WorldWideScience

Sample records for utilizing indoor radon

  1. Indoor radon

    International Nuclear Information System (INIS)

    1997-12-01

    The radon, a natural radioactive gas, is present almost everywhere on the earth's surface. It can be accumulated at high concentration in confined spaces (buildings, mines, etc). In the last decades many studies conducted in several countries showed that inhaling important amounts of radon rises the risk of lung cancer. Although, the radon is a naturally appearing radioactive source, it may be the subject of a human 'enhancement' of concentration. The increasing radon concentration in professional housing constitutes an example of enhanced natural radioactivity which can induce health risks on workers and public. Besides, the radon is present in the dwelling houses (the domestic radon). On 13 May 1996, the European Union Council issued the new EURATOM Instruction that establishes the basic standards of health protection of population and workers against the ionizing radiation hazards (Instruction 96/29/EURATOM, JOCE L-159 of 29 June 1996). This instruction does not apply to domestic radon but it is taken into consideration by another EURATOM document: the recommendation of the Commission 90/143/EURATOM of 21 February 1990 (JOCE L-80 of 27 March 1990). The present paper aims at establishing in accordance to European Union provisions the guidelines for radon risk management in working places, as well as in dwelling houses, where the implied risk is taken into account. This document does not deal with cases of high radon concentration on sites where fabrication, handling or storage of radium sources take place. These situations must be treated by special studies

  2. Modeling of indoor radon

    International Nuclear Information System (INIS)

    Paschoa, A.S.

    1990-01-01

    This paper reports on models for radon, which are developed not only to describe the behavior of radon and daughters since the moment that radon is created in natural sources by the alpha decay of 226 Ra up to the point that doses to humans are estimated based on the inhalation of radon and its progeny. The objective of a model should be determinant in defining the model structure and boundaries. Modeling indoors radon is particularly useful when the 226 Ra concentration in building materials and soils can be known before a house will be built with such 226 Ra bearing materials and over 226 Ra rich soils. The reported concentrations of 226 Ra in building materials range from 0.3 Bq · kg -1 in wood to about 2.6 x 10 3 Bq · kg -1 in aerated concrete based on alum shale. 30 In addition, when a house is built on a soil containing a high 226 Ra concentration, radon exhalation from the soil contributes to increase radon concentration indoors. The reported radon exhalation from soils range from 3.4 Bq · m -2 · s -1 in latosolic soil from Osaka, Japan to about 53 mBq · m -2 · s -1 in chernozemic soil from Illinois

  3. Indoor radon II

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Because of the growing interest in and public concern about indoor radon, APCA, in April 1987, sponsored the Second International Specialty Conference on Indoor Radon. This book is the proceedings of this conference and includes discussions on: A current assessment of the nature of the problem; Issues related to health effects and risk assessment; The development of public and private sector initiatives; Research into methods of control and prevention; International perspectives; and Measurement methods and programs. The material is intended for the technically oriented and for those responsible for developing programs and initiatives to address this important public health issue. Contributors include federal, state, and provincial program officials and members of the academic and private sectors

  4. Indoor radon and earthquake

    International Nuclear Information System (INIS)

    Saghatelyan, E.; Petrosyan, L.; Aghbalyan, Yu.; Baburyan, M.; Araratyan, L.

    2004-01-01

    For the first time on the basis of the Spitak earthquake of December 1988 (Armenia, December 1988) experience it is found out that the earthquake causes intensive and prolonged radon splashes which, rapidly dispersing in the open space of close-to-earth atmosphere, are contrastingly displayed in covered premises (dwellings, schools, kindergartens) even if they are at considerable distance from the earthquake epicenter, and this multiplies the radiation influence on the population. The interval of splashes includes the period from the first fore-shock to the last after-shock, i.e. several months. The area affected by radiation is larger vs. Armenia's territory. The scale of this impact on population is 12 times higher than the number of people injured in Spitak, Leninakan and other settlements (toll of injured - 25 000 people, radiation-induced diseases in people - over 300 000). The influence of radiation directly correlates with the earthquake force. Such a conclusion is underpinned by indoor radon monitoring data for Yerevan since 1987 (120 km from epicenter) 5450 measurements and multivariate analysis with identification of cause-and-effect linkages between geo dynamics of indoor radon under stable and conditions of Earth crust, behavior of radon in different geological mediums during earthquakes, levels of room radon concentrations and effective equivalent dose of radiation impact of radiation dose on health and statistical data on public health provided by the Ministry of Health. The following hitherto unexplained facts can be considered as consequences of prolonged radiation influence on human organism: long-lasting state of apathy and indifference typical of the population of Armenia during the period of more than a year after the earthquake, prevalence of malignant cancer forms in disaster zones, dominating lung cancer and so on. All urban territories of seismically active regions are exposed to the threat of natural earthquake-provoked radiation influence

  5. Radon in the indoor environment

    International Nuclear Information System (INIS)

    Vanmarcke, H.

    1998-01-01

    The objectives of R and D on radon in the indoor environment at SCK-CEN is to (1) to investigate the deposition of radon progeny in the human respiratory tract by means of direct measurements as a function of aerosol conditions; to assess the radon concentrations in buildings retrospectively with volume traps. Progress and main achievements in 1997 are reported on

  6. Indoor radon concentration and outdoor/indoor pressure difference correlation

    International Nuclear Information System (INIS)

    Cechak, T.; Fronka, A.; Moucka, L.

    2004-01-01

    In the current approach to the radon issue, the radon risk for people living in a building is estimated based on the average indoor radon concentration. Short-term measurements as usually applied fail to reflect the wide range of radon variations arising from ventilation, radon supply and, in particular, human activities in the building. For this reason, efforts are made to find a new approach to the assessment of the quality of a building as a radon barrier, independent of the weather conditions and residential habits. A simple model of radon volume activity entering the building at a constant rate and simultaneously ventilated at a constant rate is applicable to this task. The rate of radon ingress can be regarded as a parameter making it possible to quantify the leakage of structures provided the barrier against the radon in a soil gas. The ventilation rate, on the other hand, characterizes the leakage of the whole building envelope at a given outdoor/indoor pressure difference. A unique measuring technique called the blower door exists whereby a defined pressure difference between the indoor and outdoor atmosphere can be established. Under such conditions both the ventilation rate and the rate of radon ingress can be measured and expressed as a function of the pressure difference. An analysis of the model of a room with a constant ventilation and constant radon supply is presented and the relationship between radon supply and ventilation rate can be assumed. Some experimental results show how the model can be utilized. The real indoor-outdoor air pressure differences, the indoor-soil air pressure differences, and some effects of different ventilation regimes are given. Other experiments, which have been done by using the blower door method, illustrate the possible effects and some restrictions for a routine application are discussed

  7. Indoor air radon

    International Nuclear Information System (INIS)

    Cothern, C.R.

    1990-01-01

    This review concerns primarily the health effects that result from indoor air exposure to radon gas and its progeny. Radon enters homes mainly from the soil through cracks in the foundation and other holes to the geologic deposits beneath these structures. Once inside the home the gas decays (half-life 3.8 d) and the ionized atoms adsorb to dust particles and are inhaled. These particles lodge in the lung and can cause lung cancer. The introduction to this review gives some background properties of radon and its progeny that are important to understanding this public health problem as well as a discussion of the units used to describe its concentrations. The data describing the health effects of inhaled radon and its progeny come both from epidemiological and animal studies. The estimates of risk from these two data bases are consistent within a factor of two. The epidemiological studies are primarily for hard rock miners, although some data exist for environmental exposures. The most complete studies are those of the US, Canadian, and Czechoslovakian uranium miners. Although all studies have some deficiencies, those of major importance include uranium miners in Saskatchewan, Canada, Swedish iron miners, and Newfoundland fluorspar miners. These six studies provide varying degrees of detail in the form of dose-response curves. Other epidemiological studies that do not provide quantitative dose-response information, but are useful in describing the health effects, include coal, iron ore and tin miners in the UK, iron ore miners in the Grangesburg and Kiruna, Sweden, metal miners in the US, Navajo uranium miners in the US, Norwegian niobian and magnitite miners, South African gold and uranium miners, French uranium miners, zinc-lead miners in Sweden and a variety of small studies of environmental exposure. An analysis of the epidemiological studies reveals a variety of interpretation problem areas.172 references

  8. EML indoor radon workshop, 1982

    International Nuclear Information System (INIS)

    George, A.C.; Lowder, W.; Fisenne, I.; Knutson, E.O.; Hinchliffe, L.

    1983-07-01

    A workshop on indoor radon, held at the Environmental Measurements Laboratory (EML) on November 30 and December 1, 1982, covered recent developments in radon daughter research and development. Thirty papers were presented dealing with standardization and quality assurance measurement methods, surveys, measurements strategy, physical mechanisms of radon and radon daughter transport and development of guidance standards for indoor exposures. The workshop concluded with a planning session that identified the following needs: (1) national and international intercomparisons of techniques for measuring radon and radon daughter concentrations, working level and radon exhalation flux density; (2) development and refinement of practical measurement techniques for thoron and its daughter products; (3) quantitative definition of the sources of indoor radon and the mechanisms of transport into structures; (4) better knowledge of the physical properties of radon daughters; (5) more complete and accurate data on the population exposure to radon, which can only be met by broadly based surveys; and (6) more international cooperation and information exchange among countries with major research programs

  9. Large-scale radon hazard evaluation in the Oslofjord region of Norway utilizing indoor radon concentrations, airborne gamma ray spectrometry and geological mapping

    International Nuclear Information System (INIS)

    Smethurst, Mark Andrew; Strand, Terje; Sundal, Aud Venke; Rudjord, Anne Liv

    2008-01-01

    We test whether airborne gamma ray spectrometer measurements can be used to estimate levels of radon hazard in the Oslofjord region of Norway. We compile 43,000 line kilometres of gamma ray spectrometer data from 8 airborne surveys covering 10,000 km 2 and compare them with 6326 indoor radon measurements. We find a clear spatial correlation between areas with elevated concentrations of uranium daughters in the near surface of the ground and regions with high incidence of elevated radon concentrations in dwellings. This correlation permits cautious use of the airborne data in radon hazard evaluation where direct measurements of indoor radon concentrations are few or absent. In radon hazard evaluation there is a natural synergy between the mapping of radon in indoor air, bedrock and drift geology mapping and airborne gamma ray surveying. We produce radon hazard forecast maps for the Oslofjord region based on a spatial union of hazard indicators from all four of these data sources. Indication of elevated radon hazard in any one of the data sets leads to the classification of a region as having an elevated radon hazard potential. This approach is inclusive in nature and we find that the majority of actual radon hazards lie in the assumed elevated risk regions

  10. Indoor radon concentration in Poland

    International Nuclear Information System (INIS)

    Mamont-Ciesla, K.; Jagielak, J.; Rosinski, S.W.; Sosinka, A.; Bysiek, M.; Henschke, J.

    1996-01-01

    Preliminary survey of Rn concentration indoors by means of track detectors and y-ray dose rate with the use of TLD in almost 500 homes in selected areas of Poland was performed in the late 1980s. It was concluded that radon contributes 1.16 mSv i.e. about 46 per cent of the total natural environment ionizing radiation dose to the Polish population. Comparison of the average radon concentrations in 4 seasons of a year and in 3 groups of buildings: masonry, concrete and wood, revealed that the ground beneath the building structure is likely the dominant source of radon indoors. Since the National Atomic Energy Agency in its regulations of 1988-03-31 set up the permissible limit of the equilibrium equivalent concentration of radon in new buildings (equal 100 Bq/m3), the nation-scale survey project for radon in buildings has been undertaken. These regulations were supposed to take effect in 1995-01-01. The project has 3 objectives: to estimate the radiation exposure due to radon daughters received by Polish population to identify radon-prone areas in Poland to investigate dependence of the indoor radon concentrations on such parameters as: type of construction material, presence (or absence) of cellar under the building, number of floor

  11. Indoor Radon Concentration Related to Different Radon Areas and Indoor Radon Prediction

    Science.gov (United States)

    Juhásová Šenitková, Ingrid; Šál, Jiří

    2017-12-01

    Indoor radon has been observed in the buildings at areas with different radon risk potential. Preventive measures are based on control of main potential radon sources (soil gas, building material and supplied water) to avoid building of new houses above recommended indoor radon level 200 Bq/m3. Radon risk (index) estimation of individual building site bedrock in case of new house siting and building protection according technical building code are obligatory. Remedial actions in buildings built at high radon risk areas were carried out principally by unforced ventilation and anti-radon insulation. Significant differences were found in the level of radon concentration between rooms where radon reduction techniques were designed and those where it was not designed. The mathematical model based on radon exhalation from soil has been developed to describe the physical processes determining indoor radon concentration. The model is focused on combined radon diffusion through the slab and advection through the gap from sub-slab soil. In this model, radon emanated from building materials is considered not having a significant contribution to indoor radon concentration. Dimensional analysis and Gauss-Newton nonlinear least squares parametric regression were used to simplify the problem, identify essential input variables and find parameter values. The presented verification case study is introduced for real buildings with respect to various underground construction types. Presented paper gives picture of possible mathematical approach to indoor radon concentration prediction.

  12. Ventilation influence upon indoor air radon level

    International Nuclear Information System (INIS)

    Tian Deyuan

    1995-01-01

    Levels of indoor radon in air are studied by a continuous electrostatic radon monitor under normal living conditions to evaluate the influence of air conditioned ventilation on indoor air radon level. Results show that the indoor air radon concentrations are not much more than those without household conditioner living condition, although using household conditioner requires a sealed room which should lead to a higher radon level. Turning on air conditioner helps lower indoor radon level. Therefore, the total indoor air Rn levels are normal > ventilation > exhaust or in-draft > exhaust plus in-draft

  13. Radon measurements in indoor workplaces

    International Nuclear Information System (INIS)

    Tokonami, S.; Matsumoto, M.; Furukawa, M.; Fujimoto, K.; Fujitaka, K.; Pan, J.; Kurosawa, R.

    1996-01-01

    Radon measurements in several office buildings located in Tokyo were carried out with two types of device to study the time-dependent radon concentration in indoor workplaces. Both types of device use the electrostatic field for the collection of 218 Po onto the electrode of the detector. One provides an average radon concentration throughout the day. The other, in which a weekly timer is installed in the circuit of the electrode of the device, provides an average radon concentration during working hours (9:00-17:00, Monday-Friday). Although radon concentrations in Japanese dwellings have been found to be generally low, relatively high concentrations were observed in the office buildings. No consistent seasonal variation was recognised in this study. Little difference of average radon concentrations between working hours and the whole day was found throughout the year in two offices. On the other hand, a significant difference was observed in other offices. The operation of an air conditioner might change the radon concentration during working hours. From the results of radon measurements the average effective dose in the workplace was estimated to be 0.23 mSv for 2000 working hours in a year. (Author)

  14. Development of a model for radon concentration in indoor air

    International Nuclear Information System (INIS)

    Jelle, Bjørn Petter

    2012-01-01

    A model is developed for calculation of the radon concentration in indoor air. The model takes into account various important parameters, e.g. radon concentration in ground, radon diffusion resistance of radon barrier, air permeance of ground, air pressure difference between outdoor ground and indoor at ground level, ventilation of the building ground and number of air changes per hour due to ventilation. Characteristic case studies are depicted in selected 2D and 3D graphical plots for easy visualization and interpretation. The radon transport into buildings might be dominated by diffusion, pressure driven flow or a mixture of both depending on the actual values of the various parameters. The results of our work indicate that with realistic or typical values of the parameters, most of the transport of radon from the building ground to the indoor air is due to air leakage driven by pressure differences through the construction. By incorporation of various and realistic values in the radon model, valuable information about the miscellaneous parameters influencing the indoor radon level is gained. Hence, the presented radon model may be utilized as a simple yet versatile and powerful tool for examining which preventive or remedial measures should be carried out to achieve an indoor radon level below the reference level as set by the authorities. - Highlights: ► Model development for calculation of radon concentration in indoor air. ► Radon model accounting for various important parameters. ► Characteristic case studies depicted in 2D and 3D graphical plots. ► May be utilized for examining radon preventive measures.

  15. Characterizing the source of radon indoors

    International Nuclear Information System (INIS)

    Nero, A.V.; Nazaroff, W.W.

    1983-09-01

    Average indoor radon concentrations range over more than two orders of magnitude, largely because of variability in the rate at which radon enters from building materials, soil, and water supplies. Determining the indoor source magnitude requires knowledge of the generation of radon in source materials, its movement within materials by diffusion and convection, and the means of its entry into buildings. This paper reviews the state of understanding of indoor radon sources and transport. Our understanding of generation rates in and movement through building materials is relatively complete and indicates that, except for materials with unusually high radionuclide contents, these sources can account for observed indoor radon concentrations only at the low end of the range observed. Our understanding of how radon enters buildings from surrounding soil is poorer, however recent experimental and theoretical studies suggest that soil may be the predominant source in many cases where the indoor radon concentration is high. 73 references, 3 figures, 1 table

  16. Measurements of indoor radon and radon progeny in Mexico City

    International Nuclear Information System (INIS)

    Cheng, Y.S.; Rodriguez, G.P.

    1996-01-01

    Indoor radon has been a public concern associated with increased lung cancer risks. Radon decay products interact with indoor aerosols to form progeny with different size distributions, which may influence the lung dosimetry when the progeny are inhaled. Air pollution in Mexico City is a serious problems with high particulate concentrations, but there are few reports of indoor radon measurement. The purposes of this study were to measure the aerosol concentration, radon concentration, and radon activity size distribution in the living area of three houses in Mexico City. The radon concentration was monitored by a RGM-3 radon gas monitor (Eberline, Inc., Santa Fe, NM). A graded diffusion battery was used to determine the progeny concentration and activity size distribution. The concentration and size distribution of the indoor aerosols were monitored by a quartz, crystal microbalance cascade impactor. Our measurements showed high concentrations of indoor aerosols (20-180 gg m -3 ). However, the radon concentrations-were low ( -1 ), but showed a clear diurnal pattern with peak concentrations from 2-10 AM. The activity size distributions of radon progeny were trimodal, with peaks of 0.6 nm, 4-5 nm, and 100 rim. Most activities were associated with large particle sizes. Our results indicated that indoor radon concentration was not high, due in part to a relatively high air exchange with outdoor air. The high aerosol concentration may also play an important part in the activity size distribution of radon progeny

  17. Radon measurements indoors

    International Nuclear Information System (INIS)

    Joensson, G.

    1983-02-01

    Measurements of Radon concentrations have been made using photographic film detectors in the communities of Uppsala, Soedertaelje and Tyresoe. The result from 6700 filmexposures in both one-family and apartment houses are reported. The fraction of dwellings with radon daughter concentrations exceeding 200 Bq/m 3 is between 3 and 14 percent for one-family houses and 0 to 5 percent for apartment buildings. 8 to 68 percent of the one-family houses and 57 to 83 percent of the apartment buildings had concentrations lower than 70 Bq/m 3 . The seasonal variations were recorded in one-family houses in Uppsala. In houses with low concentrations, the winter values were higher than the summer values. For houses with high concentrations the reversed variation was recorded. (Author)

  18. Indoor radon in Tunisian spas

    International Nuclear Information System (INIS)

    Labidi, S.; Al-Azmi, Darwish; Ben Salah, R.

    2012-01-01

    Indoor radon concentrations were measured in four well-known spas of Tunisia using nuclear track detectors. The radon concentrations in these spas were found to be in the range of 19 - 870 Bq.m -3 . The equilibrium factor F between radon and its progeny was found to vary in the range of 0.2 - 0.5, depending upon the ventilation rates within the buildings of the spas. Using the exposure-dose conversion factor, the effective doses to patients and workers were estimated and the dose was found to vary in the range 3.7 x 10 -3 - 12.5 x 10 -3 mSv.y -1 and 0.45 - 1.5 mSv.y -1 for patients and workers, respectively. These values are well inside the limit recommended for the annual dose limit of 20 mSv.y -1 for an occupational worker. The radium content in the groundwater of all four spas was measured and the results showed no correlation between the 226 Ra concentration in water and radon concentration in indoor air of the investigated spas. (authors)

  19. Indoor radon and childhood leukaemia

    International Nuclear Information System (INIS)

    Raaschou-Nielsen, O.

    2008-01-01

    This paper summarises the epidemiological literature on domestic exposure to radon and risk for childhood leukaemia. The results of 12 ecological studies show a consistent pattern of higher incidence and mortality rates for childhood leukaemia in areas with higher average indoor radon concentrations. Although the results of such studies are useful to generate hypotheses, they must be interpreted with caution, as the data were aggregated and analysed for geographical areas and not for individuals. The seven available case - control studies of childhood leukaemia with measurement of radon concentrations in the residences of cases and controls gave mixed results, however, with some indication of a weak (relative risk < 2) association with acute lymphoblastic leukaemia. The epidemiological evidence to date suggests that an association between indoor exposure to radon and childhood leukaemia might exist, but is weak. More case - control studies are needed, with sufficient statistical power to detect weak associations and based on designs and methods that minimise misclassification of exposure and provide a high participation rate and low potential selection bias. (authors)

  20. Indoor radon epidemiological study

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, E; Tomasek, L; Mueller, T [National Radiation Protection Institute, Prague (Czech Republic); Placek, V [Inst. for Expertises and Emergencies, Pribram-Kamenna (Czech Republic); Matzner, J; Heribanova, A [State Office for Nuclear Safety, Prague (Czech Republic)

    1996-12-31

    The study is a long-term prospective cohort study of lung cancer and possibility other causes of death. The study population includes inhabitants of the area, who had resided there for at three years and at least one of these between 1.1.1960 and 21.12.1989. A total of 11865 inhabitants satisfied these criteria. The cumulative exposure of each respondent is being assessed on the basis of measurements in dwellings, time spent there and estimation of previous exposure levels by a model accounting for constructional changes in buildings. One year lasting measurements of radon daughter products by integral dosimeters (Kodak film LR 115) were performed in practically all dwellings of the specified area. Radon measurements in houses in term of equilibrium concentration are compared with the results of a pilot study in Petrovice in 1990-91 which gave the stimulus for the epidemiological study. The distribution of death causes and ratio of observed (O) to expected (E) cases among collected death cases in the cohort, generally, somewhat lower ratios than one reflect the non-industrial character of the region, with the exception of lung cancer in man. The differences in the O/E ratios for lung cancer among the separate communities indicate that even in the situation of generally lower mortality, the dependence of lung cancer mortality on radon.

  1. Control of indoor radon and radon progeny concentrations

    International Nuclear Information System (INIS)

    Sextro, R.G.

    1985-05-01

    There are three general categories of techniques for the control of radon and radon progeny concentrations in indoor air - restriction of radon entry, reduction of indoor radon concentrations by ventilation or air cleaning, and removal of airborne radon progeny. The predominant radon entry process in most residences appears to be pressure driven flow of soil gas through cracks or other openings in the basement, slab, or subfloor. Sealing these openings or ventilation of the subslab or subfloor space are methods of reducing radon entry rates. Indoor radon concentrations may be reduced by increased ventilation. The use of charcoal filters for removal of radon gas in the indoor air by adsorption has also been proposed. Concentrations of radon progeny, which are responsible for most of the health risks associated with radon exposures, can be controlled by use of electrostatic or mechanical filtration. Air circulation can also reduce radon progeny concentrations in certain cases. This paper reviews the application and limitations of each of these control measures and discusses recent experimental results

  2. Indoor Radon Hazard: Impact Indices

    International Nuclear Information System (INIS)

    Alitto, G.; Nicoletti, G.

    2006-01-01

    How is possible to quantify, quickly, the effects of the Radon and the risk to it associated in relationship to the physical characteristics of the environments in which it is appraised? the concentration activity of Radon, valued in confined environments, it doesn't represent a meaningful and discriminating datum, or however exhaustive, for the respect of the negative effects from it induced. They exist, in fact, at the same concentration of the gas, different environmental configurations in which, risk related to exposure can also vary considerably. The estimation of the goodness of a indoor environment regarding ionizing radiations, excluding in this treatment those responsible of external exposure (gamma), it undoubtedly goes connected to a whole series of chemical-physical parameters proper of that environment. From this the demand has risen to create an impact index that kept track of all these aspects [it

  3. Behaviors of radon in indoor environment

    International Nuclear Information System (INIS)

    Mochizuki, Sadamu; Shimo, Michikuni.

    1987-01-01

    The source of radon ( 222 Rn) in the atmosphere is radioactive nuclide, uranium ( 238 U), which exists fairly common throughout the earth's crust. Radium ( 226 Ra) descended from uranium produce radon ( 222 Rn) of noble gas by decay. After formation in the ground, radon diffuses into the atmosphere. Without exception radon decay products are heavy metals which soon become attached to natural aerosols. Therefore, radon and its daughters (decay products) appear also in indoor environment, and generally, their concentration levels become higher than that of outdoor air due to build-up effects in the closed indoor environments. With the progress of the study on the influence of radon and its daughers on human health, it has become clear that they act effectively as an exciting cause of lung cancer. So, the study on the risk evaluation of them in room air has become to be very important. Concequently, the behaviors of radon and its daughters in indoor environment, first of all, should be studied in detail for the accurate estimation of the risk caused by them. In this special edition, fundamental characteristics of radon and its daughters, some measuring methods, theoretical considerations and some observational evidences obtained from various circumstances of indoor environment are described inorder to grasp and understand the behaviors of radon and its daughters in the indoor environment. (author)

  4. Exposure to unusually high indoor radon levels

    International Nuclear Information System (INIS)

    Rasheed, F.N.

    1993-01-01

    Unusually high indoor radon concentrations were reported in a small village in western Tyrol, Austria. The authors have measured the seasonal course of indoor radon concentrations in 390 houses of this village. 71% of houses in winter and 33% in summer, showed radon values on the ground floor above the Austrian action level of 400 Bq/cm 3 . This proportion results in an unusually high indoor radon exposure of the population. The radon source was an 8,700-year-old rock slide of granite gneiss, the largest of the alpine crystalline rocks. It has a strong emanating power because its rocks are heavily fractured and show a slightly increased uranium content. Previous reports show increased lung cancer mortality, myeloid leukemia, kidney cancer, melanoma, and prostate cancer resulting from indoor radon exposure. However, many studies fail to provide accurate information on indoor radon concentrations, classifying them merely as low, intermediate, and high, or they record only minor increases in indoor radon concentrations. Mortality data for 1970-91 were used to calculate age and sex standardized mortality rates (SMR) for 51 sites of carcinoma. The total population of Tyrol were controls. A significantly higher risk was recorded for lung cancer. The high SMR for lung cancer in female subjects is especially striking. Because the numbers were low for the other cancer sites, these were combined in one group to calculate the SMR. No significant increase in SMR was found for this group

  5. Normal and seasonally amplified indoor radon levels

    International Nuclear Information System (INIS)

    Gammage, R.B.; Dudney, C.S.; Wilson, D.L.; King, D.

    1995-01-01

    Winter and summer indoor radon measurements are reported for 121 houses in Freehold, New Jersey. When presented as winter:summer ratios of indoor radon, the data closely approximate a lognormal distribution. The geometric mean is 1.49. Freehold is located on the fairly flat coastal plain. The winter:summer ratios are believed to represent the norm for regions of the U.S. with cold winters and hot summers. The Freehold data set can be compared to corresponding data sets from other locations to suggest seasonal perturbations of indoor radon arising from unusual causes

  6. Indoor radon levels in coastal Karnataka

    International Nuclear Information System (INIS)

    Narayana, Y.; Radhakrishna, A.P.; Somashekarappa, H.M.; Karunakara, N.; Balakrishna, K.M.; Siddappa, K.

    1995-01-01

    Indoor radon levels have been measured in selected dwellings of coastal Karnataka using LR-115 type II peelable films and it is found to vary from 28.4 to 45.6 Bq m -3 with a geometric mean value of 35.7 Bq m -3 . The annual effective dose equivalent to the population of the region due to inhalation of radon was estimated from the measured data on radon level and is found to be in the range 1.9 - 3.1 mSv y -1 with a mean value 2.4 mSv y -1 . The correlation between indoor radon level and radium content in the underlying soil were studied. No definite correlation was observed to exist between indoor radon level and radium content in soil. (author). 24 refs., 2 tabs

  7. Indoor radon measurements in dwellings of Mizoram

    International Nuclear Information System (INIS)

    Lalramengzami, R.; Laldawngliana, C.; Sinha, D.; Ghosh, S.; Dwivedi, K.K.

    1995-01-01

    The concentration of indoor radon has been measured in some dwellings of Mizoram state by employing time integrated method using solid state nuclear track detector. This state is located in the north eastern region of India which has been identified as a high background area. The indoor radon levels determined in this work are compared with data obtained from other regions of India and the Environmental Protection Agency (EPA) prescribed safe limit. (author). 7 refs., 2 figs

  8. Indoor radon pollution: update. Bibliographic series

    International Nuclear Information System (INIS)

    Richard, S.A.

    1988-12-01

    This bibliography focuses on indoor radon pollution problems and is organized according to the following major topic areas: I-Overview (covering general areas such as law and policy, popular press, communication and education, indoor air and books); II-Health Effects (epidemiology, risk estimates, and dosimetry); III-Exposure (house construction, geology, source, physical properties, and radon in water); IV-Surveys (national and international case studies); V-Mitigation; and VI-Measurement Techniques. Section VIII-Appendix, lists State Contacts

  9. Sampling strategies for indoor radon investigations

    International Nuclear Information System (INIS)

    Prichard, H.M.

    1983-01-01

    Recent investigations prompted by concern about the environmental effects of residential energy conservation have produced many accounts of indoor radon concentrations far above background levels. In many instances time-normalized annual exposures exceeded the 4 WLM per year standard currently used for uranium mining. Further investigations of indoor radon exposures are necessary to judge the extent of the problem and to estimate the practicality of health effects studies. A number of trends can be discerned as more indoor surveys are reported. It is becoming increasingly clear that local geological factors play a major, if not dominant role in determining the distribution of indoor radon concentrations in a given area. Within a giving locale, indoor radon concentrations tend to be log-normally distributed, and sample means differ markedly from one region to another. The appreciation of geological factors and the general log-normality of radon distributions will improve the accuracy of population dose estimates and facilitate the design of preliminary health effects studies. The relative merits of grab samples, short and long term integrated samples, and more complicated dose assessment strategies are discussed in the context of several types of epidemiological investigations. A new passive radon sampler with a 24 hour integration time is described and evaluated as a tool for pilot investigations

  10. Distribution of indoor radon levels in Mexico

    CERN Document Server

    Espinosa, G; Rickards, J; Gammage, R B

    1999-01-01

    Our laboratory has carried out a systematic monitoring and evaluation of indoor radon concentration levels in Mexico for ten years. The results of the distribution of indoor radon levels for practically the entire country are presented, together with information on geological characteristics, population density, socioeconomic levels of the population, and architectural styles of housing. The measurements of the radon levels were made using the passive method of nuclear tracks in solids with the end-cup system. CR-39 was used as the detector material in combination with a one-step chemical etching procedure and an automatic digital- image counting system. Wherever a high level was measured, a confirming measurement was made using a dynamic method. The results are important for future health studies, including the eventual establishment of patterns for indoor radon concentration, as it has been done in the USA and Europe.

  11. Indoor radon concentrations in Vushtrri, Kosovo

    International Nuclear Information System (INIS)

    Xhafa, B.; Jonuzaj, A.; ); Bekteshi, S.; Ahmetaj, S.; Kabashi, S.; )

    2009-01-01

    Indoor air radon concentration was measured by exposing trac ketch detectors in the two elementary schools, one high school, a kindergarten and the hospital in the city of Vushtrri. Measurements were performed with the radon monitor PRM-145, which uses alpha scintillation cells and serves to determine the current concentration of radon. The results we obtained are in the range between the average values of radon for the interior spaces, and values that pose a potential risk for lung cancer. Measuring the concentration of radon was done in total of 34 rooms and came up with values which are between 28Bqm -3 and 398Bqm -3 . In order to reduce the concentration of radon, we have built a ventilation pump, then we performed repeated measurements and finally came with results between 130-145Bqm -3 .

  12. Indoor radon -- a strategic perspective

    International Nuclear Information System (INIS)

    Nero, A.V.

    1992-01-01

    Even the average 222 Rn concentration in US homes corresponds to an estimated individual lifetime risk of fatal lung cancer between 0.1% and 1%, depending on whether one smokes or not. Perhaps 50,000 to 100,000 homes have ten times the average or more, implying radiation doses to the occupants at or above the occupational radiation limit. But even this picture has been exaggerated by information provided the public by the EPA and the media, associating with nonsmokers risk estimated for smokers, and -- due to a faulty monitoring protocol -- giving the impression that a large fraction of homes have elevated levels. The result has been a program that focuses in fact on slightly-above-average indoor levels, while having no program for rapidly identifying and assisting those living at genuinely high levels. A sensible and effective strategy, in contrast, would (1) rely on accurate and specific public information, (2) recommend a monitoring protocol yielding the annual-average concentration in living space, the parameter of health significance, (3) constitute a national program to identify systematically and rapidly the areas of the country where the bulk of the high-radon homes occur, (4) build a sensible long-term research and action program associated with lower concentrations. Accomplishing these purposes will require a commitment to careful analysis and planning, involving an effective interaction with the scientific community, that has so far not been demonstrated

  13. Indoor radon survey in Eastern Sicily

    International Nuclear Information System (INIS)

    Catalano, R.; Immè, G.; Mangano, G.; Morelli, D.; Tazzer, A. Rosselli

    2012-01-01

    Inhalation of radon (Rn-222) and its progeny is one of the most significant sources of natural radiation exposure of the population. Nowadays, high radon exposures have been shown to cause lung cancer and many governments all over the world have therefore recommended that radon exposures in dwellings and indoor workplaces should be limited. Radon levels in buildings vary widely from area to area depending on local geology. This paper presents the results of a long-term survey of radon concentrations carried out from 2005 till 2010 in schools and dwellings of Eastern Sicily, using the solid-state nuclear track detector (SSNTD) technique. The investigated area shows medium-high indoor radon concentrations, higher than the Italian average of about 70 Bq/m 3 , with peaks of 500 Bq/m 3 or more in buildings near active faults. Fortunately, only a small fraction of the measurements, about 1.5% of total, was found greater than EU and Italian action limits for indoor and workplaces. - Highlights: ► In this paper we report radon monitoring survey carried out in the east Sicily in schools and dwellings. ► The detection methodology was the solid-state nuclear track detector one. ► The work was supported by a national projects financed by the National Institute of Nuclear Physics.

  14. Indoor radon level measurements in Iran using AEOI passive dosimeters

    International Nuclear Information System (INIS)

    Sohrabi, M.; Solaymanian, A.R.

    1988-01-01

    A passive radon diffusion dosimeter was developed at the RPD of AEOI for nationwide indoor radon level measurements. Several parameters of the dosimeter were studied. Radon levels were determined in about 250 houses in Ramsar (a high natural radiation area), Tehran, Babolsar and Gonabad. In this paper, the results of some dosimeter parameters as well as radon levels in indoor air are reported

  15. Radon in the indoor environment

    International Nuclear Information System (INIS)

    Vanmarcke, H.

    1998-01-01

    A precise retrospective assessment of long-term radon exposures in dwellings is essential for estimating lung-cancer risks. The objectives of this research are (1) to investigate the deposition of radon progeny in the human respiratory tract by means of direct measurements as a function of aerosol conditions, (2) to assess the radon concentrations in buildings retrospectively with volume traps

  16. Aerosol microphysics of indoor radon

    International Nuclear Information System (INIS)

    1989-01-01

    To provide an improved description for the deposition of charge on ultrafine aerosol particles, we have introduced for the first time into aerosol studies the ''jellium'' model potential to quantitatively describe the interaction energy at long range between a conducting particle and an ion (here modeled as a point charge). The benefit of utilizing this potential, in its linearized approximation, is that it accounts for the response of the particle's conduction electrons to the field of the ion rather than relying upon a macroscopic picture whose validity is nuclear for sufficiently small particles. In the limit of large separations or of larger particles, the jellium and image potentials converge rapidly implying that no inconsistency exists between the generally-accepted approach for larger particles and our contribution. As a part of our work, we have given an accurate fit to the experimental data in the literature on the charging rate of neutral particles in the 4--50 nm range of radii without the need for assumptions other than of the charging ion properties. The results of this work will contribute to the ability to model charged radon daughter cluster ion attachment to high-diffusivity particles and conversely to the ability to model charge attachment on high-diffusivity uncharged particles containing a radon daughter

  17. Effects of radon in indoor air studied

    International Nuclear Information System (INIS)

    Auvinen, A.

    1994-01-01

    Radon is an odorless, tasteless and colourless radioactive noble gas that enters indoor air from the ground. Radon causes lung cancer. A committee set up to evaluate the health risks of chemical substances has been drafting a report on radon, which will compile the major research findings on the lung cancer risk posed by radon. Animal tests have shown that even small doses of radon can cause lung cancer. Smokers seem to contract radon-induced lung cancer more readily than non-smokers. Because research findings have been conflicting, however, it is not known exactly how high the risk of lung cancer caused by indoor radon exposure really is. Several major research projects are under way to obtain increasingly accurate risk assessments. An on-going European joint project brings together several studies - some already finished, some still being worked on. In this way it will be possible to get more accurate risk assessments than from individual studies. In order to prevent lung cancer, it is important to continue the work of determining and reducing radon connects and to combat smoking. (orig.)

  18. Sources and protective measures of indoor radon

    International Nuclear Information System (INIS)

    Gou Quanlu; Wang Hengde

    1993-01-01

    This paper presents the relative contribution to indoor radon 222 Rn of various sources in twenty three rooms of three kinds in Taiyuan area. The results show that the major sources in this area are radon emanation from surfaces of soil and building materials and that from outdoor air, while the contribution of water and gas consumed in the rooms is less important. These results suggest a basis for taking suitable protective measures against indoor radon. Some materials are also recommended which are effective in restraining radon exhalation and low in price, by testing more than ten kinds of materials and comparing them using cost-effectiveness analysis technique, such as painting materials, polyvinyl alcohol (CH 2 :CHOH)n, etc. Their sealing effects on radon exhalation were examined with home-made REM-89 Radon Exhalation Monitor. The deposition effects of negative ion generator and humidifier on radon progeny were also tested. The maximum deposition may reach 70-90%, which proves they are also effective and economical in radon protection. (2 tabs., 3 figs.)

  19. Indoor radon concentration forecasting in South Tyrol

    International Nuclear Information System (INIS)

    Verdi, L.; Weber, A.; Stoppa, G.

    2004-01-01

    In this paper a modern statistical technique of multivariate analysis is applied to an indoor radon concentration database. Several parameters are more or less significant in determining the radon concentration inside a building. The elaboration of the information available on South Tyrol makes it possible both to identify the statistically significant variables and to build up a statistical model that allows us to forecast the radon concentration in dwellings, when the values of the same variables involved are given. The results confirm the complexity of the phenomenon. (authors)

  20. Indoor radon risk potential of Hawaii

    International Nuclear Information System (INIS)

    Reimer, G.M.; Szarzi, S.L.

    2005-01-01

    A comprehensive evaluation of radon risk potential in the State of Hawaii indicates that the potential for Hawaii is low. Using a combination of factors including geology, soils, source-rock type, soil-gas radon concentrations, and indoor measurements throughout the state, a general model was developed that permits prediction for various regions in Hawaii. For the nearly 3,100 counties in the coterminous U.S., National Uranium Resource Evaluation (NURE) aerorad data was the primary input factor. However, NURE aerorad data was not collected in Hawaii, therefore, this study used geology and soil type as the primary and secondary components of potential prediction. Although the radon potential of some Hawaiian soils suggests moderate risk, most houses are built above ground level and the radon soil potential is effectively decoupled from the house. Only underground facilities or those with closed or recirculating ventilation systems might have elevated radon potential. (author)

  1. A study of radon 222 transfer indoors

    International Nuclear Information System (INIS)

    Maximilien, R.; Robe, M.C.; Archimbaud, M.

    1985-01-01

    Indoor exposure can vary considerably depending upon the natural environment (geology, climate), man-made arrangements (building materials, insulation and ventilation systems...) or way of living. In order to specify the sources and assess their respective contribution in a given dwelling, a good knowledge of radon transfer and dispersion processes is required as well as a heavy experimental device (continuous radon and ventilation monitoring...). The study must be limited to some cases selected by a systematic measurement program either because they are representative of dwelling conditions, or preferably on account of their high radon level, the origin of which will be investigated. As a consequence, countermeasures can be developed. A pilot study has been carried out on radon transport in two houses of the Rhone river valley. The two houses -selected among 131 other ones for their high radon levels- are built with the same architectural approach and located very close to each other, yet the factors accounting for domestic exposure are quite different. Indoor parameters are at the origin of various radon concentrations in the case of low natural ventilation; conversely, outdoor parameters only seem to act in the case of high ventilation. For a larger part, however, radon seems to emanate from under the foundations of both houses [fr

  2. Indoor radon measurements in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, G. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20364, 01000 Mexico, D.F. (Mexico)], E-mail: espinosa@fisica.unam.mx; Golzarri, J.I. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20364, 01000 Mexico, D.F. (Mexico); Bogard, J. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6480 (United States); Gaso, I. [Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, 11801 Mexico, D.F. (Mexico); Ponciano, G. [Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Mena, M.; Segovia, N. [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico)

    2008-08-15

    Mexico City is one of the most populated cities in the world with almost 22 million inhabitants, located at an altitude of 2200 m. The old city was founded on an ancient lake and the zone is known by its high seismicity; indoor radon determination is an important public health issue. In this paper the data of indoor radon levels in Mexico City, measured independently by two research groups, both using Nuclear Track Detector systems but different methodologies, are correlated. The measurements were done during similar exposure periods of time, at family houses from the political administrative regions of the city. The results indicate a correlation coefficient between the two sets of data of R=0.886. Most of the differences between the two sets of data are inherent to houses having extreme (very high or very low indoor radon) included in the statistics of each group. The total average indoor radon found in Mexico City considering the two methods was 87Bqm{sup -3}.

  3. Indoor Radon and Its Decay Products: Concentrations, Causes, and Control Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nero, A.V.; Gadgil, A.J.; Nazaroff, W.W.; Revzan, K.L.

    1990-01-01

    This report is an introduction to the behavior of radon 222 and its decay products in indoor air. This includes review of basic characteristics of radon and its decay products and of features of the indoor environment itself, all of which factors affect behavior in indoor air. The experimental and theoretical evidence on behavior of radon and its decay products is examined, providing a basis for understanding the influence of geological, structural, and meteorological factors on indoor concentrations, as well as the effectiveness of control techniques. We go on to examine three important issues concerning indoor radon. We thus include (1) an appraisal of the concentration distribution in homes, (2) an examination of the utility and limitations of popular monitoring techniques and protocols, and (3) an assessment of the key elements of strategies for controlling radon levels in homes.

  4. Aerosol properties of indoor radon decay products

    International Nuclear Information System (INIS)

    Martell, E.A.

    1984-01-01

    Lung cancer risks attributable to indoor radon are highly dependent on the properties of radon progeny aerosols which, in turn, are dependent on the nature and concentration of small particles in indoor air. In clean filtered air, radon progeny are attached to small hygroscopic particles of high mobility which are rapidly deposited on surfaces. By contrast, radon progeny attached to cigarette smoke are on large particles of low mobility which persist in air. Radon progeny ingaled by smokers are largely associated with smoke particles from 0.5 to 4.0 μm diameter. Such particles are selectively deposited at bronchial bifurcations and are highly resistant to dissolution. The attached radon progeny undergo a substantial degree of radioactive decay at deposition sites before clearance which gives rise to large alpha radiation doses in small volumes of bronchial epithelium. These processes provide new insights on mechanisms of bronchial cancer induction and on relative risks of lung cancer in smokers, passive smokers, and other non-smokers. (Author)

  5. National indoor radon survey in Filipino homes

    International Nuclear Information System (INIS)

    Dela Cruz, Fe M.; Garcia, Teofilo Y.; Palad, Lorna Jean H.; Cobar, Ma. Lucia C.; Duran, Emerenciana B.

    2012-01-01

    This paper presents the results of the first national survey of indoor radon concentrations in different types of Filipino houses throughout the Philippines. Measurements were carried out using 2,626 CR-39 alpha track detectors that were deployed in selected houses for a period of six months. Results of analyses showed that indoor radon concentration in Filipino houses ranged from 1.4 to 57.6 Bq/m 3 with a mean value of 21.4 ± 9.2 Bq/m 3 . This leads to an estimated annual average effective dose equivalent of 0.4 mSv. There are slight differences in the mean concentrations of radon in different types of houses, which ranged from 19.4 to 25.3 Bq/m 3 . Highest mean radon concentrations were observed in houses made of concrete with a mean radon value of 25.3 ± 10.1 Bq/m 3 . Radon concentrations in the houses surveyed were below the action limits of 200 Bq/m 3 set by the National Radiological Protection Board (NRPB) and do not pose any hazard to the health of the occupants. (author)

  6. Measurements of indoor radon concentration in Libyan cities

    International Nuclear Information System (INIS)

    Elarabiy, S. F.; Khalifa, M.; Misrati, N.; Chahboune, N.; Ahmed, M.

    2012-12-01

    Studies confirm that the risk of exposure to indor radon is attributable to lung cancer worldwide. The relationship between radon exposure and cancer is a linear one which necessitates for need for measurements of indoor radon concentration. This paper presents the results of measurements of indoor radon in several libya cities using CR-39 plastic. The results showed that the average radon concentration in the cities of Tripoli, Al-harcha and Alrajaban were 48.8 Bg/m 3 , 51.4 Bg/m 3 and 55.5 Bg/m 3 respectively. The average indoor radon concentration in Libya is low comparing with other studies. (Author)

  7. Effect of fresh air ventilation on indoor radon concentration

    International Nuclear Information System (INIS)

    Sun Hao; Wu Jianhua; Fu Shi

    2012-01-01

    The radon concentration of laboratory for radon simulation (LRS) was measured by the RAD7 radon monitor, and the effect of the different fresh air ventilations on indoor radon concentration was studied and analyzed. The indoor radon concentration of LRS can be accumulated up to 2000 Bq/m 3 and the average radon exhalation rate of the LRS is 14.5 Bq · m -2 . h -1 . Furthermore, when the fresh air enters into the LRS continuously, the indoor radon concentration decreases exponentially with the increase of time. The equilibrium radon concentration and equilibrium time of LRS decrease exponentially with the increase of the rate of fresh air ventilation. In addition, the indoor radon concentration increases by accumulation with the decrease of the rate of fresh air ventilation. (authors)

  8. Indoor Radon Exposure in Italian Schools

    Directory of Open Access Journals (Sweden)

    Antonio Azara

    2018-04-01

    Full Text Available Background: The aim of the study was to assess radon concentration in schoolrooms in a city located in the midwest of Italy. Methods: A two-phase environmental study was carried out in 19 school buildings of 16 primary, secondary, and tertiary schools. Results: Median (interquartile range—IQR indoor radon concentration in schoolrooms was 91.6 (45.0–140.3 Bq/m3. The highest (median 952.8 Bq/m3 radon concentration was found in one (3.6% classroom, located in a building of a primary school whose median concentration was 185 Bq/m3. Radon concentration was significantly correlated with the number of students and teachers, foundation wall construction material, and with the absence of underground floors. A geopedological survey was performed close to the building with highest radon level, showing the presence of granite and tonalithic granodiorite in the soil. Conclusions: Radon levels should be routinely assessed where individuals live or work. Schools are susceptible targets, because of childhood stay and the long daily stay of occupants. Low-cost interventions, such as implementation of natural air ventilation and school maintenance, can reduce radon levels, limiting individual exposure.

  9. The Spanish indoor radon mapping strategy

    International Nuclear Information System (INIS)

    Sainz-Fernandez, C.; Fernandez-Villar, A.; Fuente-Merino, I.; Gutierrez-Villanueva, J.L.; Casal-Ordas, S.; Quindos-Poncela, L.S.; Martin-Matarranz, J.L.; Garcia-Talavera, M.

    2014-01-01

    Indoor radon mapping still represents a valuable tool for drawing the picture of the exposure of general public due to radon and radon progeny inhalation in a residential context. The information provided by means of a map is useful not only as awareness and strategic element for authorities and policy-makers, but also as a scientific start-up point in the design of epidemiological and other specific studies on exposure to natural radiation. The requirements for a good mapping are related to harmonisation criteria coming from European recommendations, as well as to national/local characteristics and necessities. Around 12 000 indoor radon measurements have been made since the Spanish national radon programme began at the end of the 1980's. A significant proportion of them resulted from the last campaign performed from 2009 to 12. This campaign completed the first version of a map based on a grid 10 x 10 km 2 . In this paper, the authors present the main results of a new map together with the criteria adopted to improve the number of measurements and the statistical significance of them. (authors)

  10. Factors influencing indoor concentrations of radon and daughter products

    International Nuclear Information System (INIS)

    Wang Hengde

    1985-01-01

    The correlation between indoor concentrations of 222 Rn and its daughters and some influencing factors is discussed and expressions of concentrations are derived with relation to radon exhalation rate from indoor surfaces, air exchange rate and daughter deposition velocities on indoor surfaces. Experimental methods for determining radon exhalation rate, air exchange rate and daughter deposition velocities are also mentioned

  11. Reconstruction of national distribution of indoor radon concentration in Russia using results of regional indoor radon measurement programs

    International Nuclear Information System (INIS)

    Yarmoshenko, I.; Malinovsky, G.; Vasilyev, A.; Zhukovsky, M.

    2015-01-01

    The aim of the paper is a reconstruction of the national distribution and estimation of the arithmetic average indoor radon concentration in Russia using the data of official annual 4-DOZ reports. Annual 4-DOZ reports summarize results of radiation measurements in 83 regions of Russian Federation. Information on more than 400 000 indoor radon measurements includes the average indoor radon isotopes equilibrium equivalent concentration (EEC) and number of measurements by regions and by three main types of houses: wooden, one-storey non-wooden, and multi-storey non-wooden houses. To reconstruct the national distribution, all-Russian model sample was generated by integration of sub-samples created using the results of each annual regional program of indoor radon measurements in each type of buildings. According to indoor radon concentration distribution reconstruction, all-Russian average indoor radon concentration is 48 Bq/m"3. Average indoor radon concentration by region ranges from 12 to 207 Bq/m"3. The 95-th percentile of the distribution is reached at indoor radon concentration 160 Bq/m"3. - Highlights: • Reconstruction of indoor radon concentration distribution in Russia was carried out. • Data of official annual 4-DOZ reports were used. • All-Russian average indoor radon concentration is 48 Bq/m"3. • The 95-th percentile is 160 Bq/m"3.

  12. Methodology developed to make the Quebec indoor radon potential map

    Energy Technology Data Exchange (ETDEWEB)

    Drolet, Jean-Philippe, E-mail: jean-philippe.drolet@ete.inrs.ca [Institut national de la recherche scientifique, Eau Terre Environnement Research Centre (ETE-INRS), 490 de la Couronne, G1K 9A9 Quebec (Canada); Martel, Richard [Institut national de la recherche scientifique, Eau Terre Environnement Research Centre (ETE-INRS), 490 de la Couronne, G1K 9A9 Quebec (Canada); Poulin, Patrick [Institut national de santé publique du Québec (INSPQ), 945 avenue Wolfe, G1V 5B3 Quebec (Canada); Dessau, Jean-Claude [Agence de la santé et des services sociaux des Laurentides, 1000 rue Labelle, J7Z 5 N6 Saint-Jérome (Canada)

    2014-03-01

    This paper presents a relevant approach to predict the indoor radon potential based on the combination of the radiogeochemical data and the indoor radon measurements in the Quebec province territory (Canada). The Quebec ministry of health asked for such a map to identify the radon-prone areas to manage the risk for the population related to indoor radon exposure. Three radiogeochemical criteria including (1) equivalent uranium (eU) concentration from airborne surface gamma-ray surveys, (2) uranium concentration measurements in sediments, (3) bedrock and surficial geology were combined with 3082 basement radon concentration measurements to identify the radon-prone areas. It was shown that it is possible to determine thresholds for the three criteria that implied statistically significant different levels of radon potential using Kruskal–Wallis one way analyses of variance by ranks. The three discretized radiogeochemical datasets were combined into a total predicted radon potential that sampled 98% of the studied area. The combination process was also based on Kruskal–Wallis one way ANOVA. Four statistically significant different predicted radon potential levels were created: low, medium, high and very high. Respectively 10 and 13% of the dwellings exceed the Canadian radon guideline of 200 Bq/m{sup 3} in low and medium predicted radon potentials. These proportions rise up to 22 and 45% respectively for high and very high predicted radon potentials. This predictive map of indoor radon potential based on the radiogeochemical data was validated using a map of confirmed radon exposure in homes based on the basement radon measurements. It was shown that the map of predicted radon potential based on the radiogeochemical data was reliable to identify radon-prone areas even in zones where no indoor radon measurement exists. - Highlights: • 5 radiogeochemical datasets were used to map the geogenic indoor radon potential. • An indoor radon potential was determined for

  13. Methodology developed to make the Quebec indoor radon potential map

    International Nuclear Information System (INIS)

    Drolet, Jean-Philippe; Martel, Richard; Poulin, Patrick; Dessau, Jean-Claude

    2014-01-01

    This paper presents a relevant approach to predict the indoor radon potential based on the combination of the radiogeochemical data and the indoor radon measurements in the Quebec province territory (Canada). The Quebec ministry of health asked for such a map to identify the radon-prone areas to manage the risk for the population related to indoor radon exposure. Three radiogeochemical criteria including (1) equivalent uranium (eU) concentration from airborne surface gamma-ray surveys, (2) uranium concentration measurements in sediments, (3) bedrock and surficial geology were combined with 3082 basement radon concentration measurements to identify the radon-prone areas. It was shown that it is possible to determine thresholds for the three criteria that implied statistically significant different levels of radon potential using Kruskal–Wallis one way analyses of variance by ranks. The three discretized radiogeochemical datasets were combined into a total predicted radon potential that sampled 98% of the studied area. The combination process was also based on Kruskal–Wallis one way ANOVA. Four statistically significant different predicted radon potential levels were created: low, medium, high and very high. Respectively 10 and 13% of the dwellings exceed the Canadian radon guideline of 200 Bq/m 3 in low and medium predicted radon potentials. These proportions rise up to 22 and 45% respectively for high and very high predicted radon potentials. This predictive map of indoor radon potential based on the radiogeochemical data was validated using a map of confirmed radon exposure in homes based on the basement radon measurements. It was shown that the map of predicted radon potential based on the radiogeochemical data was reliable to identify radon-prone areas even in zones where no indoor radon measurement exists. - Highlights: • 5 radiogeochemical datasets were used to map the geogenic indoor radon potential. • An indoor radon potential was determined for each

  14. Winter-to-winter variations in indoor radon

    International Nuclear Information System (INIS)

    Mose, D.G.; Mushrush, G.W.; Kline, S.W.

    1989-01-01

    Indoor radon concentrations in northern Virginia and central Maryland show a strong dependence on weather. Winter tends to be associated with higher than average indoor radon, and summer with lower than average. However, compared to the winter of 1986-1987, the winter of 1987-1988 was warmer and drier. Consequently, winter-to-winter indoor radon decreased by about 25%. This winter-to-winter decrease is unexpectedly large, and simulates winter-to-summer variations that have been reported

  15. Indoor radon and decay products: Concentrations, causes, and control strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nero, A.V.; Gadgil, A.J.; Nazaroff, W.W.; Revzan, K.L.

    1990-11-01

    This report is another in the on going technical report series that addresses various aspects of the DOE Radon Research Program. It provides an overview of what is known about the behavior of radon and its decay products in the indoor environment and examines the manner in which several important classes of factors -- structural, geological, and meteorological -- affect indoor radon concentrations. Information on US indoor radon concentrations, currently available monitoring methods and novel radon control strategies are also explored. 238 refs., 22 figs., 9 tabs.

  16. Removal of radon daughters from indoor air

    International Nuclear Information System (INIS)

    Jonassen, N.

    1985-01-01

    The internal radiological exposure of the general population is largely due to the airborne daughter products of radon and thoron, which are found in two states, attached to aerosols or unattached, of which the latter species according to several dose models have the highest radiological dose efficiency of the two. The radon daughters may be removed from indoor air by a series of processes like ventilation, filtration, plateout, and electrostatic deposition. Ventilation (with radon-free air) is, on the one hand, a very effective measure, but usually involves introduction of colder air, in variance with energy-saving efforts. Internal filtration will not affect the radon concentration but may reduce the level of daughter activities, roughly inversely proportional to the filtration rate. At the same time, however, filtration may also change the aerosol distribution and concentration of the air and, consequently, the partitioning of the radon daughters between the attached and unattached state. This, in turn, influences the rate of deposition of radon daughters both by diffusional plateout and as an effect of an electric field. Experiments are reported demonstrating reductions in the airborne potential alpha energy by factors of 4 to 5 by use of filtration rates of 3-4 times per hour. In case of low aerosol concentrations, however, the corresponding reduction in radiological dose to critical parts of the respiratory tract may be much smaller, due to the shift toward higher fractions of the radon daughters being in the unattached state caused by the filtration. The possibility of using electrostatic deposition of radon daughters is also discussed

  17. Indoor radon levels in Riyadh city dwellings

    International Nuclear Information System (INIS)

    Alghamdi, Abdulrahman S.; Khalid, Aleissa; Ghazi, Alzeer

    2008-01-01

    Full text: Building materials used for construction of houses represent a major source of indoor radon. In this investigation, indoor radon concentrations are found to vary substantially among the different building materials, ventilation, cooling and heating systems used. This paper presents the effects of these factors on the radon concentration in Riyadh city dwellings. The measurements were obtained by using a passive integrating ionization system with an E-Perm Electret ion chamber. The study covered more than 700 houses and apartments, which were selected to cover the most common type of houses. The concentration range was found to be 1.02 to 196 Bq.m -3 , with an average value of 17.5 ± 3 Bq.m -3 . The results show that the radon concentration is higher in houses where the white bricks, no ventilation systems, plastic paint and Freon air conditioners are used, but relatively lower in houses where the red bricks, window ventilation, and water air conditioner is used. (author)

  18. Seasonal variations of indoor radon concentrations

    International Nuclear Information System (INIS)

    Majborn, B.

    1990-01-01

    Seasonal variations of indoor radon concentrations have been studied in a cluster of 10 single-family houses. Eight of the houses are of a similar construction with slab-on-grade foundations. The remaining two houses have different substructures, one of them having a crawl space, and the other having partly a basement and partly a crawl space. A 'normal' seasonal variation of the radon concentration with a maximum in winter and a minimum in summer was observed in most of the houses. In these houses the variation showed a strong correlation with the indoor-outdoor temperature difference on a 2-month basis. However, deviating seasonal variations were observed in some of the houses, notably in the two houses having different substructures. This paper reports that a re-examination of the data obtained in a previous study indicates that winter/summer ratios of indoor radon concentrations in Danish houses depend on the house substructure. The mean winter/summer ratios were about 2.1 for houses with slab-on-grade foundations, 1.5 for houses having a basement, and 1.0 for houses with a crawl space (geometric mean values). However, a study with more houses in each substructure category will be needed to show whether or not the indicated differences are generally valid for Danish houses

  19. Design Criteria for Achieving Low Radon Concentration Indoors

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2016-01-01

    Design criteria for achieving low radon concentration indoors are presented in this paper. The paper suggests three design criteria. These criteria have to be considered at the early stage of the building design phase to meet the latest recommendations from the World Health Organization in most...... countries. The three design criteria are; first, establishing a radon barrier facing the ground; second, lowering the air pressure in the lower zone of the slab on ground facing downwards; third, diluting the indoor air with outdoor air. Three criteria when used can prevent radon infiltration and lower...... the radon concentration in the indoor air. In addition, a cheap and reliable method for measuring the radon concentration in the air indoors is described. The provision on radon in the Danish Building Regulations complies with the latest recommendations from the World Health Organization. Radon can cause...

  20. Indoor radon level in schools of Shillong, Meghalaya

    International Nuclear Information System (INIS)

    Saxena, A.; Sharma, Y.; Maibam, D.; Walia, D.; Diengdoh, E.

    2010-01-01

    Radon ( 222 Rn) in the atmosphere is the most important contributor to human exposure from natural sources. Radon is a noble inert gas; and it decays to radionuclides that are chemically active and relatively short lived. Inhalation of the short lived radon progeny imparts a radiation dose to the lung, to which an increased risk of lung cancer is attributed due to the alpha particle irradiation of the secretory and basal cells of the respiratory tract. The indoor radon concentration is dependent on the texture, porosity, permeability, water content of the soil underlying the structure and the radon behaviour in soils on aspects of geology and climate. The direct cause of high radon entry rates into structures exhibiting high indoor radon concentrations are fractures in bedrock formations, cracks in the soil, and similar inhomogeneities in the materials of the foundation of the structures. Other factors influencing indoor radon concentration includes exhalations from the walls and ceilings, building design and material, cracks and openings in the foundation of the buildings. The geological factors in the study area promote radon accumulation especially in buildings and dwellings. The world average annual effective dose in the indoor environments is 1.01 mSv.y -1 . The importance of radon level measurements in school buildings is of interest as children are more sensitive to radon exposure than adults. Hence, radon measurements in 10 schools have been undertaken in the present study

  1. Indoor radon problem in energy efficient multi-storey buildings.

    Science.gov (United States)

    Yarmoshenko, I V; Vasilyev, A V; Onishchenko, A D; Kiselev, S M; Zhukovsky, M V

    2014-07-01

    Modern energy-efficient architectural solutions and building construction technologies such as monolithic concrete structures in combination with effective insulation reduce air permeability of building envelope. As a result, air exchange rate is significantly reduced and conditions for increased radon accumulation in indoor air are created. Based on radon survey in Ekaterinburg, Russia, remarkable increase in indoor radon concentration level in energy-efficient multi-storey buildings was found in comparison with similar buildings constructed before the-energy-saving era. To investigate the problem of indoor radon in energy-efficient multi-storey buildings, the measurements of radon concentration have been performed in seven modern buildings using radon monitoring method. Values of air exchange rate and other parameters of indoor climate in energy-efficient buildings have been estimated. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Indoor radon measurements in Adelaide, South Australia

    International Nuclear Information System (INIS)

    Paix, D.

    1989-01-01

    In 1986 a study of radon levels in homes in Melbourne was made, using activated charcoal to adsorb the gas from indoor air. Cups containing 25g of activated charcoal were exposed for periods of nominally 7 days. The cups were sealed and the accumulated activity was measured by gamma counting. Cup activity was related to ambient radon concentration by calibrations done in the Australian Radiation Laboratory's radon reference chamber. This work was continued in Adelaide, South Australia (S.A.) between July and November 1986 using the same methods. Cups were exposed in their homes by 213 volunteers from the staff of the S.A. Institute of Technology and the S.A. Health Commission. The median concentration of radon in air was 10 Bq/m 3 , with 90% of values below 35 Bq/m 3 , and 100% below 75 Bq/m 3 . The lower bound of the distribution is poorly defined because of inadequate counting statistics. 4 refs., 6 figs

  3. Development of a standard for indoor radon measurements in Australia

    International Nuclear Information System (INIS)

    O'Brien, R.S.; Solomon, S.B.

    1994-01-01

    A standard covering methodologies for the measurement of indoor radon and radon progeny concentrations in air in Australian buildings is currently under preparation as part of a set of standards covering total indoor air quality. This paper outlines the suggested methodology for radon and discusses some of the problems associated with the development of the standard. The draft standard recommends measurement of the radon concentration in air using scintillation cells, charcoal cups and solid state nuclear track detectors, and measurement of radon progeny concentration in air using the Rolle method or the Nazaroff method. 14 refs., 1 tab

  4. National survey of indoor radon levels in Croatia

    International Nuclear Information System (INIS)

    Radolic, V.; Vukovic, B.; Stanic, D.; Katic, M.; Faj, Z.; Lukacevic, I.; Planinic, J.; Suveljak, B.; Faj, D.; Lukic, M.

    2006-01-01

    National survey of indoor radon was performed by a random sampling of thousand (782 realized) dwellings in Croatia. Radon concentrations were measured for one year with LR-115 SSNT detectors and arithmetic and geometric means of 68 and 50 Bq/m 3 were obtained, respectively. The arithmetic means of radon concentrations on 20 counties were from 33 to 198 Bq/m 3 . The percentage of dwellings with radon concentrations above 200 and 400 Bq/m 3 was 5.4% and 1.8%, respectively. The average annual effective dose of the indoor radon was estimated as 2.2 mSv. (author)

  5. Indoor radon measurements and methodologies in Latin American countries

    International Nuclear Information System (INIS)

    Canoba, A.; Lopez, F.O.; Arnaud, M.I.; Oliveira, A.A.; Neman, R.S.; Hadler, J.C.; Iunes, P.J.; Paulo, S.R.; Osorio, A.M.; Aparecido, R.; Rodriguez, C.; Moreno, V.; Vasquez, R.; Espinosa, G.; Golzarri, J.I.; Martinez, T.; Navarrete, M.; Cabrera, I.; Segovia, N.; Pena, P.; Tamez, E.; Pereyra, P.; Lopez-Herrera, M.E.; Sajo-Bohus, L.

    2001-01-01

    According to the current international guidelines concerning environmental problems, it is necessary to evaluate and to know the indoor radon levels, specially since most of the natural radiation dose to man comes from radon gas and its progeny. Several countries have established National Institutions and National Programs for the study of radon and its connection with lung cancer risk and public health. The aim of this work is to present the indoor radon measurements and the detection methods used for different regions of Latin America (LA) in countries such as Argentina, Brazil, Ecuador, Mexico, Peru and Venezuela. This study shows that the passive radon devices based on alpha particle nuclear track methodology (NTM) is one of the more generalized methods in LA for long term indoor radon measurements, CR-39, LR-115 and Makrofol being the more commonly used detector materials. The participating institutions and the radon level measurements in the different countries are presented in this contribution

  6. Design Criteria for Achieving Acceptable Indoor Radon Concentration

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2016-01-01

    Design criteria for achieving an acceptable indoor radon concentration are presented in this paper. The paper suggests three design criteria. These criteria have to be considered at the early stage of the building design phase to meet the latest recommendations from the World Health Organization...... in most countries. The three design criteria are; first, establishing a radon barrier facing the ground; second, lowering the air pressure in the lower zone of the slab on ground facing downwards; third, diluting the indoor air with outdoor air. The first two criteria can prevent radon from infiltrating...... from the ground, and the third criteria can dilute the indoor air. By combining these three criteria, the indoor radon concentration can be lowered achieving an acceptable level. In addition, a cheap and reliable method for measuring the radon concentration in the indoor air is described. The provision...

  7. Application of a radon model to explain indoor radon levels in a Swedish house

    International Nuclear Information System (INIS)

    Font, LL.; Baixeras, C.; Joensson, G.; Enge, W.; Ghose, R.

    1999-01-01

    Radon entry from soil into indoor air and its accumulation indoors depends on several parameters, the values of which normally depend on the specific characteristics of the site. The effect of a specific parameter is often difficult to explain from the result of indoor radon measurements only. The adaptation of the RAGENA (RAdon Generation, ENtry and Accumulation indoors) model to a Swedish house to characterise indoor radon levels and the relative importance of the different radon sources and entry mechanisms is presented. The building is a single-zone house with a naturally-ventilated crawl space in one part and a concrete floor in another part, leading to different radon levels in the two parts of the building. The soil under the house is moraine, which is relatively permeable to radon gas. The house is naturally-ventilated. The mean indoor radon concentration values measured with nuclear track detectors in the crawl-space and concrete parts of the house are respectively 75±30 and 200±80 Bq m -3 . Results of the model adaptation to the house indicate that soil constitutes the most relevant radon source in both parts of the house. The radon concentration values predicted by the model indoors fall into the same range as the experimental results

  8. Control of radon and its progeny concentration in indoor atmosphere

    International Nuclear Information System (INIS)

    Ramachandran, T.V.; Subbaramu, M.C.

    1986-01-01

    Exposure to radon daughter concentration in indoor atmosphere can result in a significant risk to the general public. There are two generally used methods for the control of radon and progeny concentration in the indoor atmosphere, namely restriction of radon entry and reduction of indoor radon and its progeny concentration by ventilation or by air cleaning. Predominant radon entry process in most of the dwellings appears to be by pressure driven flow of soil gas through cracks or other openings in the basement slab or subfloors. Sealing these openings or ventilation of the subslab or subfloor space are the methods for reducing the radon entry rates. Indoor radon concentration can also be reduced by increasing the ventilation and by using charcoal filters for the removal of radon gas in indoor air by absorption. Concentration of radon progeny, which are responsible for most of the health risks associatd with radon exposure can also be controlled by the use of electrostatic or mechanical filters. This study describes briefly the above control strategies used for reducing the inhalation doses to persons in dwellings. (author). 9 refs., 2 tables

  9. How to Ensure Low Radon Concentrations in Indoor Environments

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Wraber, Ida Kristina

    2011-01-01

    This paper focuses on methods for measuring radon levels in the indoor air in buildings as well as on concrete solutions that can be carried out in the building to prevent radon leakage and to lower the radon concentration in the indoor air of new buildings. The radon provision in the new Danish...... Building Regulations from 2010 has been tightened as a result of new recommendations from the World Health Organization. Radon can cause lung cancer and it is not known whether there is a lower limit for its harmfulness. It is therefore important to reduce the radon concentration as much as possible in new...... buildings. The airtightness is a major factor when dealing with radon in buildings. Above the ground it is important to build airtight in compliance with energy requirements and against the ground it is important to prevent radon from seeping into the building. There is a direct connection between...

  10. Radon in indoor air. Health risk, measurement methods and remedial measures

    International Nuclear Information System (INIS)

    Strand, T.

    1996-02-01

    Radon in indoor air is the main source of ionizing radiation in Norway. The booklet contains a presentation of radon sources, measurement methods, indoor radon concentrations, action levels, health risk and remedial measures

  11. Unusually amplified summer or winter indoor levels of radon

    International Nuclear Information System (INIS)

    Gammage, R.B.; Dudney, C.S.; Wilson, D.L.

    1993-01-01

    The ratios of winter/summer indoor radon levels for houses in different regions of the southern Appalachians are characterized by individual log-normal distributions with geometric means both above and below unity. In some counties and cities, subpopulations of houses have unusually exaggerated winter/summer ratios of indoor radon, as well as high indoor radon levels, during periods of either warm or cool weather. It is proposed that in many instances, houses are communicating with larger than normal underground reservoirs of radon-bearing air in hilly karst terrains; differences between the outdoor and underground air temperatures are believed to provide density gradients producing aerostatic pressure differences for seasonally directed underground transport and subsequently elevated indoor radon. These seasonal movements of air are analogous to the well-known underground chimney effects, which produce interzonal flows of air inside caves

  12. Study of a Greek area with enhanced indoor radon concentrations

    International Nuclear Information System (INIS)

    Louizi, A.; Nikolopoulos, D.; Koukouliou, V.; Kehagia, K.

    2003-01-01

    In this paper the focus is on Arnea Chalkidikis, an area in Greece with granitic geological background and indications of possible elevated radon concentration indoors. Data are reported of indoor radon measurements with etched track detectors and those used for dosimetric estimations. Moreover, data are reported on soil gas and soil radon concentrations in Arnea, as well as radon and uranium concentrations in water samples. From the measured radon concentrations in water samples the contribution to the overall dose has been calculated. For a period of 1 month, indoor radon and progeny activity has also been monitored in the dwelling that has the maximum indoor radon concentration in Greece. This dwelling is in Arnea and the dose delivered to the inhabitants has been calculated. Mean annual effective dose due to indoor radon was 4.5 mSv and about 11% of this was due to the use of water. Mean soil gas concentration and soil radon concentration were (90 ± 30) kBq m -3 (P -3 (P -1 (P<0.05). (author)

  13. High indoor radon concentrations in some Swedish waterworks

    International Nuclear Information System (INIS)

    Aakerblom, G.; Hagberg, N.; Mjoenes, L.; Heiberg, A.

    2002-01-01

    High indoor radon concentrations in buildings used for water treatment are not uncommon. When raw water is processed in an open system radon escapes from the water to the indoor air of the premises. It is not unusual that the staff of the waterworks have their offices in the building where the water is processed. If large volumes of water are processed and the evaporated radon can reach the workplaces the indoor radon concentration can be very high even if the radon concentration of the raw water is moderate. Groundwaters from aquifers in bedrock and soil and surface water that has been infiltrated through deposits of sand or gravel have the potential to cause high indoor radon levels. In surface water emanating directly from a lake or a river the radon concentrations are normally too low to cause problems. Three waterworks in central Sweden have been studied, Ludvika, Fredriksberg and Kolbaeck. The radon concentrations in the raw water of these waterworks are from 85 Bq/l to 300 Bq/l. Average indoor radon concentrations exceeding 17,000 Bq/m 3 have been measured in Ludvika with peaks of almost 37,000 Bq/m 3 . In Kolbaeck radon concentrations up to 56,000 Bq/m 3 have been measured. It is quite possible that employees of waterworks can receive doses exceeding 20 mSv per year (calculated according to ICRP:s dose conversion convention). Measurements of radon and gamma radiation from the waterworks are reported and methods to lower the indoor radon concentrations are discussed. (author)

  14. Indoor radon survey in dwellings of some regions in Yemen

    Energy Technology Data Exchange (ETDEWEB)

    Khayrat, A.H. E-mail: akhayrat@yahoo.com; Al-Jarallah, M.I.; Fazal-ur-Rehman, X.; Abu-Jarad, F

    2003-06-01

    Indoor radon survey in a total of 241 dwellings, distributed in some regions of Yemen was performed, using CR-39 based radon monitors. The objective of this radon survey is to get representative indoor radon data of three regions, namely Dhamar, Taiz and Hodeidah, situated at different altitudes above sea level. The radon concentrations varied from 3 to 270 Bq m{sup -3} with an average of 42 Bq m{sup -3}. It was found that the average radon concentration in the surveyed areas increases with altitudes. The highest average radon concentration of 59 Bq m{sup -3} was found in Dhamar city while the lowest average concentration of 8 Bq m{sup -3} was found in Hodeidah city.

  15. Investigations on indoor radon in Austria, Part 1: Seasonality of indoor radon concentration

    International Nuclear Information System (INIS)

    Bossew, Peter; Lettner, Herbert

    2007-01-01

    In general, indoor radon concentration is subject to seasonal variability. The reasons are to be found (1) in meteorological influence on the transport properties of soil, e.g. through temperature, frozen soil layers and soil water saturation; and (2) in living habits, e.g. the tendency to open windows in summer and keep them closed in winter, which in general leads to higher accumulation of geogenic Rn in closed rooms in winter. If one wants to standardize indoor Rn measurements originally performed at different times of the year, e.g. in order to make them comparable, some correction transform as a function of measurement time which accounts for these effects must be estimated. In this paper, the seasonality of indoor Rn concentration measured in Austria is investigated as a function of other factors that influence indoor Rn. Indoor radon concentration is clearly shown to have seasonal variability, with higher Rn levels in winter. However, it is complicated to quantify the effect because, as a consequence of the history of an Rn survey, the measurement season maybe correlated to geological regions, which may introduce a bias in the estimate of the seasonality amplitude

  16. Radon and aldehyde concentrations in the indoor environment. Final report

    International Nuclear Information System (INIS)

    Moschandreas, D.J.; Rector, H.E.

    1981-04-01

    Findings regarding indoor air contaminants in the energy-efficient residence (EER) in Mt. Airy, Maryland are reported. The objectives of the study were to collect and analyze relevant air quality samples (specifically radon and aldehydes), characterize the indoor air quality with respect to radon and aldehydes, and develop relationships between air infiltration rates and contaminant levels. One-fifth of the measured formaldehyde concentrations were in the range that may cause health concerns. Although indoor temperature and relative humidity affect indoor HCHO concentration, the elevated formaldehyde concentrations were measured under very low air infiltration rates. The data show that ventilation of the indoor air space is somewhat effective in reducing high HCHO concentrations. The operation of the heat exchanger led to an increase of the air infiltration rate which in turn resulted in substantial reduction of formaldehyde concentrations. A considerable number of the collected samples of indoor air displayed radon concentrations at levels higher than 1.0 to 4.0 nCim -3 (assuming an equilibrium factor of 0.5, these radon levels would correspond to working levels above the health guidelines suggested by the US EPA for homes in Florida built on land reclaimed from phosphate mining). As in the case of indoor formaldehyde concentrations, elevated indoor concentrations are substantially reduced when the infiltration rate is increased. The data base shows that the use of the air to air heat exchanger leads to reduction of indoor radon concentration by increasing the residential ventilation rate

  17. An investigation of factors influencing indoor radon concentrations

    International Nuclear Information System (INIS)

    Majborn, B.; Soerensen, A.; Nielsen, S.P.; Boetter-Jensen, L.

    1988-05-01

    Variations in indoor radon concentrations and some influencing factors have been studied during a two-year period (1986-1987) in 16 almost identical single-family houses.The annual average radon concentration in the houses varied from about 50 to about 400 Bq/m 3 . Variations in soil characteristics and radon concentration in soil gas could not be directly related to the variations of the average indoor radon concentrations. Most of the houses showed a ''normal'' seasonal variation of the radon concentration with a maximum in the winter and minimum in the summer. A deviating seasonal variation was found in three of the houses. Hourly data obtained in one unoccupied house during a period of 2-1/2 months showed no or only weak correlations between the indoor radon concentration and meteorological factors. However, for most of the houses, the seasonal variation of the indoor radon concentration was well correlated with the average indoor-outdoor temperature difference on a 2-month basis. It was demonstrated that the radon concentration can be strongly reduced in the Risoe houses if a district-heating duct, which is connected to all the houses, is ventilated, so that a slightly lowered pressure is maintained in the duct. 5 taps., 24 ill. (author)

  18. Assessment of indoor radon gas concentration change of college

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hoon Hee; Jeong, Eui Hwan; Kim, Hak Jae; Lyu, Kang Yeul [Dept. of of Radiological Technology, Shingu College, Seongnam (Korea, Republic of); Lee, Ju Young [Dept. of Radiological Technology, Songho College, Hoengseong (Korea, Republic of)

    2017-03-15

    The purpose of this study was to assess the impact by comparing the concentration of indoor radon and look for ways to lower the concentration of indoor radon gas measurements of three variables, the year of completion, volume of the building and ventilation. Measurement target is six classrooms on the sixth floor of building that was constructed in 1973 and was extended in 2011. Selected classroom's volume is different. Four classrooms were selected to compare the radon concentration in accordance with the year of completion, Classrooms that is same year of completion were selected to compare the radon concentration in accordance with the volume, six classroom was performed closure and ventilation to compare radon concentration according to ventilation. Radon concentrations in accordance with the year of building completion showed a high concentration of radon in a building recently built. Also, Radon concentration in volume is high the smaller the volume. Radon concentration change according to ventilation showed a reduction of about 80% when the ventilation than during closing. Especially, The radon concentrations were high detected while the recently year of building completion and the smaller volume. Ventilation of the three variables is considered that can be expected to exposure reduction effect by radon affecting the greatest radon concentration reduction.

  19. Assessment of indoor radon gas concentration change of college

    International Nuclear Information System (INIS)

    Park, Hoon Hee; Jeong, Eui Hwan; Kim, Hak Jae; Lyu, Kang Yeul; Lee, Ju Young

    2017-01-01

    The purpose of this study was to assess the impact by comparing the concentration of indoor radon and look for ways to lower the concentration of indoor radon gas measurements of three variables, the year of completion, volume of the building and ventilation. Measurement target is six classrooms on the sixth floor of building that was constructed in 1973 and was extended in 2011. Selected classroom's volume is different. Four classrooms were selected to compare the radon concentration in accordance with the year of completion, Classrooms that is same year of completion were selected to compare the radon concentration in accordance with the volume, six classroom was performed closure and ventilation to compare radon concentration according to ventilation. Radon concentrations in accordance with the year of building completion showed a high concentration of radon in a building recently built. Also, Radon concentration in volume is high the smaller the volume. Radon concentration change according to ventilation showed a reduction of about 80% when the ventilation than during closing. Especially, The radon concentrations were high detected while the recently year of building completion and the smaller volume. Ventilation of the three variables is considered that can be expected to exposure reduction effect by radon affecting the greatest radon concentration reduction

  20. An electrical circuit model for simulation of indoor radon concentration.

    Science.gov (United States)

    Musavi Nasab, S M; Negarestani, A

    2013-01-01

    In this study, a new model based on electric circuit theory was introduced to simulate the behaviour of indoor radon concentration. In this model, a voltage source simulates radon generation in walls, conductivity simulates migration through walls and voltage across a capacitor simulates radon concentration in a room. This simulation considers migration of radon through walls by diffusion mechanism in one-dimensional geometry. Data reported in a typical Greek house were employed to examine the application of this technique of simulation to the behaviour of radon.

  1. Indoor radon measurements in dwellings of four Saudi Arabian cities

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jarallah, M.I. E-mail: mibrahim@kfupm.edu.sa; Fazal-ur-Rehman; Abu-Jarad, F.; Al-Shukri, A

    2003-06-01

    An indoor radon survey of a total of 269 dwellings, with one dosimeter per house, distributed in four Saudi Arabian cities was carried out. The objective of this survey was to carry out indoor radon measurements of two cities in the Eastern Province, Khafji and Hafr Al-Batin and to compare this with two cities in the Western Province, Al-Madina and Taif. The survey provides additional information about indoor radon concentrations in Saudi Arabia. The results of the survey in these cities showed that the overall minimum, maximum and average radon concentration were 7,137 and 30 Bq m{sup -3}, respectively. The lowest average radon concentration (20 Bq m{sup -3}) was found in Hafr Al-Batin, while the highest average concentration was found in Khafji (40 Bq m{sup -3})

  2. Relationship between indoor radon concentrations and air exchange rate

    International Nuclear Information System (INIS)

    Wang Jingshu; Liu Yuyu; Yao Xiaohua; Meng Jianfeng; Zhang Yongyi; Wang Xiaohe; Yu Xiufen.

    1995-01-01

    The indoor concentration of radon and the air exchange rate were simultaneously measured in four empty rooms, made of brick and cement, which were located in different floors of dwelling houses in Taiyuan, Shanxi, China. SF 6 tracer gas decay method was used to measure the air exchange rate. Indoor radon was collected with the dimembrane method. When the ventilation rate increased, the concentration of radon dropped rapidly. Regression analysis indicated that the indoor concentration of radon was equal to the outdoor level of radon when the air exchange rate was greater than 3-4. SF 6 decay method was an effective and convenient method for measuring the air exchange rate. There was no marked difference in measurements obtained in different locations of a room. (N.K.)

  3. Indoor Radon and Lung Cancer Risk in Osijek

    International Nuclear Information System (INIS)

    Planinic, J.; Vukovic, B.; Faj, Z.; Radolic, V.; Culo, D.; Smit, G.; Suveljak, B.; Stanic, D.; Faj, D.

    2001-01-01

    Full text: Although studies of radon exposure have established that Rn decay products are a cause of lung cancer among miners, the lung cancer risk to the general population from indoor radon remains unclear. Our investigation of indoor radon influence on lung cancer incidence was carried out for 188 cases of the disease appeared in Osijek town during last five years. Radon concentration was measured in homes of the patients as well as for a control group. An ecologic method was applied by using the town map with square fields of 1,1km2 and the town was divided into 24 fields. For indoor radon level in the fields and belonging number of the diseases, a positive correlation coefficient was obtained, that was statistically significant, and a linear regression equation of cancer mortality rates was determined. In the mentioned population of the patients, subgroups of smokers and nonsmokers, males and females were also particularly investigated. (author)

  4. Geologic controls on indoor radon in the Pacific Northwest

    International Nuclear Information System (INIS)

    Otton, J.K.; Duval, J.S.

    1990-01-01

    This paper reports on comparisons of average indoor radon levels, soil radium content (derived from aerial gamma-ray data), and soil characteristics for selected townships in Washington, Oregon, and Idaho which show that: soil radium content provides a first-order estimate of the relative amounts of indoor radon where soils are either of low to moderate intrinsic permeability or of permeability reduced by high moisture; in drier parts of the study area (east of the Cascade Mountains), unusually high average indoor radon levels are almost all characterized by soils that have high effective permeabilities (greater than 20 inches per hour), based on available country soil descriptions; and in the wetter parts of the study area (west of the Cascade Mountains), townships with unusually high indoor radon levels are characterized by steeply sloped soils

  5. Indoor radon concentration levels in Amman, Zarka and Sault

    International Nuclear Information System (INIS)

    Khatibeh, A.J.A.H.; Ahmad, N.; Matiullah, A.

    1997-01-01

    Indoor radon concentration levels in three main cities of Jordan have been measured using CR-39 polymeric nuclear track detectors. CR-39 detectors were placed in polyethylene bags and cups. These bag and cup dosimeters were installed in randomly selected houses. The average value of indoor radon concentration level in the city of Amman was found to be 41.3 Bq m -3 with cup dosimeters and 42.6 Bq m -3 with bag dosimeters. For the district of Zarka, the average value of indoor radon concentration level measured with bag dosimeters was 33.9 Bq m -3 , whereas with cup dosimeters the level was 30.7 Bq m -3 . For Sault and its suburbs, the average value of indoor radon concentration level was found to be 51.2 Bq m -3 with bag dosimeters and 49.8 Bq m -3 with cup dosimeters. (author)

  6. Development of measure methods of radon in indoor air

    International Nuclear Information System (INIS)

    Yaginuma, L.T.; Pela, C.A.; Navas, E.A.; Ghilardi, A.J.P.

    1992-01-01

    The development of some conventional measuring methods, aiming obtain an estimation of radon concentration in air, mainly in indoor air is described, including the charcoal absorption collector, Lucas cell and thermoluminescent dosemeters. (C.G.C)

  7. Application of a radon model to explain indoor radon levels in a Swedish house

    CERN Document Server

    Font, L; Jönsson, G; Enge, W; Ghose, R

    1999-01-01

    Radon entry from soil into indoor air and its accumulation indoors depends on several parameters, the values of which normally depend on the specific characteristics of the site. The effect of a specific parameter is often difficult to explain from the result of indoor radon measurements only. The adaptation of the RAGENA (RAdon Generation, ENtry and Accumulation indoors) model to a Swedish house to characterise indoor radon levels and the relative importance of the different radon sources and entry mechanisms is presented. The building is a single-zone house with a naturally-ventilated crawl space in one part and a concrete floor in another part, leading to different radon levels in the two parts of the building. The soil under the house is moraine, which is relatively permeable to radon gas. The house is naturally-ventilated. The mean indoor radon concentration values measured with nuclear track detectors in the crawl-space and concrete parts of the house are respectively 75+-30 and 200+-80 Bq m sup - sup 3...

  8. Indoor radon measurements and radon prognosis for the province of Kymi, southeastern Finland

    International Nuclear Information System (INIS)

    Pennanen, M.; Maekelaeinen, I.; Voutilainen, A.

    1996-12-01

    The purpose of the regional radon prognosis is to classify areas with different levels of radon risk. The radon prognosis gives the percentages of future homes expected to have indoor radon concentrations exceeding the levels of 200 and 400 Bq/m 3 . It is assumed that no protection against the entry of radon is used in construction. In this study about 5900 indoor radon measurements made in single family houses, semi-detached houses and row houses were used. Data on the location, geology and construction of buildings were determined from maps and questionnaires. An empirical statistical model, the adjusted indoor radon measurements and geological data were used to assess the radon risk from soil and bedrock in different areas. The building sites of the province of Kymi were divided into thirteen sub-areas. The radon prognosis are calculated for the most radon-prone foundation types including 1) houses with a slab-on-grade and 2) houses with a basement or hillside houses with open stairwells between basement and first floor. The radon levels are generally greater in the western part of the area. The radon risk is highest in gravel-dominated esker areas in southwestern, western (in Pyhtaa, Kotka, Anjalankoski, litti, Valkeala) and central (Taipalsaari) parts of the area. The radon risk is also high in some bedrock and till areas, also in southwestern and western parts of the area. In these areas the level of 200 Bq/m 3 will be exceeded in 80 % of new houses. About half of the future houses in these areas will have indoor radon concentrations exceeding 400 Bq/m 3 . The radon risk is lowest in the eastern part of the province of Kymi in every soil type. In this area the level of 200 Bq/m 3 will be exceeded in 30 % of new houses. Below 10 % will exceed 400 Bq/m 3 . (orig.) (14 refs.)

  9. Understanding the origin of radon indoors: Building a predictive capability

    International Nuclear Information System (INIS)

    Sextro, R.G.

    1985-12-01

    Indoor radon concentrations one to two orders of magnitude higher than the US average of ∼60 Bq m -3 (∼1.5 pCi L -1 ) are not uncommon, and concentrations greater than 4000 Bq m -3 have been observed in houses in areas with no known artificially-enhanced radon sources. In general, source categories for indoor radon are well known: soil, domestic water, building materials, outdoor air, and natural gas. Soil is thought to be a major source of indoor radon, either through molecular diffusion (usually a minor component) or convective flow of soil gas. While soil gas flow into residences has been demonstrated, no detailed understanding of the important factors affecting the source strength of radon from soil has yet emerged. Preliminary work in this area has identified a number of likely issues, including the concentration of radium in the soil, the emanating fraction, soil type, soil moisture content, and other factors that would influence soil permeability and soil gas transport. Because a significant number of dwellings are expected to have indoor radon concentrations above guideline levels, a predictive capability is needed that would help identify geographical areas having the potential for high indoor concentrations. This paper reviews the preliminary work that has been done to identify important soil and building characteristics that influence the migration of radon and outlines the areas of further research necessary for development of a predictive method. 32 refs., 4 figs

  10. Indoor radon measurements in the Women College, Dammam, Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Al-Qahtani, Mona [Women College, P. O. Box 838, Dammam 31113 (Saudi Arabia); Al-Jarallah, M.I. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: mibrahim@kfupm.edu.sa; Fazal-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2005-11-15

    Passive radon dosimeters, based on alpha particle etched track detectors, were used in the indoor radon survey of the College of Science for Girls in Dammam, Saudi Arabia. A total of 95 dosimeters were distributed in the academic departments and the administrative building in the College. The exposure time in all the buildings was one complete lunar year in the period October 2001-October 2002 to get the average annual indoor radon concentration. All the buildings were constructed with ready-made concrete, except the administrative building which constructed with ordinary concrete bricks. A significant difference in the average indoor radon concentrations in the two types of buildings was found. The average indoor radon concentration in the ready-made concrete buildings was 6+/-2Bqm{sup -3} whereas that for the ordinary concrete brick building was 24+/-2Bqm{sup -3}. This could be due to the fact that ready-made concrete has a significantly less voids for the radon to emanate compared with ordinary concrete bricks. The indoor radon concentration in the ground floor is slightly higher than that in the first and second floors.

  11. Survey of indoor radon concentrations in Fukuoka and Kagoshima prefectures

    International Nuclear Information System (INIS)

    Kunugita, Naoki; Norimura, Toshiyuki; Tsuchiya, Takehiko

    1990-01-01

    It is now well established that radon and its daughter products account for nearly half of the average population exposure to ionizing radiations and that radon is the greatest single source of natural radiation to the population. Radon and its daughters are alpha-emitters, which are more biologically damaging than beta- and gamma-radiations. A nationwide survey of radon concentration was conducted by the National Institute of Radiological Sciences in order to estimate the contribution of radon and its daughters to the population dose in Japan. Authors surveyed indoor radon concentrations in Fukuoka and Kagoshima prefectures as part of this project. A passive type radon dosimeter, in which a sheet of polycarbonate film as the alpha-ray detector was mounted, was used to measure indoor radon concentrations. The resulting distribution of the average annual indoor radon concentrations in both prefectures can be characterized by an arithmetic mean of 24.4 Bq/m 3 and a standard deviation of 13.1 Bq/m 3 , by a geometric mean of 22.2 Bq/m 3 , and by a median of 20.7 Bq/m 3 . The geometric means of the distributions for Fukuoka and Kagoshima were 25.4, and 18.4 Bq/m 3 , respectively. Radon concentrations were also generally high in winter and low in summer. Regarding the analysis of correlations between the concentrations and construction materials, radon concentrations were generally high in Japanese houses with earthen walls and in concrete structures. These results showed that seasons, the type of building materials, and regional differences were significant factors in the variation of indoor radon concentration. (author)

  12. Study on indoor radon exposure and its effect on human health

    International Nuclear Information System (INIS)

    Lu Xinwei

    2005-01-01

    Radon and its daughters relate to people health. Radon widely exists in the nature. The paper discusses the source, exposure and activity level of indoor radon, systematically analyzes the hazards and dose-response of residential radon exposure, and at last indicates the concrete method of controlling residential radon concentration. By interdicting radon pollution source and ventilation might effectively reduce indoor radon concentration and improve environmental air quality. (authors)

  13. Diurnal variations of indoor radon progeny for Bangalore metropolitan, India

    International Nuclear Information System (INIS)

    Nagesh, V.; Sathish, L.A.; Nagaraja, K.; Sundareshan, S.

    2010-01-01

    Radon progenies are identified as major causes of the lung cancer if the activity is above its normal. It has not been clear whether radon poses a similar risk of causing lung cancer in humans exposed at generally lower levels found in homes, but a number of indoor radon survey have been carried out in recent years around the world. In view of this an attempt has been made for the measurement of diurnal variation of indoor radon levels for the environment of Bangalore metropolitan, India. The Radon progeny concentrations in terms of working level were measured using Kusnetz's method. The patterns of daily and annual changes in indoor Radon concentration have been observed in a general way for many years. However, understanding of the physical basis for these changes had to await the development of continuous monitors and a more complete knowledge of transport processes in the atmosphere. Over a continent, heating of the ground surface by the Sun during the day and cooling by radiation during the night causes a marked diurnal change in temperature near the surface. As a result cool air near the ground will accumulate radon isotopes from surface flux during the night; while during the day the warm air will be transported upward carrying radon with it. Many buildings show diurnal radon variations. Concentrations are relatively higher during night than daytime. This is influenced by the outdoor-indoor temperature contrast. This effect can be enhanced in buildings with strong diurnal use patterns. Buildings that have high average radon concentrations, but are only occupied for part of the day, may need to be measured during occupied periods to determine if there is significant diurnal radon variation. The results are discussed in detail. (author)

  14. A survey of indoor radon and particular concentration

    International Nuclear Information System (INIS)

    Ohta, Yukiko

    1993-01-01

    Lung disease risk from inhalation of radon can be enhanced by the presence of particular pollutants in indoor air. The indoor concentration of radon and particulates were measured in homes, a department store, and offices in a high building in Tokyo metropolis, as well as in homes in both northern and western Japan. Passive radon monitors were located in living rooms and offices for more than three months at 99 sites during the winter of 1988 and 1989. Indoor radon concentration ranged from 11.1 Bq/m 3 to 148 Bq/m 3 (n=99) and averaged value S.D. was 36.5±14.2 Bq/m 3 . However, the average concentration in air conditional buildings was 21.8±9.51 Bq/m 3 (n=17). Simultaneously at 65 of the radon sites, indoor particulates were collected using personal dust samplers by impaction methods. Deposited particulate concentrations on the sampler were measured and calculated in a unit of μm/m 3 . Concentrations were determined for particle sizes above and below 2.5 μm, for both smoking or non smoking sites. Consequently, concentration of particle size below 2.5 μm was high in smoking rooms. Finally, it was considered that smoking was a complex indoor pollutant as adherence of radon daughter to aerosols. (author)

  15. The perceived health risks of indoor radon gas and overhead powerlines: a comparative multilevel approach.

    Science.gov (United States)

    Poortinga, Wouter; Cox, Patrick; Pidgeon, Nick F

    2008-02-01

    Radon and overhead powerlines are two radiation risk cases that have raised varying levels of concern among the general public and experts. Despite both involving radiation-a typically feared and unseen health hazard-individuals' perceptions of the two risk cases may invoke rather different factors. We examined individual and geographic-contextual factors influencing public perceptions of the health risks of indoor radon gas and overhead powerlines in a comparative research design, utilizing a postal questionnaire with 1,528 members of the general public (response rate 28%) and multilevel modeling techniques. This study found that beliefs about the two risk cases mainly differed according to the level of "exposure"-defined here in terms of spatial proximity. We argue that there are two alternative explanations for this pattern of findings: that risk perception itself varies directly with proximity, or that risk is more salient to concerned people in the exposed areas. We also found that while people living in high radon areas are more concerned about the risks of indoor radon gas, they find these risks more acceptable and have more trust in authorities. These results might reflect the positive effects of successive radon campaigns in high radon areas, which may have raised awareness and concern, and at the same time may have helped to increase trust by showing that the government takes the health risks of indoor radon gas seriously, suggesting that genuine risk communication initiatives may have positive impacts on trust in risk management institutions.

  16. Coordinated indoor radon surveys in some Arab countries

    International Nuclear Information System (INIS)

    Al-Azmi, D.; Al-Abed, T.; Alnasari, M.S.; Borham, E.E.; Chekir, Z.; Khalifa, M.S.; Shweikani, R.

    2012-01-01

    Indoor radon surveys were carried out in some of the Arab countries through a Coordination Research Program (CRP) organized by the Arab Atomic Energy Agency (AAEA). The objectives of the program aim at establishing a database on indoor radon concentration levels in the region and investigating any anomalies, where they exist. The approach adopted by the survey teams to achieve public participation in accepting the radon detectors in dwellings is presented and discussed. Most of the participants in the CRP used the passive method (CR-39 plastic detectors) for long-term radon measurements, while others used charcoal detectors and E-Perm systems for short-term measurements. The results of the surveys showed that radon concentration levels in most of the dwellings were low, whilst in some old cities and in an area close to a phosphate mine the levels were found to be relatively high. (authors)

  17. Mortality and indoor radon daughter concentrations in 13 Canadian cities

    International Nuclear Information System (INIS)

    Letourneau, E.G.; Wigle, D.T.

    1980-01-01

    A study was carried out to determine if lung cancer and general mortality rates in 13 Canadian cities were significantly correlated with average indoor radon daughter concentrations. The radon daughter measurements were obtained from a study of 10,000 homes chosen in a statistically valid grab sample basis. Cancer deaths by year of death, sex, age, and cause were retrieved for each of the cities for the period 1957-1976. Age specific and age standardized mortality rates were calculated. The results showed no evidence of any substantial association between general or lung cancer mortality rates and indoor radon daughter concentrations. The limitations of this study and the feasibility of a common international program of epidemiology of radon daughter exposure are discussed. A proposal is made for the use of case control studies of lung cancer to assess the relative importance of smoking, occupational and domestic exposure to radon daughters

  18. Estimating lung cancer risks of indoor radon: applications for prevention

    International Nuclear Information System (INIS)

    Klotz, J.B.

    1986-01-01

    The epidemiologic evidence for a serious lung cancer hazard from radon exposure is very strong, and cumulative exposures accrued in residences may frequently overlap those accrued in underground miners. However, many uncertainties exist in extrapolating from mining to indoor risks because of differences in the populations, in radon exposure variables, and in other exposures. Risks are also considered for indoor radon exposures outside the home. There is already suggestive evidence of an association of lung cancer with radon levels in community settings, and several large-scale investigations are in progress. Some important questions regarding quantifying risk may not be approached, however; some further research needs are outlined including development of techniques for preventing or postponing lung cancer in individuals previously exposed to high radon levels. 31 references, 2 tables

  19. A statistical evaluation of the geogenic controls on indoor radon concentrations and radon risk

    Energy Technology Data Exchange (ETDEWEB)

    Appleton, J.D., E-mail: jda@bgs.ac.u [British Geological Survey, Kingsley Dunham Centre, Nicker Hill, Keyworth, Nottingham, NG12 5GG (United Kingdom); Miles, J.C.H. [Health Protection Agency (HPA), Radiation Protection Division, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom)

    2010-10-15

    ANOVA is used to show that approximately 25% of the total variation of indoor radon concentrations in England and Wales can be explained by the mapped bedrock and superficial geology. The proportion of the total variation explained by geology is higher (up to 37%) in areas where there is strong contrast between the radon potential of sedimentary geological units and lower (14%) where the influence of confounding geological controls, such as uranium mineralisation, cut across mapped geological boundaries. When indoor radon measurements are grouped by geology and 1-km squares of the national grid, the cumulative percentage of the variation between and within mapped geological units is shown to be 34-40%. The proportion of the variation that can be attributed to mapped geological units increases with the level of detail of the digital geological data. This study confirms the importance of radon maps that show the variation of indoor radon concentrations both between and within mapped geological boundaries.

  20. Hourly indoor radon measurements in a research house.

    Science.gov (United States)

    Sesana, Lucia; Begnini, Stefania

    2004-01-01

    This paper reports and discusses the behaviour of radon concentration with time in an uninhabited dwelling. The relationship between variations in radon concentrations and indoor-outdoor temperatures and wind intensity has also been discussed. Radon concentration was measured hourly in a house located at a height of 800 m in the Lombard Prealps, at the top of the Valassina valley. The wind velocity and indoor-outdoor temperatures were measured by means of a meteorological station located on the terrace of the house. The data were analysed using the LBL model for indoor-outdoor air exchange and the models for the indoor accumulation of radon due to exhalation from building materials and pressure-driven infiltrations located underground. The role of wind and indoor-outdoor temperatures were analysed. The agreement of measurements with modelling clearly demonstrates the importance of the different sources of indoor radon. As the investigation was conducted in an uninhabited house, the measurements were not affected by the behaviour of people, e.g. opening and closing of windows. Measurements of the outdoor atmospheric concentrations of (222)Rn provide an index of the atmospheric stability, the formation of thermal inversions and convective turbulence.

  1. Hourly indoor radon measurements in a research house

    International Nuclear Information System (INIS)

    Sesana, L.; Begnini, S.

    2004-01-01

    This paper reports and discusses the behaviour of radon concentration with time in an uninhabited dwelling. The relationship between variations in radon concentrations and indoor-outdoor temperatures and wind intensity has also been discussed. Radon concentration was measured hourly in a house located at a height of 800 m in the Lombard Pre-alps, at the top of the Valassina valley. The wind velocity and indoor-outdoor temperatures were measured by means of a meteorological station located on the terrace of the house. The data were analysed using the LBL model for indoor-outdoor air exchange and the models for the indoor accumulation of radon due to exhalation from building materials and pressure-driven infiltrations located underground. The role of wind and indoor-outdoor temperatures were analysed. The agreement of measurements with modelling clearly demonstrates the importance of the different sources of indoor radon. As the investigation was conducted in an uninhabited house, the measurements were not affected by the behaviour of people, e.g. opening and closing of windows. Measurements of the outdoor atmospheric concentrations of 222 Rn provide an index of the atmospheric stability, the formation of thermal inversions and convective turbulence. (authors)

  2. Risk of Lung Cancer and Indoor Radon Exposure in France

    International Nuclear Information System (INIS)

    Baysson, H.; Tirmarche, M.; Tymen, G.; Ducloy, F.; Laurier, D.

    2004-01-01

    It is well established that radon exposure increases risks of lung cancer among underground miners. to estimate the lung cancer risk linked to indoor radon exposure, a hospital based case-control study was carried out in France, With a focus on precise reconstruction of past indoor radon exposure over the 30 years preceding the lung cancer diagnosis. The investigation rook place from 1992 to 1998 in four regions of France: Auvergne, Brittany, Languedoc and Limousin. During face-to-face interviews a standardized questionnaire was used to ascertain demographic characteristics, information on active and passive smoking, occupational exposure, medical history as well as extensive details on residential history. Radon concentrations were measured in the dwellings where subjects had lived at least one year during the 5-30 year period before interview. Measurements of radon concentrations were performed during a 6-month period, using two Kodalpha LR 115 detectors, one in the living room and one in the bedroom. The time-weighted average (TWA) radon concentration for a subject during the 5-30 year period before interview was based on radon concentrations over all addresses occupied by the subject weighted by the number of years spent at each address. For the time intervals without available measurements, we imputed the region-specific arithmetic average of radon concentrations for measured addresses of control subjects. Lung cancer risk was examined in relation to indoor radon exposure after adjustment for age, sex, region, cigarette smoking and occupational exposure. The estimated relative a risk per 100 Bq/m''3 was 1.04, at the borderline of statistical significance (95 percent Confidence Interval: 0.99, 1..1). These results are in agreement with results from other indoor radon case-control studies and with extrapolations from underground miners studies. (Author) 31 refs

  3. Comparative study of short- and long-term indoor radon measurements

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jarallah, M.I. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: mibrahim@kfupm.edu.sa; Fazal-ur-Rehman,; Abdalla, Khalid [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2008-08-15

    Short-term indoor radon measurements are used widely. Therefore, it is interesting to find out a correlation between these measurements and long-term measurements which reflect a better average radon concentration of individual measurement. To find the correlation between the two measurements of indoor radon concentrations at low radon levels, a study was carried out at 34 locations of King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia using active and passive methods. In the short-term active method, a radon gas analyzer (AlphaGUARD) was used for a duration of 24 h in each measurement. In the long-term passive method, CR-39 based radon dosimeters were utilized for a period of 6 months, from January 2006 to June 2006. The short-term active measurements showed that the average, minimum and maximum radon concentrations were 19, 8 and 58Bqm{sup -3}, respectively, with a standard deviation of 8.6Bqm{sup -3}. The long-term passive measurements showed that the average, minimum and maximum radon concentrations were 25, 10 and 67Bqm{sup -3}, respectively, with a standard deviation of 12Bqm{sup -3}. The two measurements showed a poor correlation (R{sup 2}=0.38). The long-term measurements showed on the average higher concentrations by a factor of 1.3.

  4. Radon decay product in-door behaviour - parameter, measurement method, and model review

    International Nuclear Information System (INIS)

    Scofield, P.

    1988-01-01

    This report reviews parameters used to characterize indoor radon daughter behavior and concentrations. Certain parameters that affect indoor radon daughter concentrations are described and the values obtained experimentally or theoretically are summarized. Radon daughter measurement methods are reviewed, such as, PAEC, unattached daughters, particle size distributions, and plateout measurement methods. In addition, certain radon pressure driven/diffusion models and indoor radon daughter models are briefly described. (orig.)

  5. On the behaviour of radon in indoor air

    International Nuclear Information System (INIS)

    Lehtimaeki, M.; Kivistoe, T.

    1983-01-01

    In this work the behaviour of radon in indoor air has been studied. A simple mathematical model is presented to describe the variations in radon concentration in case of a periodic ventilation. This model has been tested with the aid of long-term measurements in two office buildings, in a large shipyard hall, and in a dwelling. The variations predicted by the simple model were observed in all buildings studied. It seems even possible that if the mixing of radon in the building is effective, the radon measurements can be used in estimating the infiltration rates. The measurement in one of the office buildings, however, indicated that the mixing of radon in a many-storied building can be extremely incomplete. The measurements also indicate that the soil can be a very important source of radon. (orig.) [de

  6. Indoor thoron and radon progeny measurements

    International Nuclear Information System (INIS)

    Tu, K.W.; George, A.C.; Lowder, W.M.; Gogolak, C.V.

    1992-01-01

    Measurements of indoor thoron ( 220 Rn) and radon ( 222 Rn) progeny activities were conducted in 40 homes and six public buildings in five states. A commercial alpha spectrometer system and four portable alpha integrating sampling monitors using diffused junction silicon detectors were used for sampling and recording of radionuclide data in particular the potential alpha energy concentrations (PAEC). The data were analysed for the ratios of PAEC- 220 Rn to PAEC- 222 Rn, and the correlations between the two quantities, and their estimated annual effective dose equivalent (AEDE). The results show that the PAEC ratios were 0.09, 0.6, 0.55, and 0.47, respectively, for all homes with the PAEC- 222 Rn > 400, between 100 and 400, -3 , and the total of all homes tested; the AEDE ratios were 0.03, 0.21, 0.19 and 0.16, respectively. No strong correlations were found between PAEC- 220 Rn and PAEC- 222 Rn, and between basement and ground floor data for PAEC- 220 Rn, but the PAEC- 222 Rn data showed a strong correlation between the basement and the ground floor values. Simultaneous measurements of PAEC- 220 Rn and PAEC- 222 Rn on the ground floor and in the basement of each of the 23 single-family houses tested suggests that 220 Rn entry from building materials may be as significant as from the underlying soil. (author)

  7. Mathematical models for indoor radon prediction

    International Nuclear Information System (INIS)

    Malanca, A.; Pessina, V.; Dallara, G.

    1995-01-01

    It is known that the indoor radon (Rn) concentration can be predicted by means of mathematical models. The simplest model relies on two variables only: the Rn source strength and the air exchange rate. In the Lawrence Berkeley Laboratory (LBL) model several environmental parameters are combined into a complex equation; besides, a correlation between the ventilation rate and the Rn entry rate from the soil is admitted. The measurements were carried out using activated carbon canisters. Seventy-five measurements of Rn concentrations were made inside two rooms placed on the second floor of a building block. One of the rooms had a single-glazed window whereas the other room had a double pane window. During three different experimental protocols, the mean Rn concentration was always higher into the room with a double-glazed window. That behavior can be accounted for by the simplest model. A further set of 450 Rn measurements was collected inside a ground-floor room with a grounding well in it. This trend maybe accounted for by the LBL model

  8. High indoor radon variations and the thermal behavior of eskers

    International Nuclear Information System (INIS)

    Arvela, H.; Voutilainen, A.; Honkamaa, T.; Rosenberg, A.

    1994-01-01

    Measurements of indoor radon concentrations in houses built on the Pispala esker in the city of Tampere were taken. The objective was to find connections between indoor radon concentrations, esker topography, and meteorological factors. The results show that not only the permeable soil but also subterranean air-flows in the esker strongly affect the indoor radon concentrations. The difference in temperature between the soil air inside the esker and the outdoor air compels the subterranean air to stream between the upper and lower esker areas. In winter, the radon concentrations are amplified in the upper esker areas where air flows out from the esker. In summer, concentrations are amplified in certain slope zones. In addition, wind direction affects the soil air and indoor radon concentrations when hitting the slopes at right angles. Winter-summer concentration ratios are typically in the range of 3-20 in areas with amplified winter concentration, and 0.1-0.5 in areas with amplified summer concentrations. A combination of winter and summer measurements provides the best basis for making mitigation decisions. On eskers special attention must be paid to building technology because of radon. 9 refs., 7 figs., 1 tab

  9. Radon in houses utilizing stone magazines for heat accumulation

    International Nuclear Information System (INIS)

    Stranden, E.

    1981-01-01

    Measurements of 222 Rn and its daughters in three solar energy houses utilizing stone magazines for heat accumulation are reported. Theoretical calculations of the radon contribution from the stone magazines seem to be in good agreement with the measured values. The survey indicated that this method for heat accumulation could give a significant increase in the indoor radon concentration if the radium concentration of the stone material is high. The theoretical considerations suggest that a radium concentration of 1 pCi/g of the stone material could give an increment of the radon concentration in the indoor air of about 1 pCi/l. during the heating season in a house with air volume of 250 m 3 and a 10 5 -kg stone magazine. (author)

  10. Indoor radon variations in central Iran and its geostatistical map

    Science.gov (United States)

    Hadad, Kamal; Mokhtari, Javad

    2015-02-01

    We present the results of 2 year indoor radon survey in 10 cities of Yazd province in Central Iran (covering an area of 80,000 km2). We used passive diffusive samplers with LATEX polycarbonate films as Solid State Nuclear Track Detector (SSNTD). This study carried out in central Iran where there are major minerals and uranium mines. Our results indicate that despite few extraordinary high concentrations, average annual concentrations of indoor radon are within ICRP guidelines. When geostatistical spatial distribution of radon mapped onto geographical features of the province it was observed that risk of high radon concentration increases near the Saqand, Bafq, Harat and Abarkooh cities, this depended on the elevation and vicinity of the ores and mines.

  11. Indoor radon and environmental gamma radiation in Hong Kong

    International Nuclear Information System (INIS)

    Yu, K.N.; Young, E.C.M.; Stokes, M.J.; Luo, D.L.; Zhang, C.X.

    1992-01-01

    Activated charcoal canisters have been used to measured the indoor radon concentrations of 160 sites in different buildings in Hong Kong during the period from July to October 1990. The average value is 40.0 Bq.m -3 . Furthermore, CR-39 nuclear track detectors and two kinds of LiF TLDs have been used to measure the average indoor radon concentrations and the absorbed gamma dose rates in air of 71 sites over the period from January to April 1991. The results all show log-normal distribution. The indoor radon concentrations are respectively 72.2 Bq.m -3 and 155.4 Bq.m -3 for dwellings and offices, while the absorbed gamma dose rates in air are respectively 213.0 nGy.h -1 and 198.3 nGy.h -1 . (author)

  12. Predictors of Indoor Radon Concentrations in Pennsylvania, 1989-2013.

    Science.gov (United States)

    Casey, Joan A; Ogburn, Elizabeth L; Rasmussen, Sara G; Irving, Jennifer K; Pollak, Jonathan; Locke, Paul A; Schwartz, Brian S

    2015-11-01

    Radon is the second-leading cause of lung cancer worldwide. Most indoor exposure occurs by diffusion of soil gas. Radon is also found in well water, natural gas, and ambient air. Pennsylvania has high indoor radon concentrations; buildings are often tested during real estate transactions, with results reported to the Department of Environmental Protection (PADEP). We evaluated predictors of indoor radon concentrations. Using first-floor and basement indoor radon results reported to the PADEP between 1987 and 2013, we evaluated associations of radon concentrations (natural log transformed) with geology, water source, building characteristics, season, weather, community socioeconomic status, community type, and unconventional natural gas development measures based on drilled and producing wells. Primary analysis included 866,735 first measurements by building, with the large majority from homes. The geologic rock layer on which the building sat was strongly associated with radon concentration (e.g., Axemann Formation, median = 365 Bq/m3, IQR = 167-679 vs. Stockton Formation, median = 93 Bq/m3, IQR = 52-178). In adjusted analysis, buildings using well water had 21% higher concentrations (β = 0.191, 95% CI: 0.184, 0.198). Buildings in cities (vs. townships) had lower concentrations (β = -0.323, 95% CI: -0.333, -0.314). When we included multiple tests per building, concentrations declined with repeated measurements over time. Between 2005 and 2013, 7,469 unconventional wells were drilled in Pennsylvania. Basement radon concentrations fluctuated between 1987 and 2003, but began an upward trend from 2004 to 2012 in all county categories (p Pennsylvania, 1989-2013. Environ Health Perspect 123:1130-1137; http://dx.doi.org/10.1289/ehp.1409014.

  13. Predictors of Indoor Radon Concentrations in Pennsylvania, 1989–2013

    Science.gov (United States)

    Casey, Joan A.; Ogburn, Elizabeth L.; Rasmussen, Sara G.; Irving, Jennifer K.; Pollak, Jonathan; Locke, Paul A.

    2015-01-01

    Background Radon is the second-leading cause of lung cancer worldwide. Most indoor exposure occurs by diffusion of soil gas. Radon is also found in well water, natural gas, and ambient air. Pennsylvania has high indoor radon concentrations; buildings are often tested during real estate transactions, with results reported to the Department of Environmental Protection (PADEP). Objectives We evaluated predictors of indoor radon concentrations. Methods Using first-floor and basement indoor radon results reported to the PADEP between 1987 and 2013, we evaluated associations of radon concentrations (natural log transformed) with geology, water source, building characteristics, season, weather, community socioeconomic status, community type, and unconventional natural gas development measures based on drilled and producing wells. Results Primary analysis included 866,735 first measurements by building, with the large majority from homes. The geologic rock layer on which the building sat was strongly associated with radon concentration (e.g., Axemann Formation, median = 365 Bq/m3, IQR = 167–679 vs. Stockton Formation, median = 93 Bq/m3, IQR = 52–178). In adjusted analysis, buildings using well water had 21% higher concentrations (β = 0.191, 95% CI: 0.184, 0.198). Buildings in cities (vs. townships) had lower concentrations (β = –0.323, 95% CI: –0.333, –0.314). When we included multiple tests per building, concentrations declined with repeated measurements over time. Between 2005 and 2013, 7,469 unconventional wells were drilled in Pennsylvania. Basement radon concentrations fluctuated between 1987 and 2003, but began an upward trend from 2004 to 2012 in all county categories (p Pennsylvania, 1989–2013. Environ Health Perspect 123:1130–1137; http://dx.doi.org/10.1289/ehp.1409014 PMID:25856050

  14. Variance of indoor radon concentration: Major influencing factors

    Energy Technology Data Exchange (ETDEWEB)

    Yarmoshenko, I., E-mail: ivy@ecko.uran.ru [Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg (Russian Federation); Vasilyev, A.; Malinovsky, G. [Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg (Russian Federation); Bossew, P. [German Federal Office for Radiation Protection (BfS), Berlin (Germany); Žunić, Z.S. [Institute of Nuclear Sciences “Vinca”, University of Belgrade (Serbia); Onischenko, A.; Zhukovsky, M. [Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg (Russian Federation)

    2016-01-15

    Variance of radon concentration in dwelling atmosphere is analysed with regard to geogenic and anthropogenic influencing factors. Analysis includes review of 81 national and regional indoor radon surveys with varying sampling pattern, sample size and duration of measurements and detailed consideration of two regional surveys (Sverdlovsk oblast, Russia and Niška Banja, Serbia). The analysis of the geometric standard deviation revealed that main factors influencing the dispersion of indoor radon concentration over the territory are as follows: area of territory, sample size, characteristics of measurements technique, the radon geogenic potential, building construction characteristics and living habits. As shown for Sverdlovsk oblast and Niška Banja town the dispersion as quantified by GSD is reduced by restricting to certain levels of control factors. Application of the developed approach to characterization of the world population radon exposure is discussed. - Highlights: • Influence of lithosphere and anthroposphere on variance of indoor radon is found. • Level-by-level analysis reduces GSD by a factor of 1.9. • Worldwide GSD is underestimated.

  15. Long term and equilibrium factor indoor radon measurements

    International Nuclear Information System (INIS)

    Martinez, T.; Lartigue, J.; Navarrete, M.; Cabrera, L.; Ramirez, A.; Elizarraras, V.

    1998-01-01

    This paper presents the annual radon gas concentrations obtained during the 1994-1995 monitoring campaign using passive electret system (type E-PERM). Radon levels were measured in 154 single family dwellings, in normal occupancy conditions (open house condition) in the metropolitan zone of Mexico City. At the same time radon monitoring was performed outdoors. The results show the general log-normal distribution of integrated indoor radon concentration with an annual indoor mean of 3.8 pCi x l -1 . The seasonal variations show the minimum mean values in the summer season which are 39% lower than that in autumn. Equilibrium factors (F) were measured in 12 typical houses both in autumn and winter using a continuous working level monitor for short-lived radon decay products and H-chamber loaded with a short term electret (HST, E-PERM) for radon gas. The obtained total mean equilibrium factors are: F=0.41±0.17 and F=0.29±0.04 for indoor and outdoor, respectively. A quality program was also improved. (author)

  16. Indoor radon concentrations in kindergartens from different regions of Yugoslavia

    International Nuclear Information System (INIS)

    Vaupotic, J.; Krizman, M.; Sutej, T.

    1992-01-01

    In the winter period of 1990-1991 instantaneous radon concentrations in air were measured in around 450 kindergartens from different regions from Yugoslavia. Alpha scintillation counting was used as a screening method, and the measurements were carried out in rooms where the children spent the majority of their time. All of the air grab samples were taken under the same conditions which excluded ventilation of the interior 12 h prior to sampling. In addition to indoor radon concentrations, gamma dose rate was measured using portable equipment. The indoor radon concentrations were generally low, in the range from 10 to 180 Bq.m -3 of air, with an overall average of about 100 Bq.m -3 . There were a few exceptions where indoor radon levels exceeded 150 Bq.m -3 ; mainly in old buildings containing higher contents of natural radionuclides in the building materials, and in the cellars or basements of the buildings. In all rooms with a level exceeding 150 Bq of 222 Rn per m 3 , solid-state nuclear track detectors were applied for long-term measurements. In order to investigate the equilibrium between radon and its short-lived daughters, mainly with respect to their contribution to the effective dose, alpha spectrometry is also being introduced in selected kindergartens with elevated radon concentrations. (author)

  17. An assessment of indoor radon exposure in Ireland

    International Nuclear Information System (INIS)

    McLaughlin, J.P.

    1987-01-01

    The results of measurements of indoor radon in over 700 dwellings chosen at ''random'' throughout the Republic of Ireland are presented. The median value of radon in these dwellings was found to be 37 Bq/m 3 (1 pCi/1). The distribution of indoor radon concentration appears to be approximately log-normal with about 2% of the dwellings surveyed having concentrations greater than 400 Bq/m 3 . High radon values were generally found to be more common in western and southern regions of the country than in the more densely populated eastern seabord. Using dose conversion factors in keeping with recent developments in lung dosimetry the median effective dose equivalent to occupants arising from the inhalation of radon daughters in the dwellings surveyed is estimated to be about 1.8 mSv per year. On the same basis for dwellings with indoor radon above 400 Bq/m 3 the continuous effective dose equivalent is estimated to be in excess of 20 mSv per year

  18. Comparisons of indoor radon to other radiation hazards

    International Nuclear Information System (INIS)

    Bodansky, D.; Jackson, K.L.; Geraci, J.P.

    1987-01-01

    The significance of radon as a cause of cancer can be put into perspective by a comparison with other causes of cancer. Lung cancer is fatal in about 90% of the cases and therefore in assessing radon exposures it is pertinent to make a comparison in terms of mortality figures. There is a broad range of estimates for the U.S. lung cancer mortality from indoor radon, extending from well below 5,000 to above 20,000 per year. For simplicity in making comparisons, the authors use an intermediate estimate of 10,000 per year, although one needs to bear in mind this number is uncertain. Given approximately 480,000 fatal cancers in the United States per year and 136,000 fatal lung cancers, this estimate corresponds to indoor radon being responsible for 2% of all cancer mortality and 7% of lung cancer mortality. It is estimated that 83% of lung cancers are due to smoking, corresponding to about 113,000 deaths per year. Overall, therefore, smoking is far more important than indoor radon as a cause of lung cancer. Despite the authors' concentration on it, radon is a relatively small contributor in the perspective of cancer as a whole or even of lung cancer alone. It is a more dominant contributor in considering average exposures to ionizing radiation

  19. A passive integrating charcoal detector for indoor radon survey

    International Nuclear Information System (INIS)

    Lin Lianqing; Ren Tianshan; Li Guiyun

    1986-01-01

    This paper describes the principle, design, calibration and characteristics of a passive integrating charcoal detector for measuring average radon concentration indoors. The uncertainties of the detector are also evaluated. Under conditions of room temperature at 17 deg C and relative humidity at 30%, the minimum limit of detection is 0.16 pCi/1 for 72 hours exposure. Besides higher sensitivity, the other advantages of this detector are passive, simple and less expensive. It requires no power and makes no noise and gives no interference to daily activities of the residents of dwellings being surveyed. Therefore the detector is suitable for a large-scale survey of radon levels indoors

  20. Comparing summer and winter indoor radon and radon daughters activity in Campinas, Brazil

    International Nuclear Information System (INIS)

    Guedes, O.S.; Hadler, N.J.C.; Iunes, P.J.; Neman, R.S.; Souza, W.F.; Tello, S.C.A.; Paulo, S.R.

    2002-01-01

    We developed a technique - based on alpha particle track detection using CR-39 - where the activity originated from indoor radon can be potentially separated into three fraction: (i) radon in the air, (ii) radon daughters (RD), 218 Po and 214 Po, in the air and (iii) RD plated-out on the detector surface during exposure. In this work only a partial separation was carried out, then our results are limited to radon plus RD in the air and RD attached to detector surface. These activities can be separated if size and gray level of the round tracks are measured using an automatic optical microscopy system.Our group carried out an indoor radon and radon daughters (RD) survey in Campinas made up by a summer (November, 96 to May, 97) and a winter (May, 97 to November, 97) exposure, where the detectors were placed in the same rooms of the same dwellings (approximately 100) in both cases. Comparing winter and summer alpha activity for the detectors analyzed up to now, approximately 45 dwellings, we observed that: i) it seems that the source of radon is the material (brick and concrete mainly) making up walls, floor and ceiling of the dwellings, ii) there is no clear relationship between intensity of aeration and the activities measured in this work, and iii) the average ratio between winter and summer activity in the air (radon plus RD) is approximately equal to similar ratios observed in other countries, but for radon only. (author)

  1. Indoor radon measurements in dwellings of Garhwal Himalaya, Northern India

    International Nuclear Information System (INIS)

    Ramola, R.C.

    1996-01-01

    Measurement of indoor radon and daughters concentration were performed in several houses in Garhwal Himalaya during 1993-95 with solid state nuclear track detector films (LR-115 Type II). The detector films were exposed for a period of three month to one year. The films basically measured total airborne alpha activity but may be calibrated in unite of EEC RN (equilibrium equivalent concentration of radon with equilibrium factor F=0.45) in an environment with known radon and daughters concentrations. A numbers of dwelling in the area exhibited radon daughters concentrations (EEC RN ) exceeding the recommended level. The abnormal values are due to typical house construction (mud house) in the area. The houses are constructed with soil and local stone with a thin paste of mud. Behaviour and abnormality of radon in mud houses are discussed in details the corresponding annual effective dose has been calculated. (author)

  2. A new coating material for reducing indoor radon level

    International Nuclear Information System (INIS)

    Zhuo, W.; Tokonami, S.; Ichitsubo, H.; Yamada, Y.; Yamada, Y.

    2002-01-01

    In order to mitigate indoor radon level, a new fast-setting, solvent-free, polyurethane-based coating material was developed. The permeability of radon gas in the new material was estimated with a simple radon permeation test system set up in this study. It was found that the permeation velocity depended on the thickness of the coating material, and a thickness of 2.0 mm of the coating material seems sufficient for preventing radon permeation. The permeability of radon in the coating material was estimated to be (2.2± 0.8)x10 -10 m 2 ·s -1 for a thickness of about 1.0 mm. The value is much lower than those reported for membrane materials and caulking compounds. For its performance test, the coating material was used in an existing room with high radon level. By spraying a thickness of 1.5 mm of the material, the indoor radon level reduced by about 80%

  3. Characterization of radon levels in indoor air

    International Nuclear Information System (INIS)

    George, A.C.

    1982-01-01

    The purpose is to describe the different types of monitoring and sampling techniques that can determine the radiation burden of the general public from radon and its decay products. This is accomplished by measuring the range and distribution of radon and radon decay products through broad surveys using simple and convenient integrating monitoring instruments. For in-depth studies of the behavior of radon decay products and calculation of the radiation dose to the lung, fewer and more intensive and complex measurements of the particle size distribution and respiratory deposition of the radon decay products are required. For diagnostic purposes, the paper describes measurement techniques of the sources and exhalation rate of radon and the air exchange inside buildings. Measurement results form several studies conducted in ordinary buildings in different geographical areas of the United States, using the described monitoring techniques, indicate that the occupants of these buildings are exposed to radon and radon decay product concentrations, varying by as much as a factor of 20

  4. Indoor radon measurements in Athens, Greece

    International Nuclear Information System (INIS)

    Proukakis, C.; Molfetas, M.; Ntalles, K.; Georgiou, E.; Serefoglou, A.

    1987-01-01

    A pilot study was carried out in order to measure air concentrations of radon 222 and 220 isotopes in Athenian houses, as a first step of a national survey in Greece. In this paper the authors deal with radon concentration in air and water and will rely on measurements conducted in Greece. (author)

  5. Utilization of rice husk ash to enhance radon resistant potential of concrete

    International Nuclear Information System (INIS)

    Jain, Ravinder; Kant, Krishan; Yadav, Mani Kant; Chauhan, R.P.

    2013-01-01

    The radiological and health implication posed by radon and their decay products are well known. The soil containing varying amount of radionuclides is the primary source of indoor radon. The indoor radon level depends upon its entrance through the pores of the ground and floor. Thus it is necessary to restrict the radon from soil to enter indoors by application of materials with low radon diffusion coefficient. The method used for radon shielding purpose in present study utilizes the rice husk ash for substitution with cement to achieve low diffusion coefficient. The study describes the method to optimize the condition of preparation of rice husk ash using X-ray diffraction and fluorescence spectroscopy techniques. The rice husk substitution with cement was optimized by compressive and porosity test of concrete cubes. The diffusion coefficient through concrete modified by rice husk ash was carried out by scintillation radon monitor and specially design radon diffusion chamber. The radon exhalation rates from concrete carried out using active technique decreasing radon emanation from concrete with increase of rice husk ash. The result of present study suggest substitution of 20-30% rice husk ash with cement to achieve lower radon diffusion and exhalation rates with higher compressive strength as compared to control concrete. (author)

  6. Indoor air radon concentration in schools in Prizren, Kosovo

    International Nuclear Information System (INIS)

    Bahtijari, M.; Stegnar, P.; Shemsidini, Z.; Kobal, I.; Vaupotic, J.

    2006-01-01

    Indoor air radon ( 222 Rn) concentrations were measured in spring and winter in 30 rooms of 9 elementary schools and 19 rooms of 6 high schools in Prizren, Kosovo, using alpha scintillation cells. Only in three rooms of elementary schools and four rooms of high schools did winter concentrations exceed 400 Bq m -3 . (authors)

  7. A study on the risk from indoor radon 220 and radon 222 exposures

    International Nuclear Information System (INIS)

    Rannou, A.

    1986-12-01

    The hazards from radon (radon 220 and 222) in dwelling atmospheres have been studied. In the first part devoted to the present state of the problem, an analysis is made of the formation mechanisms and the evolution of radon and its daughters indoors. The main physical and dosimetric quantities required for the risk evaluation are defined. The theoretical and experimental analysis of the methods of measurements of radon and its daughters used in the measurement campaign are considered in the second part. The progress and the result of the national survey are developed in the third part. The effects of several factors on indoor levels are discussed. The conclusions of a particular study in the Finistere ''department'' are presented. The data collected make it possible to assess the mean exposure of man to natural radiation [fr

  8. Does natural gas increase the indoor radon levels?

    International Nuclear Information System (INIS)

    Abdel-Ghany, H.A.; Shabaan, D.H.

    2015-01-01

    The natural gas is naturally occurring hydrocarbon consists mainly of methane and includes varying amounts of other hydrocarbons, carbon dioxide and other impurities such as: nitrogen, and hydrogen sulfide. It is used domestically and industrially as a preferable energy source compared to coal and oil. Because natural gas is found in deep underground natural formations or associated with other underground hydrocarbon reservoirs, there is a potential to contain radon as a contaminant. This work was designated to measure indoor radon concentrations in dwellings supplied with natural gas compared with those not supplied with it, where radon level was estimated using solid state nuclear track detectors (CR-39). The results showed that radon concentration was significantly higher in dwellings supplied with natural gas, where it was 252.30 versus 136.19 Bqm -3 in dwelling not supplied with natural gas (P < 0.001). The mean values of radon exhalation rate was 0.02 ± 6.34 · 10 -4 Bq · m -2 · h -1 in dwellings supplied with natural gas and 0.01 +- 0.008 Bq · m -2 · h -1 in dwellings lacking it. In addition, a significant difference was observed in the mean annual effective doses (4.33 and 2.34 mSv · y -1 , respectively) between both groups. Conclusively, the data indicate that natural gas may represent a potential source of indoor radon

  9. Measurement of indoor and outdoor radon concentrations during Superstorm Sandy.

    Science.gov (United States)

    Kotrappa, Payasada; Paul, Prateek; Stieff, Alex; Stieff, Frederick

    2013-12-01

    Superstorm Sandy affected much of the US East Coast extending over 1800 km. It passed over the test location in the State of Maryland on 29 October 2012. Being 350 km away from the regions of highest intensity the storm was of lower intensity at the test location. Continuous radon monitors and passive radon monitors were used for the measurement. The test location was the basement of a single family home representing the indoor concentration. A partially opened garage of the same test home represented the outdoor radon concentration. In 24 h, the atmospheric pressure dropped from 990 to 960 mbar and the indoor radon concentration increased from 70 to 1500 Bq m(-3) and returned to the normal of 70 Bq m(-3) at the end of the storm. Throughout the storm, the outdoor radon concentration was not significantly affected. Probable reasons for such surprisingly large changes are discussed. However, the outdoor temperature dropped from 13°C to 7°C during the radon peak.

  10. Variation of indoor radon concentration and ambient dose equivalent rate in different outdoor and indoor environments

    Energy Technology Data Exchange (ETDEWEB)

    Stojanovska, Zdenka; Janevik, Emilija; Taleski, Vaso [Goce Delcev University, Faculty of Medical Sciences, Stip (Macedonia, The Former Yugoslav Republic of); Boev, Blazo [Goce Delcev University, Faculty of Natural and Technical Sciences, Stip (Macedonia, The Former Yugoslav Republic of); Zunic, Zora S. [University of Belgrade, Institute of Nuclear Sciences ' ' Vinca' ' , Belgrade (Serbia); Ivanova, Kremena; Tsenova, Martina [National Center of Radiobiology and Radiation Protection, Sofia (Bulgaria); Ristova, Mimoza [University in Ss. Cyril and Methodius, Faculty of Natural Sciences and Mathematic, Institute of Physics, Skopje (Macedonia, The Former Yugoslav Republic of); Ajka, Sorsa [Croatian Geological Survey, Zagreb (Croatia); Bossew, Peter [German Federal Office for Radiation Protection, Berlin (Germany)

    2016-05-15

    Subject of this study is an investigation of the variations of indoor radon concentration and ambient dose equivalent rate in outdoor and indoor environments of 40 dwellings, 31 elementary schools and five kindergartens. The buildings are located in three municipalities of two, geologically different, areas of the Republic of Macedonia. Indoor radon concentrations were measured by nuclear track detectors, deployed in the most occupied room of the building, between June 2013 and May 2014. During the deploying campaign, indoor and outdoor ambient dose equivalent rates were measured simultaneously at the same location. It appeared that the measured values varied from 22 to 990 Bq/m{sup 3} for indoor radon concentrations, from 50 to 195 nSv/h for outdoor ambient dose equivalent rates, and from 38 to 184 nSv/h for indoor ambient dose equivalent rates. The geometric mean value of indoor to outdoor ambient dose equivalent rates was found to be 0.88, i.e. the outdoor ambient dose equivalent rates were on average higher than the indoor ambient dose equivalent rates. All measured can reasonably well be described by log-normal distributions. A detailed statistical analysis of factors which influence the measured quantities is reported. (orig.)

  11. Indoor Air '93. Particles, microbes, radon

    International Nuclear Information System (INIS)

    Kalliokoski, P.; Jantunen, M.; Seppaenen, O.

    1993-01-01

    The conference was held in Helsinki, Finland, July 4-8, 1993. The proceedings of the conference were published in 6 volumes. The main topics of the volume 5 are: (1) particles, fibers and dust - their concentrations and sources in buildings, (2) Health effects of particles, (3) Need of asbestos replacement and encapsulation, (4) Seasonal and temporal variation of fungal and bacterial concentration, (5) The evaluation of microbial contamination of buildings, (6) New methods and comparison of different methods for microbial sampling and evaluation, (7) Microbes in building materials and HVAC-systems, (8) Prevention of microbial contamination in buildings, (9) Dealing with house dust mites, (10) Radon measurements and surveys in different countries, (11) The identification of homes with high radon levels, (12) The measurement methods and prediction of radon levels in buildings, and (13) Prevention of radon penetration from the soil

  12. A Realistic Human Exposure Assessment of Indoor Radon released from Groundwater

    International Nuclear Information System (INIS)

    Yu, Dong Han; Han, Moon Hee

    2002-01-01

    The work presents a realistic human exposure assessment of indoor radon released from groundwater in a house. At first, a two-compartment model is developed to describe the generation and transfer of radon in indoor air from groundwater. The model is used to estimate radon concentrations profile of indoor air in a house using by showering, washing clothes, and flushing toilets. Then, the study performs an uncertainty analysis of model input parameters to quantify the uncertainty in radon concentration profile. In order to estimate a daily internal dose of a specific tissue group in an adult through the inhalation of such indoor radon, a PBPK(Physiologically-Based Pharmaco-Kinetic) model is developed. Combining indoor radon profile and PBPK model is used to a realistic human assessment for such exposure. The results obtained from this study would be used to the evaluation of human risk by inhalation associated with the indoor radon released from groundwater

  13. Effect of ventilation rate on concentrations of indoor radon and its progenies

    International Nuclear Information System (INIS)

    Wang Chunhong; Liu Yanyang; Liu Fudong; Liu Senlin; Chen Ling

    2012-01-01

    To study concentrations of indoor radon and its progenies, ventilation rates and their corresponding concentrations of indoor radon and its progenies were measured using tracer-gas dilution method. Results show that both ventilation rates and concentrations of indoor radon varied insignificantly and radon concentration were higher than the outdoor environment while doors and windows were all closed with air-conditioner on and off respectively; the concentrations declined and close to the outdoor level when doors and windows were all open with ventilators in operation. Accordingly, in modern life, especially in summer, people's preference for air-conditioners but natural ventilation would result in an increase of indoor radon concentration. (authors)

  14. Geologic factors and house construction practices affecting indoor radon in Onondaga County, New York

    International Nuclear Information System (INIS)

    Laymon, C.; Kunz, C.

    1990-01-01

    Indoor radon in Onondaga County, New York is largely controlled by bedrock and surficial geology. At more local scales, these alone are insufficient to characterize indoor radon potential. This paper reports on a detailed study of the concentration of indoor radon, soil radium, soil-gas radon, soil and bedrock type, permeability, and home construction practices indicates that above-average indoor radon concentrations are associated with gravelly moraine and glaciofluvial deposits, the radium-bearing Marcellus Shale, and high permeability zones around the substructure of houses built into limestone bedrock

  15. Accurate measurement of indoor radon concentration using a low-effective volume radon monitor

    International Nuclear Information System (INIS)

    Tanaka, Aya; Minami, Nodoka; Mukai, Takahiro; Yasuoka, Yumi; Iimoto, Takeshi; Omori, Yasutaka; Nagahama, Hiroyuki; Muto, Jun

    2017-01-01

    AlphaGUARD is a low-effective volume detector and one of the most popular portable radon monitors which is currently available. This study investigated whether AlphaGUARD can accurately measure the variable indoor radon levels. The consistency of the radon-concentration data obtained by AlphaGUARD is evaluated against simultaneous measurements by two other monitors (each ∼10 times more sensitive than AlphaGUARD). When accurately measuring radon concentration with AlphaGUARD, we found that the net counts of the AlphaGUARD were required of at least 500 counts, <25% of the relative percent difference. AlphaGUARD can provide accurate measurements of radon concentration for the world average level (∼50 Bq m -3 ) and the reference level of workplace (1000 Bq m -3 ), using integrated data over at least 3 h and 10 min, respectively. (authors)

  16. Theoretical evaluation of indoor radon control using a carbon adsorption system

    International Nuclear Information System (INIS)

    Bocanegra, R.; Hopke, P.K.

    1989-01-01

    The conceptual framework for a carbon-based adsorption system for the control of indoor radon is presented. Based on the adsorptivity of typically available activated carbons, it is shown theoretically that carbon bed adsorbers can be effective in lowering indoor radon levels particularly when the area of radon ingress (the basement) has a relatively low exchange rate with the rest of the house

  17. Indoor radon distribution in metropolitan region of Belo Horizonte, Brazil

    International Nuclear Information System (INIS)

    Santos, Talita O.; Oliveira, Arno H. de

    2009-01-01

    Human beings are exposed to ionizing radiation from many natural sources. Radon and its progeny have been recognized as the most important contributors to the natural radioactivity dose, accounting for about half of all human exposure to ionizing radiation. Radon ( 222 Rn) is a α-radioactive noble gas derived from the natural series of uranium (2 38 U), which occurs in a wide concentration range in all geological materials, especially, in rocks, soils and waters. By diffusion and convection, radon migrates from the rocks and soils to atmosphere and through fissures, pipes and holes it may enter the dwellings and other buildings. Another important radon source in dwellings is its emanation from the construction material. The radon progeny concentration in dwellings has been receiving considerable global attention due to its potential effect in causing lung cancer if it deposited in upper respiratory tract when inhaled. This paper presents radon concentration distribution in dwellings in Metropolitan Region of Belo Horizonte - RMBH. The effective dose estimate is also presented for the RMBH inhabitants. The geological settings of the area are Archean rocks of Granitic Gnaissic Complex and of metasediments sequences of the great Precambrian unit of the Iron Quadrangle of Minas Gerais, Brazil. Radon concentration measurements were carried out with continuous detector AlphaGUARD PQ200PRO (Genitron), in passive mode and with passive detectors E-PERM R Eletret Ion Chamber-EIC. The radon progeny concentration was carried out with a solid state alpha spectroscope, the DOSEman PRO (Sarad). It was found an indoor radon concentration varying in a large range from 18.5 to 2671.4 Bq/m -3 , with an average value of 148.0 Bqm -3 and geometric mean equal to 128.2 Bqm -3 . The variable results are due mainly to region geological factors and building material composition of dwellings. The equilibrium factor between radon and its progeny were determined in dwellings, as 0.3 in

  18. Indoor radon levels in schools of South-East Italy

    International Nuclear Information System (INIS)

    Trevisi, Rosabianca; Leonardi, Federica; Simeoni, Carla; Tonnarini, Sabrina; Veschetti, Miriam

    2012-01-01

    A survey was conducted to evaluate average levels of indoor radon and gamma doses in all educational buildings (506 schools) located in South-East Italy (the Salento peninsula, province of Lecce). In this paper the final findings relating to measurements performed with SSNTD dosemeters in 438 schools (86% of the sample) are reported. The average annual activity concentration of radon in schools located in the province of Lecce is 209 ± 9 Bq/m 3 . Radon values actually ranged from 21 Bq/m 3 to 1608 Bq/m 3 . About 7% of schools showed radon concentration values above 500 Bq/m 3 , the Italian action level for workplaces. - Highlights: ► The annual radon concentration in schools of the province of Lecce is 209 ± 9 Bq/m 3 . ► Schools radon values (209 ± 9 Bq/m 3 ) are higher than the regional average (52 ± 2 Bq/m 3 ). ► Nursery schools showed higher radon values. ► Nursery schools had the highest percentage of schools (12%) over 500 Bq/m 3 .

  19. Procedure for the characterization of radon potential in existing dwellings and to assess the annual average indoor radon concentration

    International Nuclear Information System (INIS)

    Collignan, Bernard; Powaga, Emilie

    2014-01-01

    Risk assessment due to radon exposure indoors is based on annual average indoor radon activity concentration. To assess the radon exposure in a building, measurement is generally performed during at least two months during heating period in order to be representative of the annual average value. This is because radon presence indoors could be very variable during time. This measurement protocol is fairly reliable but may be a limiting in the radon risk management, particularly during a real estate transaction due to the duration of the measurement and the limitation of the measurement period. A previous field study defined a rapid methodology to characterize radon entry in dwellings. The objective of this study was at first, to test this methodology in various dwellings to assess its relevance with a daily test. At second, a ventilation model was used to assess numerically the air renewal of a building, the indoor air quality all along the year and the annual average indoor radon activity concentration, based on local meteorological conditions, some building characteristics and in-situ characterization of indoor pollutant emission laws. Experimental results obtained on thirteen individual dwellings showed that it is generally possible to obtain a representative characterization of radon entry into homes. It was also possible to refine the methodology defined in the previous study. In addition, numerical assessments of annual average indoor radon activity concentration showed generally a good agreement with measured values. These results are encouraging to allow a procedure with a short measurement time to be used to characterize long-term radon potential in dwellings. - Highlights: • Test of a daily procedure to characterize radon potential in dwellings. • Numerical assessment of the annual radon concentration. • Procedure applied on thirteen dwellings, characterization generally satisfactory. • Procedure useful to manage radon risk in dwellings, for real

  20. Indoor radon levels and inhalation doses in dwellings near the some sites of Himachal Pradesh, India

    International Nuclear Information System (INIS)

    Bajwa, B.S.; Singh, S.; Virk, H.S.

    2005-01-01

    In view of the fact that radon and its daughters are a major source of natural radiation exposure, the measurement of radon concentration levels in dwellings has assumed ever-increasing importance. Keeping this in view, the indoor radon level measurements were carried out in the dwellings of different villages known to be located in the vicinity of uranium-mineralized pockets of Hamirpur district, Himachal Pradesh. Track-etch technique, a passive method using the Solid State Nuclear Track Detectors (SSNTDs), LR-115 type II, was utilized for these measurements. An attempt has been made to assess the levels of the indoor radon in the dwellings and inhalation dose rates of the population living in these villages. The radon concentrations were found to be varying with seasonal changes, building materials and mode of construction of houses. The radon concentrations were found to be higher in houses made from local sandstone and with mud floor in comparison to the houses having cemented brick floors. The annual indoor radon concentration and thus annual effective dose in most of the dwellings of these villages is certainly quite higher and even in some of the dwellings it even exceeds the upper limit of the proposed action level of ICRP, 1993. The inhalation dose rates in dwellings of these villages located in the vicinity of uranium mineralized pockets of Hamirpur district, Himachal Pradesh have been found to be quite higher than dose rate in the dwellings in the Amritsar city, Punjab, which is located in a completely uranium free zone. The radon survey in the dwellings of these villages has also been carried out using the Alpha-Guard technique, which is based on the pulse ionization chamber. The indoor radon concentration levels measured using the active technique of Alpha Guard have been found to be quite different from those measured in these dwellings by the passive technique of SSNTDs; indicating the importance of the SSNTDs in the long-term integrated measurement

  1. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Hopke, P.K.

    1992-07-01

    This report describes studies on the chemical and physical behavior of the [sup 218]Po atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity in the sub-10 nm size range result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and its dose to the cells in the respiratory tract are to be fully assessed. The specific tasks of the controlled laboratory studies are to determine the formation rates of [center dot]OH radicals formed by the radiolysis of air following radon decay, to examine the formation of particles by the radiolytic oxidation of substances like SO[sub 2] ethylene, and H[sub 2]S to lower vapor pressure compounds and determine the role of gas phase additives such as H[sub 2]O and NH[sub 3] in determining the particle size, to measure the rate of ion-induced nucleation using a thermal diffusion cloud chamber, and to measure the neutralization rate of [sup 218]Po[sub x][sup +] in O[sub 2] at low radon concentrations. Tasks of the exposure studies in occupied indoor spaces are to initiate measurements of the activity size distributions in actual homes with occupants present so that the variability of the indoor activity size distributions can be assessed with respect to indoor aerosol sources and general lifestyle variations of the occupants, to initiate a prospective study of the utility of measurement of deposited [sup 210]Pb embedded in glass surfaces as a measure of the long-term, integrated exposure of the population to radon, and to develop the methodology to determine the hygroscopicity of the indoor aerosol so that the changes in deposition efficiency of the radioactive indoor aerosol with hygroscopic growth in the respiratory tract can be assessed.

  2. Measurement of indoor radon concentration by CR-39 track detector

    International Nuclear Information System (INIS)

    Yamamoto, Masayoshi; Yoneda, Shigeru; Nakanishi, Takashi.

    1990-01-01

    A convenient and cheap method for measuring indoor radon ( 222 Rn) concentration with a CR-39 track detector is described. The detector consisted of two sheets of CR-39 enclosed separately in two plastic pots : one covered by a filter (cup method) and another no covering (bare method). The bare method was used here to supplement the cup method. To compare with the result of the CR-39 detector, alpha-ray spectrometry was carried out with a Si(Au) detector in a controlled radon exposure chamber. Indoor radon concentration measured in 133 houses in several districts of Ishikawa Prefecture have been found to range from 6 Bq/m 3 to as high as 113 Bq/m 3 with a median value of 24 Bq/m 3 . The problems to measure indoor radon concentration using the CR-39 detector are also discussed with emphasis on the position of setting the detector in the room and the possible thoron contribution to the detector. (author)

  3. Indoor radon exposure in Norway and lung cancer risk

    International Nuclear Information System (INIS)

    Sanner, T.; Dybing, E.

    1990-01-01

    The risk for lung cancer due to indoor radon in Norway was estimated. The risk factor recommended by the World Health Organization was used. Corrections were made for time not spent at home and type of activity. On the basis of measurements by the Norwegian National Institute for Radiation Hygiene in 7,500 homes, Strand et al estimated that the average concentration of radon daughters in the bedroom of Norwegian dwellings was 26.5 Bq/m 3 (EER). The level of exposure during time spent outside the home was assumed to be 10% of that at home. It was calculated that indoor radon exposure may cause 75-225 lung cancer deaths per year. This corresponds to about 5-15% of all lung cancer deaths in Norway. The risk for lung cancer death per 1,000 deaths at an indoor radon decay product level of 100 Bq/m 3 was calculated on the basis of various reports in the paper. The results show that the present risk estimate is lower than most of the other estimates

  4. Influences on indoor radon concentrations in Riyadh, Saudi Arabia

    International Nuclear Information System (INIS)

    Alghamdi, Abdulrahman S.; Aleissa, Khalid A.

    2014-01-01

    The influences on indoor radon concentrations in Riyadh, Saudi Arabia survey was carried out for 786 dwellings. The measurements were obtained by using a passive integrating ionization system with an E-Perm ® Electret ion chamber. Radon levels ranged from 1 to 195 Bq m −3 , with a mean value of 24.68 Bq m −3 , the geometric mean and the geometric standard deviation are 21 and 2 respectively. 98.5% of the results were below the action level recommended by WHO of 100 Bq.m −3 . The results were found to vary substantially due to types of houses and rooms, ventilation, seasons and building materials. Radon concentrations were higher in houses with no ventilation systems, and central air conditioners, and were relatively lower in well ventilated houses with red bricks and water air conditioners. - Highlights: • Limited information about indoor radon in Riyadh. • Several factors influence Radon level were investigated in 786 dwellings in Riyadh over one year. • Some results are over the action level and are advised to improve their ventilation systems

  5. Comparison of predicted and measured variations of indoor radon concentration

    International Nuclear Information System (INIS)

    Arvela, H.; Voutilainen, A.; Maekelaeinen, I.; Castren, O.; Winqvist, K.

    1988-01-01

    Prediction of the variations of indoor radon concentration were calculated using a model relating indoor radon concentration to radon entry rate, air infiltration and meteorological factors. These calculated variations have been compared with seasonal variations of 33 houses during 1-4 years, with winter-summer concentration ratios of 300 houses and the measured diurnal variation. In houses with a slab in ground contact the measured seasonal variations are quite often in agreement with variations predicted for nearly pure pressure difference driven flow. The contribution of a diffusion source is significant in houses with large porous concrete walls against the ground. Air flow due to seasonally variable thermal convection within eskers strongly affects the seasonal variations within houses located thereon. Measured and predicted winter-summer concentration ratios demonstrate that, on average, the ratio is a function of radon concentration. The ratio increases with increasing winter concentration. According to the model the diurnal maximum caused by a pressure difference driven flow occurs in the morning, a finding which is in agreement with the measurements. The model presented can be used for differentiating between factors affecting radon entry into houses. (author)

  6. Indoor radon concentrations and radon doses at three districts of Ankara, Turkey and raising public awareness on the issue

    International Nuclear Information System (INIS)

    Mehmet Kildir; Inci Goekmen; Ali Goekmen

    2016-01-01

    Indoor radon concentrations at METU, CIGDEM and DOSTLAR in Ankara were measured using electrets. The statistical analysis of the data indicated a lognormal distribution of radon concentrations, with no significant difference between CIGDEM and DOSTLAR with geometric means of GM = 87.5 and 54.5 Bq m -3 , respectively. Radon concentrations did not change seasonally at CIGDEM which contain modern buildings, but at the slum district DOSTLAR, with poor insulation of houses a seasonal variation was observed. Annual effective radon doses were estimated (0.4-8.4 mSv). Public awareness about indoor radon was raised. (author)

  7. A study of radon indoor concentration

    International Nuclear Information System (INIS)

    Pena, P.; Ruiz, W.; Segovia, N.; Ponciano, G.

    2000-01-01

    It was realized a study of radon concentration in houses of Mexico City and in a laboratory of the Nuclear Centre of Salazar, State of Mexico. The radon determination in air was realized with solid nuclear track detectors and with Honeywell and Alpha guard automatic equipment. The results show that the majority of houses have values under 148 Bq/m 3 obtaining some housings with upper values located in the Lomas zone. A study in smokers houses and another of controls showed very similar distributions. It was studied the day time fluctuations finding that radon increases considerably during the dawn. Some upper values obtained in a laboratory of the Nuclear Centre were remedied with ventilation. (Author)

  8. An assessment of ecological and case-control methods for estimating lung cancer risk due to indoor radon

    International Nuclear Information System (INIS)

    Stidley, C.A.; Samet, J.M.

    1992-01-01

    Studies of underground miners indicate that indoor radon is an important cause of lung cancer. This finding has raised concern that exposure to radon also causes lung cancer in the general population. Epidemiological studies, including both case-control and ecological approaches, have directly addressed the risks of indoor residential radon; many more case-control studies are in progress. Ecological studies that associate lung-cancer rates with typical indoor radon levels in various geographic areas have not consistently shown positive associations. The results of purportedly negative ecological studies have been used as a basis for questioning the hazards of indoor radon exposure. Because of potentially serious methodologic flaws for testing hypotheses, we examined the ecological method as a tool for assessing lung-cancer risk from indoor radon exposure. We developed a simulation approach that utilizes the Environmental Protection Agency (EPA) radon survey data to assign exposures to individuals within counties. Using the computer-generated data, we compared risk estimates obtained by ecological regression methods with those obtained from other regression methods and with the open-quotes trueclose quotes risks used to generate the data. For many of these simulations, the ecological models, while fitting the summary data well, gave risk estimates that differed considerably from the true risks. For some models, the risk estimates were negatively correlated with exposure, although the assumed relationship was positive. Attempts to improve the ecological models by adding smoking variables, including interaction terms, did not always improve the estimates of risk, which are easily affected by model misspecification. Because exposure situations used in the simulations are realistic, our results show that ecological methods may not accurately estimate the lung-cancer risk associated with indoor radon exposure

  9. A feasibility study of geogenic indoor radon mapping from airborne radiometric survey in northern Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Wattananikorn, K. [Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)], E-mail: kittic@science.cmu.ac.th; Emharuthai, S. [Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wanaphongse, P. [Office of Atoms for Peace, Bangkok (Thailand)

    2008-01-15

    Experiments were carried out in seven test sites on three Quaternary alluvial and terrace deposit basins of northern Thailand, to test the possibility of using airborne equivalent uranium to predict geogenic indoor radon values of the region. The methodology was based on the correlation among soil gas permeability, soil radon concentration and indoor radon, as well as a relationship between soil radon and airborne uranium values. The methodology established works rather well when tested in areas of known indoor radon. Based on the predicted values that were obtained from this method, indoor radon in most areas of alluvial and terrace deposit basins of northern Thailand is less than 44Bq/m{sup 3}. There is no area in these basins where predicted indoor radon exceeds 74Bq/m{sup 3}.

  10. Daily variation of the radon concentration indoors and outdoors and the influence of meteorological parameters

    International Nuclear Information System (INIS)

    Porstendoerfer, J.; Butterweck, G.; Reineking, A.

    1994-01-01

    Series of continuous radon measurements in the open atmosphere and in a dwelling, including the parallel measurement of meteorological parameters, were performed over a period of several weeks. The radon concentration in indoor and outdoor air depends on meteorological conditions. In the open atmosphere the radon concentration varies between 1 and 100 Bq m -3 , depending on weather conditions and time of day. During time periods of low turbulent air exchange (high pressure weather with clear night sky), especially in the night and early morning hours (night inversion layer), the diurnal variation of the radon concentration showed a pronounced maximum. Cloudy and windy weather conditions yield a small diurnal variation of the radon concentration. Indoors, the average level and the diurnal variation of the indoor radon concentration is also influenced by meteorological conditions. The measurements are consistent with a dependence of indoor radon concentrations on indoor-outdoor pressure differences. 11 refs., 4 figs

  11. Comparison of retrospective and contemporary indoor radon measurements in a high-radon area of Serbia

    International Nuclear Information System (INIS)

    Zunic, Z.S.; Yarmoshenko, I.V.; Kelleher, K.; Paridaens, J.; Mc Laughlin, J.P.; Celikovic, I.; Ujic, P.; Onischenko, A.D.; Jovanovic, S.; Demajo, A.; Birovljev, A.; Bochicchio, F.

    2007-01-01

    In Niska Banja, Serbia, which is a high-radon area, a comparison was made between two retrospective radon measuring methods and contemporary radon measurements. The two retrospective methods derive the radon concentrations that occurred in dwellings over longer periods in the past, based on the amount of trapped 210 Po on the surface of glass objects (surface traps, ST) or in the bulk of porous materials (volume traps, VT). Both surface implanted 210 Po in glass objects and contemporary radon in air were measured in 46 rooms, distributed in 32 houses of this radon spa-town, using a dual alpha track detector configuration (CR-39 and LR115) and CR-39 track etched detectors, respectively. In addition to the use of surface trap measurements, in 18 rooms (distributed in 15 houses) VT samples of suitable material were also collected, allowing to compare ST and VT retrospective radon concentration estimates. For each room, contemporary annual radon concentrations (CONT) were measured or estimated using seasonal correction factors. The distribution of the radon concentration in all data sets was found to be close to lognormal (Chi-square test > 0.05). Geometric means (GM) are similar, ranging from 1040 to 1380 Bq m -3 , whereas geometric standard deviations (GSD) for both the retrospective methods are greater than for the CONT method, showing reasonable agreement between VT, ST and CONT measurements. A regression analysis, with respect to the lognormal distribution of each data set, shows that for VT-ST the correlation coefficient r is 0.85, for VT-CONT r is 0.82 and for ST-CONT r is 0.73. Comparison of retrospective and contemporary radon concentrations with regard to supposed long-term indoor radon changes further supports the principal agreement between the retrospective and conventional methods

  12. Effect of home construction on indoor radon in Virginia and Maryland

    International Nuclear Information System (INIS)

    Mushrush, G.W.; Mose, D.G.

    1988-01-01

    The levels of indoor radon in approximately 500 homes located in two contiguous counties of northern Virginia and southern Maryland have been measured during four consecutive, three month seasonal intervals using alpha-track detectors. These two counties represent an area of about 700 square miles. Results from the winter period show that the indoor radon levels were about twice as high as anticipated. In some areas, more than 50% of the homes had winter indoor radon levels above 4 pCi/liter, the EPA's recommended action level. For the spring and fall periods, indoor radon levels showed a considerable drop with approximately 35% of the homes above 4 pCi/L. Summer values were even lower with approximately 25% of the homes above 4 pCi/L.Indoor radon can be related to the weather, but home construction demonstrably determines indoor radon levels

  13. Investigation of indoor radon concentration in block houses in Omderman

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, H A. M. [Atomic Energy Council, Sudan Academy of Sciences (SAS), Khartoum (Sudan)

    2010-12-15

    Radon is one of the naturally occurring radioactive elements in the environment as a member of the natural uranium decay. Exposure to radon in the home and workplace is one of the main risks of ionizing radiation thought to cause tens of thousands of deaths from lung cancer each year. In order to reduce this burden it is important that national authorities have methods and tools bases on solid scientific evidence and sound public health policy. The public needs to be aware of radon risks and the means to reduce and prevent these. This study presents of the studies dealing with the investigation of exposure from ionizing radiation. The radon levels in some selected type of building styles (Bricks Albulk) were investigated in Omderman city (public housing). The radon level in most of the houses found to range between 87.63 and 206 Bq/m{sup 3} with average value of 127{+-}23 Bq/m{sup 3}. This is well lay within the allowable limit with average. The study indicates that building materials used does not add significant concentration of radon to indoor. It can be considered as safe type of building style from radiation protection point of view. (Author)

  14. Investigation of indoor radon concentration in block houses in Omderman

    International Nuclear Information System (INIS)

    Ahmed, H. A. M.

    2010-12-01

    Radon is one of the naturally occurring radioactive elements in the environment as a member of the natural uranium decay. Exposure to radon in the home and workplace is one of the main risks of ionizing radiation thought to cause tens of thousands of deaths from lung cancer each year. In order to reduce this burden it is important that national authorities have methods and tools bases on solid scientific evidence and sound public health policy. The public needs to be aware of radon risks and the means to reduce and prevent these. This study presents of the studies dealing with the investigation of exposure from ionizing radiation. The radon levels in some selected type of building styles (Bricks Albulk) were investigated in Omderman city (public housing). The radon level in most of the houses found to range between 87.63 and 206 Bq/m 3 with average value of 127±23 Bq/m 3 . This is well lay within the allowable limit with average. The study indicates that building materials used does not add significant concentration of radon to indoor. It can be considered as safe type of building style from radiation protection point of view. (Author)

  15. Mitigation of houses with extremely high indoor radon concentrations

    International Nuclear Information System (INIS)

    Jiranek, M.; Neznal, M.

    2006-01-01

    Full text of publication follows: The paper reports on the experience of the Czech Technical University in dealing with mitigation of houses in which unusually high indoor radon concentrations were found. The whole process of remediation is illustrated by example of an old single-family house that was built in the area formed by highly permeable soils with high radon content in the soil air. T he house has a small cellar located under 1/5 of the ground floor area. Two types of floors, i.e. timber floors and cracked concrete slabs were found in the house. As a result of extremely high radon concentration in the sub-floor region (up to 600 kBq/m 3 ) and leaky structures in contact with soil, radon concentrations around 100 kBq/m 3 in the cellar and up to 60 kBq/m 3 in the living rooms on the ground floor were measured prior to mitigation. Mitigation measures that were carried out in the house consist of reconstruction of timber floors and installation of active soil depressurization. Timber floors were replaced with concrete slab fitted with damp proof membrane, thermal insulation and floor covering. The soil depressurization system was made up of two sections. The first section is composed of the network of perforated pipes inserted in the drainage layer placed under the new floors and four perforated tubes drilled under the existing floors. The soil air from this section is extracted by means of a roof fan installed at the top of the vertical exhaust pipe running inside the living space and terminating above the roof. The second section was designed to withdraw by means of a small fan radon-laden air from the filling in the floor above the cellar and from perforated tubes drilled into the sub-floor region under the rooms adjacent to the cellar. It serves also for the active ventilation of the cellar. Pressure, temperature and radon concentration sensors were installed into the drainage layer during the reconstruction of floors to record variations in these

  16. Indoor radon seasonal variability at different floors of buildings

    International Nuclear Information System (INIS)

    De Francesco, S.; Tommasone, F. Pascale; Cuoco, E.; Tedesco, D.

    2010-01-01

    Indoor radon concentrations have been measured with the α track etch integrated method in public buildings in the town of Pietramelara, north-western Campania, Southern Italy. In particular, our measurements were part of an environmental monitoring program originally aimed at assessing the range of seasonal fluctuations in indoor radon concentrations, at various floors of the studied buildings. However, subsequent analysis of the data and its comparison with the meteorological data recorded in the same period has shown an unexpected pattern at the different floors. In this report we present data suggesting that, besides the well-known medium and longterm periodicity, there could also be a differentiation in major meteorological controlling factors at the different floors of the buildings, a fact that does not appear to have been reported previously. While the lower floors proved to be markedly affected by rainfall, for the upper floors, instead, a different behaviour has been detected, which could possibly be related to global solar radiation.

  17. Indoor and soil radon measurements in the Hyblean Foreland (South-East Sicily

    Directory of Open Access Journals (Sweden)

    G. Alessandro

    2007-06-01

    Full Text Available Indoor radon behavior in two sites of SE Sicily was studied as a function of the soil radon concentration. The chosen locations were Ragusa and Modica towns, placed in the Hyblean Plateau (northern margin of the African Plate. Soil samples were analysed by gamma spectrometry to determine the amount of radionuclides. Indoor air and soil gas radon measurements were simultaneously performed in both sites using active detectors. Radon in soil was measured one meter deep. A positive correlation was obtained between indoor radon concentration and the soil gas concentration.

  18. Social marketing and the reduction of indoor radon

    International Nuclear Information System (INIS)

    Bierma, T.J.; Swartzman, D.

    1990-01-01

    Indoor radon monitoring and mitigation has apparently been conducted by only a small percentage of private homeowners despite extensive media coverage of the radon issue and public information programs at the federal, state, and local levels. Whether public education programs should be informative or persuasive is an ethical decision. Arguments on each side of the issue are presented. A framework for the development of a persuasive campaign is then presented, suing the concepts of social marketing and the limited empirical evidence available on radon-related behavior. In this paper a four-step process is proposed: identify problem dimensions using focus groups and other methods, confirm dimension for market segmentation using probability samples and factor analysis, implement program and evaluate and revise

  19. Comparison of two methods for investigating indoor radon daughters

    International Nuclear Information System (INIS)

    Vanmarcke, H.; Raes, F.

    1988-01-01

    The dynamics of radon daughters in realistic indoor environments has been investigated experimentally at the Universities of Gottingen and Gent. Both studies yielded the important result that the fraction of unattached radon daughters is higher than is assumed in earlier studies. Reineking-Porstendorfer and Vanmarcke-Raes adopted quite different methodologies to determine the unattached fraction. In this paper the methodologies are compared by means of joint measurements performed in a house with elevated radon concentrations. The results for the attachment rate, the deposition rate of the unattached daughters and the unattached fraction differ significantly, while the results for the deposition rate of the attached daughters and the equilibrium factor broadly agree. (author)

  20. Indoor radon measurements in Finland: A status report

    International Nuclear Information System (INIS)

    Castren, O.; Makelainen, I.; Winqvist, K.; Voutilainen, A.

    1987-01-01

    Large-scale surveys indicate that the mean indoor radon concentration in Finnish dwellings is about 90 Bq/m/sup 3/. The percentages of concentrations exceeding 200, 400, 800 and 2,000 Bq/m/sup 3/ are 11, 3.9, 1.4 and 0.5 per cent, respectively. An updated version of the geographical distribution is presented. Sampling and data processing methods as well as the reasons for high concentrations are discussed

  1. Factors affecting yearly variations of indoor radon concentrations

    International Nuclear Information System (INIS)

    Steck, D.J.; Baynes, S.A.

    1996-01-01

    Since indoor radon exposures take place over many years while radon measurement periods are shorter, we are studying the yearly variation of indoor radon concentrations in approximately 100 houses located throughout Minnesota. Most houses were initially measured for one or more years in the late 1980's and for 5 consecutive years starting in 1990. Two houses have been monitored for 12 y. Each year, two alpha track detectors were placed on the two lowest livable levels. The year-to-year variations averaged about 35% (corrected for instrumental uncertainties) in both basements and first floors. The minimum observed variation was 5% and the maximum was 130%. Some homes have shown substantial variation associated with Structural modifications. While most homes show no obvious systematic trends, a few houses have shown temporal trends that may be associated with aging or climate. We are studying possible correlation between year-to-year radon variation, climatic variables (yearly-average and seasonal such as heating/cooling degree days, precipitation, soil moisture), and structural changes

  2. Influence of indoor air conditions on radon concentration in a detached house

    International Nuclear Information System (INIS)

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-01-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50–60%. - Highlights: ► We use CFD to simulate indoor radon concentration and distribution. ► The effects of ventilation rate, temperature and moisture are investigated. ► Model validation is performed through analytical solution and measurement results. ► Results show that ventilation rate is inversely proportional to radon level. ► There is a range of temperature and relative humidity that minimize radon level.

  3. A nationwide survey of radon concentration in Japan. Indoor, outdoor and workplace

    International Nuclear Information System (INIS)

    Sanada, Tetsuya; Oikawa, Shinji; Kanno, Nobuyuki; Abukawa, Johji; Higuchi, Hideo

    2004-01-01

    The nationwide indoor, outdoor and workplace radon concentrations were surveyed in Japan. These surveys were conducted to estimate the natural radiation dose due to radon and its progeny for the general public. The radon concentration was measured using passive type radon monitor. The number of radon monitors were installed at indoor, outdoor and workplace for 940 houses, 705 points and 705 sites, respectively. The radon concentration was measured for one year at each measurement site. Annual mean radon concentration was obtained from four quarters measurements of 47 prefectures in Japan. The nationwide indoor, outdoor and workplace annual mean radon concentration were 15.5 Bq m -3 , 6.1 Bq m -3 and 20.8 Bq m -3 , respectively. Their radon concentration shows approximately a logarithmic normal distribution. Workplace showed relatively high radon concentration compared with other environments, may be due to construction materials and low ventilation rate. The indoor radon concentration found to be seasonal variation and architectural dependences. Seasonal variation and regional distribution of outdoor radon concentration was also observed. From the results of these radon surveys, the annual effective dose to the general public due to radon and its progeny was estimated to be 0.49 mSv y -1 in Japan. (author)

  4. Design and evaluation of representative indoor radon surveys

    International Nuclear Information System (INIS)

    Csige, I.; Csegzi, S.

    2004-01-01

    We have developed a procedure to design and evaluate representative indoor radon surveys. The procedure is based on random sampling of a population of houses and careful statistical analysis of measured indoor radon concentrations. The method is designed to estimate the fraction of houses in which annual average 222 Rn activity concentration may exceed a certain reference level. Measurements of annual average indoor 222 Rn activity concentration were done in sleeping rooms at pillow level using etched track type radon detectors. We applied the above procedure in an old fashioned village and in a fast developing small city in Transylvania, Romania. In the village almost all houses were single floor wooden made houses without cellar built with traditional technology on a geologically uniform area. The distribution of indoor 222 Rn activity concentration in a sample of 115 houses can almost perfectly be fitted with log-normal probability density function. The correlation coefficient of linear fitting on linearized scales was k = -0.9980. The percentages of houses expected to have annual average 222 Rn activity concentration higher than 400 Bq m -3 is less than 1 %, and of those higher than 600 Bq m -3 can be estimated to be around 0.1 %. The small city, on the other hand lies on a geologically inhomogeneous area, and house construction technology has also changed dramatically in past decades. The resulting distribution of measured indoor 222 Rn activity concentration in a sample of 116 houses cannot be fitted with any simple probability density function. Therefore the prediction of the fraction of houses in which the annual average 222 Rn activity concentration may exceed a certain reference level could not be done adequately. With certain assumptions we estimated that the percentages of houses expected to have annual average 222 Rn activity concentration higher than 400 Bq m -3 is between 3 and 7 %, and of those higher than 600 Bq m -3 can be estimated to be between

  5. Estimation of the variations of ventilation rate and indoor radon concentration using the observed wind velocity and indoor-outdoor temperature difference

    International Nuclear Information System (INIS)

    Nagano, Katsuhiro; Inose, Yuichi; Kojima, Hiroshi

    2006-01-01

    The indoor radon concentration in the building depends on the ventilation rate. Measurement results of indoor-outdoor pressure difference showed the ventilation rate correlated closely with the indoor-outdoor pressure difference. The observation results showed that one of factor of indoor-outdoor pressure difference was the wind velocity. When the wind velocity is small, the ventilation rate is affected by the indoor-outdoor temperature difference and the effect depends on the wind velocity. The temporal variation of indoor radon concentration was predicted by the time depending indoor radon balance model and the ventilation rate estimated from the wind velocity and the indoor-outdoor temperature difference. The temporal variations of predicted radon concentration gave good agreement with the experimental values. The measurement method, indoor radon concentration and ventilation rate, factors of temporal variation of ventilation rate, and prediction of indoor radon concentration are reported. (S.Y.)

  6. Ground-truthing predicted indoor radon concentrations by using soil-gas radon measurements

    International Nuclear Information System (INIS)

    Reimer, G.M.

    2001-01-01

    Predicting indoor radon potential has gained in importance even as the national radon programs began to wane. A cooperative study to produce radon potential maps was conducted by the Environmental Protection Agency (EPA), U.S. Geological Survey (USGS), Department of Energy (DOE), and Lawrence Berkeley Laboratory (LBL) with the latter taking the lead role. A county-wide predictive model based dominantly on the National Uranium Resource Evaluation (NURE) aerorad data and secondly on geology, both small-scale data bases was developed. However, that model breaks down in counties of complex geology and does not provide a means to evaluate the potential of an individual home or building site. Soil-gas radon measurements on a large scale are currently shown to provide information for estimating radon potential at individual sites sort out the complex geology so that the small-scale prediction index can be validated. An example from Frederick County, Maryland indicates a positive correlation between indoor measurements and soil-gas data. The method does not rely on a single measurement, but a series that incorporate seasonal and meteorological considerations. (author)

  7. Sources and transport of indoor radon

    International Nuclear Information System (INIS)

    Aldenkamp, F.J.; Stoop, P.

    1994-01-01

    An approach in the investigation was to use a multi-compartment model of a home describing the processes that determine how radon concentrations in dwellings are established. Because the model describes Rn-222 concentrations in terms of airflows and sources, the experimental research was focused on the measurement of these three quantities. Development, calibration and assessment of the instrumentation played a major role. The experiments involved measurements of Rn-222 exhalation of buildings materials and the soil underneath the house, Rn-222 concentrations in air and airflows between various parts of the house and between the inside and outside of the house. (DG)

  8. Assessments of activated carbon prepared from date stones in adsorption of indoor radon

    International Nuclear Information System (INIS)

    Abudaia, J.I.; Al-Ezzaby, Suliman M.; Dawad, E.; Alawar, A.; Al-Shreide, A.

    2015-01-01

    Radiochemical department (RCD) at Tajoura Nuclear Research Center (TNRC) in Tripoli city is one of the fewest workplaces which have experienced indoor level evaluation. In this present study, it is intended to investigate the efficiency of domestic activated carbons (AC) derived from most locally available agricultural by products date stones (DS) in the adsorption of indoor radon-222 (' 222 Rn) at different oriented sites of RCD. The average indoor radon concentration values in the study areas varied from (34±3.0) Bq/m 3 to (192.7±9.1) Bq/m 3 , while the values of the annual effective dose varied from (0.355) mSv/y to (0.974) mSv/y. All obtained values were within the recommended action levels of (200 - 300) Bq/m 3 and 2.4 mSv/y which are given by International Commission on Radiological Protection (ICRP) in 1993 and 1987 respectively. A designed set up of portable ACDS canisters are proposed to be utilized in other different workplaces such as schools, where educational buildings are considered as locations of ventilation deficiency and high occupancy times for children and such naturally occurring radio-active radon is distinguished as a second leading cause of lung cancer worldwide.(author)

  9. External gamma exposure to radon progeny in indoor air

    International Nuclear Information System (INIS)

    Fujimoto, Kenzo

    1985-01-01

    The external γ-exposure from radon progeny uniformly distributed in indoor air was estimated by a computer program that was developed. This program can calculate the fluence rate, exposure rate and average energy for any given point in a room of any given size. As numerical example, the exposure rate normalized to unit airborne activity is presented, together with the fluence-weighted and exposure-weighted average photon energies, for a room of representative geometry containing radon progeny in equilibrium. To cover other conditions encountered in practice, quantitative evaluations are additionally presented of the effect on the exposure brought by changes in certain parameters, such as equilibrium factor, wall thickness, room size and receptor position. The study has quantitatively substantiated the prevailing postulate that the effective dose equivalent due to external exposure resulting from normal indoor concentrations of airborne radon progeny in the room of representative geometry should only amount to 0.04 % of that from the internal exposure from the same sources, and that it should be of similarly negligible order compared with internal exposure also in the case of other room geometries. (author)

  10. A 2-year study of seasonal indoor radon variations in northern Virginia

    International Nuclear Information System (INIS)

    Mose, D.G.; Mushrush, G.W.; Chrosniak, C.E.

    1991-01-01

    The concentrations of indoor radon in the basements of homes located in northern Virginia average about 1.4 times the first-floor radon concentrations. Basement indoor radon concentrations exhibit seasonal variations that can be related to home use patterns of the occupants. Little indoor radon difference was seen between homes that have concrete block basement walls and poured concrete basement walls, but homes that use oil or gas furnaces for heating have ∼ 25% lower indoor radon than homes that use electrical heating systems. Particular geological units seem to be associated with elevated indoor radon concentrations, and several units are associated with indoor radon concentrations that exceed 4 pCi/l (the U.S. Environmental Agency action level) at some time in more than 40% of the homes. Comparative studies between indoor radon and total gamma aeroradioactivity show that aeroradioactivity can be accurately used to estimate community radon hazards. When combined with information about the home heating system, geology and aeroradioactivity can be used to identify problem homes

  11. Results of indoor radon measurements in the republic of macedonia: - a review -

    International Nuclear Information System (INIS)

    Stojanovska, Zdenka; Boev, Blazho; Boev, Ivan

    2017-01-01

    Radon and its short lived decay products accumulated in indoor environment are the main source of public exposure to natural radiations. The health effects as well as a great number of natural and artificial factors affecting the radon accumulation in indoor environments are some of the motives for the scientific interest in radon issue. Following this global trend, many studies of indoor radon in the Balkan region, including the Republic of Macedonia have been conducted in the last decade. This paper is an overview of the published papers regarding indoor radon concentration measurements with nuclear track detectors in the Republic of Macedonia. It gives basic information about the spatial and temporal variability of indoor radon over the territory of the country, following by a description of the some factors which affect its variations. This review attempts: to organize available indoor radon results in order to show clear picture of the so far conducted surveys; to highlight the need for continuation of more extensive radon investigation in workplaces; to motivate the building professionals to create as much as possible mitigation methods for indoor radon reduction, to motivate the health professionals for epidemiological studies etc. (author)

  12. Radon and radon daughters indoors, problems in the determination of the annual average

    International Nuclear Information System (INIS)

    Swedjemark, G.A.

    1984-01-01

    The annual average of the concentration of radon and radon daughters in indoor air is required both in studies such as determining the collective dose to a population and at comparing with limits. Measurements are often carried out during a time period shorter than a year for practical reasons. Methods for estimating the uncertainties due to temporal variations in an annual average calculated from measurements carried out during various lengths of the sampling periods. These methods have been applied to the results from long-term measurements of radon-222 in a few houses. The possibilities to use correction factors in order to get a more adequate annual average have also been studied and some examples have been given. (orig.)

  13. Geologic influence on indoor radon concentrations and gamma radiation levels in Norwegian dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Sundal, Aud Venche

    2003-09-01

    Indoor radon levels in 1618 Norwegian dwellings located in different geological settings were compared with geological information in order to determine potential correlations between geological factors and indoor radon concentrations in Norway and to establish whether geological information is useful in radon risk analysis. In two geographically limited areas, Kinsarvik and Fen, detailed geological and geochemical investigations were carried out in order to explain their elevated natural radiation environment. Significant correlations between geology and indoor radon concentrations in Norway are found when the properties of both the bedrock and the overburden are taken into account. Areas of high radon risk in Norway include 1) exposed bedrock with elevated levels of radium (mainly alum shale and granites) and b) highly permeable unconsolidated sediments derived from all rock types (mainly glaciofluvial and fluvial deposits) and moderately permeable sediments containing radium rich rock fragments (mainly basal till). More than 20 % of Norwegian dwellings located in the high-risk areas can be expected to contain radon levels exceeding 200 Bq/m3. The elevated radon risk related to penneable building grounds is illustrated in Kinsarvik where the highly permeable sediments and the large vadose zone underlying the Huse residential area enable the transport of radon from large volumes into the dwellings resulting in enhanced indoor radon concentrations. Subterranean air flows caused by temperature/pressure differences between soil air and atmospheric air and elevations differences within the Huse area are shown to strongly affect the annual variations in indoor radon concentrations. The marked contrasts in radon risk potential between different types of building grounds are clearly illustrated in the Fen area where outcrops of the radium rich Fen carbonatites represent areas of high radon risk while only low levels of both indoor radon concentrations and indoor gamma

  14. Measurement and apportionment of radon source terms for modeling indoor environments

    International Nuclear Information System (INIS)

    Harley, N.H.

    1990-01-01

    This research has two main goals; (1) to quantify mechanisms for radon entry into homes of different types and to determine the fraction of indoor radon attributable to each source and (2) to model and calculate the dose (and therefore alpha particle fluence) to cells in the human and animal tracheobronchial tree that is pertinent to induction of bronchogenic carcinoma from inhaled radon daughters

  15. Long term indoor radon measurements in the pelletron laboratory at the UNAM physics institute

    International Nuclear Information System (INIS)

    Espinosa, G.; Golzarri, J. I.; Lopez, K.; Rickards, J.

    2011-01-01

    The results of six months of continuous measurement of the indoor radon concentration levels in the building where the Physics Institute 3 MV Pelletron particle accelerator is located are presented. This study has three major objectives: a) to know the actual values of the levels of indoor radon in this installation, where personnel spend many hours and sometimes days; b) assess the radiological risk from radon inhalation for personnel working permanently in the laboratory, as well as incidental users; and c) establish, if necessary, time limits for continuous permanence on the location for indoor radon exposure. Passive nuclear track detectors and dynamic systems were employed, covering six months (August, 2009 to January, 2010). For the calculation of internal dose the Radon Individual Dose Calculator was used. The results indicate that the indoor radon levels are below the US EPA recommended levels (400 Bq/m 3 ) in workplaces. The measurements help to establish levels for workplaces in Mexico. (Author)

  16. Radon-222 Study in Ceramics and Indoor Air

    International Nuclear Information System (INIS)

    Moussa, N.L.A.A.

    2011-01-01

    A total 50 samples of 13 different ceramic tiles companies collected from the Egyptian market for the measurements of radon exhalation rate. Three homes include twenty rooms were selected. The period of the survey was in range 2-3 months for homes for each season while it was about 15 days for ceramic tiles. The radon exhalation rate of ceramic tiles (clay and glaze) and indoor radon activity concentration were measured by alpha tracks technique. The average radon exhalation rate in three homes was observed to be in the range 2.2-5.2 mBq.m -2 .h -1 . The average of Ra-226 activity for all ceramic tiles either the floor or wall tile is in the range 16-64 Bq.kg -1 . The porosity of ceramic tiles is found in the range 0.19-0.29. The effective dose in all rooms is found in the range 0.9- 1.3 mSv.y -1 .

  17. Influence of various room parameters upon radon daughter equilibrium indoors

    International Nuclear Information System (INIS)

    Islam, G.S.; Mazumdar, S.C.; Ashraf, M.A.

    1995-06-01

    The parameters such as ventilation rate, attachment rate to aerosols and deposition processes, which influence the radon daughter equilibrium indoors, are discussed and the validity of the theoretical model checked by experiments. In agreement with the model calculations, the experimental data show, that the equilibrium factor F in rooms is mainly influenced by the rate of attachment to aerosols and the plateout of radon daughters. The equilibrium factor varies between 0.3 and 0.4 at an attachment rate of 300 h -1 . The influence of ventilation upon the free fraction of RaA( 218 Pp)-atoms is also investigated. This is in good agreement with the results of the measurements carried out in different types of rooms at the University Campus of Rajshahi. (author). 20 refs, 3 figs, 3 tabs

  18. Long term indoor radon measurements in the pelletron laboratory at the UNAM physics institute

    OpenAIRE

    Espinosa, G.; Golzarri, J.I.; Lopez, K.; Rickards, J.

    2011-01-01

    The results of six months of continuous measurement of the indoor radon concentration levels in the building where the Instituto de Física 3 MV Pelletron particle accelerator is located are presented. This study has three major objectives: (a) to know the actual values of the levels of indoor radon in this installation, where personnel spend many hours and sometimes days; (b) assess the radiological risk from radon inhalation for personnel working permanently in the laboratory, as well as inc...

  19. Study of indoor radon levels in some radioactive areas of Himachal Pradesh: an inter-comparison of active and passive techniques

    International Nuclear Information System (INIS)

    Bajwa, B.S.; Singh, S.; Sharma, N.; Virk, H.S.

    2006-01-01

    Full text of publication follows: Indoor radon levels measurements were carried using both the active and passive techniques in the dwellings of some villages, known to be located in the vicinity of uranium mineralized zones of Hamirpur district, Himachal Pradesh. Even in the passive technique using S.S.N.T.D., both the bare -slide and twin chamber dosemeter cup modes were utilized. An attempt has also been made to assess the levels of the indoor radon in these dwellings and inhalation dose rates of the population living in these villages. The average value of radon concentration levels using the bare-slide mode varies from 109.0 to 741.5 Bq/m3 in these dwellings, where as the maximum radon level using the twin cup dosemeter technique was found to be 140.3 Bq/m3. As usual the radon concentrations were found to be varying with seasonal changes, building materials etc. The radon survey in the dwellings of these villages has also been carried out using the Alpha-Guard technique, which is based on the pulse ionization chamber. The indoor radon concentration levels measured using the active technique of Alpha Guard have been found to be quite different from those measured in these dwellings by the passive technique of S.S.N.T.D.; indicating the importance of the S.S.N.T.D. in the long -term integrated measurement of the indoor radon levels in the dwellings. (authors)

  20. A study of indoor radon levels and radon effective dose in dwellings of some cities of Gezira State in Sudan

    Directory of Open Access Journals (Sweden)

    Elzain Abd-Elmoniem Ahmed

    2014-01-01

    Full Text Available Exposure to natural sources of radiation, especially 222Rn and its short-lived daughter products has become an important issue throughout the world because sustained exposure of humans to indoor radon may cause lung cancer. The indoor radon concentration level and radon effective dose rate were carried out in the dwellings of Medani, El Hosh, Elmanagil, Haj Abd Allah, and Wad Almahi cities, Gezira State - Central Sudan, in 393 measurements, using passive integrated solid-state nuclear track devices containing allyl diglycol carbonate plastic detectors. The radon concentration in the corresponding dwellings was found to vary from (57 ± 8 Bq/m3 in Medani to 41 ± 9 Bq/m3 in Wad Almahi, with an average of 49 ± 10 Bq/m3. Assuming an indoor occupancy factor of 0.8 and 0.4 for the equilibrium factor of radon indoors, we found that the annual effective dose rate from 222Rn in the studied dwellings ranges from 1.05 to 1.43 mSv per year and the relative lung cancer risk for radon exposure was 1.044%. In this research, we also correlated the relationship of radon concentration and building age. From our study, it is clear that the annual effective dose rate is larger than the “normal” background level as quoted by UNSCEAR, lower than the recommended action level of ICRP, and less than the maximum permissible dose defined by the International Atomic Energy Agency.

  1. Robustness study in SSNTD method validation: indoor radon quality

    International Nuclear Information System (INIS)

    Dias, D.C.S.; Silva, N.C.; Bonifácio, R.L.

    2017-01-01

    Quality control practices are indispensable to organizations aiming to reach analytical excellence. Method validation is an essential component to quality systems in laboratories, serving as a powerful tool for standardization and reliability of outcomes. This paper presents a study of robustness conducted over a SSNTD technique validation process, with the goal of developing indoor radon measurements at the highest level of quality. This quality parameter indicates how well a technique is able to provide reliable results in face of unexpected variations along the measurement. In this robustness study, based on the Youden method, 7 analytical conditions pertaining to different phases of the SSNTD technique (with focus on detector etching) were selected. Based on the ideal values for each condition as reference, extreme levels regarded as high and low were prescribed to each condition. A partial factorial design of 8 unique etching procedures was defined, where each presented their own set of high and low condition values. The Youden test provided 8 indoor radon concentration results, which allowed percentage estimations that indicate the potential influence of each analytical condition on the SSNTD technique. As expected, detector etching factors such as etching solution concentration, temperature and immersion time were identified as the most critical parameters to the technique. Detector etching is a critical step in the SSNTD method – one that must be carefully designed during validation and meticulously controlled throughout the entire process. (author)

  2. Robustness study in SSNTD method validation: indoor radon quality

    Energy Technology Data Exchange (ETDEWEB)

    Dias, D.C.S.; Silva, N.C.; Bonifácio, R.L., E-mail: danilacdias@gmail.com [Comissao Nacional de Energia Nuclear (LAPOC/CNEN), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas

    2017-07-01

    Quality control practices are indispensable to organizations aiming to reach analytical excellence. Method validation is an essential component to quality systems in laboratories, serving as a powerful tool for standardization and reliability of outcomes. This paper presents a study of robustness conducted over a SSNTD technique validation process, with the goal of developing indoor radon measurements at the highest level of quality. This quality parameter indicates how well a technique is able to provide reliable results in face of unexpected variations along the measurement. In this robustness study, based on the Youden method, 7 analytical conditions pertaining to different phases of the SSNTD technique (with focus on detector etching) were selected. Based on the ideal values for each condition as reference, extreme levels regarded as high and low were prescribed to each condition. A partial factorial design of 8 unique etching procedures was defined, where each presented their own set of high and low condition values. The Youden test provided 8 indoor radon concentration results, which allowed percentage estimations that indicate the potential influence of each analytical condition on the SSNTD technique. As expected, detector etching factors such as etching solution concentration, temperature and immersion time were identified as the most critical parameters to the technique. Detector etching is a critical step in the SSNTD method – one that must be carefully designed during validation and meticulously controlled throughout the entire process. (author)

  3. Preliminary indoor radon and gamma measurements in kindergartens and schools in Bucharest

    International Nuclear Information System (INIS)

    Dumitrescu, A.; Milu, C.; Gheorghe, R.; Vaupotic, J.; Stegnar, P.

    2001-01-01

    A pilot study on indoor radon and gamma dose rates in schools and kindergartens (totalling one hundred buildings) in the Bucharest metropolitan area was performed jointly by the Institute of Public Health, Bucharest, Romania, and the J. Stefan Institute, Ljubljana, Slovenia. Because the geological structure of subsoil over the whole Bucharest area is uniform (a loess platform), the criteria for selecting a kindergarten or a school to be monitored were the age of the building and the building materials. Indoor radon concentrations were measured by a single one-month exposure of radon monitoring device based on etched track detectors in December 2000. Data show a lognormal distribution within the concentration range of 43/477 Bq/m 3 . An arithmetic mean of 146 Bq/m 3 and a geometric mean of 128 Bq/m 3 were obtained. Concomitant with indoor radon levels gamma dose rates were also measured, using thermoluminescent dosimeters. Values ranged from 54 to 100 μSv mo -1 , with a mean value of 74 μSv mo -1 . Having only a single average indoor radon concentration for a winter month, it is not possible to comment on our results, applying the ICRP Publication 65 methodology for indoor radon action level for the general public. Nevertheless, they give a preliminary picture of indoor radon and gamma dose rate levels in schools and kindergartens in Bucharest, and constitute a solid basis on which to design and perform a nation-wide radon survey programme.(author)

  4. Measurements of radon progeny activity on typical indoor surfaces

    International Nuclear Information System (INIS)

    Knutson, E.O.; Gogolak, C.V.; Klemic, G.

    1992-01-01

    A number of studies aimed at defining how well radon progeny on surfaces can be measured, information that is needed in order to test physical/mathematical models governing indoor radon progeny behaviour, are described. One experiment compared the decomposition on to different surfaces. Only relatively small differences were found among metal, filter paper, broadcloth, corduroy fabric, vinyl wallpaper, glass, and latex paint, but polyethylene film collected two to four times as much as the others, due most likely to electrostatic charge on the plastic surface. Another experiment compared the gamma and gross alpha count methods of measuring surface activity for metal, filter paper, broadcloth and corduroy surfaces. No difference for the surfaces tested was found from which it is concluded that, even for rougher surfaces, progeny atoms deposit mainly on the outer layers. A final experiment compared in situ and surrogate-surface methods for measuring surface deposition. For most tests, the two methods agreed within 30%, and the average ratio was not significantly different from unity. 210 Po is a complication in the in situ method. An unexpected location effect was found in the experiments conducted in houses with high radon concentrations: the deposition on the ceiling was higher than on the surfaces. (author)

  5. Indoor concentrations of radon 222 and its daughters: sources, range, and environmental influences

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1985-04-01

    The author here reviews what is presently known about factors affecting indoor concentrations of radon 222 and its daughters. In US single-family homes, radon concentrations are found to average about 1.5 pCi/1, but substantially higher concentrations occur frequently: perhaps a million US homes have concentrations exceeding 8 pCi/1 (from which occupants receive radiation doses comparable to those now experienced by uranium miners). The major contributor to indoor radon is ordinary soil underlying homes, with this radon being transported indoors primarily by the slight depressurization that occurs toward the bottom of a house interior (due to indoor-outdoor temperature differences and winds). Water from underground sources contributes significantly in a minority of cases, primarily residences with private wells, with public water supplies contributing only a few percent of indoor radon, even when drawn from wells. The strong variability in indoor concentrations is associated primarily with variability in the amount of radon entering homes from these various sources, and secondarily with differences in ventilation rates. However, for a given entry rate, the ventilation rate is the key determinant of indoor concentrations. Human doses are also influenced strongly by the chemical behavior of the daughters (i.e., decay products of radon), and considerable progress has been made recently in investigating a major aspect of this behavior, i.e., the manner in which daughters attach to airborne particles, to walls, and - indeed - to the lining of the lung itself, where the key radiation dose occurs

  6. Radon gas sampler for indoor and soil measurements and its applications

    International Nuclear Information System (INIS)

    Azimi-Garakani, D.; Flores, B.; Piermattei, S.; Susanna, A.F.; Seidel, J.L.; Tommasino, L.; Torri, G.

    1988-01-01

    A national large scale survey of indoor radon (based on an optimised sampling strategy) is needed in Italy to obtain average population dose for use in epidemiological studies. Since in the great majority of cases, one of the most important radon sources is the soil and rock beneath the houses, it would be interesting to combine this survey with measurements of bed-soil radon. With these objectives in mind, a new radon monitor device has been developed consisting of two etched track detectors enclosed in a heat-sealed polyethylene bag. When compared with existing techniques, this radon gas sampler presents several advantages for both indoor and outdoor measurements. As a pilot project, radon gas measurements have been carried out in hundreds of different sites and for several locations; measurements have been made for different years. Typical houses with relatively high radon concentrations have also been thoroughly investigated. (author)

  7. Indoor and underground radon activity in the northern part of Bangladesh: a preliminary study

    International Nuclear Information System (INIS)

    Haque, A.K.F.; Islam, G.S.; Islam, M.A.

    1991-01-01

    CR-39 solid state nuclear track detectors were used to determine the indoor and underground radon activity at three locations in the northern part of Bangladesh. The indoor radon activity at Naogaon was found to be higher than that at Rajshahi and Ruppur. Radon concentration in the mud-built houses at Naogaon was estimated to be ∼ 500 Bq m -3 (14pCi 1 -1 ) which is more than three times the recommended limit. The underground radon emanation at Naogaon was found to be one order of magnitude higher than that at the other two places. (author)

  8. Radon in indoor concentrations and indoor concentrations of metal dust particles in museums and other public buildings.

    Science.gov (United States)

    Carneiro, G L; Braz, D; de Jesus, E F; Santos, S M; Cardoso, K; Hecht, A A; Dias da Cunha, Moore K

    2013-06-01

    The aim of this study was to evaluate the public and occupational exposure to radon and metal-bearing particles in museums and public buildings located in the city of Rio de Janeiro, Brazil. For this study, four buildings were selected: two historic buildings, which currently house an art gallery and an art museum; and two modern buildings, a chapel and a club. Integrated radon concentration measurements were performed using passive radon detectors with solid state nuclear track detector-type Lexan used as nuclear track detector. Air samplers with a cyclone were used to collect the airborne particle samples that were analyzed by the particle-induced X-ray emission technique. The average unattached-radon concentrations in indoor air in the buildings were above 40 Bq/m(3), with the exception of Building D as measured in 2009. The average radon concentrations in indoor air in the four buildings in 2009 were below the recommended reference level by World Health Organization (100 Bq/m(3)); however, in 2011, the average concentrations of radon in Buildings A and C were above this level, though lower than 300 Bq/m(3). The average concentrations of unattached radon were lower than 148 Bq/m(3) (4pCi/L), the USEPA level recommended to take action to reduce the concentrations of radon in indoor air. The unattached-radon average concentrations were also lower than the value recommended by the European Union for new houses. As the unattached-radon concentrations were below the international level recommended to take action to reduce the radon concentration in air, it was concluded that during the period of sampling, there was low risk to human health due to the inhalation of unattached radon in these four buildings.

  9. A study of diurnal variations of radon and thoron concentrations in different indoor environmental conditions

    International Nuclear Information System (INIS)

    Pant, Preeti; Prasad, Mukesh; Ramola, R.C.

    2015-01-01

    The measurements for diurnal variations in radon ( 222 Rn) and thoron ( 220 Rn) concentrations were performed in the different indoor conditions of Tehri Garhwal, Uttarakhand, India by using AlphaGUARD, Portable Radon Monitor and RAD7. While selecting the dwellings, the ventilation conditions, building materials, life style of the inhabitants and their exposure time indoors were also considered. The behavior of indoor radon and thoron concentrations was observed for different type of dwellings with different environmental conditions. The measurement techniques, results obtained and comparison of the results are discussed in details. (author)

  10. Indoor randon concentration. Temperature and wind effects; Concentrazione di radon indoor. Effetto del vento e della temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Sesana, L.; Benigni, S. [Milan Univ., Milan (Italy). Ist. di Fisica Generale Applicata

    2000-12-01

    The present study analyses and discusses the behaviour of the indoor radon concentration in a research house. Hourly measurements were carried out in the basement of the house from November 1998 up to June 1999. In many sequences of days radon concentration in the room under analysis shows strong variation all day long with accumulation in the evening and overnight and decrease in the morning and in the afternoon. Measurements of wind velocity, indoor and outdoor temperatures and outdoor-indoor pressure difference were performed and their trend is compared with the observed radon concentration. The exhalation of radon from walls, floor and ceiling and the pressure difference driven exhalation from the soil are discussed, particularly the relation with the temperature differences. The air exchange rates between the house and the outdoor air are studied. [Italian] Si analizza e si discute il comportamento della concentrazione di radon indoor nel seminterrato di una casa di ricerca. Misure orarie sono state effettuate da novembre 1998 a giugno 1999. In molte sequenze di giorni la concentrazione del radon nel locale in analisi presenta forti variazioni nel corso della giornata con un accumulo notturno e decrescita nelle ore diurne. Sono state eseguite misure della velocita' del vento, delle temperature outdoor e indoor e della differenza di pressione outdoor-indoor e il loro andamento e' stato confrontato con quello della concentrazione del radon. Vengono discusse l'esalazione del radon dalle pareti, dal pavimento e dal soffitto e l'esalazione pressure difference driven dal suolo. Il rateo dei ricambi d'aria tra il locale e l'aria outdoor e' studiato.

  11. Meteorological factors influencing on the radon concentrations in indoor and outdoor airs

    International Nuclear Information System (INIS)

    Kojima, Hiroshi

    1989-01-01

    Factors influencing radon concentrations in indoor and outdoor airs are discussed. A balance between source and loss is required in determining the radon concentration. Source refers to as the outdoor and indoor exhalation rate from the ground and the building materials. Loss is caused by turbulent diffusion outdoors and ventilation indoors. A significant factor influencing the exhalation rate of indoor and outdoor radon may be the change in atmospheric pressure. A drop of pressure feeds the high concentration air under the ground or building materials into the open air, and contributes to the increased exhalation rate. The exhalation rate of radon closely depends on the moisture content of the ground or building materials. Up to a certain level of moisture, the radon exhalation increases with increasing moisture content because the emanation power increases by a recoil effect of a fluid present in the internal pores of the materials. Beyond a certain level of moisture, the exhalation decreases rapidly because the pores are filled with water. Radon exhalated from the ground is spread out by turbulent diffusion. The turbulent diffusion may be related to wind velocity and the lapse rate of temperature. There is a remakable difference between indoor and outdoor radon concentrations. The ventilation rate of the house exerted a great effect upon the indoor radon concentration. The ventilation rate is influenced by meteorological factors together with human activities. Of such factors, wind velocity and temperature gradient between indoor and outdoor airs may be the most significant. The correlation coefficients between RaA or radon and some meteorological factors were calculated on the data from the long term measurements on radon and its decay products in and out of a house under normal living conditions. The changes in atmospheric pressure and wind velocity are found to be a significant factor in the variation of concentration of these nuclides. (N.K.)

  12. Dependence of indoor radon concentration on the year of house construction

    International Nuclear Information System (INIS)

    Fujimoto, K.; Sanada, T.

    1999-01-01

    The dependence of indoor radon concentration on the year of house construction was studied using the results of two nationwide indoor radon surveys in Japan. The data of radon concentration in the surveys were classified into structure type as well as year of construction to obtain the current radon concentration for each structure type as a function of year of construction. The indoor radon concentration in wooden houses was found to be relatively constant with year of house construction until 1960, and then decreased, whereas the radon concentration in concrete houses increased sharply in houses constructed after 1970. The concentration in concrete houses built before 1975 was almost the same as that in contemporary wooden houses. However, the concentration in concrete houses built at present was about two times higher than that in wooden houses. The time trends found for wooden and concrete houses in the first nationwide indoor radon survey were confirmed by the second nationwide survey. In addition, these same time trends were mostly observed in the data classified into 7 districts in Japan. The increase of indoor radon concentration in concrete houses provides relatively high dose, and this increasing trend seems to continue, judging from the results of two nationwide surveys

  13. Mapping corrections for radon indoor data suggested by simulated data distributions

    International Nuclear Information System (INIS)

    Majerus, J.; Kies, A.; Tondeur, F.

    2004-01-01

    Indoor radon measurements may be considered as a stochastic function of spatial or spatio-temporal coordinates. This is characterized by a combination of deterministic and stochastic factors, including an important local 'noise' due to special indoor conditions. Radon mapping always consists in trying to smooth out the noise and possible outliers, to identify risk zones of high radon concentrations. To explore the spatial variation of radon we used indoor concentration data, obtained in Luxembourg and Belgium. These indoor radon databases have medium sampling density of 1 to 2 data per km 2 , respectively 0,3 data per km 2 . Furthermore we tried to investigate the relationship between geologic conditions and indoor radon concentrations. For indoor radon data, the best data sampling is restricted to all given house locations, thus we first investigated the ability to recover geological information with respect to the restricted indoor sampling distribution. To do so, we used simulated radon data with different sampling density and local clustering, generated by assuming specified average values depending on the coordinates, broadened by a typical log-normal noise and outliers of varying magnitude. Data clustering inside of villages and under-representation of the far field data locations leads to the well-known bull-eyes effects in mapping. Because the underlying deterministic structure of the simulated data is known, these data can be used to test different pre-treatments to apply before running a given gridding method. Adequate corrections for the non-uniform sampling distribution of radon indoor data can thus be explored. Furthermore, it is shown how simulated data can help to find good smoothing criteria. With smoothing needed, it may be difficult to find a good compromise between showing only significant features and showing more details at the risk of pointing out irrelevant details or even artifacts. Simulated data proved to be very useful in this context. In

  14. Characterization of radon entry rates and indoor concentrations in underground structures

    International Nuclear Information System (INIS)

    Borak, T.B.; Whicker, F.W.; Fraley, L.; Gadd, M.S.; Ibrahim, S.A.; Monette, F.A.; Morris, R.; Ward, D.C.

    1992-01-01

    An experimental facility has been designed to comprehensively determine the influence of soil and meterological conditions on the transport of radon into underground structures. Two identical basements are equipped to continuously monitor pressure differentials, temperatures, soil moisture, precipitation, barometric pressure, wind speed, wind direction, natural ventiliation rates, and radon concentrations. A computerized data acquisition system accumulates and processes data at the rate of 6000 points per day. The experimental design is based on performing experiments in one structure, with the other used as a control. Indoor radon concentrations have temporal variations ranging from 150 to 1400 Bq m -3 . The corresponding entry rate of radon ranges from 300 to 10,000 Bq h -1 . When the radon entry rate is high, the indoor radon concentration decreases, whereas elevated radon concentrations seem to be associated with slow but persistent radon entry rates. This inverse relationship is partially due to compensation from enhanced natural ventilation during periods when the radon entry rate is high. Correlations between measured variables in the soil and indoor-outdoor atmospheres are used to interpret these data. This laboratory has the capability to generate essential data required for developing and testing radon transport models

  15. Indoor radon concentration measurement in the dwellings of Al-Jauf region of Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Jarallah, M. I.; Fazal ur, Rehman

    2006-01-01

    Indoor radon concentration measurement in the dwellings of Al-Jauf region of Saudi Arabia was carried out using passive radon dosemeters. The objective of this radon survey was to obtain representative indoor radon data of Al-Jauf region. The study is a continuation of radon survey in main cities of Saudi Arabia which constitutes a baseline for Saudi Arabia in the Radon World Atlas. A total of 318 passive radon dosemeters were distributed randomly in the region and placed for a period of 1 y starting from April 2004 to April 2005. The results of indoor radon concentration measurement in 136 dwellings distributed in Al-Jauf region are presented. The remaining dosemeters were lost in the dwellings or mishandled. The results showed that the average, minimum, maximum radon concentrations and standard deviation were 35, 7, 168 and 30 Bq m -3 , respectively. Geometric mean and geometric standard deviation of the radon distribution were found to be 28 and 1.83, respectively. (authors)

  16. A risk-based approach to health criteria for radon indoors -report on a WHO initiative

    International Nuclear Information System (INIS)

    Steinhaeusler, F.

    1994-01-01

    The World Health Organization (WHO), Regional Office for Europe, organised a meeting of a working group on indoor air quality in Eilat, Israel, from 28 March to 4 April 1993. The aim was to develop a risk-based approach to health criteria for radon indoors. The Group reviewed the latest epidemiological data from occupational and non-occupational radon exposure, animal experiments and dosimetry. The Group issued 14 conclusions and 23 recommendations on radon related risk to health, on risk management and risk communication. In summary, radon was confirmed as a human carcinogen. Indoor radon exposures resulting in individual risks exceeding 10 -3 per year are to be considered as severe and risk reduction programmes implemented. Guidance on risk management and communication is offered to national authorities. (author)

  17. www.tjs.udsm.ac.tz www.ajol.info/index.php/tjs/ INDOOR RADON ...

    African Journals Online (AJOL)

    user

    in this study have concentration levels of indoor radon above the reference level of 100 Bq/m3 set by WHO ... MATERIAL AND METHODS. Sample ..... Rates of. Selected Building Materials in Tanzania. ... with a Diverse Pipeline of Projects in.

  18. Indoor radon monitoring in the Mandi district of Himachal Pradesh, India, for health hazard assessment

    International Nuclear Information System (INIS)

    Kumar, G.; Kumar, A.; Walia, V.; Kumar, M.; Tuccu, M.A.; Prasher, S.

    2016-01-01

    In the present study, indoor radon equilibrium equivalent concentration monitoring was carried out using Solid-State Nuclear Track Detectors in some residential areas of the Mandi district, Himachal Pradesh, India. The average value of the indoor radon equilibrium equivalent concentration in the study area was found to be 94 Bq m -3 , with an annual effective dose of 1.61 mSv. The average value of the indoor radon equilibrium equivalent concentration in the studied areas was found to be higher than the world average indoor radon value of 40 Bq m -3 but lower than the value of the action level 300 Bq m -3 , except for two locations. (authors)

  19. Risk evaluation and control strategies for indoor radon: a brief discussion

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1994-01-01

    Average risks of death estimated for radon are larger than those for many exposures in the outdoor environment, but similar to some in industrial settings. However, the indoor environment differs in regard to cost, benefit, responsibility, and distribution of risks from the outdoor and occupational settings, where frameworks for setting risk-limiting objectives and strategies have already been developed substantially. This indicates the need to develop a conceptual framework for evaluating risks in the indoor environment, within which the objectives of radon control strategies can be sensibly chosen. Nevertheless, the range of estimated radon risks and of recent radon control strategies suggest near-term elements of any strategy, i.e. accurate and effective public information, as well as reliable monitoring and control capabilities, and a focus on areas where most high residential levels occur. Developing a conceptual framework for evaluating indoor risks will permit the formulation of suitable aims on average indoor exposures and lower exposure situations. (author)

  20. POSSIBLE ROLE OF INDOOR RADON REDUCTION SYSTEMS IN BACK-DRAFTING RESIDENTIAL COMBUSTION APPLIANCES

    Science.gov (United States)

    The article gives results of a computational sensitivity analysis conducted to identify conditions under which residential active soil depressurization (ASD) systems for indoor radon reduction might contribute to or create back-drafting of natural draft combustion appliances. Par...

  1. Evaluation of several air cleaners for reducing indoor radon progeny

    International Nuclear Information System (INIS)

    Hopke, P.K.; Jensen, B.; Montassier, N.

    1994-01-01

    Over the past several years, studies have been made of the effectiveness of several kinds of air cleaners in removing radon decay products from indoor air using a recently developed automated, semi-continuous measurement system that can determine the activity-weighted size distributions in occupied homes. Measurements of activity-weighted size distributions and radon concentrations were made every 90 min in a home with a high air exchange rate. A week-long series of measurements was made for the home with no cleaner operating and a similar set of measurements were made for each of the air cleaners. Two different types of air cleaners were tested in this study; filtration units (two different designs from two different manufacturers) and two ion generator/fan systems (identical design NO-RAD systems, but from two different manufacturers). It was found that the filtration units resulted in a median reduction in exposure of 15% and 36% for the two units and corresponding dose reductions of 32% and 53%. The two NO-RAD systems produced 37% and 10% reductions in the median exposure, but the reductions in the median dose were 49% and 46%. (author)

  2. Indoor radon measurements and radon prognosis for eastern Uusimaa. Askola, Lapinjaervi, Liljendal, Loviisa, Myrskylae, Maentsaelae, Maentsaelae, Pernaja, Pornainen, Porvoo, Porvoon mlk, Pukkila, Ruotsinpyhtaeae and Sipoo

    International Nuclear Information System (INIS)

    Voutilainen, A.; Maekelaeinen, I.

    1995-02-01

    The purpose of the regional radon prognosis is to classify areas with different levels of radon risk. The radon prognosis gives the percentages of future homes expected to have indoor radon concentrations exceeding the levels of 200 and 400 Bq/m 3 . It is assumed that no protection against the entry of radon is used in construction. In the study about 2400 indoor radon measurements made in single family houses, semi-detached houses and row houses were used. Data on the location, geology and construction of buildings were determined form maps and questionnaires. An empirical statistical model, the adjusted indoor radon measurement and geological data were used to assess the radon risk form soil and bedrock in different areas. (15 refs., 19 figs., 9 tabs.)

  3. Environmental and indoor study of Radon concentration in San Joaquin area, Queretaro, Mexico, first results

    International Nuclear Information System (INIS)

    Hinojo Alonso, N.A.; Kotsarenko, A.; Yutsis, V.; Hernandez Silva, G.; Perego, P.; Fazio, M.; Grimalsky, V.; Koshevaya, S.; Foglia, F.; Cortes Silva, A.; García Martínez, R.; Martínez Reyes, J.; Norini, G.; Groppelli, G.

    2013-01-01

    A highly contaminated zone with a maximum over 57,000 Bq/m 3 was discovered in a populated community “Agua de Venados” during the 2009–2011 soil Radon survey in San Joaquin, Queretaro State, Mexico. The indoor Radon monitoring accomplished in 2 different époques in a nearby 4 dwellings has shown an increased Radon hazard in 1 of the 4 buildings (about 300 Bq/m 3 ) during a rainy season and highly elevated indoor Radon levels (over 400 Bq/m 3 ) already in 3 buildings during a dry season. The averaged diurnal indoor Radon variations are in a correlation with the atmospheric pressure and the air humidity and are independent on the air temperature. The maximum indoor Radon hazard for dwellings is estimated for the morning interval 5–10 a.m. - Highlights: ► Emanative zone of 57,000 Bq/m 3 was found in area “Agua de Venados”. ► Indoor Radon level in a nearby dwellings elevates during a dry season. ► Maximum risk for residents was estimated during the daily interval 5–10 a.m

  4. Indoor radon in houses built on gravel and sand deposits in southern Finland

    Directory of Open Access Journals (Sweden)

    Hutri, K.-L.

    1993-06-01

    Full Text Available Studies by the Finnish Centre for Radiation and Nuclear Safety (STUK have shown that, in Finland, indoor radon concentrations are almost twice as high in houses built on sand or gravel as in houses built on other soil types. The aim of this study was to assess the radon risk on eskers, ice-marginal formations, and other gravel and sand deposits on the basis of factors that can be determined from geological maps. Altogether, 514 houses built on gravel and sand deposits were selected for the study from the indoor radon database of STUK. Several geological parameters were determined. Empirical statistical models were used to assess the significance of factors affecting indoor radon in glaciofluvial deposits and the sand-dominant littoral deposits occurring in association with them. A relationship was found between increased indoor radon concentrations and the location of a house on a steep-sided esker, in the southeastern rapakivi granite area and on the upper slope or top of an esker. The steepness of the slope also increased the radon concentration in houses on steep-sided eskers. The effect of the topographic features is due to subterranean air-flows. As estimated from the very sparse till sampling, the elevated uranium concentration increased the indoor radon concentration only in houses built on littoral deposits around eskers and ice-marginal formations.

  5. A numerical study on the performance evaluation of ventilation systems for indoor radon reduction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Eun; Park, Hoon Chae; Choi, Hang Seok; Cho, Seung Yeon; Jeong, Tae Young; Roh, Sung Cheoul [Yonsei University, Wonju (Korea, Republic of)

    2016-03-15

    Numerical simulations were conducted using computational fluid dynamics to evaluate the effect of ventilation conditions on radon ({sup 222}Rn) reduction performance in a residential building. The results indicate that at the same ventilation rate, a mechanical ventilation system is more effective in reducing indoor radon than a natural ventilation system. For the same ventilation type, the indoor radon concentration decreases as the ventilation rate increases. When the air change per hour (ACH) was 1, the indoor radon concentration was maintained at less than 100 Bq/m{sup 3}. However, when the ACH was lowered to 0.01, the average indoor radon concentration in several rooms exceeded 148 Bq/ m{sup 3}. The angle of the inflow air was found to affect the indoor air stream and consequently the distribution of the radon concentration. Even when the ACH was 1, the radon concentrations of some areas were higher than 100 Bq/m{sup 3} for inflow air angles of 5 .deg. and 175 .deg.

  6. Surface-deposition and distribution of the radon-decay products indoors

    International Nuclear Information System (INIS)

    Espinosa, G.; Tommasino, L.

    2015-01-01

    The exposure to radon-decay products is of great concern both in dwellings and workplaces. The model to estimate the lung dose refers to the deposition mechanisms and particle sizes. Unfortunately, most of the dose data available are based on the measurement of radon concentration and the concentration of radon decay products. These combined measurements are widely used in spite of the fact that accurate dose assessments require information on the particle deposition mechanisms and the spatial distribution of radon decay products indoors. Most of the airborne particles and/or radon decay products are deposited onto indoor surfaces, which deposition makes the radon decay products unavailable for inhalation. These deposition processes, if properly known, could be successfully exploited to reduce the exposure to radon decay products. In spite of the importance of the surface deposition of the radon decay products, both for the correct evaluation of the dose and for reducing the exposure; little or no efforts have been made to investigate these deposition processes. Recently, two parallel investigations have been carried out in Rome and at Universidad Nacional Autónoma de México (UNAM) in Mexico City respectively, which address the issue of the surface-deposited radon decay products. Even though these investigations have been carried independently, they complement one another. It is with these considerations in mind that it was decided to report both investigations in the same paper. - Highlights: • Distribution of Radon and Thoron decay indoor products. • Indoor radon measurements complexity. • Short and long term measurements of surface deposit of Radon and Thoron decay products. • Microclimate controlled conditions room. • Nuclear Tracks Detectors

  7. Measurement and apportionment of radon source terms for modeling indoor environments

    International Nuclear Information System (INIS)

    Harley, N.H.

    1992-01-01

    This research has two main goals; (1) to quantify mechanisms for radon entry into homes of different types and to determine the fraction of indoor radon attributable to each source and (2) to model and calculate the dose (and therefore alpha particle fluence) to cells in the human and animal tracheobronchial tree that is pertinent to induction of bronchogenic carcinoma from inhaled radon daughters. The dosimetry has been extended to include organs other than the lung

  8. A study of some factors which are related to indoor radon concentrations in Greece

    International Nuclear Information System (INIS)

    Louizi, A.; Nikolopoulos, D.; Lobotesi, E.; Mavroudaki, E.; Koukouliou, V.K.; Chanioti, M.; Papadimitriou, D.; Yiakoumakis, M.; Proukakis, C.

    1997-01-01

    The Medical Physics Department of the University of Athens is conducting radon-222 measurements in Greek dwellings. It is well known that the concentration of radon gas indoors, are related to various factors. A study of these factors has started and first results are reported. (authors)

  9. Shelter and indoor air in the twenty-first century: Radon, smoking and lung cancer risks

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1988-04-01

    This document describes the relationship between indoor radon exposure, cigarette smoking, and lung cancer. The author explains the sources of radon, the tissues at risk, the human populations most likely to be affected, and the estimates of lung cancer in the population. 6 refs., 2 tabs

  10. Control methods of radon and its progeny concentration in indoor atmosphere

    International Nuclear Information System (INIS)

    Ramachandran, T.V.; Subba Ramu, M.C.

    1990-01-01

    Exposure to radon-222 and its progeny in indoor atmosphere can result in significant inhalation risk to the population particularly to those living in houses with much higher levels of Rn. There are three methods generally used for the control of Rn and its progeny concentration in the indoor environment: (1) restricting the radon entry, (2) reduction of indoor radon concentration by ventilation or by aircleaning and (3) removal of airborne radon progeny by aerosol reduction. Prominent process of radon entry in most of the residence appears to be the pressure driven flow of soil gas through cracks or through other openings in the basements slab or subfloor. Sealing off these openings or ventilation of the slab or subfloor spaces are the methods of reducing the radon entry rate. Indoor radon progeny levels can also be reduced by decreasing the aerosol load in the dwellings. The results of a few experiments carried out to study the reduction in the working level concentration of radon, by decreasing the aerosol load are discussed in this paper. (author). 9 tabs., 8 figs., 37 refs

  11. Indoor radon measurements in the dwellings of Punjab and Himachal Pradesh, India

    International Nuclear Information System (INIS)

    Rani, A.; Singh, S.; Duggal, V.

    2013-01-01

    The measurement of indoor radon concentrations were performed in the dwellings of the Punjab and Himachal Pradesh, India by using LR-115 type II Solid-State Nuclear Track Detectors in the bare mode. The annual average indoor radon concentrations in the dwellings are found to vary from 114 to 400 Bq m -3 with an average of 194 Bq m -3 . In ∼22 % of the dwellings the indoor radon activity concentration values lies in the range of action level (200-300 Bq m -3 ) and in ∼11 % of the dwellings above the upper limit of action level recommended by the International Commission on Radiological Protection (ICRP). The annual effective dose (AED) varies from 2.88 to 10.08 mSv with an average of 4.88 mSv. In most of the villages, the AED lies in the range of action level (3-10 mSv) recommended by the ICRP. The seasonal variation in indoor radon reveals the maximum values in winter and minimum in summer. The winter/summer ratio of indoor radon ranges from 1.15 to 1.62 with an average of 1.31. Analysis of ventilation conditions reveal that the indoor radon concentration values are more in poorly ventilated dwellings compared with the well-ventilated ones. (authors)

  12. Indoor radon in a Spanish region with different gamma exposure levels

    International Nuclear Information System (INIS)

    Quindos, L.S.; Fernandez, P.L.; Sainz, C.; Fuente, I.; Nicolas, J.; Quindos, L.; Arteche, J.

    2008-01-01

    In the beginning of 1990s within the framework of a national radon survey of more than 1500 points, radon measurements were performed in more than 100 houses located in Galicia region, in the Northwest area of Spain. The houses were randomly selected only bearing in mind general geological aspects of the region. Subsequently, a nationwide project called MARNA dealt with external gamma radiation measurements in order to draw a Spanish natural radiation map. The comparison in Galicia between these estimations and the indoor radon levels previously obtained showed good agreement. With the purpose of getting a confirmation of this relationship and also of creating a radon map of the zone, a new set of measurements were carried out in 2005. A total of 300 external gamma radiation measurements were carried out as well as 300 measurements of 226 Ra, 232 Th and 40 K content in soil. Concerning radon, 300 1-m-depth radon measurements in soil were performed, and indoor radon concentration was determined in a total of 600 dwellings. Radon content in soil gave more accurate indoor radon predictions than external gamma radiation or 226 Ra concentration in soil

  13. Reducing indoor radon concentrations by passive subslab ventilation

    International Nuclear Information System (INIS)

    Jiranek, M.

    2005-01-01

    The primary objective of our study was to establish whether passive soil ventilation systems installed under existing houses have an effect on indoor radon concentrations. Experiments were conducted in two single-family houses. The soil ventilation under each house consists of the network of flexible perforated pipes laid into the layer of coarse gravel of the minimal thickness 150 mm. Soil air from the perforated pipes is ventilated by means of the vertical exhaust pipe that runs through the heated part of the house and ends above the roof of the house. At the top of the vertical exhaust a wind turbine is mounted in order to improve the stack effect during the windy weather .In addition to the soil ventilation both houses were provided with new floors composed of concrete slab and radon proof insulation made of LDPE membrane. The efficiency of passive soil ventilation systems varies within the year in dependence on the temperature gradient and wind speed. Preliminary results indicate that temperature gradient predominates. However the maximum under-pressure at the base of the vertical exhaust pipe caused by temperature differences is not so high. During one-year observation period the maximum temperature related under-pressure was only -8 Pa. The wind effect starts to be noticeable for speeds higher than 5 m/s and more apparent becomes for speeds above 10 m/s. The maximum values of under-pressure due to wind forces were measured within the range - 20 Pa and -30 Pa for wind speeds from 20 m/s to 25 m/s. Quite significant variations of the subslab under-pressure within one day were observed. The maximum under pressure was measured at late night or early morning when the outdoor temperature was the lowest. Annual variations were also confirmed. During the winter the temperature gradient is higher than in the summer time and thus the subslab under-pressure is consistently higher in the winter. Preliminary results indicate that passive soil ventilation systems with

  14. Procedure manual for the estimation of average indoor radon-daughter concentrations using the radon grab-sampling method

    International Nuclear Information System (INIS)

    George, J.L.

    1986-04-01

    The US Department of Energy (DOE) Office of Remedial Action and Waste Technology established the Technical Measurements Center to provide standardization, calibration, comparability, verification of data, quality assurance, and cost-effectiveness for the measurement requirements of DOE remedial action programs. One of the remedial-action measurement needs is the estimation of average indoor radon-daughter concentration. One method for accomplishing such estimations in support of DOE remedial action programs is the radon grab-sampling method. This manual describes procedures for radon grab sampling, with the application specifically directed to the estimation of average indoor radon-daughter concentration (RDC) in highly ventilated structures. This particular application of the measurement method is for cases where RDC estimates derived from long-term integrated measurements under occupied conditions are below the standard and where the structure being evaluated is considered to be highly ventilated. The radon grab-sampling method requires that sampling be conducted under standard maximized conditions. Briefly, the procedure for radon grab sampling involves the following steps: selection of sampling and counting equipment; sample acquisition and processing, including data reduction; calibration of equipment, including provisions to correct for pressure effects when sampling at various elevations; and incorporation of quality-control and assurance measures. This manual describes each of the above steps in detail and presents an example of a step-by-step radon grab-sampling procedure using a scintillation cell

  15. Investigation of the relationship between earthquakes and indoor radon concentrations at a building in Gyeongju, Korea

    Directory of Open Access Journals (Sweden)

    Jae Wook Kim

    2018-04-01

    Full Text Available This article measured and analyzed the indoor radon concentrations at one university building in Gyeongju, Republic of Korea, to investigate if there is any relationship between earthquakes and indoor radon concentration. Since 12 September 2016, when two 5.1 and 5.8 magnitude earthquakes occurred, hundreds of aftershocks affected Gyeongju until January 2017. The measurements were made at the ground floor of the Energy Engineering Hall of Dongguk University in Gyeongju over a period between February 2016 and January 2017. The measurements were made with an RAD7 detector on the basis of the US Environmental Protection Agency measurement protocol. Each measurement was continuously made every 30 minutes over the measurement period every month. Among earthquakes with 2.0 or greater magnitude, the earthquakes whose occurrence timings fell into the measurement periods were screened for further analysis. We observed similar spike-like patterns between the indoor radon concentration distributions and earthquakes: a sudden increase in the peak indoor radon concentration 1–4 days before an earthquake, gradual decrease before the earthquake, and sudden drop on the day of the earthquake if the interval between successive earthquakes was moderately longer, for example, 3 days in this article. Keywords: Earthquakes, Gyeongju, Indoor Radon Concentration, RAD7, Radon Anomaly

  16. Hierarchical modeling of indoor radon concentration: how much do geology and building factors matter?

    International Nuclear Information System (INIS)

    Borgoni, Riccardo; De Francesco, Davide; De Bartolo, Daniela; Tzavidis, Nikos

    2014-01-01

    Radon is a natural gas known to be the main contributor to natural background radiation exposure and only second to smoking as major leading cause of lung cancer. The main concern is in indoor environments where the gas tends to accumulate and can reach high concentrations. The primary contributor of this gas into the building is from the soil although architectonic characteristics, such as building materials, can largely affect concentration values. Understanding the factors affecting the concentration in dwellings and workplaces is important both in prevention, when the construction of a new building is being planned, and in mitigation when the amount of Radon detected inside a building is too high. In this paper we investigate how several factors, such as geologic typologies of the soil and a range of building characteristics, impact on indoor concentration focusing, in particular, on how concentration changes as a function of the floor level. Adopting a mixed effects model to account for the hierarchical nature of the data, we also quantify the extent to which such measurable factors manage to explain the variability of indoor radon concentration. - Highlights: • It is assessed how the variability of indoor radon concentration depends on buildings and lithologies. • The lithological component has been found less relevant than the building one. • Radon-prone lithologies have been identified. • The effect of the floor where the room is located has been estimated. • Indoor radon concentration have been predicted for different dwelling typologies

  17. Measurements of Indoor Radon Concentrations in Chaiya and Tha Chana Districts, Surat Thani Province, Thailand

    International Nuclear Information System (INIS)

    Titipornpun, K.; Titipornpun, A.; Sola, P.; Bhongsuwan, T.

    2014-01-01

    Chaiya and Tha Chana districts of Surat Thani province are located in the areas with high equivalent uranium at ground surface, which have been identified as sources of radon. A survey measurement of indoor radon concentrations was carried out in 248 houses, using CR-39 detectors in closed cups. All of the detectors were exposed to radon for forty days. After the exposure, the alpha tracks were made visible by chemical etching and counted manually under an optical microscope. The indoor concentrations in Chaiya district were found to vary from the minimum to the maximum of 4 Bq.m -3 to 88 Bq.m -3 , respectively. In Tha Chana district, the concentrations of indoor radon were varied from the minimum of 4 Bq.m -3 to the maximum of 159 Bq.m -3 . The geometric mean of indoor radon concentrations in Chaya and Tha Chana districts were found to be 26±2 Bq.m -3 and 30±2 Bq.m -3 , respectively. The overall geometric mean in the surveyed areas was 28±2 Bq.m -3 . Only in two houses (1%), the concentrations (151 and 159 Bq.m -3 ) were found to be higher than the action level recommended by the US EPA (148 Bq.m -3 ). Most houses (94%) have natural ventilation by keeping doors and windows opened during the daytime. This ventilation likely causes the low level of indoor radon concentrations.

  18. Evaluation of indoor radon equilibrium factor using CFD modeling and resulting annual effective dose

    Science.gov (United States)

    Rabi, R.; Oufni, L.

    2018-04-01

    The equilibrium factor is an important parameter for reasonably estimating the population dose from radon. However, the equilibrium factor value depended mainly on the ventilation rate and the meteorological factors. Therefore, this study focuses on investigating numerically the influence of the ventilation rate, temperature and humidity on equilibrium factor between radon and its progeny. The numerical results showed that ventilation rate, temperature and humidity have significant impacts on indoor equilibrium factor. The variations of equilibrium factor with the ventilation, temperature and relative humidity are discussed. Moreover, the committed equivalent doses due to 218Po and 214Po radon short-lived progeny were evaluated in different tissues of the respiratory tract of the members of the public from the inhalation of indoor air. The annual effective dose due to radon short lived progeny from the inhalation of indoor air by the members of the public was investigated.

  19. The impacts of balanced and exhaust mechanical ventilation on indoor radon

    International Nuclear Information System (INIS)

    Fisk, W.J.; Mowris, R.J.

    1987-02-01

    Models for estimating radon entry rates, indoor radon concentrations, and ventilation rates in houses with a basement or a vented crawl-space and ventilated by natural infiltration, mechanical exhaust ventilation, or balanced mechanical ventilation are described. Simulations are performed for a range of soil and housing characteristics using hourly weather data for the heating season in Spokane, WA. For a house with a basement, we show that any ventilation technique should be acceptable when the soil permeability is less than approximately 10 -12 m 2 . However, exhaust ventilation leads to substantially higher indoor radon concentrations than infiltration or balanced ventilation with the same average air exchange rate when the soil permeability is 10 -10 m 2 or greater. For houses with a crawl-space, indoor radon concentrations are lowest with balanced ventilation, intermediate with exhaust ventilation, and highest with infiltration

  20. Studies on indoor radon concentrations in Karimanagar district of Telangana State, India

    International Nuclear Information System (INIS)

    Srinivas Reddy, G.; Vinay Kumar Reddy, K.; Sreenivasa Reddy, B.; Ch Gopal Reddy, P.; Yadagiri Reddy, P.; Rama Reddy, K.

    2015-01-01

    Karimnagar district of Telangana state in India falls geologically under the Karimnagar Granulite Terrain (KGT) and, is well known for several types of granites. Studies revealed that the radiation levels are elevated with these granitic rocks. The indoor radon concentrations are estimated in about 80 dwellings, selected randomly in Karimnagar district, using LR-115 Type-II Solid State Nuclear Track Detectors based Twin Chamber Cup dosimeters for a period of one year on quarterly basis. The dose rates due to the radon concentrations are calculated. The seasonal variations of the indoor radon concentrations have been studied. Further, the dependency of indoor radon concentrations on different types of dwellings is also discussed in the present paper. (author)

  1. Environmental assessment of indoor radon gas exposure health hazards and some of its public risks

    International Nuclear Information System (INIS)

    Hussein, Abd El-Razik. Z.; Ibrahim, M.Se.; Ragab, M.H.; El-Bukhari, M.S.

    2005-01-01

    This study examine the relationship between indoor radon gas exposure and the cancer risk and housing characteristics in lung cancer risk houses (CRH) compared to non lung cancer risk houses (NCRH). Mean radon concentrations measured by active method were significantly higher among CRH compared to NCRH, 9:93 pCi/L versus 4.56 pCi/L, respectively. There was no statistically significant diurnal variation as regards radon levels in all examined houses. Indoor radon concentrations show statistically significance in houses with bad ventilation (low air change rate) compared to houses with good ventilation (high air change rate). Houses with floor material of tiles, had statistically significant higher radon concentrations. Neither finishing wall material nor indoor gas source shows statistically significance as regard radon levels. Radon levels > 4 pCi/L (US EPA action level) were statistically significance higher in bed rooms compared levels in living rooms. High radon concentrations were reported in lung cane risk houses and in houses with bad ventilation

  2. Monitoring trends in civil engineering and their effect on indoor radon.

    Science.gov (United States)

    Ringer, W

    2014-07-01

    In this paper, the importance of monitoring new building concepts is discussed. The effect of energy-efficient construction technologies on indoor radon is presented in more detail. Comparing the radon levels of about 100 low-energy and passive houses in Austria with radon levels in conventional new houses show that, in energy-efficient new houses, the radon level is about one-third lower than in conventional new houses. Nevertheless, certain features or bad practice may cause high radon levels in energy-efficient new houses. Recommendations to avoid adverse effects were set up. Furthermore, the paper deals with the effect of thermal retrofitting on indoor radon. Results from a Swiss study where 163 dwellings were measured before and after thermal retrofit yield an increase of the radon level of 26% in average. Among the various retrofit measures, replacing windows has the greatest impact on the indoor radon level. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. [sup 210] Po as a long-term integrating radon indicator in the indoor environment

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Exposure to radon (Rn-222) decay products in the indoor environment is suspected of being a significant lung cancer agent in many countries. But quantification of the contemporary lung cancer risk (i.e. probability) on an individual basis is not an easy task. Only past exposures are relevant and assessing individual exposures in retrospect is associated with large uncertainties, if possible at all. One way to extend the validity of contemporary measurements to past decades is to measure long-lived decay products of radon, the long-lived radon daughters. After our laboratory had exemplified the correlation between implanted Po-210 and the estimated radon exposures in six different dwellings, the US Department of Energy and the Swedish Radiation Protection Institute granted funds for a one-year study, [sup 210]Po as a Long-Term Integrating Radon Indicator in the Indoor Environment.'' In this report the work performed under these two contracts is reported.

  4. [sup 210] Po as a long-term integrating radon indicator in the indoor environment

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Exposure to radon (Rn-222) decay products in the indoor environment is suspected of being a significant lung cancer agent in many countries. But quantification of the contemporary lung cancer risk (i.e. probability) on an individual basis is not an easy task. Only past exposures are relevant and assessing individual exposures in retrospect is associated with large uncertainties, if possible at all. One way to extend the validity of contemporary measurements to past decades is to measure long-lived decay products of radon, the long-lived radon daughters. After our laboratory had exemplified the correlation between implanted Po-210 and the estimated radon exposures in six different dwellings, the US Department of Energy and the Swedish Radiation Protection Institute granted funds for a one-year study, [sup 210]Po as a Long-Term Integrating Radon Indicator in the Indoor Environment.'' In this report the work performed under these two contracts is reported.

  5. Radon concentration as an indicator of the indoor air quality: development of an efficient measurement method

    International Nuclear Information System (INIS)

    Roessler, F.A.

    2015-01-01

    Document available in abstract form only. Full text of publication follows: Energy conservation regulation could lead to a reduction of the air exchange rate and also a degradation of the indoor air quality. Present methods for the estimating the indoor air quality can only be implemented with limitations. This paper presents a method that allows the estimation of the indoor air quality under normal conditions by using natural radon as an indicator. With mathematical models, the progression of the air exchange rate is estimated by using the radon concentration. Furthermore, the progression of individual air pollutants is estimated. Through series of experiments in a measurement chamber, the modelling could be verified. (author)

  6. Radon in a Karstic Region School: Concentrations in Soil Gas and Indoors

    International Nuclear Information System (INIS)

    Vaupotic, J.; Kobal, I.; Barisic, D.; Lulic, S.

    1998-01-01

    The school presented in this paper exceeded instantaneous indoor radon concentration of 1000 Bqm -3 , obtained within the Slovene radon programme. Thus, additional measurements were performed and the radiation doses of teachers and pupils estimated. Radon concentrations between 1000 and 3000 Bqm -3 during teaching hours were found and the yearly effective doses from 0.75 to 1.1 mSv for the pupils and from 1.1 to 4.2 mSv for the teachers were calculated. In the soil gas radon and thoron concentration ranging from 70 to 150 kBqm -3 were obtained. The school was mitigated during summer 1998. (author)

  7. Lung cancer mortality and indoor radon concentrations in 18 Canadian cities

    International Nuclear Information System (INIS)

    Letourneau, E.G.; Mao, Y.; McGregor, R.G.; Semenciw, R.; Smith, M.H.; Wigle, D.T.

    1983-01-01

    Indoor radon and radon daughter concentrations were measured in a survey of 14,000 homes in 18 Canadian cities conducted in the summers of 1978 through 1980. Mortality and population data for the period 1966 through 1979 were retrieved for the geographic areas surveyed in each city. The results of analysis of the relation between lung cancer and radon daughter concentration, smoking habits and socioeconomic indicators for each city showed no detectable association between radon daughter concentrations and lung cancer mortality rates with or without adjustment for differences in smoking habits between cities

  8. Indoor radon concentration data: Its geographic and geologic distribution, an example from the Capital District, NY

    International Nuclear Information System (INIS)

    Thomas, J.J.; Overeynder, H.M.; Thomas, B.R.

    1995-01-01

    Most studies of the geographic distribution of indoor radon levels are plotted by county or ZIP code. This method is used for the radon potential maps produced by the U.S. Environmental Protection Agency (EPA) and the New York State Department of Health (NYSDOH). The basis for the mapping is the mean or median indoor radon count for all the data provided by NYSDOH within each geographic area. While testing the indoor radon analyses provided to the authors by CMT Independent Laboratories, we discovered data that deviated markedly from the EPA and NYSDOH means for the Capital District of New York (Albany and surrounding counties). Their screening indoor radon average concentrations in pCi/L, indicate low potential for Schenectady (3.0), Saratoga (3.2), and Albany (3.7) counties; and moderate potential for Rensselaer (6.4) and Columbia (7.0) counties. Our database of over 3,000 analyses contains over 800 records of indoor radon counts above 4 pCi/L (14-47% of each county's analyses), many high enough to be rated as a serious health hazard. In order to obtain greater precision of information, the authors plotted their indoor radon data by street address using MapInfo, a geographic Information System (GIS), and StreetInfo, MapInfo's TIGER address database. We compared the geographic distribution of our data to both the Bedrock Geology and Surficial Geology Maps of New York State. The results show a striking relationship of radon concentrations to bedrock, faults and permeability of surficial material. Data being compiled and mapped by street address by the NYSDOH in Erie County in western New York, confirm our results

  9. Indoor radon levels in selected hot spring hotels in Guangdong, China

    Energy Technology Data Exchange (ETDEWEB)

    Song Gang [Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640 (China); Zhang Boyou [Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640 (China); Wang Xinming [Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640 (China)]. E-mail: wangxm@gig.ac.cn; Gong Jingping [Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640 (China); Chan, Daniel [Department of Building Services Engineering, Hong Kong Polytechnic University, Hong Kong (China); Bernett, John [Department of Building Services Engineering, Hong Kong Polytechnic University, Hong Kong (China); Lee, S.C. [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hong Kong (China)

    2005-03-01

    Guangdong is one of the provinces that have most hot springs in China, and many hotels have been set up near hot springs, with spring water introduced into the bath inside each hotel room for hot spring bathing to attract tourists. In the present study, we measured radon in indoor and outdoor air, as well as in hot spring waters, in four hot spring hotels in Guangdong by using NR-667A (III) continuous radon detector. Radon concentrations ranged 53.4-292.5 Bq L{sup -1} in the hot spring water and 17.2-190.9 Bq m{sup -3} in outdoor air. Soil gas intrusion, indoor hot spring water use and inefficient ventilation all contributed to the elevated indoor radon levels in the hotel rooms. From the variation of radon levels in closed unoccupied hotel rooms, soil gas intrusion was found to be a very important source of indoor radon in hotel rooms with floors in contact with soils. When there was spring water bathing in the bathes, average radon levels were 10.9-813% higher in the hotel rooms and 13.8-489% higher in bathes compared to their corresponding average levels when there was no spring water use. Spring water use in the hotel rooms had radon transfer coefficients from 1.6x10{sup -4} to 5.0x10{sup -3}. Radon in some hotel rooms maintained in concentrations much higher than guideline levels might thus have potential health risks to the hotel workers, and technical and management measures should be taken to lower their exposure of radon through inhalation.

  10. Indoor radon levels in selected hot spring hotels in Guangdong, China.

    Science.gov (United States)

    Song, Gang; Zhang, Boyou; Wang, Xinming; Gong, Jingping; Chan, Daniel; Bernett, John; Lee, S C

    2005-03-01

    Guangdong is one of the provinces that have most hot springs in China, and many hotels have been set up near hot springs, with spring water introduced into the bath inside each hotel room for hot spring bathing to attract tourists. In the present study, we measured radon in indoor and outdoor air, as well as in hot spring waters, in four hot spring hotels in Guangdong by using NR-667A (III) continuous radon detector. Radon concentrations ranged 53.4-292.5 Bq L(-1) in the hot spring water and 17.2-190.9 Bq m(-3) in outdoor air. Soil gas intrusion, indoor hot spring water use and inefficient ventilation all contributed to the elevated indoor radon levels in the hotel rooms. From the variation of radon levels in closed unoccupied hotel rooms, soil gas intrusion was found to be a very important source of indoor radon in hotel rooms with floors in contact with soils. When there was spring water bathing in the bathes, average radon levels were 10.9-813% higher in the hotel rooms and 13.8-489% higher in bathes compared to their corresponding average levels when there was no spring water use. Spring water use in the hotel rooms had radon transfer coefficients from 1.6x10(-4) to 5.0x10(-3). Radon in some hotel rooms maintained in concentrations much higher than guideline levels might thus have potential health risks to the hotel workers, and technical and management measures should be taken to lower their exposure of radon through inhalation.

  11. Indoor radon levels in selected hot spring hotels in Guangdong, China

    International Nuclear Information System (INIS)

    Song Gang; Zhang Boyou; Wang Xinming; Gong Jingping; Chan, Daniel; Bernett, John; Lee, S.C.

    2005-01-01

    Guangdong is one of the provinces that have most hot springs in China, and many hotels have been set up near hot springs, with spring water introduced into the bath inside each hotel room for hot spring bathing to attract tourists. In the present study, we measured radon in indoor and outdoor air, as well as in hot spring waters, in four hot spring hotels in Guangdong by using NR-667A (III) continuous radon detector. Radon concentrations ranged 53.4-292.5 Bq L -1 in the hot spring water and 17.2-190.9 Bq m -3 in outdoor air. Soil gas intrusion, indoor hot spring water use and inefficient ventilation all contributed to the elevated indoor radon levels in the hotel rooms. From the variation of radon levels in closed unoccupied hotel rooms, soil gas intrusion was found to be a very important source of indoor radon in hotel rooms with floors in contact with soils. When there was spring water bathing in the bathes, average radon levels were 10.9-813% higher in the hotel rooms and 13.8-489% higher in bathes compared to their corresponding average levels when there was no spring water use. Spring water use in the hotel rooms had radon transfer coefficients from 1.6x10 -4 to 5.0x10 -3 . Radon in some hotel rooms maintained in concentrations much higher than guideline levels might thus have potential health risks to the hotel workers, and technical and management measures should be taken to lower their exposure of radon through inhalation

  12. Correlations of soil-gas and indoor radon with geology in glacially derived soils of the northern Great Plains

    International Nuclear Information System (INIS)

    Schumann, R.R.; Owen, D.E.; Peake, R.T.; Schmidt, K.M.

    1990-01-01

    This paper reports that a higher percentage of homes in parts of the northern Great Plains underlain by soils derived from continental glacial deposits have elevated indoor radon levels (greater than 4 pCi/L) than any other area in the country. Soil-gas radon concentrations, surface radioactivity, indoor radon levels, and soil characteristics were studied in areas underlain by glacially-derived soils in North Dakota and Minnesota to examine the factors responsible for these elevated levels. Clay-rich till soils in North Dakota have generally higher soil-gas radon levels, and correspondingly higher indoor radon levels, than the sandy till soils common to west-central Minnesota. Although the proportions of homes with indoor radon levels greater than 4 pCi/L are similar in both areas, relatively few homes underlain by sandy tills have screening indoor radon levels greater than 20 pCi/L, whereas a relatively large proportion of homes underlain by clayey tills have screening indoor radon levels exceeding 20 pCi/L. The higher radon levels in North Dakota are likely due to enhanced emanation from the smaller grains and to relatively higher soil radium concentrations in the clay-rich soils, whereas the generally higher permeability of the sandy till soils in Minnesota allows soil gas to be drawn into structures from a larger source volume, increasing indoor radon levels in these areas

  13. Multi-scale variability and long-range memory in indoor Radon concentrations from Coimbra, Portugal

    Science.gov (United States)

    Donner, Reik V.; Potirakis, Stelios; Barbosa, Susana

    2014-05-01

    The presence or absence of long-range correlations in the variations of indoor Radon concentrations has recently attracted considerable interest. As a radioactive gas naturally emitted from the ground in certain geological settings, understanding environmental factors controlling Radon concentrations and their dynamics is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we re-analyze two high-resolution records of indoor Radon concentrations from Coimbra, Portugal, each of which spans several months of continuous measurements. In order to evaluate the presence of long-range correlations and fractal scaling, we utilize a multiplicity of complementary methods, including power spectral analysis, ARFIMA modeling, classical and multi-fractal detrended fluctuation analysis, and two different estimators of the signals' fractal dimensions. Power spectra and fluctuation functions reveal some complex behavior with qualitatively different properties on different time-scales: white noise in the high-frequency part, indications of some long-range correlated process dominating time scales of several hours to days, and pronounced low-frequency variability associated with tidal and/or meteorological forcing. In order to further decompose these different scales of variability, we apply two different approaches. On the one hand, applying multi-resolution analysis based on the discrete wavelet transform allows separately studying contributions on different time scales and characterize their specific correlation and scaling properties. On the other hand, singular system analysis (SSA) provides a reconstruction of the essential modes of variability. Specifically, by considering only the first leading SSA modes, we achieve an efficient de-noising of our environmental signals, highlighting the low-frequency variations together with some distinct scaling on sub-daily time-scales resembling

  14. MEASUREMENT OF INDOOR RADON-THORON IN AIR AND EXHALATION FROM SOIL IN THE ENVIRONMENT OF WESTERN HARYANA, INDIA.

    Science.gov (United States)

    Mann, Nisha; Kumar, Amit; Kumar, Sushil; Chauhan, R P

    2016-10-01

    Measurement of indoor radon and thoron is important because the inhalation of radon-thoron and their daughters contributes more than 50 % of the total dose from natural sources. One of the important parameters to find out the contribution of soil and building materials towards indoor radon is radon exhalation rates, which can be used for estimation of indoor radon levels. The indoor radon and thoron levels from the air and radon exhalation rates from soil samples collected from two districts (Hisar and Fatehabad) of Western Haryana are measured using pin-hole-based radon-thoron dosimeter and LR-115 solid-state nuclear track detector by canister technique. The results show that the indoor radon and thoron levels from Hisar district varied from 11 to 112 and 11 to 80 Bq m -3 , while for Fatehabad district from 5 to 24 and 59 to 105 Bq m -3 , respectively, in summer season. In winter season, indoor radon and thoron levels from Hisar district varied from 15 to 43 and 32 to 102 Bq m -3 , while for Fatehabad district from 18 to 31 and 11 to 80 Bq m -3 , respectively. The indoor radon levels of 95 % locations lie well below the limit recommended by International Commission of Radiation Protection, 2011. The radon mass exhalation rate varied from 6 to 56 mBq kg -1 h -1 The radon mass exhalation rates from the soil samples were lower than the worldwide average, i.e. 56 mBq kg -1 h -1 There exists a poor correlation between indoor radon and exhalation rates. More investigations of measurement of radionuclide contents from rock and stone of study area can improve the understanding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Characteristics of indoor radon and its progeny in a Japanese dwelling while using air appliances

    International Nuclear Information System (INIS)

    Pornnumpa, C.; Tokonami, S.; Sorimachi, A.; Kranrod, C.

    2015-01-01

    Characteristics of radon and its progeny were investigated in different air conditions by turning four types of indoor air appliances on and off in a two-story concrete Japanese dwelling. The four appliances were air conditioner, air cleaner, gas heater and cooker hood. The measurements were done using two devices: (1) a Si-based semiconductor detector for continuous measurement of indoor radon concentration and (2) a ZnS(Ag) scintillation counting system for equilibrium-equivalent radon concentration. Throughout the entire experiment, the cooker hood was the most effective in decreasing indoor radon concentration over a long period of time and the less effective was the air conditioner, while the air cleaner and gas heater did not affect the concentration of radon. However, the results measured in each air condition will differ according to the lifestyles and activities of the inhabitants. In this study, indoor radon and its progeny in a Japanese dwelling will be characterised by the different air conditions. (authors)

  16. Distribution of indoor radon concentrations and uranium-bearing rocks in Texas

    International Nuclear Information System (INIS)

    Hudak, P.F.

    1996-01-01

    The purpose of this study was to compare regional patterns of indoor radon concentration with uranium-bearing rock zones and county populations in Texas. Zones yielding radon concentrations that are relatively high for Texas include shale and sandstone in northwest Texas; red beds in north-central Texas; felsic volcanic rocks in west Texas; and sandstone, limestone, and igneous rocks in central Texas. Located in northwest Tecas, only five of the 202 counties evaluated have mean indoor radon concentrations above 4.0 pCi l -1 . Two of those counties have populations above the state median of 20115. The highest county mean concentration is 8.8 pCi l -1 . Results of the study suggest that (1) regional geology influences indoor radon concentrations in Texas, (2) statewide, the radon concentrations are relatively low, (3) highly populated counties do not coincide with regions of high indoor radon concentration, and (4) regions that may warrant further monitoring include northwest Texas and, to a lesser degree, west and central Texas. (orig.)

  17. Indoor radon and its progeny levels in new type houses in rural area of Hubei

    International Nuclear Information System (INIS)

    He Quan; Xiong Zhaoxing; He Zuan; Zheng Youqing

    1993-01-01

    Using Cluster Sampling method, indoor radon of 54 rooms and radon progeny potential alpha-energy concentrations of 200 rooms were measured in the new type brick-concrete 2-storey flats and old type brick-wood single-storey residences in the rural area. Instant and cumulative samplings and measurements were made. The average per capita residential area of the surveyed houses was 28.1 m 2 , clear height 3.6 m. The geometric means of indoor radon concentration were 18.22 Bq.m -3 and 15.93 Bq.m -3 for storied and single-storey buildings, respectively; radon progeny potential alpha-energy concentrations were 2.62 mWL and 2.54 mWL, correspondingly. In storied buildings, the arithmetic mean of indoor cumulative radon concentration was 25.56 Bq.m -3 in summer, and 37.94 Bq.m -3 in winter. The annual effective dose equivalent of radon progeny inhaled indoors and outdoors was 0.80 mSv. (orig.). (6 refs., 1 fig., 5 tabs.)

  18. Contribution to the relation between volume activity of soil and indoor radon

    International Nuclear Information System (INIS)

    Mojzes, A.

    1999-01-01

    There were carried out some repeated manual measurements of volume activity of radon-222 (VAR) in both soil air of subsoil and also indoor air of buildings in two different areas in Bratislava. All measurements were done with a portable scintillation detector based on exchangeable Lucas cells. The measurements were repeated in different day and year intervals. There were repeated 259 measurements of volume activity of radon-222 in soil air with the average valuer 11.95 kBq/m 3 and the standard deviation 1.53 kBq/m 3 in the subsoil of the one-story house and 597 measurements of VAR in soil air of the subsoil of the second study building with the average 9.44 kBq/m 3 and the standard deviation 3.08 kBq/m 3 . Presented results of measurement of radon-222 volume activity in both soil and indoor air demonstrate that also in case of low radon concentrations in soil air of geological basement the level of radon in indoor air could be considerably high. It depends mainly on used technology of laying building foundations, on the distance from subsoil and on regime of ventilation. In case of older buildings the ventilation is very effective way to reduce the presence of radon in indoor air. (author)

  19. Characteristics of indoor radon and its progeny in a Japanese dwelling while using air appliances.

    Science.gov (United States)

    Pornnumpa, C; Tokonami, S; Sorimachi, A; Kranrod, C

    2015-11-01

    Characteristics of radon and its progeny were investigated in different air conditions by turning four types of indoor air appliances on and off in a two-story concrete Japanese dwelling. The four appliances were air conditioner, air cleaner, gas heater and cooker hood. The measurements were done using two devices: (1) a Si-based semiconductor detector for continuous measurement of indoor radon concentration and (2) a ZnS(Ag) scintillation counting system for equilibrium-equivalent radon concentration. Throughout the entire experiment, the cooker hood was the most effective in decreasing indoor radon concentration over a long period of time and the less effective was the air conditioner, while the air cleaner and gas heater did not affect the concentration of radon. However, the results measured in each air condition will differ according to the lifestyles and activities of the inhabitants. In this study, indoor radon and its progeny in a Japanese dwelling will be characterised by the different air conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Effects of bedrock type on the indoor radon concentrations at the office buildings in Gyeongju, Korea

    Directory of Open Access Journals (Sweden)

    Park Hee Chan

    2011-01-01

    Full Text Available This study measured the indoor radon concentrations at 23 administrative office buildings in Gyeongju, Korea, which consists of 23 administrative districts. Using the Korean geological information system, the type of bedrock under the administrative office buildings was identified and classified in 3 major types: granite, sedimentary rock, and sedimentary rock-based fault. The changes in the indoor concentrations at the 23 administrative office buildings were analyzed according to the type of bedrock. As a result, the radon concentration in the areas with the granite bedrock was generally higher than that in the region of two other types of bedrock. In addition, the radon concentration was evaluated according to surface area and construction timing of the building. The indoor radon concentration generally increased with decreasing surface area of the building, particularly in granite distributed areas. For a building aged more than 15 years, the radon concentration in the building in the granite area was much higher. For the building aged 1 or 2 years, the radon concentration was high regardless of the type of the bedrock due to radon emanation from the building material, such as concrete.

  1. Measurement of indoor radon Concentrations in Osaka, Nara, Wakayama and Hyogo with passive dosemeters

    International Nuclear Information System (INIS)

    Mori, Toshiaki; Hori, Yasuharu; Takeda, Atsuhiko; Iwasaki, Tamiko; Uchiyama, Masahumi; Fujimoto, Kenzo; Kankura, Takako; Kobayashi, Sadayosi.

    1989-01-01

    Indoor radon concentrations of 792 houses in Osaka, Nara, Wakayama and Hyogo were measured by the passive dosemeter which was developed in Karlsruhe Nuclear Research Center in West Germany. Each house was measured at two places for successive two periods of six months to obtain annual average exposure due to radon daughters. The arithmetic mean concentration of all houses was 45.2 Bq/m 3 with a standard deviation of 27.2; the geometric mean, 40.7 Bq/m 3 and the median, 39 Bq/m 3 . The distribution of the radon levels was approximately log-normal with 80% of houses having radon concentrations less than 60 Bq/m 3 . The seasonal variation of the mean radon concentration was evident between the former period including winter value of 45 Bq/m 3 and the latter including summer value of 32 Bq/m 3 . The indoor radon concentrations of wooden houses were found to have the widest distribution with the highest value of 371 Bq/m 3 . The highest value obtained in the ferro-concrete house was 118 Bq/m 3 . Twelve houses having indoor radon concentrations higher than 120 Bq/m 3 were all Japanese traditional wooden houses with walls made of soil. (author)

  2. An indoor radon survey of the X-ray rooms of Mexico City hospitals

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, Faustino [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, Instituto Literario No. 100. Estado de Mexico, 50000, Mexico. Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Circuito (Mexico); Reyes, Pedro G. [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, Instituto Literario No. 100. Estado de Mexico, 50000 (Mexico); Espinosa, Guillermo [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito Exterior Ciudad Universitaria, Mexico D.F. Cp.04510 (Mexico)

    2013-07-03

    This paper presents the results of measurements of indoor radon concentrations in the X-ray rooms of a selection of hospitals in the metropolitan area of Mexico City. The metropolitan area of Mexico City is Mexico's largest metropolitan area by population; the number of patients requiring the use of X-rays is also the highest. An understanding of indoor radon concentrations in X-ray rooms is necessary for the estimation of the radiological risk to which patients, radiologists and medical technicians are exposed. The indoor radon concentrations were monitored for a period of six months using nuclear track detectors (NTD) consisting of a closed-end cup system with CR-39 (Lantrack Registered-Sign ) polycarbonate as detector material. The indoor radon concentrations were found to be between 75 and 170 Bq m{sup -3}, below the USEPA-recommended indoor radon action level for working places of 400 Bq m{sup -3}. It is hoped that the results of this study will contribute to the establishment of recommended action levels by the Mexican regulatory authorities responsible for nuclear safety.

  3. RAETRAD MODEL OF RADON GAS GENERATION, TRANSPORT, AND INDOOR ENTRY

    Science.gov (United States)

    The report describes the theoretical basis, implementation, and validation of the Radon Emanation and Transport into Dwellings (RAETRAD) model, a conceptual and mathematical approach for simulating radon (222Rn) gas generation and transport from soils and building foundations to ...

  4. The distribution of indoor radon in Transylvania (Romania) - influence of the natural and anthropogenic factors

    Science.gov (United States)

    Cucos Dinu, Alexandra; Baciu, Calin; Dicu, Tiberius; Papp, Botond; Moldovan, Mircea; Bety Burghele, Denissa; Tenter, Ancuta; Szacsvai, Kinga

    2017-04-01

    Exposure to radon in homes and workplaces is now recognized as the most important natural factor in causing lung cancer. Radon activity is usually higher in buildings than in the outside atmosphere, as it may be released from building materials and soil beneath the constructions, and the concentration builds-up indoor, due to the low air renewal rates. Indoor radon levels can vary from one to multiple orders of magnitude over time and space, as it depends on several natural and anthropogenic factors, such us the radon concentration in soil under the construction, the weather conditions, the degree of containment in the areas where individuals are exposed, building materials, outside air, tap water and even city gas, the architecture, equipment (chimney, mechanical ventilation systems, etc.), the environmental parameters of the building (temperature, pressure, etc.), and on the occupants' lifestyle. The study presents the distribution of indoor radon in Transylvania, Romania, together with the measurements of radon in soil and soil water. Indoor radon measurements were performed by using CR-39 track detectors exposed for 3 months on ground-floor level of dwellings, according to the NRPB Measurement Protocol. Radon concentrations in soil and water were measured using the LUK3C device. A complete map was plotted at the date, based on 3300 indoor radon measurements, covering an area of about 42% of the Romanian territory. The indoor radon concentrations ranged from 5 to 3287 Bq m-3, with an updated preliminary arithmetic mean of 179 Bq m-3, and a geometric mean of 122 Bq m-3. In about 11% of the investigated grid cells the indoor radon concentrations exceed the threshold of 300 Bq m-3. The soil gas radon concentration varies from 0.8 to 169 kBq m-3, with a geometric mean of 26 kBq m-3. For water samples, the results show radon concentrations within the range of 0.3 - 352.2 kBq m-3, with a geometric mean of 7.7 Bq L-1. A weak correlation between the three sets of values

  5. Indoor air radon dose assessment for elementary, middle and high schools at Ulju county in Korea

    International Nuclear Information System (INIS)

    Lee, Choong Wie; Kim, Hee Reyoung

    2016-01-01

    Ulsan is the largest industrial city and possesses the largest area among 7 metropolitan cities in Korea. Ulju county is one of the administrative districts of Ulsan, and covers over 70 % of Ulsan and is surrounded by mountain to the east and sea to the west, which has urban and rural area. Thus, there are many geological and industrial condition in its environment. Ministry of Environment (ME) of Korea is carrying out radon survey every 2 years, but this survey focuses on radon radioactivity of the houses and radon survey for schools isn't detailed. At schools, people with various age work and are educated for a specific time, therefore, it is needed to analyze the radon radioactivity concentration of indoor air to estimate the effect by the radon exposure. Indoor air radon radioactivity concentration and dose of 57 schools including elementary, middle and high schools in Ulju county were analyzed by using alpha track. It was understood that average radon concentrations of schools in Ulju county were being maintained below recommendation level although survey results of some schools showed 295 Bq/m 3 higher than regulation of Ministry of Environment for radon concentration, 148 Bq/m 3 . Indoor annual effective dose of 0.157 mSv by radon was found to be less than 7 % of the natural radiation exposure of 2.4 mSv when ICRP dose coefficient for adult male was applied. It was thought that further radon effect analysis for various ages including children was needed for more accurate dose assessment

  6. Radon measurements in air in waterworks and indoor swimming pools - a primary mapping project

    International Nuclear Information System (INIS)

    Marinko, J.; Mjoenes, L.; Soederman, A.-L.

    2004-01-01

    In 2001 the Swedish Work Environment Authority asked five regional offices around the country; Falun, Malmoe, Vaexjoe, Umeaa and Oerebro, to measure radon in air in workplaces where water was likely to enhance radon levels indoors. Track etch detectors were used and placed in workplaces according to the SSI measurement protocol for determining the annual average radon concentration in homes. Rooms that are frequently used by employees were measured. The detectors were exposed between 1 to 3 months. 225 detectors were used in the project and analysed at the same laboratory. The results showed that the radon concentration in waterworks often is high. Measurements were made in 60 waterworks. Levels exceeding 1000 Bq/m 3 were found in 49 of them and levels exceeding 4000 Bq/m 3 were found in 21 waterworks. The variation between waterworks may be a result of the radon concentration in the raw water, the amount of radon gas escaping to the air when water is treated, the air exchange rate in the building and where the detectors were deployed. Measurements were made in 28 indoor swimming baths. The maximum level was 290 Bq/m 3 , but most concentrations were between 30 to 70 Bq/m 3 . The conclusion is that high radon levels do not seem to be a problem in indoor swimming baths. Maybe this is due to good ventilation or the fact that water often has been treated for radon before it is used in swimming pools. The results from measurement in food industries such as breweries showed no extreme radon levels except for a fish farm where levels over 1000 Bq/m 3 were measured in the farming room and 790 Bq/m 3 in the office. The radon concentrations in laundries were relatively low, between 30 and 170 Bq/m 3

  7. The application of air pressure difference in reducing indoor radon concentration

    International Nuclear Information System (INIS)

    Leung, J.K.C.; Tso, M.Y.W.

    2000-01-01

    In densely populated tropical cities like Hong Kong, people usually live and work inside high-rise buildings. And because of the hot and humid climate, air conditioning systems are used throughout the year, particularly in commercial buildings. Previous territory-wide surveys have shown that over 10% of commercial buildings in Hong Kong have indoor radon concentrations above 200 Bq m -3 . Since the major source of indoor radon in high-rise buildings is the building materials, increasing ventilation and applying radon barriers on wall surfaces seem to be the only ways to reduce the indoor radon concentration. But it was noted that the ventilation rate the many commercial buildings are not efficient enough to remove the radon because of various reasons such as energy saving, lack of maintenance, etc. In this study, radon mitigation was achieved by reducing the rate of radon exhaled from the building materials. A special laboratory, which has the capability of simulating any meteorological conditions that could be faced by high-rise buildings in Hong Kong, was built. The reduction of radon exhalation rate by applying pressure difference and temperature difference across walls was studied in the laboratory. This paper summarizes the results and tactics for applying pressure difference in existing commercial buildings. A new technique of reducing radon exhalation rate in new buildings by depressurizing the interior of walls was also developed. Tunnels can be embedded in the concrete walls of new buildings during construction. By using simple vacuum pumps, radon exhalation rate from the walls can be reduced significantly by depressurizing the tunnels. The feasibility and applicability of the technique is presented in this paper. (author)

  8. Indoor air radon dose assessment for elementary, middle and high schools at Ulju county in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choong Wie; Kim, Hee Reyoung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Ulsan is the largest industrial city and possesses the largest area among 7 metropolitan cities in Korea. Ulju county is one of the administrative districts of Ulsan, and covers over 70 % of Ulsan and is surrounded by mountain to the east and sea to the west, which has urban and rural area. Thus, there are many geological and industrial condition in its environment. Ministry of Environment (ME) of Korea is carrying out radon survey every 2 years, but this survey focuses on radon radioactivity of the houses and radon survey for schools isn't detailed. At schools, people with various age work and are educated for a specific time, therefore, it is needed to analyze the radon radioactivity concentration of indoor air to estimate the effect by the radon exposure. Indoor air radon radioactivity concentration and dose of 57 schools including elementary, middle and high schools in Ulju county were analyzed by using alpha track. It was understood that average radon concentrations of schools in Ulju county were being maintained below recommendation level although survey results of some schools showed 295 Bq/m{sup 3} higher than regulation of Ministry of Environment for radon concentration, 148 Bq/m{sup 3}. Indoor annual effective dose of 0.157 mSv by radon was found to be less than 7 % of the natural radiation exposure of 2.4 mSv when ICRP dose coefficient for adult male was applied. It was thought that further radon effect analysis for various ages including children was needed for more accurate dose assessment.

  9. Prediction of indoor radon concentration based on residence location and construction

    International Nuclear Information System (INIS)

    Maekelaeinen, I.; Voutilainen, A.; Castren, O.

    1992-01-01

    We have constructed a model for assessing indoor radon concentrations in houses where measurements cannot be performed. It has been used in an epidemiological study and to determine the radon potential of new building sites. The model is based on data from about 10,000 buildings. Integrated radon measurements were made during the cold season in all the houses; their geographic coordinates were also known. The 2-mo measurement results were corrected to annual average concentrations. Construction data were collected from questionnaires completed by residents; geological data were determined from geological maps. Data were classified according to geographical, geological, and construction factors. In order to describe different radon production levels, the country was divided into four zones. We assumed that the factors were multiplicative, and a linear concentration-prediction model was used. The most significant factor in determining radon concentration was the geographical region, followed by soil type, year of construction, and type of foundation. The predicted indoor radon concentrations given by the model varied from 50 to 440 Bq m -3 . The lower figure represents a house with a basement, built in the 1950s on clay soil, in the region with the lowest radon concentration levels. The higher value represents a house with a concrete slab in contact with the ground, built in the 1980s, on gravel, in the region with the highest average radon concentration

  10. Study of indoor radon levels in some radioactive areas of Himachal Pradesh: an inter-comparison of active and passive techniques

    International Nuclear Information System (INIS)

    Bajwa, B.S.; Singh, S.; Sharma, N.; Virk, H.S.

    2006-01-01

    Full text of publication follows: Indoor radon levels measurements were carried using both the active and passive techniques in the dwellings of some villages, known to be located in the vicinity of uranium mineralized zones of Hamirpur district, Himachal Pradesh. Even in the passive technique using Solid State Nuclear Track Detectors (S.S.N.T.D.), both the bare-slide and twin chamber dosemeter cup modes were utilized. An attempt has also been made to assess the levels of the indoor radon in these dwellings and inhalation dose rates of the population living in these villages. The average value of radon concentration levels using the bare-slide mode varies from 109.0 to 741.5 Bq/m3 in these dwellings, where as the maximum radon level using the twin cup dosemeter technique was found to be 140.3 Bq/m3. As usual the radon concentrations were found to be varying with seasonal changes, building materials etc. The radon survey in the dwellings of these villages has also been carried out using the Alpha- Guard technique, which is based on the pulse ionization chamber. The indoor radon concentration levels measured using the active technique of Alpha Guard have been found to be quite different from those measured in these dwellings by the passive technique of S.S.N.T.D.; indicating the importance of the S.S.N.T.D. in the long-term integrated measurement of the indoor radon levels in the dwellings. (authors)

  11. Indoor radon and radon daughters survey at Campinas-Brazil using CR-39: First results

    International Nuclear Information System (INIS)

    Guedes, S.; Hadler, J.C.N.; Iunes, P.J.; Navia, L.M.S.; Neman, R.S.; Paulo, S.R.; Rodrigues, V.C.; Souza, W.F.; Tello, C.A.S.; Zuniga, A.

    1999-01-01

    The first results of a radon and radon daughters (RD) survey performed at Campinas-SP, Brazil, are presented. We employed a technique that, potentially, makes possible to measure the radon and RD activity in the air and to separate from this result the activity of radon, alone. In this preliminary paper only the former activity is studied

  12. Indoor radon and radon daughters survey at Campinas-Brazil using CR-39: First results

    CERN Document Server

    Guedes, S; Iunes, P J; Navia, L M S; Neman, R S; Paulo, S R; Rodrigues, V C; Souza, W F; Tello, C A S; Zúñiga, A G

    1999-01-01

    The first results of a radon and radon daughters (RD) survey performed at Campinas-SP, Brazil, are presented. We employed a technique that, potentially, makes possible to measure the radon and RD activity in the air and to separate from this result the activity of radon, alone. In this preliminary paper only the former activity is studied.

  13. Soil radium, soil gas radon and indoor radon empirical relationships to assist in post-closure impact assessment related to near-surface radioactive waste disposal.

    Science.gov (United States)

    Appleton, J D; Cave, M R; Miles, J C H; Sumerling, T J

    2011-03-01

    Least squares (LS), Theil's (TS) and weighted total least squares (WTLS) regression analysis methods are used to develop empirical relationships between radium in the ground, radon in soil and radon in dwellings to assist in the post-closure assessment of indoor radon related to near-surface radioactive waste disposal at the Low Level Waste Repository in England. The data sets used are (i) estimated ²²⁶Ra in the < 2 mm fraction of topsoils (eRa226) derived from equivalent uranium (eU) from airborne gamma spectrometry data, (ii) eRa226 derived from measurements of uranium in soil geochemical samples, (iii) soil gas radon and (iv) indoor radon data. For models comparing indoor radon and (i) eRa226 derived from airborne eU data and (ii) soil gas radon data, some of the geological groupings have significant slopes. For these groupings there is reasonable agreement in slope and intercept between the three regression analysis methods (LS, TS and WTLS). Relationships between radon in dwellings and radium in the ground or radon in soil differ depending on the characteristics of the underlying geological units, with more permeable units having steeper slopes and higher indoor radon concentrations for a given radium or soil gas radon concentration in the ground. The regression models comparing indoor radon with soil gas radon have intercepts close to 5 Bq m⁻³ whilst the intercepts for those comparing indoor radon with eRa226 from airborne eU vary from about 20 Bq m⁻³ for a moderately permeable geological unit to about 40 Bq m⁻³ for highly permeable limestone, implying unrealistically high contributions to indoor radon from sources other than the ground. An intercept value of 5 Bq m⁻³ is assumed as an appropriate mean value for the UK for sources of indoor radon other than radon from the ground, based on examination of UK data. Comparison with published data used to derive an average indoor radon: soil ²²⁶Ra ratio shows that whereas the published data are

  14. Indoor-atmospheric radon-related radioactivity affected by a change of ventilation strategy

    International Nuclear Information System (INIS)

    Kobayashi, Tuneo

    2006-01-01

    The present author has kept observation for concentrations of atmospheric radon, radon progeny and thoron progeny for several years at the campus of Fukushima Medical University. Accidentally, in the midst of an observation term, i.e., February 2005, the facility management group of the university changed a strategy for the manner of ventilation, probably because of a recession: tidy everyday ventilation of 7:30-24:00 into shortened weekday ventilation of 8:00-21:00 with weekend halts. This change of ventilation manner brought a clear alteration for the concentrations of radon-related natural radioactivity in indoor air. The present paper concerns an investigation of the effect of the ventilation strategy on the indoor-atmospheric radon-related radioactivity. (author)

  15. A contemporary method for monitoring indoor radon and environmental conditions at a remote test site

    International Nuclear Information System (INIS)

    Renken, K.J.; Coursin, S.

    1996-01-01

    A state-of-the-art method for automatically monitoring indoor radon and environmental conditions at a remote test site is described. A Wisconsin home that exhibited elevated radon levels has been installed with automated PC-data acquisition system (PC-DAS) that includes: a laptop PC, a data acquisition cardcage, a commercial data acquisition software program plus sensors to measure radon gas concentrations, differential pressures, indoor air quality and meteorological conditions. The isolated PC-DAS is connected to a PC in a university laboratory via a modem and a communications software package. Experimental data is monitored and saved by the remote PC in real time and then automatically downloaded to the lab computer at selected intervals. An example of the formatted field results is presented and analysed. This documentation of the set-up, the off-the-shelf computer hardware and software, and the procedures should assist investigations requiring flexible remote long-term radon and environmental monitoring. (Author)

  16. Concentration levels of radon in air, indoors and outdoors in houses of Mexico City

    International Nuclear Information System (INIS)

    Pena Garcia, P.

    1992-01-01

    Concentration levels of radon in air, indoors and outdoors have been obtained in houses from Mexico City, with the purpose of relating them with the local environment. Measurements were performed both outdoors and indoors in 60 unifamiliar houses. Track detectors, LR-115, Type II, were used in several detection arrangements during four recording periods with times of exposure of three months each, with the purpose of analyzing the fluctuations due to seasonal changes. Data were obtained about the construction materials were the detection systems were located in order to establish a correlation of radon levels with the climatic parameters and the construction materials. The results of radon concentrations both indoors or outdoors were lower than the international recommendations (148 Bq/m 3 ) (Author)

  17. Effect of indoor-generated airborne particles on radon progeny dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Trassierra, C. Vargas [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR (Italy); Stabile, L., E-mail: l.stabile@unicas.it [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR (Italy); Cardellini, F.; Morawska, L. [National Institute of Ionizing Radiation Metrology (INMRI-ENEA), Rome (Italy); Buonanno, G. [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR (Italy); International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane (Australia)

    2016-08-15

    Highlights: • Investigation of the interaction between particles and radon progeny dynamics. • Measurements of particles emitted by different indoor sources. • Tests performed in a controlled radon chamber. • Particle size strongly influences the radon progeny dynamics. • Particle surface area concentration is the key parameter of the radon-particle interaction. - Abstract: In order to investigate the interaction between radon progeny and particles, an experimental campaign was carried out in a radon chamber at the Italian National Institute of Ionizing Radiation Metrology, quantifying the amount of attached and unattached radon daughters present in air, as well as the equilibrium factor in the presence of particles generated through indoor sources. A fixed radon concentration was maintained, while particles were generated using incense sticks, mosquito coils and gas combustion. Aerosols were characterized in terms of particle concentrations and size distributions. Simultaneously, radon concentration and attached/unattached potential alpha energy concentration in the air were continuously monitored by two different devices, based on alpha spectroscopy techniques. The presence of particles was found to affect the attached fraction of radon decay products, in such a way that the particles acted as a sink for radionuclides. In terms of sources which emit large particles (e.g. incense, mosquito coils), which greatly increase particle surface area concentrations, the Equilibrium Factor was found to double with respect to the background level before particle generation sessions. On the contrary, the radon decay product dynamics were not influenced by gas combustion processes, mainly due to the small surface area of the particles emitted.

  18. Assessment of indoor radon doses received by the students in the Azad Kashmir schools (Pakistan)

    International Nuclear Information System (INIS)

    Rafique, M.; Rahman, S. U.; Rahman, S.; Matiullah; Shahzad, M. I.; Ahmed, N.; Iqbal, J.; Ahmed, B.; Ahmed, T.; Akhtar, N.

    2010-01-01

    Several epidemiological studies conducted on thousands of underground miners suggest that long-term exposure to high radon concentration can increase the risk of lung cancer. Keeping in view the importance of the subject, numerous studies throughout the world have been carried out to measure indoor radon concentration and its resulting doses at occupational and non-occupational sites. The purpose of the current study was to measure indoor radon concentration and its resulting doses received by the students of Azad Kashmir government schools. For this purpose, CR-39 radon detectors were installed in 80 carefully selected schools. The detectors were placed at a height of 3-5 ft. (depending upon average height of students in particular class) from the ground. After exposure of 90 d detectors were etched for 9 h in 6 M NaOH at 70 deg. C and the observed track densities were related to radon concentrations. The measured indoor radon concentration ranged from 22 ± 9 to 228 ± 3 Bq m -3 with a mean value of 78 ± 5 Bq m -3 . Based on the measured indoor radon data, the annual effective doses were found to vary from 0.55 ± 0.04 to 0.71 ± 0.03 mSv y -1 . The overall mean effective dose for the studied area was found to be 0.63 ± 0.04 mSv y -1 . Reported values for radon concentrations and corresponding doses are lower than ICRP recommended limits for workplaces. (authors)

  19. Model for the assessment of surface radionuclide 210 Pb contamination indoors due to presence of radon

    International Nuclear Information System (INIS)

    Mrdja, D.; Bikit, I.; Forkapic, S.

    2009-01-01

    The model is based on the fact that the change of indoor radon concentration, which periodically enters the room, affects only on radioactive decay and the inserted amount of radon in each impact, but not on its diffusion out, i.e. escape from the room. The aim of the model is to assess the surface contamination of the room by lead 210 Pb. (author) [sr

  20. Radon Activity measurements in Drinking Water and in Indoors of Dwellings of Dwellings, using RAD7

    International Nuclear Information System (INIS)

    Mehra, R.; Badhan, K.; Sonkawade, R.G.

    2011-01-01

    The purpose of this study is to investigate the radon levels of groundwater being used for drinking and indoor radon levels in the environs of villages/towns of Hoshiarpur district of Punjab, India, to determine the health hazards. Radon concentrations in the collected water samples were measured with RAD7 an electronic radon detector connected to a RAD- H 2 O accessory (Durridge Co., USA). In the setup, the RAD7 detector was used for measuring radon in water by connecting it with a bubbling kit which enables to degas radon from a water sample into the air in a closed loop. A sample of water was taken in a radon-tight reagent bottle of 250 ml capacity connected in a close circuit with a zinc sulphide coated detection chamber which acts as scintillator to detect alpha activity and a glass bulb containing calcium chloride to absorb the moisture. Air was then circulated in a closed circuit for a period of 5-10 min until the radon was uniformly mixed with the air and the resulting alpha activity was recorded and it directly gives the radon concentration. The measured radon concentration in drinking water ranges from 2.03 BqL -1 to 6.65 BqL -1 with an average value of 4.27 BqL -1 . The measured values of radon concentration in drinking water are well within the range (4 to 40 BqL -1 ) suggested for radon concentration in water for human consumption by the United Nations Scientific Committee on the Effects of Atomic Radiation. The measured values of indoor radon concentration in dwellings of the same area vary from 10 Bqm -3 to 28.2 Bqm -3 with an average value of 20.28 Bqm -3 . The measured values for drinking water and for indoor air for the study area suggest that the area is safe for residents and there is no significant threat to the population as per as radon concentration is concerned

  1. Indoor radon distribution of subway stations in a Korean major city

    International Nuclear Information System (INIS)

    Yoon, Seokwon; Chang, Byung-Uck; Kim, Yongjae; Byun, Jong-In; Yun, Ju-Yong

    2010-01-01

    The overall survey on indoor radon concentration was conducted at all subway stations in a major city, Daejeon in the central part of Korea. It was quarterly performed from September 2007 to August 2008. The annual arithmetic mean of indoor radon concentration of all the stations was 34.1 ± 14.7 Bq m -3 , and the range of values was from 9.4 to 98.2 Bq m -3 . The radon concentrations in groundwater (average 31.0 ± 0.8 Bq m -3 ) were not significantly high in most stations, but the concentration (177.9 ± 2.3 Bq L -1 ) of one station was over the level of 148 Bq L -1 in drinking water proposed by U.S. EPA. Based on indoor survey results, the approximate average of the annual effective dose by radon inhalation to the employees and passengers were 0.24 mSv y -1 , and 0.02 mSv y -1 , respectively. Although the effective dose based on the UNSCEAR report was potentially estimated, for more accurate assessment, the additional survey on the influence by indoor radon will be necessary.

  2. Indoor radon distribution of subway stations in a Korean major city

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Seokwon [Korea Institute of Nuclear Safety, Gwahak-ro 34, Yuseong-gu, 305-338 Daejeon (Korea, Republic of); Chang, Byung-Uck, E-mail: hafadai@kins.re.k [Korea Institute of Nuclear Safety, Gwahak-ro 34, Yuseong-gu, 305-338 Daejeon (Korea, Republic of); University of Science and Technology, Gwahak-ro 113, Yuseong-gu, 305-333 Daejeon (Korea, Republic of); Kim, Yongjae [Korea Institute of Nuclear Safety, Gwahak-ro 34, Yuseong-gu, 305-338 Daejeon (Korea, Republic of); Byun, Jong-In [University of Science and Technology, Gwahak-ro 113, Yuseong-gu, 305-333 Daejeon (Korea, Republic of); Yun, Ju-Yong [Korea Institute of Nuclear Safety, Gwahak-ro 34, Yuseong-gu, 305-338 Daejeon (Korea, Republic of); University of Science and Technology, Gwahak-ro 113, Yuseong-gu, 305-333 Daejeon (Korea, Republic of)

    2010-04-15

    The overall survey on indoor radon concentration was conducted at all subway stations in a major city, Daejeon in the central part of Korea. It was quarterly performed from September 2007 to August 2008. The annual arithmetic mean of indoor radon concentration of all the stations was 34.1 +- 14.7 Bq m{sup -3}, and the range of values was from 9.4 to 98.2 Bq m{sup -3}. The radon concentrations in groundwater (average 31.0 +- 0.8 Bq m{sup -3}) were not significantly high in most stations, but the concentration (177.9 +- 2.3 Bq L{sup -1}) of one station was over the level of 148 Bq L{sup -1} in drinking water proposed by U.S. EPA. Based on indoor survey results, the approximate average of the annual effective dose by radon inhalation to the employees and passengers were 0.24 mSv y{sup -1}, and 0.02 mSv y{sup -1}, respectively. Although the effective dose based on the UNSCEAR report was potentially estimated, for more accurate assessment, the additional survey on the influence by indoor radon will be necessary.

  3. A comparative study of indoor radon concentrations between dwellings and schools

    International Nuclear Information System (INIS)

    Kapdan, E.; Altinsoy, N.

    2012-01-01

    The aim of this study is to determine the relationship of radon concentrations between dwellings and the schools located in the same regions and to obtain related indoor average radon concentration dwelling–school correction factor for similar locations. The research has been carried out by determining indoor radon concentrations at schools and dwellings located at the same districts in the selected two separate research fields called The Former Adapazari region and The New Adapazari region in the city of Adapazari using a total of 81 Cr-39 passive radon detectors for 75 days. The average radon concentrations have been determined for the dwellings and the schools in 15 districts of the Former Adapazari region as 59.9 Bq m −3 and 57.1 Bq m −3 , respectively. The results in 4 districts of the New Adapazari region were 63.5 Bq m −3 for the dwellings and 61.0 Bq m −3 for the schools. Moreover, the annual effective doses were calculated as 1.33 mSv/y and 1.41 mSv/y for the dwellings of Former Adapazari and New Adapazari, respectively. It was seen that the doses received in the dwellings are about four times the doses received in the schools. The indoor radon concentration dwelling–school correction factor was found to be 1.04±0.01 for the research area.

  4. Measurements of environmental radon - 222 concentrations in indoors and outdoors in Egypt

    International Nuclear Information System (INIS)

    Kenawy, M.A.; Morsey, A.A.; Kotb, M.A.; Osman, A.; El-Haag, A.

    1990-01-01

    The major contribution to population exposure from natural radiation arises from the inhalation of the decay products of radon. Substantial surveys are being conducted by several investigators to estimate the indoor and outdoor exposure nationally and to discover regional variations. In this work, radon concentration in the indoors and outdoor air was determined using the can technique and employing CR-39 solid state nuclear track detector for lengthy exposures. The range of radon - 222 activity in this survey was 54 -299 PCi.m -3 in Cairo, 22 - 171 PCi.m -3 in Alexandria and 89 - 370 PCi.m -3 in Asiut. Measurements carried out in Aswan and Sinai ranged between 98 - 411 PCi.m -3 . Values of indoors and outdoors radon concentrations were found to vary with time of day, geographic location, season and height above ground. Further work is going on to study the different parameters affecting the levels of the environmental radon. The national survey and associated studies is expected to yield data that may correlate radon activity with some respiratory diseases, particularly lung cancer. (author). 7 refs, 5 figs

  5. Determination of radon in indoor air in Quebec by liquid scintillation counting in ortho-xylene

    Energy Technology Data Exchange (ETDEWEB)

    Chah, B; Zikovsky, L; Champagne, P [Ecole Polytechnique, Montreal, PQ (Canada)

    1992-01-01

    A new method for the determination of radon in air has been developed. it is based on low temperature absorption of radon in ortho-xylene followed by liquid scintillation counting. The method is reasonably fast and sensitive enough to analyse air without precipitation. The detection limit at the 95% confidence level for a 20 l air sample and 1 h counting time is 2 mBql{sup -1}. Radon concentrations measured in indoor air in Quebec varied from 7 to 162 mBql{sup -1}. (Author).

  6. Indoor radon in rural dwellings of the South-Pannonian region

    International Nuclear Information System (INIS)

    Forkapic, S.; Bikit, I.; Slivka, J.; Conkic, L.; Veskovic, M.; Todorovic, N.; Varga, E.; Mrdda, D.; Hulber, E.

    2007-01-01

    The results of indoor radon survey in the South-Pannonian Province Vojvodina (Serbia and Montenegro) are presented. The sampling strategy was oriented towards suburban and urban regions in the Province. For the dwellings typical for such regions the geometric mean annual radon activity concentration of 76.1 Bq m -3 is measured (1000 measurements). This result leads to the annual dose estimate of 4.3 mSv y -1 , which is above the recommended action limit of ICRP. For urban dwellings in Novi Sad (the Province capital), the annual mean value of 54 Bq m -3 (220 measurements) is obtained. By comparison of these two results it is concluded that radon surveys based on measurements in urban environment may seriously underestimate the radon-related health risk. The elevated radon levels could not be explained by elevated uranium levels of surface soil. (authors)

  7. Radiation hazard due to radon in indoor air

    International Nuclear Information System (INIS)

    Keller, G.

    1987-01-01

    Inhalation of the noble gas radon and its short-lived daughter products present in normal room air causes a considerable increase of the mean natural radiation exposure of the population. As there is an uncontested relationship between lung dose and cancer risk, measures should be taken to guarantee that the radon concentrations in room air do at least not reach maxima. The most simple measure is frequent, brief, good ventilation. Very high radon concentrations are measured in houses where radon pentrates direct from the soil into buildings. For this case, radon-tight insulation of the building from the soil is recommended. A forced ventilation system with heat recovery, installed by experts, has shown to be very successful in radon reduction in 'problematic' houses. (orig.) [de

  8. A survey of indoor radon concentrations inSweden

    International Nuclear Information System (INIS)

    Buren, A.; Mjoenes, L.; Wennberg, P.

    1982-01-01

    The average value for family houses is calculated to be 121 Bq/m 3 , and 87 Bq/m 3 for flats in apartment houses. Demographic statistics render an average value per person of 105 Bq/m 3 . Radon has been measured in small houses built 1978 to 1980 and their average value was found to be 59 Bq/m 3 . The values are presented for radon which permits calculating radon daughters. (GB)

  9. Indoor radon related to uranium in granitoids of the Central Bohemian plutonic complex

    International Nuclear Information System (INIS)

    Barnet, I.; Fojtikova, I.

    2004-01-01

    The study is based on the indoor radon data (one year measurements, Kodak LR 115 track etch detectors), vectorized geological maps 1:50000, vectorized coordinates of dwellings and uranium data for granitoid types of the Central Bohemian Plutonic Complex (CBPC). Using ArcGis 8.2 programme, the position of 16145 dwellings was linked to a geological database covering the CBPC (approx. 3200 km 2 ), and the type of underlying rock type was specified for each house. The resulting databases enabled us to calculate the mean EEC indoor Rn data for particular granitoid types and to study the relationship between the indoor Rn and the U concentrations. The petrogenetically variable CBPC was emplaced during Variscan orogenesis (330-350 Ma) and is among the most radioactive rock types within the Bohemian Massif. A long-term process of CBPC genesis resulted in more than 20 granitoid types, differing by their petrogenetic characteristics as well as mineralogical and chemical composition, including uranium concentration. The relation between the mean indoor radon values and uranium concentrations in particular rock types was examined. A positive regression between indoor Rn and uranium as the source of Rn soil gas clearly demonstrates how regional geology influences the indoor radon activity concentration in dwellings. The highest indoor Rn concentrations were observed in the Sedlcany granodiorite and Certovo bremeno syenite, where also the highest gamma dose rates (150-210 nGy.h -1 ) within all granitoid types in the Czech Republic were observed. The two rock types differ from other granitoids by a relatively high zircon concentration, which is the main source of U and subsequently of soil gas Rn being released from the bedrock. The lower indoor Rn values of Certovo bremeno syenite which do not correspond with the high U concentrations can be explained by a relatively low permeability of its clayey weathering crust. This feature was also observed for soil gas radon concentration

  10. Indoor radon concentration and its possible dependence on ventilation rate and flooring type

    International Nuclear Information System (INIS)

    Ashok, G. V.; Nagaiah, N.; Shiva Prasad, N. G.

    2012-01-01

    The results of radon concentration measurements carried out in dwellings with natural ventilation for 1 y in Bangalore are reported. Measurements, covering three sessions of the day (morning, afternoon, night) were performed two times in a month for 1 y at a fixed place of each dwelling at a height of 1 m above the ground surface in selected dwellings. The low-level radon detection system (LLRDS), an active method, was used for the estimation of radon concentration. The measurements were aimed to understand the diurnal variation and the effect of ventilation rate and flooring type on indoor radon concentration. The geometric mean (±geometric standard deviation) of indoor radon concentration from about 500 measurements carried out in 20 dwellings is found to be 25.4 ±1.54 Bq m -3 . The morning, afternoon and night averages were found to be 42.6 ±2.05, 15.3 ±2.18 and 28.5 ±2.2 Bq m -3 , respectively. The approximate natural ventilation rates of the dwellings were calculated using the PHPAIDA-the on-line natural ventilation, mixed mode and air infiltration rate calculation algorithm and their effects on indoor radon concentrations were studied. The inhalation dose and the lung cancer risk due to indoor radon exposure were found to be 0.66 mSv y -1 and 11.9 per 10 6 persons, respectively. The gamma exposure rate was also measured in all the dwellings and its correlation with the inhalation dose rate was studied. (authors)

  11. Assessment of radiological effect of the indoor radon and its progeny

    International Nuclear Information System (INIS)

    Ramachandran, T.V.; Subbaramu, M.C.; Mishra, U.C.

    1988-01-01

    Of all the sources of environmental radiation, radon and its progeny are considered to be responsible for a significant dose to man, especially when they are in enclosed areas like underground mines, caves, cellars, poorly designed and badly ventilated houses. Linear extrapolation from the dose response value of the uranium miners exposed to higher levels of radon and its daughters also suggest that the majority of the lung cancer incidence could be due to radon. Higher indoor radon levels and shift in the disequilibrium of the progeny concentration in dwellings caused by the lower ventilation rate leads to severalfold increase of lung cancer incidence from radon. The large risk which is anticipated calls for further studies in this field and may also lead to the conclusion that the slight, but much feared, burden due to man-made radioactivity could be more than compensated by controlling critical segments of the environmental radioactivity. In this report the study of risk due to breathing of indoor radon is briefly reviewed. Dose equivalent to the exposed tissue of the respiratory tract of the people living in dwellings are evaluated. Like most of the risk assessment of low level radiation, the effort to quantify the effect of radon in terms of death rate dose due to lung cancer attributable to radon levels indoors, has to rely on the extrapolation from the effects of the higher exposure rate. In situations where soil or building materials contain elevated radium levels, living in energy efficient houses may be as dangerous as heavy smoking. (author). 8 tabs., 5 figs., 41 refs

  12. Limitation schemes to decrease the radon daughters in indoor air

    International Nuclear Information System (INIS)

    Swedjemark, G.A.

    1986-01-01

    The limitation schemes to decrease the radon daughter concentrations in Swedish homes are described. The application of the Swedish provisional limitation system in use since 1980 is also reported. As a background the radon source and the international and national recommedations in other countries are reviewed. (author)

  13. The role of the ventilation industry in addressing indoor radon

    International Nuclear Information System (INIS)

    Wellford, B.W.

    1988-01-01

    It is generally acknowledged that radon mitigation can only be accomplished on a national scale through a cooperative effort of government, industry and an informed public. The Environmental Protection Agency has developed, demonstrated and published acceptable procedures for testing and preventing the entry or radon into occupancies, as well as procedures for removal when it is not possible or economically viable to prevent radon from entering these occupancies. Various states have instituted programs for industry implementation of EPA procedures and public education programs are now underway. Industry effort will be required to mitigate existing housing stock, to insure new radon resistant housing and, equally important, to provide for radon monitoring and servicing of mitigation measures for centuries to come. What the nature of that industry can and should be and how government agencies can encourage the development of such industry is the subject of this paper

  14. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres. Progress report, May 1, 1993--January 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hopke, P.K.

    1993-01-01

    Progress is reported on the chemical and physical behavior of the {sup 218}Po atom immediately following its formation by the alpha decay of radon. Two areas of radon progeny behavior are being pursued; laboratory studies under controlled conditions to better understand the fundamental physical and chemical processes that affect the progeny`s atmospheric behavior and studies in actual indoor environments to develop a better assessment of the exposure of the occupants of that space to the size and concentration of the indoor radioactive aerosol. The specific tasks addressed were to determine the formation rates of {center_dot}OH radicals formed by the radiolysis of air following radon decay, to examine the formation of particles by the radiolytic oxidation of substances like SO{sub 2}, ethylene, and H{sub 2}S to lower vapor pressure compounds and determine the role of gas phase additives such as H{sub 2}O and NH{sub 3} in determining the particle size, to measure the rate of ion-induced nucleation using a thermal diffusion cloud chamber, and to measure the neutralization rate of {sup 218}PoO{sub x}{sup +} in O{sub 2} at low radon concentrations. Initial measurements were conducted of the activity size distributions in actual homes with occupants present so that the variability of the indoor activity size distributions can be assessed with respect to indoor aerosol sources and general lifestyle variations of the occupants. A prospective study of the utility of measurement of deposited {sup 210}Pb embedded in glass surfaces as a measure of the long-term, integrated exposure of the population to radon are described. Methodology was developed to determine the hygroscopicity of the indoor aerosol so that the changes in deposition efficiency of the radioactive indoor aerosol with hygroscopic growth in the respiratory tract can be assessed.

  15. Evaluation of radon occurrence in groundwater from 16 geologic units in Pennsylvania, 1986–2015, with application to potential radon exposure from groundwater and indoor air

    Science.gov (United States)

    Gross, Eliza L.

    2017-05-11

    Results from 1,041 groundwater samples collected during 1986‒2015 from 16 geologic units in Pennsylvania, associated with 25 or more groundwater samples with concentrations of radon-222, were evaluated in an effort to identify variations in radon-222 activities or concentrations and to classify potential radon-222 exposure from groundwater and indoor air. Radon-222 is hereafter referred to as “radon.” Radon concentrations in groundwater greater than or equal to the proposed U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) for public-water supply systems of 300 picocuries per liter (pCi/L) were present in about 87 percent of the water samples, whereas concentrations greater than or equal to the proposed alternative MCL (AMCL) for public water-supply systems of 4,000 pCi/L were present in 14 percent. The highest radon concentrations were measured in groundwater from the schists, gneisses, and quartzites of the Piedmont Physiographic Province.In this study, conducted by the U.S. Geological Survey in cooperation with the Pennsylvania Department of Health and the Pennsylvania Department of Environmental Protection, groundwater samples were aggregated among 16 geologic units in Pennsylvania to identify units with high median radon concentrations in groundwater. Graphical plots and statistical tests were used to determine variations in radon concentrations in groundwater and indoor air. Median radon concentrations in groundwater samples and median radon concentrations in indoor air samples within the 16 geologic units were classified according to proposed and recommended regulatory limits to explore potential radon exposure from groundwater and indoor air. All of the geologic units, except for the Allegheny (Pa) and Glenshaw (Pcg) Formations in the Appalachian Plateaus Physiographic Province, had median radon concentrations greater than the proposed EPA MCL of 300 pCi/L, and the Peters Creek Schist (Xpc), which is in the Piedmont

  16. Models for retrospective quantification of indoor radon exposure in case-control studies

    International Nuclear Information System (INIS)

    Gerken, M.; Kreienbrock, L.; Wellmann, J.; Kreuzer, M.; Wichmann, H.E.

    2000-01-01

    In epidemiologic studies on lung cancer risk due to indoor radon the quantification of individual radon exposure over a long time period is one of the main issues. Therefore, radon measurements in one or more dwellings, which in total have been inhabited by the participants for a sufficient time-period, are necessary as well as consideration of changes of building characteristics and ventilation habits, which influence radon concentration. Given data on 1-y alpha-track measurements and personal information from 6,000 participants of case-control studies in West and East Germany, and improved method is developed to assess individual radon exposure histories. Times spent in different rooms of the dwelling, which are known from a personal questionnaire, are taken into account. The time spent outside the house varies substantially among the participants. Therefore, assuming a substantially lower radon exposure outside the dwelling, the residence time constitutes an important aspect of total radon exposure. By means of an analysis of variance, important determinants of indoor radon are identified, namely constant conditions such as type of house, type of construction, year of construction, floor and type of basement, and changeable conditions such as heating system, window insulation, and airing habits. A correction of measurements in former dwellings by factors derived from the analysis is applied if current living conditions differ from those of the participants at the time when they were living in the particular dwellings. In rare cases the adjustment for changes leads to a correction of the measurements with a factor of about 1.4, but a reduction of 5% on average only. Exposure assessment can be improved by considering time at home and changes of building and ventilation conditions that affect radon concentration. The major concern that changes in ventilation habits and building conditions lead to substantial errors in exposure assessment cannot be confirmed in the

  17. Indoor radon progeny aerosol size measurements in urban, suburban, and rural regions

    International Nuclear Information System (INIS)

    Tu, K.W.; Knutson, E.O.; George, A.C.

    1991-01-01

    By using direct and indirect methods, the authors conducted size distribution measurements of radon progeny particles in a variety of indoor environments in urban, suburban, and rural areas. The radon progeny particle size distribution owing to indoor activities has two definable source categories: (1) gas combustion from stoves and kerosene heaters - particles were found to be smaller than 0.1 μm in diameter, mostly in the range 0.02-0.08 μm; and (2) cigarette smoking and food frying - particles were found to be larger, in the size range 0.1-0.2 μm. The radon progeny particle size distribution, without significant indoor activities, such as cooking, was found to be larger in rural areas than in urban or suburban areas. The modal diameters of the size spectra in the rural areas were two to three times larger than those in urban or suburban areas, around 0.3-0.4 bs. 0.1-0.2 μm. Results obtained by applying the attachment theory to the measured number-weighted size spectra from an electrical aerosol size analyzer support this finding. These results, if confirmed by more extensive studies, will be useful for the assessment of the risk from the inhalation of radon progeny in various indoor environments

  18. Assessment of Indoor Radon (222Rn) Concentrations in the Vicinity of

    African Journals Online (AJOL)

    MLAY

    ABSTRACT. This study aimed to assess indoor radon concentrations in the vicinity of the Manyoni Uranium ... risk of lung cancer proportionally to the ... deposit, power plant, industrial radiation, etc. ... in foundations, walls, hollow concrete .... (AlphaGUARD User Manual 2007). ... used as control are presented in Table 4. The.

  19. Correlation between indoor radon and soil gas availability: Results of field studies

    International Nuclear Information System (INIS)

    Kothari, B.K.; Kunz, C.; Lilley, W.

    1990-01-01

    To correlate indoor radon concentrations with soil gas, the authors have carried out a field survey of surficial material in selected regions of New York State. The survey consisted of measurements of gamma radiation, Ra-226, Rn-222 and the permeability for gas flow in surficial material. Based on the data, three areas with a potential for above average indoor radon concentrations have been identified: (1) a black shale region in Onondaga County; (2) a granitic region in Orange County; and (3) a black shale region in Erie County. For an area with potential for below-average indoor radon concentrations, sandy deposits on Long Island with an average concentration of 0.7 pCi Ra-226/g and 160 pCi Rn-222/L at 2-feet depth, have been selected. Fifteen homes from each of these four areas are under test for indoor radon. Measurements of air infiltration rates and soil gas availability parameters are planned for all 60 homes

  20. Regulatory control of natural ionizing sources in Lithuania: Experience based on indoor radon monitoring

    International Nuclear Information System (INIS)

    Mastauskas, A.; Morkunas, G.

    1997-01-01

    The situation in legislation of protection against risks from natural sources of ionizing radiation in Lithuania is described. The requirements of new standards came into conflict with the real situation which has not been evaluated before implementation of these standards. On the basis of recommendations of ICRP Publication 60 and results of indoor radon survey new action levels are being established. (author)

  1. BEIR VI report. Public summary: the health effects of exposure to indoor radon

    International Nuclear Information System (INIS)

    1998-01-01

    For centuries it has been known that some underground miners suffered from higher rates of lung cancer than the general population. In recent decades, a growing body of evidence has casually linked their lung cancers to exposure to high levels of radon and also to cigarette smoking. The connection between radon and lung cancer in miners has raised concern that radon in homes might be causing lung cancer in the general population, although the radon levels in most homes are much lower than in most mines. The National Research Council study, which has been carried out by the sixth Committee on Biological Effects of Ionizing Radiations (BEIR VI), has used the most recent information available to estimate the risks posed by exposure to radon in homes. The most direct way to assess the risks posed by radon in homes is to measure radon exposures among people who have lung cancer and compare them with exposures among people who have not developed lung cancer. Several such studies have been completed, and several are under way. The studies have not produced a definitive answer, primarily because the risk is likely to be very small at the low exposure encountered from most homes and because it is difficult to estimate radon exposures that people have received over their lifetimes. In addition, it is clear that far more lung cancers are caused by smoking that are caused by radon. The risk of lung cancer caused by smoking is much higher than the risk of lung cancer caused by indoor radon. Most of the radon-related deaths among smokers would not have occurred if the victims had not smoked. Furthermore, there is evidence for a synergistic interaction between smoking and radon. In other words, the number of cancers induced in ever-smokers by radon is greater than one would expect from the additive effects of smoking along and radon alone. Nevertheless, the estimated 15400 or 21800 deaths attributed to radon in combination with cigarette-smoking and radon alone in never

  2. Radon gas. A review with emphasis on site investigations and measurements of soil gas and indoor house levels

    International Nuclear Information System (INIS)

    Mitchell, Seamus.

    1992-09-01

    A review of radon gas, with particular reference to its source and transport through soils and into buildings is examined. The principal parameters affecting the movement of radon has been discussed. The levels of radon gas in soils and in dwelling houses has been examined. Radon levels in the soil gas were highest in mineral soils with pear soils giving low readings but there was no significant differences between the results. Houses situated over granite and limestone bedrock gave similar results for indoor radon concentrations, with no significant differences being recorded. Results were expected to be much higher in houses over granite areas, in view of the higher uranium series activity in granites. It is concluded that high radon gas levels in soils under and in he vicinity of houses is the probable explanation for the indoor radon levels found. The influence of the underlying bedrock is not the most important parameter as was surmised before the study. (author)

  3. The ORNL Indoor Air Quality Study: Re-cap, Context, and Assessment on Radon

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, Bruce Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rose, Erin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ternes, Mark P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    As part of the retrospective evaluation of the U.S. Department of Energy s low-income Weatherization Assistance Program that was led by Oak Ridge National Laboratory (ORNL), an assessment of the impacts of weatherization on indoor air quality (IAQ) was conducted. This assessment included nearly 500 treatment and control homes across the country. Homes were monitored for carbon monoxide, radon, formaldehyde, temperature and humidity pre- and post-weatherization. This report focuses on the topic of radon and addresses issues not thoroughly discussed in the original IAQ report. The size, scope and rigor of the radon component of the IAQ study are compared to previous studies that assessed the impacts of weatherization on indoor radon levels. It is found that the ORNL study is by far the most extensive study conducted to date, though the ORNL results are consistent with the findings of the other studies. However, the study does have limitations related to its reliance on short-term measurements of radon and inability to attribute changes in radon levels in homes post-weatherization to specific weatherization measures individually or in combination.

  4. Indoor radon in the United States and Canada-1950-1984

    International Nuclear Information System (INIS)

    Schmalz, R.F.

    1990-01-01

    Beginning in about 1950, and continuing through the present day, a series of discoveries showed that the population at risk was very much larger, and that indoor radon in his own house was probably the principal source of the average citizen's exposure to ionizing radiation. Today, the National Research Council estimates that exposure to naturally occurring radon may be responsible for as many as 22,000 lung cancer deaths among non-smokers annually in the United States. The discoveries which led to this dramatic change of view can be divided into two broad categories: first, between 1950 and 1984, a number of investigations revealed that some segments of the non-mining population were exposed to excessive concentration of radon released from certain building materials and as a result of unwise construction practices. Later, mainly since 1984, it was discovered that a vastly larger population, perhaps 25 to 50 million persons in the United States, are exposed regularly to unsafe levels of naturally-occurring radon in their homes and work places. These discoveries were widely discussed in the media, and stimulated public concern culminating in the enactment of the Indoor Radon Abatement Act (PL 100-551). It is the purpose of this paper to review, briefly, the discoveries of the period between 1950 and 1984, in which radon exposure was found to result from a variety of human errors, particularly in housing construction in the United States and Canada

  5. Community-Based Investigation of Radon and Indoor Air Quality in Northeast Denver Neighborhoods

    Science.gov (United States)

    Pfotenhauer, D.; Iwasaki, P. G.; Ware, G. E.; Collier, A.; Hannigan, M.

    2017-12-01

    In 2015, Taking Neighborhood Health to Heart (TNH2H), a community-based organization based in Northeast Denver, and researchers from the University of Colorado, Boulder jointly piloted a project to investigate indoor air quality within Denver communities. This pilot study was carried out across 2015-2016 and found higher than actionable-levels for radon across a majority of its participants. These results inspired a continued collaboration between the community group and academic researchers from CU Boulder. The partnership went on to conduct a similar project this last year in which the team again employed a community-based participatory research (CBPR) framework to investigate indoor air pollutants across a broader geographical footprint in Denver's Northeast Neighborhoods. The collaboration sampled 30 participant houses across 5 neighborhoods for radon and volatile organic compounds (VOCs). Although VOC levels were found to be well under thresholds for concern, for the second year of this investigation, radon levels were found on average to be significantly above the EPA's threshold for hazardous levels. Additionally, in collecting survey data on the participants' house characteristics, certain identifiable trends emerged that signal which house types have greater risk of radon intrusion. Having found in two consecutive studies that a majority of homes in these neighborhoods are burdened with dangerous levels of radon, the partnership is now moving towards developing educational and political actions to address the results from these projects and disseminate the information regarding radon levels and threats to these neighborhood communities.

  6. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Hopke, P.K.

    1992-07-01

    This report covers the second year of the 28 month grant current grant to Clarkson University to study the chemical and physical behavior of the polonium 218 atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and it dose to the cells in the respiratory tract are to be fully assessed. Two areas of radon progeny behavior are being pursued; laboratory studies under controlled conditions to better understand the fundamental physical and chemical process that affect the progeny's atmospheric behavior and studies in actual indoor environments to develop a better assessment of the exposure of the occupants of that space to the size and concentration of the indoor radioactive aerosol. This report describes the progress toward achieving these objectives.

  7. Nationwide survey of radon levels in indoor workplaces in Mexico using Nuclear Track Methodology

    International Nuclear Information System (INIS)

    Espinosa, G.; Golzarri, J.I.; Angeles, A.; Griffith, R.V.

    2009-01-01

    This report presents the preliminary results of an indoor workplace radon survey conducted during 2006-2007. Monitoring was carried out in 24 of the 32 federal entities of Mexico, incorporating 26 cities and 288 locations. The area monitored was divided into 8 regions for the purposes of the study: Chihuahua (a state with uranium mines), North-Central, South-Central, Southeast, South, Northeast, Northwest, and West. These regions differ in terms of geographic and geological characteristics, climate, altitude, and building materials and architectonic styles. Nuclear Track Methodology (NTM) was employed for the survey, using a passive closed-end cup device with Poly Allyl Diglycol Carbonate (PADC), known by its trade name CR-39 (Lantrack), as detector material. Well-established protocols for making continuous indoor radon measurements were followed, including one-step chemical etching in a 6.25 M KOH solution at 60 ± 1 deg. C with an etching time of 18 h. The track densities were determined with an automatic digital system at the Instituto de Fisica de la Universidad Nacional Autonoma de Mexico (IFUNAM) (Physics Institute of the National Autonomous University of Mexico), and calibrated in facilities at the Oak Ridge National Laboratory (ORNL). The importance of this survey lies in the fact that it represents the first time a nationwide survey of radon levels in indoor workplaces has been carried out in Mexico. Mean indoor radon levels from continuous measurements taken during and after working hours ranged from 13 Bq m -3 (the lower limit of detection) to 196 Bq m -3 . Analogous official controls or regulations for radon levels in indoor workplaces do not exist in Mexico. The survey described here contributes to knowledge of the natural radiological environment in workplaces, and will aid the relevant authorities in establishing appropriate regulations. The survey was made possible by the efforts of both a private institutions and the Dosimeter Application Project

  8. Cleaners in reducing the hazards of indoor radon decay products

    International Nuclear Information System (INIS)

    Montassier, N.; Hopke, P.K.; Shi, Y.; Wasiolek, P.; McCallum, B.

    1992-01-01

    The objective of this study was to evaluate the influence of three types of air cleaners on the concentration and size distribution of radon progeny in a normally occupied house. Using an automated, semi-continuous, graded-screen array system and a radon monitor, the activity size distribution and radon concentration was measured and the exposure of the occupants of the home to radon could be assessed. The dose model developed as part of the recently released U.S. National Academy of Sciences report was used to related the exposure to deposited dose in the tissue of the bronchial epithelium. Thus, the effectiveness of the air cleaners in reducing both exposure and dose were evaluated. (author)

  9. Evaluation of indoor aerosol control devices and their effects on radon progeny concentrations

    International Nuclear Information System (INIS)

    Sextro, R.G.; Offerman, F.J.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.; Yater, J.

    1984-01-01

    Eleven portable air cleaing devices have been evaluated for control of indoor concentrations of respirable particles, and their concomitant effects on radon progeny concentrations have been investigated. Of the devices we examined the electrostatic precipitators and extended surface filters had significant particle removal rates, while the particle removal rates for several small panel-filters, an ion-generator, and a pair of mixing fans were found to be negligible. The evaluation of radon progeny control produced similar results; the air cleaners which were effective in removing particles were also effective in reducing radon progeny concentrations. Futhermore, at the low particle concentrations, plateout of the unattached radon progeny was found to be a significant removal mechanism. The overall removal rates due to deposition of attached and unattached progeny have been estimated from these data, and the equilibrium factors for total and unattached progeny concentrations have been calculated as a function of particle concentration. (Author)

  10. Low air exchange rate causes high indoor radon concentration in energy-efficient buildings

    International Nuclear Information System (INIS)

    Vasilyev, A.V.; Yarmoshenko, I.V.; Zhukovsky, M.V.

    2015-01-01

    Since 1995, requirements on energy-efficient building construction were established in Russian Building Codes. In the course of time, utilisation of such technologies became prevailing, especially in multi-storey building construction. According to the results of radon survey in buildings constructed meeting new requirements on energy efficiency, radon concentration exceeds the average level in early-constructed buildings. Preponderance of the diffusion mechanism of radon entry in modern multi-storey buildings has been experimentally established. The experimental technique of the assessment of ventilation rate in dwellings under real conditions was developed. Based on estimates of average ventilation rate, it was approved that measures to increase energy efficiency lead to reduction in ventilation rate and accumulation of higher radon concentrations indoors. Obtained ventilation rate values have to be considered as extremely low. (authors)

  11. Evaluation of indoor aerosol control devices and their effects on radon progeny concentrations

    International Nuclear Information System (INIS)

    Sextro, R.G.; Offermann, F.J.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.L.; Yater, J.

    1984-02-01

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles, and their concomitant effects on radon progeny concentrations have been investigated. Of the devices we examined the electrostatic precipitators and extended surface filters had significant particle removal rates, while the particle removal rates for several small panel-filters, an ion-generator, and a pair of mixing fans were found to be negligible. The evaluation of radon progeny control produced similar results; the air cleaners which were effective in removing particles were also effective in reducing radon progeny concentrations. Furthermore, at the low particle concentrations, plateout of the unattached radon progeny was found to be a significant removal mechanism. The overall removal rates due to deposition of attached and unattached progeny have been estimated from these data, and the equilibrium factors for total and unattached progeny concentrations have been calculated as a function of particle concentration. 7 references, 2 figures

  12. Low air exchange rate causes high indoor radon concentration in energy-efficient buildings.

    Science.gov (United States)

    Vasilyev, A V; Yarmoshenko, I V; Zhukovsky, M V

    2015-06-01

    Since 1995, requirements on energy-efficient building construction were established in Russian Building Codes. In the course of time, utilisation of such technologies became prevailing, especially in multi-storey building construction. According to the results of radon survey in buildings constructed meeting new requirements on energy efficiency, radon concentration exceeds the average level in early-constructed buildings. Preponderance of the diffusion mechanism of radon entry in modern multi-storey buildings has been experimentally established. The experimental technique of the assessment of ventilation rate in dwellings under real conditions was developed. Based on estimates of average ventilation rate, it was approved that measures to increase energy efficiency lead to reduction in ventilation rate and accumulation of higher radon concentrations indoors. Obtained ventilation rate values have to be considered as extremely low. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Influence of ventilation strategies on indoor radon concentrations based on a semiempirical model for Florida-style houses

    International Nuclear Information System (INIS)

    Hintenlang, D.E.; Al-Ahmady, K.K.

    1994-01-01

    Measurements in a full-scale experimental facility are used to benchmark a semiempirical model for predicting indoor radon concentrations for Florida-style houses built using slab-on-grade construction. The model is developed to provide time-averaged indoor radon concentrations from quantitative relationships between the time-dependent radon entry and elimination mechanisms that have been demonstrated to be important for this style of residential construction. The model successfully predicts indoor radon concentrations in the research structure for several pressure and ventilation conditions. Parametric studies using the model illustrate how different ventilation strategies affect indoor radon concentrations. It is demonstrated that increasing house ventilation rates by increasing the effective leakage area of the house shell does not reduce indoor radon concentrations as effectively as increasing house ventilation rates by controlled duct ventilation associated with the heating, ventilating, and air conditioning system. The latter strategy provides the potential to minimize indoor radon concentrations while providing positive control over the quality of infiltration air. 9 refs., 5 figs

  14. Health effects and radiation dose from exposure to radon indoors

    International Nuclear Information System (INIS)

    Swedjemark, G.A.

    1998-01-01

    Radon exposure has been declared a health hazard by several organisations, for example the International Commission on Radiological Protection (ICRP) and the World Health Organisation (WHO). The basis for the risk estimate has been the results from epidemiological studies on miners exposed to radon, supported by the results of residential epidemiology. Only few of the many residential epidemiological studies carried out hitherto have a design applicable for a risk estimate. The largest is the Swedish national study but several large well designed studies are ongoing. An excess risk has also been found in animal research. The model describes smoking and radon exposure as between additive and multiplicative, found in both miners and residential studies. The relatively few non-smokers among the miners and also among the residents give a problem at estimating the radon risk for these groups. It would also be desirable to know more about the importance of the age and the time period at exposure. Lung dose calculations from radon exposure are not recommended by ICRP in their publication 66. For comparison with other radiation sources the ICRP recommends the concept 'dose conversion convention' obtained as the risk estimate divided by the detriment. Other effects of radon exposure than lung cancer have not been shown epidemiologically, but dose calculations indicate an excess risk of about 5% of the excess lung cancer risk. (author)

  15. Indoor radon and risk of lung cancer: an epidemiological study in Finland

    International Nuclear Information System (INIS)

    Ruosteenoja, E.

    1991-03-01

    The main aim of the present study was to establish whether high radon concentrations in dwellings in Finland had increased the risk of lung cancer. Previous studies had shown an association between the α-active radon daughters and elevated lung cancer risk among miners. Convincing evidence of the risk among the general population exposed to radon indoors was, however, lacking. A descriptive analysis was first conducted in an area in southern Finland with high indoor radon exposure. In 18 rural municipalities this analysis yielded no significant correlation between the average radon exposure and incidence of male lung cancer. A case-control study within a cohort of the same rural population was then designed. The data included 238 male cases of lung cancer diagnosed in 1980-85 and 434 controls (390 smokers and 44 nonsmokers) from the male population. Radon exposure was measured, when possible, in all the dwellings occupied by a case or control in 1950-1975. Measurements were available for the total 25-year period, or for a proportion of it, for 164 cases and 334 controls; for the rest only estimates were available. In spite of the fact that the controls were mainly selected among smokers, the amount smoked still appeared to be the most important lung cancer risk factor in the data, the risk increasing linearly with the quantity of cigarettes smoked in a lifetime. The risk of lung cancer was not associated with the radon exposure level when the whole data were studied. In heavy smokers, however, a positive though not significant, effect on the risk from radon exposure was found. In the range of uncertainty the findings do not conflict with most of those observed among miners or the general population so far. (orig.)

  16. LIFETIME LUNG CANCER RISKS ASSOCIATED WITH INDOOR RADON EXPOSURE BASED ON VARIOUS RADON RISK MODELS FOR CANADIAN POPULATION.

    Science.gov (United States)

    Chen, Jing

    2017-04-01

    This study calculates and compares the lifetime lung cancer risks associated with indoor radon exposure based on well-known risk models in the literature; two risk models are from joint studies among miners and the other three models were developed from pooling studies on residential radon exposure from China, Europe and North America respectively. The aim of this article is to make clear that the various models are mathematical descriptions of epidemiologically observed real risks in different environmental settings. The risk from exposure to indoor radon is real and it is normal that variations could exist among different risk models even when they were applied to the same dataset. The results show that lifetime risk estimates vary significantly between the various risk models considered here: the model based on the European residential data provides the lowest risk estimates, while models based on the European miners and Chinese residential pooling with complete dosimetry give the highest values. The lifetime risk estimates based on the EPA/BEIR-VI model lie within this range and agree reasonably well with the averages of risk estimates from the five risk models considered in this study. © Crown copyright 2016.

  17. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres. Progress report, July 1, 1992--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hopke, P.K.

    1992-07-01

    This report describes studies on the chemical and physical behavior of the {sup 218}Po atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity in the sub-10 nm size range result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and its dose to the cells in the respiratory tract are to be fully assessed. The specific tasks of the controlled laboratory studies are to determine the formation rates of {center_dot}OH radicals formed by the radiolysis of air following radon decay, to examine the formation of particles by the radiolytic oxidation of substances like SO{sub 2} ethylene, and H{sub 2}S to lower vapor pressure compounds and determine the role of gas phase additives such as H{sub 2}O and NH{sub 3} in determining the particle size, to measure the rate of ion-induced nucleation using a thermal diffusion cloud chamber, and to measure the neutralization rate of {sup 218}Po{sub x}{sup +} in O{sub 2} at low radon concentrations. Tasks of the exposure studies in occupied indoor spaces are to initiate measurements of the activity size distributions in actual homes with occupants present so that the variability of the indoor activity size distributions can be assessed with respect to indoor aerosol sources and general lifestyle variations of the occupants, to initiate a prospective study of the utility of measurement of deposited {sup 210}Pb embedded in glass surfaces as a measure of the long-term, integrated exposure of the population to radon, and to develop the methodology to determine the hygroscopicity of the indoor aerosol so that the changes in deposition efficiency of the radioactive indoor aerosol with hygroscopic growth in the respiratory tract can be assessed.

  18. Systematic measurements of the radon concentration indoor from Remetea, Harghita county

    International Nuclear Information System (INIS)

    Csegzi, Sandor

    2000-01-01

    Primary goal of the Remetea radon program was to carry out an indoor radon survey. The program can be applied too, in other places of the country. Remetea was built on volcanic rocks, where aligning of mineral water springs tells about the existence of geologic faulting. The 1992 census counted 2406 houses and 6550 residents of the village. The sample consisted of 120 houses chosen randomly from the entire stock. A hypergeometric statistical model has been used for sampling. Measurements were done in bedrooms at pillow level using etched track type Radamon radon detectors. Exposure lasted from January 1999 to July 1999. From the measurements it can be stated that the number of houses with radon concentration exceeding 200 Bq/m 3 is around 82. A high precision determination of activity has been done (errors under 3 %). Mapping indoor radon levels resembles the fault location that is indicated by springs and exhibited by geological studies. Particular points of the program were the soulful and self-aware approach the more than 30 schoolboys and girls participated, and the fact that the program met with a warm response from the public. (author)

  19. Study on the influence of CR-39 detector size on radon progeny detection in indoor environments

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, L. A.; Hadler, J. C.; Lixandrão F, A. L.; Guedes, S.; Takizawa, R. H. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, UNICAMP, 13083-970 Campinas, SP (Brazil)

    2014-11-11

    It is well known that radon daughters up to {sup 214}Po are the real contaminants to be considered in case of indoor radon contamination. Assemblies consisting of 6 circular bare sheets of CR-39, a nuclear track detector, with radius varying from 0.15 to 1.2 cm were exposed far from any material surface for periods of approximately 6 months in 13 different indoor rooms (7 workplaces and 6 dwellings), where ventilation was moderate or poor. It was observed that track density was as greater as smaller was the detector radius. Track density data were fitted using an equation deduced based on the assumption that the behavior of radon and its progeny in the air was described by Fick's Law, i.e., when the main mechanism of transport of radon progeny in the air is diffusion. As many people spend great part of their time in closed or poorly ventilated environments, the confirmation they present equilibrium between radon and its progeny is an interesting start for dosimetric calculations concerning this contamination.

  20. The equivalent doses of indoor radon in some dwellings and enclosed areas in Morocco

    International Nuclear Information System (INIS)

    Hakam, O.; Choukri, J.; Reyss, L.

    2008-01-01

    Full text: The principal source of exposure to radiation for public in built-up areas is known to be the inhalation for radon its short-lived daughters.Most of this exposure occurs inside homes,where many hours are spent each day and where the volumic activity of radon is usually higher than outdoors. The compelling effects of radon and its short-lived decay products spread slowly but surely through a wide range of biological problems encountered in such areas as the mortality rates and lung cancer in uranium mines,the results of experimental work with animals, and the discovery of unsually high levels of radon in the living environments of the general population. As a way of prevention, we have measured the volumic activities of indoor radon-222 and we have calculated their effective equivalent dose in some dwellings and enclosed areas in Morocco. The obtained results show that the effective equivalent dose of activities measured indoor dwellings are inferior to the admissible annual limit fixed by ICRP for population, except in two twons situated in regions rich in phosphate deposits where the calculated doses are slightly upper than this limit. The results obtained for enclosed areas are inferior to the admissible annual limit fixed by ICRP for workers, except in the cave of geophysical observatory situated at depth of-12 meters where the obtained value don't present in risk for workers health because workers pass only a few minutes by day in this cave. The risks related to the volumic activities for indoor radon could be avoided by simple precautions such the continuous ventilation

  1. Evaluation of annual effective dose from indoor radon concentration in Eastern Province, Dammam, Saudi Arabia

    Science.gov (United States)

    Abuelhia, E.

    2017-11-01

    The aim of this study is to determine the indoor radon concentration and to evaluate the annual effective dose received by the inhabitants in Dammam, Al-Khobar, and compare it with new premises built at university of dammam. The research has been carried out by using active detection method; Electronic Radon Detector (RAD-7) a solid state α-detector with its special accessories. The indoor radon concentration measured varies from 10.2 Bqm-3 to 25.8 Bqm-3 with an average value of 18.8 Bqm-3 and 19.7 Bqm-3 to 23.5 Bqm-3 with an average value of 21.7 Bqm-3, in Dammam and Al-khobar dwellings, respectively. In university of dammam the radon concentration varies from 7.4 Bqm-3 to 15.8 Bqm-3 with an average value of 9.02 Bqm-3. The values of annual effective doses were found to be 0.47mSv/y, 0.55mSv/y, and 0.23mSv/y, in Dammam, Al-khobar and university new premises, respectively. The average radon concentration in the old dwellings was two times compared to that in the new premises and it was 25.4 Bqm-3 lower than the world average value of 40 Bqm-3 reported by the UNSCEAR. The annual effective doses in the old dwellings was found to be (0.55mSv/y) two times the doses received at the new premises, and below the world wide average of 1.15mSv/y reported by ICRP (2010). The indoor radon concentration in the study region is safe as far as health hazard is concerned.

  2. Control in indoor radon decay products by air treatment devices

    International Nuclear Information System (INIS)

    Hinds, W.C.; Rudnick, S.N.; Maher, E.F.; First, M.W.

    1983-01-01

    An evaluation of the efficacy of household air cleaning devices as a means to control radon decay products in existing buildings is presented. Previous research on air cleaning methods for airborne radon decay products has been directed primarily to the control of radon decay products in mines and has only limited application to control in residences where dust concentration, air change rate, and humidity are lower than in mines. Results show that room size air cleaners can achieve substantial reductions in working levels in residences. Reductions observed at air infiltration rates of 0.52 air changes per hour ranged from 58 to 89%. Although the two air cleaners tested produced the greatest reductions, the low cost, simplicity, and other benefits of air circulating fans, particularly the ceiling fan, appear to make them most suitable for residences

  3. Radon in indoor air of primary schools: determinant factors, their variability and effective dose.

    Science.gov (United States)

    Madureira, Joana; Paciência, Inês; Rufo, João; Moreira, André; de Oliveira Fernandes, Eduardo; Pereira, Alcides

    2016-04-01

    Radon is a radioactive gas, abundant in granitic areas, such as in the city of Porto at the north-east of Portugal. This gas is a recognized carcinogenic agent, being appointed by the World Health Organization as the leading cause of lung cancer after smoking. The aim of this preliminary survey was to determine indoor radon concentrations in public primary schools, to analyse the main factors influencing their indoor concentration levels and to estimate the effective dose in students and teachers in primary schools. Radon concentrations were measured in 45 classrooms from 13 public primary schools located in Porto, using CR-39 passive radon detectors for about 2-month period. In all schools, radon concentrations ranged from 56 to 889 Bq/m(3) (mean = 197 Bq/m(3)). The results showed that the limit of 100 Bq/m(3) established by WHO IAQ guidelines was exceeded in 92 % of the measurements, as well as 8 % of the measurements exceeded the limit of 400 Bq/m(3) established by the national legislation. Moreover, the mean annual effective dose was calculated as 1.25 mSv/y (ranging between 0.58 and 3.07 mSv/y), which is below the action level (3-10 mSv). The considerable variability of radon concentration observed between and within floors indicates a need to monitor concentrations in several rooms for each floor. A single radon detector for each room can be used, provided that the measurement error is considerably lower than variability of radon concentration between rooms. The results of the present survey will provide useful baseline data for adopting safety measures and dealing effectively with radiation emergencies. In particular, radon remediation techniques should be used in buildings located in the highest radon risk areas of Portugal. The results obtained in the current study concerning radon levels and their variations will be useful to optimize the design of future research surveys.

  4. Determination of exhalation rate of radon from walls and indoor radon by CR-39 detectors

    International Nuclear Information System (INIS)

    Vasidov, A.; Tillaev, T.S.

    2007-01-01

    Full text: The knowledge of true value exhalation rate of radon gas from building materials represents scientific and practical interest in environmental radiation protection. This point of view in the paper exhalation rate of radon gas from building materials and a surface of walls with different constructions were determined by detectors CR-39. The values of the exhalation rate of radon per unit area of the granite, concrete, fired and unfired bricks, sand, cement, alabaster varied 0.091 - 0.1 Bq·m -2 ·h -1 . The surface of walls of dwellings constructed from different building materials the exhalation rate of radon are within in limits of 0.083-1.12 Bq·m -2 ·h -1 . Were measurements with CR-39 detectors a level of radon within 50-520 Bq/m 3 in air of rooms constructed of the different building materials

  5. Measurements of the deposition rates of radon daughters on indoor surfaces

    International Nuclear Information System (INIS)

    Wang, H.; Essling, M.A.; Toohey, R.E.; Rundo, J.

    1982-01-01

    The deposition rates of radon daughters on indoor surfaces have been measured by exposing the window of a proportional counter to the air of a house with high concentrations of radon and its daughters. Deposition velocities for unattached 218 Po (RaA) and 214 Pb (RaB) of approximately 4 mm sec - 1 were obtained by dividing the deposition rates by the concentrations of unattached daughters in the air. These results agree with those obtained by other workers but are dependent on the assumptions made about the fractions of the daughters which are attached to the atmospheric aerosol

  6. Log-normality of indoor radon data in the Walloon region of Belgium

    International Nuclear Information System (INIS)

    Cinelli, Giorgia; Tondeur, François

    2015-01-01

    The deviations of the distribution of Belgian indoor radon data from the log-normal trend are examined. Simulated data are generated to provide a theoretical frame for understanding these deviations. It is shown that the 3-component structure of indoor radon (radon from subsoil, outdoor air and building materials) generates deviations in the low- and high-concentration tails, but this low-C trend can be almost completely compensated by the effect of measurement uncertainties and by possible small errors in background subtraction. The predicted low-C and high-C deviations are well observed in the Belgian data, when considering the global distribution of all data. The agreement with the log-normal model is improved when considering data organised in homogeneous geological groups. As the deviation from log-normality is often due to the low-C tail for which there is no interest, it is proposed to use the log-normal fit limited to the high-C half of the distribution. With this prescription, the vast majority of the geological groups of data are compatible with the log-normal model, the remaining deviations being mostly due to a few outliers, and rarely to a “fat tail”. With very few exceptions, the log-normal modelling of the high-concentration part of indoor radon data is expected to give reasonable results, provided that the data are organised in homogeneous geological groups. - Highlights: • Deviations of the distribution of Belgian indoor Rn data from the log-normal trend. • 3-component structure of indoor Rn: subsoil, outdoor air and building materials. • Simulated data generated to provide a theoretical frame for understanding deviations. • Data organised in homogeneous geological groups; better agreement with the log-normal

  7. Effectiveness of finish materials and room air-conditioner on the reduction of indoor radon concentration in Hong Kong

    International Nuclear Information System (INIS)

    Ma, A.K.; Man, C.K.; Ho, E.; Pang, S.W.

    1995-01-01

    Four different kinds of finish material were investigated: wallpaper, paint, plaster and tile. When applied to the bare concrete walls of uninhabited rooms in flats of a building under construction, all of them were found to reduce indoor radon concentration. The magnitude of reduction by these finish materials ranged from 20% to 80%. Wallpaper was found to provide the best protection against radon emission from bare concrete walls in a bedroom with a size of 19.3 m 3 . Wallpaper can reduce the indoor radon concentration about twice as much as paint (water-based) or plaster in this investigation. Tile was also found to be a good material against radon emission from concrete walls in a bathroom with a size of 6.3 m 3 . Indoor radon concentration was found to decrease with elevation from the ground level, and was affected strongly by mechanical ventilation. Another 30% to 50% reduction in indoor radon concentration in addition to finish material can be achieved by a room air-conditioner. It was also found that indoor radon concentrations were not affected by turning the fresh air shutter to the 'on' or 'off' position in the room air-conditioner. (author)

  8. Measuring variation of indoor radon concentration using bare nuclear tracks detectors, scintillation counters and surface barrier detectors

    International Nuclear Information System (INIS)

    Ishak, I.; Mahat, R.H.; Amin, Y.M.

    1996-01-01

    Bare LRI 15 nuclear track detectors , scintillators counter and surface barrier detectors were used to measured the indoor radon concentration in various location within two rooms. Spatial variation of the radon concentration is caused by positioning of the door, windows, furniture, cracks in the building and also distances from floor, wall and ceiling. It is found that the change in temperature are causing radon concentration to increase at certain time of the day

  9. Health Risk Assessment Induced by Inhalation Radon Content in the Indoor Air of Decorative Stone of Storehouses

    Directory of Open Access Journals (Sweden)

    Amir Hossein Mahvi

    2017-11-01

    Conclusions: Mean radon concentration in indoor air and the mean effective dose received by staff is lower than the standards level. Decorative stone of warehouses is the resources accumulation of Radon gas that can be reduced by doing corrective actions. 

  10. Indoor radon and lung cancer in the radium dial workers

    International Nuclear Information System (INIS)

    Neuberger, J.S.; Rundo, J.

    1996-01-01

    Internally deposited radium has long been known to have tumorigenic effects in the form of sarcomas of the bone and carcinomas of the paranasal sinuses and mastoid air cells. However, the radium dial workers were also exposed to radiation hazards other than that occurring from ingestion of the radium paint, viz., external gamma radiation and elevated concentrations of airborne radon. The uranium miners were also exposed to high concentrations of radon in the 1950s and later, and numerous cases of lung cancer have occurred in that population. However, unlike the atmosphere in the uranium mines, the air in the dial painting plants was probably rather clean and perhaps not much different from the air in many houses. In view of the current concern over the possibility of lung cancer fin the general population being caused by radon (progeny) in houses, it is important to examine the mortality due to this usually fatal disease in the dial workers and to attempt to relate it to their exposure to radon, to the extent that this is possible

  11. Indoor exposure to radon and its health effects

    International Nuclear Information System (INIS)

    Loskiewicz, J.

    1997-10-01

    Radon (Rn-222) is a noble radioactive gas which originates during U-238 series decay. As a noble gas it is not reacting with soils and building materials and therefore is showing large mobility due to its half-life of 3.82 days. It decays through alpha emission and is producing other radioactive isotopes (Po-218, Bi-214 etc.) which are solid. The migration of radon and its decay products can be in unattached form or attached to aerosols. The size of aerosol particles is important for adhesion coefficient value and for inhalation probability by human respiratory system. The unattached radon is penetrating more easily into lung space and there it may decay into radioactive and alpha emitting solid isotopes. The emitted alpha particle can damage sensitive cells. An alpha particle that penetrates that epithelial cells can deposit enough energy in a cell to kill or transform it. The transformed cell, alone or through interaction with some other agent, has the potential to develop eventually into a lung cancer. The data on risk of a lung cancer occurrence for high and medium concentrations of radon in the air will also be presented. (author)

  12. Evaluation of indoor aerosol control devices and their effects on radon progeny concentrations. Revision

    International Nuclear Information System (INIS)

    Sextro, R.G.; Offermann, F.J.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.L.; Yater, J.

    1984-11-01

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles, and their concomitant effects on radon progeny concentrations have been investigated. The experiments were conducted in a room-size chamber using cigarette smoke and radon injection from an external source. Of the devices examined the electrostatic precipitators and extended surface filters had significant particle removal rates, while the particle removal rates for several small panel-filters, an ion-generator, and a pair of mixing fans were found to be essentially negligible. The evaluation of radon progeny control produced similar results; the air cleaners which were effective in removing particles were also effective in reducing radon progeny concentrations. At the low particle concentrations, deposition of the unattached radon progeny on room surfaces was found to be a significant removal mechanism. Deposition rates of attached and unattached progeny have been estimated from these data, and were used to calculate the equilibrium factors for total and unattached progeny concentrations as a function of particle concentration. While particle removal reduces total airborne radon progeny concentrations, the relative alpha decay dose to the lungs appears to change very little as the particle concentration decreases due to the greater radiological importance of unattached progeny

  13. Indoor radon in three similar two-story houses with different ventilation systems

    International Nuclear Information System (INIS)

    Kokotti, H.; Savolainen, T.; Raunemaa, T.; Kalliokoski, P.

    1989-01-01

    Radon levels were monitored in three similar two-story apartment houses which were located side by side on a gravel esker in eastern Finland. The houses differed only in regard to their ventilation systems which included the following: natural ventilation, mechanical exhaust, and complete mechanical ventilation. The study started immediately when the houses were finished and was continued for two years. Radon concentrations were highest (60-430 Bq/m 3 ) in the beginning of the study period before the tenants moved in. During the following spring and fall, average radon levels of the houses decreased below 100 Bq/m 3 . Radon concentrations varied within a wide range, from 20 to 230 Bq/m 3 , in the apartments. Among the houses, the highest concentrations were found in the house equipped with mechanical exhaust ventilation and the lowest in the house with both a mechanical supply and exhaust system. One reason for the decreasing levels of radon after a one-year occupancy was that the tenants increased the ventilation of their apartments. In the house with complete mechanical ventilation, the stability of ventilation also contributed to the decrease of the indoor radon level

  14. Indoor radon survey in dwellings of nine cities in the eastern and western provinces of Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Fazal-ur-Rehman; Al-Jarallah, M.I.; Al-Shukri, A

    2003-07-01

    The results of a first phase of an indoor survey in a total of 1610 dwellings distributed in nine cities of the Eastern and the Western provinces of Saudi Arabia are presented. The objective of this radon survey was to obtain representative indoor radon data for seven cities in the Eastern province, Khafji, Hafr Al-Batin, Abqaiq, Qatif, Al-Ahsa, Dammam and Khobar and to compare this with two cities in the Western province, Madina and Taif. So far, detailed radon data is not available for Saudi Arabia; therefore, this radon survey provides a base line for Saudi Arabia in the Radon World Atlas. On average, 200 indoor radon dosemeters were distributed in each city and placed for a period of one year starting from May 2001 to May 2002. The total number of collected dosemeters was 847. A total of 724 houses and 98 schools were covered in this survey. The results of the survey in the cities showed that the overall minimum, maximum and average radon concentrations were 1, 137 and 22 Bq m {sup -3}, respectively. Geometric mean and geometric standard deviations of the radon distribution were found to be 18 and 1.92, respectively. In one of the dwellings in Qatif city, radon concentration, measured by a passive system and then confirmed by an active system, was found to be 535 {+-} 23 and 523 {+-} 22 Bq m {sup -3}, respectively. The result of a radon survey in 98 schools showed that the minimum, maximum and average radon concentrations were 1, 70 and 19 Bq m{sup -3}, respectively. The average radon concentration for each city was also determined. The lowest average radon concentration (8 Bq m{sup -3}) was found in Al-Ahsa while the highest average concentration (40 Bq m {sup -3}) was found in Khafji. (author)

  15. Mitigation of indoor radon using balanced mechanical ventilation

    International Nuclear Information System (INIS)

    Wellford, B.W.

    1986-01-01

    Previous research has shown that, for a given source strength, the concentration of Rn 222 in the home is inversely proportional to the ventilation rate. Further reductions in the concentration of the decay products of radon can be achieved due to the decrease in residence time of the parent gas as well as increased plate-out of the progeny. Natural and mechanical ventilation can affect the distribution of pressure across the building envelope potentially increasing the flow of radon bearing soil gas into the home gas into the home and/or promoting mixing of areas of higher and lower concentration. Balanced heat recovery ventilation systems were installed in ten homes in the Boyertown, Pennsylvania area. Ventilation was restricted initially to the basement area. Five installations were later modified to introduce supply air to upstairs living spaces while continuing to exhaust from the basement. An independent contractor measured Rn 222 concentrations and decay product activity in the basement and first floor living area before and after installation or modification of the heat recovery ventilation system. Additional experiments to evaluate the effect of house tightening techniques and positive pressurization of the basement were conducted. With balanced ventilation of the basement only, the mean reduction in Working Level was 92.8% with a high of 98% and a low of 76%. Mean reduction of radon gas concentration was 79.1%. When modified to supply air upstairs, mean reduction in Working Level in the living area was 90%. House tightening measures to reduce stack effect were observed to reduce radon concentration. Results indicate that balanced ventilation is an effective strategy for radon mitigation and can be expected to achieve recommended levels in a majority of homes. 9 references, 2 figures, 2 tables

  16. Attempt to determine radon entry rate and air exchange rate variable in time from the time course of indoor radon concentration

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J [State Office for Nuclear Protection, Prague (Czech Republic)

    1996-12-31

    For radon diagnosis in houses the `ventilation experiment` was used as a standard method. After removal of indoor radon by draught the build-up of radon concentration a(t) [Bq/m{sup 3}] was measured continuously and from the time course the constant radon entry rate A [Bq/h] and the exchange rate k [h{sup -1}] was calculated by regression analysis using model relation a(t) A(1-e{sup -kt})/kV with V [m{sup 3}] for volume of the room. The conditions have to be stable for several hours so that the assumption of constant A and k was justified. During the day both quantities were independently (?) changing, therefore a method to determine variable entry rate A(t) and exchange rate k(t) is needed for a better understanding of the variability of the indoor radon concentration. Two approaches are given for the determination of variable in time radon entry rates and air exchange rates from continuously measured indoor radon concentration - numerical solution of the equivalent difference equations in deterministic or statistic form. The approaches are not always successful. Failures giving a right ration for the searched rates but not of the rates them self could not be explained.

  17. Radon Concentration in Outdoors and Indoors Around the Flare in Oil Mine Sites

    International Nuclear Information System (INIS)

    Sutarman; Wahyudi; Luhantara

    2003-01-01

    The flares are much found at the oil exploration areas which appear the combustion gases emission to the environment that pass through a pipe at about 8 m high from the ground level. The flare is released into the environment together with the hydrocarbon and radon gases. This study has been carried out the measurement of the radon gas concentration only. Radon is a radioactive gas which comes from the natural radioactive decay of uranium ( 238 U). The outdoor radon concentrations were measured in 23 locations with the two-filter method. The locations were determined by a circle which the flare as the point center. The outdoor radon concentrations were measured in 74 houses (more than distance of 600 m from the flare) with the alpha track detector (CR-39) placed in the living rooms for about three months. The measurements of the radon concentrations were carried out in Cepu, Cirebon, and Prabumulih oil mine sites. The results showed that the outdoor radon concentrations a range of 108 Bq/m 3 to 256 Bq/m 3 in Cepu, 248 Bq/m 3 to 3525 Bq/m 3 in Cirebon, and 51 Bq/m 3 to 114 Bq/m 3 in Prabumulih. The results showed that the indoor radon concentrations a range of 11 Bq/m 3 to 38 Bq/m 3 in Cepu, 28 Bq/m 3 to 184 Bq/m 3 in Cirebon, and 12 Bq/m 3 to 38 Bq/m 3 in Prabumulih. The data of the maximum radon concentration in outdoor air was higher than an actual level which recommended by International Atomic Energy Agency (IAEA) for workplaces. The maximum radon concentration in indoor air was lower than an actual level which recommended by IAEA for dwellings. IAEA recommends the actual level of 1000 Bq/m 3 for workplaces and 200 Bq/m 3 for dwellings. These data will be used for the baseline data of the environmental radioactivity in Indonesia. (author)

  18. Radon level in China and elevated indoor exposure in carbon brick and cave dwellings

    International Nuclear Information System (INIS)

    Wang Zuoyuan

    1992-01-01

    A nation wide survey of Chinese houses was conducted to determine the average annual effective dose to Chinese population from exposure to radon and its daughter products. The indoor and outdoor concentrations of radon and its daughters were measured using scintillation flask, two filter and carbon canister methods, as well as modified Tsivoglou methods for Rn daughters. Average Rn concentrations are 26.2Bqm -3 and 13.5Bqm -3 for indoor and outdoor environment, respectively. Potential alpha energy concentration, indoor is 744 x 10 -10 Jm -3 , outdoor is 511 x 10 -10 Jm -3 . Equilibrium Factor of Rn daughters are 0.49 (indoor) and 0.61 (outdoor). Occupancy Factor is 0.77 and 0.23. Using appropriate conversion factors, the annual average effective dose to Chinese population is 0.967 mSv. And also, the indoor Rn concentration and gamma dose rate were surveyed in two rural Provinces: Gansu and Jianxi. The fact was found that lung cancer mortality of population lived in high Rn level dwellings is higher than in control groups. An epidemiological retrospective case-control study is recommended in houses with high Rn level. (author)

  19. Indoor radiation exposures from radon and its daughters: a view of the issue

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1981-08-01

    Exposure to radon daughters indoors can result in significant risk to the general public, particularly those living in homes with much higher than average concentrations. This paper reviews what is known about indoor concentrations, associated risks, and the effect of measures to save energy by reducing ventilation rates. It concludes that, by employing appropriate control measures in homes having unacceptably high concentrations, the average exposure (and therefore risk) of the general public can remain at its present level, or even decrease, despite programs to save energy by tightening homes

  20. Study on indoor radon concentration and gamma radiation dose rate in different rooms in some dwellings around Bharath Gold Mines Limited, Karnataka State, India

    International Nuclear Information System (INIS)

    Umesha Reddy, K.; Jayasheelan, A.; Sannappa, J.

    2012-01-01

    Indoor radon contributes significantly to the total radiation exposure caused to human beings. The indoor concentration of radon in different rooms in the same type of dwellings around Bharath Gold Mines Limited (BGML), Karnataka State (12°57' min N and 78°16' min E) were measured by using LR-115 (type-Il) Solid State Nuclear Track Detectors (SSNTDs). The maximum indoor radon concentration is observed in the bathroom and minimum in the hall. The maximum average indoor radon concentration is observed in the Champion and minimum in the BEML nagar. The indoor gamma radiation dose rate is also measured in these locations using scintillometer. The geology of this part forms predominantly Hornblende Schist, Granite gneiss, Champion gneiss, Quartzite etc. The indoor radon concentration shows good correlation with the indoor gamma radiation dose. (author)

  1. Field applications of a radon barrier to reduce indoor airborne progeny

    International Nuclear Information System (INIS)

    Culot, M.V.J.; Olson, H.G.; Schiager, K.J.

    1978-01-01

    The use of uranium mill tailings in the foundations of dwellings has resulted in indoor radon progeny concentrations and gamma exposures in excess of levels presently allowed for the general public. An account is given of the applications of an epoxy coating on the indoor faces of the concrete foundations of three buildings in Grand Junction, Colorado. Epoxy barriers were shown to be effective for preventing radon influx into structures. Gamma exposure rates must be analyzed to ensure that buildup behind the barrier will not introduce an unacceptable gamma exposure level. The use of a sealant is especially economical in situations where structural integrity may be jeopardized by physical removal of uranium mill tailings. (author)

  2. First steps towards a European atlas of natural radiation: status of the European indoor radon map

    International Nuclear Information System (INIS)

    Dubois, G.; Bossew, P.; Tollefsen, T.; De Cort, M.

    2010-01-01

    Within the context of its institutional scientific support to the European Commission, in 2005 the Radioactivity Environmental Monitoring (REM) group at the Joint Research Centre of the European Commission, started to explore the possibility of mapping indoor radon in European houses as a first step towards preparing a European Atlas of Natural Radiations. The main objective of such an atlas is to contribute to familiarizing the public with its naturally radioactive environment. The process of preparing the atlas should also provide the scientific community with a database of information that can be used for further studies and for highlighting regions with elevated levels of natural radiation. This document presents the status of the European indoor radon (Rn) map, first statistical results, and outlines of forthcoming challenges.

  3. Factors controlling indoor radon levels. Annual report, June 1983-May 1984

    International Nuclear Information System (INIS)

    Harley, N.H.

    1984-01-01

    The factors which contribute to indoor radon levels were investigated. Soil moisture content appears to be such a factor and influences indoor radon levels in a subtle way. The single family dwelling studied here is a typical suburban home, with a full basement, two living levels and a full attic. Seasonal data for 1981 to 1983 are shown by hour (about 90 hours in each average) for the basement, first floor and outdoors. A twenty-five story, 225 apartment, high rise building has been under study for about the same time interval. The apartment has five rooms, and is on the 24th floor. Continuous monitors are located in a work room and outdoors on a terrace. Data are available from the summer of 1981. 2 references, 12 figures, 9 tables

  4. MODERN APPROACHES TO PUBLIC PROTECTION AGAINST INDOOR RADON. INTERNATIONAL REGULATORY EXPERIENCE

    Directory of Open Access Journals (Sweden)

    S. M. Kiselev

    2014-01-01

    Full Text Available Intensive worldwide researches of the public exposure to radon are carried out for over 30 years. According to numerous studies being performed in many countries, radon and its progenies contribute significantly in total dose to the public. At that, dose due to inhalation of radon and its progenies is higher than that induced by other radiation sources, including sources used in medicine and those occurring in the environment due to the nuclear fuel cycle activities. Prolonged internal exposure to the human‘s body induced by the radon decay products is one of the key factors in the development of the lung cancer pathology. The recent results of global epidemiological studies, aimed at the risk assessment of indoor radon-induced lung cancer, have initiated the need to improve approaches to the regulation of this problem. International organizations (such as WHO, IAEA, ICRP proposed a strategy of the public radiation protection against radon exposure and adapted this strategy to the up-to-date realities. The recent recommendations not only correct the radon activity concentration being limited in dwellings, but also change its status through converting the action level to the reference one. The strategies for limitation of the public exposure due to this component of natural radiation should be revised at the national level and an action plan for their implementation in the long term perspective should be developed. This paper deals with the key provisions of the recent international recommendations including approaches to regulate the public protection against radon exposure.

  5. Correlation of indoor radon levels with physical properties of local soil in Khammam district, Andhra Pradesh, India

    International Nuclear Information System (INIS)

    Sreenivasa Reddy, B.; Bhaskar Reddy, G.; Sreenath Reddy, M.; Gopal Reddy, Ch; Yadagiri Reddy, P.; Rama Reddy, K.

    2006-01-01

    Indoor radon contributes significantly to the total radiation exposure caused to human beings. As might be expected, the physical characteristics of soil play key roles in determining the radon concentration in nearby buildings. The physical characteristics of soil, such as density, specific gravity and porosity in the vicinity of the dwellings of Khammam district, Andhra Pradesh, India, have been determined using core cutter and specific gravity bottle. In the present paper, these parameters are correlated with the average indoor radon levels estimated for a year using solid state nuclear track detectors. (author)

  6. Effect of local geology on indoor radon levels: a case study

    International Nuclear Information System (INIS)

    Hawthorne, A.R.; Gammage, R.B.; Dudney, C.S.

    1984-01-01

    This paper presents the results of radon monitoring in 40 East Tennessee homes that were a component of a larger study to evaluate indoor air quality. Measurements were conducted during two 3-month time periods with passive integrating track etch monitors in each of the forty homes. In a subset of homes, measurements were also conducted with a real-time monitor that provided readings on an hourly basis. The results of the monitoring indicate that about 30% of the homes had radon levels greater that 4 pCi/L in the living space. Homes with elevated radon levels were associated with local variations in geology; most of the homes having higher levels were located on the porous dolomite ridge partially surrounding Oad Ridge, Tennessee. (Author)

  7. Indoor radon measurement in some adobe houses in the Kassena Nankana area of the Upper East Region

    International Nuclear Information System (INIS)

    Quashie, F. K.

    2010-06-01

    Inhalation of radon and its daughter products is the major contributor to the total exposure of the population to natural radiation. The present study has measured radon gas concentration in some Adobe houses and the soil radon gas around these houses in the Kassena Nankana Area of the Upper East Region by using passive radon indoor dosimeter containing solid-state nuclear track detector (SSNTD) commercially known as LR - 115 (type II, pelliculable). Fifty (50) indoor radon dosimeters were placed in the various Adobe houses in the study area. Additionally, thirty (30) dosimeters were placed in the soil around some of the houses at a depth of 75 cm. Soil radon dosimeters were retrieved after two (2) weeks while the indoor radon dosimeters were retrieved after 78 to 82 days. The detectors were then chemically etched. The digital laser optic system and the spark counter coupled with microfiche reader were used in counting both the indoor and soil detectors respectively. Indoor radon concentration in the study area range from 35.28 Bq/m 3 to 244.22 Bq/m 3 . An active dosimeter known as the radon scout plus which gives instantaneous readings between 1 to 3 hours was also used in nineteen of the adobe houses in the study area and a total average radon concentration of 56.90 Bq/m3 was obtained. The soil radon concentration was also found to range from 2.12 kBq/m 3 to 15.03 kBq/m 3 . A good correlation was found to exist between the soil radon concentration and that of the indoor radon concentration with a correlation coefficient of about 0.61. The mean radon emanation coefficient of some fifteen (15) soil samples monitored was 0.46. The average annual effective dose was estimated to be about 1.66 mSv/y and that of the average annual effective dose using the equilibrium equivalent factor (F) was 1.00 mSv/y

  8. Cost analysis of soil-depressurization techniques for indoor radon reduction

    International Nuclear Information System (INIS)

    Henschel, D.B.

    1991-01-01

    The article discusses a parametric cost analysis to evaluate active soil depressurization (ASD) systems for indoor radon reduction in houses. The analysis determined the relative importance of 14 ASD design variables and 2 operating variables on the installation and operating costs of residential ASD systems in several types of houses. Knowledge of the most important variables would enable EPA's research and development efforts to be more effectively directed at ways to reduce ASD costs and thus to increase utilization of the technology. Parameters offering the greatest potential for reductions in installation costs included three dealing with houses with poor subslab communication: (1) reducing the number of subslab depressurization pipes; (2) eliminating excavation of large subslab pits beneath the suction pipes to improve suction field extension; and (3) improving the effectiveness of premitigation subslab communication diagnostic testing in achieving simpler, less expensive ASD system designs. In addition, determining acceptable conditions for discharging ASD exhaust at grade level would reduce installation costs. Better design guidance for crawl-space submembrane depressurization (SMD) systems could reduce installation costs, if difficult membrane sealing steps and complete coverage of the crawl-space floor by the membrane can be avoided

  9. Measurements of indoor radon concentration in italian red cross workplaces: preliminary results

    International Nuclear Information System (INIS)

    Fontana, C.; Musumeci, R.G.; Valeriani, F.; Tonnarini, S.; Trevisi, R.

    2002-01-01

    In August 2000 in Italy the D.Lgs.241/00 law was passed to implement the 96/29 Euratom Directive (BSS Directive, EC 1996). D.Lgs.241/00 states that workers cannot be exposed to decay products of radon, thoron and gamma radiation at a level higher than action level. The law became effective January 1, 2001. Italian action level of 500 Bq/m3 is the annual average indoor radon concentration. Work activities in zones with greater probability of high indoor radon concentration have to be identified. According to the law, a Commission must establish criteria for clarifying areas at risk. The actual work of classification is then done by the regions. A three year time period was given to define areas at risk. As the normative still must be completed, the Italian Red Cross and the Italian National Institute for Occupational Prevention and Safety initiated this study both because the Red Cross has always been sensitive to health problems and also to offer the Commission further experimental data regarding radon in Italy

  10. Protocol for the estimation of average indoor radon-daughter concentrations: Second edition

    International Nuclear Information System (INIS)

    Langner, G.H. Jr.; Pacer, J.C.

    1988-05-01

    The Technical Measurements Center has developed a protocol which specifies the procedures to be used for determining indoor radon-daughter concentrations in support of Department of Energy remedial action programs. This document is the central part of the protocol and is to be used in conjunction with the individual procedure manuals. The manuals contain the information and procedures required to implement the proven methods for estimating average indoor radon-daughter concentration. Proven in this case means that these methods have been determined to provide reasonable assurance that the average radon-daughter concentration within a structure is either above, at, or below the standards established for remedial action programs. This document contains descriptions of the generic aspects of methods used for estimating radon-daughter concentration and provides guidance with respect to method selection for a given situation. It is expected that the latter section of this document will be revised whenever another estimation method is proven to be capable of satisfying the criteria of reasonable assurance and cost minimization. 22 refs., 6 figs., 3 tabs

  11. Systematic indoor radon and gamma-ray measurements in Slovenian schools

    International Nuclear Information System (INIS)

    Vaupotic, J.; Sikovec, M.; Kobal, I.

    2000-01-01

    During the winter months of 1992/93 and 1993/94, instantaneous indoor radon concentrations and gamma dose rates were measured in 890 schools in Slovenia attended in total by about 280,000 pupils. Under closed conditions, the room to be surveyed was closed for more than 12 h prior to sampling, the air was sampled into alpha scintillation cells with a volume of 700 cm 3 , and alpha activity was measured. An arithmetic mean of 168 Bq m -3 and a geometric mean of 82 Bq m -3 were obtained. In 67% of schools, indoor radon concentrations were below 100 Bq m -3 , and in 8.7% (77 schools with about 16,000 pupils) they exceeded 400 Bq m -3 , which is the proposed Slovene action level. In the majority of cases, radon concentrations were high due to the geological characteristics of the ground. Approximately 70% of schools with high radon levels were found in the Karst region. Gamma dose rates were measured using a portable scintillation counter. An arithmetic mean of 102 nGy h -1 and a geometric mean of 95 nGy h -1 were obtained. No extraordinarily high values were recorded

  12. Distribution of indoor radon concentrations and elements of a strategy for control

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1986-05-01

    Indoor radon concentrations vary widely in the US housing stock, with normal concentrations estimated to cause a significant risk of lung cancer by comparison with environmental exposures normally considered, and high concentrations causing risks that exceed even those from cigarette smoking. The probability distribution, i.e., the number of houses at various concentrations, can be estimated from an analysis of the US indoor radon data accumulated to date. Such an analysis suggests that in about a million houses, occupants are receiving exposures greater than those experienced by uranium miners. The form of the frequency distribution, including not only the average concentration, but also the number of houses with high levels, has substantial influence on strategies for control of indoor radon. Such strategies require three major elements: formulation of control objectives in terms of guidelines for remedial action and for new houses; selection of means for identifying homes with high concentrations; and a framework for deciding what types of control measures are appropriate to particular circumstances and how rapidly they should be employed

  13. A representative survey of indoor radon in the sixteen regions in Mexico City.

    Science.gov (United States)

    Espinosa, G; Gammage, R B

    2003-01-01

    Mexico City, also called Federal District, covers an area of 1504 km(2), and has more than 8 million inhabitants. It is located more than 2200 m above sea level in a zone of high seismic activity, and founded on an ancient lake. At present it is one of the most crowded and contaminated cities in the world, with thermal inversions. Chemical contaminants and aerosol particles in the environmental air are high most of the year. Due to these geological, environmental and socioeconomic conditions, Federal District presents very peculiar characteristics, which are important for understanding the distribution and measurements of indoor radon concentration. In this work the results of 3 year (1998-2000) measurements of indoor radon levels in the Federal District are presented. For the detector distribution and measurements, the actual political administrative divisions of the Federal District, consisting of 16 very well defined zones, was used. Nuclear track detection methodology was selected for the measurement, with a passive device close-end-cup system with CR-39 (Lantrack) polycarbonate as the detection material, with one step chemical etching, following a very well established protocol developed at the Instituto de Física, UNAM. Calibration was carried out at the Oak Ridge National Laboratory, and verification at the Instituto de Física chamber. The results show that the arithmetical mean values of the indoor radon concentration for each region of the Federal District follow a non-homogenous distribution.

  14. A representative survey of indoor radon in the sixteen regions in Mexico City

    International Nuclear Information System (INIS)

    Espinosa, G.; Gammage, R.B.

    2003-01-01

    Mexico City, also called Federal District, covers an area of 1504 km 2 , and has more than 8 million inhabitants. It is located more than 2200 m above sea level in a zone of high seismicactivity, and founded on an ancient lake. At present it is one of the most crowded and contaminated cities in the world with thermal inversions. Chemical contaminants and aerosol particles in the environmental air are high most of the year. Due to these geological, environmental and socioeconomic conditions, Federal District presents very peculiar characteristics, which are important for understanding the distribution and measurement zone of high seismic activity of indoor radon concentration. In this work the results of 3 year (1998-2000) measurements of indoor radon levels in the Federal District are presented. For the detector distribution and measurements, the actual political administrative divisions of the Federal District, consisting of 16 very well defined zones was used. Nuclear track detection methodology was selected for the measurement, with a passive device close-end-cup system with CR-39 (Lantrack(r)) polycarbonate as the detection material, with one step chemical etching, following a very well established protocol developed at the Instituto de Fisica, UNAM. Calibration was carried out at the Oak Ridge National Laboratory, and verification at the Instituto de Fisica chamber. The results show that the arithmetical mean values of the indoor radon concentration for each region of the Federal District follow a non-homogeneous distribution. (author)

  15. Hierarchical modeling of indoor radon concentration: how much do geology and building factors matter?

    Science.gov (United States)

    Borgoni, Riccardo; De Francesco, Davide; De Bartolo, Daniela; Tzavidis, Nikos

    2014-12-01

    Radon is a natural gas known to be the main contributor to natural background radiation exposure and only second to smoking as major leading cause of lung cancer. The main concern is in indoor environments where the gas tends to accumulate and can reach high concentrations. The primary contributor of this gas into the building is from the soil although architectonic characteristics, such as building materials, can largely affect concentration values. Understanding the factors affecting the concentration in dwellings and workplaces is important both in prevention, when the construction of a new building is being planned, and in mitigation when the amount of Radon detected inside a building is too high. In this paper we investigate how several factors, such as geologic typologies of the soil and a range of building characteristics, impact on indoor concentration focusing, in particular, on how concentration changes as a function of the floor level. Adopting a mixed effects model to account for the hierarchical nature of the data, we also quantify the extent to which such measurable factors manage to explain the variability of indoor radon concentration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Risk assessment of exposure to radon concentration in indoor atmosphere and drinking water of Shimoga city, Karnataka, India

    International Nuclear Information System (INIS)

    Rangaswamy, D.R.; Sannappa, J.; Srinivasa, E.

    2016-01-01

    The exposure of population to natural sources of radiation has become an important issue in terms of radiological protection. The major contribution of dose from natural radiation in normal background regions arises due to inhalation of alpha-emitting radon and thoron, and their progenies, which are ubiquitous in both indoor and outdoor environs. The aim of the present study is to measure indoor radon, thoron and their progeny levels in the dwellings of Shimoga city and radon concentration in drinking water and to estimate the annual effective dose. The indoor concentration of radon, thoron and their progeny was measured using Solid-State Nuclear Track Detectors (SSNTDs) based twin chamber dosimeter cups. The 222 Rn concentration in drinking water was estimated by the Emanometry technique

  17. Assessment of dose due to exposure to indoor radon and thoron progeny

    Directory of Open Access Journals (Sweden)

    Prasad Ganesh

    2010-01-01

    Full Text Available The components of the effective dose through inhalation from radon and its progeny are important for human health since they contribute to more than 50% of the total radiation dose from natural sources. As a consequence, radon has been identified as the second leading cause of lung cancer after smoking. Radon and its short lived decay products (218Po, 214Pb, 214Bi, 214Po present in dwellings are a radiation hazard, particularly if such sources are concentrated in the enclosed areas like poorly ventilated houses and underground mines. The indoor radon, thoron, and progeny concentrations were measured in a small hilly town of Budhakedar and the surrounding area of Tehri Garhwal, India, by using LR-115 Type II plastic track detector in a twin cup radon dosimeter. The concentrations of radon progeny were measured as the highest in winter and the lowest in summer while the thoron progeny concentration was found maximum in rainy season and minimum in autumn. The annual exposure to the potential alpha energy of radon and thoron were found to vary from 0.04 WLM to 0.69 WLM with an average value of 0.29 WLM, and 0.03 WLM to 0.37 WLM with an aver- age value of 0.16 WLM, respectively. The annual effective dose due to the exposure to indoor radon and progeny in Budhakedar homes was found to vary from 0.16 mSv to 2.72 mSv with an average value of 1.14 mSv and the effective dose due to the exposure to thoron and progeny was found to vary from 0.18 mSv to 2.49 mSv with an average value of 1.05 mSv. The results of systematic study have been obtained by considering the room as a space in which the radon and thoron levels are directly related to the dynamic and static parameters.

  18. Predicted indoor radon concentrations from a Monte Carlo simulation of 1 000 000 granite countertop purchases

    International Nuclear Information System (INIS)

    Allen, J G; Zwack, L M; MacIntosh, D L; Minegishi, T; Stewart, J H; McCarthy, J F

    2013-01-01

    Previous research examining radon exposure from granite countertops relied on using a limited number of exposure scenarios. We expanded upon this analysis and determined the probability that installing a granite countertop in a residential home would lead to a meaningful radon exposure by performing a Monte Carlo simulation to obtain a distribution of potential indoor radon concentrations attributable to granite. The Monte Carlo analysis included estimates of the probability that a particular type of granite would be purchased, the radon flux associated with that type, the size of the countertop purchased, the volume of the home where it would be installed and the air exchange rate of that home. One million countertop purchases were simulated and 99.99% of the resulting radon concentrations were lower than the average outdoor radon concentrations in the US (14.8 Bq m −3 ; 0.4 pCi l −1 ). The median predicted indoor concentration from granite countertops was 0.06 Bq m −3 (1.59 × 10 −3 pCi l −1 ), which is over 2000 times lower than the US Environmental Protection Agency’s action level for indoor radon (148 Bq m −3 ; 4 pCi l −1 ). The results show that there is a low probability of a granite countertop causing elevated levels of radon in a home. (paper)

  19. Potential for ion-induced nucleation of volatile organic compounds by radon decay in indoor environments

    International Nuclear Information System (INIS)

    Daisey, J.M.

    1991-11-01

    There is considerable interest in the ''unattached'' fraction of radon progeny in indoor air because of its significance to the estimation of the risks of radon exposure. Because of its high mobility in air, the unattached fraction is more efficiently deposited in the respiratory tract. Variation in the diameter of the ''unattached'' fraction and in its diffusion coefficient can be due to clustering of other atmospheric species around the 218 PoO 2 + ion. The purpose of this study was to investigate the potential for the formation of clusters of vapor phase organic compounds, found in indoor air, around the 218 PoO 2 + ion and to determine which were most likely to form clusters. A secondary purpose was to provide a compilation of measurements of indoor organic compounds for future experiments and theoretical calculations by the radon research community. The classical charged liquid droplet theory (Thomson equation) was used to estimate the Gibbs free energy of ion-induced nucleation and to provide an indication of the indoor organic compounds most likely to undergo ion-induced nucleation. Forty-four volatile and semi-volatile organic compounds out of the more than 300 which have been reported in indoor air were investigated. Water vapor was included for comparison. The results indicate that there is a potential for the formation of clusters of organic compounds around the 218 PoO 2 + ion. The compounds with the greatest potential for cluster formation are the volatile oxidized hydrocarbons (e.g., n-butanol, phenol, hexanal, nonanal, benzaldehyde, the ketones and the acetates) and the semi-volatile organic compounds (pentachlorophenol, nicotine, chlordane, chlorpyrifos)

  20. Concentrations of indoor radon and thoron in cave-dwellings with discussions on risk estimation of lung cancer

    International Nuclear Information System (INIS)

    Sun Quanfu; Hou Changsong; Zhang Shouzhi; Nie Xiaoqian; Shang Bing

    2005-01-01

    Objective: To explore a residential area with elevated indoor radon exposure for conducting epidemiological studies on indoor radon and lung cancer. Methods: Two hundred and two cave-dwellings (CD) including loess CD, brick CD, stone CD, and ordinary house in twenty villages were selected from Yan'an and Lvliang in the Chinese loess plateau. Indoor levels of thoron and its progeny as well as radon were measured with passive radon-thoron discriminative detectors and thoron progeny deposition rate devices. The exposure period covered from August 2001 through August 2002. Results: Loess CD was one of the most common type of dwelling caves in both areas. The indoor radon concentrations in loess CD ranged from 17 to 179 Bq/m 3 ; thoron varied sub-stantially depending upon the distance from the device to the wall, ranged from 10 to 760 Bq/m 3 . Geometric means of indoor radon, thoron and thoron's progeny (EEC Tn ) of loess caves in Yan'an area were estimated to be 71, 185 and 2.2 Bq/m 3 , respectively, and the corresponding figures were 73, 145 and 116 Bq/m 3 in Lvliang area. Possible contamination of thoron on radon measurement in a previous case-control study on lung caner was discussed. The study revealed that the indoor air pollution in Yan'an area was slight compared with that in Lvliang area. Migration was very low. Eighty-six percent of the investigated persons have had no migration in Yan'an area, and 90 percent of the cave-dwellings where the subjects once resided were available to our measurements. Two million people have been living in cave-dwellings over several generations. Conclusion: The investigated cave-dwelling area in Yan'an is suitable for conducting epidemiological study on residential thoron and radon exposure and lung cancer.(authors)

  1. Radon concentration in indoor occupational environments in Aomori Prefecture, Japan

    International Nuclear Information System (INIS)

    Iyogi, T.; Ueda, S.; Hisamatsu, S.; Kondo, K.; Sakurai, N.; Inaba, J.

    2003-01-01

    The 222 Rn concentrations in indoor workplaces were measured in Aomori Prefecture, Japan, and the results are reported here. This survey was part of a program to measure background natural radiation dose rate in the prefecture where the first Japanese nuclear fuel cycling facilities are now under construction. The survey of the 222 Rn concentrations in indoor workplaces was carried out at 107 locations from 1996 to 1998. The 222 Rn concentrations were measured for approximately one year at each site with passive Rn detectors, which used a polycarbonate film for counting α-rays and could separate concentrations of 222 Rn from 220 Rn. Weeklong measurements of 222 Rn concentration and working level were carried out with active detectors to get the ratio of 222 Rn concentration during working hours to non-working hours as well as equilibrium factors in selected locations. Diurnal variation of 222 Rn concentration depended on building structure, air-conditioning, time of day and day of the week (week days or weekend). The 222 Rn concentration during working hours was generally lower than that in non-working hours. Although the annual average 222 Rn concentration in indoor occupational environments was higher than that in dwellings, radiation dose for Aomori Prefecture residents from Rn in the former was 14% of the total indoor dose by Rn because of the lower concentration in working hours and lower occupancy factor

  2. Impact of ventilation systems and energy savings in a building on the mechanisms governing the indoor radon activity concentration.

    Science.gov (United States)

    Collignan, Bernard; Powaga, Emilie

    2017-11-23

    For a given radon potential in the ground and a given building, the parameters affecting the indoor radon activity concentration (IRnAC) are indoor depressurization of a building and its air change rate. These parameters depend mainly on the building characteristics, such as airtightness, and on the nature and performances of the ventilation system. This study involves a numerical sensitivity assessment of the indoor environmental conditions on the IRnAC in buildings. A numerical ventilation model has been adapted to take into account the effects of variations in the indoor environmental conditions (depressurization and air change rate) on the radon entry rate and on the IRnAC. In the context of the development of a policy to reduce energy consumption in a building, the results obtained showed that IRnAC could be strongly affected by variations in the air permeability of the building associated with the ventilation regime. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Radon in the indoor of habitable and workable zones in the Estado de Mexico

    International Nuclear Information System (INIS)

    Pena, P.; Segovia, N.; Gaso, M.I.; Ponciano, G.

    2003-01-01

    The levels of the radon concentration and of suspended particles in the air of the indoor house-room and of laboratories, like part of a study related with the impact of the components of the tobacco smoke in the health of the active and passive smokers. The measures of the radon concentration were carried out with Honeywell A9000A systems and the fluctuations in the concentration and particle size they were determined with a Personal Measurer for the Data Acquisition of Particles in Real Time. The average value of the radon concentration inside the house-room was of 40 Bq m -3 , observing frequently radon peaks superior to 148 Bq m -3 . In the offices and laboratories, especially in those with little ventilation, the radon gas concentration showed superior values to the internationally established limits. The average value in 24 hours, of the particles (PM 10 ) inside the houses of smokers it was of 0. 751 ± 0.420 mg m -3 , being reached concentrations so high as 1. 6 mg m -3 , which is an order of superior magnitude to the maximum permissible limit of PM 10 (0.150 mg m -3 ), settled down by the Mexican Legislation. (Author)

  4. A study on the indoor radon concentrations in hospitals in the Shillong region, Meghalaya

    International Nuclear Information System (INIS)

    Sharma, Yubaraj; Maibam, Deveshwori; Saxena, Atul; Ram, Priya P.; Walia, Devesh

    2015-01-01

    In this paper, we report our findings on radon survey in indoor environment which consists of around 105 rooms in 8 major hospitals in Shillong region and also present experimental estimates on the associated annual effective doses and life-time fatality risks. The survey has been undertaken using LR-115 Type 2 detectors. Radon activity concentration values were found to range from 65.66 Bq.m -3 to 783.77 Bq.m -3 with an arithmetic mean value of 260.4±138.3 Bq.m -3 and a geometric mean value of 228.4±1.67 Bq.m -3 . Distribution analysis of the radon activity concentration measured at the hospital rooms has been carried out. Of the total rooms surveyed, 60% have radon concentration more than the ICRP prescribed lower limit of 200 Bq.m -3 and about 4% of the rooms higher than the upper limit of 600 Bq.m -3 . Floor-wise study has been done and a decrease in radon concentration with increase in floor-number has been observed. (author)

  5. Lung cancer attributable to indoor radon exposure in France using different risk models

    International Nuclear Information System (INIS)

    Catelinois, O.C.; Laurier, D.L.; Rogel, A.R.; Billon, S.B.; Tirmarche, M.T.; Hemon, Dh.; Verger, P.V.

    2006-01-01

    Full text of publication follows: Radon exposure is omnipresent for the general public, but at variable levels, because radon mainly comes from granitic and volcanic subs oils as well as from certain construction materials. Inhalation of radon is the main source of exposure to radioactivity in the general population of most countries. In 1988, the International Agency for Research on Cancer declared radon to be carcinogenic for humans (lung cancer): radon is classed in the group 1. The exposure of the overall general population to a carcinogenic component led scientists to assess the lung cancer risk associated to indoor radon. The aim of this work is to provide the first lung cancer risk assessment associated with indoor radon exposure in France, using all available epidemiological results and performing an uncertainty analysis. The number of lung cancer deaths potentially associated with radon in houses is estimated for the year 1999 according to several dose-response relationships which come from either cohorts of miners or joint analysis of residential case-controls studies. The variability of indoor radon exposure in France and uncertainties related to each of the dose-response relationships are considered. The assessment of lung cancer risk associated with domestic radon exposure considers 10 dose-response relationships resulting from miners cohorts and case-control studies in the general population. A critical review of available data on smoking habits has been performed and allowed to consider the interaction between radon and tobacco. The exposure data come from measurements campaigns carried out since the beginning of the 1980's by the Institute for Radiation protection and Nuclear Safety and the Health General Directory in France. The French lung cancer mortality data are provided by the INSERM. Estimates of the number of attributable cancers are carried out for the whole country, stratified by 8 large regions and b y 96 departments for the year 1999

  6. A study of radon indoor concentration; Un estudio de concentracion de radon intramuros

    Energy Technology Data Exchange (ETDEWEB)

    Pena, P.; Ruiz, W.; Segovia, N.; Ponciano, G. [ININ, Gerencia de Ciencias Ambientales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    It was realized a study of radon concentration in houses of Mexico City and in a laboratory of the Nuclear Centre of Salazar, State of Mexico. The radon determination in air was realized with solid nuclear track detectors and with Honeywell and Alpha guard automatic equipment. The results show that the majority of houses have values under 148 Bq/m{sup 3} obtaining some housings with upper values located in the Lomas zone. A study in smokers houses and another of controls showed very similar distributions. It was studied the day time fluctuations finding that radon increases considerably during the dawn. Some upper values obtained in a laboratory of the Nuclear Centre were remedied with ventilation. (Author)

  7. A study of indoor radon in greenhouses in Mexico City, Mexico

    International Nuclear Information System (INIS)

    Guillermo Espinosa; Allan Chavarria; Jose-Ignacio Golzarri

    2013-01-01

    Enclosed spaces in contact with soil, the main source of radon, like greenhouses have potentially high radon ( 222 Rn) concentrations. Greenhouses are frequented by visitors and also are workplaces. The study of radon concentrations in greenhouses is, thus, a relevant concern for public health and environmental radiation authorities. For this study, the radon concentrations in 12 greenhouses in different locations within Mexico City were measured using nuclear track methodology. The detectors used for the study consisted of the well-known closed-end cup device, with CR-39 Lantrack R as detector material. The measurements were carried out over a period of one year, divided into four three-month sub-periods. The lowest and highest annual mean radon concentrations found in individual greenhouses were 17.0 and 45.1 Bq/m 3 , respectively. The annual mean averaged over all 12 greenhouses was 27.3 Bq/m 3 . No significant seasonal variation was observed. Using the highest annual mean radon concentration found in an individual greenhouse, and an equilibrium factor of 0.4, the effective dose from 222 Rn and its progenies was calculated to be 339.9 nSv/h. This corresponds to an annual dose rate of 679.8 μSv/y (0.057 WLM/y) for a worker spending 4 h a day, 5 days a week, 50 weeks a year, inside the greenhouse. For a visitor spending 12 h a year inside the greenhouse the annual dose is 2.469 μSv/y. The study of indoor radon concentrations in closed buildings such as greenhouses, which are both workplaces and open to visitors, is an important public health consideration. (author)

  8. Cost effectiveness analysis of indoor radon control measures

    International Nuclear Information System (INIS)

    Fujimoto, Kenzo

    1989-01-01

    The problem of radon 222 in buildings as a contributor to radiation exposure is described. Five different control methods and the dose reductions that would result from each are analysed. The annualized cost for each control measure was evaluated and the cost effectiveness of each control measure was calculated on the basis of dollars per person-sievert dose reduction. The use of unipolar ion generators for particle removal appears to be the most cost effective and the use of ceiling fans to increase air circulation the least cost effective. 3 figs., 1 tab

  9. Indoor radon concentration measurements in Tarqumia Girl Schools at Western Hebron Region, Palestine

    International Nuclear Information System (INIS)

    Dabyneh, K.M.

    2006-01-01

    In this study, radon-222 in indoor air was surveyed in 62 rooms located in four governmental schools, for girls, in Tarqumia town that lies in the north western part of Hebron city in Palestine. The annual effective dose equivalents resulting from the inhalation of radon and its daughters by 2318 pupils and 102 staff members occupying the surveyed rooms were also measured. TASTRAK, a solid state nuclear track detector, has been used to measure the indoor radon concentrations at those schools thus, 124 radon detectors were distributed in the four school buildings. The radon detectors stayed for 70 days between February 2006 and April 2006. The results showed that the radon concentration and the annual effective dose equivalent in these schools were varied from 12 to 232.5 Bq/m 3 with an average of 34.1 Bq/m 3 and 0.62 to 12.0 mSv/y with an average of 1.76 mSv/y, respectively. The mean values of radon concentrations in Tarqumia secondary girls school, Al-aqsa elementary girls school, Umsalama elementary girls school and Tarqumia elementary girls school were 35.8, 26.7, 25.9 and 47.8 Bq/m 3 , respectively, and the mean values of the annual effective dose equivalent for the above mentioned were 1.85, 1.38, 1.34 and 2.47 mSv/y, respectively. It has been found from these results that, most of the values were of nominal state values (that is less than the allowed global values) and in few places, the concentration was higher than the allowed global values, therefore, the annual effective dose higher than annual global level values (1.3 mSv/y) was resulted. Poor ventilation and old buildings were, most mobility, the main cause of these high radon concentrations. Improving ventilation of these places will increase air exchange rates with the out side, thereby resulting in reduced concentration. In general, the results showed that protection against radiological hazards would not be necessary for pupils and staff members occupying the rooms of the investigated schools

  10. Indoor radon measurements in the dwellings of Kangra District of Himachal Pradesh, India, using LR-115 nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Dhiman, M. [Punjab Technical University (India); Mehra, R. [Department of Physics, Dr. B.R. Ambedkar National Institute of Technology (India); Tyagi, A.K. [Department of Applied Sciences, Shaheed Bhagat Singh College of Engineering and Technology (India)

    2014-07-01

    Study of indoor radon was carried out in the domestic environment of 15 villages of Kangra district of Himachal Pradesh, India. Time integrated track etch technique has been used for the measurement of indoor radon levels. Bare cellulose nitrate LR-115 type II films have been used as detectors in the survey of indoor radon for four seasons of three months each covering a period of one year from March 2012 to March 2013. The houses were chosen randomly in such a way that the dwellings constructed with different types of building materials such as soil, bricks, cement, marble, concrete, wood in different localities of the village are covered. It has been found that indoor radon concentration depends upon the type of house, ventilation condition etc. The calibration constant of 1 track cm{sup -2} day{sup -1} which is equal to 50 Bqm{sup -3} has been used to express radon concentration in Bqm{sup -3}. The conversion factors have been used to calculate the exposure (an exposure of an individual to radon progeny of 1 WLM is equivalent to 3.54 mJ h m{sup -3}), the annual effective dose (1 WLM=3.88 mSv) and the lifetime fatality risk (3 x 10{sup -4} WLM). Indoor radon concentrations were found to vary from 132.25 Bqm{sup -3} to 449.75 Bqm{sup -3} with an average value of 261.40 Bqm{sup -3}. Annual effective dose in these dwellings were found to vary form 2.78 mSv to 7.68 mSv with an average value of 4.5 mSv. The average radon concentration in dwellings in most of the villages falls in the action level (200-600 Bqm{sup -3}) recommended by International Commission on Radiological Protection. Document available in abstract form only. (authors)

  11. Uranium in soil and gamma dose rate as proxies for the indoor radon risk: situation in Belgium

    International Nuclear Information System (INIS)

    Tondeur, F.; Cinelli, G.; Dehandschutter, B.

    2017-01-01

    Radon risk maps are usually based either on indoor radon data, or on measurements of soil gas radon and soil permeability. If these data are not available or not sufficient, it was suggested that other data could be used as an approximate substitute (a proxy) to the missing information, like the concentration of 238 U or 226 Ra in soils or the terrestrial gamma dose rate (TGDR). We examine here the correlation between airborne measurements of soil U and indoor radon, and between airborne U and TGDR, and their link with affected/unaffected areas. No clear correlation is found between airborne U and affected areas, as strongly affected areas are not characterised by a higher U level. Only the moderately affected area of Condroz can be connected to a higher U level, related to a few U anomalies. TGDR shows a rather good correlation with airborne U, but its relation with radon risk is less clear. Soil uranium and TGDR may help to screen out areas with very low U and very low TGDR, which have a low indoor radon risk, but they cannot be considered as good proxies for predicting radon-affected areas in Belgium. (authors)

  12. Predictions of lung cancer based on county averages for indoor radon versus the historic incidence of regional lung cancer

    International Nuclear Information System (INIS)

    Mose, D.G.; Chrosniak, C.E.; Mushrush, G.W.

    1992-01-01

    After a decade of effort to determine the health risk associated with indoor radon, the efforts of the US Environmental Protection Agency have prevailed in the US, and 4 pCi/1 is commonly used as an Action Level. Proposals by other groups supporting lower or higher Action Levels have failed, largely due to paucity of information supporting any particular level of indoor radon. The authors' studies have compared indoor radon for zip code and county size areas with parameters such as geology, precipitation and home construction. Their attempts to verify the relative levels of lung cancer using US-EPA estimates of radon-vs-cancer have not been supportive of the EPA risk estimates. In general, when they compare the number of lung cancer cases in particular geological or geographical areas with the indoor radon levels in that area, they find the EPA predicted number of lung cancer cases to exceed the total number of lung cancer cases from all causes. Comparisons show a correlation between the incidence of lung cancer and indoor radon, but the level of risk is about 1/10 that proposed by the US-EPA. Evidently the assumptions used in their studies are flawed. Even though they find lower risk estimates using many counties in several states, fundamental flaws must be present in this type of investigation. Care must be taken in presenting health risks to the general population in cases, such as in indoor radon, where field data do not support risk estimates obtained by other means

  13. Comparative Measurements of Indoor Radon in Homes and Floating Houses

    International Nuclear Information System (INIS)

    Changmuang, Wirote; Tantawiroon, Malulee; Polphong, Pornsri

    2003-06-01

    A survey of the radon ( 222 Rn) concentrations in 318 homes and 152 floating houses (1410 samples) in Phitsanulok province, using a passive 222 Rn charcoal canister and measurement by gamma spectrometry. Floating houses showed significant lower mean levels (8.22 Bqm -3 ) than homes (21.56 Bqm -3 ) (p 222 Rn concentrations indicated that concrete homes had a higher level than wooden homes and homes lying on ground had a higher level than those built at 1 meter or more above ground. The estimated annual mean effective dose equivalent 0.35 mSvy -1 and the annual lung dose equivalent of 5.94 mSvy -1 were only one-third of the world mean estimates

  14. Health effects of exposure to indoor radon and its decay products

    International Nuclear Information System (INIS)

    Mustafa, A.A.; Vasisht, C.M.

    1987-01-01

    Estimates of possible incidence of lung cancer associated with present exposure to natural indoor radon are assessed for Kuwait. Several dosimetric models were used and their results are compared. Some models took into consideration individual differences in sex, life-style and age. The UNSCEAR model gives life-time risk values of 2-4.5 x 10 -4 per WLM for miners. Taking into account a factor of 0.6 between the mean breathing rate of workers in the model and non-miners, and the population of Kuwait as 1.7 million, the model gives 46-105 lung cancer cases per year induced by radon and its decay products. Since these models are developed for smokers they tend to overestimate the actual incidence rates. Assuming that 20% of the population in Kuwait are smokers, the incidence rates range will be reduced to 30-63 cases per year which is about 9-20% of the observed lung cancer incidence in 1982. The energy conservation programme is expected to increase average indoor radon concentrations, and consequently bring about higher lung cancer incidence. (author)

  15. Variations of radon volume activities in soil and indoor air and their correlation

    International Nuclear Information System (INIS)

    Mojzes, A.

    1998-01-01

    Some manual measurements of volume activity of 222 Rn ai soil air and in indoor air of building together with parallel measurements of some meteorological parameters (temperature, humidity and pressure) of both atmospheric and indoor air were carried out. The measurements were performed in the building of Faculty and in its subsoil which consists of slope loams of the base of SW slopes of granitic Male Karpaty Mountains in the area of confluence of the Vidrica Creek with an arm of the Donau river. The monitoring measurements lasted form more than one and a half year, from January 1977 to August 1998, with the frequency of approximately once a week in each object. The soil air was taken from a permanently set up and sealed pipe from the depth of 0.8 m which was placed approximately 10 m from the building at the open air. All measurements of 222 Rn volume activities were performed with a portable fully automatic scintillation detector based on exchangeable Lucas cells. There were also performed the parallel measurements of some meteorological parameters (temperature, humidity and pressure) of air in each object. The geological basement of building is a source of indoor radon. The volume activities of soil 222 Rn range from about 2 kBq/m 3 to about 20 kBq/m 3 with the average of 9.26 kBq/m 3 and the standard deviation of 2.95 kBq/m 3 . The volume activities of indoor air in basement room were form 150 Bq/m 3 to 225 Bq/m 3 and on the third story they were from 125 Bq/m 3 to 175 Bq/m 3 (approximately). The results of monitoring measurements during 20 months period point out the intensity of interaction of geological substrate with building interior through the values of the volume activity of 222 Rn. Therefore a method of building foundation is one of the most important factors which determines the quantity of radon in indoor air. In the light of quality, the fluctuation of radon presence in the bottom part of the buildings is strongly determined by the variations of

  16. Indoor radon concentrations in the coastal and central regions of Montenegro

    International Nuclear Information System (INIS)

    Vukotic, Perko; Antovic, Nevenka; Svrkota, Ranko

    2008-01-01

    This paper presents the results of the first systematic indoor radon survey in Montenegro, in 10 municipalities of its coastal and central regions. In rural areas one home was randomly selected in each 5 x 5 km square of a regular grid covering the territory of Montenegro, while in urban areas the basic grid was subdivided into 0.5 x 0.5 km squares, and in each of them one building was selected and one dwelling within the building. In each of these 434 homes, radon measurements were performed twice a year, using passive dosimeters placed in the living room or bedroom on the ground floor or the first floor. The CR-39 nuclear track detectors were exposed each time for about six months. The annual average radon concentrations in the surveyed homes are found to be log normally distributed (GM = 49.6 Bq m -3 , GSD 3.2) within the range 2-2,208 Bq m -3 . Their arithmetic mean is 105 Bq m -3 and median 41.4 Bq m -3 . Radon concentrations above the action level of 400 Bq m -3 are detected in 5.6% of the surveyed homes. Most of these 24 homes are detached single-family houses, and the majority are rural. Radon concentrations were generally higher in detached family houses than in apartment buildings, in older than in newer houses, and higher in rural than in urban homes. As to the domestic radon exposure, this survey indicates reinforced concrete as the most favorable and stones as the most unfavorable of the building materials commonly used in Montenegro. The lowest average effective dose is in urban homes on the Montenegrin Coast (0.80 mSv y -1 ), while the highest is in the rural area of the Niksic municipality (7.31 mSv y - 1 ) , which is abundant in bauxite deposits. (author)

  17. Variability of radon and thoron equilibrium factors in indoor environment of Garhwal Himalaya

    International Nuclear Information System (INIS)

    Prasad, Mukesh; Rawat, Mukesh; Dangwal, Anoop; Kandari, Tushar; Gusain, G.S.; Mishra, Rosaline; Ramola, R.C.

    2016-01-01

    The measurements of radon, thoron and their progeny concentrations have been carried out in the dwellings of Uttarkashi and Tehri districts of Garhwal Himalaya, India using LR-115 detector based pin-hole dosimeter and DRPS/DTPS techniques. The equilibrium factors for radon, thoron and their progeny were calculated by using the values measured with these techniques. The average values of equilibrium factor between radon and its progeny have been found to be 0.44, 0.39, 0.39 and 0.28 for rainy, autumn, winter and summer seasons, respectively. For thoron and its progeny, the average values of equilibrium factor have been found to be 0.04, 0.04, 0.04 and 0.03 for rainy, autumn, winter and summer seasons, respectively. The equilibrium factor between radon and its progeny has been found to be dependent on the seasonal changes. However, the equilibrium factor for thoron and progeny has been found to be same for rainy, autumn and winter seasons but slightly different for summer season. The annual average equilibrium factors for radon and thoron have been found to vary from 0.23 to 0.80 with an average of 0.42 and from 0.01 to 0.29 with an average of 0.07, respectively. The detailed discussion of the measurement techniques and the explanation for the results obtained is given in the paper. - Highlights: • Equilibrium factors for indoor radon, thoron and their progeny were measured. • Recently developed passive detector techniques were used for measurements. • The values of equilibrium factors are comparable with world's average values. • Equilibrium factor should be measured separately for individual dwelling. • Separate values of equilibrium factors are useful to produce actual radiation dose.

  18. The measurement of 222Rn and its relationship to environmental variables: Factors controlling indoor radon: Final report for the contract period June 1, 1982 to August 31, 1986

    International Nuclear Information System (INIS)

    Harley, N.H.

    1986-01-01

    The report summarizes a project in which a new detector for measuring ''radon only'' was designed and built. The units built were then used to measure hourly data indoors and outdoors in two locations to investigate the apportionment of the indoor radon source term

  19. Determination of Radon-222 and Thoron Concentration in Decorative Stone Warehouses Indoor Air and the Received Effective Dose by Staff

    Directory of Open Access Journals (Sweden)

    Amir Hossein Mahvi

    2015-06-01

    Full Text Available Background: Radon is a colorless, odorless, and radioactive gas that can be emitted from decorative stones such as granite, marble, etc. Inhaling radon gas in a long period may cause for incidence of lung cancer among peoples. Material and Methods: In this cross-sectional descriptive study, Radon 222 and Thoron concentrations in background and indoor air were measured in four decorative stones warehouse using portable radon meter(RTM1688-2 model. Totally, 24 samples of 24- hours concentrations in indoor air and 24 samples of 4-hours concentrations of Radon 222 and thoron in the background air at three stages were measured. Then, received effective dose of Radon 222 and Thoron was calculated by UNSCEAR equations. Results: The mean radon concentrations for indoor and background air were 74±37 and 34±16 Bq/m3, respectively. The mean radon concentrations for indoor air in decorative stones warehouses for DSW1, DSW2, DSW3 and DSW4 were 72.50±34, 98.25±43, 34.42±18 and 88.92±51 Bq/m3, respectively. The received effective dose mean of Radon 222 and Thoron by the staff at 8 working hours was 0.53±0.18 and 0.05±0.03 mSv/y and in 16 working hours was 1.05±0.36 and 0.11±0.07 mSv/y, respectively. Generally, the mean received effective dose by staff from Radon at 8 and 16 working hours was 0.58±0.2  and 1.16±0.41 mSv/y, respectively. Conclusions: Radon concentration mean in indoor air and the received effective dose mean by staff was lower than the standards level. Decorative stone warehouses were the resources for accumulation of Radon gas that can be reduced by corrective actions.

  20. Some results from the demonstration of indoor radon reduction measures in block basement houses

    International Nuclear Information System (INIS)

    Henschel, D.B.; Scott, A.G.

    1989-01-01

    Active soil ventilation techniques have been tested in 26 block-wall basement houses in eastern Pennsylvania with significantly elevated indoor radon concentrations, generally above 740 Bq/m 3 , and the results indicate that radon levels can be reduced substantially often below the U.S. Environmental Protection Agency (EPA) guideline of 148 Bq/m 3 , if effective suction can be drawn on the soil underneath the concrete slabs of these houses. Such effective suction appears achievable when either: (1) the house has a complete loop of drain tile around its footings for water drainage purposes, and suction is drawn on that loop; or (2) a sufficient number of suction pipes can be inserted at the proper locations into the crushed rock or the soil underneath the slab

  1. Effect of local geology on indoor radon levels: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, A.R.; Gammage, R.B.; Dudney, C.S.

    1984-01-01

    This paper presents the results of radon monitoring in 40 East Tennessee homes that were a component of a larger study to evaluate indoor air quality. Measurements were conducted during two 3-month time periods with passive integrating track etch monitors in each of the forty homes. In a subset of homes, measurements were also conducted with a real-time monitor that provided readings on an hourly basis. The results of the monitoring indicate that about 30% of the homes had radon levels were associated with local variations in geology; most of the homes having higher levels were located on the porous dolomite ridge partially surrounding Oak Ridge, Tennessee. 7 references, 3 figures, 2 tables.

  2. Effect of local geology on indoor radon levels: a case study

    International Nuclear Information System (INIS)

    Hawthorne, A.R.; Gammage, R.B.; Dudney, C.S.

    1984-01-01

    This paper presents the results of radon monitoring in 40 East Tennessee homes that were a component of a larger study to evaluate indoor air quality. Measurements were conducted during two 3-month time periods with passive integrating track etch monitors in each of the forty homes. In a subset of homes, measurements were also conducted with a real-time monitor that provided readings on an hourly basis. The results of the monitoring indicate that about 30% of the homes had radon levels were associated with local variations in geology; most of the homes having higher levels were located on the porous dolomite ridge partially surrounding Oak Ridge, Tennessee. 7 references, 3 figures, 2 tables

  3. Influence of environmental factors on indoor radon concentration levels in the basement and ground floor of a building – A case study

    International Nuclear Information System (INIS)

    Xie, Dong; Liao, Maili; Kearfott, Kimberlee J.

    2015-01-01

    A series of experiments was conducted to measure indoor radon concentrations variations and observe any correlations with indoor and outdoor atmospheric parameters for over a period of one year. Indoor environmental parameters and radon concentrations were measured on an hourly basis in a two-story building both in a laboratory on the well-ventilated ground floor and in the basement below it which had negligible ventilation. The monthly average indoor radon concentration value of 29 ± 21 Bq m"−"3 in the laboratory was below the ICRP recommended limit of 200–300 Bq m"−"3. The monthly normalization factor for that location ranged from 0.5 to 2.0, while the seasonal normalization factor ranged from 0.78 to 2.0. In the unventilated basement, however, the average monthly indoor radon concentration was 1083 ± 6 Bq m"−"3 with little seasonal variation. The basement is only used for storage and thus the elevated radon concentration does not pose a serious health risk. The results indicated that indoor radon levels are higher in the autumn–winter season than in the spring–summer season. Analysis further showed that indoor radon concentrations negatively correlated with indoor humidity (correlation coefficient R = −0.14, p < 0.01), outdoor temperature (correlation coefficient R = −0.3, p < 0.01), outdoor dew point temperature (correlation coefficient R = −0.17, p < 0.01) and outdoor wind speeds (correlation coefficient R = −0.25, p < 0.05). Radon concentrations correlated positively with outdoor barometric pressure (correlation coefficient R = 0.35, p < 0.01), indoor–outdoor temperature difference (correlation coefficient R = 0.32, p < 0.05) and indoor–outdoor barometric pressure difference (correlation coefficient R = 0.67, p < 0.01). Indoor temperature, indoor barometric pressure and outdoor wind direction showed no clear correlations with indoor radon concentration. - Highlights: • Environmental variables and

  4. Evaluation of room air cleaners for the reduction of exposure and dose to indoor radon progeny

    International Nuclear Information System (INIS)

    Hopke, P.K.; Jensen, B.; Wasiolek, P.

    1994-01-01

    Since the proximate source of dose to the cells of the bronchial epithelium is the deposited radon progeny, the exposure and resulting dose could be reduced if the radon decay products were effectively removed from the indoor atmosphere. Thus, room air cleaners could be effective in reducing the risks associated with indoor radon. However, because of the short half-life of 218 Po, it grows back quickly and in the altered aerosol conditions that are produced by the presence of an air cleaner, the exposure/dose conditions as well as the magnitude of the dose can be substantially changed. To examine the nature of the exposure of individuals in normally occupied homes and to determine the effect of various types of room air cleaners on the exposure to and dose from the indoor radon progeny, a series of measurements have been made using an automated graded screen array system. Two extended experiments were performed in homes in Arnprior, Ontario and Parishville, NY, in which filtration systems, a positive ion electrostatic precipitator, and ioniser/fan systems have been tested for their ability to remove both airborne radioactivity and particles. In both experiments, measurements were made over one week periods with an air cleaner operating and the distributions of exposure are compared with measurements of the background conditions when no cleaner is functioning. The doses to both basal and secretory cells of the bronchial epithelium in the first eight generations of the bronchus were calculated using the model developed by James and their distributions are compared among the various exposure conditions. In most cases the presence of the air cleaner reduced the exposure to radon progeny. However, the reductions in dose were generally substantially smaller than the reductions in exposure. In the intercomparisons of the two filtration units and the two identical ioniser/fan systems, the units generally behaved in a similar manner. The results of this substantial set of

  5. Measurement of the size distributions of radon progeny in indoor air

    International Nuclear Information System (INIS)

    Hopke, P.K.; Ramamurthi, M.; Li, C.S.

    1990-01-01

    A major problem in evaluating the health risk posed by airborne radon progeny in indoor atmospheres is the lack of available information on the activity-weighted size distributions that occur in the domestic environment. With an automated, semicontinuous, graded screen array system, we made a series of measurements of activity-weighted size distributions in several houses in the northeastern United States. Measurements were made in an unoccupied house, in which human aerosol-generating activities were simulated. The time evolution of the aerosol size distribution was measured in each situation. Results of these measurements are presented

  6. Study of epidemiological risk of lung cancer in Mexico due indoor radon exposure

    Science.gov (United States)

    Ángeles, A.; Espinosa, G.

    2014-07-01

    In this work the lifetime relative risks (LRR) of lung cancer due to exposure to indoor 222Rn on the Mexican population is calculated. Cigarette smoking is the number one risk factor for lung cancer (LC), because that, to calculate the number of cases of LC due to exposure to 222Rn is necessary considers the number of cases of LC for smoking cigarette. The lung cancer mortality rates published by the "Secretaría de Salud" (SSA), the mexican population data published by the "Consejo Nacional de Población" (CONAPO), smoking data in the mexican population, published by the "Comisión Nacional Contra las Adicciones" (CONADIC), the "Organización Panamericana de la Salud" (OPS) and indoor 222Rn concentrations in Mexico published in several recent studies are used. To calculate the lifetime relative risks (LRR) for different segments of the Mexican population, firstly the Excess Relative Risk (ERR) is calculated using the method developed by the BEIR VI committee and subsequently modified by the USEPA and published in the report "EPA Assessment of Risks from Radon in Homes". The excess relative risks were then used to calculate the corresponding lifetime relative risks, again using the method developed by the BEIR VI committee. The lifetime relative risks for Mexican male and female eversmokers and Mexican male and female never-smokers were calculated for radon concentrations spanning the range found in recent studies of indoor radon concentrations in Mexico. The lifetime relative risks of lung cancer induced by lifetime exposure to the mexican average indoor radon concentration were estimated to be 1.44 and 1.40 for never-smokers mexican females and males respectively, and 1.19 and 1.17 for ever-smokers Mexican females and males respectively. The Mexican population LRR values obtained in relation to the USA and Canada LRR published values in ever-smokers for both gender are similar with differences less than 4%, in case of never-smokers in relation with Canada

  7. Methods and measurements of indoor levels of radon and its daughter products

    International Nuclear Information System (INIS)

    Subba Ramu, M.C.; Muraleedharan, T.S.; Ramachandran, T.V.; Shaikh, G.N.

    1988-01-01

    General population is exposed, some times, to enhanced levels of radon (Rn) and its progeny concontrations in the indoor environment of dwellings, depending on various parameters like type of construction, location and ventilation features of the dwelling as well as on the occupancy factor. The risk involved in the indoor Rn exposure is briefly discussed in this report. Several methods are available for the measurement of Rn and its daughters in dwellings. This report describes in detail some of the suitable and convenient methods for the measurements. Methods for evluating ventilation rate in dwellings is also given. Grab sampling and time integrated measurements are described. The report also gives the results of some preliminary measurements carried out in some rooms and lecture halls of the Bhabha Atomic Research Centre, Bombay. The results are discussed and conclusions drawn with particular reference to a country-wide survey of Rn exposure. (author)

  8. Variation of annual effective dose due to radon level in indoor air in Marwar region of Rajasthan, India

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Asha, E-mail: ashasachdeva78@gmail.com [Department of Applied Science, Ferozepur College of Engineering and Technology, Farozshah, Ferozepur-142052, Punjab (India); Mittal, Sudhir, E-mail: sudhirmittal03@gmail.com [Department of Applied Sciences, Punjab Technical University, Jalandhar-144601, Punjab (India); Mehra, Rohit [Department of Physics, Dr. B.R.Ambedkar National Institute of Technology, Jalandhar-144011 (India)

    2015-08-28

    In the present work, indoor radon and thoron measurements have been carried out from different locations of Jodhpur and Nagaur districts of Northern Rajasthan, India using RAD7, a solid state alpha detector. The radon and thoron concentration in indoor air varies from 8.75 to 61.25 Bq m{sup −3} and 32.7 to 147.2 Bq m{sup −3} with the mean value of 32 and 73 Bq m{sup −3} respectively. The observed indoor radon concentration values are well below the action level recommended by International Commission on Radiological Protection (200-300 Bq m{sup −3}) and Environmental Protection Agency (148 Bq m{sup −3}). The survey reveals that the thoron concentration values in the indoor air are well within the International Commission on Radiological Protection (2005). The calculated total annual effective dose due to radon level in indoor air varies from 0.22 to 1.54 mSv y{sup −1} with the mean value of 0.81 mSv y{sup −1} which is less than even the lower limit of action level 3-10 mSv y{sup −1} recommended by International Commission on Radiological Protection (2005)

  9. Seasonal behavior of radon decay products in indoor air and resulting radiation dose to human respiratory tract

    Directory of Open Access Journals (Sweden)

    A.M.A. Mostafa

    2015-01-01

    Full Text Available Most of radiation hazard of indoor radon is largely due to the radon progenies, which are inhaled and deposited in the human respiratory tract. It is essential to evaluate aerodynamic characteristics of the radon progenies, which are either attached or unattached to aerosol particles, because the dose is strongly dependent on the location of deposition in respiratory tract and hence on the aerodynamic characteristics of the aerosol particles. This paper presents the seasonal behavior of radon decay products in indoor air under domestic conditions at Nagoya University, Japan. A low pressure cascade impactor as an instrument for classifying aerosol sizes and imaging plate as a radiation detector have been employed to characterize the activity size distribution of short-lived radon decay products. In parallel, radon and its progenies concentrations were measured. Taking into account the progeny characteristics, the inhalation dose in the different seasons was also estimated based on a lung dose model with the structure that is related to the ICRP66 respiratory tract model. The result evident that, the highest dose 0.22 mSvy−1 was observed during the winter where the highest value of equilibrium equivalent concentration of radon (EEC and lowest value of the activity median aerodynamic diameter (AMAD were found in this season; whereas, the dose in spring appeared to be lowest 0.02 mSvy−1.

  10. Radon measurement and its risk in the development of lung cancer in indoor spaces at the historical center of Quito, Ecuador

    International Nuclear Information System (INIS)

    Suarez, Omar

    2006-01-01

    In Ecuador, as in other countries around the world, the presence of radon is eminent. This study compiles some information about the effects that radon has over human beings, its incidence in lung cancer and the methodologies used to determine radon. High concentrations of radon, superior to international limits have been found in indoor sites in the center of Quito and Cuenca Ecuador. (The author)

  11. Estimation of past radon exposure to indoor radon from embedded 210Po in household glass

    International Nuclear Information System (INIS)

    Gusain, G. S.; Rautela, B. S.; Ramola, R. C.

    2012-01-01

    In the present investigation, the surface-deposited polonium activities were measured in houses in the Ukhimath region of Garhwal Himalaya (India)). The surface-deposited 210 Po activity concentrations were found to vary from 0.7 to 15.40 Bq m -2 with an average of 5.95 Bq m -2 . The radon concentration estimated on the basis of 210 Po activity was found to vary from 0.29 to 700 Bq m -3 with an average value 242 Bq m -3 . The contemporary radon concentration in the area was found to vary from 13 to 181 Bq m -3 with an average of 46 Bq m -3 . The annual effective dose due to 210 Po activity in houses in the Garhwal Himalaya region was found to vary from 0.61 to 13.33 mSv with an average of 5.15 mSv. Some worldwide studies have shown the relation between the increased risk of lung cancer and smoking habits. Data on smoking have also been collected from the same dwellings. The significance of this work is also discussed in detail from a radiation protection point of view. (authors)

  12. Determination of indoor radon concentration levels and the associated annual effective dose rate in some Ghanaian dwellings

    International Nuclear Information System (INIS)

    Nsiah-Akoto, I.

    2010-01-01

    Radon and its decay products in indoor air are the main source of natural internal irradiation of man. In this present work, the indoor radon concentration, the annual exposure, the annual effective dose and the annual dose equivalent to the lung received by the population were estimated in the dwellings at Dome in the Ga-East District of the Greater Accra Region, Ghana using time-integrated passive radon detectors; LR-115 Type II solid state nuclear track detector (SSNTD) technique. The primary objective of this project was to assess the annual effective dose rate due to the indoor radon concentration levels and the associated level of risk. Measurements were carried out from December 2009 to March 2010. After the 3 months exposure, the detectors were subjected to chemical etching in a 2.5M analytical grade sodium hydroxide solution at (60 ±1) o C, for 90mins in a constant temperature water bath to enlarge the latent tracks produced by alpha particles from the decay of radon. The etched tracks were magnified using the microfiche reader and counted with a tally counter. The mean indoor radon concentration was found to be (466.9±1.2) Bqm -3 and the mean annual exposure was (2.03±0.08) WLM. Assuming an indoor occupancy factor of 0.4 and 0.4 for equilibrium factor for radon indoors, we found out that the mean Rn-222 effective dose rate and the annual equivalent dose rate to the lung in the present study dwellings was (14.13±0.22)mSvy -1 and (3.74 E-07 ±3.50 E-06)Svy -1 respectively. The mean values of radon concentrations at Dome, Kwabenya, Biakpa, and South-Eastern part of Ghana, Prestea and Kassena-Nakana District in the previous research ranged from (9.4±0.5) to (518.7±4.0) Bqm -3 . The mean annual exposure, annual effective dose rate and the annual equivalent for the previous work ranged from (0.04±0.03)WLM to (0.58±0.05)WLM, (0.28±0.08) to (15.54±0.69mSvy -1 ), (8.23E-12±4.33E-07) to (4.15E-07± 1.13E-04) respectively. Odds ratios (ORs) for lung

  13. Indoor air quality in public utility environments-a review.

    Science.gov (United States)

    Śmiełowska, Monika; Marć, Mariusz; Zabiegała, Bożena

    2017-04-01

    Indoor air quality has been the object of interest for scientists and specialists from the fields of science such as chemistry, medicine and ventilation system design. This results from a considerable number of potential factors, which may influence the quality of the broadly understood indoor air in a negative way. Poor quality of indoor air in various types of public utility buildings may significantly affect an increase in the incidence of various types of civilisation diseases. This paper presents information about a broad spectrum of chemical compounds that were identified and determined in the indoor environment of various types of public utility rooms such as churches, museums, libraries, temples and hospitals. An analysis of literature data allowed for identification of the most important transport paths of chemical compounds that significantly influence the quality of the indoor environment and thus the comfort of living and the health of persons staying in it.

  14. Indoor and outdoor Radon concentration measurements in Sivas, Turkey, in comparison with geological setting

    Energy Technology Data Exchange (ETDEWEB)

    Mihci, Metin [Iller Bankasi, Etud Plan ve Yol Dairesi, Opera, 06053 Ankara (Turkey); Buyuksarac, Aydin [Canakkale Onsekiz Mart University, Department of Geophysical Engineering, 17020, Canakkale (Turkey); Aydemir, Attila, E-mail: aydemir@tpao.gov.t [Turkiye Petrolleri A.O. Mustafa, Kemal Mah. 2. Cad. No: 86, 06100 Sogutozu, Ankara (Turkey); Celebi, Nilgun [Cekmece Nuclear Research and Training Centre (CNAEM), Cekmece, Istanbul (Turkey)

    2010-11-15

    Indoor and soil gas Radon ({sup 222}Rn) concentration measurements were accomplished in two stages in Sivas, a central eastern city in Turkey. In the first stage, CR-39 passive nuclear track detectors supplied by the Turkish Atomic Energy Authority (TAEA) were placed in the selected houses throughout Sivas centrum in two seasons; summer and winter. Before the setup of detectors, a detailed questionnaire form was distributed to the inhabitants of selected houses to investigate construction parameters and properties of the houses, and living conditions of inhabitants. Detectors were collected back two months later and analysed at TAEA laboratories to obtain indoor {sup 222}Rn gas concentration values. In the second stage, soil gas {sup 222}Rn measurements were performed using an alphameter near the selected houses for the indoor measurements. Although {sup 222}Rn concentrations in Sivas were quite low in relation with the allowable limits, they are higher than the average of Turkey. Indoor and soil gas {sup 222}Rn concentration distribution maps were prepared seperately and these maps were applied onto the surface geological map. In this way, both surveys were correlated with the each other and they were interpreted in comparison with the answers of questionnaire and the geological setting of the Sivas centrum and the vicinity.

  15. Life time fatality risk assessment due to variation of indoor radon concentration in dwellings in western Haryana, India

    International Nuclear Information System (INIS)

    Kansal, Sandeep; Mehra, Rohit; Singh, N.P.

    2012-01-01

    Indoor radon measurements in 60 dwellings belonging to 12 villages of Sirsa, Fatehbad and Hisar districts of western Haryana, India, have been carried out, using LR-115 type II cellulose nitrate films in the bare mode. The annual average indoor radon value in the studied area varies from 76.00 to 115.46 Bq m −3 , which is well within the recommended action level 200–300 Bq m −3 (). The winter/summer ratio of indoor radon ranges from 0.78 to 2.99 with an average of 1.52. The values of annual average dose received by the residents and Life time fatality risk assessment due to variation of indoor radon concentration in dwellings of studied area suggests that there is no significance threat to the human beings due to the presence of natural radon in the dwellings. - Highlights: ► The radon concentration values in the dwellings are 2–3 times more than the world average of 40 Bq m −3 . ► These values are lower than the recommended action level of 200–300 Bq m −3 (). ► The annual effective dose is less than the recommended action level of 3–10 mSv per year (). ► The values of life time fatality risk determined for the studied area are within safe standards. ► There is no significant threat to the human beings due to the presence of natural radon in the dwellings.

  16. A comparative study of indoor radon levels and inhalation dose in some areas of Punjab and Haryana, India

    International Nuclear Information System (INIS)

    Bajwa, B.S.; Singh, Harmanjit; Singh, Joga; Singh, Surinder

    2009-01-01

    Indoor radon concentrations have been measured for two consecutive half-year periods in a wide range of dwellings of some regions of Punjab and Haryana states. The objective was to find correlation between the variations of indoor radon levels with the sub-soil, local geology, type of building materials, etc. of the two regions. So keeping this in view the indoor radon measurements have been carried out in the dwellings of different villages around the Tusham ring complex, Bhiwani District, Haryana, known to be composed of acidic volcanics and the associated granites along with some villages of Amritsar District, Punjab. The indoor radon concentration in the dwellings around Tusham (Haryana) have been found to be varying from 120.5±95 to 915.2±233 Bq m -3 , whereas it ranges from 60.0±37 to 235.6±96 Bq m -3 for the dwellings of Punjab. The 222 Rn concentration observed at most of locations particularly around Tusham ring complex region is higher than that of all the villages studied in Punjab region. Local geology including embedded granitic rocks, sub-soil, etc. as well as building materials having higher radioactive content are the major contributors for the higher indoor radon levels observed in the dwelling around Tusham, where few dwellings have higher radon concentrations than the ICRP, 1993 recommendations. The annual effective dose equivalent has also been estimated for each location of the both regions, which has been found to be varying from 1.0 to 17.2 mSv/y. (author)

  17. Tempts to determine radon entry rate and air exchange rate variable in time from the time course of indoor radon concentration

    International Nuclear Information System (INIS)

    Thomas, J.

    1996-01-01

    For the study and explanation of the diurnal variability of the indoor radon concentration a(t) [Bq/m 3 ], which is proportional to the ratio of the radon entry rate A [Bq/h] and the air exchange rate k [1/h], it would be of advantage to know separately the diurnal variability of both determining quantities A(t) and k(t). To measure directly and continuously the radon entry rate A(t) is possible only in special studies (mostly in experimental rooms) and also continuous measuring of the air exchange rate k(t) is possible also only in special studies for a short time. But continuously measuring radon meters are now common, do not trouble people in normal living regime during day and night. The goal of this endeavour would be the evaluation of the time courses of both determining quantities from the time courses of the indoor radon concentration directly without additional experimental work and so a better utilisation of such measurements. (author)

  18. Improved predictive mapping of indoor radon concentrations using ensemble regression trees based on automatic clustering of geological units

    International Nuclear Information System (INIS)

    Kropat, Georg; Bochud, Francois; Jaboyedoff, Michel; Laedermann, Jean-Pascal; Murith, Christophe; Palacios, Martha; Baechler, Sébastien

    2015-01-01

    Purpose: According to estimations around 230 people die as a result of radon exposure in Switzerland. This public health concern makes reliable indoor radon prediction and mapping methods necessary in order to improve risk communication to the public. The aim of this study was to develop an automated method to classify lithological units according to their radon characteristics and to develop mapping and predictive tools in order to improve local radon prediction. Method: About 240 000 indoor radon concentration (IRC) measurements in about 150 000 buildings were available for our analysis. The automated classification of lithological units was based on k-medoids clustering via pair-wise Kolmogorov distances between IRC distributions of lithological units. For IRC mapping and prediction we used random forests and Bayesian additive regression trees (BART). Results: The automated classification groups lithological units well in terms of their IRC characteristics. Especially the IRC differences in metamorphic rocks like gneiss are well revealed by this method. The maps produced by random forests soundly represent the regional difference of IRCs in Switzerland and improve the spatial detail compared to existing approaches. We could explain 33% of the variations in IRC data with random forests. Additionally, the influence of a variable evaluated by random forests shows that building characteristics are less important predictors for IRCs than spatial/geological influences. BART could explain 29% of IRC variability and produced maps that indicate the prediction uncertainty. Conclusion: Ensemble regression trees are a powerful tool to model and understand the multidimensional influences on IRCs. Automatic clustering of lithological units complements this method by facilitating the interpretation of radon properties of rock types. This study provides an important element for radon risk communication. Future approaches should consider taking into account further variables

  19. Measurment of radon, thoron and their progeny in indoor environment of Mohali, Punjab, Northern India, using pinhole dosimeters

    Directory of Open Access Journals (Sweden)

    Mehta Vimal

    2016-01-01

    Full Text Available The health hazards of radon and its decay products above certain levels are well known. However, for any preventive measures to be taken, we have to be aware of radon levels of that particular area. Measurement of radon and its decay products in indoor environments is an important aspect of assessing indoor air quality and health conditions associated with it. Keeping this in mind, measurements of radon, thoron and their progeny concentrations were carried out in Mohali, Northern India, using pinhole-based twin cup dosimeters. Radon exhalation rates of soil samples in the dwellings/areas were measured via an active technique of a continuous radon monitor. The indoor radon concentration in Mohali varied from 15.03 ± 0.61 Bq/m3 to 39.21 ± 1.46 Bq/m3 with an average of 26.95 Bq/m3 ,while thoron concentration in the same dwellings varied from 9.62 ± 0.54 Bq/m3 to 52.84 ± 2.77 Bq/m3 with an average of 31.09 Bq/m3. Radon progeny levels in dwellings under study varied from 1.63 to 4.24 mWL, with an average of 2.94 mWL, while thoron progeny levels varied from 0.26 to 1.43 mWL , with an average of 0.84 mWL. The annual dose received by the inhabitants of dwellings under study varied from 0.78 to 2.36 mSv, with an average of 1.61 mSv. The in situ gamma dose rate varied from 0.12 to 0.32 mSv/h.

  20. A model to predict radon exhalation from walls to indoor air based on the exhalation from building material samples

    International Nuclear Information System (INIS)

    Sahoo, B.K.; Sapra, B.K.; Gaware, J.J.; Kanse, S.D.; Mayya, Y.S.

    2011-01-01

    In recognition of the fact that building materials are an important source of indoor radon, second only to soil, surface radon exhalation fluxes have been extensively measured from the samples of these materials. Based on this flux data, several researchers have attempted to predict the inhalation dose attributable to radon emitted from walls and ceilings made up of these materials. However, an important aspect not considered in this methodology is the enhancement of the radon flux from the wall or the ceiling constructed using the same building material. This enhancement occurs mainly because of the change in the radon diffusion process from the former to the latter configuration. To predict the true radon flux from the wall based on the flux data of building material samples, we now propose a semi-empirical model involving radon diffusion length and the physical dimensions of the samples as well as wall thickness as other input parameters. This model has been established by statistically fitting the ratio of the solution to radon diffusion equations for the cases of three-dimensional cuboidal shaped building materials (such as brick, concrete block) and one dimensional wall system to a simple mathematical function. The model predictions have been validated against the measurements made at a new construction site. This model provides an alternative tool (substitute to conventional 1-D model) to estimate radon flux from a wall without relying on 226 Ra content, radon emanation factor and bulk density of the samples. Moreover, it may be very useful in the context of developing building codes for radon regulation in new buildings. - Research highlights: → A model is proposed to predict radon flux from wall using flux of building material. → It is established based on the diffusion mechanism in building material and wall. → Study showed a large difference in radon flux from building material and wall. → Model has been validated against the measurements made at

  1. Influence of surficial soil and bedrock on indoor radon in New York State homes. Task 2, Subtask 2 of an investigation of infiltration and indoor air quality in New York State homes

    International Nuclear Information System (INIS)

    Kunz, C.

    1989-10-01

    Radon can enter a building from soil and bedrock through cracks or openings in the basement. Extrapolation from data obtained from studies of miners exposed to high concentrations of radon and other carcinogens over long periods indicates that radon gas in the home poses an increased risk of lung cancer. The project was initiated to determine the characteristics of soil and bedrock that contribute to the availability of radon for infiltration into the home, and the feasibility of using soil characteristics in mapping areas at higher risk for above-average indoor radon in New York State. After conducting soil surveys across the State, the researchers choose four areas for further study. Fifteen homes in each area were tested for indoor air concentrations of radon, air infiltration into the home, radon concentrations in the soil, and the permeability of the soil for gas flow. The researchers concluded that these parameters could be combined to obtain a Radon Index Number to predict mean indoor radon levels for a given area with similar soil geology. However, this measure has a limited ability to predict indoor radon levels for a particular home due to variations in construction as well as differences in soil and bedrock

  2. Radon

    Science.gov (United States)

    ... radon-resistant features. These features include gravel and plastic sheeting below the foundation, along with proper sealing ... lower the radon level. Detailed information about radon reduction in your home or building can be found ...

  3. On indoor radon contamination monitoring with SSNTDs: Experimental results concerning plate-out and self-plate-out effects

    International Nuclear Information System (INIS)

    Bigazzi, G.; Hadler, J.C.; Paulo, S.R.

    1989-01-01

    Measurements of the alpha activities of 222 Rn and its daughters were performed, both inside a glass recipient and in closed rooms, employing SSNTDs (CR-39 and nuclear emulsion). The experimental results presented here show that plate-out and self-plate-out effects should be taken into account when SSNTDs are employed in indoor radon contamination monitoring. (orig.)

  4. Influence of source type and air exchange on variations of indoor radon concentration

    International Nuclear Information System (INIS)

    Arvela, H.; Winqvist, K.

    1986-04-01

    The model relates radon concentration to source strength and its variations, air exchange rate and meteorological factors. Two types of sources have been studied. The pressure difference dependent source is made up of radon transported with soil pore air and driven by pressure difference due to the stack effect. The constant source is made up of radon transported by diffusion from building materials or from soil. The air exchange rate depends exponentially on indoor-outdoor temperature difference and linearly on wind speed. These two inputs have been summed in quadrature. In a house with a constant source radon concentration decreases when the air exchange rate increases due to the increasing temperature difference, whereas the pressure difference dependent source causes an increasing concentration. This is due to the fact that the effect of the source strength increase is stronger than the decreasing effect of air exchange on concentration. The winter-summer concentration ratio depends on the combination of the two types of source. A pure pressure dependent source leads to the winter-summer ratio of 2-3.5 (winter -5 deg C, summer +15 deg C, wind speed 3 m/s). A strong contribution of a constant source is needed to cause a summer concentration higher than the winter concentration. The model is in agreement with the winter-summer concentration ratios measured. This ratio increases with the increasing winter concentration. The measured ratio was near 1.0 for houses with winter concentration of 200 Bq m''3 or less and near 2.0 with concentration of 1000 Bq m''3. In a house with a constant source, the diurnal maximum occurs in the afternoon, while in houses with a pressure difference dependent source the time of maximum is early in the morning

  5. EPA (Environmental Protection Agency) Indoor-Air Quality Implementation Plan. A report to Congress under Title IV of the Superfund Amendments and Reauthorization Act of 1986: radon gas and indoor air-quality research. Final report

    International Nuclear Information System (INIS)

    1987-06-01

    The EPA Indoor Air Quality Implementation Plan provides information on the direction of EPA's indoor air program, including the Agency's policy on indoor air and priorities for research and information dissemination over the next two years. EPA submitted the report to Congress on July 2, 1987 as required by the Superfund Amendments and Reauthorization Act of 1986. There are five appendices to the report: Appendix A--Preliminary Indoor Air Pollution Information Assessment; Appendix B--FY 87 Indoor Air Research Program; Appendix C--EPA Radon Program; Appendix D--Indoor Air Resource History (Published with Appendix C); Appendix E--Indoor Air Reference Data Base

  6. Quantitative aspects of highly emanating geologic materials and their role in creating high indoor radon. Final report, April 1, 1994--March 31, 1996

    International Nuclear Information System (INIS)

    Gundersen, L.C.S.; Schumann, R.R.; Gates, A.E.; Price, P.

    1996-01-01

    Indoor radon hot spots, areas where indoor radon commonly exceeds 20 pCi/L, are often caused by unusually highly emanating soils or rock and their interaction with ambient climatic conditions and a building's architecture. Highly emanating soils and rocks include glacial deposits; dry fractured clays; black shales; limestone-derived soils; karst and cave areas, fractured or sheared granitic crystalline rocks; mine tailings; uraniferous backfill; and most uranium deposits. The above list probably accounts for 90% of the Nation's indoor radon over 20 pCi/L. In several of these high indoor radon areas, there appears to be a link between the nature of the radon source in the ground, the architecture of the home, and the relative magnitude and ease of mitigation of the indoor air problem. Quantification of geologic materials in terms of their radon potential with respect to climatic and architectural considerations has never been accomplished. Recent studies have attempted semi-quantitative rankings but rigorous analysis has not been done. In this investigation the authors have attempted to develop the quantitative aspects of geologic materials for prediction of very high indoor radon at several scales of observation from national to census tract

  7. Review of low-energy construction, air tightness, ventilation strategies and indoor radon: results from Finnish houses and apartments

    International Nuclear Information System (INIS)

    Arvela, H.; Holmgren, O.; Reisbacka, H.; Vinha, J.

    2014-01-01

    Low-energy and passive house construction practices are characterised by increased insulation, high air tightness of the building shell and controlled mechanical ventilation with heat recovery. As a result of the interaction of mechanical ventilation and high air tightness, the pressure difference in a building can be markedly enhanced. This may lead to elevated indoor radon levels. Minor leakages in the foundation can affect the radon concentration, even in the case where such leaks do not markedly reduce the total air tightness. The potential for high pressures to affect indoor radon concentrations markedly increases when the air tightness ACH 50 , i.e. the air change per hour induced by a pressure difference of 50 Pa, is -1 . Pressure differences in Finnish low-rise residential houses having mechanical supply and exhaust ventilation with heat recovery (MSEV) are typically 2-3 Pa, clearly lower than the values of 5-9 Pa in houses with only mechanical exhaust ventilation (MEV). In MSEV houses, radon concentrations are typically 30 % lower than in MEV houses. In new MSEV houses with an ACH50 of 0.6 h -1 , the limit for passive construction, the analytical estimates predict an increase of 100 % in the radon concentration compared with older houses with an ACH50 of 4.0 h -1 . This poses a challenge for efficient radon prevention in new construction. Radon concentrations are typically 30 % lower in houses with two storeys compared with only one storey. The introduction of an MSEV ventilation strategy in typically very airtight apartments has markedly reduced pressure differences and radon concentrations. (authors)

  8. The use of soil gas as radon source in radon chambers

    International Nuclear Information System (INIS)

    Al-Azmi, Darwish

    2009-01-01

    A procedure is described in which soil gas is utilized as an alternative to the 226 Ra source for the supply of the radon gas required to fill a radon chamber where radon-measuring devices are calibrated. The procedure offers opportunities to vary the radon concentration within the chamber around an average value of about 500 Bq/m 3 , which is considered to be sufficient for calibrating indoor radon detectors. The procedure is simple and the radon source does not require radiation protection certification (for import and/or use), unlike the commercially produced standard radioactive ( 226 Ra) sources.

  9. Radon in the indoor of habitable and workable zones in the Estado de Mexico; Radon en el interior de zonas habitacionales y laborables del Estado de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Pena, P.; Segovia, N.; Gaso, M.I.; Ponciano, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The levels of the radon concentration and of suspended particles in the air of the indoor house-room and of laboratories, like part of a study related with the impact of the components of the tobacco smoke in the health of the active and passive smokers. The measures of the radon concentration were carried out with Honeywell A9000A systems and the fluctuations in the concentration and particle size they were determined with a Personal Measurer for the Data Acquisition of Particles in Real Time. The average value of the radon concentration inside the house-room was of 40 Bq m{sup -3}, observing frequently radon peaks superior to 148 Bq m{sup -3}. In the offices and laboratories, especially in those with little ventilation, the radon gas concentration showed superior values to the internationally established limits. The average value in 24 hours, of the particles (PM{sub 10}) inside the houses of smokers it was of 0. 751 {+-} 0.420 mg m{sup -3}, being reached concentrations so high as 1. 6 mg m{sup -3}, which is an order of superior magnitude to the maximum permissible limit of PM{sub 10} (0.150 mg m{sup -3}), settled down by the Mexican Legislation. (Author)

  10. Comparison of indoor radon and thoron concentrations in the urban and rural dwellings of Chhattisgarh state of India

    International Nuclear Information System (INIS)

    Khokhar, M.S.K.; Kher, R.S.; Rathore, V.B.; Pandey, S.; Ramachandran, T.V.

    2008-01-01

    In the frame of nationwide radon/thoron monitoring program, indoor radon/thoron and their progeny concentrations have been estimated for 210 dwellings situated in 8 towns (urban) and 9 villages (rural) of Chhattisgarh state of India. The measurement has been made on quarterly integrating cycle for one full year in each dwelling. Twin chamber dosimeter cup with LR-115 Type-II Solid State Nuclear Track Detector was used for the measurement of indoor radon/thoron concentration. The results show that the geometric mean of indoor thoron concentration in urban dwellings varies from 11.57 to 25.88Bqm -3 with an overall geometric mean value of 16.65Bqm -3 , while in rural dwellings it varies from 12.50 to 30.08Bqm -3 with an overall geometric mean value of 19.00Bqm -3 . The potential alpha energy concentration (PAEC) levels of thoron in the urban and rural dwellings are found to be 2.58 and 4.57 mWL, respectively. Similarly, the geometric mean of indoor radon concentrations in urban dwellings is found to vary from 20.20 to 30.13Bqm -3 with an overall geometric mean value of 25.28Bqm -3 , while in rural dwellings it varies from 15.50 to 36.05Bqm -3 with an overall geometric mean value of 27.32Bqm -3 . The PAEC levels of radon in the urban and rural dwellings are found to be 1.50 and 1.87 mWL, respectively. The dose contribution of thoron and progeny in total inhalation dose has been found to be more than 20% in all the surveyed places that show the necessity to pay attention to the presence of thoron and progeny from public health point of view

  11. Indoor radon measurements in dwellings and workplaces of Curitiba urban area, Parana state, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Del Claro, Flavia; Paschuk, Sergei A.; Correa, Janine N.; Kappke, Jaqueline; Perna, Allan F.N.; Schelin, Hugo R., E-mail: sergei@utfpr.edu.br [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Rocha, Zildete; Santos, Talita O., E-mail: rochaz@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Considering that radon and its progeny exposure is proved to be the main cause of lung cancer among nonsmokers and occupation-time at some commercial establishments and workplaces is equal or even bigger then at domiciles and dwelling, present study has been spread to the constructed closed environment and workplaces of commerce and productive sector. The measurements were performed by the Laboratory of Applied Nuclear Physics of UTFPR in 2009 - 2011 when 120 detectors were installed at domiciles and workplaces of Curitiba, Parana St., Brazil. Experimental setup was based at CR-39 detectors that were installed in diffusion chambers protected with filters. In collaboration with CDTN/CNEN it was performed the calibration of CR-39 detectors at the NIRS in Japan. The exposure time was set to be of 100 days. Alpha particle track development was performed using 6.25M sodium hydroxide (NaOH) solution and ethanol (2%) during 14 hours at 70 deg C. The counting was conducted using an optical microscope. Measured {sup 222}Rn activity levels in dwellings varied between 4.37 Bq/m{sup 3} and 320.82 Bq/m{sup 3} resulting at an average of 46.94 Bq/m{sup 3}. Indoor measurements at workplaces presented the variation of radon activity concentration between 3.08 Bq/m{sup 3} and 67.50 Bq/m{sup 3} resulting at the average of 34.51 Bq/m{sup 3}. Considering the recommendations of the World Health Organization, UNSCEAR and the International Commission on Radiological Protection (ICRP) concerning the radon-in-air concentration inside the dwellings that can reach 200 Bq/m{sup 3} taking into account the occupation-time of 7000 hours/year, obtained results are within normal limits and no mitigation measures have to be performed. (author)

  12. Indoor radon measurements in dwellings and workplaces of Curitiba urban area, Parana state, Brazil

    International Nuclear Information System (INIS)

    Del Claro, Flavia; Paschuk, Sergei A.; Correa, Janine N.; Kappke, Jaqueline; Perna, Allan F.N.; Schelin, Hugo R.; Rocha, Zildete; Santos, Talita O.

    2011-01-01

    Considering that radon and its progeny exposure is proved to be the main cause of lung cancer among nonsmokers and occupation-time at some commercial establishments and workplaces is equal or even bigger then at domiciles and dwelling, present study has been spread to the constructed closed environment and workplaces of commerce and productive sector. The measurements were performed by the Laboratory of Applied Nuclear Physics of UTFPR in 2009 - 2011 when 120 detectors were installed at domiciles and workplaces of Curitiba, Parana St., Brazil. Experimental setup was based at CR-39 detectors that were installed in diffusion chambers protected with filters. In collaboration with CDTN/CNEN it was performed the calibration of CR-39 detectors at the NIRS in Japan. The exposure time was set to be of 100 days. Alpha particle track development was performed using 6.25M sodium hydroxide (NaOH) solution and ethanol (2%) during 14 hours at 70 deg C. The counting was conducted using an optical microscope. Measured 222 Rn activity levels in dwellings varied between 4.37 Bq/m 3 and 320.82 Bq/m 3 resulting at an average of 46.94 Bq/m 3 . Indoor measurements at workplaces presented the variation of radon activity concentration between 3.08 Bq/m 3 and 67.50 Bq/m 3 resulting at the average of 34.51 Bq/m 3 . Considering the recommendations of the World Health Organization, UNSCEAR and the International Commission on Radiological Protection (ICRP) concerning the radon-in-air concentration inside the dwellings that can reach 200 Bq/m 3 taking into account the occupation-time of 7000 hours/year, obtained results are within normal limits and no mitigation measures have to be performed. (author)

  13. Assessment of current techniques for reduction of indoor radon concentration in existing and new houses in European countries

    International Nuclear Information System (INIS)

    Holmgren, O.; Arvela, H.

    2012-03-01

    Radon control technologies aim at the reduction of indoor radon concentrations in existing buildings and in new construction through remedial and preventive measures. In recent years, rising ecological awareness and rising energy costs have stimulated the development of low energy and passive houses to save energy. This report contains the analysis and assessment of current techniques and technologies used to achieve the reduction of indoor radon concentrations in existing and new houses with regard to the reduction efficiency and potential impact on energy consumption (qualitative analysis). A questionnaire was prepared and sent to all RADPAR partners in 14 different countries in order to gather national information about the current remediation and prevention techniques. Responses with variable amounts of information were obtained. Based on the questionnaire responses, the status of radon remediation and prevention in each country was assessed, in addition to the reduction efficiency and potential impact on energy consumption of the current remediation and prevention techniques. The number of dwellings with an elevated indoor radon concentration typically ranges from tens of thousands to a million. The percentage of these houses already remediated varies from zero to 15%. Preventive measures in new construction have been taken from a small number of houses to over half a million houses. The research data on the current situation, the number of houses with preventive measures and the efficiency of these measures is currently still quite inadequate. Assessment of the techniques and also the surveys aiming at exploring the impact of remedial and preventive measures is greatly needed in order to promote the work at the national level. The most efficient remediation method is the active sub-slab depressurization (SSD) and the radon well, for which the reduction in the radon concentration is typically 70 - 95%. Other methods, such as sealing entry routes and improving

  14. Mapping indoor radon-222 in Denmark: Design and test of the statistical model used in the second nationwide survey

    DEFF Research Database (Denmark)

    Andersen, C.E.; Ulbak, K.; Damkjær, A.

    2001-01-01

    In Denmark, a new survey of indoor radon-222 has been carried out. 1-year alpha track measurements (CR-39) have been made in 3019 single-family houses. There are from 3 to 23 house measurements in each of the 275 municipalities. Within each municipality, houses have been selected randomly. One...... important outcome of the survey is the prediction of the fraction of houses in each municipality with an annual average radon concentration above 200 Bq m(-3). To obtain the most accurate estimate and to assess the associated uncertainties, a statistical model has been developed. The purpose of this paper...

  15. Measurement and apportionment of radon source terms for modeling indoor environments

    International Nuclear Information System (INIS)

    Harley, N.H.

    1992-01-01

    During the present 2 1/2 year contract period, we have made significant Progress in modeling the source apportionment of indoor 222 Rn and in 222 Rn decay product dosimetry. Two additional areas were worked on which we believe are useful for the DOE Radon research Program. One involved an analysis of the research house data, grouping the hourly house 222 Rn measurements into 2 day, 7 day and 90 day intervals to simulate the response of passive monitors. Another area requiring some attention resulted in a publication of 3 years of our indoor/outdoor measurements in a high-rise apartment. Little interest has been evinced in apartment measurements yet 20% of the US population lives in multiple-family dwellings, not in contact with the ground. These data together with a summary of all other published data on apartments showed that apartments have only about 50% greater 222 Rn concentration than the measured outdoor 222 Rn. Apartment dwellers generally represent a low risk group regarding 222 Rn exposure. The following sections describe the main projects in some detail

  16. Measurements of volumic activity of radon in indoor air in dwellings and enclosed work areas in Morocco

    International Nuclear Information System (INIS)

    Hakam, O. K.; Lferde, M.

    1994-01-01

    The principal source of exposure to radiation for public in built-up areas is known to be the inhalation of radon and its short-lived daughters. Most of this exposure occurs inside homes, where many hours are spent each day and where the volumic activity of radon are usually higher than outdoors. For measure these volumic activity, cellulose nitrate films LR-115 type II already calibrated of volumic activity of radon are used. The measurements were performed in 30 dwellings and enclosed work areas in different regions of Morocco. The volumic mean activity obtained in dwellings is 64 +- 5 Bq/m sup 3 in Rabat, 59 +- 6 Bq/ m sup 3 in Kenitra, 124 +- 8 Bq/ m sup 3 in youssoufia and 136 +- 9 Bq/ m sup 3 in Khouribga. It was showed that the volumic activity of radon are more higher in two factory locals of moroccan ores treatment than in dwellings. The average volumic activity of radon in geophysical observatory cellar in Berchid was 1541 +- 64 Bq/ m sup 3. We also observed that the volumic activity of radon in indoor air is more higher in winter than in summer and it decrease with altitude and increase with depth. 4 tabs. 2 refs. (author)

  17. Installation and testing of indoor radon reduction techniques in 40 eastern Pennsylvania houses. Final report, October 1984-June 1987

    International Nuclear Information System (INIS)

    Scott, A.G.; Robertson, A.; Findlay, W.O.

    1988-01-01

    This report discusses the installation and testing of indoor radon-reduction techniques in 40 houses in eastern Pennsylvania. Early in 1985, the Pennsylvania Department of Environmental Resources (PDER) started a large radon survey in communities in the Reading Prong (a granite formation) in eastern Pennsylvania, following the discovery of a house with extremely high radon concentrations, greater than 1.2 MBq/cu m. Candidate houses for the program, with radon concentrations in excess of 750 Bq/cu m, were selected from this survey. A total of 40 houses with representative substructure types were chosen from this group, and mitigation methods were selected and installed from June 1985 to June 1987. Initial soil-ventilation installations achieved large reductions in radon concentrations at low cost, but these reductions were not always sustained in colder weather, and several systems were modified during the project to improve their performance. Major reductions in radon concentration were realized in all the houses worked on, with most houses with active soil ventilation systems achieving less than 150 Bq/cu m (4 pCi/L) on an annual average basis in the living areas

  18. Contribution of {sup 222}Rn-bearing water to indoor radon and indoor air quality assessment in hot spring hotels of Guangdong, China

    Energy Technology Data Exchange (ETDEWEB)

    Song Gang, E-mail: songg2005@126.co [School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006 (China); Wang Xinming [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chen Diyun; Chen Yongheng [School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006 (China)

    2011-04-15

    This study investigates the contribution of radon ({sup 222}Rn)-bearing water to indoor {sup 222}Rn in thermal baths. The {sup 222}Rn concentrations in air were monitored in the bathroom and the bedroom. Particulate matter (PM, both PM{sub 10} and PM{sub 2.5}) and carbon dioxide (CO{sub 2}) were also monitored with portable analyzers. The bathrooms were supplied with hot spring water containing 66-260 kBq m{sup -3} of {sup 222}Rn. The results show that the spray of hot spring water from the bath spouts is the dominant mechanism by which {sup 222}Rn is released into the air of the bathroom, and then it diffuses into the bedroom. Average {sup 222}Rn level was 110-410% higher in the bedrooms and 510-1200% higher in the bathrooms compared to the corresponding average levels when there was no use of hot spring water. The indoor {sup 222}Rn levels were influenced by the {sup 222}Rn concentrations in the hot spring water and the bathing times. The average {sup 222}Rn transfer coefficients from water to air were 6.2 x 10{sup -4}-4.1 x 10{sup -3}. The 24-h average levels of CO{sub 2} and PM{sub 10} in the hotel rooms were 89% and 22% higher than the present Indoor Air Quality (IAQ) standard of China. The main particle pollutant in the hotel rooms was PM{sub 2.5}. Radon and PM{sub 10} levels in some hotel rooms were at much higher concentrations than guideline levels, and thus the potential health risks to tourists and especially to the hotel workers should be of great concern, and measures should be taken to lower inhalation exposure to these air pollutants. - Highlights: {yields} {sup 222}Rn-bearing water is the main contributor to indoor radon in hot spring hotel. {yields} The PM{sub 2.5} and CO{sub 2} are also the main indoor pollutants in the hotel rooms. {yields} Higher radon and PM levels might have significant negative health effects to human. {yields} The radon transfer coefficients are consistent with the published data.

  19. Contribution of 222Rn-bearing water to indoor radon and indoor air quality assessment in hot spring hotels of Guangdong, China

    International Nuclear Information System (INIS)

    Song Gang; Wang Xinming; Chen Diyun; Chen Yongheng

    2011-01-01

    This study investigates the contribution of radon ( 222 Rn)-bearing water to indoor 222 Rn in thermal baths. The 222 Rn concentrations in air were monitored in the bathroom and the bedroom. Particulate matter (PM, both PM 10 and PM 2.5 ) and carbon dioxide (CO 2 ) were also monitored with portable analyzers. The bathrooms were supplied with hot spring water containing 66-260 kBq m -3 of 222 Rn. The results show that the spray of hot spring water from the bath spouts is the dominant mechanism by which 222 Rn is released into the air of the bathroom, and then it diffuses into the bedroom. Average 222 Rn level was 110-410% higher in the bedrooms and 510-1200% higher in the bathrooms compared to the corresponding average levels when there was no use of hot spring water. The indoor 222 Rn levels were influenced by the 222 Rn concentrations in the hot spring water and the bathing times. The average 222 Rn transfer coefficients from water to air were 6.2 x 10 -4 -4.1 x 10 -3 . The 24-h average levels of CO 2 and PM 10 in the hotel rooms were 89% and 22% higher than the present Indoor Air Quality (IAQ) standard of China. The main particle pollutant in the hotel rooms was PM 2.5 . Radon and PM 10 levels in some hotel rooms were at much higher concentrations than guideline levels, and thus the potential health risks to tourists and especially to the hotel workers should be of great concern, and measures should be taken to lower inhalation exposure to these air pollutants. - Highlights: → 222 Rn-bearing water is the main contributor to indoor radon in hot spring hotel. → The PM 2.5 and CO 2 are also the main indoor pollutants in the hotel rooms. → Higher radon and PM levels might have significant negative health effects to human. → The radon transfer coefficients are consistent with the published data.

  20. Investigating Indoor Radon Levels and Influencing Factors in Primary Schools of Zulfi City, Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Ghamdi, S. S.; Al-Garawi, M. S.; Al-Mosa, Tahani M.; Baig, M. R.

    2011-01-01

    Measurement of indoor Concentrations were performed in Zulfi city of Saudi Arabia, using CR-39 track etch detectors. This investigation focused on the influence of different parameters, namely different locations, school categories, school building types, and room type as well as on the existence of differences in radon concentration at floor levels. We divided the Zulfi city into five regions, keeping in mind their geographical locations between Tuwaiq Mountains and Al-Thuwayrat sands. The measured average radon concentrations for regions 1-5 respectively are: 87.0±14.2 Bq/m 3 , 83.4±6.0 Bq/m 3 , 61.6±6.4 Bq/m 3 , 63.7±5.4 Bq/m 3 and 87.5±6.Bq/m 3 and the minimum concentrations are 28.0 Bq/m 3 , 5.5 Bq/m 3 , 1.1 Bq/m 3 , 1.0 Bq/m 3 and 24 Bq/m 3 respectively. These results are still within normal limits and below the action level of 148 Bqm -3 set by the U.S. Environmental Protection Agency (EPA). A test of significance using Minitab program was applied to investigate if radon levels in regions are significantly different from each other. We tried all combinations, and found the following results. The ''within regions''(different location) test yielded, region 2 is not significant versus region ''1''(p = 0.783) and versus region ''5''(P = 0.646), whereas it is significant versus region ''3''(P = 0.0160) and also versus region ''4''(p = 0.018). We investigated government and rented school's building also and none was found significantly different (p = 0.052). Floors of the same building were tested in order to examine the radon concentration as a function of storey level. No significant difference was observed at floor levels (p = 0.009). When girl's schools versus Boys and kindergartens schools were tested they were found significantly different. It is believed that this significant difference is due to geographical nature of the area, since most of the girl's schools were selected from regions 2 and 3, these regions are relatively close to the Tuwaiq

  1. Continual monitoring of radon decay products concentration in indoor and outdoor air

    International Nuclear Information System (INIS)

    Petruf, P.; Holy, K.; Stanys, T.

    1998-01-01

    The goal of this work was the development of the method and construction and testing of measurement device for continual monitoring of radon daughters concentrations in the indoor and outdoor environment with regard to make possible to determine very low activities in the outdoor air (below % Bq/m 3 ). In this method air sample is drawn through the appropriate filter material. Radon and thoron daughters both attached and unattached on aerosols particles are collected on the filter surface and then the filter activity is counted. The silicon surface barrier detector with the active area of 200 mm 2 in monitor was used. The Millipore AW19-type filter was chosen and sampling rate of 30 l/min for collecting of the air samples. The determination of the individual activity concentrations in three-count method is based on the solution of the simultaneous equations describing the number of atoms of measured nuclides on the filter during and after sampling. The monitor was tested in three different environments (the average values of the activity concentrations of radon and its decay products in Bq/m 3 are given): in the basement of the building: 61.4 ± 5.0 of 222 Rn, 29.5 ± 2.8 of 218 Po, 14.1 ± 1.8 of 214 Pb and 12.1 ± 1.6 of 214 Bi; in the room on the second floor of the same building:22.2 ± 7.9 of 222 Rn, 7.3 ± 2.8 of 218 Po, 4.6 ± 1.9 of 214 Pb and 2.6 ± 1.2 of 214 Bi ; in the outdoor air in front of the building: 4.1 ± 2.7 of 222 Rn, 2.3 ± 0.9 of 218 Po, 1.5 ± 0.8 of 214 Pb and 1.4 ± 0.6 of 214 Bi. The results show a good agreement with expectations of the activity concentrations in three different environments. The monitor enables to determine low activity concentrations in the outdoor with an acceptable precision during one hour counting. The monitor can be used for the research of the correlation between the atmospheric stability and activity concentrations of radon decay products

  2. Radon

    International Nuclear Information System (INIS)

    1990-01-01

    This leaflet in the At-a-Glance Series, describes what radon is, where it is found, why it presents a risk to health, the official advice, and the remedies that are available to reduce radon levels. (author)

  3. Estimate of lifetime excess lung cancer risk due to indoor exposure to natural radon-222 daughters in Korea

    International Nuclear Information System (INIS)

    Si-Young Chang; Jeong-Ho Lee; Chung-Woo Ha

    1993-01-01

    Lifetime excess lung cancer risk due to indoor 222 Rn daughters exposure in Korea was quantitatively estimated by a modified relative risk projection model proposed by the U.S. National Academy of Science and the recent Korean life table data. The lifetime excess risk of lung cancer death attributable to annual constant exposure to Korean indoor radon daughters was estimated to be about 230/10 6 per WLM, which seemed to be nearly in the median of the range of 150-450/10 6 per WLM reported by the UNSCEAR in 1988. (1 fig., 2 tabs.)

  4. Indoor radon risk associated to post-tectonic biotite granites from Vila Pouca de Aguiar pluton, northern Portugal.

    Science.gov (United States)

    Martins, L M O; Gomes, M E P; Teixeira, R J S; Pereira, A J S C; Neves, L J P F

    2016-11-01

    At Vila Pouca de Aguiar area, northern Portugal, crops out a post-tectonic Variscan granite pluton, related with the Régua-Vila Real-Verín fault zone, comprising three types of biotite granites. Among these granites, PSG granite yield the highest average contents of U, probably due to its enrichment in accessory U-bearing minerals such as zircon. In the proximity of faults and joints, these granites are often affected by different degrees of hydrothermal alteration, forming reddish altered rocks, commonly known as "episyenites". These altered rocks are probably associated to the occurrence of hydrothermal processes, which led to uranium enrichment in the most advanced stages of episyenitization. In these granites, both average gamma absorbed dose rates in outdoor and indoor air are higher than those of the world average. Furthermore, even in the worst usage scenario, all these granites can be used as a building material, since their annual effective doses are similar to the limit defined by the European Commission. The geometric mean of radon activity of 91 dwellings located at the Vila Pouca de Aguiar pluton is 568Bqm(-3), exceeding that of other northern Portuguese granites. Measurements carried out during a winter season, indicate that 62.6% of the analysed dwellings yield higher indoor radon average values than the Portuguese legislation limit (400Bqm(-3)), and annual effective doses due higher than the world's average value (1.2mSvy(-1)). The interaction of geogenic, architectural and anthropogenic features is crucial to explain the variance in the geometric mean of radon activity of dwellings from Vila Pouca de Aguiar pluton, but the role of geologic faults is probably the most important decisive factor to increase the indoor radon concentration in dwellings. Hence, the development of awareness campaigns in order to inform population about the incurred radiological risks to radon exposure are highly recommended for this specific area. Copyright © 2016

  5. The measurement of 222Rn and its relationship to environmental variables: Factors controlling indoor radon: Final report for the contract period June 1, 1982 to May 31, 1985

    International Nuclear Information System (INIS)

    Harley, N.H.

    1985-01-01

    Indoor levels of radon-222 and daughter nuclei were monitored at various locations within a single family dwelling and in an apartment building. Indoor levels were correlated with soil temperature, atmospheric pressure, wind, rain and time of year. 9 refs., 23 figs., 19 tabs

  6. Properties of radioactive aerosols produced by interactions of indoor radon decay products with cigarette smoke and burning cigarettes

    International Nuclear Information System (INIS)

    Martell, E.A.; Sweder, K.S.

    1984-01-01

    Risks of lung cancer to smokers, attributable in part to exposure to indoor radon decay products, are dependent on properties of radon progeny-tagged smoke particles. The authors have investigated the properties and interactions of radon progeny-tagged smoke particles as they pass through burning cigarettes into mainstream smoke, using /sup 212/Pb-tagged smoke particles as tracers, cascade impactors for particle size determinations, and low-level β/sup -/ counting techniques. /sup 212/Pb-tagged particles of submicron size are destroyed in the burning zone of cigarettes. However, /sup 212/Pb-tagged smoke particles exceeding 1.0 μm diameter pass readily through the burning zone and tobacco rod into mainstream smoke. /sup 212/ Pb- tagged particles in mainstream smoke have an activity median aerodynamic diameter between 1.0 and 2.0 μm diameter. Particles > 2.0 μm diameter carry about 10 percent of the total activity, are selectively deposited at the carina of bifurcations, and are resistant to dissolution in lung fluid. These results indicate that indoor radon progeny on large particles in mainstream smoke can contribute substantially to the cumulative alpha radiation dose at ''hot spots'' in the bronchi of smokers

  7. Shelter and indoor air in the twenty-first century--radon, smoking, and lung cancer risks

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1990-01-01

    Recognition that radon and its daughter products may accumulate to high levels in homes and in the workplace has led to concern about the potential lung cancer risk resulting from indoor domestic exposure. While such risks can be estimated with current dosimetric and epidemiological models for excess relative risks, it must be recognized that these models are based on data from occupational exposure and from underground miners' mortality experience. Several assumptions are required to apply risk estimates from an occupational setting to the indoor domestic environment. Analyses of the relevant data do not lead to a conclusive description of the interaction between radon daughters and cigarette smoking for the induction of lung cancer. The evidence compels the conclusion that indoor radon daughter exposure in homes represents a potential life-threatening public health hazard, particularly in males, and in cigarette smokers. Resolution of complex societal interactions will require public policy decisions involving the governmental, scientific, financial, and industrial sectors. These decisions impact the home, the workplace, and the marketplace, and they extend beyond the constraints of science. Risk identification, assessment, and management require scientific and engineering approaches to guide policy decisions to protect the public health. Mitigation and control procedures are only beginning to receive attention. Full acceptance for protection against what could prove to be a significant public health hazard in the twenty-first century will certainly involve policy decisions, not by scientists, but rather by men and women of government and law

  8. Towards the use of small amounts of activated charcoal along with well-type NaI(Tl) detector for indoor radon measurements

    International Nuclear Information System (INIS)

    Al-Azmi, D.

    2006-01-01

    The feasibility of using small quantities of activated charcoal and a 7.6 cm x 7.6 cm NaI(Tl) well-type detector was investigated for indoor radon measurements. Vials, filled with 10 g of charcoal, were exposed for different indoor radon concentration levels typical of Kuwait dwellings. After exposure, the vials were sealed and kept for 3 h to allow radon to come into radioactive equilibrium with its progenies and were then analysed by gamma-ray spectrometry using the well-type NaI(Tl) detector. The variation of radon absorption by the vials filled with charcoal with exposure time was also studied. A comparative study of the present technique with the standard technique of using 70 g charcoal canisters and flat NaI detector was also performed. After establishing the suitability of the technique, the charcoal vials were then used to investigate the effect of air-ventilation on the concentration levels of the indoor radon. Results show that there is a reduction in the radon concentration level (up to 25%) when the air-ventilation system was switched on. The paper presents the results of the study on the feasibility of combining small amounts of activated charcoal with a well-type NaI(Tl) detector in the measurement of indoor radon concentrations. (authors)

  9. Measurement of dose-determining physical parameters (F-factor, fp factor,...) for comparative analysis of outdoor/indoor radon exposure

    International Nuclear Information System (INIS)

    Anon

    1998-01-01

    The purpose of the project was to measure the airborne natural radon activity concentrations outdoor and the dose-determining parameters [non-deposited fraction (f p ), radon daughter products (F, PAEC), as well as the radioactive aerosol size distribution]. The impacts of meteorological parameters (pressure, rainfalls, wind velocities and temperature) on the those parameters and the exhalation of radon from the soil were to be determined. The acquired information was to be applied for an evaluation of the radiological outdoor situation and subsequent comparative analysis with the indoor radon exposure. (orig./CB) [de

  10. Study of Indoor Radon /Thoron And Its Hazard Inside Kindergartens In Iraqi Kurdistan Using CR39 Nuclear Track Detectors

    International Nuclear Information System (INIS)

    Ismail, A.H.

    2007-01-01

    Indoor radon /thoron levels with potential alpha energy concentration PAEC), effective dose (H E ) and equilibrium factor (F) were measured using closed and open-can technique, containing CR-39 nuclear track detector. Measurements were carried during summer season inside different Kindergartens in three main regions (Erbil, Duhok and Sullimaniye) in Iraqi Kurdistan. We found that the radon and thoron densities range from (11 to 33 track.cm -2 .d -1 ) for radon and (8 to 29 track.cm -2 .d -1 ) for thoron, with the average radon concentration (96.81 26.939Bq/m 3 ) While an average (PAEC) and (H E ) was (7.68±2.298 mWL) , (2.306± 0.689 mSv/Y) respectively. On the other hands the average equilibrium factor was (0.291±0.01). Consequently, we believe that our results were done when we comparing them with the action levels were recommended by (lCRP 66). The results obtained indicate that various locations have different values of radon/thoron concentration. The differences can be ascribed to variations in grades of uranium at different locations and to some environmental factors such as ventilation, particle concentration, and the deposition of the progeny on surfaces or on the atmospheric aerosol

  11. Indoor radon concentration levels in Mexican caves, using nuclear track methodology, and the relationship with living habits of the bats

    International Nuclear Information System (INIS)

    Espinosa, G.; Golzarri, J.I.; Vega-Orihuela, E.; Morales-Malacara, J.B.

    2013-01-01

    This work presents the results of a study of the radon levels in four caves in Mexico: Los Riscos Cave and El Judio Cave in the State of Queretaro, and Coyozochico Cave and Karmidas Cave in the State of Puebla. The measurements were made using the passive closed-end cup system, with CR-39 (Lantrack R ) as detection material, and following protocols established for the measurement of indoor radon, developed at the Dosimetry Applications Project of the Physics Institute of the Universidad Nacional Autonoma de Mexico. The radon concentration at one location with Karmidas Cave reached more than 60,000 Bq/m 3 , while concentrations in the other three caves varied from 83.1-1216.0 Bq/m 3 , was found. During the study was observed an interesting coincidence between the radon concentration distribution inside the caves, and the bat colonies location. In general, the bat colonies are located at the medium or low radon concentration levels zones. (author)

  12. Radon

    Energy Technology Data Exchange (ETDEWEB)

    Weigel, F [Muenchen Univ. (Germany, F.R.). Inst. fuer Anorganische Chemie

    1978-09-01

    The noble gas radon, formerly called emanation, was discovered a few years after radium. /sup 222/Rn, the longest-lived isotope, has a half-life of 3,82 days. This half life is so short that the experimental techniques available at present (1978) are not sufficient for a characterization of defined radon compounds, even though there are definite indications for the existence of such compounds, and one may expect such radon compounds to be even more stable than the numerous known xenon compounds. - The radon isotopes /sup 219/Rn (Actinon), /sup 220/Rn (Thoron), and /sup 222/Rn (Radon) occur in nature despite their rather short half-lives, because they are continously generated from their mothers /sup 223/Ra, /sup 224/Ra, and /sup 226/Ra, which are in secular equilibrium with long-lived isotopes /sup 235/U, /sup 238/U, and /sup 232/Th, and are in turn continously formed from these long-lived isotopes. Since the radon isotopes are gases, they enter the atmosphere and are carried for long distances with air currents. - Because radon is so short-lived, its practical applications are rather limited. For medical applications, small sealed glass tubes filled with radon are used as radiation sources after the radon has decayed, because the whole series of Po-, Bi-, and Pb-isotopes of the radium decay chain are formed, whose penetrating radiation is useful for therapy. When solids are spiked with Ra isotopes, radon is evolved at a constant rate. On heating such solids, phase transitions show up by sudden increased radon evolution (Hahn's emanation method). - On the basis of nuclear theoretical calculations, there is hardly a chance for the discovery of a long-lived radon species. Therefore, major progress in radon chemistry is hardly to be expected in the near future.

  13. Overview of current radon and radon daughter research at LBL

    International Nuclear Information System (INIS)

    1983-01-01

    This report provides a brief summary of radon and radon daughter research at Lawrence Berkeley Laboratory. The radon and radon daughter research program has two broad goals: (1) the study of sources of radon and its subsequent transport into houses, and (2) research on the behavior of radon daughters in indoor environments. Additional research effort is directed to several auxiliary areas, including development of instrumentation and monitoring techniques, studies of indoor air movement, and measurement and control of indoor particulate concentrations

  14. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres. Final project report

    International Nuclear Information System (INIS)

    Hopke, P.K.

    1996-09-01

    This report completes Clarkson University's study of the chemical and physical behavior of the 218 Po atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity in the sub-10 nm size range result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and it dose to the cells in the respiratory tract are to be fully assessed. In order to pursue this general goal, two areas of radon progeny behavior are being pursued; laboratory studies under controlled conditions to better understand the fundamental physical and chemical processes that affect the progeny's atmospheric behavior and studies in actual indoor environments to develop a better assessment of the exposure of the occupants of that space to the size and concentration of the indoor radioactive aerosol. Thus, two sets of specific goals have been established for this project. The specific tasks of the controlled laboratory studies are (1) Determine the formation rates of circ OH radicals formed by the radiolysis of air following radon decay; (2) Examine the formation of particles by the radiolytic oxidation of substances like SO 2 , ethylene, and H 2 S to lower vapor pressure compounds and determine the role of gas phase additives such as H 2 O and NH 3 in determining the particle size; (3) Measure the rate of ion-induced nucleation using a thermal diffusion cloud chamber, and (4) Measure the neutralization rate of 218 PoO x + in O 2 at low radon concentrations

  15. Assessment of indoor radon, thoron concentrations, and their relationship with seasonal variation and geology of Udhampur district, Jammu & Kashmir, India.

    Science.gov (United States)

    Kumar, Ajay; Sharma, Sumit; Mehra, Rohit; Narang, Saurabh; Mishra, Rosaline

    2017-07-01

    Background The inhalation doses resulting from the exposure to radon, thoron, and their progeny are important quantities in estimating the radiation risk for epidemiological studies as the average global annual effective dose due to radon and its progeny is 1.3 mSv as compared to that of 2.4 mSv due to all other natural sources of ionizing radiation. Objectives The annual inhalation dose has been assessed with an aim of investigating the health risk to the inhabitants of the studied region. Methods Time integrated deposition based 222 Rn/ 220 Rn sensors have been used to measure concentrations in 146 dwellings of Udhampur district, Jammu and Kashmir. An active smart RnDuo monitor has also been used for comparison purposes. Results The range of indoor radon/thoron concentrations is found to vary from 11 to 58 Bqm -3 with an average value of 29 ± 9 Bqm -3 and from 25 to 185 Bqm -3 with an average value of 83 ± 32 Bqm -3 , respectively. About 10.7% dwellings have higher values than world average of 40 Bqm -3 prescribed by UNSCEAR. The relationship of indoor radon and thoron levels with different seasons, ventilation conditions, and different geological formations have been discussed. Conclusions The observed values of concentrations and average annual effective dose due to radon, thoron, and its progeny in the study area have been found to be below the recommended level of ICRP. The observed concentrations of 222 Rn and 220 Rn measured with active and passive techniques are found to be in good agreement.

  16. Radiation safety issues in the water treatment plant - Indoor radon and gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jantsikene, A.; Kiisk, M.; Suursoo, S.; Koch, R. [University of Tartu, Institute of Physics (Estonia); Lumiste, L. [Tallinn University of Technology, Department of Chemical Engineering (Estonia)

    2014-07-01

    In order to reduce the indicative dose from drinking water consumption in Viimsi parish, Estonia, a new water treatment plant was launched in 2012 serving about 15 000 consumers. The promising new technology for groundwater purification consists of air injector, oxidation tank, patented venturi-type centrifugal degassing separation unit GDT and two-stage filtration in open filter columns. In each of the five parallel lines, approximately 95 tons of catalytic (FMH and sand) and 45 tons of non-catalytic (zeolite) filter materials were used. These filter materials proved to be very effective adsorbents of incoming radium isotopes. As a result, the columns emit direct gamma radiation. Moreover, columns' exposure to indoor air makes them radon generators that affect all rooms in the building. During the study period of two years the filter materials were not replaced and their lifespan has not been estimated yet. In order to minimize radiation risks for the workers inside the water treatment plant, a complex study and a long-term monitoring is needed. For the measurements of {sup 226}Ra and {sup 228}Ra concentrations in water and in solid filter materials gamma-ray spectroscopy was used. According to the results, the annual input of {sup 226}Ra and {sup 228}Ra is 325 MBq and 420 MBq, respectively. The average incoming concentration of {sup 226}Ra and {sup 228}Ra isotopes is 0.5 Bq/L and 0.6 Bq/L, respectively, and the radium content in the output water is below the limit of detection (about 10-15 mBq/L). This means strong accumulation of radium isotopes in the filter materials, thus causing an increase of {sup 222}Rn concentrations in the outgoing treated water. External dose rates throughout the length of the filter columns were measured with the portable dosimeter to estimate the {sup 226}Ra and {sup 228}Ra depth distribution. The results showed that distribution of these radionuclides is uneven with the maximum of 0.5 μSv/h for the first stage and 3 μSv/h for

  17. Measurement of indoor radon-thoron and their progeny levels in dwellings and radon concentrations in ground water of Hassan city, Karnataka, India

    International Nuclear Information System (INIS)

    Srinivasa, E.; Rangaswamy, D.R.; Sannappa, J.

    2014-01-01

    The indoor radon and thoron concentrations in dwellings of Hassan city have been measured by using LR-115 type-Il Solid State Nuclear Tracks Detectors (SSNTDs). Measurements were carried in summer season from March to May-2013. The radon and thoron activity concentration in the corresponding dwellings has been found to vary from 7.4 to 45.7 Bqm -3 and 5.4 to 34.9 Bqm -3 with a median of 23.59±11 Bqm -3 and 14.47±8 Bqm -3 respectively. The overall average radon concentrations are found to be less than the lower reference level of 200 Bq m -3 of the International Commission on Radiological Protection. The annual effective dose received due to radon and its progeny by the inhabitants in the dwellings under study has also been calculated which found to vary from 0.320 ±0.4 to 1.86 ±1.1 mSv y -1 with an average value of 0.957±0.8 mSv -1 . The obtained results are much lower than the upper reference level of 10 mSv y -1 (ICRP 2007). Radon in bore well water at different locations of Hassan city was determined using the emanometry technique and exposure dose from ingestion of drinking water was estimated. The radon concentration in ground water was found to vary from 19.49 to 60.74 Bq l -1 with an average value of 47.16±14Bq l -1 . From this study it is evident that, the recorded ground water radon concentration values are higher than MCL of 11 Bq l -1 proposed by USEPA. The total dose due to inhalation and ingestion of 222 Rn in ground water ranges from 0.053 mSv y -1 to 0.165mSv y -1 with an average value of 0.127±0.038mSv y -1 . (author)

  18. Progress in indoor radon measurement. Review of previous research (July 1981-February 1985)

    International Nuclear Information System (INIS)

    1985-01-01

    Research progress in the following areas is reported: (1) scintillation cell development and applications, (2) charcoal adsorption development and applications; (3) surveys with Terradex detectors; (4) radon carcinogenesis epidemiology; (5) large scale surveys of radon concentrations in randomly selected houses; (6) ventilation rate studies; (7) soil studies; (8) diffusion of radon through materials other than soil; and (9) test house studies

  19. Presence of soil gas and indoor Radon in volcanic areas located in Latium and Campania Regions, Italy

    International Nuclear Information System (INIS)

    Buccheri, G.; Addonizio, P.; Rinaldini, A.

    2017-01-01

    In Italy, radon highest concentrations concern all Tyrrhenian belt. The abundant distribution of the radioactive elements in Latium and in Campania, often accompanied by emissions of endogenic gas (CO_2, CO and H_2S), is strictly related to quaternary alkali-potassic volcanism. This article reports about connection between Radon presence and geology (which also influences the most used building materials) within two active areas in Latium and Campania Regions (Italy). Colli Albani are located in Latium. This area is considered as a quiescent volcano, whose last eruptive phase dates back to 41-36 kya, with deposition of Peperino di Albano, a lithoid granular tuff that Romans commonly used as a building and decorative material (lapis albanus). Campania is the second Region of Italy as for population (and more than 50 % of its 6 million of inhabitants are concentrated in the Province of Naples), and volcanism is mainly connected there to the presence of a deep and large volcanic complex, related to a mantle anomaly. INAIL is busy in research activity for evaluation and management of risk for health at workplaces, connected to exposure to indoor radon, taking into account of active laws. Starting from knowledge about geologic activity in Latium and in Campania, the aim of INAIL research activity is estimation of hazard, because of Rn, CO_2 and other endogenic toxic gases, at workplaces located in both Regions. In order to estimate risk from Radon, INAIL carried out soil gas measurements in Alban Hills area, and one more series of Radon measurements has been planned downtown in Naples, where many commercial and artisanal activities are located underground (mainly in tuffaceous buildings). According to the indications provided by the Directive 2013/59/Euratom, INAIL measurements will be aimed to realize Radon Potential Maps (RPM), that may help Italian Institutions to identify hazard areas, realize an effective territorial plan and to assess health risk. (authors)

  20. Measurement and comparison of indoor radon levels in new and old buildings in the city of Muzaffarabad (Azad Kashmir), Pakistan. A pilot study

    International Nuclear Information System (INIS)

    Rafique, Muhammad; Jabeen, Shahida; Bukhari, Shujaht; Rahman, Saeed ur; Shahzad, Muhammad Ikram; Matiullah; Rahman, Said; Nasir, Tabassum

    2009-01-01

    Indoor radon concentrations have been measured in a limited number of dwellings in the state capital of Azad Jammu and Kashimir, Muzaffarabad city after the devastating earthquake of 2005. Radon detectors (CN-85 based box-type) were placed in the drawing rooms, bedrooms and kitchens of 35 houses, selected on the basis of their location and design as well as willingness and cooperation of householders from mid May to mid July 2007. The average radon concentrations were found to vary from 24 to 518 Bq m -3 , 41 to 380 Bq m -3 and 32 to 467 Bq m -3 in the bedrooms, drawing rooms and kitchens, respectively. The weighted average radon concentration in older houses was found to vary from 51 to 334 Bq m -3 and for newly constructed houses a considerable decrease in measured values (ranging from 14 to 102 Bq m -3 ) have been found. As Pakistan does not currently have a national reference (or action level) for radon in homes, therefore the present data has been compared with the data reported for other countries. Some of the houses studied were found to have higher radon concentrations. These higher values of indoor radon levels may be due to the poor ventilation and influence of the earthquake in creating new fissures and therefore new pathways for radon to enter into the buildings. (author)

  1. Measurement and comparison of indoor radon levels in new and old buildings in the city of Muzaffarabad (Azad Kashmir), Pakistan. A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Muhammad; Jabeen, Shahida; Bukhari, Shujaht [Dept. of Physics, Univ. of Azad Jammu and Kashmir Muzaffarabad, Azad Kashmir (Pakistan); Rahman, Saeed ur [Dept. of Physics, COMSATS Inst. of Information Technology, Islamabad (Pakistan); Shahzad, Muhammad Ikram; Matiullah, [Physics Division, PINSTECH, Islamabad (Pakistan); Rahman, Said [SPAS Division, SPARCENT, SUPARCO HQs, Karachi (Pakistan); Nasir, Tabassum [Dept. of Physics, Gomal Univ., Dera Ismail Khan (Pakistan)

    2009-11-15

    Indoor radon concentrations have been measured in a limited number of dwellings in the state capital of Azad Jammu and Kashimir, Muzaffarabad city after the devastating earthquake of 2005. Radon detectors (CN-85 based box-type) were placed in the drawing rooms, bedrooms and kitchens of 35 houses, selected on the basis of their location and design as well as willingness and cooperation of householders from mid May to mid July 2007. The average radon concentrations were found to vary from 24 to 518 Bq m{sup -3}, 41 to 380 Bq m{sup -3} and 32 to 467 Bq m{sup -3} in the bedrooms, drawing rooms and kitchens, respectively. The weighted average radon concentration in older houses was found to vary from 51 to 334 Bq m{sup -3} and for newly constructed houses a considerable decrease in measured values (ranging from 14 to 102 Bq m{sup -3}) have been found. As Pakistan does not currently have a national reference (or action level) for radon in homes, therefore the present data has been compared with the data reported for other countries. Some of the houses studied were found to have higher radon concentrations. These higher values of indoor radon levels may be due to the poor ventilation and influence of the earthquake in creating new fissures and therefore new pathways for radon to enter into the buildings. (author)

  2. Slovak Republic, indoor measurements

    International Nuclear Information System (INIS)

    Vicanova, M.; Daniel, S.

    2006-01-01

    In this report the annual average effective doses from indoor radon exposure were calculated for each district of Slovakia. The population-weighted arithmetic mean of indoor radon concentration was calculated for every district considering different types of houses.

  3. Studies on spatial distribution of indoor radon concentration at Mysore city, India

    International Nuclear Information System (INIS)

    Pruthvi Rani, K.S.; Chandrashekara, M.S.; Paramesh, L.

    2016-01-01

    Radon is a radioactive inert gas, with a half life of 3.82 days. Radium present in soil rocks and building material are the sources of atmospheric radon. Radon and its short-lived decay products ( 218 Po, 214 Pb, 214 Bi, and 214 Po) can be deposited in the lung tissues and give rise to higher radiation doses. Radon is now recognized as the second most important cause of lung cancer after smoking in the general population. In the present investigation a systematic study of the distribution of radon concentration has been carried out in a small room at different co-ordinates and time scales

  4. Seasonal variation of indoor radon-222 levels in dwellings in Ramallah province and East Jerusalem suburbs, Palestine

    International Nuclear Information System (INIS)

    Leghrouz, A. A.; Abu-samreh, M. M.; Shehadeh, A. K.

    2012-01-01

    This study presents the seasonal variations of indoor radon levels in dwellings located in the Ramallah province and East Jerusalem suburbs, Palestine. The measurements were performed during the summer and winter of the year 2006/2007 using CR-39 solid-state-nuclear-track detectors. The total number of investigated buildings is 75 in summer and 81 in winter. A total number of 142 dosemeters are installed in dwellings for each season for a period of almost 100 d. The radon concentration levels in summer varied from 43 to 192 Bq m -3 for buildings in the Ramallah province and from 30 to 655 Bq m -3 for East Jerusalem suburbs. In winter, the radon concentration levels are found to vary from 38 to 375 Bq m -3 in the Ramallah buildings and from 35 to 984 Bq m -3 in East Jerusalem suburbs. The obtained results for radon concentration levels in most places are found to be within the accepted international levels. (authors)

  5. Inhalation dose due to indoor radon and thoron concentrations in the surrounding villages of Hyderabad, Andhra Pradesh, India

    International Nuclear Information System (INIS)

    Sreenath Reddy, M.; Sreenivasa Reddy, B.; Yadagiri Reddy, P.; Gopal Reddy, Ch.; Rama Reddy, K.

    2006-01-01

    Inhalation of radon, thoron and their decay products is the major contribution to the total radioactive dose received by the human population from the natural radiation. The indoor inhalation doses due to radon, thoron and their progenies in the surrounding villages of Hyderabad, India are evaluated. The average inhalation dose due to radon and its progeny is found to be 0.26 ± 0.21 mSv y -1 and due to thoron and its progeny is 0.35 ± 0.38 mSv y -1 . The inhalation dose is also analyzed based on the types of floor, roof and walls of the dwellings and it is found that the dwellings with mud type construction materials have higher inhalation dose. Generally, the contribution of thoron and its progeny to the total dose is neglected but in the present study area the fractional dose of thoron and its progeny is found to be comparable to that of radon and its progeny. (author)

  6. Estimating the risk of lung cancer from inhalation of radon daughters indoors: review and evaluation. Final report, October 1986-April 1988

    International Nuclear Information System (INIS)

    Borak, T.B.; Johnson, J.A.

    1988-06-01

    A review of the dosimetric models and epidemiological studies with regard to the relation between indoor radon exposure and lung cancer indicates that the Working Level is an appropriate unit for indoor radon exposure; that the uncertainty in applying risk estimates derived from uranium miner data may be reduced by determining nose vs. mouth breathing ratios, residential aerosol characteristics, and lung cancer risk vs. age at exposure; that there is persuasive evidence of an association between radon exposure indoors and lung cancer; and that epidemiological studies in progress may provide a basis for revision or validation of current models but only is experimental designs are employed that will permit pooling of data to obtain greater statistical power

  7. Some results from the demonstration of indoor radon reduction measures in block basement houses. Report for June 1985-February 1987

    International Nuclear Information System (INIS)

    Henschel, D.B.; Scott, A.G.

    1987-03-01

    The paper gives results of tests of active soil-ventilation techniques in 24 block-wall basement houses in eastern Pennsylvania having significantly elevated indoor radon concentrations, generally above 740 Bq/cu m. The results indicate that radon levels can be reduced substantially (often below the U.S. EPA guideline of 148 Bq/cu m) if effective suction can be drawn on the soil underneath the concrete slabs of these houses. Such effective suction appears achievable when either: (a) the house has a complete loop of drain tile around its footings for water drainage purposes, and suction is drawn on that loop; or (b) a sufficient number of suction pipes can be inserted at the proper locations into the crushed rock or soil underneath the slab

  8. Changes of indoor aerosol characteristics and their associated variation on the dose conversion factor due to radon progeny inhalation

    International Nuclear Information System (INIS)

    Tokonami, Shinji; Ishikawa, Tetsuo; Yonehara, Hidenori; Yamada, Yuji; Matsuzawa, Takao; Iimoto, Takeshi

    2003-01-01

    Since the dose conversion factor (hereafter called DCF) due to radon progeny inhalation is strongly dominated by aerosol characteristics in the environment, it is important to understand the air quality for accurate dose assessment. Thus temporal variations on aerosol concentration, its particle size and its related airborne radioactivities were continuously measured in an actual indoor environment with a relatively high radon concentration. The following human activities were added during the observation period: air-conditioning, removal of aerosol with an air cleaner and ventilation. DCFs based on these activities were evaluated with the latest International Commission of Radiological Protection (ICRP) respiratory tract model and were compared among them. Consequently, the present study has shown that operation of air cleaner enhanced the DCF critically because the unattached fraction increased significantly due to removal of aerosols. (author)

  9. High radon concentrations in the indoor air in public waterworks. - A report from visits to the waterworks in Ludvika, Fredriksberg, Kolbaeck and Aendesta

    International Nuclear Information System (INIS)

    Aakerblom, G.; Hagberg, N.; Mjoenes, L.; Heiberg, A.

    2000-09-01

    High radon concentrations in the indoor air in buildings used for water treatment are not uncommon. When raw water is processed in the waterworks, and the process is made in an open system, radon may escape from the water to the premises. The radon concentration of the raw water does not need to be high to give a radon escape of 2,0-50 Bq/l, which may lead to indoor air radon concentrations in the premises of 10,000 Bq/m3 to more than 50,000 Bq/m3. The waterworks are workplaces for the staff. However, it is not uncommon that other groups of employees have their jobs in the same buildings. Persons that spend long times in waterworks with high radon concentrations in the air may receive radiation doses as high as 20 mSv/a or more, which is the annual average upper limit in a consecutive five-year period for radiation workers. Waters that contain enough radon to release so much radon that it may cause high radon concentrations in the premises are groundwaters from aquifers in the bedrock and in the soil and surface waters, that has been infiltrated through deposits of sand and gravel. Surface waters that have not been infiltrated have very low radon concentrations < 1 Bq/l). This report accounts for experiences from Ludvika, Fredriksberg, Kolbaeck and Aendesta waterworks and results of radon and gamma radiation measurements in these waterworks. The report represents a part of the SSI project Inventory of industries in which radiation from natural radioactive elements is of concern. The aim of this project is to collect information on exposure to natural radiation at workplaces, and is a part in the implementation of the EU Council Directive (96119 Euratom) on Basic Safety Standards (BSS) for the protection of the health of workers and the general public against dangers arising from ionizing radiation

  10. The possible role of indoor radon reduction systems in back-drafting residential combustion appliances

    International Nuclear Information System (INIS)

    Henschel, D.B.

    1997-01-01

    A computational sensitivity analysis was conducted to identify the conditions under which residential active soil depressurization (ASD) systems for indoor radon reduction might most likely exacerbate or create back-drafting of natural-draft combustion appliances. Parameters varied included: house size; normalized leakage area; exhaust rate of exhaust appliances other than the ASD system; and the amount of house air exhausted by the ASD system. Even with a reasonably conservative set of assumptions, it is predicted that ASD systems should not exacerbate or create back- drafting in most of the U.S. housing stock. Only at normalized leakage areas lower than 3 to 4 cm 2 commercial at 4 Pa) per m 2 of floor area should ASD contribute to back-drafting, even in small houses at high ASD exhaust rates (compared to a mean of over 10 cm 2 /m 2 determined from data on over 12,000 U.S. houses). But on the other hand, even with a more forgiving set of assumptions, it is predicted that ASD systems could contribute to back-drafting in some fraction of the housing stock -houses tighter than about 1 to 2 cm 2 /m 2 - even in large houses at minimal ASD exhaust rates. It is not possible to use parameters such as house size or ASD system flow rate to estimate reliably the risk that an ASD system might contribute to back-drafting in a given house. Spillage/back-draft testing would be needed for essentially all installations. (au) 18 refs

  11. The Italian national survey on radon indoors run by several different regional laboratories: Sampling strategy, realization and follow-up

    International Nuclear Information System (INIS)

    Bochicchio, F.; Risica, S.; Piermattei, S.

    1993-01-01

    The paper outlines the criteria and organization adopted by the Italian National Institutions in carrying out a representative national survey to evaluate the distribution of radon concentration and the exposure of the Italian population to natural radiation indoors. The main items of the survey - i.e. sampling design, choice of the sample size (5000 dwellings), organization, analysis of the actual sample structure, questionnaire to collect data about families and their dwellings, experimental set up and communication with the public - are discussed. Some results, concerning a first fraction of the total sample, are also presented. (author). 13 refs, 2 figs, 2 tabs

  12. Surveying dwellings with high indoor radon levels: a BRE guide to radon remedial measures in existing dwellings

    International Nuclear Information System (INIS)

    Scivyer, C.R.

    1993-01-01

    This report is one of a series giving practical advice on methods of reducing radom levels in existing dwellings. It is aimed specifically at builders, surveyors and building specialists surveying for and prescribing remedial measures for dwellings. It supplements guidance available in 'The householders' guide to radon, obtainable from local environmental health officers or from the Department of the Environment. (Author)

  13. Contribution of (222)Rn-bearing water to indoor radon and indoor air quality assessment in hot spring hotels of Guangdong, China.

    Science.gov (United States)

    Song, Gang; Wang, Xinming; Chen, Diyun; Chen, Yongheng

    2011-04-01

    This study investigates the contribution of radon ((222)Rn)-bearing water to indoor (222)Rn in thermal baths. The (222)Rn concentrations in air were monitored in the bathroom and the bedroom. Particulate matter (PM, both PM(10) and PM(2.5)) and carbon dioxide (CO(2)) were also monitored with portable analyzers. The bathrooms were supplied with hot spring water containing 66-260 kBq m(-3) of (222)Rn. The results show that the spray of hot spring water from the bath spouts is the dominant mechanism by which (222)Rn is released into the air of the bathroom, and then it diffuses into the bedroom. Average (222)Rn level was 110-410% higher in the bedrooms and 510-1200% higher in the bathrooms compared to the corresponding average levels when there was no use of hot spring water. The indoor (222)Rn levels were influenced by the (222)Rn concentrations in the hot spring water and the bathing times. The average (222)Rn transfer coefficients from water to air were 6.2 × 10(-4)-4.1 × 10(-3). The 24-h average levels of CO(2) and PM(10) in the hotel rooms were 89% and 22% higher than the present Indoor Air Quality (IAQ) standard of China. The main particle pollutant in the hotel rooms was PM(2.5). Radon and PM(10) levels in some hotel rooms were at much higher concentrations than guideline levels, and thus the potential health risks to tourists and especially to the hotel workers should be of great concern, and measures should be taken to lower inhalation exposure to these air pollutants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Testing of indoor radon-reduction techniques in central Ohio houses: Phase 1 (Winter 1987-1988). Report for October 1987-August 1988 (Final)

    International Nuclear Information System (INIS)

    Findlay, W.O.; Robertson, A.; Scott, A.G.

    1989-07-01

    The U.S. Environmental Protection Agency (EPA) has a program to demonstrate practical, cost-effective methods to reduce indoor radon concentrations in housing to 150 Bq/cu m (4 pCi/L) or less. The complete program will evaluate the full range of radon-reduction methods, i.e., house ventilation, sealing of entry routes, soil ventilation, radon removal from water, and air cleaning in the full range of housing substructure types and building styles, and geological conditions across the continental United States. The program described in the report demonstrated certain radon-reduction methods in housing and geology typical of southern Ohio in particular, and the central Great Plains States in general. The testing of radon-mitigation systems in Ohio houses is envisioned as taking place in two phases. The report describes Phase 1, which was carried out in 16 existing houses in the Dayton area during the 1987-1988 heating season

  15. Radiation Protection Research: Radon in the Indoor Environment and enhanced natural radioactivity

    International Nuclear Information System (INIS)

    Paridaens, J.

    2000-01-01

    The objectives of R and D on epidemiological studies concerning radon related to health risks at SCK-CEN is to (1) to apply new techniques for retrospective radon measurements in real field conditions and to assess radon decay product exposure by combining these techniques; and (2) to increase capabilities in mapping and surveying sites possibly or likely contaminated with enhanced levels of natural radiation. Progress and main achievements in 1999 are reported on

  16. Indoor radon levels in workplaces of Adapazarı, north-western Turkey

    Indian Academy of Sciences (India)

    The main objective of this study is to assess the health hazards due to radon gas accumulation and to compare the concentrations in different kinds of workplaces, in the city of Adapazarı, one of the most important industrial cities of Turkey. For this purpose, radon activity concentration measurements were carried out in ...

  17. Radiation quality and effective dose equivalent of alpha particles from radon decay products indoors: uncertainties in risk estimation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Affan, I.A. (Velindre Hospital, Whitchurch, Cardiff (United Kingdom))

    1994-01-01

    In order to make a better estimate of cancer risk due to radon the radiation quality of alpha particles emitted from the element and its daughters has been re-assessed. In particular, uncertainties in all components involved in the calculations of the effective dose E, have been investigated. This has been done in the light of the recent draft report of the ICRU on quantities and units for use in radiation protection (Allisy et al (1991) ICRU NEWS 2). On the assumption of an indoor radon concentration of 30 Bq.m[sup -3], microdose spectra have been calculated for alpha particles hitting lung cells at different depths. Then the mean quality factor Q-bar in the lung, dose equivalent H[sub T] to the lung and the effective dose have been calculated. A comparison between lung cancer risk from radon and that arising from diagnostic X rays to the chest is made. A suggestion to make the lung weighting factor w[sub T] a function of the fraction of lung cells hit is discussed. (Author).

  18. Testing of indoor radon-reduction techniques in basement houses having adjoining wings. Final report, August 1988-September 1989

    International Nuclear Information System (INIS)

    Messing, M.

    1990-11-01

    The report gives results of tests of indoor radon reduction techniques in 12 existing Maryland houses, with the objective of determining when basement houses with adjoining wings require active soil depressurization (ASD) treatment of both wings, and when treatment of the basement alone is sufficient. In five basement houses with adjoining slabs on grade, ASD treatment of both wings provided an incremental additional radon reduction of 0 to 5.2 pCi/L, compared to ASD treatment of either one of the slabs alone. However, basement-only treatment reduced radon to <4 pCi/L in all five houses. In six basement houses having adjoining crawl spaces, ASD treatment of both wings (including sub-liner depressurization of the crawl space) provided little additional reduction compared to basement-only treatment, when sub-slab communication was good. When communication was not good, treatment of both wings was required to achieve <4 pCi/L. Tests of one fully slab-on-grade house showed that, when there is good aggregate under the slab, a one-pipe sub-slab depressurization system can achieve <1-2 pCi/L, even when there are forced-air supply ducts under the slab

  19. Determination of indoor radon concentrations at the elementary schools of Fatih district in Istanbul

    Energy Technology Data Exchange (ETDEWEB)

    Kurt, A., E-mail: aziz.kurt@istanbul.edu.tr; Yalcin, L. Sahin, E-mail: latife.sahin@gmail.com; Oktem, Y., E-mail: sgyks@istanbul.edu.tr; Akkus, B., E-mail: akkus@istanbul.edu.tr; Bozkurt, E., E-mail: enginbozkurt88@gmail.com; Hafizoglu, N., E-mail: nurgulhfz87@gmail.com; Ozturk, F. C., E-mail: fcaglaozturk@gmail.com; Aytan, O., E-mail: ozgur@aytan.net; Ertoprak, A., E-mail: aysegulertoprak@gmail.com [Istanbul University, Science Faculty, Physics Department, 34134, Istanbul (Turkey)

    2016-03-25

    Radon is an odorless, tasteless, colorless noble radioactive gas which is produced within the radioactive decay chain of Uranium. The Radon forms in rocks, diffuses into soil and then escapes into atmosphere. When human exposure to high concentration of radon gas from inside, risk of developing lung cancer is increased. There are many methods to determine {sup 222}Rn concentration in the air. In this study, radon concentration of confined air spaces were measured by using LR-115 solid state nuclear track detectors. 509 LR-115 nuclear trace detectors were placed to 25 schools in Fatih District and they effective dose values were calculated. The results of measurements showed that the radon concentration varies between 40-395 Bq/m{sup 3}. This results compared with Turkey’s limits (400 Bq/m{sup 3}) are low, conversely higher compared with WHO’s limits (100 Bq/m{sup 3}).

  20. Radon

    International Nuclear Information System (INIS)

    Holmen, R.W.

    1987-01-01

    The discovery that radon enters into residential and commercial structures and produces adverse health consequences to occupants thereof has raised issues for the real estate profession in connection with transactions involving affected structures. The legal responsibilities of real estate professionals in relation to such structures have not yet been clearly defined. Moreover, consistent and reliable testing methods and results, clear identification of circumstances where testing is necessary, and consensus as to health risks suggested by various radon levels have yet to be achieved. When these legal and technical questions are clarified, real estate buyer and sellers as well as agents and brokers will be greatly benefited

  1. Development and demonstration of indoor radon-reduction measures for 10 homes in Clinton, New Jersey. Final report, April 1986-January 1987

    International Nuclear Information System (INIS)

    Michaels, L.D.; Brennan, T.; Viner, A.S.; Mattes, A.; Turner, W.

    1987-07-01

    This report discusses the development and demonstration of indoor radon reduction methods for 10 houses in Clinton, New Jersey, where (in the spring of 1986) the New Jersey Department of Environmental Protection (DEP) located a cluster of houses with extremely high radon levels. The work was to be completed before the 1986-87 winter heating season began. The demonstration houses were selected from 56 in the Clinton Knolls subdivision. All of these houses had shown radon concentrations in excess of 64 pCi/1 when monitored in the spring of 1986. Each house was inspected, and 10 representative houses were selected for the radon-reduction demonstration project. Following intensive diagnostic work and monitoring in each house, house-specific radon-reduction plans were developed. With the agreement of the homeowners, radon-reduction systems were installed during the summer of 1986. All 10 of the houses had radon concentrations reduced significantly by the fall of 1986. The average cost of radon reduction was $3127

  2. Uranium-238 and thorium-232 series concentrations in soil, radon-222 indoor and drinking water concentrations and dose assessment in the city of Alameda, Chihuahua, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Colmenero Sujo, L.; Montero Cabrera, M.E. E-mail: elena.montero@cimav.edu.mx; Villalba, L.; Renteria Villalobos, M.; Torres Moye, E.; Garcia Leon, M.; Garcia-Tenorio, R.; Mireles Garcia, F.; Herrera Peraza, E.F.; Sanchez Aroche, D

    2004-07-01

    High-resolution gamma spectrometry was used to determine the concentration of {sup 40}K, {sup 238}U and {sup 232}Th series in soil samples taken from areas surrounding the city of Aldama, in Chihuahua. Results of indoor air short-time sampling, with diffusion barrier charcoal detectors, revealed relatively high indoor radon levels, ranging from 29 to 422 Bq/m{sup 3}; the radon concentrations detected exceeded 148 Bq/m{sup 3} in 76% of the homes tested. Additionally, liquid scintillation counting showed concentrations of radon in drinking water ranging from 4.3 to 42 kBq/m{sup 3}. The high activity of {sup 238}U in soil found in some places may be a result of the uranium milling process performed 20 years ago in the area. High radon concentrations indoor and in water may be explained by assuming the presence of uranium-bearing rocks underneath of the city, similar to a felsic dike located near Aldama. The estimated annual effective dose of gamma radiation from the soil and radon inhalation was 3.83 mSv.

  3. Uranium-238 and thorium-232 series concentrations in soil, radon-222 indoor and drinking water concentrations and dose assessment in the city of Aldama, Chihuahua, Mexico.

    Science.gov (United States)

    Colmenero Sujo, L; Montero Cabrera, M E; Villalba, L; Rentería Villalobos, M; Torres Moye, E; García León, M; García-Tenorio, R; Mireles García, F; Herrera Peraza, E F; Sánchez Aroche, D

    2004-01-01

    High-resolution gamma spectrometry was used to determine the concentration of 40K, 238U and 232Th series in soil samples taken from areas surrounding the city of Aldama, in Chihuahua. Results of indoor air short-time sampling, with diffusion barrier charcoal detectors, revealed relatively high indoor radon levels, ranging from 29 to 422 Bq/m3; the radon concentrations detected exceeded 148 Bq/m3 in 76% of the homes tested. Additionally, liquid scintillation counting showed concentrations of radon in drinking water ranging from 4.3 to 42 kBq/m3. The high activity of 238U in soil found in some places may be a result of the uranium milling process performed 20 years ago in the area. High radon concentrations indoor and in water may be explained by assuming the presence of uranium-bearing rocks underneath of the city, similar to a felsic dike located near Aldama. The estimated annual effective dose of gamma radiation from the soil and radon inhalation was 3.83 mSv.

  4. Study of indoor radon, thoron and their progeny concentration levels in the surrounding areas of Mangaldoi, Assam

    International Nuclear Information System (INIS)

    Deka, P.C.; Sarkar, S.; Goswami, T.D.; Sarma, B.K.

    2006-01-01

    Natural sources contribute a significant percentage of radiation towards the total radiation exposure that humans receive. The majority of this natural radiation is harmless to humans in the ambient environment. However, radon, a major component of the natural radiation that humans are exposed to (greater than sixty percent), can pose a threat to the public health when radon gas accumulates in poorly ventilated residential and occupational settings. Measurements of concentration of radon, thoron and their decay products in various indoor environment covering four seasons of a year were carried out using the passive time-integrated method by employing LR-15 type II detectors in plastic twin-chamber dosimeter cups. The estimated indoor radon levels for well ventilated houses varied from a minimum value of 25.2 Bq.m -3 to a maximum of 80J Bq.m -3 with an annual geometric mean of 46.9 Bq.m -3 and that for poorly ventilated houses varied from a minimum value of 46.8 Bq.m -3 to a maximum of 146.8 Bq.m -3 with the annual geometric mean of 82 .2 Bq.m -3 . The thoron levels in well ventilated houses were also varied from a minimum value of 4.9 Bq.m -3 to a maximum of 21.5 Bq.m -3 with an annual geometric mean of 10.5 Bq.m -3 and that for poorly ventilated houses varied from a minimum of 6.3 Bq.m -3 to a maximum value of 29.2 Bq.m -3 with the annual geometric mean of 14.1 Bq.m -3 . Thus it is seen that both radon and thoron levels are higher in poorly ventilated houses than in well-ventilated houses. The ranges of radon and thoron progeny levels for well ventilated houses were 0.10 mWL to 0.58 mWL with an annual geometric mean of 0.21 mWL and 0.01 mWL to 0.06 mWL with an annual geometric mean of 0.03 mWL respectively. Similar variation was also observed in poorly ventilated houses. In poorly ventilated houses, the radon and thoron progeny levels varied between 0.16 mWL and 1.61 mWL with an annual geometric mean of 0.41 mWL and 0.02 to 029 mWL with the annual geometric mean

  5. Indoor radon concentration levels, gamma dose rates and impact of geology - A case study in Kotli, State of Azad Jammu and Kashmir, sub-Himalayas, in Pakistan

    International Nuclear Information System (INIS)

    Iqbal, A.; Shahid Baig, M.; Akram, M.; Qureshi, A.A.

    2012-01-01

    Inhalation of indoor radon has been recognized as the largest contributor to the total effective dose received by human beings. Indoor radon data were collected from the dwellings lying on the sedimentary rocks (sandstones, siltstones and clays) of the Murree Formation, Nagri Formation, Dhok Pathan Formation, Mirpur conglomerate and surficial deposits of the Kotli area in Azad Jammu and Kashmir, Pakistan. Radon measurements were made using the passive time-integrated method using Kodak CN-85 Solid-State Nuclear Track Detectors. The radon concentration in dwellings varied from 13 ± 6 Bq.m -3 to 185 ± 23 Bq.m -3 , with an average of 73 ± 15 Bq.m -3 .The radon concentration in the Murree Formation, Nagri Formation, river terrace and Dhok Pathan Formation were 89.7 ± 16.5, 72 ± 15, 68.5 and 69 Bq.m -3 , respectively. The average value of all the measured concentrations (73 ± 15 Bq.m -3 ) within the framework of this study is more than the world average value of 40 Bq.m -3 given by UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation, report to the General Assembly, United Nations, New York, 2000) and is within the action level of 200-600 Bq.m -3 fixed by the ICRP (International Commission on Radiological Protection, ICRP publication 65, Protection against radon at home and at work, 1993). The ambient gamma dose rates both indoors and outdoors in different parts of Kotli were also measured. The average value of gamma absorbed dose rates prevailing in the indoor environment was 131.2 ± 16.6 nGy/h. The gamma exposure rates recorded outdoors were 35% lower than in the indoor environment. The measured gamma dose rates have a weak positive correlation with indoor radon concentration. The annual effective dose for inhabitants in Kotli due to radon ranged from 0.32 to 4.7 mSv.y -1 , with an average value of 1.8 mSv.y -1 . This dose is relatively higher than the world mean dose of 1.15 mSv/y. That is explained by the particular geology of the

  6. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres. Progress report, July 1, 1991--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Hopke, P.K.

    1992-07-01

    This report covers the second year of the 28 month grant current grant to Clarkson University to study the chemical and physical behavior of the polonium 218 atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and it dose to the cells in the respiratory tract are to be fully assessed. Two areas of radon progeny behavior are being pursued; laboratory studies under controlled conditions to better understand the fundamental physical and chemical process that affect the progeny`s atmospheric behavior and studies in actual indoor environments to develop a better assessment of the exposure of the occupants of that space to the size and concentration of the indoor radioactive aerosol. This report describes the progress toward achieving these objectives.

  7. Continuous monitoring systems for indoor radon measurement: construction and results of their testing

    International Nuclear Information System (INIS)

    Muellerova, M.; Holy, K.; Bujnova, A.; Polaskova, A.; Hola, O.

    2007-01-01

    Two continuous radon monitoring systems were built on the basis of the scintillation chambers. The first system used the large volume scintillation chamber with the volume of 4.5 liters and the second one the commercial scintillation chamber with the volume of 1 liter as the detectors for radon concentration measurement. Both systems were calibrated by Ward-Borak method. The detection limits of monitoring systems are 2.9 Bq · m -3 and 5.1 Bq · m -3 respectively, at -2 hour counting period and 30 % statistical uncertainty. The radon monitoring systems and the professional radon monitor AlphaGUARD were tested in real conditions of working room. The testing showed that long-tenn courses of radon activity concentrations obtained by all three monitors are highly correlated (R 2 ∼0.95). Also the average values of radon activity concentrations calculated on the basis of measured data are identical in the scope of counting errors already at the measurement of the radon activity concentrations in the range of (10-120) Bq · m -3 . (authors)

  8. Human exposure to indoor radon: A survey in the region of Guarda, Portugal

    International Nuclear Information System (INIS)

    Louro, A.; Peralta, L.; Soares, S.; Pereira, A.; Cunha, G.; Belchior, A.; Ferreira, L.; Gil, O. M.; Louro, H.; Pinto, P.; Rodrigues, A. S.; Silva, M. J.; Teles, P.

    2013-01-01

    Radon ( 222 Rn) is a radioactive gas, abundant in granitic areas, such as the city of Guarda at the northeast of Portugal. This gas is recognised as a carcinogenic agent, being appointed by the World Health Organization as the second leading cause of lung cancer after tobacco smoke. Therefore, the knowledge of radon concentrations inside the houses (where people stay longer) is important from the point of view of radiological protection. The main goal of this study was to assess the radon concentration in an area previously identified with a potentially high level of residential radon. The radon concentration was measured using CR-39 detectors, exposed for a period of 2 months in 185 dwellings in the Guarda region. The radon concentration in studied dwellings, ranged between 75 and 7640 Bq m -3 , with a geometric mean of 640 Bq m -3 and an arithmetic mean of 1078 Bq m -3 . Based on a local winter-summer radon concentration variation model, these values would correspond to an annual average concentration of 860 Bq m -3 . Several factors contribute to this large dispersion, the main one being the exact location of housing construction in relation to the geochemical nature of the soil and others the predominant building material and ventilation. Based on the obtained results an average annual effective dose of 15 mSv y -1 is estimated, well above the average previously estimated for Portugal. (authors)

  9. A study on surveillance of environmental factors affecting the variation of indoor radon concentration

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Shin Ae; Kim, Ok Ja; Lee, Mi Kyeong; Cho, Eun Ok; Choi, Yun Sun; Choi, Jin Kyeong; Park, Seon Hye; Han, Hyeon Sun [Hankook Research, Seoul (Korea, Republic of)

    2000-03-15

    Before the main survey, a preliminary survey was carried out to decide the most suitable type of a radon detector the most appropriate places to install such a radon detector. To this end, three types of detectors were set up in 108 locations, approximately 3% of 3,000 to measure the radon levels, and 102 detectors(94%) were collected. As a result of the preliminary survey, Radtrack was chosen as a radon detector for the main survey, and bedrooms on the first floor of houses and the first floor of public buildings were decided to be the places for the first installment of detectors. It is most desirable to survey the radon concentrations in all houses nationwide. Considering the survey period and budgets, however, 3,000 spots were targeted for the main survey at the recommendation of the Korea Institute of Nuclear Safety in charge of this study. As it is important to maintain the same panels for a year to measure the radon concentrations at 3,000 locations, a total of 3,237 panels, 10% more than the target sample number, were surveyed considering the possible loss of panels during the survey period. The first radon detector was installed in each of 3,237 spots in December 1999, and collected three months later in March 2000, followed by the installment of the second detector.

  10. A critical analysis of climatic influences on indoor radon concentrations: Implications for seasonal correction.

    Science.gov (United States)

    Groves-Kirkby, Christopher J; Crockett, Robin G M; Denman, Antony R; Phillips, Paul S

    2015-10-01

    Although statistically-derived national Seasonal Correction Factors (SCFs) are conventionally used to convert sub-year radon concentration measurements to an annual mean, it has recently been suggested that external temperature could be used to derive local SCFs for short-term domestic measurements. To validate this approach, hitherto unanalysed radon and temperature data from an environmentally-stable location were analysed. Radon concentration and internal temperature were measured over periods totalling 1025 days during an overall period of 1762 days, the greatest continuous sampling period being 334 days, with corresponding meteorological data collected at a weather station 10 km distant. Mean daily, monthly and annual radon concentrations and internal temperatures were calculated. SCFs derived using monthly mean radon concentration, external temperature and internal-external temperature-difference were cross-correlated with each other and with published UK domestic SCF sets. Relatively good correlation exists between SCFs derived from radon concentration and internal-external temperature difference but correlation with external temperature, was markedly poorer. SCFs derived from external temperature correlate very well with published SCF tabulations, confirming that the complexity of deriving SCFs from temperature data may be outweighed by the convenience of using either of the existing domestic SCF tabulations. Mean monthly radon data fitted to a 12-month sinusoid showed reasonable correlation with many of the annual climatic parameter profiles, exceptions being atmospheric pressure, rainfall and internal temperature. Introducing an additional 6-month sinusoid enhanced correlation with these three parameters, the other correlations remaining essentially unchanged. Radon latency of the order of months in moisture-related parameters suggests that the principal driver for radon is total atmospheric moisture content rather than relative humidity. Copyright

  11. Preliminary evaluation of the control of indoor radon daughter levels in new structures

    International Nuclear Information System (INIS)

    Fitzgerald, J.E. Jr.; Guimond, R.J.

    1976-01-01

    As part of its assessment of the radiological impact of the phosphate industry in Florida, the US Environmental Protection Agency has surveyed residences built atop uraniferous reclaimed phosphate mining land. These surveys have shown elevated radon daughter levels to exist in structures built on this land. In order to allow safer use of this land for residential construction, various state-of-the-art radon daughter control technologies were evaluated by the Agency. These included forced ventilation, polymeric sealants, excavation, crawl space construction, and improved slab quality. From a cost-effectiveness evaluation, improved slab quality and crawl space construction were determined to best satisfy the criteria for optimal radon daughter control

  12. Airborne radon-222 measurement by active sampling with charcoal adsorption and gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Shizuma, Kiyoshi; Wen, Xiao-qiong; Fukami, Kenji; Iwatani, Kazuo; Hamanaka, Shun-ichi

    1998-01-01

    A simple method for measuring radon concentration in air is presented. Airborne radon is adsorbed in a charcoal bed by an active air sampling. In time, the adsorbed radon comes to attain radioactive equilibrium with its short-lived progeny 214 Pb. Utilizing this fact, radon concentration is derived from γ-ray measurement of 214 Pb. This method is estimated to be capable of detecting radon concentration in air down to 0.79 Bq·m -3 . The adsorption coefficient obtained with the method is compared with what is obtainable with passive sampling. Applications of this method to indoor and outdoor radon measurements are described. (author)

  13. Identifying areas with potential for high indoor radon levels: analysis of the national airborne radiometric reconnaissance data for California and the Pacific Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Moed, B.A.; Nazaroff, W.W.; Nero, A.V.; Schwehr, M.B.; Van Heuvelen, A.

    1984-04-01

    Radon-222 is an important indoor air pollutant which, through the inhalation of its radioactive decay products, accounts for nearly half of the effective dose equivalent to the public from natural ionizing radiation. Indoor radon concentrations vary widely, largely because of local and regional differences in the rate of entry from sources. The major sources are soil and rock near building foundations, earth-based building materials, and domestic water; of these, soil and rock are thought to be predominant in many buildings with higher-than-average concentrations. Thus, one key factor in determining radon source potential is the concentration of radium, the progenitor of radon, in surficial rocks and soils. Aerial radiometric data were analyzed, collected for the National Uranium Resource Evaluation Program, for seven Western states to: (1) provide information on the spatial distribution of radium contents in surficial geologic materials for those states; and (2) investigate approaches for using the aerial data, which have been collected throughout the contiguous United States and Alaska, to identify areas where high indoor radon levels may be common. Radium concentrations were found to be relatively low in central and western portions of Washington, Oregon, and northern California; they were found to be relatively high in central and southern California. A field validation study, conducted along two flight-line segments near Spokane, Washington, showed close correspondence between the aerial data, in situ measurements of both radium content and radon flux from soil, and laboratory measurements of both radium content of and radon emanation rate from soil samples. 99 references, 11 figures, 3 tables.

  14. Identifying areas with potential for high indoor radon levels: analysis of the national airborne radiometric reconnaissance data for California and the Pacific Northwest

    International Nuclear Information System (INIS)

    Moed, B.A.; Nazaroff, W.W.; Nero, A.V.; Schwehr, M.B.; Van Heuvelen, A.

    1984-04-01

    Radon-222 is an important indoor air pollutant which, through the inhalation of its radioactive decay products, accounts for nearly half of the effective dose equivalent to the public from natural ionizing radiation. Indoor radon concentrations vary widely, largely because of local and regional differences in the rate of entry from sources. The major sources are soil and rock near building foundations, earth-based building materials, and domestic water; of these, soil and rock are thought to be predominant in many buildings with higher-than-average concentrations. Thus, one key factor in determining radon source potential is the concentration of radium, the progenitor of radon, in surficial rocks and soils. Aerial radiometric data were analyzed, collected for the National Uranium Resource Evaluation Program, for seven Western states to: (1) provide information on the spatial distribution of radium contents in surficial geologic materials for those states; and (2) investigate approaches for using the aerial data, which have been collected throughout the contiguous United States and Alaska, to identify areas where high indoor radon levels may be common. Radium concentrations were found to be relatively low in central and western portions of Washington, Oregon, and northern California; they were found to be relatively high in central and southern California. A field validation study, conducted along two flight-line segments near Spokane, Washington, showed close correspondence between the aerial data, in situ measurements of both radium content and radon flux from soil, and laboratory measurements of both radium content of and radon emanation rate from soil samples. 99 references, 11 figures, 3 tables

  15. Indoor radon levels in Columbus and Franklin county, Ohio residences, commercial buildings, and schools

    International Nuclear Information System (INIS)

    Grafton, H.E.

    1990-01-01

    In this paper data is presented for 2 residential radon surveys, one survey of city-owned buildings, and survey of Columbus Public Schools. The first residential survey used volunteer participants and employed a 48 hour activated carbon measurement: 4425 measurements in the data. The second survey consisted of 120 randomly selected residences in which alpha track detectors were placed for from 60 to 120 days. A survey of 52 city-owned buildings in which screening measurements were obtained using activated carbon, alpha track, and E-PERM radon detectors is included in the data. Also a survey of 25 Columbus Public Schools in which E-PERM radon monitors were used to obtain measurements is detailed in the data. More than 72% of the volunteer survey residences showed screening measurements of 4.0 pCi/L or greater while the random survey revealed 92% of the residences with radon levels of 4.0 pCi/L or higher. Schools tested in the survey also showed elevated radon levels with 20% of the tested structures with an average radon level of 4.0 pCi/L. Work is still in progress on city-owned buildings and Columbus Schools. The authors conclude that any owner or lessor of occupied buildings in Franklin County, Ohio should perform screening measurements and should be prepared to also perform follow-up measurements

  16. STUDY OF RADIATION EXPOSURE DUE TO RADON, THORON AND THEIR PROGENY IN THE INDOOR ENVIRONMENT OF RAJPUR REGION OF UTTARAKHAND HIMALAYA.

    Science.gov (United States)

    Kandari, Tushar; Aswal, Sunita; Prasad, Mukesh; Pant, Preeti; Bourai, A A; Ramola, R C

    2016-10-01

    In the present study, the measurements of indoor radon, thoron and their progeny concentrations have been carried out in the Rajpur region of Uttarakhand, Himalaya, India by using LR-115 solid-state nuclear track detector-based time-integrated techniques. The gas concentrations have been measured by single-entry pin-hole dosemeter technique, while for the progeny concentrations, deposition-based Direct Thoron and Radon Progeny Sensor technique has been used. The radiation doses due to the inhalation of radon, thoron and progeny have also been determined by using obtained concentrations of radon, thoron and their progeny in the study area. The average radon concentration varies from 75 to 123 Bq m -3 with an overall average of 89 Bq m -3 The average thoron concentration varies from 29 to 55 Bq m -3 with an overall average of 38 Bq m -3 The total annual effective dose received due to radon, thoron and their progeny varies from 2.4 to 4.1 mSv y -1 with an average of 2.9 mSv y -1 While the average equilibrium factor for radon and its progeny was found to be 0.39, for thoron and its progeny, it was 0.06. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. SURVEY FOR INDOOR RADON IN DWELLINGS ON THE TERRITORIES SUPERVISED BY FMBA OF RUSSIA

    Directory of Open Access Journals (Sweden)

    A. M. Marennyy

    2015-01-01

    Full Text Available The purpose of the work was to obtain data about the level of population radon exposure on the surveyed settlements.Methods. Surveys were carried out by the integral track method with the use of the track chambers REI-4 from the kit TRACK-REI-1M. Were surveyed dwelling, schools, kindergartens and business premises. Duration of the each exposure was 2-4 months. The measured value was radon volume activity, then effective equilibrium radon concentration (EEC was calculated using the values of the equilibrium coefficient F=0,5. Effective dose from radon was calculated using a dose coefficient 9•10-6mSv/(hour•Bq/m3. Describe theorganizational aspects of the surveys are described.Results. Survey of the premises to radon were conducted in the settlements of 26 administrative units for several seasons in 2008–2013. The surveyed settlements are cities with multi-storey or mixed buildings sites. The number of inspected premises in the settlement in one measurement period typically ranged from 100 to 200. Most premises were surveyed at least for two seasons (warm and cold. The total number of measurements is about 5300. The summarized results for all settlements were obtained: intervals and average values of the radon EEC, doses fromradon, the proportions of premises with EEC less than 100, 200 and 400 and more than 400 Bq/m3. The calculatedannual doses to the population from radon in a number of settlements are presented. Conclusion.Summarized information about the exposure of the population to radon are obtained. It is shown that «winter» radon EEC values not always exceeds summer values. For part of the settlements we can see even opposite picture. Criteria for assessing the relevance of the «radon situation» in the settlement are proposed. Based on the results of performed surveys the settlements ranked using this criterion.

  18. Measurements and statistical analyses of indoor radon concentrations in Tokyo and surrounding areas

    International Nuclear Information System (INIS)

    Sugiura, Shiroharu; Suzuki, Takashi; Inokoshi, Yukio

    1995-01-01

    Since the UNSCEAR report published in 1982, radiation exposure to the respiratory tract due to radon and its progeny has been regarded as the single largest contributor to the natural radiation exposure of the general public. In Japan, the measurement of radon gas concentrations in many types of buildings have been surveyed by national and private institutes. We also carried out the measurement of radon gas concentrations in different types of residential buildings in Tokyo and its adjoining prefectures from October 1988 to September 1991, to evaluate the potential radiation risk of the people living there. One or two simplified passive radon monitors were set up in each of the 34 residential buildings located in the above-mentioned area for an exposure period of 3 months each. Comparing the average concentrations in the buildings of different materials and structures, those in the concrete steel buildings were always higher than those in the wooden and the prefabricated mortared buildings. The radon concentrations were proved to become higher in autumn and winter, and lower in spring and summer. Radon concentrations in an underground room of a concrete steel building showed the highest value throughout our investigation, and statistically significant seasonal variation was detected by the X-11 method developed by the U.S. Bureau of Census. The values measured in a room at the first floor of the same concrete steel building also showed seasonal variation, but the phase of variation was different. Another multivariate analysis suggested that the building material and structure are the most important factors concerning the levels of radon concentration among other factors such as the age of the building and the use of ventilators. (author)

  19. In search of the comfortable indoor environment: A comparison of the utility of objective and subjective indicators of indoor comfort

    Energy Technology Data Exchange (ETDEWEB)

    Fransson, Niklas; Skoog, Jennie [Building Services Engineering, Department of Energy and Environment, Chalmers University of Technology, Gothenburg (Sweden); Vaestfjaell, Daniel [Department of Psychology, Goeteborg University (Sweden)

    2007-05-15

    Today, many procedures for assessing the indoor environment rely on both subjective and objective indicators (e.g. ANSI/ASHRAE 55-2004; ISO 10551). It is however unclear how these two types of measurements are related to perceived comfort. This article aims at assessing the relative utility of subjective (rating scale measures) and objective indicators of perceived comfort of indoor environments. In a hospital setting, physical environmental variables (e.g. temperature, relative humidity and noise level) were simultaneously measured as respondents (both patients and staff) rated their perception of the indoor environment. Regression analyses indicated that the subjective sensory ratings were significantly better than objective indicators at predicting overall rated indoor comfort. These results are discussed in relation to existing measurement procedures and standards. (author)

  20. Procedure manual for the estimation of average indoor radon-daughter concentrations using the filtered alpha-track method

    International Nuclear Information System (INIS)

    George, J.L.

    1988-04-01

    One of the measurement needs of US Department of Energy (DOE) remedial action programs is the estimation of the annual-average indoor radon-daughter concentration (RDC) in structures. The filtered alpha-track method, using a 1-year exposure period, can be used to accomplish RDC estimations for the DOE remedial action programs. This manual describes the procedure used to obtain filtered alpha-track measurements to derive average RDC estimates from the measurrements. Appropriate quality-assurance and quality-control programs are also presented. The ''prompt'' alpha-track method of exposing monitors for 2 to 6 months during specific periods of the year is also briefly discussed in this manual. However, the prompt alpha-track method has been validated only for use in the Mesa County, Colorado, area. 3 refs., 3 figs

  1. Variability of radon and thoron equilibrium factors in indoor environment of Garhwal Himalaya.

    Science.gov (United States)

    Prasad, Mukesh; Rawat, Mukesh; Dangwal, Anoop; Kandari, Tushar; Gusain, G S; Mishra, Rosaline; Ramola, R C

    2016-01-01

    The measurements of radon, thoron and their progeny concentrations have been carried out in the dwellings of Uttarkashi and Tehri districts of Garhwal Himalaya, India using LR-115 detector based pin-hole dosimeter and DRPS/DTPS techniques. The equilibrium factors for radon, thoron and their progeny were calculated by using the values measured with these techniques. The average values of equilibrium factor between radon and its progeny have been found to be 0.44, 0.39, 0.39 and 0.28 for rainy, autumn, winter and summer seasons, respectively. For thoron and its progeny, the average values of equilibrium factor have been found to be 0.04, 0.04, 0.04 and 0.03 for rainy, autumn, winter and summer seasons, respectively. The equilibrium factor between radon and its progeny has been found to be dependent on the seasonal changes. However, the equilibrium factor for thoron and progeny has been found to be same for rainy, autumn and winter seasons but slightly different for summer season. The annual average equilibrium factors for radon and thoron have been found to vary from 0.23 to 0.80 with an average of 0.42 and from 0.01 to 0.29 with an average of 0.07, respectively. The detailed discussion of the measurement techniques and the explanation for the results obtained is given in the paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Indoor air quality

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Indoor Air Quality is rapidly becoming a major environmental concern because a significant amount of people spend a substantial amount of time in a variety of different indoor environments. Health effects from indoor pollutants fall into two categories: those that are experienced immediately after exposure and those that do not show up until years later. They are: radon, formaldehyde, asbestos, lead and household organic chemicals. The authors presented a source-by-source look at the most common indoor air pollutants, their potential health effects, and ways to reduce their levels in the home. There are three basic strategies to improve indoor air quality: one method is source control, another is through ventilation improvements, and the third is the utilization of some sort of mechanical device such as air cleaners

  3. Follow-up durability measurements and mitigation-performance improvement tests in 38 Eastern Pennsylvania houses having indoor radon-reduction systems. Final report, Oct 89-Feb 90

    International Nuclear Information System (INIS)

    Findlay, W.O.; Robertson, A.; Scott, A.G.

    1991-03-01

    The report gives results of follow-up tests in 38 difficult-to-mitigate Pennsylvania houses where indoor radon reduction systems had been installed 2 to 4 years earlier. Objectives were to assess system durability, methods for improving performance, and methods for reducing installation and operating costs. The durability tests indicated that the 38 systems have not experienced any significant degradation in indoor radon levels or in system flows/suctions, except in 6 houses where system fans failed, and in houses where homeowners turned off the systems. Tests to improve performance indicated that nearly all of the elevated residual radon levels are due to re-entrainment back into the house of very-high-radon exhaust gas from the soil depressurization systems, and to radon release from well water. Tests to reduce system costs showed that premitigation sub-slab suction field measurements can help prevent installation of too many suction pipes when communication is good, but suggest a need for too many pipes when communication is poor. Soil depressurization fans could not be turned down to the extent expected in some systems that were over-designed. Between 6 and 42% of the exhausted air was withdrawn from the house

  4. Uncertainty of block estimates introduced by mis-allocation of point samples: on the example of spatial indoor Radon data

    Energy Technology Data Exchange (ETDEWEB)

    Bossew, P. [European Commission (Ecuador), Joint Research Centre (JRC), Institute for Environment and Sustainability (IES), TP441, Via Fermi 1, I-21020 Ispra (Italy)], E-mail: peter.bossew@jrc.it

    2009-03-15

    The European indoor Radon map which is currently under production is based on gridded data supplied by the contributing countries. Each grid node represents the arithmetic mean (among other statistics) of the individual measurements within 10 x 10 km{sup 2}, called cells, pixels or blocks, which are aligned to a common metric coordinate system. During work the question emerged, if uncertainty in the geo-referencing of individual data might affect the aggregated 'block' statistics to an extent that the statistics have an unpredictably high additional uncertainty, which makes them unusable. In this note we try to quantify the effect, based on simulations. The overall result is that the relevant statistics should not be affected too badly in most cases, in particular if the rate of mis-allocations, and the mean uncertainty of coordinates are not too high, so that also cell statistics which are to some degree distorted by mis-allocated data, can still be used for the purpose of the European Radon map.

  5. [Experimental study on the influence of natural and artificial ventilation on indoor radon concentration].

    Science.gov (United States)

    Remetti, R; Gigante, G E

    2010-01-01

    The study presents the results of a campaign of measurements on the daily radon concentration using a Genitron Alpha Guard spectrometer. All the measurements have been intended to highlight the radon concentration variability during the 24 hours of the day and trying to find correlations with other ambient parameters such as temperature and pressure or local conditions such as the presence or not of a forced ventilation system. The main part of the measurements have been carried in the area of the Nuclear Measurement Laboratory of the Department of Basic and Applied Sciences for Engineering of "Sapienza" University of Rome. Results show a rapid rise of radon concentration in the night, when the artificial ventilation system was off and with door and windows closed. In the morning, after the opening of door and windows, the concentration falls down abruptly. With artificial ventilation system in function concentration never reaches significant values.

  6. Measurement of indoor radon levels in Erbil capital by using solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Mansour, H.H.; Khdar, S. per; Abdulla, H.Y.; Muhamad, N.Q.; Othman, M.M.; Qader, S.

    2005-01-01

    Radon alpha activity concentration has been measured in 28 homes in the Erbil Capital-Iraqi Kurdistan region during the autumn season by using time-integrated passive radon dosimeters containing CR-39 solid state nuclear track detectors 'SSNTDs'. The radon activity concentrations in these homes range from (10.33-90.34) Bqm -3 with an average of 44+/-23Bqm -3 . The average absorption effective dose equivalent for a person living in homes for which the investigation were done was found to be 1.3+/-0.65mSvy -1 , obtained by using an equilibrium factor of 0.5 and an occupancy factor of 0.8. The average lung cancer cases per year per 10 6 person was found to be 23+/-12

  7. Geostatistical simulations for radon indoor with a nested model including the housing factor.

    Science.gov (United States)

    Cafaro, C; Giovani, C; Garavaglia, M

    2016-01-01

    The radon prone areas definition is matter of many researches in radioecology, since radon is considered a leading cause of lung tumours, therefore the authorities ask for support to develop an appropriate sanitary prevention strategy. In this paper, we use geostatistical tools to elaborate a definition accounting for some of the available information about the dwellings. Co-kriging is the proper interpolator used in geostatistics to refine the predictions by using external covariates. In advance, co-kriging is not guaranteed to improve significantly the results obtained by applying the common lognormal kriging. Here, instead, such multivariate approach leads to reduce the cross-validation residual variance to an extent which is deemed as satisfying. Furthermore, with the application of Monte Carlo simulations, the paradigm provides a more conservative radon prone areas definition than the one previously made by lognormal kriging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Radon Concentration in Outdoors and Indoors Around the Flare in Oil Mine Sites; Konsentrasi Gas Radon di Udara di Luar dan Dalam Rumah Sekitar Nyala-api Kawasan Tambang Minyak

    Energy Technology Data Exchange (ETDEWEB)

    Sutarman,; Wahyudi, [Centre for Research and Development of Radiation Safety and Nuclear Biomedicine, National Nuclear Energy Agency, Jakarta (Indonesia); Luhantara, [University of Indonesia, Jakarta (Indonesia)

    2003-03-15

    The flares are much found at the oil exploration areas which appear the combustion gases emission to the environment that pass through a pipe at about 8 m high from the ground level. The flare is released into the environment together with the hydrocarbon and radon gases. This study has been carried out the measurement of the radon gas concentration only. Radon is a radioactive gas which comes from the natural radioactive decay of uranium ({sup 238}U). The outdoor radon concentrations were measured in 23 locations with the two-filter method. The locations were determined by a circle which the flare as the point center. The outdoor radon concentrations were measured in 74 houses (more than distance of 600 m from the flare) with the alpha track detector (CR-39) placed in the living rooms for about three months. The measurements of the radon concentrations were carried out in Cepu, Cirebon, and Prabumulih oil mine sites. The results showed that the outdoor radon concentrations a range of 108 Bq/m{sup 3} to 256 Bq/m{sup 3} in Cepu, 248 Bq/m{sup 3} to 3525 Bq/m{sup 3} in Cirebon, and 51 Bq/m{sup 3} to 114 Bq/m{sup 3} in Prabumulih. The results showed that the indoor radon concentrations a range of 11 Bq/m{sup 3} to 38 Bq/m{sup 3} in Cepu, 28 Bq/m{sup 3} to 184 Bq/m{sup 3} in Cirebon, and 12 Bq/m{sup 3} to 38 Bq/m{sup 3} in Prabumulih. The data of the maximum radon concentration in outdoor air was higher than an actual level which recommended by International Atomic Energy Agency (IAEA) for workplaces. The maximum radon concentration in indoor air was lower than an actual level which recommended by IAEA for dwellings. IAEA recommends the actual level of 1000 Bq/m{sup 3} for workplaces and 200 Bq/m{sup 3} for dwellings. These data will be used for the baseline data of the environmental radioactivity in Indonesia. (author)

  9. Testing of indoor radon reduction techniques in eastern Pennsylvania: An update

    International Nuclear Information System (INIS)

    Henschel, D.B.; Scott, A.G.

    1987-01-01

    EPA has installed radon reduction measures in 38 houses in the Reading Prong region of eastern Pennsylvania. All were basement houses with hollow block or poured concrete foundation walls. The reduction approaches tested in most houses involved active soil ventilation, including: suction on the footing drain tile system; suction underneath the concrete slabs, using pipes inserted through the slabs from inside the house; and ventilation of the void network inside hollow block foundation walls. Heat recovery ventilators (HRVs) were tested in three houses. The current results confirm that, for the houses tested here, drain tile suction appears consistently able to provide high radon reductions when a complete loop of drain tile exists, often reducing high-radon houses to 4 pCi/l (148 B1/m 3 ) and less. Sub-slab suction (with pipes through the slab) can also provide high reductions if a sufficient number of suction pipes are located properly. Placement of one or more sub-slab suction pipes near each perimeter wall appears in this testing to aid in treating the major soil gas entry routes, although fewer pipes can sometimes give high reductions if conditions are favorable. For effective radon reduction using any active soil ventilation technique, it is important that major wall and slab openings be closed, and that a fan be employed that is capable of developing adequate static pressure

  10. Indoor radon levels in workplaces of Adapazarı, north-western Turkey

    Science.gov (United States)

    Kapdan, Enis; Altinsoy, Nesrin

    2014-02-01

    The main objective of this study is to assess the health hazards due to radon gas accumulation and to compare the concentrations in different kinds of workplaces, in the city of Adapazarı, one of the most important industrial cities of Turkey. For this purpose, radon activity concentration measurements were carried out in schools, factories, offices and outdoors using CR-39 solid state nuclear track detectors (SSNTD). Results show that the mean radon activity concentrations (RAC) in schools, offices and factories were found to be 66, 76 and 27 Bq/m3, respectively, with an outdoor concentration of 14 Bq/m3. The average concentrations were found to decrease as follows for different types of industries: automotive > electronic > metal > textile. Because the maximum measured radon concentrations are 151 Bq/m3 in the schools, 173 Bq/m3 in the offices and 52 Bq/m3 in the factories, the limits of ICRP are not exceeded in any of the buildings in the region. In addition, the estimated mean annual effective doses to the people in the workplace, students, office workers and factory workers have been calculated as 0.27, 0.63 and 0.20 mSv/y, respectively for the region.

  11. Indoor radon levels in workplaces of Adapazari, north-western Turkey

    International Nuclear Information System (INIS)

    Kapdan, Enis; Altinsoy, Nesrin

    2014-01-01

    The main objective of this study is to assess the health hazards due to radon gas accumulation and to compare the concentrations in different kinds of workplaces, in the city of Adapazari, one of the most important industrial cities of Turkey. For this purpose, radon activity concentration measurements were carried out in schools, factories, offices and outdoors using CR-39 solid state nuclear track detectors (SSNTD). Results show that the mean radon activity concentrations (RAC) in schools, offices and factories were found to be 66, 76 and 27 Bq/m 3 , respectively, with an outdoor concentration of 14 Bq/m 3 . The average concentrations were found to decrease as follows for different types of industries: automotive > electronic > metal > textile. Because the maximum measured radon concentrations are 151 Bq/m 3 in the schools, 173 Bq/m 3 in the offices and 52 Bq/m 3 in the factories, the limits of ICRP are not exceeded in any of the buildings in the region. In addition, the estimated mean annual effective doses to the people in the workplace, students, office workers and factory workers have been calculated as 0.27, 0.63 and 0.20 mSv/y, respectively for the region. (author)

  12. Indoor radon in selected homes in Aburi Municipality: measurement uncertainty, decision analysis and remediation strategy

    International Nuclear Information System (INIS)

    Yeboah, M. S.

    2014-07-01

    The main source of natural internal irradiation of man is radon and its decay products. In this study, the radon concentration levels in selected