WorldWideScience

Sample records for utility fgd systems

  1. Utility FGD survey, January--December 1988

    Energy Technology Data Exchange (ETDEWEB)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States))

    1991-09-01

    The Utility FGD Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, systems designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company. Simplified process flow diagrams of FGD systems, definitions, and a glossary of terms are attached to the report. Current data for domestic FGD systems show systems in operation, systems under construction, and systems planned. The current total FGD-controlled capacity in the United States is 67,091 MW.

  2. Utility FGD survey, January--December 1988

    Energy Technology Data Exchange (ETDEWEB)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States))

    1991-09-01

    The Utility FGD Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company. Simplified process flow diagrams of FGD systems, definitions, and a glossary of terms are attached to the report. Current data for domestic FGD systems show systems in operation, systems under construction, and systems planned. The current total FGD-controlled capacity in the United States is 67,091 MW.

  3. Utility FGD Survey, January--December 1989. Volume 2, Design performance data for operating FGD systems, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. [IT Corp., Cincinnati, OH (United States)

    1992-03-01

    The Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company.

  4. Utility FGD Survey, January--December 1989

    Energy Technology Data Exchange (ETDEWEB)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States))

    1992-03-01

    The Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company.

  5. Electric utility engineer`s FGD manual -- Volume 1: FGD process design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-04

    Part 1 of the Electric Utility Engineer`s Flue Gas Desulfurization (FGD) Manual emphasizes the chemical and physical processes that form the basis for design and operation of lime- and limestone-based FGD systems applied to coal- or oil-fired steam electric generating stations. The objectives of Part 1 are: to provide a description of the chemical and physical design basis for lime- and limestone-based wet FGD systems; to identify and discuss the various process design parameters and process options that must be considered in developing a specification for a new FGD system; and to provide utility engineers with process knowledge useful for operating and optimizing a lime- or limestone-based wet FGD system.

  6. Electric utility engineer`s FGD manual -- Volume 2: Major mechanical equipment; FGD proposal evaluations; Use of FGDPRISM in FGD system modification, proposal, evaluation, and design; FGD system case study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-04

    Part 2 of this manual provides the electric utility engineer with detailed technical information on some of the major mechanical equipment used in the FGD system. The objectives of Part 2 are the following: to provide the electric utility engineer with information on equipment that may be unfamiliar to him, including ball mills, vacuum filters, and mist eliminators; and to identify the unique technique considerations imposed by an FGD system on more familiar electric utility equipment such as fans, gas dampers, piping, valves, and pumps. Part 3 provides an overview of the recommended procedures for evaluating proposals received from FGD system vendors. The objectives are to provide procedures for evaluating the technical aspects of proposals, and to provide procedures for determining the total costs of proposals considering both initial capital costs and annual operating and maintenance costs. The primary objective of Part 4 of this manual is to provide the utility engineer who has a special interest in the capabilities of FGDPRISM [Flue Gas Desulfurization PRocess Integration and Simulation Model] with more detailed discussions of its uses, requirements, and limitations. Part 5 is a case study in using this manual in the preparation of a purchase specification and in the evaluation of proposals received from vendors. The objectives are to demonstrate how the information contained in Parts 1 and 2 can be used to improve the technical content of an FGD system purchase specification; to demonstrate how the techniques presented in Part 3 can be used to evaluate proposals received in response to the purchase specification; and to illustrate how the FGDPRISM computer program can be used to establish design parameters for the specification and evaluate vendor designs.

  7. Sparing analysis for FGD systems

    International Nuclear Information System (INIS)

    Dene, C.E.; Weiss, J.; Twombly, M.A.; Witt, J.

    1992-01-01

    With the passage of federal clean air legislation, utilities will be evaluating the capability of various flue gas desulfurization (FGD) system design configurations and operating scenarios to meet sulfur dioxide (SO 2 ) removal goals. The primary goal in reviewing these alternatives will be to optimize SO 2 removal capability in relation to power production costs. The Electric Power Research institute (EPRI) and its contractor, ARINC Research Corporation, have developed an automated FGD Analysis System that can evaluate competing FGD design alternatives in terms of their SO 2 removal capability and operating costs. The FGD Analysis System can be used to evaluate different design configurations for new systems or to calculate the effect of changes in component reliability for existing FGD systems. The system is based on the EPRI UNIRAM methodology and evaluates the impact of alternative FGD component configurations on the expected unit emission rates. The user interactively enters FGD design data, unit SO 2 generation-level data, and FGD chemical additive-level data for the design configuration to be evaluated. The system then calculates expected SO 2 removal capability and operating cost data for operation of the design configuration over a user specified time period. This paper provides a brief description of the FGD Analysis System and presents sample results for three typical design configurations with different redundancy levels

  8. High-efficiency SO2 removal in utility FGD systems

    International Nuclear Information System (INIS)

    Phillips, J.L.; Gray, S.; Dekraker, D.

    1995-01-01

    The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI) have contracted with Radian Corporation to conduct full-scale testing, process modeling, and economic evaluations of six existing utility flue gas desulfurization (FGD) systems. The project objective is to evaluate low capital cost upgrades for achieving up to 98% sulfur dioxide (SO 2 ) removal efficiency in a variety of FGD system types. The systems include dual-loop, packed absorbers at Tampa Electric Company's Big Bend Station; cocurrent, packed absorbers at Hoosier Energy's Merom Station; dual-loop absorbers with perforated-plate trays at Southwestern Electric Power Company's Pirkey Station; horizontal spray absorbers at PSI Energy's Gibson Station; venturi scrubbers at Duquesne Light's Elrama Station; and open stray absorbers at New york State Electric and Gas Corporations's (NYSEG's) Kintigh Station. All operate in an inhibited-oxidation mode except the system at Big Bend (forced oxidation), and all use limestone reagent except the Elrama system (Mg-lime). The program was conducted to demonstrate that upgrades such as performance additives and/or mechanical modifications can increase system SO 2 removal at low cost. The cost effectiveness of each upgrade has been evaluated on the basis of test results and/or process model predictions for upgraded performance and utility-specific operating and maintenance costs. Results from this upgraded performance and utility-specific operating and maintenance costs. Results from this program may lead some utilities to use SO 2 removal upgrades as an approach for compliance with phase 2 of Title IV of the Clean Air Act Amendments (CAAA) of 1990. This paper summarizes the results of testing, modeling, and economic evaluations that have been completed since July, 1994

  9. High-efficiency SO{sub 2} removal in utility FGD systems

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J.L.; Gray, S.; Dekraker, D. [Radian Corporation, Austin, TX (United States)] [and others

    1995-11-01

    The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI) have contracted with Radian Corporation to conduct full-scale testing, process modeling, and economic evaluations of six existing utility flue gas desulfurization (FGD) systems. The project objective is to evaluate low capital cost upgrades for achieving up to 98% sulfur dioxide (SO{sub 2}) removal efficiency in a variety of FGD system types. The systems include dual-loop, packed absorbers at Tampa Electric Company`s Big Bend Station; cocurrent, packed absorbers at Hoosier Energy`s Merom Station; dual-loop absorbers with perforated-plate trays at Southwestern Electric Power Company`s Pirkey Station; horizontal spray absorbers at PSI Energy`s Gibson Station; venturi scrubbers at Duquesne Light`s Elrama Station; and open stray absorbers at New york State Electric and Gas Corporations`s (NYSEG`s) Kintigh Station. All operate in an inhibited-oxidation mode except the system at Big Bend (forced oxidation), and all use limestone reagent except the Elrama system (Mg-lime). The program was conducted to demonstrate that upgrades such as performance additives and/or mechanical modifications can increase system SO{sub 2} removal at low cost. The cost effectiveness of each upgrade has been evaluated on the basis of test results and/or process model predictions for upgraded performance and utility-specific operating and maintenance costs. Results from this upgraded performance and utility-specific operating and maintenance costs. Results from this program may lead some utilities to use SO{sub 2} removal upgrades as an approach for compliance with phase 2 of Title IV of the Clean Air Act Amendments (CAAA) of 1990. This paper summarizes the results of testing, modeling, and economic evaluations that have been completed since July, 1994.

  10. Predicting mercury retention in utility gas cleaning systems with SCR/ESP/FGD combinations or activated carbon injection

    Energy Technology Data Exchange (ETDEWEB)

    Krishnakumar, Balaji; Naik, Chitralkumar V.; Niksa, Stephen [Niksa Energy Associates LLC, Belmont, CA (United States); Fujiwara, Naoki [Idemitsu Kosan Co., Ltd, Chiba (Japan). Coal and Environment Research Lab.

    2013-07-01

    This paper presents validations of the Hg speciation predicted by NEA's MercuRator trademark package with an American field test database for 28 full-scale utility gas cleaning systems. It emphasizes SCR/ESP/FGD combinations and activated carbon injection because these two applications present the best long- term prospects for Hg control by coal-burning utilities. Validations of the extents of Hg{sup 0} oxidation across SCRs and of Hg retention in wet FGDs gave correlation coefficients greater than 0.9 for both units. A transport-based FGD analysis correctly assessed the potential for Hg{sup 0} re-emission in one limestone wet FGD. Among the ten stations in the SCR/ESP/FGD validations, the simulations correctly identified 3 of 4 of the relatively high Hg emissions rates; all four of the sites with moderate emissions rates; and both sites with the lowest emission rates. The validations for ACI applications demonstrated that Hg removals can be accurately estimated for the full domain of coal quality, LOI, and ACI rates for both untreated and brominated carbon sorbents. The predictions for ACI depict the test-to-test variations in most cases, and accurately describe the impact of ACI configuration and sorbent type. ACI into FFs is the most effective configuration, although ACI into ESPs often removes 90% or more Hg, provided that there is sufficient residence time and Cl in the flue gas. Brominated sorbents perform better than untreated carbons, unless SO{sub 3} condensation inhibits Hg adsorption.

  11. Factors involved in the selection of limestone reagents for use in wet FGD systems

    International Nuclear Information System (INIS)

    Jarvis, J.B.; Roothaan, E.S.; Meserole, F.B.; Owens, D.R.

    1992-01-01

    With recent activity in the design and construction of retrofit flue gas desulfurization (FGD) systems, many utilities are faced with the task of selecting limestones which will allow FGD systems to function as designed, and at the same time, provide cost-effective operation. The Electric Power Research Institute (EPRI) has sponsored research to identify factors which should be considered in the reagent selection process. A set of capabilities has been developed which is currently being employed to assist six utilities in selecting cost-effective reagent sources. The major elements in the selection package consist of an analytical characterization of candidate limestones; grindability, reactivity, and magnesium availability testing; and performance modeling utilizing EPRI's FGD PRocess Integration and Simulation Model (FGDPRISM). The results from these measurements are used to perform a site-specific economic analysis which can be used to rank the candidate limestones and quantify the impact of various limestone properties on plant operating costs. This paper includes a description of each element in the selection package along with a review of current research activities aimed at improving predictions of limestone reactivity and magnesium availability. An example is presented which illustrates how reactivity and magnesium availability affect both the performance of an FGD system and plant operating costs

  12. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 2, Product development of magnesium hydroxide, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kevin [Dravo Technology Center, Pittsburgh, PA (United States); Beeghly, Joel H. [Dravo Technology Center, Pittsburgh, PA (United States)

    2000-11-30

    In the way of background information about 30 electric utility units with a combined total of 15,000 MW utilize magnesium enhanced lime flue gas desulfurization (FGD) systems. The first generation process begun in 1973, called the Thiosorbic® Process, was a technical breakthrough that offered significantly improved operating and performance characteristics compared with competing FGD technologies. The process is described as Flow Diagram "A" in figure 1. A disadvantage of this and other inhibited or natural oxidation wet FGD systems is the capital and operating cost associated with landfill disposal of the calcium sulfite based solids. Fixation to stabilize the sludge solids for compaction in a landfill also consumes fly ash that otherwise may be marketable.

  13. Sustainable Uses of FGD Gypsum in Agricultural Systems: Introduction.

    Science.gov (United States)

    Watts, Dexter B; Dick, Warren A

    2014-01-01

    Interest in using gypsum as a management tool to improve crop yields and soil and water quality has recently increased. Abundant supply and availability of flue gas desulfurization (FGD) gypsum, a by-product of scrubbing sulfur from combustion gases at coal-fired power plants, in major agricultural producing regions within the last two decades has attributed to this interest. Currently, published data on the long-term sustainability of FGD gypsum use in agricultural systems is limited. This has led to organization of the American Society of Agronomy's Community "By-product Gypsum Uses in Agriculture" and a special collection of nine technical research articles on various issues related to FGD gypsum uses in agricultural systems. A brief review of FGD gypsum, rationale for the special collection, overviews of articles, knowledge gaps, and future research directions are presented in this introductory paper. The nine articles are focused in three general areas: (i) mercury and other trace element impacts, (ii) water quality impacts, and (iii) agronomic responses and soil physical changes. While this is not an exhaustive review of the topic, results indicate that FGD gypsum use in sustainable agricultural production systems is promising. The environmental impacts of FGD gypsum are mostly positive, with only a few negative results observed, even when applied at rates representing cumulative 80-year applications. Thus, FGD gypsum, if properly managed, seems to represent an important potential input into agricultural systems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. LARGE-SCALE MECURY CONTROL TECHNOLOGY TESTING FOR LIGNITE-FIRED UTILITIES-OXIDATION SYSTEMS FOR WET FGD

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Holmes; Steven A. Benson; Jeffrey S. Thompson

    2004-03-01

    The Energy & Environmental Research Center (EERC) is conducting a consortium-based effort directed toward resolving the mercury (Hg) control issues facing the lignite industry. Specifically, the EERC team--the EERC, EPRI, URS, ADA-ES, Babcock & Wilcox, the North Dakota Industrial Commission, SaskPower, and the Mercury Task Force, which includes Basin Electric Power Cooperative, Otter Tail Power Company, Great River Energy, Texas Utilities (TXU), Montana-Dakota Utilities Co., Minnkota Power Cooperative, BNI Coal Ltd., Dakota Westmoreland Corporation, and the North American Coal Company--has undertaken a project to significantly and cost-effectively oxidize elemental mercury in lignite combustion gases, followed by capture in a wet scrubber. This approach will be applicable to virtually every lignite utility in the United States and Canada and potentially impact subbituminous utilities. The oxidation process is proven at the pilot-scale and in short-term full-scale tests. Additional optimization is continuing on oxidation technologies, and this project focuses on longer-term full-scale testing. The lignite industry has been proactive in advancing the understanding of and identifying control options for Hg in lignite combustion flue gases. Approximately 1 year ago, the EERC and EPRI began a series of Hg-related discussions with the Mercury Task Force as well as utilities firing Texas and Saskatchewan lignites. This project is one of three being undertaken by the consortium to perform large-scale Hg control technology testing to address the specific needs and challenges to be met in controlling Hg from lignite-fired power plants. This project involves Hg oxidation upstream of a system equipped with an electrostatic precipitator (ESP) followed by wet flue gas desulfurization (FGD). The team involved in conducting the technical aspects of the project includes the EERC, Babcock & Wilcox, URS, and ADA-ES. The host sites include Minnkota Power Cooperative Milton R. Young

  15. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 1, Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kevin [Dravo Technology Center, Pittsburgh, PA (United States); Beeghly, Joel H. [Dravo Technology Center, Pittsburgh, PA (United States)

    2000-11-30

    About 30 electric utility units with a combined total of 15,000 MW utilize magnesium enhanced lime flue gas desulfurization (FGD) systems. A disadvantage of this and other inhibited or natural oxidation wet FGD systems is the capital and operating cost associated with landfill disposal of the calcium sulfite based solids. Fixation to stabilize the solids for compaction in a landfill also consumes fly ash that otherwise may be marketable. This Executive Summary describes efforts to dewater the magnesium hydroxide and gypsum slurries and then process the solids into a more user friendly and higher value form. To eliminate the cost of solids disposal in its first generation Thiosorbic® system, the Dravo Lime Company developed the ThioClear® process that utilizes a magnesium based absorber liquor to remove S02 with minimal suspended solids. Magnesium enhanced lime is added to an oxidized bleed stream of thickener overflow (TOF) to produce magnesium hydroxide [Mg(OH)2] and gypsum (CaS04 • 2H20), as by-products. This process was demonstrated at the 3 to 5 MW closed loop FGD system pilot plant at the Miami Fort Station of Cinergy, near Cincinnati, Ohio with the help of OCDO Grant Agreement CDO/D-91-6. A similar process strictly for'recovery and reuse of Mg(OH)2 began operation at the Zimmer Station of Cinergy in late 1994 that can produce 900 pounds of Mg(OH)2 per hour and 2,600 pounds of gypsum per hour. This by-product plant, called the Zimmer Slipstream Magnesium Hydroxide Recovery Project Demonstration, was conducted with the help of OCDO Grant Agreement CDO/D-921-004. Full scale ThioClear® plants began operating in 1997 at the 130 MW Applied Energy Services plant, in Monaca, PA, and in year 2000 at the 1,330 MW Allegheny Energy Pleasants Station at St. Marys, WV.

  16. Development of advanced retrofit FGD designs

    International Nuclear Information System (INIS)

    Dene, C.E.; Boward, W.L.; Noblett, J.G.; Keeth, R.J.

    1992-01-01

    The 1990 Clean Air Act Amendment is a dramatic departure from previous legislation in that it affords the electric utility industry the flexibility to achieve their portion of the sulfur dioxide reduction in a myriad of ways. Each utility must look at its system overall. One strategy which may prove beneficial is to remove as much SO 2 as possible at facilities where there is an existing flue gas desulfurization (FGD) system or where one is planned. In response to this need EPRI is developing a family of advanced retrofit FGD designs that incorporate recent advances in FGD technology. A range of design options are being investigated to determine both the SO 2 collection capability and the relative cost impacts of each option. Some of the design options considered include the use of trays, packing, additional liquid flow rate, and additives to boost the removal efficiency. These options are being investigated for limestone, and magnesium-enhanced lime systems. The sensitivity of these designs to changes in coal sulfur content, chloride content, unit size, gas velocity, and other factors are being investigated to determine how the performance of a designs is changed and the ability to meet compliance. This paper illustrates the type of analysis used to develop the advanced designs and presents the sensitivity of a Countercurrent spray tower design using limestone and forced oxidation to changes in specific design input parameters such as boiler load, tower height, and gas velocity

  17. Large-Scale Mercury Control Technology Testing for Lignite-Fired Utilities - Oxidation Systems for Wet FGD

    Energy Technology Data Exchange (ETDEWEB)

    Steven A. Benson; Michael J. Holmes; Donald P. McCollor; Jill M. Mackenzie; Charlene R. Crocker; Lingbu Kong; Kevin C. Galbreath

    2007-03-31

    Mercury (Hg) control technologies were evaluated at Minnkota Power Cooperative's Milton R. Young (MRY) Station Unit 2, a 450-MW lignite-fired cyclone unit near Center, North Dakota, and TXU Energy's Monticello Steam Electric Station (MoSES) Unit 3, a 793-MW lignite--Powder River Basin (PRB) subbituminous coal-fired unit near Mt. Pleasant, Texas. A cold-side electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber are used at MRY and MoSES for controlling particulate and sulfur dioxide (SO{sub 2}) emissions, respectively. Several approaches for significantly and cost-effectively oxidizing elemental mercury (Hg{sup 0}) in lignite combustion flue gases, followed by capture in an ESP and/or FGD scrubber were evaluated. The project team involved in performing the technical aspects of the project included Babcock & Wilcox, the Energy & Environmental Research Center (EERC), the Electric Power Research Institute, and URS Corporation. Calcium bromide (CaBr{sub 2}), calcium chloride (CaCl{sub 2}), magnesium chloride (MgCl{sub 2}), and a proprietary sorbent enhancement additive (SEA), hereafter referred to as SEA2, were added to the lignite feeds to enhance Hg capture in the ESP and/or wet FGD. In addition, powdered activated carbon (PAC) was injected upstream of the ESP at MRY Unit 2. The work involved establishing Hg concentrations and removal rates across existing ESP and FGD units, determining costs associated with a given Hg removal efficiency, quantifying the balance-of-plant impacts of the control technologies, and facilitating technology commercialization. The primary project goal was to achieve ESP-FGD Hg removal efficiencies of {ge}55% at MRY and MoSES for about a month.

  18. Incorporating full-scale experience into advanced limestone wet FGD designs

    International Nuclear Information System (INIS)

    Rader, P.C.; Bakke, E.

    1992-01-01

    Utilities choosing flue gas desulfurization as a strategy for compliance with Phase I of the 1990 Clean Air Act Amendments will largely turn to limestone wet scrubbing as the most cost-effective, least-risk option. State-of-the-art single absorber wet scrubbing systems can be designed to achieve: SO 2 removal efficiencies in excess of 95 %, system availabilities in excess of 98%, and byproducts which can be marketed or land filled. As a result of varying fuel characteristics, site considerations, and owner preferences, FGD plants for large central power stations are typically custom-designed. To avoid the risks associated with new, first-of-a-kind technologies, utilities have preferred to purchase FGD systems from suppliers with proven utility experience and reference plants as close as possible to the design envisioned. As the market for FGD systems is regulatory driven, the demand has shifted geographically in response to national environmental policies. Although limestone wet scrubbing has emerged as the overwhelming choice for SO 2 emission control in coal-fired power stations, the technology has evolved and been adapted to suit local and regional technical and economic situations. Global suppliers are able to benefit from experience and technological advances in the world market. With market units in the U.S., Denmark, Italy, Sweden, and Germany active in the design and supply of wet FGD plants, ABB has a unique ability to incorporate knowledge and experience gained throughout the industrialized world to acid rain retrofit projects in the U.S. This paper describes the design of advanced limestone wet scrubbing systems for application to acid rain retrofits. Specifically, the evolution of advanced design concepts from a global experience base is discussed

  19. Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Withum; S. C. Tseng; J. E. Locke

    2006-01-31

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that these data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the ninth in a series of topical reports, describes the results and analysis of mercury sampling performed on Unit 1 at Plant 7, a 566 MW unit burning a bituminous coal containing 3.6% sulfur. The unit is equipped with a SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO

  20. Low water FGD technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-15

    Conventional flue gas desulphurisation (FGD) systems require large supplies of water. Technologies which reduce water usage are becoming more important with the large number of FGD systems being installed in response to ever tightening emission regulations. Reducing water loss is particularly important in arid regions of the world. This report reviews commercial and near commercial low water FGD processes for coal-fired power plants, including dry, semi-dry and multi-pollutant technologies. Wet scrubbers, the most widely deployed FGD technology, account for around 10–15% of the water losses in power plants with water cooling systems. This figure is considerably higher when dry/air cooling systems are employed. The evaporative water losses can be reduced by some 40–50% when the flue gas is cooled before it enters the wet scrubber, a common practice in Europe and Japan. Technologies are under development to capture over 20% of the water in the flue gas exiting the wet scrubber, enabling the power plant to become a water supplier instead of a consumer. The semi-dry spray dry scrubbers and circulating dry scrubbers consume some 60% less water than conventional wet scrubbers. The commercial dry sorbent injection processes have the lowest water consumption, consuming no water, or a minimal amount if the sorbent needs hydrating or the flue gas is humidified to improve performance. Commercial multi-pollutant systems are available that consume no water.

  1. Epoxy resin systems for FGD units

    International Nuclear Information System (INIS)

    Brytus, V.; Puglisi, J.S.

    1984-01-01

    This paper discusses ongoing research work which is directed towards epoxy resins and curing agents which are designed to withstand aggressive environments. This work includes not only a chemical description of the materials involved, but the application testing necessary to verify the usefulness of these systems. It demonstrates that new high performance epoxy systems are superior to those which traditionally come to mind when one thinks epoxy. Finally, it discusses the results of testing designed specifically to screen candidates for use in FGD units

  2. Selenium Speciation and Management in Wet FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    Searcy, K; Richardson, M; Blythe, G; Wallschlaeger, D; Chu, P; Dene, C

    2012-02-29

    This report discusses results from bench- and pilot-scale simulation tests conducted to determine the factors that impact selenium speciation and phase partitioning in wet FGD systems. The selenium chemistry in wet FGD systems is highly complex and not completely understood, thus extrapolation and scale-up of these results may be uncertain. Control of operating parameters and application of scrubber additives have successfully demonstrated the avoidance or decrease of selenite oxidation at the bench and pilot scale. Ongoing efforts to improve sample handling methods for selenium speciation measurements are also discussed. Bench-scale scrubber tests explored the impacts of oxidation air rate, trace metals, scrubber additives, and natural limestone on selenium speciation in synthetic and field-generated full-scale FGD liquors. The presence and concentration of redox-active chemical species as well as the oxidation air rate contribute to the oxidation-reduction potential (ORP) conditions in FGD scrubbers. Selenite oxidation to the undesirable selenate form increases with increasing ORP conditions, and decreases with decreasing ORP conditions. Solid-phase manganese [Mn(IV)] appeared to be the significant metal impacting the oxidation of selenite to selenate. Scrubber additives were tested for their ability to inhibit selenite oxidation. Although dibasic acid and other scrubber additives showed promise in early clear liquor (sodium based and without calcium solids) bench-scale tests, these additives did not show strong inhibition of selenite oxidation in tests with higher manganese concentrations and with slurries from full-scale wet FGD systems. In bench-tests with field liquors, addition of ferric chloride at a 250:1 iron-to-selenium mass ratio sorbed all incoming selenite to the solid phase, although addition of ferric salts had no impact on native selenate that already existed in the field slurry liquor sample. As ORP increases, selenite may oxidize to selenate more

  3. Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors

    Energy Technology Data Exchange (ETDEWEB)

    Gary Blythe; John Currie; David DeBerry

    2008-03-31

    This document is the final report for Cooperative Agreement DE-FC26-04NT42314, 'Kinetics Study of Mercury Reactions in FGD Liquors'. The project was co-funded by the U.S. DOE National Energy Technology Laboratory and EPRI. The objective of the project has been to determine the mechanisms and kinetics of the aqueous reactions of mercury absorbed by wet flue gas desulfurization (FGD) systems, and develop a kinetics model to predict mercury reactions in wet FGD systems. The model may be used to determine optimum wet FGD design and operating conditions to maximize mercury capture in wet FGD systems. Initially, a series of bench-top, liquid-phase reactor tests were conducted and mercury species concentrations were measured by UV/visible light spectroscopy to determine reactant and byproduct concentrations over time. Other measurement methods, such as atomic absorption, were used to measure concentrations of vapor-phase elemental mercury, that cannot be measured by UV/visible light spectroscopy. Next, a series of bench-scale wet FGD simulation tests were conducted. Because of the significant effects of sulfite concentration on mercury re-emission rates, new methods were developed for operating and controlling the bench-scale FGD experiments. Approximately 140 bench-scale wet FGD tests were conducted and several unusual and pertinent effects of process chemistry on mercury re-emissions were identified and characterized. These data have been used to develop an empirically adjusted, theoretically based kinetics model to predict mercury species reactions in wet FGD systems. The model has been verified in tests conducted with the bench-scale wet FGD system, where both gas-phase and liquid-phase mercury concentrations were measured to determine if the model accurately predicts the tendency for mercury re-emissions. This report presents and discusses results from the initial laboratory kinetics measurements, the bench-scale wet FGD tests, and the kinetics modeling

  4. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Withum; S.C. Tseng; J.E. Locke

    2005-11-01

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dryer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the seventh in a series of topical reports, describes the results and analysis of mercury sampling performed on a 1,300 MW unit burning a bituminous coal containing three percent sulfur. The unit was equipped with an ESP and a limestone-based wet FGD to control particulate and SO2 emissions, respectively. At the time of sampling an SCR was not installed on this unit. Four sampling tests were performed in September 2003. Flue gas mercury speciation and concentrations were determined at the ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. The results show that the FGD inlet flue gas oxidized:elemental mercury ratio was roughly 2:1, with 66% oxidized mercury and 34% elemental mercury. Mercury removal, on a coal

  5. Key issues for low-cost FGD installations

    Energy Technology Data Exchange (ETDEWEB)

    DePriest, W.; Mazurek, J.M. [Sargent & Lundy LLC, Chicago, IL (United States)

    1995-12-01

    This paper will discuss various methods for installing low-cost FGD systems. The paper will include a discussion of various types of FGD systems available, both wet and dry, and will compare the relative cost of each type. Important design issues, such as use of spare equipment, materials of construction, etc. will be presented. An overview of various low-cost construction techniques (i.e., modularization) will be included. This paper will draw heavily from Sargent & Lundy`s database of past and current FGD projects together with information we gathered for several Electric Power Research Institute (EPRI) studies on the subject.

  6. Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Withum; J. E. Locke

    2006-02-01

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the tenth in a series of topical reports, describes the results and analysis of mercury sampling performed on two 468 MW units burning bituminous coal containing 1.3-1.7% sulfur. Unit 2 is equipped with an SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions

  7. Synthesis on research results of FGD gypsum briquetting

    Directory of Open Access Journals (Sweden)

    Kosturkiewicz Bogdan

    2017-01-01

    Full Text Available FGD gypsum products can be characterized by significant solubility in water and dusting in dry state. These characteristics can cause a considerable pollution of air, water and soil. Among many approaches of preparing utilization of this waste, the process of compaction using briquetting has proved to be very effective. Using FGD gypsum products a new material of fertilizers characteristics has been acquired and this material is resistant to the conditions of transportation. This paper presents results of experimental briquetting of flue gas desulphurisation products in a roll press. The experiments were conducted in a laboratory roll presses LPW 450 and LPW 1100 equipped with two interchangeable forming rings that form material into saddle-shaped briquettes with volume 6,5 cm3 and 85 cm3. The experiments were conducted with various percentage amounts of FGD gypsum moisture. The results provided information regarding influence of moisture and roll press configuration on quality of briquettes. On the basis of obtained results, technological process and a general outline of technological line for FGD gypsum were developed. Two roll presses of own construction with different outputs were identified as appropriate for this purpose. A range of necessary works related to their adaptation for the FGD gypsum briquetting were pointed out.

  8. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    International Nuclear Information System (INIS)

    Gary M. Blythe

    2002-01-01

    The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the first full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to project initiation and planning. There is no significant technical progress to report for the current period

  9. Nitrogen speciation in FGD waste water

    Energy Technology Data Exchange (ETDEWEB)

    Fogh, F. [Elsam A/S, Skaerbaekvaerket, Fredericia (Denmark); Smitshuysen, E.F. [Elsam A/S, Esbjergvaerket, Esbjerg (Denmark)

    2003-07-01

    Elsam operates six flue gas desulphurisation (FGD) units (2590 MWe): three wet FGD units (1440 MWe) and three semi-dry FGD units (1150 MWe). The paper presents the results of Elsam investigations covering nitrogen analysis of selected aqueous and solid streams together with nitrogen source and sink considerations in wet and semi-dry FGD plants. (orig.)

  10. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Withum; S.C. Tseng; J. E. Locke

    2004-10-31

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on Hg speciation and the efficacy of different FGD technologies for Hg capture. This document, the second in a series of topical reports, describes the results and analysis of mercury sampling performed on a 330 MW unit burning a bituminous coal containing 1.0% sulfur. The unit is equipped with a SCR system for NOx control and a spray dryer absorber for SO{sub 2} control followed by a baghouse unit for particulate emissions control. Four sampling tests were performed in March 2003. Flue gas mercury speciation and concentrations were determined at the SCR inlet, air heater outlet (ESP inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. Due to mechanical problems with the boiler feed water pumps, the actual gross output was between 195 and 221 MW during the tests. The results showed that the SCR/air heater combination oxidized nearly 95% of the elemental mercury. Mercury removal, on a

  11. Compaction of FGD-gypsum

    NARCIS (Netherlands)

    Stoop, B.T.J.; Larbi, J.A.; Heijnen, W.M.M.

    1996-01-01

    It is shown that it is possible to produce compacted gypsum with a low porosity and a high strength on a laboratory scale by uniaxial compaction of flue gas desulphurization (FGD-) gypsum powder. Compacted FGD-gypsum cylinders were produced at a compaction pres-sure between 50 and 500 MPa yielding

  12. Beneficial reuse of FGD material in the construction of low permeability liners: Impacts on inorganic water quality constituents

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.M.; Tu, W.; Zand, B.; Butalia, T.; Wolfe, W.; Walker, H. [Ohio State University, Columbus, OH (United States)

    2007-05-15

    In this paper, we examine the water quality impacts associated with the reuse of fixated flue gas desulfurization (FGD) material as a low permeability liner for agricultural applications. A 0.457-m-thick layer of fixated FGD material from a coal-fired power plant was utilized to create a 708 m{sup 2} swine manure pond at the Ohio Agricultural Research and Development Center Western Branch in South Charleston, Ohio. To assess the effects of the fixated FGD material liner, water quality samples were collected over a period of 5 years from the pond surface water and a sump collection system beneath the liner. Water samples collected from the sump and pond surface water met all Ohio nontoxic criteria, and in fact, generally met all national primary and secondary drinking water standards. Furthermore it was found that hazardous constituents (i.e., As, B, Cr, Cu, and Zn) and agricultural pollutants (i.e., phosphate and ammonia) were effectively retained by the FGD liner system. The retention of As, B, Cr, Cu, Zn, and ammonia was likely due to sorption to mineral components of the FGD liner, while Ca, Fe, and P retention were a result of both sorption and precipitation of Fe- and Ca-containing phosphate solids.

  13. Four Corners project experience - Applications to next generation FGD

    International Nuclear Information System (INIS)

    Wild, R.L.; Grimes, R.L.; Wiggins, D.S.

    1990-01-01

    In June 1984, Arizona Public Service Company started up the flue gas desulfurization system installed on Units 4 and 5 at the Four Corners Power Station. At the time, this represented the largest emissions control retrofit in the industry, and consisted of two 800 MWe units. These units burn a low sulfur subbituminous coal from the adjacent Navajo mine. The FGD system was designed for 72% overall removal, with partial bypass. The SO 2 absorbers were designed for 90% removal. This FGD system is considered to be a second generation design. At the time, it represented state-of-the-art of FGD technology, in terms of both process considerations and materials of construction. In the six years since startup, several modifications have been made in the areas of process chemistry, equipment configuration, and materials of construction. These modifications are applicable to the next generation of FGD systems which will be designed in response to Acid Rain Legislation. This paper presents the original plant design basis, summarizes the operating experience to date, and identifies the modifications and improvements which have been made since startup. In addition, recommendations for new installations are offered

  14. Microbiological treatment for removal of heavy metals and nutrients in FGD wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Shulder, Stephen J. [Structural Integrity Associates, Annapolis, MD (United States); Riffe, Michael R. [Siemens Water Technologies, General Industry Solutions, Warrendale, PA (United States); Walp, Richard J. [URS Corporation, Princeton, NJ (United States)

    2010-12-15

    In efforts to comply with the Clean Air Act many coal-fired fossil plants are installing wet flue gas desulfurization (WFGD) systems, also known as scrubbers, to remove sulfur dioxide (SO{sub 2}). Limestone slurry is injected into an absorber to promote the formation of calcium sulfate (CaSO{sub 4}) or gypsum. Chloride (chlorine in the fuel) becomes dissolved and increases in the absorber loop, which can lead to a more corrosive environment. Inert matter in the limestone also enters the absorber and must be reduced to meet the gypsum quality specification. To control the buildup of chloride and fines in the flue gas desulfurization (FGD) system a continuous blowdown or purge stream is utilized. Environmental regulations on the discharge of treated FGD wastewater are becoming increasingly more stringent to control impacts on the receiving body of water (stream, lake, river, or ocean). These new limitations often focus on heavy metals such as selenium and nutrients including nitrogen and phosphorus compounds. The FGD chloride purge stream is typically treated by chemical addition and clarification to remove excess calcium and heavy metals with pH adjustment prior to discharge. However this process is not efficient at selenium or nutrient removal. Information on a new approach using biological reactor systems or sequencing batch reactors (SBRs) to achieve reductions in selenium and nitrogen compounds (ammonia, nitrite, and nitrate) is discussed. A brief discussion on the physical/chemical pretreatment is also provided. (orig.)

  15. Successes and failures of Ni-Cr-Mo family alloys in FGD systems of coal-fired power plants

    International Nuclear Information System (INIS)

    Agarwal, D.C.

    1986-01-01

    At first glance, operation of a typical limestone FGD system seems deceptively simple. However, the first generation scrubbers of the early to mid 70's proved to be a financial and operational disaster due to metals corroding in a rather short time period and non-metallic linings failing by blistering, debonding, cracking, flaking and peeling. Extensive research programs at various institutions and utilities to find better construction materials led to higher alloys up the ladder of the Ni-Cr-Mo family, other materials and new non-metallic coatings. This paper describes case histories showing both success and failures of the various alloys in the Ni-Cr-Mo family. This information will not only be useful to the various scrubber system suppliers and A/E's, but should be of value to utility corrosion/scrubber engineers and maintenance personnel who, on a day-to-day basis, are involved in keeping their systems functional in a cost-effective manner

  16. Experienced materials in wet limestone-gypsum FGD system

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, S. [Mitsubishi Heavy Industry, Hiroshima (Japan). Hiroshima Research and Development Center; Iwashita, K.; Ochi, E.; Higuchi, T. [Mitsubishi heavy Industry, Yokohama (Japan)

    1998-12-31

    This study was made on the corrosion resistivity evaluation method used for material selection in the Wet Limestone-Gypsum FGD system with examples of various process configuration, their corrosion environment, and the materials used in them. The wet limestone-gypsum process FGD plant is broadly divided into two types-ash-separated (dual-loop) process, and ash-mixed (single-loop) process-depending on whether the flue gas is separated from ash before being led into the absorber or led as it is into the absorber mixed with ash. Presently, the single-loop process has become the mainstream process however. The dual -loop process comprises a dedusting tower (quencher) and an absorption tower (absorber). In the quencher ash is removed with sprayed water where most of the HCl, HF etc., and a part of SO{sub x} and NO{sub x} contained in the flue gas are also removed with absorption. On the contrary, in the single-loop process which is configured of only the absorber, the flue gas is introduced into it as it is contained with ash, SO{sub x}, NO{sub x}, HCl, HF etc. The corrosion environment in these plants largely differs depending on the process type and condition. The absorber recirculated liquid has various ion inclusions among which Cl{sup {minus}} promotes pitting corrosion and crevice corrosion while SO{sub 4}{sup 2{minus}} inhibits these corrosions. Both Cl{sup {minus}} and SO{sub 4}{sup 2{minus}} cover an extremely large range between 25 to 100,000 ppm and 564 to 73,600 ppm respectively, and their influence on the corrosion is related to their activity which is decided by Ca{sup 2+}, Mg{sup 2+}, Na{sup +}, NH{sub 4}{sup +}, H{sup +} and liquid temperature. The balance of these ions is decided by the gas composition, limestone composition, make-up water and wastewater mass balance etc., of individual plants. Accordingly, materials of FGD plant are selected on the basis of evaluated results of corrosion resistivity test made under such simulated process conditions of

  17. Value-Added Products from FGD Sulfite-Rich Scrubber Materials

    Energy Technology Data Exchange (ETDEWEB)

    Vivak Malhotra

    2010-01-31

    According to the American Coal Ash Association, about 29.25 million tons of flue gas desulfurization (FGD) byproducts were produced in the USA in 2003. Out of 29.25 million tons, 17.35 million tons were sulfite-rich scrubber materials. At present, unlike its cousin FGD gypsum, the prospect for effective utilization of sulfite-rich scrubber materials is not bright. In fact, almost 16.9 million tons are leftover every year. In our pursuit to mitigate the liability of sulfite-rich FGD scrubber materials' disposal, we are attempting to develop value-added products that can commercially compete. More specifically, for this Innovative Concept Phase I project, we have the following objectives: to characterize the sulfite-rich scrubber material for toxic metals; to optimize the co-blending and processing of scrubber material and natural byproducts; to formulate and develop structural composites from sulfite-rich scrubber material; and to evaluate the composites' mechanical properties and compare them with current products on the market. After successfully demonstrating the viability of our research, a more comprehensive approach will be proposed to take these value-added materials to fruition.

  18. Properties of mortars made by uncalcined FGD gypsum-fly ash-ground granulated blast furnace slag composite binder

    International Nuclear Information System (INIS)

    Zhong Shiyun; Ni Kun; Li Jinmei

    2012-01-01

    Highlights: ► The mortar with uncalcined FGD gypsum has suitable workability. ► The strength of mortar with uncalcined FGD gypsum is higher than that of mortar without uncalcined FGD gypsum. ► The dry shrinkage of mortar with uncalcined FGD gypsum is lower than that of mortar without uncalcined FGD gypsum. ► The leaching of sulfate ion of mortar is studied. - Abstract: A series of novel mortars were developed from composite binder of uncalcined FGD gypsum, fly ash (FA) and ground granulated blast furnace slag (GGBFS) for the good utilization of flue gas desulphurization (FGD) gypsum. At a fixed ratio (20%) of GGBFS to the composite binder, keeping consistency of the mortar between 9.5 and 10.0 cm, the properties of the composite mortar were studied. The results show that higher water/binder (W/B) is required to keep the consistency when increasing the percentage of FGD gypsum. No obvious influences of the W/B and content of FGD gypsum on the bleeding of paste were observed which keeps lower than 2% under all experimental conditions tried. The highest compressive and flexural strengths (ratio is 20% FGD gypsum, 20% GGBFS and 60% FA) are 22.6 and 4.3 MPa at 28 days, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that massive ettringite crystals and C–S–H gels exist in the hydration products. At 90 days the mortars with FGD gypsum is dramatically smaller drying shrinkage (563–938 micro strain) than that without FGD gypsum (about 2250 micro strain). The release of the SO 4 2- from the mortar was analyzed, indicating that the dissolution of sulfate increases with FGD gypsum. The concentration of SO 4 2- releasing from the mortar with 10% FGD gypsum is almost equal to that obtained from the mortar without FGD gypsum. The release of SO 4 2- from the mortar with 20% FGD gypsum is 9200 mg·m −2 , which is lower than that from the mortar with 95% cement clinker and 5% FGD gypsum.

  19. Properties of mortars made by uncalcined FGD gypsum-fly ash-ground granulated blast furnace slag composite binder.

    Science.gov (United States)

    Zhong, Shiyun; Ni, Kun; Li, Jinmei

    2012-07-01

    A series of novel mortars were developed from composite binder of uncalcined FGD gypsum, fly ash (FA) and ground granulated blast furnace slag (GGBFS) for the good utilization of flue gas desulphurization (FGD) gypsum. At a fixed ratio (20%) of GGBFS to the composite binder, keeping consistency of the mortar between 9.5 and 10.0 cm, the properties of the composite mortar were studied. The results show that higher water/binder (W/B) is required to keep the consistency when increasing the percentage of FGD gypsum. No obvious influences of the W/B and content of FGD gypsum on the bleeding of paste were observed which keeps lower than 2% under all experimental conditions tried. The highest compressive and flexural strengths (ratio is 20% FGD gypsum, 20% GGBFS and 60% FA) are 22.6 and 4.3 MPa at 28 days, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that massive ettringite crystals and C-S-H gels exist in the hydration products. At 90 days the mortars with FGD gypsum is dramatically smaller drying shrinkage (563-938 micro strain) than that without FGD gypsum (about 2250 micro strain). The release of the SO(4)(2-) from the mortar was analyzed, indicating that the dissolution of sulfate increases with FGD gypsum. The concentration of SO(4)(2-) releasing from the mortar with 10% FGD gypsum is almost equal to that obtained from the mortar without FGD gypsum. The release of SO(4)(2-) from the mortar with 20% FGD gypsum is 9200 mg·m(-2), which is lower than that from the mortar with 95% cement clinker and 5% FGD gypsum. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. FGD Additives to Segregate and Sequester Mercury in Solid Byproducts - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Searcy, K; Bltyhe, G M; Steen, W A

    2012-02-28

    Many mercury control strategies for U.S. coal-fired power generating plants involve co-benefit capture of oxidized mercury from flue gases treated by wet flue gas desulfurization (FGD) systems. For these processes to be effective at overall mercury control, the captured mercury must not be re-emitted to the atmosphere or into surface or ground water. The project sought to identify scrubber additives and FGD operating conditions under which mercury re-emissions would decrease and mercury would remain in the liquor and be blown down from the system in the chloride purge stream. After exiting the FGD system, mercury would react with precipitating agents to form stable solid byproducts and would be removed in a dewatering step. The FGD gypsum solids, free of most of the mercury, could then be disposed or processed for reuse as wallboard or in other beneficial reuse. The project comprised extensive bench-scale FGD scrubber tests in Phases I and II. During Phase II, the approaches developed at the bench scale were tested at the pilot scale. Laboratory wastewater treatment tests measured the performance of precipitating agents in removing mercury from the chloride purge stream. Finally, the economic viability of the approaches tested was evaluated.

  1. Cost effective treatment for wet FGD scrubber bleedoff

    Energy Technology Data Exchange (ETDEWEB)

    Janecek, K.F. [EIMCO Process Equipment Company, Salt Lake City, UT (United States); Kim, J.Y. [Samkook Corporation, Seoul (Korea, Democratic People`s Republic of)

    1994-12-31

    The dewatering of scrubber bleedoff gypsum is a thoroughly proven technology, whether for production of wallboard grade gypsum or environmentally responsible land fill. Careful review of the technology options will show which one is the most effective for the specific plant site. Likewise, a recipe for wastewater treatment for heavy metals removal can be found that will meet local regulatory limits. EIMCO has worldwide experience in FGD gypsum sludge dewatering and wastewater treatment. Contacting EIMCO can be the most important step toward a practical cost effective system for handling FGD scrubber bleed slurries.

  2. Land application uses for dry FGD by-products

    Energy Technology Data Exchange (ETDEWEB)

    Bigham, J.; Dick, W.; Forster, L.; Hitzhusen, F.; McCoy, E.; Stehouwer, R.; Traina, S.; Wolfe, W. (Ohio State Univ., Columbus, OH (United States)); Haefner, R. (Geological Survey, Columbus, OH (United States). Water Resources Div.)

    1993-04-01

    The 1990 amendments to the Clean Air Act have spurred the development of flue gas desulfurization (FGD) processes, several of which produce a dry, solid by-product material consisting of excess sorbent, reaction products containing sulfates and sulfites, and coal fly ash. Presently FGD by-product materials are treated as solid wastes and must be landfilled. However, landfill sites are becoming more scarce and tipping fees are constantly increasing. It is, therefore, highly desirable to find beneficial reuses for these materials provided the environmental impacts are minimal and socially acceptable. Phase 1 results of a 4 and 1/2 year study to demonstrate large volume beneficial uses of FGD by-products are reported. The purpose of the Phase 1 portion of the project was to characterize the chemical, physical, mineralogical and engineering properties of the FGD by-product materials obtained from various FGD technologies being developed in the state of Ohio. Phase 1 also involved the collection of baseline economic data related to the beneficial reuse of these FGD materials. A total of 58 samples were collected and analyzed. In summary Phase 1 results revealed that FGD by-product materials are essentially coal fly ash materials diluted with unreacted sorbent and reaction products. High volume beneficial reuses will depend on the economics of their substituting for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mines). Environmental constraints to the beneficial reuse of dry FGD byproduct materials, based on laboratory and leachate studies, seem to be less than for coal fly ash.

  3. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 6, Field study conducted in fulfillment of Phase 3 titled. Use of FGD by-product gypsum enriched with magnesium hydroxide as a soil amendment

    Energy Technology Data Exchange (ETDEWEB)

    Bigham, J. M. [Ohio State Univ., Wooster, OH (United States). Ohio Agricultural Research Development Center; Soto, U. I. [Ohio State Univ., Wooster, OH (United States). Ohio Agricultural Research Development Center; Stehouwer, R. C. [Ohio State Univ., Wooster, OH (United States). Ohio Agricultural Research Development Center; Yibirin, H. [Ohio State Univ., Wooster, OH (United States). Ohio Agricultural Research Development Center

    1999-04-30

    A variety of flue gas desulfurization (FGD) technologies have been developed to meet environmental restrictions imposed by the federal Clean Air Act and its amendments. These technologies include wet scrubber systems that dramatically reduce sulfur dioxide (SO2) emissions. Although such systems are effective, they also produce large volumes of sludge that must be dewatered, stabilized, and disposed of in landfills. Disposal is an expensive and environmentally questionable process for which suitable alternatives are needed. Wet scrubbing of flue gases with magnesium (Mg)-enhanced lime has the potential to become a leading FGD technology. When combined with aforced oxidation system, the wet sludges resulting from this process can be modified and refined to produce gypsum (CaS04∙2H2O) and magnesium hydroxide [Mg(OH)2] of sufficient purity for beneficial re-use in the construction (wallboard) and pharmaceutical industries. The pilot plant at the CINERGY Zimmer Station near Cincinnati can also produce gypsum by-products formulated to contain varying amounts of Mg(OH)2- Such materials may have value to the agriculture, forestry, and lawn-care industries as soil "conditioners", liming agents, and nutritional supplements capable of supplying calcium (Ca), Mg, and sulfur (S) for plant growth. This report describes three field studies designed to evaluate by-product gypsum and Mg-gypsum from the Zimmer Station power plant as amendments for improving the quality of mine spoils and agricultural soils that were unproductive because of phytotoxic levels of dissolved aluminum (Al) and low pH. The technical literature suggests that gypsum may be more effective than agricultural limestone for ameliorating Al toxicity below the immediate zone of application. Such considerations are important for deep-rooted plant species that attempt to utilize water and nutrients occurring at depth in the spoil/soil.

  4. Application study of Bio-FGD based on environmental safety during the coal combustion

    Science.gov (United States)

    Zhang, Pin

    2018-05-01

    Coal combustion produces a large amount of acidic gas, which is the main cause of acid rain and other natural disasters. Flue Gas Desulfurization (FGD) is a necessary requirement for clean coal combustion. Compared with the traditional chemical desulfurization technology, biological desulfurization has the advantages of low operating cost, without secondary pollution, low carbon emission and the additional economic benefits. The process and structure of BioDeSOx which as one of Bio-FGD technology is introduced. The major factors that influent BioDeSOx Bio- FGD system is the pH, oxidation reduction potential (-300 MV to -400MV), electrical conductivity, the adding amount of nutrient and temperature (30°C-40°C). Taking the Bio- FGD project of Yixing xielian thermal power plant as an example, the BioDeSOx technology was applied in this project. The environmental and economic benefits of the project were greater than the traditional desulfurization technology. With the continuous improvement of environmental safety standards, Bio- FGD technology will have broad application prospects.

  5. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 4, A laboratory study conducted in fulfillment of Phase 2, Objective 1 titled. Inhibition of acid production in coal refuse amended with calcium sulfite and calcium sulfate - containing FGD solids

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Y. L. [Ohio State Univ., Wooster, OH (United States); Dick, W. A. [Ohio State Univ., Wooster, OH (United States); Stehouwer, R. C. [Ohio State Univ., Wooster, OH (United States); Bigham, J. M. [Ohio State Univ., Wooster, OH (United States)

    1998-06-30

    combination effect was partially due to the positive interaction of CaS03 with CaC03 and fly ash on inhibition of acid leaching. In Chapter 3, CaS03-containing FGD was found to inhibit acid leaching from both fresh and aged coal refuse in large scale columns under simulated field conditions. During 39 weeks of leaching, the reduction of leachate acidity and Fe concentration and the increase ofleachate pH were significant (p <0.05) for the 22% FGD treatment with a linear response to increasing FGD rates (0%, 5.5%, 11%, and 22%). I conclude that CaS03 and CaS03-containing FGD have the ability to inhibit acid production in coal refuse and the inhibitory effect shown in this experiment is likely to occur under field conditions. Thus, the research results present a potential new method for mitigation of acid production in coal refuse and another beneficial utilization of FGD by-products.

  6. Use of wet FGD material for revegetation of an abandoned acidic coal refuse pile

    International Nuclear Information System (INIS)

    Mafi, S.; Stehouwer, R.C.

    1996-01-01

    Wet FGD material has a neutralizing potential of 15% CaCO 3 . These properties may make it a beneficial amendment for revegetation of hyper-acidic coal refuse. In greenhouse and field experiments, coal refuse (pH = 2.5) was amended with wet FGD (300, 500, and 700 tons/acre). Amendment with FGD was as effective as agricultural lime (AL) in increasing refuse pH and decreasing soluble Al and Fe. Addition of compost to the FGD further increased pH and decreased soluble Al and Fe. Downward transport of Ca was greater with FGD than AL, but FGD did not increase leachate concentrations of S. Amendment with FGD increased refuse, leachate and plant tissue concentrations of B. Other trace elements were not increased by FGD. In the greenhouse, plant growth was similar with AL and FGD except during the first three months when AL produced more growth than FGD. The initial growth suppression by FGD was likely due to high soluble salts, and possibly by high B concentrations. During the first year of the field experiment plant growth was greater with FGD than with AL. In both the field and greenhouse experiments compost increased plant growth when combined with FGD. These experiments show revegetation of toxic coal refuse and improvement in drainage water quality is possible by amendment with FGD. Revegetation success will be improved by combined amendment with FGD and compost

  7. Land application uses for dry FGD by-products. Phase 2 report

    Energy Technology Data Exchange (ETDEWEB)

    Stehouwer, R.; Dick, W.; Bigham, J. [Ohio State Univ., Columbus, OH (United States)] [and others

    1996-03-01

    A study was initiated in December 1990 to demonstrate large volume beneficial uses of flue gas desulfurization (FGD) by-products. A Phase 1 report provided results of an extensive characterization of chemical, physical, mineralogical and engineering properties of 58 dry FGD by-product samples. The Phase 1 report concluded that high volume beneficial reuses will depend on the economics related to their ability to substitute for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mine lands). Phase 2 objectives were (1) to conduct laboratory and greenhouse studies of FGD and soil (spoil) mixtures for agronomic and engineering applications, (2) to initiate field studies related to high volume agronomic and engineering uses, and (3) to develop the basic methodological framework for estimation of the financial and economic costs and benefits to society of several FGD reuse options and to make some preliminary runs of economic models. High volume beneficial reuses of dry FGD by-products have been successfully demonstrated. Adverse environmental impacts have been negligible. Although few sources of dry FGD by-products currently exist in Ohio and the United States there is potential for smaller coal-fired facilities to adopt S0{sub 2} scrubbing technologies that produce dry FGD material. Also much of what we have learned from studies on dry FGD by-products is applicable to the more prevalent wet FGD by-products. The adaptation of the technologies demonstrated in this project seem to be not only limited by economic constraints, but even more so, by the need to create awareness of the market potential of using these FGD by-products.

  8. Land application uses for dry FGD by-products, Phase 1 report

    Energy Technology Data Exchange (ETDEWEB)

    Bigham, J.; Dick, W.; Forster, L.; Hitzhusen, F.; McCoy, E.; Stehouwer, R.; Traina, S.; Wolfe, W.

    1993-04-01

    The 1990 amendments to the Clean Air Act have spurred the development of flue gas desulfurization (FGD) processes, several of which produce a dry, solid by-product material consisting of excess sorbent, reaction products containing sulfates and sulfites, and coal fly ash. FGD by-product materials are treated as solid wastes and must be landfilled. It is highly desirable to find beneficial reuses for these materials provided the environmental impacts are minimal and socially acceptable. Phase 1 results of a 4 and 1/2 year study to demonstrate large volume beneficial uses of FGD by-products are reported. The purpose of the Phase 1 portion of the project was to characterize the chemical, physical, mineralogical and engineering properties of the FGD by-product materials obtained from various FGD technologies being developed in the state of Ohio. Phase 1 also involved the collection of baseline economic data related to the beneficial reuse of these FGD materials. A total of 58 samples were collected and analyzed. The results indicated the chemical composition of the FGD by-product materials were dominated by Ca, S, Al, and Si. Many of the elements regulated by the US Environmental Protection Agency reside primarily in the fly ash. Phase 1 results revealed that FGD by-product materials are essentially coal fly ash materials diluted with unreacted sorbent and reaction products. High volume beneficial reuses will depend on the economics of their substituting for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mines). Environmental constraints to the beneficial reuse of dry FGD by-product materials, based on laboratory and leachate studies, seem to be less than for coal fly ash.

  9. Enhanced Control of Mercury and other HAPs by Innovative Modifications to Wet FGD Processes

    International Nuclear Information System (INIS)

    Hargrove, O.W.; Carey, T.R.; Richardson, C.F.; Skarupa, R.C.; Meserole, F.B.; Rhudy, R.G.; Brown, Thomas D.

    1997-01-01

    The overall objective of this project was to learn more about controlling emissions of hazardous air pollutants (HAPs) from coal-fired power plants that are equipped with wet flue gas desulfurization (FGD) systems. The project was included by FETC as a Phase I project in its Mega-PRDA program. Phase I of this project focused on three research areas. These areas in order of priority were: (1) Catalytic oxidation of vapor-phase elemental mercury; (2) Enhanced particulate-phase HAPs removal by electrostatic charging of liquid droplets; and (3) Enhanced mercury removal by addition of additives to FGD process liquor. Mercury can exist in two forms in utility flue gas--as elemental mercury and as oxidized mercury (predominant form believed to be HgCl 2 ). Previous test results have shown that wet scrubbers effectively remove the oxidized mercury from the gas but are ineffective in removing elemental mercury. Recent improvements in mercury speciation techniques confirm this finding. Catalytic oxidation of vapor-phase elemental mercury is of interest in cases where a wet scrubber exists or is planned for SO 2 control. If a loW--cost process could be developed to oxidize all of the elemental mercury in the flue gas, then the maximum achievable mercury removal across the existing or planned wet scrubber would increase. Other approaches for improving control of HAPs included a method for improving particulate removal across the FGD process and the use of additives to increase mercury solubility. This paper discusses results related only to catalytic oxidation of elemental mercury

  10. Value-Added Products From FGD Sulfite-Rich Scrubber Materials

    Energy Technology Data Exchange (ETDEWEB)

    Vivak M. Malhotra

    2006-09-30

    Massive quantities of sulfite-rich flue gas desulfurization (FGD) scrubber materials are produced every year in the USA. In fact, at present, the production of wet sulfite-rich scrubber cake outstrips the production of wet sulfate-rich scrubber cake by about 6 million tons per year. However, most of the utilization focus has centered on FGD gypsum. Therefore, we have recently initiated research on developing new strategies for the economical, but environmentally-sound, utilization of sulfite-rich scrubber material. In this exploratory project (Phase I), we attempted to ascertain whether it is feasible to develop reconstituted wood replacement products from sulfite-rich scrubber material. In pursuit of this goal, we characterized two different wet sulfite-rich scrubber materials, obtained from two power plants burning Midwestern coal, for their suitability for the development of value-added products. The overall strategy adopted was to fabricate composites where the largest ingredient was scrubber material with additional crop materials as additives. Our results suggested that it may be feasible to develop composites with flexural strength as high as 40 MPa (5800 psi) without the addition of external polymers. We also attempted to develop load-bearing composites from scrubber material, natural fibers, and phenolic polymer. The polymer-to-solid ratio was limited to {le} 0.4. The formulated composites showed flexural strengths as high as 73 MPa (10,585 psi). We plan to harness the research outcomes from Phase I to develop parameters required to upscale our value-added products in Phase II.

  11. Strategies for enhancing the co-removal of mercury in FGD-scrubbers of power plants. Operating parameters and additives

    Energy Technology Data Exchange (ETDEWEB)

    Schuetze, Jan; Koeser, Heinz [Magdeburg Univ. (Germany). Chair of Environmental Technology; Halle-Wittenberg Univ., Halle (Germany). Centre of Engineering Services

    2012-07-01

    Co-combustion of waste fuels, coals with variable mercury content and lower regulatory emission limits are drivers for the optimisation of the co-removal of mercury in flue gas desulphurisation (FGD) scrubbers. The paper explains some new features of the system performance of FGD scrubbers for the co-removal of mercury in coal-fired power plants. Results on their efficiency under standardised laboratory conditions are presented. The effect of these measures on the quality of the FGD by-product gypsum will be covered as well. (orig.)

  12. Crystallisation of Gypsum and Prevention of Foaming in Wet Flue Gas Desulphurisation (FGD) Plants

    DEFF Research Database (Denmark)

    Hansen, Brian Brun

    The aim of this project is to investigate two operational problems, which have been experienced during wet flue gas desulphurisation (FGD) operation, i.e. poor gypsum dewatering properties and foaming. The results of this work can be used for the optimization of wet FGD-plants in terms of reliabi......The aim of this project is to investigate two operational problems, which have been experienced during wet flue gas desulphurisation (FGD) operation, i.e. poor gypsum dewatering properties and foaming. The results of this work can be used for the optimization of wet FGD-plants in terms....... Experiments in a falling film wet FGD pilot plant have shown a strong non-linear behaviour (in a ln(n(l)) vs. l plot) at the lower end of the particle size range, compared to the well-known linear “mixed suspension mixed product removal (MSMPR)” model. A transient population balance model, fitted...

  13. Leaching of FGD Byproducts Using a CSTX

    Energy Technology Data Exchange (ETDEWEB)

    Kairies, C.L.; Schroeder, K.T.; Cardone, C.R.

    2005-09-01

    Leaching studies of coal utilization byproducts (CUB) are often performed to determine the compatibility of the material in a particular end-use or disposal environment. Typically, these studies are conducted using either a batch or a fixed-bed column technique. Fixed-bed columns offer the advantage of a continuous flow of effluent that provides elution profiles with changing elution volume and pH. Unfortunately, clogs can form in fixed-bed leaching columns, either because of cementitious properties of the material itself, such as is seen for fluidized bed combustion (FBC) fly ash, or because of precipitate formation, such as can occur when a high-calcium ash is subjected to sulfate-containing leachates. Also, very fine-grained materials, such as gypsum, do not provide sufficient permeability for study in a fixed-bed column. A continuous, stirred-tank extractor (CSTX) is being used as an alternative technique that can provide the elution profile of column leaching but without the low permeability problems. The CSTX has been successfully employed in the leaching of flue gas desulfurization products that would not be sufficiently permeable under traditional column leaching conditions. The results indicate that the leaching behavior depends on a number of factors, including (but not limited to) solubility and neutralization capacity of the mineral phases present, sorption properties of these phases, behavior of the solubilized material in the tank, and the type of species in solution. In addition, leaching to near-exhaustion of a wallboard produced from FGD gypsum has allowed the isolation of a highly adsorptive phase. This phase appears to be present in at least some FGD gypsums and accounts for the immobilization of trace metals such as arsenic, cobalt, lead, and mercury.

  14. Land application uses of dry FGD by-products. [Quarterly] report, July 1, 1993--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dick, W.A.; Beeghly, J.H.

    1993-12-31

    Reclamation of mine-sites with acid overburden requires the use of alkaline amendments and represents a potential high-volume use of alkaline dry flue gas desulfurization (FGD) by products. In a greenhouse study, 25-cm columns of acid mine spoil were amended with two FGD by-products; lime injection multistage burners (LIMB) fly ash or pressurized fluidized bed (PFBC) fly ash at rates of 0, 4, 8, 16, and 32% by weight (0, 40, 80, 160, and 320 tons/acre). Amended spoil was covered with 20 cm of acid topsoil amended with the corresponding FGD by-product to pH 7. Column leachate pH increased with FGD amendment rate while leachate Fe, Mn, and Zn decreased, Leachate Ca, S, and Mg decreased with LIMB amendment rate and increased with PFBC amendment. Leachate concentrations of regulated metals were decreased or unaffected by FGD amendment except for Se which was increased by PFBC. Spoil pH was increased up to 8.9 by PFBC, and up to 9.2 by LIMB amendment. Spoil pH also increased with depth with FGD amendments of 16 and 32%, Yield of fescue was increased by FGD amendment of 4 to 8%. Plant tissue content of most elements was unaffected by FGD amendment rate, and no toxicity symptoms were observed. Plant Ca and Mg were increased by LIMB and PFBC respectively, while plant S, Mn and Sr were decreased. Plant Ca and B was increased by LIMB, and plant Mg and S by PFBC amendment. These results indicate dry FGD by-products are effective in ameliorating acid, spoils and have a low potential for creating adverse environmental impacts.

  15. Design considerations for wet flue gas desulfurization systems - wet scrubber hardware issues

    Energy Technology Data Exchange (ETDEWEB)

    Hurwitz, H.

    1994-12-31

    About 20 years ago the first wet flue gas desulfurization systems installed on coal fired utility boilers in the United States were experiencing extreme operating problems. In addition to their failure to achieve the necessary SO{sub 2} removal efficiencies, these FGD systems required a major investment in maintenance, both material and labor, just to remain operational. These first generation systems demonstrated that a lack of understanding of the chemistry and operating conditions of wet flue gas desulfurization can lead to diastrous results. As the air pollution control industry developed, both in the United States and in Japan, a second generation of FGD systems was introduced. These designs incorporated major improvements in both system chemistry control and in the equipment utilized in the process. Indeed, the successful introduction of utility gas desulfurization systems in Germany was possible only through the transfer of the technology improvements developed in the US and in Japan. Today, technology has evolved to a third generation of wet flue gas desulfurication systems and these systems are now offered worldwide through a series of international licensing agreements. The rapid economic growth and development in Asia and the Pacific Rim combined with existing problems in ambient air quality in these same geographic areas, has resulted in the use of advanced air pollution control systems; including flue gas desulfurization both for new utility units and for many retrofit projects. To meet the requirements of the utility industry, FGD systems must meet high standards of reliability, operability and performance. Key components in achieving these objectives are: FGD System reliability/operability/performance; FGD system supplier qualifications; process design; equipment selection. This paper will discuss each of the essential factors with a concentration on the equipment selection and wet scrubber hardware issues.

  16. FGD systems: What utilities chose in phase 1 and what they might choose in phase 2

    Energy Technology Data Exchange (ETDEWEB)

    South, D.W.; Bailey, K.A.

    1995-07-01

    Title IV (acid rain) of the Clean Air Act Amendments of 1990 is imposing new limitations on the emission of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from electric power plants. The Act requires utilities to develop compliance plans to reduce these emissions, and indications are that these plans will dramatically alter traditional operating procedures. A key provision of the SO{sub 2} control program defined in Title IV is the creation of a system of emission allowances, with utilities having, the option of complying by adjusting system emissions and allowance holdings. The central focus of this paper is the identification of sulfur dioxide (SO{sub 2}) control options being implemented by the electric utility industry, current compliance trends, synergistic control issues and a discussion of the implications of Phase I decisions for Phase II.

  17. Risk minimisation of FGD gypsum leachates by incorporation of aluminium sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Ayuso, E. [Department of Environmental Geology, Institute of Earth Sciences ' Jaume Almera' (CSIC), C/ Lluis Sole i Sabaris, s/n, 08028 Barcelona (Spain); Department of Environmental Geochemistry, IRNASA, CSIC, Apto. 257, 37071 Salamanca (Spain)], E-mail: ealvarez@ija.csic.es; Querol, X. [Department of Environmental Geology, Institute of Earth Sciences ' Jaume Almera' (CSIC), C/ Lluis Sole i Sabaris, s/n, 08028 Barcelona (Spain); Ballesteros, J.C.; Gimenez, A. [Endesa Generacion, S.A., C/ Ribera de Loira, 60, 28042 Madrid (Spain)

    2008-11-15

    The incorporation of aluminium sulphate to (flue gas desulphurisation) FGD gypsum before its disposal was investigated as a way to minimise the risk supposed by the high fluoride content of its leachates. Using a bath method the kinetic and equilibrium processes of fluoride removal by aluminium sulphate were studied at fluoride/aluminium molar concentration (F/Al) ratios in the range 1.75 10{sup -2}-1.75 under the pH conditions (about 6.5) of FGD gypsum leachates. It was found that fluoride removal was a very fast process at any of the (F/Al) ratios subject of study, with equilibrium attained within the first 15 min of interaction. High decreases in solution fluoride concentrations (50-80%) were found at the equilibrium state. The use of aluminium sulphate in the stabilization of FGD gypsum proved to greatly decrease its fluoride leachable content (in the range 20-90% for aluminium sulphate doses of 0.1-5%, as determined by the European standard EN 12457-4). Such fluoride leaching minimisation assures the characterization of this by-product as a waste acceptable at landfills for non-hazardous wastes according to the Council Decision 2003/33/EC on waste disposal. Furthermore, as derived from column leaching studies, the proposed stabilization system showed to be highly effective in simulated conditions of disposal, displaying fluoride leaching reduction values about 55 and 80% for aluminium sulphate added amounts of 1 and 2%, respectively.

  18. Use of FGD gypsum on a bermudagrass pasture in the Appalachian Plateau Region

    Science.gov (United States)

    Addition of industrial by-products from coal fired power plants (FGD gypsum and FGD gypsum + fly ash) are thought to increase plant production. Thus, a study was conducted to evaluate the effects of industrial by-products as a soil amendment on bermudagrass (Cynodon dactylon L.) yield. The study was...

  19. Land application uses for dry FGD by-products. Phase 1, [Annual report], December 1, 1991--November 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Bigham, J.; Dick, W.; Forster, L.; Hitzhusen, F.; McCoy, E.; Stehouwer, R.; Traina, S.; Wolfe, W. [Ohio State Univ., Columbus, OH (United States); Haefner, R. [Geological Survey, Columbus, OH (United States). Water Resources Div.

    1993-04-01

    The 1990 amendments to the Clean Air Act have spurred the development of flue gas desulfurization (FGD) processes, several of which produce a dry, solid by-product material consisting of excess sorbent, reaction products containing sulfates and sulfites, and coal fly ash. Presently FGD by-product materials are treated as solid wastes and must be landfilled. However, landfill sites are becoming more scarce and tipping fees are constantly increasing. It is, therefore, highly desirable to find beneficial reuses for these materials provided the environmental impacts are minimal and socially acceptable. Phase 1 results of a 4 and 1/2 year study to demonstrate large volume beneficial uses of FGD by-products are reported. The purpose of the Phase 1 portion of the project was to characterize the chemical, physical, mineralogical and engineering properties of the FGD by-product materials obtained from various FGD technologies being developed in the state of Ohio. Phase 1 also involved the collection of baseline economic data related to the beneficial reuse of these FGD materials. A total of 58 samples were collected and analyzed. In summary Phase 1 results revealed that FGD by-product materials are essentially coal fly ash materials diluted with unreacted sorbent and reaction products. High volume beneficial reuses will depend on the economics of their substituting for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mines). Environmental constraints to the beneficial reuse of dry FGD byproduct materials, based on laboratory and leachate studies, seem to be less than for coal fly ash.

  20. Extension of the possibilities for disposal of the flue gas desulfurization (FGD) gypsum by the development of a process for the production of FGD gypsum. Final report. Erweiterung der Entsorgungsmoeglichkeiten von REA-Gips durch Entwicklung eines Verfahrens zur Herstellung von REA-Anhydrit aus REA-Gips. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Limmer, B.; Hueller, R.

    1990-01-01

    In the course of this research project a completly new transformation of FGD-gypsum into FGD-anhydrite has been studied. The reaction is catalysed by small quantities of sulphuric acid resulting in a FGD-anhydrite without combined water and with an orthorhombic crystal lattice. The course of reaction was thoroughly investigated by laboratory test and hypothesis have been put forward. The process engineering has been developed from laboratory to pilot plant scale. The FGD-anhydrite is technologically a novel product. The idea was to create it for cement industry as well as to put it on the filler market as a raw product. In principle, FGD-anhdrite will be suitable for the use in the cement industry due to its characteristics. However, it is not interesting for this market in this moment. With respect to the filler industry, this application will enable a further-reaching usability of the FGD-gypsum than the traditional scope of the gypsum industry. First experiments show that the specific properties of processed FGD-anhydrite may qualify it as a high-grade filler. (orig.) With 18 refs., 21 tabs., 41 figs.

  1. Preliminary assessment of the health and environmental impacts of fluidized-bed combustion of coal as applied to electrical utility systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-02-01

    The objective of this study was to assess the health and environmental impacts of fluidized-bed combustion of coal (FBC), specifically as applied to base-load generation of electrical energy by utilities. The public health impacts of Fluidized-Bed Combustion (FBC) plants are expected to be quite similar to those for Low Sulfur Coal (LSC) and Flue Gas Desulfurization (FGD) plants because all appear to be able to meet Federal emission standards; however, there are emissions not covered by standards. Hydrocarbon emissions are higher and trace element emissions are lower for FBC than for conventional technologies. For FBC, based on an analytical model and a single emission data point, the polycyclic organic material decreases the anticipated lifespan of the highly exposed public very slightly. Added health protection due to lower trace element emissions is not known. Although there is a large quantity of solid wastes from the generating plant, the environmental impact of the FBC technology due to solid residue appears lower than for FGD, where sludge management requires larger land areas and presents problems due to the environmentally noxious calcium sulfite in the waste. Fixing the sludge may become a requirement that increases the cost of wet-limestone FGD but makes that system more acceptable. The potential for aquatic or terrestrial impacts from hydrocarbon emissions is low. If application of AFBC technology increases the use of local high-sulfur coals to the detriment of western low-sulfur coal, a sociological benefit could accrue to the FBC (or FGD) technology, because impacts caused by western boom towns would decrease. The infrastructure of areas that mine high-sulfur coal in the Midwest are better equipped to handle increased mining than the West.

  2. Implications of moisture content determination in the environmental characterisation of FGD gypsum for its disposal in landfills

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Ayuso, E. [Department of Environmental Geology, Institute of Earth Sciences ' Jaume Almera' (CSIC), C/ Lluis Sole i Sabaris s/n, 08028 Barcelona (Spain)], E-mail: ealvarez@ija.csic.es; Querol, X. [Department of Environmental Geology, Institute of Earth Sciences ' Jaume Almera' (CSIC), C/ Lluis Sole i Sabaris s/n, 08028 Barcelona (Spain); Tomas, A. [Endesa Generacion, S.A., C/ Ribera de Loira 60, 28042 Madrid (Spain)

    2008-05-01

    The leachable contents of elements of environmental concern considered in the Council Decision 2003/33/EC on waste disposal were determined in flue gas desulphurisation (FGD) gypsum. To this end, leaching tests were performed following the standard EN-12457-4 which specifies the determination of the dry mass of the material at 105 deg. C and the use of a liquid to solid (L/S) ratio of 10 l kg{sup -1} dry matter. Additionally, leaching tests were also carried out taking into account the dry mass of the material at 60 deg. C and using different L/S ratios (2, 5, 8, 10, 15 and 20 l kg{sup -1} dry matter). It was found that the dry mass determination at 105 deg. C turns out to be inappropriate for FGD gypsum since at this temperature gypsum transforms into bassanite, and so, in addition to moisture content, crystalline water is removed. As a consequence the moisture content is overvalued (about 16%), what makes consider a lower L/S ratio than that specified by the standard EN-12457-4. As a result the leachable contents in FGD gypsum are, in general, overestimated, what could lead to more strict environmental requirements for FGD gypsum when considering its disposal in landfills, specially concerning those elements (e.g., F) risking the characterisation of FGD gypsum as a waste acceptable at landfills for non-hazardous wastes.

  3. FGD Franchising Pilot Project of Thermal Power Plants

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    According to the national policy on enhancing environmental protection,the five major power generation companies are required to carry out flue gas desulphurization(FGD) franchising pilot project in thermal power plants.This paper introduces the development of this pilot project,including the foundation,purpose,objects,demands and procedures.It also discusses some main problems encountered during implementation,involving the understanding,legislation,financing,taxation,pricing and management of franchise.At...

  4. Coal Combustion Residual Beneficial Use Evaluation: Fly Ash Concrete and FGD Gypsum Wallboard

    Science.gov (United States)

    This page contains documents related to the evaluation of coal combustion residual beneficial use of fly ash concrete and FGD gypsum wallboard including the evaluation itself and the accompanying appendices

  5. ABB wet flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Niijhawan, P.

    1994-12-31

    The wet limestone process for flue gas desulfurization (FGD) is outlined. The following topics are discussed: wet flue gas desulfurization, wet FGD characteristics, wet scrubbers, ABB wet FGD experience, wet FGD forced oxidation, advanced limestone FGD systems, key design elements, open spray tower design, spray tower vs. packed tower, important performance parameters, SO{sub 2} removal efficiency, influence by L/G, limestone utilization, wet FGD commercial database, particulate removal efficiencies, materials of construction, nozzle layout, spray nozzles, recycle pumps, mist elimination, horizontal flow demister, mist eliminator washing, reagent preparation system, spray tower FGDS power consumption, flue gas reheat options, byproduct conditioning system, and wet limestone system.

  6. Evaluation of potential for mercury volatilization from natural and FGD gypsum products using flux-chamber tests.

    Science.gov (United States)

    Shock, Scott S; Noggle, Jessica J; Bloom, Nicholas; Yost, Lisa J

    2009-04-01

    Synthetic gypsum produced by flue-gas desulfurization (FGD) in coal-fired power plants (FGD gypsum) is put to productive use in manufacturing wallboard. FGD gypsum wallboard is widely used, accounting for nearly 30% of wallboard sold in the United States. Mercury is captured in flue gas and thus is one of the trace metals present in FGD gypsum; raising questions about the potential for mercury exposure from wallboard. Mercury is also one of the trace metals present in "natural" mined gypsum used to make wall board. Data available in the literature were not adequate to assess whether mercury in wallboard from either FGD or natural gypsum could volatilize into indoor air. In this study, mercury volatilization was evaluated using small-scale (5 L) glass and Teflon flux chambers, with samples collected using both iodated carbon and gold-coated sand traps. Mercury flux measurements made using iodated carbon traps (n=6) were below the detection limit of 11.5 ng/m2-day for all natural and synthetic gypsum wallboard samples. Mercury flux measurements made using gold-coated sand traps (n=6) were 0.92 +/- 0.11 ng/m2-day for natural gypsum wallboard and 5.9 +/- 2.4 ng/m2-day for synthetic gypsum wallboard. Room air mercury concentrations between 0.028 and 0.28 ng/m3 and between 0.13 and 2.2 ng/m3 were estimated based on the flux-rate data for natural and synthetic gypsum wallboard samples, respectively, and were calculated assuming a 3 m x 4 m x 5 m room, and 10th and 90th percentile air exchange rates of 0.18/hour and 1.26/hour. The resulting concentration estimates are well below the U.S. Environmental Protection Agency (EPA) reference concentration for indoor air elemental mercury of 300 ng/m3 and the Agency for Toxic Substances and Disease Registry minimal risk level (MRL) of 200 ng/m3. Further, these estimates are below background mercury concentrations in indoor air and within or below the range of typical background mercury concentrations in outdoor air.

  7. Optimisation of a wet FGD pilot plant using fine limestone and organic acids

    DEFF Research Database (Denmark)

    Frandsen, Jan; Kiil, Søren; Johnsson, Jan Erik

    2001-01-01

    , but the residual limestone content in the gypsum increased to somewhere between 19 and 30 wt%, making this pH range unsuitable for use in a full-scale plant. The investigations have shown that both the addition of organic acids and the use of a limestone with a fine PSD can be used to optimise wet FGD plants. (C......The effects of adding an organic acid or using a limestone with a fine particle size distribution (PSD) have been examined in a wet flue gas desulphurisation (FGD) pilot plant. Optimisation of the plant with respect to the degree of desulphurisation and the residual limestone content of the gypsum...... has been the aim of the work. In contrast to earlier investigations with organic acids, all essential process parameters (i.e. gas phase concentration profiles of SO(2), slurry pH profiles. and residual limestone in the gypsum) were considered. Slurry concentrations of adipic acid in the range of 0...

  8. Oxidation of FGD-CaSO{sub 3} and effect on soil chemical properties when applied to the soil surface

    Energy Technology Data Exchange (ETDEWEB)

    Liming Chen; Cliff Ramsier; Jerry Bigham; Brian Slater; David Kost; Yong Bok Lee; Warren A. Dick [Ohio State University, Wooster, OH (United States). School of Environment and Natural Resources

    2009-07-15

    Use of high-sulfur coal for power generation in the United States requires the removal of sulfur dioxide (SO{sub 2}) produced during burning in order to meet clean air regulations. If SO{sub 2} is removed from the flue gas using a wet scrubber without forced air oxidation, much of the S product created will be sulfite (SO{sub 3}{sup 2-}). Plants take up S in the form of sulfate (SO{sub 2}{sup 2-}). Sulfite may cause damage to plant roots, especially in acid soils. For agricultural uses, it is thought that SO{sub 4}{sup 2-} in flue gas desulfurization (FGD) products must first oxidize to SO{sub 4}{sup 2-} in soils before crops are planted. However, there is little information about the oxidation of SO{sub 3}{sup 2-} in FGD product to SO{sub 4}{sup 2-} under field conditions. An FGD-CaSO{sub 3} was applied at rates of 0, 1.12, and 3.36 Mg ha{sup -1} to the surface of an agricultural soil (Wooster silt loam, Oxyaquic Fragiudalf). The SO{sub 4}{sup 2-} in the surface soil (0-10 cm) was analyzed on days 3, 7, 17, 45, and 61. The distribution of SO{sub 4}{sup 2-} and Ca in the 0-90 cm soil layer was also determined on day 61. Results indicated that SO{sub 3}{sup 2-} in the FGD-CaSO{sub 3} rapidly oxidized to SO{sub 4}{sup 2-} on the field surface during the first week and much of the SO{sub 4}{sup 2-} and Ca moved downward into the 0-50 cm soil layer during the experimental period of two months. It is safe to grow plants in soil treated with FGD-CaSO{sub 3} if the application is made at least three days to several weeks before planting. 20 refs., 6 figs., 4 tabs.

  9. Utilization of desulfurization gypsum to producing SO{sub 2} and CaO in multi-stage fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zhu; Wang, Tao; Yang, Hairui; Zhang, Hai; Zhang, Zuyi [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Ministry of Education, Beijing (China). Key Lab. for Thermal Science and Power Engineering

    2013-07-01

    With emission control becomes more and more stringent, flue gas desulphurization (FGD) is commonly employed for desulfurization. However, the product of FGD, gypsum, causes the unexpected environmental problems. How to utilize the byproduct of FGD effectively and economically is a challenging task. This paper proposed the new technical process to produce SO{sub 2} and CaO by reducing the gypsum in multi-stage fluidized bed reactor with different atmosphere. In addition, some preliminary experiments were carried out in PTGA. The results show that CO concentration has little effect on the initial decomposing temperature, but affect the decomposing rate of phosphogypsum obviously. The decomposing product composed of CaS and CaO simultaneously. The ratio of the two products was determined by CO concentration. Lower CO content benefits to produce more CO product and more SO{sub 2}. The decomposition reaction of phosphogypsum in reducing atmosphere is parallel competition reaction. Therefore, it is necessary to eliminate the effect of CaS and other byproduct efficiently by the new technology, which utilize multi-atmosphere in multistage fluidized bed reactors.

  10. The Cdc42 guanine nucleotide exchange factor FGD6 coordinates cell polarity and endosomal membrane recycling in osteoclasts.

    Science.gov (United States)

    Steenblock, Charlotte; Heckel, Tobias; Czupalla, Cornelia; Espírito Santo, Ana Isabel; Niehage, Christian; Sztacho, Martin; Hoflack, Bernard

    2014-06-27

    The initial step of bone digestion is the adhesion of osteoclasts onto bone surfaces and the assembly of podosomal belts that segregate the bone-facing ruffled membrane from other membrane domains. During bone digestion, membrane components of the ruffled border also need to be recycled after macropinocytosis of digested bone materials. How osteoclast polarity and membrane recycling are coordinated remains unknown. Here, we show that the Cdc42-guanine nucleotide exchange factor FGD6 coordinates these events through its Src-dependent interaction with different actin-based protein networks. At the plasma membrane, FGD6 couples cell adhesion and actin dynamics by regulating podosome formation through the assembly of complexes comprising the Cdc42-interactor IQGAP1, the Rho GTPase-activating protein ARHGAP10, and the integrin interactors Talin-1/2 or Filamin A. On endosomes and transcytotic vesicles, FGD6 regulates retromer-dependent membrane recycling through its interaction with the actin nucleation-promoting factor WASH. These results provide a mechanism by which a single Cdc42-exchange factor controlling different actin-based processes coordinates cell adhesion, cell polarity, and membrane recycling during bone degradation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Reaction mechanism of reductive decomposition of FGD gypsum with anthracite

    International Nuclear Information System (INIS)

    Zheng, Da; Lu, Hailin; Sun, Xiuyun; Liu, Xiaodong; Han, Weiqing; Wang, Lianjun

    2013-01-01

    Highlights: • The reaction mechanism was different if the molar ratio of C/CaSO 4 was different. • The yield of CaO rises with an increase in temperature. • The optimal ratio of C/CaSO 4 = 1.2:1. • The decomposition process is mainly apparent solid–solid reaction with liquid-phase involved. - Abstract: The process of decomposition reaction between flue gas desulfurization (FGD) gypsum and anthracite is complex, which depends on the reaction conditions and atmosphere. In this study, thermogravimetric analysis with Fourier transform infrared spectroscopy (TGA-FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and the experiment in a tubular reactor were used to characterize the decomposition reaction in a nitrogen atmosphere under different conditions. The reaction mechanism analysis showed that the decomposition reaction process and mechanism were different when the molar proportion of C/CaSO 4 was changed. The experiment results showed that appropriate increase in the C/CaSO 4 proportion and higher temperatures were suitable for the formation of the main production of CaO, which can help us to understand the solid state reaction mechanism better. Via kinetic analysis of the reaction between anthracite and FGD gypsum under the optimal molar ratio of C/CaSO 4 , the mechanism model of the reaction was confirmed and the decomposition process was a two-step reaction which was in accordance with apparent solid–solid reaction

  12. Use of Flue Gas Desulfurization (FGD) Gypsum as a Heavy Metal Stabilizer in Contaminated Soils

    Science.gov (United States)

    Flue Gas Desulfurization (FGD) gypsum is a synthetic by-product generated from the flue gas desulfurization process in coal power plants. It has several beneficial applications such as an ingredient in cement production, wallboard production and in agricultural practice as a soil...

  13. ENHANCED CONTROL OF MERCURY BY WET FLUE GAS DESULFURIZATION SYSTEMS; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    The U.S. Department of Energy and EPRI co-funded this project to improve the control of mercury emissions from coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems. The project has investigated catalytic oxidation of vapor-phase elemental mercury to a form that is more effectively captured in wet FGD systems. If successfully developed, the process could be applicable to over 90,000 MW of utility generating capacity with existing FGD systems, and to future FGD installations. Field tests were conducted to determine whether candidate catalyst materials remain active towards mercury oxidation after extended flue gas exposure. Catalyst life will have a large impact on the cost effectiveness of this potential process. A mobile catalyst test unit was used to test the activity of four different catalyst materials for a period of up to six months each at three utility sites. Catalyst testing was completed at the first site, which fires Texas lignite, in December 1998; at the second test site, which fires a Powder River Basin subbituminous coal, in November 1999; and at the third site, which fires a medium- to high-sulfur bituminous coal, in January 2001. Results of testing at each of the three sites were reported in previous technical notes. At Site 1, catalysts were tested only as powders dispersed in sand bed reactors. At Sites 2 and 3, catalysts were tested in two forms, including powders dispersed in sand and in commercially available forms such as extruded pellets and coated honeycomb structures. This final report summarizes and presents results from all three sites, for the various catalyst forms tested. Field testing was supported by laboratory tests to screen catalysts for activity at specific flue gas compositions, to investigate catalyst deactivation mechanisms and methods for regenerating spent catalysts. Laboratory results are also summarized and discussed in this report

  14. The semidry acid-anhydrite process (the use of flue gas desulphurization (FGD) gypsum by development of a new process for the production of FGD anhydrite); Das quasitrockene Saeure-Anhydrit-Verfahren (Erweiterung der Verwendungsmoeglichkeiten von REA-Gips durch Entwicklung eines Verfahrens zur Herstellung von REA-Anhydrit aus REA-Gips)

    Energy Technology Data Exchange (ETDEWEB)

    Wirsching, F. [Gebr. Knauf, Westdeutsche Gipswerke, Iphofen (Germany); Hueller, R. [Gebr. Knauf, Westdeutsche Gipswerke, Iphofen (Germany); Limmer, B. [Gebr. Knauf, Westdeutsche Gipswerke, Iphofen (Germany)

    1994-10-01

    A completely new reaction for conversion of FGD gypsum into FGD anhydrite was investigated in the research project which forms the basis for this article. The reaction takes place with moist, finely divided, FGD gypsum with the catalytic action of small quantities of sulphuric acid at temperatures around 100 to 200 C. Moisture-free FGD anhydrite with an orthorhombic crystalline structure ist obtained. The conversion of the crystalline lattice of calcium sulphate dihydrate into calcium anhydrite II takes place directly through neoformation. This conversion is developed into a new process called the `Semidry Acid-Anhydrite Process`. The reaction and its mechanism were first investigated in laboratory trials. Any finely divided calcium sulphate dihydrate is suitable as the starting material. The FGD gypsum with 10% residual moisture, which is already in a finely divided crystalline state when it is generated in the power station, is particularly advantageous as for this application it does not have to be dried or ground first. The process development was carried out up to a semi-industrial scale and the design principles were worked out for large-scale plants at power station sites. The directly heated rotary tube kiln proved to be a suitable reaction unit. The FGD anhydrite is obtained in this process as a dry, finely divided, product with reproducible properties. Investigations were carried out into its potential applications for the cement industry and as a raw material for producing fillers. In principle it is suitable for the cement industry. Applications as a filler allows the FGD gypsum to extend its uses outside the traditional areas of the gypsum industry. Initial trials indicate that after a processing procedure, which was also newly developed in the laborator, FGD anhydrite processes the characteristic features necessary for a high grade filler. (orig.) [Deutsch] In dem Forschungsprojekt wurde eine voellig neue Umwandlungsreaktion von REA-Gips in REA

  15. Influence of flue gas desulfurization (FGD) installations on emission characteristics of PM2.5 from coal-fired power plants equipped with selective catalytic reduction (SCR).

    Science.gov (United States)

    Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Fajardo, Oscar A; Deng, Jianguo; Duan, Lei

    2017-11-01

    Flue gas desulfurization (FGD) and selective catalytic reduction (SCR) technologies have been widely used to control the emissions of sulphur dioxide (SO 2 ) and nitrogen oxides (NO X ) from coal-fired power plants (CFPPs). Field measurements of emission characteristics of four conventional CFPPs indicated a significant increase in particulate ionic species, increasing PM 2.5 emission with FGD and SCR installations. The mean concentrations of PM 2.5 from all CFPPs tested were 3.79 ± 1.37 mg/m 3 and 5.02 ± 1.73 mg/m 3 at the FGD inlet and outlet, respectively, and the corresponding contributions of ionic species were 19.1 ± 7.7% and 38.2 ± 7.8%, respectively. The FGD was found to enhance the conversion of NH 3 slip from the SCR to NH 4 + in the PM 2.5 , together with the conversion of SO 2 to SO 4 2- , and increased the primary NH 4 + and SO 4 2- aerosol emissions by approximately 18.9 and 4.2 times, respectively. This adverse effect should be considered when updating the emission inventory of CFPPs and should draw the attention of policy-makers for future air pollution control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Characterizing mercury emissions from a coal-fired power plant utilizing a venturi wet FGD system

    International Nuclear Information System (INIS)

    Vann Bush, P.; Dismukes, E.B.; Fowler, W.K.

    1995-01-01

    Southern Research Institute (SRI) conducted a test program at a coal-fired utility plant from October 24 to October 29, 1994. The test schedule was chosen to permit us to collect samples during a period of consecutive days with a constant coal source. SRI collected the samples required to measured concentrations of anions and trace elements around two scrubber modules and in the stack. Anions of interest were CI - , F - , and SO 4 = . We analyzed samples for five major elements (Al, Ca, Fe, Mg, and Ti) and 16 trace elements (As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, and V). SRI made measurements across two scrubber modules, each treating nominally 20% of the total effluent from the boiler. Across one module we examined the effects of changes in the liquid-to-gas ratio (L/G) on the efficiency with which the scrubber removes trace elements and anions from the flue gas. Across another module we examined the effects of slurry pH on the removal of trace elements and anions from the flue gas. Measurements in the stack quantified emissions rates of anions and trace elements

  17. Characterizing mercury emissions from a coal-fired power plant utilizing a venturi wet FGD system

    Energy Technology Data Exchange (ETDEWEB)

    Vann Bush, P.; Dismukes, E.B.; Fowler, W.K.

    1995-11-01

    Southern Research Institute (SRI) conducted a test program at a coal-fired utility plant from October 24 to October 29, 1994. The test schedule was chosen to permit us to collect samples during a period of consecutive days with a constant coal source. SRI collected the samples required to measured concentrations of anions and trace elements around two scrubber modules and in the stack. Anions of interest were CI{sup -}, F{sup -}, and SO{sub 4}{sup =}. We analyzed samples for five major elements (Al, Ca, Fe, Mg, and Ti) and 16 trace elements (As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, and V). SRI made measurements across two scrubber modules, each treating nominally 20% of the total effluent from the boiler. Across one module we examined the effects of changes in the liquid-to-gas ratio (L/G) on the efficiency with which the scrubber removes trace elements and anions from the flue gas. Across another module we examined the effects of slurry pH on the removal of trace elements and anions from the flue gas. Measurements in the stack quantified emissions rates of anions and trace elements.

  18. Economic assessment of advanced flue gas desulfurization processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

    1981-09-01

    This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final reprot, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluations, was completed in October 1980. A slightly modified and condensed version of that report appears as appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

  19. The new ASTM Manual for scrubber linings the evolution of a consensus guide

    International Nuclear Information System (INIS)

    Spires, G.V.; Cavallo, J.R.

    1984-01-01

    Faced with spiraling fuel oil costs, power utilities turned to abundant and inexpensive domestic coal and lignite. Conversions and new units designed to burn solid fossil fuels were pursued at a near crisis pace to get out from under the economic penalties associated with the continued use of oil. Coal contains much more sulfur than oil; EPA limitations on SO 2 necessitated costly flue gas desulfurization (FGD) systems when burning coal. Scrubbed gas presented a particularly corrosive environment in and downstream from the FGD system. Problems which often accompany a new technology were soon evident. Materials and linings initially selected were often seen to be inadequate. Severe and rapid degradation was commonplace. This paper traces the development of the recently published ASTM Manual of Protective Linings From Flue Gas Desulfurization System. The scope of the Manual is outlined and some of the more commonly used FGD lining systems are reviewed. Finally some views on the impact of foreseeable changes in regulations and FGD technology on the use and maintenance of FGD system linings are discussed

  20. Injection of FGD Grout to Abate Acid Mine Drainage in Underground Coal Mines

    Energy Technology Data Exchange (ETDEWEB)

    Mafi, S.; Damian, M.T.; Senita, R.E.; Jewitt, W.C.; Bair, S.; Chin, Y.C.; Whitlatch, E.; Traina, S.; Wolfe, W.

    1997-07-01

    Acid Mine Drainage (AMD) from abandoned underground coal mines in Ohio is a concern for both residents and regulatory agencies. Effluent from these mines is typically characterized by low pH and high iron and sulfate concentrations and may contaminate local drinking-water supplies and streams. The objective of this project is to demonstrate the technical feasibility of injecting cementitious alkaline materials, such as Flue Gas Desulfurization (FGD) material to mitigate current adverse environmental impacts associated with AMD in a small, abandoned deep mine in Coshocton County Ohio. The Flue Gas Desulfurization material will be provided from American Electric Power`s (AEP) Conesville Plant. It will be injected as a grout mix that will use Fixated Flue Gas Desulfurization material and water. The subject site for this study is located on the border of Coshocton and Muskingum Counties, Ohio, approximately 1.5 miles south-southwest of the town of Wills Creek. The study will be performed at an underground mine designated as Mm-127 in the Ohio Department of Natural Resources register, also known as the Roberts-Dawson Mine. The mine operated in the mid-1950s, during which approximately 2 million cubic feet of coal was removed. Effluent discharging from the abandoned mine entrances has low pH in the range of 2.8-3.0 that drains directly into Wills Creek Lake. The mine covers approximately 14.6 acres. It is estimated that 26,000 tons of FGD material will be provided from AEP`s Conesville Power Plant located approximately 3 miles northwest of the subject site.

  1. Injection of FGD Grout to Abate Acid Mine Drainage in Underground Coal Mines

    International Nuclear Information System (INIS)

    Mafi, S.; Damian, M.T.; Senita, R.E.; Jewitt, W.C.; Bair, S.; Chin, Y.C.; Whitlatch, E.; Traina, S.; Wolfe, W.

    1997-07-01

    Acid Mine Drainage (AMD) from abandoned underground coal mines in Ohio is a concern for both residents and regulatory agencies. Effluent from these mines is typically characterized by low pH and high iron and sulfate concentrations and may contaminate local drinking-water supplies and streams. The objective of this project is to demonstrate the technical feasibility of injecting cementitious alkaline materials, such as Flue Gas Desulfurization (FGD) material to mitigate current adverse environmental impacts associated with AMD in a small, abandoned deep mine in Coshocton County Ohio. The Flue Gas Desulfurization material will be provided from American Electric Power's (AEP) Conesville Plant. It will be injected as a grout mix that will use Fixated Flue Gas Desulfurization material and water. The subject site for this study is located on the border of Coshocton and Muskingum Counties, Ohio, approximately 1.5 miles south-southwest of the town of Wills Creek. The study will be performed at an underground mine designated as Mm-127 in the Ohio Department of Natural Resources register, also known as the Roberts-Dawson Mine. The mine operated in the mid-1950s, during which approximately 2 million cubic feet of coal was removed. Effluent discharging from the abandoned mine entrances has low pH in the range of 2.8-3.0 that drains directly into Wills Creek Lake. The mine covers approximately 14.6 acres. It is estimated that 26,000 tons of FGD material will be provided from AEP's Conesville Power Plant located approximately 3 miles northwest of the subject site

  2. Non-synonymous FGD3 Variant as Positional Candidate for Disproportional Tall Stature Accounting for a Carcass Weight QTL (CW-3 and Skeletal Dysplasia in Japanese Black Cattle.

    Directory of Open Access Journals (Sweden)

    Akiko Takasuga

    2015-08-01

    Full Text Available Recessive skeletal dysplasia, characterized by joint- and/or hip bone-enlargement, was mapped within the critical region for a major quantitative trait locus (QTL influencing carcass weight; previously named CW-3 in Japanese Black cattle. The risk allele was on the same chromosome as the Q allele that increases carcass weight. Phenotypic characterization revealed that the risk allele causes disproportional tall stature and bone size that increases carcass weight in heterozygous individuals but causes disproportionately narrow chest width in homozygotes. A non-synonymous variant of FGD3 was identified as a positional candidate quantitative trait nucleotide (QTN and the corresponding mutant protein showed reduced activity as a guanine nucleotide exchange factor for Cdc42. FGD3 is expressed in the growth plate cartilage of femurs from bovine and mouse. Thus, loss of FDG3 activity may lead to subsequent loss of Cdc42 function. This would be consistent with the columnar disorganization of proliferating chondrocytes in chondrocyte-specific inactivated Cdc42 mutant mice. This is the first report showing association of FGD3 with skeletal dysplasia.

  3. Impact of fgd1 and ddn Diversity in Mycobacterium tuberculosis Complex on In Vitro Susceptibility to PA-824

    KAUST Repository

    Feuerriegel, S.

    2011-09-19

    PA-824 is a promising drug candidate for the treatment of tuberculosis (TB). It is in phase II clinical trials as part of the first newly designed regimen containing multiple novel antituberculosis drugs (PA-824 in combination with moxifloxacin and pyrazinamide). However, given that the genes involved in resistance against PA-824 are not fully conserved in the Mycobacterium tuberculosis complex (MTBC), this regimen might not be equally effective against different MTBC genotypes. To investigate this question, we sequenced two PA-824 resistance genes (fgd1 [Rv0407] and ddn [Rv3547]) in 65 MTBC strains representing major phylogenetic lineages. The MICs of representative strains were determined using the modified proportion method in the Bactec MGIT 960 system. Our analysis revealed single-nucleotide polymorphisms in both genes that were specific either for several genotypes or for individual strains, yet none of these mutations significantly affected the PA-824 MICs (≤0.25 μg/ml). These results were supported by in silico modeling of the mutations identified in Fgd1. In contrast, “Mycobacterium canettii” strains displayed a higher MIC of 8 μg/ml. In conclusion, we found a large genetic diversity in PA-824 resistance genes that did not lead to elevated PA-824 MICs. In contrast, M. canettii strains had MICs that were above the plasma concentrations of PA-824 documented so far in clinical trials. As M. canettii is also intrinsically resistant against pyrazinamide, new regimens containing PA-824 and pyrazinamide might not be effective in treating M. canettii infections. This finding has implications for the design of multiple ongoing clinical trials.

  4. The effect of chlorine and oxygen concentrations on the removal of mercury at an FGD-batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Carolina Acuna-Caro; Kevin Brechtel; Guenter Scheffknecht; Manuel Brass [University of Stuttgart, Stuttgart (Germany). Institute of Process Engineering and Power Plant Technology (IVD)

    2009-12-15

    A series of laboratory scale experiments were conducted in an FGD-batch reactor. A synthetic flue gas was produced and directed through a CaCO{sub 3} suspension contained in a glass reactor vessel. The suspension temperature was set at 54{sup o}C through a water bath. In order to observe the distribution of mercury species in the system, solid, liquid and gaseous samples were taken and analysed. For gaseous mercury determination, continuous measurements were carried out, up and downstream the reactor. Furthermore, the concentration of chlorine in the scrubber solution of the system was varied from 0 to 62 g/l under different oxidative conditions. In a first approach, a concentration drop of elemental mercury coming out of the system was observed. The latter occurs only when high concentrations of Cl{sup -} are present, combined with a high O{sub 2} availability in the scrubber. It was also observed that mercury species distribution in the different phases varies, depending on the available chemical form of chlorine and oxygen concentration. 14 refs., 7 figs., 1 tab.

  5. Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD

    Energy Technology Data Exchange (ETDEWEB)

    Katherine Dombrowski

    2009-12-31

    This report presents the results of a multi-year test program conducted as part of Cooperative Agreement DE-FC26-06NT42779, 'Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD.' The objective of this program was to determine the level of mercury removal achievable using sorbent injection for a plant firing Texas lignite fuel and equipped with an ESP and wet FGD. The project was primarily funded by the U.S. DOE National Energy Technology Laboratory. EPRI, NRG Texas, Luminant (formerly TXU), and AEP were project co-funders. URS Group was the prime contractor, and Apogee Scientific and ADA-ES were subcontractors. The host site for this program was NRG Texas Limestone Electric Generating Station (LMS) Units 1 and 2, located in Jewett, Texas. The plant fires a blend of Texas lignite and Powder River Basin (PRB) coal. Full-scale tests were conducted to evaluate the mercury removal performance of powdered sorbents injected into the flue gas upstream of the ESP (traditional configuration), upstream of the air preheater, and/or between electric fields within the ESP (Toxecon{trademark} II configuration). Phases I through III of the test program, conducted on Unit 1 in 2006-2007, consisted of three short-term parametric test phases followed by a 60-day continuous operation test. Selected mercury sorbents were injected to treat one quarter of the flue gas (e.g., approximately 225 MW equivalence) produced by Limestone Unit 1. Six sorbents and three injection configurations were evaluated and results were used to select the best combination of sorbent (Norit Americas DARCO Hg-LH at 2 lb/Macf) and injection location (upstream of the ESP) for a two-month performance evaluation. A mercury removal rate of 50-70% was targeted for the long-term test. During this continuous-injection test, mercury removal performance and variability were evaluated as the plant operated under normal conditions. Additional evaluations were made to determine any

  6. Aarskog-Scott syndrome: clinical update and report of nine novel mutations of the FGD1 gene.

    Science.gov (United States)

    Orrico, A; Galli, L; Faivre, L; Clayton-Smith, J; Azzarello-Burri, S M; Hertz, J M; Jacquemont, S; Taurisano, R; Arroyo Carrera, I; Tarantino, E; Devriendt, K; Melis, D; Thelle, T; Meinhardt, U; Sorrentino, V

    2010-02-01

    Mutations in the FGD1 gene have been shown to cause Aarskog-Scott syndrome (AAS), or facio-digito-genital dysplasia (OMIM#305400), an X-linked disorder characterized by distinctive genital and skeletal developmental abnormalities with a broad spectrum of clinical phenotypes. To date, 20 distinct mutations have been reported, but little phenotypic data are available on patients with molecularly confirmed AAS. In the present study, we report on our experience of screening for mutations in the FGD1 gene in a cohort of 60 European patients with a clinically suspected diagnosis of AAS. We identified nine novel mutations in 11 patients (detection rate of 18.33%), including three missense mutations (p.R402Q; p.S558W; p.K748E), four truncating mutations (p.Y530X; p.R656X; c.806delC; c.1620delC), one in-frame deletion (c.2020_2022delGAG) and the first reported splice site mutation (c.1935+3A>C). A recurrent mutation (p.R656X) was detected in three independent families. We did not find any evidence for phenotype-genotype correlations between type and position of mutations and clinical features. In addition to the well-established phenotypic features of AAS, other clinical features are also reported and discussed. Copyright 2010 Wiley-Liss, Inc.

  7. Community perceptions and factors influencing utilization of health services in Uganda

    Directory of Open Access Journals (Sweden)

    Galea Sandro

    2009-07-01

    Full Text Available Abstract Background Healthcare utilization has particular relevance as a public health and development issue. Unlike material and human capital, there is little empirical evidence on the utility of social resources in overcoming barriers to healthcare utilization in a developing country context. We sought to assess the relevance of social resources in overcoming barriers to healthcare utilization. Study Objective To explore community perceptions among three different wealth categories on factors influencing healthcare utilization in Eastern Uganda. Methods We used a qualitative study design using Focus Group Discussions (FGD to conduct the study. Community meetings were initially held to identify FGD participants in the different wealth categories, ('least poor', 'medium' and 'poorest' using poverty ranking based on ownership of assets and income sources. Nine FGDs from three homogenous wealth categories were conducted. Data from the FGDs was analyzed using content analysis revealing common barriers as well as facilitating factors for healthcare service utilization by wealth categories. The Health Access Livelihood Framework was used to examine and interpret the findings. Results Barriers to healthcare utilization exist for all the wealth categories along three different axes including: the health seeking process; health services delivery; and the ownership of livelihood assets. Income source, transport ownership, and health literacy were reported as centrally useful in overcoming some barriers to healthcare utilization for the 'least poor' and 'poor' wealth categories. The 'poorest' wealth category was keen to utilize free public health services. Conversely, there are perceptions that public health facilities were perceived to offer low quality care with chronic gaps such as shortages of essential supplies. In addition to individual material resources and the availability of free public healthcare services, social resources are perceived as

  8. Improving the FGD absorber and ESP performance at Iskenderun power plant

    Energy Technology Data Exchange (ETDEWEB)

    Atmaca, Guerkan [ISKEN Enerji Uretim A.S., Ceyhan-Adana (Turkey); Stratmann, Werner; Wortmann, Birgit [STEAG Energy Services GmbH, Essen (Germany)

    2012-07-01

    The Iskenderun power plant is located at the bay of Iskenderun in the Province of Adana in the south of Turkey. Two units with a total output of 1,210 MW are operated. The annual fuel - imported coal from Colombia and South Africa - consumption amounts to about 3.3 million tonnes tce. To meet the SO{sub x} and particulate limits values it was necessary to improve the performance of the FGD scrubber and the electrostatic precipitator (ESP). In the first step, the potential of a fluid flow optimisation of both the scrubber and the ESP was determined by simulating the 'as build' situation (reference cases) with a computational fluid dynamics (CFD) code. In the second step, several possible variants of component modifications and structures were analysed and evaluated. In a last step the most improving modifications were proposed. (orig.)

  9. Optimal design of emission control systems for a fossil power plants

    International Nuclear Information System (INIS)

    Sfez, D.; Muginstein, A.; Naeh, Y.

    1998-01-01

    The detrimental environmental effects of pulverized coal power stations are enforcing the installation of additional emission control equipment. Utilization of this equipment significantly increases the installation and operation costs of the power station, which raises the cost of the electricity generated by this power station. Focusing on the flue gas cleaning equipment can substantially reduce the electricity-generating rate. Improving the equipment design is the only available way to reduce the flue gas cleaning costs, without affecting the power station flexibility and availability. An optimal design is defined as the one achieving the least expensive cleaning system (capital and operating costs) while maintaining the original power station operation flexibility (coal variety and partial load performances). Two main changes in the conventional design need to be carried out in order to reach the above-mentioned optimized design. The first modification is to integrate the ESP and FGD at the design criteria stage while considering the influence of each piece of equipment on the other. The second stage is to set one common best efficiency design point to the ESP and the FGD together. Achieving this one common best efficiency point requires some equipment addition and modifications to the conventional ESP and FGD systems. The technology involved in this modification is available and is well proven in operation. Using this technology with the optimal design concept will lead to a significant reduction of the flue gas cleaning costs and will reduce, by this, the electricity production costs

  10. Pump transients in FGD slurry systems

    International Nuclear Information System (INIS)

    Ponce-Campos, C.D., Thoy, C.T.

    1990-01-01

    In this paper, the start-up transient of a limestone slurry system used for a power plant scrubber is discussed. Particular characteristics of these kind of systems are pointed out and incorporated into an ad-hoc numerical model. Three possible start-up scenarios are discussed and compared with field experimental data. The results illustrate well the importance of air pocket purging prior to system start-up

  11. GE`s worldwide experience with IFO based gypsum producing flue gas desulfurization systems

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, A. [GE Environmental Systems, Lebanon, PA (United States)

    1994-12-31

    The In-Situ Forced Oxidation (IFO) process to produce gypsum in a commercial scale flue gas desulfurization (FGD) system was first demonstrated by GE Environmental Systems in 1980 at the Monticello Generating Station of Texas Utilities. Since then, the IFO technology developed and demonstrated by GE has become the industry standard and is used extensively on a world-wide basis to produce both commercial and disposable-grade gypsum. The paper gives an overview of the development, demonstration, commercial design and current status of the IFO technology.

  12. Structure optimization of CFB reactor for moderate temperature FGD

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan; Zhang, Jie; Zheng, Kai; You, Changfu [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Ministry of Education, Beijing (China). Key Lab. for Thermal Science and Power Engineering

    2013-07-01

    The gas velocity distribution, sorbent particle concentration distribution and particle residence time in circulating fluidized bed (CFB) reactors for moderate temperature flue gas desulfurization (FGD) have significant influence on the desulfurization efficiency and the sorbent calcium conversion ratio for sulfur reaction. Experimental and numerical methods were used to investigate the influence of the key reactor structures, including the reactor outlet structure, internal structure, feed port and circulating port, on the gas velocity distribution, sorbent particle concentration distribution and particle residence time. Experimental results showed that the desulfurization efficiency increased 5-10% when the internal structure was added in the CFB reactor. Numerical analysis results showed that the particle residence time of the feed particles with the average diameter of 89 and 9 {mu}m increased 40% and 17% respectively, and the particle residence time of the circulating particles with the average diameter of 116 {mu}m increased 28% after reactor structure optimization. The particle concentration distribution also improved significantly, which was good for improving the contact efficiency between the sorbent particles and SO{sub 2}. In addition, the optimization guidelines were proposed to further increase the desulfurization efficiency and the sorbent calcium conversion ratio.

  13. Adoption of SO2 emission control technologies - An application of survival analysis

    International Nuclear Information System (INIS)

    Streeter, Jialu Liu

    2016-01-01

    Using data on coal-fired electric power plants, this article investigates the contributing factors affecting the investment decisions on flue-gas desulfurization (FGD), a capital-intensive emission control technology. The paper makes two contributions to the literature. First, the public regulatory status of electric power plants is found to have a strong influence on whether FGD investment is made. Compared to deregulated power plants, those that are still under rate-of-return regulations by Public Utility Commissions are more likely to install FGD. Second, a higher rate of inspections of polluting facilities (not just electric utility power plants) in a state in the previous year is associated with a higher probability of power plants adopting FGD this year. In addition, sulfur content of coal and plant size are both positively associated with the likelihood of FGD installation. The service length of boilers is negatively associated with the likelihood. - Highlights: • Contributing factors affecting investment decisions on emission control devices. • A survival analysis framework is applied in estimation. • Data cover over 300 coal-fired electric utility power plants, 2002–2012. • Still-regulated power plants are more likely to install FGD than deregulated ones. • State-level inspection frequency leads to more FGD installation.

  14. Integrating photovoltaics into utility distribution systems

    International Nuclear Information System (INIS)

    Zaininger, H.W.; Barnes, P.R.

    1995-01-01

    Electric utility distribution system impacts associated with the integration of distributed photovoltaic (PV) energy sources vary from site to site and utility to utility. The objective of this paper is to examine several utility- and site-specific conditions which may affect economic viability of distributed PV applications to utility systems. Assessment methodology compatible with technical and economic assessment techniques employed by utility engineers and planners is employed to determine PV benefits for seven different utility systems. The seven case studies are performed using utility system characteristics and assumptions obtained from appropriate utility personnel. The resulting site-specific distributed PV benefits increase nonsite-specific generation system benefits available to central station PV plants as much as 46%, for one utility located in the Southwest

  15. Characterisation of the interaction between liquid film and flue gas flow at walls and internals in FGD scrubbers; Beschreibung der gegenseitigen Beeinflussung von Fluessigkeitsschicht und Rauchgasstroemung an Waenden und internen Einbauten in REA-Waeschern

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Mario [Technische Univ. Dortmund (Germany). Lehrstuhl Mechanische Verfahrenstechnik; Fahlenkamp, Hans

    2012-07-01

    The VGB Research Project 'Characterisation of the interaction between liquid film and flue gas flow at walls and internals in FGD scrubbers' covers the droplet wall interaction in flue gas scrubbers. In the context of optimised FGD design, especially in fulfilling the increasing requirements on the conventional flue gas treatment by the CCS design, a better understanding of the flow behaviour near the wall is crucial. Within the framework of the research project an experimental setup is designed, built up and run. (orig.)

  16. Emissions reduction in the UK: accommodating waste production from sulphur abatement systems

    Energy Technology Data Exchange (ETDEWEB)

    Crofts, C. (British Coal, London (UK). Operational Research Executive)

    1990-01-01

    Concern for the atmosphere environment has resulted in EC legislation limiting sulphur dioxide emissions. The emission limits are being met by the installation of flue gas desulphurisation and advanced coal combustion systems, which produce large quantities of waste for utilisation or disposal. There are now environmental, economic and regulatory reasons for industry to provide comprehensive assessment of waste disposal/utilisation issues during the design stage of a project. This paper considers the management of waste produced from the limestone/gypsum and spray dry FGD processes, and from advanced coal combustion equipment. The assessment shows that environmentally acceptable methods of disposal and utilisation can be identified for these wastes. It is expected that a substantial proportion of FGD gypsum will be utilized in the manufacture of plasterboard, bag plaster and cement. There may also be opportunities for utilisation of spray dry waste and waste from advanced coal combustion systems in structural and agricultural applications. Landfill would be an appropriate form of disposal for the wastes considered in this paper, but utilisation options offer environmentally superior alternatives to disposal justifying further research. 19 refs., 3 figs.

  17. Power Plant Bromide Discharges and Downstream Drinking Water Systems in Pennsylvania.

    Science.gov (United States)

    Good, Kelly D; VanBriesen, Jeanne M

    2017-10-17

    Coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems have been implicated in increasing bromide levels and subsequent increases in disinfection byproducts at downstream drinking water plants. Bromide was not included as a regulated constituent in the recent steam electric effluent limitations guidelines and standards (ELGs) since the U.S. EPA analysis suggested few drinking water facilities would be affected by bromide discharges from power plants. The present analysis uses a watershed approach to identify Pennsylvania drinking water intakes downstream of wet FGD discharges and to assess the potential for bromide discharge effects. Twenty-two (22) public drinking water systems serving 2.5 million people were identified as being downstream of at least one wet FGD discharge. During mean August conditions (generally low-flow, minimal dilution) in receiving rivers, the median predicted bromide concentrations contributed by wet FGD at Pennsylvania intake locations ranged from 5.2 to 62 μg/L for the Base scenario (including only natural bromide in coal) and from 16 to 190 μg/L for the Bromide Addition scenario (natural plus added bromide for mercury control); ranges depend on bromide loads and receiving stream dilution capacity.

  18. Land application uses for dry flue gas desulfurization by-products. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Dick, W.; Bigham, J.; Forster, R.; Hitzhusen, F.; Lal, R.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.; Rowe, G.

    1999-01-31

    Flue gas desulfurization (FGD) scrubbing technologies create several types of by-products. This project focused primarily on by-product materials obtained from what are commonly called ''dry scrubbers'' which produce a dry, solid material consisting of excess sorbent, reaction product that contains sulfate and sulfite, and coal fly ash. Prior to this project, dry FGD by-products were generally treated as solid wastes and disposed in landfills. However, landfill sites are becoming scarce and tipping fees are constantly increasing; The major objective of this project was to develop beneficial uses, via recycling, capable of providing economic benefits to both the producer and the end user of the FGD by-product. It is equally important, however, that the environmental impacts be carefully assessed so that the new uses developed are not only technically feasible but socially acceptable. Specific objectives developed for this project were derived over an 18-month period during extensive discussions with personnel from industry, regulatory agencies and research institutions. These were stated as follows: Objective 1: To characterize the material generated by dry FGD processes. Objective 2: To demonstrate the utilization of dry FGD by-product as a soil amendment on agricultural lands and on abandoned and active surface coal mines in Ohio. Objective 3: To demonstrate the use of dry FGD by-product as an engineering material for soil stabilization. Objective 4: To determine the quantities of dry FGD by-product that can be utilized in each of these applications. Objective 5. To determine the environmental and economic impacts of utilizing the material. Objective 6. To calibrate environmental, engineering, and economic models that can be used to determine the applicability and costs of utilizing these processes at other sites.

  19. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 5, A laboratory greenhouse study conducted in fulfillment of Phase 2, Objective 2 titled. Use of FGD by-product gypsum enriched with magnesium hydroxide as a soil amendment

    Energy Technology Data Exchange (ETDEWEB)

    Yibirin, H. [Ohio State Univ., Wooster, OH (United States); Stehouwer, R. C. [Ohio State Univ., Wooster, OH (United States); Bigham, J. M. [Ohio State Univ., Wooster, OH (United States); Soto, U. I. [Ohio State Univ., Wooster, OH (United States)

    1997-01-31

    The Clean Air Act, as revised in 1992, has spurred the development of flue gas desulfurization (FGD) technologies that have resulted in large volumes of wet scrubber sludges. In general, these sludges must be dewatered, chemically treated, and disposed of in landfills. Disposal is an expensive and environmentally questionable process for which suitable alternatives must be found. Wet scrubbing with magnesium (Mg)-enhanced lime has emerged as an efficient, cost effective technology for SO2 removal. When combined with an appropriate oxidation system, the wet scrubber sludge can be used to produce gypsum (CaSO4-2H2O) and magnesium hydroxide [Mg(OH)2] of sufficient purity for beneficial re-use. Product value generally increases with purity of the by-product(s). The pilot plant at the CINERGY Zimmer Station near Cincinnati produces gypsum by products that can be formulated to contain varying amounts of Mg(OH)2. Such materials may have agricultural value as soil conditioners, liming agents and sources of plant nutrients (Ca, Mg, S). This report describes a greenhouse study designed to evaluate by-product gypsum and Mg gypsum from the Zimmer Station pilot plant as amendments for improving the quality of agricultural soils and mine spoils that are currently unproductive because of phytotoxic conditions related to acidity and high levels of toxic dissolved aluminum (Al). In particular, the technical literature contains evidence to suggest that gypsum may be more effective than agricultural limestone in modifying soil chemical conditions below the immediate zone of application. Representative samples of by-product gypsum and Mg(OH)2 from the Zimmer Station were initially characterized. The gypsum was of high chemical purity and consisted of well crystalline, lath-shaped particles of low specific surface area. By contrast, the by-product Mg(OH)2 was a high surface area material (50 m2 g

  20. Utility Maximization in Nonconvex Wireless Systems

    CERN Document Server

    Brehmer, Johannes

    2012-01-01

    This monograph formulates a framework for modeling and solving utility maximization problems in nonconvex wireless systems. First, a model for utility optimization in wireless systems is defined. The model is general enough to encompass a wide array of system configurations and performance objectives. Based on the general model, a set of methods for solving utility maximization problems is developed. The development is based on a careful examination of the properties that are required for the application of each method. The focus is on problems whose initial formulation does not allow for a solution by standard convex methods. Solution approaches that take into account the nonconvexities inherent to wireless systems are discussed in detail. The monograph concludes with two case studies that demonstrate the application of the proposed framework to utility maximization in multi-antenna broadcast channels.

  1. Mercury speciation and distribution in a 660-megawatt utility boiler in Taiwan firing bituminous coals.

    Science.gov (United States)

    Hsi, Hsing-Cheng; Lee, Hsiu-Hsia; Hwang, Jyh-Feng; Chen, Wang

    2010-05-01

    Mercury speciation and distribution in a 660-MW tangential-fired utility boiler in Taiwan burning Australian and Chinese bituminous coal blends was investigated. Flue gases were simultaneously sampled at the selective catalytic reduction (SCR) inlet, the SCR outlet, the electrostatic precipitator (ESP) outlet, and the stack. Samplings of coal, lime, bottom ash/slag, fly ash, and gypsum slurry were also conducted. Results indicated that flue gases at the inlet to SCR contained a great potion of particle-bound mercury (Hg(p)), 59-92% of the total mercury. Removal of mercury was not observed for the SCR system. However, repartitioning of mercury species across the SCR occurred that significantly increased the portion of elemental mercury (Hg0) to up to 29% and oxidized mercury (Hg2+) to up to 33% in the SCR outlet gas. Overreporting of Hg(p) at the inlet of SCR may cause the observed repartitioning; the high ammonia/nitric oxide circumstance in the SCR unit was also speculated to cause the mercury desorption from ash particles and subsequent reentrance into the gas phase. ESP can remove up to 99% of Hg(p), and wet flue gas desulfurization (FGD) can remove up to 84% of Hg2+. Mercury mass balances were calculated to range between 81 and 127.4%, with an average of 95.7% wherein 56-82% was in ESP fly ash, 8.7-18.6% was retained in the FGD gypsum, and 6.2-26.1% was emitted from the stack. Data presented here suggest that mercury removal can be largely enhanced by increasing the conversion of Hg0 into Hg(p) and Hg2+.

  2. Integration of SPS with utility system networks

    Energy Technology Data Exchange (ETDEWEB)

    Kaupang, B.M.

    1980-06-01

    This paper will discuss the integration of SPS power in electric utility power systems. Specifically treated will be the nature of the power output variations from the spacecraft to the rectenna, the operational characteristics of the rectenna power and the impacts on the electric utility system from utilizing SPS power to serve part of the system load.

  3. Integration of SPS with utility system networks

    Science.gov (United States)

    Kaupang, B. M.

    1980-01-01

    The integration of Satellite Power System (SPS) power in electric utility power systems is discussed. Specifically, the nature of the power output variations from the spacecraft to the rectenna, the operational characteristics of the rectenna power, and the impacts on the electric utility system from utilizing SPS power to serve part of the system load are treated. It is concluded that if RF beam control is an acceptable method for power control, and that the site distribution of SPS rectennas do not cause a very high local penetration (40 to 50%), SPS may be integrated into electric utility system with a few negative impacts. Increased regulating duty on the conventional generation, and a potential impact on system reliability for SPS penetration in excess of about 25% appear to be two areas of concern.

  4. Whole-Exome Sequencing Identifies One De Novo Variant in the FGD6 Gene in a Thai Family with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Chuphong Thongnak

    2018-01-01

    Full Text Available Autism spectrum disorder (ASD has a strong genetic basis, although the genetics of autism is complex and it is unclear. Genetic testing such as microarray or sequencing was widely used to identify autism markers, but they are unsuccessful in several cases. The objective of this study is to identify causative variants of autism in two Thai families by using whole-exome sequencing technique. Whole-exome sequencing was performed with autism-affected children from two unrelated families. Each sample was sequenced on SOLiD 5500xl Genetic Analyzer system followed by combined bioinformatics pipeline including annotation and filtering process to identify candidate variants. Candidate variants were validated, and the segregation study with other family members was performed using Sanger sequencing. This study identified a possible causative variant for ASD, c.2951G>A, in the FGD6 gene. We demonstrated the potential for ASD genetic variants associated with ASD using whole-exome sequencing and a bioinformatics filtering procedure. These techniques could be useful in identifying possible causative ASD variants, especially in cases in which variants cannot be identified by other techniques.

  5. Fuel cell heat utilization system; Nenryo denchi netsuriyo sochi

    Energy Technology Data Exchange (ETDEWEB)

    Urata, T. [Tokyo (Japan); Omura, T. [Tokyo (Japan)

    1995-07-04

    In the conventional fuel cell heat utilization system, the waste heat is recovered to be utilized by either the waste heat recovery heat exchanger or the waste heat recovery steam. In the employment of the waste heat recovery heat exchanger system, however, the utility value is decreased when the temperature of the waste heat is lowered. Contrarily, in the employment of the waste heat recovery steam system, the supplementary water requirement is increased corresponding to the amount of waste heat recovery steam, resulting in the cost increase for water treatment. This invention solves the problem. In the invented fuel cell heat utilization system, a pressurized water from the steam separator is introduced into the second circuit to utilize directly the heat in the heat utilization system without employing the heat exchanger. If a blowdown valve is installed between the second circuit heat utilization system and the steam separator, the heat loss due to the blowdown can be reduced, since the low temperature water is blown down after being utilized in the heat utilization system. 4 figs.

  6. A study of toxic emissions from a coal-fired power plant utilizing an ESP while demonstrating the ICCT CT-121 FGD Project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-16

    The US Department of Energy is performing comprehensive assessments of toxic emissions from eight selected coal-fired electric utility units. This program responds to the Clean Air Act Amendments of 1990, which require the US Environmental Protection Agency (EPA) to evaluate emissions of hazardous air pollutants (HAPs) from electric utility power plants for Potential health risks. The resulting data will be furnished to EPA utility power plants and health risk determinations. The assessment of emissions involves the collection and analysis of samples from the major input, process, and output streams of each of the eight power plants for selected hazardous Pollutants identified in Title III of the Clean Air Act. Additional goals are to determine the removal efficiencies of pollution control subsystems for these selected pollutants and the Concentrations associated with the particulate fraction of the flue gas stream as a function of particle size. Material balances are being performed for selected pollutants around the entire power plant and several subsystems to identify the fate of hazardous substances in each utility system. Radian Corporation was selected to perform a toxics assessment at a plant demonstrating an Innovative Clean Coal Technology (ICCT) Project. The site selected is Plant Yates Unit No. 1 of Georgia Power Company, which includes a Chiyoda Thoroughbred-121 demonstration project.

  7. Utility systems operation: Optimisation-based decision making

    International Nuclear Information System (INIS)

    Velasco-Garcia, Patricia; Varbanov, Petar Sabev; Arellano-Garcia, Harvey; Wozny, Guenter

    2011-01-01

    Utility systems provide heat and power to industrial sites. The importance of operating these systems in an optimal way has increased significantly due to the unstable and in the long term rising prices of fossil fuels as well as the need for reducing the greenhouse gas emissions. This paper presents an analysis of the problem for supporting operator decision making under conditions of variable steam demands from the production processes on an industrial site. An optimisation model has been developed, where besides for running the utility system, also the costs associated with starting-up the operating units have been modelled. The illustrative case study shows that accounting for the shut-downs and start-ups of utility operating units can bring significant cost savings. - Highlights: → Optimisation methodology for decision making on running utility systems. → Accounting for varying steam demands. → Optimal operating specifications when a demand change occurs. → Operating costs include start-up costs of boilers and other units. → Validated on a real-life case study. Up to 20% cost savings are possible.

  8. Beyond Widgets -- Systems Incentive Programs for Utilities

    Energy Technology Data Exchange (ETDEWEB)

    Regnier, Cindy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Robinson, Alastair [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwartz, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walter, Travis [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-15

    Utility incentive programs remain one of the most significant means of deploying commercialized, but underutilized building technologies to scale. However, these programs have been largely limited to component-based products (e.g., lamps, RTUs). While some utilities do provide ‘custom’ incentive programs with whole building and system level technical assistance, these programs require deeper levels of analysis, resulting in higher program costs. This results in custom programs being restricted to utilities with greater resources, and are typically applied mainly to large or energy-intensive facilities, leaving much of the market without cost effective access and incentives for these solutions. In addition, with increasingly stringent energy codes, cost effective component-based solutions that achieve significant savings are dwindling. Building systems (e.g., integrated façade, HVAC and/or lighting solutions) can deliver higher savings that translate into large sector-wide savings if deployed at the scale of these programs. However, systems application poses a number of challenges – baseline energy use must be defined and measured; the metrics for energy and performance must be defined and tested against; in addition, system savings must be validated under well understood conditions. This paper presents a sample of findings of a project to develop validated utility incentive program packages for three specific integrated building systems, in collaboration with Xcel Energy (CO, MN), ComEd, and a consortium of California Public Owned Utilities (CA POUs) (Northern California Power Agency(NCPA) and the Southern California Public Power Authority(SCPPA)). Furthermore, these program packages consist of system specifications, system performance, M&V protocols, streamlined assessment methods, market assessment and implementation guidance.

  9. Utility battery storage systems. Program report for FY95

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1996-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the U.S. Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1995.

  10. EPRI expert system activities for nuclear utility industry application

    International Nuclear Information System (INIS)

    Naser, J.A.

    1990-01-01

    This paper reports on expert systems which have reached a level of maturity where they offer considerable benefits for the nuclear utility industry. The ability of expert systems to enhance expertise makes them an important tool for the nuclear utility industry in the areas of engineering, operations and maintenance. Benefits of expert system applications include comprehensive and consistent reasoning, reduction of time required for activities, retention of human expertise and ability to utilize multiple experts knowledge for an activity. The Electric Power Research Institute (EPRI) has been performing four basic activities to help the nuclear industry take advantage of this expert system technology. The first is the development of expert system building tools which are tailored to nuclear utility industry applications. The second is the development of expert system applications. The third is work in developing a methodology for verification and validation of expert systems. The last is technology transfer activities to help the nuclear utility industry benefit from expert systems. The purpose of this paper is to describe the EPRI activities

  11. Increasing draft capability for retrofit flue gas desulfurization systems

    International Nuclear Information System (INIS)

    Petersen, R.D.; Basel, B.E.; Mosier, R.J.

    1992-01-01

    The retrofit installation of flue gas desulfurization (FGD) systems results in significantly higher draft losses for existing generating stations. Consequently, the means for increasing draft capability must be included in many FGD retrofit projects. Consideration is given to several alternatives for increasing draft capability. Alternatives are developed for new induced draft (ID) fans to replace the existing ID fans and for new booster fans to supplement the existing ID fans. Both centrifugal and axial fans are evaluated, as are different means of fan volume control. Each alternative is evaluated on the basis of technical merit and economics. Presented are the development of fan alternatives and results of the technical and economic evaluations

  12. Distributed photovoltaic systems - Addressing the utility interface issues

    Science.gov (United States)

    Firstman, S. I.; Vachtsevanos, G. J.

    This paper reviews work conducted in the United States on the impact of dispersed photovoltaic sources upon utility operations. The photovoltaic (PV) arrays are roof-mounted on residential houses and connected, via appropriate power conditioning equipment, to the utility grid. The presence of such small (4-6 Kw) dispersed generators on the distribution network raises questions of a technical, economic and institutional nature. After a brief identification of utility interface issues, the paper addresses such technical concerns as protection of equipment and personnel safety, power quality and utility operational stability. A combination of experimental and analytical approaches has been adopted to arrive at solutions to these problems. Problem areas, under various PV system penetration scenarios, are identified and conceptual designs of protection and control equipment and operating policies are developed so that system reliability is maintained while minimizing capital costs. It is hoped that the resolution of balance-of-system and grid interface questions will ascertain the economic viability of photovoltaic systems and assist in their widespread utilization in the future.

  13. Review of Recommender Systems Algorithms Utilized in Social Networks based e-Learning Systems & Neutrosophic System

    Directory of Open Access Journals (Sweden)

    A. A. Salama

    2015-03-01

    Full Text Available In this paper, we present a review of different recommender system algorithms that are utilized in social networks based e-Learning systems. Future research will include our proposed our e-Learning system that utilizes Recommender System and Social Network. Since the world is full of indeterminacy, the neutrosophics found their place into contemporary research. The fundamental concepts of neutrosophic set, introduced by Smarandache in [21, 22, 23] and Salama et al. in [24-66].The purpose of this paper is to utilize a neutrosophic set to analyze social networks data conducted through learning activities.

  14. Wind energy systems. Application to regional utilities

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    This study developed a generic planning process that utilities can use to determine the feasibility of utilizing WECS (Wind Energy Conversion Systems) as part of their future mix of equipment. While this is primarily an economic process, other questions dealing with WECS availability, capacity credit, operating reserve, performance of WECS arrays, etc., had to be addressed. The approach was to establish the worth, or breakeven value, of WECS to the utility and to determine the impact that WECS additions would have on the utilities mix of conventional source.

  15. Overview of HTGR utilization system developments at JAERI

    International Nuclear Information System (INIS)

    Miyamoto, Y.; Shiozawa, S.; Inagaki, Y.

    1997-01-01

    JAERI has been constructing a 30-MWt HTGR, named HTTR, to develop technology and to demonstrate effectiveness of high-temperature nuclear heat utilization. A hydrogen production system by natural gas steam reforming is to be the first heat utilization system of the HTTR since its technology matured in fossil-fired plant enables to couple with HTTR in the early 2000's and technical solutions demonstrated by the coupling will contribute to all other hydrogen production systems. The HTTR steam reforming system is designed to utilize the nuclear heat effectively and to achieve hydrogen productivity competitive to that of a fossil-fired plant with operability, controllability and safety acceptable enough to commercialization, and an arrangement of key components was already decided. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile test is planned to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions. The out-of-pile system is an approximately 1/20-1/30 scale system of the HTTR steam reforming system and simulates key components downstream from an IHX

  16. Electric Power Research Institute: Environmental Control Technology Center: Report to the Steering Committee, March 1996. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Carbon Injection System for the Hazardous Air Pollutant (HAP) test block. With this testing, the mercury measurement (Method 29) studies also continued with various impinger capture solutions. Also, the installation of the B&W/CHX Heat Exchanger unit was completed in March. The 4.0 MW Spray Dryer Absorber System (Carbon Injection System) and the 4.0 MW Pilot Wet FGD Unit and were utilized in the HAP test configuration this month. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit remained idle this month in a cold- standby mode. Monthly inspections were conducted for all equipment in cold-standby, as well as for the fire safety systems, and will continue to be conducted by the ECTC Operations and Maintenance staff.

  17. Utility battery storage systems program report for FY 94

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1995-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

  18. Pipelines, utilities plan over 150 scada systems

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that North American pipelines and utilities will spend more than $170 million on new or upgraded supervisory control and data acquisition (scada) systems during the 30-month period that commenced Sept. 1. Another $12.5 million will be spent on peripherals and consulting. Among the 699 various projects to be implemented during the period, companies will install 151 scada systems, add 154 remote-terminal units (RTUs) to existing scada units, and install 196 communications systems. Scada systems are computerized hardware and software systems that perform a set of monitoring and control functions. In gas utilities, these systems perform functions normally associated with gas transmission and distribution as well as production plant process control. In gas and oil pipelines, the systems perform these functions as well as such specialized functions as batch tracking, leak detection, and gas load flow

  19. Integrated Baseline System (IBS) Version 1.03: Utilities guide

    Energy Technology Data Exchange (ETDEWEB)

    Burford, M.J.; Downing, T.R.; Pottier, M.C.; Schrank, E.E.; Williams, J.R.

    1993-01-01

    The Integrated Baseline System (IBS) is an emergency management planning and analysis tool that was developed under the direction of the Federal Emergency Management Agency (FEMA). This Utilities Guide explains how to operate utility programs that are supplied as a part of the IBS. These utility programs are chiefly for managing and manipulating various kinds of IBS data and system administration files. Many of the utilities are for creating, editing, converting, or displaying map data and other data that are related to geographic location.

  20. Utility of spoken dialog systems

    CSIR Research Space (South Africa)

    Barnard, E

    2008-12-01

    Full Text Available the evolution of poken dialog system research in the developed world, and show that the utility of speech is based on user factors and application factors (among others). After adjusting the factors for the developing world context, and plotting...

  1. Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash

    Energy Technology Data Exchange (ETDEWEB)

    Milton Wu; Paul Yuran

    2006-12-31

    Universal Aggregates LLC (UA) was awarded a cost sharing Co-operative Agreement from the Department of Energy (DOE) through the Power Plant Improvement Initiative Program (PPII) to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia in October 2001. The Agreement was signed in November 2002. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the UA share is $12.3 million (63%). The original project team consists of UA, SynAggs, LLC, CONSOL Energy Inc. and P. J. Dick, Inc. Using 115,000 ton per year of spray dryer ash (SDA), a dry FGD by-product from the power station, UA will produce 167,000 tons of manufactured lightweight aggregate for use in production of concrete masonry units (CMU). Manufacturing aggregate from FGD by-products can provide an economical high-volume use and substantially expand market for FGD by-products. Most of the FGD by-products are currently disposed of in landfills. Construction of the Birchwood Aggregate Facility was completed in March 2004. Operation startup was begun in April 2004. Plant Integration was initiated in December 2004. Integration includes mixing, extrusion, curing, crushing and screening. Lightweight aggregates with proper size gradation and bulk density were produced from the manufacturing aggregate plant and loaded on a stockpile for shipment. The shipped aggregates were used in a commercial block plant for CMU production. However, most of the production was made at low capacity factors and for a relatively short time in 2005. Several areas were identified as important factors to improve plant capacity and availability. Equipment and process control modifications and curing vessel clean up were made to improve plant operation in the first half of 2006. About 3,000 tons of crushed aggregate was produced in August 2006. UA is continuing to work to improve plant

  2. A method of short range system analysis for nuclear utilities

    International Nuclear Information System (INIS)

    Eng, R.; Mason, E.A.; Benedict, M.

    1976-01-01

    An optimization procedure has been formulated and tested that is capable of solving for the optimal generation schedule of several nuclear power reactors in an electric power utility system, under short-range, resource-limited, conditions. The optimization procedure utilizes a new concept called the Opportunity Cost of Nuclear Power (OCNP) to optimally assign the resource-limited nuclear energy to the different weeks and hours in the short-range planning horizon. OCNP is defined as the cost of displaced energy when optimally distributed nuclear energy is marginally increased. Under resource-limited conditions, the short-range 'value' of nuclear power to a utility system is not its actual generation cost, but the cost of the next best alternative supply of energy, the OCNP. OCNP is a function of a week's system reserve capacity, the system's economic loading order, the customer demand function, and the nature of the available utility system generating units. The optimized OCNP value of the short-range planning period represents the utility's short-range energy replacement cost incurred when selling nuclear energy to a neighbouring utility. (author)

  3. The Incidence and gastrointestinal infectious risk of functional gastrointestinal disorders in a healthy US adult population.

    Science.gov (United States)

    Porter, Chad K; Gormley, Robert; Tribble, David R; Cash, Brooks D; Riddle, Mark S

    2011-01-01

    Functional gastrointestinal disorders (FGDs) are recognized sequelae of infectious gastroenteritis (IGE). Within the active duty military population, a group with known high IGE rates, the population-based incidence, risk factors, and attributable burden of care referable to FGD after IGE are poorly defined. Using electronic medical encounter data (1999-2007) on active duty US military, a matched, case-control study describing the epidemiology and risk determinants of FGD (irritable bowel syndrome (IBS), functional constipation (FC), functional diarrhea (FD), dyspepsia (D)) was conducted. Incidence rates and duration of FGD-related medical care were estimated, and conditional logistic regression was utilized to evaluate FGD risk after IGE. A total of 31,866 cases of FGD identified were distributed as follows: FC 55% (n=17,538), D 21.2% (n=6,750), FD 2.1% (n=674), IBS 28.5% (n=9,091). Previous IGE episodes were distributed as follows: specific bacterial pathogen (n=65, 1.2%), bacterial, with no pathogen specified (n=2155, 38.9%), protozoal (n=38, 0.7%), viral (n=3431, 61.9%). A significant association between IGE and all FGD (odds ratio (OR) 2.64; Phigh risk for IGE. When considering effective countermeasures and mitigation strategies, attention directed toward prevention as well as the acute and chronic sequelae of these infections is needed.

  4. Pipeline, utilities to spend $127 million on scada systems

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Spending for new or upgraded supervisory control and data acquisition (scada) systems and for additional remote-terminal units (RTUs) by North American pipelines and utilities will exceed $165 million through February 1996. New and updated scada systems will total 122 at a cost of more than $127 million; 143 RTU add-on projects will cost more than $38 million. Pipelines and combined utilities/pipelines will spend $89.5 million for 58 scada-system projects and $30.2 million for RTU add-on projects. Scada systems are computerized hardware and software systems that perform monitoring and control functions. In gas utilities, these systems perform functions normally associated with gas transmission and distribution as well as production-plant process control. In gas and oil pipelines, the systems perform these functions as well as such specialized functions as batch tracking, leak detection, and gas load flow

  5. JV TASK 45-MERCURY CONTROL TECHNOLOGIES FOR ELECTRIC UTILITIES BURNING LIGNITE COAL, PHASE I BENCH-AND PILOT-SCALE TESTING

    Energy Technology Data Exchange (ETDEWEB)

    John H. Pavlish; Michael J. Holmes; Steven A. Benson; Charlene R. Crocker; Edwin S. Olson; Kevin C. Galbreath; Ye Zhuang; Brandon M. Pavlish

    2003-10-01

    The Energy & Environmental Research Center has completed the first phase of a 3-year, two-phase consortium project to develop and demonstrate mercury control technologies for utilities that burn lignite coal. The overall project goal is to maintain the viability of lignite-based energy production by providing utilities with low-cost options for meeting future mercury regulations. Phase I objectives are to develop a better understanding of mercury interactions with flue gas constituents, test a range of sorbent-based technologies targeted at removing elemental mercury (Hg{sup o}) from flue gases, and demonstrate the effectiveness of the most promising technologies at the pilot scale. The Phase II objectives are to demonstrate and quantify sorbent technology effectiveness, performance, and cost at a sponsor-owned and operated power plant. Phase I results are presented in this report along with a brief overview of the Phase II plans. Bench-scale testing provided information on mercury interactions with flue gas constituents and relative performances of the various sorbents. Activated carbons were prepared from relatively high-sodium lignites by carbonization at 400 C (752 F), followed by steam activation at 750 C (1382 F) and 800 C (1472 F). Luscar char was also steam-activated at these conditions. These lignite-based activated carbons, along with commercially available DARCO FGD and an oxidized calcium silicate, were tested in a thin-film, fixed-bed, bench-scale reactor using a simulated lignitic flue gas consisting of 10 {micro}g/Nm{sup 3} Hg{sup 0}, 6% O{sub 2}, 12% CO{sub 2}, 15% H{sub 2}O, 580 ppm SO{sub 2}, 120 ppm NO, 6 ppm NO{sub 2}, and 1 ppm HCl in N{sub 2}. All of the lignite-based activated (750 C, 1382 F) carbons required a 30-45-minute conditioning period in the simulated lignite flue gas before they exhibited good mercury sorption capacities. The unactivated Luscar char and oxidized calcium silicate were ineffective in capturing mercury. Lignite

  6. Evaluation of mercury speciation and removal through air pollution control devices of a 190 MW boiler.

    Science.gov (United States)

    Wu, Chengli; Cao, Yan; Dong, Zhongbing; Cheng, Chinmin; Li, Hanxu; Pan, Weiping

    2010-01-01

    Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulfurization (FGD) systems have the co-benefits of air pollutant and mercury removal. Configuration and operational conditions of APCDs and mercury speciation affect mercury removal efficiently at coal-fired utilities. The Ontario Hydro Method (OHM) recommended by the U.S. Environmental Protection Agency (EPA) was used to determine mercury speciation simultaneously at five sampling locations through SCR-ESP-FGD at a 190 MW unit. Chlorine in coal had been suggested as a factor affecting the mercury speciation in flue gas; and low-chlorine coal was purported to produce less oxidized mercury (Hg2+) and more elemental mercury (Hg0) at the SCR inlet compared to higher chlorine coal. SCR could oxidize elemental mercury into oxidized mercury when SCR was in service, and oxidation efficiency reached 71.0%. Therefore, oxidized mercury removal efficiency was enhanced through a wet FGD system. In the non-ozone season, about 89.5%-96.8% of oxidized mercury was controlled, but only 54.9%-68.8% of the total mercury was captured through wet FGD. Oxidized mercury removal efficiency was 95.9%-98.0%, and there was a big difference in the total mercury removal efficiencies from 78.0% to 90.2% in the ozone season. Mercury mass balance was evaluated to validate reliability of OHM testing data, and the ratio of mercury input in the coal to mercury output at the stack was from 0.84 to 1.08.

  7. Integrated Baseline System (IBS) Version 2.0: Utilities Guide

    Energy Technology Data Exchange (ETDEWEB)

    Burford, M.J.; Downing, T.R.; Williams, J.R. [Pacific Northwest Lab., Richland, WA (United States); Bower, J.C. [Bower Software Services, Kennewick, WA (United States)

    1994-03-01

    The Integrated Baseline System (IBS) is an emergency management planning and analysis tool being developed under the direction of the US Army Nuclear and Chemical Agency. This Utilities Guide explains how you can use the IBS utility programs to manage and manipulate various kinds of IBS data. These programs include utilities for creating, editing, and displaying maps and other data that are referenced to geographic location. The intended audience for this document are chiefly data managers but also system managers and some emergency management planners and analysts.

  8. Optimal Wonderful Life Utility Functions in Multi-Agent Systems

    Science.gov (United States)

    Wolpert, David H.; Tumer, Kagan; Swanson, Keith (Technical Monitor)

    2000-01-01

    The mathematics of Collective Intelligence (COINs) is concerned with the design of multi-agent systems so as to optimize an overall global utility function when those systems lack centralized communication and control. Typically in COINs each agent runs a distinct Reinforcement Learning (RL) algorithm, so that much of the design problem reduces to how best to initialize/update each agent's private utility function, as far as the ensuing value of the global utility is concerned. Traditional team game solutions to this problem assign to each agent the global utility as its private utility function. In previous work we used the COIN framework to derive the alternative Wonderful Life Utility (WLU), and experimentally established that having the agents use it induces global utility performance up to orders of magnitude superior to that induced by use of the team game utility. The WLU has a free parameter (the clamping parameter) which we simply set to zero in that previous work. Here we derive the optimal value of the clamping parameter, and demonstrate experimentally that using that optimal value can result in significantly improved performance over that of clamping to zero, over and above the improvement beyond traditional approaches.

  9. The Study of Expert System Utilization for the Accelerator Operation

    International Nuclear Information System (INIS)

    Budi-Santosa; Slamet-Santosa; Subari-Santosa

    2000-01-01

    The utilization of expert system in the accelerator laboratory has been studied. The study covers the utilization of expert system in the setting up experiment (tuning parameter), controlling system, safety or warning system. The results study shows, that using the expert system in the accelerator would be easy to operate the accelerator for user and operator. Increasing the skill of expert system could be updated without logical mechanism modification. (author)

  10. Superconducting magnetic energy storage for electric utilities and fusion systems

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed

  11. Fusion--fission energy systems, some utility perspectives

    International Nuclear Information System (INIS)

    Huse, R.A.; Burger, J.M.; Lotker, M.

    1974-01-01

    Some of the issues that are important in assessing fusion-- fission energy systems from a utility perspective are discussed. A number of qualitative systems-oriented observations are given along with some economic quantification of the benefits from fusion--fission hybrids and their allowed capital cost. (U.S.)

  12. Simulation of the operation of an industrial wet flue gas desulfurization system

    International Nuclear Information System (INIS)

    Kallinikos, L.E.; Farsari, E.I.; Spartinos, D.N.; Papayannakos, N.G.

    2010-01-01

    In this work the simulation of a wet flue gas desulfurization (FGD) unit with spray tower of a power plant is presented, aiming at an efficient follow-up and the optimization of the FGD system operation. The dynamic model developed to simulate the performance of the system has been validated with operation data collected over a long period of time. All the partaking physical and chemical processes like the limestone dissolution, the crystallization of calcium sulfite and gypsum and the oxidation of sulfite ions have been taken into account for the development of the simulation model while the gas absorption by the liquid droplets was based on the two-film theory. The effect of the mean diameter of the slurry droplets on the performance of the system was examined, as it was used as an index factor of the normal operation of the system. The operation limits of the system were investigated on the basis of the model developed. It is concluded that the model is capable of simulating the system for significantly different SO 2 loads and that the absorption rate of SO 2 is strongly affected by the liquid dispersion in the tower. (author)

  13. Utility guide to advanced UT systems for PSI and ISI

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The number of automated UT inspection systems and techniques, currently in the marketplace or being developed, has grown in recent years to the point where a utility engineer reviewing this field is faced with a major task in trying to decide what inspection technique and system will meet his inspection requirements. Recognizing the utility engineer's problem, EPRI initiated this project to produce a utility engineer's guide to advanced, automated UT systems. Of principal concern are those that have been recently introduced, and designed for problem areas such as BWR piping. Older automated scanning systems, used primarily for pressure vessel inspection, are not being ignored, but are not covered here. Costs, benefits and inspection time are addressed for several systems in this report

  14. Acid rain compliance: Options, facts, and findings

    International Nuclear Information System (INIS)

    Knutson, K.S.; Metzroth, L.F.; Radjef-Jenatton, M.

    1991-01-01

    On January 1, 1995, those utilities affected during the Phase 1 implementation of the amended Clean Air Act will be required to comply with new clean air standards. During the next three years leading up to that date, in order to achieve compliance, those companies need to not only decide on a strategy but also implement a plan. To date very few clear-cut compliance decisions have been made. The reasons for the uncertainty center on future fuel prices and the prospects for more efficient and lower cost FGD systems. Many utility planners look at today's coal market and find it hard to believe that prices for some specialty coals, particularly ultra-low sulfur coals, will be higher than the tremendous costs associated with the development of an FGD system. With that in mind, it comes as no surprise that coal switching has been regarded as the least cost choice among even the largest sulfur emitting companies in the country. However, if companies continue to make least cost decisions based on today's coal market, the US coal and utility industries could be in for some disruptive times ahead. While no paper can completely address the enormous complexity surrounding acid rain compliance, this paper addresses some of the broad issues which result from compliance activity and summarizes the findings outlined in RDI's four volume report, the Acid Rain Handbook

  15. Utilization of artificial intelligence techniques for the Space Station power system

    Science.gov (United States)

    Evatt, Thomas C.; Gholdston, Edward W.

    1988-01-01

    Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.

  16. Maximizing Resource Utilization in Video Streaming Systems

    Science.gov (United States)

    Alsmirat, Mohammad Abdullah

    2013-01-01

    Video streaming has recently grown dramatically in popularity over the Internet, Cable TV, and wire-less networks. Because of the resource demanding nature of video streaming applications, maximizing resource utilization in any video streaming system is a key factor to increase the scalability and decrease the cost of the system. Resources to…

  17. Operation strategy analysis of a geothermal step utilization heating system

    International Nuclear Information System (INIS)

    Zheng, Guozhong; Li, Feng; Tian, Zhe; Zhu, Neng; Li, Qianru; Zhu, Han

    2012-01-01

    Geothermal energy has been successfully applied in many district heating systems. In order to promote better use of geothermal energy, it is important to analyze the operation strategy of geothermal heating system. This study proposes a comprehensive and systematic operation strategy for a geothermal step utilization heating system (GSUHS). Calculation models of radiator heating system (RHS), radiant floor heating system (RFHS), heat pump (HP), gas boiler (GB), plate heat exchanger (PHE) and pump are first established. Then the operation strategy of the GSUHS is analyzed with the aim to substantially reduce the conventional energy consumption of the whole system. Finally, the energy efficiency and geothermal tail water temperature are analyzed. With the operation strategy in this study, the geothermal energy provides the main heating amount for the system. The heating seasonal performance factor is 15.93. Compared with coal-fired heating, 75.1% of the standard coal equivalent can be saved. The results provide scientific guidance for the application of an operation strategy for a geothermal step utilization heating system. -- Highlights: ► We establish calculation models for the geothermal step utilization heating system. ► We adopt minimal conventional energy consumption to determine the operation strategy. ► The geothermal energy dominates the heating quantity of the whole system. ► The utilization efficiency of the geothermal energy is high. ► The results provide guidance to conduct operation strategy for scientific operation.

  18. A Systems Approach to Information Technology (IT) Infrastructure Design for Utility Management Automation Systems

    OpenAIRE

    A. Fereidunian; H. Lesani; C. Lucas; M. Lehtonen; M. M. Nordman

    2006-01-01

    Almost all of electric utility companies are planning to improve their management automation system, in order to meet the changing requirements of new liberalized energy market and to benefit from the innovations in information and communication technology (ICT or IT). Architectural design of the utility management automation (UMA) systems for their IT-enabling requires proper selection of IT choices for UMA system, which leads to multi-criteria decision-makings (MCDM). In resp...

  19. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  20. Optimization of Utility-Scale Wind-Hydrogen-Battery Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Fingersh, L. J.

    2004-07-01

    Traditional utility-scale wind energy systems are not dispatchable; that is, the utility cannot instantaneously control their power output. Energy storage, which can come in many forms, is needed to add dispatchability to a wind farm. This study investigates two options: batteries and hydrogen.

  1. Syncrude emissions reduction project

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, M.A. [Alstom Power Inc., Knoxville, TN (United States); Ibbotson, P. [Syncrude Canada Ltd., Calgary, AB (Canada)

    2008-07-01

    This paper described an emissions reduction project conducted by Syncrude Canada and various other companies currently developing and processing oil sands in Alberta. Syncrude's upgrader expansion program included the installation of an ammonia-based wet flue gas desulfurizer (FGD) designed to remove sulphur dioxide (SO{sub 2}) from a coker train. Syncrude is also installing the FGD technology at its existing plants. It is expected that installation of the FGDs will reduced total site emissions of SO{sub 2} by 60 per cent. The fluid cokers are used to crack the long hydrocarbon chain bitumen molecules into shorter molecules. It is expected that the FGD system will also reduce particulate and SO{sub 3} levels. The FGD system was selected after an evaluation of technologies used by the coal-fired power industry. A dry FGD system was selected to operate above the water saturation temperature of the flue gas. Calcium oxide was used as a reagent. Hot gas was quenched in a spray dryer absorber with a slurry of calcium hydroxide. Rotary atomizers were used to developer uniform droplets of slurry. The system's fabric filter was a low ratio reverse gas-cleaned unit. Particulate matter from the gases was deposited on the interior of the filter bags. Clean hot gas was drawn through reverse gas fans into a reverse gas manifold. A timeline of the FGD technology installation process was included. 3 tabs., 28 figs.

  2. Producing ammonium sulfate from flue gas desulfurization by-products

    Science.gov (United States)

    Chou, I.-Ming; Bruinius, J.A.; Benig, V.; Chou, S.-F.J.; Carty, R.H.

    2005-01-01

    Emission control technologies using flue gas desulfurization (FGD) have been widely adopted by utilities burning high-sulfur fuels. However, these technologies require additional equipment, greater operating expenses, and increased costs for landfill disposal of the solid by-products produced. The financial burdens would be reduced if successful high-volume commercial applications of the FGD solid by-products were developed. In this study, the technical feasibility of producing ammonium sulfate from FGD residues by allowing it to react with ammonium carbonate in an aqueous solution was preliminarily assessed. Reaction temperatures of 60, 70, and 80??C and residence times of 4 and 6 hours were tested to determine the optimal conversion condition and final product evaluations. High yields (up to 83%) of ammonium sulfate with up to 99% purity were achieved under relatively mild conditions. The optimal conversion condition was observed at 60??C and a 4-hour residence time. The results of this study indicate the technical feasibility of producing ammonium sulfate fertilizer from an FGD by-product. Copyright ?? Taylor & Francis Inc.

  3. Development of integrated nuclear data utilization system for innovative reactors

    International Nuclear Information System (INIS)

    Naoki, Yamano; Masayuki, Igashira; Akira, Hasegawa; Kiyoshi, Kato

    2005-01-01

    An integrated nuclear data utilization system has been developing for innovative nuclear energy systems such as innovative reactors and accelerator-driven systems. The system has been constructed as a modular code system, which consists of a managing system and two subsystems. The management system named CONDUCT controls system resource management of the PC Linux server and the user authentication through Internet access. A subsystem is the nuclear data search and plotting subsystem based on a SPES engine developed by Hokkaido University. Nuclear data such as EXFOR, JENDL-3.3, ENDF/B-VI and JEFF-3.1 can be searched and plotted in the subsystem. The other is the nuclear data processing and utilization subsystem, which is able to handle JENDL-3.3, ENDF/B-VI and JEFF-3.1 to generate point-wise and group cross sections in several formats, and perform various criticality and shielding benchmarks for verification of nuclear data and validation of design methods for innovative reactors. This paper presents an overview of the integrated nuclear data utilization system, describes the progress of the system development to examine the operability of the user interface and discuss specifications of the two subsystems. (authors)

  4. Survey of thorium utilization in power reactor systems

    International Nuclear Information System (INIS)

    Schwartz, M.H.; Schleifer, P.; Dahlberg, R.C.

    1976-01-01

    It is clear that thorium-fueled thermal power reactor systems based on current technology can play a vital role in serving present and long-term energy needs. Advanced thorium converters and thermal breeders can provide an expanded resource base from which the world's growing energy demands can be met. Utilization of a symbiotic system of fast breeders and thorium-fueled thermal reactors can be particularly effective in providing low cost power while conserving uranium resources. Breeder reactors are characterized by high capital costs and very low fuel costs since they produce more fuel than they consume. This excess fuel can be used to fuel thermal converter reactors whose capital costs are low. This symbiosis is optimized when 233 U is bred in the fast breeders and then used to fuel high-conversion-ratio thermal converter reactors operating on the thorium-uranium fuel cycle. The thorium-cycle HTGR, after undergoing more than fifteen years of development in both the United States and Europe, provides for the optimum utilization of our limited uranium resources. Other thermal reactor systems, previously operating on the uranium cycle, also show potential in their capability to utilize the thorium cycle effectively

  5. The Northeast Utilities generic plant computer system

    International Nuclear Information System (INIS)

    Spitzner, K.J.

    1980-01-01

    A variety of computer manufacturers' equipment monitors plant systems in Northeast Utilities' (NU) nuclear and fossil power plants. The hardware configuration and the application software in each of these systems are essentially one of a kind. Over the next few years these computer systems will be replaced by the NU Generic System, whose prototype is under development now for Millstone III, an 1150 Mwe Pressurized Water Reactor plant being constructed in Waterford, Connecticut. This paper discusses the Millstone III computer system design, concentrating on the special problems inherent in a distributed system configuration such as this. (auth)

  6. Utility-DOE interface considerations of the universal container systems concept

    International Nuclear Information System (INIS)

    Rasmussen, R.; Smith, M.; Jordan, J.; Supko, E.

    1993-01-01

    This paper discusses the utility-DOE interface issues that must be addressed by the DOE, the utility industry, and the Nuclear Regulatory Commission (NRC) prior to implementation of a universal container system (UCS) as an alternative to the current Reference Waste Management System. A brief background is presented discussing the reasons a UCS appears to benefit the waste management system, including a reduction in spent fuel handling, simplified DOE storage and transportation systems, and simplified repository design and operation. In December 1992, the Secretary of Energy announced that the current negotiated siting process is not expected to lead to an operational monitored retrievable storage (MRS) facility by January 1998. Therefore, DOE outlined a strategy for initiating spent fuel acceptance from utilities in 1998 that includes the use of federal government sites for interim storage and the development of the UCS concept

  7. Economic evaluations of fusion-based energy storage systems in an electric utility

    International Nuclear Information System (INIS)

    Hwang, W.G.

    1977-01-01

    The feasibility of introducing a fusion energy storage system, which consists of a fusion-fission reactor and a water-splitting process, in an electric utility was investigated. The fusion energy storage system was assumed to be run during off-peak periods in order to make use of unused, low fuel cost capacity of an electric utility. The fusion energy storage system produces both fissile fuel and hydrogen. The produced hydrogen was assumed to be transmitted through and stored in existing natural gas trunklines for later use during peak-load hours. The peaking units in the utility were assumed to burn the hydrogen. Reserve power is usually cheap on systems with heavy nuclear fission reactor installation. The system studied utilizes this cheap energy for producing expensive fuel. The thermochemical water-splitting process was employed to recover thermal energy from the fusion-fission reactor system. The cost of fusion energy storage systems as well as the value of produced fuel were calculated. In order to simulate the operations of the fusion energy storage system for a multi-year planning period, a computer program, FESUT (Fusion Energy Simulation at the University of Texas), was developed for the present study. Two year utility simulations with the fusion energy storage system were performed

  8. The use of information systems to transform utilities and regulatory commissions: The application of geographic information systems

    Energy Technology Data Exchange (ETDEWEB)

    Wirick, D.W.; Montgomery, G.E.; Wagman, D.C.; Spiers, J.

    1995-09-01

    One technology that can assist utilities remain financially viable in competitive markets and help utilities and regulators to better serve the public is information technology. Because geography is an important part of an electric, natural gas, telecommunications, or water utility, computer-based Geographic Information Systems (GIS) and related Automated Mapping/Facilities Management systems are emerging as core technologies for managing an ever-expanding variety of formerly manual or paper-based tasks. This report focuses on GIS as an example of the types of information systems that can be used by utilities and regulatory commissions. Chapter 2 provides general information about information systems and effects of information on organizations; Chapter 3 explores the conversion of an organization to an information-based one; Chapters 4 and 5 set out GIS as an example of the use of information technologies to transform the operations of utilities and commissions; Chapter 6 describes the use of GIS and other information systems for organizational reengineering efforts; and Chapter 7 examines the regulatory treatment of information systems.

  9. PENERAPAN KNOWLEDGE MANAGEMENT SYSTEM PADA PERUSAHAAN OTOMOTIF : STUDI KASUS PT. ASTRIDO JAYA MOBILINDO

    Directory of Open Access Journals (Sweden)

    Rikaro Ramadi

    2016-11-01

    Full Text Available Perkembangan teknologi dan komunikasi yang semakin cepat menuntut manusia untuk bertindak semakin cepat dengan memperhatikan efisiensi dan efektifitas. PT. Astrido Jaya Mobilindo sebagai perusahaan yang bergerak di bidang otomotif kususnya penjualan dan sevices mobil. Tujuan yang diharapkan dari penelitian ini adalah membangun sistem informasi Knowledge Management System yang di gunakan untuk menyimpan dan memanfaatkan knowledge yang dimiliki karyawan sehingga mempermudah karyawan untuk menemukan solusi dari masalah yang di hadapi. Untuk metode pengumpulan data peneliti melakukan dengan cara observasi langsung, studi pustaka, dan wawancara. Knowledge management dilakukan dengan penciptaan pengetahuan, berbagi pengetahuan dan penerapan pengetahuan. Penciptaan pengetahuan dilakukan dengan model SECI (sosialization, externalization, combination dan internalization. Metode pengembangan system dengan Rapid Application Development (RAD dan dimodelkan dengan menggunakan sistem analisis menggunakan Unified Modelling Language (UML. Pengujian validasi menggunakan Focus Group Discussion (FGD. Kualitas perangkat lunak yang dihasilkan di uji berdasarkan empat karakteristik kualitas perangkat lunak model ISO 9126, yaitu: functionality, reliability, usability, dan efficiency dengan menggunakan metode kuesioner. Teknik pengujian perangkat lunak dengan menggunakan software Acunetix dan Blackbox Testing. Hasil dari penilitian ini adalah menujukan bahwa penerapan knowledge management system adalah solusi dari permasalahan yang ada. Kata kunci: knowledge management system, SECI, RAD, UML, FGD, ISO 9126.

  10. Application of fuel cells with heat recovery for integrated utility systems

    Science.gov (United States)

    Shields, V.; King, J. M., Jr.

    1975-01-01

    This paper presents the results of a study of fuel cell powerplants with heat recovery for use in an integrated utility system. Such a design provides for a low pollution, noise-free, highly efficient integrated utility. Use of the waste heat from the fuel cell powerplant in an integrated utility system for the village center complex of a new community results in a reduction in resource consumption of 42 percent compared to conventional methods. In addition, the system has the potential of operating on fuels produced from waste materials (pyrolysis and digester gases); this would provide further reduction in energy consumption.

  11. On-line monitoring system for utility boiler diagnostics

    International Nuclear Information System (INIS)

    Radovanovic, P.M.; Afgan, N.H.; Caralho, M.G.

    1997-01-01

    The paper deals with the new developed modular type Monitoring System for Utility Boiler Diagnostics. Each module is intended to assess the specific process and can be used as a stand alone application. Four modules are developed, namely: LTC - module for the on-line monitoring of parameters related to the life-time consumption of selected boiler components; TRD - module for the tube rupture detection by the position and working fluid Ieakage quantity; FAM - module for the boiler surfaces fouling (slagging) assessment and FLAP - module for visualization of the boiler furnace flame position. All four modules are tested on respective pilot plants built oil the 200 and 300 MWe utility boilers. Monitoring System is commercially available and can be realized in any combination of its modules depending on demands induced by the operational problems of specific boiler. Further development of Monitoring System is performed in accordance with the respective EU project on development of Boiler Expert System. (Author)

  12. Proposing and Planning the Rehabilitation Works of Mechanical Utility System in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Jusnan Hasim; Mohamad Suhaimi Yahaya; Abdul Razak Hashim

    2015-01-01

    Nuclear Malaysia has 2 complex located in Bangi and Jalan Dengkil. The utility in Nuclear Malaysia consists of civil, mechanical and electrical system that has been managed by Bahagian Kejuruteraan (BKJ). The mechanical utilities system has been divided to three main groups which are the main system, supporting system and safety equipment's. The objectives of this paper are to propose and plan the rehabilitation works of mechanical utility system in Nuclear Malaysia and also to explain working procedures in maintaining and repairing the mechanical utility system. The study suggest the rehabilitation works on the mechanical utilities system especially on Thermal Energy Storage (TES) and domestic water system needs to be done which involve process of design, procurement, installation and commissioning. (author)

  13. Safety assessment of envisaged systems for automotive hydrogen supply and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Landucci, Gabriele [Dipartimento di Ingegneria Chimica, Chimica Industriale e Scienza dei Materiali, Universita di Pisa, via Diotisalvi n.2, 56126 Pisa (Italy); Tugnoli, Alessandro; Cozzani, Valerio [Dipartimento di Ingegneria Chimica, Mineraria e delle Tecnologie Ambientali, Alma Mater Studiorum - Universita di Bologna, via Terracini n.28, 40131 Bologna (Italy)

    2010-02-15

    A novel consequence-based approach was applied to the inherent safety assessment of the envisaged hydrogen production, distribution and utilization systems, in the perspective of the widespread hydrogen utilization as a vehicle fuel. Alternative scenarios were assessed for the hydrogen system chain from large scale production to final utilization. Hydrogen transportation and delivery was included in the analysis. The inherent safety fingerprint of each system was quantified by a set of Key Performance Indicators (KPIs). Rules for KPIs aggregation were considered for the overall assessment of the system chains. The final utilization stage resulted by large the more important for the overall expected safety performance of the system. Thus, comparison was carried out with technologies proposed for the use of other low emission fuels, as LPG and natural gas. The hazards of compressed hydrogen-fueled vehicles resulted comparable, while reference innovative hydrogen technologies evidenced a potentially higher safety performance. Thus, switching to the inherently safer technologies currently under development may play an important role in the safety enhancement of hydrogen vehicles, resulting in a relevant improvement of the overall safety performance of the entire hydrogen system. (author)

  14. Community energy systems and the law of public utilities

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Nebraska governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitiled ''Community Energy Systems and the Law of Public Utilities--Volume One: An Overview.'' This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  15. Implementation & Analysis of Integrated Utility System in Developing Nation like India

    Directory of Open Access Journals (Sweden)

    Rajan Gupta

    2016-07-01

    Full Text Available Public utility systems are prevalent around the world but are struggling in developing nations like India to work efficiently. Integration of different utilities can be a possible solution on the technology front, so that more requests can be handled with lesser problems. This study provides the implementation design and benefits of an already proposed integration system by the same authors. It is found that Data Storage, Access Time, Transaction Cost, security cost and server’s busy time can become more effective if the implementation of integration system can be put in place. The working prototype is based on three utilities (Gas, Power & Water of Delhi-NCR, India.

  16. High slot utilization systems for electric machines

    Science.gov (United States)

    Hsu, John S

    2009-06-23

    Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.

  17. CLASSIFICATION OF THE MGR OFFSITE UTILITIES SYSTEM

    International Nuclear Information System (INIS)

    J.A. Ziegler

    1999-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) offsite utilities system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  18. Babcock & Wilcox technologies for power plant stack emissions control

    Energy Technology Data Exchange (ETDEWEB)

    Polster, M.; Nolan, P.S.; Batyko, R.J. [Babcock & Wilcox, Barberton, OH (United States)

    1994-12-31

    The current status of sulfur dioxide control in power plants is reviewed with particular emphasis on proven, commercial technologies. This paper begins with a detailed review of Babcock & Wilcox commercial wet flue gas desulfurization (FGD) systems. This is followed by a brief discussion of B&W dry FGD technologies, as well as recent full-scale and pilot-scale demonstration projects which focus on lower capital cost alternatives to conventional FGD systems. A comparison of the economics of several of these processes is also presented. Finally, technology selections resulting from recent acid rain legislation in various countries are reviewed.

  19. Dispersion modeling in assessing air quality of industrial projects under Indian regulatory regime

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Amitava [Department of Chemical Engineering, University of Calcutta, 92, A.P.C.Road, Kolkata 700 009 (India)

    2010-07-01

    Environmental impact assessment (EIA) studies conducted over the years as a part of obtaining environmental clearance in accordance with Indian regulation have been given significant attention towards carrying out Gaussian dispersion modeling for predicting the ground level concentration (GLC) of pollutants, especially for SO{sub 2}. Making any adhoc decision towards recommending flue gas desulfurization (FGD) system in Indian fossil fuel combustion operations is not realistic considering the usage of fuel with low sulfur content. Thus a predictive modeling is imperative prior to making any conclusive decision. In the light of this finding, dispersion modeling has been accorded in Indian environmental regulations. This article aims at providing approaches to ascertain pollution potential for proposed power plant operation either alone or in presence of other industrial operations under different conditions. In order to assess the performance of the computational work four different cases were analyzed based on worst scenario. Results obtained through predictions were compared with National Ambient Air Quality Standards (NAAQS) of India. One specific case found to overshoot the ambient air quality adversely in respect of SO2 and was therefore, suggested to install a FGD system with at least 80 % SO2 removal efficiency. With this recommendation, the cumulative prediction yielded a very conservative resultant value of 24 hourly maximum GLC of SO2 as against a value that exceeded well above the stipulated value without considering the FGD system. The computational algorithm developed can therefore, be gainfully utilized for the purpose of EIA analysis in Indian condition.

  20. Flexible Grouping for Enhanced Energy Utilization Efficiency in Battery Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Weiping Diao

    2016-06-01

    Full Text Available As a critical subsystem in electric vehicles and smart grids, a battery energy storage system plays an essential role in enhancement of reliable operation and system performance. In such applications, a battery energy storage system is required to provide high energy utilization efficiency, as well as reliability. However, capacity inconsistency of batteries affects energy utilization efficiency dramatically; and the situation becomes more severe after hundreds of cycles because battery capacities change randomly due to non-uniform aging. Capacity mismatch can be solved by decomposing a cluster of batteries in series into several low voltage battery packs. This paper introduces a new analysis method to optimize energy utilization efficiency by finding the best number of batteries in a pack, based on capacity distribution, order statistics, central limit theorem, and converter efficiency. Considering both battery energy utilization and power electronics efficiency, it establishes that there is a maximum energy utilization efficiency under a given capacity distribution among a certain number of batteries, which provides a basic analysis for system-level optimization of a battery system throughout its life cycle. Quantitative analysis results based on aging data are illustrated, and a prototype of flexible energy storage systems is built to verify this analysis.

  1. Ruminant production systems in developing countries: Resource utilization

    International Nuclear Information System (INIS)

    Devendra, C.

    1989-01-01

    Ruminant production systems are discussed with specific reference to the resource utilization required to support them. Particular focus is placed on the main production resources (animals and feeds) and their underutilization. The ruminant animals include buffaloes, cattle, goats, sheep and camels. With the exception of cattle and sheep, their numbers in developing countries account for between 94 and 100% of total world population. Their biological attributes, including inherent characteristics, feeding behaviour and metabolism, are summarized. The extent and availability of feed resources are considered; resources include permanent pastures, crop residues, agroindustrial by-products and non-conventional feeds. The prevailing ruminant production systems are classified into three main categories: extensive systems, systems incorporating arable cropping (roadside, communal and arable grazing systems; tethering and cut-and-carry feeding), and systems integrated with tree cropping. Their genesis and endurance with patterns of crop production and farming systems are discussed. Integrated systems, involving animals and tree crops, are potentially important. Prevailing ruminant production systems are unlikely to change in the foreseeable future, unless there are major shifts in resource use and the proposed new systems are demonstrably superior. Factors likely to influence future ruminant production systems are market requirements, available feed resources and growth in human populations. Two associated strategies for improvement are proposed: increased priority to buffaloes, goats, sheep and camels, consistent with their potential contribution to meat, milk and fibre supplies and draught power; and more complete utilization of the available feed ingredients and increased feed supplies

  2. Fluosorbent injection by-products. Final report, January 1997 through December 1999

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Sid [Sorbent Technologies Corp., Twinsburg, OH (United States)

    2000-02-29

    Few, if any, economical alternatives exist for small coal-fired boilers that require a flue-gas desulfurization (FGD) system which does not generate wastes. A new duct-injection technology, called "Fluesorbent," was developed to help fill this gap. Fluesorbent was intentionally designed so that the saturated S02-sorbent materials can be used as beneficial soil amendments after they were used for FGD. A. Project Objective: The objective of this project was to demonstrate in the field that saturated Fluesorbent materials can be utilized beneficially on agricultural and grass lands. B. Project Results: The results of this project suggest that, indeed, saturated Fluesorbent has excellent potential as a commercial soil amendment for crops, such as alfalfa and soybeans, and for turf. Yields of alfalfa and turf were substantially increased in field testing on acidic soils by one-time applications of Fluesorbent FGD by-products. In the first two years of field testing, alfalfa yields on field plots with the FGD by-products were approximately 40% greater than on plots treated with an equivalent amount of agricultural lime. In a third, drought-influenced year, the gains were smaller. Turf grass growth was fully twice that of untreated plots and more than 10% greater than with ag-lime. A small farm trial with a modified version of the Fluesorbent by-product increased soybean yield by 25%. A small trial with corn, however, indicated no significant improvement. Even though the Fluesorbent contained fly ash, the alfalfa and turf grown in FGD-treated plots contained significantly lower levels of heavy metals than that grown in untreated or lime-treated plots. In a project greenhouse experiment, the fly ashes from five different coal boilers from around Ohio produced equivalent yields when mixed with Fluesorbent, indicating wide potential applicability of the new technology. The Fluesorbent materials were also found to be easy to extrude into pellets for use with mixed fertilizers

  3. Design techniques for modular integrated utility systems. [energy production and conversion efficiency

    Science.gov (United States)

    Wolfer, B. M.

    1977-01-01

    Features basic to the integrated utility system, such as solid waste incineration, heat recovery and usage, and water recycling/treatment, are compared in terms of cost, fuel conservation, and efficiency to conventional utility systems in the same mean-climatic area of Washington, D. C. The larger of the two apartment complexes selected for the test showed the more favorable results in the three areas of comparison. Restrictions concerning the sole use of currently available technology are hypothetically removed to consider the introduction and possible advantages of certain advanced techniques in an integrated utility system; recommendations are made and costs are estimated for each type of system.

  4. Defense strategies for asymmetric networked systems under composite utilities

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Nageswara S. [ORNL; Ma, Chris Y. T. [Hang Seng Management College, Hon Kong; Hausken, Kjell [University of Stavanger, Norway; He, Fei [Texas A& M University, Kingsville, TX, USA; Yau, David K. Y. [Singapore University of Technology and Design; Zhuang, Jun [University at Buffalo (SUNY)

    2017-11-01

    We consider an infrastructure of networked systems with discrete components that can be reinforced at certain costs to guard against attacks. The communications network plays a critical, asymmetric role of providing the vital connectivity between the systems. We characterize the correlations within this infrastructure at two levels using (a) aggregate failure correlation function that specifies the infrastructure failure probability giventhe failure of an individual system or network, and (b) first order differential conditions on system survival probabilities that characterize component-level correlations. We formulate an infrastructure survival game between an attacker and a provider, who attacks and reinforces individual components, respectively. They use the composite utility functions composed of a survival probability term and a cost term, and the previously studiedsum-form and product-form utility functions are their special cases. At Nash Equilibrium, we derive expressions for individual system survival probabilities and the expected total number of operational components. We apply and discuss these estimates for a simplified model of distributed cloud computing infrastructure

  5. Utilization of Keno system for criticality calculation

    International Nuclear Information System (INIS)

    Maragni, M.G.

    1990-01-01

    Several studies involving benchmarks have been performed with the KENO-IV code in order to utilize it in a more efficient way at IPEN-COPESP. The influence of different cross section libraries has been verifed. The Hansen-Roach library produced better results for fast systems, while GAMTEC-II code was more efficient for thermal systems. For reflectors it has been shown that the differential albedo and automatic reflection options are more appropriate for infinite and finite reflectors, respectively. A number of histories greater than 30.000 did not seem to improve the results. Plutonium systems should be treated with special care. (author) [pt

  6. Antitrust implications of utility participation in the market for remote photovoltaic systems

    International Nuclear Information System (INIS)

    Starrs, T.J.

    1994-01-01

    Remote photovoltaic systems are an important niche market in the development of a viable photovoltaics industry. Electric utilities in the US have started offering remote photovoltaic service. Utilities have the potential to use their monopoly power in regulated markets to unfair competitive advantage in competitive markets. Therefore, utility participation in remote photovoltaic markets raises potentially significant issues of antitrust law and policy. This paper describes some of the legal and factual criteria that US courts and regulatory agencies are likely to use in assessing the antitrust implications of utility participation in the market for remote photovoltaic systems

  7. Criteria for inhalation exposure systems utilizing concurrent flow spirometry

    International Nuclear Information System (INIS)

    Raabe, O.G.; Yeh, H.C.

    1974-01-01

    Principles are given for the design and operation of a new class of inhalation exposure systems utilizing concurrent flow spirometry (CFS), a simple method for providing realtime measurement of respiratory volumes and rates during inhalation exposure by mouth or nose of individual experimental animals or man to aerosols or gases. This technique is especially useful for inhalation exposure of larger experimental animals, such as horses, where whole-body plethysmography is usually impractical. Difficulties encountered with conventional exposure systems in maintenance of uniform aerosol or gas concentrations and prevention of large pressure excursions in the exposure chamber during breathing are obviated by systems utilizing the principles of concurrent flow spirometry. For illustration, two exposure units with CFS are described, one for exposure of Beagle dogs and one for ponies. (U.S.)

  8. Test report light duty utility arm power distribution system (PDS)

    International Nuclear Information System (INIS)

    Clark, D.A.

    1996-01-01

    The Light Duty Utility Arm (LDUA) Power Distribution System has completed vendor and post-delivery acceptance testing. The Power Distribution System has been found to be acceptable and is now ready for integration with the overall LDUA system

  9. Celss nutrition system utilizing snails

    Science.gov (United States)

    Midorikawa, Y.; Fujii, T.; Ohira, A.; Nitta, K.

    At the 40th IAF Congress in Malaga, a nutrition system for a lunar base CELSS was presented. A lunar base with a total of eight crew members was envisaged. In this paper, four species of plants—rice, soybean, lettuce and strawberry—were introduced to the system. These plants were sufficient to satisfy fundamental nutritional needs of the crew members. The supply of nutrition from plants and the human nutritional requirements could almost be balanced. Our study revealed that the necessary plant cultivation area per crew member would be nearly 40 m 3 in the lunar base. The sources of nutrition considered in the study were energy, sugar, fat, amino acids, inorganic salt and vitamins; however, calcium, vitamin B 2, vitamin A and sodium were found to be lacking. Therefore, a subsystem to supply these elements is of considerable value. In this paper, we report on a study for breeding snails and utilizing meat as food. Nutrients supplied from snails are shown to compensate for the abovementioned lacking elements. We evaluate the snail breeder and the associated food supply system as a subsystem of closed ecological life support system.

  10. Environmental performance assessment of utility boiler energy conversion systems

    International Nuclear Information System (INIS)

    Li, Changchun; Gillum, Craig; Toupin, Kevin; Park, Young Ho; Donaldson, Burl

    2016-01-01

    Highlights: • Sustainability analyses of utility boilers are performed. • Natural gas fired boilers have the least CO_2 emissions in fossil fueled boilers. • Solar boilers rank last with an emergy yield ratio of 1.2. • Biomass boilers have the best emergy sustainability index. - Abstract: A significant amount of global electric power generation is produced from the combustion of fossil fuels. Steam boilers are one of the most important components for steam and electricity production. The objective of this paper is to establish a theoretical framework for the sustainability analysis of a utility boiler. These analyses can be used by decision-makers to diagnose and optimize the sustainability of a utility boiler. Seven utility boiler systems are analyzed using energy and embodied solar energy (emergy) principles in order to evaluate their environmental efficiencies. They include a subcritical coal fired boiler, a supercritical coal fired boiler, an oil fired boiler, a natural gas fired boiler, a concentrating solar power boiler utilizing a tower configuration, a biomass boiler, and a refuse derived fuel boiler. Their relative environmental impacts were compared. The results show that the natural gas boiler has significantly lower CO_2 emission than an equivalent coal or oil fired boiler. The refuse derived fuel boiler has about the same CO_2 emissions as the natural gas boiler. The emergy sustainability index of a utility boiler system is determined as the measure of its sustainability from an environmental perspective. Our analyses results indicate that the natural gas boiler has a relatively high emergy sustainability index compared to other fossil fuel boilers. Converting existing coal boilers to natural gas boilers is a feasible option to achieve better sustainability. The results also show that the biomass boiler has the best emergy sustainability index and it will remain a means to utilize the renewable energy within the Rankine steam cycle. Before

  11. The Integration of Renewable Energy Sources into Electric Power Distribution Systems, Vol. II Utility Case Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Zaininger, H.W.

    1994-01-01

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: the local solar insolation and/or wind characteristics, renewable energy source penetration level, whether battery or other energy storage systems are applied, and local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kW-scale applications may be connected to three+phase secondaries, and larger hundred-kW and y-scale applications, such as MW-scale windfarms, or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. In any case, the installation of small, distributed renewable energy sources is expected to have a significant impact on local utility distribution primary and secondary system economics. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications. The

  12. Utilization of the Space Vision System as an Augmented Reality System For Mission Operations

    Science.gov (United States)

    Maida, James C.; Bowen, Charles

    2003-01-01

    Augmented reality is a technique whereby computer generated images are superimposed on live images for visual enhancement. Augmented reality can also be characterized as dynamic overlays when computer generated images are registered with moving objects in a live image. This technique has been successfully implemented, with low to medium levels of registration precision, in an NRA funded project entitled, "Improving Human Task Performance with Luminance Images and Dynamic Overlays". Future research is already being planned to also utilize a laboratory-based system where more extensive subject testing can be performed. However successful this might be, the problem will still be whether such a technology can be used with flight hardware. To answer this question, the Canadian Space Vision System (SVS) will be tested as an augmented reality system capable of improving human performance where the operation requires indirect viewing. This system has already been certified for flight and is currently flown on each shuttle mission for station assembly. Successful development and utilization of this system in a ground-based experiment will expand its utilization for on-orbit mission operations. Current research and development regarding the use of augmented reality technology is being simulated using ground-based equipment. This is an appropriate approach for development of symbology (graphics and annotation) optimal for human performance and for development of optimal image registration techniques. It is anticipated that this technology will become more pervasive as it matures. Because we know what and where almost everything is on ISS, this reduces the registration problem and improves the computer model of that reality, making augmented reality an attractive tool, provided we know how to use it. This is the basis for current research in this area. However, there is a missing element to this process. It is the link from this research to the current ISS video system and to

  13. Utilizing Internet Technologies in Observatory Control Systems

    Science.gov (United States)

    Cording, Dean

    2002-12-01

    The 'Internet boom' of the past few years has spurred the development of a number of technologies to provide services such as secure communications, reliable messaging, information publishing and application distribution for commercial applications. Over the same period, a new generation of computer languages have also developed to provide object oriented design and development, improved reliability, and cross platform compatibility. Whilst the business models of the 'dot.com' era proved to be largely unviable, the technologies that they were based upon have survived and have matured to the point were they can now be utilized to build secure, robust and complete observatory control control systems. This paper will describe how Electro Optic Systems has utilized these technologies in the development of its third generation Robotic Observatory Control System (ROCS). ROCS provides an extremely flexible configuration capability within a control system structure to provide truly autonomous robotic observatory operation including observation scheduling. ROCS was built using Internet technologies such as Java, Java Messaging Service (JMS), Lightweight Directory Access Protocol (LDAP), Secure Sockets Layer (SSL), eXtendible Markup Language (XML), Hypertext Transport Protocol (HTTP) and Java WebStart. ROCS was designed to be capable of controlling all aspects of an observatory and be able to be reconfigured to handle changing equipment configurations or user requirements without the need for an expert computer programmer. ROCS consists of many small components, each designed to perform a specific task, with the configuration of the system specified using a simple meta language. The use of small components facilitates testing and makes it possible to prove that the system is correct.

  14. Effects of foaming and antifoaming agents on the performance of a wet flue gas desulfurization pilot plant

    DEFF Research Database (Denmark)

    Qin, Siqiang; Hansen, Brian Brun; Kiil, Søren

    2014-01-01

    Foaming is a common phenomenon in industrial processes, including wet flue gas desulfurization (FGD) plants. A systemic investigation of the influence of two foaming agents, sodium dodecyl sulphate (SDS) and egg white albumin (protein), and two commercial antifoams on a wet FGD pilot plant...

  15. Abstraction of continuous dynamical systems utilizing lyapunov functions

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2010-01-01

    This paper considers the development of a method for abstracting continuous dynamical systems by timed automata. The method is based on partitioning the state space of dynamical systems with invariant sets, which form cells representing locations of the timed automata. To enable verification...... of the dynamical system based on the abstraction, conditions for obtaining sound, complete, and refinable abstractions are set up. It is proposed to partition the state space utilizing sub-level sets of Lyapunov functions, since they are positive invariant sets. The existence of sound abstractions for Morse......-Smale systems and complete and refinable abstractions for linear systems are shown....

  16. Control board and utility system for cell complex

    International Nuclear Information System (INIS)

    Almeida, G.L. de; Silva, A.C.; Souza, A.S.F. de; Souza, M.L.M. de; Rautenberg, F.A.

    1986-01-01

    To attend necessities of hot cells operation and process control for isotope production in IEN cyclotron (Brazilian-CNEN) a utility system, such as, electricity, water, vacuum, air, and gas, and control board was constructed, which advantages are presented. (M.C.K.)

  17. The influence of system interactivity and technical support on learning management system utilization

    Directory of Open Access Journals (Sweden)

    Sousan Baleghi-Zadeh

    2017-03-01

    Full Text Available In recent years, there has been a growing increase in using Learning Management System (LMS by universities. However, its utilization by students is limited in Malaysia. The main purpose of the present study is to develop and test a model that predicts LMS utilization by Malaysian higher education students. Based on the Technology Acceptance Model, the study investigated the relationships among six constructs (system interactivity, technical support, perceived ease of use, perceived usefulness, behavioral intention to use and LMS use through structural equation modelling. The participants were 216 undergraduate students from a local university in Malaysia. The result of the study revealed that system interactivity had a significant effect on perceived usefulness, but not on perceived ease of use; technical support had a significant effect on perceived ease of use, but not on perceived usefulness.

  18. Materials selection guidelines for geothermal energy utilization systems

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

  19. The importance of CFD methods to the design of huge scrubber systems

    International Nuclear Information System (INIS)

    Maier, H.

    2005-01-01

    Due to the influence of the multiphase flow on the scrubber removal performance Austrian Energy and Environment started research end development in co-operation with universities on the simulation of wet scrubber systems using CFD methods (Computational removal performance). In November 2001 the spray banks were reconstructed with a minimum of requirements according to the concept of AE and E. The first experiences in operation already showed a significant improvement. In July 2002 measurements of the SO 2 -profile confirmed the experiences of the client. The high SO 2 peaks nearly disappeared at the absorber wall. Furthermore the changes resulted in a more homogenous SO 2 distribution in the clean gas which was also found out by measurements in the outlet duct. According to the client the LG-ratio could be reduced. Nearly every load case can now be handled with one active spray bank less. With respect to energy consumption of the plant this means a remarkable reduction of operational costs. Compared to that the scrubbers of the FGD system in Neurath will have a flue gas capacity nearly twice much as that of the FGD plant in Heyden. The start up will take place in 2008

  20. Security Analysis of the Electronic Management System for a Total Site Utility System

    DEFF Research Database (Denmark)

    Manso Cortes, Oscar

    2016-01-01

    This paper presents the Security Analysis of the Electronic Management System (EMS) of a Total Site Utility System as proposed under the scope of the Efenis project. The Efenis project has been funded by the European Commission via the seventh framework programme (EC FP7) with the aim to improve ...

  1. Optimal channel utilization and service protection in cellular communication systems

    DEFF Research Database (Denmark)

    Iversen, Villy Bæk

    1997-01-01

    In mobile communications an efficient utilization of the channels is of great importance.In this paper we consider the basic principles for obtaining the maximum utilization, and we study strategies for obtaining these limits.In general a high degree of sharing is efficient, but requires service...... protection mechanisms for protecting services and subscriber groups.We study cellular systems with overlaid cells, and the effect of overlapping cells, and we show that by dynamic channel allocation we obtain a high utilization.The models are generalizations of the Erlang-B formula, and can be evaluated...

  2. Electric utility application of wind energy conversion systems on the island of Oahu

    Energy Technology Data Exchange (ETDEWEB)

    Lindley, C.A.; Melton, W.C.

    1979-02-23

    This wind energy application study was performed by The Aerospace Corporation for the Wind Systems Branch of the Department of Energy. The objective was to identify integration problems for a Wind Energy Conversion System (WECS) placed into an existing conventional utility system. The integration problems included environmental, institutional and technical aspects as well as economic matters, but the emphasis was on the economics of wind energy. The Hawaiian Electric Company utility system on the island of Oahu was selected for the study because of the very real potential for wind energy on that island, and because of the simplicity afforded in analyzing that isolated utility.

  3. Report on the operation and utilization of general purpose use computer system 2001

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Kunihiko; Watanabe, Reiko; Tsugawa, Kazuko; Tsuda, Kenzo; Yamamoto, Takashi; Nakamura, Osamu; Kamimura, Tetsuo [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2001-09-01

    The General Purpose Use Computer System of National Institute for Fusion Science was replaced in January, 2001. The System is almost fully used after the first three months operation. Reported here is the process of the introduction of the new system and the state of the operation and utilization of the System between January and March, 2001, especially the detailed utilization of March. (author)

  4. Systemic-Functional Approach to Utilities Supplys

    Directory of Open Access Journals (Sweden)

    Nikolay I. Komkov

    2017-01-01

    Full Text Available Purpose: the purpose of the article consists in statement of management approach to development of utilities supply processes based on conflict situations decision – making search. It had appeared in the period of the transition from the planned and directive management to market development. Methods: the research methodology is based on the system analysis of full life cycle processes functioning, forecasting of complex systems development, mathematical modeling of processes of services supply and innovative and investment projects modeling as well as development of supplying services processes. Results: the results of the work are concentrated in the presentation of systemic-functional approach to managing the development of processes of municipal services, able to resolve conflict situations in this sphere. Conclusions and Relevance: the traditional management approach on the basis of elimination of "bottlenecks" and emergencies prevailing within planned and directive system at its transformation in the market conditions has led to accumulation of conflict situations and unsolvable problems. The offered systemic-functional approach based on forecasting of full life cycle of the modernized processes and the services providing systems allows to consider costs of modernization, prime cost and quality of the rendered services. 

  5. Utility equipment systems: promising more for less

    Energy Technology Data Exchange (ETDEWEB)

    1987-10-01

    This paper discusses current developments in utility equipment systems, a term applied to carrier vehicles, mostly evolved from well-known forms of construction or mining equipment modified to work with a variety of different front or back end attachments. One of the equipment ranges discussed is the Normet cassette system produced by the Orion corporation of Finland, which allows a basic chassis to be converted from a personnel carrier to an ANFO carrier within minutes. LHD vehicles which are being adapted to fulfil multipurpose roles, such as carrying roof supports, chocks and other heavy mining equipment underground are also discussed. 5 figs.

  6. Fighting corrosion in air pollution control systems

    International Nuclear Information System (INIS)

    Rittenhouse, R.C.

    1991-01-01

    This paper reports that materials is the name of the game for corrosion prevention in air pollution control equipment. Whether the system is already in place, a retrofit, are specified for a new power pant, preventing corrosion is critical, because such deterioration easily undermines reliability. Hence, materials can heavily influence power plant compliance to the 1990 Clean Air Act amendments. Flue gas desulfurization (FGD) systems, perhaps the most vulnerable area to corrosion, are expected to be the method of choice for sulfur removal in many power plants in the near term. Components of these systems have various degrees of susceptibility to corrosion and related problems

  7. Mercury emissions from polish pulverized coalfired boiler

    Directory of Open Access Journals (Sweden)

    Wichliński Michał

    2017-01-01

    Full Text Available The current paper presents the research results carried out at one of Polish power plants at a pulverized hard coal-fired 225 MW unit. The research was carried out at full load of the boiler (100% MCR and focused on analysis of mercury content in the input fuel and limestone sorbent for wet flue gas desulfurization (FGD system, as well as investigation of mercury content in the combustion products, i.e. fly ash, slag, FGD product (gypsum and FGD effluents (waste. Within the framework of the present study the concentration of mercury vapor in the exhaust gas was also investigated. The analysis was performed using Lumex RA-915+ spectrometer with an attachment (RP-91C. The measurements were carried out at three locations, i.e. before the electrostatic precipitator (ESP, downstream the ESP, and downstream the wet FGD plant. Design of the measurement system allowed to determine both forms of mercury in the flue gas (Hg0 and Hg2+ at all measurement locations.Based on the measurement results the balance of mercury for a pulverized coal (PC boiler was calculated and the amount of mercury was assessed both in the input solids (fuel and sorbent, as well as the gaseous and solids products (flue gas, slag, ash, gypsum and FGD waste.

  8. Non-calcium desulphurisation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Qian Zhu [IEA Clean Coal Centre, London (United Kingdom)

    2010-06-15

    Flue gas desulphurisation (FGD) is traditionally based on limestone/lime sorbent. The majority of the installed FGD systems worldwide use limestone or lime as sorbent. However, technologies are rapidly evolving that allow desulphurisation in regions where there are limited resources of lime or limestone. These technologies provide alternatives to limestone/lime scrubbers for efficient and cost effective control of SO{sub 2} emissions from coal combustion. This report reviews the existing and emerging non-calcium based FGD processes as well as FGD technologies currently under development that apply new concepts and different approaches. It looks at the fundamentals and features of these processes, the recent technical advances and their applications in coal-fired power plants. The capital and operating costs of the processes are evaluated where information available. 66 refs., 15 figs., 10 tabs.

  9. Improvement of human operator vibroprotection system in the utility machine

    Science.gov (United States)

    Korchagin, P. A.; Teterina, I. A.; Rahuba, L. F.

    2018-01-01

    The article is devoted to an urgent problem of improving efficiency of road-building utility machines in terms of improving human operator vibroprotection system by determining acceptable values of the rigidity coefficients and resistance coefficients of operator’s cab suspension system elements and those of operator’s seat. Negative effects of vibration result in labour productivity decrease and occupational diseases. Besides, structure vibrations have a damaging impact on the machine units and mechanisms, which leads to reducing an overall service life of the machine. Results of experimental and theoretical research of operator vibroprotection system in the road-building utility machine are presented. An algorithm for the program to calculate dynamic impacts on the operator in terms of different structural and performance parameters of the machine and considering combination of external pertrubation influences was proposed.

  10. Mobile robot teleoperation system for plant inspection based on collecting and utilizing environment data

    International Nuclear Information System (INIS)

    Kawabata, Kuniaki; Watanabe, Nobuyasu; Asama, Hajime; Kita, Nobuyuki; Yang, Hai-quan

    2004-01-01

    This paper describes about development of a mobile robot teleoperation system for plant inspection. In our system, the robot is an agent for collecting the environment data and is also teleoperated by the operator utilizing such accumulated environment data which is displayed on the operation interface. The robot equips many sensors for detecting the state of the robot and the environment. Such redundant sensory system can be also utilized to collect the working environment data on-site while the robot is patrolling. Here, proposed system introduces the framework of collecting and utilizing environment data for adaptive plant inspection using the teleoperated robot. A view simulator is primarily aiming to facilitate evaluation of the visual sensors and algorithms and is also extended as the Environment Server, which is the core technology of the digital maintenance field for the plant inspection. In order to construct detailed seamless digital maintenance field mobile robotic technology is utilized to supply environment data to the server. The sensory system on the robot collect the environment data on-site and such collected data is uploaded to the Environment Server for compiling accurate digital environment data base. The robot operator also can utilize accumulated environment data by referring to the Environment Server. In this paper, we explain the concept of our teleoperation system based on collecting and utilizing environment data. Using developed system, inspection patrol experiments were attempted in the plant mock-up. Experimental results are shown by using an omnidirectional mobile robot with sensory system and the Environment Server. (author)

  11. PEP cooling water systems and underground piped utilities design criteria report

    International Nuclear Information System (INIS)

    Hall, F.; Robbins, D.

    1975-10-01

    This paper discusses the cooling systems required by the PEP Storage Ring. Particular topics discussed are: Cooling tower systems, RF cavity and vacuum chamber LCW cooling systems, klystron and ring magnet LLW cooling systems, Injection magnet LCW Cooling Systems; PEP interaction area detector LCW Cooling Systems; and underground piped utilities. 1 ref., 20 figs

  12. Integrating Solar PV in Utility System Operations

    Energy Technology Data Exchange (ETDEWEB)

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved

  13. Design and evaluation of heat utilization systems for the HTTR through international cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Lewkowicz, I. [International Atomic Energy Agency, Vienna (Austria)

    1996-07-01

    The International Atomic Energy Agency (IAEA) has the statutory function to `foster the exchange of scientific and technical information`, and `encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world`. The IAEA Co-ordinated Research Programmes (CRPs) are effective vehicles for implementing the above. The CRP on Design and Evaluation of Heat Utilization Systems for HTTR has started in September 1994 and is aimed at promoting international co-operation to identify the most promising heat utilization system(s) to be demonstrated at the HTTR, for the benefit of current operators and future designers and constructors of HTGRs. Participating Member States are collaborating by exchanging existing technical information on the technology of heat utilization systems, by developing design concepts and by performing evaluations of candidate systems for potential demonstration with the HTTR. In this report, the systems are reviewed. (J.P.N.)

  14. Design and evaluation of heat utilization systems for the HTTR through international cooperation

    International Nuclear Information System (INIS)

    Lewkowicz, I.

    1996-01-01

    The International Atomic Energy Agency (IAEA) has the statutory function to 'foster the exchange of scientific and technical information', and 'encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world'. The IAEA Co-ordinated Research Programmes (CRPs) are effective vehicles for implementing the above. The CRP on Design and Evaluation of Heat Utilization Systems for HTTR has started in September 1994 and is aimed at promoting international co-operation to identify the most promising heat utilization system(s) to be demonstrated at the HTTR, for the benefit of current operators and future designers and constructors of HTGRs. Participating Member States are collaborating by exchanging existing technical information on the technology of heat utilization systems, by developing design concepts and by performing evaluations of candidate systems for potential demonstration with the HTTR. In this report, the systems are reviewed. (J.P.N.)

  15. Design criteria for the light duty utility arm system end effectors

    International Nuclear Information System (INIS)

    Pardini, A.F.; Kiebel, G.R.

    1995-12-01

    The purpose of this document is to provide criteria for the design of end effectors that will be used as part of the Light Duty Utility Arm (LDUA) System. Actual component design, fabrication, testing, and inspection will be performed by various DOE laboratories, industry, and academia. This document augments WHC-SD-TD-FRD-003, 'Functions and Requirements for the Light Duty Utility Arm Integrated System' (F). All requirements dictated in the F shall also be applicable in this document. Whenever conflicts arise between this document and the F, this document shall take precedence

  16. Utilization of design data on conventional system to building information modeling (BIM)

    Science.gov (United States)

    Akbar, Boyke M.; Z. R., Dewi Larasati

    2017-11-01

    Nowadays infrastructure development becomes one of the main priorities in the developed country such as Indonesia. The use of conventional design system is considered no longer effectively support the infrastructure projects, especially for the high complexity building design, due to its fragmented system issues. BIM comes as one of the solutions in managing projects in an integrated manner. Despite of the all known BIM benefits, there are some obstacles on the migration process to BIM. The two main of the obstacles are; the BIM implementation unpreparedness of some project parties and a concerns to leave behind the existing database and create a new one on the BIM system. This paper discusses the utilization probabilities of the existing CAD data from the conventional design system for BIM system. The existing conventional CAD data's and BIM design system output was studied to examine compatibility issues between two subject and followed by an utilization scheme-strategy probabilities. The goal of this study is to add project parties' eagerness in migrating to BIM by maximizing the existing data utilization and hopefully could also increase BIM based project workflow quality.

  17. Mobile Virtual Network Operator Information Systems for Increased Sustainability in Utilities

    DEFF Research Database (Denmark)

    Joensen, Hallur Leivsgard; Tambo, Torben

    2011-01-01

    sales from efficiency of business processes, underlying information systems, and the ability to make the link from consumption to cost visual and transparent to consumers. The conclusion is that the energy sector should look into other sectors and learn from information systems which ease up business......, sales and buying processes are separated from physical networks and energy production. This study aims to characterise and evaluate information systems supporting the transformation of the free market-orientation of energy and provision of utilities in a cross-sectorial proposition known as Mobile...... Virtual Network Operator (MVNO). Emphasis is particularly on standardised information systems for automatically linking consumers, sellers and integration of network infrastructure actors. The method used is a feasibility study assessing business and information processes of a forthcoming utilities market...

  18. Critical Uses of College Resources. Part I: Personnel Utilization System.

    Science.gov (United States)

    Vlahos, Mantha

    A Personnel Utilization System has been designed at Broward Community College, which combines payroll, personnel, course, and function information in order to determine the actual duties performed by personnel for the amount of remuneration received. Objectives of the system are (1) to define the tasks being performed by faculty, staff, and…

  19. Maximize Minimum Utility Function of Fractional Cloud Computing System Based on Search Algorithm Utilizing the Mittag-Leffler Sum

    Directory of Open Access Journals (Sweden)

    Rabha W. Ibrahim

    2018-01-01

    Full Text Available The maximum min utility function (MMUF problem is an important representative of a large class of cloud computing systems (CCS. Having numerous applications in practice, especially in economy and industry. This paper introduces an effective solution-based search (SBS algorithm for solving the problem MMUF. First, we suggest a new formula of the utility function in term of the capacity of the cloud. We formulate the capacity in CCS, by using a fractional diffeo-integral equation. This equation usually describes the flow of CCS. The new formula of the utility function is modified recent active utility functions. The suggested technique first creates a high-quality initial solution by eliminating the less promising components, and then develops the quality of the achieved solution by the summation search solution (SSS. This method is considered by the Mittag-Leffler sum as hash functions to determine the position of the agent. Experimental results commonly utilized in the literature demonstrate that the proposed algorithm competes approvingly with the state-of-the-art algorithms both in terms of solution quality and computational efficiency.

  20. Utilization of Self-Healing Materials in Thermal Protection System Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is the Utilization of Self-Healing Materials for Thermal Protection System (TPS) Applications. Currently, the technology for repairing TPS from...

  1. Coal Combustion Products Extension Program

    Energy Technology Data Exchange (ETDEWEB)

    Tarunjit S. Butalia; William E. Wolfe

    2006-01-11

    This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to

  2. Adaptive Resource Utilization Prediction System for Infrastructure as a Service Cloud

    Directory of Open Access Journals (Sweden)

    Qazi Zia Ullah

    2017-01-01

    Full Text Available Infrastructure as a Service (IaaS cloud provides resources as a service from a pool of compute, network, and storage resources. Cloud providers can manage their resource usage by knowing future usage demand from the current and past usage patterns of resources. Resource usage prediction is of great importance for dynamic scaling of cloud resources to achieve efficiency in terms of cost and energy consumption while keeping quality of service. The purpose of this paper is to present a real-time resource usage prediction system. The system takes real-time utilization of resources and feeds utilization values into several buffers based on the type of resources and time span size. Buffers are read by R language based statistical system. These buffers’ data are checked to determine whether their data follows Gaussian distribution or not. In case of following Gaussian distribution, Autoregressive Integrated Moving Average (ARIMA is applied; otherwise Autoregressive Neural Network (AR-NN is applied. In ARIMA process, a model is selected based on minimum Akaike Information Criterion (AIC values. Similarly, in AR-NN process, a network with the lowest Network Information Criterion (NIC value is selected. We have evaluated our system with real traces of CPU utilization of an IaaS cloud of one hundred and twenty servers.

  3. MARKETING OF BYPRODUCT GYPSUM FROM FLUE GAS DESULFURIZATION

    Science.gov (United States)

    The report gives results of an evaluation of the 1985 marketing potential of byproduct gypsum from utility flue gas desulfurization (FGD), for the area east of the Rocky Mountains, using the calculated gypsum production rates of 14 selected power plants. The 114 cement plants and...

  4. Utility Test Results of a 2-Megawatt, 10-Second Reserve-Power System

    Energy Technology Data Exchange (ETDEWEB)

    BALL,GREG J.; NORRIS,BENJAMIN L.

    1999-10-01

    This report documents the 1996 evaluation by Pacific Gas and Electric Company of an advanced reserve-power system capable of supporting 2 MW of load for 10 seconds. The system, developed under a DOE Cooperative Agreement with AC Battery Corporation of East Troy, Wisconsin, contains battery storage that enables industrial facilities to ''ride through'' momentary outages. The evaluation consisted of tests of system performance using a wide variety of load types and operating conditions. The tests, which included simulated utility outages and voltage sags, demonstrated that the system could provide continuous power during utility outages and other disturbances and that it was compatible with a variety of load types found at industrial customer sites.

  5. Community Energy Systems and the Law of Public Utilities. Volume Nine. Connecticut

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description of the laws and programs of the State of Connecticut governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  6. Community Energy Systems and the Law of Public Utilities. Volume Twelve. Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description of the laws and programs of the State of Georgia governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  7. New production processes for alpha hemihydrate open up new marketing opportunities

    International Nuclear Information System (INIS)

    Engert, W.; Lehmkaemper, O.; Bunte, H.P.

    1991-01-01

    New production processes and markets for alpha hemihydrate are discussed. Utility studies concluded that lignite gypsum is harmless in terms of public and occupational health, and is technically comparable to or superior to natural gypsum by virtue of greater purity. Semi-commercial and pilot-scale studies were carried out on the use of flue gas desulfurization (FGD) gypsum for producing alpha hemihydrate, with successful results. The process enabled pure alpha hemihydrate to be produced without dihydrate or dihydrate impurities, and of a constant, uniform quality. The treatment consists of forming pressed mouldings of FGD gypsum followed by steam autoclaving, drying and milling. Agents are used to stabilize the stackable moldings, and to act as growth inhibitors during transformation of dihydrite to alpha-hemihydrate. Markets for the product are found in mining, tunneling and road building, foundation work, floor systems, as hard plaster for dental and moulding applications, for construction industry use, and as structural and non-structural material. Details are presented of the production process and marketing concepts. 12 figs

  8. Utility advanced turbine systems (ATS) technology readiness testing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-15

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  9. Utility oversight of Cask System Development Program

    International Nuclear Information System (INIS)

    Vincent, J.A.; Jordan, J.M.; Schwartz, M.H.

    1993-01-01

    This paper will present the electric utility industry's perspective on the status and scope of the DOE's Office of Civilian Radioactive Waste Management's (DOE/OCRWM) transportation cask systems development activities, including the Cask Systems Development Program (CSDP) Initiative I transportation cask projects. This presentation is particularly timely because the CSDP Independent Management Review Group (IMRG), os which one of the authors is a member, completed an objective assessment of OCRWM's transportation cask system development activities and issued its first report in late August 1992. The perspective on these cask systems development activities that will be presented reflects conclusions based on (1) the industry's review of CSDP Preliminary and Draft Final Design Reports for the Initiative I cask projects, (2) the activities of one of the authors as a member of the IMRG, and (3) the positions that the industry has consistently taken on what it believes to be the appropriate scope and pace of the CSDP and its integration with other OCRWM activities. Background information on the OCRWM transportation cask systems development activities and the relevant industry activities will also be provided

  10. Sizing Analysis for Aircraft Utilizing Hybrid-Electric Propulsion Systems

    Science.gov (United States)

    2011-03-18

    world, the paragon of animals -William Shakespeare I would not have made it this far without the love and support of my parents. Their work-ethic...xiii  I.  Introduction ...Condition 1 SIZING ANALYSIS FOR AIRCRAFT UTILIZING HYBRID- ELECTRIC PROPULSION SYSTEMS I. Introduction 1. Background Physically

  11. Use of multiattribute utility theory for formulary management in a health system.

    Science.gov (United States)

    Chung, Seonyoung; Kim, Sooyon; Kim, Jeongmee; Sohn, Kieho

    2010-01-15

    The application, utility, and flexibility of the multiattribute utility theory (MAUT) when used as a formulary decision methodology in a Korean medical center were evaluated. A drug analysis model using MAUT consisting of 10 steps was designed for two drug classes of dihydropyridine calcium channel blockers (CCBs) and angiotensin II receptor blockers (ARBs). These two drug classes contain the most diverse agents among cardiovascular drugs on Samsung Medical Center's drug formulary. The attributes identified for inclusion in the drug analysis model were effectiveness, safety, patient convenience, and cost, with relative weights of 50%, 30%, 10%, and 10%, respectively. The factors were incorporated into the model to quantify the contribution of each attribute. For each factor, a utility scale of 0-100 was established, and the total utility score for each alternative was calculated. An attempt was made to make the model adaptable to changing health care and regulatory circumstances. The analysis revealed amlodipine besylate to be an alternative agent, with the highest total utility score among the dihydropyridine CCBs, while barnidipine hydrochloride had the lowest score. For ARBs, losartan potassium had the greatest total utility score, while olmesartan medoxomil had the lowest. A drug analysis model based on the MAUT was successfully developed and used in making formulary decisions for dihydropyridine CCBs and ARBs for a Korean health system. The model incorporates sufficient utility and flexibility of a drug's attributes and can be used as an alternative decision-making tool for formulary management in health systems.

  12. Fate of As, Se, and Hg in a Passive Integrated System for Treatment of Fossil Plant Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Terry Yost; Paul Pier; Gregory Brodie

    2007-12-31

    TVA is collaborating with EPRI and DOE to demonstrate a passive treatment system for removing SCR-derived ammonia and trace elements from a coal-fired power plant wastewater stream. The components of the integrated system consist of trickling filters for ammonia oxidation, reaction cells containing zero-valent iron (ZVI) for trace contaminant removal, a settling basin for storage of iron hydroxide floc, and anaerobic vertical-flow wetlands for biological denitrification. The passive integrated treatment system will treat up to 0.25 million gallons per day (gpd) of flue gas desulfurization (FGD) pond effluent, with a configuration requiring only gravity flow to obviate the need for pumps. The design of the system will enable a comparative evaluation of two parallel treatment trains, with and without the ZVI extraction trench and settling/oxidation basin components. One of the main objectives is to gain a better understanding of the chemical transformations that species of trace elements such as arsenic, selenium, and mercury undergo as they are treated in passive treatment system components with differing environmental conditions. This progress report details the design criteria for the passive integrated system for treating fossil power plant wastewater as well as performance results from the first several months of operation. Engineering work on the project has been completed, and construction took place during the summer of 2005. Monitoring of the passive treatment system was initiated in October 2005 and continued until May 18 2006. The results to date indicate that the treatment system is effective in reducing levels of nitrogen compounds and trace metals. Concentrations of both ammonia and trace metals were lower than expected in the influent FGD water, and additions to increase these concentrations will be done in the future to further test the removal efficiency of the treatment system. In May 2006, the wetland cells were drained of FGD water, refilled with

  13. Federal policies to promote the widespread utilization of photovoltaic systems. Volume two. Technical document

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-02-01

    The question of photovoltaic system interactions with electric utility grids is addressed. Discussions of system configurations, effects on utility dispatch and generation planning, effects of utility rate structures on photovoltaic deployment and vice versa, interactions of photovoltaic and electrical storage systems, effects on end-use reliability, and the ultimate limitations on photovoltaic penetration into electric grids are presented. Photovoltaic system economic issues are considered. Discussions of the high first cost and the Program plans and strategies to reduce costs (and PV prices), expected evolution of photovoltaic technology, effects of various financial incentives on photovoltaics, implications of utility vs non-utility ownership of photovoltaics, likelihood that sufficient capital will be available to adequately finance the deployment of photovoltaic systems, current status and expected evolution of the photovoltaic supply industry, and the programmatic activities directed at aiding the evolution of a healthy, competitive industry are presented. The basic issues of photovoltaic market development are studied. The potential of various market segments and the complexity involved in defining and identifying the various segments; issues to be faced in deployment of dispersed photovoltaic systems including innovation acceptance on the part of the building industry, building codes, zoning, insurance, information dissemination, public acceptance, solar access, state and local solar photovoltaic incentives, and the implications for urban and suburban land use; and the need for, and method of development of, photovoltaic standards and warranties on photovoltaic systems are discussed. The conclusions of the report with respect to the information requested by Congress are summarized, and findings for congressional action are presented. (WHK)

  14. Water conservation and improved production efficiency using closed-loop evaporative cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Marchetta, C. [Niagara Blower Co., Buffalo, NY (United States)

    2009-07-01

    This paper described wet surface air coolers (WSAC) that can be used in refineries and hydrocarbon processing plants to address water use issues. These closed-loop evaporative cooling systems are a cost-effective technology for both heat transfer and water conservation. WSACs can help deliver required cooling water temperatures and improve plant performance while using water streams currently considered to be unusable with conventional towers and heat exchangers. WSACs are versatile and can provide solutions to water use, water quality, and outlet temperature. The benefits of the WSAC include capital cost savings, reduced system pressures, lower carbon footprint, and the ability to use poor quality water as makeup. Water makeup can be blowdown from other equipment, plant effluent, reclaimed water, produced water, flue gas desulphurization (FGD) wastewater, and even seawater. Units can be manufactured with a wide variety of materials depending on water quality, water treatment, and cycles of concentration. This paper also provided comparisons to other alternative technologies, capital and operating cost savings, and site specific case studies. Two other system designs can accommodate closed-loop heat transfer applications, notably an open tower with a heat exchanger and a dry, air-cooled system. A WSAC system is an efficient and effective heat rejection technology for several reasons. The WSAC cooler or condenser utilizes latent cooling, which is far more efficient than sensible cooling. This means that a WSAC system can cool the same heat load with a smaller footprint than all-dry systems. 6 figs.

  15. Impact of Utility-Scale Distributed Wind on Transmission-Level System Operations

    Energy Technology Data Exchange (ETDEWEB)

    Brancucci Martinez-Anido, C.; Hodge, B. M.

    2014-09-01

    This report presents a new renewable integration study that aims to assess the potential for adding distributed wind to the current power system with minimal or no upgrades to the distribution or transmission electricity systems. It investigates the impacts of integrating large amounts of utility-scale distributed wind power on bulk system operations by performing a case study on the power system of the Independent System Operator-New England (ISO-NE).

  16. Reliability and cost/worth evaluation of generating systems utilizing wind and solar energy

    Science.gov (United States)

    Bagen

    The utilization of renewable energy resources such as wind and solar energy for electric power supply has received considerable attention in recent years due to adverse environmental impacts and fuel cost escalation associated with conventional generation. At the present time, wind and/or solar energy sources are utilized to generate electric power in many applications. Wind and solar energy will become important sources for power generation in the future because of their environmental, social and economic benefits, together with public support and government incentives. The wind and sunlight are, however, unstable and variable energy sources, and behave far differently than conventional sources. Energy storage systems are, therefore, often required to smooth the fluctuating nature of the energy conversion system especially in small isolated applications. The research work presented in this thesis is focused on the development and application of reliability and economic benefits assessment associated with incorporating wind energy, solar energy and energy storage in power generating systems. A probabilistic approach using sequential Monte Carlo simulation was employed in this research and a number of analyses were conducted with regards to the adequacy and economic assessment of generation systems containing wind energy, solar energy and energy storage. The evaluation models and techniques incorporate risk index distributions and different operating strategies associated with diesel generation in small isolated systems. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy and energy storage. The concepts presented and examples illustrated in this thesis will help power system planners and utility managers to assess the reliability and economic benefits of utilizing wind energy conversion systems, solar energy conversion

  17. Present Status of HTGR Utilization System Development in Japan

    International Nuclear Information System (INIS)

    Miyamoto, Yoshiaki

    2000-01-01

    Efforts are to be continuously devoted to establish and upgrade HTGR technology in the world. Japan Atomic Energy Research Institute (JAERI) has conducted the R and D of HTGRs since the 1960's in Japan, focusing on mainly the construction of High Temperature engineering Test Reactor (HTTR) which is an HTGR with a maximum helium gas temperature of 950 o C at the reactor outlet and HTGR utilization systems. The HTTR achieved first criticality on November 10, 1998 and will restart from January in 2001. In the R and D program of HTGR utilization systems, JAERI has conducted hydrogen production systems with HTGR to demonstrate the applicability of nuclear heat for extensive energy demands besides the electric power generation. JAERI has developed a hydrogen production system by steam reforming process of natural gas using nuclear heat supplied from the HTTR. Prior to the demonstration test of HTTR hydrogen production system, a 1/30-scale out-of-pile test facility is under construction for safety review and detailed design of the system. The out-of-pile test facility will be started in 2001 and will be continued about 4 years. The hydrogen permeation and corrosion tests have been carried out since 1997. Check and review for the demonstration program in the HTTR hydrogen production system will be made in 2001. Then the HTTR hydrogen production system is scheduled to be constructed from 2003 and demonstratively operated from around 2006. In parallel with the R and D of the HTTR hydrogen production system, hydrogen production method by thermochemical water splitting, so-called IS process, has been studied in JAERI. The IS process is placed as one of future candidates of the heat utilization systems of the HTTR following the steam reforming system. Continuous and stoichiometric production of hydrogen and oxygen for 48 hours was successfully achieved with a laboratory-scale apparatus mainly made of glass. Following this achievement, the study has been continued with a larger

  18. Solar heating and cooling system for an office building at Reedy Creek Utilities

    Science.gov (United States)

    1978-01-01

    The solar energy system installed in a two story office building at a utilities company, which provides utility service to Walt Disney World, is described. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The storage medium is water with a capacity of 10,000 gallons hot and 10,000 gallons chilled water. Performance to date has equaled or exceeded design criteria.

  19. Advanced fuel system technology for utilizing broadened property aircraft fuels

    Science.gov (United States)

    Reck, G. M.

    1980-01-01

    Possible changes in fuel properties are identified based on current trends and projections. The effect of those changes with respect to the aircraft fuel system are examined and some technological approaches to utilizing those fuels are described.

  20. Community Energy Systems and the Law of Public Utilities. Volume Eighteen. Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Kansas governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  1. Community Energy Systems and the Law of Public Utilities. Volume Eleven. Florida

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Florida governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  2. Community Energy Systems and the Law of Public Utilities. Volume Eight. Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Colorado governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  3. Community Energy Systems and the Law of Public Utilities. Volume Seventeen. Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Iowa governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  4. Community Energy Systems and the Law of Public Utilities. Volume Nineteen. Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Kentucky governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  5. Community Energy Systems and the Law of Public Utilities. Volume Six. Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Arkansas governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  6. Community Energy Systems and the Law of Public Utilities. Volume Five. Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Arizona governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  7. Community Energy Systems and the Law of Public Utilities. Volume Three. Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Alabama governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  8. Community Energy Systems and the Law of Public Utilities. Volume Sixteen. Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Indiana governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  9. Community Energy Systems and the Law of Public Utilities. Volume Thirty. Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Nevada governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  10. Community Energy Systems and the Law of Public Utilities. Volume Thirteen. Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Hawaii governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  11. Community Energy Systems and the Law of Public Utilities. Volume Seven. California

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of California governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  12. Community Energy Systems and the Law of Public Utilities. Volume Ten. Delaware

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Delaware governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  13. Community Energy Systems and the Law of Public Utilities. Volume Fifteen. Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Illinois governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  14. An Examination of Organizatinal Performance Measurement System Utilization

    OpenAIRE

    DeBusk, Gerald Kenneth

    2003-01-01

    This dissertation provides results of three studies, which examine the utilization of organizational performance measurement systems. Evidence gathered in the first study provides insight into the number of perspectives or components found in the evaluation of an organization's performance and the relative weight placed on those components. The evidence suggests that the number of performance measurement components and their relative composition is situational. Components depend heavily on th...

  15. Standardized, utility-DOE compatible, spent fuel storage-transport systems

    International Nuclear Information System (INIS)

    Smith, M.L.

    1991-01-01

    Virginia Power has developed and licensed a facility for dry storage of spent nuclear fuel in metal spent fuel storage casks. The modifications to the design of these casks necessary for licensing for both storage and transport of spent fuel are discussed along with the operational advantages of dual purpose storage-transport casks. Dual purpose casks can be used for storage at utility and DOE sites (MRS or repository) and for shipment between these sites with minimal spent fuel handling. The cost for a standardized system of casks that are compatible for use at both DOE and utility sites is discussed along with possible arrangements for sharing both the cost and benefits of dual purpose storage-transport casks

  16. TMI-2 in-vessel hydraulic systems utilize high water and high boron content fluids

    International Nuclear Information System (INIS)

    Baston, V.F.; Hofstetter, K.J.; Hofman, L.A.; Gallagher, R.E.

    1987-01-01

    Choice of a hydraulic fluid for use in the Three Mile Island Unit 2 (TMI-2) reactor vessel defueling equipment required consideration of the following constraints for the hydraulic fluid given an accidental spill into the reactor coolant system (RCS). The TMI-2 RCS hydraulic fluid utilized in the hydraulic operations utilized a solution composition of 95 wt% water and 5 wt% of the above base fluid. The TMI-2 hydraulic system utilizes pressures up to 3500 psi. The selected hydraulic fluid has been in use since December 1986 with minimal operational difficulties

  17. Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel

    International Nuclear Information System (INIS)

    Kim, Seungdo; Dale, Bruce E.

    2005-01-01

    A life cycle assessment of different cropping systems emphasizing corn and soybean production was performed, assuming that biomass from the cropping systems is utilized for producing biofuels (i.e., ethanol and biodiesel). The functional unit is defined as 1 ha of arable land producing biomass for biofuels to compare the environmental performance of the different cropping systems. The external functions are allocated by introducing alternative product systems (the system expansion allocation approach). Nonrenewable energy consumption, global warming impact, acidification and eutrophication are considered as potential environmental impacts and estimated by characterization factors given by the United States Environmental Protection Agency (EPA-TRACI). The benefits of corn stover removal are (1) lower nitrogen related environmental burdens from the soil, (2) higher ethanol production rate per unit arable land, and (3) energy recovery from lignin-rich fermentation residues, while the disadvantages of corn stover removal are a lower accumulation rate of soil organic carbon and higher fuel consumption in harvesting corn stover. Planting winter cover crops can compensate for some disadvantages (i.e., soil organic carbon levels and soil erosion) of removing corn stover. Cover crops also permit more corn stover to be harvested. Thus, utilization of corn stover and winter cover crops can improve the eco-efficiency of the cropping systems. When biomass from the cropping systems is utilized for biofuel production, all the cropping systems studied here offer environmental benefits in terms of nonrenewable energy consumption and global warming impact. Therefore utilizing biomass for biofuels would save nonrenewable energy, and reduce greenhouse gases. However, unless additional measures such as planting cover crops were taken, utilization of biomass for biofuels would also tend to increase acidification and eutrophication, primarily because large nitrogen (and phosphorus

  18. Utilities for developing HITAC 10-2 program with U-400 and M-190 systems

    International Nuclear Information System (INIS)

    Tsuda, Kenzo.

    1979-06-01

    At the time of developing ''On-line experimental data processing system for JIPP (Japan Institute of Plasma Physics) T-2'', a number of utilities have been developed, which can develop the programs on the HITAC 10-2 side through the PANAFACOM U-400 and the FACOM M-190 computer systems. The HITAC 10-2 is a computer mainly composed of core memories, whose performances of processing speed, peripherals and softwares are considerably different from large and medium size computers. For this reason, it requires tremendous time and labor to develop large scale programs or systems by utilizing only the HITAC 10-2. Accordingly, some utilities have been developed with the U-400 and M-190 systems in order to shorten the developing time and improve the developing efficiency. In the example of above ''On-line experimental data processing system for JIPP T-2'', the time required for one debugging can be reduced to 20 minutes from former 5 to 6 hours. In this report, first, the program development by the HITAC 10-2, and next, the bind processing with U-400 and the cross-assembling with M-190 are described. Then the functions and the method for use of the utilities are explained. (Wakatsuki, Y.)

  19. In situ heat treatment process utilizing a closed loop heating system

    Science.gov (United States)

    Vinegar, Harold J.; Nguyen, Scott Vinh

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  20. Technology evaluation of control/monitoring systems for MIUS application. [utility services management

    Science.gov (United States)

    Pringle, L. M., Jr.

    1974-01-01

    Potential ways of providing control and monitoring for the Modular Integrated Utility System (MIUS) program are elaborated. Control and monitoring hardware and operational systems are described. The requirements for the MIUS program and the development requirements are discussed.

  1. Feasibility survey of the environmentally-friendly coal utilization system. Feasibility survey of the environmentally-friendly coal utilization system in Indonesia; Kankyo chowagata sekitan riyo system kanosei chosa. Indonesia ni okeru kankyo chowagata sekitan riyo system kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    With relation to the coal of Indonesia, where the expansion of the use of coal as a substitute for petroleum/plant fuel is aimed at, the paper grasped the situation of coal production/distribution/utilization and environmental problems, and analyzed the situation of the coal utilization/spread by industry including the commercial/residential use. The purpose of the survey is to work out a comprehensive master plan including Japan`s international cooperation for introducing the environmentally-friendly coal utilization system to Indonesia. Coal utilization systems, the introduction of which Indonesia should study in future, were picked up, according to the surveys in fiscal 1993 and 1994. In commercial/residential and small-scale industry sectors, needed is improvement of carbonization technology for production of coal carbonization briquette. Moreover, the introduction of bio-briquette should be studied in the future. In the power generation sector, studies should be made on the introduction of technology for SOx/NOx reduction and technology for coal ash treatment including the effective use of coal ash. For the introduction of coal boilers, the combustion mixed with bagasse, which is abundant in amount, is also necessary. In the coal production sector, coal preparation technology is studied, and a method to select the optimum process was proposed through the simulation. 76 figs., 43 tabs.

  2. Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

    2009-01-11

    The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

  3. Electric Power Research Institute, Environmental Control Technology Center report to the steering committee. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued with the Pilot High Velocity FGD (PHV) and the Trace Element Removal (TER) test blocks. In the High Velocity test block, SO{sub 2} removal and mist eliminator carryover rates were investigated while operating the absorber unit with various spray nozzle types and vertical mist eliminator sections. During the Trace Element Removal test block, the mercury measurements and control studies involving the EPA Method 29 continued with testing of several impinger capture solutions, and the use of activated carbon injection across the Pulse-Jet Fabric Filter (PJFF) unit. The 4.0 MW Spray Dryer Absorber System was utilized this month in the TER test configuration to inject and transfer activated carbon to the PJFF bags for downstream mercury capture. Work also began in December to prepare the 0.4 MW Mini-Pilot Absorber system for receipt of the B and W Condensing Heat Exchanger (CHX) unit to be used in the 1996 DOE/PRDA testing. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit remained in cold-standby this month.

  4. Tank Farm Contractor Waste Remediation System and Utilization Plan

    International Nuclear Information System (INIS)

    KIRKBRIDE, R.A.

    1999-01-01

    The Tank Waste Remediation System Operation and Utilization Plan updates the operating scenario and plans for the delivery of feed to BNFL Inc., retrieval of waste from single-shell tanks, and the overall process flowsheets for Phases I and II of the privatization of the Tank Waste Remediation System. The plans and flowsheets are updated with the most recent tank-by-tank inventory and sludge washing data. Sensitivity cases were run to evaluate the impact or benefits of proposed changes to the BNFL Inc. contract and to evaluate a risk-based SST retrieval strategy

  5. Revegetation of flue gas desulfurization sludge pond disposal sites

    International Nuclear Information System (INIS)

    Artiola, J.F.

    1994-12-01

    A comprehensive search of published literature was conducted to summarize research undertaken to date on revegetation of flue gas desulfurization (FGD) waste disposal ponds. A review of the physical and chemical properties of FGD sludges and wastes with similar characteristics is also included in order to determine the advantages and limitations of FGD sludge for plant growth. No specific guidelines have been developed for the revegetation of FGD sludge disposal sites. Survey studies showed that the wide-ranging composition of FGD wastes was determined primarily by the sulfur dioxide and other flue gas scrubbing processes used at powerplants. Sulfate rich (>90%CaSO 4 ) FGD sludges are physically and chemically more stable, and thus more amenable to revegetation. Because of lack of macronutrients and extremely limited microbial activity, FBD sludge ponds presented a poor plant growth environment without amendment. Studies showed the natural process of inoculation of the FGD sludge with soil microbes that promote plant growth be can after disposal but proceeded slowly. Revegetation studies reviewed showed that FGD sludges amended with soils supported a wider variety of plant species better and longer than abandoned FGD ponds. Two major types of plants have been successful in revegetation of FGD waste ponds and similar wastes: salt-tolerant plants and aquatic plants. A comprehensive list of plant species with potential for regetation of FGD sludge disposal pond sites is presented along with successful revegetation techniques

  6. Functions and requirements for the light duty utility arm integrated system

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1996-01-01

    The Light Duty Utility Arm (LDUA) Integrated System is a mobile robotic system designed to remotely deploy and operate a variety of tools in uninhabitable underground radiological and hazardous waste storage tanks. The system primarily provides a means to inspect, survey, monitor, map and/or obtain specific waste and waste tank data in support of the Tank Waste Remediation System (TWRS) mission at Hanford and remediation programs at other U.S. Department of Energy (DOE) sites

  7. Lbs Augmented Reality Assistive System for Utilities Infrastructure Management Through Galileo and Egnos

    Science.gov (United States)

    Stylianidis, E.; Valaria, E.; Smagas, K.; Pagani, A.; Henriques, J.; Garca, A.; Jimeno, E.; Carrillo, I.; Patias, P.; Georgiadis, C.; Kounoudes, A.; Michail, K.

    2016-06-01

    There is a continuous and increasing demand for solutions, both software and hardware-based, that are able to productively handle underground utilities geospatial data. Innovative approaches that are based on the use of the European GNSS, Galileo and EGNOS, sensor technologies and LBS, are able to monitor, document and manage utility infrastructures' data with an intuitive 3D augmented visualisation and navigation/positioning technology. A software and hardware-based system called LARA, currently under develop- ment through a H2020 co-funded project, aims at meeting that demand. The concept of LARA is to integrate the different innovative components of existing technologies in order to design and develop an integrated navigation/positioning and information system which coordinates GNSS, AR, 3D GIS and geodatabases on a mobile platform for monitoring, documenting and managing utility infrastruc- tures on-site. The LARA system will guide utility field workers to locate the working area by helping them see beneath the ground, rendering the complexity of the 3D models of the underground grid such as water, gas and electricity. The capacity and benefits of LARA are scheduled to be tested in two case studies located in Greece and the United Kingdom with various underground utilities. The paper aspires to present the first results from this initiative. The project leading to this application has received funding from the European GNSS Agency under the European Union's Horizon 2020 research and innovation programme under grant agreement No 641460.

  8. LBS AUGMENTED REALITY ASSISTIVE SYSTEM FOR UTILITIES INFRASTRUCTURE MANAGEMENT THROUGH GALILEO AND EGNOS

    Directory of Open Access Journals (Sweden)

    E. Stylianidis

    2016-06-01

    Full Text Available There is a continuous and increasing demand for solutions, both software and hardware-based, that are able to productively handle underground utilities geospatial data. Innovative approaches that are based on the use of the European GNSS, Galileo and EGNOS, sensor technologies and LBS, are able to monitor, document and manage utility infrastructures’ data with an intuitive 3D augmented visualisation and navigation/positioning technology. A software and hardware-based system called LARA, currently under develop- ment through a H2020 co-funded project, aims at meeting that demand. The concept of LARA is to integrate the different innovative components of existing technologies in order to design and develop an integrated navigation/positioning and information system which coordinates GNSS, AR, 3D GIS and geodatabases on a mobile platform for monitoring, documenting and managing utility infrastruc- tures on-site. The LARA system will guide utility field workers to locate the working area by helping them see beneath the ground, rendering the complexity of the 3D models of the underground grid such as water, gas and electricity. The capacity and benefits of LARA are scheduled to be tested in two case studies located in Greece and the United Kingdom with various underground utilities. The paper aspires to present the first results from this initiative. The project leading to this application has received funding from the European GNSS Agency under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641460.

  9. Removal of fine particles in wet flue gas desulfurization system by heterogeneous condensation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.J.; Bao, J.J.; Yan, J.P.; Liu, J.H.; Song, S.J.; Fan, F.X. [Southeast University, Nanjing (China). School of Energy & Environment

    2010-01-01

    A novel process to remove fine particles with high efficiency by heterogeneous condensation in a wet flue gas desulfurization (WFGD) system is presented. A supersaturated vapor phase, necessary for condensational growth of fine particles, was achieved in the SO{sub 2} absorption zone and at the top of the wet FGD scrubber by adding steam in the gas inlet and above the scrubbing liquid inlet of the scrubber, respectively. The condensational grown droplets were then removed by the scrubbing liquid and a high-efficiency demister. The results show that the effectiveness of the WFGD system for removal of fine particles is related to the SO{sub 2} absorbent employed. When using CaCO{sub 3} and NH{sub 3} {center_dot} H{sub 2}O to remove SO{sub 2} from flue gas, the fine particle removal efficiencies are lower than those for Na2CO{sub 3} and water, and the morphology and elemental composition of fine particles are changed. This effect can be attributed to the formation of aerosol particles in the limestone and ammonia-based FGD processes. The performance of the WFGD system for removal of fine particles can be significantly improved for both steam addition cases, for which the removal efficiency increases with increasing amount of added steam. A high liquid to gas ratio is beneficial for efficient removal of fine particles by heterogeneous condensation of water vapor.

  10. Healthcare Utilization and Costs of Systemic Lupus Erythematosus in Medicaid

    Directory of Open Access Journals (Sweden)

    Hong J. Kan

    2013-01-01

    Full Text Available Objective. Healthcare utilization and costs associated with systemic lupus erythematosus (SLE in a US Medicaid population were examined. Methods. Patients ≥ 18 years old with SLE diagnosis (ICD-9-CM 710.0x were extracted from a large Medicaid database 2002–2009. Index date was date of the first SLE diagnosis. Patients with and without SLE were matched. All patients had a variable length of followup with a minimum of 12 months. Annualized healthcare utilization and costs associated with SLE and costs of SLE flares were assessed during the followup period. Multivariate regressions were conducted to estimate incremental healthcare utilization and costs associated with SLE. Results. A total of 14,777 SLE patients met the study criteria, and 14,262 were matched to non-SLE patients. SLE patients had significantly higher healthcare utilization per year than their matched controls. The estimated incremental annual cost associated with SLE was $10,984, with the highest increase in inpatient costs (P<0.001. Cost per flare was $11,716 for severe flares, $562 for moderate flares, and $129 for mild flares. Annual total costs for patients with severe flares were $49,754. Conclusions. SLE patients had significantly higher healthcare resource utilization and costs than non-SLE patients. Patients with severe flares had the highest costs.

  11. Thermodynamic analysis of load-leveling hyper energy converting and utilization system

    International Nuclear Information System (INIS)

    Kiani, Behdad; Akisawa, Atsushi; Kashiwagi, Takao

    2008-01-01

    Load-leveling hyper energy converting and utilization system (LHECUS) is a hybrid cycle which utilizes ammonia-water mixture as the working fluid in a combined power generation and refrigeration cycle. The power generation cycle functions as a Kalina cycle and an absorption refrigeration cycle is combined with it as a bottoming cycle. LHECUS is designed to utilize the waste heat from industry to produce cooling and power simultaneously. The refrigeration effect can be either transported to end-use sectors by means of a solution transportation absorption chiller (STA) as solution concentration difference or stored for demand load leveling. This paper shows a simulation of the LHECUS cycle. A computer model was written to balance the cycle and key parameters for optimizing the cycle were identified

  12. Research program for an environmentally-friendly coal utilization system in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Feasibility studies are conducted on the introduction of an environmentally-friendly coal utilization system into the Filipino electric power industry, cement industry, and domestic fuel sector. The studies cover the current status of economy and energy in that country, supply and demand of coal, environmental protection and Government's policy, study of the above-said system relative to its application to the fields of electric power industry, cement industry, and domestic fuel sector, and a study about the effective utilization of Filipino domestic coal by the use of the system. Imported coal is used in the electric power industry because of its cost and quality. It is learned after research, however, that domestic coal will be able to compete against imported coal when some technologies are resorted to, such as those pertinent to denitrification in the furnace, novel low-NOx burner, coal pulverization, and combustion diagnosis. As for the treatment of flue gas, it is concluded that the simplified wet lime/gypsum process will be suitable. It is inferred that the CWM (coal-water mixture) process technology will be effective for the utilization of domestic low-grade coal. (NEDO)

  13. Research program for an environmentally-friendly coal utilization system in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Feasibility studies are conducted on the introduction of an environmentally-friendly coal utilization system into the Filipino electric power industry, cement industry, and domestic fuel sector. The studies cover the current status of economy and energy in that country, supply and demand of coal, environmental protection and Government's policy, study of the above-said system relative to its application to the fields of electric power industry, cement industry, and domestic fuel sector, and a study about the effective utilization of Filipino domestic coal by the use of the system. Imported coal is used in the electric power industry because of its cost and quality. It is learned after research, however, that domestic coal will be able to compete against imported coal when some technologies are resorted to, such as those pertinent to denitrification in the furnace, novel low-NOx burner, coal pulverization, and combustion diagnosis. As for the treatment of flue gas, it is concluded that the simplified wet lime/gypsum process will be suitable. It is inferred that the CWM (coal-water mixture) process technology will be effective for the utilization of domestic low-grade coal. (NEDO)

  14. Advance reactor and fuel-cycle systems--potentials and limitations for United States utilities

    International Nuclear Information System (INIS)

    Zebroski, E.L.; Williams, R.F.

    1979-01-01

    This paper reviews the potential benefits and limitations of advance reactor and fuel-cycle systems for United States utilities. The results of the review of advanced technologies show that for the near and midterm, the only advance reactor and fuel-cycle system with significant potential for United States utilities is the current LWR, and evolutionary, not revolutionary, enhancements. For the long term, the liquid-metal breeder reactor continues to be the most promising advance nuclear option. The major factors leading to this conclusion are summarized

  15. Bulk power system performance issues affecting utility peaking capacity additions

    Energy Technology Data Exchange (ETDEWEB)

    Garrity, T.F. [GE Power Sytems, Schenectady, NY (United States)

    1994-12-31

    This paper presents a discussion of transmission system constraints and problems that affect the siting and rating of peaking capacity additions. Techniques for addressing and modifying these concerns are presented. Particular attention is paid to techniques that have been successfully used by utilities to improve power transfer and system loadability, while avoiding the construction of additional transmission lines. Proven techniques for dealing with thermal, short-circuit level and stability issues are presented.

  16. Direct transformation of calcium sulfite to {alpha}-calcium sulfate hemihydrate in a concentrated Ca-Mg-Mn chloride solution under atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Baohong Guan; Hailu Fu; Jie Yu; Guangming Jiang; Bao Kong; Zhongbiao Wu [Zhejiang University, Hangzhou (China). Department of Environmental Engineering

    2011-01-15

    Massive quantities of sulfite-rich flue gas desulfurization (FGD) scrubber sludge have been generated by coal burning power plants. Utilization of the sulfite-rich sludge for preparing {alpha}-calcium sulfate hemihydrate ({alpha}-HH), an important kind of cementitious material, is of particular interest to electric utilities and environmental preservation. In the experiment, calcium sulfite hemihydrate was directly transformed to {alpha}-HH without the occurrence of calcium sulfate dihydrate (DH). The transformation was performed in a concentrated CaCl{sub 2} solution containing Mg{sup 2+} and Mn{sup 2+} at 95{sup o}C, atmospheric pressure and low pH. The oxidation of calcium sulfite and the subsequent crystallization of {alpha}-HH constitute the whole conversion, during which the oxidation turns out to be the rate controlling step. Solid solution comprised of calcium sulfite hemihydrate and calcium sulfate was found to coexist with {alpha}-HH in the suspension. Calcium sulfate increases and calcium sulfite decreases spontaneously until the solid solution disappears. Thus, it is a potential alternative to utilize sulfite-rich FGD scrubber sludge for the direct preparation of {alpha}-HH. 36 refs., 10 figs., 1 tab.

  17. Community energy systems and the law of public utilities. Volume 20. Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Louisiana governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities--Volume One: An overview. This report also contains a summary of a strategy described in Volume One--An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enchance the likelihood of ICES implementation.

  18. Perspectives on utilization of community based health information systems in Western Kenya.

    Science.gov (United States)

    Flora, Otieno Careena; Margaret, Kaseje; Dan, Kaseje

    2017-01-01

    Health information systems (HIS) are considered fundamental for the efficient delivery of high quality health care. However, a large number of legal and practical constraints influence the design and introduction of such systems. The inability to quantify and analyse situations with credible data and to use data in planning and managing service delivery plagues Africa. Establishing effective information systems and using this data for planning efficient health service delivery is essential to district health systems' performance improvement. Community Health Units in Kenya are central points for community data collection, analysis, dissemination and use. In Kenya, data tend to be collected for reporting purposes and not for decision-making at the point of collection. This paper describes the perspectives of local users on information use in various socio-economic contexts in Kenya. Information for this study was gathered through semi-structured interviews. The interviewees were purposefully selected from various community health units and public health facilities in the study area. The data were organized and analysed manually, grouping them into themes and categories. Information needs of the community included service utilization and health status information. Dialogue was the main way of information utilization in the community. However, health systems and personal challenges impeded proper collection and use of information. The challenges experienced in health information utilization may be overcome by linkages and coordination between the community and the health facilities. The personal challenges can be remedied using a motivational package that includes training of the Community Health Workers.

  19. Min-max optimization and the radial approach to the public service system design with generalized utility

    Directory of Open Access Journals (Sweden)

    Jaroslav Janáček

    2016-04-01

    Full Text Available The paper deals with the min-max public service system design, where the generalized utility is considered. In contrast to the formulations presented in the literature, the generalized utility defined for a public service system assumes that the user’s utility comes generally from more than one located service center and the individual contributions from relevant centers are weighted by reduction coefficients depending on a center order. Given that commercial IP-solvers often fail due to enormous computational times or extreme memory demands when resolving this issue, we suggested and compared several approaches based on a bisection process with the purpose of developing an effective max-min approach to the public service system design with a generalized utility.

  20. Philippine case study: comparison of health impacts, costs and benefits of different generating technologies using IAEA's tools/methodologies

    International Nuclear Information System (INIS)

    Mundo, Mary Rose Q.; Arriola, Herminio

    2000-01-01

    The comparison of three electricity generating options were considered: coal-fired thermal power plant without flue gas desulfurization (FGD), coal-fired thermal power plant with FGD and combined cycle power plant with 300 MW generating capacity each. The system expansion for both the nuclear and non-nuclear options show an increasing share in the installed capacity of coal fired plants. Considering the high ash content and sulfur emission of coal-fired power plants, this plant type was assessed further in terms of health and environmental effects using the IAEA's computer tools such as QUERI, RUWM and DAM. Since all coal-fired power plants in the country have likewise not been equipped with FGD, another option studied is that of coal plant using FGD, with the objective of eliminating excess pollutants, which was assumed to have 90% removal efficiency. In view of this forecast on coal plants there is an ever-increasing need for the use of new technologies to be used in order to decrease health impacts of the use of coal as fuel. Thus, based on the analysis of three alternatives, the use of coal-fired power plants equipped with flue gas desulfurization (FGD) should be seriously considered. (Author)

  1. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

  2. Community Energy Systems and the Law of Public Utilities. Volume Twenty-one. Maine

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Maine governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  3. Community Energy Systems and the Law of Public Utilities. Volume Forty-eight. Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Virginia governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  4. Community Energy Systems and the Law of Public Utilities. Volume Twenty-three. Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Massachusetts governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  5. Community Energy Systems and the Law of Public Utilities. Volume Fifty. West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of West Virginia governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  6. Community Energy Systems and the Law of Public Utilities. Volume Forty-four. Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Tennessee governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  7. Community Energy Systems and the Law of Public Utilities. Volume Thirty-seven. Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Ohio governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  8. Community Energy Systems and the Law of Public Utilities. Volume Thirty-nine. Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Oregon governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  9. Community Energy Systems and the Law of Public Utilities. Volume Twenty-eight. Montana

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Montana governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  10. Community Energy Systems and the Law of Public Utilities. Volume Twenty-five. Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Minnesota governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  11. Community Energy Systems and the Law of Public Utilities. Volume Forty-five. Texas

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Texas governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  12. Community Energy Systems and the Law of Public Utilities. Volume Fifty-two. Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Wyoming governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  13. Community Energy Systems and the Law of Public Utilities. Volume Forty-nine. Washington

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Washington governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  14. Community Energy Systems and the Law of Public Utilities. Volume Fifty-one. Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Wisconsin governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  15. Community Energy Systems and the Law of Public Utilities. Volume Twenty-two. Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Maryland governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  16. Community Energy Systems and the Law of Public Utilities. Volume Twenty-seven. Missouri

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Missouri governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  17. Organic lining materials test in flue gas ducts

    International Nuclear Information System (INIS)

    Raveh, R.; Sfez, D.; Johannsson, L.

    1998-01-01

    Corrosion protection solutions are being widely used in electric power plants equipped with Flue Gas Desulfurization (FGD) systems. Organic lining materials are one of many solutions available on the market for corrosion protection. This market segment is found in a continuous development in order to fulfill the severe demands of these materials. The main goal of this test is to obtain information about the high temperature resistance of the materials as occurs when the FGD system is by-passed. Aster initial investigation of this market segment only a few lining materials were found compatible according to their manufacturer data. Seven of these materials were installed in the outlet flue gas duct of the Israeli power station M.D. B. This power station is not equipped with a FGD system, thus it gives a real simulation of the environmental conditions into which the lining material is subjected when the FGD system is by-passed. The materials installation was observed carefully and performed by representatives from the manufacturers in order to avoid material failure due to a non-adequate application. The power station was shut down and the lining materials were inspected three and a half months after the lining materials were applied. The inspection results were good and besides changes in the lining color, most materials did not show any damages. During that time the flue gas temperature at the duct was 134?C except some temperature fluctuations

  18. Utility rate equations of group population dynamics in biological and social systems.

    Directory of Open Access Journals (Sweden)

    Vyacheslav I Yukalov

    Full Text Available We present a novel system of equations to describe the evolution of self-organized structured societies (biological or human composed of several trait groups. The suggested approach is based on the combination of ideas employed in the theory of biological populations, system theory, and utility theory. The evolution equations are defined as utility rate equations, whose parameters are characterized by the utility of each group with respect to the society as a whole and by the mutual utilities of groups with respect to each other. We analyze in detail the cases of two groups (cooperators and defectors and of three groups (cooperators, defectors, and regulators and find that, in a self-organized society, neither defectors nor regulators can overpass the maximal fractions of about [Formula: see text] each. This is in agreement with the data for bee and ant colonies. The classification of societies by their distance from equilibrium is proposed. We apply the formalism to rank the countries according to the introduced metric quantifying their relative stability, which depends on the cost of defectors and regulators as well as their respective population fractions. We find a remarkable concordance with more standard economic ranking based, for instance, on GDP per capita.

  19. Utility Rate Equations of Group Population Dynamics in Biological and Social Systems

    Science.gov (United States)

    Yukalov, Vyacheslav I.; Yukalova, Elizaveta P.; Sornette, Didier

    2013-01-01

    We present a novel system of equations to describe the evolution of self-organized structured societies (biological or human) composed of several trait groups. The suggested approach is based on the combination of ideas employed in the theory of biological populations, system theory, and utility theory. The evolution equations are defined as utility rate equations, whose parameters are characterized by the utility of each group with respect to the society as a whole and by the mutual utilities of groups with respect to each other. We analyze in detail the cases of two groups (cooperators and defectors) and of three groups (cooperators, defectors, and regulators) and find that, in a self-organized society, neither defectors nor regulators can overpass the maximal fractions of about each. This is in agreement with the data for bee and ant colonies. The classification of societies by their distance from equilibrium is proposed. We apply the formalism to rank the countries according to the introduced metric quantifying their relative stability, which depends on the cost of defectors and regulators as well as their respective population fractions. We find a remarkable concordance with more standard economic ranking based, for instance, on GDP per capita. PMID:24386163

  20. Impact on a utility, utility customers and the environment of an ensemble of solar domestic hot water systems

    International Nuclear Information System (INIS)

    Cragan, K.E.; Klein, S.A.; Beckman, W.A.

    1995-01-01

    The benefits of the installation of a large number of solar domestic hot water (SDHW) systems are identified and quantified. The benefits of SDHW systems include reduced energy use, reduced electrical demand, and reduced pollution. The avoided emissions, capacity contribution, energy and demand savings were evaluated using the power generation schedules, emissions data and annual hourly load profiles from a Wisconsin utility. It is shown that each six square meter solar water heater system can save annually: 3,560 kWh of energy, 0.66 kW of peak demand, and over four tons of pollution

  1. Cost of energy from utility-owned solar electric systems. A required revenue method for ERDA/EPRI evaluations

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-01

    This methodology calculates the electric energy busbar cost from a utility-owned solar electric system. This approach is applicable to both publicly- and privately-owned utilities. Busbar cost represents the minimum price per unit of energy consistent with producing system-resultant revenues equal to the sum of system-resultant costs. This equality is expressed in present value terms, where the discount rate used reflects the rate of return required on invested capital. Major input variables describe the output capabilities and capital cost of the energy system, the cash flows required for system operation and maintenance, and the financial structure and tax environment of the utility.

  2. Relocatable cargo x-ray inspection systems utilizing compact linacs

    International Nuclear Information System (INIS)

    Sapp, W. Wade; Adams, William L.; Callerame, Joseph; Grodzins, Lee; Rothschild, Peter J.; Schueller, Richard; Mishin, Andrey V.; Smith, Gerald J.

    2001-01-01

    Magnetron-powered, X-band linacs with 3-4 MeV capability are compact enough to be readily utilized in relocatable high energy cargo inspection systems. Just such a system is currently under development at AS and E trade mark sign using the commercially available ISOSearch trade mark sign cargo inspection system as the base platform. The architecture permits the retention of backscatter imaging, which has proven to be an extremely valuable complement to the more usual transmission images. The linac and its associated segmented detector will provide an additional view with superior penetration and spatial resolution. The complete system, which is housed in two standard 40 ' ISO containers, is briefly described with emphasis on the installation and operating characteristics of the portable linac. The average rf power delivered by the magnetron to the accelerator section can be varied up to the maximum of about 1 kW. The projected system performance, including radiation dose to the environment, will be discussed and compared with other high energy systems

  3. The UK market for gaseous emissions control equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    The report analyses the changes in demand for gaseous emissions control equipment in the United Kingdom over the next 5 years. It discusses the factors affecting demand such as legislation reporting of environmental performance, and economic factors. It looks at environmental expenditure by UK industry. Markets are examined, for VOC abatement systems; thermal incinerators; adsorption equipment; catalytic oxidisers; absorption equipment; biological treatments; cryogenic equipment; SO{sub x} abatement equipment; wet FGD; wet dry FGD, dry scrubbers; NOx abatement systems; selective catalytic reduction; and selective non-catalytic reduction. Profiles are given of 16 leading suppliers.

  4. Preliminary design of steam reformer in out-pile demonstration test facility for HTTR heat utilization system

    Energy Technology Data Exchange (ETDEWEB)

    Haga, Katsuhiro; Hino, Ryutaro; Inagaki, Yosiyuki; Hata, Kazuhiko; Aita, Hideki; Sekita, Kenji; Nishihara, Tetsuo; Sudo, Yukio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Yamada, Seiya

    1996-11-01

    One of the key objectives of HTTR is to demonstrate effectiveness of high-temperature nuclear heat utilization system. Prior to connecting a heat utilization system to HTTR, an out-pile demonstration test is indispensable for the development of experimental apparatuses, operational control and safety technology, and verification of the analysis code of safety assessment. For the first heat utilization system of HTTR, design of the hydrogen production system by steam reforming is going on. We have proposed the out-pile demonstration test plan of the heat utilization system and conducted preliminary design of the test facility. In this report, design of the steam reformer, which is the principal component of the test facility, is described. In the course of the design, two types of reformers are considered. The one reformer contains three reactor tubes and the other contains one reactor tube to reduce the construction cost of the test facility. We have selected the steam reformer operational conditions and structural specifications by analyzing the steam reforming characteristics and component structural strength for each type of reformer. (author)

  5. Utilization technique for advanced nuclear materials database system Data-Free-Way'

    International Nuclear Information System (INIS)

    Fujita, Mitsutane; Kurihara, Yutaka; Kinugawa, Junichi; Kitajima, Masahiro; Nagakawa, Josei; Yamamoto, Norikazu; Noda, Tetsuji; Yagi, Koichi; Ono, Akira

    2001-01-01

    Four organizations the National Research Institute for Metals (NRIM), the Japan Atomic Energy Research Institute (JAERI), the Japan Nuclear Fuel Cycle Development Institute (JNC) and Japan Science and Technology Incorporation (JST), conducted the 2nd period joint research for the purpose of development of utilization techniques for advanced nuclear materials database system named 'Data-Free-Way' (DFW), to make more useful system to support research and development of the nuclear materials, from FY 1995 to FY 1999. NRIM intended to fill a data system on diffusion and nuclear data by developing utilization technique on diffusion informations of steels and aluminum and nuclear data for materials for its independent system together with participating in fulfil of the DFW. And, NRIM has entered to a project on wide area band circuit application agreed at the G7 by using technologies cultivated by NRIM, to investigate network application technology with the Michigan State University over the sea under cooperation assistant business of JST, to make results on CCT diagram for welding and forecasting of welding heat history accumulated at NRIM for a long term, to perform development of a simulator assisting optimum condition decision of welding. (G.K.)

  6. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

  7. Optimizing Resource Utilization in Grid Batch Systems

    International Nuclear Information System (INIS)

    Gellrich, Andreas

    2012-01-01

    On Grid sites, the requirements of the computing tasks (jobs) to computing, storage, and network resources differ widely. For instance Monte Carlo production jobs are almost purely CPU-bound, whereas physics analysis jobs demand high data rates. In order to optimize the utilization of the compute node resources, jobs must be distributed intelligently over the nodes. Although the job resource requirements cannot be deduced directly, jobs are mapped to POSIX UID/GID according to the VO, VOMS group and role information contained in the VOMS proxy. The UID/GID then allows to distinguish jobs, if users are using VOMS proxies as planned by the VO management, e.g. ‘role=production’ for Monte Carlo jobs. It is possible to setup and configure batch systems (queuing system and scheduler) at Grid sites based on these considerations although scaling limits were observed with the scheduler MAUI. In tests these limitations could be overcome with a home-made scheduler.

  8. Development for environmentally friendly and highly efficient energy utilization system in fiscal 1998. Pt. 3. Research on highly efficient and effective energy utilization technology (Research on design technology for optimal system); 1998 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu. 3. Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This paper summarizes achievements during fiscal 1998 on researching part of the energy transportation and storage technologies, energy supply and utilization technologies, environmental load reducing technologies, and optimal system design in the 'research on highly efficient and effective energy utilization technology'. With regard to energy transportation and storage technologies, researches and developments were performed on a vacuum adiabatic transportation piping system, surfactants used for high-density heat transportation and high-density latent heat transportation technologies. In the field of energy supply and utilization technologies, researches and developments were carried out on a heat supply system using high-performance heat pumps capable of using multiple kinds of fuels, and a compression and absorption type hybrid heat utilization system. For the environmental load reducing technologies, research and development were performed on a power saving heat pump system utilizing natural coolant. In researching the optimal system design technologies, overall adjustment was made on the element technologies, whereas technological discussions and site surveys were executed by the committees at the same time. The latest achievements accomplished to date was published in a book. (NEDO)

  9. Hybrid energy storage systems utilizing redox active organic compounds

    Science.gov (United States)

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  10. Design criteria for the light duty utility arm system end effectors

    International Nuclear Information System (INIS)

    Pardini, A.F.

    1995-01-01

    This document provides the criteria for the design of end effectors that will be used as part of the Light Duty Utility Arm (LDUA) System. The LDUA System consists of a deployment vehicle, a vertical positioning mast, a light duty multi-axis robotic arm, a tank riser interface and confinement, a tool interface plate, a control system, and an operations control trailer. The criteria specified in this document will apply to all end effector systems being developed for use on or with the LDUA system at the Hanford site. The requirement stipulated in this document are mandatory

  11. The impact of wet flue gas desulfurization scrubbing on mercury emissions from coal-fired power stations.

    Science.gov (United States)

    Niksa, Stephen; Fujiwara, Naoki

    2005-07-01

    This article introduces a predictive capability for Hg retention in any Ca-based wet flue gas desulfurization (FGD) scrubber, given mercury (Hg) speciation at the FGD inlet, the flue gas composition, and the sulphur dioxide (SO2) capture efficiency. A preliminary statistical analysis of data from 17 full-scale wet FGDs connects flue gas compositions, the extents of Hg oxidation at FGD inlets, and Hg retention efficiencies. These connections clearly signal that solution chemistry within the FGD determines Hg retention. A more thorough analysis based on thermochemical equilibrium yields highly accurate predictions for total Hg retention with no parameter adjustments. For the most reliable data, the predictions were within measurement uncertainties for both limestone and Mg/lime systems operating in both forced and natural oxidation mode. With the U.S. Environmental Protection Agency's (EPA) Information Collection Request (ICR) database, the quantitative performance was almost as good for the most modern FGDs, which probably conform to the very high SO2 absorption efficiencies assumed in the calculations. The large discrepancies for older FGDs are tentatively attributed to the unspecified SO2 capture efficiencies and operating temperatures and to the possible elimination of HCl in prescrubbers. The equilibrium calculations suggest that Hg retention is most sensitive to inlet HCl and O2 levels and the FGD temperature; weakly dependent on SO2 capture efficiency; and insensitive to HgCl2, NO, CA:S ratio, slurry dilution level in limestone FGDs, and MgSO3 levels in Mg/lime systems. Consequently, systems with prescrubbers to eliminate HCl probably retain less Hg than fully integrated FGDs. The analysis also predicts re-emission of Hg(O) but only for inlet O2 levels that are much lower than those in full-scale FGDs.

  12. Energy and water quality management systems for water utility's operations: a review.

    Science.gov (United States)

    Cherchi, Carla; Badruzzaman, Mohammad; Oppenheimer, Joan; Bros, Christopher M; Jacangelo, Joseph G

    2015-04-15

    Holistic management of water and energy resources is critical for water utilities facing increasing energy prices, water supply shortage and stringent regulatory requirements. In the early 1990s, the concept of an integrated Energy and Water Quality Management System (EWQMS) was developed as an operational optimization framework for solving water quality, water supply and energy management problems simultaneously. Approximately twenty water utilities have implemented an EWQMS by interfacing commercial or in-house software optimization programs with existing control systems. For utilities with an installed EWQMS, operating cost savings of 8-15% have been reported due to higher use of cheaper tariff periods and better operating efficiencies, resulting in the reduction in energy consumption of ∼6-9%. This review provides the current state-of-knowledge on EWQMS typical structural features and operational strategies and benefits and drawbacks are analyzed. The review also highlights the challenges encountered during installation and implementation of EWQMS and identifies the knowledge gaps that should motivate new research efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Fiscal 1997 survey report. Feasibility study of the environmentally friendly type coal utilization system (feasibility study of the environmentally friendly type coal utilization system in India); 1997 nendo chosa hokokusho. Kankyo chowagata sekitan riyo system kanosei chosa (Indo ni okeru kankyo chowagata sekitan riyo system kanosei chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The survey was conducted of the present situation of coal utilization and the present coal situation such as the environmental state of India which is a coal producing/consuming country next to China in Asia. The paper studied a feasibility of the introduction of the environmental friendly type coal utilization system` to be planned in India. The items for survey are the present situation of economy and energy and the future trend, environmental problems on coal utilization, the present status of the coal distribution system and study subjects, the present status of coal utilization by field and study subjects, a possibility of briquette use, a possibility of coal fluidization, electric power development plans and coal combustion technology in each industry, etc. The subjects are the obligation of coal preparation to coal thermal power plants 1000 km away from coal mines starting 2001, measures taken for effective ash use, measures taken for superannuated gas furnaces, etc. Based on the results of these site surveys and reports of the investigation under consignment from CMPDI, the paper studied/analyzed possibilities of introducing the coal utilization system having actual introduction results in Japan to India, and made an investigational report. 39 refs., 12 figs., 56 tabs.

  14. OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-10-01

    Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

  15. Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery

    International Nuclear Information System (INIS)

    Li, Yuzhong; Yan, Min; Zhang, Liqiang; Chen, Guifang; Cui, Lin; Song, Zhanlong; Chang, Jingcai; Ma, Chunyuan

    2016-01-01

    Highlights: • A method is developed for deep cooling of flue gas in coal-fired boilers. • The method can recover both latent heat and water from flue gas. • The method utilizes FGD scrubber as a deep cooling exchanger. • The method adopts the direct heat exchange mode to avoid the corrosion problem. - Abstract: Flue gas waste heat recovery and utilization is an efficient means to improve the energy efficiency of coal-fired power plants. At present, the surface corrosion and fouling problems of heat exchanger hinder the development of flue gas deep cooling. In this study, a novel flue gas deep cooling method that can reduce flue gas temperature below the dew point of vapor to recover latent heat and obtain clean water simultaneously is proposed to achieve improved energy efficiency. The heat transfer mode of this method is the direct contact mode, which takes the scrubber, e.g. the flue gas desulfurization (FGD) scrubber, as the deep cooling exchanger. The flash evaporation and condensation (FEC) device and heat pump (HP) are utilized to provide low-temperature medium, such as FGD slurry or water, for washing and deep cooling flue gas, to collect recovered water, and to absorb recovered waste heat. This method is called as the FEC–HP method. This paper elaborated on two optional models of the proposed method. The mechanism for recovering heat and water was also analyzed using the customized flue gas humidity chart, and the method to quantitate recovered heat and water, as well as the results of the case of a 300 MW coal-fired generator set were provided. Net present value calculations showed that this method is profitable in the scenario of burning high-water-content coals. Several potential advantages of this method and suggestions for practical application were also discussed.

  16. Hybrid compression/absorption type heat utilization system (eco-energy city project)

    Energy Technology Data Exchange (ETDEWEB)

    Karimata, T.; Susami, S.; Ogawa, Y. [Research and Development Dept., EBARA Corp., Kanagawa pref. (Japan)

    1999-07-01

    This research is intended to develop a 'hybrid compression/absorption type heat utilization system' by combining an absorption process with a compression process in one circulation cycle. This system can produce chilling heat for ice thermal storage by utilizing low-temperature waste heat (lower than 100 C) which is impossible to treat with a conventional absorption chiller. It means that this system will be able to solve the problem of a timing mismatch between waste heat and heat demand. The working fluid used in this proposed system should be suitable for producing ice, be safe, and not damage the ozone layer. In this project, new working fluids were searched as substitutes for the existing H{sub 2}O/LiBr or NH{sub 3}/H{sub 2}O. The interim results of this project in 1997, a testing unit using NH{sub 3}/H{sub 2}O was built for demonstration of the system and evaluation of its characteristics, and R134a/E181 was found to be one of the good working fluid for this system. The COP (ratio of energy of ice produced to electric power provided) of this system using R134a/E181 is expected to achieve 5.5 by computer simulation. The testing unit with this working fluid was built recently and prepared for the tests to confirm the result of the simulation. (orig.)

  17. Evaluation of Embedded System Component Utilized in Delivery Integrated Design Project Course

    Science.gov (United States)

    Junid, Syed Abdul Mutalib Al; Hussaini, Yusnira; Nazmie Osman, Fairul; Razak, Abdul Hadi Abdul; Idros, Mohd Faizul Md; Karimi Halim, Abdul

    2018-03-01

    This paper reports the evaluation of the embedded system component utilized in delivering the integrated electronic engineering design project course. The evaluation is conducted based on the report project submitted as to fulfil the assessment criteria for the integrated electronic engineering design project course named; engineering system design. Six projects were assessed in this evaluation. The evaluation covers the type of controller, programming language and the number of embedded component utilization as well. From the evaluation, the C-programming based language is the best solution preferred by the students which provide them flexibility in the programming. Moreover, the Analog to Digital converter is intensively used in the projects which include sensors in their proposed design. As a conclusion, in delivering the integrated design project course, the knowledge over the embedded system solution is very important since the high density of the knowledge acquired in accomplishing the project assigned.

  18. Comparative analyses for selected clean coal technologies in the international marketplace

    Energy Technology Data Exchange (ETDEWEB)

    Szpunar, C.B.; Gillette, J.L.

    1990-07-01

    Clean coal technologies (CCTs) are being demonstrated in research and development programs under public and private sponsorship. Many of these technologies could be marketed internationally. To explore the scope of these international opportunities and to match particular technologies with markets appearing to have high potential, a study was undertaken that focused on seven representative countries: Italy, Japan, Morocco, Turkey, Pakistan, the Peoples' Republic of China, and Poland. The results suggest that there are international markets for CCTs and that these technologies can be cost competitive with more conventional alternatives. The identified markets include construction of new plants and refurbishment of existing ones, especially when decision makers want to decrease dependence on imported oil. This report describes potential international market niches for U.S. CCTs and discusses the status and implications of ongoing CCT demonstration activities. Twelve technologies were selected as representative of technologies under development for use in new or refurbished industrial or electric utility applications. Included are the following: Two generic precombustion technologies: two-stage froth-flotation coal beneficiation and coal-water mixtures (CWMs); Four combustion technologies: slagging combustors, integrated-gasification combined-cycle (IGCC) systems, atmospheric fluidized-bed combustors (AFBCs), and pressurized fluidized-bed combustors (PFBCs); and Six postcombustion technologies: limestone-injection multistage burner (LIMB) systems, gas-reburning sorbent-injection (GRSI) systems, dual-alkali flue-gas desulfurization (FGD), spray-dryer FGD, the NOXSO process, and selective catalytic reduction (SCR) systems. Major chapters of this report have been processed separately for inclusion on the data base.

  19. Mobile integrated temporary utility system. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    The Mobile Integrated Temporary Utility System (MITUS) integrates portable electrical power along with communications and emergency alarm and lighting capabilities to provide safe, centralized power to work areas that need to be de-energized for decommissioning work. MITUS consists of a portable unit substation; up to twenty portable kiosks that house the power receptacles, communications, and emergency alarm and lighting systems; and a central communications unit. This system makes sequential decommissioning efforts efficient and cost-effective by allowing the integrated system to remain intact while being moved to subsequent work sites. Use of the MITUS also eliminates the need to conduct zero-energy tests and implement associated lock-out/tag-out procedures at partially de-energized facilities. Since the MITUS is a designed system, it can be customized to accommodate unique facility conditions simply by varying kiosks and transformer configurations. The MITUS is an attractive alternate to the use of portable generators with stand-alone communications and emergency system. It is more cost-effective than upgrading or reconfiguring existing power distribution systems

  20. Social cost considerations and legal constraints in implementing modular integrated utility systems

    Science.gov (United States)

    Lede, N. W.; Dixon, H. W.; King, O.; Hill, D. K.

    1974-01-01

    Social costs associated with the design, demonstration, and implementation of the Modular Integrated Utility System are considered including the social climate of communities, leadership patterns, conflicts and cleavages, specific developmental values, MIUS utility goal assessment, and the suitability of certian alternative options for use in a program of implementation. General considerations are discussed in the field of socio-technological planning. These include guidelines for understanding the conflict and diversity; some relevant goal choices and ideas useful to planners of the MIUS facility.

  1. Experimental investigation on improving the removal effect of WFGD system on fine particles by heterogeneous condensation

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Jingjing; Yang, Linjun; Yan, Jinpei; Xiong, Guilong; Shen, Xianglin [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    Heterogeneous condensation of water vapor as a preconditioning technique for the removal of fine particles from flue gas was investigated experimentally in a wet flue gas desulfurization (WFGD) system. A supersaturated vapor phase, necessary for condensational growth of fine particles, was achieved in the SO{sub 2} absorption zone and at the top of the wet FGD scrubber by adding steam in the gas inlet and above the scrubbing liquid inlet of the scrubber, respectively. The condensational grown droplets were then removed by the scrubbing liquid and a high-efficiency demister. The results show that the effectiveness of the WFGD system for removal of fine particles is related to the SO{sub 2} absorbent and the types of scrubber employed. Despite a little better effectiveness for the removal of fine particles in the rotating-stream-tray scrubber at the same liquid-to-gas ratio, The similar trends are obtained between the spray scrubber and rotating-stream-tray scrubber. Due to the formation of aerosol particles in the limestone and ammonia-based FGD processes, the fine particle removal efficiencies are lower than those for Na{sub 2}CO{sub 3} and water. The performance of the WFGD system for removal of fine particles can be significantly improved for both steam addition cases, for which the removal efficiency increases with increasing amount of added steam. A high liquid to gas ratio is beneficial for efficient removal of fine particles by heterogeneous condensation of water vapor.

  2. Problems getting from the laboratory to the field: Reclamation of an AML site

    International Nuclear Information System (INIS)

    Dick, W.A.; Stehouwer, R.C.

    1994-01-01

    Acid and toxic abandoned mineland sites provide an opportunity whereby flue gas desulfurization (FGD) by-product can be beneficially used as a reclamation amendment material. Studies are needed to compare the effectiveness of FGD by-product, as compared with resoil, for reclamation purposes. Initial studies provided information about the chemical and physical properties of the FGD by-product and how to transport and blend the FGD by-product with yard waste compost. Greenhouse studies indicated that rates of 125 dry tons/acre of FGD and 50 dry tons/acre of yard waste compost would provide optimum results for reclamation of acid and toxic spoil contained at the Fleming abandoned mineland (AML) site. Their results showed that heavy metal loading rates were much lower using the FGD/compost mixture than using resoil material. Dioxin in the mixture was also less than the 5 ppt level considered as normal background. The technical problems of using FGD by-product for reclamation of an AML site were solved. However, considerable efforts to educate the public about the merits of reclaiming the Fleming AML site using this FGD/compost mixture were required before initiating field reclamation activities. Education efforts must continue if FGD by-products are to achieve general acceptance as a reclamation alternative to resoil in cases where resoil is of scarce supply

  3. Environmental assessment for the electric utility system distribution, replacements and upgrades at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1992-04-01

    This Environmental Assessment evaluates the environmental effects resulting from the distribution of new electrical service, replacement of inadequate or aging equipment, and upgrade of the existing electrical utility system at Lawrence Livermore National Laboratory. The projects assessed herein do not impact cultural or historic resources, sensitive habitats or wetlands and are not a source of air emissions. The potential environmental effects that do result from the action are fugitive dust and noise from construction and the disposal of potentially contaminated soil removed from certain limited areas of the LLNL site as a result of trenching for underground transmission lines. The actions described in this assessment represent an improved safety and reliability to the existing utility system. Inherent in the increased reliability and upgrades is a net increase in electrical capacity, with future expansion reserve. As with any electrical device, the electrical utility system has associated electric and magnetic fields that present a potential source of personnel exposure. The potential is not increased, however, beyond that which already exists for the present electrical utility system

  4. Enhancing community role in catchment area of cascade-pond system at the campus of Universitas Indonesia, Depok, West Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Maitri Caya

    2017-01-01

    Full Text Available The population in the catchment area of Universitas Indonesia (UI campus cascade-pond system is growing rapidly. The rapid growth of population increases the activities intensity in the catchment area, so that a better water resource management is urgently needed. The Dublin Principles in Integrated Water Resource Management (IWRM among others says that water development and management should be based on a participatory approach, which involves users, planners and policymakers at all levels. The Watershed Stewardship Program is one of the Eight-Tool for Watershed Protection developed by Center for Watershed Protection. Community as the main role holder, besides as beneficiary, is also as planner and executor of the program. The study aims to facilitate community in designing the activities towards water-friendly neighborhood, in the framework of community-potential-based watershed management, to increase the health of UI aquatic system and its catchment area. A combination of Participatory Action Research and Appreciative Inquiry method is applied. The required data and information is collected through field survey and focus group discussion (FGD. Field survey is conducted by interviewing random population inside the catchment area to get the behavior pattern overview of the community. FGD aims to unite the stakeholder and discuss their knowledge and potencies.

  5. Diagnostic Utility of the Social Skills Improvement System Performance Screening Guide

    Science.gov (United States)

    Krach, S. Kathleen; McCreery, Michael P.; Wang, Ye; Mohammadiamin, Houra; Cirks, Christen K.

    2017-01-01

    Researchers investigated the diagnostic utility of the Social Skills Improvement System: Performance Screening Guide (SSIS-PSG). Correlational, regression, receiver operating characteristic (ROC), and conditional probability analyses were run to compare ratings on the SSIS-PSG subscales of Prosocial Behavior, Reading Skills, and Math Skills, to…

  6. Fiscal 1996 survey report on the environmentally friendly type coal utilization system feasibility study. Feasibility study of the environmentally friendly type coal utilization system in Malaysia and Vietnam; Kankyo chowagata sekitan riyo system kanosei chosa. Malaysia Vietnam ni okeru kankyo chowagata sekitan riyo system kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This survey arranged the status of coal utilization technology and the status of coal production, supply, etc. in Malaysia and Vietnam, examined/studied coal utilization systems in both countries, and finally assessed feasibility of introducing the environmentally friendly type coal utilization system. As a country of primary energy source which is abundant in crude oil, natural gas, hydroelectric power, coal, etc., Malaysia now depends on crude oil and natural gas for 80% of its energy, and places emphasis on exploration of natural gas and oil refining. In electric power and cement industries where coal is consumed, effectiveness and environmental issues in association with coal utilization are future subjects. In Vietnam, the north is abundant in hydroelectric power and anthracite, and the south in oil and gas resource, but the north and central districts are in a state of undevelopment. Coal is used for coal thermal power generation, cement industry, and residential/commercial fuel. In the future, effective coal utilization and environmental issues will be subjects. 16 refs., 38 figs., 75 tabs.

  7. Design of conveyor utilization monitoring system: a case study of powder coating line in sheet metal fabrication

    Science.gov (United States)

    Prasetyo, Hoedi; Sugiarto, Yohanes; Nur Rosyidi, Cucuk

    2018-03-01

    Conveyor is a very useful equipment to replace manpower in transporting the goods. It highly influences the productivity, production capacity utilization and eventually the production cost. This paper proposes a system to monitor the utilization of conveyor at a low cost through a case study at powder coating process line in a sheet metal fabrication. Preliminary observation was conducted to identify the problems. The monitoring system was then built and executed. The system consists of two sub systems. First is sub system for collecting and transmitting the required data and the second is sub system for displaying the data. The system utilizes sensors, wireless data transfer and windows-based application. The test results showed that the whole system works properly. By this system, the productivity and status of the conveyor can be monitored in real time. This research enriches the development of conveyor monitoring system especially for implementation in small and medium enterprises.

  8. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant.

    Science.gov (United States)

    Moreno-Garcia, Isabel M; Palacios-Garcia, Emilio J; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J; Varo-Martinez, Marta; Real-Calvo, Rafael J

    2016-05-26

    There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant's components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid.

  9. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant

    Science.gov (United States)

    Moreno-Garcia, Isabel M.; Palacios-Garcia, Emilio J.; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J.; Varo-Martinez, Marta; Real-Calvo, Rafael J.

    2016-01-01

    There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant’s components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid. PMID:27240365

  10. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant

    Directory of Open Access Journals (Sweden)

    Isabel M. Moreno-Garcia

    2016-05-01

    Full Text Available There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant’s components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid.

  11. Dynamic Coupling Analysis of Urbanization and Water Resource Utilization Systems in China

    Directory of Open Access Journals (Sweden)

    Hailiang Ma

    2016-11-01

    Full Text Available While urbanization brings economic and social benefits, it also causes water pollution and other environmental ecological problems. This paper provides a theoretical framework to quantitatively analyze the dynamic relationship between water resource utilization and the process of urbanization. Using data from Jiangsu province, we first construct indices to evaluate urbanization and water resource utilization. We then adopt an entropy model to examine the correlation between urbanization and water resource utilization. In addition, we introduce a dynamic coupling model to analyze and predict the coupling degree between urbanization and water resource utilization. Our analyses show that pairing with rising urbanization during 2002–2014, the overall index of water resource utilization in Jiangsu province has experienced a “decline -rise-decline” trend. Specifically, after the index of water resource utilization reached its lowest point in 2004, it gradually began to rise. Water resource utilization reached its highest value in 2010. The coupling degree between urbanization and water resource utilization was relatively low in 2002 and 2003 varying between −90° and 0°. It has been rising since then. Out-of-sample forecasts indicate that the coupling degree will reach its highest value of 74.799° in 2016, then will start to gradually decline. Jiangsu province was chosen as our studied area because it is one of the selected pilot provinces for China’s economic reform and social development. The analysis of the relationship between provincial water resource utilization and urbanization is essential to the understanding of the dynamic relationship between these two systems. It also serves as an important input for developing national policies for sustainable urbanization and water resource management.

  12. Emergy evaluation of water utilization benefits in water-ecological-economic system based on water cycle process

    Science.gov (United States)

    Guo, X.; Wu, Z.; Lv, C.

    2017-12-01

    The water utilization benefits are formed by the material flow, energy flow, information flow and value stream in the whole water cycle process, and reflected along with the material circulation of inner system. But most of traditional water utilization benefits evaluation are based on the macro level, only consider the whole material input and output and energy conversion relation, and lack the characterization of water utilization benefits accompanying with water cycle process from the formation mechanism. In addition, most studies are from the perspective of economics, only pay attention to the whole economic output and sewage treatment economic investment, but neglect the ecological function benefits of water cycle, Therefore, from the perspective of internal material circulation in the whole system, taking water cycle process as the process of material circulation and energy flow, the circulation and flow process of water and other ecological environment, social economic elements were described, and the composition of water utilization positive and negative benefits in water-ecological-economic system was explored, and the performance of each benefit was analyzed. On this basis, the emergy calculation method of each benefit was proposed by emergy quantitative analysis technique, which can realize the unified measurement and evaluation of water utilization benefits in water-ecological-economic system. Then, taking Zhengzhou city as an example, the corresponding benefits of different water cycle links were calculated quantitatively by emergy method, and the results showed that the emergy evaluation method of water utilization benefits can unify the ecosystem and the economic system, achieve uniform quantitative analysis, and measure the true value of natural resources and human economic activities comprehensively.

  13. High-calcium coal combustion by-products: Engineering properties, ettringite formation, and potential application in solidification and stabilization of selenium and boron

    Energy Technology Data Exchange (ETDEWEB)

    Solem-Tishmack, J.K.; McCarthy, G.J. [North Dakota State Univ., Fargo, ND (United States). Dept. of Chemistry; Docktor, B.; Eylands, K.E.; Thompson, J.S.; Hassett, D.J. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center

    1995-04-01

    Four high-calcium coal combustion by-products (two pulverized coal fly ashes (PCFA), a flue gas desulfurization (FGD) residue, and an atmospheric fluidized bed combustion (AFBC) fly ash), were tested for engineering properties and ability to immobilize boron and selenium. These data are needed to explore high-volume utilization in engineered structure or in solidification/stabilization (S/S) technology. Strengths of cured pastes (91 days), varied from as much as 27 MPa (3,900 psi) for one of the PCFA specimens to 4.6 MPa (670 psi) for the FGD specimen. All of the coal by-product pastes developed more than the 0.34 MPa (50 psi) required for S/S applications. Ettringite formation is important to engineering properties and S/S mechanisms. XRD on plain specimens cured for 91 days indicated that the two PCFA pastes formed 5--6% ettringite, the FGD paste formed 22%, and the AFBC paste formed 32%. The hydrating PCFA pastes showed little expansion, the FGD paste contracted slightly, and the AFBC paste expanded by 2.9% over 91 days. Se and B were spiked into the mixing water as sodium selenite, selenate and borate, and for most pastes this had little effect on strength, workability, and expansion. Leaching of ground specimens (cured for 91 days) showed a generally positive correlation between the amount of ettringite formed and resistance to Se and B leaching. Se spiked as selenate was more readily leached than Se spiked as selenite. B showed a high level of fixation.

  14. Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, P.K.

    1995-01-31

    The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm`s tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers.

  15. Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank

    International Nuclear Information System (INIS)

    Bhatia, P.K.

    1995-01-01

    The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm's tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers

  16. Concept of automated system for spent fuel utilization ('Reburning') from compact nuclear reactors

    International Nuclear Information System (INIS)

    Ianovski, V.V.; Lozhkin, O.V.; Nesterov, M.M.; Tarasov, N.A.; Uvarov, V.I.

    1997-01-01

    On the basic concept of an automated system of nuclear power installation safety is developed the utilization project of spent fuel from compact nuclear reactors. The main features of this project are: 1. design and creation of the mobile model-industrial installation; 2. development of the utilization and storage diagram of the spent fuel from compact nuclear reactors, with the specific recommendation for the natatorial means using both for the nuclear fuel reburning, for its transportation in places of the storage; 3. research of an opportunity during the utilization process to obtain additional power resources, ozone and others to increase of justifying expenses at the utilization; 4. creation of new generation engineering for the automation of remote control processes in the high radiation background conditions. 7 refs., 1 fig

  17. Prospects and strategy for large scale utility applications of photovoltaic power systems

    International Nuclear Information System (INIS)

    Vigotti, R.; Lysen, E.; Cole, A.

    1996-01-01

    The status and prospects of photovoltaic (PV) power systems are reviewed. The market diffusion strategy for the application of PV systems by utilities is described, and the mission, objectives and thoughts of the collaboration programme launched among 18 industrialized countries under the framework of the International Energy Agency are highly with particular reference to technology transfer to developing countries. Future sales of PV systems are expected to grow in the short and medium term mainly in the sector of isolated systems. (R.P.)

  18. Are US utility standby rates inhibiting diffusion of customer-owned generating systems?

    International Nuclear Information System (INIS)

    Jackson, Jerry

    2007-01-01

    New, small-scale electric generation technologies permit utility customers to generate some of their own electric power and to utilize waste heat for space heating and other applications at the building site. This combined heat and power (CHP) characteristic can provide significant energy-cost savings. However, most current US utility regulations leave CHP standby rate specification largely to utility discretion resulting in claims by CHP advocates that excessive standby rates are significantly reducing CHP-related savings and inhibiting CHP diffusion. The impacts of standby rates on the adoption of CHP are difficult to determine; however, because of the characteristically slow nature of new technology diffusion. This study develops an agent-based microsimulation model of CHP technology choice using cellular automata to represent new technology information dispersion and knowledge acquisition. Applying the model as an n-factorial experiment quantifies the impacts of standby rates on CHP technologies under alternative diffusion paths. Analysis of a sample utility indicates that, regardless of the likely diffusion process, reducing standby rates to reflect the cost of serving a large number of small, spatially clustered CHP systems significantly increases the adoption of these technologies

  19. Integrated outage management: Leveraging utility system assets including GIS and AMR for optimum outage response

    Energy Technology Data Exchange (ETDEWEB)

    Finamore, E. P.

    2004-02-01

    The control of electrical system outages is discussed. The principal argument advanced is that traditional stand-alone methods of outage response will no longer get the job done without utility companies integrating their outage management systems with other system assets such as GIS (geographic information system) and AMR (advanced metering systems). Many meter reading systems, while primarily supporting customer billing, can also provide outage alarm and some are also capable of service restoration notification, which is an invaluable benefit to service operators since it obviates the need for verifying system restoration by labour-intensive on-site visits or customer call-backs. If successfully leveraged, optimization of all utility assets and improvements in labour productivity can results in improved outage management performance gains without affecting performance in other areas.

  20. Community Energy Systems and the Law of Public Utilities. Volume Thirty-two. New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of New Jersey governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  1. Community Energy Systems and the Law of Public Utilities. Volume Forty-two. South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of South Carolina governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  2. Community Energy Systems and the Law of Public Utilities. Volume Forty-three. South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of South Dakota governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  3. Community Energy Systems and the Law of Public Utilities. Volume Forty-one. Rhode Island

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Rhode Island governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  4. Community Energy Systems and the Law of Public Utilities. Volume Thirty-one. New Hampshire

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of New Hampshire governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One. An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  5. Community Energy Systems and the Law of Public Utilities. Volume Thirty-six. North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of North Dakota governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  6. Community energy systems and the law of public utilities. Volume thirty-four. New York

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of New York governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  7. Determining utility values in patients with anterior cruciate ligament tears using clinical scoring systems

    Directory of Open Access Journals (Sweden)

    Szucs Thomas

    2011-08-01

    Full Text Available Abstract Background Several instruments and clinical scoring systems have been established to evaluate patients with ligamentous knee injuries. A comparison of individual articles in the literature is challenging, not only because of heterogeneity in methodology, but also due to the variety of the scoring systems used to document clinical outcomes. There is limited information about the correlation between used scores and quality of life with no information being available on the impact of each score on the utility values. The aim of this study was to compare the most commonly used scores for evaluating patients with anterior cruciate ligament (ACL injuries, and to establish corresponding utility values. These values will be used for the interpretation and comparison of outcome results in the currently available literature for different treatment options. Methods Four hypothetical vignettes were defined, based on different levels of activities after rupture of the ACL to simulate typical situations seen in daily practice. A questionnaire, including the Health Utility Index (HUI for utility values, the IKDC subjective score, the Lysholm and the Tegner score, was created and 25 orthopedic surgeons were asked to fill the questionnaire for each hypothetical patient as proxies for all patients they had treated and who would fit in that hypothetical vignette. Results The utility value as an indicator for quality of life increased with the level of activity. Having discomforts already during normal activities of daily living was rated with a mean utility value of 0.37 ± 0.19, half of that of a situation where mild sport activity was possible without discomfort (0.78 ± 0.11. All investigated scores were able to distinguish clearly (p Conclusions Here we report the correlation between the most commonly used scores for the assessment of patients with a ruptured ACL and utility values as an indicator of quality of life. Assumptions were based on expert

  8. Utilization of Solar Energy for Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Sutikno Juwari Purwo

    2018-01-01

    Full Text Available The purposes of this research are to do a system simulation of air conditioning utilizing solar energy with single effect absorption refrigeration method, analyze the coefficient of performance (COP for each absorbent-refrigerant variable and compare the effectivity of every absorbent-refrigerant variable used. COP is a constant that denotes the effeciency of a refrigeration system, that is ratio of work or useful output to the amount of work or energy input. The higher the number of COP, the more efficient the system is. Absorbent-refrigerant (working fluids variables used in this research depend on its chemical and thermodynamics properties. Steps in this research are including data collection and tabulation from literature and do a simulation of air conditioning system both commercial air conditioning system (using electrical energy and solar energy air conditioning system with Aspen Plus software. Next, run the simulation for each working fluid variables used and calculate the COP for each variable. Subsequently, analyze and compare the effectivity of all variables used from COP value and economical point of view with commercial air conditioning system. From the result of the simulation, can be concluded that solar air conditioning can achieve 98,85 % of energy savings than commercial air conditioning. Furthermore, from the calculation of COP, the highest COP value is achieved by solar conditioning system with LiNO3-NH3 as working fluid where 55% of the composition is the refrigerant and 45% of absorbent.

  9. Utilization of the series resonant dc link converter as a conditioning system for SMES

    International Nuclear Information System (INIS)

    Marschke, K.W.; Caldeira, P.P.A.; Lipo, T.A.

    1992-01-01

    In this paper a new superconductive magnetic energy storage (SMES) system utilizes a high-frequency series resonant dc link power converter of high efficiency as the conditioning converter is presented. This system generates a high-frequency (20 kHz or more) resonant current in a series link and switching is done at zero current instants, reducing switching losses to a minimal value. Through the utilization of an adequate control strategy, the input power factor can be fully adjusted during the charging, storing, and discharging modes of the SMES, improving the overall system efficiency. Different semiconductor devices are employed as the switching elements of the resonant converter and switching losses are established for each case. Experimental results from a monophase and three-phase system verified the results obtained from digital simulation

  10. Legal-institutional arrangements facilitating offshore wind energy conversion systems (WECS) utilization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, L.H.

    1977-09-01

    Concern for the continuing sufficiency of energy supplies in the U.S. has tended to direct increasing attention to unconventional sources of supply, including wind energy. Some of the more striking proposals for the utilization of wind energy relate to offshore configurations. The legal-institutional arrangements for facilitating the utilization of offshore wind energy conversion systems (WECS) are examined by positioning three program alternatives and analyzing the institutional support required for the implementation of each.

  11. Dry flue gas desulfurization byproducts as amendments for reclamation of acid mine spoil

    International Nuclear Information System (INIS)

    Dick, W.A.; Stehouwer, R.C.; Beeghly, J.H.; Bigham, J.M.; Lal, R.

    1994-01-01

    Development of beneficial reuses of highly alkaline, dry flue gas desulfurization (FGD) byproducts can impact the economics of adopting these FGD technologies for retrofit on existing powerplants. Greenhouse studies were conducted to evaluate the use of two dry FGD byproducts for reclamation of acid mine spoil (pH, 3.1 to 5.8). Treatment rates of FGD ranges from 0% to 32% by dry weight and most treatments also included 6% by dry weight of sewage sludge. Fescue (Festuca arundinacea Schreb.) was harvested monthly for a total of six harvests. Plant tissue composition and root growth were determined after the sixth harvest. Leachate analyses and pH determination of mixes were done at the beginning and end of the experiments. Both FGD byproducts were effective in raising the spoil pH and in improving fescue growth. At the highest FGD application rate, fescue growth decreased from the optimum due to high pH and reduced rooting volume caused by cementation reactions between the FGD and spoil. Trace elements, with the exception of B, were decreased in the fescue tissue when FGD was applied. Leachate pH, electrical conductivity, dissolved organic carbon, Ca, Mg, and S tended to increase with increased FGD application rate; Al, Fe, Mn, and Zn decreased. pH was the most important variable controlling the concentrations of these elements in the leachate. Concentrations of elements of environmental concern were near or below drinking water standard levels. These results indicate that FGD applied at rates equivalent to spoil neutralization needs can aid in the revegetation of acid spoil revegetation with little potential for introduction of toxic elements into the leachate water or into the food chain

  12. Fiscal 2000 project on measures for assisting and diffusing environmentally-friendly coal utilization system introduction. CMG recovery/utilization system joint demonstration project; 2000 nendo kankyo chowagata sekitan riyo system donyu shien nado fukyu taisaku jigyo chosa hokoku. CMG kaishu riyo system kyodo jissho jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A CMG (coal mine gas) recovery/utilization system was designed, constructed, and then demonstrated at a model coal mining district in Liaoning Province for the purpose of contributing to the solution of energy and environment related problems in China. The recovery system demonstration test, aiming to improve on safety and productivity of coal mining and to supply recovered gas with stability, involved gas drainage test boring, mine sealing, sealed gas induction control, centralized gas monitoring, etc., which were carried out at the coal mine working face. A utilization system demonstration test was conducted, and CMG would continue to be supplied to the current users and CMG utilization would be started at the other 6 coal mines. For the supply of CMG to large-scale gas consuming areas, steel materials were manufactured and processed for spherical gas holders and denitrification facilities, gas holders were constructed, pipe lines were installed, and a provisional gas supply was carried out. For the transfer and diffusion of the technology, Chinese engineers were trained in Japan and Japanese engineers were dispatched to China. (NEDO)

  13. Utilization technique for advanced nuclear materials database system Data-Free-Way'

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Mitsutane; Kurihara, Yutaka; Kinugawa, Junichi; Kitajima, Masahiro; Nagakawa, Josei; Yamamoto, Norikazu; Noda, Tetsuji; Yagi, Koichi; Ono, Akira [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan)

    2001-02-01

    Four organizations the National Research Institute for Metals (NRIM), the Japan Atomic Energy Research Institute (JAERI), the Japan Nuclear Fuel Cycle Development Institute (JNC) and Japan Science and Technology Incorporation (JST), conducted the 2nd period joint research for the purpose of development of utilization techniques for advanced nuclear materials database system named 'Data-Free-Way' (DFW), to make more useful system to support research and development of the nuclear materials, from FY 1995 to FY 1999. NRIM intended to fill a data system on diffusion and nuclear data by developing utilization technique on diffusion informations of steels and aluminum and nuclear data for materials for its independent system together with participating in fulfil of the DFW. And, NRIM has entered to a project on wide area band circuit application agreed at the G7 by using technologies cultivated by NRIM, to investigate network application technology with the Michigan State University over the sea under cooperation assistant business of JST, to make results on CCT diagram for welding and forecasting of welding heat history accumulated at NRIM for a long term, to perform development of a simulator assisting optimum condition decision of welding. (G.K.)

  14. U.S. Photovoltaic Prices and Cost Breakdowns. Q1 2015 Benchmarks for Residential, Commercial, and Utility-Scale Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fu, Ran [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ardani, Kristen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has continued to decline across all major market sectors. This report provides a Q1 2015 update regarding the prices of residential, commercial, and utility scale PV systems, based on an objective methodology that closely approximates the book value of a PV system. Several cases are benchmarked to represent common variations in business models, labor rates, and system architecture choice. We estimate a weighted-average cash purchase price of $3.09/W for residential scale rooftop systems, $2.15/W for commercial scale rooftop systems, $1.77/W for utility scale systems with fixed mounting structures, and $1.91/W for utility scale systems using single-axis trackers. All systems are modeled assuming standard-efficiency, polycrystalline-silicon PV modules, and further assume installation within the United States.

  15. Challenges of Utilizing E-Learning Systems in Public Universities in Jordan

    Directory of Open Access Journals (Sweden)

    Muhannad Anwar Al-Shboul

    2010-06-01

    Full Text Available This research paper lists and discusses major challenges and barriers that may face faculty members at the public universities in Jordan in employing e-Learning systems authoring tools in their instructions. It also proposes several suggestions for the administrators in public universities in Jordan for what they could do to improve the utilization of e-Learning authoring tools at their campuses. E-Learning systems authoring tools allow instructors to easily create and deliver their e-contents and e-lectures. Furthermore, online course materials which uploaded by using such authoring tools could be viewed by any popular web browser system.

  16. The challenges of connecting generation to distribution systems: a utility perspective

    International Nuclear Information System (INIS)

    Kropp, F.

    2004-01-01

    'Full text:' This presentation discusses the technical, financial and regulatory barriers to connecting generation to Distribution Systems in Ontario. Case studies will be used to provide examples of the operational and technical challenges that impact the utility as well as a discussion on the site-specific advantages and disadvantages (to the utility) of the generation connections. These studies will include discussions on the problems and lessons learned with respect to the overall project implementation and the contractual agreements. The case studies will be complemented by an explanation of the financial constraints (both short term and long term) associated with the connections, and the regulatory issues that impact the financial recovery models including net and gross load billing. (author)

  17. Probability of islanding in utility networks due to grid connected photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Verhoeven, B.

    2002-09-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme takes a look at the probability of islanding in utility networks due to grid-connected photovoltaic power systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. This report summarises the results on a study on the probability of islanding in power networks with a high penetration level of grid connected PV-systems. The results are based on measurements performed during one year in a Dutch utility network. The measurements of active and reactive power were taken every second for two years and stored in a computer for off-line analysis. The area examined and its characteristics are described, as are the test set-up and the equipment used. The ratios between load and PV-power are discussed. The general conclusion is that the probability of islanding is virtually zero for low, medium and high penetration levels of PV-systems.

  18. Enhanced Recovery Utilizing Variable Frequency Drives and a Distributed Power System

    Energy Technology Data Exchange (ETDEWEB)

    Randy Peden; Sanjiv Shah

    2005-07-26

    This report describes complete results of the project entitled ''Enhanced Recovery Utilizing Variable Frequency Drives and a Distributed Power System''. This demonstration project was initiated in July 2003 and completed in March 2005. The objective of the project was to develop an integrated power production/variable frequency drive system that could easily be deployed in the oil field that would increase production and decrease operating costs. This report describes all the activities occurred and documents results of the demonstration.

  19. Community Energy Systems and the Law of Public Utilities. Volume Forty-six. Utah

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Utah governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilites, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  20. Optimization and Customer Utilities under Dynamic Lead Time Quotation in an M/M Type Base Stock System

    Directory of Open Access Journals (Sweden)

    Koichi Nakade

    2017-01-01

    Full Text Available In a manufacturing and inventory system, information on production and order lead time helps consumers’ decision whether they receive finished products or not by considering their own impatience on waiting time. In Savaşaneril et al. (2010, the optimal dynamic lead time quotation policy in a one-stage production and inventory system with a base stock policy for maximizing the system’s profit and its properties are discussed. In this system, each arriving customer decides whether he/she enters the system based on the quoted lead time informed by the system. On the other hand, the customer’s utility may be small under the optimal quoted lead time policy because the actual lead time may be longer than the quoted lead time. We use a utility function with respect to benefit of receiving products and waiting time and propose several kinds of heuristic lead time quotation policies. These are compared with optimal policies with respect to both profits and customer’s utilities. Through numerical examples some kinds of heuristic policies have better expected utilities of customers than the optimal quoted lead time policy maximizing system’s profits.

  1. Post delivery test report for light duty utility arm optical alignment system (OAS)

    International Nuclear Information System (INIS)

    Pardini, A.F.

    1996-01-01

    This report documents the post delivery testing of the Optical Alignment System (OAS) LDUA system, designed for use by the Light Duty Utility Arm (LDUA) project. The post delivery test shows by demonstration that the optical alignment system is fully operational to perform the task of aligning the LDUA arm and mast with the entry riser during deployment operations within a Hanford Site waste tank

  2. Post delivery test report for light duty utility arm optical alignment system (OAS)

    Energy Technology Data Exchange (ETDEWEB)

    Pardini, A.F.

    1996-04-18

    This report documents the post delivery testing of the Optical Alignment System (OAS) LDUA system, designed for use by the Light Duty Utility Arm (LDUA) project. The post delivery test shows by demonstration that the optical alignment system is fully operational to perform the task of aligning the LDUA arm and mast with the entry riser during deployment operations within a Hanford Site waste tank.

  3. Re-Use of Clean Coal Technology By-Products in the Construction of Low Permeability Liners. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, William E. [The Ohio State Univ., Columbus, OH (United States); Butalia, Tarunjit S. [The Ohio State Univ., Columbus, OH (United States); Walker, Harold [The Ohio State Univ., Columbus, OH (United States); Mitsch, William [The Ohio State Univ., Columbus, OH (United States)

    2005-07-15

    This final project report presents the results of a research program conducted at The Ohio State University from January 3, 2000 to June 30, 2005 to investigate the long-term use of stabilized flue gas desulfurization (FGD) materials in the construction of low permeability liners for ponds and wetlands. The objective of the research program was to establish long-term field-verified time-dependent relationships for the performance of liners constructed from stabilized FGD byproducts generated in Ohio. The project objective was accomplished with a coordinated program of testing and analyzing small-scale laboratory specimens under controlled conditions, mediumscale wetland experiments, and monitoring of a full-scale FGD-lined pond facility. Although the specific uses directly addressed by this report include liners for surface impoundments, the results presented in this study are also useful in other applications especially in the design of daily covers and liners for landfills, seepage cutoff walls and trenches, and for nutrient retention and pollution mitigation wetlands. The small-scale laboratory tests and monitoring of the full-scale FGD lined facility (capacity of one million gallons) shows that stabilized FGD materials can be used as low permeability liners in the construction of water and manure holding ponds. Actual long-term permeability coefficients in the range of 10-7 cm/sec (3 x 10-9 ft/sec) can be obtained in the field by compacting lime and fly ash enriched stabilized FGD materials. Leachate from the FGD material meets Ohio’s non-toxic criteria for coal combustion by-products, and for most potential contaminants the national primary and secondary drinking water standards are also met. The low permeability non-toxic FGD material investigated in this study poses very minimal risks, if any, for groundwater contamination. The FGD wetland experiments indicated no significant differences in phosphorus retention between the clay and FGD

  4. A robust rotorcraft flight control system design methodology utilizing quantitative feedback theory

    Science.gov (United States)

    Gorder, Peter James

    1993-01-01

    Rotorcraft flight control systems present design challenges which often exceed those associated with fixed-wing aircraft. First, large variations in the response characteristics of the rotorcraft result from the wide range of airspeeds of typical operation (hover to over 100 kts). Second, the assumption of vehicle rigidity often employed in the design of fixed-wing flight control systems is rarely justified in rotorcraft where rotor degrees of freedom can have a significant impact on the system performance and stability. This research was intended to develop a methodology for the design of robust rotorcraft flight control systems. Quantitative Feedback Theory (QFT) was chosen as the basis for the investigation. Quantitative Feedback Theory is a technique which accounts for variability in the dynamic response of the controlled element in the design robust control systems. It was developed to address a Multiple-Input Single-Output (MISO) design problem, and utilizes two degrees of freedom to satisfy the design criteria. Two techniques were examined for extending the QFT MISO technique to the design of a Multiple-Input-Multiple-Output (MIMO) flight control system (FCS) for a UH-60 Black Hawk Helicopter. In the first, a set of MISO systems, mathematically equivalent to the MIMO system, was determined. QFT was applied to each member of the set simultaneously. In the second, the same set of equivalent MISO systems were analyzed sequentially, with closed loop response information from each loop utilized in subsequent MISO designs. The results of each technique were compared, and the advantages of the second, termed Sequential Loop Closure, were clearly evident.

  5. Non-utility generation and demand management reliability of customer delivery systems

    International Nuclear Information System (INIS)

    Hamoud, G.A.; Wang, L.

    1995-01-01

    A probabilistic methodology for evaluating the impact of non-utility generation (NUG) and demand management programs (DMP) on supply reliability of customer delivery systems was presented. The proposed method was based on the criteria that the supply reliability to the customers on the delivery system should not be affected by the integration of either NUG or DMPs. The method considered station load profile, load forecast, and uncertainty in size and availability of the nuio. Impacts on system reliability were expressed in terms of possible delays of the in-service date for new facilities or in terms of an increase in the system load carrying capability. Examples to illustrate the proposed methodology were provided. 10 refs., 8 tabs., 2 figs

  6. Cost-utility and cost-effectiveness studies of telemedicine, electronic, and mobile health systems in the literature: a systematic review.

    Science.gov (United States)

    de la Torre-Díez, Isabel; López-Coronado, Miguel; Vaca, Cesar; Aguado, Jesús Saez; de Castro, Carlos

    2015-02-01

    A systematic review of cost-utility and cost-effectiveness research works of telemedicine, electronic health (e-health), and mobile health (m-health) systems in the literature is presented. Academic databases and systems such as PubMed, Scopus, ISI Web of Science, and IEEE Xplore were searched, using different combinations of terms such as "cost-utility" OR "cost utility" AND "telemedicine," "cost-effectiveness" OR "cost effectiveness" AND "mobile health," etc. In the articles searched, there were no limitations in the publication date. The search identified 35 relevant works. Many of the articles were reviews of different studies. Seventy-nine percent concerned the cost-effectiveness of telemedicine systems in different specialties such as teleophthalmology, telecardiology, teledermatology, etc. More articles were found between 2000 and 2013. Cost-utility studies were done only for telemedicine systems. There are few cost-utility and cost-effectiveness studies for e-health and m-health systems in the literature. Some cost-effectiveness studies demonstrate that telemedicine can reduce the costs, but not all. Among the main limitations of the economic evaluations of telemedicine systems are the lack of randomized control trials, small sample sizes, and the absence of quality data and appropriate measures.

  7. Influence of Flue Gas Desulfurization Gypsum Amendments on Heavy Metal Distribution in Reclaimed Sodic Soils

    Science.gov (United States)

    Chen, Qun; Wang, Shujuan; Li, Yan; Zhang, Ning; Zhao, Bo; Zhuo, Yuqun; Chen, Changhe

    2015-01-01

    Abstract Although flue gas desulfurization (FGD) gypsum has become an effective soil amendment for sodic soil reclamation, it carries extra heavy metal contamination into the soil environment. The fate of heavy metals introduced by FGD gypsum in sodic or saline–alkali soils is still unclear. This work aims to investigate the effects of FGD gypsum addition on the heavy metal distributions in a sodic soil. Original soil samples were collected from typical sodic land in north China. Soil column leaching tests were conducted to investigate the influence of FGD gypsum addition on the soil properties, especially on distribution profiles of the heavy metals (Pb, Cd, Cr, As, and Hg) in the soil layers. Results showed that pH, electrical conductivity, and exchangeable sodium percentage in amended soils were significantly reduced from 10.2 to 8.46, 1.8 to 0.2 dS/m, and 18.14% to 1.28%, respectively. As and Hg concentrations in the soils were found to be positively correlated with FGD gypsum added. The amount of Hg in the leachate was positively correlated with FGD gypsum application ratio, whereas a negative correlation was observed between the Pb concentration in the leachate and the FGD gypsum ratio. Results revealed that heavy metal concentrations in soils complied well with Environmental Quality Standard for Soils in China (GB15618-1995). This work helps to understand the fate of FGD gypsum-introduced heavy metals in sodic soils and provides a baseline for further environmental risk assessment associated with applying FGD gypsum for sodic soil remediation. PMID:26064038

  8. Abdominal pain-predominant functional gastrointestinal diseases in children and adolescents: prevalence, symptomatology, and association with emotional stress.

    Science.gov (United States)

    Devanarayana, Niranga Manjuri; Mettananda, Sachith; Liyanarachchi, Chathurangi; Nanayakkara, Navoda; Mendis, Niranjala; Perera, Nimnadi; Rajindrajith, Shaman

    2011-12-01

    Functional gastrointestinal disorders (FGD) are common among children, but little is known regarding their prevalence in developing countries. We assessed the prevalence of abdominal pain-predominant FGD, in addition to the predisposing factors and symptomatology, in Sri Lankan children. A cross-sectional survey was conducted among a randomly selected group of 10- to 16-year-olds in 8 randomly selected schools in 4 provinces in Sri Lanka. A validated, self-administered questionnaire was completed by children independently in an examination setting. FGD were diagnosed using Rome III criteria. A total of 2180 questionnaires were distributed and 2163 (99.2%) were included in the analysis (1189 [55%] boys, mean age 13.4 years, standard deviation 1.8 years). Of them, 270 (12.5%) had at least 1 abdominal pain-predominant FGD. Irritable bowel syndrome (IBS) was seen in 107 (4.9%), functional dyspepsia in 54 (2.5%), functional abdominal pain in 96 (4.4%), and abdominal migraine (AM) in 21 (1.0%) (2 had AM and functional dyspepsia, 6 had AM and IBS). Extraintestinal symptoms were more common among affected children (P Abdominal pain-predominant FGD were higher in girls and those exposed to stressful events (P Abdominal pain-predominant FGD affects 12.5% of children ages 10 to 16 years and constitutes a significant health problem in Sri Lanka. IBS is the most common FGD subtype present. Abdominal pain-predominant FGD are higher in girls and those exposed to emotional stress. Prevalence of FGD decreased with age. Extraintestinal symptoms are more frequent in affected children.

  9. Influence of Flue Gas Desulfurization Gypsum Amendments on Heavy Metal Distribution in Reclaimed Sodic Soils.

    Science.gov (United States)

    Chen, Qun; Wang, Shujuan; Li, Yan; Zhang, Ning; Zhao, Bo; Zhuo, Yuqun; Chen, Changhe

    2015-06-01

    Although flue gas desulfurization (FGD) gypsum has become an effective soil amendment for sodic soil reclamation, it carries extra heavy metal contamination into the soil environment. The fate of heavy metals introduced by FGD gypsum in sodic or saline-alkali soils is still unclear. This work aims to investigate the effects of FGD gypsum addition on the heavy metal distributions in a sodic soil. Original soil samples were collected from typical sodic land in north China. Soil column leaching tests were conducted to investigate the influence of FGD gypsum addition on the soil properties, especially on distribution profiles of the heavy metals (Pb, Cd, Cr, As, and Hg) in the soil layers. Results showed that pH, electrical conductivity, and exchangeable sodium percentage in amended soils were significantly reduced from 10.2 to 8.46, 1.8 to 0.2 dS/m, and 18.14% to 1.28%, respectively. As and Hg concentrations in the soils were found to be positively correlated with FGD gypsum added. The amount of Hg in the leachate was positively correlated with FGD gypsum application ratio, whereas a negative correlation was observed between the Pb concentration in the leachate and the FGD gypsum ratio. Results revealed that heavy metal concentrations in soils complied well with Environmental Quality Standard for Soils in China (GB15618-1995). This work helps to understand the fate of FGD gypsum-introduced heavy metals in sodic soils and provides a baseline for further environmental risk assessment associated with applying FGD gypsum for sodic soil remediation.

  10. Electric power bidding model for practical utility system

    Directory of Open Access Journals (Sweden)

    M. Prabavathi

    2018-03-01

    Full Text Available A competitive open market environment has been created due to the restructuring in the electricity market. In the new competitive market, mostly a centrally operated pool with a power exchange has been introduced to meet the offers from the competing suppliers with the bids of the customers. In such an open access environment, the formation of bidding strategy is one of the most challenging and important tasks for electricity participants to maximize their profit. To build bidding strategies for power suppliers and consumers in the restructured electricity market, a new mathematical framework is proposed in this paper. It is assumed that each participant submits several blocks of real power quantities along with their bidding prices. The effectiveness of the proposed method is tested on Indian Utility-62 bus system and IEEE-118 bus system. Keywords: Bidding strategy, Day ahead electricity market, Market clearing price, Market clearing volume, Block bid, Intermediate value theorem

  11. Light Duty Utility Arm system pre-operational (cold test) test plan

    International Nuclear Information System (INIS)

    Bennett, K.L.

    1995-01-01

    The Light Duty Utility (LDUA) Cold Test Facility, located in the Hanford 400 Area, will be used to support cold testing (pre- operational tests) of LDUA subsystems. Pre-operational testing is composed of subsystem development testing and rework activities, and integrated system qualification testing. Qualification testing will be conducted once development work is complete and documentation is under configuration control. Operational (hot) testing of the LDUA system will follow the testing covered in this plan and will be covered in a separate test plan

  12. The utility target market model

    International Nuclear Information System (INIS)

    Leng, G.J.; Martin, J.

    1994-01-01

    A new model (the Utility Target Market Model) is used to evaluate the economic benefits of photovoltaic (PV) power systems located at the electrical utility customer site. These distributed PV demand-side generation systems can be evaluated in a similar manner to other demand-side management technologies. The energy and capacity values of an actual PV system located in the service area of the New England Electrical System (NEES) are the two utility benefits evaluated. The annual stream of energy and capacity benefits calculated for the utility are converted to the installed cost per watt that the utility should be willing to invest to receive this benefit stream. Different discount rates are used to show the sensitivity of the allowable installed cost of the PV systems to a utility's average cost of capital. Capturing both the energy and capacity benefits of these relatively environmentally friendly distributed generators, NEES should be willing to invest in this technology when the installed cost per watt declines to ca $2.40 using NEES' rated cost of capital (8.78%). If a social discount rate of 3% is used, installation should be considered when installed cost approaches $4.70/W. Since recent installations in the Sacramento Municipal Utility District have cost between $7-8/W, cost-effective utility applications of PV are close. 22 refs., 1 fig., 2 tabs

  13. UTILIZATION OF MOODLE WEB SERVICE BASED SYSTEM TO SYSTEM WITH SIAKAD AND SSO UNS

    Directory of Open Access Journals (Sweden)

    Ristu Saptono

    2017-01-01

    Full Text Available The development of information technology in education allows for integration between systems so every system can be optimized. Elearning, SIAKAD, and SSO UNS are education system in UNS (Universitas Sebelas Maret but they are not integrated yet. Course data for elearning is still manual and SSO which can not be used to log into SIAKAD. In this study the integration of elearning, SIAKAD, and SSO utilizing REST web service and exchange data using JSON. As a result, the integration of additional system must use a bridge application as a customizer data between elearning and SIAKAD. While the results of the testing to include one course, 40 lecturers, and 40 students, including automatically enroll is 60.22 seconds, while the time required for unenroll lecturers and students is 2:13 seconds. To enroll course, lecturers and students when there are previously data was 28.5 seconds.

  14. Functions and requirements for the Light-Duty Utility Arm Integrated System. Revision 1

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1996-01-01

    The Light Duty Utility Arm (LDUA) Integrated System is a mobile robotic system designed to remotely deploy and operate a variety of tools in uninhabitable underground radiological and hazardous waste storage tanks. The system primarily provides a means to inspect, survey, monitor, map and/or obtain specific waste and waste tank data in support of the Tank Waste Remediation System (TWRS) mission at Hanford and remediation programs at other U.S. Department of Energy (DOE) sites

  15. Specifically Designed Constructed Wetlands: A Novel Treatment Approach for Scrubber Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    John H. Rodgers Jr; James W. Castle; Chris Arrington: Derek Eggert; Meg Iannacone

    2005-09-01

    A pilot-scale wetland treatment system was specifically designed and constructed at Clemson University to evaluate removal of mercury, selenium, and other constituents from flue gas desulfurization (FGD) wastewater. Specific objectives of this research were: (1) to measure performance of a pilot-scale constructed wetland treatment system in terms of decreases in targeted constituents (Hg, Se and As) in the FGD wastewater from inflow to outflow; (2) to determine how the observed performance is achieved (both reactions and rates); and (3) to measure performance in terms of decreased bioavailability of these elements (i.e. toxicity of sediments in constructed wetlands and toxicity of outflow waters from the treatment system). Performance of the pilot-scale constructed wetland treatment systems was assessed using two criteria: anticipated NPDES permit levels and toxicity evaluations using two sentinel toxicity-testing organisms (Ceriodaphnia dubia and Pimephales promelas). These systems performed efficiently with varied inflow simulations of FGD wastewaters removing As, Hg, and Se concentrations below NPDES permit levels and reducing the toxicity of simulated FGD wastewater after treatment with the constructed wetland treatment systems. Sequential extraction procedures indicated that these elements (As, Hg, and Se) were bound to residual phases within sediments of these systems, which should limit their bioavailability to aquatic biota. Sediments collected from constructed wetland treatment systems were tested to observe toxicity to Hyalella azteca or Chironomus tetans. Complete survival (100%) was observed for H. azteca in all cells of the constructed wetland treatment system and C. tentans had an average of 91% survival over the three treatment cells containing sediments. Survival and growth of H. azteca and C. tentans did not differ significantly between sediments from the constructed wetland treatment system and controls. Since the sediments of the constructed

  16. Industry-Government-University Cooperative Research Program for the Development of Structural Materials from Sulfate-Rich FGD Scrubber Sludge

    Energy Technology Data Exchange (ETDEWEB)

    V. M. Malhotra; Y. P. Chugh

    2003-08-31

    The main aim of our project was to develop technology, which converts flue gas desulfurization (FGD) sulfate-rich scrubber sludge into value-added decorative materials. Specifically, we were to establish technology for fabricating cost effective but marketable materials, like countertops and decorative tiles from the sludge. In addition, we were to explore the feasibility of forming siding material from the sludge. At the end of the project, we were to establish the potential of our products by generating 64 countertop pieces and 64 tiles of various colors. In pursuit of our above-mentioned goals, we conducted Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) measurements of the binders and co-processed binders to identify their curing behavior. Using our 6-inch x 6-inch and 4-inch x 4-inch high pressure and high temperature hardened stainless steel dies, we developed procedures to fabricate countertop and decorative tile materials. The composites, fabricated from sulfate-rich scrubber sludge, were subjected to mechanical tests using a three-point bending machine and a dynamic mechanical analyzer (DMA). We compared our material's mechanical performance against commercially obtained countertops. We successfully established the procedures for the development of countertop and tile composites from scrubber sludge by mounting our materials on commercial boards. We fabricated more than 64 pieces of countertop material in at least 11 different colors having different patterns. In addition, more than 100 tiles in six different colors were fabricated. We also developed procedures by which the fabrication waste, up to 30-weight %, could be recycled in the manufacturing of our countertops and decorative tiles. Our experimental results indicated that our countertops had mechanical strength, which was comparable to high-end commercial countertop materials and contained substantially larger inorganic content than the commercial products. Our

  17. Development of a utility system for nuclear reaction data file: WinNRDF

    International Nuclear Information System (INIS)

    Aoyama, Shigeyoshi; Ohbayasi, Yosihide; Masui, Hiroshi; Chiba, Masaki; Kato, Kiyoshi; Ohnishi, Akira

    2000-01-01

    A utility system, WinNRDF, is developed for charged particle nuclear reaction data of NRDF (Nuclear Reaction Data File) on the Windows interface. By using this system, we can easily search the experimental data of a charged particle nuclear reaction in NRDF than old retrieval systems on the mainframe and also see graphically the experimental data on GUI (Graphical User Interface). We adopted a mechanism of making a new index of keywords to put to practical use of the time dependent properties of the NRDF database. (author)

  18. A New Building-Integrated Wind Turbine System Utilizing the Building

    Directory of Open Access Journals (Sweden)

    Jeongsu Park

    2015-10-01

    Full Text Available This paper proposes an innovative building-integrated wind turbine (BIWT system by directly utilizing the building skin, which is an unused and unavailable area in all conventional BIWT systems. The proposed system has been developed by combining a guide vane that is able to effectively collect the incoming wind and increase its speed and a rotor with an appropriate shape for specific conditions. To this end, several important design issues for the guide vane as well as the rotor were thoroughly investigated and accordingly addressed in this paper. A series of computational fluid dynamics (CFD analyses was performed to determine the optimal configuration of the proposed system. Finally, it is demonstrated from performance evaluation tests that the prototype with the specially designed guide vane and rotor for the proposed BIWT system accelerates the wind speed to a sufficient level and consequently increases the power coefficient significantly. Thus, it was confirmed that the proposed system is a promising environment-friendly energy production system for urban areas.

  19. An Analysis/Synthesis System of Audio Signal with Utilization of an SN Model

    Directory of Open Access Journals (Sweden)

    G. Rozinaj

    2004-12-01

    Full Text Available An SN (sinusoids plus noise model is a spectral model, in which theperiodic components of the sound are represented by sinusoids withtime-varying frequencies, amplitudes and phases. The remainingnon-periodic components are represented by a filtered noise. Thesinusoidal model utilizes physical properties of musical instrumentsand the noise model utilizes the human inability to perceive the exactspectral shape or the phase of stochastic signals. SN modeling can beapplied in a compression, transformation, separation of sounds, etc.The designed system is based on methods used in the SN modeling. Wehave proposed a model that achieves good results in audio perception.Although many systems do not save phases of the sinusoids, they areimportant for better modelling of transients, for the computation ofresidual and last but not least for stereo signals, too. One of thefundamental properties of the proposed system is the ability of thesignal reconstruction not only from the amplitude but from the phasepoint of view, as well.

  20. Technical and economic feasibility of a solar-bio-powered waste utilization and treatment system in Central America.

    Science.gov (United States)

    Aguilar Alvarez, Ronald Esteban; Bustamante Roman, Mauricio; Kirk, Dana; Miranda Chavarria, Jose Alberto; Baudrit, Daniel; Aguilar Pereira, Jose Francisco; Rodriguez Montero, Werner; Reinhold, Dawn; Liao, Wei

    2016-12-15

    The purpose of this study was to implement and evaluate a pilot-scale and closed-loop system that synergistically combines solar thermal collector, anaerobic digester, and constructed treatment wetland to simultaneously treat and utilize organic wastes. The system utilizes 863 kg of mixed animal and food wastes to generate 263 MJ renewable energy, produced 28 kg nitrogen and phosphorus fertilizer, and reclaimed 550 kg water per day. The net revenue considering electricity and fertilizer was $2436 annually. The payback period for the system is estimated to be 17.8 years for a relatively dilute waste stream (i.e., 2% total solids). The implemented system has successfully demonstrated a self-efficient and flexible waste utilization and treatment system. It creates a win-win solution to satisfy the energy needs of the community and address environmental concerns of organic wastes disposal in the region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Solar heating and cooling system for an office building at Reedy Creek Utilities

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    This final report describes in detail the solar energy system installed in a new two-story office building at the Reedy Creek Utilities Company, which provides utility service to Walt Disney World at Lake Buena Vista, Florida. The solar components were partly funded by the Department of Energy under Contract EX-76-C-01-2401, and the technical management was by NASA/George C. Marshall Space Flight Center. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The collector is a modular cylindrical concentrator type with an area of 3.840 square feet. The storage medium is water with a capacity of 10,000 gallons hot and 10,000 gallons chilled. Design, construction, operation, cost, maintenance, and performance are described in depth. Detailed drawings are included.

  2. Entrez Programming Utilities

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Entrez Programming Utilities (E-utilities) are a set of eight server-side programs that provide a stable interface into the Entrez query and database system at...

  3. Fiscal 1997 survey report. Feasibility study of the environmentally friendly type coal utilization system (survey of the coal utilization in Pakistan); 1997 nendo chosa hokokusho. Kankyo chowagata sekitan riyo system kanosei chosa (Pakistan ni okeru sekitan riyo gaikyo chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This paper made a literature survey, hearing survey, site survey/study on the coal in Pakistan such as the coal utilization system and the environmental situation, etc., and aimed at pre-examination for the survey of the introduction of the environmentally friendly type coal utilization system to be planned in Pakistan in the future. The examination, data collection and preparation were conducted in terms of the following items: the structure of coal consumption in energy supply, structure of coal consumption, mainly of domestic brown coal consumption, the situation of coal utilization by industry and by region, environmental problems caused by coal utilization such as air pollution, the trend of policies of environmental regulation, etc. The literature on the following was obtained and surveyed: the situation of economy/energy in Pakistan, coal utilization technology by industrial field, and environmental protection technology. The hearing survey was made to institutions concerned, corporation groups and men of learning and experience. Site surveys were conducted for the typically selected coal utilization equipment and existing environmental protection equipment. 66 figs., 56 tabs.

  4. Utilization of medical services in the public health system in the Southern Brazil.

    Science.gov (United States)

    Bastos, Gisele Alsina Nader; Duca, Giovâni Firpo Del; Hallal, Pedro Curi; Santos, Iná S

    2011-06-01

    To estimate the prevalence and analyze factors associated with the utilization of medical services in the public health system. Cross-sectional population-based study with 2,706 individuals aged 20-69 years carried out in Pelotas, Southern Brazil, in 2008. A systematic sampling with probability proportional to the number of households in each sector was adopted. The outcome was defined by the combination of the questions related to medical consultation in the previous three months and place. The exposure variables were: sex, age, marital status, level of schooling, family income, self-reported hospital admission in the previous year, having a regular physician, self-perception of health, and the main reason for the last consultation. Descriptive analysis was stratified by sex and the analytical statistics included the use of the Wald test for tendency and heterogeneity in the crude analysis and Poisson regression with robust variance in the adjusted analysis, taking into consideration cluster sampling. The prevalence of utilization of medical services in the three previous months was 60.6%, almost half of these (42.0%, 95%CI: 36.6;47.5) in public services. The most utilized public services were the primary care units (49.5%). In the adjusted analysis stratified by sex, men with advanced age and young women had higher probability of using the medical services in the public system. In both sexes, low level of schooling, low per capita family income, not having a regular physician and hospital admission in the previous year were associated with the outcome. Despite the expressive reduction in the utilization of medical health services in the public system in the last 15 years, the public services are now reaching a previously unassisted portion of the population (individuals with low income and schooling).

  5. Integrated Renewable Hydrogen Utility System (IRHUS) business plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This business plan is for a proposed legal entity named IRHUS, Inc. which is to be formed as a subsidiary of Energy Partners, L.C. (EP) of West Palm Beach, Florida. EP is a research and development company specializing in hydrogen proton exchange membrane (PEM) fuel cells and systems. A fuel cell is an engine with no moving parts that takes in hydrogen and produces electricity. The purpose of IRHUS, Inc. is to develop and manufacture a self-sufficient energy system based on the fuel cell and other new technology that produces hydrogen and electricity. The product is called the Integrated renewable Hydrogen utility System (IRHUS). IRHUS, Inc. plans to start limited production of the IRHUS in 2002. The IRHUS is a unique product with an innovative concept in that it provides continuous electrical power in places with no electrical infrastructure, i.e., in remote and island locations. The IRHUS is a zero emissions, self-sufficient, hydrogen fuel generation system that produces electricity on a continuous basis by combining any renewable power source with hydrogen technology. Current plans are to produce a 10 kilowatt IRHUS MP (medium power). Future plans are to design and manufacture IRHUS models to provide power for a variety of power ranges for identified attractive market segments. The technological components of the IRHUS include an electrolyzer, hydrogen and oxygen storage subsystems, fuel cell system, and power control system. The IRHUS product is to be integrated with a variety of renewable energy technologies. 5 figs., 10 tabs.

  6. Fiscal 1996 survey report on the environmentally friendly type coal utilization system feasibility study. Feasibility study of the environmentally friendly type coal utilization system in the Philippines; Kankyo chowagata sekitan riyo system kanosei chosa. Philippines ni okeru kankyo chowagata sekitan riyo system kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Grasping the present situation of coal utilization technology in the Philippines, the paper proposed a feasibility study of introduction of the environmentally friendly type coal utilization system which seems to be needed in the future. (1) Introduction of the environmentally friendly type coal utilization system in the electric power generation sector: there are only four full-scale running coal thermal power plants in the Philippines. In the future, several coal thermal plants are planned to be constructed by 2005, but for the new installation, it is desirable to adopt fluidized bed boilers with wide application to coal kinds. In case of 0.3-1.0 million MW class plants, it is planned to adopt high grade import coals, and it will be natural to fire pulverized coal. For the processing of flue gas, it is a must to install desulfurization facilities and smoke/soot removal devices. (2) Utilization/development of domestic low grade coals: at the mine-mouth generating plant, it is necessary to investigate the economically minable amount of coal, confirm productivity, survey coal quality, etc., and select boiler. As to coal briquetting technology, it is necessary to examine coal quality for tests and make a thorough study of what technology is most suitable. 50 figs., 78 tabs.

  7. Development of the advanced coolside sorbent injection process for SO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Withum, J.A.; Maskew, J.T.; Rosenhoover, W.A. [Consol, Inc., Library, PA (United States)] [and others

    1995-11-01

    The goal of this work was to develop a low-capital-cost process capable of over 90% SO{sub 2} removal as an economically attractive option for compliance with the Clean Air Act. The Advanced Coolside Process uses a contactor to simultaneously remove fly ash and saturate the flue gas with water, followed by sorbent injection into the highly humid flue gas and collection of the sorbent by the existing particulate collector High sorbent utilization is achieved by sorbent recycle. The original performance targets of 90% SO{sub 2} removal and 60% sorbent utilization were exceeded in 1000 acfm pilot plant operations using commercial hydrated lime as the only sorbent. Process optimization simplified the process equipment, resulting in significant cost reduction. Recent accomplishments include completion of equipment testing and sorbent optimization, a waste management study, and a long-term performance test. An economic evaluation for the optimized process projects capital costs 55% to 60 % less than those of limestone forced oxidation wet FGD. The projected levelized control cost is 15% to 35% lower than wet FGD (25% lower for a 260 MWe plant burning a 2.5% sulfur coal), depending on plant size and coal sulfur content.

  8. KAJIAN PERENCANAAN PEMBENTUKAN TPA REGIONAL Rencana Daerah Layanan Kota Banjarbaru, Banjarmasin Dan Martapura

    Directory of Open Access Journals (Sweden)

    Rizki Puteri Mahyudin

    2016-05-01

    Full Text Available This research is intended to investigate (a the garbage growth projection, (b the condition of Final Garbage Destination (FGD for Banjarbaru, Banjarmasin and Martapura, (c the planning concept on regional FGD, (d the landfill model, planning component and technique component priorities on regional FGD for Banjarbaru, Banjarmasin and Martapura. The used method is survey namely deep interview using questionnaire to 14 people that involved in FGD management; and observation. The data analysis covers geometric method, Analytical Hierarchy Process (AHP, Strength Weakness Opportunity Threat (SWOT and descriptive analysis. The population growth in Banjarbaru (2,4% is higher than Banjarmasin (1,8% and Martapura (1,7%. From projection of population growth, the projection of garbage growth can be calculated. Up to 2033, projection of total garbage growth for those cities will be obtained 3.339.762.228 kg that needs about 38,92 ha for FGD land based on the assumption that the project is started from 2014. The Regulation Number 18 Year 2008 about garbage management states that the open dumping is forbidden. Until now, the FGD in those cities still use open dumping because of limited finance, equipment and facilities. Because of the increasing of garbage, it needs a well planned FGD management that is not polluting environment through regional cooperation FGD. SWOT analysis result shows that finance and human resouce quality is the most important thing that should be considered for government in making decision. The result of Analytical Hierarchy Process shows that the selected model landfill is sanitary landfill. The first priority for planning component of FGD is government regulation (decision, and the first priority for technique component is recycling and loading garbage.

  9. Utility of CRISPR/Cas9 systems in hematology research.

    Science.gov (United States)

    Lucas, Daniel; O'Leary, Heather A; Ebert, Benjamin L; Cowan, Chad A; Tremblay, Cedric S

    2017-10-01

    Since the end of the 20th century, novel approaches have emerged to manipulate experimental models of hematological disorders so that they more accurately mirror what is observed in the clinical setting. Despite these technological advances, the characterization of crucial genes for benign or malignant hematological disorders remains challenging, given the dynamic nature of the hematopoietic system and the genetic heterogeneity of these disorders. To overcome this limitation, genome-editing technologies have been developed to manipulate the genome specifically via deletion, insertion, or modification of targeted loci. These technologies have progressed swiftly, allowing their common use to investigate genetic function in experimental hematology. Among them, homologous-recombination-mediated targeting technologies have facilitated the manipulation of specific loci by generating knock-out and knock-in models. Despite promoting significant advances in our understanding of the molecular mechanisms involved in hematology, these inefficient, time-consuming, and labor-intensive approaches did not permit the development of cellular or animal models, recapitulating the complexity of hematological disorders. On October 26, 2016, Drs. Ben Ebert and Chad Cowan shared their knowledge of and experience with the utilization of CRISPR for models of myeloid malignancy, disease, and novel therapeutics in an International Society for Experimental Hematology webinar titled "Utility of CRISPR/Cas9 Systems in Hematology Research." Here, we provide an overview of the topics they covered, including their insights into the novel applications of the technique and its strengths and limitations. Copyright © 2017 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  10. Power Struggle: Changing Momentum in the Restructured American Electric Utility System

    International Nuclear Information System (INIS)

    Hirsh, Richard F.

    2004-01-01

    Since the 1970's, producing and distributing electricity were considered as a natural monopoly. They were subjected to state regulation meant to defend the consumers' interest but which in reality enhanced the power of utility managers. The changes that happened since questioned the managers' control over the system. Following the technological stasis that occurred in the production of electricity, the oil crisis, and the awakening of the environmental movement, the Government adopted the Public Utility Regulatory Policies Act in 1978, favoring the coming of cogeneration technologies benefiting the small producers. Market economy tended to replace natural monopoly. Deregulation became a valuable option and was stimulated by the 1992 Energy Policy Act. However, the electrical crisis in California and the recent blackout over part of the continent slowed down the pace of the change

  11. Geographic information system in marine biology: Way for sustainable utilization of living resources

    Digital Repository Service at National Institute of Oceanography (India)

    Chavan, V.S.; Sreepada, R.A.

    Sustainable utilization of aquatic living resources needs accurate assessment. This stress the need for use of Geographic Information System (GIS). In the recent past interest has been generated for use of GIS in various areas of biological...

  12. Cost estimation of hydrogen and DME produced by nuclear heat utilization system II

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Nishihara, Tetsuo

    2004-09-01

    Utilization and production of hydrogen has been studied in order to spread utilization of the hydrogen energy in 2020 or 2030. It will take, however, many years for the hydrogen energy to be used very easily like gasoline, diesel oil and city gas in the world. During the periods, low CO 2 release liquid fuels would be used together with hydrogen. Recently, di-methyl-ether (DME). has been noticed as one of the substitute liquid fuels of petroleum. Such liquid fuels can be produced from the mixed gas such as hydrogen and carbon oxide which are produced from natural gas by steam reforming. Therefore, the system would become one of the candidates of future system of nuclear heat utilization. Following the study in 2002, we performed economic evaluation of the hydrogen and DME production by nuclear heat utilization plant where heat generated by HTGR is completely consumed for the production. The results show that hydrogen price produced by nuclear was about 17% cheaper than the commercial price by increase in recovery rate of high purity hydrogen with increased in PSA process. Price of DME in indirect method produced by nuclear heat was also about 17% cheaper than the commercial price by producing high purity hydrogen in the DME producing process. As for the DME, since price of DME produced near oil land in petroleum exporting countries is cheaper than production in Japan, production of DME by nuclear heat in Japan has disadvantage economically in this time. Trial study to estimate DME price produced by direct method was performed. From the present estimation, utilization of nuclear heat for the production of hydrogen would be more effective with coupled consideration of reduction effect of CO 2 release. (author)

  13. The importance of utility systems in today's biorefineries and a vision for tomorrow.

    Science.gov (United States)

    Eggeman, Tim; Verser, Dan

    2006-01-01

    Heat and power systems commonly found in today's corn processing facilities, sugar mills, and pulp and paper mills will be reviewed. We will also examine concepts for biorefineries of the future. We will show that energy ratio, defined as the ratio of renewable energy produced divided by the fossil energy input, can vary widely from near unity to values greater than 12. Renewable-based utility systems combined with low-fossil input agricultural systems lead to high-energy ratios.

  14. PHOBINS: an index file of photon production cross section data and its utility code system

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Koyama, Kinji; Ido, Masaru; Hotta, Masakazu; Miyasaka, Shun-ichi

    1978-08-01

    The code System PHOBINS developed for reference of photon production cross sections is described in detail. The system is intended to grasp the present status of photon production data and present the information of available data. It consists of four utility routines, CREA, UP-DT, REF and BACK, and data files. These utility routines are used for making an index file of the photon production cross sections, updating the index file, searching the index file and producing a back-up file of the index file. In the index file of the photon production cross sections, a data base system is employed for efficient data management in economical storage, ease of updating and efficient reference. The present report is a reference manual of PHOBINS. (author)

  15. Utilization of KSC Present Broadband Communications Data System for Digital Video Services

    Science.gov (United States)

    Andrawis, Alfred S.

    2002-01-01

    This report covers a visibility study of utilizing present KSC broadband communications data system (BCDS) for digital video services. Digital video services include compressed digital TV delivery and video-on-demand. Furthermore, the study examines the possibility of providing interactive video on demand to desktop personal computers via KSC computer network.

  16. Development of an integrated utilities billing management system for the Navy Public Works Center San Diego, California

    International Nuclear Information System (INIS)

    Monsabert, S. de; Lemmer, H.; Dinwiddie, D.; Harshberger, M.

    1995-01-01

    In the past, most buildings, structures, and ship visits were not metered, and flat estimates were calculated based on various estimating techniques. The decomposition process was further complicated by the fact that many of the meters monitor consumption values only and do not provide demand or time of use data. This method of billing provides no incentives to the PWC customers to implement energy conservation programs, including load shedding, Energy Monitoring and Control Systems (EMCS), building shell improvements, low flow toilets and shower heads, efficient lighting systems, or other energy savings alternatives. Similarly, the method had no means of adjustment for seasonal or climatic variations outside of the norm. As an alternative to flat estimates, the Customized Utility Billing Integrated Control (CUBIC) system and the Graphical Data Input System (GDIS) were developed to better manage the data to the major claimant area users based on utilities usage factors, building size, weather data, and hours of operation. GDIS is a graphical database that assists PWC engineers in the development and maintenance of single-line utility diagrams of the facilities and meters. It functions as a drawing associate system and is written in AutoLISP for AutoCAD version 12. GDIS interprets the drawings and provides the facility-to-meter and meter-to-meter hierarchy data that are used by the CUBIC to allocate the billings. This paper reviews the design, development and implementation aspects of CUBIC/GDIS and discusses the benefits of this improved utilities management system

  17. A preliminary assessment of system cost impacts of using transportable storage casks and other shippable metal casks in the utility/DOE spent fuel management system

    International Nuclear Information System (INIS)

    Johnson, E.R.

    1988-01-01

    In view of the foregoing, a study was conducted by E.R. Johnson Associates, Inc. and H and R Technical Associates, Inc. to determine the prospective viability of the use of TSCs and shippable SOCs in the combined utility/DOE system. This study considered costs, ALARA considerations and the logistics of the use and delivery of casks to the DOE system by utilities. It was intended that this study would result in a technical and cost resource base that could be used for evaluating various strategies and scenarios for deploying TSCs or SOCs in the combined utility/DOE spent fuel management system with respect to the prospective economic advantage that could be realized

  18. FY 2000 report on the results of the development of the environmentally friendly type high efficiency energy utilization system. Part 2. Study of the effective utilization technology of high efficiency energy (Study of the optimum system design technology); 2000 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu seika hokokusho. 2. Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    The paper conducted the development of the environmentally friendly type high efficiency energy utilization system and the R and D of the high efficiency energy effective utilization technology, and the FY 2000 results were summed up. As to the energy transportation/storage technology, the R and D were made on the following: methanol/energy system, non-equilibrium high efficiency methanol decomposition reaction technology, development of multiple functions of catalyst, high efficiency heat pump technology using hydrogen storage alloys, heat-hydrogen recovery/transportation/utilization technology, vacuum insulated heat transport piping system, surfactant used for high density heat transport, high density latent heat transportation technology, etc. Concerning the energy supply/utilization technology, the R and D were made of the heat supply system using high efficient heat pump corresponding to multiple fuels. Relating to the environmental load reduction technology, the energy conserved heat pump system using natural coolant. As to the optimum system design technology, the comprehensive preparation of element technology, etc. (NEDO)

  19. Common data buffer system. [communication with computational equipment utilized in spacecraft operations

    Science.gov (United States)

    Byrne, F. (Inventor)

    1981-01-01

    A high speed common data buffer system is described for providing an interface and communications medium between a plurality of computers utilized in a distributed computer complex forming part of a checkout, command and control system for space vehicles and associated ground support equipment. The system includes the capability for temporarily storing data to be transferred between computers, for transferring a plurality of interrupts between computers, for monitoring and recording these transfers, and for correcting errors incurred in these transfers. Validity checks are made on each transfer and appropriate error notification is given to the computer associated with that transfer.

  20. Design of Tomato Drying System by Utilizing Brine Geothermal

    Science.gov (United States)

    Afuar, W.; Sibarani, B.; Abdurrahman, G.; Hendrarsakti, J.

    2016-09-01

    Cultivation of tomato plants in Indonesia has been started since 1961.Tomatoes generally will rot in three days if left on storage. Moreover, low quality tomatoes have cheaper price. After harvested, tomatoes need to be treated by drying process so it can last longer. Energy for drying tomatoes can be obtained by utilizing heat from geothermal brine. Purpose of this research is to design a tomato drying system by extracting heat of geothermal brine from separator with certain flow rate to heat up water by using a heat exchanger. Furthermore, this water will be used to heat up the surrounding air which is circulated by blower system to heat up the tomatoes chamber. Tomatoes drying process needs temperature range of 50-70°C to evaporate water content from 95.7% to 26%. After that treatment, the tomatoes are expected to have better durability. The objective of this study is to determine the quantity of hot brine which is needed for drying tomatoes and to design a drying system so that tomatoes can last longer.

  1. Modular-multiplex or single large power plants-advantages and disadvantages for utility systems

    International Nuclear Information System (INIS)

    Endicott, R.D.

    1986-01-01

    The question of growing interest in the fusion community is what size and type configuration fusion reactor(s) will lead to the most economical and attractive fusion power plant? There are two sides to this question. One involves how to build the most economical and attractive fusion reactor. This question which requires evaluation of reactor components within the reactor system is being examined at the Fusion Engineering Design Center (FEDC) and elsewhere. The other side involves examining the issues associated with the most economical size and configuration reactor to use. This question requires the evaluation of the changes in cost of service due to different size and configuration reactors on a utility system. The authors objective was to explore the advantages and disadvantages of using modular-multiplex power plants and to illustrate a means of quantifying the tradeoffs. The effort resulted in the identification of the key parameters involved in selecting the optimum size plant for a utility system and a better understanding of the tradeoffs that are possible. This paper discusses this effort in detail

  2. Achievement report for fiscal 1998 on development of environmentally friendly high-efficiency energy utilization system. 2. Research of technology of effectively utilizing high-efficiency energy / research of optimum system designing technology; 1998 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu. 2. Kokoritsu energy yuko riyo gijutsu no kenkyu, saiteki system sekkei gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This 2nd volume deals with the transportation and storage of energy in the above-named research. In search of technologies for transporting exhausted heat from the industrial area to the urban section for consumers to utilize the heat for driving their air-conditioners and hot water supply systems, the decomposition and composition reactions of methanol are utilized for a long-range transportation system. The subjects taken up in this connection include the research and development of a methanol energy system, non-equilibrium high-efficiency methanol decomposition technology, multifunctional catalysts, and highly active/selective catalysts capable of promoting reversible endoergic/exoergic reactions. Research and development is also conducted of a high-efficiency heat pump technology using hydrogen-absorbing alloys, and such a pump will realize an air-conditioning system not dependent on chlorofluorocarbon. In the research and development of a long-range heat transportation system using hydrogen-absorbing alloys, a study is made of technologies of heat/hydrogen recovery, transportation, and utilization. (NEDO)

  3. Good news to use from the environmental front: coal combustion products as an environmental success story

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.N. [ISG Resources, Inc., Salt Lake City, UT (United States)

    2002-07-01

    ISG Resources in the USA's largest manager and marketer of coal combustion products, involved also in developing new technologies and applications for treatment and use of fly ash, bottom ash, boiler slag and FGD by-products. The paper, outlined in a series of 14 overheads, describes the USA's successes and initiatives so far in coal combustion products utilization. Further opportunities for the coal industry were discussed. The industry is encouraged to become involved now in carbon trading mechanisms for fly ash utilization displacing cement production.

  4. A novel phase-change cement composite for thermal energy storage: Fabrication, thermal and mechanical properties

    International Nuclear Information System (INIS)

    Zhang, He; Xing, Feng; Cui, Hong-Zhi; Chen, Da-Zhu; Ouyang, Xing; Xu, Su-Zhen; Wang, Jia-Xin; Huang, Yi-Tian; Zuo, Jian-Dong; Tang, Jiao-Ning

    2016-01-01

    Highlights: • A novel flaky graphite-doped phase-change microcapsule (FGD-MPCM) was prepared. • FGD-MPCM has substantial latent heat storage capacity (135.8 J/g). • FGD-MPCMs/cement composite is capable of reducing indoor temperature fluctuation. • Compressive strength of cement composite with 30% FGD-MPCMs can reach to 14.2 MPa. - Abstract: Facing upon the increasingly severe energy crisis, one of the key issues for reducing the building energy consumption is to pursue high-performance thermal energy storage technologies based on phase-change materials. In this study, a novel cement composite incorporated with flaky graphite-doped microencapsulated phase-change materials (FGD-MPCMs) was developed. Various techniques, such as field emission-scanning electron microscopy (FE-SEM), optical microscopy (OM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to analyse the composite structure and thermal performances. The results indicate that the spherical microcapsules are well dispersed in the cement matrix. When combined within the cement, the thermal stability of the microcapsules was highly improved, and the inclusion of greater amounts of FGD-MPCMs further increased the latent heat of the composite. The mechanical properties of the cement composites were affected with the increase of FGD-MPCMs dosage and the porosity of the composites. In spite of this, the compressive strength and flexural strength of the cement composite with 30% FGD-MPCM could still reach to as high as 14.2 MPa and 4.1 MPa, respectively. Results from the infrared thermography and the model room test suggested that the composite filled with FGD-MPCMs is capable of reducing indoor temperature fluctuation and exhibits good potential for application in buildings to enhance energy savings and thermal comfort.

  5. Use of clean coal technology by-products as agricultural liming techniques

    Energy Technology Data Exchange (ETDEWEB)

    Stehouwer, R.C.; Sutton, P.; Dick, W.A. [Ohio Agricultural Research and Development Center, Wooster, OH (United States). Dept. of Agronomy

    1995-03-01

    Dry flue gas desulfurization (FGD) by-products are mixtures of coal fly-ash, anhydrite (CaCO{sub 4}), and unspent lime- or limestone-based sorbent. Dry FGD by-products frequently have neutralizing values greater than 50% CaCO{sub 3} equivalency and thus have potential for neutralizing acidic soils. Owing to the presence of soluble salts and various trace elements, however, soil application of dry FGD by-products may have adverse effects on plant growth and soil quality. The use of a dry FGD by-product as a limestone substitute was investigated in a field study on three acidic agricultural soils (pH 4.6, 4.8, and 5.8) in eastern Ohio. The by-product (60% CaCO{sub 3} equivalency) was applied in September, 1992, at rates of 0, 0.5, 1.0, and 2.0 times the lime requirement of the soils, and alfalfa (Medicago sativa L.) and corn (Zea mays L.) were planted. Soils were sampled immediately after FGD application and three more times every six months thereafter. Samples were analyzed for pH and water soluble concentrations of 28 elements. Soil pH was increased by all FGD rates in the zone of incorporation (0--10 cm), with the highest rates giving a pH slightly above 7. Within one year pH increases could be detected at depths up to 30 cm. Calcium, Mg, and S increased, and Al, Mn, and Fe decreased with increasing dry FGD application rates. No trace element concentrations were changed by dry FGD application except B which was increased in the zone of incorporation. Dry FGD increased alfalfa yield on all three soils, and had no effect on corn yield. No detrimental effects on soil quality were observed.

  6. An Innovative System for the Efficient and Effective Treatment of Non-Traditional Waters for Reuse in Thermoelectric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    John Rodgers; James Castle

    2008-08-31

    This study assessed opportunities for improving water quality associated with coal-fired power generation including the use of non-traditional waters for cooling, innovative technology for recovering and reusing water within power plants, novel approaches for the removal of trace inorganic compounds from ash pond effluents, and novel approaches for removing biocides from cooling tower blowdown. This research evaluated specifically designed pilot-scale constructed wetland systems for treatment of targeted constituents in non-traditional waters for reuse in thermoelectric power generation and other purposes. The overall objective of this project was to decrease targeted constituents in non-traditional waters to achieve reuse criteria or discharge limitations established by the National Pollutant Discharge Elimination System (NPDES) and Clean Water Act (CWA). The six original project objectives were completed, and results are presented in this final technical report. These objectives included identification of targeted constituents for treatment in four non-traditional water sources, determination of reuse or discharge criteria for treatment, design of constructed wetland treatment systems for these non-traditional waters, and measurement of treatment of targeted constituents in non-traditional waters, as well as determination of the suitability of the treated non-traditional waters for reuse or discharge to receiving aquatic systems. The four non-traditional waters used to accomplish these objectives were ash basin water, cooling water, flue gas desulfurization (FGD) water, and produced water. The contaminants of concern identified in ash basin waters were arsenic, chromium, copper, mercury, selenium, and zinc. Contaminants of concern in cooling waters included free oxidants (chlorine, bromine, and peroxides), copper, lead, zinc, pH, and total dissolved solids. FGD waters contained contaminants of concern including arsenic, boron, chlorides, selenium, mercury

  7. Monoclonal antibodies from rats immunized with fragment D of human fibrinogen

    International Nuclear Information System (INIS)

    Kennel, S.J.; Chen, J.P.; Lankford, P.K.; Foote, L.J.

    1981-01-01

    Fischer rats were immunized with fragment D (Fg-D) of human fibrinogen (Fg) to obtain antibody specific for neoantigens unique to this molecule. Absorption of serum with whole Fg indicated that some of the antibody produced reacted preferentially with Fg-D. Hybridoma cultures were prepared by fusion of immune rat spleen cells with mouse myeloma P3-X63-Ag8. Monoclonal antibodies obtained from these cultures fell into two classes: (a) Those reacting equally well with Fg and Fg-D. (b) Those reacting preferentially but not absolutely wth Fg-D. Antibody from hybridoma 104-14, a member of the first group had an affinity for Fg-D of 1.5 x 10 9 M -1 while antibodies from 106-59 and 106-71 (group 2) demonstrated much lower affinities of 1.0 x 10 7 and 4.7 x 10 6 M -1 , respectively. The cross reactivity of antibodies in the second group indicated that they react with protein conformations that are altered during production of Fg-D from Fg

  8. Utility requirements for HTGRs

    International Nuclear Information System (INIS)

    Nicholls, D.R.

    1997-01-01

    Eskom, the state utility of South Africa, is currently evaluating the technical and economic feasibility of the helium cooled Pebble Bed Modular Reactor with a closed cycle gas turbine power conversion system for future power generating additions to its electric system. This paper provides an overview of the Eskom system including the needs of the utility for future generation capacity and the key performance requirements necessary for incorporation of this gas cooled reactor plant. (author)

  9. Effects of Home Energy Management Systems on Distribution Utilities and Feeders Under Various Market Structure; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.; Pratt, A.; Lunacek, M.; Mittal, S.; Wu, H.; Jones, W.

    2015-06-15

    The combination of distributed energy resources (DER) and retail tariff structures to provide benefits to both utility consumers and the utilities is not well understood. To improve understanding, an Integrated Energy System Model (IESM) is being developed to simulate the physical and economic aspects of DER technologies, the buildings where they reside, and feeders servicing them. The IESM was used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers’ electric bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load. used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers’ electric bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load.

  10. Hualapai Tribal Utility Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Hualapai Tribal Nation

    2008-05-25

    The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central power grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribe’s tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon

  11. Nuclear energy and professional engineers. Possibility of utilization of professional engineer system

    International Nuclear Information System (INIS)

    Tanaka, Shunichi; Nariai, Hideki; Madarame, Haruki; Hattori, Takuya; Kitamura, Masaharu; Fujie, Takao

    2008-01-01

    Nuclear and radiation professional engineer system started in 2004 and more than 250 persons have passed the second-step professional engineer examination, while more than 1,000 persons for the first-step examination. This special issue on possibility of utilization of professional engineer system consists of six relevant articles from experts of nuclear organizations and academia. They expect the role of professional engineer in the area of nuclear energy to enhance technology advancement and awareness of professional ethics from their respective standpoints. (T. Tanaka)

  12. Safety study on nuclear heat utilization system - accident delineation and assessment on nuclear steelmaking pilot plant

    International Nuclear Information System (INIS)

    Yoshida, T.; Mizuno, M.; Tsuruoka, K.

    1982-01-01

    This paper presents accident delineation and assessment on a nuclear steelmaking pilot plant as an example of nuclear heat utilization systems. The reactor thermal energy from VHTR is transported to externally located chemical process plant employing helium-heated steam reformer by an intermediate heat transport loop. This paper on the nuclear steelmaking pilot plant will describe (1) system transients under accident conditions, (2) impact of explosion and fire on the nuclear reactor and the public and (3) radiation exposure on the public. The results presented in this paper will contribute considerably to understanding safety features of nuclear heat utilization system that employs the intermediate heat transport loop and the helium-heated steam reformer

  13. Utilization of atomic energy in Asia and nuclear nonproliferation system

    International Nuclear Information System (INIS)

    Ishii, Makoto

    1995-01-01

    The economical growth in East Asia is conspicuous as it was called East Asian Miracle, and also the demand of energy increased rapidly. The end of Cold War created the condition for the further development in this district. Many countries advanced positively the plan of atomic energy utilization, and it can be said that the smooth progress of atomic energy utilization is the key for the continuous growth in this district in view of the restriction of petroleum resources and its price rise in future and the deterioration of global environment. The nuclear nonproliferation treaty (NPT) has accomplished large role, but also its limitation became clear. At present, there is not the local security system in Asia, but in order that the various countries in Asia make the utilization of atomic energy and the security compatible, it is useful to jointly develop safety technology, execute security measures and form the nuclear fuel cycle as Asia. Energy and environmental problems in Asia are reported. Threat is essentially intention and capability, and the regulation only by capability regardless of intention brings about unrealistic result. The limitation of the NPT is discussed. The international relation of interdependence deepends after Cold War, and the security in Asia after Cold War is considered. As the mechanism of forming the nuclear fuel cycle for whole Asia, it is desirable to realize ASIATOM by accumulating the results of possible cooperation. (K.I.)

  14. Studies of an application of mobile communication system to the private telecommunication network. Part 2. Trend of mobile communication systems and application to power utility; Idotai tsushin system no denryoku tsushinmo eno tekiyo. 2. Idotai tsushin system no genjo to denki jigyo eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, H. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-06-01

    This paper presents future prospects on development of different mobile communication systems operated by public communications operators, and discusses their application to power utilities. For automobile and cellular telephones, discussions are being made on the code division multiple access (CDMA) system which multiplexes and transmits information by using tally codes. Influence of noise decreases, and so does the need of retransmission due to code errors. Higher speed transmission than conventional systems may be expected. The system can be utilized for transmitting still images, such as for status of construction being carried out by power utility companies. For PHS, a discussion will start on 32 to 64-kbps transmission in fiscal 1997. By using the system together with an image compression technology, the system may be expected of utilization as a moving image transmission method for supporting site works by utility companies. The low and medium orbit satellite communications whose use is scheduled to start shortly can be utilized as construction and emergency disaster communication networks for mountainous areas and islands. Movements around the frequency band utilization and communication systems of IMT-2000 are becoming more complex. The Japanese proposal plans transmission of moving images, whereas more diverse utilization can be expected, such as for voice, data and images, in areas where no ground communication facilities are available for electric power operations. 16 refs., 4 figs., 3 tabs.

  15. Site utility system optimization with operation adjustment under uncertainty

    International Nuclear Information System (INIS)

    Sun, Li; Gai, Limei; Smith, Robin

    2017-01-01

    Highlights: • Uncertainties are classified into time-based and probability-based uncertain factors. • Multi-period operation and recourses deal with uncertainty implementation. • Operation scheduling are specified at the design stage to deal with uncertainties. • Steam mains superheating affects steam distribution and power generation in the system. - Abstract: Utility systems must satisfy process energy and power demands under varying conditions. The system performance is decided by the system configuration and individual equipment operating load for boilers, gas turbines, steam turbines, condensers, and let down valves. Steam mains conditions in terms of steam pressures and steam superheating also play important roles on steam distribution in the system and power generation by steam expansion in steam turbines, and should be included in the system optimization. Uncertainties such as process steam power demand changes and electricity price fluctuations should be included in the system optimization to eliminate as much as possible the production loss caused by steam power deficits due to uncertainties. In this paper, uncertain factors are classified into time-based and probability-based uncertain factors, and operation scheduling containing multi-period equipment load sharing, redundant equipment start up, and electricity import to compensate for power deficits, have been presented to deal with the happens of uncertainties, and are formulated as a multi-period item and a recourse item in the optimization model. There are two case studies in this paper. One case illustrates the system design to determine system configuration, equipment selection, and system operation scheduling at the design stage to deal with uncertainties. The other case provides operational optimization scenarios for an existing system, especially when the steam superheating varies. The proposed method can provide practical guidance to system energy efficiency improvement.

  16. FY 1999 Technical research and development for environmentally friendly and highly efficient energy utilization system. Technical research and development for highly efficient and effective energy utilization (Technical research and development for optimum system designs - Part 3); 1999 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu seika hokokusho. 3. Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Research and development program is conducted for the elementary techniques as part of the eco-energy urban project of New Sunshine Project. Described herein are the FY 1999 results for the (techniques for transportation and storage of energy (continued), energy supply and utilization, reducing environmental loads, and designing the optimum systems). The R and D on heat transfer system through the vacuum heat insulation pipes involves fabrication, on a trial basis, the vacuum insulation covers for the vacuum insulation tubes, joints, flanges and valves for the 80A pipes, and the heat loss evaluation test for each item. The R and D on the energy supply and utilization techniques involves the heat transfer systems for a variety of fuels by the highly functional heat pump, and compression/absorption hybrid type heat-utilization system. The hybrid type heat-utilization system simulation results suggest possibility of achieving exergy efficiency of 56% as the development target by use of the new medium. The R and D on the environmental load reduction involves the power-saving type heat pump systems which use a natural coolant. (NEDO)

  17. Design of a Binocular Pupil and Gaze Point Detection System Utilizing High Definition Images

    Directory of Open Access Journals (Sweden)

    Yilmaz Durna

    2017-05-01

    Full Text Available This study proposes a novel binocular pupil and gaze detection system utilizing a remote full high definition (full HD camera and employing LabVIEW. LabVIEW is inherently parallel and has fewer time-consuming algorithms. Many eye tracker applications are monocular and use low resolution cameras due to real-time image processing difficulties. We utilized the computer’s direct access memory channel for rapid data transmission and processed full HD images with LabVIEW. Full HD images make easier determinations of center coordinates/sizes of pupil and corneal reflection. We modified the camera so that the camera sensor passed only infrared (IR images. Glints were taken as reference points for region of interest (ROI area selection of the eye region in the face image. A morphologic filter was applied for erosion of noise, and a weighted average technique was used for center detection. To test system accuracy with 11 participants, we produced a visual stimulus set up to analyze each eye’s movement. Nonlinear mapping function was utilized for gaze estimation. Pupil size, pupil position, glint position and gaze point coordinates were obtained with free natural head movements in our system. This system also works at 2046 × 1086 resolution at 40 frames per second. It is assumed that 280 frames per second for 640 × 480 pixel images is the case. Experimental results show that the average gaze detection error for 11 participants was 0.76° for the left eye, 0.89° for right eye and 0.83° for the mean of two eyes.

  18. Identifying role of perceived quality and satisfaction on the utilization status of the community clinic services; Bangladesh context.

    Science.gov (United States)

    Karim, Rizwanul M; Abdullah, Mamun S; Rahman, Anisur M; Alam, Ashraful M

    2016-06-24

    Bangladesh is one among the few countries of the world that provides free medical services at the community level through various public health facilities. It is now evident that, clients' perceived quality of services and their expectations of service standards affect health service utilization to a great extent. The aim of the study was to develop and validate the measures for perception and satisfaction of primary health care quality in Bangladesh context and to identify their aspects on the utilization status of the Community Clinic services. This mixed method cross sectional survey was conducted from January to June 2012, in the catchment area of 12 community clinics. Since most of the outcome indicators focus mainly on women and children, women having children less than 2 years of age were randomly assigned and interviewed for the study purpose. Data were collected through FGD, Key informants interview and a pretested semi- structured questionnaire. About 95 % of the respondents were Muslims and 5 % were Hindus. The average age of the respondents was 23.38 (SD 4.15) and almost all of them are home makers. The average monthly expenditure of their family was 95US $ (SD 32US$). At the beginning of the study, two psychometric research instruments; 24 items perceived quality of primary care services PQPCS scale (chronbach's α = .89) and 22 items community clinic service satisfaction CCSS scale (chronbach's α = .97), were constructed and validated. This study showed less educated, poor, landless mothers utilized the community clinic services more than their educated and wealthier counterpart. Women who lived in their own residence used the community clinic services more frequently than those who lived in a rental house. Perceptions concerning skill and competence of the health care provider and satisfaction indicating interpersonal communication and attitude of the care provider were important predictors for community clinic service utilization

  19. Inter-utility trade review

    International Nuclear Information System (INIS)

    Warnes, E.M.; Vaahedi, E.

    1991-01-01

    The National Energy Board was requested by the Minister of Energy, Mines and Resources to identify possible measures to improve cooperation among Canadian electrical utilities and to enhance access for buyers and sellers of electricity to available transmission capacity through intervening systems for wheeling purposes. To identify measures to improve cooperation, a questionnaire was sent to electric utilities and other interested parties on the present extent and future possibilities for inter-utility cooperation. The questionnaire and its results are presented. It was found that there already exists a significant amount of inter-utility cooperation in Canada. Such cooperation generally involves interchanges of economy energy, non-economic capacity and energy, coordinated operation, resource sharing, maintenance scheduling, emergency supports, etc. There is a very limited degree of integrated generation expansion planning. Typically, these agreements are carried out under interconnection agreements negotiated on a bi-lateral basis. The highest current degree of cooperation exists under the auspices of the Alberta interconnected power system pool. Wheeling is limited and generally restricted to cases where the sender and receiver are the same entity or where power is wheeled to a utility purchasing it from the wheeler's system. 2 figs., 3 tabs

  20. Research report of FY 1997 on the environmentally acceptable coal utilization system feasibility survey. Environmentally acceptable coal utilization system feasibility survey in Malaysia and Vietnam (Malaysia); 1997 nendo chosa hokokusho. Kankyo chowagata sekitan riyo system kanosei chosa (Malaysia oyobi Vietnam ni okeru kankyo chowagata sekitan riyo system kanosei chosa (Malaysia ban))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In this survey, the coal utilization status in individual consumption sectors and coal distribution status in Malaysia are summarized as basic data for the introduction of environmentally acceptable coal utilization systems. In this fiscal year, the status of existing coal utilization technology and environmental issues in Malaysia are summarized as basic data for the introduction of above-mentioned systems on the basis of data and information collected by basic research and site survey in FY 1996. Malaysia is one of the rich countries producing the primary resources with crude petroleum, natural gas, hydro-power, and coal. The coal demand will be realized after saturating LNG development since 2000. The major coal consumption industries are power generation sector and cement industry sector. As expected increase in the future coal consumption, efficiency of coal utilization and environmental issues are problems in the future. Based on the FS results of this survey, the survey will be continued for planning and conducting the model project required from Malaysia. 8 figs., 34 tabs.

  1. Optimal Sizing of a Solar-Plus-Storage System For Utility Bill Savings and Resiliency Benefits: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Simpkins, Travis; Anderson, Kate; Cutler, Dylan; Olis, Dan

    2016-11-01

    Solar-plus-storage systems can achieve significant utility savings in behind-the-meter deployments in buildings, campuses, or industrial sites. Common applications include demand charge reduction, energy arbitrage, time-shifting of excess photovoltaic (PV) production, and selling ancillary services to the utility grid. These systems can also offer some energy resiliency during grid outages. It is often difficult to quantify the amount of resiliency that these systems can provide, however, and this benefit is often undervalued or omitted during the design process. We propose a method for estimating the resiliency that a solar-plus-storage system can provide at a given location. We then present an optimization model that can optimally size the system components to minimize the lifecycle cost of electricity to the site, including the costs incurred during grid outages. The results show that including the value of resiliency during the feasibility stage can result in larger systems and increased resiliency.

  2. An informatics approach to assess pediatric pharmacotherapy: design and implementation of a hospital drug utilization system.

    Science.gov (United States)

    Zuppa, Athena; Vijayakumar, Sundararajan; Jayaraman, Bhuvana; Patel, Dimple; Narayan, Mahesh; Vijayakumar, Kalpana; Mondick, John T; Barrett, Jeffrey S

    2007-09-01

    Drug utilization in the inpatient setting can provide a mechanism to assess drug prescribing trends, efficiency, and cost-effectiveness of hospital formularies and examine subpopulations for which prescribing habits may be different. Such data can be used to correlate trends with time-dependent or seasonal changes in clinical event rates or the introduction of new pharmaceuticals. It is now possible to provide a robust, dynamic analysis of drug utilization in a large pediatric inpatient setting through the creation of a Web-based hospital drug utilization system that retrieves source data from our accounting database. The production implementation provides a dynamic and historical account of drug utilization at the authors' institution. The existing application can easily be extended to accommodate a multi-institution environment. The creation of a national or even global drug utilization network would facilitate the examination of geographical and/or socioeconomic influences in drug utilization and prescribing practices in general.

  3. Imprecise results: Utilizing partial computations in real-time systems

    Science.gov (United States)

    Lin, Kwei-Jay; Natarajan, Swaminathan; Liu, Jane W.-S.

    1987-01-01

    In real-time systems, a computation may not have time to complete its execution because of deadline requirements. In such cases, no result except the approximate results produced by the computations up to that point will be available. It is desirable to utilize these imprecise results if possible. Two approaches are proposed to enable computations to return imprecise results when executions cannot be completed normally. The milestone approach records results periodically, and if a deadline is reached, returns the last recorded result. The sieve approach demarcates sections of code which can be skipped if the time available is insufficient. By using these approaches, the system is able to produce imprecise results when deadlines are reached. The design of the Concord project is described which supports imprecise computations using these techniques. Also presented is a general model of imprecise computations using these techniques, as well as one which takes into account the influence of the environment, showing where the latter approach fits into this model.

  4. Do qualitative methods validate choice experiment-results? A case study on the economic valuation of peatland restoration in Central Kalimantan, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Schaafsma, M.; Van Beukering, P.J.H.; Davies, O.; Oskolokaite, I.

    2009-05-15

    This study explores the benefits of combining independent results of qualitative focus group discussions (FGD) with a quantitative choice experiment (CE) in a developing country context. The assessment addresses the compensation needed by local communities in Central Kalimantan to cooperate in peatland restoration programs by using a CE combined with a series of FGD to validate and explain the CE-results. The main conclusion of this study is that a combination of qualitative and quantitative methods is necessary to assess the economic value of ecological services in monetary terms and to better understand the underlying attitudes and motives that drive these outcomes. The FGD not only cross-validate results of the CE, but also help to interpret the differences in preferences of respondents arising from environmental awareness and ecosystem characteristics. The FGD confirms that the CE results provide accurate information for ecosystem valuation. Additional to the advantages of FGD listed in the literature, this study finds that FGD provide the possibility to identify the specific terms and conditions on which respondents will accept land-use change scenarios. The results show that FGD may help to address problems regarding the effects of distribution of costs and benefits over time that neo-classical economic theory poses for the interpretation of economic valuation results in the demand it puts on the rationality of trade-offs and the required calculations.

  5. Dynamic Power Management for Portable Hybrid Power-Supply Systems Utilizing Approximate Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Jooyoung Park

    2015-05-01

    Full Text Available Recently, the optimization of power flows in portable hybrid power-supply systems (HPSSs has become an important issue with the advent of a variety of mobile systems and hybrid energy technologies. In this paper, a control strategy is considered for dynamically managing power flows in portable HPSSs employing batteries and supercapacitors. Our dynamic power management strategy utilizes the concept of approximate dynamic programming (ADP. ADP methods are important tools in the fields of stochastic control and machine learning, and the utilization of these tools for practical engineering problems is now an active and promising research field. We propose an ADP-based procedure based on optimization under constraints including the iterated Bellman inequalities, which can be solved by convex optimization carried out offline, to find the optimal power management rules for portable HPSSs. The effectiveness of the proposed procedure is tested through dynamic simulations for smartphone workload scenarios, and simulation results show that the proposed strategy can successfully cope with uncertain workload demands.

  6. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  7. National Maglev initiative: California line electric utility power system requirements

    Science.gov (United States)

    Save, Phil

    1994-01-01

    The electrical utility power system requirements were determined for a Maglev line from San Diego to San Francisco and Sacramento with a maximum capacity of 12,000 passengers an hour in each direction at a speed of 300 miles per hour, or one train every 30 seconds in each direction. Basically the Maglev line requires one 50-MVA substation every 12.5 miles. The need for new power lines to serve these substations and their voltage levels are based not only on equipment loading criteria but also on limitations due to voltage flicker and harmonics created by the Maglev system. The resulting power system requirements and their costs depend mostly on the geographical area, urban or suburban with 'strong' power systems, or mountains and rural areas with 'weak' power systems. A reliability evaluation indicated that emergency power sources, such as a 10-MW battery at each substation, were not justified if sufficient redundancy is provided in the design of the substations and the power lines serving them. With a cost of $5.6 M per mile, the power system requirements, including the 12-kV DC cables and the inverters along the Maglev line, were found to be the second largest cost component of the Maglev system, after the cost of the guideway system ($9.1 M per mile), out of a total cost of $23 M per mile.

  8. Addressing the Safety of Transportation Cyber-Physical Systems: Development and Validation of a Verbal Warning Utility Scale for Intelligent Transportation Systems

    Directory of Open Access Journals (Sweden)

    Yiqi Zhang

    2015-01-01

    Full Text Available As an important application of Cyber-Physical Systems (CPS, advances in intelligent transportation systems (ITS improve driving safety by informing drivers of hazards with warnings in advance. The evaluation of the warning effectiveness is an important issue in facilitating communication of ITS. The goal of the present study was to develop a scale to evaluate the warning utility, namely, the effectiveness of a warning in preventing accidents in general. A driving simulator study was conducted to validate the Verbal Warning Utility Scale (VWUS in a simulated driving environment. The reliability analysis indicated a good split-half reliability for the VWUS with a Spearman-Brown Coefficient of 0.873. The predictive validity of VWUS in measuring the effectiveness of the verbal warnings was verified by the significant prediction of safety benefits indicated by variables, including reduced kinetic energy and collision rate. Compared to conducting experimental studies, this scale provides a simpler way to evaluate overall utility of verbal warnings in communicating associated hazards in intelligent transportation systems. This scale can be further applied to improve the design of warnings of ITS in order to improve transportation safety. The applications of the scale in nonverbal warning situations and limitations of the current scale are also discussed.

  9. Re-Use of Clean Coal Technology By-Products in the Construction of Low Permeability Liners. Final report, 10/1/1996 - 3/31/2000

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, William E. [The Ohio State Univ., Columbus, OH (United States); Butalia, Tarunjit S. [The Ohio State Univ., Columbus, OH (United States); Whitlach, Jr., E. Earl [The Ohio State Univ., Columbus, OH (United States); Mitsch, William [The Ohio State Univ., Columbus, OH (United States)

    2000-12-31

    This final project report presents the results of a research program conducted at The Ohio State University from October 1, 1996 to March 31, 2000 to investigate the use of stabilized flue gas desulfurization (FGD) materials in the construction of low permeability liners. The objective of the research program was to establish field-verified time-dependent relationships for the performance of liners constructed from stabilized FGD by-products generated in Ohio. The project objective was accomplished with a coordinated program of testing and analyzing small scale laboratory specimens under controlled conditions, medium-scale wetland mesocosms, and a full-scale pond facility. Although the specific uses directly addressed by this report include liners for surface impoundments, the results presented in this study are also useful in other applications including design of daily cover and liners for landfills, seepage cutoff walls and trenches and for nutrient retention and pollution mitigation wetlands. The small scale laboratory tests, medium scale mesocosm wetland experiments, and construction and monitoring of a full-scale FGD lined facility (capacity of one million gallons) shows that stabilized FGD materials can be used as low permeability liners in the construction of water and manure holding ponds, and constructed wetlands for wastewater treatment. Actual permeability coefficients in the range of 10-7 cm/sec (3 x 10-9 ft/sec) can be obtained in the field by properly compacting lime and fly ash enriched stabilized FGD materials. Leachate from the FGD material meets Ohio’s non-toxic criteria for coal combustion by-products, and for most potential contaminants the national primary and secondary drinking water standards are also met. The low permeability non-toxic FGD material investigated in this study poses very minimal risks, if any, for groundwater contamination. Constructed FGD-lined wetlands offer the opportunity for increased phosphorous

  10. 26 CFR 1.167(l)-4 - Public utility property; election to use asset depreciation range system.

    Science.gov (United States)

    2010-04-01

    ... depreciation range system. 1.167(l)-4 Section 1.167(l)-4 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT... Individuals and Corporations § 1.167(l)-4 Public utility property; election to use asset depreciation range system. (a) Application of section 167(l) to certain property subject to asset depreciation range system...

  11. Cost estimation of hydrogen and DME produced by nuclear heat utilization system. Joint research

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Nishihara, Tetsuo

    2003-09-01

    Research of hydrogen energy has been performed in order to spread use of the hydrogen energy in 2020 or 2030. It will take, however, many years for the hydrogen energy to be used very easily like gasoline, diesel oil and city gas in all of countries. During the periods, low CO 2 release liquid fuels would be used together with hydrogen. Recently, di-methyl-either (DME) has been noticed as one of the substitute liquid fuels of petroleum. Such liquid fuels can be produced from the mixed gas such as hydrogen and carbon oxide which are produced by steam reforming hydrogen generation system by the use of nuclear heat. Therefore, the system would be one of the candidates of future system of nuclear heat utilization. In the present study, we focused on the production of hydrogen and DME. Economic evaluation was estimated for hydrogen and DME production in commercial and nuclear heat utilization plant. At first, heat and mass balance of each process in commercial plant of hydrogen production was estimated and commercial prices of each process were derived. Then, price was estimated when nuclear heat was used instead of required heat of commercial plant. Results showed that the production prices produced by nuclear heat were cheaper by 10% for hydrogen and 3% for DME. With the consideration of reduction effect of CO 2 release, utilization of nuclear heat would be more effective. (author)

  12. In-Bore MR-Guided Biopsy Systems and Utility of PI-RADS.

    Science.gov (United States)

    Fütterer, Jurgen J; Moche, Michael; Busse, Harald; Yakar, Derya

    2016-06-01

    A diagnostic dilemma exists in cases wherein a patient with clinical suspicion for prostate cancer has a negative transrectal ultrasound-guided biopsy session. Although transrectal ultrasound-guided biopsy is the standard of care, a paradigm shift is being observed. In biopsy-naive patients and patients with at least 1 negative biopsy session, multiparametric magnetic resonance imaging (MRI) is being utilized for tumor detection and subsequent targeting. Several commercial devices are now available for targeted prostate biopsy ranging from transrectal ultrasound-MR fusion biopsy to in bore MR-guided biopsy. In this review, we will give an update on the current status of in-bore MRI-guided biopsy systems and discuss value of prostate imaging-reporting and data system (PIRADS).

  13. Treatment of waste water from flue gas cleaning; Behandlung von Abwasser der Rauchgasreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Ogiermann, Klaus; Meyerhoff, Thomas [Berkefeld - VWS Deutschland GmbH, Celle (Germany); Hagen, Klaus [Berkefeld - VWS Deutschland GmbH, Bayreuth (Germany); Basabe, Juan Luis [HPD Process Engineering S.A., Bilbao (Spain); Vendrup, Michael [Krueger A/S, Soeborg (Denmark)

    2012-11-01

    Strict limits must be adhered to for treating waste water incurred during flue gas desulphurisation (FGD). One and two-stage precipitation processes have proven themselves in FGD waste water treatment. Metals can be removed with the MetClean {sup registered} process. Another option is evaporation. Waste water ZLD systems (Zero Liquid Discharge) recover, via a falling film evaporator with subsequent crystallisation, more than 98 % of the water and produce, aside from the condensate, only solid material that can be disposed of in landfill. A further development, named ZLD CoLD trademark, significantly reduces the investment and operating costs of this solution. (orig.)

  14. Utilization of net energy analysis as a method of evaluating energy systems

    International Nuclear Information System (INIS)

    Lee, Gi Won; Cho, Joo Hyun; Hah, Yung Joon

    1994-01-01

    It can be said that the upturn of Korean nuclear power program started in early 70's while future plants for the construction of new nuclear power plants virtually came to a halt in United States since the late 70's. It is projected that power plant systems from combination of nuclear and coal fired types might shift to all coal fired type in U.S., considering the current U.S. trend of construction on the new plants. However, with the depletion of natural resources, it may be desirable to understand the utilization of two competitive utility technologies in terms of invested energy. Presented in this paper is a method of comparing two energy systems in terms of energy investment and a brief result from energy economic analysis of nuclear power plant and coal fired steam power plant to illustrate the methodology. The method of comparison is Net Energy Analysis (NEA). In doing so, Input-Output Analysis (lOA) among industries and commodities is done. Using these information, net energy ratios are calculated and compared. Although NEA does not offer conclusive solution, it can be used as a screening process in decision making

  15. Below-ground interspecific competition for water in a rubber agroforestry system may enhance water utilization in plants.

    Science.gov (United States)

    Wu, Junen; Liu, Wenjie; Chen, Chunfeng

    2016-01-19

    Rubber-based (Hevea brasiliensis) agroforestry systems are regarded as the best way to improve the sustainability of rubber monocultures, but few reports have examined water use in such systems. Accordingly, we tested whether interplanting facilitates water utilization of rubber trees using stable isotope (δD, δ(18)O, and δ(13)C) methods and by measuring soil water content (SWC), shoot potential, and leaf C and N concentrations in a Hevea-Flemingia agroforestry system in Xishuangbanna, southwestern China. We detected a big difference in the utilization of different soil layer water between both species in this agroforestry system, as evidenced by the opposite seasonal fluctuations in both δD and δ(18)O in stem water. However, similar predawn shoot potential of rubber trees at both sites demonstrating that the interplanted species did not affect the water requirements of rubber trees greatly. Rubber trees with higher δ(13)C and more stable physiological indexes in this agroforestry system showed higher water use efficiency (WUE) and tolerance ability, and the SWC results suggested this agroforestry is conductive to water conservation. Our results clearly indicated that intercropping legume plants with rubber trees can benefit rubber trees own higher N supply, increase their WUE and better utilize soil water of each soil layer.

  16. Solar System Exploration Augmented by In-Situ Resource Utilization: Mercury and Saturn Propulsion Investigations

    Science.gov (United States)

    Palaszewski, Bryan

    2016-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed. In-situ resource utilization was found to be critical in making Mercury missions more amenable for human visits. At Saturn, refueling using local atmospheric mining was found to be difficult to impractical, while refueling the Saturn missions from Uranus was more practical and less complex.

  17. Bridge management system for the Western Cape provincial government, South Africa: implementation and utilization

    CSIR Research Space (South Africa)

    Nell, AJ

    2008-10-01

    Full Text Available This paper describes the implementation and utilization of the bridge management system (BMS) of the Department of Transport and Public Works of the Western Cape Provincial Government. The implementation of the BMS as well as the visual assessment...

  18. A case study of utility PV economics

    International Nuclear Information System (INIS)

    Wenger, H.; Hoff, T.; Osborn, D.E.

    1997-01-01

    This paper presents selected results from a detailed study of grid-connected photovoltaic (PV) applications within the service area of the Sacramento Municipal Utility District. The intent is to better understand the economics and markets for grid-connected PV systems in a utility setting. Research results include: Benefits calculations for utility-owned PV systems at transmission and distribution voltages; How the QuickScreen software package can help utilities investigate the viability of distributed PV; Energy production and capacity credit estimates for fixed and tracking PV systems; Economics and rate impacts of net metering residential PV systems; Market potential estimates for residential rooftop PV systems; and Viability and timing of grid-connected PV commercialization paths

  19. Utility Bill Insert for Wastewater Services

    Science.gov (United States)

    Intended for use by wastewater and water supply utilities, one side of the utility bill insert has information for customers that discharge to sanitary sewer systems; the other side is for customers with septic systems.

  20. Human action pattern monitor for telecare system utilizing magnetic thin film infrared sensor

    International Nuclear Information System (INIS)

    Osada, H.; Chiba, S.; Oka, H.; Seki, K.

    2002-01-01

    The magnetic thin film infrared sensor (MFI) is an infrared sensing device utilizing a temperature-sensitive magnetic thin film with marked temperature dependence in the room temperature range. We propose a human action pattern monitor (HPM) constructed with the MFI, without a monitor camera to save the clients' privacy, as a telecare system

  1. Light Duty Utility Arm System applications for tank waste remediation

    International Nuclear Information System (INIS)

    Carteret, B.A.

    1994-10-01

    The Light Duty Utility Arm (LDUA) System is being developed by the US Department of Energy's (DOE's) Office of Technology Development (OTD, EM-50) to obtain information about the conditions and contents of the DOE's underground storage tanks. Many of these tanks are deteriorating and contain hazardous, radioactive waste generated over the past 50 years as a result of defense materials production at a member of DOE sites. Stabilization and remediation of these waste tanks is a high priority for the DOE's environmental restoration program. The LDUA System will provide the capability to obtain vital data needed to develop safe and cost-effective tank remediation plans, to respond to ongoing questions about tank integrity and leakage, and to quickly investigate tank events that raise safety concerns. In-tank demonstrations of the LDUA System are planned for three DOE sites in 1996 and 1997: Hanford, Idaho National Engineering Laboratory (INEL), and Oak Ridge National Laboratory (ORNL). This paper provides a general description of the system design and discusses a number of planned applications of this technology to support the DOE's environmental restoration program, as well as potential applications in other areas. Supporting papers by other authors provide additional in-depth technical information on specific areas of the system design

  2. The development and utilization of in vivo systems

    International Nuclear Information System (INIS)

    De Serres, F.J.; Matsushima, Taijiro.

    1986-01-01

    The 13th Joint Conference on the Development and Utilization of in vivo Short-Term Tests for Mutagenicity and Carcinogenicity was attended by five scientists from Japan and 21 scientists from the U.S.A. A total of five sessions were held under the topics (1) In vivo Genetic Tests: Development-Utilization; (2) Activation of Oncogenes; (3) Progress Reports in Cancer Epidemiology and Food Mutagen Research. (Auth.)

  3. Overview of HTGR heat utilization system development at JAERI

    International Nuclear Information System (INIS)

    Miyamoto, Y.; Shiozawa, S.; Ogawa, M.; Akino, N.; Shimizu, S.; Hada, K.; Inagaki, Y.; Onuki, K.; Takeda, T.; Nishihara, T.

    1998-01-01

    The Japan Atomic Energy Research Institute (JAERI) has conducted research and development of nuclear heat utilization systems of a High Temperature Gas cooled Reactor (HTGR), which are capable to meet a large amount of energy demand without significant CO 2 emission to relax the global warming issue. The High Temperature engineering Test Reactor (HTTR) with thermal output of 30 MW and outlet coolant temperature of 950 deg C, the first HTGR in Japan, is under construction on the JAERI site, and its first criticality is scheduled for mid-1998. After the reactor performance and safety demonstration tests for several years, a hydrogen production system will be connected to the HTTR. A demonstration program on hydrogen production started in January 1997, in JAERI, as a study consigned by the Science and Technology Agency. A hydrogen production system connected to the HTTR is designed to be able to produce hydrogen by steam reforming of natural gas, using nuclear heat of 10 MW from the HTTR. The safety principle and standard are investigated for the HTTR hydrogen production system. In order to confirm safety, controllability and performance of key components in the HTTR hydrogen production system, an out-of-pile test facility on the scale of approximately 1/30 of the HTTR hydrogen production system is installed. It is equipped with an electric heater as a heat source instead of the HTTR. The out-of-pile test will be performed for four years after 2001. The HTTR hydrogen production system will be demonstratively operated after 2005 at its earliest plan. Other basic studies on the hydrogen production system using thermochemical water splitting, an iodine sulphur (IS) process, and technology of distant heat transport with microencapsulated phase change material have been carried out for more effective and various uses of nuclear heat. (author)

  4. Development of a system utilizing data of risk assessment

    International Nuclear Information System (INIS)

    Nagasaka, Akihiko; Takano, Kenichi; Ebisu, Mitsuhiro; Aikawa, Tadashi; Hayase, Kenichi

    2004-01-01

    This report deals with a concrete method of utilizing data of risk assessment. First, the authors point out the necessity to assess all stages of jobs (planning, meeting with contractors, performing phase of task, etc.) in risk assessment bout jobs in electric power company, because most jobs are performed by contract system and risks of a job are distributed over electric company, contractors and subcontractors. Secondly, risks estimated from past accidents and near-miss events must be included. If these 2 requirements are fulfilled, data of risk assessment can be more useful. Then below 4 forms of present data of risk assessment were developed. A form to be used in job planning stage in electric companies for efficient investment planning in safety measures. A form to be used in meetings between electric companies and contractors for checking accident prevention methods. A form to be used in meetings between contractors and subcontractors for enhancing a shared awareness of risk. A form to be used in tool box meetings for confirming safe condition and inheriting of ability of risk perception. Additionally, a data base system of risk assessment about 4 jobs was developed. This system prints out about 4 forms for each job and is useful for PDCA of safety activities. (author)

  5. Design of helium-gas supplying facility of out-of-pile demonstration test for HTTR heat utilization system

    Energy Technology Data Exchange (ETDEWEB)

    Hino, Ryutaro; Fujisaki, Katsuo; Kobayashi, Toshiaki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    1996-09-01

    One of the objectives of the High-Temperature Engineering Test Reactor (HTTR) is to demonstrate effectiveness of high-temperature heat utilization. Prior to connect a heat utilization system to the HTTR, a series of out-of-pile demonstration test is indispensable to improve components` performance, to demonstrate operation, control and safety technologies and to verify analysis codes for design and safety evaluation. After critical review and discussion on the out-of-pile demonstration test, a test facility have been designed. In this report, a helium-gas supplying facility simulated the HTTR system was described in detail, which supplies High-temperature helium-gas of 900degC to a steam reforming facility mocking-up the HTTR heat utilization system. Components of the Helium Engineering Demonstration Loop (HENDEL) were selected to reuse in the helium-gas supplying facility in order to decrease construction cost. Structures and specifications of new components such as a high-temperature heater and a preheater were decided after evaluation of thermal and hydraulic performance and strength. (author)

  6. Decision analysis for a data collection system of patient-controlled analgesia with a multi-attribute utility model.

    Science.gov (United States)

    Lee, I-Jung; Huang, Shih-Yu; Tsou, Mei-Yung; Chan, Kwok-Hon; Chang, Kuang-Yi

    2010-10-01

    Data collection systems are very important for the practice of patient-controlled analgesia (PCA). This study aimed to evaluate 3 PCA data collection systems and selected the most favorable system with the aid of multiattribute utility (MAU) theory. We developed a questionnaire with 10 items to evaluate the PCA data collection system and 1 item for overall satisfaction based on MAU theory. Three systems were compared in the questionnaire, including a paper record, optic card reader and personal digital assistant (PDA). A pilot study demonstrated a good internal and test-retest reliability of the questionnaire. A weighted utility score combining the relative importance of individual items assigned by each participant and their responses to each question was calculated for each system. Sensitivity analyses with distinct weighting protocols were conducted to evaluate the stability of the final results. Thirty potential users of a PCA data collection system were recruited in the study. The item "easy to use" had the highest median rank and received the heaviest mean weight among all items. MAU analysis showed that the PDA system had a higher utility score than that in the other 2 systems. Sensitivity analyses revealed that both inverse and reciprocal weighting processes favored the PDA system. High correlations between overall satisfaction and MAU scores from miscellaneous weighting protocols suggested a good predictive validity of our MAU-based questionnaire. The PDA system was selected as the most favorable PCA data collection system by the MAU analysis. The item "easy to use" was the most important attribute of the PCA data collection system. MAU theory can evaluate alternatives by taking into account individual preferences of stakeholders and aid in better decision-making. Copyright © 2010 Elsevier. Published by Elsevier B.V. All rights reserved.

  7. Optimization of workflow scheduling in Utility Management System with hierarchical neural network

    Directory of Open Access Journals (Sweden)

    Srdjan Vukmirovic

    2011-08-01

    Full Text Available Grid computing could be the future computing paradigm for enterprise applications, one of its benefits being that it can be used for executing large scale applications. Utility Management Systems execute very large numbers of workflows with very high resource requirements. This paper proposes architecture for a new scheduling mechanism that dynamically executes a scheduling algorithm using feedback about the current status Grid nodes. Two Artificial Neural Networks were created in order to solve the scheduling problem. A case study is created for the Meter Data Management system with measurements from the Smart Metering system for the city of Novi Sad, Serbia. Performance tests show that significant improvement of overall execution time can be achieved by Hierarchical Artificial Neural Networks.

  8. Flash memory management system and method utilizing multiple block list windows

    Science.gov (United States)

    Chow, James (Inventor); Gender, Thomas K. (Inventor)

    2005-01-01

    The present invention provides a flash memory management system and method with increased performance. The flash memory management system provides the ability to efficiently manage and allocate flash memory use in a way that improves reliability and longevity, while maintaining good performance levels. The flash memory management system includes a free block mechanism, a disk maintenance mechanism, and a bad block detection mechanism. The free block mechanism provides efficient sorting of free blocks to facilitate selecting low use blocks for writing. The disk maintenance mechanism provides for the ability to efficiently clean flash memory blocks during processor idle times. The bad block detection mechanism provides the ability to better detect when a block of flash memory is likely to go bad. The flash status mechanism stores information in fast access memory that describes the content and status of the data in the flash disk. The new bank detection mechanism provides the ability to automatically detect when new banks of flash memory are added to the system. Together, these mechanisms provide a flash memory management system that can improve the operational efficiency of systems that utilize flash memory.

  9. Development of utility system of charged particle Nuclear Reaction Data on Unified Interface

    International Nuclear Information System (INIS)

    Aoyama, Shigeyoshi; Ohbayashi, Yosihide; Kato, Kiyoshi; Masui, Hiroshi; Ohnishi, Akira; Chiba, Masaki

    1999-01-01

    We have developed a utility system, WinNRDF, for a nuclear charged particle reaction data of NRDF (Nuclear Reaction Data File) on a unified interface of Windows95, 98/NT. By using the system, we can easily search the experimental data of a charged particle reaction in NRDF and also see the graphic data on GUI (Graphical User Interface). Furthermore, we develop a mechanism of making a new index of keywords in order to include the time developing character of the NRDF database. (author)

  10. Use of continuous mercury monitors at coal-fired utilities

    Energy Technology Data Exchange (ETDEWEB)

    Laudal, Dennis L.; Thompson, Jeffrey S.; Pavlish, John H. [Energy and Environmental Research Center, PO Box 9018, Grand Forks, ND 58202-9018 (United States); Brickett, Lynn A. [U.S. Department of Energy National Energy Technology Laboratory, PO Box 10940 MS 922-273C, Pittsburgh, PA 15236-0940 (United States); Chu, Paul [EPRI, 3412 Hillview Avenue, PO Box 10412, Palo Alto, CA 94303 (United States)

    2004-06-15

    In December 2000, the U.S. Environmental Protection Agency (EPA) published a notice of its determination that regulation of coal-fired utilities for mercury is appropriate and necessary as part of the hazardous air pollutant emission regulation for electric utility steam-generating units. To aid in the determination of mercury emissions from these sources, on-line mercury semicontinuous emission monitors (Hg SCEMs) have been developed and tested in recent years. Although Hg SCEMs have shown promise during these previous tests, rigorous field or long-term testing has not been done. In the past year, commercially available and prototype Hg SCEMs have been used by the Energy and Environmental Research Center (EERC) and others at several power plants. As part of the EERC work, Hg SCEMs were operated at a range of conditions and locations. In addition, the Hg SCEMs were operated for up to 1 month. The use of Hg SCEMs at these plants allowed for near-real-time data to be collected under changing plant conditions, as well as during normal ranges of operating conditions. Mercury emission data were obtained from different plants with different configurations. The plant configurations incorporated various pollution control technologies, including selective catalytic reduction (SCR), selective noncatalytic reduction, ammonium sulfate injection for flue gas conditioning, and flue gas desulfurization (FGD). The particulate control devices included electrostatic precipitators (ESPs), a fabric filter (FF), and a venturi scrubber. The testing at these sites included the operation of Hg SCEMs before and after particulate control devices, in wet and dry stack conditions, and at high temperatures (343 C). The results from these field measurements have provided data that have been evaluated to determine the reliability, variability, biases, and overall capability of Hg SCEMs for monitoring mercury at coal-fired utilities. Even under the best conditions, operation of Hg SCEMs is by no

  11. Power Electronics for Distributed Energy Systems and Transmission and Distribution Applications: Assessing the Technical Needs for Utility Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, L.M.

    2005-12-21

    Power electronics can provide utilities the ability to more effectively deliver power to their customers while providing increased reliability to the bulk power system. In general, power electronics is the process of using semiconductor switching devices to control and convert electrical power flow from one form to another to meet a specific need. These conversion techniques have revolutionized modern life by streamlining manufacturing processes, increasing product efficiencies, and increasing the quality of life by enhancing many modern conveniences such as computers, and they can help to improve the delivery of reliable power from utilities. This report summarizes the technical challenges associated with utilizing power electronics devices across the entire spectrum from applications to manufacturing and materials development, and it provides recommendations for research and development (R&D) needs for power electronics systems in which the U.S. Department of Energy (DOE) could make a substantial impact toward improving the reliability of the bulk power system.

  12. Impacts of Western Area Power Administration's power marketing alternatives on electric utility systems

    International Nuclear Information System (INIS)

    Veselka, T.D.; Portante, E.C.; Koritarov, V.

    1995-03-01

    This technical memorandum estimates the effects of alternative contractual commitments that may be initiated by the Western Area Power Administration's Salt Lake City Area Office. It also studies hydropower operational restrictions at the Salt Lake City Area Integrated Projects in combination with these alternatives. Power marketing and hydropower operational effects are estimated in support of Western's Electric Power Marketing Environmental Impact Statement (EIS). Electricity production and capacity expansion for utility systems that will be directly affected by alternatives specified in the EIS are simulated. Cost estimates are presented by utility type and for various activities such as capacity expansion, generation, long-term firm purchases and sales, fixed operation and maintenance expenses, and spot market activities. Operational changes at hydropower facilities are also investigated

  13. Effects of adjusting cropping systems on utilization efficiency of climatic resources in Northeast China under future climate scenarios

    Science.gov (United States)

    Guo, Jianping; Zhao, Junfang; Xu, Yanhong; Chu, Zheng; Mu, Jia; Zhao, Qian

    Quantitatively evaluating the effects of adjusting cropping systems on the utilization efficiency of climatic resources under climate change is an important task for assessing food security in China. To understand these effects, we used daily climate variables obtained from the regional climate model RegCM3 from 1981 to 2100 under the A1B scenario and crop observations from 53 agro-meteorological experimental stations from 1981 to 2010 in Northeast China. Three one-grade zones of cropping systems were divided by heat, water, topography and crop-type, including the semi-arid areas of the northeast and northwest (III), the one crop area of warm-cool plants in semi-humid plain or hilly regions of the northeast (IV), and the two crop area in irrigated farmland in the Huanghuaihai Plain (VI). An agro-ecological zone model was used to calculate climatic potential productivities. The effects of adjusting cropping systems on climate resource utilization in Northeast China under the A1B scenario were assessed. The results indicated that from 1981 to 2100 in the III, IV and VI areas, the planting boundaries of different cropping systems in Northeast China obviously shifted toward the north and the east based on comprehensively considering the heat and precipitation resources. However, due to high temperature stress, the climatic potential productivity of spring maize was reduced in the future. Therefore, adjusting the cropping system is an effective way to improve the climatic potential productivity and climate resource utilization. Replacing the one crop in one year model (spring maize) by the two crops in one year model (winter wheat and summer maize) significantly increased the total climatic potential productivity and average utilization efficiencies. During the periods of 2011-2040, 2041-2070 and 2071-2100, the average total climatic potential productivities of winter wheat and summer maize increased by 9.36%, 11.88% and 12.13% compared to that of spring maize

  14. The Value of Sustainable Knowledge Transfer Methods for SMEs, Utilizing Socio-Technical Networks and Complex Systems

    Directory of Open Access Journals (Sweden)

    Susu Nousala

    2010-12-01

    Full Text Available This paper will examine the development of sustainable SME methods for tracking tacit (informal knowledge transfer as a series of networks of larger complex system. Understanding sustainable systems begins with valuing tacit knowledge networks and their ability to produce connections on multiple levels. The behaviour of the social or socio aspects of a system in relation to the explicit formal/physical structures need to be understood and actively considered when utilizing methodologies for interacting within complex systems structures. This paper utilizes theory from several previous studies to underpin the key case study discussed. This approach involved examining the behavioural phenomena of an SME knowledge network. The knowledge network elements were highlighted to identify their value within an SME structure. To understand the value of these emergent elements from between tacit and explicit knowledge networks, is to actively, simultaneously and continuous support sustainable development for SME organizations. The simultaneous links within and between groups of organizations is crucial for understanding sustainable networking structures of complex systems.

  15. Development of U.S. Government General Technical Requirements for UAS Flight Safety Systems Utilizing the Iridium Satellite Constellation

    Science.gov (United States)

    Murray, Jennifer; Birr, Richard

    2010-01-01

    This slide presentation reviews the development of technical requirements for Unmanned Aircraft Systems (UAS) utilization of the Iridium Satellite Constellation to provide flight safety. The Federal Aviation Authority (FAA) required an over-the-horizon communication standard to guarantee flight safety before permitting widespread UAS flights in the National Air Space (NAS). This is important to ensure reliable control of UASs during loss-link and over-the-horizon scenarios. The core requirement was to utilize a satellite system to send GPS tracking data and other telemetry from a flight vehicle down to the ground. Iridium was chosen as the system because it is one of the only true satellite systems that has world wide coverage, and the service has a highly reliable link margin. The Iridium system, the flight modems, and the test flight are described.

  16. XEUS: Exploratory Energy Utilization Systemic s for Fission Fusion Hybrid Application

    International Nuclear Information System (INIS)

    Suh, Kune Y.; Jeong, Wi S.; Son, Hyung M.

    2008-01-01

    World energy outlook requires environmental friendliness, sustain ability and improved economic feasibility. The Exploratory Energy Utilization Systemic s (XEUS) is being developed at the Seoul National University (SNU) to satisfy these demands. Generation IV (Gen IV) and fusion reactors are considered as candidates for the primary system. Battery Omnibus Reactor Integral System (BORIS) is a liquid-metal cooled fast reactor which is one of the Gen IV concepts. Fusion Engineering Lifetime Integral Explorer (FELIX) is a fusion demonstration reactor for power generation. These two concepts are considered as dominant options for future nuclear energy source from the environmental, commercial and nonproliferation points of view. XEUS may as well be applied to the fusion-fission hybrid system. The system code is being developed to analyze the steady state and transient behavior of the primary system. Compact and high efficiency heat exchangers are designed in the Loop Energy Exchanger Integral System (LEXIS). Modular Optimized Brayton Integral System (MOBIS) incorporates a Brayton cycle with supercritical fluid to achieve high power conversion ratio. The high volumetric energy density of the Brayton cycle enables designers to reduce the size and eventually the cost of the system when compared with that of the Rankine cycle. MOBIS is home to heat exchangers and turbo machineries. The advanced shell-and-tube or printed circuit heat exchanger is considered as heat transfer components to reduce size of the system. The supercritical fluid driven turbines and compressor are designed to achieve higher component efficiency. Thermo hydrodynamic characteristics of each component in MOBIS are demonstrated utilizing computational fluid dynamics software CFX R . Another key contributor to the reduction of capital costs per unit energy has to do with manufacturing and assembly processes that streamline plant construction by minimizing construction work and time. In a three

  17. Development of a utility system for charged particle nuclear reaction data by using intelligentPad

    International Nuclear Information System (INIS)

    Aoyama, Shigeyoshi; Ohbayashi, Yoshihide; Masui, Hiroshi; Kato, Kiyoshi; Chiba, Masaki

    2000-01-01

    We have developed a utility system, WinNRDF2, for a nuclear charged particle reaction data of NRDF (Nuclear Reaction Data File) on the IntelligentPad architecture. By using the system, we can search the experimental data of a charged particle reaction of NRDF. Furthermore, we also see the experimental data by using graphic pads which was made through the CONTIP project. (author)

  18. A study for the biological CO2 fixation and utilization system

    International Nuclear Information System (INIS)

    Otsuki, T.

    2001-01-01

    Increased CO 2 in the atmosphere is such a serious problem for mankind that many research and development approaches are implemented to reduce CO 2 emissions. One is a biological CO 2 fixation using the photosynthetic function of microalgae like Chlorella and Synechocystis sp. The target of the project is to achieve a CO 2 fixation rate of 50 g CO 2 /m 2 ·d, which is 10 times as large as that of the temperate forest. The purpose of this study is to clarify the possibilities of the biological CO 2 fixation system in view of the CO 2 balance, energy balance, and payback period. The amount of CO 2 fixation of the system should be larger than the emission of CO 2 by operating. Furthermore, the energy consumption of the system should also be less than the biochemical energy (enthalpy) of glucose, which is made by photosynthesis. After CO 2 fixation was completed by the microalgae, the biomass must be utilized practically for many markets and the initial investment in the system construction could be regained

  19. Fiscal 1997 feasibility survey of an environment friendly type coal utilization system. Feasibility survey of the environment friendly type coal utilization system in Malaysia and Vietnam (case of Vietnam); 1997 nendo chosa hokokusho. Kankyo chowagata sekitan riyo system kanosei chosa (Malaysia oyobi Vietnam ni okeru kankyo chowagata sekitan riyo system kanosei chosa (Vietnam ban))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper grasped the state of coal utilization by coal consumption field, the state of coal physical flow in Vietnam, etc., surveyed/studied a possibility of introducing the environment friendly type coal utilization system, and assessed the possibility. As to energy resources, the north is abundant in hydroelectric and coal (mainly anthracite) resources, and the south in oil and natural gas resources. Coal production in fiscal 1997 is planned to be 10 million tons. Coal preparation technique presently available is only grain size sieving. Accordingly, it is necessary to study for heightening efficiency of facilities and modernizing facilities in accordance with the introduction of the environment friendly type coal utilization technology. During the study, it is possible to propose improvement on coal processing technology (coal preparation technology). Assessment and study are made especially of the coal selection system, fine coal recovery system and waste water treatment system. For the plan on new coal-fired power plants (300MWtimes4), there is left much necessity of proposing studying models considered of the anthracite combustion technology and environmental improvement and of assessing/studying them. 60 figs., 117 tabs.

  20. Utilization of dental health services by Danish adolescents attending private or public dental health care systems

    DEFF Research Database (Denmark)

    Christensen, Lisa Bøge; Petersen, Poul Erik; Bastholm, Annelise

    2002-01-01

    The objectives of the study were: 1) to describe the choice of dental care system among 16-year-olds, 2) to describe the utilization of dental services among 16-17-year-olds enrolled in either public or private dental care systems, and to compare the dental services provided by the alternative...

  1. Fiscal 2000 report on result of development project of marine resources utilization system for energy conservation. Development of marine resources utilization system for energy conservation (Model demonstrative research and basic study); 2000 nendo energy shiyo gorika kaiyo shigen katsuyo system kaihatsu jigyo seika hokokusho. Energy shiyo gorika kaiyo shigen katsuyo system kaihatsu (model jissho kenkyu oyobi kiban kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    This paper explains the development of marine resources utilization system for energy conservation. The conceptual system is designed to take a large amount of deep sea water of 100 thousand to 1 million tons a day, to utilize it from the viewpoint of energy conservation using its coldness and purity characteristics, to then discharge it to the area of the sea in minimizing the environmental effect as well as obtaining effect such as absorption of carbon dioxide gas through cultivation of phyto-plankton. In pump-up technology, a piping system attaching on sea bed or floating with one or multiple constraints is applicable at present to all sites of geographical and oceanographic conditions. In utilization technology, use of deep-sea water as cooling water at a steam power plant, for example, improves generation efficiency by one point or more. In discharge and environment-related technologies, the research revealed that the deep-sea water from 300 m below releases carbon dioxide gas at surface, while photosynthesis can absorb the gas in the process of using nutrition contained in the deep-sea water; therefore, comprehensive examination is necessary taking energy utilization effect into account. Candidate sites were selected in areas of 200 m depth and within 5 km off-shore, with the optimum system examined at each site. (NEDO)

  2. Quality of life and health care consultation in 13 to 18 year olds with abdominal pain predominant functional gastrointestinal diseases.

    Science.gov (United States)

    Devanarayana, Niranga Manjuri; Rajindrajith, Shaman; Benninga, Marc A

    2014-08-21

    Abdominal pain predominant functional gastrointestinal diseases (AP-FGD) are commonly seen in the paediatric age group. It has significant impact on daily activities of affected children. Main objective of this study was to assess the health related quality of life (HRQoL) in children with AP-FGD. This was a cross sectional survey conducted in children aged 13-18 years, in four randomly selected schools in Western province of Sri Lanka. Data was collected using a previously validated, self-administered questionnaire. It had questions on symptoms, HRQoL and health care consultation. AP-FGD were diagnosed using Rome III criteria. A total of 1850 questionnaires were included in the analysis [males 1000 (54.1%), mean age 14.4 years and SD 1.3 years]. Of them, 305 (16.5%) had AP-FGD [irritable bowel syndrome = 91(4.9%), functional dyspepsia = 11 (0.6%), abdominal migraine = 37 (1.9%) and functional abdominal pain = 180 (9.7%)]. Lower HRQoL scores for physical (83.6 vs. 91.4 in controls), social (85.0 vs. 92.7), emotional (73.6 vs. 82.7) and school (75.0 vs. 82.5) functioning domains, and lower overall scores (79.6 vs. 88.0) were seen in children with AP-FGD (p abdominal pain (r = -0.24, p abdominal bloating and vomiting (p < 0.05). Children with AP-FGD have lower quality of life in all 4 domains. Those with severe symptoms have lower HRQoL. Approximately 28% of children with AP-FGD seek healthcare for their symptoms.

  3. Structural evolution of utility systems and its implications for photovoltaic applications

    International Nuclear Information System (INIS)

    Iannucci, J.J.; Shugar, D.S.

    1993-01-01

    Photovoltaics (PV) differ substantially from the central generating stations traditionally employed by utilities. PV utilizes a fuel which disappears nightly, operating only while the sun shines. It has the potential of being highly reliable while requiring low levels of operating and maintenance attention, and it can be deployed in a highly modular fashion close to load. It is precisely these differences that give rise to PV's greatest opportunities in successfully entering the utility market. The purpose of this paper is to explore an emerging utility paradigm, the Distributed Utility concept, and how utilities might change their current planning and resource selection processes to take advantage of it, both to the betterment of the PV industry and the utility's customers. Out of this exploration emerges the photovoltaics Diffusion Model strategy that bridges the gap from currently economic stand-alone special applications of PV in utility operations to bulk power production. (author). 12 refs, 5 figs

  4. Nutrient utilization and oxygen production by Chlorella Vulgaris in a hybrid membrane bioreactor and algal membrane photobioreactor system

    KAUST Repository

    Najm, Yasmeen Hani Kamal; Jeong, Sanghyun; Leiknes, TorOve

    2017-01-01

    This work studied oxygen production and nutrient utilization by Chlorella Vulgaris at different organic/inorganic carbon (OC/IC) and ammonium/nitrate (NH4+-N/NO3--N) ratios to design a hybrid aerobic membrane bioreactor (MBR) and membrane photobioreactor (MPBR) system. Specific oxygen production by C. vulgaris was enough to support the MBR if high growth is accomplished. Nearly 100% removal (or utilization) of PO43--P and IC was achieved under all conditions tested. Optimal growth was achieved at mixotrophic carbon conditions (0.353 d-1) and the highest NH4+-N concentration (0.357 d-1), with preferable NH4+-N utilization rather than NO3--N. The results indicate the potential of alternative process designs to treat domestic wastewater by coupling the hybrid MBR - MPBR systems.

  5. Nutrient utilization and oxygen production by Chlorella Vulgaris in a hybrid membrane bioreactor and algal membrane photobioreactor system

    KAUST Repository

    Najm, Yasmeen Hani Kamal

    2017-02-17

    This work studied oxygen production and nutrient utilization by Chlorella Vulgaris at different organic/inorganic carbon (OC/IC) and ammonium/nitrate (NH4+-N/NO3--N) ratios to design a hybrid aerobic membrane bioreactor (MBR) and membrane photobioreactor (MPBR) system. Specific oxygen production by C. vulgaris was enough to support the MBR if high growth is accomplished. Nearly 100% removal (or utilization) of PO43--P and IC was achieved under all conditions tested. Optimal growth was achieved at mixotrophic carbon conditions (0.353 d-1) and the highest NH4+-N concentration (0.357 d-1), with preferable NH4+-N utilization rather than NO3--N. The results indicate the potential of alternative process designs to treat domestic wastewater by coupling the hybrid MBR - MPBR systems.

  6. Analysis of small-scale biogas utilization systems on Ontario cattle farms

    International Nuclear Information System (INIS)

    White, Andrew J.; Kirk, Donald W.; Graydon, John W.

    2011-01-01

    The production of biogas through the anaerobic digestion of cattle manure and its subsequent use in the generation of electricity on larger farms in Ontario is currently economically attractive. This is a result of the Ontario Feed-In Tariff (FIT) program, which provides incentivized rates for the production of electricity from biogas. Although larger farms can take advantage of the higher rates for electricity, there are substantially more smaller farms for which individually designed and engineered biogas systems would be prohibitively expensive. By employing the concept of modular biogas plants, this analysis evaluates the economics of small-scale biogas utilization systems. Dairy farms with at least 33 animals and beef farms with at least 78 animals can operate economically attractive biogas systems. This analysis shows that approximately 9000 additional Ontario cattle farms would be able to take advantage of the FIT program, which would add 120 MW e of renewable energy capacity to the Ontario electrical grid. (author)

  7. Analysis of a utility-interactive wind-photovoltaic hybrid system with battery storage using neural network

    Science.gov (United States)

    Giraud, Francois

    1999-10-01

    This dissertation investigates the application of neural network theory to the analysis of a 4-kW Utility-interactive Wind-Photovoltaic System (WPS) with battery storage. The hybrid system comprises a 2.5-kW photovoltaic generator and a 1.5-kW wind turbine. The wind power generator produces power at variable speed and variable frequency (VSVF). The wind energy is converted into dc power by a controlled, tree-phase, full-wave, bridge rectifier. The PV power is maximized by a Maximum Power Point Tracker (MPPT), a dc-to-dc chopper, switching at a frequency of 45 kHz. The whole dc power of both subsystems is stored in the battery bank or conditioned by a single-phase self-commutated inverter to be sold to the utility at a predetermined amount. First, the PV is modeled using Artificial Neural Network (ANN). To reduce model uncertainty, the open-circuit voltage VOC and the short-circuit current ISC of the PV are chosen as model input variables of the ANN. These input variables have the advantage of incorporating the effects of the quantifiable and non-quantifiable environmental variants affecting the PV power. Then, a simplified way to predict accurately the dynamic responses of the grid-linked WPS to gusty winds using a Recurrent Neural Network (RNN) is investigated. The RNN is a single-output feedforward backpropagation network with external feedback, which allows past responses to be fed back to the network input. In the third step, a Radial Basis Functions (RBF) Network is used to analyze the effects of clouds on the Utility-Interactive WPS. Using the irradiance as input signal, the network models the effects of random cloud movement on the output current, the output voltage, the output power of the PV system, as well as the electrical output variables of the grid-linked inverter. Fourthly, using RNN, the combined effects of a random cloud and a wind gusts on the system are analyzed. For short period intervals, the wind speed and the solar radiation are considered as

  8. An innovative integrated system utilizing solar energy as power for the treatment of decentralized wastewater.

    Science.gov (United States)

    Han, Changfu; Liu, Junxin; Liang, Hanwen; Guo, Xuesong; Li, Lin

    2013-02-01

    This article reports an innovative integrated system utilizing solar energy as power for decentralized wastewater treatment, which consists of an oxidation ditch with double channels and a photovoltaic (PV) system without a storage battery. Because the system operates without a storage battery, which can reduce the cost of the PV system, the solar radiation intensity affects the amount of power output from the PV system. To ensure that the power output is sufficient in all different weather conditions, the solar radiation intensity of 78 W/m2 with 95% confidence interval was defined as a threshold of power output for the PV system according to the monitoring results in this study, and a step power output mode was used to utilize the solar energy as well as possible. The oxidation ditch driven by the PV system without storage battery ran during the day and stopped at night. Therefore, anaerobic, anoxic and aerobic conditions could periodically appear in the oxidation ditch, which was favorable to nitrogen and phosphate removal from the wastewater. The experimental results showed that the system was efficient, achieving average removal efficiencies of 88% COD, 98% NH4+-N, 70% TN and 83% TP, under the loading rates of 140 mg COD/(g MLSS x day), 32 mg NH4+-N/(g MLSS x day), 44 mg TN/(g MLSS x day) and 5 mg TP/(g MLSS x day).

  9. Overview of U.S. electric utilities: Transmission and distribution systems

    International Nuclear Information System (INIS)

    Brown, R.D.

    1994-01-01

    I hope this brief description of the US electric utility industry has been interesting and informative. No doubt many characteristics, concerns, and research efforts mirror those of the electric utility industry in South Korea. It is hoped that through workshops such as this that electric utilities, manufacturers and consultants may learn from each other for the mutual benefit of all

  10. Compliance problems of small utility systems with the Powerplant and Industrial Fuel Use Act of 1978: volume II - appendices

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    A study of the problems of compliance with the Powerplant and Industrial Fuel Use Act of 1978 experienced by electric utility systems which have a total generating capacity of less than 2000 MW is presented. This volume presents the following appendices: (A) case studies (Farmington, New Mexico; Lamar, Colorado; Dover, Delaware; Wolverine Electric Cooperative, Michigan; Central Telephone and Utilities, Kansas; Sierra Pacific Power Company, Nevada; Vero Beach, Florida; Lubbock, Texas; Western Farmers Cooperative, Oklahoma; and West Texas Utilities Company, Texas); (B) contacts and responses to study; (C) joint action legislation chart; (D) Texas Municipal Power Agency case study; (E) existing generating units jointly owned with small utilities; (F) future generating units jointly owned with small utilities; (G) Federal Register Notice of April 17, 1980, and letter of inquiry to utilities; (H) small utility responses; and (I) Section 744, PIFUA. (WHK)

  11. Core Knowledge Preservation and Transfer System Establishment and Utilization for NPP

    International Nuclear Information System (INIS)

    Kim, Bae-Joo; Kim, Gwang-Bong

    2008-01-01

    Knowledge is the most important factor in the safe and reliable operation of NPP. One generation has passed since we began to operate NPP in Korea. And then it became time to retire much experienced personnel in NPP. Although we have many kinds of knowledge sharing systems inside KHNP, we don't have any systematic experience knowledge preservation and transfer systems that are important for the operation of NPP. So we have lost important experience knowledge since we started operating. Especially, KHNP has adopted an internal promotion system as the human resource management policy, which induced frequent job position changes of staff members because there were job positions for a good promotion. Additionally, KHNP doesn't overlap jobs for long enough periods between previous staff and new staff when staff changes occur. With these reasons KHNP could not accumulate experience knowledge inside the company system. Therefore, KHNP could not preserve and transfer to the next generation the experience related to NPP operations systematically. To resolve these issues KNPEI performed a research project from March 2006 to September 2007. The purpose of this report is to introduce the experience knowledge preservation and transfer system that KNPEI has established and the utilization of the system

  12. Clear Liquor Scrubbing with Anhydrite Production

    International Nuclear Information System (INIS)

    Hargrove, O. W.; Carey, T. R.; Lowell, P. S.; Meserole, F. B.; Rhudy, R. G.; Feeley, Thomas J.

    1997-01-01

    The objective of this project to develop an advanced flue gas desulfurization (FGD) process that has decreased capital and operating costs, higher SO 2 removal efficiency, and better by-product solids quality than existing, commercially available technology. A clear liquor process (which uses a scrubbing liquid with no solids) will be used to accomplish this objective rather than a slurry liquor process (which contains solids). This clear liquor scrubbing (CLS) project is focused on three research areas: (1) Development of a clear liquor scrubbing process that uses a clear solution to remove SO 2 from flue gas and can be operated under inhibited-oxidation conditions; (2) Development of an anhydrite process that converts precipitated calcium sulfite to anhydrous calcium sulfate (anhydrite); and (3) Development of an alkali/humidification process to remove HCl from flue gas upstream of the FGD system. The anhydrite process also can be retrofit into existing FGD systems to produce a valuable by-product as an alternative to gypsum. This fits well into another of FETC's PRDA objectives of developing an advanced byproduct recovery subsystem capable of transforming SO 2 into a useable byproduct or high-volume valuable commodities of interest. This paper describes the proposed processes, outlines the test approach, and preliminary Phase I test results

  13. Feasibility survey of the environmentally-friendly coal utilization system. Feasibility survey of the environmentally-friendly coal utilization system in the Philippines; Kankyo chowagata sekitan riyo system kanosei chosa. Philippines ni okeru kankyo chowagata sekitan riyo system kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    With relation to the coal of the Philippines, where the expansion of the use of coal as a substitute for petroleum/plant fuel is aimed at, the paper grasped the situation of coal production/development, the trend of coal import and domestic distribution, the coal utilization trend, and environmental problems, and analyzed the situation of coal utilization/spread by industry including the commercial/residential use. The purpose of the survey is to draw up a master plan for the introduction of the environmentally-friendly coal utilization system. As to the use of environmentally-friendly coal technology which should be adopted to the coal mining industry and commercial/residential sector, cited are the introduction of coal preparation technology and power transmission technology, and the development/spread of briquette as a firewood substituting fuel. In the electric power sector, the problem is the treatment of ash after combustion and the effective use. Relating to the treatment of flue gas, there is no installation at all of desulfurization facilities and denitrification facilities. In the cement industry sector, they wish to return fuel from heavy oil to coal. For it, it is necessary to study dust preventive measures. In the other sectors, coal hasn`t been used very much. An increase in coal demand is not expected also in the future, and big problems concerning coal haven`t occurred. 42 figs., 64 tabs.

  14. Impact of doctors' resistance on success of drug utilization review system.

    Science.gov (United States)

    Choi, Jong Soo; Yun, Seong Hyeon; Kim, Dongsoo; Park, Seung Woo

    2014-04-01

    The drug utilization review (DUR) system, which checks any conflict event of medications, contributes to improve patient safety. One of the important barriers in its adoption is doctors' resistance. This study aimed to analyze the impacts of doctors' resistance on the success of the DUR system. This study adopted an augmented the DeLone and McLean Information System (D&M IS) Success Model (2003), which used doctors' resistance as a socio-technological measure. This study framework is the same as that of the D&M IS Success Model in that it is based on qualities, such as system, information, and services. The major difference is that this study excluded the variable 'use' because it was not statistically significant for mandatory systems. A survey of doctors who used computers to enter prescriptions was conducted at a Korean tertiary hospital in February 2012. This study is very meaningful in that it is the first study to explore the success factors of the DUR system associated with doctors' resistance. Doctors' resistance to the DUR system was not statistically associated with user usefulness, whereas it affected user satisfaction. The results indicate that doctors still complain of discomfort in using the DUR system in the outpatient clinical setting, even though they admit that it contributes to patient safety. To mitigate doctors' resistance and raise user satisfaction, more opinions from doctors regarding the DUR system have to be considered and have to be reflected in the system.

  15. Fiscal 1999 achievement report on development of wide-area energy utilization network system. Research on energy system design technology (Research on Eco-Energy City systematization); Eco ene toshi no system ka kenkyu 1999 nendo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Efforts are being exerted to develop systems for effectively utilizing various kinds of waste heat in presence in cities and their neighborhood. In fiscal 1999, investigations were conducted into cases of low temperature waste heat utilization at 16 locations in Japan and into trends of heat utilization in five European countries, with a visit paid to European District Heating Association. There are 128 district heat supplying sites in service in Japan, of which 25 handles low temperature waste heat. As for their types of utilization, 12 are of the temperature difference energy utilization type while 13 are of the heat recovery type. When it comes to the system details, the importance of proper selection of structures and materials for heat accumulating systems and heat exchangers on the secondary side should be emphasized although it is the heat pump that assumes the key role. In Europe, indications are that district systems are developing into wide-area networks and that they are growing increasingly marketable. In the northern and eastern parts of Europe, 30-70% of demand for heat is met by district heating. Waste heat from power generation is the heat source, and this occupies 30-80% of the whole. Thanks to the introduction of the environmental tax, in addition, environments are now complete under which recoverable energy utilization will enjoy an advantageous position. (NEDO)

  16. Monitoring Utilization of a Large Scale Addiction Treatment System: The Drug and Alcohol Treatment Information System (DATIs

    Directory of Open Access Journals (Sweden)

    Nooshin Khobzi Rotondi

    2012-01-01

    Full Text Available Client-based information systems can yield data to address issues of system accountability and planning, and contribute information related to changing patterns of substance use in treatment and, indirectly, general populations. The Drug and Alcohol Treatment Information System (DATIS monitors the number/types of clients treated in approximately 170 publicly-funded addiction treatment agencies in Ontario. The purpose of this study was to estimate the caseload of addiction treatment agencies, and describe important characteristics of clients, their patterns of service utilization and trends over-time from 2005 to 2010. In 2009–2010, 47,065 individuals were admitted to treatment. Since 2005–2006, there has been an increase in adolescents/youth in treatment, and a decrease in the male-female gender ratio. Alcohol problems predominated, but an increasing proportion of clients used cannabis and prescription opioids. DATIS is an evolving system and an integral component of Ontario's performance measurement system. Linkages with healthcare information systems will allow for longitudinal tracking of client health-related outcomes.

  17. Increased system benefit from cogeneration due to cooperation between district heating utility and industry

    Energy Technology Data Exchange (ETDEWEB)

    Danestig, M.; Henning, D. [Division of Energy Systems, Department of Mechanical Engineering, Linkoping Institute of Technology, Linkoping (Sweden)

    2004-07-01

    District heating and steam supply in the town Oernskoeldsvik in northern Sweden is in focus for this study. Low temperature waste heat from pulp manufacturing in the Donisjoe mill is now utilised for district heating production in heat pumps, which dominate district heating supply. Based on this traditional cooperation between the local district heating utility and the pulp industry, the parties discuss a partial outsourcing of the industrial steam supply to the utility, which may enable beneficial system solutions for both actors. The local utility must find a new location for a heating plant because a railway line is being built at the heat pump site. Planning for a new combined heat and power production (CHP) plant has started but its location is uncertain. If the plant can be situated close to the mill it can, besides district heating, produce steam, which can be supplied to adjacent industries. The municipality and its local utility are also considering investing in a waste incineration plant. But is waste incineration suitable for Ornskoeldsvik and how would it interact with cogeneration. Alternative cases have been evaluated with the MODEST energy system optimisation model, which minimises the cost for satisfying district heating and steam demand. The most profitable solution is to invest in a CHP plant and a waste incineration plant. Considering carbon dioxide emissions, the results from applying a local or a global perspective are remarkably different. In the latter case, generated electricity is assumed to replace power from coal condensing plants elsewhere in the North-European power grid. Therefore, minimum global CO{sub 2} emissions are achieved through maximal electricity production in a CHP plant. From this viewpoint, waste incineration should not be introduced because it would obstruct cogeneration. The study is carried out within the program Sustainable municipality run by the Swedish Energy Agency. (orig.)

  18. High efficiency thermal energy storage system for utility applications

    International Nuclear Information System (INIS)

    Vrable, D.L.; Quade, R.N.

    1979-01-01

    A concept of coupling a high efficiency base loaded coal or nuclear power plant with a thermal energy storage scheme for efficient and low-cost intermediate and peaking power is presented. A portion of the power plant's thermal output is used directly to generate superheated steam for continuous operation of a conventional turbine-generator to product base-load power. The remaining thermal output is used on a continuous basis to heat a conventional heat transfer salt (such as the eutectic composition of KaNO 3 /NaNO 3 /NaNO 2 ), which is stored in a high-temperature reservoir [538 0 C (1000 0 F)]. During peak demand periods, the salt is circulated from the high-temperature reservoir to a low-temperature reservoir through steam generators in order to provide peaking power from a conventional steam cycle plant. The period of operation can vary, but may typically be the equivalent of about 4 to 8 full-power hours each day. The system can be tailored to meet the utilities' load demand by varying the base-load level and the period of operation of the peak-load system

  19. Electric utility system benefits of factory packaged GE LM Modular Generator sets

    Energy Technology Data Exchange (ETDEWEB)

    West, G.

    1994-12-31

    Electric utility system benefits of factory packaged GE LM modular generator sets are outlined. The following topics are discussed: GE LM gas turbine history, operating experience, maintenance, gas turbine spare engines, modular gas turbine generator sets, typical LM2500 cogeneration plant and STIG cycle plant, factory packaging concept, gas turbine/generator package, performance, comparison, competitive capital cost, phased construction, comparison of revenue requirements, capacity evaluation, heat rate evaluation, fuel evaluation, startup, and dispatch flexibility without maintenance penalty.

  20. Development of a utility conflict management system.

    Science.gov (United States)

    2009-02-01

    A critical process for the timely development and delivery of highway construction projects is the early : identification and depiction of utility interests that may interfere with proposed highway facilities. The : effective management of such utili...

  1. Towards Utilization of Neurofuzzy Systems for Taxonomic Identification Using Psittacines as a Case Study

    Directory of Open Access Journals (Sweden)

    Shahram Rahimi

    2016-01-01

    Full Text Available Demonstration of the neurofuzzy application to the task of psittacine (parrot taxonomic identification is presented in this paper. In this work, NEFCLASS-J neurofuzzy system is utilized for classification of parrot data for 141 and 183 groupings, using 68 feature points or qualities. The reported results display classification accuracies of above 95%, which is strongly tied to the setting of certain parameters of the neurofuzzy system. Rule base sizes were in the range of 1,750 to 1,950 rules.

  2. The Characteristic of Molten Heat Salt Storage System Utilizing Solar Energy Combined with Valley Electric

    Directory of Open Access Journals (Sweden)

    LI .Jiu-ru

    2017-02-01

    Full Text Available With the environmental pollution and energy consumption clue to the large difference between peak and valley of power grid,the molten salt heat storage system(MSHSS utilizing solar Energy combined with valley electric is presented for good energy saving and low emissions. The costs of MSHSS utilizing solar Energy combined with valley electric are greatly reduced. The law of heat transfer in molten salt heat storage technology is studied with the method of grey correlation analysis. The results show the effect of elbow sizes on surface convective heat transfer coefficient with different flow velocities.

  3. Utilization of polymer enclosed intermediate class arresters to improve the performance of modern power systems

    International Nuclear Information System (INIS)

    Sakich, J.D.; Lenk, D.W.; Koepfinger, J.L.

    1992-01-01

    This paper introduces the first commercially available polymer enclosed intermediate class metal oxide surge arrester. It describes the unique construction of the design, including reduced size, increased flexibility, a collared seal on the polymer housing and an open webbed fiberglass-epoxy module which houses the metal oxide disc elements. Performance advantages are discussed. These include improved short term contamination performance of the insulator-like polymer design when compared to multi-unit porcelain housed designs. Data will show that polymer housed open-webbed fiberglass module construction extends the pressure relief capability beyond that of typical porcelain enclosed designs. The capability of the polymer enclosed design to withstand repeated pressure relief tests, simulating system reclose on a failed arrester, is also discussed. This paper discusses the circumstances at one utility which has considered utilizing polymer enclosed intermediate class arresters to effectively upgrade their system protection capabilities

  4. 41 CFR 109-39.301 - Utilization guidelines.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Utilization guidelines... Management System Vehicles § 109-39.301 Utilization guidelines. DOE activities utilizing GSA IFMS motor... meeting DOE utilization guidelines or established local use objectives, as appropriate. Those vehicles not...

  5. Evaluation of the utility of a glycemic pattern identification system.

    Science.gov (United States)

    Otto, Erik A; Tannan, Vinay

    2014-07-01

    With the increasing prevalence of systems allowing automated, real-time transmission of blood glucose data there is a need for pattern recognition techniques that can inform of deleterious patterns in glycemic control when people test. We evaluated the utility of pattern identification with a novel pattern identification system named Vigilant™ and compared it to standard pattern identification methods in diabetes. To characterize the importance of an identified pattern we evaluated the relative risk of future hypoglycemic and hyperglycemic events in diurnal periods following identification of a pattern in a data set of 536 patients with diabetes. We evaluated events 2 days, 7 days, 30 days, and 61-90 days from pattern identification, across diabetes types and cohorts of glycemic control, and also compared the system to 6 pattern identification methods consisting of deleterious event counts and percentages over 5-, 14-, and 30-day windows. Episodes of hypoglycemia, hyperglycemia, severe hypoglycemia, and severe hyperglycemia were 120%, 46%, 123%, and 76% more likely after pattern identification, respectively, compared to periods when no pattern was identified. The system was also significantly more predictive of deleterious events than other pattern identification methods evaluated, and was persistently predictive up to 3 months after pattern identification. The system identified patterns that are significantly predictive of deleterious glycemic events, and more so relative to many pattern identification methods used in diabetes management today. Further study will inform how improved pattern identification can lead to improved glycemic control. © 2014 Diabetes Technology Society.

  6. Land application uses for dry flue gas desulfurization by-products: Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    Dick, W.; Bigham, J.; Forster, R.; Hitzhusen, F.; Lal, R.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.; Rowe, G.

    1999-01-31

    New flue gas desulfurization (FGD) scrubbing technologies create a dry, solid by-product material consisting of excess sorbent, reaction product that contains sulfate and sulfite, and coal fly ash. Generally, dry FGD by-products are treated as solid wastes and disposed in landfills. However, landfill sites are becoming scarce and tipping fees are constantly increasing. Provided the environmental impacts are socially and scientifically acceptable, beneficial uses via recycling can provide economic benefits to both the producer and the end user of the FGD. A study titled ''Land Application Uses for Dry Flue Gas Desulfurization By-Products'' was initiated in December, 1990 to develop and demonstrate large volume, beneficial uses of FGD by-products. Phase 1 and Phase 2 reports have been published by the Electric Power Research Institute (EPRI), Palo Alto, CA. Phase 3 objectives were to demonstrate, using field studies, the beneficial uses of FGD by-products (1) as an amendment material on agricultural lands and on abandoned surface coal mine land, (2) as an engineering material for soil stabilization and raid repair, and (3) to assess the environmental and economic impacts of such beneficial uses. Application of dry FGD by-product to three soils in place of agricultural limestone increased alfalfa (Medicago sativa L.) and corn (Zea may L.) yields. No detrimental effects on soil and plant quality were observed.

  7. EFEKTIVITAS FOCUS GROUP DISCUSSION UNTUK MENGURANGI STRES PADA SISWA SMA YANG AKAN MENGHADAPI UJIAN AKHIR NASIONAL

    Directory of Open Access Journals (Sweden)

    Dina Aprilia

    2016-10-01

    Full Text Available This research is aimed to find the effectivity of Focus Group Discussion (FGD to decrease the feeling stress for senior high school students (SMA who will face the national final examination (UAN. Stress on SMA students is a circumstance which gets negative assessment. It intimidates and pushes the students, in this case is UAN would appear a reaction such as emotional disorder, cognition, physiology and behavior disorder of SMA students. This research concerned 21 SMA students in grade XII, who had high stress level in facing UAN. The subjects were divided into two groups. First group was the experiment group (include 11 students and it was the group who got the FGD treatment. The second group was control group (include 10 students and this group didn’t get the FGD treatment. Collecting data was done by using Stress Scale in facing UAN. It was given (a before FGD (pre-test and (b after FGD (post-test. The hypothesis is examined by using difference examination (t-test by comparing mean pre-test and post-test. The result showed that there was a significant influence to decrease the stress in SMA students who were in experiment group (t = 6,540, p < 0,01 after they got FGD treatment. Experiment group had decreased the stress score to face UAN (Mean=7,476.

  8. Utilization of IR laser pumped anti-Stokes emission of Er-Yb doped systems for identification of securities

    International Nuclear Information System (INIS)

    Kuzmin, A.N.; Ryabtsev, G.I.; Ketko, G.A.; Gorelenko, A.Yu.; Demidovich, A.A.; Strek, W.; Maruszewicz, K.; Deren, P.

    1996-01-01

    In this paper we present a utilization of anti-Stokes luminescence of Er-Yb systems for identification of securities. A simple method of detection of an up-conversion phenomenon in such system by means of IR laser operating in the region 960-1010 nm is proposed. (author)

  9. Electric energy utilization and conservation

    International Nuclear Information System (INIS)

    Tripathy, S.C.

    1991-01-01

    Various aspects of electric energy utilization and conservation are discussed. First chapter reviews thermodynamic aspects of energy conservation. Subsequent chapters describe possibilities and methods of energy conservation in thermal power plants, airconditioning and ventilation systems, electric lighting systems, electric heating systems in industries, and railway electrification. Chapter 8 describes various modes of energy storage and compares their economies. The next chapter discusses various facets of energy economics and the last chapter discusses the practical aspects of energy conservation in different industries and power utilities. (M.G.B.). 100 refs

  10. Shift systems in nuclear power plants - aspects for planning, shift systems, utility practice

    International Nuclear Information System (INIS)

    Grauf, E.

    1986-01-01

    This lecture contains the most important aspects of shift structure and shift organisation. The criteria for shift planning involving essential tasks, duties, laws and regulations, medical aspects, social aspects, will be presented. In the Federal Republic of Germany some basic models were established, which will be shown and explained with special reference to the number of teams, size of shift crews and absence regulations. Moreover, the lecture will deal with rotation systems and provisions for the transfer of shift responsibilities. By example of a utility plant commissioning time scale (1300 MW PWR) the practice of shift installations will be shown as well as the most important points of education and training. Within this compass the criteria and requirements for training and education of operational personnel in the Federal Republic of Germany will also be touched. (orig.)

  11. Liquid radwaste processing, operational experience utilizing Duratek Mobile Process System (MPS)

    International Nuclear Information System (INIS)

    Hunkele, W.; Jensen, C.E.; Duratek Corp., Beltsville, MD)

    1985-01-01

    The use of Duratek's Mobile Process System (MPS) employing sluiceable pressure vessels and improved operational techniques generates operational efficiencies including volume reduction (VR), reduced personnel labor and exposure and higher flowrates for cleanup of liquid radwaste streams in an operating nuclear power plant (Salem Generating Station). Significant additional VR is achievable based on laboratory and on-site experience utilizing Durasil 70. Under high conductivity, actual waste stream conditions, this proprietary media has demonstrated through-puts of a magnitude 15 times higher than organic cation resin. A long-term problem, cobalt species removal, is mitigated by this media

  12. [Irritable bowel syndrome and cardiac right-to-left shunt through a patent foramen ovale].

    Science.gov (United States)

    Alarcón-Fernández, Onofre; Alvarez-Fernández, Jesús-Andrés; Baudet, Juan-Salvador; Pérez-Quintero, Raquel; Sánchez-Del Río, Antonio; Borja-Gutiérrez, Elisa; Borque-Barrera, Pilar

    2008-05-31

    Both irritable bowel syndrome (IBS) and patent foramen ovale (PFO) have a similar prevalence in the general population, affect more commonly women and are related to comorbidities such as migraine. In IBS there are alterations in the metabolism of certain substances like serotonin. In the presence of PFO with a right- to left-shunt (RLS), a percentage of venous blood bypasses the lung filter and may increase these substances in blood. A phone interview was done to determine the presence of IBS in patients previously attended for detection of RLS with transcranial Doppler ultrasound. The presence and grade of RLS was analyzed and compared with subjects without gastrointestinal symptoms (NoGI). Rome II criteria were used to diagnose IBS or other functional gastrointestinal disorder (FGD) and Venice 1999 consensus were used for the diagnosis of RLS. Thirthy-three (18.3%) of 180 interviewed patients had IBS and 62 (34.4%) other FGD. RLS was found in 41% of NoGI patients, 64% of patients with IBS and 68% of patients with other FGD (odds ratio [OR] = 2.56; p < 0.05 for SII, and OR = 3.06; p < 0.01 for other FGD). RLS with a massive pattern was registered in en 27% of NoGI patients, 39% of patients with IBS and 45% of patients with other FGD (OR = 1.73; p = 1 for IBS, and OR = 2.21; p < 0.05 for other FGD). We found a higher prevalence of cardiac RLS through a PFO in patients with IBS and other FGD. A possible etiopathogenic relationship must be considered in future studies.

  13. High Health Care Utilization Preceding Diagnosis of Systemic Lupus Erythematosus in Youth.

    Science.gov (United States)

    Chang, Joyce C; Mandell, David S; Knight, Andrea M

    2017-12-01

    Childhood-onset systemic lupus erythematosus (SLE) is associated with high risk for organ damage, which may be mitigated by early diagnosis and treatment. We characterized health care utilization for youth in the year preceding SLE diagnosis compared to controls. Using Clinformatics ™ DataMart (OptumInsight, Eden Prairie, MN) de-identified administrative data from 2000 to 2013, we identified 682 youth ages 10-24 years with new-onset SLE (≥3 International Classification of Diseases, Ninth Revision (ICD-9) codes for SLE 710.0, each >30 days apart), and 1,364 age and sex-matched healthy controls. We compared the incidence of ambulatory, emergency, and inpatient visits 12 months before SLE diagnosis, and frequency of primary diagnoses. We examined subject characteristics associated with utilization preceding SLE diagnosis. Youth with SLE had significantly more visits in the year preceding diagnosis than controls across ambulatory (incidence rate ratio (IRR) 2.48, p<0.001), emergency (IRR 3.42, p<0.001) and inpatient settings (IRR 3.02, p<0.001). The most frequent acute care diagnoses and median days to SLE diagnosis were: venous thromboembolism (313, interquartile range (IQR) 18-356), thrombocytopenia (278, IQR 39-354), chest pain (73, IQR 29.5-168), fever (52, IQR 17-166), and acute kidney failure (14, IQR 5-168). Having a psychiatric diagnosis prior to SLE diagnosis was strongly associated with increased utilization across all settings. Youth with SLE have high health care utilization throughout the year preceding SLE diagnosis. Examining variable diagnostic trajectories of youth presenting for acute care preceding SLE diagnosis, and increased attention to psychiatric morbidity may help improve care for youth with new-onset SLE. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Utility application of simulation software

    International Nuclear Information System (INIS)

    Sudduth, A.L.

    1986-01-01

    The purpose of this paper is to discuss dynamic system simulation from the perspective of a successful utility user. In it, four aspects of the issue of utility use of simulation will be addressed: (1) What simulation software is available to utilities which can be of practical assistance with a modest investment in staff and training. (2) To what specific problems can utilities apply the technique of simulation and achieve reasonably cost effective results. (3) What the advantages are of in-house dynamic simulation capability, as opposed to depending on NSSS vendors or consultants. (4) What the prospects are for wider use of dynamic simulation in the utility industry

  15. National Utility Rate Database: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ong, S.; McKeel, R.

    2012-08-01

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  16. ANALISIS FAKTOR-FAKTOR YANG MEMENGARUHI TRANSFORMASI KAPABILITAS ORGANISASI DAN PERAN BADAN PEMERIKSA KEUANGAN RI

    Directory of Open Access Journals (Sweden)

    Agus Joko Pramono

    2017-01-01

    Full Text Available ABSTRACT This study is aimed to study the influencing factors of the Audit Board of Republic Indonesia’s roles and capabilities transformation to meet the national development goals. This study use a qualitative approach with Analytic Network Process (ANP method, to map out the interrelated factors of nodes within 3 clusters, which are the external, internal, and supporting factors. Focus Group Discussion (FGD was conducted to design a Framework Analysis. The participants of the FGD were BPK RI officials and its stakeholders including relevant external experts. The FGD has made a quantification framework as an ideal approach to use for data processing on software superdecisions. This process has brought about the priorities as follows: external stakeholder engagement, leadership and governance system, communication and the management of information system. The research has found out that the most significant and urgent factor is the concern of, and support from, the external stakeholders for BPK RI. Therefore, BPK RI has to design a strategy and communication program that can effectively improve the external support and concern. Keywords: Transformation, organizational capability, organizational roles, The Audit  Board of Indonesia, Analytic Network Process. ABSTRAK Kajian ini bertujuan untuk mengkaji faktor-faktor yang berpengaruh terhadap transformasi kapabilitas dan peran Badan Pemeriksa Keuangan Republik Indonesia. Kajian ini menggunakan pendekatan kualitatif dengan metode Analytic Network Process (ANP untuk mendapatkan hubungan antar node dalam 3 cluster (faktor eksternal, internal dan penunjang yang bersifat network. Framework analysis disusun melalui FGD para pakar dari eksternal dan internal BPK RI. Kuantifikasi framework dihasilkan dari FGD para pakar internal BPK RI. Olah data pada software superdecisions menghasilkan prioritas-prioritas sebagai berikut: faktor eksternal prioritasnya Stakeholders Engagement; faktor internal

  17. Advantages of utilizing DMD based rapid manufacturing systems in mass customization applications

    Science.gov (United States)

    El-Siblani, A.

    2010-02-01

    The Use of DMD based Rapid Manufacturing Systems has proven to be very advantageous in the production of highly accurate plastic based components for use in mass customization market such as hearing aids, and dental markets. The voxelization process currently afforded with the DLP technology eliminates any layering effect associated with all existing additive Rapid Manufacturing technologies. The smooth accurate surfaces produced in an additive process utilizing DLP technology, through the voxelization approach, allow for the production of custom finished products. The implementation of DLP technology in rapid prototyping and rapid manufacturing systems allow for the usage of highly viscous photopolymer based liquid and paste composites for rapid manufacturing that could not be used in any other additive process prior to implementation of DLP technology in RP and RM systems. It also allowed for the greater throughput in production without sacrificing quality and accuracy.

  18. Device with Complex System for Heat Utilization and Reduction of Hazardous Air Emissions

    Directory of Open Access Journals (Sweden)

    O. V. Kascheeva

    2012-01-01

    Full Text Available Investigations concern heat utilization and reduction of hazardous emissions occurring in residential buildings and accompanying operation of a great number of industrial enterprises in particular heat and power objects, and firstly, heat-generating units of small power located in densely populated residential areas without centralized heat supply.The investigation target is to reduce cost of heat produced by independent system of building heat supply, reduction of air pollution  due to hazardous gas emissions and reduction of heat pollution of the environment as a result of building ventilation system operation, ventilation of their internal and external sewerage network and higher reliability of their operation.The target is achieved because the device with complex system for heat utilization and reduction of hazardous air emissions has additionally an assembly tank for mixing flue gases, ventilation emissions and atmospheric air, heat pump. Evaporation zone of the pump is a condensator of the gas mixture and its condensate zone contains a heat supply line for a heat consumer. The line is equipped with assembling  and distributing collectors, pipeline connecting the heat supply line with the system of direct and return delivery water from a boiler house, a separator for division of liquid and gaseous mixture phases, neutralizing devices for separate reduction of concentrations of hazardous and odorous substances being released in gaseous and liquid portions of the mixture, a pipeline for periodic supply of air with higher concentration of hazardous and odorous substances in the boiler furnace. The supplied air is obtained as a result of its passing through gas filters at their regeneration when their exchange capacity is exhausted.

  19. Feasibility study of environmentally friendly type coal utilization systems. Feasibility study of environmentally friendly type coal utilization systems in sectors except the coal industry in China; Kankyo chowagata sekitan riyo system kanosei chosa. Chugoku no sekitan kogyo igai no bumon ni okeru kankyo chowagata sekitan riyo system kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    For the purpose of working out a comprehensive master plan for application of the coal utilization system, the paper surveyed and studied the coal utilization system in terms of environmental measures and efficiency improvement in the utilization of coal. As a result of the discussion with NEDO and the National Planning Committee of China, Liaoning Province (the whole China) and Shenyang City were selected as a model area and a model city for the survey and study. As energy conservation measures taken in the former, desirable are intensifying/capacity-increase of boilers, kilns, etc. and adoption of new-type/high-efficient equipment. Also expected are reinforcement of combustion control and improvement of efficiency by using coal preparation, industrial use coal briquette, etc. Measures taken in the latter are the same as those taken in the whole China. As SOx reduction measures for Liaoning Province, desirable is installation of dry-type desulfurization equipment and simple desulfurization equipment. As dust prevention measures for it, desirable is installation of electrostatic precipitators or high-functional bag filters. SOx reduction measures for Shenyang City are the same as those taken in the whole China. SOx can be reduced by using coal-prepared low-sulfur coal and industrial use coal briquette added with desulfurizing agent. 88 figs., 163 tabs.

  20. Power Flow Distribution Strategy for Improved Power Electronics Energy Efficiency in Battery Storage Systems: Development and Implementation in a Utility-Scale System

    Directory of Open Access Journals (Sweden)

    Michael Schimpe

    2018-03-01

    Full Text Available Utility-scale battery storage systems typically consist of multiple smaller units contributing to the overall power dispatch of the system. Herein, the power distribution among these units is analyzed and optimized to operate the system with increased energy efficiency. To improve the real-life storage operation, a holistic system model for battery storage systems has been developed that enables a calculation of the energy efficiency. A utility-scale Second-Life battery storage system with a capacity of 3.3 MWh/3 MW is operated and evaluated in this work. The system is in operation for the provision of primary control reserve in combination with intraday trading for controlling the battery state of charge. The simulation model is parameterized with the system data. Results show that losses in power electronics dominate. An operational strategy improving the energy efficiency through an optimized power flow distribution within the storage system is developed. The power flow distribution strategy is based on the reduction of the power electronics losses at no-load/partial-load by minimizing their in-operation time. The simulation derived power flow distribution strategy is implemented in the real-life storage system. Field-test measurements and analysis prove the functionality of the power flow distribution strategy and reveal the reduction of the energy throughput of the units by 7%, as well as a significant reduction of energy losses in the units by 24%. The cost savings for electricity over the system’s lifetime are approximated to 4.4% of its investment cost.

  1. A technical analysis for cogeneration systems with potential applications in twelve California industrial plants. [energy saving heat-electricity utility systems

    Science.gov (United States)

    Moretti, V. C.; Davis, H. S.; Slonski, M. L.

    1978-01-01

    In a study sponsored by the State of California Energy Resources Conservation and Development Commission, 12 industrial plants in five utility districts were surveyed to assess the potential applications of the cogeneration of heat and electricity in California industry. Thermodynamic calculations were made for each plant in determining the energy required to meet the existing electrical and steam demands. The present systems were then compared to conceptual cogeneration systems specified for each plant. Overall energy savings were determined for the cogeneration applications. Steam and gas turbine topping cycle systems were considered as well as bottoming cycle systems. Types of industries studied were: pulp and paper, timber, cement, petroleum refining, enhanced oil recovery, foods processing, steel and glass

  2. Thorium utilization in heavy water moderated Accelerator Driven Systems

    International Nuclear Information System (INIS)

    Bajpai, Anil; Degweker, S.B.; Ghosh, Biplab

    2011-01-01

    Research on Accelerator Driven Systems (ADSs) is being carried out around the world primarily with the objective of waste transmutation. Presently, the volume of waste in India is small and therefore there is little incentive to develop ADS based waste transmutation technology immediately. With limited indigenous U availability and the presence of large Th deposits in the country, there is a clear incentive to develop Th related technologies. India also has vast experience in design, construction and operation of heavy water moderated reactors. Heavy water moderated reactors employing solid Th fuels can be self sustaining, but the discharge burnups are too low to be economical. A possible way to improve the performance such reactors is to use an external neutron source as is done in ADS. This paper discusses our studies on Th utilization in heavy water moderated ADSs. The study is carried out at the lattice level. The time averaged k-infinity of the Th bundle from zero burnup up to the discharge burnup is taken to be the same as the core (ensemble) averaged k-infinity. For the purpose of the analysis we have chosen standard PHWR and AHWR assemblies. Variation of the pitch and coolant (H 2 O/D 2 O) are studied. Both, the once through cycle and the recycling option are studied. In the latter case the study is carried out for various enrichments (% 233 U in Th) of the recycled Th fuel bundles. The code DTF as modified for lattice and burnup calculations (BURNTRAN) was used for carrying out the study. The once through cycle represents the most attractive ADS concept (Th burner ADS) possible for Th utilization. It avoids reprocessing of Th spent fuel and in the ideal situation the use of any fissile material either initially or for sustaining itself. The gain in this system is however rather low requiring a high power accelerator and a substantial fraction of the power generated to be fed back to the accelerator. The self sustaining Th-U cycle in a heavy moderated ADS

  3. Development for environmentally friendly and highly efficient energy utilization system in fiscal 1998. Pt. 1. Research on highly efficient and effective energy utilization technology (Research on design technology for optimal system); 1998 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu. 1. Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This paper summarizes achievements of the researches during fiscal 1998 on researching a highly efficient and effective energy utilization technology. With regard to technologies to recover and convert unutilized energies, a process simulator was developed, basic internal structure was discussed by experiments and simulation, and substance migrating and heat exchanging characteristics were identified by using partial testing devices. These researches and developments were performed for the waste heat reforming and recovering systems used in chemical plants. In developing a thermoelectric generation system using low calorie exhaust gases, thermoelectric power generating materials were developed, a powder manufacturing technology was developed, a thermoelectric conversion element bulking technology was developed, a thermoelectric power generation system using porous structures was simulated, development and concept design were carried out on system element technologies. In the research and development of the thermoelectric generation system using low calorie exhaust gases, advanced materials and modules were manufactured, the modules were evaluated, and power generation systems were researched. In addition, researches were performed on energy transportation, supply and utilization technologies, and on environmental load reducing technologies. (NEDO)

  4. Fiscal 1974 Sunshine Project result report. Research on solar energy utilization systems (total system); 1974 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Total system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    The current most important solar energy utilization fields are solar energy power generation (solar heat and photovoltaic power generation), and solar heat cooling and heating. A solar heat power system collects or stores solar thermal energy as energy source of power systems, and converts it to electric power through heat exchange systems. To establish such system, not only R and D on a collector, absorption capsule, storage unit and heat transfer unit, but also complete study on an optimum system configuration and environmental impact are necessary. A photovoltaic power system converts solar energy to electric power directly by photoelectric conversion device such solar cell. Except specific local uses, drastic cost reduction and improvement of a conversion efficiency (at present 12-15%) and life (several years) are necessary for solar cells. Although a lot of solar heat cooling and heating systems is in practical use in Japan, for its further diffusion an important research task is development of heat collector excellent in efficiency, cost, life and maintainability. (NEDO)

  5. Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, P.; Margolis, R.; Palmintier, B.; Barrows, C.; Ibanez, E.; Bird, L.; Zuboy, J.

    2014-09-01

    This report outlines the methods, data, and tools that could be used at different levels of sophistication and effort to estimate the benefits and costs of DGPV. In so doing, we identify the gaps in current benefit-cost-analysis methods, which we hope will inform the ongoing research agenda in this area. The focus of this report is primarily on benefits and costs from the utility or electricity generation system perspective. It is intended to provide useful background information to utility and regulatory decision makers and their staff, who are often being asked to use or evaluate estimates of the benefits and cost of DGPV in regulatory proceedings. Understanding the technical rigor of the range of methods and how they might need to evolve as DGPV becomes a more significant contributor of energy to the electricity system will help them be better consumers of this type of information. This report is also intended to provide information to utilities, policy makers, PV technology developers, and other stakeholders, which might help them maximize the benefits and minimize the costs of integrating DGPV into a changing electricity system.

  6. Clean energy utilization technology

    International Nuclear Information System (INIS)

    Honma, Takuya

    1992-01-01

    The technical development of clean energy including the utilization of solar energy was begun in 1973 at the time of the oil crisis, and about 20 years elapsed. Also in Japan, the electric power buying system by electric power companies for solar light electric power and wind electric power has been started in 1992, namely their value as a merchandise was recognized. As for these two technologies, the works of making the international standards and JIS were begun. The range of clean energy or natural energy is wide, and its kinds are many. The utilization of solar heat and the electric power generation utilizing waves, tide and geotherm already reached the stage of practical use. Generally in order to practically use new energy, the problem of price must be solved, but the price is largely dependent on the degree of spread. Also the reliability, durability and safety must be ensured, and the easiness of use, effectiveness and trouble-saving maintenance and operation are required. For the purpose, it is important to packaging those skillfully in a system. The cases of intelligent natural energy systems are shown. Solar light and wind electric power generation systems and the technology of transporting clean energy are described. (K.I.)

  7. Report on achievements in fiscal 1999. Development of technology to utilize biological resources such as composite organism systems (development of technology to utilize and produce composite organism systems); 1999 nendo fukugo seibutsukei nado seibutsu shigen riyo gijutsu kaihatsu seika hokokusho. Fukugo seibutsukei riyo seisan gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    It is intended to achieve the following objectives in terms of the technologies to utilize such functions as material production and material decomposition by using composite organism systems: develop a technology to handle the composite organism systems; establish a composite microorganism cultivation control technology, and a composite microorganism system function strengthening technology; develop a technology to separate and cultivate organism groups constituting them, and develop industrial utilization technologies. The fiscal 1999 has discussed developing the elementary technologies for the technology to utilize functions of the composite organism systems on the following research items: 1. a functional material production technology; and 2. comprehensive investigations and researches. In Item 1, development was made on a technology to detect, separate and cultivate microorganisms in soil as the histochemical analytical technology. Development was made on an in situ detection, separation and function analyzing technology for particular composite microorganisms as the function analyzing technology. In the separation and cultivation technology, development was made on a technology to detect, separate and cultivate difficult-to-cultivate microorganisms. In the functional material production technology, development was made on a technology to utilize microbial consortia producing environmentally harmonizing oil-water separating polymers, and a method to execute artificially the gene exchange in the microbial consortia. (NEDO)

  8. The study on the role of very high temperature reactor and nuclear process heat utilization in future energy systems

    International Nuclear Information System (INIS)

    Yasukawa, Sigeru; Mankin, Shuichi; Tadokoro, Yoshihiro; Sato, Osamu; Yamaguchi, Kazuo; Ueno, Seiichi

    1986-11-01

    This report describes the analytical results being made in the study on the role of Very High Temperature Reactor and nuclear process heat utilization in future energy system, which is aimed at zero emission. In the former part of the report, the modeling of the reference energy system, main characteristics of energy technologies, and scenario indicators as well as system behavioral objectives for optimization are explained. In the latter part, analytical results such as the time-period variation of overall energy utilization efficiency, energy supply/demand structure in long-terms, energy contribution and economic competition of new energy technologies, environmental effluents released through verious energy activities, impacts to and from national economy, and some sensitivity analyses, are reviewed. (author)

  9. CONTROLLING SO2 EMISSIONS: A REVIEW OF TECHNOLOGIES

    Science.gov (United States)

    The report describes flue gas desulfurization (FGD) technologies, assesses their applications, and characterizes their performance. Additionally, it describes some of the advancements that have occurred in FGD technologies. Finally, it presents an analysis of the costs associated...

  10. Evaluation of Technical and Utility Programmatic Challenges With Residential Forced-Air Integrated Space/Water Heat Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, Tim [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Vadnal, Hillary [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Scott, Shawn [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Kalensky, Dave [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States)

    2016-12-01

    This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented ETPs.

  11. Pluto/Charon exploration utilizing a bi-modal PBR nuclear propulsion/power system

    Science.gov (United States)

    Venetoklis, Peter S.

    1995-01-01

    The paper describes a Pluto/Charon orbiter utilizing a bi-modal nuclear propulsion and power system based on the Particle Bed Reactor. The orbiter is sized for launch to Nuclear-Safe orbit atop a Titan IV or equivalent launch veicle. The bi-modal system provides thermal propulsion for Earth orbital departure and Pluto orbital capture, and 10 kWe of electric power for payload functions and for in-system maneuvering with ion thrusters. Ion thrusters are used to perform inclination changes about Pluto, a transfer from low Pluto orbit to low Charon orbit, and inclination changes about charon. A nominal payload can be deliverd in as little as 15 years, 1000 kg in 17 years, and close to 2000 kg in 20 years. Scientific return is enormously aided by the availability of up to 10 kWe, due to greater data transfer rates and more/better instruments. The bi-modal system can provide power at Pluto/Charon for 10 or more years, enabling an extremely robust, scientifically rewarding, and cost-effective exploration mission.

  12. Binding of monoclonal antibody to protein antigen in fluid phase or bound to solid supports

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, S J

    1982-01-01

    Rat monoclonal antibody (MoAb) to fragment D (FgD) of human fibrinogen was used to characterize the direct binding of antibody to protein in solution or bound to solid supports. Purified IgG, F(ab')/sub 2/ and Fab' were prepared from ascites fluid of hybridoma 104-14B which is a fusion product of spleen cells from a rat immunized with FgD and the mouse myeloma cell line, P3-X63-Ag8. Two-dimensional electrophoresis of radioiodinated antibody preparations demonstrated the presence of hybrid immunoglobulin molecules, but only structures having rat heavy and rat light chains had active antibody combinig sites. The affinity constant for IgG as well as F(ab')/sub 2/ and Fab', 6x10/sup 9/ M/sup -1/, was identical when tested using fluid phase antigen (/sup 125/I-labeled FgD). Affinity constants determined for direct binding of iodinated IgG using FgD immobilized on solid supports showed a slight dependence on the antigen concentration used in the measurement. These values ranged from 0.5x10/sup 9/ M/sup -1/ at high antigen concentrations (1.3x10/sup -7/ M) to 9x10/sup 9/ M/sup -1/ at low antigen concentration (1.3x10/sup -10/ M). Binding constants for F(ab')/sub 2/ and Fab' gave similar results indicating that binding was homogeneous and univalent. The capacity of solid state antigen to bind antibody varied with the method used to bind FgD to the solid support. FgD bound directly to polystyrene plates was least efficient at binding labeled antibody; FgD bound to plates through intermediate carriers poly(L-lysine) was only slightly more efficient, while antigen bound to Sepharose beads by cyanogen bromide activation was the most active.

  13. 78 FR 42889 - Pipeline Safety: Reminder of Requirements for Utility LP-Gas and LPG Pipeline Systems

    Science.gov (United States)

    2013-07-18

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 192 [Docket No. PHMSA-2013-0097] Pipeline Safety: Reminder of Requirements for Utility LP-Gas and LPG Pipeline Systems AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION...

  14. The „stability“ of the system of the eart thermal energy utilization

    Directory of Open Access Journals (Sweden)

    Marina Sidorová

    2006-10-01

    Full Text Available In relation to the geothermal resources and, especially, to the geothermal energy utilization, stability means the ability of an applied production system to sustain the production level over long times. Often, the resources are taken into production, mainly to meet economic goals like a quick pay-back of investments for an exploration and anequipment, in such a way that the reservoir depletion is the result. In contrast, the sustainability production of the geothermal energy secures a longevity of these resource, at a lower production level.

  15. Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury.

    Science.gov (United States)

    Ghorishi, S Behrooz; Keeney, Robert M; Serre, Shannon D; Gullett, Brian K; Jozewicz, Wojciech S

    2002-10-15

    Efforts to discern the role of an activated carbon's surface functional groups on the adsorption of elemental mercury (Hg0) and mercuric chloride demonstrated that chlorine (Cl) impregnation of a virgin activated carbon using dilute solutions of hydrogen chloride leads to increases (by a factor of 2-3) in fixed-bed capture of these mercury species. A commercially available activated carbon (DARCO FGD, NORITAmericas Inc. [FGD])was Cl-impregnated (Cl-FGD) [5 lb (2.3 kg) per batch] and tested for entrained-flow, short-time-scale capture of Hg0. In an entrained flow reactor, the Cl-FGD was introduced in Hg0-laden flue gases (86 ppb of Hg0) of varied compositions with gas/solid contact times of about 3-4 s, resulting in significant Hg0 removal (80-90%), compared to virgin FGD (10-15%). These levels of Hg0 removal were observed across a wide range of very low carbon-to-mercury weight ratios (1000-5000). Variation of the natural gas combustion flue gas composition, by doping with nitrogen oxides and sulfur dioxide, and the flow reactor temperature (100-200 degrees C) had minimal effects on Hg0 removal bythe Cl-FGD in these carbon-to-mercury weight ratios. These results demonstrate significant enhancement of activated carbon reactivity with minimal treatment and are applicable to combustion facilities equipped with downstream particulate matter removal such as an electrostatic precipitator.

  16. Development of thermoelectric power generation system utilizing heat of combustible solid waste

    International Nuclear Information System (INIS)

    Kajikawa, T.; Ito, M.; Katsube, I.; Shibuya, E.

    1994-01-01

    The paper presents the development of thermoelectric power generation system utilizing heat of municipal solid waste. The systematic classification and design guideline are proposed in consideration of the characteristics of solid waste processing system. The conceptual design of thermoelectric power generation system is carried out for a typical middle scale incinerator system (200 ton/day) by the local model. Totally the recovered electricity is 926.5 kWe by 445 units (569,600 couples). In order to achieve detailed design, one dimensional steady state model taking account of temperature dependency of the heat transfer performance and thermoelectric properties is developed. Moreover, small scale on-site experiment on 60 W class module installed in the real incinerator is carried out to extract various levels of technological problems. In parallel with the system development, high temperature thermoelectric elements such as Mn-Si and so on are developed aiming the optimization of ternary compound and high performance due to controlled fine-grain boundary effect. The manganese silicide made by shrinking-rate controlled sintering method performs 5 (μW/cm K2) in power factor at 800 K. copyright 1995 American Institute of Physics

  17. Some problems in utilization system of FP nuclides and actinides in the high level liquid wastes

    International Nuclear Information System (INIS)

    Ichiyanagi, Katsuaki; Emura, Satoru

    1974-01-01

    There are three nuclides of sup(134/137)Cs for irradiation sources, 90 Sr for radioisotope thermoelectric generators, and 238 Pu for cardiac pacemakers, as the nuclides for which considerable demand is expected in near future among those contained in reprocessed high level liquid wastes. Technical problems are first described from the viewpoint of utilization system. Then the control system of reprocessed high level wastes is expained. Finally, economic possibility and problems in their utilization are discussed. Being in competition with 60 Co, the price of sup(134/137)Cs will be lower than that of 60 Co after a decade. The annual demand in 1985 may be 6.1 x 10 6 Ci. The conclusive factor of 90 Sr market price is hard to get because it finds no strong competitive nuclides. It may be about 20 yen/Ci after ten years. Demand is expected to be approximately 1.2 x 10 7 Ci/year. However it is pretty hard to pay the cost of group separation and solidification, storage and conversion to products with such gain. It is estimated that the balance of income and outgo would be almost profitable, if the utilization of FP nuclides would progress and the demand three times as large as this assumption would be developed. (Wakatsuki, Y.)

  18. In-House Communication Support System Based on the Information Propagation Model Utilizes Social Network

    Science.gov (United States)

    Takeuchi, Susumu; Teranishi, Yuuichi; Harumoto, Kaname; Shimojo, Shinji

    Almost all companies are now utilizing computer networks to support speedier and more effective in-house information-sharing and communication. However, existing systems are designed to support communications only within the same department. Therefore, in our research, we propose an in-house communication support system which is based on the “Information Propagation Model (IPM).” The IPM is proposed to realize word-of-mouth communication in a social network, and to support information-sharing on the network. By applying the system in a real company, we found that information could be exchanged between different and unrelated departments, and such exchanges of information could help to build new relationships between the users who are apart on the social network.

  19. The application of high voltage digital and analogue unit protections to utility telecommunications systems

    Energy Technology Data Exchange (ETDEWEB)

    Farthing, H. [SNC Group, Montreal, PQ (Canada); Verzosa, Q.R.; Care, J.M. [SNC Group, Montreal, PQ (Canada)

    1996-08-01

    The use of fibre optic and digital microwave systems, both within and without utility communications networks was discussed. Their availability has led to the development of phase comparison and differential current relaying systems which provide enhanced protective features for transmission circuits. The application of fibre optic cable or microwave radio data links overcomes problems caused by ground potential rise and transferred potential damage in metallic pilot wire schemes. Some problems were encountered when installing digital differential current and analogue phase comparison relaying systems to a 220 kV power transmission system where a mix of analog microwave, digital microwave radio and multiplexed fibre optic channels were available. However, the relays were successfully installed with the application of digital pilot differential relays to the power system which enabled fast fault clearance to be achieved. 7 refs., 1 tab., 1 fig.

  20. Thermal Unit Commitment Scheduling Problem in Utility System by Tabu Search Embedded Genetic Algorithm Method

    Directory of Open Access Journals (Sweden)

    C. Christober Asir Rajan

    2008-06-01

    Full Text Available The objective of this paper is to find the generation scheduling such that the total operating cost can be minimized, when subjected to a variety of constraints. This also means that it is desirable to find the optimal unit commitment in the power system for the next H hours. A 66-bus utility power system in India demonstrates the effectiveness of the proposed approach; extensive studies have also been performed for different IEEE test systems consist of 24, 57 and 175 buses. Numerical results are shown comparing the cost solutions and computation time obtained by different intelligence and conventional methods.