1−x−y (PO 4 ) 3 :xTm 3+ -yDy 3+ were synthesized by the conventional solid-state reaction method. By appropriate tuning of activator content, the emission color can be adjusted around blue to white and yellow. It was discovered that the energy transfer from Tm 3+ to Dy 3+ was demonstrated to be via the intensity of Dy 3+ emission increase with the increase of Tm 3+ concentration. By changing the doping concentration of Tm 3+ and Dy 3+ in Sr 3 Y(PO 4 ) 3 , white-emitting phosphors are produced by 350 nm excitation wavelength, their corresponding color coordinates are very close to the white color chromaticity coordinates (x=0.33, y=0.33). Finally, Sr 3 Y 1−x−y (PO 4 ) 3 :xTm 3+ −yDy 3+ phosphors could be a good promising single-component white light-emitting UV-convertible phosphor in the field of white LEDs. -- Highlights: • The Sr 3 Y 1−x−y (PO 4 ) 3 :xTm 3+ −yDy 3+ phosphors were synthesized by the conventional solid-state reaction method. • The energy transfer in between Tm 3+ and Dy 3+ was observed and explained. • The phosphors can be efficiently excited by a UV light. • The Sr 3 Y 1−x−y (PO 4 ) 3 :xTm 3+ -yDy 3+ phosphor could be a better candidate white phosphor for UV W-LEDs

  5. Superluminal travel, UV/IR mixing, and turbulence in a (1+1)-dimensional world

    International Nuclear Information System (INIS)

    Dubovsky, Sergei; Gorbenko, Victor

    2011-01-01

    We study renormalizable Lorentz invariant stable quantum field theories in two space-time dimensions with instantaneous causal structure (causal ordering induced by the light 'cone' time ordering). These models provide a candidate UV completion of the two-dimensional ghost condensate. They exhibit a peculiar UV/IR mixing - energies of all excitations become arbitrarily small at high spatial momenta. We discuss several phenomena associated with this mixing. These include the impossibility to reach a thermal equilibrium and metastability of all excitations towards decay into short-wavelength modes resulting in an indefinite turbulent cascade. In spite of the UV/IR mixing in many cases the UV physics can still be decoupled from low-energy phenomena. However, a patient observer in the Lineland is able to produce arbitrarily heavy particles simply by waiting for a long enough time.

  6. Resonance Enhanced Multi-Photon Ionization and Uv-Uv Hole-Burning Spectroscopic Studies of Jet-Cooled Acetanilide Derivatives

    Science.gov (United States)

    Moon, Ceol Joo; Min, Ahreum; Ahn, Ahreum; Lee, Seung Jun; Choi, Myong Yong; Kim, Seong Keun

    2013-06-01

    Conformational investigations and photochemistry of jet-cooled methacetine (MA) and phenacetine (PA) using one color resonant two-photon ionization (REMPI), UV-UV hole-burning and IR-dip spectroscopy are presented. MA and PA are derivatives of acetanilide, substituted by methoxyl, ethoxyl group in the para position of acetanilide, respectively. Moreover, we have investigated conformational information of the acetanilide derivatives (AAP, MA and PA)-water. In this work, we will present and discuss the solvent effects of the hydroxyl group of acetanilide derivatives in the excited state.

  7. Effect of UV on building materials in New Zealand

    International Nuclear Information System (INIS)

    Bennett, A.F.

    1993-01-01

    Building materials can be divided into two main classes; organic or polymeric based and inorganic materials. Inorganic materials are in most cases largely unaffected by UV radiation. Many common polymers have bonds sensitive to radiation in the UV region. Absorption of radiation of these wavelengths will lead to excitation of electrons which can lead to isomerisation, chain scissors, cross linking and free radical formation. It is worth noting that the effects of UV radiation are always acting synergistically with other environmental effects. (author). 4 refs., 2 tabs

  8. Formation of the UV Spectrum of Molecular Hydrogen in the Sun

    Science.gov (United States)

    Jaeggli, S. A.; Judge, P. G.; Daw, A. N.

    2018-03-01

    Ultraviolet (UV) lines of molecular hydrogen have been observed in solar spectra for almost four decades, but the behavior of the molecular spectrum and its implications for solar atmospheric structure are not fully understood. Data from the High-Resolution Telescope Spectrometer (HRTS) instrument revealed that H2 emission forms in particular regions, selectively excited by a bright UV transition region and chromospheric lines. We test the conditions under which H2 emission can originate by studying non-LTE models, sampling a broad range of temperature stratifications and radiation conditions. Stratification plays the dominant role in determining the population densities of H2, which forms in greatest abundance near the continuum photosphere. However, opacity due to the photoionization of Si and other neutrals determines the depth to which UV radiation can penetrate to excite the H2. Thus the majority of H2 emission forms in a narrow region, at about 650 km in standard one-dimensional (1D) models of the quiet Sun, near the τ = 1 opacity surface for the exciting UV radiation, generally coming from above. When irradiated from above using observed intensities of bright UV emission lines, detailed non-LTE calculations show that the spectrum of H2 seen in the quiet-Sun Solar Ultraviolet Measurement of Emitted Radiation atlas spectrum and HRTS light-bridge spectrum can be satisfactorily reproduced in 1D stratified atmospheres, without including three-dimensional or time-dependent thermal structures. A detailed comparison to observations from 1205 to 1550 Å is presented, and the success of this 1D approach to modeling solar UV H2 emission is illustrated by the identification of previously unidentified lines and upper levels in HRTS spectra.

  9. Surface plasmon-enhanced two-photon excited whispering-gallery modes ultraviolet laser from Zno microwire

    Directory of Open Access Journals (Sweden)

    Yunpeng Wang

    2017-11-01

    Full Text Available The two-photon excited UV laser with narrow line width and high Q value was obtained. The total internal reflection from the four side surfaces of the quadrilateral-ZnO microwire offered the whispering gallery mode (WGM resonant cavity. The UV emission, resonant mechanism, and laser mode characteristics were discussed in detail for this special type of micro-cavity. In addition, in order to enhance the power of the two-photon excited UV laser, the surface plasmon enhancement by the Au nanoparticles was also performed and explained well by the theory of the localized surface plasmon.

  10. Capillary electrophoresis hyphenated with UV-native-laser induced fluorescence detection (CE/UV-native-LIF).

    Science.gov (United States)

    Couderc, François; Ong-Meang, Varravaddheay; Poinsot, Véréna

    2017-01-01

    Native laser-induced fluorescence using UV lasers associated to CE offers now a large related literature, for now 30 years. The main works have been performed using very expensive Ar-ion lasers emitting at 257 and 275 nm. They are not affordable for routine analyses, but have numerous applications such as protein, catecholamine, and indolamine analysis. Some other lasers such as HeCd 325 nm have been used but only for few applications. Diode lasers, emitting at 266 nm, cheaper, are extensively used for the same topics, even if the obtained sensitivity is lower than the one observed using the costly UV-Ar-ion lasers. This review presents various CE or microchips applications and different UV lasers used for the excitation of native fluorescence. We showed that CE/Native UV laser induced fluorescence detection is very sensitive for detection as well as small aromatic biomolecules than proteins containing Trp and Tyr amino acids. Moreover, it is a simple way to analyze biomolecules without derivatization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. a near ambient pressure UV photoelectron spectroscopy

    Indian Academy of Sciences (India)

    Manoj Kumar Ghosalya

    2018-03-02

    Mar 2, 2018 ... UV photoelectron spectroscopy (NAP-UPS) investigations. MANOJ KUMAR ... gations led to various models of Ag-O2 interaction to explain its role in the .... charge lamp (for He I and He II excitations) are available as photon ...

  12. Photocatalytic antibacterial effects on TiO2-anatase upon UV-A and UV-A/VIS threshold irradiation.

    Science.gov (United States)

    Wu, Yanyun; Geis-Gerstorfer, Jürgen; Scheideler, Lutz; Rupp, Frank

    2016-01-01

    Photocatalysis mediated by the anatase modification of titanium dioxide (TiO2) has shown antibacterial effects in medical applications. The aim of this study was to investigate the possibility of expanding the excitation wavelengths for photocatalytic antibacterial effects from ultraviolet (UV) into the visible light range. After deposition of salivary pellicle and adhesion of Streptococcus gordonii on anatase, different irradiation protocols were applied to induce photocatalysis: ultraviolet A (UV-A) > 320 nm; ultraviolet/visible (UV-A/VIS) light > 380 nm and > 390 nm; and VIS light 400-410 nm. A quartz crystal microbalance with dissipation (QCM-D) tests and microscopic examination were used to observe the photoinduced antibacterial effects. Salivary pellicle could be photocatalytically decomposed under all irradiation protocols. In contrast, effective photocatalytic attack of bacteria could be observed by UV-A as well as by UV-A/VIS at 380 nm < λ < 390 nm only. Wavelengths above 380 nm show promise for in situ therapeutic antifouling applications.

  13. A near-UV-converted LiMgBO3:Dy3+ nanophosphor: Surface and spectral investigations

    International Nuclear Information System (INIS)

    Bedyal, A.K.; Kumar, Vinay; Prakash, Ram; Ntwaeaborwa, O.M.; Swart, H.C.

    2015-01-01

    Graphical abstract: - Highlights: • Combustion method was employed to synthesize LiMgBO 3 :Dy 3+ nanophosphors. • The phosphor can be efficiently excited by near-UV chips. • XPS was done to investigate the chemical constitution and chemical bonding state of elements in the LiMgBO 3 : Dy 3+ nanophosphor. • The calculated CIE coordinates (0.45, 0.46) were found to be in the white spectrum region. - Abstract: A near-ultra violet (UV) converted LiMgBO 3 :Dy 3+ nanophosphors have been synthesized by the combustion method. The structural, spectral and optical properties were examined by powder X-ray diffraction, fluorescent spectrophotometry and UV–vis spectroscopy. The excitation spectra of the phosphors contain sharp peaks at 294, 323, 348 and 385 nm due to the 4f–4f transition of the Dy 3+ ion. The phosphor is efficiently excited by near-UV chips. Upon near-UV excitation the phosphor emits intense blue and yellow with a weak red band centered at 484, 573 and 669 nm respectively, ascribed to the transition of Dy 3+ ion from 4 F 9/2 → 6 H 15/2 , 6 H 13/2 , 6 H 11/2 . The diffuse reflectance spectra of the phosphors were consistent with the excitation spectra and were used to calculate the band gap of the material, approximated to be 5.4 eV. The calculated CIE coordinates (0.45, 0.46) under 348 nm excitation were found to be in the white spectrum region. For surface investigation, X-ray photoelectron spectroscopy was used which confirms the presence of all the elements on the surface of the material

  14. Single photon infrared emission spectroscopy: a study of IR emission from UV laser excited PAHs between 3 and 15 micrometers

    Science.gov (United States)

    Cook, D. J.; Schlemmer, S.; Balucani, N.; Wagner, D. R.; Harrison, J. A.; Steiner, B.; Saykally, R. J.

    1998-01-01

    Single-photon infrared emission spectroscopy (SPIRES) has been used to measure emission spectra from polycyclic aromatic hydrocarbons (PAHs). A supersonic free-jet expansion has been used to provide emission spectra of rotationally cold and vibrationally excited naphthalene and benzene. Under these conditions, the observed width of the 3.3-micrometers (C-H stretch) band resembles the bandwidths observed in experiments in which emission is observed from naphthalene with higher rotational energy. To obtain complete coverage of IR wavelengths relevant to the unidentified infrared bands (UIRs), UV laser-induced desorption was used to generate gas-phase highly excited PAHs. Lorentzian band shapes were convoluted with the monochromator-slit function in order to determine the widths of PAH emission bands under astrophysically relevant conditions. Bandwidths were also extracted from bands consisting of multiple normal modes blended together. These parameters are grouped according to the functional groups mostly involved in the vibration, and mean bandwidths are obtained. These bandwidths are larger than the widths of the corresponding UIR bands. However, when the comparison is limited to the largest PAHs studied, the bandwidths are slightly smaller than the corresponding UIR bands. These parameters can be used to model emission spectra from PAH cations and cations of larger PAHs, which are better candidate carriers of the UIRs.

  15. Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2′-bipyridine)2(CN)2

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Zhang, Wenkai; Alonso-Mori, Roberto

    2017-01-01

    We have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy)2(CN)2], where bpy=2,2′-bipyridine, initiated by metal-to-ligand charge transfer (MLCT) excitation. The excited-state absorption in the transient UV-visible...

  16. Diamond-like-carbon nanoparticle production and agglomeration following UV multi-photon excitation of static naphthalene/helium gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, A. J.; Ruth, A. A., E-mail: a.ruth@ucc.ie [Physics Department and Environmental Research Institute, University College Cork, Cork (Ireland); Tielens, A. G. G. M. [Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333-CA Leiden (Netherlands)

    2016-07-14

    We report the formation of nanoparticles with significant diamond character after UV multi-photon laser excitation of gaseous naphthalene, buffered in static helium gas, at room temperature. The nanoparticles are identified in situ by their absorption and scattering spectra between 400 and 850 nm, which are modeled using Mie theory. Comparisons of the particles’ spectroscopic and optical properties with those of carbonaceous materials indicate a sp{sup 3}/sp{sup 2} hybridization ratio of 8:1 of the particles formed. The particle extinction in the closed static (unstirred) gas-phase system exhibits a complex and quasi-oscillatory time dependence for the duration of up to several hours with periods ranging from seconds to many minutes. The extinction dynamics of the system is based on a combination of transport features and particle interaction, predominantly agglomeration. The relatively long period of agglomeration allows for a unique analysis of the agglomeration process of diamond-like carbon nanoparticles in situ.

  17. Photophysical properties of hexyl diethylaminohydroxybenzoylbenzoate (Uvinul A Plus), a UV-A absorber.

    Science.gov (United States)

    Shamoto, Yuta; Yagi, Mikio; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Kikuchi, Azusa

    2017-09-13

    Hexyl diethylaminohydroxybenzoylbenzoate (DHHB, Uvinul A Plus) is a photostable UV-A absorber. The photophysical properties of DHHB have been studied by obtaining the transient absorption, total emission, phosphorescence and electron paramagnetic resonance spectra. DHHB exhibits an intense phosphorescence in a hydrogen-bonding solvent (e.g., ethanol) at 77 K, whereas it is weakly phosphorescent in a non-hydrogen-bonding solvent (e.g., 3-methylpentane). The triplet-triplet absorption and EPR spectra for the lowest excited triplet state of DHHB were observed in ethanol, while they were not observed in 3-methylpentane. These results are explained by the proposal that in the benzophenone derivatives possessing an intramolecular hydrogen bond, intramolecular proton transfer is an efficient mechanism of the very fast radiationless decay from the excited singlet state. The energy level of the lowest excited triplet state of DHHB is higher than those of the most widely used UV-B absorbers, octyl methoxycinnamate (OMC) and octocrylene (OCR). DHHB may act as a triplet energy donor for OMC and OCR in the mixtures of UV-A and UV-B absorbers. The bimolecular rate constant for the quenching of singlet oxygen by DHHB was determined by measuring the near-IR phosphorescence of singlet oxygen. The photophysical properties of diethylaminohydroxybenzoylbenzoic acid (DHBA) have been studied for comparison. It is a closely related building block to assist in interpreting the observed data.

  18. Watson-Crick base pairing controls excited-state decay in natural DNA.

    Science.gov (United States)

    Bucher, Dominik B; Schlueter, Alexander; Carell, Thomas; Zinth, Wolfgang

    2014-10-13

    Excited-state dynamics are essential to understanding the formation of DNA lesions induced by UV light. By using femtosecond IR spectroscopy, it was possible to determine the lifetimes of the excited states of all four bases in the double-stranded environment of natural DNA. After UV excitation of the DNA duplex, we detected a concerted decay of base pairs connected by Watson-Crick hydrogen bonds. A comparison of single- and double-stranded DNA showed that the reactive charge-transfer states formed in the single strands are suppressed by base pairing in the duplex. The strong influence of the Watson-Crick hydrogen bonds indicates that proton transfer opens an efficient decay path in the duplex that prohibits the formation or reduces the lifetime of reactive charge-transfer states. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Time gated fluorescence lifetime imaging and micro-volume spectroscopy using two-photon excitation

    NARCIS (Netherlands)

    Sytsma, J.; Vroom, J.M.; de Grauw, C.J.; Gerritsen, H.C.

    A scanning microscope utilizing two-photon excitation in combination with fluorescence lifetime contrast is presented. The microscope makes use of a tunable femtosecond titanium:sapphire laser enabling the two-photon excitation of a broad range of fluorescent molecules, including UV probes.

  20. Development of UV-curable liquid for in-liquid fluorescence alignment in ultraviolet nanoimprint lithography

    Science.gov (United States)

    Ochiai, Kento; Kikuchi, Eri; Ishito, Yota; Kumagai, Mari; Nakamura, Takahiro; Nakagawa, Masaru

    2018-06-01

    We studied a fluorescent UV-curable resin suitable for fluorescence alignment in UV nanoimprinting. The addition of a cationic fluorescent dye caused radical photopolymerization of a UV-curable resin by exposure to visible excitation light for fluorescence microscope observation. The microscope observation of a resin film prepared by pressing resin droplets on a silica substrate with a fluorinated silica superstrate revealed that the cationic dye molecules were preferably adsorbed onto the silica surface. It was indicated that the dye molecules concentrated on the silica surface may cause the photocuring. A nonionic fluorescent dye was selected owing to its low polar symmetrical structure and its solubility parameter close to monomers. The fluorescent UV-curable resin with the nonionic dye showed uncured stability to exposure to visible excitation light for 30 min with a light intensity of 8.5 mW cm‑2 detected at 530 nm.

  1. Optimal initiation of electronic excited state mediated intramolecular H-transfer in malonaldehyde by UV-laser pulses

    Science.gov (United States)

    Nandipati, K. R.; Singh, H.; Nagaprasad Reddy, S.; Kumar, K. A.; Mahapatra, S.

    2014-12-01

    Optimally controlled initiation of intramolecular H-transfer in malonaldehyde is accomplished by designing a sequence of ultrashort (~80 fs) down-chirped pump-dump ultra violet (UV)-laser pulses through an optically bright electronic excited [ S 2 ( π π ∗)] state as a mediator. The sequence of such laser pulses is theoretically synthesized within the framework of optimal control theory (OCT) and employing the well-known pump-dump scheme of Tannor and Rice [D.J. Tannor, S.A. Rice, J. Chem. Phys. 83, 5013 (1985)]. In the OCT, the control task is framed as the maximization of cost functional defined in terms of an objective function along with the constraints on the field intensity and system dynamics. The latter is monitored by solving the time-dependent Schrödinger equation. The initial guess, laser driven dynamics and the optimized pulse structure (i.e., the spectral content and temporal profile) followed by associated mechanism involved in fulfilling the control task are examined in detail and discussed. A comparative account of the dynamical outcomes within the Condon approximation for the transition dipole moment versus its more realistic value calculated ab initio is also presented.

  2. Reaction analysis of initial oxidation of silicon by UV-light-excited ozone and the application to rapid and uniform SiO2 film growth

    International Nuclear Information System (INIS)

    Tosaka, Aki; Nonaka, Hidehiko; Ichimura, Shingo; Nishiguchi, Tetsuya

    2007-01-01

    UV-light-excited O 3 prepared by irradiation of nearly 100% pure O 3 with a KrF excimer laser (λ=248 nm, irradiated area=30x10 mm 2 ) was utilized for low-temperature Si oxidation. The initial oxidation rate was determined, and the activation energy was shown to be almost zero (0.049 eV). To clarify the optimum oxidation conditions, the dependence of the SiO 2 film growth rate on the total photon number and the photon density was investigated. The evolution of O 3 density after UV-light irradiation was experimentally measured, and the O( 1 D) density change is discussed. O( 1 D) density changes are successfully explained by using a second-order reaction model, indicating that a pulse supply of oxygen atoms is essential in the initial oxidation process. The uniform oxidation of 8 in. Si wafer has been carried out using a wafer-transfer type chamber by irradiating the wafer with KrF excimer laser light expanded linearly to the wafer width by a concave lens

  3. Controlling light oxidation flavor in milk by blocking riboflavin excitation wavelengths by interference.

    Science.gov (United States)

    Webster, J B; Duncan, S E; Marcy, J E; O'Keefe, S F

    2009-01-01

    Milk packaged in glass bottles overwrapped with iridescent films (treatments blocked either a single visible riboflavin [Rb] excitation wavelength or all visible Rb excitation wavelengths; all treatments blocked UV Rb excitation wavelengths) was exposed to fluorescent lighting at 4 degrees C for up to 21 d and evaluated for light-oxidized flavor. Controls consisted of bottles with no overwrap (light-exposed treatment; represents the light barrier properties of the glass packaging) and bottles overwrapped with aluminum foil (light-protected treatment). A balanced incomplete block multi-sample difference test, using a ranking system and a trained panel, was used for evaluation of light oxidation flavor intensity. Volatiles were evaluated by gas chromatography and Rb degradation was evaluated by fluorescence spectroscopy. Packaging overwraps limited production of light oxidation flavor over time but not to the same degree as the complete light block. Blocking all visible and UV Rb excitation wavelengths reduced light oxidation flavor better than blocking only a single visible excitation wavelength plus all UV excitation wavelengths. Rb degraded over time in all treatments except the light-protected control treatment and only minor differences in the amount of degradation among treatments was observed. Hexanal production was significantly higher in the light-exposed control treatment compared to the light-protected control treatment from day 7; it was only sporadically significantly higher in the 570 nm and 400 nm block treatments. Pentanal, heptanal, and an unidentified volatile compound also increased in concentration over time, but there were no significant differences in concentration among the packaging overwrap treatments for these compounds.

  4. Estimation of the contribution of ionization and excitation to the lethal effect of ionizing radiation

    International Nuclear Information System (INIS)

    Petin, V.G.; Komarov, V.P.

    1982-01-01

    A simple theoretical model is proposed for estimating the differential contribution of ionization and excitation to the lethal effect of ionizing radiation. Numerical results were obtained on the basis of published experimental data on the ability of bacterial cells Escherichia coli to undergo photoreactivation of radiation-induced damage. It was shown that inactivation by excitation may be highly significant for UV-hypersensitive cells capable of photoreactivation; inactivation by excitation increased with the energy of ionizing radiation and the volume of irradiated suspensions. The data are in qualitative agreement with the assumption of a possible contribution of the UV-component of Cerenkov radiation to the formation of excitations responsible for the lethal effect and the phenomenon of photoreactivation after ionizing radiation. Some predictions from the model are discussed. (orig.)

  5. Study of noninvasive detection of latent fingerprints using UV laser

    Science.gov (United States)

    Li, Hong-xia; Cao, Jing; Niu, Jie-qing; Huang, Yun-gang; Mao, Lin-jie; Chen, Jing-rong

    2011-06-01

    Latent fingerprints present a considerable challenge in forensics, and noninvasive procedure that captures a digital image of the latent fingerprints is significant in the field of criminal investigation. The capability of photography technologies using 266nm UV Nd:YAG solid state laser as excitation light source to provide detailed images of unprocessed latent fingerprints is demonstrated. Unprocessed latent fingerprints were developed on various non-absorbent and absorbing substrates. According to the special absorption, reflection, scattering and fluorescence characterization of the various residues in fingerprints (fatty acid ester, protein, and carbosylic acid salts etc) to the UV light to weaken or eliminate the background disturbance and increase the brightness contrast of fingerprints with the background, and using 266nm UV laser as excitation light source, fresh and old latent fingerprints on the surface of four types of non-absorbent objects as magazine cover, glass, back of cellphone, wood desktop paintwork and two types of absorbing objects as manila envelope, notebook paper were noninvasive detected and appeared through reflection photography and fluorescence photography technologies, and the results meet the fingerprint identification requirements in forensic science.

  6. Luminescent characteristics of UV excited Sr{sub 0.5}Ca{sub 0.5}TiO{sub 3}: Pr{sup 3+} reddish-orange phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Vidyadharan, Viji; Mohan P, Remya; Joseph, Cyriac; Unnikrishnan, N.V.; Biju, P.R., E-mail: prb.mgu@gmail.com

    2016-02-15

    Pr{sup 3+} doped Sr{sub 0.5}Ca{sub 0.5}TiO{sub 3} phosphors were synthesised by solid state reaction process. The structure, surface morphology and photoluminescence of the prepared phosphors were analysed using XRD, SEM and photoluminescence spectroscopy respectively. The XRD pattern confirmed orthorhombic perovskite structure of the Sr{sub 0.5}Ca{sub 0.5}TiO{sub 3}: x Pr{sup 3+} phosphor. Agglomeration of particles with irregular shapes is observed from the SEM images. The emission spectra of Sr{sub 0.5}Ca{sub 0.5}TiO{sub 3}: x Pr{sup 3+} phosphor shows the samples can be effectively excited with UV light at 336 nm and exhibit a strong reddish-orange emission at 611 nm. Concentration dependence of emission intensity shows concentration quenching effect on increasing Pr{sup 3+} concentration after x = 0.1 because of dipole–dipole interaction. Using Blasse's formula, critical distance for energy transfer was calculated. The CIE co-ordinates, CCT, colour purity and luminescence decay of the prepared phosphors were also calculated. These results offer the prepared phosphor as a suitable candidate for various photonic applications. - Highlights: • Sr{sub 0.5}Ca{sub 0.5}TiO{sub 3}: x Pr{sup 3+} perovskite structured phosphors were synthesized. • Under UV excitation, the PL spectra show strong reddish-orange emission. • The emission from {sup 3}P{sub J} levels of Pr{sup 3+} were absent due to the presence of IVCT band. • Concentration quenching due to dipole–dipole interaction was observed. • For x = 0.1, sample shows a maximum emission intensity with 91.7% colour purity.

  7. Fluorescence image excited by a scanning UV-LED light

    Science.gov (United States)

    Tsai, Hsin-Yi; Chen, Yi-Ju; Huang, Kuo-Cheng

    2013-03-01

    An optical scanning system using UV-LED light to induced fluorescence technology can enhance a fluorescence image significantly in a short period. It has several advantages such as lower power consumption, no scattering effect in skins, and multilayer images can be obtained to analyze skin disease. From the experiment results, the light intensity increases with increase spot size and decrease scanning speed, but the image resolution is oppositely. Moreover, the system could be widely used in clinical diagnosis and photodynamic therapy for skin disease because even the irradiated time of fluorescence substance is short but it will provide accurately positioning of fluorescence object.

  8. Luminescent properties of Pr3+-sensitized LaPO4:Gd3+ ultraviolet-B phosphor under vacuum-ultraviolet light excitation

    International Nuclear Information System (INIS)

    Okamoto, Shinji; Uchino, Rika; Kobayashi, Keisuke; Yamamoto, Hajime

    2009-01-01

    Luminescent properties of Pr 3+ -sensitized LaPO 4 :Gd 3+ under vacuum-ultraviolet (vuv) light excitation have been investigated. The energy transfer probably occurs from the 5d levels in Pr 3+ ions to Gd 3+ ions under 172 nm light excitation. LaPO 4 :Gd 3+ ,Pr 3+ shows efficient ultraviolet-B (uv-B) emission at 312 nm, whose peak intensity reaches its maximum at Gd=35 mol % and Pr=5 mol %. (La 0.65 Gd 0.35 ) 0.95 Pr 0.05 PO 4 is about 1.6 times higher than a typical uv-B phosphor for vuv lamp, Y 0.75 Gd 0.25 Al 3 (BO 3 ) 4 , in Gd 3+ -emission intensity under 172 nm light excitation. This result implies that the Pr 3+ -sensitized LaPO 4 :Gd 3+ is a candidate of uv-B phosphors for xenon-excimer discharge vuv lamps. In order to evaluate the effect of the narrow-band uv-B emission by LaPO 4 :Gd 3+ ,Pr 3+ phosphor, irradiation test on DNA was performed. The irradiation damage of pUC 18 DNA by the narrow-band uv-B light from the LaPO 4 :Gd 3+ ,Pr 3+ phosphor is in the same magnitude as that by uv-A light from a filtered Hg lamp, even though the uv-B lamp is higher than the uv-A lamp in power density and photon energy.

  9. Sinapate esters provide greater UV-B attenuation than flavonoids in Arabidopsis thaliana (Brassicaceae)

    International Nuclear Information System (INIS)

    Sheahan, J.J.

    1996-01-01

    Mutants affected in flavonoid (tt4) or sinapate ester (fah1) biosynthesis were used to assess the relative importance of these phenolic UV photoprotectants in Arabidopsis. Flavonoid and sinapate ester absorption was more specific for UV-B than major nonphenolic chromophores in crude extracts. A new method of evaluating phenolic UV-B attenuation was developed using fluorescence analysis. When excited by UV-B, sinapate ester containing leaves and cotyledons had enhanced sinapate ester fluorescence and reduced chlorophyll fluorescence relative to those without sinapate esters. Although fluorescence analysis gave no evidence of UV-B attenuation by flavonoids, enhanced chlorophyll and protein loss were observed upon UV-B exposure in flavonoid-deficient leaves, suggesting they have another mechanism of UV-B protection. The hydroxycinnamates have been largely ignored as UV-B attenuating pigments. and the results indicate that greater attention should be paid to their role in attenuating UV-B

  10. Dissociation dynamics of anionic and excited neutral fragments of gaseous SiCl4 following Cl 2p and Si 2p core-level excitations

    International Nuclear Information System (INIS)

    Chen, J M; Lu, K T; Lee, J M; Chou, T L; Chen, H C; Chen, S A; Haw, S C; Chen, T H

    2008-01-01

    The state-selective dissociation dynamics for anionic and excited neutral fragments of gaseous SiCl 4 following Cl 2p and Si 2p core-level excitations were characterized by combining measurements of the photon-induced anionic dissociation, x-ray absorption and UV/visible dispersed fluorescence. The transitions of core electrons to high Rydberg states/doubly excited states in the vicinity of both Si 2p and Cl 2p ionization thresholds of gaseous SiCl 4 lead to a remarkably enhanced production of anionic, Si - and Cl - , fragments and excited neutral atomic, Si*, fragments. This enhancement via core-level excitation near the ionization threshold of gaseous SiCl 4 is explained in terms of the contributions from the Auger decay of doubly excited states, shake-modified resonant Auger decay, or/and post-collision interaction. These complementary results provide insight into the state-selective anionic and excited neutral fragmentation of gaseous molecules via core-level excitation.

  11. Spatially selective Au nanoparticle growth in laser-quality glass controlled by UV-induced phosphate-chain cross-linkage

    International Nuclear Information System (INIS)

    Sigaev, Vladimir N; Savinkov, Vitaly I; Lotarev, Sergey V; Shakhgildyan, Georgiy Yu; Paleari, Alberto; Lorenzi, Roberto

    2013-01-01

    Herein we describe how UV excitation of localized electronic states in phosphate glasses can activate structural rearrangements that influence the kinetics of Au nanoparticle (NP) thermal growth in Au-doped glass. The results suggest a novel strategy to address the problem of controlling nano-assembly processes of metal NP patterns in fully inorganic and chemically stable hard materials, such as laser-quality glasses. We show that the mechanism is promoted by opening and subsequent cross-linkage of phosphate chains under UV excitation of non-bridging groups in the amorphous network of the glass, with a consequent modification of Au diffusion and metal NP growth. Importantly, the micro-Raman mapping of the UV-induced modifications demonstrates that the process is restricted within the beam waist region of the focused UV laser beam. This fact is consistent with the need for more than one excitation event, close in time and in space, in order to promote structural cross-linkage and Au diffusion confinement. The stability of the photo-induced modifications makes it possible to design new metal patterning approaches for the fabrication of three-dimensional metal structures in laser-quality materials for high-power nonlinear applications. (paper)

  12. Spatially selective Au nanoparticle growth in laser-quality glass controlled by UV-induced phosphate-chain cross-linkage.

    Science.gov (United States)

    Sigaev, Vladimir N; Savinkov, Vitaly I; Lotarev, Sergey V; Shakhgildyan, Georgiy Yu; Lorenzi, Roberto; Paleari, Alberto

    2013-06-07

    Herein we describe how UV excitation of localized electronic states in phosphate glasses can activate structural rearrangements that influence the kinetics of Au nanoparticle (NP) thermal growth in Au-doped glass. The results suggest a novel strategy to address the problem of controlling nano-assembly processes of metal NP patterns in fully inorganic and chemically stable hard materials, such as laser-quality glasses. We show that the mechanism is promoted by opening and subsequent cross-linkage of phosphate chains under UV excitation of non-bridging groups in the amorphous network of the glass, with a consequent modification of Au diffusion and metal NP growth. Importantly, the micro-Raman mapping of the UV-induced modifications demonstrates that the process is restricted within the beam waist region of the focused UV laser beam. This fact is consistent with the need for more than one excitation event, close in time and in space, in order to promote structural cross-linkage and Au diffusion confinement. The stability of the photo-induced modifications makes it possible to design new metal patterning approaches for the fabrication of three-dimensional metal structures in laser-quality materials for high-power nonlinear applications.

  13. Photoelectron and UV absorption spectroscopy for determination of electronic configurations of negative molecular ions: Chlorophenols

    International Nuclear Information System (INIS)

    Tseplin, E.E.; Tseplina, S.N.; Tuimedov, G.M.; Khvostenko, O.G.

    2009-01-01

    The photoelectron and UV absorption spectra of p-, m-, and o-chlorophenols in the gas phase have been obtained. On the basis of DFT B3LYP/6-311++G(d, p) calculations, the photoelectron bands have been assigned to occupied molecular orbitals. From the TDDFT B3LYP/6-311++G(d, p) calculation results, the UV absorption bands have been assigned to excited singlet states of the molecules under investigation. For each excited state a dominant transition was found. It has been shown that the energies of these singlet transitions correlate with the energy differences between the ground-state molecular orbitals participating in them. Using the UV spectra interpretation, the electronic states of molecular anions detected earlier for the same compounds by means of the resonant electron capture mass-spectrometry have been determined.

  14. Removal of Acid Red 14 from Contaminated Water Using UV/S2O82- Advanced Oxidation Process

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Rasoulifard

    2012-10-01

    Full Text Available The present study investigates the degradation of Acid Red 14 (AR14, commonly used as a textile dye in aqueous medium through the oxidation process by UV /S2O82- under a set of variables concentration of S2O82-, Ag+, AR14 and temperature. Commonly Ag+, heat and UV light can excite S2O82− to sulfate radical form (SO4−•, a stronger oxidant (E0 = 2.60 V than S2O82−, to enhance significantly the oxidation of contaminants. Also the changes in the absorption spectra of AR14 solutions during the photoxidation process showed that decrease of absorption peak of the dye at λmax = 514 nm indicates a rapid degradation of the azo dye. The results of this study suggest that the oxidative treatment of AR14 by peroxydisulfate with UV is a viable option for removal of the textile dyes from effluents.

  15. Significant role of UV and carbonate radical on the degradation of oxytetracycline in UV-AOPs: Kinetics and mechanism.

    Science.gov (United States)

    Liu, Yiqing; He, Xuexiang; Duan, Xiaodi; Fu, Yongsheng; Fatta-Kassinos, Despo; Dionysiou, Dionysios D

    2016-05-15

    Carbonate radical (CO3(•-)), a selective oxidant, reacts readily with electron-rich compounds through electron transfer and/or hydrogen abstraction. In this study, the role of CO3(•-) in degrading oxytetracycline (OTC) by UV only, UV/H2O2 and UV/persulfate (UV/PS) advanced oxidation processes (AOPs) in the presence of HCO3(-) or CO3(2-) was investigated. For UV only process, the presence of photosensitizers, i.e., nitrate (NO3(-)) and natural organic matter (NOM), had different impacts on OTC degradation, i.e., an enhancing effect by NO3(-) due to the generation of HO(•) and a slight inhibiting effect by NOM possibly due to a light scattering effect. Differently for UV/H2O2 and UV/PS processes, the presence of NO3(-) hardly influenced the destruction of OTC. Generation of CO3(•-) presented a positive role on OTC degradation by UV/NO3(-)/HCO3(-). Such influence was also observed in the two studied AOPs in the presence of both bicarbonate and other natural water constituents. When various natural water samples from different sources were used as reaction matrices, UV only and UV/H2O2 showed an inhibiting effect while UV/PS demonstrated a comparable or even promoting effect in OTC decomposition. After elucidating the potential contribution of UV direct photolysis via excited state OTC* at an elevated reaction pH condition, putative OTC transformation byproducts via CO3(•-) reaction were identified by ultra-high definition accurate-mass quadrupole time-of-flight tandem mass spectrometry (QTOF/MS). Five different reaction pathways were subsequently proposed, including hydroxylation (+16 Da), quinonization (+14 Da), demethylation (-14 Da), decarbonylation (-28 Da) and dehydration (-18 Da). The significant role of UV at high pH and CO3(•-) on OTC removal from contaminated water was therefore demonstrated both kinetically and mechanistically. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Study of the electronic structure of pure aluminium, aluminium oxide and nitride by spectroscopy of electrons excited under electronic and photonic bombardment (X and UV)

    International Nuclear Information System (INIS)

    Gautier-Soyer, Martine

    1985-01-01

    This research thesis reports the use of electron spectroscopy with electrons excited under electronic or photonic (X or UV) bombardment for the study of electronic state density of aluminium, aluminium oxide (Al 2 O 3 ) and aluminium nitride (AlN). The objective is to get an insight into phenomena related to technological problems of adherence, wear, lubrication, corrosion or breakdown met in metals, insulators and semiconductors. The author highlighted the presence of occupied surface states on Al(111) and Al(100), and electronic levels localised in the forbidden band of Al 2 O 3 and AlN, induced by structural defects which promote surface reactivity [fr

  17. UV-Assisted Photochemical Synthesis of Reduced Graphene Oxide/ZnO Nanowires Composite for Photoresponse Enhancement in UV Photodetectors

    Directory of Open Access Journals (Sweden)

    Changsong Chen

    2018-01-01

    Full Text Available The weak photon absorption and high recombination rate of electron-hole pairs in disordered zinc oxide nanowires (ZNWs limit its application in UV photodetection. This limitation can be overcome by introducing graphene sheets to the ZNWs. Herein we report a high-performance photodetector based on one-dimensional (1D wide band-gap semiconductor disordered ZNWs composited with reduced graphene oxide (RGO for ultraviolet (UV photoresponse enhancement. The RGO/ZNWs composites have been successfully synthetized through UV-assisted photochemical reduction of GO in ZNWs suspension. The material characterizations in morphology, Raman scattering, and Ultraviolet-visible light absorption verified the formation of graphene sheets attached in ZNWs network and the enhancement of UV absorption due to the introduction of graphene. In comparison with photodetectors based on pure ZNWs, the photodetectors based on RGO/ZNWs composite exhibit enhanced photoresponse with photocurrent density of 5.87 mA·cm−2, on/off current ratio of 3.01 × 104, and responsivity of 1.83 A·W−1 when a UV irradiation of 3.26 mW·cm−2 and 1.0 V bias were used. Theory analysis is also presented to get insight into the inherent mechanisms of separation and transportation of photo-excited carriers in RGO/ZNWs composite.

  18. UV-Assisted Photochemical Synthesis of Reduced Graphene Oxide/ZnO Nanowires Composite for Photoresponse Enhancement in UV Photodetectors.

    Science.gov (United States)

    Chen, Changsong; Zhou, Peng; Wang, Na; Ma, Yang; San, Haisheng

    2018-01-05

    The weak photon absorption and high recombination rate of electron-hole pairs in disordered zinc oxide nanowires (ZNWs) limit its application in UV photodetection. This limitation can be overcome by introducing graphene sheets to the ZNWs. Herein we report a high-performance photodetector based on one-dimensional (1D) wide band-gap semiconductor disordered ZNWs composited with reduced graphene oxide (RGO) for ultraviolet (UV) photoresponse enhancement. The RGO/ZNWs composites have been successfully synthetized through UV-assisted photochemical reduction of GO in ZNWs suspension. The material characterizations in morphology, Raman scattering, and Ultraviolet-visible light absorption verified the formation of graphene sheets attached in ZNWs network and the enhancement of UV absorption due to the introduction of graphene. In comparison with photodetectors based on pure ZNWs, the photodetectors based on RGO/ZNWs composite exhibit enhanced photoresponse with photocurrent density of 5.87 mA·cm -2 , on/off current ratio of 3.01 × 10⁴, and responsivity of 1.83 A·W -1 when a UV irradiation of 3.26 mW·cm -2 and 1.0 V bias were used. Theory analysis is also presented to get insight into the inherent mechanisms of separation and transportation of photo-excited carriers in RGO/ZNWs composite.

  19. Lettuce flavonoids screening and phenotyping by chlorophyll fluorescence excitation ratio.

    Science.gov (United States)

    Zivcak, Marek; Brückova, Klaudia; Sytar, Oksana; Brestic, Marian; Olsovska, Katarina; Allakhverdiev, Suleyman I

    2017-06-01

    Environmentally induced variation and the genotypic differences in flavonoid and phenolic content in lettuce can be reliably detected using the appropriate parameters derived from the records of rapid non-invasive fluorescence technique. The chlorophyll fluorescence excitation ratio method was designed as a rapid and non-invasive tool to estimate the content of UV-absorbing phenolic compounds in plants. Using this technique, we have assessed the dynamics of accumulation of flavonoids related to developmental changes and environmental effects. Moreover, we have tested appropriateness of the method to identify the genotypic differences and fluctuations in total phenolics and flavonoid content in lettuce. Six green and two red genotypes of lettuce (Lactuca sativa L.) grown in pots were exposed to two different environments for 50 days: direct sunlight (UV-exposed) and greenhouse conditions (low UV). The indices based on the measurements of chlorophyll fluorescence after red, green and UV excitation indicated increase of the content of UV-absorbing compounds and anthocyanins in the epidermis of lettuce leaves. In similar, the biochemical analyses performed at the end of the experiment confirmed significantly higher total phenolic and flavonoid content in lettuce plants exposed to direct sun compared to greenhouse conditions and in red compared to green genotypes. As the correlation between the standard fluorescence indices and the biochemical records was negatively influenced by the presence of red genotypes, we proposed the use of a new parameter named Modified Flavonoid Index (MFI) taking into an account both absorbance changes due to flavonol and anthocyanin content, for which the correlation with flavonoid and phenolic content was relatively good. Thus, our results confirmed that the fluorescence excitation ratio method is useful for identifying the major differences in phenolic and flavonoid content in lettuce plants and it can be used for high-throughput pre

  20. [Investigation of multi-wavelength effect during the measurement of UV-enhanced film's emission spectrum].

    Science.gov (United States)

    Liu, Meng; Ni, Zheng-ji; Zhang, Da-wei; Huang, Yuan-shen; Zhuang, Song-lin

    2009-09-01

    The UV-responsive detector is a dual-use device for civilian and military after the laser and IR-responsive sensors. Typical image sensor coated with a layer of down-convert frequency thin film on it's photosurface to enhance UV response is the key technology of enhancing UV-response. The UV-enhanced thin film was made in the experimental laboratory using the Zn2SiO4:Mn phosphor by spin coating method. Two peaks at 520 and 560 nm respectively in the emission spectrum of the UV-enhanced film were found by SP1702 spectrograph when the excitation wavelength was 260 and 280 nm. The peaks were found in the process of experiment of measuring and counting the quantum efficiency of UV-enhanced thin film. But the light peaks at 520 and 560 nm are not the emission light peaks by the exciting light of 260 and 280 nm. The reason why the light at 520 and 560 nm is not the emission light was analyzed based on the measurement principle of grating spectrograph. The reasons for the multi-wavelength of light overlaps during the measurement of emission spectrum were also discussed. And the equipment used to separate the overlapped different wavelengths was designed, which will be used to resolve the problem of the overlap of multi-wavelength.

  1. Optical near-field studies of waveguiding organic nanofibers by angular dependent excitation

    DEFF Research Database (Denmark)

    Maibohm, Christian

    .                    2) Institute of General Physics, Russian Academy of Science, 119991 Moscow, Russia. Abstract:   Single crystalline organic nanofibers of para-phenylene are grown in UHV by MBE and dipole assisted self-assembly. In the optical far-field the fluorescence from a single nanofiber is spectrally well...... defined and highly polarized. By UV excitation in a fluorescence microscope it has also been shown that nanofibers have waveguiding properties. To further characterize the waveguiding properties the optical near-field has to be investigated. This is done by transferring nanofibers to an quartz half sphere...... where they are excited by the evanescent wave from a total internal reflected UV laser. The optical near-field is probed by the fiber tip of a SNOM (scanning near-field optical microscope). In the setup it is possible to change the angle of incidence of the excitation laser i.e. change the k...

  2. Enhancing Protein Disulfide Bond Cleavage by UV Excitation and Electron Capture Dissociation for Top-Down Mass Spectrometry.

    Science.gov (United States)

    Wongkongkathep, Piriya; Li, Huilin; Zhang, Xing; Loo, Rachel R Ogorzalek; Julian, Ryan R; Loo, Joseph A

    2015-11-15

    The application of ion pre-activation with 266 nm ultraviolet (UV) laser irradiation combined with electron capture dissociation (ECD) is demonstrated to enhance top-down mass spectrometry sequence coverage of disulfide bond containing proteins. UV-based activation can homolytically cleave a disulfide bond to yield two separated thiol radicals. Activated ECD experiments of insulin and ribonuclease A containing three and four disulfide bonds, respectively, were performed. UV-activation in combination with ECD allowed the three disulfide bonds of insulin to be cleaved and the overall sequence coverage to be increased. For the larger sized ribonuclease A with four disulfide bonds, irradiation from an infrared laser (10.6 µm) to disrupt non-covalent interactions was combined with UV-activation to facilitate the cleavage of up to three disulfide bonds. Preferences for disulfide bond cleavage are dependent on protein structure and sequence. Disulfide bonds can reform if the generated radicals remain in close proximity. By varying the time delay between the UV-activation and the ECD events, it was determined that disulfide bonds reform within 10-100 msec after their UV-homolytic cleavage.

  3. High Excitation Efficiency of Channel Plasmon Polaritons in Tailored, UV-Lithography-Defined V-Grooves

    DEFF Research Database (Denmark)

    Smith, Cameron; Thilsted, Anil Haraksingh; Garcia-Ortiz, Cesar E.

    2014-01-01

    We demonstrate >50% conversion of light to V-groove channel plasmon-polaritons (CPPs) via compact waveguide-termination mirrors. Devices are fabricated using UV-lithography and crystallographic silicon etching. The V-shape is tailored by thermal oxidation to support confined CPPs.......We demonstrate >50% conversion of light to V-groove channel plasmon-polaritons (CPPs) via compact waveguide-termination mirrors. Devices are fabricated using UV-lithography and crystallographic silicon etching. The V-shape is tailored by thermal oxidation to support confined CPPs....

  4. Dissociative Excitation of Adenine by Electron Impact

    Science.gov (United States)

    McConkey, J. William; Trocchi, Joshuah; Dech, Jeffery; Kedzierski, Wladek

    2017-04-01

    Dissociative excitation of adenine (C6H5NH2) into excited atomic fragments has been studied in the electron impact energy range from threshold to 300 eV. A crossed beam system coupled to a vacuum ultraviolet (VUV) monochromator is used to study emissions in the wavelength range from 110 to 200 nm. The beam of adenine vapor from a stainless steel oven is crossed at right angles by the electron beam and the resultant UV radiation is detected in a mutually orthogonal direction. The strongest feature in the spectrum is H Lyman- α. Financial support from NSERC and CFI, Canada, is gratefully acknowledged.

  5. Higher pressure periodic CO/sub 2/ laser with non-self-sustaining discharge and UV ionization

    Energy Technology Data Exchange (ETDEWEB)

    Muratov, E A; Pismennyi, V D; Rakhimov, A T

    1979-02-01

    Stimulated emission was achieved in a CO/sub 2/ laser operating at 250 torr excited by a periodic non-self-sustaining discharge controlled by a spark source of UV radiation. Use of a UV source operating in periodic pulse regime is shown to permit quasicontinuous operation of the laser with characteristic radiating times up to several hundred microseconds.

  6. Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection.

    Science.gov (United States)

    Kurt, Hasan; Yüce, Meral; Hussain, Babar; Budak, Hikmet

    2016-07-15

    In this report, a dual-excitation sensing method was developed using aptamer-functionalized quantum dots and upconverting nanoparticles, exhibiting Stokes and anti-Stokes type excitation profiles, respectively. Conjugation of the aptamer-functionalized luminescent nanoparticles with the magnetic beads, comprising short DNA sequences that were partially complementary to the aptamer sequences, enabled facile separation of the analyte-free conjugates for fluorescent measurement. UV-Visible spectroscopy, Circular Dichroism spectroscopy, Dynamic Light Scattering and Polyacrylamide Gel Electrophoresis techniques were used to characterize the aptamer probes developed. The target-specific luminescent conjugates were applied for multiplex detection of model food pathogens, Salmonella typhimurium, and Staphylococcus aureus, in which the fluorescent emission spectra were obtained under UV excitation at 325nm for quantum dots and NIR excitation at 980nm for upconverting nanoparticles, respectively. The dual-excitation strategy was aimed to minimize cross-talk between the luminescent signals for multiplexed detection, and yielded limit of detection values of 16 and 28cfumL(-1) for Staphylococcus aureus, and Salmonella typhimurium, respectively. By employing a greater number of quantum dots and upconverting nanoparticles with non-overlapping fluorescent emissions, the proposed methodology might be exploited further to detect several analytes, simultaneously. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Enhancing Protein Disulfide Bond Cleavage by UV Excitation and Electron Capture Dissociation for Top-Down Mass Spectrometry

    OpenAIRE

    Wongkongkathep, Piriya; Li, Huilin; Zhang, Xing; Loo, Rachel R. Ogorzalek; Julian, Ryan R.; Loo, Joseph A.

    2015-01-01

    The application of ion pre-activation with 266 nm ultraviolet (UV) laser irradiation combined with electron capture dissociation (ECD) is demonstrated to enhance top-down mass spectrometry sequence coverage of disulfide bond containing proteins. UV-based activation can homolytically cleave a disulfide bond to yield two separated thiol radicals. Activated ECD experiments of insulin and ribonuclease A containing three and four disulfide bonds, respectively, were performed. UV-activation in comb...

  8. Properties of a novel radiophotoluminescent readout system using a cw modulated UV laser diode and phase-sensitive technique

    International Nuclear Information System (INIS)

    Zhao, C.; Kurobori, T.; Miyamoto, Y.; Yamamoto, T.

    2011-01-01

    We have proposed and constructed a novel readout system for measuring a dose-dependent radiophotoluminescence (RPL) signal of a silver-activated phosphate glass dosimeter. The present reader consists of a modulated continuous-wave (cw) ultraviolet (UV) laser diode at 375 nm as an excitation and a phase-sensitive technique using a lock-in amplifier. Preliminary results using a home-made reader are compared with those of the conventional technique based on a combination of a pulsed UV N 2 laser excitation at 337 nm and a photon counting system.

  9. Size dependent deactivation of the excited state of DHICA

    DEFF Research Database (Denmark)

    Gauden, Magdalena; Pezzella, Alessandro; Panzella, Lucia

    2008-01-01

    Melanin is a natural pigment mainly responsible for the protection of skin and eyes from UV damage. 5,6- dihydroxyindole- 2 carboxylic acid (DHICA) is a key melanin building block. We have investigated the excited state dynamics of DHICA as well as its derivatives and oligomeric units using...

  10. UV light blocks EGFR signalling in human cancer cell lines

    DEFF Research Database (Denmark)

    Olsen, BB; Neves-Petersen, M T; Klitgaard, S

    2007-01-01

    UV light excites aromatic residues, causing these to disrupt nearby disulphide bridges. The EGF receptor is rich in aromatic residues near the disulphide bridges. Herein we show that laser-pulsed UV illumination of two different skin-derived cancer cell lines i.e. Cal-39 and A431, which both...... antibodies. There was a threshold level, below which the receptor could not be blocked. In addition, illumination caused the cells to upregulate the cyclin-dependent kinase inhibitor p21WAF1, irrespective of the p53 status. Since the EGF receptor is often overexpressed in cancers and other proliferative skin...... disorders, it might be possible to significantly reduce the proliferative potential of these cells making them good targets for laser-pulsed UV light treatment....

  11. Controlled UV-C light-induced fusion of thiol-passivated gold nanoparticles.

    Science.gov (United States)

    Pocoví-Martínez, Salvador; Parreño-Romero, Miriam; Agouram, Said; Pérez-Prieto, Julia

    2011-05-03

    Thiol-passivated gold nanoparticles (AuNPs) of a relatively small size, either decorated with chromophoric groups, such as a phthalimide (Au@PH) and benzophenone (Au@BP), or capped with octadecanethiol (Au@ODCN) have been synthesized and characterized by NMR and UV-vis spectroscopy as well as transmission electron microscopy (TEM). These NPs were irradiated in chloroform at different UV-wavelengths using either a nanosecond laser (266 and 355 nm, ca. 12 mJ/pulse, 10 ns pulse) or conventional lamps (300 nm UV-vis spectroscopy, as well as by TEM. Laser irradiation at 355 nm led to NP aggregation and precipitation, while the NPs were photostable under UV-A lamp illumination. Remarkably, laser excitation at 266 nm induced a fast (minutes time-scale) increase in the size of the NPs, producing huge spherical nanocrystals, while lamp-irradiation at UV-C wavelengths brought about nanonetworks of partially fused NPs with a larger diameter than the native NPs.

  12. Two-photon excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle

    Science.gov (United States)

    Zhu, G. P.; Xu, C. X.; Zhu, J.; Lv, C. G.; Cui, Y. P.

    2009-02-01

    Wurtzite structural ZnO microneedles with hexagonal cross section were fabricated by vapor-phase transport method and an individual microneedle was employed as a lasing microcavity. Under excitation of a femtosecond pulse laser with 800 nm wavelength, the ultraviolet (UV) laser emission was obtained, which presented narrow linewidth and high Q value. The UV emission, resonant mechanism, and laser mode characteristics were discussed in detail. The results demonstrated that the UV laser originated from the whispering-gallery mode induced by two-photon absorption assisted by Rabi oscillation.

  13. Synthesis, characteristics and luminescent properties of a new Tb(III) ternary complex applied in near UV-based LED

    Science.gov (United States)

    Sun, Naiqun; Li, Liping; Yang, Yamin; Zhang, Aiqin; Jia, Husheng; Liu, Xuguang; Xu, Bingshe

    2015-11-01

    A novel Tb(III) ternary complex, Tb(p-BBA)3UA, was synthesized with 4-benzoylbenzoic acid (p-BBA) as primary ligand and undecylenic acid (UA) as reactive ligand. Tb(III) complex exhibits high thermal stability and wide and strong excitation bands from 310 nm to 400 nm when monitored at 543 nm, which matches well with the 365 nm UV chip. The complex displays Tb(III) characteristic peaks at 488, 543, 584 and 619 nm under the excitation of 365 nm UV-light. The intramolecular energy transfer process was also discussed. Meanwhile, the complex has longer fluorescence lifetime (1.317 ms) and higher quantum yield (44.8%). When used in LED with 365 nm UV chip (power efficiency is 17.3 lm/W), the complex still maintained its qualified luminescent performance. All the results indicate that Tb(p-BBA)3UA can be applied as a green component for fabrication of near UV-based white LED.

  14. UV action spectroscopy of protonated PAH derivatives. Methyl substituted quinolines

    DEFF Research Database (Denmark)

    Klærke, Benedikte; Holm, Anne; Andersen, Lars Henrik

    2011-01-01

    using the electrostatic storage ring ELISA, an electrospray ion source and 3 ns UV laser pulses. Results. It is shown that the absorption profile is both redshifted and broadened when moving the methyl group from the heterocycle containing nitrogen to the homoatomic ring. The absorption profiles......Aims. We investigate the production of molecular photofragments upon UV excitation of PAH derivatives, relevant for the interstellar medium. Methods. The action absorption spectra of protonated gas-phase methyl-substituted quinolines (CH3−C9H7NH+) have been recorded in the 215–338 nm spectral range...

  15. Light Conversion and Scattering in UV Protective Textiles

    Directory of Open Access Journals (Sweden)

    Grancarić Ana Marija

    2014-12-01

    Full Text Available The primary cause of skin cancer is believed to be a long exposure to solar ultraviolet radiation (UV-R crossed with the amount of skin pigmentation in the population. It is believed that in childhood and adolescence 80% of UV-R gets absorbed, whilst in the remaining 20% gets absorbed later in the lifetime. This suggests that proper and early photoprotection may reduce the risk of subsequent occurrence of skin cancer. Textile and clothing are the most suitable interface between environment and human body. It can show UV protection, but in most cases it does not provide full sun screening properties. UV protection ability highly depends on large number of factors such as type of fibre, fabric surface and construction, type and concentration of dyestuff, fluorescent whitening agent (FWA, UV-B protective agents, as well as nanoparticles, if applied. Based on electronically excited state by energy of UV-R (usually 340-370 nm, the molecules of FWAs show the phenomenon of fluorescence giving to white textiles high whiteness of outstanding brightness by reemitting the energy at the blue region (typically 420-470 nm of the spectrum. By absorbing UV-A radiation, optical brightened fabrics transform this radiation into blue fluorescence, which leads to better UV protection. Natural zeolites are rock-forming, microporous silicate minerals. Applied as nanoparticles to textile surface, it scatters the UV-R resulting in lower UV-A and UV-B transmission. If applied with other UV absorbing agents, e.g. FWAs, synergistic effect occurs. Silicones are inert, synthetic compounds with a variety of forms and uses. It provides a unique soft touch, is very resistant to washing and improves the property of fabric to protect against UV radiation. Therefore, the UV protective properties of cotton fabric achieved by light conversion and scattering was researched in this paper. For that purpose, the stilbene-derived FWAs were applied on cotton fabric in wide concentration

  16. Detection of Explosives on Surfaces Using UV Raman Spectroscopy: Effect of Substrate Color

    Science.gov (United States)

    2017-10-01

    257.23-nm excitation (25 mW at the laser) using 2.5-s integration time and 100 accumulations. Each spectrum is offset by 400 counts from the one...tens of meters have been reported. The testing of UV Raman spectroscopy systems for standoff UV Raman spectroscopy has been generally limited to bare...SP2500A 500-mm focal length monochromator and a PIXIS 400 × 3048 pixel charge-coupled device (CCD) camera (Princeton Instruments, Trenton, NJ). An

  17. UV and ionizing radiations induced DNA damage, differences and similarities

    Science.gov (United States)

    Ravanat, Jean-Luc; Douki, Thierry

    2016-11-01

    Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.

  18. Single photon excimer laser photodissociation of highly vibrationally excited polyatomic molecules

    International Nuclear Information System (INIS)

    Tiee, J.J.; Wampler, F.B.; Rice, W.W.

    1980-01-01

    The ir + uv photodissociation of SF 6 has been performed using CO 2 and ArF lasers. The two-color photolysis significantly enhances the photodissociation process over ArF irradiation alone and is found to preserve the initial isotopic specificity of the ir excitation process

  19. A Reversible DNA Logic Gate Platform Operated by One- and Two-Photon Excitations.

    Science.gov (United States)

    Tam, Dick Yan; Dai, Ziwen; Chan, Miu Shan; Liu, Ling Sum; Cheung, Man Ching; Bolze, Frederic; Tin, Chung; Lo, Pik Kwan

    2016-01-04

    We demonstrate the use of two different wavelength ranges of excitation light as inputs to remotely trigger the responses of the self-assembled DNA devices (D-OR). As an important feature of this device, the dependence of the readout fluorescent signals on the two external inputs, UV excitation for 1 min and/or near infrared irradiation (NIR) at 800 nm fs laser pulses, can mimic function of signal communication in OR logic gates. Their operations could be reset easily to its initial state. Furthermore, these DNA devices exhibit efficient cellular uptake, low cytotoxicity, and high bio-stability in different cell lines. They are considered as the first example of a photo-responsive DNA logic gate system, as well as a biocompatible, multi-wavelength excited system in response to UV and NIR. This is an important step to explore the concept of photo-responsive DNA-based systems as versatile tools in DNA computing, display devices, optical communication, and biology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. LED deep UV source for charge management of gravitational reference sensors

    International Nuclear Information System (INIS)

    Sun Kexun; Allard, Brett; Buchman, Saps; Williams, Scott; Byer, Robert L

    2006-01-01

    Proof mass electrical charge management is an important functionality for the ST-7-LTP technology demonstration flight and for LISA. Photoemission for charge control is accomplished by using deep ultraviolet (UV) light to excite photoelectron emission from an Au alloy. The conventional UV source is a mercury vapour lamp. We propose and demonstrate charge management using a deep UV light emitting diode (LED) source. We have acquired selected AlGaN UV LEDs, characterized their performance and successfully used them to realize charge management. The UV LEDs emit at a 257 nm central wavelength with a bandwidth of ∼12 nm. The UV power for a free-space LED is ∼120 μW, and after fibre coupling is ∼16 μW, more than sufficient for LISA applications. We have directly observed the LED UV light-induced photocurrent response from an Au photocathode and an Au-coated GRS/ST-7 proof mass. We demonstrated fast switching of UV LEDs and associated fast changes in photocurrent. This allows modulation and continuous discharge to meet stringent LISA disturbance reduction requirements. We propose and demonstrate AC charge management outside the gravitational wave signal band. Further, the megahertz bandwidth for UV LED switching allows for up to six orders of magnitude dynamic power range and a number of novel modes of operations. The UV LED based charge management system offers the advantages of small-size, lightweight, fibre-coupled operation with very low power consumption

  1. The remarkably high excitation planetary nebula GC 6537.

    Science.gov (United States)

    Aller, L H; Hung, S; Feibelman, W A

    1999-05-11

    NGC 6537 is an unusually high excitation point symmetric planetary nebula with a rich spectrum. Its kinematical structures are of special interest. We are here primarily concerned with the high resolution spectrum as revealed by the Hamilton echelle Spectrograph at Lick Observatory (resolution approximately 0.2 A) and supplemented by UV and near-UV data. These extensive data permit a determination of interstellar extinction, plasma diagnostics, and ionic concentrations. The photoionization models that have been used successfully for many planetary nebulae are not entirely satisfactory here. The plasma electron temperature of a photoionization model cannot much exceed 20,000 K, but plasma diagnostics show that regions emitting radiation of highly ionized atoms such as [NeIV] and [NeV] are much hotter, showing that shock excitation must be important, as suggested by the remarkable kinematics of this object. Hence, instead of employing a strict photoionization model, we are guided by the nebular diagnostics, which reveal how electron temperature varies with ionization potential and accommodates density effects. The predictions of the photoionization model may be useful in estimating ionization correction factor. In effect, we have estimated the chemical composition by using both photoionization and shock considerations.

  2. Implementation of UV-based advanced oxidation processes in algal medium recycling.

    Science.gov (United States)

    Wang, Wenxuan; Sha, Jun; Lu, Zhiying; Shao, Senlin; Sun, Peizhe; Hu, Qiang; Zhang, Xuezhi

    2018-09-01

    Algae show great potential as sustainable feedstock for numerous bioproducts. However, large volume of water consumption during algal biomass production makes that the culture media recycling is a necessity due to economic and environmental concern. To avoid the negative effect of enriched organic matters in the harvested culture media, pre-treatment prior to medium replenishment and reuse is required. In this study, degradation of algenitic organic matters (AOM) in the culture media by UV-based photolysis processes (i.e., direct UV, UV/peroxydisulfate (PDS), UV/H 2 O 2 , and UV/NH 2 Cl) was explored. The results showed that UV, UV/PDS, UV/H 2 O 2 and UV/NH 2 Cl caused a decrease of SUVA for 29.9%, 35.4%, 40.45%, and 22.6%, respectively, though the organic matter was almost not mineralized. Fluorescence excitation-emission matrix combined with parallel factor analysis indicated that UV/PDS and UV/H 2 O 2 degraded 47.26%-56.31% of the fulvic-like and humic-like fractions in AOM. Powder activated carbon absorption and growth evaluation for the AOPs-treated media indicated that UV/PDS and UV/H 2 O 2 processes not only could remove the growth inhibitors in the media, but were also beneficial to the algae growth. These results suggested that UV/PDS and UV/H 2 O 2 could effectively degrade the hydrophobic components in AOM and converted the growth inhibition fraction of AOM in the recycled media into nutrient source for algal growth. Different from the general application of UV-based AOP in the wastewater treatment, this study provided an innovative idea about how to pre-treat AOM in the media recycling: utilization rather than removal, which was a more sustainable and environment-friendly technology. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. UV resonance Raman finds peptide bond-Arg side chain electronic interactions.

    Science.gov (United States)

    Sharma, Bhavya; Asher, Sanford A

    2011-05-12

    We measured the UV resonance Raman excitation profiles and Raman depolarization ratios of the arginine (Arg) vibrations of the amino acid monomer as well as Arg in the 21-residue predominantly alanine peptide AAAAA(AAARA)(3)A (AP) between 194 and 218 nm. Excitation within the π → π* peptide bond electronic transitions result in UVRR spectra dominated by amide peptide bond vibrations. The Raman cross sections and excitation profiles indicate that the Arg side chain electronic transitions mix with the AP peptide bond electronic transitions. The Arg Raman bands in AP exhibit Raman excitation profiles similar to those of the amide bands in AP which are conformation specific. These Arg excitation profiles distinctly differ from the Arg monomer. The Raman depolarization ratios of Arg in monomeric solution are quite simple with ρ = 0.33 indicating enhancement by a single electronic transition. In contrast, we see very complex depolarization ratios of Arg in AP that indicate that the Arg residues are resonance enhanced by multiple electronic transitions.

  4. Enhanced orange-red emission by using Mo codoped in Ba2CaWO6: Eu3+, Li+ phosphor under near UV excitation

    International Nuclear Information System (INIS)

    Sun, Xiaoyuan; Hao, Zhendong; Li, Chunjie; He, Xiaoguang; Qi, Haiyan; Yu, Lijun; Luo, Yongshi; Zhang, Jiahua; Gao, Jiwei; Zhong, Ruixia

    2013-01-01

    The orange-red emitting phosphors Ba 2 Ca 0.9 Mo x W 1−x O 6 :Eu 3+ 0.05 , Li + 0.05 (x=0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, and 1.0) and Ba 2 Ca 1−2y Mo 0.2 W 0.8 O 6 :Eu 3+ y , Li + y (y=0.03, 0.05, 0.07, 0.1, and 0.15) were synthesized. The crystalline structure and photoluminescence properties of these phosphors were described. The strong orange-red emission of Eu 3+ ( 5 D 0 — 7 F 1 transition) at around 593 nm was observed. Addition of Mo strongly enhances the charge transfer band absorption in the near ultraviolet region that corresponds to near ultraviolet white light emitting diode. The dependence of photoluminescence intensities on Eu 3+ concentrations with optimal Mo concentration under 400 nm excitation was studied. The phosphor is considered to be a promising orange-red emitting phosphor for near ultraviolet GaN-based white light emitting diode. - Highlights: ► The samples form solid solutions when Mo is added into Ba 2 CaWO 6 : Eu 3+ , Li + phosphors. ► Addition of Mo in Ba 2 CaWO 6 : Eu 3+ , Li + shifts the PLE spectra maximum from UV region to near UV region. ► In Ba 2 CaMo x W 1−x O 6 :Eu 3+ , Li + , the most efficient concentrations occur at 0.1 and 0.2 for Eu and Mo.

  5. UV, blue and red upconversion emission in Tm3+ doped Y2O3 phosphor

    International Nuclear Information System (INIS)

    Pandey, Anurag; Kaushal Kumar; Rai, Vineet Kumar

    2012-01-01

    Optimized solution combustion route has been adopted to prepare Tm 3+ doped Y 2 O 3 phosphor. The X-ray diffraction analysis of the doped phosphor for getting the structural information has been performed. Intense UV, blue and red emissions exhibiting narrow band have been monitored using 980 nm diode laser excitation. The origin of UV, blue and red upconversion emissions has been explained based on the available data. (author)

  6. Generation of 275.4-nm UV output from a large-frame argon-ion laser for fluorescence detection in capillary electrophoresis.

    NARCIS (Netherlands)

    Kok, S.J.; de Ridder, T.; Brinkman, U.A.T.; Velthorst, N.H.; Gooijer, C.; Hoornweg, G.Ph.

    1998-01-01

    A standard, relatively old, large-frame argon-ion laser, which is available in many laboratories, was modified to produce output in the deep- UV (275-306 nm) region by installing a set of inexpensive, commercially available laser mirrors. The deep-UV output is generally applicable as excitation

  7. Excited species in the FBX dosimeter system

    International Nuclear Information System (INIS)

    Gupta, B.L.

    2003-01-01

    In the FBX dosimeter solution, the excitation of xylenol orange (XO) produces maximum emission at 550-575 nm both at room and liquid nitrogen temperatures (about 85%) having a lifetime of 0.20-0.36 ns. In addition, at room temperature there is an emission at 350 nm for the excitation at 260 nm (about 15%) having a longer lifetime of 3.71-4.01 ns. Benzoic acid (BA) has excitation at 284-295 nm and emission at 320-365 nm having a lifetime of 1.38 ns. In an aqueous solution containing 5x10 -3 mol dm -3 BA, 2x10 -4 mol dm -3 XO and 0.04 mol dm -3 H 2 SO 4 there is no XO emission at 550 nm due to UV absorption at 260 nm by BA. In this solution, 2 emissions are observed near 350-360 nm, having lifetimes of 1.25 ns (89%) and 2.86 ns (11%). The wavelengths for the emission of XO and absorption of ferric-XO complex are nearly the same. Excited XO produces oxidation of ferrous ions and BA increases the chain length

  8. Vanadium substitution: A simple and economic way to improve UV sensing in ZnO

    Science.gov (United States)

    Srivastava, Tulika; Bajpai, Gaurav; Rathore, Gyanendra; Liu, Shun Wei; Biring, Sajal; Sen, Somaditya

    2018-04-01

    The UV sensing in pure ZnO is due to oxygen adsorption/desorption process from the ZnO surface. Vanadium doping improves the UV sensitivity of ZnO. The enhancement in UV sensitivity in vanadium-substituted ZnO is attributed to trapping and de-trapping of electrons at V4+ and V5+-related defect states. The V4+ state has an extra electron than the V5+ state. A V4+ to V5+ transformation happens with excitation of this electron to the conduction band, while a reverse trapping process liberates a visible light. An analytic study of response phenomenon reveals this trapping and de-trapping process.

  9. Highly efficient red-emitting BaMgBO3F:Eu3+,R+ (R: Li, Na, K, Rb) phosphor for near-UV excitation synthesized via glass precursor solid-state reaction

    Science.gov (United States)

    Shinozaki, Kenji; Akai, Tomoko

    2017-09-01

    Eu3+-doped fluoroborate crystals of BaMgBO3F were synthesized by a solid-state reaction using a glassy precursor material, and their photoluminescence (PL) was investigated. To compensate for the incorporation of Eu3+ into Ba2+ sites, samples codoped with alkali ions (Li+, Na+, K+, Rb+) were also prepared. The Eu3+-doped sample showed red PL with a quantum yield (QY) of 65% caused by near-UV excitation (λ = 393 nm), and PL intensity and QY increased with the codoping of Eu3+ and alkali ions. It was found that the Eu3+,Li+-codoped sample showed the highest PL intensity and a QY of 83%.

  10. Light-emitting Ga-oxide nanocrystals in glass: a new paradigm for low-cost and robust UV-to-visible solar-blind converters and UV emitters.

    Science.gov (United States)

    Sigaev, Vladimir N; Golubev, Nikita V; Ignat'eva, Elena S; Paleari, Alberto; Lorenzi, Roberto

    2014-01-01

    Wide-bandgap nanocrystals are an inexhaustible source of tuneable functions potentially addressing most of the demand for new light emitting systems. However, the implementation of nanocrystal properties in real devices is not straightforward if a robust and stable optical component is required as a final result. The achievement of efficient light emission from dense dispersions of Ga-oxide nanocrystals in UV-grade glass can be a breakthrough in this regard. Such a result would permit the fabrication of low cost UV-to-visible converters for monitoring UV-emitting events on a large-scale - from invisible hydrogen flames to corona dispersions. From this perspective, γ-Ga₂O₃ nanocrystals are developed by phase separation in Ga-alkali-germanosilicate glasses, obtaining optical materials based on a UV transparent matrix. Band-to-band UV-excitation of light emission from donor-acceptor pair (DAP) recombination is investigated for the first time in embedded γ-Ga₂O₃. The analysis of the decay kinetics gives unprecedented evidence that nanosized confinement of DAP recombination can force a nanophase to the efficient response of exactly balanced DAPs. The results, including a proof of concept of UV-to-visible viewer, definitely demonstrate the feasibility of workable glass-based fully inorganic nanostructured materials with emission properties borrowed from Ga₂O₃ single-crystals and tailored by the nanocrystal size.

  11. Assessment of time-dependent density functional theory with the restricted excitation space approximation for excited state calculations of large systems

    Science.gov (United States)

    Hanson-Heine, Magnus W. D.; George, Michael W.; Besley, Nicholas A.

    2018-06-01

    The restricted excitation subspace approximation is explored as a basis to reduce the memory storage required in linear response time-dependent density functional theory (TDDFT) calculations within the Tamm-Dancoff approximation. It is shown that excluding the core orbitals and up to 70% of the virtual orbitals in the construction of the excitation subspace does not result in significant changes in computed UV/vis spectra for large molecules. The reduced size of the excitation subspace greatly reduces the size of the subspace vectors that need to be stored when using the Davidson procedure to determine the eigenvalues of the TDDFT equations. Furthermore, additional screening of the two-electron integrals in combination with a reduction in the size of the numerical integration grid used in the TDDFT calculation leads to significant computational savings. The use of these approximations represents a simple approach to extend TDDFT to the study of large systems and make the calculations increasingly tractable using modest computing resources.

  12. The problem of dating quartz 2: Synchrotron generated X-ray excited optical luminescence (XEOL) from quartz

    International Nuclear Information System (INIS)

    King, G.E.; Finch, A.A.; Robinson, R.A.J.; Taylor, R.P.; Mosselmans, J.F.W.

    2011-01-01

    The luminescence emission of quartz is used in optically stimulated luminescence dating (OSL), however the precise origins of the emission are unclear. A suite of quartz samples were analysed using X-ray excited optical luminescence (XEOL). Radiation dose effects were observed whereby the UV emissions (3.8 and 3.4 eV) were depleted to the benefit of the red emission (1.9-2.0 eV). Samples were excited at ∼7 keV. Understanding why some quartz emit light more brightly than others will increase the efficiency and precision of OSL analyses. - Highlights: → The X-ray excited optical luminescence (XEOL) emission of quartz is explored. → The XEOL of quartz of different provenances varies. → Radiation dosing causes UV emissions to deplete to the benefit of red emissions. → The 3.8 and 3.4 eV emissions deplete at the same rate. → The quartz luminescence emission exhibits anisotropic effects.

  13. UV lamp for photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Cardoso, M.J.B.; Landers, R.; Sundaram, V.S.

    1983-01-01

    An UV lamp and a differential pumping system which enables to couple the lamp to an ultra-high vacuum chamber (10 -9 torr) without using windows, are described. The differential between the pressure inside the discharge chamber and the one in de UHV region, which is of 10 8 -10 9 , is achieved with two pumping states separated by pyrex capillaries having an internal diameter of 0.6 mm. In the first stage, a mechanical pump (10 -3 torr) is used; in the second stage, a diffusor pump with a cryogenic trap (N 2 liq - 10 -7 torr) is employed. The lamp produces, when used with high purity He, narrow lines almost clear at 21.2 eV and 40.8 eV, depending on the discharge chamber pressure, thus eliminating the need of a monochromator. As a high voltage source (3 KV), a commercial unit with a good current control was used, ensuring UV beam stability - an essential characteristic for this lamp if it is employed for photoelectron excitation of crystalline samples. (C.L.B.) [pt

  14. Studies on the substrate mediated vibrational excitation of CO/Si(100) by means of SFG spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xu; Lass, Kristian; Balgar, Thorsten; Hasselbrink, Eckart [Universitaet Duisburg-Essen, Fachbereich Chemie, 45117 Essen (Germany)

    2009-07-01

    Vibrational excitations of adsorbates play an important role in chemical reaction dynamics. In the past decade CO on solid surfaces was chosen as adequate model system for studying vibrational relaxation dynamics. Our work is focused on the energy dissipation of vibrationally excited CO adsorbed on a silicon surface by means of IR/Vis sum frequency generation (SFG) spectroscopy. Here we present studies on substrate mediated excitation of vibrational modes of CO on Si(100) induced by UV radiation. We suppose the observation of highly excited internal stretch vibrations of CO caused by hot electrons generated within the silicon substrate.

  15. Kinetics studies following state-selective laser excitation

    International Nuclear Information System (INIS)

    Keto, J.W.

    1994-04-01

    The objective of this contract was the study of state-to-state, electronic energy transfer reactions relevant to the excited state chemistry observed in discharges. We studied deactivation reactions and excitation transfer in collisions of excited states of xenon and krypton atoms with Ar, Kr, Xe and chlorine. The reactant states were excited selectively in two-photon transitions using tunable u.v. and v.u.v. lasers. Excited states produced by the collision were observed by their fluorescence. Reaction rates were measured by observing the time dependent decay of signals from reactant and product channels. In addition we measured interaction potentials of the reactants by laser spectroscopy where the laser induced fluorescence or ionization is measured as a function of laser wavelength (excitation spectra) or by measuring fluorescence spectra at fixed laser frequencies with monochromators. The spectra were obtained in the form of either lineshapes or individual lines from rovibrational transitions of bound states. Our research then required several categories of experiments in order to fully understand a reaction process: 1. High resolution laser spectroscopy of bound molecules or lineshapes of colliding pairs is used to determine potential curves for reactants. 2. Direct measurements of state-to-state reaction rates were measured by studying the time dependent loss of excited reactants and the time dependent formation of products. 3. The energy selectivity of a laser can be used to excite reactants on an excited surface with controlled internuclear configurations. For free states of reactants (as exist in a gas cell) this has been termed laser assisted reactions, while for initially bound states (as chemically bound reactants or dimers formed in supersonic beams) the experiments have been termed photo-fragmentation spectroscopy

  16. Ultrafast pre-breakdown dynamics in Al₂O₃SiO₂ reflector by femtosecond UV laser spectroscopy.

    Science.gov (United States)

    Du, Juan; Li, Zehan; Xue, Bing; Kobayashi, Takayoshi; Han, Dongjia; Zhao, Yuanan; Leng, Yuxin

    2015-06-29

    Ultrafast carrier dynamics in Al2O3/SiO2 high reflectors has been investigated by UV femtosecond laser. It is identified by laser spectroscopy that, the carrier dynamics contributed from the front few layers of Al2O3 play a dominating role in the initial laser-induced damage of the UV reflector. Time-resolved reflection decrease after the UV excitation is observed, and conduction electrons is found to relaxed to a mid-gap defect state locating about one photon below the conduction band . To interpret the laser induced carrier dynamics further, a theoretical model including electrons relaxation to a mid-gap state is built, and agrees very well with the experimental results.. To the best of our knowledge, this is the first study on the pre-damage dynamics in UV high reflector induced by femtosecond UV laser.

  17. X-ray or UV-ray imaging sensor utilizing optically stimulated luminescence phenomenon in Eu-doped KCl phosphors

    International Nuclear Information System (INIS)

    Nanto, Hidehito; Murayama, Kazuhiko; Hirai, Yoshiaki; Taniguchi, Shin-ichi; Makamura, Shouichi; Takeuchi, Nozomu.

    1993-01-01

    An intense OSL with a peak at about 420 [nm] has been observed by stimulating an X-ray or UV-ray irradiated KCl: Eu crystal with F-band light whose wavelength is about 560 [um]. A possible excitation and emission mechanisms for the 420 [um] OSL peak X-ray or UV-ray irradiated sample is proposed. It is found that the OSL intensity is proportional to the X-ray absorbed dose or UV-ray irradiation dose. It is also found that X-ray or UV-ray irradiated KCl; Eu exhibited excellent fading characteristics. These results strongly suggest that the KCl: Eu is one of the most attractive candidates for two-dimensional X-ray or UV-ray imaging sensor utilizing the OSL phenomenon. (J.P.N.)

  18. Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding

    NARCIS (Netherlands)

    Ruger, R.; Niehaus, T.; van Lenthe, E.; Heine, T.; Visscher, L.

    2016-01-01

    We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon method with a harmonic approximation for the nu- clear wavefunction.

  19. Luminescence and conductivity studies on CVD diamond exposed to UV light

    CERN Document Server

    Bizzarri, A; Bruzzi, M; Sciortino, S

    1999-01-01

    The photoluminescence (PL), thermoluminescence (TL) and thermally stimulated currents (TSC) of four high-quality CVD diamond films have been investigated in the range of temperatures between 300 and 700 K. The sample excitation has been carried out by means of an UV xenon lamp and UV laser lines. The features of the signals have been found equal to those obtained from particle excitation. The TL analysis shows the existence of several deep traps with activation energies between 0.6 and 1.0 eV. The contribution to the TL signal from different traps has been singled out by means of successive annealing processes. The TL results are in good agreement with those obtained from TSC measurements. The combined use of the two techniques allows a precise determination of the trap parameters. The spectral content of the TL response has also been compared with the PL signal in order to investigate the recombination process. This analysis shows that, in this temperature range, the TL signal is likely due to recombination ...

  20. Band-to-band and inner shell excitation VIS-UV photoluminescence of quaternary InAlGaN alloys

    International Nuclear Information System (INIS)

    Fukui, K.; Naoe, S.; Okada, K.; Hamada, S.; Hirayama, H.

    2006-01-01

    Visible and ultraviolet photoluminescence and photoluminescence excitation spectra of quaternary InAlGaN alloys were measured. The excitation photon energy covers from band edge to 180 eV, near both nitrogen K (∝400 eV) and aluminium K (∝1.5 keV) inner shell energy region. From photoluminescence excitation spectra photoluminescence intensity per incident photon number varies in proportion to incident photon energy. This result implies that many conduction band electron - valence band hole pairs which are responsible for photoluminescence are produced by high energy excitation. Time resolved decay curves were also measured in the same energy region. No effect of high energy excitation on time resolved decay measurements suggests a role of indium on the photoluminescence mechanism in InAlGaN system. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2′-bipyridine2(CN2

    Directory of Open Access Journals (Sweden)

    Kasper S. Kjær

    2017-07-01

    Full Text Available We have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy2(CN2], where bpy=2,2′-bipyridine, initiated by metal-to-ligand charge transfer (MLCT excitation. The excited-state absorption in the transient UV-visible spectra, associated with the 2,2′-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kβ x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state of [Fe(bpy2(CN2] undergoes ultrafast spin crossover to a metal-centered quintet excited state through a short lived metal-centered triplet transient species. These measurements of [Fe(bpy2(CN2] complement prior measurement performed on [Fe(bpy3]2+ and [Fe(bpy(CN4]2− in dimethylsulfoxide solution and help complete the chemical series [Fe(bpyN(CN6–2N]2N-4, where N = 1–3. The measurements confirm that simple ligand modifications can significantly change the relaxation pathways and excited state lifetimes and support the further investigation of light harvesting and photocatalytic applications of 3d transition metal complexes.

  2. Effects of Er3+ concentration on UV/blue upconverted luminescence and a three-photon process in the cubic nanocrystalline Y2O3:Er3+

    International Nuclear Information System (INIS)

    Wang Xin; Shan Guiye; Chao Kefu; Zhang Youlin; Liu Ruilin; Feng Liyun; Zeng Qinghui; Sun Yajuan; Liu Yichun; Kong Xianggui

    2006-01-01

    Ultraviolet (UV)/blue upconverted luminescent properties of the cubic Y 2 O 3 :Er 3+ nanocrystals as a function of the erbium concentration were investigated upon 488 nm Ar + laser excitation. The remarkable decrease of upconverted emission intensity and the quenching of the 2 P 3/2 → 4 I 11/2 / 4 I 13/2 transitions were observed in the Y 2 O 3 nanocrystals with high erbium concentration. The emission spectra and the exciting power dependence of upconverted luminescent intensities reveal that the possible upconversion mechanisms are excited-state absorption (ESA) and energy transfer (ET). Moreover, a UV/violet upconverted emission spectrum of nanocrystalline Y 2 O 3 :Er 3+ upon 980 nm light excitation was also observed and a three-photon process made a contribution to this upconverted emission

  3. Room-temperature effects of UV radiation in KBr:Eu{sup 2+} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Salas, R; Melendrez, R [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada - IFUNAM, Ensenada, Apartado Postal 2732 Ensenada, BC, 22800 (Mexico); Aceves, R; Rodriguez, R; Barboza-Flores, M [Centro de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088 Hermosillo, Sonora, 83190 (Mexico)

    1996-07-01

    Thermoluminescence and optical absorption measurements have been carried out in KBr:Eu{sup 2+} crystals irradiated with monochromatic UV light (200-300 nm) and x-rays at room temperature. For UV- and x-irradiated crystals strong similarities between the thermoluminescence glow curves have been found, suggesting that the low-energy UV radiation produces the same defects as produced by x-irradiation in this material. The thermoluminescence glow curves are composed of six glow peaks located at 337, 383, 403, 435, 475 and 509 K. Thermal annealing experiments in previously irradiated crystals show clearly a correlation between the glow peak located at 383 K and the F-centre thermal bleaching process. Also, the excitation spectrum for each thermoluminescence glow peak has been investigated, showing that the low-energy radiation induces the formation of F centres. (author)

  4. Laser separation of nitrogen isotopes by the IR+UV dissociation of ammonia molecules

    International Nuclear Information System (INIS)

    Apatin, V M; Klimin, S A; Laptev, V B; Lokhman, V N; Ogurok, D D; Pigul'skii, S V; Ryabov, E A

    2008-01-01

    The separation of nitrogen isotopes is studied upon successive single-photon IR excitation and UV dissociation of ammonia molecules. The excitation selectivity was provided by tuning a CO 2 laser to resonance with 14 NH 3 molecules [the 9R(30) laser line] or with 15 NH 3 molecules [the 9R(10) laser line]. Isotopic mixtures containing 4.8% and 0.37% (natural content) of the 15 NH isotope were investigated. The dependences of the selectivity and the dissociation yield for each isotopic component on the buffer gas pressure (N 2 , O 2 , Ar) and the ammonia pressure were obtained. In the limit of low NH 3 pressures (0.5-2 Torr), the dissociation selectivity α(15/14) for 15 N was 17. The selectivity mechanism of the IR+UV dissociation is discussed and the outlook is considered for the development of the nitrogen isotope separation process based on this approach. (laser isotope separation)

  5. Selective surface functionalization of polystyrene induced by synchrotron or UV radiation in the presence of oxygen or acrylic acid vapors

    International Nuclear Information System (INIS)

    Kessler, Felipe; Kuhn, Sidiney; Weibel, Daniel E.

    2009-01-01

    Efficient surface functionalization of Polystyrene (PS) thin films by electromagnetic radiation in combination with a reactive gaseous atmosphere was obtained. Monochromatic synchrotron (SR) or polychromatic UV radiation were used as excitation sources. When SR was used, O 2 was introduced after irradiation into the UHV chamber. UV irradiation was carried out keeping a constant flow of O 2 or acrylic acid (AA) vapors during the photolysis. FTIR-ATR and XPS-NEXAFS spectra were obtained at the UFRGS and the LNLS, Campinas respectively. PS films were functionalized by monochromatic SR and then expose to O 2 at specific transitions such us C 1s →σ * C-C excitation. It was found a high rate of COO, C=O and C-O groups at the surface (> 70%). UV-assisted treatment in the presence of AA vapors showed that an efficient polymerization process took place, such as, it was observed in previous AA low pressure RF plasma treatments. UV-assisted functionalization has the advantage of lower costs and simple set-up compared to plasma treatments. (author)

  6. Nonlinear optical sub-bandgap excitation of ZnO-based photonic resonators

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Christina A.; Zeuner, Franziska; Bader, Manuel H. W.; Zentgraf, Thomas; Meier, Cedrik [Department of Physics and Center for Optoelectronics and Photonics Paderborn (CeOPP), Universität Paderborn, Warburger Str. 100, 33098 Paderborn (Germany)

    2015-12-07

    Zinc oxide (ZnO) is a versatile candidate for photonic devices due to its highly efficient optical emission. However, for pumping of ZnO photonic devices UV-sources are required. Here, we investigate the alternative usage of widely available pulsed near-infrared (NIR)-sources and compare the efficiency of linear and nonlinear excitation processes. We found that bulk ZnO, ZnO thin films grown by molecular beam epitaxy, and ZnO/SiO{sub 2} microdisk devices exhibit strong nonlinear response when excited with NIR pulses (λ ≈ 1060 nm). In addition, we show that the ZnO/SiO{sub 2} microdisks exhibit sharp whispering gallery modes over the blue-yellow part of the visible spectrum for both excitation conditions and high Q-factors up to Q = 4700. The results demonstrate that nonlinear excitation is an efficient way to pump ZnO photonic devices.

  7. Two- and three-photon excitation of Gd3+ in CaAl12O19

    International Nuclear Information System (INIS)

    Heerdt, M.L.H. ter; Basun, S.A.; Imbusch, G.F.; Yen, W.M.

    2002-01-01

    We have employed two-photon excitation to study the higher energy levels of Gd 3+ ions in CaAl 12 O 19 and we compare the results with those obtained using conventional UV excitation techniques. Under two-photon excitation, the luminescence intensity exhibits an unusual temporal behavior, a very long build-up followed by a decrease by orders of magnitude, ascribed to a recombination-assisted luminescence excitation mechanism assuming photo-ionization of Gd 3+ ions and trapping of free electrons on deep traps. We also find that the two-photon excitation spectra contain an additional broadening contribution which can be attributed to homogeneous broadening of excitation levels caused by excited state absorption into the conduction band. We believe that this may be a general phenomenon whenever participating photons produce ionization of impurity ions from metastable excited states. The phenomenon can manifest itself also in two-photon ionization spectral hole burning and in up-conversion processes (in the latter case, the homogeneous broadening can be caused by an intra-ion excited-state absorption)

  8. SUPPRESSION OF STAR FORMATION IN THE HOSTS OF LOW-EXCITATION RADIO GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Cameron; Salim, Samir, E-mail: cameronpace@suu.edu, E-mail: salims@indiana.edu [Indiana University, Department of Astronomy, Swain Hall West 319, Bloomington, IN 47405-7105 (United States)

    2016-02-10

    The feedback from radio-loud active galactic nuclei (R-AGNs) may help maintain low star-formation (SF) rates in their early-type hosts, but the observational evidence for this mechanism has been inconclusive. We study systematic differences of aggregate spectral energy distributions (SEDs) of various subsets of ∼4000 low-redshift R-AGNs from Best and Heckman with respect to (currently) inactive control samples selected to have matching redshift, stellar mass, population age, axis ratio, and environment. Aggregate SEDs, ranging from the ultraviolet (UV) through mid-infrared (mid-IR, 22 μm), were constructed using a Bayesian method that eliminates biases from non-detections in Galaxy Evolution Explorer and Wide-field Infrared Survey Explorer. We study rare high-excitation sources separately from low-excitation ones, which we split by environment and host properties. We find that both the UV and mid-IR emission of non-cluster R-AGNs (80% of sample) are suppressed by ∼0.2 dex relative to that of the control group, especially for moderately massive galaxies (log M{sub *} ≲ 11). The difference disappears for high-mass R-AGNs and for R-AGNs in clusters, where other, non-AGN quenching/maintenance mechanisms may dominate, or where the suppression of SF due to AGNs may persist between active phases of the central engine, perhaps because of the presence of a hot gaseous halo storing AGN energy. High-excitation (high accretion rate) sources, which make up 2% of the R-AGN sample, do not show any evidence of SF suppression (their UV is the same as in controls), but they exhibit a strong mid-IR excess due to AGN dust heating.

  9. Efficient Excitation of Channel Plasmons in Tailored, UV-Lithography-Defined V-Grooves

    DEFF Research Database (Denmark)

    Smith, Cameron L. C.; Thilsted, Anil Haraksingh; Garcia-Ortiz, Cesar E.

    2014-01-01

    We demonstrate the highly efficient (>50%) conversion of freely propagating light to channel plasmon-polaritons (CPPs) in gold V-groove waveguides using compact 1.6 μm long waveguide-termination coupling mirrors. Our straightforward fabrication process, involving UV-lithography and crystallographic...... silicon etching, forms the coupling mirrors innately and ensures exceptional-quality, wafer-scale device production. We tailor the V-shaped profiles by thermal silicon oxidation in order to shift initially wedge-located modes downward into the V-grooves, resulting in well-confined CPPs suitable...

  10. Near-UV and blue wavelength excitable Mg{sub 0.6}Ca{sub 2.16}Mo{sub 0.2}W{sub 0.8}O{sub 6}: Eu{sub 0.12}{sup 3+}/Na{sub 0.12}{sup +} high efficiency red phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, A. [Smart Lighting Engineering Research Center, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Electrical Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Dutta, P.S., E-mail: duttap@rpi.edu [Smart Lighting Engineering Research Center, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Electrical Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2015-05-15

    Red phosphors with narrow emission around 615 nm (with FWHM~5–10 nm) having chemical compositions of A{sub 0.6}Ca{sub 2.16}Mo{sub 0.2}W{sub 0.8}O{sub 6}: Eu{sub 0.12}{sup 3+}/Na{sub 0.12}{sup +} (A=Mg, Sr) have been found to exhibit the highest luminescence amongst the molybdate–tungstate family when excited by sources in the 380–420 nm wavelength range. Thus they are most suitable for enhancing color rendering index and lowering color temperature in phosphor converted white LEDs (pc-WLEDs) with near-UV/blue LED excitation sources. The excitation band edge in the near UV/blue wavelength in the reported phosphor has been attributed to the coordination environment of the transition metal ion (Mo{sup 6+}, W{sup 6+}) and host crystal structure. Furthermore the quantum efficiency of the phosphors has been enhanced by adjusting activator concentration, suitable compositional alloying using substitutional alkaline earth metal cations and charge compensation mechanisms. - Graphical abstract: The charge transfer excitation of orthorhombic Mg{sub 0.6}Ca{sub 2.16}Mo{sub 0.2}W{sub 0.8}O{sub 6}: Eu{sub 0.12}{sup 3+}/Na{sub 0.12}{sup +} is significantly higher than tetragonal CaMoO{sub 4}: Eu{sup 3+} phosphors making Mg{sub 0.6}Ca{sub 2.16}Mo{sub 0.2}W{sub 0.8}O{sub 6}: Eu{sub 0.12}{sup 3+}/Na{sub 0.12}{sup +} prime candidates for fabrication of warm white phosphor-converted LEDs. - Highlights: • LED excitable Mg{sub 0.6}Ca{sub 2.16}Mo{sub 0.2}W{sub 0.8}O{sub 6}: Eu{sub 0.12}{sup 3+}/Na{sub 0.12}{sup +} phosphors were synthesized. • These phosphors are 10 times more intense than CaMoO{sub 4}: Eu{sup 3+} red phosphors. • Their intensity and efficiency were enhanced by materials optimization techniques. • Such techniques include compositional alloying, charge compensation, etc.

  11. CUVE - Cubesat UV Experiment: Unveil Venus' UV Absorber with Cubesat UV Mapping Spectrometer

    Science.gov (United States)

    Cottini, V.; Aslam, S.; D'Aversa, E.; Glaze, L.; Gorius, N.; Hewagama, T.; Ignatiev, N.; Piccioni, G.

    2017-09-01

    Our Venus mission concept Cubesat UV Experiment (CUVE) is one of ten proposals selected for funding by the NASA PSDS3 Program - Planetary Science Deep Space SmallSat Studies. CUVE concept is to insert a CubeSat spacecraft into a Venusian orbit and perform remote sensing of the UV spectral region using a high spectral resolution point spectrometer to resolve UV molecular bands, observe nightglow, and characterize the unidentified main UV absorber. The UV spectrometer is complemented by an imaging UV camera with multiple bands in the UV absorber main band range for contextual imaging. CUVE Science Objectives are: the nature of the "Unknown" UV-absorber; the abundances and distributions of SO2 and SO at and above Venus's cloud tops and their correlation with the UV absorber; the atmospheric dynamics at the cloud tops, structure of upper clouds and wind measurements from cloud-tracking; the nightglow emissions: NO, CO, O2. This mission will therefore be an excellent platform to study Venus' cloud top atmospheric properties where the UV absorption drives the planet's energy balance. CUVE would complement past, current and future Venus missions with conventional spacecraft, and address critical science questions cost effectively.

  12. Energy-donor phosphorescence quenching study of triplet–triplet energy transfer between UV absorbers

    International Nuclear Information System (INIS)

    Kikuchi, Azusa; Nakabai, Yuya; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Yagi, Mikio

    2015-01-01

    The intermolecular triplet–triplet energy transfer from a photounstable UV-A absorber, 4-tert-butyl-4′-methoxydibenzoylmethane (BMDBM), to UV-B absorbers, 2-ethylhexyl 4-methoxycinnamate (octyl methoxycinnamate, OMC), octocrylene (OCR) and dioctyl 4-methoxybenzylidenemalonate (DOMBM) has been observed using a 355 nm laser excitation in rigid solutions at 77 K. The decay curves of the energy-donor phosphorescence in the presence of the UV-B absorbers deviate from the exponential decay at the initial stage of the decay. The Stern–Volmer formulation is not valid in rigid solutions because molecular diffusion is impossible. The experimental results indicate that the rate constant of triplet–triplet energy transfer from BMDBM to the UV-B absorbers, k T–T , decreases in the following order: k T–T (BMDBM–DOMBM)>k T–T (BMDBM–OMC)≥k T–T (BMDBM–OCR). The presence of DOMBM enhances the photostability of the widely used combination of UV-A and UV-B absorbers, BMDBM and OCR. The effects of the triplet–triplet energy transfer on the photostability of BMDBM are discussed. - Highlights: • The intermolecular triplet–triplet energy transfer between UV absorbers was observed. • The phosphorescence decay deviates from exponential at the initial stage of decay. • The effects of triplet–triplet energy transfer on the photostability are discussed

  13. uvsI mutants defective in UV mutagenesis define a fourth epistatic group of uvs genes in Aspergillus.

    Science.gov (United States)

    Chae, S K; Kafer, E

    1993-01-01

    Three UV-sensitive mutations of A. nidulans, uvsI, uvsJ and uvsA, were tested for epistatic relationships with members of the previously established groups, here called the "UvsF", "UvsC", and "UvsB" groups. uvsI mutants are defective for spontaneous and induced reversion of certain point mutations and differ also for other properties from previously analyzed uvs types. They are very sensitive to the killing effects of UV-light and 4-NQO (4-nitro-quinoline-N-oxide) but not to MMS (methylmethane sulfonate). When double- and single-mutant uvs strains were compared for sensitivity to these three agents, synergistic or additive effects were found for uvsI with all members of the three groups. The uvsI gene may therefore represent a fourth epistatic group, possibly involved in mutagenic repair. On the other hand, uvsJ was clearly epistatic with members of the UvsF group and fitted well into this group also by phenotype. The uvsA gene was tentatively assigned to the UvsC group. uvsA showed epistatic interactions with uvsC in all tests, and like UvsC-group mutants is UV-sensitive mainly in dividing cells. However, the uvsA mutation does not cause the defects in recombination and UV mutagenesis typical for this group.

  14. Adapting a compact confocal microscope system to a two-photon excitation fluorescence imaging architecture.

    Science.gov (United States)

    Diaspro, A; Corosu, M; Ramoino, P; Robello, M

    1999-11-01

    Within the framework of a national National Institute of Physics of Matter (INFM) project, we have realised a two-photon excitation (TPE) fluorescence microscope based on a new generation commercial confocal scanning head. The core of the architecture is a mode-locked Ti:Sapphire laser (Tsunami 3960, Spectra Physics Inc., Mountain View, CA) pumped by a high-power (5 W, 532 nm) laser (Millennia V, Spectra Physics Inc.) and an ultracompact confocal scanning head, Nikon PCM2000 (Nikon Instruments, Florence, Italy) using a single-pinhole design. Three-dimensional point-spread function has been measured to define spatial resolution performances. The TPE microscope has been used with a wide range of excitable fluorescent molecules (DAPI, Fura-2, Indo-1, DiOC(6)(3), fluoresceine, Texas red) covering a single photon spectral range from UV to green. An example is reported on 3D imaging of the helical structure of the sperm head of the Octopus Eledone cirrhosa labelled with an UV excitable dye, i.e., DAPI. The system can be easily switched for operating both in conventional and two-photon mode. Copyright 1999 Wiley-Liss, Inc.

  15. Skin protection against UV light by dietary antioxidants.

    Science.gov (United States)

    Fernández-García, Elisabet

    2014-09-01

    There is considerable interest in the concept of additional endogenous photoprotection by dietary antioxidants. A number of efficient micronutrients are capable of contributing to the prevention of UV damage in humans. These compounds protect molecular targets by scavenging reactive oxygen species, including excited singlet oxygen and triplet state molecules, and also modulate stress-dependent signaling and/or suppress cellular and tissue responses like inflammation. Micronutrients present in the diet such as carotenoids, vitamins E and C, and polyphenols contribute to antioxidant defense and may also contribute to endogenous photoprotection. This review summarizes the literature concerning the use of dietary antioxidants as systemic photoprotective agents towards skin damage induced by UVA and UVB. Intervention studies in humans with carotenoid-rich diets have shown photoprotection. Interestingly, rather long treatment periods (a minimum of 10 weeks) were required to achieve this effect. Likewise, dietary carotenoids exert their protective antioxidant function in several in vitro and in vivo studies when present at sufficiently high concentration. A combination of vitamins E and C protects the skin against UV damage. It is suggested that daily consumption of dietary polyphenols may provide efficient protection against the harmful effects of solar UV radiation in humans. Furthermore, the use of these micronutrients in combination may provide an effective strategy for protecting human skin from damage by UV exposure.

  16. Investigations of uv TEA N/sub 2/ lasers

    Energy Technology Data Exchange (ETDEWEB)

    Santa, I; Racz, B; Kozma, L; Nemet, B

    1978-01-01

    A simple transversely excited atmospheric (TEA) nitrogen uv laser with double Blumlein-circuit switched by triggered spark gap was investigated. The Blumlein-circuits were based on flatplate wave guide and ceramic capacitors, as well. The output laser energy and the pulse shape exhibited strong dependence on the setting of the angle between the two laser electrodes, but less on the electrode separation. The minimum flowing rate to obtain the maximum output energy was determined at 25 and 50 Hz repetition rate.

  17. Synthesis and luminescent features of NaCaPO4:Tb3+ green phosphor for near UV-based LEDs

    International Nuclear Information System (INIS)

    Ratnam, B.V.; Jayasimhadri, M.; Bhaskar Kumar, G.; Jang, Kiwan; Kim, S.S.; Lee, Y.I.; Lim, J.M.; Shin, D.S.; Song, T.K.

    2013-01-01

    Highlights: ► Successfully synthesized orthorhombic phase of NaCaPO 4 (NCP) phosphors ► Structural and Luminescent properties have been investigated. ► In the excitation spectrum, 7 F 6 → 5 G 6 transition at 370 nm exhibit highest intensity. ► CIE coordinates of Tb 3+ : NCP phosphor indicate green light emission in CIE diagram. ► Hence, Tb 3+ doped NaCaPO 4 is suitable for UV based pc-LEDs. -- Abstract: An efficient green emitting Tb 3+ doped NaCaPO 4 (NCP) phosphor was synthesized by using conventional solid-state reaction for solid-state lighting applications. X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), FT-IR, emission and excitation properties were extensively investigated for NCP phosphors. X-ray diffraction analysis confirmed the formation of NaCaPO 4 with orthorhombic structure. The excitation spectrum consists of strong 4f–4f transition at around 370 nm, which has higher intensity than the f–d transition. Emission spectra indicated that this phosphor can be efficiently excited by UV light in the range from 250 to 400 nm, and shows strong emission band centered at 547 nm. Analysis of the emission spectra with different Tb 3+ concentrations revealed that the optimum dopant concentration for these NCP phosphors is about 5 mol% of Tb 3+ . Diminishing of 5 D 3 level and increasing of 5 D 4 level emission intensity with the Tb 3+ concentration explained successfully. The emission color was analyzed and confirmed with the help of chromaticity coordinates and color temperature. The excellent luminescent properties of NaCaPO 4 :Tb 3+ phosphor makes it as a potential green phosphor upon near-UV LED excitation

  18. Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and computational modeling

    KAUST Repository

    Mohammed, Omar F.; Xiao, Dequan; Batista, Victor S.; Nibbering, Erik Theodorus Johannes

    2014-01-01

    of femtosecond UV/vis and UV/IR pump-probe spectroscopic data. Upon photoabsorption at 400 nm, the S 2 electronic excited state is initially populated, followed by a rapid equilibration within 150 fs through population transfer to the S 1 state where DHAQ

  19. Light emitting diode excitation emission matrix fluorescence spectroscopy.

    Science.gov (United States)

    Hart, Sean J; JiJi, Renée D

    2002-12-01

    An excitation emission matrix (EEM) fluorescence instrument has been developed using a linear array of light emitting diodes (LED). The wavelengths covered extend from the upper UV through the visible spectrum: 370-640 nm. Using an LED array to excite fluorescence emission at multiple excitation wavelengths is a low-cost alternative to an expensive high power lamp and imaging spectrograph. The LED-EEM system is a departure from other EEM spectroscopy systems in that LEDs often have broad excitation ranges which may overlap with neighboring channels. The LED array can be considered a hybrid between a spectroscopic and sensor system, as the broad LED excitation range produces a partially selective optical measurement. The instrument has been tested and characterized using fluorescent dyes: limits of detection (LOD) for 9,10-bis(phenylethynyl)-anthracene and rhodamine B were in the mid parts-per-trillion range; detection limits for the other compounds were in the low parts-per-billion range (LED-EEMs were analyzed using parallel factor analysis (PARAFAC), which allowed the mathematical resolution of the individual contributions of the mono- and dianion fluorescein tautomers a priori. Correct identification and quantitation of six fluorescent dyes in two to six component mixtures (concentrations between 12.5 and 500 ppb) has been achieved with root mean squared errors of prediction (RMSEP) of less than 4.0 ppb for all components.

  20. Carotenoids quench evolution of excited species in epidermis exposed to UV-B (290-320 nm) light

    International Nuclear Information System (INIS)

    Mathews-Roth, M.M.

    1986-01-01

    Reactions involving singlet oxygen and other free radicals have been identified in epidermis containing either exogenous or endogenous photosensitizers, soaked in a singlet oxygen/free radical trap, and then exposed to visible or UV-A (320-400 nm) light. Such reactions can be quenched by the presence of the carotenoid pigments β-carotene and canthaxanthin which accumulate in epidermis after oral administration. It is reported that the carotenoid pigments β-carotene, canthaxanthin and phytoene accumulating in epidermis can also quench to some degree those photochemical reactions involving singlet oxygen and free radicals that occur when epidermis is exposed to the sunburn spectrum of light (UV-B, 290-320 nm). (author)

  1. 340 nm pulsed UV LED system for europium-based time-resolved fluorescence detection of immunoassays

    OpenAIRE

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter; Petersen, Paul Michael; Pedersen, Christian

    2016-01-01

    We report on the design, development and investigation of an optical system based on UV light emitting diode (LED) excitation at 340 nm for time-resolved fluorescence detection of immunoassays. The system was tested to measure cardiac marker Troponin I with a concentration of 200 ng/L in immunoassay. The signal-to-noise ratio was comparable to state-of-the-art Xenon flash lamp based unit with equal excitation energy and without overdriving the LED. We performed a comparative study of the flas...

  2. Photoexcited singlet and triplet states of a UV absorber ethylhexyl methoxycrylene.

    Science.gov (United States)

    Kikuchi, Azusa; Hata, Yuki; Kumasaka, Ryo; Nanbu, Yuichi; Yagi, Mikio

    2013-01-01

    The excited states of UV absorber, ethylhexyl methoxycrylene (EHMCR) have been studied through measurements of UV absorption, fluorescence, phosphorescence and electron paramagnetic resonance (EPR) spectra in ethanol. The energy levels of the lowest excited singlet (S1) and triplet (T1) states of EHMCR were determined. The energy levels of the S1 and T1 states of EHMCR are much lower than those of photolabile 4-tert-butyl-4'-methoxydibenzoylmethane. The energy levels of the S1 and T1 states of EHMCR are lower than those of octyl methoxycinnamate. The weak phosphorescence and EPR B(min) signals were observed and the lifetime was estimated to be 93 ms. These facts suggest that the significant proportion of the S1 molecules undergoes intersystem crossing to the T1 state, and the deactivation process from the T1 state is predominantly radiationless. The photostability of EHMCR arises from the (3)ππ* character in the T1 state. The zero-field splitting (ZFS) parameter in the T1 state is D** = 0.113 cm(-1). © 2012 The Authors Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  3. Photoluminescence properties of color-tunable SrMgAl10O17:Eu2+,Mn2+ phosphors for UV LEDs

    International Nuclear Information System (INIS)

    Ju Guifang; Hu Yihua; Chen Li; Wang Xiaojuan

    2012-01-01

    Aluminate phosphors SrMgAl 10 O 17 codoped with Eu 2+ and Mn 2+ ions were prepared by solid-state reaction. The phase structure and photoluminescence properties of the as-prepared phosphors were characterized by powder X-ray diffraction, photoluminescence excitation and emission spectra. Upon excitation of UV light, two broad emission bands centered at 470 and 515 nm were observed, and they were assigned to Eu 2+ and Mn 2+ emissions, respectively. The emission color of the phosphors can be tuned from blue to cyan and finally to green by adjusting the concentration ratios of Eu 2+ and Mn 2+ . Effective energy transfer occurs from Eu 2+ to Mn 2+ in the host due to the spectral overlap between the emission band of Eu 2+ and the excitation bands of Mn 2+ . The energy transfer mechanism was demonstrated to be electric dipole–quadrupole interaction. The energy transfer efficiency and critical distance were also calculated. The phosphors exhibit strong absorption in near UV spectral region and therefore they are potentially useful as UV-convertible phosphors for white LEDs. - Highlights: ► The strong absorption of phosphors matches well with the emission band of UV LED. ► The energy transfer from Eu 2+ to Mn 2+ in SrMgAl 10 O 17 was investigated in detail. ► The emission color can be tuned by adjusting the content of Eu 2+ and Mn 2+ . ► Two methods were employed to calculate the critical distance of energy transfer.

  4. Investigation of the multiphotonic excitation processes of the 4f2 5d configuration in LiYF4, LiLuF4 and BaY2F8 crystals doped with trivalent neodymium

    International Nuclear Information System (INIS)

    Librantz, Andre Felipe Henriques

    2004-01-01

    Ultraviolet (UV) fluorescence of Nd 3+ ions induced by multistep laser excitation was investigated in Nd-doped LiYF 4 (YLF), LiLuF 4 (LLF) and BaY 2 F 8 (BaYF) crystals using a technique of time-resolved spectroscopy. The observed UV luminescence was due to transitions between the bottom of 4f 2 5d configuration and the 4f 3 states of Nd 3+ ions. The lower excited state 4f 2 ( 3 H)5d [ 4 K 11/2 ] was reached by three stepwise absorptions of photons at 521 nm (green) and 478 nm (blue) of a short pulse laser excitation. The three sequential absorptions at 478 nm constitutes a new multiphoton excitation process of Nd 3+ in these crystals with the following excitation sequence: 4 I 9/2 + hv(480 nm)→ 2 G(1) 9/2 + hv(480 nm)→ 2 F(2) 7/2 + hv(480 nm)→ 4f 2 ( 3 H)5d [ 4 K 9/2 ] (excited state at ∼ 63000 cm -1 ). The observed UV emissions from [ 4 K 11/2 ] state have a lifetime of 35 ns (parity allowed) and are: broadband in contrast to UV emissions from 4f 3 configuration, which are also present in the luminescence investigation but having longer lifetime (8 μs) and structures composed of narrow lines. The excitation spectrum of fast UV luminescence exhibited different structure depending on the excitation geometry (σ or π) with respect to the c-axis of the crystal. It was seen two new emissions from [ 4 K 11/2 ] and 2 F(2) 5/2 states near 528 nm, which modified the branching ratio of the bottom of the 4f 2 5d configuration (∼ 55500 cm -1 for the YLF and LLF crystals and ∼-53700 cm -1 for the BaYF crystal). The equivalent cross-section of three and two excitation process was estimated at 521 nm by solving the rate equations of the system under short laser excitation, which leads us to infer that is possible to have laser action under pulsed laser pumping with intensity below the crystal damage threshold. (author)

  5. Hypersensitivity to DNA-damaging agents in primary degenerations of excitable tissue

    International Nuclear Information System (INIS)

    Robbins, J.H.

    1983-01-01

    Defects in DNA-repair mechanisms render xeroderma pigmentosum cells hypersensitive to killing by the uv-type of DNA-damaging agent. Some xeroderma pigmentosum patients develop a primary neuronal degeneration, and cell lines from patients with the earliest onset of neurodegeneration are the most sensitive to killing by uv radiation. These findings led to the neuronal DNA integrity theory which holds that when the integrity of neuronal DNA is destroyed by the accumulation of unrepaired DNA damaged spontaneously or by endogenous metabolites, the neurons will undergo a primary degeneration. Cells from patients with Cockayne syndrome, a demyelinating disorder with a primary retinal degeneration, are also hypersensitive to the uv-type of DNA-damaging agent. Cells from patients with the primary neuronal degeneration of ataxia telangiectasia are hypersensitive to the x-ray-type of DNA-damaging agent. Cells from other patients with primary degeneration of excitable tissue also have hypersensitivity to the x-ray-type of DNA-damaging agent. These disorders include (1) primary neuronal degenerations which are either genetic (e.g., Huntington disease, familial dysautonomia, Friedreich ataxia) or sporadic (e.g., Alzheimer disease, Parkinson disease), (2) primary muscle degenerations (e.g., Duchenne muscular dystrophy), and (3) a primary retinal degeneration (Usher syndrome). Death of excitable tissue in vivo in these radiosensitive diseases may result from unrepaired DNA. This hypersensitivity provides the basis for developing suitable presymptomatic and prenatal tests for these diseases, for elucidating their pathogenesis, and for developing future therapies. 119 references, 3 figures, 3 tables

  6. Powerful highly efficient KrF lamps excited by surface and barrier discharges

    International Nuclear Information System (INIS)

    Borisov, V M; Vodchits, V A; El'tsov, A V; Khristoforov, O B

    1998-01-01

    An investigation was made of the characteristics of KrF lamps with different types of excitation by surface and barrier discharges in which the dielectric material was sapphire. The conditions were determined for the attainment of an extremely high yield of the KrF* fluorescence with the internal efficiency η in ∼30 % and 22% for pulsed surface and barrier discharges, respectively. A homogeneous surface discharge was maintained without gas circulation when the pulse repetition rate was 5 x 10 4 Hz. Quasicontinuous excitation of a surface discharge at near-atmospheric pressure made it possible to reach a KrF* fluorescence power density of about 80 W cm -3 , which was close to the limit set by the kinetics of the gaseous medium. Under prolonged excitation conditions the intensity of the UV output radiation was limited by the permissible heating of the gas to a temperature above which the operating life of the gaseous mixture containing fluorine fell steeply. This was the reason for the advantage of surface over barrier discharges: the former were characterised by a high thermal conductivity of a thin (∼0.2 mm) plasma layer on the surface of the cooled dielectric, which made it possible to construct powerful highly efficient KrF and ArF lamps emitting UV radiation of up to 1 W cm -2 intensity. (laser system components)

  7. Large area UV light source with a semiconductor cathode

    International Nuclear Information System (INIS)

    Salamov, B. G.; Ciftci, Y. Oe.; Colakoglu, K.

    2002-01-01

    The light emission (LE) in the UV and visible (blue) range generated by a planar gas discharge system (PGDS) with a semiconductor cathode (SC) are studied. New light source offer high-intensity narrow-band emission at various UV and visible wavelengths (330 - 440 nm). Spectra in N 2 is presented, as well as intensity vs pressure curves for the main peaks of the spectrum. The use of source offers several advantages: PGDS can be extremely efficient energy converters transforming and amplifying a relatively low-powered photon flux incident on the receiving surface of the SC into a flux of high-energy particles over extended areas, i.e. electron, ions, photons. Thus, extremely bright UV and visible sources can be built. LE characteristics of the space in the PGDS are complex, depending on the emitting medium and species. By using the IR light to excite the SC of the system, we have shown that the discharge light emission (DLE) of the device with the N 2 in the gap can serve as an efficient source of the UV radiation if gas pressure and electric field are sufficiently high. This is realized due to the effect of the stabilisation of the spatially homogeneous mode of the discharge in a narrow gap with a large emitting area of SC. Special features of DLE render it highly promising for the development of sources with a large area of the emitting surface, high spatial uniformity of UV radiation, and fast dynamics of these devices. This low cost, high power light sources can provide an interesting alternative to conventional UV lamps

  8. UV spectroscopy including ISM line absorption: of the exciting star of Abell 35

    Science.gov (United States)

    Ziegler, M.; Rauch, T.; Werner, K.; Kruk, J. W.

    Reliable spectral analysis that is based on high-resolution UV observations requires an adequate, simultaneous modeling of the interstellar line absorption and reddening. In the case of the central star of the planetary nebula Abell 35, BD-22 3467, we demonstrate our current standard spectral-analysis method that is based on the Tübingen NLTE Model-Atmosphere Package (TMAP). We present an on- going spectral analysis of FUSE and HST/STIS observations of BD-22 3467.

  9. Optical energy transport and interactions between the excitations in a coumarin-perylene bisimide dendrimer

    NARCIS (Netherlands)

    Augulis, Ramunas; Pugzlys, Audrius; Hurenkamp, Johannes; Feringa, Ben L.; van Esch, Jan H.; van Loosdrecht, Paul H. M.

    2007-01-01

    Energy transfer properties of novel coumarin-perylene bisimide dendrimer are studied by means of steady state and time-resolved UV/vis spectroscopy. At low donor excitation density fast (transfer rate similar to 10 ps(-1)) and efficient (quantum yield similar to 99.5%) donor-acceptor energy transfer

  10. Field-dependent molecular ionization and excitation energies: Implications for electrically insulating liquids

    Directory of Open Access Journals (Sweden)

    N. Davari

    2014-03-01

    Full Text Available The molecular ionization potential has a relatively strong electric-field dependence as compared to the excitation energies which has implications for electrical insulation since the excited states work as an energy sink emitting light in the UV/VIS region. At some threshold field, all the excited states of the molecule have vanished and the molecule is a two-state system with the ground state and the ionized state, which has been hypothesized as a possible origin of different streamer propagation modes. Constrained density-functional theory is used to calculate the field-dependent ionization potential of different types of molecules relevant for electrically insulating liquids. The low singlet-singlet excitation energies of each molecule have also been calculated using time-dependent density functional theory. It is shown that low-energy singlet-singlet excitation of the type n → π* (lone pair to unoccupied π* orbital has the ability to survive at higher fields. This type of excitation can for example be found in esters, diketones and many color dyes. For alkanes (as for example n-tridecane and cyclohexane on the other hand, all the excited states, in particular the σ → σ* excitations vanish in electric fields higher than 10 MV/cm. Further implications for the design of electrically insulating dielectric liquids based on the molecular ionization potential and excitation energies are discussed.

  11. UV Deprivation Influences Social UV Preference in Juvenile Sticklebacks

    Directory of Open Access Journals (Sweden)

    Ricarda Modarressie

    2015-05-01

    Full Text Available Social aggregations occur in many different animal taxa and mainly result from non-random assortment. Investigating factors that shape and maintain the composition of social aggregations are among others a main topic for understanding ecological speciation processes. Aggregation decisions are mediated by olfactory and visual cues, which in many animals are extended into the UV part of the electromagnetic spectrum. Here, we were interested in developmental plasticity of social preferences with respect to UV radiation in aquatic organisms. Specifically, we tested whether different lighting environments with respect to UV wavelengths during early life stages influence the shoaling preference in juvenile threespine sticklebacks (Gasterosteus aculeatus. Family (full-sibling groups were split and reared under UV-lacking (UV- and UV-present (UV+ lighting conditions. Subsequent shoal choice experiments, in which test fish from both rearing conditions could simultaneously choose between a shoal seen behind a UV-blocking (UV- and a shoal seen behind a UV-transmitting (UV+ filter, revealed a significant effect of lighting condition during rearing on association preference. Test fish that had been deprived of UV spent significantly more time near the UV- shoal compared to the test fish reared under full-spectrum lighting conditions. The results are discussed with respect to plasticity of the visual system and environmental lighting conditions.

  12. Detection of Fish Bones in Cod Fillets by UV Illumination.

    Science.gov (United States)

    Wang, Sheng; Nian, Rui; Cao, Limin; Sui, Jianxin; Lin, Hong

    2015-07-01

    The presence of fish bones is now regarded as an important hazard in fishery products, and there is increasing demand for new analytical techniques to control it more effectively. Here, the fluorescent properties of cod bones under UV illumination were investigated, and the maximal wavelengths for excitation and emission were determined to be 320 nm and 515 nm, respectively, demonstrating significantly different fluorescence characteristics and much higher fluorescence intensity compared to those of fillet muscles. Based on the results, UV fluorescence-assisted candling for the detection of bones in fishery products was developed for the first time. Using cod fillets as samples, the detection ratio of this technique was calculated as 90.86%, significantly higher than that of traditional candling under daylight (76.78%). Moreover, the working efficiency of the new technique was about 26% higher than that of the traditional method. A UV fluorescence imaging framework was also developed, and a method for automatic identification of the fish bones in the cod fillets based on the linear discriminant analysis proposed by Fisher was preliminarily realized, but the detection ratio was demonstrated to be relatively poor compared to those of candling techniques. These results allow us to suggest UV-based methods as new and promising approaches for routine monitoring of bones in fishery products.

  13. Importance of Vibronic Effects in the UV-Vis Spectrum of the 7,7,8,8-Tetracyanoquinodimethane Anion.

    Science.gov (United States)

    Tapavicza, Enrico; Furche, Filipp; Sundholm, Dage

    2016-10-11

    We present a computational method for simulating vibronic absorption spectra in the ultraviolet-visible (UV-vis) range and apply it to the 7,7,8,8-tetracyanoquinodimethane anion (TCNQ - ), which has been used as a ligand in black absorbers. Gaussian broadening of vertical electronic excitation energies of TCNQ - from linear-response time-dependent density functional theory produces only one band, which is qualitatively incorrect. Thus, the harmonic vibrational modes of the two lowest doublet states were computed, and the vibronic UV-vis spectrum was simulated using the displaced harmonic oscillator approximation, the frequency-shifted harmonic oscillator approximation, and the full Duschinsky formalism. An efficient real-time generating function method was implemented to avoid the exponential complexity of conventional Franck-Condon approaches to vibronic spectra. The obtained UV-vis spectra for TCNQ - agree well with experiment; the Duschinsky rotation is found to have only a minor effect on the spectrum. Born-Oppenheimer molecular dynamics simulations combined with calculations of the electronic excitation energies for a large number of molecular structures were also used for simulating the UV-vis spectrum. The Born-Oppenheimer molecular dynamics simulations yield a broadening of the energetically lowest peak in the absorption spectrum, but additional vibrational bands present in the experimental and simulated quantum harmonic oscillator spectra are not observed in the molecular dynamics simulations. Our results underline the importance of vibronic effects for the UV-vis spectrum of TCNQ - , and they establish an efficient method for obtaining vibronic spectra using a combination of linear-response time-dependent density functional theory and a real-time generating function approach.

  14. Spatial distribution of FIR rotationally excited CH+ and OH emission lines in the Orion Bar PDR.

    Science.gov (United States)

    Parikka, A; Habart, E; Bernard-Salas, J; Goicoechea, J R; Abergel, A; Pilleri, P; Dartois, E; Joblin, C; Gerin, M; Godard, B

    2017-03-01

    -440, which shows that OH can be an excellent tracer of UV-irradiated dense gas. The spatial distribution of CH + and OH revealed in our maps is consistent with previous modeling studies. Both formation pumping and nonreactive collisions in a UV-irradiated dense gas are important CH + J=3-2 excitation processes. The excitation of the OH Λ-doublet at 84 µm is mainly sensitive to the temperature and density.

  15. UV plasmonic enhancement through three dimensional nano-cavity antenna array in aluminum

    Science.gov (United States)

    Mao, Jieying; Stevenson, Peter; Montanaric, Danielle; Wang, Yunshan; Shumaker-Parry, Jennifer S.; Harris, Joel M.; Blair, Steve

    2017-08-01

    Metallic nanostructure can enhance fluorescence through excited surface plasmons which increase the local field as well as improve its quantum efficiency. When coupling to cavity resonance with proper gap dimension, gap hot spots can be generated to interact with fluorescence at their excitation/emission region in UV. A 3D nano-cavity antenna array in Aluminum has been conducted to generate local hot spot resonant at fluorescence emission resonance. Giant field enhancement has been achieved through coupling fundamental resonance modes of nanocavity into surface plasmons polaritons (SPPs). In this work, two distinct plasmonic structure of 3D resonant cavity nanoantenna has been studied and its plasmonic response has been scaled down to the UV regime through finite-difference-time-domain (FDTD) method. Two different strategies for antenna fabrication will be conducted to obtain D-coupled Dots-on-Pillar Antenna array (D2PA) through Focus Ion Beam (FIB) and Cap- Hole Pair Antenna array (CHPA) through nanosphere template lithography (NTL). With proper optimization of the structures, D2PA and CHPA square array with 280nm pitch have achieved distinct enhancement at fluorophore emission wavelength 350nm and excitation wavelength 280nm simultaneously. Maximum field enhancement can reach 20 and 65 fold in the gap of D2PA and CHPA when light incident from substrate, which is expected to greatly enhance fluorescent quantum efficiency that will be confirmed in fluorescence lifetime measurement.

  16. UV and VUV characteristics of (YGd)2O3:Eu phosphor particles prepared by spray pyrolysis from polymeric precursors

    International Nuclear Information System (INIS)

    Kim, E.J.; Kang, Y.C.; Park, H.D.; Ryu, S.K.

    2003-01-01

    Red-emitting (YGd) 2 O 3 :Eu phosphor particles, with high luminescence efficiency under vacuum ultraviolet (VUV) and ultraviolet (UV) excitation, were prepared by a large-scale spray pyrolysis process. To control the morphology of phosphor particles under severe preparation conditions, spray solution with polymeric precursors were introduced in spray pyrolysis. The prepared (YGd) 2 O 3 :Eu phosphor particles had spherical shape and filled morphology even after post-treatment irrespective of Gd/Y ratio. In the case of solution with polymeric precursors, long polymeric chains formed by esterification reaction in a hot tubular reactor; the droplets turned into viscous gel, which retarded the precipitation of nitrate salts and promoted the volume precipitation of droplets. The brightness of (YGd) 2 O 3 :Eu phosphor particles increased with increasing gadolinium content, and the Gd 2 O 3 :Eu phosphor had the highest luminescence intensity under UV and VUV excitation. The maximum peak intensity of Gd 2 O 3 :Eu phosphor particles under UV and VUV were 118 and 110% of the commercial Y 2 O 3 :Eu phosphor particles, respectively

  17. Polymer filters for ultraviolet-excited integrated fluorescence sensing

    International Nuclear Information System (INIS)

    Dandin, Marc; Abshire, Pamela; Smela, Elisabeth

    2012-01-01

    Optical filters for blocking ultraviolet (UV) light were fabricated by doping various polymer hosts with a UV absorbing chromophore. The polymers were polydimethylsiloxane (PDMS), a silicone elastomer frequently used in microfluidics, SU-8, a photopatternable epoxy, and Humiseal 1B66, an acrylic coating used for moisture protection of integrated circuits. The chromophore was 2-(2′-hydroxy-5′-methylphenyl) benzotriazole (BTA), which has a high extinction coefficient between 300 nm and 400 nm. We demonstrate filters 5 µm thick that exhibit high ultraviolet rejection (nearly −40 dB at 342 nm) yet pass visible light (near 0 dB above 400 nm), making them ideal for ultraviolet-excited fluorescence sensing within microsystems. The absorbance of the BTA depended on the host polymer. These filters are promising for integrated fluorescence spectroscopy in bioanalytical platforms because they can be patterned by dry etching, molding or exposure to ultraviolet light. (paper)

  18. Cooperative down-conversion of UV light in disordered scheelitelike Yb-doped NaGd(MoO4)2 and NaLa(MoO4)2 crystals

    Science.gov (United States)

    Subbotin, K. A.; Osipova, Yu. N.; Lis, D. A.; Smirnov, V. A.; Zharikov, E. V.; Shcherbakov, I. A.

    2017-07-01

    Concentration series of disordered scheelitelike Yb:NaGd(MoO4)2 and Yb:NaLa(MoO4)2 single crystals are grown by the Czochralski method. The actual concentrations of Yb3+ ions in the crystals are determined by optical-absorption spectroscopy. The luminescence of Yb3+ ions in these crystals in the region of 1 μm is studied under UV and IR excitation. In the case of UV excitation, this luminescence appears as a result of nonradiative excited state energy transfer from donor centers of unknown nature to ytterbium. The character of the concentration dependence of Yb3+ luminescence indicates that the energy transfer at high Yb concentrations occurs with active participation of a cooperative mechanism, according to which the excitation energy of one donor center is transferred simultaneously to two Yb3+ ions. In other words, the quantum yield of this transfer exceeds unity, which can be used to increase the efficiency of crystalline silicon (c-Si) solar cells.

  19. Autofluorescence of pigmented skin lesions using a pulsed UV laser with synchronized detection: clinical results

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Svenmarker, Pontus; Tidemand-Lichtenberg, Peter

    2010-01-01

    signal, which may in turn produce high contrast images that improve diagnosis, even in the presence of ambient room light. The synchronized set-up utilizes a compact, diode pumped, pulsed UV laser at 355 nm which is coupled to a CCD camera and a liquid crystal tunable filter. The excitation and image......We report preliminary clinical results of autofluorescence imaging of malignant and benign skin lesions, using pulsed 355 nm laser excitation with synchronized detection. The novel synchronized detection system allows high signal-to-noise ratio to be achieved in the resulting autofluorescence...

  20. Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and computational modeling

    KAUST Repository

    Mohammed, Omar F.

    2014-05-01

    We combine ultrafast electronic and vibrational spectroscopy and computational modeling to investigate the photoinduced excited-state intramolecular hydrogen-transfer dynamics in 1,8-dihydroxy-9,10-anthraquinone (DHAQ) in tetrachloroethene, acetonitrile, dimethyl sulfoxide, and methanol. We analyze the electronic excited states of DHAQ with various possible hydrogen-bonding schemes and provide a general description of the electronic excited-state dynamics based on a systematic analysis of femtosecond UV/vis and UV/IR pump-probe spectroscopic data. Upon photoabsorption at 400 nm, the S 2 electronic excited state is initially populated, followed by a rapid equilibration within 150 fs through population transfer to the S 1 state where DHAQ exhibits ESIHT dynamics. In this equilibration process, the excited-state population is distributed between the 9,10-quinone (S2) and 1,10-quinone (S1) states while undergoing vibrational energy redistribution, vibrational cooling, and solvation dynamics on the 0.1-50 ps time scale. Transient UV/vis pump-probe data in methanol also suggest additional relaxation dynamics on the subnanosecond time scale, which we tentatively ascribe to hydrogen bond dynamics of DHAQ with the protic solvent, affecting the equilibrium population dynamics within the S2 and S1 electronic excited states. Ultimately, the two excited singlet states decay with a solvent-dependent time constant ranging from 139 to 210 ps. The concomitant electronic ground-state recovery is, however, only partial because a large fraction of the population relaxes to the first triplet state. From the similarity of the time scales involved, we conjecture that the solvent plays a crucial role in breaking the intramolecular hydrogen bond of DHAQ during the S2/S1 relaxation to either the ground or triplet state. © 2014 American Chemical Society.

  1. A Comparative Study of H2 Excitation and Physical Conditions in Interstellar and Circumstellar Photo-dissociation Regions

    Science.gov (United States)

    Kaplan, Kyle; Dinerstein, Harriet L.; Jaffe, Daniel Thomas

    2017-06-01

    “Photo-dissociation” or “Photon-dominated” Regions (PDRs) exist in the ISM at the interfaces between photo-ionized and molecular gas, where UV radiation sets the ionization state, chemistry, and excitation at the edge of the molecular zone. In these regions, excited rotational-vibrational (“rovibrational”) states of the ground electronic state of H2 are fluorescently populated when the absorption of far-UV photons conveys the molecules into excited electronic states from which they rapidly decay. Downward transitions from the excited rovibrational states produce a rich spectrum of near-infrared emission lines. Since these quadrupole lines are generally optically thin, their fluxes scale with the populations of the upper levels of the respective transitions, providing excellent probes of the excitation and physical conditions in the emitting regions. We present and compare high resolution (R~45,000) near-infrared (1.45-2.45 μm) spectra, obtained on the 2.7 m Harlan J. Smith Telescope at McDonald Observatory with the Immersion Grating INfrared Spectrometer (IGRINS) (Park et al. 2014, SPIE, 9147, 1), for a variety of Galactic PDRs including regions of high mass star formation, reflection nebulae, and planetary nebulae. Typically a large number of transitions, up to about 100 individual lines, are seen in each source. We fit grids of Cloudy models (Ferland et al. 2013, RMxAA, 49, 137) to the observed H2 emission to constrain physical parameters such as the temperature, density, and UV field of each PDR and explore the similarities and differences between the various environments where PDRs arise.This work used the Immersion Grating INfrared Spectrometer (IGRINS), developed under a collaboration between the University of Texas at Austin and the Korea Astronomy and Space Science Institute (KASI) with the financial support of the US National Science Foundation (NSF grant AST-1229522) to the University of Texas at Austin, and the Korean GMT Project of KASI. We

  2. Li4SrCa(SiO4)2:Ce3+, a highly efficient near-UV and blue emitting orthosilicate phosphor

    International Nuclear Information System (INIS)

    Zhang, Jilin; Zhang, Weilu; Qiu, Zhongxian; Zhou, Wenli; Yu, Liping; Li, Zhiqiang; Lian, Shixun

    2015-01-01

    High quantum efficiency is a vital parameter of phosphors for practical application. An efficient near-UV and blue emitting phosphor Li 4 SrCa(SiO 4 ) 2 :Ce 3+ was synthesized by a traditional solid-state reaction, and luminescent properties were studied in detail. The Ce 3+ -activated phosphor can emit both a near-UV light centred at 345 nm and a blue light peaking at 420 nm when Ce 3+ occupies the Sr and Ca site, respectively. The internal quantum efficiency (IQE) of Li 4 SrCa(SiO 4 ) 2 :0.03Ce 3+ is as high as 97% under the excitation at 288 nm, while the external quantum efficiency (EQE) is 66%. The IQE and EQE values of Li 4 SrCa(SiO 4 ) 2 :0.03Ce 3+ under the excitation at 360 nm are 82% and 31%, respectively. - Highlights: • Phosphor Li 4 SrCa(SiO 4 ) 2 :Ce 3+ emits a near-UV (345 nm) and a blue light (420 nm). • Emission band at 345 nm originates from Ce 3+ on Sr site. • Emission band at 420 nm belongs to Ce 3+ on Ca site. • Internal quantum efficiency is 97% for Li 4 SrCa(SiO 4 ) 2 :0.03Ce 3+ excited at 288 nm

  3. Structural characteristics and UV-light enhanced gas sensitivity of La-doped ZnO nanoparticles

    International Nuclear Information System (INIS)

    Ge Chunqiao; Xie Changsheng; Hu Mulin; Gui Yanghai; Bai Zikui; Zeng Dawen

    2007-01-01

    La-doped ZnO nanoparticles were synthesized by sol-gel method starting from zinc acetate dihydrate, lanthanum sesquioxide, alcohol and nitric acid. The crystal structure and morphology of the nanoparticles were characterized by XRD, FESEM, respectively. The thermal decomposition behavior of the the ZnO-based xerogel was detected by TG-DSC. The results show that as-prepared nanoparticles with the hexagonal wurtzite contain the adsorbed water and some organic compounds below 300 o C, which is the key to the calcinations of the ZnO-based xerogel. Pure ZnO and La-doped ZnO thick film sensors were prepared and tested for specific sensitivity to alcohol and benzene with (and without) UV-light excitation. Among all, 10 at.%La-ZnO-based sensors are significantly sensitive to 100 ppm alcohol and 100 ppm benzene. There is an obvious enhancement of the gas-sensing performances with UV-light excitation. That is, the sensitivity to 100 ppm benzene rises twice. The observed sensitivity to alcohol and benzene could be explained with the surface adsorption theory and the conduction-band theory

  4. Excitation wavelength dependent photoluminescence emission behavior, UV induced photoluminescence enhancement and optical gap tuning of Zn0.45Cd0.55S nanoparticles for optoelectronic applications

    Science.gov (United States)

    Osman, M. A.; Abd-Elrahim, A. G.

    2018-03-01

    In the present study, we investigate the excitation wavelength (λex) dependent photoluminescence (PL) behavior in Zn0.45Cd0.55S nanoparticles. The deconvoluted PL emission bands for nanopowders and nanocolloids reveal noticeable spectral blue shift with decreasing λex accompanied by intensity enhancement. This unusual behavior is explained in terms of selective particle size distribution in nanostructures, advancing of fast ionization process at short λex; and solvation process in polar solvent. In addition, we attributed the UV-induced PL intensity enhancement and blue shift of the optical gap to the reduction in particle size by photo-corrosion process associated with the improvement in the quantum size effect; surface modification due to cross-linkage improvement of capping molecules at NPs surface; the creation of new radiative centers and the formation of photo-passivation layers from ZnSO4 and CdSO4, and photo-enhanced oxygen adsorption on Zn0.45Cd0.55S nanoparticles surface.

  5. [Cleavage of DNA fragments induced by UV nanosecond laser excitation at 193 nm].

    Science.gov (United States)

    Vtiurina, N N; Grokhovskiĭ, S L; Filimonov, I V; Medvedkov, O I; Nechipurenko, D Iu; Vasil'ev, S A; Nechipurenko, Iu D

    2011-01-01

    The cleavage of dsDNA fragments in aqueous solution after irradiation with UV laser pulses at 193 nm has been studied. Samples were investigated using polyacrylamide gel electrophoresis. The intensity of damage of particular phosphodiester bond after hot alkali treatment was shown to depend on the base pair sequence. It was established that the probability of cleavage is twice higher for sites of DNA containing two or more successively running guanine residues. A possible mechanism of damage to the DNA molecule connected with the migration of holes along the helix is discussed.

  6. Luminescence and conductivity studies on CVD diamond exposed to UV light

    Science.gov (United States)

    Bizzarri, A.; Bogani, F.; Bruzzi, M.; Sciortino, S.

    1999-04-01

    The photoluminescence (PL), thermoluminescence (TL) and thermally stimulated currents (TSC) of four high-quality CVD diamond films have been investigated in the range of temperatures between 300 and 700 K. The sample excitation has been carried out by means of an UV xenon lamp and UV laser lines. The features of the signals have been found equal to those obtained from particle excitation. The TL analysis shows the existence of several deep traps with activation energies between 0.6 and 1.0 eV. The contribution to the TL signal from different traps has been singled out by means of successive annealing processes. The TL results are in good agreement with those obtained from TSC measurements. The combined use of the two techniques allows a precise determination of the trap parameters. The spectral content of the TL response has also been compared with the PL signal in order to investigate the recombination process. This analysis shows that, in this temperature range, the TL signal is likely due to recombination from bound states rather than due to radiative free to bound transitions, as generally assumed in TL theory. The TSC signal is likely to arise from impurity band rather than from free carriers conduction.

  7. Luminescence and conductivity studies on CVD diamond exposed to UV light

    International Nuclear Information System (INIS)

    Bizzarri, A.; Bogani, F.; Bruzzi, M.; Sciortino, S.

    1999-01-01

    The photoluminescence (PL), thermoluminescence (TL) and thermally stimulated currents (TSC) of four high-quality CVD diamond films have been investigated in the range of temperatures between 300 and 700 K. The sample excitation has been carried out by means of an UV xenon lamp and UV laser lines. The features of the signals have been found equal to those obtained from particle excitation. The TL analysis shows the existence of several deep traps with activation energies between 0.6 and 1.0 eV. The contribution to the TL signal from different traps has been singled out by means of successive annealing processes. The TL results are in good agreement with those obtained from TSC measurements. The combined use of the two techniques allows a precise determination of the trap parameters. The spectral content of the TL response has also been compared with the PL signal in order to investigate the recombination process. This analysis shows that, in this temperature range, the TL signal is likely due to recombination from bound states rather than due to radiative free to bound transitions, as generally assumed in TL theory. The TSC signal is likely to arise from impurity band rather than from free carriers conduction

  8. Luminescence and conductivity studies on CVD diamond exposed to UV light

    Energy Technology Data Exchange (ETDEWEB)

    Bizzarri, A.; Bogani, F.; Bruzzi, M.; Sciortino, S

    1999-04-21

    The photoluminescence (PL), thermoluminescence (TL) and thermally stimulated currents (TSC) of four high-quality CVD diamond films have been investigated in the range of temperatures between 300 and 700 K. The sample excitation has been carried out by means of an UV xenon lamp and UV laser lines. The features of the signals have been found equal to those obtained from particle excitation. The TL analysis shows the existence of several deep traps with activation energies between 0.6 and 1.0 eV. The contribution to the TL signal from different traps has been singled out by means of successive annealing processes. The TL results are in good agreement with those obtained from TSC measurements. The combined use of the two techniques allows a precise determination of the trap parameters. The spectral content of the TL response has also been compared with the PL signal in order to investigate the recombination process. This analysis shows that, in this temperature range, the TL signal is likely due to recombination from bound states rather than due to radiative free to bound transitions, as generally assumed in TL theory. The TSC signal is likely to arise from impurity band rather than from free carriers conduction.

  9. UV photooxidation induced structural and photoluminescence behaviors in vapor-etching based porous silicon

    International Nuclear Information System (INIS)

    Aouida, S.; Saadoun, M.; Ben Saad, K.; Bessais, B.

    2006-01-01

    In this paper, we investigate the effect of UV irradiation on Vapor-Etching (VE) based Porous Silicon (PS) structure and luminescence under controlled atmosphere (N 2 , air, O 2 ). The oxidation evolution is monitored by Fourier transform infrared (FTIR) spectroscopy. FTIR measurements show that the SiH x bond, initially present in the freshly prepared PS layers, decreased progressively with UV irradiation time until they completely disappear. We found that this treatment accelerates the oxidation process. SiO x structures appear and gradually become dominant as regard to the SiH x species, while UV irradiation is in progress. Generally, the photoluminescence (PL) intensity of the PS layer decreases instantaneously at the starting by the UV excitation and stabilizes after a period depending on the ambient gas and the specific surface area of the porous structure. Further UV exposure leads to a linear decrease of the PL intensity due to change of surface passivation from SiH x to O y SiH x . After less than 100 min of UV irradiation, the PL intensity exhibits an exponential decay. UV exposure in air and O 2 leads approximately to the same PL behavior, although faster PL intensity decrease was observed under O 2 -rich ambient. This was explained as being due to intense hydrogen desorption in presence of oxygen. Correlations of PL results with FTIR measurements show that surface passivation determine the electronic states of silicon nano-crystallites and influence the photoluminescence efficiency

  10. A study of electron excitations in CaWO sub 4 and PbWO sub 4 single crystals

    CERN Document Server

    Muerk, V; Mihoková, E; Nitsch, K

    1997-01-01

    The excitation spectra of photo- and thermo-luminescence were compared in the VUV-UV spectral region in CaWO sub 4 and PbWO sub 4 scheelite tungstates. Temperature dependences of emission intensities and decay times were measured for PbWO sub 4 in the 80-300 K range and approximated by a simple phenomenological model. The energy level structure of the emission centre excited state and related kinetic processes are discussed for both tungstates. (author)

  11. Pulsed laser study of excited states of aromatic molecules absorbed in globular proteins

    International Nuclear Information System (INIS)

    Cooper, M.; Thomas, J.K.

    1977-01-01

    Pyrene and several derivatives of pyrene such as pyrene sulfonic acid, and pyrene butyric acid were incorporated into bovine serum albumin (BSA) in aqueous solution. The pyrene chromophore was subsequently excited by a pulse of uv light (lambda = 3471 A) from a Q switched frequency doubled ruby laser. The lifetime of the pyrene excited singlet and triplet states were monitored by time resolved spectrophotometry. Various molecules, such as O 2 and I - , dissolved in the aqueous phase, diffused into the protein and quenched pyrene excited states. The rates of these reactions were followed under a variety of conditions such as pH and temperature and in the presence of inert additives. The rates of pyrene excited-state quenching were often considerably smaller than the rates observed in simple solutions. A comparison of the rates in the protein and homogeneous solutions gives information on the factors such as temperature, charge, and pH that control the movement of small molecules in and into BSA

  12. UV spectrophotometry of the Metronidazole

    Directory of Open Access Journals (Sweden)

    O. I. Panasenko

    2013-10-01

    Full Text Available Objective. The purpose of this research was to study the UV spectrum of Metronidazole in different polarity solvents (water, 95 % ethanol, 0,1 M sodium hydroxide, 0,1 M hydrochloric acid and 5 M sulfuric acid solution, to establish the relationship between chemical structure of the analyzed compounds and the nature of their electronic spectrum. In addition, a detailed study of the ultraviolet spectra of Metronidazole in different solutions enables to select the optimal wavelength and a thinner design for Metronidazole in substance and dosage forms. Materials and methods. Spectrophotometer SPECORD 200-222U214 has been used for study of the UV spectra of Metronidazole, the quantitative methods were used. Measuring of the absorption of Metronidazole solutions has been carried out in quartz cuvettes with a layer thickness of 10 mm. Due to the fact that the test material shows selective absorption in the ultraviolet spectra, model compounds were studied at a concentration of 1 mg%. Study of electronic spectra was performed in the range of 200 to 400 nm, and the curve has been constructed in coordinates A = f (λ. It has been used water, 95% ethanol, 0,1 M NaOH, 0,1 M HCl and 5 M H2SO4 as solvents. The content of Metronidazole in substance and dosage forms calculated with the equations according to SPU. The results. Study of the UV spectra of Metronidazole and its model compounds showed that in short-wave part of spectrum due to absorption and excitation electrons of imidazole ring were transferred, and in long-wave – conjugation chromophore imidazole cycle and nitro group as electron acceptor occurred. Analysis of the UV spectra of Metronidazole enables to determine a maximum of the analytical quantification of the medicine. Conclusions. Metronidazole UV spectra in water, 95% ethanol, 0,1 M solution of NaOH, 0,1 M solution of HCl and 5 M solution of H2SO4 have been studied. Metronidazole UV spectra are characterized by two absorption bands in the

  13. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting.

    Science.gov (United States)

    Pu, Ying-Chih; Wang, Gongming; Chang, Kao-Der; Ling, Yichuan; Lin, Yin-Kai; Fitzmorris, Bob C; Liu, Chia-Ming; Lu, Xihong; Tong, Yexiang; Zhang, Jin Z; Hsu, Yung-Jung; Li, Yat

    2013-08-14

    Here we demonstrate that the photoactivity of Au-decorated TiO2 electrodes for photoelectrochemical water oxidation can be effectively enhanced in the entire UV-visible region from 300 to 800 nm by manipulating the shape of the decorated Au nanostructures. The samples were prepared by carefully depositing Au nanoparticles (NPs), Au nanorods (NRs), and a mixture of Au NPs and NRs on the surface of TiO2 nanowire arrays. As compared with bare TiO2, Au NP-decorated TiO2 nanowire electrodes exhibited significantly enhanced photoactivity in both the UV and visible regions. For Au NR-decorated TiO2 electrodes, the photoactivity enhancement was, however, observed in the visible region only, with the largest photocurrent generation achieved at 710 nm. Significantly, TiO2 nanowires deposited with a mixture of Au NPs and NRs showed enhanced photoactivity in the entire UV-visible region. Monochromatic incident photon-to-electron conversion efficiency measurements indicated that excitation of surface plasmon resonance of Au is responsible for the enhanced photoactivity of Au nanostructure-decorated TiO2 nanowires. Photovoltage experiment showed that the enhanced photoactivity of Au NP-decorated TiO2 in the UV region was attributable to the effective surface passivation of Au NPs. Furthermore, 3D finite-difference time domain simulation was performed to investigate the electrical field amplification at the interface between Au nanostructures and TiO2 upon SPR excitation. The results suggested that the enhanced photoactivity of Au NP-decorated TiO2 in the UV region was partially due to the increased optical absorption of TiO2 associated with SPR electrical field amplification. The current study could provide a new paradigm for designing plasmonic metal/semiconductor composite systems to effectively harvest the entire UV-visible light for solar fuel production.

  14. Molecular excitations: a new way to detect Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Va' vra, J.

    2014-09-01

    We believe that the Dark Matter (DM) search should be expanded into the domain of detectors sensitive to molecular excitations, and so that we should create detectors which are more sensitive to collisions with very light WIMPs. In this paper we investigate in detail diatomic molecules, such as fused silica material with large OH-molecule content, and water molecules. Presently, we do not have suitable low-cost IR detectors to observe single photons, however some OH-molecular excitations extend to visible and UV wavelengths and can be measured by bialkali photocathodes. There are many other chemical substances with diatomic molecules, or more complex oil molecules, which could be also investigated. This idea invites searches in experiments having large target volumes of such materials coupled to a large array of single-photon detectors with bialkali or infrared-sensitive photocathodes.

  15. A novel UV-emitting phosphor: LiSr4(BO3)3: Pb2+

    International Nuclear Information System (INIS)

    Pekgözlü, İlhan

    2013-01-01

    Pure and Pb 2+ doped LiSr 4 (BO 3 ) 3 materials were prepared by a solution combustion synthesis method. The phase analysis of all synthesized materials were determined using the powder XRD. The synthesized materials were investigated using spectrofluorometer at room temperature. The excitation and emission bands of LiSr 4 (BO 3 ) 3 : Pb 2+ were observed at 284 and 328 nm, respectively. The dependence of the emission intensity on the Pb 2+ concentration for the LiSr 4 (BO 3 ) 3 were studied in detail. It was observed that the concentration quenching of Pb 2+ in LiSr 4 (BO 3 ) 3 is 0.005 mol. The Stokes shifts of LiSr 4 (BO 3 ) 3 : Pb 2+ phosphor was calculated to be 4723 cm –1 . -- Highlights: • A novel UV-emitting phosphor: LiSr 4 (BO 3 ) 3 : Pb 2+ ” synthesized for the first time. • The emission band of LiSr 4 (BO 3 ) 3 : Pb 2+ was observed at 328 nm upon excitation with 284 nm. • LiSr 4 (BO 3 ) 3 : Pb 2+ is a good phosphor for broadband UV application

  16. Novel Red-Emitting Ba₃Y(BO₃)₃:Bi3+, Eu3+ Phosphors for N-UV White Light-Emitting Diodes.

    Science.gov (United States)

    Maggay, Irish Valerie B; Liu, Wei-Ren

    2018-01-01

    Ba3Y(BO3)3:Eu3+, Bi3+ were successfully prepared via a solid-state reaction. The crystallinity, photoluminescence properties, energy transfer and thermal quenching properties were studied. Subjecting Ba3Y(BO3)3:Bi3+ samples to different excitation wavelengths (340-370 nm), obtained blue and green emission ascribed to Bi3+(II) and Bi3+(I) sites, respectively. The influence of these two sites were systematically investigated. Bi3+ efficiently transferred its absorbed energy to neighboring Eu3+ sites by enhancing its luminescence intensity. Moreover, Bi3+ greatly enhanced the excitation spectra of Eu3+ in the N-UV region by 2.26 times which indicates that Ba3Y(BO3)3:Eu3+, Bi3+ can be used as a phosphor for w-LEDs using N-UV LED chips.

  17. Spatial distribution of FIR rotationally excited CH+ and OH emission lines in the Orion Bar PDR⋆

    Science.gov (United States)

    Parikka, A.; Habart, E.; Bernard-Salas, J.; Goicoechea, J. R.; Abergel, A.; Pilleri, P.; Dartois, E.; Joblin, C.; Gerin, M.; Godard, B.

    2016-01-01

    244-440, which shows that OH can be an excellent tracer of UV-irradiated dense gas. Conclusions The spatial distribution of CH+ and OH revealed in our maps is consistent with previous modeling studies. Both formation pumping and nonreactive collisions in a UV-irradiated dense gas are important CH+ J=3-2 excitation processes. The excitation of the OH Λ-doublet at 84 µm is mainly sensitive to the temperature and density. PMID:28260804

  18. Ultraviolet excitation of remote phosphor with symmetrical illumination used in dual-sided liquid-crystal display.

    Science.gov (United States)

    Huang, Hsin-Tao; Tsai, Chuang-Chuang; Huang, Yi-Pai

    2010-08-01

    The UV-excited flat lighting (UFL) technique differs from conventional fluorescent lamp or LED illumination. It involves using a remote phosphor film to convert the wavelength of UV light to visible light, achieving high brightness and planar and uniform illumination. In particular, UFL can accomplish compact size, low power consumption, and symmetrical dual-sided illumination. Additionally, UFL utilizes a thermal radiation mechanism to release the large amount of heat that is generated upon illumination without thermal accumulation. These characteristics of the UFL technique can motivate a wide range of lighting applications in thin-film transistor LCD backlighting or general lighting.

  19. Soliton excitation in superlattice

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Mensah, N.G.; Twum, A.K.

    1995-10-01

    Excitation of soliton in superlattice has been investigated theoretically. It is noted that the soliton velocity u and the length L depend on the amplitude E 0 and that an increase in the amplitude causes soliton width L to approach zero and the velocity u to that of light V in homogeneous medium. The characteristic parameters of soliton u, L and E 0 are related by expression u/L E 0 = ed/2(h/2π) which is constant depending only on the SL period d. It is observed also that the soliton has both energy E = 8V 2 (1 - u 2 /V 2 ) -1/2 and momentum P = u/V 2 E which makes it behave as relativistic free particle with rest energy 8V 2 . Its interaction with electrons can cause the soliton electric effect in SL. (author). 27 refs

  20. Flame Characterization Using a Tunable Solid-State Laser with Direct UV Pumping

    Science.gov (United States)

    Kamal, Mohammed M.; Dubinskii, Mark A.; Misra, Prabhakar

    1996-01-01

    Tunable solid-state lasers with direct UV pumping, based on d-f transitions of rare earth ions incorporated in wide band-gap dielectric crystals, are reliable sources of laser radiation that are suitable for excitation of combustion-related free radicals. We have employed such a laser for analytical flame characterization utilizing Laser-Induced Fluorescence (LIF) techniques. LIF spectra of alkane-air flames (used for studying combustion processes under normal and microgravity conditions) excited in the region of the A-X (0,0) OH-absorption band have been recorded and found to be both temperature-sensitive and positionally-sensitive. In addition, also clearly noticeable was the sensitivity of the spectra to the specific wavelength used for data registration. The LiCAF:Ce laser shows good prospects for being able to cover the spectral region between 280 and 340 nm and therefore be used excitation of combustion-intermediates such as the hydroxyl OH, methoxy CH30 and methylthio CH3S radicals.

  1. Detecting Kerogen as a Biosignature Using Colocated UV Time-Gated Raman and Fluorescence Spectroscopy.

    Science.gov (United States)

    Shkolyar, Svetlana; Eshelman, Evan J; Farmer, Jack D; Hamilton, David; Daly, Michael G; Youngbull, Cody

    2018-04-01

    The Mars 2020 mission will analyze samples in situ and identify any that could have preserved biosignatures in ancient habitable environments for later return to Earth. Highest priority targeted samples include aqueously formed sedimentary lithologies. On Earth, such lithologies can contain fossil biosignatures as aromatic carbon (kerogen). In this study, we analyzed nonextracted kerogen in a diverse suite of natural, complex samples using colocated UV excitation (266 nm) time-gated (UV-TG) Raman and laser-induced fluorescence spectroscopies. We interrogated kerogen and its host matrix in samples to (1) explore the capabilities of UV-TG Raman and fluorescence spectroscopies for detecting kerogen in high-priority targets in the search for possible biosignatures on Mars; (2) assess the effectiveness of time gating and UV laser wavelength in reducing fluorescence in Raman spectra; and (3) identify sample-specific issues that could challenge rover-based identifications of kerogen using UV-TG Raman spectroscopy. We found that ungated UV Raman spectroscopy is suited to identify diagnostic kerogen Raman bands without interfering fluorescence and that UV fluorescence spectroscopy is suited to identify kerogen. These results highlight the value of combining colocated Raman and fluorescence spectroscopies, similar to those obtainable by SHERLOC on Mars 2020, to strengthen the confidence of kerogen detection as a potential biosignature in complex natural samples. Key Words: Raman spectroscopy-Laser-induced fluorescence spectroscopy-Mars Sample Return-Mars 2020 mission-Kerogen-Biosignatures. Astrobiology 18, 431-453.

  2. 340 nm pulsed UV LED system for europium-based time-resolved fluorescence detection of immunoassays

    DEFF Research Database (Denmark)

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter

    2016-01-01

    We report on the design, development and investigation of an optical system based on UV light emitting diode (LED) excitation at 340 nm for time-resolved fluorescence detection of immunoassays. The system was tested to measure cardiac marker Troponin I with a concentration of 200 ng....../L in immunoassay. The signal-to-noise ratio was comparable to state-of-the-art Xenon flash lamp based unit with equal excitation energy and without overdriving the LED. We performed a comparative study of the flash lamp and the LED based system and discussed temporal, spatial, and spectral features of the LED...... excitation for time-resolved fluorimetry. Optimization of the suggested key parameters of the LED promises significant increase of the signal-to-noise ratio and hence of the sensitivity of immunoassay systems....

  3. 340 nm pulsed UV LED system for europium-based time-resolved fluorescence detection of immunoassays.

    Science.gov (United States)

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter; Petersen, Paul Michael; Pedersen, Christian

    2016-09-19

    We report on the design, development and investigation of an optical system based on UV light emitting diode (LED) excitation at 340 nm for time-resolved fluorescence detection of immunoassays. The system was tested to measure cardiac marker Troponin I with a concentration of 200 ng/L in immunoassay. The signal-to-noise ratio was comparable to state-of-the-art Xenon flash lamp based unit with equal excitation energy and without overdriving the LED. We performed a comparative study of the flash lamp and the LED based system and discussed temporal, spatial, and spectral features of the LED excitation for time-resolved fluorimetry. Optimization of the suggested key parameters of the LED promises significant increase of the signal-to-noise ratio and hence of the sensitivity of immunoassay systems.

  4. Near UV-visible line emission from tungsten highly-charged ions in Large Helical Device

    International Nuclear Information System (INIS)

    Kato, D.; Sakaue, H.A.; Murakami, I.; Goto, M.; Oishi, T.; Morita, S.; Fujii, K.; Nakamura, N.; Koike, F.; Sasaki, Akira; Ding, X.-B.; Dong, C.-Z.

    2015-01-01

    Wavelengths of emission lines from tungsten highly-charged ions have been precisely measured in near UV-visible range (320 - 356 nm and 382 - 402 nm) at Large Helical Device (LHD) by tungsten pellet injection. The tungsten emission lines were assigned based on its line-integrated intensity profiles on a poloidal cross section. The ground-term magnetic-dipole (M1) lines of W 26+,27+ and an M1 line of a metastable excited state of W 28+ , whose wavelengths have been determined by measurements using electron-beam-ion-traps (EBITs), are identified in the LHD spectra. The present results partially compliment wavelength data of tungsten highly-charged ions in the near UV-visible range. (author)

  5. UV luminescence of dendrimer-encapsulated gold nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hyeong Seop; Kim, Jun Myung; Sohn, So Hyeong; Han, Noh Soo; Park, Seung Min [Dept. of Chemistry, Kyung Hee University, Seoul (Korea, Republic of)

    2016-10-15

    Size-dependent luminescence color is one of the interesting properties of metal nanocrystals, whose sizes are in the dimension of the Fermi wavelength of an electron. Despite the short Fermi wavelength of electrons in gold (-0.7 nm), luminescence of gold nanoclusters has been reported to range from the near-infrared to near-ultraviolet, depending on the number of atoms in the nanoclusters. The photoluminescence of G4-OH (Au) obtained by the excitation of 266 nm showed UV emission in addition to the well-known blue emission. The higher intensity and red-shifted emission of the gold nanoclusters was distinguished from the emission of dendrimers. The UV emission at 352 nm matched the emission energy of Au{sub 4} in the spherical jellium model, rather than the planar Au{sub 8}, which supported the emission of Au{sub 4} formed in G4-OH. Despite the change of [HAuCl{sub 4} ]/[G4-OH], the relative population between Au{sub 4} and Au{sub 8} was similar in G4-OH(Au), which indicated that the closed electronic and geometric structures stabilized the magic number of Au{sub 4}.

  6. System and method for controlling depth of imaging in tissues using fluorescence microscopy under ultraviolet excitation following staining with fluorescing agents

    Science.gov (United States)

    Levenson, Richard; Demos, Stavros

    2018-05-08

    A method is disclosed for analyzing a thin tissue sample and adapted to be supported on a slide. The tissue sample may be placed on a slide and exposed to one or more different exogenous fluorophores excitable in a range of about 300 nm-200 nm, and having a useful emission band from about 350 nm-900 nm, and including one or more fluorescent dyes or fluorescently labeled molecular probes that accumulate in tissue or cellular components. The fluorophores may be excited with a first wavelength of UV light between about 200 nm-290 nm. An optical system collects emissions from the fluorophores at a second wavelength, different from the first wavelength, which are generated in response to the first wavelength of UV light, to produce an image for analysis.

  7. One color multi-photon ionization of the Gadolinium atom in near UV region

    International Nuclear Information System (INIS)

    Kim, Jin Tae; Yi, Jong Hoon; Lhee, Yong Joo; Lee, Jong Min

    1999-01-01

    We have investigated the states of the gadolinium atom in near ultra-violet (UV) region (∼410 nm) using single photon excitation using resonance ionization mass spectrometry (RIMS). Around 70 transitions among observed 180 single color multi-photon ionization signals have been assigned. Most of the multi-photon processes of the assigned ion signals are through single photon resonant three photon ionization and through two photon resonant three photon ionization. (author)

  8. Impact of laser excitation intensity on deep UV fluorescence detection in microchip electrophoresis.

    Science.gov (United States)

    Schulze, Philipp; Ludwig, Martin; Belder, Detlev

    2008-12-01

    A high intensity 266 nm continuous wave (cw-) laser developed for material processing was utilised as an excitation source for sensitive native fluorescence detection of unlabelled compounds in MCE. This 120 mW laser was attached via an optical fibre into a commercial epifluorescence microscope. With this MCE set-up we evaluated the impact of laser power on the S/N of aromatic compounds as well as of proteins. Compared with a previous work which used a 4 mW pulsed laser for excitation, improved S/N for small aromatics and to a lesser extent for proteins could be attained. The LOD of the system was determined down to 24 ng/mL for serotonin (113 nM), 24 ng/mL for propranolol (81 nM), 80 ng/mL for tryptophan (392 nM) and 80 ng/mL for an aromatic diol (475 nM). Sensitive protein detection was obtained at concentrations of 5 microg/mL for lysocyme, trypsinogen and chymotrypsinogen (340, 208 and 195 nM, respectively). Finally, a comparison of the cw- with a pulsed 266 nm laser, operating at the same average power, showed a higher attainable sensitivity of the cw-laser. This can be attributed to fluorescence saturation and photobleaching effects of the pulsed laser at high pulse energies.

  9. Ortho-vanadates K3RE(VO4)2 (RE = La, Pr, Eu, Gd, Dy, Y) for near UV-converted phosphors

    International Nuclear Information System (INIS)

    Qin, Lin; Wei, Dong-Lei; Huang, Yanlin; Qin, Chuanxiang; Cai, Peiqing; Kim, Sun-Il; Seo, Hyo-Jin

    2014-01-01

    The orthovanadate poly-crystals K 3 RE(VO 4 ) 2 (RE = La, Pr, Eu, Gd, Dy, Y) were synthesized via the solid-state reaction route. The crystal phase formation was verified through X-ray diffraction (XRD) studies and was performed by structural refinements. The optical properties were also investigated in detail. K 3 RE(VO 4 ) 2 (RE = Eu, Dy, Gd, Pr, La, Y) phosphors present different luminescence behaviors: the profiles of excitation and emission spectra, the spectra shift, the luminescence decay lifetimes, the absolute quantum efficiency (QE), and the CIE color coordinates are very different. The luminescence of K 3 RE(VO 4 ) 2 (RE = La, Gd, Y, Pr) presents yellow or yellowish green color, while, K 3 Dy(VO 4 ) 2 and K 3 Eu(VO 4 ) 2 show white and red luminescence, respectively. This was discussed on the base of the different micro-structure, activator centers, and the charge transfer transitions from [VO 4 ] 3− groups in the lattices. K 3 Y(VO 4 ) 2 and K 3 Eu(VO 4 ) 2 show higher QE values of 47.0% and 45.0% at room temperature, respectively. All the phosphors have efficient absorption in the region of near-UV wavelengths or blue wavelength region. This can well match with the light from UV-LED (360–400 nm) or blue LED chips (450–480 nm) based on GaN semiconductor. K 3 RE(VO 4 ) 2 could be suggested to be a potential candidate to give further investigations for the application on near-UV excited white LEDs. - Graphical abstract: A series of orthovanadates K 3 RE(VO 4 ) 2 (RE = Eu, Dy, Gd, Pr, La, Y) have been developed to be new phosphors with rich luminescence colors; there are efficiency excitation in the near UV wavelength region. Compared with the reported vanadate phosphors K 3 R(VO 4 ) 2 has rich luminescence color, rich color, no concentration quenching, and comparable luminescence QE. - Highlights: • A new phosphor of non-doped of K 3 R(VO 4 ) 2 (R = Eu, Dy, Gd, Pr, La, Y) were developed by solid-state reaction route. • The phosphor

  10. Electrochemical analysis of the UV treated bactericidal Ti6Al4V surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pacha-Olivenza, Miguel A. [Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) (Spain); Department of Applied Physics, Faculty of Science, University of Extremadura, Av. Elvas s/n, 06071 Badajoz (Spain); Gallardo-Moreno, Amparo M., E-mail: amparogm@unex.es [Department of Applied Physics, Faculty of Science, University of Extremadura, Av. Elvas s/n, 06071 Badajoz (Spain); Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) (Spain); Vadillo-Rodríguez, Virginia; González-Martín, M. Luisa [Department of Applied Physics, Faculty of Science, University of Extremadura, Av. Elvas s/n, 06071 Badajoz (Spain); Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) (Spain); Pérez-Giraldo, Ciro [Department of Microbiology, Faculty of Medicine, University of Extremadura, Av. Elvas s/n, 06071 Badajoz (Spain); Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) (Spain); Galván, Juan C. [National Centre for Metallurgical Research (CENIM-CSIC), Av. Gregorio del Amo 8, 28040-Madrid (Spain)

    2013-04-01

    This research investigates in detail the bactericidal effect exhibited by the surface of the biomaterial Ti6Al4V after being subjected to UV-C light. It has been recently hypothesized that small surface currents, occurring as a consequence of the electron–hole pair recombination taking place after the excitation process, are behind the bactericidal properties displayed by this UV-treated material. To corroborate this hypothesis we have used different electrochemical techniques, such as electrochemical impedance spectroscopy (EIS), potentiodynamic polarization plots and Mott–Schottky plots. EIS and Mott–Schottky plots have shown that UV-C treatment causes an initial increase on the surface electrical conduction of this material. In addition, EIS and polarization plots demonstrated that higher corrosion currents occur at the UV treated than at the non-irradiated samples. Despite this increase in the corrosion currents, EIS has also shown that such currents are not likely to affect the good stability of this material oxide film since the irradiated samples completely recovered the control values after being stored in dark conditions for a period not longer than 24 h. These results agree with the already-published in vitro transitory behavior of the bactericidal effect, which was shown to be present at initial times after the biomaterial implantation, a crucial moment to avoid a large number of biomaterial associated infections. Highlights: ► Bactericidal response of UV-treated Ti6Al4V is explained through electrochemistry. ► There is an increase in the superficial electrical conduction after UV-treatment. ► Higher corrosion currents for UV-treated against non-UV-treated samples are shown. ► EIS shows the recuperation on irradiated samples in agreement with microbial tests.

  11. Electrochemical analysis of the UV treated bactericidal Ti6Al4V surfaces

    International Nuclear Information System (INIS)

    Pacha-Olivenza, Miguel A.; Gallardo-Moreno, Amparo M.; Vadillo-Rodríguez, Virginia; González-Martín, M. Luisa; Pérez-Giraldo, Ciro; Galván, Juan C.

    2013-01-01

    This research investigates in detail the bactericidal effect exhibited by the surface of the biomaterial Ti6Al4V after being subjected to UV-C light. It has been recently hypothesized that small surface currents, occurring as a consequence of the electron–hole pair recombination taking place after the excitation process, are behind the bactericidal properties displayed by this UV-treated material. To corroborate this hypothesis we have used different electrochemical techniques, such as electrochemical impedance spectroscopy (EIS), potentiodynamic polarization plots and Mott–Schottky plots. EIS and Mott–Schottky plots have shown that UV-C treatment causes an initial increase on the surface electrical conduction of this material. In addition, EIS and polarization plots demonstrated that higher corrosion currents occur at the UV treated than at the non-irradiated samples. Despite this increase in the corrosion currents, EIS has also shown that such currents are not likely to affect the good stability of this material oxide film since the irradiated samples completely recovered the control values after being stored in dark conditions for a period not longer than 24 h. These results agree with the already-published in vitro transitory behavior of the bactericidal effect, which was shown to be present at initial times after the biomaterial implantation, a crucial moment to avoid a large number of biomaterial associated infections. Highlights: ► Bactericidal response of UV-treated Ti6Al4V is explained through electrochemistry. ► There is an increase in the superficial electrical conduction after UV-treatment. ► Higher corrosion currents for UV-treated against non-UV-treated samples are shown. ► EIS shows the recuperation on irradiated samples in agreement with microbial tests

  12. UV-Vis optoelectronic properties of α-SnWO4: A comparative experimental and density functional theory based study

    KAUST Repository

    Ziani, Ahmed

    2015-09-03

    We report a combined experimental and theoretical study on the optoelectronic properties of α-SnWO4 for UV-Vis excitation. The experimentally measured values for thin films were systematically compared with high-accuracy density functional theory and density functional perturbation theory using the HSE06 functional. The α-SnWO4 material shows an indirect bandgap of 1.52 eV with high absorption coefficient in the visible-light range (>2 × 105 cm−1). The results show relatively high dielectric constant (>30) and weak diffusion properties (large effective masses) of excited carriers.

  13. Applications of high order harmonic radiation to UVX-solids interaction: high excitation density in electronic relaxation dynamics and surface damaging

    International Nuclear Information System (INIS)

    De Grazia, M.

    2007-12-01

    The new sources of radiation in the extreme-UV (X-UV: 10-100 nm), which deliver spatially coherent, ultra-short and intense pulses, allow studying high flux processes and ultra-fast dynamics in various domains. The thesis work presents two applications of the high-order laser harmonics (HH) to solid state physics. In Part I, we describe the optimization of the harmonic for studies of X-UV/solids interaction. In Part II, we investigate effects of high excitation density in the dynamics of electron relaxation in dielectric scintillator crystals - tungstates and fluorides, using time-resolved luminescence spectroscopy. Quenching of luminescence at short time gives evidence of the competition between radiative and non-radiative recombination of self-trapped excitons (STE). The non-radiative channel is identified to mutual interaction of STE at high excitation density. In Part III, we study the X-UV induced damage mechanism in various materials, either conductor (amorphous carbon) or insulators (organic polymers, e.g., PMMA). In PMMA-Plexiglas, in the desorption regime (0.2 mJ/cm 2 , i.e., below damage threshold), the surface modifications reflect X-UV induced photochemical processes that are tentatively identified, as a function of dose: at low dose, polymer chain scission followed by the blow-up of the volatile, low-molecular fragments leads to crater formation; at high dose, cross-linking in the near-surface layer of remaining material leads to surface hardening. These promising results have great perspectives considering the performances already attained and planned in the next future in the development of the harmonic sources. (author)

  14. Characteristics and fate of natural organic matter during UV oxidation processes.

    Science.gov (United States)

    Ahn, Yongtae; Lee, Doorae; Kwon, Minhwan; Choi, Il-Hwan; Nam, Seong-Nam; Kang, Joon-Wun

    2017-10-01

    Advanced oxidation processes (AOPs) are widely used in water treatments. During oxidation processes, natural organic matter (NOM) is modified and broken down into smaller compounds that affect the characteristics of the oxidized NOM by AOPs. In this study, NOM was characterized and monitored in the UV/hydrogen peroxide (H 2 O 2 ) and UV/persulfate (PS) processes using a liquid chromatography-organic carbon detector (LC-OCD) technique, and a combination of excitation-emission matrices (EEM) and parallel factor analysis (PARAFAC). The percentages of mineralization of NOM in the UV/H 2 O 2 and UV/PS processes were 20.5 and 83.3%, respectively, with a 10 mM oxidant dose and a contact time of 174 s (UV dose: approximately 30,000 mJ). Low-pressure, Hg UV lamp (254 nm) was applied in this experiment. The steady-state concentration of SO 4 - was 38-fold higher than that of OH at an oxidant dose of 10 mM. With para-chlorobenzoic acid (pCBA) as a radical probe compound, we experimentally determined the rate constants of Suwannee River NOM (SRNOM) with OH (k OH/NOM  = 3.3 × 10 8  M -1 s -1 ) and SO 4 - (k SO4-/NOM  = 4.55 × 10 6  M -1 s -1 ). The hydroxyl radical and sulfate radical showed different mineralization pathways of NOM, which have been verified by the use of LC-OCD and EEM/PARAFAC. Consequently, higher steady-state concentrations of SO 4 - , and different reaction preferences of OH and SO 4 - with the NOM constituent had an effect on the mineralization efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Diurnal changes in epidermal UV transmittance of plants in naturally high UV environments.

    Science.gov (United States)

    Barnes, Paul W; Flint, Stephan D; Slusser, James R; Gao, Wei; Ryel, Ronald J

    2008-06-01

    Studies were conducted on three herbaceous plant species growing in naturally high solar UV environments in the subalpine of Mauna Kea, Hawaii, USA, to determine if diurnal changes in epidermal UV transmittance (T(UV)) occur in these species, and to test whether manipulation of the solar radiation regime could alter these diurnal patterns. Additional field studies were conducted at Logan, Utah, USA, to determine if solar UV was causing diurnal T(UV) changes and to evaluate the relationship between diurnal changes in T(UV) and UV-absorbing pigments. Under clear skies, T(UV), as measured with a UV-A-pulse amplitude modulation fluorometer for leaves of Verbascum thapsus and Oenothera stricta growing in native soils and Vicia faba growing in pots, was highest at predawn and sunset and lowest at midday. These patterns in T(UV) closely tracked diurnal changes in solar radiation and were the result of correlated changes in fluorescence induced by UV-A and blue radiation but not photochemical efficiency (F(v)/F(m)) or initial fluorescence yield (F(o)). The magnitude of the midday reduction in T(UV) was greater for young leaves than for older leaves of Verbascum. Imposition of artificial shade eliminated the diurnal changes in T(UV) in Verbascum, but reduction in solar UV had no effect on diurnal T(UV) changes in Vicia. In Vicia, the diurnal changes in T(UV) occurred without detectable changes in the concentration of whole-leaf UV-absorbing compounds. Results suggest that plants actively control diurnal changes in UV shielding, and these changes occur in response to signals other than solar UV; however, the underlying mechanisms responsible for rapid changes in T(UV) remain unclear.

  16. Intensities of the Martian N2 electron-impact excited dayglow emissions

    Science.gov (United States)

    Fox, Jane L.; Hać, Nicholas E. F.

    2013-06-01

    The first N2 emissions in the Martian dayglow were detected by the SPICAM UV spectrograph on board the Mars Express spacecraft. Intensities of the (0,5) and (0,6) Vegard-Kaplan bands were found to be about one third of those predicted more than 35 years ago. The Vegard-Kaplan band system arises from the transition from the lowest N2 triplet state (A3Σu+;v') to the electronic ground state (X1Σg+;v″). It is excited in the Martian dayglow by direct electron-impact excitation of the ground N2(X) state to the A state and by excitation to higher triplet states that populate the A state by cascading. Using revised data, we compute here updated intensities of several of the bands in the N2 triplet systems and those involving the a1Πg state, the upper state of the Lyman-Birge-Hopfield bands. We find that the predicted limb intensities for the (0,5) and (0,6) Vegard-Kaplan bands are consistent with the measured values.

  17. Thermo-optical Characterization of Photothermal Optical Phase Shift Detection in Extended-Nano Channels and UV Detection of Biomolecules.

    Science.gov (United States)

    Shimizu, Hisashi; Miyawaki, Naoya; Asano, Yoshihiro; Mawatari, Kazuma; Kitamori, Takehiko

    2017-06-06

    The expansion of microfluidics research to nanofluidics requires absolutely sensitive and universal detection methods. Photothermal detection, which utilizes optical absorption and nonradiative relaxation, is promising for the sensitive detection of nonlabeled biomolecules in nanofluidic channels. We have previously developed a photothermal optical phase shift (POPS) detection method to detect nonfluorescent molecules sensitively, while a rapid decrease of the sensitivity in nanochannels and the introduction of an ultraviolet (UV) excitation system were issues to be addressed. In the present study, our primary aim is to characterize the POPS signal in terms of the thermo-optical properties and quantitatively evaluate the causes for the decrease in sensitivity. The UV excitation system is then introduced into the POPS detector to realize the sensitive detection of nonlabeled biomolecules. The UV-POPS detection system is designed and constructed from scratch based on a symmetric microscope. The results of simulations and experiments reveal that the sensitivity decreases due to a reduction of the detection volume, dissipation of the heat, and cancellation of the changes in the refractive indices. Finally, determination of the concentration of a nonlabeled protein (bovine serum albumin) is performed in a very thin 900 nm deep nanochannel. As a result, the limit of detection (LOD) is 2.3 μM (600 molecules in the 440 attoliter detection volume), which is as low as that previously obtained for our visible POPS detector. UV-POPS detection is thus expected be a powerful technique for the study of biomolecules, including DNAs and proteins confined in nanofluidic channels.

  18. Excited-state intramolecular proton transfer of 2-acetylindan-1,3-dione studied by ultrafast absorption and fluorescence spectroscopy

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Verma

    2016-03-01

    Full Text Available We employ transient absorption from the deep-UV to the visible region and fluorescence upconversion to investigate the photoinduced excited-state intramolecular proton-transfer dynamics in a biologically relevant drug molecule, 2-acetylindan-1,3-dione. The molecule is a ß-diketone which in the electronic ground state exists as exocyclic enol with an intramolecular H-bond. Upon electronic excitation at 300 nm, the first excited state of the exocyclic enol is initially populated, followed by ultrafast proton transfer (≈160 fs to form the vibrationally hot endocyclic enol. Subsequently, solvent-induced vibrational relaxation takes place (≈10 ps followed by decay (≈390 ps to the corresponding ground state.

  19. Modeling Alkyl p-Methoxy Cinnamate (APMC) as UV absorber based on electronic transition using semiempirical quantum mechanics ZINDO/s calculation

    Science.gov (United States)

    Salmahaminati; Azis, Muhlas Abdul; Purwiandono, Gani; Arsyik Kurniawan, Muhammad; Rubiyanto, Dwiarso; Darmawan, Arif

    2017-11-01

    In this research, modeling several alkyl p-methoxy cinnamate (APMC) based on electronic transition by using semiempirical mechanical quantum ZINDO/s calculation is performed. Alkyl cinnamates of C1 (methyl) up to C7 (heptyl) homolog with 1-5 example structures of each homolog are used as materials. Quantum chemistry-package software Hyperchem 8.0 is used to simulate the drawing of the structure, geometry optimization by a semiempirical Austin Model 1 algorithm and single point calculation employing a semiempirical ZINDO/s technique. ZINDO/s calculations use a defined criteria that singly excited -Configuration Interaction (CI) where a gap of HOMO-LUMO energy transition and maximum degeneracy level are 7 and 2, respectively. Moreover, analysis of the theoretical spectra is focused on the UV-B (290-320 nm) and UV-C (200-290 nm) area. The results show that modeling of the compound can be used to predict the type of UV protection activity depends on the electronic transition in the UV area. Modification of the alkyl homolog relatively does not change the value of wavelength absorption to indicate the UV protection activity. Alkyl cinnamate compounds are predicted as UV-B and UV-C sunscreen.

  20. UV and X radiation effects on the stability of calcium halide phosphate phosphors. 1

    International Nuclear Information System (INIS)

    Tews, W.

    1983-01-01

    Intensity losses of several calcium halide phosphate phosphors have been investigated as a function of the time of irradiation with near UV and X radiation. The results show that antimony-containing foreign phases increase such losses. The directly excited manganese centre emission is much more lowered than the sensitized one. Detrimental effects of the 185 nm UV radiation are observable not only in the first minutes of irradiation but also over considerably extended periods. The sensitization effect caused by irradiation in different gases depends on the phosphor, especially on the content of antimony, and can be explained by the sorption of gaseous impurities at the phosphor surface so that the diffusion of photochemical reaction products from the surface is inhibited

  1. Developing LED UV fluorescence sensors for online monitoring DOM and predicting DBPs formation potential during water treatment.

    Science.gov (United States)

    Li, Wen-Tao; Jin, Jing; Li, Qiang; Wu, Chen-Fei; Lu, Hai; Zhou, Qing; Li, Ai-Min

    2016-04-15

    Online monitoring dissolved organic matter (DOM) is urgent for water treatment management. In this study, high performance size exclusion chromatography with multi-UV absorbance and multi-emission fluorescence scans were applied to spectrally characterize samples from 16 drinking water sources across Yangzi River and Huai River Watersheds. The UV absorbance indices at 254 nm and 280 nm referred to the same DOM components and concentration, and the 280 nm UV light could excite both protein-like and humic-like fluorescence. Hence a novel UV fluorescence sensor was developed out using only one UV280 light-emitting diode (LED) as light source. For all samples, enhanced coagulation was mainly effective for large molecular weight biopolymers; while anion exchange further substantially removed humic substances. During chlorination tests, UVA280 and UVA254 showed similar correlations with yields of disinfection byproducts (DBPs); the humic-like fluorescence obtained from LED sensors correlated well with both trihalomethanes and haloacetic acids yields, while the correlation between protein-like fluorescence and trihalomethanes was relatively poor. Anion exchange exhibited more reduction of DBPs yields as well as UV absorbance and fluorescence signals than enhanced coagulation. The results suggest that the LED UV fluorescence sensors are very promising for online monitoring DOM and predicting DBPs formation potential during water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Visible-Blind UV Photodetector Based on Single-Walled Carbon Nanotube Thin Film/ZnO Vertical Heterostructures.

    Science.gov (United States)

    Li, Guanghui; Suja, Mohammad; Chen, Mingguang; Bekyarova, Elena; Haddon, Robert C; Liu, Jianlin; Itkis, Mikhail E

    2017-10-25

    Ultraviolet (UV) photodetectors based on heterojunctions of conventional (Ge, Si, and GaAs) and wide bandgap semiconductors have been recently demonstrated, but achieving high UV sensitivity and visible-blind photodetection still remains a challenge. Here, we utilized a semitransparent film of p-type semiconducting single-walled carbon nanotubes (SC-SWNTs) with an energy gap of 0.68 ± 0.07 eV in combination with a molecular beam epitaxy grown n-ZnO layer to build a vertical p-SC-SWNT/n-ZnO heterojunction-based UV photodetector. The resulting device shows a current rectification ratio of 10 3 , a current photoresponsivity up to 400 A/W in the UV spectral range from 370 to 230 nm, and a low dark current. The detector is practically visible-blind with the UV-to-visible photoresponsivity ratio of 10 5 due to extremely short photocarrier lifetimes in the one-dimensional SWNTs because of strong electron-phonon interactions leading to exciton formation. In this vertical configuration, UV radiation penetrates the top semitransparent SC-SWNT layer with low losses (10-20%) and excites photocarriers within the n-ZnO layer in close proximity to the p-SC-SWNT/n-ZnO interface, where electron-hole pairs are efficiently separated by a high built-in electric field associated with the heterojunction.

  3. Investigation of UV photocurable microcapsule inner crosslink extent

    Science.gov (United States)

    Li, Xiaowei; Meng, Shuangshuang; Lai, Weidong; Yu, Haiyang; Fu, Guangsheng

    2008-11-01

    UV photocuring technology has encountered increased applications in recent years, which finds a variety of applications on protective coating of the optical-fiber, ink and optical recording materials. Combined with techniques of photohardenable, microcapsule, heat-sensitive and interface-polymerization method, a novel photoheat sensitive recording material of non-silver salt is explored in this thesis. Microcapsules are particulate substance with a core and shell structure, where photopolymerizable composition, monofunctional/polyfunctional diluents, photopolymerization initiator, photosensitivity enhancing agent and dye precursor are encapsulated as the internal phase. In this paper introduced the characteristics and curing mechanism of photo-sensitive microcapsule materials. The photocuring process may be a complex-function with photopolymerizable compound and photopolymerization initiator. For the sake of high photocuring speed and degree, optimal photo-sensitive materials were selected. In order to match with the light source excitation wavelength and absorb more wider ultraviolet band, combined type of photo-polymerization initiators were employed. With the kinds and dosage of photopolymerization initiator changing, the photocuring speed and quality can be ameliorated. Through studying the UV-visible absorption spectrum and infra-red spectrum of the material , the optical response property of the inner compound can be obtained.

  4. Plant responses to UV-B irradiation are modified by UV-A irradiation

    International Nuclear Information System (INIS)

    Middleton, E.M.; Teramura, A.H.

    1993-01-01

    The increasing UV-B radiation (0.28-0.32 μm) reaching the earth's surface is an important concern. Plant response in artificial UV-B irradiation studies has been difficult to assess, especially regarding photosynthetic pigments, because the fluorescent lamps also produce UV-A (0.32-0.40μm) radiation which is involved with blue light in pigment synthesis. Both UV-A and UV-B irradiances were controlled in two glasshouse experiments conducted under relatively high PPFD (> 1300μmol m -2 s -1 ) at two biologically effective daily UV-B irradiances (10.7 and 14.1 kJ m -2 ); UV-A irradiances were matched in Controls (∼5, 9 kJ m -2 ). Normal, chlorophyll-deficient, and flavonoid-deficient isolines of soybean cultivar, Clark, were utilized. Many growth/ pigment variables exhibited a statistically significant interaction between light quality and quantity: in general, UV-A radiation moderated the damaging effects of UV-B radiation. Regression analyses demonstrated that a single negative function related photosynthetic efficiency to carotenoid Content (r 2 =0.73, P≤0.001), implying a open-quotes costclose quotes in maintaining carotenoids for photoprotection. A stomatal limitation to photosynthesis was verified and carotenoid content was correlated with UV-B absorbing compound levels, in UV-B irradiated plants

  5. Disinfection of Spacecraft Potable Water Systems by Photocatalytic Oxidation Using UV-A Light Emitting Diodes

    Science.gov (United States)

    Birmele, Michele N.; O'Neal, Jeremy A.; Roberts, Michael S.

    2011-01-01

    Ultraviolet (UV) light has long been used in terrestrial water treatment systems for photodisinfection and the removal of organic compounds by several processes including photoadsorption, photolysis, and photocatalytic oxidation/reduction. Despite its effectiveness for water treatment, UV has not been explored for spacecraft applications because of concerns about the safety and reliability of mercury-containing UV lamps. However, recent advances in ultraviolet light emitting diodes (UV LEDs) have enabled the utilization of nanomaterials that possess the appropriate optical properties for the manufacture of LEDs capable of producing monochromatic light at germicidal wavelengths. This report describes the testing of a commercial-off-the-shelf, high power Nichia UV-A LED (250mW A365nnJ for the excitation of titanium dioxide as a point-of-use (POD) disinfection device in a potable water system. The combination of an immobilized, high surface area photocatalyst with a UV-A LED is promising for potable water system disinfection since toxic chemicals and resupply requirements are reduced. No additional consumables like chemical biocides, absorption columns, or filters are required to disinfect and/or remove potentially toxic disinfectants from the potable water prior to use. Experiments were conducted in a static test stand consisting of a polypropylene microtiter plate containing 3mm glass balls coated with titanium dioxide. Wells filled with water were exposed to ultraviolet light from an actively-cooled UV-A LED positioned above each well and inoculated with six individual challenge microorganisms recovered from the International Space Station (ISS): Burkholderia cepacia, Cupriavidus metallidurans, Methylobacterium fujisawaense, Pseudomonas aeruginosa, Sphingomonas paucimobilis and Wautersia basilensis. Exposure to the Nichia UV-A LED with photocatalytic oxidation resulted in a complete (>7-log) reduction of each challenge bacteria population in UV-A LEDs and semi

  6. Photodegradation of diphenylarsinic acid by UV-C light: Implication for its remediation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Anan; Teng, Ying [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Hu, Xuefeng [Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Wu, Longhua; Huang, Yujuan [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Luo, Yongming, E-mail: ymluo@yic.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Christie, Peter [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-05-05

    Highlights: • DPAA can be degraded into inorganic arsenics under the irradiation of UV-C light. • The photodegradation of DPAA mainly depended on its direct photolysis. • The {sup 1}O{sub 2} was generated, but had little effect on DPAA photolysis. • Cl{sup −} promoted the photolytic rate of DPAA, but NO{sub 3}{sup −}, NO{sub 2}{sup −} and HA inhibited it. - Abstract: Diphenylarsinic acid (DPAA) is a major contaminant in environments polluted by chemical weapons and abandoned after World Wars I and II and poses high risks to biota but remediation methods for this contaminant are rare. Here, the photodegradtion of DPAA was studied under high-pressure Hg lamp irradiation. DPAA was degraded completely into inorganic arsenic species in 30 min under UV-C irradiation. The photodegradation of DPAA depended mainly on its direct photolysis through excited-state DPAA. By contrast, the generation of {sup 1}O{sub 2} during the photodegradation of DPAA was confirmed by electron paramagnetic resonance (EPR) studies, but {sup 1}O{sub 2} had little effect on the photodegradation of DPAA. Phtotodegradation of DPAA was also studied in soil leachates and groundwater and the photolytic rate of DPAA was controlled by the total organic carbon (TOC) content in soil leachates and by the NO{sub 3}{sup −} concentration in groundwater. Finally, studies on the effects of common solutes on the photodegradation of DPAA show that Cl{sup −} can increase the photolytic rate of DPAA by prolonging the lifetime of excited-state DPAA. Moreover, NO{sub 3}{sup −}, NO{sub 2}{sup −}, and humic acid (HA) can decrease the photolytic rate of DPAA by suppressing the production of excited-state DPAA. This research shows the detailed mechanism of DPAA photodegradation and provides a new and effective method for DPAA decontamination.

  7. Microbial UV fluence-response assessment using a novel UV-LED collimated beam system.

    Science.gov (United States)

    Bowker, Colleen; Sain, Amanda; Shatalov, Max; Ducoste, Joel

    2011-02-01

    A research study has been performed to determine the ultraviolet (UV) fluence-response of several target non-pathogenic microorganisms to UV light emitting diodes (UV-LEDs) by performing collimated beam tests. UV-LEDs do not contain toxic mercury, offer design flexibility due to their small size, and have a longer operational life than mercury lamps. Comsol Multiphysics was utilized to create an optimal UV-LED collimated beam design based on number and spacing of UV-LEDs and distance of the sample from the light source while minimizing the overall cost. The optimized UV-LED collimated beam apparatus and a low-pressure mercury lamp collimated beam apparatus were used to determine the UV fluence-response of three surrogate microorganisms (Escherichia coli, MS-2, T7) to 255 nm UV-LEDs, 275 nm UV-LEDs, and 254 nm low-pressure mercury lamps. Irradiation by low-pressure mercury lamps produced greater E. coli and MS-2 inactivation than 255 nm and 275 nm UV-LEDs and similar T7 inactivation to irradiation by 275 nm UV-LEDs. The 275 nm UV-LEDs produced more efficient T7 and E. coli inactivation than 255 nm UV-LEDs while both 255 nm and 275 nm UV-LEDs produced comparable microbial inactivation for MS-2. Differences may have been caused by a departure from the time-dose reciprocity law due to microbial repair mechanisms. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Biobased Nanoparticles for Broadband UV Protection with Photostabilized UV Filters

    NARCIS (Netherlands)

    Hayden, D.R.|info:eu-repo/dai/nl/412640694; Imhof, A.|info:eu-repo/dai/nl/145641600; Velikov, K. P.|info:eu-repo/dai/nl/239483472

    2016-01-01

    Sunscreens rely on multiple compounds to provide effective and safe protection against UV radiation. UV filters in sunscreens, in particular, provide broadband UV protection but are heavily linked to adverse health effects due to the generation of carcinogenic skin-damaging reactive oxygen species

  9. Comparative analysis of the vibrational structure of the absorption spectra of acrolein in the excited ( S 1) electronic state

    Science.gov (United States)

    Koroleva, L. A.; Tyulin, V. I.; Matveev, V. K.; Pentin, Yu. A.

    2012-04-01

    The assignments of absorption bands of the vibrational structure of the UV spectrum are compared with the assignments of bands obtained by the CRDS method in a supersonic jet from the time of laser radiation damping for the trans isomer of acrolein in the excited ( S 1) electronic state. The ν00 trans = 25861 cm-1 values and fundamental frequencies, including torsional vibration frequency, obtained by the two methods were found to coincide in the excited electronic state ( S 1) for this isomer. The assignments of several absorption bands of the vibrational structure of the spectrum obtained by the CRDS method were changed. Changes in the assignment of (0-v') transition bands of the torsional vibration of the trans isomer in the Deslandres table from the ν00 trans trans origin allowed the table to be extended to high quantum numbers v'. The torsional vibration frequencies up to v' = 5 were found to be close to the frequencies found by analyzing the vibrational structure of the UV spectrum and calculated quantum-mechanically. The coincidence of the barrier to internal rotation (the cis-trans transition) in the one-dimensional model with that calculated quantum-mechanically using the two-dimensional model corresponds to a planar structure of the acrolein molecule in the excited ( S 1) electronic state.

  10. Uncovering molecular relaxation processes with nonlinear spectroscopies in the deep UV

    International Nuclear Information System (INIS)

    West, Brantley A.; Molesky, Brian P.; Giokas, Paul G.; Moran, Andrew M.

    2013-01-01

    Highlights: • We discuss the outlook for multidimensional spectroscopies in the deep UV. • Photophysics are examined in small DNA components at cryogenic temperatures. • Wavepacket motions are detected in ring-opening systems with 2DUV spectroscopy. • Measurements of electronic wavepacket motions in molecules are proposed. - Abstract: Nonlinear laser spectroscopies in the deep UV spectral range are motivated by studies of biological systems and elementary processes in small molecules. This perspective article discusses recent technical advances in this area with a particular emphasis on diffractive optic based approaches to four-wave mixing spectroscopies. Applications to two classes of systems illustrate present experimental capabilities. First, experiments on DNA components at cryogenic temperatures are used to uncover features of excited state potential energy surfaces and vibrational cooling mechanisms. Second, sub-200 fs internal conversion processes and coherent wavepacket motions are investigated in cyclohexadiene and α-terpinene. Finally, we propose new experimental directions that combine methods for producing few-cycle UV laser pulses in noble gases with incoherent detection methods (e.g., photoionization) in experiments with time resolution near a singlefemtosecond. These measurements are motivated by knowledge of extremely fast non-adiabatic dynamics and the resolution of electronic wavepacket motions in molecules

  11. Experimental and time-dependent density functional theory characterization of the UV-visible spectra of monomeric and μ-oxo dimeric ferriprotoporphyrin IX.

    Science.gov (United States)

    Kuter, David; Venter, Gerhard A; Naidoo, Kevin J; Egan, Timothy J

    2012-10-01

    Speciation of ferriprotoporphyrin IX, Fe(III)PPIX, in aqueous solution is complex. Despite the use of its characteristic spectroscopic features for identification, the theoretical basis of the unique UV-visible absorbance spectrum of μ-[Fe(III)PPIX](2)O has not been explored. To investigate this and to establish a structural and spectroscopic model for Fe(III)PPIX species, density functional theory (DFT) calculations were undertaken for H(2)O-Fe(III)PPIX and μ-[Fe(III)PPIX](2)O. The models agreed with related Fe(III)porphyrin crystal structures and reproduced vibrational spectra well. The UV-visible absorbance spectra of H(2)O-Fe(III)PPIX and μ-[Fe(III)PPIX](2)O were calculated using time-dependent DFT and reproduced major features of the experimental spectra of both. Transitions contributing to calculated excitations have been identified. The features of the electronic spectrum calculated for μ-[Fe(III)PPIX](2)O were attributed to delocalization of electron density between the two porphyrin rings of the dimer, the weaker ligand field of the axial ligand, and antiferromagnetic coupling of the Fe(III) centers. Room temperature magnetic circular dichroism (MCD) spectra have been recorded and are shown to be useful in distinguishing between these two Fe(III)PPIX species. Bands underlying major spectroscopic features were identified through simultaneous deconvolution of UV-visible and MCD spectra. Computed UV-visible spectra were compared to deconvoluted spectra. Interpretation of the prominent bands of H(2)O-Fe(III)PPIX largely conforms to previous literature. Owing to the weak paramagnetism of μ-[Fe(III)PPIX](2)O at room temperature and the larger number of underlying excitations, interpretation of its experimental UV-visible spectrum was necessarily tentative. Nonetheless, comparison with the calculated spectra of antiferromagnetically coupled and paramagnetic forms of the μ-oxo dimer of Fe(III)porphine suggested that the composition of the Soret band involves

  12. COMPARATIVE ANALYSIS OF UV-C AND UV-B RADIATION INFLUENCE ON PLANT OBJECTS

    Directory of Open Access Journals (Sweden)

    О. Міхєєв

    2011-04-01

    Full Text Available General aim of work – comparative research of temporal regularities of growth processes of pea,that was grown under normal conditions and with application of UV-C and UV-B irradiation ofstem part, and also detection of irradiation dose relations to parameter of root and stem part sproutsgrowth rate of Aronis pea. Research subject of UV-C and UV-B irradiation influence on dynamicsof plant growth parameters in each set of experiments was alteration of growth rate, pecularities ofgrowth dynamics in different conditions of experiment, detection of UV-C and UV-B irradiationdoses range, that stimulate or inhibit growth parameters of pea sprouts. The investigation resulted indetermination 1,3 times higher efficiency of UV-V irradiation comparing to UV-B irradiation.Reaction of root didn’t depend on the type of UV-radiation

  13. UV laser-induced fluorescence spectroscopy and laser Doppler flowmetry in the diagnostics of alopecia

    Science.gov (United States)

    Skomorokha, Diana P.; Pigoreva, Yulia N.; Salmin, Vladimir V.

    2016-04-01

    Development of optical biopsy methods has a great interest for medical diagnostics. In clinical and experimental studies it is very important to analyze blood circulation quickly and accurately, thereby laser Doppler flowmetry (LDF) is widely used. UV laser-induced fluorescence spectroscopy (UV LIFS) is express highly sensitive and widely-spread method with no destructive impact, high excitation selectivity and the possibility to use in highly scattering media. The goal of this work was to assess a correlation of UV laser-induced fluorescence spectroscopy and laser Doppler flowmetry parameters, and a possibility to identify or to differentiate various types of pathological changes in tissues according to their autofluorescence spectra. Three groups of patients with diffuse (symptomatic) alopecia, androgenic alopecia, and focal alopecia have been tested. Each groups consisted of not less than 20 persons. The measurements have been done in the parietal and occipital regions of the sculls. We used the original automated spectrofluorimeter to record autofluorescence spectra, and standard laser Doppler flowmeter BLF-21 (Transonic Systems, Inc., USA) to analyze the basal levels of blood circulation. Our results show that UV LIFS accurately distinguishes the zones with different types of alopecia. We found high correlation of the basal levels of blood circulation and the integrated intensity of autofluorescence in the affected tissue.

  14. DNA damage caused by UV- and near UV-irradiation

    International Nuclear Information System (INIS)

    Ohnishi, Takeo

    1986-01-01

    Much work with mutants deficient in DNA repair has been performed concerning UV-induced DNA damage under the condition where there is no artificial stimulation. In an attempt to infer the effects of solar wavelengths, the outcome of the work is discussed in terms of cellular radiation sensitivity, unscheduled DNA synthesis, and mutation induction, leading to the conclusion that some DNA damage occurs even by irradiation of the shorter wavelength light (270 - 315 nm) and is repaired by excision repair. It has been thought to date that pyrimidine dimer (PD) plays the most important role in UV-induced DNA damage, followed by (6 - 4) photoproducts. As for DNA damage induced by near UV irradiation, the yield of DNA single-strand breaks and of DNA-protein crosslinking, other than PD, is considered. The DNA-protein crosslinking has proved to be induced by irradiation at any wavelength of UV ranging from 260 to 425 nm. Near UV irradiation causes the inhibition of cell proliferation to take place. (Namekawa, K.)

  15. Tunable blue-green emission and energy transfer properties in β-Ca3(PO4)2:Eu(2+), Tb(3+) phosphors with high quantum efficiencies for UV-LEDs.

    Science.gov (United States)

    Li, Kai; Zhang, Yang; Li, Xuejiao; Shang, Mengmeng; Lian, Hongzhou; Lin, Jun

    2015-03-14

    A series of Eu(2+) and Tb(3+) singly-doped and co-doped β-Ca3(PO4)2 phosphors have been synthesized via the high-temperature solid-state reaction method. Thermogravimetric (TG) analysis, fourier transform infrared (FT-IR) spectra, X-ray diffraction (XRD) patterns and Rietveld refinements, photoluminescence (PL) spectra including temperature-dependent PL and quantum efficiency, and fluorescence decay lifetimes have been used to characterise the as-prepared samples. Under UV excitation, β-Ca3(PO4)2:Eu(2+) presents a broad emission band centered at 415 nm, which can be decomposed into five symmetrical bands peaking at 390, 408, 421, 435 and 511 nm based on the substitution of five kinds of Ca(2+) sites by Eu(2+) ions. β-Ca3(PO4)2:Tb(3+) shows characteristic emission lines under Tb(3+) 4f-5d transition excitation around 223 nm. In β-Ca3(PO4)2:Eu(2+), Tb(3+) phosphors, similar excitation spectra monitored at 415 and 547 nm have been observed, which illustrates the possibility of energy transfer from Eu(2+) to Tb(3+) ions. The variations in the emission spectra and decay lifetimes further demonstrate the existence of energy transfer from Eu(2+) to Tb(3+) ions under UV excitation. The energy transfer mechanism has been confirmed to be dipole-quadrupole, which can be validated via the agreement of critical distances obtained from the concentration quenching (12.11 Å) and spectrum overlap methods (9.9-13.2 Å). The best quantum efficiency can reach 90% for the β-Ca3(PO4)2:0.01Eu(2+), 0.15Tb(3+) sample under 280 nm excitation. These results show that the developed phosphors may possess potential applications in UV-pumped white light-emitting diodes.

  16. MODELING OF ALKYL SALICYLATE COMPOUNDS AS UV ABSORBER BASED ON ELECTRONIC TRANSITION BY USING SEMIEMPIRICAL QUANTUM MECHANICS ZINDO/s CALCULATION

    Directory of Open Access Journals (Sweden)

    Iqmal Tahir

    2010-06-01

    Full Text Available Modeling of several alkyl salicylates based on electronic transition by using semiempriical mechanical quantum ZINDO/s calculation has been done. Object of these research were assumed only alkyl salicylates of C4 (butyl until C8 (octyl homologue with 4-7 example structures of each homologue. All of the computation have been performed using quantum chemistry - package software Hyperchem 6.0. The research covered about drawing each of the structure, geometry optimization using semiempirical AM1 algorithm and followed with single point calculation using semiempirical ZINDO/s technique. ZINDO/s calculations used a defined criteria that is singly excited - Configuration Interaction (CI, gap of HOMO-LUMO energy transition was 2 and degeneracy level was 3. Analysis of the theoretical spectra was focused in the UV-B (290-320 nm and UV-C (200-290 nm area. The result showed that modeling of the compound can be used for predicting the type of UV protection activity depending with the electronic transition in the UV area. Modification of the alkyl homologue relatively did not change the value of wavelength absorbtion to indicate the UV protection activity. Alkyl salicylate compounds were predicted as UV-C sunscreen or relatively the compounds have protection effect for UV-C.   Keywords: alkyl salicylate, sunscreen, semiempirical methods

  17. Ion yields in UV-MALDI mass spectrometry as a function of excitation laser wavelength and optical and physico-chemical properties of classical and halogen-substituted MALDI matrixes.

    Science.gov (United States)

    Soltwisch, Jens; Jaskolla, Thorsten W; Hillenkamp, Franz; Karas, Michael; Dreisewerd, Klaus

    2012-08-07

    The laser wavelength constitutes a key parameter in ultraviolet-matrix-assisted laser desorption ionization-mass spectrometry (UV-MALDI-MS). Optimal analytical results are only achieved at laser wavelengths that correspond to a high optical absorption of the matrix. In the presented work, the wavelength dependence and the contribution of matrix proton affinity to the MALDI process were investigated. A tunable dye laser was used to examine the wavelength range between 280 and 355 nm. The peptide and matrix ion signals recorded as a function of these irradiation parameters are displayed in the form of heat maps, a data representation that furnishes multidimensional data interpretation. Matrixes with a range of proton affinities from 809 to 866 kJ/mol were investigated. Among those selected are the standard matrixes 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA) as well as five halogen-substituted cinnamic acid derivatives, including the recently introduced 4-chloro-α-cyanocinnamic acid (ClCCA) and α-cyano-2,4-difluorocinnamic acid (DiFCCA) matrixes. With the exception of DHB, the highest analyte ion signals were obtained toward the red side of the peak optical absorption in the solid state. A stronger decline of the molecular analyte ion signals generated from the matrixes was consistently observed at the low wavelength side of the peak absorption. This effect is mainly the result of increased fragmentation of both analyte and matrix ions. Optimal use of multiply halogenated matrixes requires adjustment of the excitation wavelength to values below that of the standard MALDI lasers emitting at 355 (Nd:YAG) or 337 nm (N(2) laser). The combined data provide new insights into the UV-MALDI desorption/ionization processes and indicate ways to improve the analytical sensitivity.

  18. Resonant excitation of uranium atoms by an argon ion laser

    Energy Technology Data Exchange (ETDEWEB)

    Maeyama, H; Morikawa, M; Aihara, Y; Mochizuki, T; Yamanaka, C [Osaka Univ. (Japan)

    1979-03-01

    Photoionization of uranium atoms by UV lines, 3511 A and 3345 A, of an argon ion laser was observed and attributed due to resonant two-photon ionization. The dependence of the photoion currents on laser power was measured in focusing and non-focusing modes of laser beam, which has enabled us to obtain an absorption cross section and an ionization cross section independently. The orders of magnitude of these cross sections averaged over the fine structure were determined to be 10/sup -14/ cm/sup 2/ and 10/sup -17/ cm/sup 2/ respectively from a rate equation model. Resonance between 3511-A laser line and the absorption line of uranium isotopes was also confirmed by the ionization spectra obtained by near-single-frequency operation of the ion laser, which allowed the isotopic selective excitation of the uranium atoms. The maximum value of the enrichment of /sup 235/U was about 14%. The isotope separation of uranium atoms by this resonant excitation has been discussed.

  19. Bottom-up excited state dynamics of two cinnamate-based sunscreen filter molecules.

    Science.gov (United States)

    Peperstraete, Yoann; Staniforth, Michael; Baker, Lewis A; Rodrigues, Natércia D N; Cole-Filipiak, Neil C; Quan, Wen-Dong; Stavros, Vasilios G

    2016-10-12

    Methyl-E-4-methoxycinnamate (E-MMC) is a model chromophore of the commonly used commercial sunscreen agent, 2-ethylhexyl-E-4-methoxycinnamate (E-EHMC). In an effort to garner a molecular-level understanding of the photoprotection mechanisms in operation with E-EHMC, we have used time-resolved pump-probe spectroscopy to explore E-MMC's and E-EHMC's excited state dynamics upon UV-B photoexcitation to the S 1 (1 1 ππ*) state in both the gas- and solution-phase. In the gas-phase, our studies suggest that the excited state dynamics are driven by non-radiative decay from the 1 1 ππ* to the S 3 (1 1 nπ*) state, followed by de-excitation from the 1 1 nπ* to the ground electronic state (S 0 ). Using both a non-polar-aprotic solvent, cyclohexane, and a polar-protic solvent, methanol, we investigated E-MMC and E-EHMC's photochemistry in a more realistic, 'closer-to-shelf' environment. A stark change to the excited state dynamics in the gas-phase is observed in the solution-phase suggesting that the dynamics are now driven by efficient E/Z isomerisation from the initially photoexcited 1 1 ππ* state to S 0 .

  20. Photoreactivity of 5-methoxypsoralen with calf thymus DNA upon excitation in the UV A

    Energy Technology Data Exchange (ETDEWEB)

    Sa E Melo, T.; Santus, R. (Museum National d' Histoire Naturelle, Paris (France)); Morliere, P.; Dubertret, L. (Hopital Franco-Musulman, 93 - Bobigny (France))

    1984-01-01

    The photoaddition of 5-methoxy-psoralen to DNA has been studied as a function of the excitation wavelength in the 310-405 nm region. The predominant monoadduct formed in these irradiation conditions (quantum yield: 3x10/sup -3/) is the fluorescent 4',5' monoadduct (fluorescence quantum yield: 0.1) which is stable under irradiation at wavelength lambda > 370 nm. This cycloadduct is rapidly transformed into the diadduct with a quantum yield of 0.03 upon irradiation at shorter wavelengths.

  1. Photoreactivity of 5-methoxypsoralen with calf thymus DNA upon excitation in the UV A

    International Nuclear Information System (INIS)

    Sa E Melo, T.; Santus, R.; Morliere, P.; Dubertret, L.

    1984-01-01

    The photoaddition of 5-methoxy-psoralen to DNA has been studied as a function of the excitation wavelength in the 310-405 nm region. The predominant monoadduct formed in these irradiation conditions (quantum yield: 3x10 -3 ) is the fluorescent 4',5' monoadduct (fluorescence quantum yield: 0.1) which is stable under irradiation at wavelength lambda > 370 nm. This cycloadduct is rapidly transformed into the diadduct with a quantum yield of 0.03 upon irradiation at shorter wavelengths. (orig.)

  2. Expression of UV-irradiated adenovirus in normal and UV-sensitive Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Rainbow, A.J.

    1985-01-01

    The chinese hamster ovary (CHO) cell mutants UV-20, UV-24, and UV-41 are abnormally sensitive to UV and harbour various defects lin their ability to repair cellular DNA. This study has examined the expression of UV-irradiated AD2 in these cells. HCR of UV-irradiated Ad2, as measured by viral structural antigen (Vag) formation or progeny production, was found to be similar for the normal and the UV-sensitive CHO strains. UV-irradiation of Ad2 (1200 J/m/sup 2/) resulted in a delay of Vag expression of 18 hours in normal human fibroblasts, which is thought to reflect the time required for removal of UV-induced lesions from the DNA before viral DNA synthesis can proceed. However, a similar UV-irradiation of Ad2 did not result in a delay of Vag expression for infection of CHO cells, suggesting that UV-induced lesions in Ad2 DNA do not inhibit its replication in CHO cells. These results indicate a fundamental difference in the processing of UV-irradiated AD2-DNA in CHO as compared to human cells

  3. Session 6: photo-catalytic degradation of Toluene using sunlight-type excitation

    Energy Technology Data Exchange (ETDEWEB)

    Fuerte, A.; Hernandez-Alonso, M.D.; Martinez-Arias, A.; Conesa, J.C.; Soria, J.; Fernandez-Garcia, M. [Instituto de Catalisis y Petroleoquimica, CSIC, -Madrid (Spain)

    2004-07-01

    In this report we investigate the doping of anatase-TiO{sub 2} with nine different cations. It is shown that W can be one of the best options for toluene photo-degradation using sunlight-type excitation. Thermal and hydrothermal treatments were applied to amorphous Ti-W mixed oxide precursors with varying W:Ti atomic ratio for obtaining nano-structured particles having different properties. All Ti-W precursors were prepared by a microemulsion method and the mixed oxides characterized by using XRD, XPS, as well as XAFS, Raman and UV-Vis Spectroscopies. (authors)

  4. Índice UV

    Science.gov (United States)

    Información general sobre el Índice UV que proporciona un pronóstico del riesgo esperado de sobreexposición a la radiación ultravioleta (UV) del sol. El índice UV va acompañado de recomendaciones para protegerse del sol.

  5. Spectral dependence of some UV-B and UV-C responses of Tetrahymena pyriformis irradiated with dye laser generated UV

    International Nuclear Information System (INIS)

    Calkins, John; Colley, Ed; Wheeler, John; Kentucky Univ., Lexington

    1987-01-01

    We have generated UV-B and UV-C radiations using a flashlamp driven tunable dye laser combined with frequency doubling crystals. Using this novel UV source, we have investigated lethality and its modification by growth phase, photoreactivation and caffeine in Tetrahymena pyriformis at 254 nm and from 260-315 nm in 5 nm steps. From the observed responses we have constructed action spectra for lethality, with or without caffeine (a repair inhibitor) and under conditions of photoreactivation. We have also estimated quantum efficiencies for these responses. Our observations suggest that complex changes in response occur at several wavelengths over the UV-C and UV-B regions. (author)

  6. Transformation of UV-hypersensitive Chinese hamster ovary cell mutants with UV-irradiated plasmids

    International Nuclear Information System (INIS)

    Nairn, R.S.; Humphrey, R.M.; Adair, G.M.

    1988-01-01

    Transfection of UV-hypersensitive, DNA repair-deficient Chinese hamster ovary (CHO) cell lines and parental, repair-proficient CHO cells with UV-irradiated pHaprt-1 or pSV2gpt plasmids resulted in different responses by recipient cell lines to UV damage in transfected DNA. Unlike results reported for human cells, UV irradiation of transfecting DNA did not stimulate genetic transformation of CHO recipient cells. In repair-deficient CHO cells, proportionally fewer transformants were produced with increasing UV damage than in repair-proficient cells in transfections with UV-irradiated hamster adenine phosphoribosyltransferase (APRT) gene contained in plasmid pHaprt-1. Transfection of CHO cells with UV-irradiated pSV2gpt resulted in neither decline in transformation frequencies in repair-deficient cell lines relative to repair-proficient cells nor stimulation of genetic transformation by UV damage in the plasmid. Blot hybridization analysis of DNA samples isolated from transformed cells showed no dramatic changes in copy number or arrangement of transfected plasmid DNA with increasing UV dose. The authors conclude responses of recipient cells to UV-damaged transfecting plasmids depend on type of recipient cell and characteristics of the genetic sequence used for transfection. (author)

  7. Investigation of L(+)-Ascorbic Acid with Raman Spectroscopy in Visible and UV Light

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    2015-01-01

    Abstract: Raman spectroscopy investigations of l(+)-ascorbic acid and its mono- and di-deprotonated anions (AH(-) and A(2-)) are reviewed and new measurements reported with several wavelengths, 229, 244, 266, 488, and 532nm. Results are interpreted, assisted by new DFT/B3LYP quantum chemical calc......). Relatively weak preresonance enhancement was seen for A(2-) when excitation was done with 229nm UV light, allowing water bands to become observable as for normal visible light Raman spectra....... calculations with 6-311++G(d,p) basis sets for several conformations of ascorbic acid and the anions. Raman spectra were measured during titration with NaOH base in an oxygen-poor environment to avoid fluorescence when solutions were alkaline. The ultraviolet (UV) absorption band for ascorbic acid in aqueous......cm(-1). Finally, for the ascorbate di-anion, absorption was found at similar to 298.4nm with molar absorptivity of similar to 7,000 L mol(-1) cm(-1) and below similar to 220nm. With UV light (244 and 266nm), strongly basic solutions gave pronounced Raman resonance enhancement at similar to 1556cm(-1...

  8. Phosphors for near UV-Emitting LED's for Efficacious Generation of White Light

    Energy Technology Data Exchange (ETDEWEB)

    McKittrick, Joanna [Univ. of California, San Diego, CA (United States)

    2013-09-30

    1) We studied phosphors for near-UV (nUV) LED application as an alternative to blue LEDs currently being used in SSL systems. We have shown that nUV light sources could be very efficient at high current and will have significantly less binning at both the chip and phosphor levels. We identified phosphor blends that could yield 4100K lamps with a CRI of approximately 80 and LPWnUV,opt equal to 179 for the best performing phosphor blend. Considering the fact that the lamps were not optimized for light coupling, the results are quite impressive. The main bottleneck is an optimum blue phosphor with a peak near 440 nm with a full width half maximum of about 25 nm and a quantum efficiency of >95%. Unfortunately, that may be a very difficult task when we want to excite a phosphor at ~400 nm with a very small margin for Stokes shift. Another way is to have all the phosphors in the blend having the excitation peak at 400 nm or slightly shorter wavelength. This could lead to a white light source with no body color and optimum efficacy due to no self-absorption effects by phosphors in the blend. This is even harder than finding an ideal blue phosphor, but not necessarily impossible. 2) With the phosphor blends identified, light sources using nUV LEDs at high current could be designed with comparable efficacy to those using blue LEDs. It will allow us to design light sources with multiple wattages using the same chips and phosphor blends simply by varying the input current. In the case of blue LEDs, this is not currently possible because varying the current will lower the efficacy at high current and alter the color point. With improvement of phosphor blends, control over CRI could improve. Less binning at the chip level and also at the phosphor blend level could reduce the cost of SSL light sources. 3) This study provided a deeper understanding of phosphor characteristics needed for LEDs in general and nUV LEDs in particular. Two students received Ph.D. degrees and three

  9. Comets in UV

    Science.gov (United States)

    Shustov, B.; Sachkov, M.; Gómez de Castro, A. I.; Vallejo, J. C.; Kanev, E.; Dorofeeva, V.

    2018-04-01

    Comets are important "eyewitnesses" of Solar System formation and evolution. Important tests to determine the chemical composition and to study the physical processes in cometary nuclei and coma need data in the UV range of the electromagnetic spectrum. Comprehensive and complete studies require additional ground-based observations and in situ experiments. We briefly review observations of comets in the ultraviolet (UV) and discuss the prospects of UV observations of comets and exocomets with space-borne instruments. A special reference is made to the World Space Observatory-Ultraviolet (WSO-UV) project.

  10. Use of satellite erythemal UV products in analysing the global UV changes

    Directory of Open Access Journals (Sweden)

    I. Ialongo

    2011-09-01

    Full Text Available Long term changes in solar UV radiation affect global bio-geochemistry and climate. The satellite-based dataset of TOMS (Total Ozone Monitoring System and OMI (Ozone Monitoring Instrument of erythemal UV product was applied for the first time to estimate the long-term ultraviolet (UV changes at the global scale. The analysis of the uncertainty related to the different input information is presented. OMI and GOME-2 (Global Ozone Monitoring Experiment-2 products were compared in order to analyse the differences in the global UV distribution and their effect on the linear trend estimation.

    The results showed that the differences in the inputs (mainly surface albedo and aerosol information used in the retrieval, affect significantly the UV change calculation, pointing out the importance of using a consistent dataset when calculating long term UV changes. The areas where these differences played a major role were identified using global maps of monthly UV changes. Despite the uncertainties, significant positive UV changes (ranging from 0 to about 5 %/decade were observed, with higher values in the Southern Hemisphere at mid-latitudes during spring-summer, where the largest ozone decrease was observed.

  11. Modeling of Output Characteristics of a UV Cu+ Ne-CuBr Laser

    Directory of Open Access Journals (Sweden)

    Snezhana Georgieva Gocheva-Ilieva

    2012-01-01

    Full Text Available This paper examines experiment data for a Ne-CuBr UV copper ion laser excited by longitudinal pulsed discharge emitting in multiline regime. The flexible multivariate adaptive regression splines (MARSs method has been used to develop nonparametric regression models describing the laser output power and service life of the devices. The models have been constructed as explicit functions of 9 basic input laser characteristics. The obtained models account for local nonlinearities of the relationships within the various multivariate subregions. The built best MARS models account for over 98% of data. The models are used to estimate the investigated output laser characteristics of existing UV lasers. The capabilities for using the models in predicting existing and future experiments have been demonstrated. Specific analyses have been presented comparing the models with actual experiments. The obtained results are applicable for guiding and planning the engineering experiment. The modeling methodology can be applied for a wide range of similar lasers and laser devices.

  12. Can Measured Synergy Excitations Accurately Construct Unmeasured Muscle Excitations?

    Science.gov (United States)

    Bianco, Nicholas A; Patten, Carolynn; Fregly, Benjamin J

    2018-01-01

    Accurate prediction of muscle and joint contact forces during human movement could improve treatment planning for disorders such as osteoarthritis, stroke, Parkinson's disease, and cerebral palsy. Recent studies suggest that muscle synergies, a low-dimensional representation of a large set of muscle electromyographic (EMG) signals (henceforth called "muscle excitations"), may reduce the redundancy of muscle excitation solutions predicted by optimization methods. This study explores the feasibility of using muscle synergy information extracted from eight muscle EMG signals (henceforth called "included" muscle excitations) to accurately construct muscle excitations from up to 16 additional EMG signals (henceforth called "excluded" muscle excitations). Using treadmill walking data collected at multiple speeds from two subjects (one healthy, one poststroke), we performed muscle synergy analysis on all possible subsets of eight included muscle excitations and evaluated how well the calculated time-varying synergy excitations could construct the remaining excluded muscle excitations (henceforth called "synergy extrapolation"). We found that some, but not all, eight-muscle subsets yielded synergy excitations that achieved >90% extrapolation variance accounted for (VAF). Using the top 10% of subsets, we developed muscle selection heuristics to identify included muscle combinations whose synergy excitations achieved high extrapolation accuracy. For 3, 4, and 5 synergies, these heuristics yielded extrapolation VAF values approximately 5% lower than corresponding reconstruction VAF values for each associated eight-muscle subset. These results suggest that synergy excitations obtained from experimentally measured muscle excitations can accurately construct unmeasured muscle excitations, which could help limit muscle excitations predicted by muscle force optimizations.

  13. Excited TBA equations I: Massive tricritical Ising model

    International Nuclear Information System (INIS)

    Pearce, Paul A.; Chim, Leung; Ahn, Changrim

    2001-01-01

    We consider the massive tricritical Ising model M(4,5) perturbed by the thermal operator phi (cursive,open) Greek 1,3 in a cylindrical geometry and apply integrable boundary conditions, labelled by the Kac labels (r,s), that are natural off-critical perturbations of known conformal boundary conditions. We derive massive thermodynamic Bethe ansatz (TBA) equations for all excitations by solving, in the continuum scaling limit, the TBA functional equation satisfied by the double-row transfer matrices of the A 4 lattice model of Andrews, Baxter and Forrester (ABF) in Regime III. The complete classification of excitations, in terms of (m,n) systems, is precisely the same as at the conformal tricritical point. Our methods also apply on a torus but we first consider (r,s) boundaries on the cylinder because the classification of states is simply related to fermionic representations of single Virasoro characters χ r,s (q). We study the TBA equations analytically and numerically to determine the conformal UV and free particle IR spectra and the connecting massive flows. The TBA equations in Regime IV and massless RG flows are studied in Part II

  14. High-sensitivity detection of cardiac troponin I with UV LED excitation for use in point-of-care immunoassay

    DEFF Research Database (Denmark)

    Rodenko, Olga; Eriksson, Susann; Tidemand-Lichtenberg, Peter

    2017-01-01

    of an immunoassay analyzer employing an optimized LED excitation to measure on a standard troponin I and a novel research high-sensitivity troponin I assay. The limit of detection is improved by factor of 5 for standard troponin I and by factor of 3 for a research high-sensitivity troponin I assay, compared...... to the flash lamp excitation. The obtained limit of detection was 0.22 ng/L measured on plasma with the research highsensitivity troponin I assay and 1.9 ng/L measured on tris-saline-azide buffer containing bovine serum albumin with the standard troponin I assay. We discuss the optimization of time...

  15. Dichotomy in response to indomethacin in uv-C and uv-B induced ultraviolet light inflammation

    International Nuclear Information System (INIS)

    Eaglstein, W.H.; Marsico, A.R.

    1975-01-01

    In subjects irradiated with both UV-C and UV-B ultraviolet light (UVL), 10 μg of intradermal indomethacin decreased the redness in all 13 of the UV-B irradiated areas but in only 2 of 13 of the UV-C irradiated areas. Higher doses of intradermal indomethacin (50 μg and 100 μg) decreased the redness produced by UV-C irradiation in 6 subjects. It is suggested that the failure of 10 μg of indomethacin to decrease the redness of the UV-C induced inflammation, while decreasing the redness in the UV-B induced inflammation, is consistent with the possibility that prostaglandins participate in UV-B but not UV-C induced inflammation

  16. Two-components UV-therapy

    International Nuclear Information System (INIS)

    Pullmann, H.; Steigleder, G.K.

    1980-01-01

    20 patients with generalized psoriasis were treated with an apparatus containing UV-A- and UV-B-fluorescence tubes to be switched separately. The therapy was started with an UV-A-dose of 12 J/cm 2 daily. After the first week of treatment UV-B in increasing doses was applicated additionally. Clearance was achieved in 80 percent. (orig.) [de

  17. Cryogenic exciter

    Science.gov (United States)

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  18. UV exposure in cars.

    Science.gov (United States)

    Moehrle, Matthias; Soballa, Martin; Korn, Manfred

    2003-08-01

    There is increasing knowledge about the hazards of solar and ultraviolet (UV) radiation to humans. Although people spend a significant time in cars, data on UV exposure during traveling are lacking. The aim of this study was to obtain basic information on personal UV exposure in cars. UV transmission of car glass samples, windscreen, side and back windows and sunroof, was determined. UV exposure of passengers was evaluated in seven German middle-class cars, fitted with three different types of car windows. UV doses were measured with open or closed windows/sunroof of Mercedes-Benz E 220 T, E 320, and S 500, and in an open convertible car (Mercedes-Benz CLK). Bacillus subtilis spore film dosimeters (Viospor) were attached to the front, vertex, cheeks, upper arms, forearms and thighs of 'adult' and 'child' dummies. UV wavelengths longer than >335 nm were transmitted through car windows, and UV irradiation >380 nm was transmitted through compound glass windscreens. There was some variation in the spectral transmission of side windows according to the type of glass. On the arms, UV exposure was 3-4% of ambient radiation when the car windows were shut, and 25-31% of ambient radiation when the windows were open. In the open convertible car, the relative personal doses reached 62% of ambient radiation. The car glass types examined offer substantial protection against short-wave UV radiation. Professional drivers should keep car windows closed on sunny days to reduce occupational UV exposure. In individuals with polymorphic light eruption, produced by long-wave UVA, additional protection by plastic films, clothes or sunscreens appears necessary.

  19. Evidence for excited state intramolecular charge transfer in benzazole-based pseudo-stilbenes.

    Science.gov (United States)

    Santos, Fabiano da Silveira; Descalzo, Rodrigo Roceti; Gonçalves, Paulo Fernando Bruno; Benvenutti, Edilson Valmir; Rodembusch, Fabiano Severo

    2012-08-21

    Two azo compounds were obtained through the diazotization reaction of aminobenzazole derivatives and N,N-dimethylaniline using clay montmorillonite KSF as catalyst. The synthesized dyes were characterized using elemental analysis, Fourier transform infrared spectroscopy, and (13)C and (1)H NMR spectroscopy in solution. Their photophysical behavior was studied using UV-vis and steady-state fluorescence in solution. These dyes present intense absorption in the blue region. The spectral features of the azo compounds can be related to the pseudo-stilbene type as well as the E isomer of the dyes. Excitation at the absorption maxima does not produce emissive species in the excited state. However, excitation around 350 nm allowed dual emission of fluorescence, from both a locally excited (LE, short wavelength) and an intramolecular charge transfer (ICT, long wavelength) state, which was corroborated by a linear relation of the fluorescence maximum (ν(max)) versus the solvent polarity function (Δf) from the Lippert-Mataga correlation. Evidence of TICT in these dyes was discussed from the viscosity dependence of the fluorescence intensity in the ICT emission band. Theoretical calculations were also performed in order to study the geometry and charge distribution of the dyes in their ground and excited electronic states. Using DFT methods at the theoretical levels BLYP/Aug-cc-pVDZ, for geometry optimizations and frequency calculations, and B3LYP/6-311+G(2d), for single-point energy evaluations, the calculations revealed that the least energetic and most intense photon absorption leads to a very polar excited state that relaxes non-radioactively, which can be associated with photochemical isomerization.

  20. uv dye lasers

    International Nuclear Information System (INIS)

    Abakumov, G.A.; Fadeev, V.V.; Khokhlov, R.V.; Simonov, A.P.

    1975-01-01

    The most important property of visible dye lasers, that is, continuous wavelength tuning, stimulated the search for dyes capable to lase in uv. They were found in 1968. Now the need for tunable uv lasers for applications in spectroscopy, photochemistry, isotope separation, remote air and sea probing, etc. is clearly seen. A review of some recent advances in uv dye lasers is reviewed

  1. Bottom-up excited state dynamics of two cinnamate-based sunscreen filter molecules

    OpenAIRE

    Peperstraete, Yoann; Staniforth, Michael; Baker, Lewis A.; Rodrigues, Natércia D. N.; Cole-Filipiak, Neil C.; Quan, Wen-Dong; Stavros, Vasilios G.

    2016-01-01

    Methyl-E-4-methoxycinnamate (E-MMC) is a model chromophore of the commonly used commercial sunscreen agent, 2- ethylhexyl-E-4-methoxycinnamate (E-EHMC). In an effort to garner a molecular-level understanding of the photoprotection mechanisms in operation with E-EHMC, we have used time-resolved pump-probe spectroscopy to explore E-MMC’s and E-EHMC’s excited state dynamics upon UV-B photoexcitation to the S1 (11ππ*) state in both the gas- and solution-phase. In the gas-phase, our studies sugges...

  2. Study on excitation and fluorescence spectrums of Japanese citruses to construct machine vision systems for acquiring fluorescent images

    Science.gov (United States)

    Momin, Md. Abdul; Kondo, Naoshi; Kuramoto, Makoto; Ogawa, Yuichi; Shigi, Tomoo

    2011-06-01

    Research was conducted to acquire knowledge of the ultraviolet and visible spectrums from 300 -800 nm of some common varieties of Japanese citrus, to investigate the best wave-lengths for fluorescence excitation and the resulting fluorescence wave-lengths and to provide a scientific background for the best quality fluorescent imaging technique for detecting surface defects of citrus. A Hitachi U-4000 PC-based microprocessor controlled spectrophotometer was used to measure the absorption spectrum and a Hitachi F-4500 spectrophotometer was used for the fluorescence and excitation spectrums. We analyzed the spectrums and the selected varieties of citrus were categorized into four groups of known fluorescence level, namely strong, medium, weak and no fluorescence.The level of fluorescence of each variety was also examined by using machine vision system. We found that around 340-380 nm LEDs or UV lamps are appropriate as lighting devices for acquiring the best quality fluorescent image of the citrus varieties to examine their fluorescence intensity. Therefore an image acquisition device was constructed with three different lighting panels with UV LED at peak 365 nm, Blacklight blue lamps (BLB) peak at 350 nm and UV-B lamps at peak 306 nm. The results from fluorescent images also revealed that the findings of the measured spectrums worked properly and can be used for practical applications such as for detecting rotten, injured or damaged parts of a wide variety of citrus.

  3. Modeling the natural UV irradiation and comparative UV measurements at Moussala BEO (BG)

    Science.gov (United States)

    Tyutyundzhiev, N.; Angelov, Ch; Lovchinov, K.; Nitchev, Hr; Petrov, M.; Arsov, T.

    2018-03-01

    Studies of and modeling the impact of natural UV irradiation on the human population are of significant importance for human activity and economics. The sharp increase of environmental problems – extraordinary temperature changes, solar irradiation abnormalities, icy rains – raises the question of developing novel means of assessing and predicting potential UV effects. In this paper, we discuss new UV irradiation modeling based on recent real-time measurements at Moussala Basic Environmental Observatory (BEO) on Moussala Peak (2925 m ASL) in Rila Mountain, Bulgaria, and highlight the development and initial validation of portable embedded devices for UV-A, UV-B monitoring using open-source software architecture, narrow bandpass UV sensors, and the popular Arduino controllers. Despite the high temporal resolution of the VIS and UV irradiation measurements, the results obtained reveal the need of new assumptions in order to minimize the discrepancy with available databases.

  4. Transcriptional and cellular effects of benzotriazole UV stabilizers UV-234 and UV-328 in the freshwater invertebrates Chlamydomonas reinhardtii and Daphnia magna.

    Science.gov (United States)

    Giraudo, Maeva; Cottin, Guillaume; Esperanza, Marta; Gagnon, Pierre; Silva, Amila O De; Houde, Magali

    2017-12-01

    Benzotriazole ultra violet stabilizers (BZT-UVs) are compounds used in many applications and products to prevent photochemical degradation. Despite their widespread presence in aquatic ecosystems and persistence in the environment, there are very limited data on their effects and toxicity, and their modes of action remain largely unknown. The objectives of the present study were to evaluate the chronic effects of 2 BZT-UVs, 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (UV-234) and 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV-328), on the freshwater green algae Chlamydomonas reinhardtii and the freshwater crustacean Daphnia magna. Organisms were exposed to 0.01 and 10 μg/L of UV-234, UV-328, as well as a mixture of the 2 compounds. Life-history endpoints (viability, reproduction, and growth) and oxidative stress-related biomarkers (gene transcription, reactive oxygen species [ROS] production, and lipid peroxidation) were measured. Daphnia magna growth, reproduction, and gene transcription were not impacted by 21-d individual or mixed exposure. After 96-h of exposure, no differences were observed on the cellular viability of C. reinhardtii for either of the 2 BZT-UVs. In the algae, results showed increased ROS production in response to UV-328 and lipid peroxidation following exposure to UV-234. Synergistic effects of the 2 BZT-UVs were evident at the transcriptional level with 2 to 6 times up-regulation of glutathione peroxidase (gp x ) in response to the mixture for all treatment conditions. The transcription of superoxide dismutase (sod), catalase (cat), and ascorbic peroxidase (apx) was also regulated by UV-234 and UV-328 in the green algae, most likely as a result of ROS production and lipid peroxidation. Results from the present study suggest potential impacts of UV-234 and UV-328 exposure on the antioxidant defense system in C. reinhardtii. Environ Toxicol Chem 2017;36:3333-3342. © 2017 Crown in the Right of Canada. Published by

  5. /UV Synergistic Aging of Polyester Polyurethane Film Modified by Composite UV Absorber

    Directory of Open Access Journals (Sweden)

    Yanzhi Wang

    2013-01-01

    Full Text Available The pure polyester polyurethane (TPU film and the modified TPU (M-TPU film containing 2.0 wt.% inorganic UV absorbers mixture (nano-ZnO/CeO2 with weight ratio of 3 : 2 and 0.5 wt.% organic UV absorbers mixture (UV-531/UV-327 with weight ratio of 1 : 1 were prepared by spin-coating technique. The accelerated aging tests of the films exposed to constant UV radiation of 400 ± 20 µW/cm2 (313 nm with an ozone atmosphere of 100 ± 2 ppm were carried out by using a self-designed aging equipment at ambient temperature and relative humidity of 20%. The aging resistance properties of the films were evaluated by UV-Vis spectra, Fourier transform infrared spectra (FT-IR, photooxidation index, and carbonyl index analysis. The results show that the composite UV absorber has better protection for TPU system, which reduces distinctly the degradation of TPU film. O3/UV aging of the films increases with incremental exposure time. PI and CI of TPU and M-TPU films increase with increasing exposure time, respectively. PI and CI of M-TPU films are much lower than that of TPU film after the same time of exposure, respectively. Distinct synergistic aging effect exists between ozone aging and UV aging when PI and CI are used as evaluation index, respectively. Of course, the formula of these additives needs further improvement for industrial application.

  6. Quenching of excited uranyl ion during its photochemical reduction with triphenyl-phosphine : Part IV - effect of heterocyclic molecules

    International Nuclear Information System (INIS)

    Sidhu, M.S.; Bhatia, P.V.K.

    1994-01-01

    The presence of heterocyclic compounds triggers off a competition between photophysical and photochemical annihilation of excited uranyl ion during its photochemical reduction with triphenylphosphine. This competition is used to measure Stern-Volmer constant using UV visible spectrophotometer for quenching the uranyl ion luminescence with a number of heterocyclic molecules viz., pyridine, thiophene bipyridyl, tetrahydrofuran and piperidine. (author). 7 refs., 2 figs., 1 tab

  7. A portable UV-fluorescence multispectral imaging system for the analysis of painted surfaces

    Science.gov (United States)

    Comelli, Daniela; Valentini, Gianluca; Nevin, Austin; Farina, Andrea; Toniolo, Lucia; Cubeddu, Rinaldo

    2008-08-01

    A portable fluorescence multispectral imaging system was developed and has been used for the analysis of artistic surfaces. The imaging apparatus exploits two UV lamps for fluorescence excitation and a liquid crystal tunable filter coupled to a low-noise charge coupled device as the image detector. The main features of the system are critically presented, outlining the assets, drawbacks, and practical considerations of portability. A multivariate statistical treatment of spectral data is further considered. Finally, the in situ analysis with the new apparatus of recently restored Renaissance wall paintings is presented.

  8. Excitation of anodized alumina films with a light source

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Canulescu, Stela; Rechendorff, K.

    Optical properties of anodized aluminium alloys were determined by optical diffuse reflectance spectroscopy of such films. Samples with different concentrations of dopants were excited with a white-light source combined with an integrating sphere for fast determination of diffuse reflectance....... The UV-VIS reflectance of Ti-doped anodized aluminium films was measured over the wavelength range of 200 nm to 900 nm. Titanium doped-anodized aluminium films with 5-15 wt% Ti were characterized. Changes in the diffuse light scattering of doped anodized aluminium films, and thus optical appearance......, with doping are discussed. Using the Kubelka-Munk model on the diffuse reflectance spectra of such films, the bandgap Eg of the oxide alloys can be determined....

  9. Temporal variation of optimal UV exposure time over Korea: risks and benefits of surface UV radiation

    Science.gov (United States)

    Lee, Y. G.; Koo, J. H.

    2015-12-01

    Solar UV radiation in a wavelength range between 280 to 400 nm has both positive and negative influences on human body. Surface UV radiation is the main natural source of vitamin D, providing the promotion of bone and musculoskeletal health and reducing the risk of a number of cancers and other medical conditions. However, overexposure to surface UV radiation is significantly related with the majority of skin cancer, in addition other negative health effects such as sunburn, skin aging, and some forms of eye cataracts. Therefore, it is important to estimate the optimal UV exposure time, representing a balance between reducing negative health effects and maximizing sufficient vitamin D production. Previous studies calculated erythemal UV and vitamin-D UV from the measured and modelled spectral irradiances, respectively, by weighting CIE Erythema and Vitamin D3 generation functions (Kazantzidis et al., 2009; Fioletov et al., 2010). In particular, McKenzie et al. (2009) suggested the algorithm to estimate vitamin-D production UV from erythemal UV (or UV index) and determined the optimum conditions of UV exposure based on skin type Ⅱ according to the Fitzpatrick (1988). Recently, there are various demands for risks and benefits of surface UV radiation on public health over Korea, thus it is necessary to estimate optimal UV exposure time suitable to skin type of East Asians. This study examined the relationship between erythemally weighted UV (UVEry) and vitamin D weighted UV (UVVitD) over Korea during 2004-2012. The temporal variations of the ratio (UVVitD/UVEry) were also analyzed and the ratio as a function of UV index was applied in estimating the optimal UV exposure time. In summer with high surface UV radiation, short exposure time leaded to sufficient vitamin D and erythema and vice versa in winter. Thus, the balancing time in winter was enough to maximize UV benefits and minimize UV risks.

  10. Impact of Room Location on UV-C Irradiance and UV-C Dosage and Antimicrobial Effect Delivered by a Mobile UV-C Light Device.

    Science.gov (United States)

    Boyce, John M; Farrel, Patricia A; Towle, Dana; Fekieta, Renee; Aniskiewicz, Michael

    2016-06-01

    OBJECTIVE To evaluate ultraviolet C (UV-C) irradiance, UV-C dosage, and antimicrobial effect achieved by a mobile continuous UV-C device. DESIGN Prospective observational study. METHODS We used 6 UV light sensors to determine UV-C irradiance (W/cm2) and UV-C dosage (µWsec/cm2) at various distances from and orientations relative to the UV-C device during 5-minute and 15-minute cycles in an ICU room and a surgical ward room. In both rooms, stainless-steel disks inoculated with methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), and Clostridium difficile spores were placed next to sensors, and UV-C dosages and log10 reductions of target organisms achieved during 5-minute and 15-minute cycles were determined. Mean irradiance and dosage readings were compared using ANOVA. RESULTS Mean UV-C irradiance was nearly 1.0E-03 W/cm2 in direct sight at a distance of 1.3 m (4 ft) from the device but was 1.12E-05 W/cm2 on a horizontal surface in a shaded area 3.3 m (10 ft) from the device (P4 to 1-3 for MRSA, >4 to 1-2 for VRE and >4 to 0 log10 for C. difficile spores, depending on the distance from, and orientation relative to, the device with 5-minute and 15-minute cycles. CONCLUSION UV-C irradiance, dosage, and antimicrobial effect received from a mobile UV-C device varied substantially based on location in a room relative to the UV-C device. Infect Control Hosp Epidemiol 2016;37:667-672.

  11. Electronically excited states of chloroethylenes: Experiment and DFT calculations in comparison

    International Nuclear Information System (INIS)

    Khvostenko, O.G.

    2014-01-01

    Highlights: • B3LYP/6-311 + G(d,p) calculations of chloroethylenes molecules were performed. • Calculations were correlated with experiment on the molecules ground and excited states. • The general pattern of electron structure of chloroethylenes was obtained. • Necessity of this data for chloroethylenes negative ions study was noted. - Abstract: B3LYP/6-311 + G(d,p) calculations of ground and electronically excited states of ethylene, chloroethylene, 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans trichloroethylene and tetrachloroethylene molecules have been performed. Molecular orbitals images and orbital correlation diagram are given. The calculation results for chloroethylenes electronically excited states were compared with experimental data from the energy-loss spectra obtained and generally considered previously by C.F. Koerting, K.N. Walzl and A. Kupperman. Several new additional triplet and singlet transitions were pointed out in these spectra considering the calculation results. The finding of the additional transitions was supported by the UV absorption spectrum of trichloroethylene recorded in big cuvette (10 cm), where the first three triplet and two low-intensive forbidden singlet transitions were registered. The first triplet of this compound was recorded to be at the same energy as was found with the energy-loss spectroscopy

  12. Electronically excited states of chloroethylenes: Experiment and DFT calculations in comparison

    Energy Technology Data Exchange (ETDEWEB)

    Khvostenko, O.G., E-mail: khv@mail.ru

    2014-08-15

    Highlights: • B3LYP/6-311 + G(d,p) calculations of chloroethylenes molecules were performed. • Calculations were correlated with experiment on the molecules ground and excited states. • The general pattern of electron structure of chloroethylenes was obtained. • Necessity of this data for chloroethylenes negative ions study was noted. - Abstract: B3LYP/6-311 + G(d,p) calculations of ground and electronically excited states of ethylene, chloroethylene, 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans trichloroethylene and tetrachloroethylene molecules have been performed. Molecular orbitals images and orbital correlation diagram are given. The calculation results for chloroethylenes electronically excited states were compared with experimental data from the energy-loss spectra obtained and generally considered previously by C.F. Koerting, K.N. Walzl and A. Kupperman. Several new additional triplet and singlet transitions were pointed out in these spectra considering the calculation results. The finding of the additional transitions was supported by the UV absorption spectrum of trichloroethylene recorded in big cuvette (10 cm), where the first three triplet and two low-intensive forbidden singlet transitions were registered. The first triplet of this compound was recorded to be at the same energy as was found with the energy-loss spectroscopy.

  13. Effect of anthocyanins, carotenoids, and flavonols on chlorophyll fluorescence excitation spectra in apple fruit: signature analysis, assessment, modelling, and relevance to photoprotection.

    Science.gov (United States)

    Merzlyak, Mark N; Melø, Thor Bernt; Naqvi, K Razi

    2008-01-01

    Whole apple fruit (Malus domestica Borkh.) widely differing in pigment content and composition has been examined by recording its chlorophyll fluorescence excitation and diffuse reflection spectra in the visible and near UV regions. Spectral bands sensitive to the pigment concentration have been identified, and linear models for non-destructive assessment of anthocyanins, carotenoids, and flavonols via chlorophyll fluorescence measurements are put forward. The adaptation of apple fruit to high light stress involves accumulation of these protective pigments, which absorb solar radiation in broad spectral ranges extending from UV to the green and, in anthocyanin-containing cultivars, to the red regions of the spectrum. In ripening apples the protective effect in the blue region could be attributed to extrathylakoid carotenoids. A simple model, which allows the simulation of chlorophyll fluorescence excitation spectra in the visible range and a quantitative evaluation of competitive absorption by anthocyanins, carotenoids, and flavonols, is described. Evidence is presented to support the view that anthocyanins, carotenoids, and flavonols play, in fruit with low-to-moderate pigment content, the role of internal traps (insofar as they compete with chlorophylls for the absorption of incident light in specific spectral bands), affecting thereby the shape of the chlorophyll fluorescence excitation spectrum.

  14. Charge-transfer state excitation as the main mechanism of the photodarkening process in ytterbium-doped aluminosilicate fibres

    Energy Technology Data Exchange (ETDEWEB)

    Bobkov, K K; Rybaltovsky, A A; Vel' miskin, V V; Likhachev, M E; Bubnov, M M; Dianov, E M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Umnikov, A A; Gur' yanov, A N; Vechkanov, N N [G.G.Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation); Shestakova, I A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation)

    2014-12-31

    We have studied photodarkening in ytterbium-doped fibre preforms with an aluminosilicate glass core. Analysis of their absorption and luminescence spectra indicates the formation of stable Yb{sup 2+} ions in the glass network under IR laser pumping at a wavelength λ = 915 nm and under UV irradiation with an excimer laser (λ = 193 nm). We have performed comparative studies of the luminescence spectra of the preforms and crystals under excitation at a wavelength of 193 nm. The mechanism behind the formation of Yb{sup 2+} ions and aluminium – oxygen hole centres (Al-OHCs), common to ytterbium-doped YAG crystals and aluminosilicate glass, has been identified: photoinduced Yb{sup 3+} charge-transfer state excitation. (optical fibres)

  15. Tekstilde Uv Absorban Madde Uygulamaları The Applications of UV Absorber on Textiles

    OpenAIRE

    MERDAN, Nigar; ACAR, Kamil

    2009-01-01

    Tekstiller UV radyasyonuna karşı koruma sağlarken, bu aşamada radyasyonun dozu da önem taşımaktadır. Bu nedenle tekstil materyallerine UV absorban maddeler, liflerin üretimi esnasında ya da bitim işlemlerinde uygulanmaktadır. UV absorban maddelerin kullanılmasıyla, tekstil ürünlerinde UV ışınlarının geçirgenliğinin yoğunluk derecesi azaltılır. UV absorbanları, materyale gelen ışık tarafından oluşan olumsuz etkileri engeller

  16. UV Radiation and the Skin

    Directory of Open Access Journals (Sweden)

    Timothy Scott

    2013-06-01

    Full Text Available UV radiation (UV is classified as a “complete carcinogen” because it is both a mutagen and a non-specific damaging agent and has properties of both a tumor initiator and a tumor promoter. In environmental abundance, UV is the most important modifiable risk factor for skin cancer and many other environmentally-influenced skin disorders. However, UV also benefits human health by mediating natural synthesis of vitamin D and endorphins in the skin, therefore UV has complex and mixed effects on human health. Nonetheless, excessive exposure to UV carries profound health risks, including atrophy, pigmentary changes, wrinkling and malignancy. UV is epidemiologically and molecularly linked to the three most common types of skin cancer, basal cell carcinoma, squamous cell carcinoma and malignant melanoma, which together affect more than a million Americans annually. Genetic factors also influence risk of UV-mediated skin disease. Polymorphisms of the melanocortin 1 receptor (MC1R gene, in particular, correlate with fairness of skin, UV sensitivity, and enhanced cancer risk. We are interested in developing UV-protective approaches based on a detailed understanding of molecular events that occur after UV exposure, focusing particularly on epidermal melanization and the role of the MC1R in genome maintenance.

  17. Poling of UV-written Waveguides

    DEFF Research Database (Denmark)

    Arentoft, Jesper; Kristensen, Martin; Hübner, Jörg

    1999-01-01

    We report poling of UV-written silica waveguides. Thermal poling induces an electro-optic coefficient of 0.05 pm/V. We also demonstrate simultaneous UV-writing and UV-poling. No measurable decay in the induced electro-optic effect was detected after nine months......We report poling of UV-written silica waveguides. Thermal poling induces an electro-optic coefficient of 0.05 pm/V. We also demonstrate simultaneous UV-writing and UV-poling. No measurable decay in the induced electro-optic effect was detected after nine months...

  18. Standardization of UV LED measurements

    Science.gov (United States)

    Eppeldauer, G. P.; Larason, T. C.; Yoon, H. W.

    2015-09-01

    Traditionally used source spectral-distribution or detector spectral-response based standards cannot be applied for accurate UV LED measurements. Since the CIE standardized rectangular-shape spectral response function for UV measurements cannot be realized with small spectral mismatch when using filtered detectors, the UV measurement errors can be several times ten percent or larger. The UV LEDs produce broadband radiation and both their peaks or spectral bandwidths can change significantly. The detectors used for the measurement of these LEDs also have different spectral bandwidths. In the discussed example, where LEDs with 365 nm peak are applied for fluorescent crack-recognition using liquid penetrant (non-destructive) inspection, the broadband radiometric LED (signal) measurement procedure is standardized. A UV LED irradiance-source was calibrated against an FEL lamp standard to determine its spectral irradiance. The spectral irradiance responsivity of a reference UV meter was also calibrated. The output signal of the reference UV meter was calculated from the spectral irradiance of the UV source and the spectral irradiance responsivity of the reference UV meter. From the output signal, both the integrated irradiance (in the reference plane of the reference meter) and the integrated responsivity of the reference meter were determined. Test UV meters calibrated for integrated responsivity against the reference UV meter, can be used to determine the integrated irradiance from a field UV source. The obtained 5 % (k=2) measurement uncertainty can be decreased when meters with spectral response close to a constant value are selected.

  19. Proton and electron impact on molecular and atomic oxygen: I. High resolution fluorescence spectra in the visible and VUV spectral range and emission cross-sections for dissociative ionisation and excitation of O2

    International Nuclear Information System (INIS)

    Wilhelmi, O.; Schartner, K.H.

    2000-01-01

    For pt.II see ibid., vol.11, p.45-58, 2000. Molecular oxygen O 2 was dissociated in collisions with protons and electrons in the intermediate velocity range (p + -energies: 17-800 keV, e - -energies: 0.2-2 keV). Fluorescence from excited atomic and singly ionised fragments and from singly ionised molecules was detected in the VUV and in the visible and near UV spectral range. Highly resolved spectra are presented for the VUV (46-131 nm) and the near UV/visible (340-605 nm) spectral range. Absolute emission cross-sections have been determined for dissociative ionisation and excitation leading to fluorescence in the VUV. Results are compared with published data. (orig.)

  20. UV-indeks og dets betydning

    DEFF Research Database (Denmark)

    Wulf, Hans Christian; Eriksen, Paul

    2010-01-01

    The published UV index refers to the expected UV intensity at mid day, when the solar elevation is at its maximum. In Scandinavia, the maximum UV index is seven around midsummer. When the UV index is three, the erythema-weighted dose will be three Standard Erythema Dose (SED) in the hour with max...... a sunburn already when the UV index is higher than two....

  1. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H2O2, UV/O3, and UV/H2O2/O3).

    Science.gov (United States)

    Srithep, Sirinthip; Phattarapattamawong, Songkeart

    2017-06-01

    The objective of the study is to evaluate the performance of conventional treatment process (i.e., coagulation, flocculation, sedimentation and sand filtration) on the removals of haloacetonitrile (HAN) precursors. In addition, the removals of HAN precursors by photo-based advanced oxidation processes (Photo-AOPs) (i.e., UV/H 2 O 2 , UV/O 3 , and UV/H 2 O 2 /O 3 ) are investigated. The conventional treatment process was ineffective to remove HAN precursors. Among Photo-AOPs, the UV/H 2 O 2 /O 3 was the most effective process for removing HAN precursors, followed by UV/H 2 O 2 , and UV/O 3 , respectively. For 20min contact time, the UV/H 2 O 2 /O 3 , UV/H 2 O 2 , and UV/O 3 suppressed the HAN formations by 54, 42, and 27% reduction. Increasing ozone doses from 1 to 5 mgL -1 in UV/O 3 systems slightly improved the removals of HAN precursors. Changes in pH (6-8) were unaffected most of processes (i.e., UV, UV/H 2 O 2 , and UV/H 2 O 2 /O 3 ), except for the UV/O 3 system that its efficiency was low in the weak acid condition. The pseudo first-order kinetic constant for removals of dichloroacetonitrile precursors (k' DCANFP ) by the UV/H 2 O 2 /O 3 , UV/H 2 O 2 and standalone UV systems were 1.4-2.8 orders magnitude higher than the UV/O 3 process. The kinetic degradation of dissolved organic nitrogen (DON) tended to be higher than the k' DCANFP value. This study firstly differentiates the kinetic degradation between DON and HAN precursors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Direct on-strip analysis of size- and time-resolved aerosol impactor samples using laser induced fluorescence spectra excited at 263 and 351 nm

    International Nuclear Information System (INIS)

    Wang, Chuji; Pan, Yong-Le; James, Deryck; Wetmore, Alan E.; Redding, Brandon

    2014-01-01

    Highlights: • A dual wavelength UV-LIF spectra-rotating drum impactor (RDI) technique was developed. • The technique was demonstrated by direct on-strip analysis of size- and time-resolved LIF spectra of atmospheric aerosol particles. • More than 2000 LIF spectra of atmospheric aerosol particles collected over three weeks in Djibouti were obtained and assigned to various fluorescence clusters. • The LIF spectra showed size- and time-sensitivity behavior with a time resolution of 3.6 h. - Abstract: We report a novel atmospheric aerosol characterization technique, in which dual wavelength UV laser induced fluorescence (LIF) spectrometry marries an eight-stage rotating drum impactor (RDI), namely UV-LIF-RDI, to achieve size- and time-resolved analysis of aerosol particles on-strip. The UV-LIF-RDI technique measured LIF spectra via direct laser beam illumination onto the particles that were impacted on a RDI strip with a spatial resolution of 1.2 mm, equivalent to an averaged time resolution in the aerosol sampling of 3.6 h. Excited by a 263 nm or 351 nm laser, more than 2000 LIF spectra within a 3-week aerosol collection time period were obtained from the eight individual RDI strips that collected particles in eight different sizes ranging from 0.09 to 10 μm in Djibouti. Based on the known fluorescence database from atmospheric aerosols in the US, the LIF spectra obtained from the Djibouti aerosol samples were found to be dominated by fluorescence clusters 2, 5, and 8 (peaked at 330, 370, and 475 nm) when excited at 263 nm and by fluorescence clusters 1, 2, 5, and 6 (peaked at 390 and 460 nm) when excited at 351 nm. Size- and time-dependent variations of the fluorescence spectra revealed some size and time evolution behavior of organic and biological aerosols from the atmosphere in Djibouti. Moreover, this analytical technique could locate the possible sources and chemical compositions contributing to these fluorescence clusters. Advantages, limitations, and

  3. Direct on-strip analysis of size- and time-resolved aerosol impactor samples using laser induced fluorescence spectra excited at 263 and 351 nm

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chuji [U.S. Army Research Laboratory, Adelphi, MD 20783 (United States); Mississippi State University, Starkville, MS, 39759 (United States); Pan, Yong-Le, E-mail: yongle.pan.civ@mail.mil [U.S. Army Research Laboratory, Adelphi, MD 20783 (United States); James, Deryck; Wetmore, Alan E. [U.S. Army Research Laboratory, Adelphi, MD 20783 (United States); Redding, Brandon [Yale University, New Haven, CT 06510 (United States)

    2014-04-01

    Highlights: • A dual wavelength UV-LIF spectra-rotating drum impactor (RDI) technique was developed. • The technique was demonstrated by direct on-strip analysis of size- and time-resolved LIF spectra of atmospheric aerosol particles. • More than 2000 LIF spectra of atmospheric aerosol particles collected over three weeks in Djibouti were obtained and assigned to various fluorescence clusters. • The LIF spectra showed size- and time-sensitivity behavior with a time resolution of 3.6 h. - Abstract: We report a novel atmospheric aerosol characterization technique, in which dual wavelength UV laser induced fluorescence (LIF) spectrometry marries an eight-stage rotating drum impactor (RDI), namely UV-LIF-RDI, to achieve size- and time-resolved analysis of aerosol particles on-strip. The UV-LIF-RDI technique measured LIF spectra via direct laser beam illumination onto the particles that were impacted on a RDI strip with a spatial resolution of 1.2 mm, equivalent to an averaged time resolution in the aerosol sampling of 3.6 h. Excited by a 263 nm or 351 nm laser, more than 2000 LIF spectra within a 3-week aerosol collection time period were obtained from the eight individual RDI strips that collected particles in eight different sizes ranging from 0.09 to 10 μm in Djibouti. Based on the known fluorescence database from atmospheric aerosols in the US, the LIF spectra obtained from the Djibouti aerosol samples were found to be dominated by fluorescence clusters 2, 5, and 8 (peaked at 330, 370, and 475 nm) when excited at 263 nm and by fluorescence clusters 1, 2, 5, and 6 (peaked at 390 and 460 nm) when excited at 351 nm. Size- and time-dependent variations of the fluorescence spectra revealed some size and time evolution behavior of organic and biological aerosols from the atmosphere in Djibouti. Moreover, this analytical technique could locate the possible sources and chemical compositions contributing to these fluorescence clusters. Advantages, limitations, and

  4. Protective effects of polyamines against UV-A and UV-B illumination in Physcia semipinnata thalli

    Directory of Open Access Journals (Sweden)

    Esmer Işıl

    2017-04-01

    Full Text Available The damage to DNA induced by UV-A and UV-B and protective effects of the polyamines putrescine (put, spermidine (spd and spermine (spm were investigated on the lichen Physcia semipinnata in the present study. Our results suggest that significant alterations of the photosynthetic quantum yield ratio occurred in response to increased UV-A and UV-B exposure time. The photosynthetic quantum yield ratio gradually decreased in P. semipinnata following exposure to UV-A and UV-B. Physcia semipinnata thalli which were treated with a polyamine in a concentration of 1 mM were not affected by UV-A exposure for 72 h. In the case of UV-B treatment, the protective polyamine dosage was 0.25 mM. We also used the random amplified polymorphic DNA (RAPD technique to detect DNA damage. The main changes observed in the RAPD profiles, which were obtained using 12 RAPD primers, were the appearance or disappearance of different bands and variation of their intensities. The use of at least three different primers allowed detection of specific band patterns in both UV-A- and UV-B-exposed samples treated with polyamines as compared to untreated ones.

  5. Efficient UV-emitting X-ray phosphors: octahedral Zr(PO4)6 luminescence centers in potassium hafnium-zirconium phosphates K2Hf1-xZrx(PO4)2 and KHf2(1-x)Zr2x(PO4)3

    International Nuclear Information System (INIS)

    Torardi, C.C.; Miao, C.R.; Li, J.

    2003-01-01

    Potassium hafnium-zirconium phosphates, K 2 Hf 1-x Zr x (PO 4 ) 2 and KHf 2(1-x) Zr 2x (PO 4 ) 3 , are broad-band UV-emitting phosphors. At room temperature, they have emission peak maxima at approximately 322 and 305 nm, respectively, under 30 kV peak molybdenum X-ray excitation. Both phosphors demonstrate luminescence efficiencies that make them up to ∼60% as bright as commercially available CaWO 4 Hi-Plus. The solid-state and flux synthesis conditions, and X-ray excited UV luminescence of these two phosphors are discussed. Even though the two compounds have different atomic structures, they contain zirconium in the same active luminescence environment as that found in highly efficient UV-emitting BaHf 1-x Zr x (PO 4 ) 2 . All the three materials have hafnium and zirconium in octahedral coordination via oxygen-atom corner sharing with six separate PO 4 tetrahedra. This octahedral Zr(PO 4 ) 6 moiety appears to be an important structural element for efficient X-ray excited luminescence, as are the edge-sharing octahedral TaO 6 chains for tantalate emission

  6. Effects of UV irradiation and UV/chlorine co-exposure on natural organic matter in water

    International Nuclear Information System (INIS)

    Liu, Wei; Zhang, Zaili; Yang, Xin; Xu, Yiyue; Liang, Yongmei

    2012-01-01

    The effects of co-exposure to ultraviolet (UV) irradiation (with either low- or medium-pressure UV lamps) and free chlorine (chloramine) at practical relevant conditions on changes in natural organic matter (NOM) properties were investigated using four waters. The changes were characterized using the specific disinfection by-product formation potential (SDBPFP), specific total organic halogen formation potential (STOXFP), differential UV absorbance (∆UVA), and size-exclusion chromatography (SEC). The results for exposure to UV irradiation alone and for samples with no exposure were also obtained. The SDBPFPs in all UV-irradiated NOM waters observed were higher than those of non-irradiated samples. UV irradiation led to increases in STOXFPs as a result of chlorination, but no changes, or only small decreases, from chloramination. UV irradiation alone led to positive ∆UVA spectra of the four NOM waters; co-exposure to UV and chlorine gave larger negative ∆UVA spectra than those obtained by chlorine exposure alone. No obvious changes in SEC results were observed for samples only irradiated with UV light; co-exposure gave no detectable changes in the abundances of small fractions for exposure to chlorine only. Both UV photooxidation and photocatalytic oxidation appear to affect the reactivity of the NOM toward subsequent chlorination, and the magnitude of the changes is generally greater for medium-pressure lamps than for low-pressure lamps. These results suggest that applying UV disinfection technology to a particular source may not always be disinfection by-product-problem-free, and the interactions between UV light, chlorine, and NOM may need to be considered. - Highlights: ► We discussed the effects of co-exposure to UV light and chlorine on properties of natural organic matters in waters. ► UV irradiation led to increases in SDBPFP and STOXFP of NOM waters from chlorination. ► We suggest that applying an UV disinfection technology to a particular

  7. Excited States and Photodebromination of Selected Polybrominated Diphenyl Ethers: Computational and Quantitative Structure—Property Relationship Studies

    Directory of Open Access Journals (Sweden)

    Jin Luo

    2015-01-01

    Full Text Available This paper presents a density functional theory (DFT/time-dependent DFT (TD-DFT study on the lowest lying singlet and triplet excited states of 20 selected polybrominateddiphenyl ether (PBDE congeners, with the solvation effect included in the calculations using the polarized continuum model (PCM. The results obtained showed that for most of the brominated diphenyl ether (BDE congeners, the lowest singlet excited state was initiated by the electron transfer from HOMO to LUMO, involving a π–σ* excitation. In triplet excited states, structure of the BDE congeners differed notably from that of the BDE ground states with one of the specific C–Br bonds bending off the aromatic plane. In addition, the partial least squares regression (PLSR, principal component analysis-multiple linear regression analysis (PCA-MLR, and back propagation artificial neural network (BP-ANN approaches were employed for a quantitative structure-property relationship (QSPR study. Based on the previously reported kinetic data for the debromination by ultraviolet (UV and sunlight, obtained QSPR models exhibited a reasonable evaluation of the photodebromination reactivity even when the BDE congeners had same degree of bromination, albeit different patterns of bromination.

  8. Effect of UV irradiation on the apoptosis and necrosis of Jurkat cells using UV LEDs

    Science.gov (United States)

    Inada, Shunko A.; Amano, Hiroshi; Akasaki, Isamu; Morita, Akimichi; Kobayashi, Keiko

    2009-02-01

    Phototherapy is a very effective method for treating most of the incurable skin diseases. A fluorescent light bulb is used as a conventional UV light source for this type of therapy. However, infrared radiation from the light source sometimes causes serious problems on patient's health. In addition, the normal part of the skin is irradiated when a large fluorescent light bulb is used. Moreover, a conventional UV irradiation system is heavy and has a short lifetime and a high electrical power consumption. Therefore, a new UV light source for solving the problems of phototherapy is required. To realize low-power-consumption, lightweight and long-lifetime systems, group III nitride-based UV-A1 light-emitting diodes (LEDs) were investigated. We examined the UV LED irradiation of Jurkat cell, which is a tumor cell and more sensitive to UV light than a healthy cell. The numbers of apoptotic and necrotic cells were confirmed to be the same using a UV LED and a conventional lamp system. The UV LED showed the possibility of realizing a new UV light source for phototherapy.

  9. Reactivation of UV- and γ-irradiated herpes virus in UV- and X-irradiated CV-1 cells

    International Nuclear Information System (INIS)

    Takimoto, K.; Niwa, O.; Sugahara, T.

    1982-01-01

    Enhanced reactivation of UV- and γ-irradiated herpes virus was investigated by the plaque assay on CV-1 monkey kidney monolayer cells irradiated with UV light or X-rays. Both UV- and X-irradiated CV-1 cells showed enhancement of survival of UV-irradiated virus, while little or no enhancement was detected for γ-irradiated virus assayed on UV- or X-irradiated cells. The enhanced reactivation of UV-irradiated virus was greater when virus infection was delayed 24 or 48 h, than for infection immediately following the irradiation of cells. Thus the UV- or X-irradiated CV-1 cells are able to enhance the repair of UV damaged herpes virus DNA, but not of γ-ray damaged ones. (author)

  10. Photodetachment and UV-Vis spectral properties of Cl2rad -·nHO clusters: Extrapolation to bulk

    Science.gov (United States)

    Pathak, A. K.; Mukherjee, T.; Maity, D. K.

    2008-03-01

    Vertical detachment energy (VDE) and UV-Vis spectra of Cl2rad -·nHO clusters ( n = 1-11) are reported based on first principle electronic structure calculations. VDE of the hydrated clusters are calculated following second order Moller-Plesset perturbation (MP2) as well as coupled cluster theory with 6-311++G(d,p) set of basis function. The excess electron in these hydrated clusters is mainly localized over the solute Cl atoms. A linear relationship is obtained for VDE vs. ( n + 2.6) -1/3 and bulk VDE of Cl2rad - aqueous solution is calculated as 10.61 eV at CCSD(T) level of theory. UV-Vis spectra of these hydrated clusters are calculated applying CI with single electron (CIS) excitation procedure. Simulated UV-Vis spectra of Cl2rad -·10HO cluster is noted to be in excellent agreement with the reported spectra of Cl2rad - (aq) system, λmax for Cl2rad -·11HO system is calculated to be red shifted though.

  11. Comparative investigation of X-ray contrast medium degradation by UV/chlorine and UV/H2O2.

    Science.gov (United States)

    Kong, Xiujuan; Jiang, Jin; Ma, Jun; Yang, Yi; Pang, Suyan

    2018-02-01

    The degradation of iopamidol and diatrizoate sodium (DTZ) by UV/chlorine was carried out according to efficiency, mechanism, and oxidation products, and compared to that by UV/H 2 O 2 . The pseudo-first order rate (k') of iopamidol and DTZ was accelerated by UV/chlorine compared to that by UV and chlorine alone. k' of iopamidol and DTZ by UV/chlorine increased with increasing chlorine dosage. Both of iopamidol and DTZ could not be effectively removed by UV/H 2 O 2 compared to that by UV/chlorine. Secondary radicals (Cl 2 - and ClO) rather than primary radicals (HO and Cl) were demonstrated to be mainly responsible for the enhanced removal of iopamidol and DTZ by UV/chlorine. The oxidation products of iopamidol and DTZ resulting from UV/chlorine and UV/H 2 O 2 process were identified, and differences existed in the two systems. IO 3 - (the desired sink of I - ) was the major inorganic product in the UV/chlorine process whereas I - was the predominant inorganic product in the UV/H 2 O 2 process. The formation of chlorine-containing products during the degradation of iopamidol and DTZ by UV/chlorine was also observed. H-abstraction, additions, de-iodination were shared during the degradation of iopamidol by UV/chlorine and UV/H 2 O 2 . Neutral pH condition was preferred for the removal of iopamidol and DTZ by UV/chlorine. UV/chlorine could also be applied in real waters for the removal of iopamidol and DTZ. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Dielectric spectroscopy of [P(NID2OD-T2)]n thin films: Effects of UV radiation on charge transport

    International Nuclear Information System (INIS)

    Sepulveda, Pablo I.; Rosado, Alexander O.; Pinto, Nicholas J.

    2014-01-01

    Poly[N,N′-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide) -2,6-diyll-alt-5,5′-(2,2′-bithiophene)]-[P(ND12OD-T2)] n is a n-doped polymer that is stable in air. Low frequency (40 Hz–30 kHz) dielectric spectroscopy shows that the polymer impedance strength is reduced under ultra-violet (UV) radiation as a result of charge increase in the bulk polymer. Photo-excitation and the creation of electron-hole pairs and subsequent hole recombination with electron trapping species adsorbed by the polymer are suggested as possible doping mechanisms. The relaxation times were also faster in the presence of UV indicating multiple pathways for oscillating dipoles to relax. These results imply increased polymer conductance with corresponding enhancement of charge mobility due to reduced scattering in the presence of UV radiation. A thin film field effect transistor was fabricated using this polymer as the active material and characterized in the presence of UV radiation. As expected, the device exhibited n-type behavior with a charge mobility of 3.0 × 10 −3 cm 2 /V-s. Exposure to UV radiation increased the channel current, shifted the threshold voltage to more negative values and doubled the value of the mobility. These results are consistent with dielectric measurements and suggest an easy method of increasing device currents and charge mobility in this polymer via UV irradiation. - Highlights: • Ultra-violet (UV) radiation dopes the polymer. • The doping is n-type. • UV radiation enhances charge mobility without post polymer processing. • Dielectric spectroscopy and field effect transistor results are self-consistent

  13. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth of cucumber

    International Nuclear Information System (INIS)

    Krizek, D.T.; Mirecki, R.M.; Britz, S.J.

    1997-01-01

    The influence of solar UV-A and UV-B radiation at Beltsville, Maryland, on growth and flavonoid content in four cultivars of Cucumis sativus L. (Ashley, Poinsett, Marketmore, and Salad Bush cucumber) was examined during the summers of 1994 and 1995. Plants were grown from seed in UV exclusion chambers consisting of UV-transmitting Plexiglas, lined with Llumar to exclude UV-A and UV-B, polyester to exclude UV-B, or cellulose acetate to transmit UV-A and UV-B. Despite previously determined differences in sensitivity to supplemental UV-B radiation, all four cultivars responded similarly to UV-B exclusion treatment. After 19–21 days, the four cultivars grown in the absence of solar UV-B (polyester) had an average of 34, 55, and 40% greater biomass of leaves, stems, and roots, respectively, 27% greater stem height, and 35% greater leaf area than those grown under ambient UV-B (cellulose acetate). Plants protected from UV-A radiation as well (Llumar) showed an additional 14 and 22% average increase, respectively, in biomass of leaves and stems, and a 22 and 19% average increase, respectively, in stem elongation and leaf area over those grown under polyester. These findings demonstrate the extreme sensitivity of cucumber not only to present levels of UV-B but also to UV-A and suggest that even small changes in ozone depletion may have important biological consequences for certain plant species. (author)

  14. Collision dynamics of methyl radicals and highly vibrationally excited molecules using crossed molecular beams

    International Nuclear Information System (INIS)

    Chu, P.M.Y.

    1991-10-01

    The vibrational to translational (V→T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V→T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and phenyl radical and isomerization to form nitric oxide and phenoxy radical. The time-of-flight spectra indicate that simple bond rupture and isomerization occurs via two different mechanisms. Secondary dissociation of the phenoxy radicals to carbon monoxide and cyclopentadienyl radicals was observed as well as secondary photodissociation of phenyl radical to give H atom and benzyne. A supersonic methyl radical beam source is developed. The beam source configuration and conditions were optimized for CH 3 production from the thermal decomposition of azomethane. Elastic scattering of methyl radical and neon was used to differentiate between the methyl radicals and the residual azomethane in the molecular beam

  15. UV-MAOR - UV-B-specific reactions of marine planktons. Final report

    International Nuclear Information System (INIS)

    Gerbersdorf, S.; Steeger, H.U.; Schubert, H.; Paul, R.J.

    2001-02-01

    An initial finding of the studies performed here is that under certain hydrogeographic and meteorological conditions vertical migration of phyto and zooplankton also occurs in near-shore parts of flat waters. The vertical migration of phytoplankton was induced by exceeding the threshold intensity of approx. 300 μmol photons m -2 s -1 (PAR). However, the sigmoidal course of the reaction of phytoplankton suggests that it is apparently not the PAR intensity alone but the ratio of PAR/UV-B which governs the downward migration. However, the present body of data is not sufficient for a definitive statistical verification of this finding. Light irradiation resulted in an increased density and thus in a reduced buoyancy of flounder spawn. This effect was primarily dependent on intensity and did not increase upon irradiation with UV-B, UV-A and PAR as compared to UV-A and PAR alone. Irradiation with UV-B did not influence the substance located in the vitellus whose absorption maximum was found to be 300 nm, probably gadusol

  16. Damage to UV-sensitive cells by short UV in photographic flashes

    International Nuclear Information System (INIS)

    Menezes, S.; Monteiro, C.

    1996-01-01

    Light emitted by electronic photographic flash units is shown to damage bacteria and human skin fibroblasts deficient in repair systems, with survival curves very similar to those produced by 254 nm short UV. The lesions induced by these flashes are as photorepairable by the photolyase enzyme as those induced by 254 nm UV and result in equivalent survival rates. Biological dosimetry performed with microorganisms highly sensitive to UV (Escherichia coli K12 AB2480, deficient in excision and recombinational-dependent repair systems and Bacillus subtilis UVSSP spores, deficient in excision and in a specific spore repair process) revealed that each 1 ms flash of light from the photographic unit used in this work contained the equivalent of 0.25 J m -2 of 254 nm UV, when measured at a distance of 7.0 cm. This dose of UV was found to be lethal to both repair-deficient E. coli bacteria and repair-deficient human skin fibroblasts obtained from xeroderma pigmentosum donors, as well as mutagenic in B/r wild-type and HCR-mutant bacteria. (Author)

  17. Influence of Exchange-Correlation Functional in the Calculations of Vertical Excitation Energies of Halogenated Copper Phthalocyanines using Time-Dependent Density Functional Theory (TD-DFT)

    International Nuclear Information System (INIS)

    Lee, Sang Uck

    2013-01-01

    The accurate prediction of vertical excitation energies is very important for the development of new materials in the dye and pigment industry. A time-dependent density functional theory (TD-DFT) approach coupled with 22 different exchange-correlation functionals was used for the prediction of vertical excitation energies in the halogenated copper phthalocyanine molecules in order to find the most appropriate functional and to determine the accuracy of the prediction of the absorption wavelength and observed spectral shifts. Among the tested functional, B3LYP functional provides much more accurate vertical excitation energies and UV-vis spectra. Our results clearly provide a benchmark calibration of the TD-DFT method for phthalocyanine based dyes and pigments used in industry

  18. Linking photochemistry in the gas and solution phase: S-H bond fission in p-methylthiophenol following UV photoexcitation.

    Science.gov (United States)

    Oliver, Thomas A A; Zhang, Yuyuan; Ashfold, Michael N R; Bradforth, Stephen E

    2011-01-01

    Gas-phase H (Rydberg) atom photofragment translational spectroscopy and solution-phase femtosecond-pump dispersed-probe transient absorption techniques are applied to explore the excited state dynamics of p-methylthiophenol connecting the short time reactive dynamics in the two phases. The molecule is excited at a range of UV wavelengths from 286 to 193 nm. The experiments clearly demonstrate that photoexcitation results in S-H bond fission--both in the gas phase and in ethanol solution-and that the resulting p-methythiophenoxyl radical fragments are formed with significant vibrational excitation. In the gas phase, the recoil anisotropy of the H atom and the vibrational energy disposal in the p-MePhS radical products formed at the longer excitation wavelengths reveal the operation of two excited state dissociation mechanisms. The prompt excited state dissociation motif appears to map into the condensed phase also. In both phases, radicals are produced in both their ground and first excited electronic states; characteristic signatures for both sets of radical products are already apparent in the condensed phase studies after 50 fs. No evidence is seen for either solute ionisation or proton coupled electron transfer--two alternate mechanisms that have been proposed for similar heteroaromatics in solution. Therefore, at least for prompt S-H bond fissions, the direct observation of the dissociation process in solution confirms that the gas phase photofragmentation studies indeed provide important insights into the early time dynamics that transfer to the condensed phase.

  19. Coulomb excitation

    International Nuclear Information System (INIS)

    McGowan, F.K.; Stelson, P.H.

    1974-01-01

    The theory of Coulomb excitation and a brief review of pertinent treatments of the Coulomb excitation process that are useful for the analysis of experiments are given. Examples demonstrating the scope of nuclear structure information obtainable from gamma spectroscopy are presented. Direct Elambda excitation of 232 Th is discussed in terms of the one phonon octupole vibrational spectrum. B(MI) reduced transition probabilities resulting from Coulomb excitation of odd-A deformed nuclei with heavy ions are presented as a test of the rotational model. The use of gamma ray coincidence and particle-gamma coincidence as tools for investigating Coulomb excitation is discussed. (U.S.)

  20. UV-induced skin damage

    International Nuclear Information System (INIS)

    Ichihashi, M.; Ueda, M.; Budiyanto, A.; Bito, T.; Oka, M.; Fukunaga, M.; Tsuru, K.; Horikawa, T.

    2003-01-01

    Solar radiation induces acute and chronic reactions in human and animal skin. Chronic repeated exposures are the primary cause of benign and malignant skin tumors, including malignant melanoma. Among types of solar radiation, ultraviolet B (290-320 nm) radiation is highly mutagenic and carcinogenic in animal experiments compared to ultraviolet A (320-400 nm) radiation. Epidemiological studies suggest that solar UV radiation is responsible for skin tumor development via gene mutations and immunosuppression, and possibly for photoaging. In this review, recent understanding of DNA damage caused by direct UV radiation and by indirect stress via reactive oxygen species (ROS) and DNA repair mechanisms, particularly nucleotide excision repair of human cells, are discussed. In addition, mutations induced by solar UV radiation in p53, ras and patched genes of non-melanoma skin cancer cells, and the role of ROS as both a promoter in UV-carcinogenesis and an inducer of UV-apoptosis, are described based primarily on the findings reported during the last decade. Furthermore, the effect of UV on immunological reaction in the skin is discussed. Finally, possible prevention of UV-induced skin cancer by feeding or topical use of antioxidants, such as polyphenols, vitamin C, and vitamin E, is discussed

  1. Tight-binding approximations to time-dependent density functional theory — A fast approach for the calculation of electronically excited states

    Energy Technology Data Exchange (ETDEWEB)

    Rüger, Robert, E-mail: rueger@scm.com [Scientific Computing & Modelling NV, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Department of Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstr. 2, 04103 Leipzig (Germany); Lenthe, Erik van [Scientific Computing & Modelling NV, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Heine, Thomas [Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstr. 2, 04103 Leipzig (Germany); Visscher, Lucas [Department of Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2016-05-14

    We propose a new method of calculating electronically excited states that combines a density functional theory based ground state calculation with a linear response treatment that employs approximations used in the time-dependent density functional based tight binding (TD-DFTB) approach. The new method termed time-dependent density functional theory TD-DFT+TB does not rely on the DFTB parametrization and is therefore applicable to systems involving all combinations of elements. We show that the new method yields UV/Vis absorption spectra that are in excellent agreement with computationally much more expensive TD-DFT calculations. Errors in vertical excitation energies are reduced by a factor of two compared to TD-DFTB.

  2. Luminescence properties of Ca2 Ga2 SiO7 :RE phosphors for UV white-light-emitting diodes.

    Science.gov (United States)

    Jiao, Mengmeng; Lv, Wenzhen; Lü, Wei; Zhao, Qi; Shao, Baiqi; You, Hongpeng

    2015-03-16

    A series of Eu(2+) -, Ce(3+) -, and Tb(3+) -doped Ca2 Ga2 SiO7 phosphors is synthesized by using a high-temperature solid-state reaction. The powder X-ray diffraction and structure refinement data indicate that our prepared phosphors are single phased and the phosphor crystalizes in a tetrahedral system with the ${P\\bar 42m}$ (113) space group. The Eu(2+) - and Ce(3+) -doped phosphors both have broad excitation bands, which match well with the UV light-emitting diodes chips. Under irradiation of λ=350 nm, Ca2 Ga2 SiO7 :Eu(2+) and Ca2 Ga2 SiO7 :Ce(3+) , Li(+) have green and blue emissions, respectively. Luminescence of Ca2 Ga2 SiO7 :Tb(3+) , Li(+) phosphor varies with the different Tb(3+) contents. The thermal stability and energy-migration mechanism of Ca2 Ga2 SiO7 :Eu(2+) are also studied. The investigation results indicate that the prepared Ca2 Ga2 SiO7 :Eu(2+) and Ca2 Ga2 SiO7 :Ce(3+) , Li(+) samples show potential as green and blue phosphors, respectively, for UV-excited white-light-emitting diodes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Influence of uvA on the erythematogenic and therapeutic effects of uvB irradiation in psoriasis; photoaugmentation effects

    International Nuclear Information System (INIS)

    Boer, J.; Schothorst, A.A.; Suurmond, D.

    1981-01-01

    The effect of repeated exposure to an additive dose of long ultraviolet (uvA) radiation on the erythemogenic and therapeutic effects of middle ultraviolet (uvB) irradiation was investigated in 8 patients with psoriasis. The surface of the backs of these patients was divided into 2 parts, 1 of which received only uvB irradiation 4 times a week and the other uvA + uvB. uvB was provided by Philips TL-12 lamps and uvA by glass-filtered Philips TL-09 lamps. uvA was held constantly at 10 J/cm2, whereas uvB alone were evaluated by 4 tests during the treatment to determine the minimal erythema dose (MED). Test I (at the start of the therapy) showed a photoaugmentative effect which was no longer apparent in Test III (third week). Test III showed a reversal of the ratios of the MEDs of the sites irradiated with the uvA + uvB and uvB (MED A + B/MED B). This is ascribed to the marked pigmentation which appeared after repeated irradiation with the uvA + uvB combination. Comparison showed for the improvement of the psoriasis no distinct differences between uvA + uvB irradiation and uvB alone, but the former had the cosmetic advantage of giving pleasing tan

  4. Ferric ion mediated photochemical decomposition of perfluorooctanoic acid (PFOA) by 254 nm UV light

    International Nuclear Information System (INIS)

    Wang Yuan; Zhang Pengyi; Pan Gang; Chen Hao

    2008-01-01

    The great enhancement of ferric ion on the photochemical decomposition of environmentally persistent perfluorooctanoic acid (PFOA) under 254 nm UV light was reported. In the presence of 10 μM ferric ion, 47.3% of initial PFOA (48 μM) was decomposed and the defluorination ratio reached 15.4% within 4 h reaction time. While the degradation and defluorination ratio greatly increased to 80.2% and 47.8%, respectively, when ferric ion concentration increased to 80 μM, and the corresponding half-life was shortened to 103 min. Though the decomposition rate was significantly lowered under nitrogen atmosphere, PFOA was efficiently decomposed too. Other metal ions like Cu 2+ and Zn 2+ also slightly improved the photochemical decomposition of PFOA under irradiation of 254 nm UV light. Besides fluoride ion, other intermediates during PFOA decomposition including formic acid and five shorter-chain perfluorinated carboxylic acids (PFCAs) with C7, C6, C5, C4 and C3, respectively, were identified and quantified by IC or LC/MS. The mixture of PFOA and ferric ion had strong absorption around 280 nm. It is proposed that PFOA coordinates with ferric ion to form a complex, and its excitation by 254 nm UV light leads to the decomposition of PFOA in a stepwise way

  5. UV SEDs of early-type cluster galaxies: a new look at the UV upturn

    Science.gov (United States)

    Ali, S. S.; Bremer, M. N.; Phillipps, S.; De Propris, R.

    2018-05-01

    Using GALEX, Ultraviolet Optical Telescope (UVOT), and optical photometry, we explore the prevalence and strength of the Ultraviolet (UV) upturn in the spectra of quiescent early-type galaxies in several nearby clusters. Even for galaxies with completely passive optical colours, there is a large spread in vacuum UV colour consistent with almost all having some UV upturn component. Combining GALEX and UVOT data below 3000 Å, we generate for the first time comparatively detailed UV spectral energy distributions for Coma cluster galaxies. Fitting the UV upturn component with a blackbody, 26 of these show a range of characteristic temperatures (10 000-21 000K) for the UV upturn population. Assuming a single temperature to explain GALEX-optical colours could underestimate the fraction of galaxies with UV upturns and mis-classify some as systems with residual star formation. The UV upturn phenomenon is not an exclusive feature found only in giant galaxies; we identify galaxies with similar (or even bluer) FUV - V colours to the giants with upturns over a range of fainter luminosities. The temperature and strength of the UV upturn are correlated with galaxy mass. Under the plausible hypothesis that the sources of the UV upturn are blue horizontal branch stars, the most likely mechanism for this is the presence of a substantial (between 4 per cent and 20 per cent) Helium-rich (Y > 0.3) population of stars in these galaxies, potentially formed at z ˜ 4 and certainly at z > 2; this plausibly sets a lower limit of {˜ } {0.3- 0.8} × 10^{10} M⊙ to the in situ stellar mass of ˜L* galaxies at this redshift.

  6. Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate.

    Science.gov (United States)

    Yang, Yi; Lu, Xinglin; Jiang, Jin; Ma, Jun; Liu, Guanqi; Cao, Ying; Liu, Weili; Li, Juan; Pang, Suyan; Kong, Xiujuan; Luo, Congwei

    2017-07-01

    The frequent detection of sulfamethoxazole (SMX) in wastewater and surface waters gives rise of concerns about their ecotoxicological effects and potential risks to induce antibacterial resistant genes. UV/hydrogen peroxide (UV/H 2 O 2 ) and UV/persulfate (UV/PDS) advanced oxidation processes have been demonstrated to be effective for the elimination of SMX, but there is still a need for a deeper understanding of product formations. In this study, we identified and compared the transformation products of SMX in UV, UV/H 2 O 2 and UV/PDS processes. Because of the electrophilic nature of SO 4 - , the second-order rate constant for the reaction of sulfate radical (SO 4 - ) with the anionic form of SMX was higher than that with the neutral form, while hydroxyl radical (OH) exhibited comparable reactivity to both forms. The direct photolysis of SMX predominately occurred through cleavage of the NS bond, rearrangement of the isoxazole ring, and hydroxylation mechanisms. Hydroxylation was the dominant pathway for the reaction of OH with SMX. SO 4 - favored attack on NH 2 group of SMX to generate a nitro derivative and dimeric products. The presence of bicarbonate in UV/H 2 O 2 inhibited the formation of hydroxylated products, but promoted the formation of the nitro derivative and the dimeric products. In UV/PDS, bicarbonate increased the formation of the nitro derivative and the dimeric products, but decreased the formation of the hydroxylated dimeric products. The different effect of bicarbonate on transformation products in UV/H 2 O 2 vs. UV/PDS suggested that carbonate radical (CO 3 - ) oxidized SMX through the electron transfer mechanism similar to SO 4 - but with less oxidation capacity. Additionally, SO 4 - and CO 3 - exhibited higher reactivity to the oxazole ring than the isoxazole ring of SMX. Ecotoxicity of transformation products was estimated by ECOSAR program based on the quantitative structure-activity relationship analysis as well as by experiments using

  7. The World Space Observatory Ultraviolet (WSO-UV), as a bridge to future UV astronomy

    Science.gov (United States)

    Shustov, B.; Gómez de Castro, A. I.; Sachkov, M.; Vallejo, J. C.; Marcos-Arenal, P.; Kanev, E.; Savanov, I.; Shugarov, A.; Sichevskii, S.

    2018-04-01

    Ultraviolet (UV) astronomy is a vital branch of space astronomy. Many dozens of short-term UV-experiments in space, as well as long-term observatories, have brought a very important knowledge on the physics and chemistry of the Universe during the last decades. Unfortunately, no large UV-observatories are planned to be launched by most of space agencies in the coming 10-15 years. Conversely, the large UVOIR observatories of the future will appear not earlier than in 2030s. This paper briefly describes the projects that have been proposed by various groups. We conclude that the World Space Observatory-Ultraviolet (WSO-UV) will be the only 2-m class UV telescope with capabilities similar to those of the HST for the next decade. The WSO-UV has been described in detail in previous publications, and this paper updates the main characteristics of its instruments and the current state of the whole project. It also addresses the major science topics that have been included in the core program of the WSO-UV, making this core program very relevant to the current state of the UV-astronomy. Finally, we also present here the ground segment architecture that will implement this program.

  8. Simulation and comparative study on the oxidation kinetics of atrazine by UV/H₂O₂, UV/HSO₅⁻ and UV/S₂O₈²⁻.

    Science.gov (United States)

    Luo, Congwei; Ma, Jun; Jiang, Jin; Liu, Yongze; Song, Yang; Yang, Yi; Guan, Yinghong; Wu, Daoji

    2015-09-01

    This study comparatively investigated atrazine (ATZ) degradation by irradiation at the wavelength of 254 nm in the presence of peroxides including hydrogen peroxide (H2O2), peroxymonosulfate (HSO5(-)), and persulfate (S2O8(2-)) at various initial ATZ concentrations and oxidant dosages. The effects of water matrix, such as carbonate/bicarbonate (HCO3(-)/CO3(2-)), chloride ions (Cl(-)), and natural organic matter (NOM), were evaluated on these three advanced oxidation processes. A simple steady-state kinetic model was developed based on the initial rates of ATZ destruction, which could well describe the apparent pseudo-first-order rate constants (k(app), s(-1)) of ATZ degradation in these three processes. The specific roles of reactive species (i.e., HO·, SO4(-·), CO3(-·), and Cl2(-·)) under various experimental conditions were quantitatively evaluated based on their steady-state concentrations obtained from this model. Modeling results showed that the steady-state concentrations of HO· and SO4(-·) decreased with the increase of CO3(2-)/HCO3(-) concentration, and the relative contribution of HO· to ATZ degradation significantly decreased in UV/H2O2 and UV/HSO5(-) systems. On the other hand, the scavenging effect of HCO3(-)/CO3(2-) on the relative contribution of SO4(-·) to ATZ degradation was lower than that on HO·. The presence of Cl(-) (0.5-10 mM) significantly scavenged SO4(-·) but had slightly scavenging effect on HO· at the present experimental pH, resulting in greater decrease of k(app) in the UV/S2O8(2-) than UV/H2O2 and UV/HSO5(-) systems. Higher levels of Cl2(-·) were generated in the UV/S2O8(2-) than those in the UV/H2O2 and UV/HSO5(-) systems at the same Cl(-) concentrations. NOM significantly decreased k(app) due to its effects of competitive UV absorption and radical scavenging with the latter one being dominant. These results improve the understanding of the effects of water constituents for ATZ degradation in the UV-based oxidation

  9. The optimal UV exposure time for vitamin D3 synthesis and erythema estimated by UV observations in Korea

    Science.gov (United States)

    Lee, Y. G.; Koo, J. H.

    2016-12-01

    Solar UV radiation in a wavelength range between 280 to 400 nm has both positive and negative influences on human body. Surface UV radiation is the main natural source of vitamin D, providing the promotion of bone and musculoskeletal health and reducing the risk of a number of cancers and other medical conditions. However, overexposure to surface UV radiation is significantly related with the majority of skin cancer, in addition other negative health effects such as sunburn, skin aging, and some forms of eye cataracts. Therefore, it is important to estimate the optimal UV exposure time, representing a balance between reducing negative health effects and maximizing sufficient vitamin D production. Previous studies calculated erythemal UV and vitamin-D UV from the measured and modelled spectral irradiances, respectively, by weighting CIE Erythema and Vitamin D3 generation functions (Kazantzidis et al., 2009; Fioletov et al., 2010). In particular, McKenzie et al. (2009) suggested the algorithm to estimate vitamin-D production UV from erythemal UV (or UV index) and determined the optimum conditions of UV exposure based on skin type Ⅱ according to the Fitzpatrick (1988). Recently, there are various demands for risks and benefits of surface UV radiation on public health over Korea, thus it is necessary to estimate optimal UV exposure time suitable to skin type of East Asians. This study examined the relationship between erythemally weighted UV (UVEry) and vitamin D weighted UV (UVVitD) from spectral UV measurements during 2006-2010. The temporal variations of the ratio (UVVitD/UVEry) were also analyzed and the ratio as a function of UV index was applied to the broadband UV measured by UV-Biometer at 6 sites in Korea Thus, the optimal UV exposure time for vitamin D3 synthesis and erythema was estimated for diurnal, seasonal, and annual scales over Korea. In summer with high surface UV radiation, short exposure time leaded to sufficient vitamin D and erythema and vice

  10. Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process

    International Nuclear Information System (INIS)

    Yuan Fang; Hu Chun; Hu Xuexiang; Wei Dongbin; Chen Yong; Qu Jiuhui

    2011-01-01

    The photodegradation of three antibiotics, oxytetracycline (OTC), doxycycline (DTC), and ciprofloxacin (CIP) in UV and UV/H 2 O 2 process was investigated with a low-pressure UV lamp system. Experiments were performed in buffered ultrapure water (UW), local surface water (SW), and treated water from local municipal drinking water treatment plant (DW) and wastewater treatment plant (WW). The efficiency of UV/H 2 O 2 process was affected by water quality. For all of the three selected antibiotics, the fastest degradation was observed in DW, and the slowest degradation occurred in WW. This phenomenon can be explained by R OH,UV , defined as the experimentally determined ·OH radical exposure per UV fluence. The R OH,UV values represent the background ·OH radical scavenging in water matrix, obtained by the degradation of para-chlorobenzoic acid (pCBA), a probe compound. In natural water, the indirect degradation of CIP did not significantly increase with the addition of H 2 O 2 due to its effective degradation by UV direct photolysis. Moreover, the formation of several photoproducts and oxidation products of antibiotics in UV/H 2 O 2 process was identified using GC-MS. Toxicity assessed by Vibrio fischer (V. fischer), was increased in UV photolysis, for the photoproducts still preserving the characteristic structure of the parent compounds. While in UV/H 2 O 2 process, toxicity increased first, and then decreased; nontoxic products were formed by the oxidation of ·OH radical. In this process, detoxification was much easier than mineralization for the tested antibiotics, and the optimal time for the degradation of pollutants in UV/H 2 O 2 process would be determined by parent compound degradation and toxicity changes.

  11. TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece

    Science.gov (United States)

    Zempila, Melina-Maria; van Geffen, Jos H. G. M.; Taylor, Michael; Fountoulakis, Ilias; Koukouli, Maria-Elissavet; van Weele, Michiel; van der A, Ronald J.; Bais, Alkiviadis; Meleti, Charikleia; Balis, Dimitrios

    2017-06-01

    This study aims to cross-validate ground-based and satellite-based models of three photobiological UV effective dose products: the Commission Internationale de l'Éclairage (CIE) erythemal UV, the production of vitamin D in the skin, and DNA damage, using high-temporal-resolution surface-based measurements of solar UV spectral irradiances from a synergy of instruments and models. The satellite-based Tropospheric Emission Monitoring Internet Service (TEMIS; version 1.4) UV daily dose data products were evaluated over the period 2009 to 2014 with ground-based data from a Norsk Institutt for Luftforskning (NILU)-UV multifilter radiometer located at the northern midlatitude super-site of the Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki (LAP/AUTh), in Greece. For the NILU-UV effective dose rates retrieval algorithm, a neural network (NN) was trained to learn the nonlinear functional relation between NILU-UV irradiances and collocated Brewer-based photobiological effective dose products. Then the algorithm was subjected to sensitivity analysis and validation. The correlation of the NN estimates with target outputs was high (r = 0. 988 to 0.990) and with a very low bias (0.000 to 0.011 in absolute units) proving the robustness of the NN algorithm. For further evaluation of the NILU NN-derived products, retrievals of the vitamin D and DNA-damage effective doses from a collocated Yankee Environmental Systems (YES) UVB-1 pyranometer were used. For cloud-free days, differences in the derived UV doses are better than 2 % for all UV dose products, revealing the reference quality of the ground-based UV doses at Thessaloniki from the NILU-UV NN retrievals. The TEMIS UV doses used in this study are derived from ozone measurements by the SCIAMACHY/Envisat and GOME2/MetOp-A satellite instruments, over the European domain in combination with SEVIRI/Meteosat-based diurnal cycle of the cloud cover fraction per 0. 5° × 0. 5° (lat × long) grid cells. TEMIS

  12. TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece

    Directory of Open Access Journals (Sweden)

    M.-M. Zempila

    2017-06-01

    Full Text Available This study aims to cross-validate ground-based and satellite-based models of three photobiological UV effective dose products: the Commission Internationale de l'Éclairage (CIE erythemal UV, the production of vitamin D in the skin, and DNA damage, using high-temporal-resolution surface-based measurements of solar UV spectral irradiances from a synergy of instruments and models. The satellite-based Tropospheric Emission Monitoring Internet Service (TEMIS; version 1.4 UV daily dose data products were evaluated over the period 2009 to 2014 with ground-based data from a Norsk Institutt for Luftforskning (NILU-UV multifilter radiometer located at the northern midlatitude super-site of the Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki (LAP/AUTh, in Greece. For the NILU-UV effective dose rates retrieval algorithm, a neural network (NN was trained to learn the nonlinear functional relation between NILU-UV irradiances and collocated Brewer-based photobiological effective dose products. Then the algorithm was subjected to sensitivity analysis and validation. The correlation of the NN estimates with target outputs was high (r = 0. 988 to 0.990 and with a very low bias (0.000 to 0.011 in absolute units proving the robustness of the NN algorithm. For further evaluation of the NILU NN-derived products, retrievals of the vitamin D and DNA-damage effective doses from a collocated Yankee Environmental Systems (YES UVB-1 pyranometer were used. For cloud-free days, differences in the derived UV doses are better than 2 % for all UV dose products, revealing the reference quality of the ground-based UV doses at Thessaloniki from the NILU-UV NN retrievals. The TEMIS UV doses used in this study are derived from ozone measurements by the SCIAMACHY/Envisat and GOME2/MetOp-A satellite instruments, over the European domain in combination with SEVIRI/Meteosat-based diurnal cycle of the cloud cover fraction per 0. 5° × 0. 5

  13. Effects of enhanced UV-B radiation in combination with other stress factors on the growth and function of agricultural plants

    International Nuclear Information System (INIS)

    Tevini, M.; Steinmueller, D.; Iwanzik, W.

    1986-01-01

    Measurements of variable fluorescence, oxygen production and absorption changes suggested that the reaction centers of photosystem II are inhibited by UV-B radiation and, at the same time, are changed into dissipative sinks for the excitation energy. Selective impairment of water splitting is excluded as a cause of the inhibition of the primary processes of photosynthesis. The activity of photosystem I is not affected. (orig./AJ) [de

  14. The status of UV/EB curable product in North America: 1998-1999

    International Nuclear Information System (INIS)

    Lawson, K.

    1999-01-01

    This author has previously reported survey results showing that the use of UV/EB materials has grown at a compound rate of about 10% per annum over the last decade. Together, with about 130 members of RadTech International North America, representing 90 organizations, we have updated and assessed the growth and activities of the industry. The panelists represent a cross section of end users, raw material and equipment suppliers, as well as formulators and consultants. Using a modified Delphi process with five separate survey rounds, a reasonable assessment was made of the advantages, disadvantages, growth rate and growth opportunities of this exciting technology

  15. Photostability of cosmetic UV filters on mammalian skin under UV exposure.

    Science.gov (United States)

    Stiefel, Constanze; Schwack, Wolfgang; Nguyen, Yen-Thi Hai

    2015-01-01

    Previous studies showed that the common UV filter substances benzophenone-3 (BP-3), butyl methoxydibenzoylmethane (BM-DBM), octocrylene (OCR), ethylhexyl methoxycinnamate (EHMC), ethylhexyl salicylate (EHS) and ethylhexyl triazone (EHT) were able to react with amino side chains of different proteins in vitro. To transfer the results to mammalian skin conditions, sunscreen products were applied on both prepared fresh porcine skin and glass plates, followed by UV irradiation and the determination of depletion of the respective UV filters. Significantly lower recoveries of the UV filters extracted from skin samples than from glass plates indicated the additional reaction of the UV filters with skin constituents, when proteins will be the most important reactants. Among the products tested, BP-3 showed the greatest differences in recoveries between glass and skin samples of about 13% and 24% after 2 and 4 h of irradiation, respectively, followed by EHS > BM-DBM > OCR > EHMC > EHT. The obtained results raise the question, whether the common in vitro evaluations of sunscreens, using inert substrate materials like roughened quartz or polymethyl methacrylate (PMMA) plates are really suitable to fully replace in vivo methods, as they cannot include skin-typical reactions. © 2014 The American Society of Photobiology.

  16. Effect of UV on DNA synthesis in UV-resistant insect cells

    International Nuclear Information System (INIS)

    Styer, S.C.; Meechan, P.J.; Griffiths, T.D.

    1987-01-01

    Insect cells are most resistant to killing by 254 nm ultraviolet light (UV) than mammalian cells. Because they have an active photolyase, it may be possible to generate a higher number of [6-4] PyC lesions per genome, allowing the possibility to distinguish between the effects of [5-6] pyrimidine lesions and the nonphotoreactable [6-4] lesions on DNA replication. IAL-PID2 cells, derived from imaginal wing discs of the Indian meal moth were exposed to UV followed by photoreactivating light (PR) or sham treatment and then analyzed by measuring the incorporation of [/sup 3/H]-thymidine into acid precipitable form. As expected, there was a fluence-dependent decrease in the amount of thymidine incorporated after exposure to UV. The response was similar to that observed in wild type CHO cells (AAS) except that the rate of decline was more rapid. When PR followed UV, there was less of a decline in thymidine incorporation and a more rapid recovery. However, thymidine incorporation did not return to control levels as rapidly as expected if [5-6] lesions were the only lesions involved in the disruption of DNA synthesis after exposure to UV

  17. The UV Sensor Onboard the Mars Science Laboratory Mission: Correction and Generation of UV Fluxes

    Science.gov (United States)

    Vicente-Retortillo, Á.; Martinez, G.; Renno, N. O.; Lemmon, M. T.; Gomez-Elvira, J.

    2017-12-01

    The Rover Environmental Monitoring Station UV sensor (UVS) onboard the Mars Science Laboratory mission has completed more than 1750 sols of measurements, providing an unprecedented coverage ranging from diurnal to interannual times scales [1,2]. The UVS is comprised of six photodiodes to measure the UV flux in the ranges 200-380, 320-380, 280-320, 200-280, 230-290 and 300-350 nm [3]. UV fluxes in units of W/m2 can be found in the NASA Planetary Data System (PDS). However, dust deposition on the UVS and a non-physical discontinuity in the calibration functions when the solar zenith angle is above 30º cause errors in these fluxes that increase with time. We have developed a technique to correct UV fluxes from the effects of dust degradation and inconsistencies in the angular response of the UVS. The photodiode output currents (available in the PDS as lower-level TELRDR products), ancillary data records (available in the PDS as ADR products) and dust opacity values derived from Mastcam observations are used for performing the corrections. The corrections have been applied to the UVA band (320-380 nm) for the first 1000 sols of the mission, providing excellent results [4]. We plan to correct the UV fluxes on each of the six UVS bands and to make these results available in the PDS. Data products generated by this study will allow comparisons of the UV radiation environment at Gale crater with that at the locations of the future missions ExoMars 2020 and Mars 2020, as well as the assessment of the potential survivability of biological contaminants brought to Mars from Earth. References: [1] Smith, M. D., et al. (2016), Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes, Icarus, 280, 234-248. [2] Vicente-Retortillo, Á., et al. (2017), Determination of dust aerosol particle size at Gale Crater using REMS UVS and Mastcam measurements, Geophys. Res. Lett., 44, 3502-3508. [3] Gómez-Elvira, J., et al. (2012), REMS: The environmental sensor

  18. UV-induced effects

    NARCIS (Netherlands)

    Liebsch, M.; Spielmann, H.; Pape, W.; Krul, C.; Deguercy, A.; Eskes, C.A.M.

    2005-01-01

    Regulatory requirements: According to the current Notes for Guidance of the Scientific Committee on Cosmetic Products and Non-Food Products (SCCNFP), cosmetic ingredients and mixtures of ingredients absorbing UV light (in particular UV filter chemicals used, for example, to ensure the light

  19. Time-of-flight spectroscopy of metastable photodissociation fragments in vacuum-UV

    International Nuclear Information System (INIS)

    Fisher, C.H.; Welge, K.H.

    1974-01-01

    Photofragment time-of-flight experiments carried out at photon energies > approximately 11.8eV (1050A) is reported. Processes of the kind AB+hν→A*+B have been investigated where A* is an electronically excited species in a metastable state that can be detected by Auger electron emission from metal surfaces. The present work has been concerned with the identification of dissociation processes from N 2 O, CO 2 , and OCS, measurement of recoil energies and, for the first time, also angular dependent experiments. One objective of the work was to further explore the potential of such studies in the vacuum uv. Their feasibility was demonstrated previously in preliminary experiments

  20. Monitoring and control of UV and UV-TiO2 disinfections for municipal wastewater reclamation using artificial neural networks

    International Nuclear Information System (INIS)

    Lin, Chuang-Hung; Yu, Ruey-Fang; Cheng, Wen-Po; Liu, Chun-Ru

    2012-01-01

    Highlights: ► ANN models can effectively control both UV and UV-TiO 2 disinfections for wastewater reuse. ► Comparing to UV disinfection, UV-TiO 2 disinfection can save 13.2–15.7% of UV dosage and capacity. ► SS decreases disinfection efficiency when UV doses were 2 . - Abstract: The use of ultraviolet (UV) irradiation as a physical wastewater disinfection has increased in recent years, especially for wastewater reuse. The UV-TiO 2 can generate OH radicals, which is highly effective to inactivate microorganisms in wastewater disinfection. However, both UV and UV-TiO 2 disinfections create multiple physical, chemical, and bio-chemical phenomena that affect their germicidal efficiency. It is difficult to build a precise control model using existing mathematic models. This study applies artificial neural network (ANN) models to control UV and UV-TiO 2 disinfections. Experimental results indicate that the ANN models, which precisely generate relationships among multiple monitored parameters, total coliform counts in influent and effluent, and UV doses, can be used as control models for UV and UV-TiO 2 disinfections. A novel ANN control strategy is applied to control UV and UV-TiO 2 disinfection processes to meet three total coliform count limits for three wastewater reuse purposes. The proposed controlled strategy effectively controls UV and UV-TiO 2 disinfection, resulting in acceptable total coliform counts in effluent for the three wastewater reuse purposes. The required UV doses for UV-TiO 2 disinfection were lower than those for UV disinfection, resulting in energy saving and capacity reduction of 13.2–15.7%.

  1. Skin Cancer and UV Protection

    Directory of Open Access Journals (Sweden)

    Tarbuk Anita

    2016-03-01

    Full Text Available The incidence of skin cancer is increasing by epidemic proportions. Basal cell cancer remains the most common skin neoplasm, and simple excision is generally curative. On the other hand, aggressive local growth and metastasis are common features of malignant melanoma, which accounts for 75% of all deaths associated with skin cancer. The primary cause of skin cancer is long exposure to solar ultraviolet radiation (UV-R crossed with the amount of skin pigmentation and family genetics. It is believed that in childhood and adolescence, 80% of UV-R gets absorbed while in the remaining, 20 % gets absorbed later in the lifetime. This suggests that proper and early photoprotection may reduce the risk of subsequent occurrence of skin cancer. Reducing the exposure time to sunlight, using sunscreens and protective textiles are the three ways of UV protection. Most people think that all the clothing will protect them, but it does not provide full sun screening properties. Literature sources claim that only 1/3 of the spring and summer collections tested give off proper UV protection. This is very important during the summer months, when UV index is the highest. Fabric UV protection ability highly depends on large number of factors such as type of fiber, fabric surface, construction, porosity, density, moisture content, type and concentration of dyestuff, fluorescent whitening agents, UV-B protective agents (UV absorbers, as well as nanoparticles, if applied. For all of these reasons, in the present paper, the results of UV protecting ability according to AS/NZS 4399:1996 will be discussed to show that standard clothing materials are not always adequate to prevent effect of UV-R to the human skin; and to suggest the possibilities for its improvement for this purpose enhancing light conversion and scattering. Additionally, the discrepancy in UV protection was investigated in distilled water as well as Adriatic Sea water.

  2. Specific inhibition of cytotoxic memory cells produced against uv-induced tumors in uv-irradiation mice

    International Nuclear Information System (INIS)

    Thorn, R.M.

    1978-01-01

    Cytotoxic responses of uv-irradiated mice against syngeneic uv-induced tumors were measured by using a 51 Cr-release assay to determine if uv treatment induced a specific reduction of cytotoxic activity. The in vivo and in vitro primary responses against syngeneic tumors and allogeneic cells were unaffected, as was the ''memory'' response (in vivo stimulation, in vitro restimulation) against alloantigens. In contrast, the memory response of uv-treated mice against syngeneic, uv-induced tumors was consistently and significantly depressed. The cytotoxicity generated by tumor cell stimulation in vivo or in vitro was tumor-specific and T cell-dependent. Since the primary response against syngeneic uv-induced tumors produces apparently normal amounts of tumor-specific cytotoxic activity, uv-treated mice may not reject transplanted syngeneic tumors because of too few T effector memory cells. These results imply that, at least in this system, tumor rejection depends mostly on the secondary responses against tumor antigens and that at least one carcinogen can, indirectly, specifically regulate immune responses

  3. Applying UV cameras for SO2 detection to distant or optically thick volcanic plumes

    Science.gov (United States)

    Kern, Christoph; Werner, Cynthia; Elias, Tamar; Sutton, A. Jeff; Lübcke, Peter

    2013-01-01

    Ultraviolet (UV) camera systems represent an exciting new technology for measuring two dimensional sulfur dioxide (SO2) distributions in volcanic plumes. The high frame rate of the cameras allows the retrieval of SO2 emission rates at time scales of 1 Hz or higher, thus allowing the investigation of high-frequency signals and making integrated and comparative studies with other high-data-rate volcano monitoring techniques possible. One drawback of the technique, however, is the limited spectral information recorded by the imaging systems. Here, a framework for simulating the sensitivity of UV cameras to various SO2 distributions is introduced. Both the wavelength-dependent transmittance of the optical imaging system and the radiative transfer in the atmosphere are modeled. The framework is then applied to study the behavior of different optical setups and used to simulate the response of these instruments to volcanic plumes containing varying SO2 and aerosol abundances located at various distances from the sensor. Results show that UV radiative transfer in and around distant and/or optically thick plumes typically leads to a lower sensitivity to SO2 than expected when assuming a standard Beer–Lambert absorption model. Furthermore, camera response is often non-linear in SO2 and dependent on distance to the plume and plume aerosol optical thickness and single scatter albedo. The model results are compared with camera measurements made at Kilauea Volcano (Hawaii) and a method for integrating moderate resolution differential optical absorption spectroscopy data with UV imagery to retrieve improved SO2 column densities is discussed.

  4. The mechanisms of UV mutagenesis

    International Nuclear Information System (INIS)

    Ikehata, Hironobu; Ono, Tetsuya

    2011-01-01

    Ultraviolet (UV) light induces specific mutations in the cellular and skin genome such as UV-signature and triplet mutations, the mechanism of which has been thought to involve translesion DNA synthesis (TLS) over UV-induced DNA base damage. Two models have been proposed: ''error-free'' bypass of deaminated cytosine-containing cyclobutane pyrimidine dimers (CPDs) by DNA polymerase η, and error-prone bypass of CPDs and other UV-induced photolesions by combinations of TLS and replicative DNA polymerases-the latter model has also been known as the two-step model, in which the cooperation of two (or more) DNA polymerases as misinserters and (mis)extenders is assumed. Daylight UV induces a characteristic UV-specific mutation, a UV-signature mutation occurring preferentially at methyl-CpG sites, which is also observed frequently after exposure to either UVB or UVA, but not to UVC. The wavelengths relevant to the mutation are so consistent with the composition of daylight UV that the mutation is called solar-UV signature, highlighting the importance of this type of mutation for creatures with the cytosine-methylated genome that are exposed to the sun in the natural environment. UVA has also been suggested to induce oxidative types of mutation, which would be caused by oxidative DNA damage produced through the oxidative stress after the irradiation. Indeed, UVA produces oxidative DNA damage not only in cells but also in skin, which, however, does not seem sufficient to induce mutations in the normal skin genome. In contrast, it has been demonstrated that UVA exclusively induces the solar-UV signature mutations in vivo through CPD formation. (author)

  5. Excited state dynamics & optical control of molecular motors

    Science.gov (United States)

    Wiley, Ted; Sension, Roseanne

    2014-03-01

    Chiral overcrowded alkenes are likely candidates for light driven rotary molecular motors. At their core, these molecular motors are based on the chromophore stilbene, undergoing ultrafast cis/trans photoisomerization about their central double bond. Unlike stilbene, the photochemistry of molecular motors proceeds in one direction only. This unidirectional rotation is a result of helicity in the molecule induced by steric hindrance. However, the steric hindrance which ensures unidirectional excited state rotation, has the unfortunate consequence of producing large ground state barriers which dramatically decrease the overall rate of rotation. These molecular scale ultrafast motors have only recently been studied by ultrafast spectroscopy. Our lab has studied the photochemistry and photophysics of a ``first generation'' molecular motor with UV-visible transient absorption spectroscopy. We hope to use optical pulse shaping to enhance the efficiency and turnover rate of these molecular motors.

  6. Multi-frequency excitation

    KAUST Repository

    Younis, Mohammad I.

    2016-03-10

    Embodiments of multi-frequency excitation are described. In various embodiments, a natural frequency of a device may be determined. In turn, a first voltage amplitude and first fixed frequency of a first source of excitation can be selected for the device based on the natural frequency. Additionally, a second voltage amplitude of a second source of excitation can be selected for the device, and the first and second sources of excitation can be applied to the device. After applying the first and second sources of excitation, a frequency of the second source of excitation can be swept. Using the methods of multi- frequency excitation described herein, new operating frequencies, operating frequency ranges, resonance frequencies, resonance frequency ranges, and/or resonance responses can be achieved for devices and systems.

  7. Superhydrophobic durable coating based on UV-photoreactive silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nahum, T.; Dodiuk, H.; Dotan, A.; Kenig, S. [Department of Plastics Engineering, Shenkar College of Engineering and Design, 12 Anna Frank Street, Ramat Gan 52526 (Israel); Lellouche, J. P. [Department of Chemistry, Nanomaterials Research Center, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramar-Gan, 52900 (Israel)

    2015-05-22

    Superhydrophobic surfaces with contact angle (CA) >150 and sliding angle (SA) <10 have been aroused curiosity over the years due to their various applications. Superhydrophobicity can be obtained tailoring the chemistry and the roughness of the surface, mimicking the Lotus flower. Most superhydrophobic surfaces based on secondary bonding lose their roughness in harsh conditions and are unsuitable for practical applications. Photoreactive SiO{sub 2} nanoparticles (NPs) based on benzophenone (BP) can be a very effective tool for formation of reactive species that function as a molecular bridge by covalent bonding between the NP and any polymer matrix with C-C and C-H bonds. The present work focused on thermoset radiation curing urethane acrylate. Upon UV irradiation reactive excited nπ* triplet benzophenone species are formed and react through hydrogen abstraction to form ketyl radicals which interact with a radicals from the UV irradiated polymer matrix to yield covalent bonding. Roughness was achieved by dipping the substrate in SiO{sub 2}@BPs NPs dispersion followed by irradiation. Fluoroalkylsilane was used to obtain hydrophobic top layer. AFM nano manipulation was used to verify the immobilization of NPs. Evaluation of durability was made using air flow at 300 km/hr. Preliminary results indicate the formation of super hydrophobic surfaces (CA>150 and SA<10) with improved stability.

  8. Superhydrophobic durable coating based on UV-photoreactive silica nanoparticles

    International Nuclear Information System (INIS)

    Nahum, T.; Dodiuk, H.; Dotan, A.; Kenig, S.; Lellouche, J. P.

    2015-01-01

    Superhydrophobic surfaces with contact angle (CA) >150 and sliding angle (SA) <10 have been aroused curiosity over the years due to their various applications. Superhydrophobicity can be obtained tailoring the chemistry and the roughness of the surface, mimicking the Lotus flower. Most superhydrophobic surfaces based on secondary bonding lose their roughness in harsh conditions and are unsuitable for practical applications. Photoreactive SiO 2 nanoparticles (NPs) based on benzophenone (BP) can be a very effective tool for formation of reactive species that function as a molecular bridge by covalent bonding between the NP and any polymer matrix with C-C and C-H bonds. The present work focused on thermoset radiation curing urethane acrylate. Upon UV irradiation reactive excited nπ* triplet benzophenone species are formed and react through hydrogen abstraction to form ketyl radicals which interact with a radicals from the UV irradiated polymer matrix to yield covalent bonding. Roughness was achieved by dipping the substrate in SiO 2 @BPs NPs dispersion followed by irradiation. Fluoroalkylsilane was used to obtain hydrophobic top layer. AFM nano manipulation was used to verify the immobilization of NPs. Evaluation of durability was made using air flow at 300 km/hr. Preliminary results indicate the formation of super hydrophobic surfaces (CA>150 and SA<10) with improved stability

  9. Luminescence properties of a single-component Na0.34Ca0.66Al1.66Si2.34O8:Ce3+, Sm3+ phosphor with tunable color tone for UV-pumped LEDs

    Science.gov (United States)

    Wang, Lei; Dong, Jie; Cui, Cai'e.; Tian, Yue; Huang, Ping

    2015-08-01

    A series of single-phase Na0.34Ca0.66Al1.66Si2.34O8:Ce3+, Sm3+ (NCASO) phosphors have been synthesized via a high temperature solid-state reaction method. The samples were studied based on photoluminescence (PL), photoluminescence excitation (PLE) spectra and fluorescence decay patterns. The obtained PLE exhibited a strong excitation band in the UV region between 250 and 380 nm. Under 340 nm excitation, NCASO:Ce3+, Sm3+ phosphor showed a broad emission band at 414 nm of Ce3+ and four emission bands from 550 nm to 725 nm of Sm3+. Spectra demonstrate nonradiative energy transfers (ET) occur from Ce3+-Sm3+. The analysis based on Inokuti-Hirayama model indicates that the ET is governed by electric dipole-dipole interaction. Moreover, the emitting colors can be adjusting from blue to white by proper tuning of the relative composition of Ce3+/Sm3+. These results show that NCASO:Ce3+, Sm3+ phosphors can be used as a potential single-phased white-emitting candidate for UV WLEDs.

  10. Antiradiation UV Vaccine: UV Radiation, Biological effects, lesions and medical management - immune-therapy and immune-protection.

    Science.gov (United States)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    Key Words: Ultraviolet radiation,Standard Erythema Dose(SED), Minimal Erythema Dose(MED), Sun Burns, Solar Dermatitis, Sun Burned Disease, DNA Damage,Cell Damage, Antiradiation UV Vaccine, Immune-Prophylaxis of Sun Burned Diseases, Immune-Prophylaxis of Sun Burns, Immune-Therapy of Sun-Burned Disease and Sun Burns,Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC), Toxic Epidermal Necrolysis(TEN). Introduction: High doses of UV generated by solar source and artificial sources create an exposure of mammals and other species which can lead to ultraviolet(UV)radiation- associated disease (including erythema, epilation, keratitis, etc.). UV radiation belongs to the non-ionizing part of the electromagnetic spectrum and ranges between 100 nm and 400 nm with 100 nm having been chosen arbitrarily as the boundary between non-ionizing and ionizing radiation, however EMR is a spectrum and UV can produce molecular ionization. UV radiation is conventionally categorized into 3 areas: UV-A (>315-400 nm),UV-B (>280-315 nm)and UV-C (>100-280 nm) [IARC,Working Group Reports,2005] An important consequence of stratospheric ozone depletion is the increased transmission of solar ultraviolet (UV)radiation to the Earth's lower atmosphere and surface. Stratospheric ozone levels have been falling, in certain areas, for the past several decades, so current surface ultraviolet-B (UV-B) radiation levels are thought to be close to their modern day maximum. [S.Madronich et al.1998] Overexposure of ultraviolet radiation a major cause of skin cancer including basal cell carcinoma (BCC), squamous cell carcinoma (SCC) { collectively referred to as “non-melanoma" skin cancer (NMSC) and melanoma as well, with skin cancers being the most common cancer in North America. [Armstrong et al. 1993, Gallagher et al. 2005] Methods and Experimental Design: Our experiments and testing of a novel UV “Antiradiation Vaccine” have employed a wide variety of laboratory animals which include : Chinchilla

  11. Exciter switch

    Science.gov (United States)

    Mcpeak, W. L.

    1975-01-01

    A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.

  12. UV-LIGA technique for ECF micropumps using back UV exposure and self-alignment

    Science.gov (United States)

    Han, D.; Xia, Y.; Yokota, S.; Kim, J. W.

    2017-12-01

    This paper proposes and develops a novel UV-LIGA technique using back UV exposure and self-alignment to realize high aspect ratio micromachining (HARM) in high power density electro-conjugate fluid (ECF) micropumps. ECF is a functional fluid designed to be able to generate strong and active jet flow (ECF jetting) between anode and cathode in ECF when high DC voltage is applied. We have developed high power density ECF micropumps consisting of triangular prism and slit electrode pairs (TPSEs) fabricated by HARM. The traditional UV-LIGA technique for HARM is mainly divided into two approaches: (a) single thick layer and (b) multiple thin layers. Both methods have limitations—deformed molds in the former and misalignment between layers in the latter. Using the finite element method software COMSOL Multiphysics, we demonstrate that the deformed micro-molds critically impair the performance of ECF micropumps. In addition, we experimentally prove that the misalignment would easily trigger electric discharge in the ECF micropumps. To overcome these limitations, we conceive a new concept utilizing the seed electrode layer for electroforming as the UV shield and pattern photoresist (KMPR) by back UV exposure. The seed electrode layer should be composed of a non-transparent conductor (Au/Ti) for patterning and a transparent conductor (ITO) for wiring. Instead of ITO, we propose the concept of transparency-like electrodes comprised of thin metal line patterns. To verify this concept, KMPR layers with thicknesses of 70, 220, and 500 µm are experimentally investigated. In the case of 500 µm KMPR thickness, the concept of transparency-like electrode was partially proved. As a result, TPSEs with a height of 440 µm were successfully fabricated. Characteristic experiments demonstrated that ECF micropumps (367 mW cm-3) fabricated by back UV achieved almost the same output power density as ECF micropumps (391 mW cm-3) fabricated by front UV. This paper proves that the proposed

  13. UV-LIGA technique for ECF micropumps using back UV exposure and self-alignment

    International Nuclear Information System (INIS)

    Han, D; Xia, Y; Yokota, S; Kim, J W

    2017-01-01

    This paper proposes and develops a novel UV-LIGA technique using back UV exposure and self-alignment to realize high aspect ratio micromachining (HARM) in high power density electro-conjugate fluid (ECF) micropumps. ECF is a functional fluid designed to be able to generate strong and active jet flow (ECF jetting) between anode and cathode in ECF when high DC voltage is applied. We have developed high power density ECF micropumps consisting of triangular prism and slit electrode pairs (TPSEs) fabricated by HARM. The traditional UV-LIGA technique for HARM is mainly divided into two approaches: (a) single thick layer and (b) multiple thin layers. Both methods have limitations—deformed molds in the former and misalignment between layers in the latter. Using the finite element method software COMSOL Multiphysics, we demonstrate that the deformed micro-molds critically impair the performance of ECF micropumps. In addition, we experimentally prove that the misalignment would easily trigger electric discharge in the ECF micropumps. To overcome these limitations, we conceive a new concept utilizing the seed electrode layer for electroforming as the UV shield and pattern photoresist (KMPR) by back UV exposure. The seed electrode layer should be composed of a non-transparent conductor (Au/Ti) for patterning and a transparent conductor (ITO) for wiring. Instead of ITO, we propose the concept of transparency-like electrodes comprised of thin metal line patterns. To verify this concept, KMPR layers with thicknesses of 70, 220, and 500 µ m are experimentally investigated. In the case of 500 µ m KMPR thickness, the concept of transparency-like electrode was partially proved. As a result, TPSEs with a height of 440 µ m were successfully fabricated. Characteristic experiments demonstrated that ECF micropumps (367 mW cm −3 ) fabricated by back UV achieved almost the same output power density as ECF micropumps (391 mW cm −3 ) fabricated by front UV. This paper proves that the

  14. Effect of coupled UV-A and UV-C LEDs on both microbiological and chemical pollution of urban wastewaters

    International Nuclear Information System (INIS)

    Chevremont, A.-C.; Farnet, A.-M.; Coulomb, B.; Boudenne, J.-L.

    2012-01-01

    Wastewater reuse for irrigation is an interesting alternative for many Mediterranean countries suffering from water shortages. The development of new technologies for water recycling is a priority for these countries. In this study we test the efficiency of UV-LEDs (Ultraviolet-Light-Emitting Diodes) emitting UV-A or UV-C radiations, used alone or coupled, on bacterial and chemical indicators. We monitored the survival of fecal bioindicators found in urban wastewaters and the oxidation of creatinine and phenol which represent either conventional organic matter or the aromatic part of pollution respectively. It appears that coupling UV-A/UV-C i) achieves microbial reduction in wastewater more efficiently than when a UV-LED is used alone, and ii) oxidizes up to 37% of creatinine and phenol, a result comparable to that commonly obtained with photoreactants such as TiO 2 . - Highlights: ► We test UV-LEDs as an urban wastewater tertiary treatment. ► UV-A and UV-C are coupled, combining germicidal and oxidative properties of UV. ► Coupled wavelengths have the most efficient bactericidal effect. ► Coupling UV-A and UV-C leads to photooxidation of creatinine and phenol.

  15. UV-sensitivity and repair of UV-damage in Salmonella of wild type

    International Nuclear Information System (INIS)

    Kondratiev, Y.S.; Brukhansky, G.V.; Andreeva, I.V.; Skavronskaya, A.G.

    1977-01-01

    The UV-sensitivity of wild type Salmonella strains has been compared to that of wild type E.coli and its UV-sensitive mutants. Many wild type Salmonella strains are 4-5 times more sensitive than wild type E.coli and their inactivation curve is similar to that for E.coli with a mutation in the polA gene. Alkaline sucrose gradient centrifugation has shown a deficiency of these strains in normal excision repair of UV-damaged DNA. This deficiency is not a Salmonella genus feature because one strain as resistant as wild type E.coli was found. This resistant strain showed normal excision repair in alkaline sucrose gradient centrifugation experiments. The possible influence of plasmids and mutations in repair genes on the ability of Salmonella to repair UV-damaged DNA is discussed. (orig.) [de

  16. UV-sensitivity and repair of UV-damage in Salmonella of wild type

    Energy Technology Data Exchange (ETDEWEB)

    Kondratiev, Y S; Brukhansky, G V; Andreeva, I V; Skavronskaya, A G [Akademiya Meditsinskikh Nauk SSSR, Moscow. Inst. Ehpidemiologii i Mikrobiologii

    1977-12-01

    The UV-sensitivity of wild type Salmonella strains has been compared to that of wild type E.coli and its UV-sensitive mutants. Many wild type Salmonella strains are 4-5 times more sensitive than wild type E.coli and their inactivation curve is similar to that for E.coli with a mutation in the polA gene. Alkaline sucrose gradient centrifugation has shown a deficiency of these strains in normal excision repair of UV-damaged DNA. This deficiency is not a Salmonella genus feature because one strain as resistant as wild type E.coli was found. This resistant strain showed normal excision repair in alkaline sucrose gradient centrifugation experiments. The possible influence of plasmids and mutations in repair genes on the ability of Salmonella to repair UV-damaged DNA is discussed.

  17. Row orientation effect on UV-B, UV-A and PAR solar irradiation components in vineyards at Tuscany, Italy

    Science.gov (United States)

    Grifoni, D.; Carreras, G.; Zipoli, G.; Sabatini, F.; Dalla Marta, A.; Orlandini, S.

    2008-11-01

    Besides playing an essential role in plant photosynthesis, solar radiation is also involved in many other important biological processes. In particular, it has been demonstrated that ultraviolet (UV) solar radiation plays a relevant role in grapevines ( Vitis vinifera) in the production of certain important chemical compounds directly responsible for yield and wine quality. Moreover, the exposure to UV-B radiation (280-320 nm) can affect plant-disease interaction by influencing the behaviour of both pathogen and host. The main objective of this research was to characterise the solar radiative regime of a vineyard, in terms of photosynthetically active radiation (PAR) and UV components. In this analysis, solar spectral UV irradiance components, broadband UV (280-400 nm), spectral UV-B and UV-A (320-400 nm), the biological effective UVBE, as well as the PAR (400-700 nm) component, were all considered. The diurnal patterns of these quantities and the UV-B/PAR and UV-B/UV-A ratios were analysed to investigate the effect of row orientation of the vineyard in combination with solar azimuth and elevation angles. The distribution of PAR and UV irradiance at various heights of the vertical sides of the rows was also studied. The results showed that the highest portion of plants received higher levels of daily radiation, especially the UV-B component. Row orientation of the vines had a pronounced effect on the global PAR received by the two sides of the rows and, to a lesser extent, UV-A and UV-B. When only the diffused component was considered, this geometrical effect was greatly attenuated. UV-B/PAR and UV-A/PAR ratios were also affected, with potential consequences on physiological processes. Because of the high diffusive capacity of the UV-B radiation, the UV-B/PAR ratio was significantly lower on the plant portions exposed to full sunlight than on those in the shade.

  18. The UV Survey Mission Concept, CETUS

    Science.gov (United States)

    Heap, Sara; and the CETUS Team

    2018-01-01

    In March 2017, NASA selected CETUS for study of a Probe-class mission concept. W. Danchi is the CETUS PI, and S. Heap is the Science PI. CETUS is primarily a UV survey telescope to complement survey telescopes of the 2020’s including E-ROSITA, Subaru Hyper Suprime Cam and Prime-Focus Spectrograph, WFIRST, and the Square Kilometer Array. CETUS comprises a 1.5-m wide-field telescope and three science instruments: a wide-field (1045” on a side) far-UV and near-UV camera; a similarly wide-field near-UV multi-object spectrograph utilizing a next-generation micro-shutter array; and a single-object spectrograph with options of spectral region (far-UV or near-UV) and spectral resolving power (2,000 or 40,000). The survey instruments will operate simultaneously thereby producing wide-field images in the near-UV and far-UV and a spectrogram containing near-UV spectra of up to 100 sources free of spectral overlap and astronomical background. ln concert with other survey telescopes, CETUS will focus on understanding galaxy evolution at cosmic noon (z~1-2).

  19. Removal of Organic Dyes from Industrial Wastewaters Using UV/H2O2, UV/H2O2/Fe (II, UV/H2O2/Fe (III Processes

    Directory of Open Access Journals (Sweden)

    Nezamaddin Daneshvar

    2007-03-01

    Full Text Available UV/H2O2, UV/H2O2/Fe (II and UV/H2O2/Fe (III processes are very effective in removing pollutants from wastewater and can be used for treatment of dyestuff units wastewaters. In this study, Rhodamine B was used as a typical organic dye. Rhodamine B has found wide applications in wax, leather, and paper industries. The results from this study showed that this dye was degradable in the presence of hydrogen peroxide under UV-C irradiation (30W mercury light and Photo-Fenton process. The dye was resistant to UV irradiation. In the absence of UV irradiation, the decolorization efficiency was very negligible in the presence of hydrogen. The effects of different system variables such as initial dye concentration, duration of UV irradiation, and initial hydrogen peroxide concentration were investigated in the UV/H2O2 process. Investigation of the kinetics of the UV/H2O2 process showed that the semi-log plot of the dye concentration versus time was linear, suggesting a first order reaction. It was found that Rhodamine B decolorization efficiencies in the UV/H2O2/Fe (II and UV/H2O2/Fe (III processes were higher than that in the UV/H2O2 process. Furthermore, a solution containing 20 ppm of Rhodamine B was decolorized in the presence 18 mM of H2O2 under UV irradiation for 15 minutes. It was also found that addition of 0.1 mM Fe(II or Fe(III to the solution containing  20  ppm of the dye and 5 mM H2O2 under UV light  illumination decreased removal time to 10 min.

  20. UV-Induced Cell Death in Plants

    Science.gov (United States)

    Nawkar, Ganesh M.; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-01

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400–700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280–320 nm) and UV-A (320–390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD). PMID:23344059

  1. Core excitation and de-excitation spectroscopies of free atoms and molecules

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi

    2006-01-01

    This article provides a review of the current status of core excitation and de-excitation spectroscopy studies of free atoms molecules using a high-resolution soft X-ray monochromator and a high-resolution electron energy analyzer, installed in the soft X-ray photochemistry beam line at SPring-8. Experimental results are discussed for 1s excitation of Ne, O 1s excitation of CO and H 2 O, and F 1s excitation of CF 4 . (author)

  2. Prediction of UV spectra and UV-radiation damage in actual plasma etching processes using on-wafer monitoring technique

    International Nuclear Information System (INIS)

    Jinnai, Butsurin; Fukuda, Seiichi; Ohtake, Hiroto; Samukawa, Seiji

    2010-01-01

    UV radiation during plasma processing affects the surface of materials. Nevertheless, the interaction of UV photons with surface is not clearly understood because of the difficulty in monitoring photons during plasma processing. For this purpose, we have previously proposed an on-wafer monitoring technique for UV photons. For this study, using the combination of this on-wafer monitoring technique and a neural network, we established a relationship between the data obtained from the on-wafer monitoring technique and UV spectra. Also, we obtained absolute intensities of UV radiation by calibrating arbitrary units of UV intensity with a 126 nm excimer lamp. As a result, UV spectra and their absolute intensities could be predicted with the on-wafer monitoring. Furthermore, we developed a prediction system with the on-wafer monitoring technique to simulate UV-radiation damage in dielectric films during plasma etching. UV-induced damage in SiOC films was predicted in this study. Our prediction results of damage in SiOC films shows that UV spectra and their absolute intensities are the key cause of damage in SiOC films. In addition, UV-radiation damage in SiOC films strongly depends on the geometry of the etching structure. The on-wafer monitoring technique should be useful in understanding the interaction of UV radiation with surface and in optimizing plasma processing by controlling UV radiation.

  3. Functional Analysis in Long-Term Operation of High Power UV-LEDs in Continuous Fluoro-Sensing Systems for Hydrocarbon Pollution

    Science.gov (United States)

    Arques-Orobon, Francisco Jose; Nuñez, Neftali; Vazquez, Manuel; Gonzalez-Posadas, Vicente

    2016-01-01

    This work analyzes the long-term functionality of HP (High-power) UV-LEDs (Ultraviolet Light Emitting Diodes) as the exciting light source in non-contact, continuous 24/7 real-time fluoro-sensing pollutant identification in inland water. Fluorescence is an effective alternative in the detection and identification of hydrocarbons. The HP UV-LEDs are more advantageous than classical light sources (xenon and mercury lamps) and helps in the development of a low cost, non-contact, and compact system for continuous real-time fieldwork. This work analyzes the wavelength, output optical power, and the effects of viscosity, temperature of the water pollutants, and the functional consistency for long-term HP UV-LED working operation. To accomplish the latter, an analysis of the influence of two types 365 nm HP UV-LEDs degradation under two continuous real-system working mode conditions was done, by temperature Accelerated Life Tests (ALTs). These tests estimate the mean life under continuous working conditions of 6200 h and for cycled working conditions (30 s ON & 30 s OFF) of 66,000 h, over 7 years of 24/7 operating life of hydrocarbon pollution monitoring. In addition, the durability in the face of the internal and external parameter system variations is evaluated. PMID:26927113

  4. Observation of an energy threshold for large ΔE collisional relaxation of highly vibrationally excited pyrazine (Evib=31 000-41 000 cm-1) by CO2

    Science.gov (United States)

    Elioff, Michael S.; Wall, Mark C.; Lemoff, Andrew S.; Mullin, Amy S.

    1999-03-01

    Energy dependent studies of the collisional relaxation of highly vibrationally excited pyrazine through collisions with CO2 were performed for initial pyrazine energies Evib=31 000-35 000 cm-1. These studies are presented along with earlier results for pyrazine with Evib=36 000-41 000 cm-1. High-resolution transient IR laser absorption of individual CO2 (0000) rotational states (J=56-80) was used to investigate the magnitude and partitioning of energy gain into CO2 rotation and translation, which comprises the high energy tail of the energy transfer distribution function. Highly vibrationally excited pyrazine was prepared by absorption of pulsed UV light at seven wavelengths in the range λ=281-324 nm, followed by radiationless decay to pyrazine's ground electronic state. Nascent CO2 (0000) rotational populations were measured for each UV excitation wavelength and distributions of nascent recoil velocities for individual rotational states of CO2 (0000) were obtained from Doppler-broadened transient linewidth measurements. Measurements of energy transfer rate constants at each UV wavelength yield energy-dependent probabilities for collisions involving large ΔE values. These results reveal that the magnitude of large ΔE collisional energy gain in CO2 (0000) is fairly insensitive to the amount of vibrational energy in pyrazine for Evib=31 000-35 000 cm-1. A comparison with earlier studies on pyrazine with Evib=36 000-41 000 cm-1 indicates that the V→RT energy transfer increases both in magnitude and probability for Evib>36 000 cm-1. Implications of incomplete intramolecular vibrational relaxation, electronic state coupling, and isomerization barriers are discussed in light of these results.

  5. UV excited downconversion luminescence properties of Eu3+: NaZnPO4 phosphors

    Science.gov (United States)

    Mukhopadhyay, Lakshmi; Rai, Vineet Kumar

    2018-05-01

    The structural and optical properties of Eu3+: NaZnPO4 phosphors prepared by chemical coprecipitation method have been studied. The phase formation and morphology of the phosphors have been confirmed by the X-ray diffraction (XRD) and Field emission scanning electron microscopy (FESEM) analysis. The downconversion emission spectra upon 392 nm excitation exhibit five emission bands centred at ˜ 575 nm, ˜ 590 nm, ˜ 612 nm, ˜ 660 nm and ˜ 702 nm corresponding to the 5D0→7F0, 5D0→7F1, 5D0→7F2, 5D0→7F3 and 5D0→7F4 transitions of Eu3+ ions respectively. The observed downconversion emission peaks can be explained with the help of suitable energy level diagram. The CIE chromaticity diagram shows the purity of the emitted colour from the prepared phosphors. The present phosphors emit in intense red region which shows the applicability of the phosphors in red light emitting display devices.

  6. Effect of coupled UV-A and UV-C LEDs on both microbiological and chemical pollution of urban wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Chevremont, A.-C., E-mail: anne-celine.chevremont@imbe.fr [Aix-Marseille Universite - CNRS, FR ECCOREV, Laboratoire Chimie de l' Environnement (FRE3416), Equipe ' Developpements Metrologiques et Chimie des Milieux' , 3 place Victor Hugo, case 29, 13331 Marseille Cedex 3 (France); Aix-Marseille Universite - CNRS, FR ECCOREV, Institut Mediterraneen de Biodiversite et d' Ecologie marine et continentale (UMR7263), Equipe ' Vulnerabilite des Systemes Microbiens' , Avenue Escadrille Normandie-Niemen, Boite 452, 13397 Marseille Cedex 20 (France); Farnet, A.-M. [Aix-Marseille Universite - CNRS, FR ECCOREV, Institut Mediterraneen de Biodiversite et d' Ecologie marine et continentale (UMR7263), Equipe ' Vulnerabilite des Systemes Microbiens' , Avenue Escadrille Normandie-Niemen, Boite 452, 13397 Marseille Cedex 20 (France); Coulomb, B.; Boudenne, J.-L. [Aix-Marseille Universite - CNRS, FR ECCOREV, Laboratoire Chimie de l' Environnement (FRE3416), Equipe ' Developpements Metrologiques et Chimie des Milieux' , 3 place Victor Hugo, case 29, 13331 Marseille Cedex 3 (France)

    2012-06-01

    Wastewater reuse for irrigation is an interesting alternative for many Mediterranean countries suffering from water shortages. The development of new technologies for water recycling is a priority for these countries. In this study we test the efficiency of UV-LEDs (Ultraviolet-Light-Emitting Diodes) emitting UV-A or UV-C radiations, used alone or coupled, on bacterial and chemical indicators. We monitored the survival of fecal bioindicators found in urban wastewaters and the oxidation of creatinine and phenol which represent either conventional organic matter or the aromatic part of pollution respectively. It appears that coupling UV-A/UV-C i) achieves microbial reduction in wastewater more efficiently than when a UV-LED is used alone, and ii) oxidizes up to 37% of creatinine and phenol, a result comparable to that commonly obtained with photoreactants such as TiO{sub 2}. - Highlights: Black-Right-Pointing-Pointer We test UV-LEDs as an urban wastewater tertiary treatment. Black-Right-Pointing-Pointer UV-A and UV-C are coupled, combining germicidal and oxidative properties of UV. Black-Right-Pointing-Pointer Coupled wavelengths have the most efficient bactericidal effect. Black-Right-Pointing-Pointer Coupling UV-A and UV-C leads to photooxidation of creatinine and phenol.

  7. UV-blocking spectacle lens protects against UV-induced decline of visual performance.

    Science.gov (United States)

    Liou, Jyh-Cheng; Teng, Mei-Ching; Tsai, Yun-Shan; Lin, En-Chieh; Chen, Bo-Yie

    2015-01-01

    Excessive exposure to sunlight may be a risk factor for ocular diseases and reduced visual performance. This study was designed to examine the ability of an ultraviolet (UV)-blocking spectacle lens to prevent visual acuity decline and ocular surface disorders in a mouse model of UVB-induced photokeratitis. Mice were divided into 4 groups (10 mice per group): (1) a blank control group (no exposure to UV radiation), (2) a UVB/no lens group (mice exposed to UVB rays, but without lens protection), (3) a UVB/UV400 group (mice exposed to UVB rays and protected using the CR-39™ spectacle lens [UV400 coating]), and (4) a UVB/photochromic group (mice exposed to UVB rays and protected using the CR-39™ spectacle lens [photochromic coating]). We investigated UVB-induced changes in visual acuity and in corneal smoothness, opacity, and lissamine green staining. We also evaluated the correlation between visual acuity decline and changes to the corneal surface parameters. Tissue sections were prepared and stained immunohistochemically to evaluate the structural integrity of the cornea and conjunctiva. In blank controls, the cornea remained undamaged, whereas in UVB-exposed mice, the corneal surface was disrupted; this disruption significantly correlated with a concomitant decline in visual acuity. Both the UVB/UV400 and UVB/photochromic groups had sharper visual acuity and a healthier corneal surface than the UVB/no lens group. Eyes in both protected groups also showed better corneal and conjunctival structural integrity than unprotected eyes. Furthermore, there were fewer apoptotic cells and less polymorphonuclear leukocyte infiltration in corneas protected by the spectacle lenses. The model established herein reliably determines the protective effect of UV-blocking ophthalmic biomaterials, because the in vivo protection against UV-induced ocular damage and visual acuity decline was easily defined.

  8. Ecological responses to UV radiation: interactions between the biological effects of UV on plants and on associated organisms.

    Science.gov (United States)

    Paul, Nigel D; Moore, Jason P; McPherson, Martin; Lambourne, Cathryn; Croft, Patricia; Heaton, Joanna C; Wargent, Jason J

    2012-08-01

    Solar ultraviolet (UV)-B radiation (280-315 nm) has a wide range of effects on terrestrial ecosystems, yet our understanding of how UV-B influences the complex interactions of plants with pest, pathogen and related microorganisms remains limited. Here, we report the results of a series of experiments in Lactuca sativa which aimed to characterize not only key plant responses to UV radiation in a field environment but also consequential effects for plant interactions with a sap-feeding insect, two model plant pathogens and phylloplane microorganism populations. Three spectrally modifying filters with contrasting UV transmissions were used to filter ambient sunlight, and when compared with our UV-inclusive filter, L. sativa plants grown in a zero UV-B environment showed significantly increased shoot fresh weight, reduced foliar pigment concentrations and suppressed population growth of green peach aphid (Myzus persicae). Plants grown under a filter which allowed partial transmission of UV-A radiation and negligible UV-B transmission showed increased density of leaf surface phylloplane microbes compared with the UV-inclusive treatment. Effects of UV treatment on the severity of two plant pathogens, Bremia lactucae and Botrytis cinerea, were complex as both the UV-inclusive and zero UV-B filters reduced the severity of pathogen persistence. These results are discussed with reference to known spectral responses of plants, insects and microorganisms, and contrasted with established fundamental responses of plants and other organisms to solar UV radiation, with particular emphasis on the need for future integration between different experimental approaches when investigating the effects of solar UV radiation. Copyright © Physiologia Plantarum 2011.

  9. Monitoring and control of UV and UV-TiO{sub 2} disinfections for municipal wastewater reclamation using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chuang-Hung [Department of Architecture, National United University, Miao-Li 360, Taiwan, ROC (China); Yu, Ruey-Fang, E-mail: rfyu@nuu.edu.tw [Department of Safety, Health and Environmental Engineering, National United University, Miao-Li 360, Taiwan, ROC (China); Cheng, Wen-Po; Liu, Chun-Ru [Department of Safety, Health and Environmental Engineering, National United University, Miao-Li 360, Taiwan, ROC (China)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer ANN models can effectively control both UV and UV-TiO{sub 2} disinfections for wastewater reuse. Black-Right-Pointing-Pointer Comparing to UV disinfection, UV-TiO{sub 2} disinfection can save 13.2-15.7% of UV dosage and capacity. Black-Right-Pointing-Pointer SS decreases disinfection efficiency when UV doses were <10,000 {mu}W s/cm{sup 2}. - Abstract: The use of ultraviolet (UV) irradiation as a physical wastewater disinfection has increased in recent years, especially for wastewater reuse. The UV-TiO{sub 2} can generate OH radicals, which is highly effective to inactivate microorganisms in wastewater disinfection. However, both UV and UV-TiO{sub 2} disinfections create multiple physical, chemical, and bio-chemical phenomena that affect their germicidal efficiency. It is difficult to build a precise control model using existing mathematic models. This study applies artificial neural network (ANN) models to control UV and UV-TiO{sub 2} disinfections. Experimental results indicate that the ANN models, which precisely generate relationships among multiple monitored parameters, total coliform counts in influent and effluent, and UV doses, can be used as control models for UV and UV-TiO{sub 2} disinfections. A novel ANN control strategy is applied to control UV and UV-TiO{sub 2} disinfection processes to meet three total coliform count limits for three wastewater reuse purposes. The proposed controlled strategy effectively controls UV and UV-TiO{sub 2} disinfection, resulting in acceptable total coliform counts in effluent for the three wastewater reuse purposes. The required UV doses for UV-TiO{sub 2} disinfection were lower than those for UV disinfection, resulting in energy saving and capacity reduction of 13.2-15.7%.

  10. Health hazards of UV radiation

    International Nuclear Information System (INIS)

    Matthes, R.

    1994-01-01

    The author describes the effects and health risks of UV exposure. This includes UV effects on the DNS, the eyes, the immune system, and the skin. Finally, recommendations are given for protection against excessive UV exposure on the basis of the IRPA/INIRC guidelines. (orig.) [de

  11. Jahn-Teller distortion in the phosphorescent excited state of three-coordinate Au(I) phosphine complexes.

    Science.gov (United States)

    Barakat, Khaldoon A; Cundari, Thomas R; Omary, Mohammad A

    2003-11-26

    DFT calculations were used to optimize the phosphorescent excited state of three-coordinate [Au(PR3)3]+ complexes. The results indicate that the complexes rearrange from their singlet ground-state trigonal planar geometry to a T-shape in the lowest triplet luminescent excited state. The optimized structure of the exciton contradicts the structure predicted based on the AuP bonding properties of the ground-state HOMO and LUMO. The rearrangement to T-shape is a Jahn-Teller distortion because an electron is taken from the degenerate e' (5dxy, 5dx2-y2) orbital upon photoexcitation of the ground-state D3h complex. The calculated UV absorption and visible emission energies are consistent with the experimental data and explain the large Stokes' shifts while such correlations are not possible in optimized models that constrained the exciton to the ground-state trigonal geometry.

  12. Relative excitation functions for singly-excited and core-excited levels of S V--S IX populated by the beam-foil interaction

    International Nuclear Information System (INIS)

    Moenke, D.; Bengtsson, P.; Engstroem, L.; Hutton, R.; Jupen, C.; Kirm, M.; Westerlind, M.

    1994-01-01

    We have investigated the relative excitation functions for low-lying singly excited and low-lying core-excited levels in S V (S 4+ ) to S IX (S 8+ ) after beam-foil excitation using ions in the energy range 2--10 MeV. The spectral line intensities have been normalized to the same number of particles at each ion energy and corrections for the level lifetimes have been made. The overall accuracy of the measured relative excitation function at each energy and charge state is estimated to be better than 2%. A comparison of the relative excitation functions for singly excited and core-excited lines shows a difference in S VII, but not in S VI

  13. Transmission of UV-irradiance into nectarine fruit

    International Nuclear Information System (INIS)

    Blanke, M.M.

    1996-01-01

    With the global depletion of the ozone layer, leaves and fruits are increasingly exposed to UV-irradiance on the tree. Some fruits are additionally exposed postharvest to artificial germicidal W-irradiance, leading to a cumulative effect. This paper examines the transmission of UV-light (200-400 nm) by the peel of ripe nectarine fruit using UV/VIS spectrophotometry to aid understanding of UV-effects and assess the sensitivity of the peel to UV wavelengths. Yellow peel of nectarine fruit transmitted less than 0.1 % in the UV-C range of 220 to 280 nm. With longer wavelenghts, UV-light transmission increased slowly from 0.4 % at 284 nm to 1.6 % at 320 nm and, in the UV-A region, progressively from 1.9 % at 330 nm to a maximum of 13 % of incident irradiance at 400 nm. Red peel of nectarine fruit transmitted less than 0.1 % of UV-C and UV-B light, but up to 0.9 % of incident UV-A light at 400 nm. Conversely, UV-absorption of nectarine peel decreased with longer wavelengths. Hence, fruit parenchyma is more affected by UV-irradiance at wavelengths above ca. 280 nm and underneath yellow than underneath red peel

  14. Reversibility of U → F processes in X or UV irradiated KCl: H- systems

    International Nuclear Information System (INIS)

    Bressiani, Ana Helena A.

    1979-01-01

    Potassium Chloride crystals, pure, additively colored or hydrogenated have been exposed to X and UV radiations for correlation studies' of formation processes of defects. In hydrogenated samples, these irradiations are responsible-for a direct U→F centers conversion with the simultaneous creation of H 2 molecules besides the intrinsic formation of F/hole centers. After prolonged irradiation, F aggregate centers react with H 2 molecules forming U center pairs. As the two U centers have independent electronic transitions they add up, increasing the maximum height of the U band after F→U reversed reation. The saturation levels of defects produced by these two types of radiation are different because UV light also excites F centers while producing them. This effect is responsible by the F center aggregation and the inversion F→U decreasing the U→F efficiency. Crystals with F and U centers under F light also show F→U inversion but with higher efficiency than when under UV light. This F→U process gives back 90% of the initial U center concentration. This same F→U process was observed but at smaller rate of formation if samples containing U, F and F aggregates are left in the dark for prolonged periods of time. The same reactions take place namely H 2 molecules annihilation F aggregates. (author)

  15. Delayed expression of enhanced reactivation and decreased mutagenesis of UV-irradiated adenovirus in UV-irradiated ataxia telangiectasia fibroblasts

    International Nuclear Information System (INIS)

    Bennett, C.B.; Rainbow, A.J.

    1988-01-01

    In this study the authors examined UV-enhanced reactivation (UVER) and UV-enhanced mutagenesis (UVEM) of UV-irradiated adenovirus in AT fibroblasts. UVER factors for Ad V antigen expression were significantly less than normal in AT strains tested when infection occurred immediately after UV-irradiation of cells. However, UVER factors were >1 and similar to those found for normal strains when cells were infected 24 h after UV-irradiation, indicating delay in the expression of UVER for Ad V antigen in AT cells. UV-irradiation of both normal and AT cells 24 h prior to infection also resulted in a significant increase in progeny survival for UV-irradiated Ad. In normal cells, this progeny UVER was concomitant with a significant increase in the mutation frequency for UV-irradiated virus (increase in targeted mutagenesis) suggesting existence of an inducible error-prone DNA repair mode in normal human cells. In contrast, pre-UV-irradiation of AT cells resulted in a significant decrease in the mutation frequency for UV-irradiated virus. (author)

  16. Effect of uvs1, uvs2 and xrs mutations on the radiosensitivity and the induced mitotic recombination frequency in diploid yeast cells

    International Nuclear Information System (INIS)

    Suslova, N.G.; Fedorova, I.V.; Zheleznyakova, N.Yu.

    1975-01-01

    The influence of the loci of radiosensitivity uvs1, uvs2, and xrs in the homozygous state at the diploid level on the sensitivity to UV and ionizing radiation and induced mitotic recombination was studied in the yeast Sacch. cerevisiae. Hypersensitivity to UV irradiation was detected in the diploids uvs2 uvs2 xrs xrs in comparision with the corresponding control. The diploid uvs1 uvs1 uvs2 uvs2 does not differ in UV sensitivity from the diploid uvs1 uvs1 UVS2 UVS2. These facts demonstrate that the uvs1 and uvs2 mutations, on the one hand, and the xrs mutations, on the other, normally control different pathways of elimination of UV-induced damages. It was shown that the diploid uvs2 uvs2 xrs3 xrs3 is far more sensitive to the lethal action of x rays than the control diploid UVS2 UVS2 xrs3 xrs3. Consequently, the mutations uvs2 and xrs3 block different modes of repair of damages induced by ionizing radiation. In all the double-mutant diploids, the frequency of mitotic recombination induced by UV rays increases sharply in comparison with that of the radioresistant diploids UVS UVS XRS XRS and the UV-sensitive diploids uvs2 uvs2 XRS XRS. Possible causes of the observed phenomenon are discussed. It was established that in a diploid homozygous for the loci uvs2 xrs5, the frequency of mitotic recombination induced by x rays increases extremely sharply. This fact confirms the hypothesis that the gene product of the locus uvs2 participates in the repair of DNA after the action of ionizing radiation. (author)

  17. Effect of Molecular Guest Binding on the d-d Transitions of Ni2+ of CPO-27-Ni: A Combined UV-Vis, Resonant-Valence-to-Core X-ray Emission Spectroscopy, and Theoretical Study.

    Science.gov (United States)

    Gallo, Erik; Gorelov, Evgeny; Guda, Alexander A; Bugaev, Aram L; Bonino, Francesca; Borfecchia, Elisa; Ricchiardi, Gabriele; Gianolio, Diego; Chavan, Sachin; Lamberti, Carlo

    2017-12-04

    We used Ni K-edge resonant-valence-to-core X-ray emission spectroscopy (RVtC-XES, also referred to as direct RIXS), an element-selective bulk-sensitive synchrotron-based technique, to investigate the electronic structure of the CPO-27-Ni metal-organic framework (MOF) upon molecular adsorption of significant molecular probes: H 2 O, CO, H 2 S, and NO. We compare RVtC-XES with UV-vis spectroscopy, and we show that the element selectivity of RVtC-XES is of strategic significance to observe the full set of d-d excitations in Ni 2+ , which are partially overshadowed by the low-energy π-π* transitions of the Ni ligands in standard diffuse-reflectance UV-vis experiments. Our combined RVtC-XES/UV-vis approach provides access to the whole set of d-d excitations, allowing us a complete discussion of the changes undergone by the electronic configuration of the Ni 2+ sites hosted within the MOF upon molecular adsorption. The experimental data have been interpreted by multiplet ligand-field theory calculations based on Wannier orbitals. This study represents a step further in understanding the ability of the CPO-27-Ni MOFs in molecular sorption and separation applications.

  18. UV-LED Curing Efficiency of Wood Coatings

    Directory of Open Access Journals (Sweden)

    Véronic Landry

    2015-12-01

    Full Text Available Ultraviolet light emitting diodes (UV-LEDs have attracted great interest in recent years. They can be used to polymerize coatings, such as those used for prefinished wood flooring. In this project, two lamps were compared for their suitability to be used on a wood flooring finishing line: a UV-microwave and a UV-LED lamp. Low heat emission was found for the UV-LED lamp compared to the UV-microwave one. This study also reveals that the 4 W/cm2 UV-LED lamp used is not powerful enough to cure UV high solids acrylate coatings while satisfactory results can be obtained for UV water-based formulations. In fact, conversion percentages were found to be low for the high solids coatings, leaving the coatings tacky. Higher conversion percentages were obtained for the UV water-based formulations. As a result, mass loss, hardness, and scratch resistance found for the samples cured by UV-LED were closed to the ones found for the samples cured using the UV microwave lamp.

  19. Effect of far-UV and near-UV radiation on the cell surface charge of the protozoan Tritrichomonas foetus

    Energy Technology Data Exchange (ETDEWEB)

    Silva Filho, F C; Elias, C A; Souza, W de

    1986-05-01

    Cell electrophoresis was used to detect the effect of far-UV or near-UV radiation on the cell surface charge of the pathogenic protozoan Tritrichomonas foetus. Either far-UV or near-UV radiation interfered with the surface charge of T. foetus at fluences which inhibited cell growth by 50%. Both UV-radiations induced a significant decrease on surface charge of T. foetus, as evaluated by measurement of its electrophoretic mobility (EPM). Determinations of EPM of protozoa in solution of low ionic strength indicated that the decrease in the EPM induced by far-UV is much less pronounced that that observed for near-UV or control cells.

  20. Effect of far-UV and near-UV radiation on the cell surface charge of the protozoan Tritrichomonas foetus

    International Nuclear Information System (INIS)

    Silva Filho, F.C.; Elias, C.A.; Souza, W. de

    1986-01-01

    Cell electrophoresis was used to detect the effect of far-UV or near-UV radiation on the cell surface charge of the pathogenic protozoan Tritrichomonas foetus. Either far-UV or near-UV radiation interfered with the surface charge of T. foetus at fluences which inhibited cell growth by 50%. Both UV-radiations induced a significant decrease on surface charge of T. foetus, as evaluated by measurement of its electrophoretic mobility (EPM). Determinations of EPM of protozoa in solution of low ionic strength indicated that the decrease in the EPM induced by far-UV is much less pronounced that that observed for near-UV or control cells. (author)

  1. [Light protection: principles of UV protection].

    Science.gov (United States)

    Stege, H; Mang, R

    2006-05-01

    UV radiation is responsible for the induction of epithelial and melanocytic skin cancer, photoaging, and photodermatoses. UV protection is necessary to prevent damage caused by non-physiologic exposure. UV protection includes not only reduction of sun exposure but also use of sun protective filters, UV protective clothes, DNA repair enzymes, and antioxidant supplementation. Consumers are uncertain about the possibilities and limitations of commercial sun protection measures. Dermatologists must explain protective measures to the general public which continues to believe that UV-tanned skin is healthy. The sunscreen market is a highly competitive but lucrative market. The range of products with different designations and promises makes difficult for both consumers and dermatologists to determine what is sensible UV protection.

  2. UV survival of human mycoplasmas

    International Nuclear Information System (INIS)

    Aoki, Shigeji; Ito, Shoko; Watanabe, Takehiko

    1979-01-01

    The inactivation by ultraviolet (UV) light irradiation of mycoplasma cells of five human strains was monitored by investigating the colony-forming ability. The survival curves of five strains tested indicated that the cells of Mycoplasma buccale only are single and homogenously susceptible to UV light. The effect of the repair inhibitor, caffeine, on the colony-forming ability of UV-irradiated cells was investigated with M. buccale because of its homogeneous susceptibility to UV light. The colony formation of irradiated cells was markedly depressed by post-irradiation treatment with caffeine at concentration that had little or no effect on the colony formation of unirradiated cells. The colony-forming units (CFU) of UV-irradiated cells which were kept in broth without caffeine in the dark increased without a lag as the time in the dark increased. The colony-forming ability of the irradiated cells completely recovered after 3 hr in the dark. However, when irradiated cells were kept in the presence of caffeine, no increase in their CFU was observed. The mode of action of caffeine on UV-irradiated cells closely resembles that described for other organisms which possess dark reactivation systems for UV-induced damage in deoxyribonucleic acid. Thus, the results obtained provide evidence for the existence of a dark repair function in M. buccale. (author)

  3. Elucidation of the relationships between H-bonding patterns and excited state dynamics in cyclovalone.

    Science.gov (United States)

    Lamperti, Marco; Maspero, Angelo; Tønnesen, Hanne H; Bondani, Maria; Nardo, Luca

    2014-08-28

    Cyclovalone is a synthetic curcumin derivative in which the keto-enolic system is replaced by a cyclohexanone ring. This modification of the chemical structure might in principle result in an excited state that is more stable than that of curcumin, which in turn should produce an enhanced phototoxicity. Indeed, although curcumin exhibits photosensitized antibacterial activity, this compound is characterized by very fast excited-state dynamics which limit its efficacy as a photosensitizer. In previous works we showed that the main non-radiative decay pathway of keto-enolic curcuminoids is through excited-state transfer of the enolic proton to the keto-oxygen. Another effective deactivation pathway involves an intermolecular charge transfer mechanism occurring at the phenyl rings, made possible by intramolecular H-bonding between the methoxy and the hydroxyl substituent. In this paper we present UV-Vis and IR absorption spectra data with the aim of elucidating the intramolecular charge distribution of this compound and its solvation patterns in different environments, with particular focus on solute-solvent H-bonding features. Moreover, we discuss steady state and time-resolved fluorescence data that aim at characterizing the excited-state dynamics of cyclovalone, and we compare its decay photophysics to that of curcumin. Finally, because during the characterization procedures we found evidence of very fast photodegradation of cyclovalone, its photostability in four organic solvents was studied by HPLC and the corresponding relative degradation rates were calculated.

  4. Elucidation of the Relationships between H-Bonding Patterns and Excited State Dynamics in Cyclovalone

    Directory of Open Access Journals (Sweden)

    Marco Lamperti

    2014-08-01

    Full Text Available Cyclovalone is a synthetic curcumin derivative in which the keto-enolic system is replaced by a cyclohexanone ring. This modification of the chemical structure might in principle result in an excited state that is more stable than that of curcumin, which in turn should produce an enhanced phototoxicity. Indeed, although curcumin exhibits photosensitized antibacterial activity, this compound is characterized by very fast excited-state dynamics which limit its efficacy as a photosensitizer. In previous works we showed that the main non-radiative decay pathway of keto-enolic curcuminoids is through excited-state transfer of the enolic proton to the keto-oxygen. Another effective deactivation pathway involves an intermolecular charge transfer mechanism occurring at the phenyl rings, made possible by intramolecular H-bonding between the methoxy and the hydroxyl substituent. In this paper we present UV-Vis and IR absorption spectra data with the aim of elucidating the intramolecular charge distribution of this compound and its solvation patterns in different environments, with particular focus on solute-solvent H-bonding features. Moreover, we discuss steady state and time-resolved fluorescence data that aim at characterizing the excited-state dynamics of cyclovalone, and we compare its decay photophysics to that of curcumin. Finally, because during the characterization procedures we found evidence of very fast photodegradation of cyclovalone, its photostability in four organic solvents was studied by HPLC and the corresponding relative degradation rates were calculated.

  5. Polycyclic aromatic hydrocarbons (PAHs) skin permeation rates change with simultaneous exposures to solar ultraviolet radiation (UV-S).

    Science.gov (United States)

    Hopf, Nancy B; Spring, Philipp; Hirt-Burri, Nathalie; Jimenez, Silvia; Sutter, Benjamin; Vernez, David; Berthet, Aurelie

    2018-05-01

    Road construction workers are simultaneously exposed to two carcinogens; solar ultraviolet (UV-S) radiation and polycyclic aromatic hydrocarbons (PAHs) in bitumen emissions. The combined exposure may lead to photogenotoxicity and enhanced PAH skin permeation rates. Skin permeation rates (J) for selected PAHs in a mixture (PAH-mix) or in bitumen fume condensate (BFC) with and without UV-S co-exposures were measured with in vitro flow-through diffusion cells mounted with human viable skin and results compared. Possible biomarkers were explored. Js were greater with UV-S for naphthalene, anthracene, and pyrene in BFC (0.08-0.1 ng/cm 2 /h) compared to without (0.02-0.26 ng/cm 2 /h). This was true for anthracene, pyrene, and chrysene in the PAH-mix. Naphthalene and benzo(a)pyrene (BaP) in the PAH-mix had greater Js without (0.97-13.01 ng/cm 2 /h) compared to with UV-S (0.40-6.35 ng/cm 2 /h). Time until permeation (T lags ) in the PAH-mix were generally shorter compared to the BFC, and they ranged from 1 to 13 h. The vehicle matrix could potentially be the reason for this discrepancy as BFC contains additional not identified substances. Qualitative interpretation of p53 suggested a dose-response with UV-S, and somewhat with the co-exposures. MMP1, p65 and cKIT were not exploitable. Although not statistically different, PAHs permeate human viable skin faster with simultaneous exposures to UV. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. The effect of ultraviolet irradiation on the photothermal, photoluminescence and photoluminescence excitation spectra of Mn-doped ZnS nanoparticles

    International Nuclear Information System (INIS)

    Briones Cruz, Almira; Shen Qing; Toyoda, Taro

    2006-01-01

    Research involving Mn doped nanocrystalline ZnS (ZnS:Mn) has grown in recent years, partly due to the high quantum luminescence efficiencies that have been reported. We measured the photoacoustic (PA), the photoluminescence (PL) and the photoluminescence excitation (PLE) spectra of surface-passivated and unpassivated ZnS:Mn. The effects of UV irradiation on the PL and PLE spectra were also studied. A decrease in the PA intensity after UV exposure was observed for the ZnS:Mn, indicating a decrease in the nonradiative relaxation probability. The observed increase in PL intensity indicates a corresponding increase in the radiative transition probability. For the PLE spectra, possible aggregation of the primary particles could have resulted in the lower measured energy of the PLE peak compared to the value predicted by the effective mass approximation theory

  7. Ultraviolet radiation exposure from UV-transilluminators.

    Science.gov (United States)

    Akbar-Khanzadeh, Farhang; Jahangir-Blourchian, Mahdi

    2005-10-01

    UV-transilluminators use ultraviolet radiation (UVR) to visualize proteins, DNA, RNA, and their precursors in a gel electrophoresis procedure. This study was initiated to evaluate workers' exposure to UVR during their use of UV-transilluminators. The levels of irradiance of UV-A, UV-B, and UV-C were determined for 29 UV-transilluminators at arbitrary measuring locations of 6, 25, 62, and 125 cm from the center of the UV-transilluminator's filter surface in the direction of the operator's head. The operators (faculty, research staff, and graduate students) worked within 62 cm of the transilluminators, with most subjects commonly working at time ranged from 1 to 60 min. Actinic hazard (effective irradiance level of UVR) was also determined for three representative UV-transilluminators at arbitrary measuring locations of 2.5, 5, 10, 15, 20, 30, 40, and 50 cm from these sets' filter surface in the direction of the operator's head. The allowable exposure time for these instruments was less than 20 sec within 15 cm, less than 35 sec within 25 cm, and less than 2 min within 50 cm from the UV-transilluminators' filter surface. The results of this study suggest that the use of UV-transilluminators exposes operators to levels of UVR in excess of exposure guidelines. It is recommended that special safety training be provided for the affected employees and that exposure should be controlled by one or the combination of automation, substitution, isolation, posted warning signs, shielding, and/or personal protective equipment.

  8. Photodegradation and toxicity changes of antibiotics in UV and UV/H{sub 2}O{sub 2} process

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuan [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Hu Chun, E-mail: huchun@rcees.ac.cn [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Xuexiang, Hu; Dongbin, Wei; Yong, Chen; Jiuhui, Qu [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China)

    2011-01-30

    The photodegradation of three antibiotics, oxytetracycline (OTC), doxycycline (DTC), and ciprofloxacin (CIP) in UV and UV/H{sub 2}O{sub 2} process was investigated with a low-pressure UV lamp system. Experiments were performed in buffered ultrapure water (UW), local surface water (SW), and treated water from local municipal drinking water treatment plant (DW) and wastewater treatment plant (WW). The efficiency of UV/H{sub 2}O{sub 2} process was affected by water quality. For all of the three selected antibiotics, the fastest degradation was observed in DW, and the slowest degradation occurred in WW. This phenomenon can be explained by R{sub OH,UV}, defined as the experimentally determined {center_dot}OH radical exposure per UV fluence. The R{sub OH,UV} values represent the background {center_dot}OH radical scavenging in water matrix, obtained by the degradation of para-chlorobenzoic acid (pCBA), a probe compound. In natural water, the indirect degradation of CIP did not significantly increase with the addition of H{sub 2}O{sub 2} due to its effective degradation by UV direct photolysis. Moreover, the formation of several photoproducts and oxidation products of antibiotics in UV/H{sub 2}O{sub 2} process was identified using GC-MS. Toxicity assessed by Vibrio fischer (V. fischer), was increased in UV photolysis, for the photoproducts still preserving the characteristic structure of the parent compounds. While in UV/H{sub 2}O{sub 2} process, toxicity increased first, and then decreased; nontoxic products were formed by the oxidation of {center_dot}OH radical. In this process, detoxification was much easier than mineralization for the tested antibiotics, and the optimal time for the degradation of pollutants in UV/H{sub 2}O{sub 2} process would be determined by parent compound degradation and toxicity changes.

  9. Photodegradation of sulfasalazine and its human metabolites in water by UV and UV/peroxydisulfate processes.

    Science.gov (United States)

    Ji, Yuefei; Yang, Yan; Zhou, Lei; Wang, Lu; Lu, Junhe; Ferronato, Corinne; Chovelon, Jean-Marc

    2018-04-15

    The widespread occurrence of pharmaceuticals and their metabolites in natural waters has raised great concerns about their potential risks on human health and ecological systems. This study systematically investigates the degradation of sulfasalazine (SSZ) and its two human metabolites, sulfapyridine (SPD) and 5-aminosalicylic acid (5-ASA), by UV and UV/peroxydisulfate (UV/PDS) processes. Experimental results show that SPD and 5-ASA were readily degraded upon UV 254 nm direct photolysis, with quantum yields measured to be (8.6 ± 0.8) × 10 -3 and (2.4 ± 0.1) × 10 -2  mol Einstein -1 , respectively. Although SSZ was resistant to direct UV photolysis, it could be effectively removed by both UV/H 2 O 2 and UV/PDS processes, with fluence-based pseudo-first-order rate constants determined to be 0.0030 and 0.0038 cm 2  mJ -1 , respectively. Second-order rate constant between SO 4 •- and SSZ was measured as (1.33 ± 0.01) × 10 9  M -1 s -1 by competition kinetic method. A kinetic model was established for predicting the degradation rate of SSZ in the UV/PDS process. Increasing the dosage of PDS significantly enhanced the degradation of SSZ in the UV/PDS process, which can be well predicted by the developed kinetic model. Natural water constituents, such as natural organic matter (NOM) and bicarbonate (HCO 3 - ), influenced the degradation of SSZ differently. The azo functional group of SSZ molecule was predicted as the reactive site susceptible to electrophilic attack by SO 4 •- by frontier electron densities (FEDs) calculations. Four intermediate products arising from azo bond cleavage and SO 2 extrusion were identified by solid phase extraction-liquid chromatography-triple quadrupole mass spectrometry (SPE-LC-MS/MS). Based on the products identified, detailed transformation pathways for SSZ degradation in the UV/PDS system were proposed. Results reveal that UV/PDS could be an efficient approach for remediation of water

  10. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis

    Science.gov (United States)

    Caputo, Fanny; de Nicola, Milena; Sienkiewicz, Andrzej; Giovanetti, Anna; Bejarano, Ignacio; Licoccia, Silvia; Traversa, Enrico; Ghibelli, Lina

    2015-09-01

    Efficient inorganic UV shields, mostly based on refracting TiO2 particles, have dramatically changed the sun exposure habits. Unfortunately, health concerns have emerged from the pro-oxidant photocatalytic effect of UV-irradiated TiO2, which mediates toxic effects on cells. Therefore, improvements in cosmetic solar shield technology are a strong priority. CeO2 nanoparticles are not only UV refractors but also potent biological antioxidants due to the surface 3+/4+ valency switch, which confers anti-inflammatory, anti-ageing and therapeutic properties. Herein, UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of CeO2vs. TiO2 nanoparticles on reporter cells. TiO2 irradiated with UV (especially UVA) exerted strong photocatalytic effects, superimposing their pro-oxidant, cell-damaging and mutagenic action when induced by UV, thereby worsening the UV toxicity. On the contrary, irradiated CeO2 nanoparticles, via their Ce3+/Ce4+ redox couple, exerted impressive protection on UV-treated cells, by buffering oxidation, preserving viability and proliferation, reducing DNA damage and accelerating repair; strikingly, they almost eliminated mutagenesis, thus acting as an important tool to prevent skin cancer. Interestingly, CeO2 nanoparticles also protect cells from the damage induced by irradiated TiO2, suggesting that these two particles may also complement their effects in solar lotions. CeO2 nanoparticles, which intrinsically couple UV shielding with biological and genetic protection, appear to be ideal candidates for next-generation sun shields.

  11. Semi-conservative synthesis of DNA in UV-sensitive mutant cells of Chinese hamster after UV-irradiation

    International Nuclear Information System (INIS)

    Vikhanskaya, F.L.; Khrebtukova, I.A.; Manuilova, E.S.

    1985-01-01

    A study was made of the rate of semi-conservative DNA synthesis in asynchronous UV-resistant (clone V79) and UV-sensitive clones (VII and XII) of Chinese hamster cells after UV-irradiation. In all 3 clones studied, UV-irradiation (5-30 J/m 2 ) induced a decrease in the rate of DNA synthesis during the subsequent 1-2 h. In the resistant clone (V79) recovery of DNA synthesis rate started after the first 2 h post-irradiation (5 J/m 2 ) and by the 3rd hour reached its maximum value, which constituted 70% of that observed in control, non-irradiated cells. The UV-sensitive mutant clones VII and XII showed no recovery in the rate of DNA synthesis during 6-7 h post-irradiation. The results obtained show that the survival of cells is correlated with the ability of DNA synthesis to recover after UV-irradiation in 3 clones studied. The observed recovery of UV-inhibited DNA synthesis in mutant clones may be due to certain defects in DNA repair. (orig.)

  12. Structural dynamics of phenylisothiocyanate in the light-absorbing excited states: Resonance Raman and complete active space self-consistent field calculation study

    International Nuclear Information System (INIS)

    Ouyang, Bing; Xue, Jia-Dan; Zheng, Xuming; Fang, Wei-Hai

    2014-01-01

    The excited state structural dynamics of phenyl isothiocyanate (PITC) after excitation to the light absorbing S 2 (A′), S 6 (A′), and S 7 (A′) excited states were studied by using the resonance Raman spectroscopy and complete active space self-consistent field method calculations. The UV absorption bands of PITC were assigned. The vibrational assignments were done on the basis of the Fourier transform (FT)-Raman and FT-infrared measurements, the density-functional theory computations, and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohexane, acetonitrile, and methanol solvents were, respectively, obtained at 299.1, 282.4, 266.0, 252.7, 228.7, 217.8, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PITC. The results indicated that the structural dynamics in the S 2 (A′), S 6 (A′), and S 7 (A′) excited states were very different. The conical intersection point CI(S 2 /S 1 ) were predicted to play important role in the low-lying excited state decay dynamics. Two major decay channels were predicted for PITC upon excitation to the S 2 (A′) state: the radiative S 2,min → S 0 transition and the nonradiative S 2 → S 1 internal conversion via CI(S 2 /S 1 ). The differences in the decay dynamics between methyl isothiocyanate and PITC in the first light absorbing excited state were discussed. The role of the intersystem crossing point ISC(S 1 /T 1 ) in the excited state decay dynamics of PITC is evaluated

  13. Conformation of L-Tyrosine Studied by Fluorescence-Detected UV-UV and IR-UV Double-Resonance Spectroscopy

    OpenAIRE

    Inokuchi, Yoshiya; Kobayashi, Yusuke; Ito, Takafumi; Ebata, Takayuki

    2007-01-01

    The laser-induced fluorescence spectrum of jet-cooled L-tyrosine exhibits more than 20 vibronic bands in the 35450-35750 cm-1 region. We attribute these bands to eight conformers by using results of UV-UV hole-burning spectroscopy. These isomers are classified into four groups; each group consists of two rotational isomers that have a similar side-chain conformation but different orientations of the phenolic OH. The splitting of band origins of rotational isomers is 31, 21, 5, and 0 cm-1 for ...

  14. Efficiency of ocular UV protection by clear lenses.

    Science.gov (United States)

    Rifai, Katharina; Hornauer, Matthias; Buechinger, Ramona; Schoen, Roland; Barraza-Bernal, Maria; Habtegiorgis, Selam; Glasenapp, Carsten; Wahl, Siegfried; Mappes, Timo

    2018-04-01

    Ocular UV doses accumulate all-day, not only during periods of direct sun exposure. The UV protection efficiency of three clear lenses was evaluated experimentally, validated by simulation, and compared to non-UV protection: a first spectacle lens with a tailored UV absorber, a second spectacle lens, minimizing UV back reflections, as well as a third spectacle lens, combining both. A tailored UV-absorber efficiently reduced overall UV irradiance to 7 %, whereas reduction of back-reflections still left UV irradiance at 42 %. Thus, clear lenses with a tailored UV absorber efficiently protect the eye from UV, supplementing sun glasses wear to an all-day protection scenario.

  15. Exposure to solar UV in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Jokela, K; Leszczynski, K; Visuri, R; Ylianttila, L [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1996-12-31

    Exceptionally low total ozone, up to 40 % below the normal level, was measured over Northern Europe during winter and spring in 1992 and 1993. In 1993 the depletion persisted up to the end of May, resulting in a significant increase in biologically effective ultraviolet (UV) radiation. The increases were significantly smaller in 1992 and 1994 than in 1993. A special interest in Northern Europe is the effect of high reflection of UV from the snow. The period from the mid March to the mid May is critical in Northern Finland, because in that time the UV radiation is intense enough to cause significant biological effects, and the UV enhancing snow still covers the ground. Moreover, there is some evidence of increasing springtime depletions of ozone over Arctic regions. In this study the increase of UV exposure associated with the ozone depletions was examined with measurements and theoretical calculations. The measurements were carried out with spectroradiometrically calibrated Solar Light Model 500 and 501 UV radiometers which measure the erythemally effective UV doses and dose rates. The theoretical UV doses and dose rates were computed with the clear sky model of Green

  16. Exposure to solar UV in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Jokela, K.; Leszczynski, K.; Visuri, R.; Ylianttila, L. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1995-12-31

    Exceptionally low total ozone, up to 40 % below the normal level, was measured over Northern Europe during winter and spring in 1992 and 1993. In 1993 the depletion persisted up to the end of May, resulting in a significant increase in biologically effective ultraviolet (UV) radiation. The increases were significantly smaller in 1992 and 1994 than in 1993. A special interest in Northern Europe is the effect of high reflection of UV from the snow. The period from the mid March to the mid May is critical in Northern Finland, because in that time the UV radiation is intense enough to cause significant biological effects, and the UV enhancing snow still covers the ground. Moreover, there is some evidence of increasing springtime depletions of ozone over Arctic regions. In this study the increase of UV exposure associated with the ozone depletions was examined with measurements and theoretical calculations. The measurements were carried out with spectroradiometrically calibrated Solar Light Model 500 and 501 UV radiometers which measure the erythemally effective UV doses and dose rates. The theoretical UV doses and dose rates were computed with the clear sky model of Green

  17. UV inactivation: Combined effects of UV radiation and xenobiotics in two strains of Saccharomyces

    International Nuclear Information System (INIS)

    Lochmann, E.R.; Lochmann, G.

    1997-01-01

    The effects of eight chemicals on the inactivation rate of ultraviolet radiation on the colony building capabilities of two strains of Saccharomyces cervisae - a wild type strain and a mutant deficient in excision repair - were studied. The insecticide methoxychlor, the herbicide 2,4-dichlorophenoxyacetic acid, the fungicide pentachlorophenol and its metabolite tetrachlorohydroquinone, as well as the chemicals acrylonitrile and 2,3-dichloro-1-propene have no significant impact on the effects of UV radiation in Saccharomyces cerevisae. Depending on the concentration, trichloroethylene increases the sensitivity to UV radiation. The herbicide paraquat provides efficient protection against UV radiation at concentrations where a toxic effect cannot be observed even without UV. The results were rather similar for both strains. (orig.) [de

  18. Computing UV/vis spectra using a combined molecular dynamics and quantum chemistry approach: bis-triazin-pyridine (BTP) ligands studied in solution.

    Science.gov (United States)

    Höfener, Sebastian; Trumm, Michael; Koke, Carsten; Heuser, Johannes; Ekström, Ulf; Skerencak-Frech, Andrej; Schimmelpfennig, Bernd; Panak, Petra J

    2016-03-21

    We report a combined computational and experimental study to investigate the UV/vis spectra of 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine (BTP) ligands in solution. In order to study molecules in solution using theoretical methods, force-field parameters for the ligand-water interaction are adjusted to ab initio quantum chemical calculations. Based on these parameters, molecular dynamics (MD) simulations are carried out from which snapshots are extracted as input to quantum chemical excitation-energy calculations to obtain UV/vis spectra of BTP ligands in solution using time-dependent density functional theory (TDDFT) employing the Tamm-Dancoff approximation (TDA). The range-separated CAM-B3LYP functional is used to avoid large errors for charge-transfer states occurring in the electronic spectra. In order to study environment effects with theoretical methods, the frozen-density embedding scheme is applied. This computational procedure allows to obtain electronic spectra calculated at the (range-separated) DFT level of theory in solution, revealing solvatochromic shifts upon solvation of up to about 0.6 eV. Comparison to experimental data shows a significantly improved agreement compared to vacuum calculations and enables the analysis of relevant excitations for the line shape in solution.

  19. UV DISINFECTION GUIDANCE MANUAL FOR THE ...

    Science.gov (United States)

    Provides technical information on selection, design and operation of UV systems; provides regulatory agencies with guidance and the necessary tools to assess UV systems at the design, start-up, and routine operation phase; provides manufacturers with the testing and performance standards for UV components and systems for treating drinking water. Provide guidance to water systems, regulators and manufacturers on UV disinfection of drinking water.

  20. Is UV-A radiation a cause of malignant melanoma. Er UV-A aarsak til malignt melanom

    Energy Technology Data Exchange (ETDEWEB)

    Moan, J. (Det Norske Radiumhospital, Oslo (Norway))

    1994-03-01

    The first action spectrum for cutaneous malignant melanoma was published recently. This spectrum was obtained using the fish Xiphophorus. If the same action spectrum applies to humans, the following statements are true: Sunbathing products (agents to protect against the sun) that absorb UV-B radiation provide almost no protection against cutaneous malignant melanoma. UV-A-solaria are more dangerous than expected so far. If people are determined to use artificial sources of radiation for tanning, they should choose UV-B solaria rather than UV-A-solaria. Fluorescent tubes and halogen lamps may have weak melanomagenic effects. Ozone depletion has almost no effect on the incidence rates of CMM, since ozone absorbs very little UV-A radiation. Sunbathing products which contain UV-A-absorbing compounds or neutral filter (like titanium oxide) provide real protection against cutaneous malignant melanoma, at least if they are photochemically inert. 34 refs., 2 figs.

  1. HAZMAT. I. The evolution of far-UV and near-UV emission from early M stars

    International Nuclear Information System (INIS)

    Shkolnik, Evgenya L.; Barman, Travis S.

    2014-01-01

    The spectral energy distribution, variability, and evolution of the high-energy radiation from an M dwarf planet host is crucial in understanding the planet's atmospheric evolution and habitability and in interpreting the planet's spectrum. The star's extreme-UV (EUV), far-UV (FUV), and near-UV (NUV) emission can chemically modify, ionize, and erode the atmosphere over time. This makes determining the lifetime exposure of such planets to stellar UV radiation critical for both the evolution of a planet's atmosphere and our potential to characterize it. Using the early M star members of nearby young moving groups, which sample critical ages in planet formation and evolution, we measure the evolution of the GALEX NUV and FUV flux as a function of age. The median UV flux remains at a 'saturated' level for a few hundred million years, analogous to that observed for X-ray emission. By the age of the Hyades Cluster (650 Myr), we measure a drop in UV flux by a factor of 2-3 followed by a steep drop from old (several Gyrs) field stars. This decline in activity beyond 300 Myr follows roughly t –1 . Despite this clear evolution, there remains a wide range, of 1-2 orders of magnitude, in observed emission levels at every age. These UV data supply the much-needed constraints to M dwarf upper-atmosphere models, which will provide empirically motivated EUV predictions and more accurate age-dependent UV spectra as inputs to planetary photochemical models.

  2. HAZMAT. I. The evolution of far-UV and near-UV emission from early M stars

    Energy Technology Data Exchange (ETDEWEB)

    Shkolnik, Evgenya L. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Barman, Travis S., E-mail: shkolnik@lowell.edu, E-mail: barman@lpl.arizona.edu [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2014-10-01

    The spectral energy distribution, variability, and evolution of the high-energy radiation from an M dwarf planet host is crucial in understanding the planet's atmospheric evolution and habitability and in interpreting the planet's spectrum. The star's extreme-UV (EUV), far-UV (FUV), and near-UV (NUV) emission can chemically modify, ionize, and erode the atmosphere over time. This makes determining the lifetime exposure of such planets to stellar UV radiation critical for both the evolution of a planet's atmosphere and our potential to characterize it. Using the early M star members of nearby young moving groups, which sample critical ages in planet formation and evolution, we measure the evolution of the GALEX NUV and FUV flux as a function of age. The median UV flux remains at a 'saturated' level for a few hundred million years, analogous to that observed for X-ray emission. By the age of the Hyades Cluster (650 Myr), we measure a drop in UV flux by a factor of 2-3 followed by a steep drop from old (several Gyrs) field stars. This decline in activity beyond 300 Myr follows roughly t {sup –1}. Despite this clear evolution, there remains a wide range, of 1-2 orders of magnitude, in observed emission levels at every age. These UV data supply the much-needed constraints to M dwarf upper-atmosphere models, which will provide empirically motivated EUV predictions and more accurate age-dependent UV spectra as inputs to planetary photochemical models.

  3. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation in growth of cv. New Red Fire lettuce

    International Nuclear Information System (INIS)

    Krizek, D.T.; Britz, S.J.; Mirecki, R.M.

    1998-01-01

    The influence of solar UV-A and UV-B radiation at Beltsville, MD, USA, on growth of Lactuca sativa L. (cv. New Red Fire lettuce) was examined during early summer of 1996 and 1997. Plants were grown from seed in plastic window boxes covered with Llumar to exclude UV-A and UV-B, polyester to exclude UV-B, or tefzel (1996) or teflon (1997) to transmit UV-A and UV-B radiation. After 31-34 days, plants grown in the absence of solar UV-B radiation (polyester) had 63 and 57% greater fresh weight and dry weight of tops, respectively, and 57, 72 and 47% greater dry weight of leaves, stems and roots, respectively, as compared to those grown under ambient UV-B (tefzel or teflon). Plants protected from UV-A radiation as well (Llumar) showed an additional 43 and 35% increase, respectively, in fresh and dry weight of tops and a 33 and 33% increase, respectively, in dry weight of leaves and stems, but no difference in root biomass over those grown under polyester. Excluding ambient UV-B (polyester) significantly reduced the UV absorbance of leaf extracts at 270, 300 and 330 nm (presumptive flavonoids) and the concentration of anthocyantins at 550 nm as compared to those of leaf extract from plants grown under ambient UV-A and UV-B. Additional removal of ambient UV-A (Llumar) reduced the concentration of anthocyanins, but had no further effect on UV absorbance at 270, 300 or 330 nm. These findings provide evidence that UV-B radiation is more important than UV-A radiation for flavonoid induction in this red-pigmented lettuce cultivar. Although previous workers have obtained decreases in lettuce yield under enhanced UV-B, this is the first evidence for inhibitory effects of solar UV-A and UV-B radiation on lettuce growth. (au)

  4. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation in growth of cv. New Red Fire lettuce

    Energy Technology Data Exchange (ETDEWEB)

    Krizek, D.T.; Britz, S.J.; Mirecki, R.M. [Climate Stress Laboratory, Beltsville, MD (United States)

    1998-05-01

    The influence of solar UV-A and UV-B radiation at Beltsville, MD, USA, on growth of Lactuca sativa L. (cv. New Red Fire lettuce) was examined during early summer of 1996 and 1997. Plants were grown from seed in plastic window boxes covered with Llumar to exclude UV-A and UV-B, polyester to exclude UV-B, or tefzel (1996) or teflon (1997) to transmit UV-A and UV-B radiation. After 31-34 days, plants grown in the absence of solar UV-B radiation (polyester) had 63 and 57% greater fresh weight and dry weight of tops, respectively, and 57, 72 and 47% greater dry weight of leaves, stems and roots, respectively, as compared to those grown under ambient UV-B (tefzel or teflon). Plants protected from UV-A radiation as well (Llumar) showed an additional 43 and 35% increase, respectively, in fresh and dry weight of tops and a 33 and 33% increase, respectively, in dry weight of leaves and stems, but no difference in root biomass over those grown under polyester. Excluding ambient UV-B (polyester) significantly reduced the UV absorbance of leaf extracts at 270, 300 and 330 nm (presumptive flavonoids) and the concentration of anthocyantins at 550 nm as compared to those of leaf extract from plants grown under ambient UV-A and UV-B. Additional removal of ambient UV-A (Llumar) reduced the concentration of anthocyanins, but had no further effect on UV absorbance at 270, 300 or 330 nm. These findings provide evidence that UV-B radiation is more important than UV-A radiation for flavonoid induction in this red-pigmented lettuce cultivar. Although previous workers have obtained decreases in lettuce yield under enhanced UV-B, this is the first evidence for inhibitory effects of solar UV-A and UV-B radiation on lettuce growth. (au) 34 refs.

  5. Persistent luminescent nanoparticles for super-long time in vivo and in situ imaging with repeatable excitation

    International Nuclear Information System (INIS)

    Sun, Meng; Li, Zhan-Jun; Liu, Chun-Lin; Fu, Hai-Xia; Shen, Jiang-Shan; Zhang, Hong-Wu

    2014-01-01

    In order to realize super-long time (more than 3 days) in vivo imaging, SrAl 2 O 4 :Eu 2+ ,Dy 3+ (SAO) nanoparticles were employed as probes with in situ repeatable excitation capability. In our experiments, strontium aluminate nanoparticles were prepared. After surface modified with pyrophosphoric acid (PPA), grafted by PEG-5000-OCH 3 and irradiated with 365 nm UV light for 10 min, the afterglow signal can be observed in real time for more than 30 min in live mouse after intravenous injection. In order to monitor for a super-long time, the mouse was re-illuminated for 10 min by a white-light LED lamp and then the imaging signals were recovered and also persisted for 30 min again. The super-long time in vivo imaging was achieved by employing these repeatedly excited luminescent nanoprobes. -- Highlights: • The water-resistance and dispersity abilities of strontium aluminate nanoparticles were achieved by surface modification with pyrophosphoric acid and polyethylene glycol (PEG). • The synthesized nanoparticles were successfully employed in in vivo imaging. • A super-long time in vivo imaging was realized by the in situ re-excitation via a LED lamp

  6. Transverse effects in UV FELs

    International Nuclear Information System (INIS)

    Small, D.W.; Wong, R.K.; Colson, W.B.

    1995-01-01

    In an ultraviolet Free Electron Laser (UV FEL), the electron beam size can be approximately the same as the optical mode size. The performance of a UV FEL is studied including the effect of emittance, betatron focusing, and external focusing of the electron beam on the transverse optical mode. The results are applied to the Industrial Laser Consortium's UV FEL

  7. UV Fluorescence Photography of Works of Art : Replacing the Traditional UV Cut Filters with Interference Filters

    Directory of Open Access Journals (Sweden)

    Luís BRAVO PEREIRA

    2010-09-01

    Full Text Available For many years filters like the Kodak Wratten E series, or the equivalent Schneider B+W 415, were used as standard UV cut filters, necessary to obtain good quality on UV Fluorescence photography. The only problem with the use of these filters is that, when they receive the UV radiation that they should remove, they present themselves an internal fluorescence as side effect, that usually reduce contrast and quality on the final image. This article presents the results of our experiences on using some innovative filters, that appeared available on the market in recent years, projected to adsorb UV radiation even more efficiently than with the mentioned above pigment based standard filters: the interference filters for UV rejection (and, usually, for IR rejection too manufactured using interference layers, that present better results than the pigment based filters. The only problem with interference filters type is that they are sensitive to the rays direction and, because of that, they are not adequate to wide-angle lenses. The internal fluorescence for three filters: the B+W 415 UV cut (equivalent to the Kodak Wratten 2E, pigment based, the B+W 486 UV IR cut (an interference type filter, used frequently on digital cameras to remove IR or UV and the Baader UVIR rejection filter (two versions of this interference filter were used had been tested and compared. The final quality of the UV fluorescence images seems to be of a superior quality when compared to the images obtained with classic filters.

  8. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis

    KAUST Repository

    Caputo, Fanny

    2015-08-20

    Efficient inorganic UV shields, mostly based on refracting TiO2 particles, have dramatically changed the sun exposure habits. Unfortunately, health concerns have emerged from the pro-oxidant photocatalytic effect of UV-irradiated TiO2, which mediates toxic effects on cells. Therefore, improvements in cosmetic solar shield technology are a strong priority. CeO2 nanoparticles are not only UV refractors but also potent biological antioxidants due to the surface 3+/4+ valency switch, which confers anti-inflammatory, anti-ageing and therapeutic properties. Herein, UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of CeO2vs. TiO2 nanoparticles on reporter cells. TiO2 irradiated with UV (especially UVA) exerted strong photocatalytic effects, superimposing their pro-oxidant, cell-damaging and mutagenic action when induced by UV, thereby worsening the UV toxicity. On the contrary, irradiated CeO2 nanoparticles, via their Ce3+/Ce4+ redox couple, exerted impressive protection on UV-treated cells, by buffering oxidation, preserving viability and proliferation, reducing DNA damage and accelerating repair; strikingly, they almost eliminated mutagenesis, thus acting as an important tool to prevent skin cancer. Interestingly, CeO2 nanoparticles also protect cells from the damage induced by irradiated TiO2, suggesting that these two particles may also complement their effects in solar lotions. CeO2 nanoparticles, which intrinsically couple UV shielding with biological and genetic protection, appear to be ideal candidates for next-generation sun shields. © The Royal Society of Chemistry 2015.

  9. Hybrid 2D patterning using UV laser direct writing and aerosol jet printing of UV curable polydimethylsiloxane

    Science.gov (United States)

    Obata, Kotaro; Schonewille, Adam; Slobin, Shayna; Hohnholz, Arndt; Unger, Claudia; Koch, Jürgen; Suttmann, Oliver; Overmeyer, Ludger

    2017-09-01

    The hybrid technique of aerosol jet printing and ultraviolet (UV) laser direct writing was developed for 2D patterning of thin film UV curable polydimethylsiloxane (PDMS). A dual atomizer module in an aerosol jet printing system generated aerosol jet streams from material components of the UV curable PDMS individually and enables the mixing in a controlled ratio. Precise control of the aerosol jet printing achieved the layer thickness of UV curable PDMS as thin as 1.6 μm. This aerosol jet printing system is advantageous because of its ability to print uniform thin-film coatings of UV curable PDMS on planar surfaces as well as free-form surfaces without the use of solvents. In addition, the hybrid 2D patterning using the combination of UV laser direct writing and aerosol jet printing achieved selective photo-initiated polymerization of the UV curable PDMS layer with an X-Y resolution of 17.5 μm.

  10. Electron-Impact Excitation of Uracil Luminescence on a Ceramic Surface

    Science.gov (United States)

    Shafranyosh, I. I.; Mitropolskiy, I. E.; Kuzma, V. V.; Svyda, Yu. Yu.; Sukhoviya, M. I.

    2018-03-01

    Photoelectron spectroscopy was applied to pyrimidine nitrogenous bases, an important class of six-membered heterocyclic compounds incorporated into nucleic acids. The emission spectrum of uracil adsorbed on a ceramic surface that was obtained by bombardment with 600-eV electrons in a high vacuum was analyzed. Broad bands with maxima at 335, 435, and 495 nm were observed in the UV and visible regions. The strongest band (λ = 335 nm) was attributed to fluorescence and corresponded to a singlet-singlet transition from the first excited electronic state into the molecular ground state. Electronic transitions from a triplet T1 into the ground state formed a weaker phosphorescence band (λ = 435 nm). The nature of the band maximum at 495 nm is discussed. The obtained luminescence spectrum was compared with photoluminescence spectra in various phases.

  11. White light emission from Tm3+/Dy3+ co-doped oxyfluoride germanate glasses under UV light excitation

    International Nuclear Information System (INIS)

    Lakshminarayana, G.; Yang Hucheng; Qiu Jianrong

    2009-01-01

    In this paper, we report on the absorption and photoluminescence properties of Tm 3+ /Dy 3+ ions co-doped oxyfluoride germanate glasses for white light emission. The X-ray diffraction (XRD) and differential thermal analysis (DTA) profiles of the host glass have been carried out to confirm its structure and thermal stability. From the measured absorption spectra, Judd-Ofelt (J-O) intensity parameters (Ω 2 , Ω 4 and Ω 6 ) have been evaluated for Tm 3+ and Dy 3+ ions. A combination of blue, yellow and red emissions has emerged in these glasses, which allows the observation of bright white light when the glasses are excited by the ultraviolet light. The white light luminescence colour could be changed by varying the excitation wavelength. Also, various colours of luminescence, including white light, can be easily tuned by adjusting the concentrations of Tm 3+ or Dy 3+ ions in the co-doped glasses. Concentration quenching effect was also investigated and possible energy transfer mechanism from Dy 3+ →Tm 3+ ions was explained which is also confirmed by the decay lifetime measurements. - Graphical Abstract: A combination of blue, yellow and red emissions has emerged from Tm 3+ /Dy 3+ co-doped glasses, which allows the observation of bright white light and makes them as excellent candidates applicable in the solid-state multi-colour three-dimensional display.

  12. Sun, UV Radiation and Your Eyes

    Science.gov (United States)

    ... Sunglasses Sun Smart UV Safety Infographic The Sun, UV Radiation and Your Eyes Leer en Español: El ... Aug. 28, 2014 Keep an Eye on Ultraviolet (UV) Safety Eye medical doctors (ophthalmologists) caution us that ...

  13. UV Photography Shows Hidden Sun Damage

    Science.gov (United States)

    ... mcat1=de12", ]; for (var c = 0; c UV photography shows hidden sun damage A UV photograph gives ... developing skin cancer and prematurely aged skin. Normal photography UV photography 18 months of age: This boy's ...

  14. The Aspergillus uvsH gene encodes a product homologous to yeast RAD18 and Neurospora UVS-2.

    Science.gov (United States)

    Yoon, J H; Lee, B J; Kang, H S

    1995-07-28

    The uvsH DNA repair gene of Aspergillus nidulans has been cloned by complementation of the uvsH77 mutation with a cosmid library containing genomic DNA inserts from a wild-type strain. Methylmethane sulfonate (MMS)-resistant transformants were obtained on medium containing 0.01% MMS, to which uvsH mutants exhibit high sensitivity. Retransformation of uvsH77 mutants with the rescued cosmids from the MMS-resistant transformants resulted in restoration of both UV and MMS resistance to wild-type levels. Nucleotide sequence analysis of the genomic DNA and cDNA of the uvsH gene shows that it has an open reading frame (ORF) of 1329 bp, interrupted by two introns of 51 and 61 bp. A 2.4 kb transcript of the uvsH gene was detected by Northern blot analysis. Primer extension analysis revealed that transcription starts at 31 bp upstream from the translation initiation codon. This gene encodes a predicted polypeptide of 443 amino acids, which has two unique zinc finger motifs. The proposed polypeptide displays 39% identity to the Neurospora crassa UVS-2 protein and 24% identity to the Saccharomyces cerevisiae RAD18 protein. The sequence similarity is particularly high in three domains. One zinc finger (RING finger) motif is located in the first domain close to the N-terminus. The other zinc finger motif is in the second domain. In the third domain, the mutation sites in both the uvsH77 and uvsH304 alleles were identified.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Dictating photoreactivity through restricted bond rotations: cross-photoaddition of atropisomeric acrylimide derivatives under UV/visible-light irradiation.

    Science.gov (United States)

    Iyer, Akila; Jockusch, Steffen; Sivaguru, J

    2014-11-13

    Nonbiaryl atropisomeric acrylimides underwent facile [2 + 2] photocycloaddition leading to cross-cyclobutane adducts with very high stereospecificity (enantiomeric excess (ee): 99% and diastereomeric excess (de): 99%). The photoreactions proceeded smoothly in isotropic media for both direct and triplet sensitized irradiations. The reactions were also found to be very efficient in the solid state where the same cross-cyclobutane adduct was observed. Photophysical studies enabled us to understand the excited-state photochemistry of acrylimides. The triplet energy was found to be ∼63 kcal/mol. The reactions proceeded predominantly via a singlet excited state upon direct irradiation with very poor intersystem crossing that was ascertained by quantification of the generated singlet oxygen. The reactions progressed smoothly with triplet sensitization with UV or visible-light irradiations. Laser flash photolysis experiments established the triplet transient of atropisomeric acrylimides with a triplet lifetime at room temperature of ∼40 ns.

  16. UV-LED Curing Efficiency of Wood Coatings

    OpenAIRE

    Véronic Landry; Pierre Blanchet; Gabrielle Boivin; Jean-François Bouffard; Mirela Vlad

    2015-01-01

    Ultraviolet light emitting diodes (UV-LEDs) have attracted great interest in recent years. They can be used to polymerize coatings, such as those used for prefinished wood flooring. In this project, two lamps were compared for their suitability to be used on a wood flooring finishing line: a UV-microwave and a UV-LED lamp. Low heat emission was found for the UV-LED lamp compared to the UV-microwave one. This study also reveals that the 4 W/cm2 UV-LED lamp used is not powerf...

  17. High-sensitivity detection of cardiac troponin I with UV LED excitation for use in point-of-care immunoassay.

    Science.gov (United States)

    Rodenko, Olga; Eriksson, Susann; Tidemand-Lichtenberg, Peter; Troldborg, Carl Peder; Fodgaard, Henrik; van Os, Sylvana; Pedersen, Christian

    2017-08-01

    High-sensitivity cardiac troponin assay development enables determination of biological variation in healthy populations, more accurate interpretation of clinical results and points towards earlier diagnosis and rule-out of acute myocardial infarction. In this paper, we report on preliminary tests of an immunoassay analyzer employing an optimized LED excitation to measure on a standard troponin I and a novel research high-sensitivity troponin I assay. The limit of detection is improved by factor of 5 for standard troponin I and by factor of 3 for a research high-sensitivity troponin I assay, compared to the flash lamp excitation. The obtained limit of detection was 0.22 ng/L measured on plasma with the research high-sensitivity troponin I assay and 1.9 ng/L measured on tris-saline-azide buffer containing bovine serum albumin with the standard troponin I assay. We discuss the optimization of time-resolved detection of lanthanide fluorescence based on the time constants of the system and analyze the background and noise sources in a heterogeneous fluoroimmunoassay. We determine the limiting factors and their impact on the measurement performance. The suggested model can be generally applied to fluoroimmunoassays employing the dry-cup concept.

  18. Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp

    Science.gov (United States)

    Muramoto, Yoshihiko; Kimura, Masahiro; Nouda, Suguru

    2014-06-01

    Ultraviolet light-emitting diodes (UV-LEDs) have started replacing UV lamps. The power per LED of high-power LED products has reached 12 W (14 A), which is 100 times the values observed ten years ago. In addition, the cost of these high-power LEDs has been decreasing. In this study, we attempt to understand the technologies and potential of UV-LEDs.

  19. Evaluating the effects of UV-B and UV-A irradiances on plant pigments, photosynthesis and growth in Glycine max L

    International Nuclear Information System (INIS)

    Middleton, E.H.M.

    1993-01-01

    Increasing penetration of UV-B radiation to the earth's surface resulting from stratospheric ozone depletion is an important environmental concern, but plant response to UV-B irradiation has been difficult to assess. The UV-A irradiance has not been specifically measured or controlled previously. The experimental UV-A was controlled in a series of three glasshouse experiments conducted under high photosynthetic photon flux (midday PPF ≥ 1200 μmol m -2 s -1 ). Low (LT) and High (HT) daily UV-B BE irradiances (10.7; 14.1 kJ m -2 ) were utilized in two experiments, whereas treatments with different UV-B BE :UV-A ratios ( BE :UV-A ratios

  20. Effects of UV radiation on freshwater metazooplankton

    International Nuclear Information System (INIS)

    Tartarotti, B.

    1999-06-01

    There is evidence that fluxes of solar ultraviolet-B radiation (UV-B, 290-320 nm) are increasing over wide parts of the earth's surface due to stratospheric ozone depletion. UV radiation (290-400 nm) can have damaging effects on biomolecules and cell components that are common to most living organisms. The aim of this thesis is to gain a more thorough understanding of the potential impacts of solar radiation on freshwater metazooplankton. To detect UV-vulnerability in zooplankton populations dominating the zooplankton community of two clear-water, high mountain lakes located one in the Austrian Alps and another in the Chilean Andes, the survival of two copepod species was studied. The organisms were exposed to a 10- to 100-fold increase in UV-B radiation compared to those levels found at their natural, maximum daytime distribution. Both species vertically migrate and are pigmented. UV-absorbing compounds with a maximum absorption at ∼334 nm were also detected. Cyclops abyssorum tatricus, a common cyclopoid copepod species of Alpine lakes, was highly resistant to UV-B radiation and no significant lethal effect was observed. The calanoid copepod Boeckella gracilipes, frequent in Andean lakes, had a mortality ∼5 times higher in the treatment receiving full sunlight than in the UV-B excluded treatment (3.2 %) only when exposed for 70 h. The resistance of B. gracilipes was higher than that reported in the literature for the same species suggesting the existence of intraspecific differences in UV sensitivity. Survival, fecundity and development of the zooplankton community of a clear-water, high elevation Andean lake (33 o S) were studied with mesocosms experiments after prolonged UV exposure (48 days). When exposed to full sunlight, the population of the cladoceran Chydorus sphaericus and the rotifer Lepadella ovalis were strongly inhibited by UV-B, whereas both species were resistant to UV-A radiation. Conversely, UV-B radiation had no effect on the survival of the

  1. High Power UV LED Industrial Curing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  2. UV disinfection of water

    International Nuclear Information System (INIS)

    Skipperud, E.; Johansen; Myhrstad, J.A.

    1978-01-01

    UV radiation has been found to have advantages over chloration for the disinfection of water. New regulations for dietary conditions on Norwegian ships introduced in 1974 led to increased use of UV disinfection, and this has in the following years spread to waterworks. The present article is based on a study to determine possible limitation. The nature of the injuries to the microorganisms is first discussed, together with repair mechanisms. A table is given showing the energy required for 90 and 100 percent inactivation of a number of microorganisms. Some other factors affecting UV inactivation are briefly mentioned. (JIW)

  3. In vivo activation of human immunodeficiency virus type 1 long terminal repeat by UV type A (UV-A) light plus psoralen and UV-B light in the skin of transgenic mice

    OpenAIRE

    Morrey, John D; Bourn, S M; Bunch, T D; Jackson, M K; Sidwell, R W; Barrows, L R; Daynes, R A; Rosen, C A

    1991-01-01

    UV irradiation has been shown to activate the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) in cell culture; however, only limited studies have been described in vivo. UV light has been categorized as UV-A (400 to 315 nm), -B (315 to 280 nm), or -C (less than 280 nm); the longer wavelengths are less harmful but more penetrative. Highly penetrative UV-A radiation constitutes the vast majority of UV sunlight reaching the earth's surface but is normally harmless. UV-B ir...

  4. Synthesis of spherical Ag/ZnO heterostructural composites with excellent photocatalytic activity under visible light and UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hairui, E-mail: liuhairui1@126.com [College of Physics & Electronics Engineering, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 (China); Hu, Yanchun [College of Physics & Electronics Engineering, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 (China); Zhang, Zhuxia [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Liu, Xuguang [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi 030024 (China); Jia, Husheng [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Xu, Bingshe [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi 030024 (China)

    2015-11-15

    Graphical abstract: Ag nanoparticles decorated ZnO microspheres heterostructural composites were fabricated via a two-step chemical method, and present enhanced UV and visible light photocatalytic activity, which ascribed to the formation of Schottky barriers in the regions between Ag-NPs and ZnO-MSs and effective electron transfer from plasmon-excited Ag(0) nanoparticles to ZnO-MSs by strong localization of surface plasmonic resonance. - Highlights: • Ag/ZnO microspheres heterostructural composites were fabricated via a two-step chemical method. • Ag/ZnO composites exhibits enhanced visible light and UV light photocatalytic activity. • The UV and visible-light photocatalytic activity sequences are different for Ag/ZnO composites with the increase of Ag content. • The enhanced UV and visible light photocatalytic activity could be attributed to the formation of the Schottky barriers and surface plasmon resonance. - Abstract: Ag nanoparticles (Ag-NPs) decorated ZnO microspheres (ZnO-MSs) heterostructural composites were fabricated via a two-step chemical method. The ZnO-MSs with the diameter about 700 nm was initially prepared by ultrasonic technology. Subsequently, Ag-NPs with a diameter of 20–50 nm were anchored onto the surface of the as-prepared ZnO-MSs by a microwave polyol process. The morphology, structural and optical properties of the as-synthesized materials were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), UV–visible absorption spectroscopy, and photoluminescence spectroscopy. The results show that the surface plasmon absorption band of Ag/ZnO composites is distinctly broadened and the PL intensity of Ag/ZnO heterostructural composites varies with the increase of Ag loading. The photocatalytic activity of the Ag/ZnO composites were evaluated by the degradation of rhodamine B (Rh

  5. Synthesis of spherical Ag/ZnO heterostructural composites with excellent photocatalytic activity under visible light and UV irradiation

    International Nuclear Information System (INIS)

    Liu, Hairui; Hu, Yanchun; Zhang, Zhuxia; Liu, Xuguang; Jia, Husheng; Xu, Bingshe

    2015-01-01

    Graphical abstract: Ag nanoparticles decorated ZnO microspheres heterostructural composites were fabricated via a two-step chemical method, and present enhanced UV and visible light photocatalytic activity, which ascribed to the formation of Schottky barriers in the regions between Ag-NPs and ZnO-MSs and effective electron transfer from plasmon-excited Ag(0) nanoparticles to ZnO-MSs by strong localization of surface plasmonic resonance. - Highlights: • Ag/ZnO microspheres heterostructural composites were fabricated via a two-step chemical method. • Ag/ZnO composites exhibits enhanced visible light and UV light photocatalytic activity. • The UV and visible-light photocatalytic activity sequences are different for Ag/ZnO composites with the increase of Ag content. • The enhanced UV and visible light photocatalytic activity could be attributed to the formation of the Schottky barriers and surface plasmon resonance. - Abstract: Ag nanoparticles (Ag-NPs) decorated ZnO microspheres (ZnO-MSs) heterostructural composites were fabricated via a two-step chemical method. The ZnO-MSs with the diameter about 700 nm was initially prepared by ultrasonic technology. Subsequently, Ag-NPs with a diameter of 20–50 nm were anchored onto the surface of the as-prepared ZnO-MSs by a microwave polyol process. The morphology, structural and optical properties of the as-synthesized materials were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), UV–visible absorption spectroscopy, and photoluminescence spectroscopy. The results show that the surface plasmon absorption band of Ag/ZnO composites is distinctly broadened and the PL intensity of Ag/ZnO heterostructural composites varies with the increase of Ag loading. The photocatalytic activity of the Ag/ZnO composites were evaluated by the degradation of rhodamine B (Rh

  6. UV-A enhanced growth and UV-B induced positive effects in the recovery of photochemical yield in Gracilaria lemaneiformis (Rhodophyta).

    Science.gov (United States)

    Xu, Juntian; Gao, Kunshan

    2010-09-02

    The effects of solar UV radiation (280-400 nm) on growth, quantum yield and pigmentation in Gracilaria lemaneiformis were investigated when the thalli were cultured under solar radiation with or without UV for a period of 15 days. Presence of UV-A (315-400 nm) enhanced the relative growth rate, while UV-B (218-315 nm) inhibited it. The positive effect of UV-A and negative effect of UV-B counteracted to result in an insignificant impact of UVR on growth. During the noon period, both UV-A and UV-B resulted in the decrease of maximum quantum yield (Fv/Fm), but UV-B aided in the recovery of the yield in the late afternoon, reflecting that UV-B might be used as a signal in photorepair processes. UV induced the accumulation of UV-absorbing compounds (UVAC) to defend against the harmful UVR. However, the accumulation of UVAC took a much longer time compared to that previously reported, which was probably due to the lower levels of solar radiation and water temperature in the early spring period. Unknown UV-absorbing compounds (UVAC), which peaked at 265 nm, probably the precursor of MAAs (UVAC(325)), accumulated under moderate levels of solar radiation and were transformed to MAAs under higher solar radiation. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  7. Self-assembly of nitrogen-doped carbon nanoparticles: a new ratiometric UV-vis optical sensor for the highly sensitive and selective detection of Hg(2+) in aqueous solution.

    Science.gov (United States)

    Ruan, Yudi; Wu, Lie; Jiang, Xiue

    2016-05-23

    Water-soluble nitrogen-doped carbon nanoparticles (N-CNPs) prepared by the one-step hydrothermal treatment of uric acid were found to show ratiometric changes in their UV-vis spectra due to Hg(2+)-mediated self-assembly. For the first time, such a property was developed into a UV-vis optical sensor for detecting Hg(2+) in aqueous solutions with high sensitively and selectively (detection limit = 1.4 nM). More importantly, this novel sensor exhibits a higher linear sensitivity over a wider concentration range compared with the fluorescence sensor based on the same N-CNPs. This work opens an exciting new avenue to explore the use of carbon nanoparticles in constructing UV-vis optical sensors for the detection of metal ions and the use of carbon nanoparticles as a new building block to self-assemble into superlattices.

  8. Excited states 2

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 2 is a collection of papers that deals with molecules in the excited states. The book describes the geometries of molecules in the excited electronic states. One paper describes the geometries of a diatomic molecule and of polyatomic molecules; it also discusses the determination of the many excited state geometries of molecules with two, three, or four atoms by techniques similar to diatomic spectroscopy. Another paper introduces an ordered theory related to excitons in pure and mixed molecular crystals. This paper also presents some experimental data such as those invo

  9. Fluorescence excitation-emission matrix spectroscopy of vitiligo skin in vivo (Conference Presentation)

    Science.gov (United States)

    Zhao, Jianhua; Richer, Vincent; Al Jasser, Mohammed; Zandi, Soodabeh; Kollias, Nikiforos; Kalia, Sunil; Zeng, Haishan; Lui, Harvey

    2016-02-01

    Fluorescence signals depend on the intensity of the exciting light, the absorption properties of the constituent molecules, and the efficiency with which the absorbed photons are converted to fluorescence emission. The optical features and appearance of vitiligo have been explained primarily on the basis of reduced epidermal pigmentation, which results in abnormal white patches on the skin. The objective of this study is to explore the fluorescence properties of vitiligo and its adjacent normal skin using fluorescence excitation-emission matrix (EEM) spectroscopy. Thirty five (35) volunteers with vitiligo were acquired using a double-grating spectrofluorometer with excitation and emission wavelengths of 260-450 nm and 300-700 nm respectively. As expected, the most pronounced difference between the spectra obtained from vitiligo lesions compared to normally pigmented skin was that the overall fluorescence was much higher in vitiligo; these differences increased at shorter wavelengths, thus matching the characteristic spectral absorption of epidermal melanin. When comparing the fluorescence spectra from vitiligo to normal skin we detected three distinct spectral bands centered at 280nm, 310nm, and 335nm. The 280nm band may possibly be related to inflammation, whereas the 335 nm band may arise from collagen or keratin cross links. The source of the 310 nm band is uncertain; it is interesting to note its proximity to the 311 nm UV lamps used for vitiligo phototherapy. These differences are accounted for not only by changes in epidermal pigment content, but also by other optically active cutaneous biomolecules.

  10. Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp

    International Nuclear Information System (INIS)

    Muramoto, Yoshihiko; Kimura, Masahiro; Nouda, Suguru

    2014-01-01

    Ultraviolet light-emitting diodes (UV-LEDs) have started replacing UV lamps. The power per LED of high-power LED products has reached 12 W (14 A), which is 100 times the values observed ten years ago. In addition, the cost of these high-power LEDs has been decreasing. In this study, we attempt to understand the technologies and potential of UV-LEDs. (invited article)

  11. Investigation of the multiphotonic excitation processes of the 4f{sup 2} 5d configuration in LiYF{sub 4}, LiLuF{sub 4} and BaY{sub 2}F{sub 8} crystals doped with trivalent neodymium; Investigacao dos processos de excitacao multifotonica da configuracao 4f{sup 2} 5d nos cristais de LiYF{sub 4}, LiLuF{sub 4} e BaY{sub 2}F{sub 8} dopados com neodimio trivalente

    Energy Technology Data Exchange (ETDEWEB)

    Librantz, Andre Felipe Henriques

    2004-07-01

    Ultraviolet (UV) fluorescence of Nd{sup 3+} ions induced by multistep laser excitation was investigated in Nd-doped LiYF{sub 4} (YLF), LiLuF{sub 4} (LLF) and BaY{sub 2}F{sub 8} (BaYF) crystals using a technique of time-resolved spectroscopy. The observed UV luminescence was due to transitions between the bottom of 4f{sup 2} 5d configuration and the 4f{sup 3} states of Nd{sup 3+} ions. The lower excited state 4f {sup 2}({sup 3}H)5d [{sup 4}K{sub 11/2}] was reached by three stepwise absorptions of photons at 521 nm (green) and 478 nm (blue) of a short pulse laser excitation. The three sequential absorptions at 478 nm constitutes a new multiphoton excitation process of Nd{sup 3+} in these crystals with the following excitation sequence: {sup 4}I{sub 9/2} + hv(480 nm){yields} {sup 2}G(1){sub 9/2} + hv(480 nm){yields} {sup 2}F(2){sub 7/2} + hv(480 nm){yields} 4f {sup 2}({sup 3}H)5d [{sup 4}K{sub 9/2}] (excited state at {approx} 63000 cm{sup -1}). The observed UV emissions from [{sup 4}K{sub 11/2}] state have a lifetime of 35 ns (parity allowed) and are: broadband in contrast to UV emissions from 4f{sup 3} configuration, which are also present in the luminescence investigation but having longer lifetime (8 {mu}s) and structures composed of narrow lines. The excitation spectrum of fast UV luminescence exhibited different structure depending on the excitation geometry ({sigma} or {pi}) with respect to the c-axis of the crystal. It was seen two new emissions from [{sup 4}K{sub 11/2}] and {sup 2}F(2){sub 5/2} states near 528 nm, which modified the branching ratio of the bottom of the 4f{sup 2} 5d configuration ({approx} 55500 cm{sup -1} for the YLF and LLF crystals and {approx}-53700 cm{sup -1} for the BaYF crystal). The equivalent cross-section of three and two excitation process was estimated at 521 nm by solving the rate equations of the system under short laser excitation, which leads us to infer that is possible to have laser action under pulsed laser pumping with

  12. Ultrawide spectral broadening and compression of single extremely short pulses in the visible, uv-vuv, and middle infrared by high-order stimulated Raman scattering

    International Nuclear Information System (INIS)

    Kalosha, V. P.; Herrmann, J.

    2003-01-01

    We present the results of a comprehensive analytical and numerical study of ultrawide spectral broadening and compression of isolated extremely short visible, uv-vuv and middle infrared (MIR) pulses by high-order stimulated Raman scattering in hollow waveguides. Spectral and temporal characteristics of the output pulses and the mechanism of pulse compression using dispersion of the gas filling and output glass window are investigated without the slowly varying envelope approximation. Physical limitations due to phase mismatch, velocity walk off, and pump-pulse depletion as well as improvements through the use of pump-pulse sequences and dispersion control are studied. It is shown that phase-locked pulses as short as ∼2 fs in the visible and uv-vuv, and 6.5 fs in the MIR can be generated by coherent scattering in impulsively excited Raman media without the necessity of external phase control. Using pump-pulse sequences, shortest durations in the range of about 1 fs for visible and uv-vuv probe pulses are predicted

  13. UV-straling in de kas: mogelijkheden en grenzen

    NARCIS (Netherlands)

    Hoffmann, S.

    2000-01-01

    Effect van UV-straling op kleuring van Coleus Blumei 'Wizzard Velvit Red'. Gegevens in bijgaande tabellen: 1) Indeling optische straling; 2) Transmisse voor UV-straling van verschillende dekmaterialen (folie UV, glas UV, glas normaal, folie normaal, folie UV-blok

  14. Correlation between excited d-orbital electron lifetime in polaron dynamics and coloration of WO3 upon ultraviolet exposure

    Science.gov (United States)

    Lee, Young-Ahn; Han, Seung-Ik; Rhee, Hanju; Seo, Hyungtak

    2018-05-01

    Polarons have been suggested to explain the mechanism of the coloration of WO3 induced by UV light. However, despite the many experimental results that support small polarons as a key mechanism, direct observation of the carrier dynamics of polarons have yet to be reported. Here, we investigate the correlation between the electronic structure and the coloration of WO3 upon exposure to UV light in 5% H2/N2 gas and, more importantly, reveal photon-induced excited d-electron generation/relaxation via the W5+ oxidation state. The WO3 is fabricated by radio-frequency magnetron sputtering. X-ray diffraction patterns show that prepared WO3 is amorphous. Optical bandgap of 3.1 eV is measured by UV-vis before and after UV light. The results of Fourier transform infrared and Raman exhibit pristine WO3 is formed with surface H2O. The colored WO3 shows reduced state of W5+ state (34.3 eV) by using X-ray photoelectron spectroscopy. The valence band maximum of WO3 after UV light in H2 is shifted from mid gap to shallow donor by using ultraviolet photoelectron spectroscopy. During the exploration of the carrier dynamics, pump (700 nm)-probe (1000 nm) spectroscopy at the femtosecond scale was used. The results indicated that electron-phonon relaxation of UV-irradiated WO3, which is the origin of the polaron-induced local surface plasmonic effect, is dominant, resulting in slow decay (within a few picoseconds); in contrast, pristine WO3 shows fast decay (less than a picosecond). Accordingly, the long photoinduced carrier relaxation is ascribed to the prolonged hot-carrier lifetime in reduced oxides resulting in a greater number of free d-electrons and, therefore, more interactions with the W5+ sub-gap states.

  15. UV-induced acoustooptics of matrices containing BaHf(BO{sub 3}){sub 2} microcrystallites embedded into olygoetheracrylate photopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Majchrowski, A. [Institute of Applied Physics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Kityk, I.V., E-mail: iwank74@gmail.com [Faculty of Electrical Engineering, Czestochowa University Technology, Armii Krajowej 17, Czestochowa (Poland); Jaroszewicz, L.R. [Institute of Applied Physics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Fedorchuk, A.O. [Lviv National University of Veterinary Medicine and Biotechnologies, Department of Inorganic and Organic Chemistry, Lviv (Ukraine)

    2017-02-01

    UV-induced acoustooptics was explored for BaHf(BO{sub 3}){sub 2} microcrystallites with sizes varying within 5–30 μm range. The titled microcrystallites were embedded into the polymer matrices. The results were analyzed using both experimental optical as well as theoretical DFT approach. The measurements were done for principal acoustical frequencies: 0.5 MHz, 1 MHz, 2 MHz, and 3 MHz. The acoustical waves were excited by an electromechanical LiNbO{sub 3} piezoceramics transducers from acoustical generator. We explored dependence of the acoustooptical efficiency versus the photoinducing laser beam power, angle between the beams, acoustical power light polarization and temperature. We explored variation of the acoustooptical efficiency at 1150 nm probing cw He-Ne laser wavelength under influence of pulsed nitrogen laser at wavelength 371 nm working in the 7 ns regime with frequency repetition 6 Hz at power densities up to 900 MW/cm{sup 2}. Existence of some optimal conditions at about 1 MHz and UV photoinduced power equal to about 0.8 MW/cm{sup 2} was found. The spatial acousooptical gratings formation was observed. The DFT simulations of the charge density in main structural fragments under photoinducing UV beams is presented and principal role of the BO{sub 3} structural fragments is established. This is confirmed by crystallochemistry analysis. The phenomenological description is also presented. - Graphical abstract: Principal relation between the crystallochemistry and acoustically induced charge density space distribution changes. UV induced acoustooptical behaviours. - Highlights: • UV-induced increase of acoustooptics of BaHf(BO{sub 3}){sub 2} microcrystallites shown. • Principal role of the crystalline nano-interfaces is shown. • BO{sub 3} fragments play principal role.

  16. Application of UV-irradiated Fe(III)-nitrilotriacetic acid (UV-Fe(III)NTA) and UV-NTA-Fenton systems to degrade model and natural occurring naphthenic acids.

    Science.gov (United States)

    Zhang, Ying; Chelme-Ayala, Pamela; Klamerth, Nikolaus; Gamal El-Din, Mohamed

    2017-07-01

    Naphthenic acids (NAs) are a highly complex mixture of organic compounds naturally present in bitumen and identified as the primary toxic constituent of oil sands process-affected water (OSPW). This work investigated the degradation of cyclohexanoic acid (CHA), a model NA compound, and natural occurring NAs during the UV photolysis of Fe(III)-nitrilotriacetic acid (UV-Fe(III)NTA) and UV-NTA-Fenton processes. The results indicated that in the UV-Fe(III)NTA process at pH 8, the CHA removal increased with increasing NTA dose (0.18, 0.36 and 0.72 mM), while it was independent of the Fe(III) dose (0.09, 0.18 and 0.36 mM). Moreover, the three Fe concentrations had no influence on the photolysis of the Fe(III)NTA complex. The main responsible species for the CHA degradation was hydroxyl radical (OH), and the role of dissolved O 2 in the OH generation was found to be negligible. Real OSPW was treated with the UV-Fe(III)NTA and UV-NTA-Fenton advanced oxidation processes (AOPs). The removals of classical NAs (O 2 -NAs), oxidized NAs with one additional oxygen atom (O 3 -NAs) and with two additional oxygen atoms (O 4 -NAs) were 44.5%, 21.3%, and 25.2% in the UV-Fe(III)NTA process, respectively, and 98.4%, 86.0%, and 81.0% in the UV-NTA-Fenton process, respectively. There was no influence of O 2 on the NA removal in these two processes. The results also confirmed the high reactivity of the O 2 -NA species with more carbons and increasing number of rings or double bond equivalents. This work opens a new window for the possible treatment of OSPW at natural pH using these AOPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Electronic-excitation energy transfer in heterogeneous dye solutions under laser excitation

    International Nuclear Information System (INIS)

    Levshin, L.V.; Mukushev, B.T.; Saletskii, A.M.

    1995-01-01

    An experimental study has been made of electronic-excitation energy transfer (EEET) among dye molecules of different types for different exciting-fight wavelengths and temperatures. Upon selective laser excitation of the donor, the inhomogeneous broadening of molecular levels increases the probability of EEET from the donor to acceptor molecules. The efficiency of this process is directly proportional to the acceptor molecule concentration and is temperature dependent. The EEET is accompanied by the spectral migration of energy among donor molecules, which reduces the fluorescence quantum efficiency of the donor. Increasing the frequency of the exciting light decreases in the donor fluorescence quantum efficiency. An increase in the acceptor molecule concentration results in a decrease of the spectral migration of excitation in the donor molecule system. 5 refs., 5 figs

  18. Electronic excitation-induced structural, optical, and magnetic properties of Ni-doped HoFeO3 thin films

    International Nuclear Information System (INIS)

    Habib, Zubida; Ikram, Mohd; Mir, Sajad A.; Sultan, Khalid; Abida; Majid, Kowsar; Asokan, K.

    2017-01-01

    Present study investigates the electronic excitation-induced modifications in the structural, optical, and magnetic properties of Ni-doped HoFeO 3 thin films grown by pulsed laser deposition on LaAlO 3 substrates. Electronic excitations were induced by 200 MeV Ag 12+ ion beam. These thin films were then characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Vis spectroscopy, and magnetic measurements. X-ray diffraction analysis confirms that the crystallite growth occurs in the preferred (111) orientation with orthorhombic structure. The XRD results also show that the crystallite size decreases with ion irradiation. AFM results after irradiation show significant changes in the surface roughness and morphology of these films. The optical parameters measured from absorption measurements reveal reduction in the band gap with Ni doping and enhancement of band gap after irradiation. The magnetization vs field measurement at 75 K shows enhancement in saturation magnetization after irradiation for HoFe 1-x Ni x O 3 (x = 0.1 and 0.3) films compared to HoFeO 3 film. Present study shows electronic excitation induces significant changes in the physical properties of these films. (orig.)

  19. Hydrodynamic simulation of X-UV laser-produced plasmas

    International Nuclear Information System (INIS)

    Fajardo, M.; Zeitoun, P.; Gauthier, J.C.

    2004-01-01

    With the construction of novel X-UV sources, such as V-UV FEL's (free-electron lasers), X-UV laser-matter interaction will become available at ultra-high intensities. But even table-top facilities such as X-UV lasers or High Harmonic Generation, are starting to reach intensities high enough to produce dense plasmas. X-UV laser-matter interaction is studied by a 1-dimensional hydrodynamic Lagrangian code with radiative transfer for a range of interesting X-UV sources. Heating is found to be very different for Z=12-14 elements having L-edges around the X-UV laser wavelength. Possible absorption mechanisms were investigated in order to explain this behaviour, and interaction with cold dense matter proved to be dominant. Plasma sensitivity to X-UV laser parameters such as energy, pulse duration, and wavelength was also studied, covering ranges of existing X-UV lasers. We found that X-UV laser-produced plasmas could be studied using table-top lasers, paving the way for future V-UV-FEL high intensity experiments. (authors)

  20. Cytoprotective effect against UV-induced DNA damage and oxidative stress: role of new biological UV filter.

    Science.gov (United States)

    Said, T; Dutot, M; Martin, C; Beaudeux, J-L; Boucher, C; Enee, E; Baudouin, C; Warnet, J-M; Rat, P

    2007-03-01

    The majority of chemical solar filters are cytotoxic, particularly on sensitive ocular cells (corneal and conjunctival cells). Consequently, a non-cytotoxic UV filter would be interesting in dermatology, but more especially in ophthalmology. In fact, light damage to the eye can be avoided thanks to a very efficient ocular antioxidant system; indeed, the chromophores absorb light and dissipate its energy. After middle age, a decrease in the production of antioxidants and antioxidative enzymes appears with accumulation of endogenous molecules that are phototoxic. UV radiations can induce reactive oxygen species formation, leading to various ocular diseases. Because most UV filters are cytotoxic for the eye, we investigated the anti-UV properties of Calophyllum inophyllum oil in order to propose it as a potential vehicle, free of toxicity, with a natural UV filter action in ophthalmic formulation. Calophyllum inophyllum oil, even at low concentration (1/10,000, v/v), exhibited significant UV absorption properties (maximum at 300nm) and was associated with an important sun protection factor (18-22). Oil concentrations up to 1% were not cytotoxic on human conjunctival epithelial cells, and Calophyllum inophyllum oil appeared to act as a cytoprotective agent against oxidative stress and DNA damage (85% of the DNA damage induced by UV radiations were inhibited with 1% Calophyllum oil) and did not induce in vivo ocular irritation (Draize test on New Zealand rabbits). Calophyllum inophyllum oil thus exhibited antioxidant and cytoprotective properties, and therefore might serve, for the first time, as a natural UV filter in ophthalmic preparations.

  1. Application of Time-Dependent Density Functional and Natural Bond Orbital Theories to the UV-vis Absorption Spectra of Some Phenolic Compounds.

    Science.gov (United States)

    Marković, Svetlana; Tošović, Jelena

    2015-09-03

    The UV-vis properties of 22 natural phenolic compounds, comprising anthraquinones, neoflavonoids, and flavonoids were systematically examined. The time-dependent density functional theory (TDDFT) approach in combination with the B3LYP, B3LYP-D2, B3P86, and M06-2X functionals was used to simulate the UV-vis spectra of the investigated compounds. It was shown that all methods exhibit very good (B3LYP slightly better) performance in reproducing the examined UV-vis spectra. However, the shapes of the Kohn-Sham molecular orbitals (MOs) involved in electronic transitions were misleading in constructing the MO correlation diagrams. To provide better understanding of redistribution of electron density upon excitation, the natural bond orbital (NBO) analysis was applied. Bearing in mind the spatial and energetic separations, as well as the character of the π bonding, lone pair, and π* antibonding natural localized molecular orbitals (NLMOs), the "NLMO clusters" were constructed. NLMO cluster should be understood as a part of a molecule characterized with distinguished electron density. It was shown that all absorption bands including all electronic transitions need to be inspected to fully understand the UV-vis spectrum of a certain compound, and, thus, to learn more about its UV-vis light absorption. Our investigation showed that the TDDFT and NBO theories are complementary, as the results from the two approaches can be combined to interpret the UV-vis spectra. Agreement between the predictions of the TDDFT approach and those based on the NLMO clusters is excellent in the case of major electronic transitions and long wavelengths. It should be emphasized that the approach for investigation of UV-vis light absorption based on the NLMO clusters is applied for the first time.

  2. UV/PAR radiations and DOM properties in surface coastal waters of the Canadian shelf of the Beaufort Sea during summer 2009

    Science.gov (United States)

    Para, J.; Charrière, B.; Matsuoka, A.; Miller, W. L.; Rontani, J. F.; Sempéré, R.

    2012-11-01

    Water masses from the Beaufort Sea in the Arctic Ocean were evaluated for dissolved organic carbon (DOC), and optical characteristics including UV and PAR diffuse attenuation (Kd), and chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) as part of the MALINA field campaign (30 July to 27 August). Even with relatively low mean daily solar radiation incident on the sea surface (0.12 ± 0.03, 8.46 ± 1.64 and 18.09 ± 4.20 kJ m-2 for UV-B (305 nm), UV-A (380 nm) and PAR, respectively), we report significant light penetration with 10% irradiance depths (Z10% (λ)) reaching 9.5 m for 340 nm (UV-A) radiation in the Eastern sector and 4.5 m in the Mackenzie River influenced area (Western sector). Spectral absorption coefficients (aCDOM (350 nm) (m-1)) were significantly correlated to both diffuse attenuation coefficients (Kd) in the UV-A and UV-B and to DOC concentrations. This indicates CDOM as the dominant attenuator of UV solar radiation and suggests its use as an optical proxy for DOC concentrations in this region. Extrapolating CDOM to DOC relationships, we estimate that ~ 16% of the DOC in the Mackenzie River does not absorb radiation at 350 nm. DOC and CDOM discharges by the Mackenzie River during the MALINA Cruise are estimated as ~ 0.22 TgC and 0.18 TgC, respectively. Three dissolved fluorescent components (C1-C3) were identified by fluorescence Excitation/Emission Matrix Spectroscopy (EEMS) and PARAFAC analysis. Our results showed an in-situ biological component (C1) that co-dominated with a terrestrial humic-like component (C2) in the Mackenzie Delta sector, whereas the protein-like (C3) component dominated in the saltiest waters of the North East sector.

  3. Ozone layer - climate change interactions. Influence on UV levels and UV related effects

    NARCIS (Netherlands)

    Kelfkens G; Bregman A; de Gruijl FR; van der Leun JC; Piquet A; van Oijen T; Gieskes WWC; van Loveren H; Velders GJM; Martens P; Slaper H; NOP; LPI; LLO

    2002-01-01

    Ozone in the atmosphere serves as a partially protective filter against the most harmful part of the solar UV-spectrum. Decreases in ozone lead to increases in ambient UV with a wide variety of adverse effects on human health, aquatic and terrestrial ecosystems and food chains. Human health

  4. Structural, spectroscopic and photoluminescence studies of LiEu(WO4)2-x (MoO4) x as a near-UV convertible phosphor

    International Nuclear Information System (INIS)

    Chiu, C.-H.; Wang, M.-F.; Lee, C.-S.; Chen, T.-M.

    2007-01-01

    A series of lithium europium double tungsto-molybdate phosphors LiEu(WO 4 ) 2- x (MoO 4 ) x (x=0, 0.4, 0.8, 1.2, 1.6, 2.0) have been synthesized by solid-state reactions and their crystal structure, optical and luminescent properties were studied. As the molybdate content increases, the intensity of the 5 D 0 →7 F 2 emission of Eu 3+ activated at wavelength of 396 nm was found to increase and reach a maximum when the relative ratio of Mo/W is 2:0. These changes were found to be accompanied with the changes in the spectral feature, which can be attributed to the crystal field splitting of the 5 D 0 →7 F 2 transition. As the molybdate content increases the emission intensity of the 615 nm peak also increases. The intense red-emission of the tungstomolybdate phosphors under near-UV excitation suggests them to be potential candidate for white light generation by using near-UV LEDs. In this study the effect of chemical compositions and crystal structure on the photoluminescent properties of LiEu(WO 4 ) 2- x (MoO 4 ) x is investigated and discussed. - Graphical abstract: As shown by the PL spectra of LiEu(WO 4 ) 2- x (MoO 4 ) x (x=0, 0.4, 0.8, 1.2, 1.6, 2.0) under 394 nm near-UV excitation, the intensity of 5 D 0 →7 F 2 transition was found to increase with the increasing x and the I-λ curve reaches a maximum when the relative ratio of Mo/W is 2:0

  5. Vibrational-rotational excitation: chemical reactions of vibrationally excited molecules

    International Nuclear Information System (INIS)

    Moore, C.B.; Smith, I.W.M.

    1979-03-01

    This review considers a limited number of systems, particularly gas-phase processes. Excited states and their preparation, direct bimolecular reactions, reactions of highly excited molecules, and reactions in condensed phases are discussed. Laser-induced isotope separation applications are mentioned briefly. 109 references

  6. On isospin excitation energy

    International Nuclear Information System (INIS)

    Li Wenfei; Zhang Fengshou; Chen Liewen

    2001-01-01

    Within the framework of Hartree-Fock theory using the extended Skyrme effective interaction, the isospin excitation energy as a function of relative neutron excess δ was investigated at different temperatures and densities. It was found that the isospin excitation energy decreased with the increment of temperature and/or the decrement of density. The authors pointed out that the decrement of isospin excitation energy was resulted from the weakening of quantum effect with increment of temperature and/or decrement of density. Meanwhile, the relationship between the isospin excitation energy and the symmetry energy was discussed and found that the symmetry energy was just a part of the isospin excitation energy. With increasing temperature and decreasing density, the contribution of the symmetry energy to the isospin excitation energy becomes more and more important. The isospin excitation energy as a function of relative neutron excess was also investigated using different potential parameters. The results shows that the isospin excitation energy is almost independent of the incompressibility and the effective mass, but strongly depends on the symmetry energy strength coefficient, which indicates that it is possible to extract the symmetry energy of the nuclear equation of state by investigating the isospin excitation energy in experiments

  7. Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells

    International Nuclear Information System (INIS)

    Christie, J.M.; Jenkins, G.I.

    1996-01-01

    UV and blue light control the expression of flavonoid biosynthesis genes in a range of higher plants. To investigate the signal transduction processes involved in the induction of chalcone synthase (CHS) gene expression by UV-B and UV-A/blue light, we examined the, effects of specific agonists and inhibitors of known signaling components in mammalian systems in a photomixotrophic Arabidopsis cell suspension culture. CHS expression is induced specifically by these wavelengths in the cell culture, in a manner similar to that in mature Arabidopsis leaf tissue. Both the UV-B and UV-A/blue phototransduction processes involve calcium, although the elevation of cytosolic calcium is insufficient on its own to stimulate CHS expression. The UV-A/blue light induction of CHS expression does not appear to involve calmodulin, whereas the UV-B response does; this difference indicates that the signal transduction pathways are, at least in part, distinct. We provide evidence that both pathways involve reversible protein phosphorylation and require protein synthesis. The UV-B and UV-A/blue light signaling pathways are therefore different from the phytochrome signal transduction pathway regulating CHS expression in other species

  8. Patterning of nanoparticulate transparent conductive ITO films using UV light irradiation and UV laser beam writing

    International Nuclear Information System (INIS)

    Solieman, A.; Moharram, A.H.; Aegerter, M.A.

    2010-01-01

    Indium tin oxide (ITO) thin film is one of the most widely used as transparent conductive electrodes in all forms of flat panel display (FPD) and microelectronic devices. Suspension of already crystalline conductive ITO nanoparticles fully dispersed in alcohol was spun, after modifying with coupling agent, on glass substrates. The low cost, simple and versatile traditional photolithography process without complication of the photoresist layer was used for patterning ITO films. Using of UV light irradiation through mask and direct UV laser beam writing resulted in an accurate linear, sharp edge and very smooth patterns. Irradiated ITO film showed a high transparency (∼85%) in the visible region. The electrical sheet resistance decrease with increasing time of exposure to UV light and UV laser. Only 5 min UV light irradiation is enough to decrease the electrical sheet resistance down to 5 kΩ□.

  9. Comparison of UV-LED and low pressure UV for water disinfection: Photoreactivation and dark repair of Escherichia coli.

    Science.gov (United States)

    Li, Guo-Qiang; Wang, Wen-Long; Huo, Zheng-Yang; Lu, Yun; Hu, Hong-Ying

    2017-12-01

    Studies on ultraviolet light-emitting diode (UV-LED) water disinfection have shown advantages, such as safety, flexible design, and lower starting voltages. However, information about reactivation after UV-LED disinfection is limited, which is an important issue of UV light-based technology. In this study, the photoreactivation and dark repair of Escherichia coli after UV-LEDs and low pressure (LP) UV disinfection were compared. Four UV-LED units, 265 nm, 280 nm, the combination of 265 + 280 (50%), and 265 + 280 (75%) were tested. 265 nm LEDs was more effective than 280 nm LEDs and LP UV lamps for E. coli inactivation. No synergic effect for disinfection was observed from the combination of 265 and 280 nm LEDs. 265 nm LEDs had no different reactivation performances with that of LP UV, while 280 nm LEDs could significantly repress photoreactivation and dark repair at a low irradiation intensity of 6.9 mJ/cm 2 . Furthermore, the UV-induced damage of 280 nm LEDs was less repaired which was determined by endonuclease sensitive site (ESS) assay. The impaired protein activities by 280 nm LEDs might be one of the reasons that inhibited reactivation. A new reactivation rate constant, K max , was introduced into the logistic model to simulate the reactivation data, which showed positive relationship with the maximum survival ratio and was more reasonable to interpret the results of photoreactivation and dark repair. This study revealed the distinct roles of different UV lights in disinfection and reactivation, which is helpful for the future design of UV-LED equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A UV pre-ionized dual-wavelength short-pulse high-power CO{sub 2} laser facility for laser particle acceleration research

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahim, N A; Mouris, J F; Davis, R W

    1994-12-01

    In this report we describe the Chalk River dual-wavelength, short-pulse, single-mode, high-power CO{sub 2} laser facility for research in laser particle acceleration and CANDU materials modifications. The facility is designed and built around UV-preionized transversely-excited atmospheric-pressure (TEA) Lumonics CO{sub 2} laser discharge modules. Peak focussed power densities of up to 2 x 10{sup 14} W/cm{sup 2} in 500 ps pulses have been obtained. (author). 10 refs., 9 figs.

  11. UV-LEDs Efficiently Inactivate DNA and RNA Coliphages

    Directory of Open Access Journals (Sweden)

    Alyaa M. Zyara

    2017-01-01

    Full Text Available UV-LEDs are a new method of disinfecting drinking water. Some viruses are very resistant to UV and the efficiency of UV-LEDs to disinfect them needs to be studied. Drinking water was disinfected with UV-LEDs after spiking the water with MS2 and four UV- and/or Cl-resistant coliphages belonging to RNA or DNA coliphages isolated from municipal wastewater. UV-LEDs operating at a wavelength of 270 nm for 2 min with 120 mW of irradiation caused 0.93–2.73 Log10-reductions of coliphages tested in a reactor of a 5.2 L volume. Irradiation time of 10 min in the same system increased the Log10-reductions to 4.30–5.16. Traditional mercury UV (Hg-UV lamp at a 254 nm wavelength caused 0.67–4.08 Log10-reductions in 2 min and 4.56–7.21 Log10-reductions in 10 min in 10 mL of water. All coliphages tested except MS2 achieved 4 Log10-reductions with UV-LEDs at a dose that corresponded to 70 mWs/cm2 using Hg-UV. Thus, UV-LEDs are a promising method of disinfecting UV- and/or Cl-resistant viruses.

  12. Fluorescence from gaseous UF/sub 6/ excited by a near-UV dye laser. [Decay time,quenching rate,room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Benetti, P [Pavia Univ. (Italy); Cubeddu, R; Sacchi, C A; Svelto, O; Zaraga, F [Politecnico di Milano (Italy)

    1976-06-01

    Preliminary data are reported on the visible fluorescence of gaseous UF/sub 6/ excited by a dye laser at 374 nm. A decay time of 500 ns at p = 0 and a quenching rate of 5.7 x 10/sup -12/cm/sup 3/molec/sup -1/s/sup -1/ have been measured at room temperature.

  13. High-sensitivity detection of cardiac troponin I with UV LED excitation for use in point-of-care immunoassay

    OpenAIRE

    Rodenko, Olga; Eriksson, Susann; Tidemand-Lichtenberg, Peter; Troldborg, Carl Peder; Fodgaard, Henrik; van Os, Sylvana; Pedersen, Christian

    2017-01-01

    High-sensitivity cardiac troponin assay development enables determination of biological variation in healthy populations, more accurate interpretation of clinical results and points towards earlier diagnosis and rule-out of acute myocardial infarction. In this paper, we report on preliminary tests of an immunoassay analyzer employing an optimized LED excitation to measure on a standard troponin I and a novel research high-sensitivity troponin I assay. The limit of detection is improved by fac...

  14. Laser Raman Spectroscopy with Different Excitation Sources and Extension to Surface Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Md. Wahadoszamen

    2015-01-01

    Full Text Available A dispersive Raman spectrometer was used with three different excitation sources (Argon-ion, He-Ne, and Diode lasers operating at 514.5 nm, 633 nm, and 782 nm, resp.. The system was employed to a variety of Raman active compounds. Many of the compounds exhibit very strong fluorescence while being excited with a laser emitting at UV-VIS region, hereby imposing severe limitation to the detection efficiency of the particular Raman system. The Raman system with variable excitation laser sources provided us with a desired flexibility toward the suppression of unwanted fluorescence signal. With this Raman system, we could detect and specify the different vibrational modes of various hazardous organic compounds and some typical dyes (both fluorescent and nonfluorescent. We then compared those results with the ones reported in literature and found the deviation within the range of ±2 cm−1, which indicates reasonable accuracy and usability of the Raman system. Then, the surface enhancement technique of Raman spectrum was employed to the present system. To this end, we used chemically prepared colloidal suspension of silver nanoparticles as substrate and Rhodamine 6G as probe. We could observe significant enhancement of Raman signal from Rhodamine 6G using the colloidal solution of silver nanoparticles the average magnitude of which is estimated to be 103.

  15. Reactive quenching of two-photon excited xenon atoms by Cl2

    International Nuclear Information System (INIS)

    Bruce, M.R.; Layne, W.B.; Meyer, E.; Keto, J.W.

    1987-01-01

    Total binary and tertiary quench rates have been measured for the reaction Xe (5p 5 6p) + Cl 2 at thermal temperatures. Xenon atoms are excited by state-selective, two-photon absorption with a uv laser. The time dependent fluorescence from the excited atom in the IR and from XeCl* (B) product near 308 nm have been measured with subnanosecond time resolution. The decay rates are measured as a function of Cl 2 pressure to 20 Torr and Xe pressure to 400 Torr. The measured reaction rates (k 2 ∼ 10 -9 cm 3 sec -1 ) are consistent with a harpoon model described in a separate paper. We also measure large termolecular reaction rates for collisions with xenon atoms (k 3 ∼ 10 -28 cm 6 sec -1 ). Total product fluorescence has been examined using a gated optical multichannel analyzer. We measure unit branching fractions for high vibrational levels of XeCl* (B) with very little C state fluorescence observed. The measured termolecular rates suggest similar processes will dominate at the high buffer-gas pressures used in XeCl lasers. The effect of these large reactive cross sections for neutral xenon atoms on models of the XeCl laser will be discussed

  16. Improved UV-B screening capacity does not prevent negative effects of ambient UV irradiance on PSII performance in High Arctic plants. Results from a six year UV exclusion study

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2010-01-01

    Long-term responses of ambient solar ultraviolet (UV) radiation were investigated on Salix arctica and Vaccinium uliginosum in a High Arctic heath ecosystem in Zackenberg, northeast Greenland. Over a period of six years, UV exclusion was conducted in the growing season by means of filters: 60% UV......, exposing the vegetation to high spring UV-B, and to be present in the future to the degree the ozone layer is not fully recovered....

  17. Removal of sulfamethoxazole, ibuprofen and nitrobenzene by UV and UV/chlorine processes: A comparative evaluation of 275 nm LED-UV and 254 nm LP-UV.

    Science.gov (United States)

    Kwon, Minhwan; Yoon, Yeojoon; Kim, Seonbaek; Jung, Youmi; Hwang, Tae-Mun; Kang, Joon-Wun

    2018-05-15

    The aim of this study is to evaluate the micropollutant removal capacity of a 275 nm light-emitting diode (LED)-UV/chlorine system. The sulfamethoxazole, ibuprofen, and nitrobenzene removal efficiencies of this system were compared with those of a conventional 254 nm low-pressure (LP)-UV system as a function of the UV dose. In a direct photolysis system, the photon reactivity of sulfamethoxazole is higher than that of nitrobenzene and ibuprofen at both wavelengths. The molar absorption coefficients and quantum yields of each micropollutant were as follows: sulfamethoxazole (ε SMX, 275 nm protonated  = 17,527 M -1  cm -1 , Φ SMX, 275 nm protonated  = 0.239, ε SMX, 275 nm deprotonated  = 8430 M -1  cm -1 , and Φ SMX, 275 nm deprotonated  = 0.026), nitrobenzene (ε NB, 275 nm  = 7176 M -1  cm -1 and Φ NB, 275 nm  = 0.057), and ibuprofen (ε NB, 275 nm  = 200 M -1  cm -1 and Φ IBF, 275 nm  = 0.067). The photon reactivity of chlorine species, i.e., HOCl and OCl-, were determined at 275 nm (ε HOCl, 275 nm  = 28 M -1  cm -1 , Φ HOCl, 275 nm  = 1.97, ε OCl-, 275 nm  = 245 M -1  cm -1 , and Φ OCl-, 275 nm  = 0.8), which indicate that the decomposition rate of OCl - is higher and that of HOCl is lower by 275 nm photolysis than that by 254 nm photolysis (ε HOCl, 254 nm  = 60 M -1  cm -1 , Φ HOCl, 254 nm  = 1.46, ε OCl-, 254 nm  = 58 M -1  cm -1 , and Φ OCl-, 254 nm  = 1.11). In the UV/chlorine system, the removal rates of ibuprofen and nitrobenzene were increased by the formation of OH and reactive chlorine species. The 275-nm LED-UV/chlorine system has higher radical yields at pH 7 and 8 than the 254 nm LP-UV/chlorine system. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Effects of UV radiation on phytoplankton

    Science.gov (United States)

    Smith, Raymond C.; Cullen, John J.

    1995-07-01

    It is now widely documented that reduced ozone will result in increased levels of ultraviolet (UV) radiation, especially UV-B (280-320nm), incident at the surface of the earth [Watson, 1988; Anderson et al., 1991; Schoeberl and Hartmann, 1991; Frederick and Alberts, 1991; WMO, 1991; Madronich, 1993; Kerr and McElroy, 1993], and there is considerable and increasing evidence that these higher levels of UV-B radiation may be detrimental to various forms of marine life in the upper layers of the ocean. With respect to aquatic ecosystems, we also know that this biologically- damaging mid-ultraviolet radiation can penetrate to ecologically- significant depths in marine and freshwater systems [Jerlov, 1950; Lenoble, 1956; Smith and Baker, 1979; Smith and Baker, 1980; Smith and Baker, 1981; Kirk et al., 1994]. This knowledge, plus the dramatic decline in stratospheric ozone over the Antarctic continent each spring, now known to be caused by anthropogenically released chemicals [Solomon, 1990; Booth et al., 1994], has resulted in increased UV-environmental research and a number of summary reports. The United Nations Environmental Program (UNEP) has provided recent updates with respect to the effects of ozone depletion on aquatic ecosystems (Hader, Worrest, Kumar in UNEP 1989, 1991, Hader, Worrest, Kumar and Smith UNEP 1994) and the Scientific Committee on Problems of the Environment (SCOPE) has provided [SCOPE, 1992] a summary of the effects of increased UV radiation on biological systems. SCOPE has also reported [SCOPE, 1993] on the effects of increased UV on the biosphere. In addition, several books have recently been published reviewing various aspects of environmental UV photobiology [Young et al., 1993], UV effects on humans, animals and plants [Tevini, 1993], the biological effects of UV radiation in Antarctica [Weiler and Penhale, 1994], and UV research in freshwater ecosystems [Williamson and Zagarese, 1994]. Several other reviews are relevant [NAS, 1984; Caldwell

  19. Quality assurance of the UV irradiances of the UV-B Monitoring and Research Program: the Mauna Loa test case

    Science.gov (United States)

    Zempila, Melina Maria; Davis, John; Janson, George; Olson, Becky; Chen, Maosi; Durham, Bill; Simpson, Scott; Straube, Jonathan; Sun, Zhibin; Gao, Wei

    2017-09-01

    The USDA UV-B Monitoring and Research Program (UVMRP) is an ongoing effort aiming to establish a valuable, longstanding database of ground-based ultraviolet (UV) solar radiation measurements over the US. Furthermore, the program aims to achieve a better understanding of UV variations through time, and develop a UV climatology for the Northern American section. By providing high quality radiometric measurements of UV solar radiation, UVMRP is also focusing on advancing science for agricultural, forest, and range systems in order to mitigate climate impacts. Within these foci, the goal of the present study is to investigate, analyze, and validate the accuracy of the measurements of the UV multi-filter rotating shadowband radiometer (UV-MFRSR) and Yankee (YES) UVB-1 sensor at the high altitude, pristine site at Mauna Loa, Hawaii. The response-weighted irradiances at 7 UV channels of the UV-MFRSR along with the erythemal dose rates from the UVB-1 radiometer are discussed, and evaluated for the period 2006-2015. Uncertainties during the calibration procedures are also analyzed, while collocated groundbased measurements from a Brewer spectrophotometer along with model simulations are used as a baseline for the validation of the data. Besides this quantitative research, the limitations and merits of the existing UVMRP methods are considered and further improvements are introduced.

  20. Final LDRD report : development of advanced UV light emitters and biological agent detection strategies.

    Energy Technology Data Exchange (ETDEWEB)

    Figiel, Jeffrey James; Crawford, Mary Hagerott; Banas, Michael Anthony; Farrow, Darcie; Armstrong, Andrew M.; Serkland, Darwin Keith; Allerman, Andrew Alan; Schmitt, Randal L.

    2007-12-01

    We present the results of a three year LDRD project which has focused on the development of novel, compact, ultraviolet solid-state sources and fluorescence-based sensing platforms that apply such devices to the sensing of biological and nuclear materials. We describe our development of 270-280 nm AlGaN-based semiconductor UV LEDs with performance suitable for evaluation in biosensor platforms as well as our development efforts towards the realization of a 340 nm AlGaN-based laser diode technology. We further review our sensor development efforts, including evaluation of the efficacy of using modulated LED excitation and phase sensitive detection techniques for fluorescence detection of bio molecules and uranyl-containing compounds.

  1. Elementary excitations in nuclei

    International Nuclear Information System (INIS)

    Lemmer, R.H.

    1987-01-01

    The role of elementary quasi-particle and quasi-hole excitations is reviewed in connection with the analysis of data involving high-lying nuclear states. This article includes discussions on: (i) single quasi-hole excitations in pick-up reactions, (ii) the formation of single quasi-hole and quasi-particle excitations (in different nuclei) during transfer reactions, followed by (iii) quasi-particle quasi-hole excitations in the same nucleus that are produced by photon absorption. Finally, the question of photon absorption in the vicinity of the elementary Δ resonance is discussed, where nucleonic as well as nuclear degrees of freedom can be excited

  2. Systematic study of photoluminescence upon band gap excitation in perovskite-type titanates R 1/2Na1/2TiO3:Pr (R=La, Gd, Lu, and Y)

    International Nuclear Information System (INIS)

    Inaguma, Yoshiyuki; Tsuchiya, Takeshi; Katsumata, Tetsuhiro

    2007-01-01

    Pr 3+ -doped perovskites R 1/2 Na 1/2 TiO 3 :Pr (R=La, Gd, Lu, and Y) were synthesized, and their structures, optical absorption and luminescent properties were investigated, and the relationship between structures and optical properties are discussed. Optical band gap of R 1/2 Na 1/2 TiO 3 increases in the order R=La, Gd, Y, and Lu, which is primarily due to a decrease in band width accompanied by a decrease in Ti-O-Ti bond angle. Intense red emission assigned to f-f transition of Pr 3+ from the excited 1 D 2 level to the ground 3 H 4 state upon the band gap photo-excitation (UV) was observed for all compounds. The wavelength of emission peaks was red-shifted in the order R=La, Gd, Y, and Lu, which originates from the increase in crystal field splitting of Pr 3+ . This is attributed to the decrease in inter-atomic distances of Pr-O together with the inter-atomic distances (R, Na)-O, i.e., increase in covalency between Pr and O. The results indicate that the luminescent properties in R 1/2 Na 1/2 TiO 3 :Pr are governed by the relative energy level between the ground and excited state of 4f 2 for Pr 3+ , and the conduction and valence band, which is primarily dependent on the structure, e.g., the tilt of TiO 6 octahedra and the Pr-Ti inter-atomic distance and the site symmetry of Pr ion. - Graphical abstract: The red intense emission assigned to f-f transition of Pr 3+ from the excited 1 D 2 level to the ground 3 H 4 state upon the band gap photo-excitation (UV) was observed upon the band gap photo-excitation in perovskites R 1/2 Na 1/2 TiO 3 :Pr(R=La, Gd, Lu, and Y). It was found that the systematic changes in their luminescent properties are strongly dependent on the structure

  3. Degradation mechanisms of Microcystin-LR during UV-B photolysis and UV/H2O2 processes: Byproducts and pathways.

    Science.gov (United States)

    Moon, Bo-Ram; Kim, Tae-Kyoung; Kim, Moon-Kyung; Choi, Jaewon; Zoh, Kyung-Duk

    2017-10-01

    The removal and degradation pathways of microcystin-LR (MC-LR, [M+H] +  = 995.6) in UV-B photolysis and UV-B/H 2 O 2 processes were examined using liquid chromatography-tandem mass spectrometry. The UV/H 2 O 2 process was more efficient than UV-B photolysis for MC-LR removal. Eight by-products were newly identified in the UV-B photolysis ([M+H] +  = 414.3, 417.3, 709.6, 428.9, 608.6, 847.5, 807.4, and 823.6), and eleven by-products were identified in the UV-B/H 2 O 2 process ([M+H] +  = 707.4, 414.7, 429.3, 445.3, 608.6, 1052.0, 313.4, 823.6, 357.3, 245.2, and 805.7). Most of the MC-LR by-products had lower [M+H] + values than the MC-LR itself during both processes, except for the [M+H] + value of 1052.0 during UV-B photolysis. Based on identified by-products and peak area patterns, we proposed potential degradation pathways during the two processes. Bond cleavage and intramolecular electron rearrangement by electron pair in the nitrogen atom were the major reactions during UV-B photolysis and UV-B/H 2 O 2 processes, and hydroxylation by OH radical and the adduct formation reaction between the produced by-products were identified as additional pathways during the UV-B/H 2 O 2 process. Meanwhile, the degradation by-products identified from MC-LR during UV-B/H 2 O 2 process can be further degraded by increasing H 2 O 2 dose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Application of the Real-Time Time-Dependent Density Functional Theory to Excited-State Dynamics of Molecules and 2D Materials

    Science.gov (United States)

    Miyamoto, Yoshiyuki; Rubio, Angel

    2018-04-01

    We review our recent developments in the ab initio simulation of excited-state dynamics within the framework of time-dependent density functional theory (TDDFT). Our targets range from molecules to 2D materials, although the methods are general and can be applied to any other finite and periodic systems. We discuss examples of excited-state dynamics obtained by real-time TDDFT coupled with molecular dynamics (MD) and the Ehrenfest approximation, including photoisomerization in molecules, photoenhancement of the weak interatomic attraction of noble gas atoms, photoenhancement of the weak interlayer interaction of 2D materials, pulse-laser-induced local bond breaking of adsorbed atoms on 2D sheets, modulation of UV light intensity by graphene nanoribbons at terahertz frequencies, and collision of high-speed ions with the 2D material to simulate the images taken by He ion microscopy. We illustrate how the real-time TDDFT approach is useful for predicting and understanding non-equilibrium dynamics in condensed matter. We also discuss recent developments that address the excited-state dynamics of systems out of equilibrium and future challenges in this fascinating field of research.

  5. Alteration of five organic compounds by glow discharge plasma and UV light under simulated Mars conditions

    Science.gov (United States)

    Hintze, Paul E.; Buhler, Charles R.; Schuerger, Andrew C.; Calle, Luz M.; Calle, Carlos I.

    2010-08-01

    The Viking missions to Mars failed to detect any organic material in regolith samples. Since then, several removal mechanisms of organic material have been proposed. Two of these proposed methods are removal due to exposure to plasmas created in dust devils and exposure to UV irradiation. The experiments presented here were performed to identify similarities between the two potential removal mechanisms and to identify any compounds produced from these mechanisms that would have been difficult for the Viking instruments to detect. Five organic compounds, phenanthrene, octadecane, octadecanoic acid, decanophenone and benzoic acid, were exposed to a glow discharge plasma created in simulated martian atmospheres as might be present in dust devils, and to UV irradiation similar to that found at the surface of Mars. Glow discharge exposure was carried out in a chamber with 6.9 mbar pressure of a Mars like gas composed mostly of carbon dioxide. The plasma was characterized using emission spectroscopy and found to contain cations and excited neutral species including carbon dioxide, carbon monoxide, and nitrogen. UV irradiation experiments were performed in a Mars chamber which simulates the temperature, pressure, atmospheric composition, and UV fluence rates of equatorial Mars. The non-volatile residues left after each exposure were characterized by mass loss, infrared spectroscopy and high resolution mass spectrometry. Oxidized, higher molecular weight versions of the parent compounds containing carbonyl, hydroxyl and alkenyl functional groups were identified. The presence of these oxidized compounds suggests that searches for organic material in soils on Mars use instrumentation suitable for detection of compounds which contain the above functional groups. Discussions of possible reaction mechanisms are given.

  6. Loss of photoreversibility for UV mutation in E. coli using 405 nm or near-UV challenge

    International Nuclear Information System (INIS)

    Kristoff, S.; Bockrath, R.

    1983-01-01

    E. coli mutagenized with germicidal ultraviolet light (UV) were incubated to allow for development of mutation-fixation processes. Fixation was estimated from the effects on mutation frequency of photoreactivation challenge during the first 60 min post-UV. Two different light sources were used for photoreactivation, one providing effective light primarily at 405 nm and another providing a broad range of near-UV around 365 nm. Kinetics for the loss of photoreversibility (LOP) were determined. The times for completion of LOP in wild-type cells indicated one fixation process for back mutation and another for de novo or converted suppressor mutation regardless of the light source. Using 405-nm light for photoreactivation, the LOP kinetics for back mutation and de novo suppressor mutation in uvrA cells were similar. Hence, classical observations were confirmed here. Immediately post-UV all mutation frequencies were more sensitive to near-UV than 405-nm light. (orig./AJ)

  7. Electronic excitation-induced structural, optical, and magnetic properties of Ni-doped HoFeO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Zubida [National Institute of Technology, Department of Chemistry, Srinagar (India); National Institute of Technology, Department of Physics, Srinagar (India); Ikram, Mohd; Mir, Sajad A. [National Institute of Technology, Department of Physics, Srinagar (India); Sultan, Khalid [Central University of Kashmir, Department of Physics, Srinagar (India); Abida [Govt Degree College for Women, Department of Physics, Anantnag, Kashmir (India); Majid, Kowsar [National Institute of Technology, Department of Chemistry, Srinagar (India); Asokan, K. [Inter University Accelerator Centre, New Delhi (India)

    2017-06-15

    Present study investigates the electronic excitation-induced modifications in the structural, optical, and magnetic properties of Ni-doped HoFeO{sub 3} thin films grown by pulsed laser deposition on LaAlO{sub 3} substrates. Electronic excitations were induced by 200 MeV Ag{sup 12+} ion beam. These thin films were then characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Vis spectroscopy, and magnetic measurements. X-ray diffraction analysis confirms that the crystallite growth occurs in the preferred (111) orientation with orthorhombic structure. The XRD results also show that the crystallite size decreases with ion irradiation. AFM results after irradiation show significant changes in the surface roughness and morphology of these films. The optical parameters measured from absorption measurements reveal reduction in the band gap with Ni doping and enhancement of band gap after irradiation. The magnetization vs field measurement at 75 K shows enhancement in saturation magnetization after irradiation for HoFe{sub 1-x}Ni{sub x}O{sub 3} (x = 0.1 and 0.3) films compared to HoFeO{sub 3} film. Present study shows electronic excitation induces significant changes in the physical properties of these films. (orig.)

  8. UV-B Perception and Acclimation in Chlamydomonas reinhardtii[OPEN

    Science.gov (United States)

    Chappuis, Richard; Allorent, Guillaume

    2016-01-01

    Plants perceive UV-B, an intrinsic component of sunlight, via a signaling pathway that is mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8) and induces UV-B acclimation. To test whether similar UV-B perception mechanisms exist in the evolutionarily distant green alga Chlamydomonas reinhardtii, we identified Chlamydomonas orthologs of UVR8 and the key signaling factor CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). Cr-UVR8 shares sequence and structural similarity to Arabidopsis thaliana UVR8, has conserved tryptophan residues for UV-B photoreception, monomerizes upon UV-B exposure, and interacts with Cr-COP1 in a UV-B-dependent manner. Moreover, Cr-UVR8 can interact with At-COP1 and complement the Arabidopsis uvr8 mutant, demonstrating that it is a functional UV-B photoreceptor. Chlamydomonas shows apparent UV-B acclimation in colony survival and photosynthetic efficiency assays. UV-B exposure, at low levels that induce acclimation, led to broad changes in the Chlamydomonas transcriptome, including in genes related to photosynthesis. Impaired UV-B-induced activation in the Cr-COP1 mutant hit1 indicates that UVR8-COP1 signaling induces transcriptome changes in response to UV-B. Also, hit1 mutants are impaired in UV-B acclimation. Chlamydomonas UV-B acclimation preserved the photosystem II core proteins D1 and D2 under UV-B stress, which mitigated UV-B-induced photoinhibition. These findings highlight the early evolution of UVR8 photoreceptor signaling in the green lineage to induce UV-B acclimation and protection. PMID:27020958

  9. Excimer UV curing in printing

    International Nuclear Information System (INIS)

    Mehnert, R.

    1999-01-01

    It is the aim of this study to investigate the potential of 308 run excimer UV curing in web and sheet fed offset printing and to discuss its present status. Using real-time FTIR-ATR and stationary or pulsed monochromatic (313 nm) irradiation chemical and physical factors affecting the curing speed of printing inks such as nature and concentration of photo-initiators, reactivity of the ink binding system, ink thickness and pigmentation, irradiance in the curing plane, oxygen concentration and nitrogen inerting, multiple pulse exposure, the photochemical dark reaction and temperature dependence were studied. The results were used to select optimum conditions for excimer UV curing in respect to ink reactivity, nitrogen inerting and UV exposure and to build an excimer UV curing unit consisting of two 50 W/cm 308 run excimer lamps, power supply, cooling and inerting unit. The excimer UV curing devices were tested under realistic conditions on a web offset press zirkon supra forte and a sheet fed press Heidelberg GTO 52. Maximum curing speeds of 300 m/min in web offset and 8000 sheets per hour in sheet fed offset were obtained

  10. UV dependent vitamin D syntheses. UV exposure time balancing for optimum production of the vitamins D3 status in the human body. Final report; UV-abhaengige Vitamin D Synthese. Bilanzierung der Expositionszeit durch UV zur Produktion des optimalen Vitamin D{sub 3}-Bedarfes im menschlichen Koerper. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Knuschke, P.; Lehmann, B.; Pueschel, A.; Roensch, H.

    2012-10-15

    UV-dependent vitamin D{sub 3} synthesis - balancing of UV exposure time and the production of an optimal vitamin D{sub 3} status in men The adverse health effects on human skin and eyes by UV radiation have been well known for years. They are known to the public, too. Increased exposures by the UV-B fraction of solar radiation cause e.g. sun burn as an acute skin reaction or an increased risk on skin cancer as a chronic effect. Radiation of the same spectral UV-B range is necessary to induce the essential vitamin D metabolism in men. The UV-induced vitamin D synthesis in the skin supplies the body with more than 90 % while our typical nutrition contributes no more than 10 %. These photobiological effects are diametrically opposed. Therefore, up to now there are contradictory recommendations to the public concerning the health effects of solar UV exposure. The aim of this research project was to evaluate the quantitative and qualitative relations of UV exposure and the vitamin D status in men taking into account different conditions in the population. In result, well-balanced recommendations on optimal UV exposures for the different fractions of the population should be elaborated, realizing health protection aspects against detrimental UV effects. A literature survey (updated in 2011) summarizes the current knowledge on the vitamin D metabolism, on the effects of the hormone vitamin D and on the stage of the current discussion on the optimal vitamin D status. In a number of studies of this project the effects of UV exposure on the vitamin D status (25OH-vitamin D{sub 3} und 1,25OH-vitamin D{sub 3}) were investigated. Exposure parameters were the photobiologically effective UV dose (with respect to the minimal erythema dose MED = individual sun burn dose in each investigated volunteer) and the extent of the exposed skin area: face and hands (like everyday conditions) or whole body respectively. Serial UV exposures were applied by natural solar UV radiation or by

  11. Road Signs for UV-Completion

    CERN Document Server

    Dvali, Gia; Gomez, Cesar

    2012-01-01

    We confront the concepts of Wilsonian UV-completion versus self-completion by Classicalization in theories with derivatively-coupled scalars. We observe that the information about the UV-completion road is encoded in the sign of the derivative terms. We note that the sign of the derivative couplings for which there is no consistent Wilsonian UV-completion is the one that allows for consistent classicalons. This is an indication that for such a sign the vertex must be treated as fundamental and the theory self-protects against potential inconsistencies, such as superluminality, via self-completion by classicalization. Applying this reasoning to the UV-completion of the Standard Model, we see that the information about the Higgs versus classicalization is encoded in the sign of the scattering amplitude of longitudinal W-bosons. Negative sign excludes Higgs or any other weakly-coupled Wilsonian physics.

  12. Bromate formation from the oxidation of bromide in the UV/chlorine process with low pressure and medium pressure UV lamps.

    Science.gov (United States)

    Fang, Jingyun; Zhao, Quan; Fan, Chihhao; Shang, Chii; Fu, Yun; Zhang, Xiangru

    2017-09-01

    When a bromide-containing water is treated by the ultraviolet (UV)/chlorine process, hydroxyl radicals (HO) and halogen radicals such as Cl or Br are formed due to the UV photolysis of free halogens. These reactive species may induce the formation of bromate, which is a probable human carcinogen. Bromate formation in the UV/chlorine process using low pressure (LP) and medium pressure (MP) lamps in the presence of bromide was investigated in the present study. The UV/chlorine process significantly enhanced bromate formation as compared to dark chlorination. The bromate formation was elevated with increasing UV fluence, bromide concentration, and pH values under both LP and MP UV irradiations. It was significantly enhanced at pH 9 compared to those at pH 6 and 7 with MP UV irradiation, while it was slightly enhanced at pH 9 with LP UV. The formation by UV/chlorine process started with the formation of free bromine (HOBr/OBr - ) through the reaction of chlorine and bromide, followed by a subsequent oxidation of free bromine and formation of BrO and bromate by reacting with radicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. UV induced thermoluminescence in rare earth oxide doped phosphors: possible use for UV dosimetry

    International Nuclear Information System (INIS)

    Yeh, S.-M.; Su, C.-S.

    1996-01-01

    UV induced thermoluminescent (TL) phenomena in some phosphors doped with rare earth oxides (Gd 2 O 3 :Eu, Gd 2 O 3 :Tb, Gd 2 O 3 :Dy and Y 2 O 3 :EU) have been investigated. Gd 2 O 3 :Eu and Y 2 O 3 :Eu have been found to possess prominent TL phenomena. A stable high temperature glow peak has been found at 345 o C in the cubic (C type) crystalline structure of Gd 2 O 3 :Eu. A more stable high temperature glow peak has also been found at about 380 o C in Y 2 O 3 :Eu. The sensitivity is high enough to be used as UV sensors. TL phenomena in Gd 2 O 3 :Tb and Gd 2 O 3 :Dy have also been investigated, but their TL intensities are much weaker than that of Gd 2 O 3 :Eu or Y 2 O 3 :Eu. On the other hand, all glow peaks of Gd 2 O 3 :Tb and Gd 2 O 3 :Dy are unstable at room temperature, therefore, Gd 2 O 3 :Tb and Gd 2 O 3 :Dy are not suitable for use as UV detectors. According to the above properties, the C type (cubic) crystalline structure of the Gd 2 O 3 :Eu phosphor seems to possess the potential of being the TL material for UV measurement. The position of the high temperature glow peak depends on the total UV exposure. It locates at about 380 o C when this phosphor was irradiated by 302 nm UV at 2.4 mJ.cm -2 exposure, but it shifts to 345 o C at 19.2 mJ.cm -2 or higher exposure. The response curves of this phosphor for various wavelengths, e.g. 253.7 nm, 302 nm, and 365 nm, were also measured. This phosphor is sensitive enough to measure background UV radiations, such as sunlight, bulb light etc. (author)

  14. Photolysis of phosphodiester bonds in plasmid DNA by high intensity UV laser irradiation

    International Nuclear Information System (INIS)

    Croke, D.T.; Blau, Werner; OhUigin, Colm; Kelly, J.M.; McConnell, D.J.

    1988-01-01

    The cleavage of phosphodiester bonds in DNA exposed to high intensity UV laser pulses in aerated aqueous solution has been investigated using a krypton fluoride excimer laser (248 nm) and bacterial plasmid DNA. The dependence of strand breakage on fluence and intensity has been studied in detail and shows that the process is non-linear with respect to intensity. The relationship between the quantum yield for strand breakage and intensity shows that the strand breakage reaction involves two-photon excitation of DNA bases. The quantum yield rises with intensity from a lower value of 7 x 10 -5 until a maximum value of 4.5 x 10 -4 is attained at intensities of 10 11 W m -2 and above. This value is approximately fifty-fold higher than the quantum yield for strand breakage induced by exposure to low density UV irradiation (254 nm, 12 W m -2 ). DNA sequencing experiments have shown that strand breakage occurs by the specific cleavage of the phosphodiester bond which lies immediately 3' to guanine residues in the DNA, leaving some alkali-labile remnant attached to the terminal phosphate. A mechanism for DNA strand breakage which involves the generation of guanine radical cations is proposed. (author)

  15. UV imaging in pharmaceutical analysis

    DEFF Research Database (Denmark)

    Østergaard, Jesper

    2018-01-01

    UV imaging provides spatially and temporally resolved absorbance measurements, which are highly useful in pharmaceutical analysis. Commercial UV imaging instrumentation was originally developed as a detector for separation sciences, but the main use is in the area of in vitro dissolution...

  16. Comparison of UV-C and Pulsed UV Light Treatments for Reduction of Salmonella, Listeria monocytogenes, and Enterohemorrhagic Escherichia coli on Eggs.

    Science.gov (United States)

    Holck, Askild L; Liland, Kristian H; Drømtorp, Signe M; Carlehög, Mats; McLEOD, Anette

    2018-01-01

    Ten percent of all strong-evidence foodborne outbreaks in the European Union are caused by Salmonella related to eggs and egg products. UV light may be used to decontaminate egg surfaces and reduce the risk of human salmonellosis infections. The efficiency of continuous UV-C (254 nm) and pulsed UV light for reducing the viability of Salmonella Enteritidis, Listeria monocytogenes, and enterohemorrhagic Escherichia coli on eggs was thoroughly compared. Bacterial cells were exposed to UV-C light at fluences from 0.05 to 3.0 J/cm 2 (10 mW/cm 2 , for 5 to 300 s) and pulsed UV light at fluences from 1.25 to 18.0 J/cm 2 , resulting in reductions ranging from 1.6 to 3.8 log, depending on conditions used. Using UV-C light, it was possible to achieve higher reductions at lower fluences compared with pulsed UV light. When Salmonella was stacked on a small area or shielded in feces, the pulsed UV light seemed to have a higher penetration capacity and gave higher bacterial reductions. Microscopy imaging and attempts to contaminate the interior of the eggs with Salmonella through the eggshell demonstrated that the integrity of the eggshell was maintained after UV light treatments. Only minor sensory changes were reported by panelists when the highest UV doses were used. UV-C and pulsed UV light treatments appear to be useful decontamination technologies that can be implemented in continuous processing.

  17. A scalable piezoelectric impulse-excited energy harvester for human body excitation

    International Nuclear Information System (INIS)

    Pillatsch, P; Yeatman, E M; Holmes, A S

    2012-01-01

    Harvesting energy from low-frequency and non-harmonic excitations typical of human motion presents specific challenges. While resonant devices do have an advantage in environments where the excitation frequency is constant, and while they can make use of the entire proof mass travel range in the case of excitation amplitudes that are smaller than the internal displacement limit, they are not suitable for body applications since the frequencies are random and the amplitudes tend to be larger than the device size. In this paper a piezoelectric, impulse-excited approach is presented. A cylindrical proof mass actuates an array of piezoelectric bi-morph beams through magnetic attraction. After the initial excitation these transducers are left to vibrate at their natural frequency. This increases the operational frequency range as well as the electromechanical coupling. The principle of impulse excitation is discussed and a centimetre-scale functional model is introduced as a proof of concept. The obtained data show the influence of varying the frequency, acceleration and proof mass. Finally, a commercially available integrated circuit for voltage regulation is tested. At a frequency of 2 Hz and an acceleration of 2.7 m s −2 a maximal power output of 2.1 mW was achieved. (paper)

  18. UV spectroscopy. Ch. 16

    International Nuclear Information System (INIS)

    Stevens, Eugene S.

    1991-01-01

    The use of synchrotron radiation (SR) in the ultraviolet (UV) region by biophysics and biophysical chemists continues to increase as access improves and as awareness of its unique combination of properties grows. SR is continuously tunable, intense (even in the UV region), and pulsed. Pulse characteristics are comparable to those of picosecond lasers, but have the advantage of being independent of wavelength. Drawbacks are the continuous, but slow, decay of intensity arising from loss of particles in the ring, and the intrinsic limitation in pulse repetition rate. The particular combination of features that makes SR a superior light source depends upon the application. Spectroscopic techniques based on absorption and some techniques based on emission exploit its intensity and continuous tunability; time resolved techniques make use of its pulse characteristics. This chapter is a status report on two of the major biological applications of UV SR, circular dichroism and time-resolved fluorescence, covering mainly the published literature of the last five years. For the present purpose, the term UV is understood to include the vacuum ultraviolet region to 100 nm. (author). 83 refs.; 4 figs.; 6 tabs

  19. Intensities of the Venusian N2 electron-impact excited dayglow emissions

    Science.gov (United States)

    Fox, Jane L.; F. Hać, Nicholas E.

    2013-12-01

    Dayglow emissions are signatures of both the energy deposition into an atmosphere and the abundances of the species from which they arise. The first N2 dayglow emissions from Mars, the (0,5) and (0,6) bands of the N2 Vegard-Kaplan band system, were detected by the Spectroscopy for Investigations of the Characteristics of the Atmosphere of Mars (SPICAM) UV spectrometer on board the Mars Express spacecraft. The Vegard-Kaplan band system arises from the transition from the lowest N2 triplet state (A3Σu+;v') to the electronic ground state (X1Σg+;v″). It is populated by direct electron-impact excitation and by cascading from higher triplet states. The Venus UV dayglow is currently being probed by an instrument similar to SPICAM, the Spectroscopy for the Investigations of the Characteristics of the Atmosphere of Venus (SPICAV) UV spectrometer on Venus Express, but no N2 emissions have been detected. Because the N2 mixing ratios in the Venus thermosphere are larger than those in the thermosphere of Mars and the solar flux is greater at the orbit of Venus than that at Mars, we expect the Venus N2 emissions to be significantly more intense than those of Mars. A prediction of the intensities of various N2 emissions from Venus could be used to guide observations by the SPICAV and other instruments that are used to measure the Venus dayglow. Employing updated data, we here construct models of the low and high solar activity thermospheres of Venus, and we compute the integrated overhead intensities of 17 N2 band systems and limb profiles of the Vegard-Kaplan bands. The ratios of the predicted intensities of the various N2 bands at Venus to those at Mars are in the range 5.5-9.5.

  20. Environment Canada's Children's UV Index Sun Awareness Programme

    International Nuclear Information System (INIS)

    Fergusson, A.

    2000-01-01

    In 1992, Canada introduced the UV Index forecast programme to increase public awareness of UV radiation, to support health agencies in educating the public about UV risks, and to assist individuals in making healthy lifestyle decisions. A national sun health survey in 1997 indicated that about half of adults reported taking extra precautions to protect themselves from the sun on days when the UV Index was rated 'high'. In response to this concern in 1998, Environment Canada produced an UN Index poster that was sent to 3000 elementary schools across Canada. The poster targeted children between the ages of 8 and 15 and provided information to minimise the risk to their health from solar UV radiation without spoiling their outdoor fun. Based on this experience Environment Canada produced in 1999, the Daily UV Index and Calendar Poster that was sent to 14,000 elementary schools across Canada. An UV Index website has been created to provide information to students and teachers on the science of UV radiation and the UV Index. (author)

  1. UV-blocking potential of oils and juices.

    Science.gov (United States)

    Gause, S; Chauhan, A

    2016-08-01

    Sunscreens are commonly used to protect the body from damage caused by UV light. Some components of organic sunscreens have been shown to pass through the skin during wear which could raise toxicity concerns for these compounds. This study explores the potential for oils and fruit and vegetable juices to be substitutes for these compounds. The absorptivity of various oils (canola oil, citronella oil, coconut oil, olive oil, soya bean oil, vitamin E, as well as aloe vera) and fruit and vegetable juices (acerola, beet, grape, orange carrot, purple carrot and raspberry) was measured in vitro. The mean absorptivity was compared with FDA-approved UV absorbers to gauge the potential of the natural products. The most promising candidates were incorporated into formulations, and the UV transmittance of a 20-μm-thick film of the formulation was measured. The formulations were also imaged by light microscopy and scanning electron microscopy. The absorptivity of oils was at least two orders of magnitude lower compared to the commercial UV blockers. The fruit juice powders were more effective at UV blocking but still showed an order of magnitude lower absorptivity compared to commercial UV blockers. The UV blocking from most natural oils is insufficient to obtain a significant UV protection. Formulations containing 50wt% purple carrot showed good UV-blocking capabilities and represent a promising ingredient for sunscreen and cosmetic applications. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  2. Electron impact excitation and ionization of laser-excited sodium atoms Na*(7d)

    International Nuclear Information System (INIS)

    Nienhaus, J.; Dorn, A.; Mehlhorn, W.; Zatsarinny, O.I.

    1997-01-01

    We have investigated the ejected-electron spectrum following impact excitation and ionization of laser-excited Na * (nl) atoms by 1.5 keV electrons. By means of two-laser excitation 3s → 3p 3/2 → 7d and subsequent cascading transitions about 8% (4%) of the target atoms were in excited states with n > 3 (7d). The experimental ejected-electron spectrum due to the decay of Auger and autoionization states of laser-excited atoms Na * (nl) with n = 4-7 has been fully interpreted by comprehensive calculations of the energies, cross sections and decay probabilities of the corresponding states. The various processes contributing to the ejected-electron spectrum are with decreasing magnitude: 2s ionization leading to 2s2p 6 nl Auger states, 2p → 3s excitation leading to 2p 5 3s( 1 P)nl autoionization states and 2s → 3l' excitation leading to 2s2p 6 3l'( 1 L)nl autoionization states. (Author)

  3. UV Reconstruction Algorithm And Diurnal Cycle Variability

    Science.gov (United States)

    Curylo, Aleksander; Litynska, Zenobia; Krzyscin, Janusz; Bogdanska, Barbara

    2009-03-01

    UV reconstruction is a method of estimation of surface UV with the use of available actinometrical and aerological measurements. UV reconstruction is necessary for the study of long-term UV change. A typical series of UV measurements is not longer than 15 years, which is too short for trend estimation. The essential problem in the reconstruction algorithm is the good parameterization of clouds. In our previous algorithm we used an empirical relation between Cloud Modification Factor (CMF) in global radiation and CMF in UV. The CMF is defined as the ratio between measured and modelled irradiances. Clear sky irradiance was calculated with a solar radiative transfer model. In the proposed algorithm, the time variability of global radiation during the diurnal cycle is used as an additional source of information. For elaborating an improved reconstruction algorithm relevant data from Legionowo [52.4 N, 21.0 E, 96 m a.s.l], Poland were collected with the following instruments: NILU-UV multi channel radiometer, Kipp&Zonen pyranometer, radiosonde profiles of ozone, humidity and temperature. The proposed algorithm has been used for reconstruction of UV at four Polish sites: Mikolajki, Kolobrzeg, Warszawa-Bielany and Zakopane since the early 1960s. Krzyscin's reconstruction of total ozone has been used in the calculations.

  4. Directing the path of light-induced electron transfer at a molecular fork using vibrational excitation

    Science.gov (United States)

    Delor, Milan; Archer, Stuart A.; Keane, Theo; Meijer, Anthony J. H. M.; Sazanovich, Igor V.; Greetham, Gregory M.; Towrie, Michael; Weinstein, Julia A.

    2017-11-01

    Ultrafast electron transfer in condensed-phase molecular systems is often strongly coupled to intramolecular vibrations that can promote, suppress and direct electronic processes. Recent experiments exploring this phenomenon proved that light-induced electron transfer can be strongly modulated by vibrational excitation, suggesting a new avenue for active control over molecular function. Here, we achieve the first example of such explicit vibrational control through judicious design of a Pt(II)-acetylide charge-transfer donor-bridge-acceptor-bridge-donor 'fork' system: asymmetric 13C isotopic labelling of one of the two -C≡C- bridges makes the two parallel and otherwise identical donor→acceptor electron-transfer pathways structurally distinct, enabling independent vibrational perturbation of either. Applying an ultrafast UVpump(excitation)-IRpump(perturbation)-IRprobe(monitoring) pulse sequence, we show that the pathway that is vibrationally perturbed during UV-induced electron transfer is dramatically slowed down compared to its unperturbed counterpart. One can thus choose the dominant electron transfer pathway. The findings deliver a new opportunity for precise perturbative control of electronic energy propagation in molecular devices.

  5. Study of UV-mutagenesis in Bacillus subtilis

    International Nuclear Information System (INIS)

    Lotareva, O.V.; Filippov, V.D.

    1974-01-01

    The sensitivity of Bac. subtilis to the inactivating and mutagenic effects of UV-mutants has been determined: uvr, which does not extract pyrimidine dimers from damaged DNA; recsub(x), which exhibits a reduced activity of ATP-dependent DNAase; poll, which is devoid of DNA polymerase, and wild strains (DT). The sensitivity of these strains to the inactivating effects of UV rays increases in the order: DT<= recsub(x) << uvr < poll, and UV mutability in the order: DT = rec(sub(x) < poll<< uvr. A comparison of UV mutagenesis in Bac. subtilis and E. coli suggests the hypothesis that the mechanisms of UV mutation formation are similar in these two organisms. (author)

  6. Laser patterning of transparent polymers assisted by plasmon excitation.

    Science.gov (United States)

    Elashnikov, R; Trelin, A; Otta, J; Fitl, P; Mares, D; Jerabek, V; Svorcik, V; Lyutakov, O

    2018-06-13

    Plasmon-assisted lithography of thin transparent polymer films, based on polymer mass-redistribution under plasmon excitation, is presented. The plasmon-supported structures were prepared by thermal annealing of thin Ag films sputtered on glass or glass/graphene substrates. Thin films of polymethylmethacrylate, polystyrene and polylactic acid were then spin-coated on the created plasmon-supported structures. Subsequent laser beam writing, at the wavelength corresponding to the position of plasmon absorption, leads to mass redistribution and patterning of the thin polymer films. The prepared structures were characterized using UV-Vis spectroscopy and confocal and AFM microscopy. The shape of the prepared structures was found to be strongly dependent on the substrate type. The mechanism leading to polymer patterning was examined and attributed to the plasmon-heating. The proposed method makes it possible to create different patterns in polymer films without the need for wet technological stages, powerful light sources or a change in the polymer optical properties.

  7. SO2 Spectroscopy with A Tunable UV Laser

    Science.gov (United States)

    Morey, W. W.; Penney, C. M.; Lapp, M.

    1973-01-01

    A portion of the fluorescence spectrum of SO2 has been studied using a narrow wavelength doubled dye laser as the exciting source. One purpose of this study is to evaluate the use of SO2 resonance re-emission as a probe of SO2 in the atmosphere. When the SO2 is excited by light at 300.2 nm, for example, a strong reemission peak is observed which is Stokes-shifted from the incident light wavelength by the usual Raman shift (the VI symmetric vibration frequency 1150.5/cm ). The intensity of this peak is sensitive to small changes (.01 nm) in the incident wavelength. Measurements of the N2 quenching and self quenching of this re-emission have been obtained. Preliminary analysis of this data indicates that the quenching is weak but not negligible. The dye laser in our system is pumped by a pulsed N2 laser. Tuning 'and spectral narrowing are accomplished using a telescope-echelle grating combination. In a high power configuration the resulting pulses have a spectral width of about 5 x 10(exp -3) nm and a time duration of about 6 nsec. The echelle grating is rotated by a digital stepping motor, such that each step shifts the wavelength by 6 x 10(exp -4) nm. In addition to the tunable, narrow wavelength uv source and spectral analysis of the consequent re-emission, the system also provides time resolution of the re-emitted light to 6 nsec resolution. This capability is being used to study the lifetime of low pressure S02 fluorescence at different wavelengths and pressures.

  8. Stick-Slip Analysis of a Drill String Subjected to Deterministic Excitation and Stochastic Excitation

    Directory of Open Access Journals (Sweden)

    Hongyuan Qiu

    2016-01-01

    Full Text Available Using a finite element model, this paper investigates the torsional vibration of a drill string under combined deterministic excitation and random excitation. The random excitation is caused by the random friction coefficients between the drill bit and the bottom of the hole and assumed as white noise. Simulation shows that the responses under random excitation become random too, and the probabilistic distribution of the responses at each discretized time instant is obtained. The two points, entering and leaving the stick stage, are examined with special attention. The results indicate that the two points become random under random excitation, and the distributions are not normal even when the excitation is assumed as Gaussian white noise.

  9. Analysis of Photosynthetic Characteristics and UV-B Absorbing Compounds in Mung Bean Using UV-B and Red LED Radiation

    Directory of Open Access Journals (Sweden)

    Fang-Min Li

    2014-01-01

    Full Text Available Mung bean has been reported to have antioxidant, antidiabetic, anti-inflammatory, and antitumor activities. Various factors have important effects on the types and contents of plant chemical components. In order to study quality of mung bean from different light sources, mung bean seedlings were exposed to red light-emitting diodes (LEDs and ultraviolet-B (UV-B. Changes in the growth parameters, photosynthetic characteristics, the concentrations of chlorophyll a and chlorophyll b and the content of UV-B absorbing compounds were measured. The results showed that photosynthetic characteristics and chlorophyll a and chlorophyll b concentrations were enhanced by red LEDs. The concentrations of UV-B absorbing compounds were enhanced by UV-B on the 20th day, while photosynthetic characteristics, plant length, and the concentrations of chlorophyll a and chlorophyll b were reduced by UV-B on the 40th day; at the same time the values of the stem diameter, plant fresh weight, dry weight, and the concentrations of UV-B absorbing compounds were enhanced. It is suggested that red LEDs promote the elongation of plant root growth and photosynthetic characteristics, while UV-B promotes horizontal growth of stems and the synthesis of UV-B absorbing compounds.

  10. Alfalfa seedlings grown outdoors are more resistant to UV-induced DNA damage than plants grown in a UV-free environmental chamber

    International Nuclear Information System (INIS)

    Takayanagi, Shinnosuke; Trunk, J.G.; Sutherland, J.C.; Sutherland, B.M.

    1994-01-01

    The relative UV sensitivities of alfalfa seedlings grown outdoors versus plants grown in a growth chamber under UV-filtered cool white fluorescent bulbs have been determined using three criteria: (1) level of endogenous DNA damage as sites for the UV endonuclease from Micrococcus luteus, (2) susceptibility to pyrimidine dimer induction by a UV challenge exposure and (3) ability to repair UV-induced damage. We find that outdoor-grown plants contain approximately equal frequencies of endogenous DNA damages, are less susceptible to dimer induction by a challenge exposure of broad-spectrum UV and photorepair dimers more rapidly than plants grown in an environmental chamber under cool white fluorescent lamps plus a filter removes most UV radiation. These data suggest that plants grown in a natural environment would be less sensitive to UVB-induced damage than would be predicted on the basis of studies on plants grown under minimum UV. (author)

  11. Development of a low cost UV index datalogger and comparison between UV index sensors

    Science.gov (United States)

    Gomes, L. M.; Ventura, L.

    2018-02-01

    Ultraviolet radiation (UVR) is the part of radiation emitted by the Sun, with range between 280 nm and 400 nm, and that reaches the Earth's surface. The UV rays are essential to the human because it stimulates the production of vitamin D but this radiation may be related to several health problems, including skin cancer and ocular diseases like pterygium, photokeratitis, cataract and more. To inform people about UV radiation, it is adopted the Ultraviolet Index (UVI). This UVI consists in a measure of solar UV radiation level, which contributes to cause sunburn on skin, also known as Erythema, and is indicated as an integer number between 1 and 14, associated to categories from low to extreme respectively. The aim of this work was to develop a low cost UVI datalogger capable of measuring three different UVI sensors simultaneously, record their data with timestamp and serve the measures online through a dedicated server, so general public can access their data and see the current UV radiation conditions. We also compared three different UVI sensors (SGlux UV cosine, Skye SKU440 and SiLabs SI1145) between them and with meteorological models during a period of months to verify their compliance. With five months data, we could verify the sensors working characteristics and decide which among them are the most suitable for research purposes.

  12. A UV-resistant mutant without an increased repair synthesis activity, established from a UV-sensitive human clonal cell line

    International Nuclear Information System (INIS)

    Suzuki, N.

    1984-01-01

    When cells of a human clonal cell line, RSa, with high sensitivity to UV lethality, were treated with the mutagen, ethyl methanesulfonate, a variant cell strain, UVr-1, was established as a mutant resistant to 254-nm far-ultraviolet radiation (UV). Cell proliferation studies showed that UVr-1 cells survived and actively proliferated at doses of UV-irradiation that greatly suppressed the proliferation of RSa cells. Colony-formation assays also confirmed the increased resistance of UVr-1 cells to UV. The recovery from a UV-induced inhibition in DNA synthesis, as [methyl- 3 H]thymidine uptake into cellular DNA, was more pronounced in UVr-1 cells than in RSa cells. Nevertheless, there was no significant difference in the activity of UV-induced DNA repair synthesis in either cell line, as estimated by the extent of unscheduled DNA synthesis and DNA repair replication. These characteristics of UVr-1 cells are discussed in the light of a previously reported UV-resistant variant, UVr-10, which had an increased DNA repair synthesis activity. (Auth.)

  13. Electron-excited molecule interactions

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Tennessee Univ., Knoxville, TN

    1991-01-01

    In this paper the limited but significant knowledge to date on electron scattering from vibrationally/rotationally excited molecules and electron scattering from and electron impact ionization of electronically excited molecules is briefly summarized and discussed. The profound effects of the internal energy content of a molecule on its electron attachment properties are highlighted focusing in particular on electron attachment to vibrationally/rotationally and to electronically excited molecules. The limited knowledge to date on electron-excited molecule interactions clearly shows that the cross sections for certain electron-molecule collision processes can be very different from those involving ground state molecules. For example, optically enhanced electron attachment studies have shown that electron attachment to electronically excited molecules can occur with cross sections 10 6 to 10 7 times larger compared to ground state molecules. The study of electron-excited molecule interactions offers many experimental and theoretical challenges and opportunities and is both of fundamental and technological significance. 54 refs., 15 figs

  14. Luminescent properties of Eu{sup 3+}-doped glass ceramics containing BaCl{sub 2} nanocrystals under NUV excitation for White LED

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Han; Mo, Zhaojun, E-mail: mzjmzj163@163.com; Zhang, Xiaosong; Yuan, Linlin; Yan, Ming; Li, Lan, E-mail: lilan@tjut.edu.cn

    2016-07-15

    Eu{sup 3+} doped fluorozirconate glass ceramics containing BaCl{sub 2} nanocrystals were successfully fabricated by melt quenching method, and their structural and luminous properties were investigated. The existence of BaCl{sub 2} nanocrystals in the glass ceramics plays an important role on the improvement of luminescent properties. The emission intensity in glass ceramics was remarkably enhanced, which attributes to the phonon energy decrease by Eu{sup 3+} ions into BaCl{sub 2} nanocrystals. Meanwhile, the extended average fluorescence decay lifetime from 4.60 ms to 5.42 ms and the decreased Red/Orange ratio and spark splitting of {sup 7}F{sub 1} energy level also confirmed this view. Additionally, the excitation spectra showed that glass ceramics could be effectively excited by NUV light. The CIE chromaticity coordinates of glass ceramics (GC320) were calculated as (0.611, 0.371), which was close to the NTSC standard values for red (0.67, 0.33). The results suggested that the glass ceramics may be used as potential red phosphors under UV light excitation for white light-emitting diodes.

  15. Direct UV-writing of waveguides

    DEFF Research Database (Denmark)

    Færch, Kjartan Ullitz

    2003-01-01

    induced refractive index change of more than 10-2 have been obtained. New insight, with respect to understanding the UV induced index change obtained by direct UV writing, has been provided, through experiments conducted with such high-pressure loaded germanosilica samples. This include measurements...

  16. Microwave irradiation-assisted deposition of Ga2O3 on III-nitrides for deep-UV opto-electronics

    Science.gov (United States)

    Jaiswal, Piyush; Ul Muazzam, Usman; Pratiyush, Anamika Singh; Mohan, Nagaboopathy; Raghavan, Srinivasan; Muralidharan, R.; Shivashankar, S. A.; Nath, Digbijoy N.

    2018-01-01

    We report on the deposition of Ga2O3 on III-nitride epi-layers using the microwave irradiation technique. We also report on the demonstration of a Ga2O3 device: a visible-blind, deep-UV detector, with a GaN-based heterostructure as the substrate. The film deposited in the solution medium, at <200 °C, using a metalorganic precursor, was nanocrystalline. XRD confirms that the as-deposited film, when annealed at high temperature, turns to polycrystalline β-Ga2O3. SEM shows the as-deposited film to be uniform, with a surface roughness of 4-5 nm, as revealed by AFM. Interdigitated metal-semiconductor-metal devices with Ni/Au contact exhibited a peak spectral response at 230 nm and a good visible rejection ratio. This demonstration of a deep-UV detector on the β-Ga2O3/III-nitride stack is expected to open up possibilities of functional and physical integration of β-Ga2O3 and GaN material families towards enabling next-generation high-performance devices by exciting band and heterostructure engineering.

  17. Benchmark studies of UV-vis spectra simulation for cinnamates with UV filter profile.

    Science.gov (United States)

    Garcia, Ricardo D'A; Maltarollo, Vinícius G; Honório, Káthia M; Trossini, Gustavo H G

    2015-06-01

    Skin cancer is a serious public health problem worldwide, being incident over all five continents and affecting an increasing number of people. As sunscreens are considered an important preventive measure, studies to develop better and safer sunscreens are crucial. Cinnamates are UVB filters with good efficiency and cost-benefit, therefore, their study could lead to the development of new UV filters. A benchmark to define the most suitable density functional theory (DFT) functional to predict UV-vis spectra for ethylhexyl methoxycinnamate was performed. Time-dependent DFT (TD-DFT) calculations were then carried out [B3LYP/6-311 + G(d,p) and B3P86/6-311 + G(d,p) in methanol environment] for seven cinammete derivatives implemented in the Gaussian 03 package. All DFT/TD-DFT simulations were performed after a conformational search with the Monte-Carlo method and MMFF94 force field. B3LYP and B3P86 functionals were better at reproducing closely the experimental spectra of ethylhexyl methoxycinnamate. Calculations of seven cinnamates showed a λmax of around 310 nm, corroborating literature reports. It was observed that the energy for the main electronic transition was around 3.95 eV and could be explained by electron delocalization on the aromatic ring and ester group, which is important to UV absorption. The methodology employed proved to be suitable for determination of the UV spectra of cinnamates and could be used as a tool for the development of novel UV filters.

  18. a simple a simple excitation control excitation control excitation

    African Journals Online (AJOL)

    eobe

    field voltages determined follow a simple quadratic relationship that offer a very simple control scheme, dependent on only the stator current. Keywords: saturated reactances, no-load field voltage, excitation control, synchronous generators. 1. Introduction. Introduction. Introduction. The commonest generator in use today is ...

  19. Excited states v.6

    CERN Document Server

    Lim, Edward C

    1982-01-01

    Excited States, Volume 6 is a collection of papers that discusses the excited states of molecules. The first paper discusses the linear polyene electronic structure and potential surfaces, considering both the theoretical and experimental approaches in such electronic states. This paper also reviews the theory of electronic structure and cites some experimental techniques on polyene excitations, polyene spectroscopic phenomenology, and those involving higher states of polyenes and their triplet states. Examples of these experimental studies of excited states involve the high-resolution one-pho

  20. Mutational synergism between p-fluorophenylalaline and UV in Coprinus lagopus

    International Nuclear Information System (INIS)

    Talmud, P.J.

    1977-01-01

    The amino acid analogue p-fluorophenylalanine (PFP) is mutagenic to Coprinus lagopus due to its incorporation into proteins. Spontaneous mutations, PFP and UV mutagenesis and PFP/UV synergism have been studied in a UV resistant strain and in two complementing UV sensitive mutant strains. By comparison to the UV resistant strain, one UV sensitive strain shows normal spontaneous mutations, 1.4% PFP-induced mutations and 50-fold UV mutagenesis. The second UV sensitive strain has 19-fold spontaneous mutation frequency and slightly elevated UV mutagenesis. In all 3 strains the PFP/UV synergism is comparable (4-5 times the arithmetic expected). The results indicate that PFP mutagenesis is due to the incorporation of PFP into enzymes normally functioning in the organism but which also participate in UV repair mechanisms. A model is proposed for UV repair which is based on a PFP sensitive excision repair system of at least two enzymes, an alternative 'error-proof' pathway which is not susceptible to PFP and an 'error-prone' pathway which is responsible for UV mutagenesis and is susceptible to PFP as shown by the PFP/UV synergism. Because PFP is given before UV treatment, this implies a UV inducible cofactor and a PFP sensitive enzyme which only functions after UV activation

  1. Growth, photosynthesis and nitrogen metabolism in soybean varieties after exclusion of the UV-B and UV-A/B components of solar radiation

    Directory of Open Access Journals (Sweden)

    Sanjay Singh Baroniya

    2014-12-01

    Full Text Available A field experiment was conducted to study the impact of the exclusion of the solar UV components on growth, photosynthesis and nitrogen metabolism in soybean (Glycine max varieties PK-472, Pusa-24, JS 71-05, JS-335, NRC-7 and Kalitur. The plants were grown in specially designed UV exclusion chambers wrapped with filters to exclude UV-B or UV-A/B and transmitted all UV. Exclusion of UV significantly enhanced the growth of the aerial parts as well as the growth of the below ground parts in all of the six soybean varieties. Nitrate reductase activity (NRA was significantly reduced, whereas leghemoglobin (Lb content, total soluble protein, net photosynthesis (Pn and α-tocopherol content were enhanced after UV exclusion. The exclusion of solar UV-A/B enhanced all parameters to a larger extent than the exclusion of solar UV-B in four of the six varieties of soybean except for NRC-7 and Kalitur. These two varieties responded more to UV-B exclusion compared to UV-A/B exclusion. A significant inverse correlation between the NRA and the number of nodules per plant was observed. The extent of response in all parameters was greater in PK-472 and JS71-05 than that in Kalitur and JS-335 after UV exclusion. The exclusion of UV augmented the growth of nodules, Lb content and α-tocopherol levels and conferred higher rates of Pn to support better growth of nodules. Control plants (+ UV-A/B seemed to fulfill their N demand through the assimilation of NO3− resulting in lower symbiotic nitrogen fixation and higher NR activity.

  2. Development of UV absorbing PET through Electron Irradiation

    International Nuclear Information System (INIS)

    Kim, Jung Woo; Lee, Na Eun; Lim, Hyung San; Park, Yang Jeong; Cho, Sung Oh

    2017-01-01

    Experiment to increase UV absorbance through electron beam irradiation on PET was performed. Moreover, surface hardness and roughness of each sample were observed to find the key factor increasing UV absorbance. PET sheets were irradiated with an electron beam at various fluences. The irradiated samples, as well as pristine sample, were subjected to UV-visible spectral study(UV-Vis), pencil hardness test, and scanning electron microscopy(SEM) experiment. In this study, PET samples irradiated at several conditions were analyzed through various measurements. UV absorbance-another meaning of transmittance in this study- of irradiated PET sample increased compared with pristine sample as fluence was increased in UV-Visible spectroscopy experiment.

  3. Portable vibration exciter

    Science.gov (United States)

    Beecher, L. C.; Williams, F. T.

    1970-01-01

    Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.

  4. Long-term variations of the UV-B radiation over Central Europe as derived from the reconstructed UV time series

    Directory of Open Access Journals (Sweden)

    J. W. Krzyscin

    2004-04-01

    Full Text Available The daily doses of the erythemally weighted UV radiation are reconstructed for three sites in Central Europe: Belsk-Poland (1966–2001, Hradec Kralove-Czech Republic (1964–2001, and Tõravere-Estonia (1967–2001 to discuss the UV climatology and the long-term changes of the UV-B radiation since the mid 1960s. Various reconstruction models are examined: a purely statistical model based on the Multivariate Adaptive Regression Splines (MARS methodology, and a hybrid model combining radiative transfer model calculations with empirical estimates of the cloud effects on the UV radiation. Modeled long-term variations of the surface UV doses appear to be in a reasonable agreement with the observed ones. A simple quality control procedure is proposed to check the homogeneity of the biometer and pyranometer data. The models are verified using the results of UV observations carried out at Belsk since 1976. MARS provides the best estimates of the UV doses, giving a mean difference between the modeled and observed monthly means equal to 0.6±2.5%. The basic findings are: similar climatological forcing by clouds for all considered stations (~30% reduction in the surface UV, long-term variations in UV monthly doses having the same temporal pattern for all stations with extreme low monthly values (~5% below overall mean level at the end of the 1970s and extreme high monthly values (~5% above overall mean level in the mid 1990s, regional peculiarities in the cloud long-term forcing sometimes leading to extended periods with elevated UV doses, recent stabilization of the ozone induced UV long-term changes being a response to a trendless tendency of total ozone since the mid 1990s. In the case of the slowdown of the total ozone trend over Northern Hemisphere mid-latitudes it seems that clouds will appear as the most important modulator of the UV radiation both in long- and short-time scales over next decades. Key words. Atmospheric composition and structure

  5. Long-term variations of the UV-B radiation over Central Europe as derived from the reconstructed UV time series

    Directory of Open Access Journals (Sweden)

    J. W. Krzyscin

    2004-04-01

    Full Text Available The daily doses of the erythemally weighted UV radiation are reconstructed for three sites in Central Europe: Belsk-Poland (1966–2001, Hradec Kralove-Czech Republic (1964–2001, and Tõravere-Estonia (1967–2001 to discuss the UV climatology and the long-term changes of the UV-B radiation since the mid 1960s. Various reconstruction models are examined: a purely statistical model based on the Multivariate Adaptive Regression Splines (MARS methodology, and a hybrid model combining radiative transfer model calculations with empirical estimates of the cloud effects on the UV radiation. Modeled long-term variations of the surface UV doses appear to be in a reasonable agreement with the observed ones. A simple quality control procedure is proposed to check the homogeneity of the biometer and pyranometer data. The models are verified using the results of UV observations carried out at Belsk since 1976. MARS provides the best estimates of the UV doses, giving a mean difference between the modeled and observed monthly means equal to 0.6±2.5%. The basic findings are: similar climatological forcing by clouds for all considered stations (~30% reduction in the surface UV, long-term variations in UV monthly doses having the same temporal pattern for all stations with extreme low monthly values (~5% below overall mean level at the end of the 1970s and extreme high monthly values (~5% above overall mean level in the mid 1990s, regional peculiarities in the cloud long-term forcing sometimes leading to extended periods with elevated UV doses, recent stabilization of the ozone induced UV long-term changes being a response to a trendless tendency of total ozone since the mid 1990s. In the case of the slowdown of the total ozone trend over Northern Hemisphere mid-latitudes it seems that clouds will appear as the most important modulator of the UV radiation both in long- and short-time scales over next decades.

    Key words. Atmospheric composition and

  6. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme

    International Nuclear Information System (INIS)

    Theophilou, Iris; Tassi, M.; Thanos, S.

    2014-01-01

    Photoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations [M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem. 113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys. 138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations

  7. UV Tanning Equipment | Radiation Protection | US EPA

    Science.gov (United States)

    2017-08-07

    Sun lamps and tanning equipment emit ultraviolet (UV) rays. People who are exposed to UV rays over a long period of time are more likely to develop skin cancer. People with light skin are in more danger because their skin is more sensitive to UV rays.

  8. Quantum coherent π-electron rotations in a non-planar chiral molecule induced by using a linearly polarized UV laser pulse

    Science.gov (United States)

    Mineo, Hirobumi; Fujimura, Yuichi

    2015-06-01

    We propose an ultrafast quantum switching method of π-electron rotations, which are switched among four rotational patterns in a nonplanar chiral aromatic molecule (P)-2,2’- biphenol and perform the sequential switching among four rotational patterns which are performed by the overlapped pump-dump laser pulses. Coherent π-electron dynamics are generated by applying the linearly polarized UV pulse laser to create a pair of coherent quasidegenerated excited states. We also plot the time-dependent π-electron ring current, and discussed ring current transfer between two aromatic rings.

  9. Multi-frequency excitation

    KAUST Repository

    Younis, Mohammad I.

    2016-01-01

    Embodiments of multi-frequency excitation are described. In various embodiments, a natural frequency of a device may be determined. In turn, a first voltage amplitude and first fixed frequency of a first source of excitation can be selected

  10. Numerical and experimental investigation of UV disinfection for water treatment

    International Nuclear Information System (INIS)

    Li, H.Y.; Osman, H.; Kang, C.W.; Ba, T.

    2017-01-01

    Highlights: • UV irradiation for water treatment is numerically and experimentally investigated. • Fluence rate E increases exponentially with the increase of UVT. • UV dose distribution moves to a high range with increase of UVT and lamp power. • A linear relationship is observed between fluence rate E and average UV dose D_a_v_e. • D_a_v_e decreases with the increase of UVT and fluid flow rate. - Abstract: Disinfection by ultraviolet (UV) for water treatment in a UV reactor is numerically and experimentally investigated in this paper. The flow of water, UV radiation transportation as well as microorganism particle trajectories in the UV reactor is simulated. The effects of different parameters including UV transmittance (UVT), lamp power and water flow rate on the UV dose distribution and average UV dose are studied. The UV reactor performance in terms of average UV dose under these parameters is analysed. Comparisons are made between experiments and simulations on the average UV dose and reasonable agreement is achieved. The results show that the fluence rate increases exponentially with the increase of UVT. The UV dose distribution profiles moves to a high range of UV dose with the increase of UVT and lamp power. The increase of water flow rate reduces the average exposure time of microorganism particles to the UV light, resulting in the shifting of UV dose distribution to a low range of UV dose. A linear relationship is observed between fluence rate and the average UV dose. The average UV dose increases with the increase of lamp power while it decreases with the increase of UVT and water flow rate.

  11. Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater

    International Nuclear Information System (INIS)

    Mahdi-Ahmed, Moussa; Chiron, Serge

    2014-01-01

    Highlights: • UV/PMS more efficient than UV/H 2 O 2 for ciprofloxacin removal in wastewater. • PMS decomposition into sulfate radical was activated by bicarbonate ions. • CIP degradation pathways elucidation support sulfate radical attacks as a main route. • Sulfate radical generation allows for CIP antibacterial activity elimination. -- Abstract: This work aimed at demonstrating the advantages to use sulfate radical anion for eliminating ciprofloxacin residues from treated domestic wastewater by comparing three UV-254 nm based advanced oxidation processes: UV/persulfate (PDS), UV/peroxymonosulfate (PMS) and UV/H 2 O 2 . In distilled water, the order of efficiency was UV/PDS > UV/PMS > UV/H 2 O 2 while in wastewater, the most efficient process was UV/PMS followed by UV/PDS and UV/H 2 O 2 mainly because PMS decomposition into sulfate radical anion was activated by bicarbonate ions. CIP was fully degraded in wastewater at pH 7 in 60 min for a [PMS]/[CIP] molar ratio of 20. Nine transformation products were identified by liquid chromatography–high resolution-mass spectrometry allowing for the establishment of degradation pathways in the UV/PMS system. Sulfate radical anion attacks prompted transformations at the piperazinyl ring through a one electron oxidation mechanism as a major pathway while hydroxyl radical attacks were mainly responsible for quinolone moiety transformations as a minor pathway. Sulfate radical anion generation has made UV/PMS a kinetically effective process in removing ciprofloxacin from wastewater with the elimination of ciprofloxacin antibacterial activity

  12. Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Mahdi-Ahmed, Moussa; Chiron, Serge, E-mail: Serge.Chiron@msem.univ-montp2.fr

    2014-01-30

    Highlights: • UV/PMS more efficient than UV/H{sub 2}O{sub 2} for ciprofloxacin removal in wastewater. • PMS decomposition into sulfate radical was activated by bicarbonate ions. • CIP degradation pathways elucidation support sulfate radical attacks as a main route. • Sulfate radical generation allows for CIP antibacterial activity elimination. -- Abstract: This work aimed at demonstrating the advantages to use sulfate radical anion for eliminating ciprofloxacin residues from treated domestic wastewater by comparing three UV-254 nm based advanced oxidation processes: UV/persulfate (PDS), UV/peroxymonosulfate (PMS) and UV/H{sub 2}O{sub 2}. In distilled water, the order of efficiency was UV/PDS > UV/PMS > UV/H{sub 2}O{sub 2} while in wastewater, the most efficient process was UV/PMS followed by UV/PDS and UV/H{sub 2}O{sub 2} mainly because PMS decomposition into sulfate radical anion was activated by bicarbonate ions. CIP was fully degraded in wastewater at pH 7 in 60 min for a [PMS]/[CIP] molar ratio of 20. Nine transformation products were identified by liquid chromatography–high resolution-mass spectrometry allowing for the establishment of degradation pathways in the UV/PMS system. Sulfate radical anion attacks prompted transformations at the piperazinyl ring through a one electron oxidation mechanism as a major pathway while hydroxyl radical attacks were mainly responsible for quinolone moiety transformations as a minor pathway. Sulfate radical anion generation has made UV/PMS a kinetically effective process in removing ciprofloxacin from wastewater with the elimination of ciprofloxacin antibacterial activity.

  13. Water and Wastewater Disinfection with Peracetic Acid and UV Radiation and Using Advanced Oxidative Process PAA/UV

    Directory of Open Access Journals (Sweden)

    Jeanette Beber de Souza

    2015-01-01

    Full Text Available The individual methods of disinfection peracetic acid (PAA and UV radiation and combined process PAA/UV in water (synthetic and sanitary wastewater were employed to verify the individual and combined action of these advanced oxidative processes on the effectiveness of inactivation of microorganisms indicators of fecal contamination E. coli, total coliforms (in the case of sanitary wastewater, and coliphages (such as virus indicators. Under the experimental conditions investigated, doses of 2, 3, and 4 mg/L of PAA and contact time of 10 minutes and 60 and 90 s exposure to UV radiation, the results indicated that the combined method PAA/UV provided superior efficacy when compared to individual methods of disinfection.

  14. Complementary UV-Absorption of Mycosporine-like Amino Acids and Scytonemin is Responsible for the UV-Insensitivity of Photosynthesis in Nostoc flagelliforme

    Science.gov (United States)

    Ferroni, Lorenzo; Klisch, Manfred; Pancaldi, Simonetta; Häder, Donat-Peter

    2010-01-01

    Mycosporine-like amino acids (MAAs) and scytonemin are UV-screening compounds that have presumably appeared early in the history of life and are widespread in cyanobacteria. Natural colonies of the UV-insensitive Nostoc flagelliforme were found to be especially rich in MAAs (32.1 mg g DW−1), concentrated in the glycan sheath together with scytonemin. MAAs are present in the form of oligosaccharide-linked molecules. Photosystem II activity, measured using PAM fluorescence and oxygen evolution, was used as a most sensitive physiological parameter to analyse the effectiveness of UV-protection. Laboratory experiments were performed under controlled conditions with a simulated solar radiation specifically deprived of UV-wavebands with cut-off filters (295, 305, 320, 345 and 395 nm). The UV-insensitivity of N. flagelliforme was found to cover the whole UV-A (315–400 nm) and UV-B (280–320 nm) range and is almost certainly due to the complementary UV-absorption of MAAs and scytonemin. The experimental approach used is proposed to be suitable for the comparison of the UV-protection ability in organisms that differ in their complement of UV-sunscreen compounds. Furthermore, this study performed with a genuinely terrestrial organism points to the relevance of marine photoprotective compounds for life on Earth, especially for the colonization of terrestrial environments. PMID:20161974

  15. Complementary UV-Absorption of Mycosporine-like Amino Acids and Scytonemin is Responsible for the UV-Insensitivity of Photosynthesis in Nostoc flagelliforme

    Directory of Open Access Journals (Sweden)

    Donat-Peter Häder

    2010-01-01

    Full Text Available Mycosporine-like amino acids (MAAs and scytonemin are UV-screening compounds that have presumably appeared early in the history of life and are widespread in cyanobacteria. Natural colonies of the UV-insensitive Nostoc flagelliforme were found to be especially rich in MAAs (32.1 mg g DW-1, concentrated in the glycan sheath together with scytonemin. MAAs are present in the form of oligosaccharide-linked molecules. Photosystem II activity, measured using PAM fluorescence and oxygen evolution, was used as a most sensitive physiological parameter to analyse the effectiveness of UV-protection. Laboratory experiments were performed under controlled conditions with a simulated solar radiation specifically deprived of UV-wavebands with cut-off filters (295, 305, 320, 345 and 395 nm. The UV-insensitivity of N. flagelliforme was found to cover the whole UV-A (315–400 nm and UV-B (280–320 nm range and is almost certainly due to the complementary UV-absorption of MAAs and scytonemin. The experimental approach used is proposed to be suitable for the comparison of the UV-protection ability in organisms that differ in their complement of UV-sunscreen compounds. Furthermore, this study performed with a genuinely terrestrial organism points to the relevance of marine photoprotective compounds for life on Earth, especially for the colonization of terrestrial environments.

  16. Effect of uv irradiation on lambda DNA transcription

    Energy Technology Data Exchange (ETDEWEB)

    Ranade, S S [Cancer Research Inst., Bombay (India)

    1977-05-01

    The effect of uv irradiation of template DNA has been studied in vitro in the E.coli RNA polymerase system with native and uv treated lambda DNA. Lambda DNA was more susceptible to uv than was calf-thymus DNA, yet a residual activity was observed at a uv dose of 0.5 x 10/sup 4/ erg/mm/sup 2/. From the kinetic analysis of the reaction and the incorporation of lambda /sup 32/P-labelled nucleoside triphosphates, it seems reasonable to conclude that uv irradiation probably did not affect the DNA initiation sites, recognizable by RNA polymerase. The transcription products made with uv irradiated lambda DNA were asymmetrical, and hybridized to the right half (R) and the left half (L) of lambda DNA with the ratio of R/L=4/1, and they showed a lower hybridizability than the transcripts with native lambda DNA. The initiation sites recognizable by RNA polymerase seemed to be the same on both native and uv irradiated lambda DNA, though the transcription of uv treated lambda DNA appeared to terminate with rather short RNA chains.

  17. Emission properties of Ga2O3 nano-flakes: effect of excitation density.

    Science.gov (United States)

    Pozina, G; Forsberg, M; Kaliteevski, M A; Hemmingsson, C

    2017-02-08

    In the quest of developing high performance electronic and optical devices and more cost effective fabrication processes of monoclinic β-Ga 2 O 3 , new growth techniques and fundamental electronic and optical properties of defects have to be explored. By heating of dissolved metallic Ga in HCl in a NH 3 and N 2 atmosphere, nano-flake films of monoclinic β-phase Ga 2 O 3 were grown as confirmed by XRD. From optical measurements, we observe two strong emissions. A red band peaking at ~2.0 eV and a UV band at ~3.8 eV. The band at ~2.0 eV is attributed to donor-acceptor pair recombination where the donor and acceptor level is suggested to be related to V O and nitrogen, respectively. By studying the dependence of the intensity of the UV band at 3.8 eV versus excitation density, a model is suggested. In the model, it is assumed that local potential fluctuations forming minima (maxima), where the carriers would be localized with a summarized band offset for conduction and valence band of 1 eV. The origin of the fluctuations is tentatively suggested to be related to micro-inclusions of different phases in the film.

  18. Excited charmed mesons

    International Nuclear Information System (INIS)

    Butler, J.N.; Shukla, S.

    1995-05-01

    The experimental status of excited charmed mesons is reviewed and is compared to theoretical expectations. Six states have been observed and their properties are consistent with those predicted for excited charmed states with orbital angular momentum equal to one

  19. X-UV lasers and their promising applications

    International Nuclear Information System (INIS)

    Ros, D.

    2004-01-01

    The author reviews 30 years of research and achievements concerning X-UV lasers. Typical features of X-UV lasers are: a large number of photons emitted per impulse (between 10 12 and 10 14 ) and very short impulses (between 1 and 100 ps). When a crystal is irradiated by a X-UV laser, these features favor new physical processes that did not appear when the irradiation was performed with other X-UV sources like synchrotron radiation for instance. Their high brilliance and coherence properties make them efficient means as irradiating sources or imaging tools. X-UV laser interferometry allows the mapping of a surface at the nano-metric scale without any interaction between the laser beam and the surface. (A.C.)

  20. Energy transfer and colour tunability in UV light induced Tm3+/Tb3+/Eu3+: ZnB glasses generating white light emission.

    Science.gov (United States)

    Naresh, V; Gupta, Kiran; Parthasaradhi Reddy, C; Ham, Byoung S

    2017-03-15

    A promising energy transfer (Tm 3+ →Tb 3+ →Eu 3+ ) approach is brought forward to generate white light emission under ultraviolet (UV) light excitation for solid state lightening. Tm 3+ /Tb 3+ /Eu 3+ ions are combinedly doped in zinc borate glass system in view of understanding energy transfer process resulting in white light emission. Zinc borate (host) glass displayed optical and luminescence properties due to formation of Zn(II) x -[O(-II)] y centres in the ZnB glass matrix. At 360nm (UV) excitation, triply doped Tm 3+ /Tb 3+ /Eu 3+ : ZnB glasses simultaneously shown their characteristic emission bands in blue (454nm: 1 D 2 → 3 F 4 ), green (547nm: 5 D 4 → 7 F 5 ) and red (616nm: 5 D 0 → 7 F 2 ) regions. In triple ions doped glasses, energy transfer dynamics is discussed in terms of Forster-Dexter theory, excitation & emission profiles, lifetime curves and from partial energy level diagram of three ions. The role of Tb 3+ in ET from Tm 3+ →Eu 3+ was discussed using branch model. From emission decay analysis, energy transfer probability (P) and efficiency (η) were evaluated. Colour tunability from blue to white on varying (Tb 3+ , Eu 3+ ) content is demonstrated from Commission Internationale de L'Eclairage (CIE) chromaticity coordinates. Based on chromaticity coordinates, other colour related parameters like correlated colour temperature (CCT) and colour purity are also computed for the studied glass samples. An appropriate blending of such combination of rare earth ions could show better suitability as potential candidates in achieving multi-colour and warm/cold white light emission for white LEDs application in the field of solid state lightening. Copyright © 2016 Elsevier B.V. All rights reserved.