WorldWideScience

Sample records for ushuaia pluton fuegian

  1. Did Darwin change his mind about the Fuegians?

    Science.gov (United States)

    Radick, Gregory

    2010-06-01

    Shocked by what he considered to be the savagery he encountered in Tierra del Fuego, Charles Darwin ranked the Fuegians lowest among the human races. An enduring story has it, however, that Darwin was later so impressed by the successes of missionaries there, and by the grandeur they discovered in the native tongue, that he changed his mind. This story has served diverse interests, religious and scientific. But Darwin in fact continued to view the Fuegians as he had from the start, as lowly but improvable. And while his case for their unity with the other human races drew on missionary evidence, that evidence concerned emotional expression, not language. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Epidemiología de la infección cervical por virus Papiloma humano en Ushuaia: Argentina Cervical infection epidemiology of human papillomavirus in Ushuaia: Argentina

    Directory of Open Access Journals (Sweden)

    C. C. Sijvarger

    2006-03-01

    Full Text Available El virus Papiloma humano (HPV es un factor necesario para el desarrollo del cáncer cervical. El objetivo del estudio fue conocer la epidemiología de dicha infección en Ushuaia, Provincia de Tierra del Fuego, Argentina. Se realizó un estudio de caso-control de 132 cepillados endocervicales. La detección y tipificación del genoma viral fue realizada por la reacción en cadena de la polimerasa, con posterior análisis de polimorfismos de fragmentos de restricción o hibridación. La prevalencia general de la infección fue 41%, correspondiendo 26% a los controles y 71% a los casos. El grupo etario con mayor prevalencia de HPV fue el de 14 a 24 años. Los tipos virales más frecuentes en la población infectada fueron HPV16 (23%, HPV18 (11% y HPV33/35 (8% cada uno, resultando infectados con tipos virales de alto riesgo el 30% de las muestras, 16% de los controles y 60% de los casos. El trabajo aporta los primeros datos sobre los tipos virales predominantes en Ushuaia. Los resultados demostraron una prevalencia menor que en regiones con alta incidencia de cáncer cervical, siendo el HPV16 el más frecuente. La información obtenida permitiría estimar la efectividad de las vacunas en vías de aprobación, en la población estudiada.Genital infection with human papillomavirus (HPV is decisive in the causation of cervical cancer. In order to evaluate the epidemiology of HPV infection in Ushuaia, Province of Tierra del Fuego, Argentina, 132 endocervical cytobrushes from preneoplastic and neoplastic cases and controls were studied. Detection and typing of the viral genome was performed by polymerase chain reaction, combined with a restriction fragment length polymorphism assay or hybridization. The overall prevalence of HPV infection was 41% in the population examined, with a frequency of 26% in the controls and 71% in the cases under study. The 14-24 age group showed the highest HPV prevalence. The most common viral types in the infected

  3. Spatial-temporal variations in surface ozone over Ushuaia and the Antarctic region: observations from in situ measurements, satellite data, and global models.

    Science.gov (United States)

    Nadzir, Mohd Shahrul Mohd; Ashfold, Matthew J; Khan, Md Firoz; Robinson, Andrew D; Bolas, Conor; Latif, Mohd Talib; Wallis, Benjamin M; Mead, Mohammed Iqbal; Hamid, Haris Hafizal Abdul; Harris, Neil R P; Ramly, Zamzam Tuah Ahmad; Lai, Goh Thian; Liew, Ju Neng; Ahamad, Fatimah; Uning, Royston; Samah, Azizan Abu; Maulud, Khairul Nizam; Suparta, Wayan; Zainudin, Siti Khalijah; Wahab, Muhammad Ikram Abdul; Sahani, Mazrura; Müller, Moritz; Yeok, Foong Swee; Rahman, Nasaruddin Abdul; Mujahid, Aazani; Morris, Kenobi Isima; Sasso, Nicholas Dal

    2018-01-01

    The Antarctic continent is known to be an unpopulated region due to its extreme weather and climate conditions. However, the air quality over this continent can be affected by long-lived anthropogenic pollutants from the mainland. The Argentinian region of Ushuaia is often the main source area of accumulated hazardous gases over the Antarctic Peninsula. The main objective of this study is to report the first in situ observations yet known of surface ozone (O 3 ) over Ushuaia, the Drake Passage, and Coastal Antarctic Peninsula (CAP) on board the RV Australis during the Malaysian Antarctic Scientific Expedition Cruise 2016 (MASEC'16). Hourly O 3 data was measured continuously for 23 days using an EcoTech O 3 analyzer. To understand more about the distribution of surface O 3 over the Antarctic, we present the spatial and temporal of surface O 3 of long-term data (2009-2015) obtained online from the World Meteorology Organization of World Data Centre for greenhouse gases (WMO WDCGG). Furthermore, surface O 3 satellite data from the free online NOAA-Atmospheric Infrared Sounder (AIRS) database and online data assimilation from the European Centre for Medium-Range Weather Forecasts (ECMWF)-Monitoring Atmospheric Composition and Climate (MACC) were used. The data from both online products are compared to document the data sets and to give an indication of its quality towards in situ data. Finally, we used past carbon monoxide (CO) data as a proxy of surface O 3 formation over Ushuaia and the Antarctic region. Our key findings were that the surface O 3 mixing ratio during MASEC'16 increased from a minimum of 5 ppb to ~ 10-13 ppb approaching the Drake Passage and the Coastal Antarctic Peninsula (CAP) region. The anthropogenic and biogenic O 3 precursors from Ushuaia and the marine region influenced the mixing ratio of surface O 3 over the Drake Passage and CAP region. The past data from WDCGG showed that the annual O 3 cycle has a maximum during the winter of 30 to 35

  4. The Study of enclaves and relative age of plutonic bodies in the Alvand Plutonic complex

    International Nuclear Information System (INIS)

    Sepahi Gerow, A. A.; Moien-Vaziri, H.

    2000-01-01

    The study of enclaves and field observations indicate that: The Alvand plutonic complex comprise several plutonic phases with sharp contact and different ages. The older plutonic rocks are composed of gabbro, diorite and tonalites. The porphyroid granites were formed at least in two phases and they are younger than gabbros, diorites and tonalites. The hololeucocratic granitoids were also formed in two phases and they are the youngest plutonic phase in the Alvand plutonic complex. The granitic rocks are magmatic and they are not metasomatic in origin. The porphyroid granites (monzogranites and granodiorites) are S-type (Anatexites). According to radiometric ages and relative ages we believe that mafic plutonism have occurred during pre-middle Cretaceous to Paleocene ages and felsic plutonism have occurred during middle Cretaceouc to Paleocene ages

  5. Pedestrian crossing behavior, an observational study in the city of Ushuaia, Argentina.

    Science.gov (United States)

    Poó, Fernando Martín; Ledesma, Ruben Daniel; Trujillo, Roberto

    2018-04-03

    Pedestrian crashes are a critical problem in Latin American countries. However, little research has been published about pedestrians and even less about their behaviors in a naturalistic context. The objective of the present research was to explore risky pedestrian crossing behaviors in traffic intersections in an argentine city (Ushuaia). It is focused in different stages of the crossing process, traffic code violations, and other potentially risky behaviors such as distractions. A high frequency of risky behaviors among pedestrians was expected. Moreover, according to previous findings, it was hypothesized that men and younger pedestrians would show riskier behaviors. Participants were 802 pedestrians (53.9% females) observed at several intersections (with and without traffic lights) in the city of Ushuaia. Behaviors were codified following a standardized observation protocol. Observers documented information on behavior previous to, during, and after crossing. Gender and age were also registered. Data were gathered through video recording. Frequency analyses of observed behaviors were conducted for the total sample, as well as by gender and by age group. A general crossing risk index was calculated to facilitate comparisons between the genders and age groups. We conducted an analysis of variance to evaluate gender and age differences for this index. A high proportion of risky behaviors were observed among pedestrians. The majority of pedestrian waited in the street (as opposed to on the sidewalk) before crossing, did not comply with traffic lights, or crossed outside the crosswalk. A large number of pedestrians were distracted while crossing. Men presented higher scores on risky behaviors than women. No differences were observed by age group. The high level of risk behaviors during the different stages of street crossing is worrisome and reinforces the idea that pedestrians are responsible for many of the conflicts with motorists. Many of the risky behaviors

  6. Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs

    Science.gov (United States)

    de Saint Blanquat, Michel; Horsman, Eric; Habert, Guillaume; Morgan, Sven; Vanderhaeghe, Olivier; Law, Richard; Tikoff, Basil

    2011-03-01

    The close relationship between crustal magmatism, an expression of heat dissipation, and tectonics, an expression of stress dissipation, leads to the question of their mutual relationships. Indeed, the low viscosity of magmas and the large viscosity contrast between magmas and surrounding rocks favor strain localization in magmas, and then possible "magmatic" initiation of structures at a wide range of scales. However, new data about 3-d pluton shape and duration of pluton construction perturb this simple geological image, and indicate some independence between magmatism and tectonics. In some cases we observe a direct genetic link and strong arguments for physical interactions between magmas and tectonics. In other cases, we observe an absence of these interactions and it is unclear how magma transfer and emplacement are related to lithospheric-plate dynamics. A simple explanation of this complexity follows directly from the pulsed, incremental assembly of plutons and its spatial and temporal characteristics. The size of each pluton is related to a magmatic pulsation at a particular time scale, and each of these coupled time/space scales is related to a specific process: in small plutons, we can observe the incremental process, the building block of plutons; in larger plutons, the incremental process is lost, and the pulsation, which consists of a cycle of injections at different timescales, must be related to the composition and thermal regime of the source region, itself driving magmatic processes (melting, segregation, and transfer) that interact with tectonic boundary conditions. The dynamics of pulsed magmatism observed in plutonic systems is then a proxy for deep lithospheric and magmatic processes. From our data and a review of published work, we find a positive corelation between volume and duration of pluton construction. The larger a pluton, the longer its construction time. Large/fast or small/slow plutons have not been identified to date. One

  7. From steep feeders to tabular plutons - Emplacement controls of syntectonic granitoid plutons in the Damara Belt, Namibia

    Science.gov (United States)

    Hall, Duncan; Kisters, Alexander

    2016-01-01

    Granitoid plutons in the deeply eroded south Central Zone of the Damara Belt in Namibia commonly show tabular geometries and pronounced stratigraphic controls on their emplacement. Subhorizontal, sheet-like pluton geometries record emplacement during regional subhorizontal shortening, but the intrusion of spatially and temporally closely-related granitoid plutons at different structural levels and in distinct structural settings suggests independent controls on their levels of emplacement. We describe and evaluate the controls on the loci of the dyke-to-sill transition that initiated the emplacement of three syntectonic (560-530 Ma) plutons in the basement-cover stratigraphy of the Erongo region. Intrusive relationships highlight the significance of (1) rigidity anisotropies associated with competent sedimentary packages or pre-existing subhorizontal granite sheets and (2) rheological anisotropies associated with the presence of thick ductile marble horizons. These mechanical anisotropies may lead to the initial deflection of steep feeder conduits as well as subsequent pluton assembly by the repeated underaccretion of later magma batches. The upward displacement of regional isotherms due to the heat advection associated with granite emplacement is likely to have a profound effect on the mechanical stratification of the upper crust and, consequently, on the level at which granitoid pluton emplacement is initiated. In this way, pluton emplacement at progressively shallower crustal depths may have resulted in the unusually high apparent geothermal gradients recorded in the upper crustal levels of the Damara Belt during its later evolution.

  8. K/Ar age dating of Oshnaviyeh plutonic complex

    International Nuclear Information System (INIS)

    Ghalamghash, J.; Vosoughi Abedini, M.; Bellon, H.; Emami, M.H.; Pourmafi, M.; Rashid, H.

    2003-01-01

    Oshnaviyeh plutonic complex, the western member of Urumiyeh-Golpayehgan intrusive plutons is located in northern part of Sanandaj-Sirjan zon. Oshnaviyeh plutonic complex, exposing in an area of about 700 km 2 , comprises 10 plutons that can be divided into three suites, i.e.,diorite,granite,and alkali syenite-alkali granite. Dioritic bodies are the oldest intrusive rocks of the region, which on the basis of the field study, their relative age of emplacement is estimated to be post-Jurassic and pre-miocene. However, with respect to the age of other similar intrusive bodies in Naghadeh area, they are most likely of post early cretaceous-pre miocene age. Hybrid intrusive rocks, occurring at the contact of dioritic and granitic rocks may suggest a simultaneous emplacement of both magmas. Syntetic pluton from alkali syenite-alkali granite has intruded dioritic and granitic rocks, in contrast, flourine bearing alkali granite pluton from this suite shows no contact with other igneous rocks in the area. K-Ar age determinations obtained on amphibole specimens from diorite suite are 91.9±2.3, 94.1±2.3 and 100±2.4 Ma, and on biotite specimens from granite suite are 100±1.5 to 98.9±1.5 Ma. Chronology study using same method on arfvedsonite specimens from syenite pluton shows 78.9±3.1, 79.6±1.9 and 81.7±2.0 Ma and on K-fled par samples of flourine bearing alkali granite pluton from the alkali syenite-alkali granite suite presents 76±3.4 and 77.1±1.8. Therefore, based on field evidence and K/Ar age dating, Oshnaviyeh plutonic complex presumably formed during two episodes: granite and diorite suites formed simultaneously at about 100 Ma, then plutons of alkali syenite-alkali granite suite emplaced at about 80 Ma

  9. Isotopic-geochemical investigation of Vitosh pluton (Bulgaria)

    International Nuclear Information System (INIS)

    Amelin, Yu.V.; Drubetskoj, E.R.; Monchev, N.B.; Nejmark, L.A.; Ovchinnikova, G.V.; Levskij, L.K.

    1989-01-01

    A set of isotope-geochronological (Rb-Sr, K-Ar, uranium fission tracks) and isotope-geochemical (Sr, Pb, Nd, He) methods was used to establish genesis and age of multi-phase Vitosh pluton. The investigation results have shown that primary magma from which pluton rocks were formed is generated at the level of high mantle - low crust. Insignificant difference in time of implantation and crystallization between variuos pluton phases is established. In the interval 84-79 millions of years the velocity of rock cooling and the velocity of pluton lift to the surface were estimated. In the interval 79-0 millions of years these velocities decrease essentially. After formation the rocks were not subjected to additional heat affects

  10. Cooling history of nested plutons from the Variscan Tichka plutonic complex (Morocco)

    Science.gov (United States)

    Lécuyer, Christophe; Gasquet, Dominique; Allemand, Pascal; Martineau, François; Martinez, Isabelle

    2017-03-01

    Four imbricated mafic to felsic plutons of Variscan age from Morocco have been investigated for their cooling history and geochemical interactions with surrounding continental rocks. Oxygen isotope compositions of whole rocks and minerals have been used to model the cooling rates of these kilometer-sized intrusions. By combining both the knowledge of oxygen-self diffusion data of rock-forming minerals and the determination by IR-spectroscopy of the water content of quartz, the cooling times are estimated ranging from 105 to 5 × 105 years in agreement with the shallow emplacement (4-6 km depth) of these intrusions into the continental crust. Such fast cooling rates could explain why after assimilation of the various country rocks, heterogeneities of both neodymium and strontium isotope ratios were still preserved. A progressive δ18O increase from the mafic to felsic terms of the plutonic suite, which does not excess 1 to 1.5‰, could be explained by the assimilation of metamorphosed pelitic and volcanic rocks that constitute the basement of the Tichka plutonic complex.

  11. Correct nomenclature for the Angadimogar pluton, Kerala ...

    Indian Academy of Sciences (India)

    The proper usage of modal composition and geochemical classification of granitoids is discussed for assigning a proper nomenclature for the Angadimogar pluton, Kerala, southwestern India. This discussion is mainly aimed at addressing questions concerning the nomenclature of Angadimogar pluton (syenite vs. granite).

  12. Petrology and radiogeology of the Stripa pluton

    Energy Technology Data Exchange (ETDEWEB)

    Wollenberg, H.; Flexser, S.; Andersson, L.

    1980-12-01

    Both the quartz monzonite and the metavolcanic leptite which it intruded are strongly fractured. Two stages of fracture filling are evident; an earlier stage encompassing quartz, sericite, feldspar, epidote, and chlorite, and a later stage dominated by carbonate minerals. The Stripa quartz monozite is chemically and mineralogically distinct from other plutons in the region. Muscovite is the predominant mica in the quartz monzonite; biotite has been altered to chlorite, hornblende is absent, and accessory minerals are scarce. In contrast, in other plutons in the Stripa region, biotite and hornblende are prominent mafic minerals and accessory minerals are abundant. The Stripa quartz monzonite is also considerably more radioactive than the the leptite and other plutons in the region. Uranium and thorium abundances are both approx. 30 ppM, considerably higher than in normal granitic rocks where the thorium-to-uranium ratio generally exceeds 2. Potassium-argon dating of muscovite from the Stripa quartz monzonite indicates that this rock may be older, at 1691 million years than granitic rock of the neighboring Gusselby and Kloten massifs, whose ages, based on K-Ar dating of biotite, are respectively 1604 and 1640 m.y. Heat flow and heat productivity considerations show that although Stripa quartz monzonite contains high abundances of radioelements, the pluton has little efect on the regional heat flow. If it occurs in a layered plutonic setting, it is not more than 1.5 km thick; otherwise it may comprise a stock, dike, or border phase that is relatively small compared with the large granitic plutons exposed in the region.

  13. Genesis of felsic plutonic magmas and their igneous enclaves

    DEFF Research Database (Denmark)

    Clemens, John D.; Maas, Roland; Waight, Tod Earle

    2016-01-01

    -type Pyalong pluton was emplaced, apparently along an east-west-orientated fracture zone. Around 367 Ma, the main I-type Baynton pluton intruded as numerous shallow-dipping sheets. The last plutonic event was the intrusion of the broad, thin, flat-lying, and crosscutting sheet of the I-type Beauvallet pluton...... the relatively high abundance of igneous-textured microgranular enclaves (MEs). The MEs show neither chemical nor isotope mixing trends with each other or with the host magmas. Variations in the Baynton magmas were derived from the heterogeneity of the source terrane, with individual magma batches formed from...

  14. Plutons and accretionary episodes of the Klamath Mountains, California and Oregon

    Science.gov (United States)

    Irwin, William P.; Wooden, Joseph L.

    1999-01-01

    The Klamath Mountains consist of various accreted terranes and include many plutons that range in composition from gabbro to granodiorite. Some of the plutons (preaccretionary plutons) were parts of terranes before the terranes accreted; others (accretionary plutons) intruded during or after the accretion of their host terrane(s). This report attempts to (1) graphically illustrate how the Klamath Mountains grew by the accretion of allochthonous oceanic terranes during early Paleozoic to Cretaceous times, (2) identify the plutons as either preaccretionary or accretionary, and (3) genetically relate the plutonic intrusions to specific accretionary episodes. The eight accretionary episodes portrayed in this report are similar to those shown by Irwin and Mankinen (1998) who briefly described the basis for the timing of the episodes and who illustrated the ~110 degrees of clockwise rotation of the Klamath Mountains since Early Devonian time. Each episode is named for the accreting terrane. In all episodes (Figs. 1-8), the heavy black line represents a fault that separates the accreting oceanic rocks on the left from earlier accreted terranes on the right. The preaccretionary plutons are shown within the accreting oceanic crustal rocks to the left of the heavy black line, and the accretionary plutons in most instances are shown intruding previously accreted terranes to the right. Episodes earlier than the Central Metamorphic episode (Fig. 1), and that may have been important in the formation of the early Paleozoic nucleous of the province (the Eastern Klamath terrane), are not known. The 'Present Time' distribution of the accreted terranes and plutons is shown at a large scale in Figure 9. The schematic vertical section (Fig. 10) depicts the terranes as a stack of horizontal slabs that include or are intruded by vertical plutons. Note that at their base the ~170 Ma preaccretionary plutons of the Western Hayfork subterrane are truncated by the ~164 Ma Salt Creek

  15. Seroprevalencia de la enfermedad de Chagas en Ushuaia, Argentina, una zona sin triatominos

    Directory of Open Access Journals (Sweden)

    Mallimaci María Cristina

    2001-01-01

    Full Text Available Objetivos. Determinar la seroprevalencia de la infección por Trypanosoma cruzi en Ushuaia, la ciudad más austral del mundo. Métodos. Se analizaron muestras de suero de 2 991 personas, obtenidas entre enero de 1995 y diciembre de 1996. Las muestras fueron procesadas por hemaglutinación indirecta (HAI e inmunoensayo enzimático (ELISA o inmunofluorescencia indirecta (IFI. Resultados. La seroprevalencia general de la infección por T. cruzi fue de 6,8%. La prevalencia según el país de origen fue de 41,1% en los bolivianos, 5,0% en los argentinos y 0,9% en los chilenos; en embarazadas fue de 5,9%, en exámenes obligatorios de 6,3% y en consultas dirigidas de 30,8%. Conclusiones. Se destaca la magnitud de la infección por T. cruzi en una zona donde no existe el insecto vector. Debido al riesgo de la transmisión congénita y transfusional, es necesario mantener el control de la sangre a transfundir y reforzar el seguimiento de los hijos de mujeres infectadas para un diagnóstico precoz y tratamiento oportuno de la infección.

  16. Petrology and radiogeology of the Stripa pluton

    International Nuclear Information System (INIS)

    Wollenberg, Harold; Flexser, Steve; Andersson, Lennart

    1980-01-01

    To better define the character of the rock encompassing the thermomechanical and hydrological experiments at the Stripa mine in central Sweden, and to help determine the size of the Stripa pluton, detailed studies were conducted of the petrology and radiogeology of the quartz monzonite and adjacent rocks. Petrologic studies emphasized optical petrography, with supplementary X-ray diffraction, X-ray fluorescence and microprobe analyses. Radiogeologic investigations were based primarily on surface and underground gamma-ray spectrometric measurements of uranium, thorium and potassium, supplemented by laboratory gamma spectrometric analyses and fission-track radiographic determinations of the locations and abundance of uranium in the rock matrix. Both the quartz monzonite and the metavolcanic leptite which it intruded are strongly fractured. Two stages of fracture filling are evident; an earlier stage encompassing quartz, sericite, feldspar, epidote, and chlorite, and a later stage dominated by carbonate minerals. The Stripa quartz monzonite is chemically and mineralogically distinct from other plutons in the region. Muscovite is the predominant mica in the quartz monzonite; biotite has been altered to chlorite, hornblende is absent, and accessory minerals are scarce. In contrast, in other plutons in the Stripa region biotite and hornblende are prominent mafic minerals and accessory minerals are abundant. The Stripa quartz monzonite is also considerably more radioactive than the leptite and other plutons in the region. Uranium and thorium abundances are both- 30 ppm, considerably higher than in 'normal' granitic rocks where the thorium-to-uranium ratio generally exceeds 2. Potassium-argon dating of muscovite from the Stripa quartz monzonite indicates that this rock may be older, at 1691 million years than granitic rock of the neighboring Gusselby and Kloten massifs, whose ages, based on K-Ar dating of biotite, are respectively 1604 and 1640 m.y. Heat flow and heat

  17. Petrology and radiogeology of the Stripa pluton

    Energy Technology Data Exchange (ETDEWEB)

    Wollenberg, Harold; Flexser, Steve; Andersson, Lennart

    1980-12-01

    To better define the character of the rock encompassing the thermomechanical and hydrological experiments at the Stripa mine in central Sweden, and to help determine the size of the Stripa pluton, detailed studies were conducted of the petrology and radiogeology of the quartz monzonite and adjacent rocks. Petrologic studies emphasized optical petrography, with supplementary X-ray diffraction, X-ray fluorescence and microprobe analyses. Radiogeologic investigations were based primarily on surface and underground gamma-ray spectrometric measurements of uranium, thorium and potassium, supplemented by laboratory gamma spectrometric analyses and fission-track radiographic determinations of the locations and abundance of uranium in the rock matrix. Both the quartz monzonite and the metavolcanic leptite which it intruded are strongly fractured. Two stages of fracture filling are evident; an earlier stage encompassing quartz, sericite, feldspar, epidote, and chlorite, and a later stage dominated by carbonate minerals. The Stripa quartz monzonite is chemically and mineralogically distinct from other plutons in the region. Muscovite is the predominant mica in the quartz monzonite; biotite has been altered to chlorite, hornblende is absent, and accessory minerals are scarce. In contrast, in other plutons in the Stripa region biotite and hornblende are prominent mafic minerals and accessory minerals are abundant. The Stripa quartz monzonite is also considerably more radioactive than the leptite and other plutons in the region. Uranium and thorium abundances are both- 30 ppm, considerably higher than in "normal" granitic rocks where the thorium-to-uranium ratio generally exceeds 2. Potassium-argon dating of muscovite from the Stripa quartz monzonite indicates that this rock may be older, at 1691 million years than granitic rock of the neighboring Gusselby and Kloten massifs, whose ages, based on K-Ar dating of biotite, are respectively 1604 and 1640 m.y. Heat flow and heat

  18. Petrology of Terra Nova pluton, Brazil, and associated ultrapotassic dykes

    International Nuclear Information System (INIS)

    Silva Filho, A.F. da; Thompson, R.N.; Leat, P.T.

    1987-01-01

    The Upper Precambrian Terra Nova Pluton, situated 550 Km inland from Recife, Brazil, is 220 Km 2 in area and intrudes deformed metasedimentary rocks of the Pianco-Alto Brigida Mobile Belt. The Pluton shows complex petrological relationships. It consists of subalkaline quartz-monzonites and quartz-syenites, and the major minerals are K-feldspars, albite, hornblende, and quartz. The pluton is intermediate in composition (SiO 2 = 58.9-65.6 wt%, MgO=0.9-3.7 wt%) and is dominantly potassic (K 2 O=3.3-5.6 wt %; K 2 O/Na 2 O=0.9-1.8). Ba (up to 2.300 ppm) and Sr (up to 1,100 ppm) are abundant in the rocks, and LREE are enriched relative to HREE (La N /Lu N = 25.6-43.2). There is no significant Eu Anomaly. Rounded autoliths within the pluton are similar, but more mafic in composition (SiO 2 =54.6-57.5 wt %; MgO=4.9-6.4 wt %). A suite of dykes cut pluton and the surrounding country rocks. These dykes are varied in composition, encompassing most of the chemical range shown by the pluton and associated autoliths. The dykes are holocrystalline, peralkaline, and strongly enriched in both K 2 O(K 2 O=5.3-11.4 wt %) and Ba (Ba=2,400 ppm-10,500 ppm), which are considered to be magmatic abundances. The dykes have similar REE and other trace elements and ratios to the autoliths and plutonic rocks, and the dykes and the pluton are thought to be chemically related. The Terra Nova Pluton records the fractionation of mantle-derived ultrapotassic magma from mafic to intermediate compositions. (author) [pt

  19. The Solarya Volcano-Plutonic Complex (NW Turkey): Petrography, Petrogenesis and Tectonic Implications

    Science.gov (United States)

    Ünal, Alp; Kamacı, Ömer; Altunkaynak, Şafak

    2014-05-01

    The post collisional magmatic activity produced several volcano-plutonic complexes in NW Anatolia (Turkey) during the late Oligocene- Middle Miocene. One of the major volcano-plutonic complexes, the Solarya volcano-plutonic complex is remarkable for its coeval and cogenetic plutonic (Solarya pluton), hypabysal and volcanic rocks of Early Miocene (24-21 Ma) age. Solarya pluton is an epizonal pluton which discordantly intruded into metamorphic and nonmetamorphic basement rocks of Triassic age. It is a N-S trending magmatic body covering an area of 220 km2,approximatelly 20 km in length and 10 km in width. Based on the field and petrographic studies, three main rock groups distinguished in Solarya pluton; K-feldspar megacrystalline granodiorite, microgranite-granodiorite and haplogranite. Porphyritic and graphic-granophyric textures are common in these three rock groups. Pluton contains magmatic enclaves and syn-plutonic dykes of dioritic composition. Hypabyssal rocks are represented by porphyritic microdiorite and porphyritic quartz-diorite. They form porphyry plugs, sheet inrusions and dykes around the pluton. Porphyrites have microcrystalline-cryptocrystalline groundmass displaying micrographic and granophyric textures. Petrographically similar to the hypabyssal rocks, volcanic rocks are formed from andesitic and dasitic lavas and pyroclastic rocks. Plutonic, hypabyssal and volcanic rocks of Solarya volcano-plutonic complex show similar major-trace element and Sr-Nd-Pb isotopic compositions, indicating common magmatic evolution and multicomponent melt sources including mantle and crustal components. They are mainly metaluminous, medium to high-K calc alkaline rocks and display enrichment in LILE and depletion in Nb, Ta, P and Ti. They have initial 87Sr/86Sr values of 0.70701- 0.70818 and 143Nd/144Nd values of 0.51241-0.51250. These geochemical characteristics and isotopic signatures are considered to reflect the composition of the magmas derived from a

  20. Hydrothermal convection and uranium deposits in abnormally radioactive plutons

    International Nuclear Information System (INIS)

    1978-09-01

    Hydrothermal uranium deposits are often closely associated with granites of abnormally high uranium content. We have studied the question whether the heat generated within such granites can cause fluid convection of sufficient magnitude to develop hydrothermal uranium deposits. Numerical models of flow through porous media were used to calculate temperatures and fluid flow in and around plutons similar to the Conway Granite, New Hampshire, i.e. with a halfwidth of 17 km, a thickness of 6.25 km, and with a uniform internal heat generation rate of 20 x 10 -13 cal/cm 3 -sec. Fluid convection was computed for plutons with permeabilities between 0.01 and 5 millidarcies (1 x10 -13 cm 2 to 5 x 10 -11 cm 2 . Flow rates and the size and location of convection cells in and around radioactive plutons like the Conway Granite were found to depend critically on the permeability distribution within the pluton and in adjacent country rocks. The depth of burial, the distribution of heat sources within the pluton, and small rates of heat generation in the country rock are only of minor importance. Topographic relief is unlikely to effect flow rates significantly, but can have a major influence on the distribution of recharge and discharge areas. Within a few million years, the mass of water transported by steady state convection through such radioactive plutons can equal the mass of water which can convect through them during initial cooling from magmatic temperatures. If the permeability in a Conway-type pluton is on the order of 0.5 millidarcies, the rate of fluid convection is probably sufficient to develop a hydrothermal ore deposit containing 10,000 tons of uranium in a period of two million years. Such a uranium deposit is most likely to develop in an area of strong upwelling or strong downwelling flow

  1. Early Diagnosis of Congenital Trypanosoma cruzi Infection, Using Shed Acute Phase Antigen, in Ushuaia, Tierra del Fuego, Argentina

    Science.gov (United States)

    Mallimaci, María Cristina; Sosa-Estani, Sergio; Russomando, Graciela; Sanchez, Zunilda; Sijvarger, Carina; Alvarez, Isabel Marcela; Barrionuevo, Lola; Lopez, Carlos; Segura, Elsa Leonor

    2010-01-01

    Chagas' disease, or American trypanosomiasis, is caused by the protozoan parasite Trypanasoma cruzi. It is estimated that 15,000 new cases of congenital T. cruzi transmission occur in the Americas each year. The aim of this study was to estimate the rate of congenital T. cruzi infection in infants born to infected women living in Ushuaia, Argentina, as well to assess a serologic test using Shed Acute Phase Antigen (SAPA) for a timely diagnosis of congenital infection. The rate of congenital infection among children in the study was 4.4% (3/68). Our results show that for infants younger than 30 days of age, matched blood samples from mother and infant were capable of identifying congenital transmission of infection using an enzyme-linked immunosorbent assay with SAPA. For infants older than 3 months, congenital infection could be ruled out using the same procedure. PMID:20064996

  2. Constraints on the depth of generation and emplacement of a magmatic epidote-bearing quartz diorite pluton in the Coast Plutonic Complex, British Columbia

    Science.gov (United States)

    Chang, J.M.; Andronicos, C.L.

    2009-01-01

    Petrology and P-T estimates indicate that a magmatic epidote-bearing quartz diorite pluton from Mt. Gamsby, Coast Plutonic Complex, British Columbia, was sourced at pressures below ???1.4 GPa and cooled nearly isobarically at ???0.9 GPa. The P-T path indicates that the magma was within the stability field of magmatic epidote early and remained there upon final crystallization. The pluton formed and crystallized at depths greater than ???30 km. REE data indicate that garnet was absent in the melting region and did not fractionate during crystallization. This suggests that the crust was less than or equal to ???55 km thick at 188 Ma during the early phases of magmatism in the Coast Plutonic Complex. Late Cretaceous contractional deformation and early Tertiary extension exhumed the rocks to upper crustal levels. Textures of magmatic epidote and other magmatic phases, combined with REE data, can be important for constraining the P-T path followed by magmas. ?? 2009 Blackwell Publishing Ltd.

  3. Analysis on uranium metallogenetic conditions of granite pluton in Ulan Uzhur

    International Nuclear Information System (INIS)

    Lu Yaozu

    2014-01-01

    Qimantage area in Qinghai province is one of the important exploration areas in the present China, Ulan Uzhur complex pluton, located in the compound tectonic magmatic belt of Qimantage, is the main cluster area with uranium mineralization. This paper describes the petrochemical, geochemical, petrophysical and Heishan uranium deposit mineralization characteristics of rocks formed at the different tectonic-magmatic cycles in Ulan Uzhur complex pluton. Uranium metallogenic conditions in Ulan Uzhur complex pluton were analyzed from uranium source, magmatic activity and structure. The research shew that the Ulan Uzhur complex pluton has the petrochemical characteristics of uranium rock and Cisuralian monzonitic granite has the most significant relationship to uranium mineralization, it has the characteristics of high background radiation, many anomalies and pronounced ore-control structure, Heishan uranium deposit was controlled by factors such as pronounced northeast and the northwest structure and alteration. To conclude, Ulan Uzhur complex pluton possesses good uranium metallogenic prospect. (author)

  4. Miscellaneous investigations series: Bedrock geologic map of the Lone Mountain pluton area, Esmeralda County, Nevada

    International Nuclear Information System (INIS)

    Maldonado, F.

    1984-01-01

    The joint attitudes were measured in the field and plotted on aerial photos at a scale of 1:24,000. The pluton is intensely jointed, primarily as a result of cooling and movement of the magma within a northwest-trending stress field. Foliation, in general, is poorly developed, and quality varies from area to area, but it is best developed close to the contacts with the metasedimentary rocks. A prominent northwest foliation direction was observed that parallels the northwest elongation of the exposed pluton. Faults in the pluton are difficult to identify because of the homogeneity of the rock. Several faults were mapped in the northern part of the area where they have a northeast trend and intersect the northwest-trending lamprophyre dikes with little apparent displacement. A major fault that bounds the northern part of the pluton is downthrown to the north and strikes northeast. This fault offsets the alluvium, the metasedimentary rocks, and the pluton and forms fault scraps as high as 10 m. Aeromagnetic data (US Geological Survey, 1979) suggest the following: (1) the local magnetic highs in the central part of the Lone Mountain pluton are probably related to topographic highs (peaks) where the flight lines are closer to the pluton; (2) a magnetic low in the northeastern part of Lone Mountain coincides with the pluton-country rock contact, which may be very steep; (3) the contours for the southwestern part of the mapped area indicate that the pluton-country rock contact is not as steep as that in the northeastern part and that the pluton probably coalesces at depth with the Weepah pluton, a pluton exposed south of the mapped area; and (4) the contours for the area of the Lone Mountain pluton express a northwest-trending gradient that parallels the northwest elongation of the Lone Mountain pluton and the northwest-trending stress field. 10 refs

  5. Some geomorphological features of the Orhaneli Pluton: Implications for denudation history

    Directory of Open Access Journals (Sweden)

    Ahmet Evren ERGİNAL

    2008-12-01

    Full Text Available The granitic intrusions of the variable age of cooling, size and mineral composition are widely exposed in the northwest Anatolia, Turkey. The nearly circular Orhaneli Pluton emplaced during the Early Eocene with some 15 km in diameter, is one of such plutonic bodies. Geomorphological features of the pluton are discussed here with special emphasis given on the denudation history. To this end, evidence from two isolated Inselberglike hills as remnants of roof rocks in the centre of the pluton and episodically emergence of granite landforms of etch origin after unroofing process were investigated. Field data reveal the absence of granodiorite clasts within Early to Middle Miocene lacustrine deposits in the north of the pluton, implying that the pluton might not have been exposure prior to Upper Miocene as a whole. After the first exposure, the granite landforms, such as boulders, corestones and tors constituting sound evidence of an etch origin, became exposure by continual removing of regolith cover by surficial runoff. These forms of various scale were formed at first by subsurface weathering and shaped by surficial weathering processes after any stages of removal of the regolith cover. Drainage segments accounted for removal of regolith is mostly structurally controlled defined by NW-SE, NE-SW and N-S-aligned fracture systems.

  6. Geochemical characteristics and genesis of Baiyun pluton in southern Zhuguangshan mountain

    International Nuclear Information System (INIS)

    Zhang Shanguo; Huang Guolong; Fu Shuncheng; Wang Xiaodong; Xu Lili; Shen Weizhou

    2011-01-01

    Located in the east-central of the southern Zhuguangshan complex pluton, Baiyun pluton is an important uranium producing pluton. In lithology, it is coarse grain black mica granite. In major elements, the pluton is with rich silicon (SiO 2 average for 73.47%), rich aluminum (A/CNK value average 1.09) and high ratio of K 2 O/Na 2 O (average for 1.99). It is rich in large-ion trace elements Rb, Th, but poor in Ba, Sr, Ti, Nb, Ta, P. Rock samples have high Rb/Sr (average for 6.22) and Rb/ Nb ratio (average for 1.447), and rich uranium (average for 9.04 x 10 -6 ) which can act as the source for the formation of uranium deposit. In REE chemistry, the pluton is rich in LREE and relatively high fractionation between LREE and HREE, and bear the right-wing-type distribution pattern with obviously Eu depletion. In Isotopic chemistry,the pluton has low ε Nd (t) value(average for -10.6), high ( 87 Sr/ 86 Sr) i value (average for 0.71688), and old Nd mode age (1865∼1874 Ma). These characteristics consistently show that Baiyun pluton belongs to typical crustal source granite type and formed in an extensional tectonic environment shortly after the collision between South China and Indo-China plate from partial melting of argillaceous rocks in the middle-lower crust due to the comprehensive action of the decompression, water-prodution and mantle upwelling induced by crust stretching and thinning. (authors)

  7. Magmatic tempo of Earth's youngest exposed plutons as revealed by detrital zircon U-Pb geochronology.

    Science.gov (United States)

    Ito, Hisatoshi; Spencer, Christopher J; Danišík, Martin; Hoiland, Carl W

    2017-09-29

    Plutons are formed by protracted crystallization of magma bodies several kilometers deep within the crust. The temporal frequency (i.e. episodicity or 'tempo') of pluton formation is often poorly constrained as timescales of pluton formation are largely variable and may be difficult to resolve by traditional dating methods. The Hida Mountain Range of central Japan hosts the youngest exposed plutons on Earth and provides a unique opportunity to assess the temporal and spatial characteristics of pluton emplacement at high temporal resolution. Here we apply U-Pb geochronology to zircon from the Quaternary Kurobegawa Granite and Takidani Granodiorite in the Hida Mountain Range, and from modern river sediments whose fluvial catchments include these plutons in order to reconstruct their formation. The U-Pb data demonstrate that the Kurobegawa pluton experienced two magmatic pulses at ~2.3 Ma and ~0.9 Ma; whereas, to the south, the Takidani pluton experienced only one magmatic pulse at ~1.6 Ma. These data imply that each of these magmatic systems were both spatially and temporally distinct. The apparent ~0.7 Myr age gap between each of the three magmatic pulses potentially constrains the recharge duration of a single pluton within a larger arc plutonic complex.

  8. Geochemical and chronological characteristics of Xiangcaoping granite pluton in Miaoershan area

    International Nuclear Information System (INIS)

    Li Wuwei; Wang Gan; Chen Weifeng; Zhao Kuidong

    2010-01-01

    Xiangcaoping granite pluton is mainly composed of medium-macro grain porphyritic biotite. The age of signle zircon dated by SHRIMP U-Pb is 211 ± 2 Ma, which suggest s that this pluton was formed during Indosinan. The geochemical characteristics is A > CNK, trace elements spider chart is slightly oblique to the right, enriched in LREE and bears obvious negative Eu anomaly which is similar to that of the S-type granite in South China. High ("8"7Sr/"8"6Sr)_i and low ε_N_d (t) suggest that this pluton was derived from partial melting of middle maturity Precambrian basement rock, which was rich in uranium and had supplied enough U element to the formation of Xiangcaoping granite pluton. (authors)

  9. Magmatic apatite - a window into melt evolution of the Dalgety pluton.

    Science.gov (United States)

    Pope, M. D.; Tailby, N.; Webster, J. D.

    2017-12-01

    The Dalgety Pluton is located in the Lachlan Fold Belt in southeastern Australia, and is a coarse grained, peraluminous, S-type, biotite granodiorite. Historically, pluton emplacement has been thought of as cooling from a single, large body of magma over a geologically quick period. Current studies suggest issues with this model and propose a slower, incremental model of emplacement in some settings (Glazner et al., 2004). This work proposes that the emplacement of the Dalgety Pluton occurred in incremental phases demonstrated through halogen, minor, and trace element concentrations in apatites. Apatites from 13 samples collected along a north-south transect of the pluton were analyzed using a 5-spectrometer Cameca SX-100 calibrated for seventeen elements (F, Na, Cl, P, Mg, Al, Si, Ca, S, K, Ti, Mn, Fe, Sr, Ba, La, and Ce) at the American Museum of Natural History. The majority of apatites are fluorapatites, having >50 % F, <15 % Cl, and <25 % OH (calculated from Ketchum et al., 2015). However, the concentrations of the halogens vary throughout the pluton with the highest Cl concentrations near the southern edge. Two of the minor elements, Mn and Fe, also show distinct variation with the lowest concentrations being 0.35 wt% in Mn and 0.25 wt% in Fe and the highest being 1.10 wt% and 0.95 wt%, respectively. Trace elements Ce and La vary as well with their highest concentrations being 0.29 wt% and 0.11 wt% and their lowest for both being below the detection limit of the electron probe. Elemental variation across the pluton is seen in the concentration of minor elements and halogens with a sharp increases at 10,000 meters and again at 21,000 meters from the southern rim of the pluton. Similar shifts in concentration are also seen in the trace elements, however the concentrations decrease at these distances. These wholesale elemental fluctuations in composition are indicative of a dramatic shift in melt composition supporting the hypothesis of multiple melt injection

  10. Magma flow recorded by magmatic and magnetic fabrics in a shallow granitic pluton: La Gloria Pluton, central Chile

    Science.gov (United States)

    Payacán, I. J.; Gutiérrez, F. J.; Gelman, S. E.; Bachmann, O.; Parada, M. A.

    2013-12-01

    To better understand the dynamics of a small, shallow, silicic magma reservoir, magmatic and magnetic (AMS) fabrics are compared in samples obtained from La Gloria Pluton (LGP), a 10 Ma granitic intrusion located in southern Andes. The magnetic fabric of LGP, mainly given by magnetite, is characterized by oblate shapes. Magnetic lineations have a NW trend with subhorizontal dip, following the main pluton elongation, while magnetic foliation planes have dips varying gradually from vertical at the walls to subhorizontal toward the center and the roof of the pluton. On the basis of numerical simulations, magnetic fabric was interpreted to represent the shear record induced by magmatic convection along solidification fronts as the reservoir reached its rheological locking point. Magmatic fabric (mineral orientation) was determined on 12 samples along the pluton. Three mutually orthogonal thin sections were produced for each sample, perpendicular to the AMS tensor axes. Size and orientation of individual crystals were obtained by image analysis. A 2-D tensor for two mineral groups (plagioclase and amphibole+biotitie) was defined in each mineral plane projecting the crystal lengths on the main crystal orientation (given by Bingham statistics). A 3-D magmatic fabric tensor was obtained. In order to compare the magmatic and magnetic fabrics, magmatic anisotropy parameters were defined similar to the AMS tensors. Magmatic fabric and anisotropy parameter values vary depending on the location inside the pluton: (1) Samples located at the borders exhibit vertical foliations and lineations with a NW trend, similar to the magnetic fabric tensors and higher anisotropy values for plagioclase than amphibole+biotite,; (2) samples located at the center of the LGP commonly present subvertical foliations/lineations, which differ from the magnetic fabric, and higher magmatic anisotropy degree values for amphibole+biotite than plagioclase. Based on numerical simulations of the fluid

  11. Granitoids of the Dry Valleys area, southern Victoria Land, Antarctica : plutons, field relationships, and isotopic dating

    International Nuclear Information System (INIS)

    Allibone, A.H.; Cox, S.C.; Johnstone, R.D.

    1993-01-01

    Detailed mapping throughout much of the Dry Valleys area indicates the region is underlain by 15 major granitoid plutons and numerous smaller plugs and dikes. Intrusive relationships of these plutons and dikes indicate repeated intrusion of superficially similar granitoids at different times. Sufficient internal lithologic variation occurs within individual plutons, to allow correlation with several of the previously defined granitoid units based on lithologic character. Consequently, previous subdivision schemes based on lithology are no longer tenable and are here replaced with a subdivision scheme based on the identification of individual plutons. The elongate, concordant Bonney, Denton, Cavendish, and Wheeler Plutons, which range in composition between monzodiorite and granodiorite, are the oldest relatively undeformed plutons in the Dry Valleys area. Each pluton is characterised by flow alignment of K-feldspar megacrysts, hornblende, biotite, and mafic enclaves. Field relationships and radiometric dating indicate these are deep-level plutons, emplaced synchronous with upper amphibolite facies metamorphism of the adjacent Koettlitz Group between 589 and 490 Ma ago. Elongate, discordant plutons of equigranular homogeneous biotite granodiorite and granite (Hedley, Valhalla, St Johns, Suess) were subsequently emplaced by stoping at a relatively high crustal level at 490 Ma. These eight plutons are cut by numerous swarms of Vanda mafic and felsic porphyry dikes. The ovoid, discordant, high level Pearse, Nibelungen, Orestes, Brownworth, Swinford, and Harker Plutons, emplaced between c. 486 and 477 Ma, display mutually crosscutting relationships with the youngest of the Vanda dikes. These younger plutons range in composition between monzonite and granite. Some are characterised by K-feldspar megacrystic textures superficially similar to some of the oldest concordant plutons. (author). 57 refs.; 2 tabs.; 4 figs

  12. A PCR detection method for rapid identification of Melissococcus pluton in honeybee larvae.

    Science.gov (United States)

    Govan, V A; Brözel, V; Allsopp, M H; Davison, S

    1998-05-01

    Melissococcus pluton is the causative agent of European foulbrood, a disease of honeybee larvae. This bacterium is particularly difficult to isolate because of its stringent growth requirements and competition from other bacteria. PCR was used selectively to amplify specific rRNA gene sequences of M. pluton from pure culture, from crude cell lysates, and directly from infected bee larvae. The PCR primers were designed from M. pluton 16S rRNA sequence data. The PCR products were visualized by agarose gel electrophoresis and confirmed as originating from M. pluton by sequencing in both directions. Detection was highly specific, and the probes did not hybridize with DNA from other bacterial species tested. This method enabled the rapid and specific detection and identification of M. pluton from pure cultures and infected bee larvae.

  13. Iron variation within a granitic pluton as determined by near-infrared reflectance

    Science.gov (United States)

    Baird, A. K.

    1984-01-01

    One-hundred fifty-one previously chemically analyzed samples of tonalite from the Lakeview Mountains pluton, southern California batholith, were analyzed for their iron content using near-infrared spectrophotometry. Compared to the earlier analyses of the same sample set by X-ray fluorescence spectrography, the infrared data have higher analytical variance but clearly define patterns of compositional zonation in the pluton which are closely similar to those patterns obtained from X-ray data; petrogenetic interpretations for the pluton would be the same from either data set. Infrared spectral data can be obtained directly in the field with relatively simple instruments and field measurements can be made to average local heterogeneities that often mask significant plutonic variations.

  14. Research on the age and origin of Hongshan pluton in north Guangdong

    International Nuclear Information System (INIS)

    Zhu Ba; Deng Peng; Ling Hongfei; Shen Weizhou; Tan Zhengzhong

    2009-01-01

    Located in the midwest of south Zhuguangshan composite pluton, Hongshan pluton is constituted by biotite granite and two-micro granite. The SHRIMP U-Pb age of zircons from the pluton is 155±2 Ma, which belongs to Yanshanian. Hongshan pluton is rich in silicon (SiO 2 =76.08%∼77.25%) and alkali(K 2 O+Na 2 O=8.78%∼9.43%), low in ACNK value (0.94∼1.07) and CaO/Na 2 O value (0.10∼0.19). In trace elements, the pluton is rich in Rb, Th, U, depleted in Ba, Sr, P, Ti and has high Rb/Sr (30.02∼930.9), Rb/Ba (18.91∼231.8), has low LREE/HREE value (1.99∼2.40) and remarkable Eu depletion (δEu=0.01∼0.07), has low Σ Nd (t) value (-10.2∼-12.0) and old Nd model age(1777∼1923 Ma). All the evidence indicate that it have the characteristic of S type granite. Hongshan pluton is believed to be formed by partial melting of protozoic rocks, which related to the reactivation of Qitianling-Zhuguangshan (east-west) fracture zones resulted from the subduction of Pacific plate. (authors)

  15. Geochemistry and U/Pb geochronology of the Neuvy-Bouin pluton (Vendean Haut-Bocage): an example of a multistage granite pluton

    International Nuclear Information System (INIS)

    Cuney, M.; Brouand, M.; Dautel, D.; Michard, A.; Stussi, J.M.; Poncet, D.; Bouton, P.; Colchen, M.; Vervialle, J.P.

    1993-01-01

    New geological, structural and geochemical data show the presence of at least four magmatic units in the Neuvy-Bouin massif. U/Pb zircon age (340±4 Ma) obtained on the Largeasse granites indicates that in the Neuvy-Bouin pluton the magmatic activity began during Visean times. The emplacement of the Largeasse granites is followed by the aluminopotassic two-mica granites of Pougne-Herisson and by two mica leucogranites. The small high-K calc-alkaline granite body discovered in the Neuvy-Bouin pluton represents the first occurrence of this type of magmatism in the area

  16. An Archean Geomagnetic Reversal in the Kaap Valley Pluton, South Africa

    Science.gov (United States)

    Layer; Kroner; McWilliams

    1996-08-16

    The Kaap Valley pluton in South Africa is a tonalite intrusion associated with the Archean Barberton Greenstone Belt. Antipodal paleomagnetic directions determined from the central and marginal parts of the pluton record a geomagnetic reversal that occurred as the pluton cooled. The age of the reversal is constrained by an 40Ar/39Ar plateau age from hornblende at 3214 +/- 4 million years, making it the oldest known reversal. The data presented here suggest that Earth has had a reversing, perhaps dipolar, magnetic field since at least 3.2 billion years ago.

  17. High-18O granitic plutons from the Frontenac Axis, Grenville Province of Ontario, Canada

    International Nuclear Information System (INIS)

    Shieh, Y.-N.

    1985-01-01

    18 O/ 16 O ratios have been determined for whole rock as well as coexisting minerals from nine syn- to post-tectonic monzonite and quartz monzonite plutons in the Westport-Gananoque area covering approximately 2500 km 2 . The plutons fall into two distinct isotopic groups: (I) Low- 18 O group: Rideau Lake, Westport, and Wolfe Lake plutons and (II) High- 18 O group: Lyndhurst, Perth Road, Battersea, Gananoque, South Lake and Crow Lake plutons. The 18 O/ 16 O ratios of granitic rocks from the latter group are among the highest ever reported in the literature. The isotopic compositions of samples within each pluton bear no relationship to the sample distance from the intrusive contacts nor are they affected by the types of country rocks into which they are emplaced. Oxygen isotope fractionations among coexisting quartz, feldspar, biotite and magnetite all show normal plutonic values. Thus, all lines of evidence suggest that the monzonite and quartz monzonite plutons did not acquire their characteristic 18 O/ 16 O ratios at the present level of exposure, either by isotopic exchange with the surrounding metasedimentary country rocks or by any post-crystallization low-temperature alteration processes. The results are discussed. (author)

  18. Discussion on geochemical characteristics and tectonic setting of Maofeng pluton

    International Nuclear Information System (INIS)

    Wu Yi; Ruan Kun; Cai Jiajia; Liu Jing; Li Haidong; Zhang Lu; Wang Xiaona

    2014-01-01

    Xiazhuang granite type uranium deposit is the most important one in South China. The closest relation with Xiazhuang uranium mineralization is Maofeng granite pluton. To expound the relationship of granite and uranium mineralization, the paper studied Maofeng granite pluton which is the host granite of the deposit in petrogeochemistry, its structure and geodynamic setting. (authors)

  19. Bullialdus - Strengthening the case for lunar plutons

    Science.gov (United States)

    Pieters, Carle M.

    1991-01-01

    Although many craters expose materials of a composition different from that of the local surroundings, Bullialdus has excavated material representing three distinct stratigraphic zones that occur in the upper 6 km of crust, the top two of which are gabbroic and the deepest of which is noritic. This three-component stratigraphy at Bullialdus provides strong evidence that the lunar crust includes pockets of compositionally layered material reminiscent of mafic layered plutons. When combined with previous information on the compositional diversity at other large craters, these remote analyses obtained in a geologic context substantially strengthen the hypothesis suggested from lunar samples that plutons play an integral role in lunar crustal evolution.

  20. Lateral extrusion of a thermally weakened pluton overburden (Campiglia Marittima, Tuscany)

    Science.gov (United States)

    Vezzoni, Simone; Rocchi, Sergio; Dini, Andrea

    2017-10-01

    The ascent and emplacement of magmas in the upper crust modify the local pre-existing thermal and rheological settings. Such changes have important effects in producing anomalous structures, mass extrusion, rock fracturing, and in some conditions, hydrothermal mineralizations. In the Campiglia Marittima area, detailed field mapping led to the reconstruction of a local deformation history that overlaps, chronologically and spatially, with regional extension. This local deformation was triggered at the Miocene-Pliocene boundary by the intrusion of a monzogranitic pluton beneath a carbonate sedimentary sequence. The emplacement of the pluton produced a perturbation in the rheological behaviour of the carbonate host rocks, producing transient ductile conditions in the very shallow crust. The carbonate rocks were thermally weakened and flowed laterally, accumulating downslope of the pluton roof, mainly toward the east. As the thermal anomaly was decaying, the brittle-ductile boundary moved progressively back towards the pluton, and large tension gash-shaped volumes of fractured marble were generated. These fractured volumes were exploited by rising hydrothermal fluids generating sigmoidal skarn bodies and ore shoots. This work presents the Campiglia Marittima case study as a prime example of structural interference between regional extensional structures and local, lateral mass extrusion in a transient ductile rheological regime triggered by pluton emplacement.

  1. Isotopic character of Cambro-Ordovician plutonism, southern Victoria Land

    International Nuclear Information System (INIS)

    Cox, S.C.; Parkinson, D.L.; Allibone, A.H.; Cooper, A.F.

    2000-01-01

    Previous mapping of granitoid rocks in the Dry Valleys area of southern Victoria Land, Antarctica, identified the calc-alkaline (DV1a), adakitic (DV1b), and monzonitic (DV2) suites. A fourth older suite comprising alkaline gabbro, syenite, and A-type granite occurs in the Mt Dromedary area c. 80 km to the south. U-Pb zircon dating of Bonney Pluton, the largest calc-alkaline DV1a intrusion, indicates emplacement of this regional-scale body at 505 +/- 2 Ma. Pb-loss and inherited zircon were common to Bonney Pluton analyses of this study. U-Pb dating of monazite from Valhalla Pluton, a principal DV1b suite adakitic intrusion, indicates emplacement at 488 +/- 2 Ma. The Bonney Pluton age constrains the peak of calc-alkaline plutonism at 505 Ma and the Valhalla Pluton age records the major pulse of adakitic plutonism that is inferred to mark the final stages of subduction c. 490 Ma along this section of the East Antarctic margin. Nd and Sr isotope data for the calc-alkaline DV1a suite and adakitic DV1b suite define distinct ranges for each suite, supporting their subdivision on the basis of field relationships, petrography, and whole-rock geochemistry. Calc-alkaline DV1a suite granite magmas have eNd(T) = -4.2 to -6.1 and Sri = 0.7071-0.7079, whereas the adakitic DV1b suite rocks have a wider range of eNd(T) = -1.9 to -7.2 and Sri = 0.7065-0.7097. The isotopic data suggest a significant mantle component and subordinate crustal component in the source region of both suites. Time-dependent variations in the isotopic ratios of DV1a and DV1b suites imply a progressive increase in the proportion of more radiogenic material in the source region of the granitoid rocks, either mantle- or crust-derived material. Larger adakitic DV1b plutons are more 'evolved' than equivalent, smaller plutons of the same DV1b suite. Vanda Dikes and monzonitic DV2 suite intrusions are characterised by particularly low Sri = 0.7044-0.7067 and near-constant eNd(T) = -4.8 to -5.3, which indicate a

  2. Magnetic properties of ilmenite-hematite single crystals from the Ecstall pluton near Prince Rupert, British Columbia

    DEFF Research Database (Denmark)

    Brownlee, Sarah J.; Feinberg, Joshua M.; Kasama, Takeshi

    2011-01-01

    Paleomagnetic studies of the 91 Ma Ecstall pluton and other Cretaceous plutons of British Columbia imply large northward tectonic movements (>2000 km) may have occurred during the tectonic evolution of western North America. However, more recent studies have shown that the eastern edge...... of the Ecstall pluton experienced considerable mineralogical changes as younger Eocene plutons, such as the ∼58 Ma Quottoon Pluton, were emplaced along its margins. We investigated changes in the rock magnetic properties associated with this reheating event by examining isolated grains of intergrown ilmenite...... and hematite, the primary paleomagnetic recorder in the Ecstall pluton. Measurements of hysteresis properties, low-temperature remanence, and room temperature isothermal remanent magnetization acquisition and observations from magnetic force microscopy and off-axis electron holography indicate that samples...

  3. Reconnaissance study of the uranium and thorium contents of plutonic rocks of the southwestern Seward Peninsula, Alaska

    International Nuclear Information System (INIS)

    Miller, T.P.; Bunker, C.M.

    1976-01-01

    Large granitic Cretaceous plutons are exposed along and adjacent to an arcuate belt of igneous and high-grade metamorphic rocks in the southeastern Seward Peninsula of Alaska. Reconnaissance studies of these plutons have shown that the Darby pluton has well above average amounts of uranium and thorium (11.2 ppm and 58.7 ppm, respectively), the Kachauik pluton contains average to above average uranium and thorium (5.7 ppm and 22.5 ppm, respectively), and the Bendeleben pluton contains average amounts of uranium and thorium (3.4 ppm and 16.7 ppm, respectively). The three plutons show compositional and textural differences indicative of different source materials that may have controlled the distribution of uranium and thorium. The high uranium and thorium contents of the Darby pluton, similar to those of the Conway Granite of New Hampshire which has been mentioned as a possible low-grade thorium resource, suggest that this pluton may be a favorable area for economic concentrations of uranium and thorium

  4. Cretaceous plutonic rocks in the Donner Lake-Cisco Grove area, northern Sierra Nevada, California

    Science.gov (United States)

    Kulow, Matthew J.; Hanson, Richard E.; Girty, Gary H.; Girty, Melissa S.; Harwood, David S.

    1998-01-01

    The northernmost occurrences of extensive, glaciated exposures of the Sierra Nevada batholith occur in the Donner Lake-Cisco Grove area of the northern Sierra Nevada. The plutonic rocks in this area, which are termed here the Castle Valley plutonic assemblage, crop out over an area of 225 km2 and for the most part are shown as a single undifferentiated mass on previously published geological maps. In the present work, the plutonic assemblage is divided into eight separate intrusive units or lithodemes, two of which each consist of two separate plutons. Compositions are dominantly granodiorite and tonalite, but diorite and granite form small plutons in places. Spectacular examples of comb layering and orbicular texture occur in the diorites. U-Pb zircon ages have been obtained for all but one of the main units and range from ~120 to 114 Ma, indicating that the entire assemblage was emplaced in a narrow time frame in the Early Cretaceous. This is consistent with abundant field evidence that many of the individual phases were intruded penecontemporaneously. The timing of emplacement correlates with onset of major Cretaceous plutonism in the main part of the Sierra Nevada batholith farther south. The emplacement ages also are similar to isotopic ages for gold-quartz mineralization in the Sierran foothills west of the study area, suggesting a direct genetic relationship between the voluminous Early Cretaceous plutonism and hydrothermal gold mineralization.

  5. Plutonic rocks of the Median Batholith in southwest Fiordland, New Zealand : field relations, geochemistry, and correlation

    International Nuclear Information System (INIS)

    Allibone, A.H.; Turnbull, I.M.; Tulloch, A.J.; Cooper, A.F.

    2007-01-01

    This paper provides a first description of all major plutonic rock units between Resolution Island and Lake Poteriteri in southwest Fiordland. Plutonic rocks, of which c. 95% are granitoids, comprise c. 60% of the basement in southwest Fiordland. Approximately 50% of the plutonic rocks were emplaced between c. 355 and 348 Ma, 5% at c. 164 Ma, 25% between c. 140 and 125 Ma, and 20% between c. 125 and 110 Ma. These episodes of plutonism occurred in response to terrane amalgamation, continental thickening, and subduction along the convergent margin of Gondwana. Correlatives of Devonian plutonic rocks which occur in Nelson are absent from the area described here. A wide variety of plutonic rocks were emplaced at c. 355-348 Ma. These include relatively small plutons of K- and Rb-rich gabbro-diorite and members of at least three distinct suites of granitoids. Plutons of two-mica ± garnet granodiorite, granite, and minor tonalite share affinities with the S-type Ridge Suite and are the most widespread c. 355-348 Ma old granitoids in southern Fiordland. Plutons rich in Ca, Fe and Zr, depleted in K and Na, and containing quartz diorite, tonalite, and minor granodiorite with the unusual assemblage red-brown biotite, garnet ± hornblende ± clinopyroxene also occur widely in southern Fiordland. These plutons are similar to peraluminous A-type granitoids, indicating A as well as I and S-type plutonism occurred in the Western Province at this time. The Newton River and Mt Evans Plutons have no correlatives amongst c. 355-348 Ma granitoids in southern Fiordland, but their chemistry is similar to that of the older Karamea Suite. Three regional-scale metasedimentary units - locally fossiliferous Fanny Bay Group Buller Terrane rocks in southern Fiordland, Edgecumbe and Cameron Group Takaka Terrane rocks in south-central Fiordland, and undifferentiated Deep Cove Gneiss high-grade metasedimentary rocks of western Fiordland - are all stitched by c. 355-348 Ma old plutons, indicating

  6. Natural radioactivity levels in granitic plutons and groundwaters in Southeast part of Eskisehir, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Oerguen, Y. [Faculty of Mines, Istanbul Technical University (ITU), Ayazaga Kampusu, 34469 Istanbul (Turkey)]. E-mail: orgun@itu.edu.tr; Altinsoy, N. [Institute of Energy, Istanbul Technical University (ITU), Ayazaga Kampusu, 34469 Istanbul (Turkey); Gueltekin, A.H. [Faculty of Mines, Istanbul Technical University (ITU), Ayazaga Kampusu, 34469 Istanbul (Turkey); Karahan, G. [Cekmece Nuclear Research and Training Center, P.O. Box 1, Atatuerk Airport, 34149 Istanbul (Turkey); Celebi, N. [Cekmece Nuclear Research and Training Center, P.O. Box 1, Atatuerk Airport, 34149 Istanbul (Turkey)

    2005-08-01

    The present work investigated the radioactivity level of the granitoid plutons and its effect on the groundwaters in the southeast part of Eskisehir. Fourteen granitic samples from the Kaymaz and Sivrihisar plutons and 11 groundwater samples from the near vicinity of the pluton were analyzed. The activity concentrations measured for {sup 238}U and {sup 232}Th ranged from 43.59{+-}2 to 651.80{+-}24 Bq/kg, and 51.16{+-}3 to 351.94{+-}13 Bq/kg, respectively. The activity concentrations obtained for {sup 40}K varied from 418.50{+-}17 to 1618.03{+-}66 Bq/kg. The absorbed dose rates in air outdoors ranged from 87.14 to 531.81 nGy/h. All the results obtained from the Kaymaz pluton are higher than those from the Sivrihisar. The U (ave. 16.6 ppm) and Th (ave. 49.9 ppm) values of the Kaymaz pluton are higher than the average concentrations of the magmatic rocks of granitic composition. These results are consistent with high dose rates of the pluton. The gross-{alpha} activities in the groundwater samples ranged from 0.009 to 1.64 Bq/l and the gross-{beta} activities from 0.006 to 0.89 Bq/l. The highest gross-{alpha} value was found in the sample taken from near the Kaymaz pluton. The concentrations of {sup 222}Rn varied from 0.060 to 0.557 Bq/l.

  7. Fractures and fracture infillings of the Eye-Dashwa Lakes pluton, Atikokan, Ontario

    International Nuclear Information System (INIS)

    Stone, Denver; Kamineni, D.C.

    1982-01-01

    Fractures in the Eye-Dashwa pluton near Atikokan, Ontario can be subdivided on the basis of their filling materials. These materials include aplite, epidote, chlorite, and gypsum-carbonate-clay, listed in order of decreasing age established from crosscutting relations. Textues indicate that infilling occurred during fracture growth. Continuous cooling of the pluton during fracturing is inferred from the expected crystallization temperatures of fillings. Fracturing began before the pluton was completely solidified (650-600 0 C) and continued to temperatures below 100 0 C. Many fractures appear to have been sealed by the filling materials after initiation but were subsequently sheared and filled by lower temperatue materials. Apparently the majority of fractures formed during or immediately after pluton solidification and new fractures became smaller and more restricted in location as cooling progressed. Fractures and filling materials are seen as important features in assessing the possibility of movement of radionuclides in aqueous solutions away from a nuclear fuel waste repository

  8. Reconnaissance study of the Taylor Mountains pluton, southwestern Alaska

    Science.gov (United States)

    Hudson, Travis L.; Miller, Marti L.; Klimasauskas, Edward P.; Layer, Paul W.

    2010-01-01

    The Taylor Mountains pluton is a Late Cretaceous to early Tertiary (median age 65 + or ? 2 Ma) epizonal, composite biotite granite stock located about 235 km (145 mi) northeast of Dillingham in southwestern Alaska. This 30 km2 (12 mi2) pluton has sharp and discordant contacts with hornfels that developed in Upper Cretaceous clastic sedimentary rocks of the Kuskokwim Group. The three intrusive phases in the Taylor Mountains pluton, in order of emplacement, are (1) porphyritic granite containing large K-feldspar phenocrysts in a coarse-grained groundmass, (2) porphyritic granite containing large K-feldspar and smaller, but still coarse, plagioclase, quartz, and biotite phenocrysts in a fine-grained groundmass, and (3) fine-grained, leucocratic, equigranular granite. The porphyritic granites have different emplacement histories, but similar compositions; averages are 69.43 percent SiO2, 1.62 percent CaO, 5.23 percent FeO+MgO, 3.11 percent Na2O, and 4.50 percent K2O. The fine-grained, equigranular granite is distinctly felsic compared to porphyritic granite; it averages 75.3 percent SiO2, 0.49 percent CaO, 1.52 percent FeO+MgO, 3.31 percent Na2O, and 4.87 percent K2O. Many trace elements including Ni, Cr, Sc, V, Ba, Sr, Zr, Y, Nb, La, Ce, Th, and Nd are strongly depleted in fine-grained equigranular granite. Trace elements are not highly enriched in any of the granites. Known hydrothermal alteration is limited to one tourmaline-quartz replacement zone in porphyritic granite. Mineral deposits in the Taylor Mountains area are primarily placer gold (plus wolframite, cassiterite, and cinnabar); sources for these likely include scattered veins in hornfels peripheral to the Taylor Mountain pluton. The granite magmas that formed the Taylor Mountains pluton are thought to represent melted continental crust that possibly formed in response to high heat flow in the waning stage of Late Cretaceous subduction beneath interior Alaska.

  9. The research on the geochemical characteristics of Longyuanba composite pluton in Nanling region

    International Nuclear Information System (INIS)

    Zhang Min; Chen Peirong; Ling Hongfei

    2006-01-01

    The Longyuanba composite pluton, located in the eastern part of the Nanling Range, is an important part of the Nanling granites belt, which was regarded as a portion of Yanshanian epoch Pitou pluton to the east of it, and was lowly studied. The newest research shows that, the main body of Longyuanba pluton formed in Indosinian, different from Pitou pluton, which is Yanshanian. From main elements geochemical characteristics, there is obvious gap between Indosinian granites, Yanshanian granites and Yanshanian syenites in major oxides composition, which implies that there is possibly no fractional crystallization relationship between them. Form trace element geochemical characteristics, Indosinian Σ granites are enriched in LREE and high in REE. Yanshanian granites are depleted in MREE and low in Σ REE and ratios of Th/U, Nb/Ta, Zr/Hf, and obvious in fraction. The above characteristics show that, liquid action was rather strong in Yanshanian magmatism. Yanshanian syenites are enriched in high field elements and REE, are similar with A-type granite. Sr, Nd isotopic geochemical characteristics show that, Longyuanba composite pluton belongs to crust-original S-type granite and its original resource is early-Proterozoic crust from crust-mantle fraction. (authors)

  10. Unusual Rb-Sr data on the age of two typical peralkaline granitoid plutons in West Transbeikalia

    International Nuclear Information System (INIS)

    Litvinovskij, B.A.; Posokhov, V.F.; Zanvilevich, A.N.

    1995-01-01

    Rb-Sr isotope study of two typical plutons in West Transbaikalia (Bryansk and Kharitonov) has been carried out. For alkaline and peralkaline suits of the Bryansk pluton the obtained data are 287 ± m.y., I Sx =0.7054 ± 3 and 285 ± 1 m.y., I Sr =0.7037 ± 3 respectively. Rb-Sr age of peralkaline syenites and granites from the Kharitonov pluton are in more or less consistency with those on the Malokunal pluton (233 ± 5 m.y.) and much less than the age of the Khorinsk pluton (253 ± 3 m.y.). Taking into account the K-Ar data on amphibole from the peralkaline granitoids it is concluded that probable age of these rocks span the interval 250-220 m.y. However results obtained from the Bryansk pluton suggest that within the Mongolia-Transbaikalia belt one more stage of peralkaline granitoid generation i.e. the Early Permian stage could be manifested as well. 20 refs.; 5 figs.; 3 tabs

  11. Is there a geochemical link between volcanic and plutonic rocks in the Organ Mountains caldera?

    Science.gov (United States)

    Memeti, V.; Davidson, J.

    2013-12-01

    Results from separate volcanic and plutonic studies have led to inconsistent conclusions regarding the origins and thus links between volcanic and plutonic systems in continental arcs and the magmatic processes and time scales responsible for their compositional variations. Some have suggested that there is a geochemical and geochronological disconnect between volcanic and plutonic rocks and hence have questioned the existence of magma mush columns beneath active volcanoes. Investigating contemporary volcanic and plutonic rocks that are spatially connected is thus critical in exploring these issues. The ca. 36 Ma Organ Mountains caldera in New Mexico, USA, represents such a system exposing contemporaneous volcanic and plutonic rocks juxtaposed at the surface due to tilting during extensional tectonics along the Rio Grande Rift. Detailed geologic and structural mapping [1] and 40Ar/39Ar ages of both volcanics and plutons [2] demonstrate the spatial and temporal connection of both rock types with active magmatism over >2.5 myr. Three caldera-forming ignimbrites erupted within 600 kyr [2] from this system with a total erupted volume of 500-1,000 km3 as well as less voluminous pre- and post-caldera trachyte and andesite lavas. The ignimbrite sequence ranges from a crystal-poor, high-SiO2 rhyolite at the base to a more crystal-rich, low-SiO2 rhyolite at the top. Compositional zoning with quartz-monzonite at the base grading to syenite and alaskite at the top is also found in the Organ Needle pluton, the main intrusion, which is interpreted to be the source for the ignimbrites [1]. Other contemporaneous and slightly younger plutons have dioritic to leucogranitic compositions. We examined both volcanic and plutonic rocks with petrography and their textural variations with color cathodoluminescence, and used whole rock element and Sr, Nd and Pb isotope geochemistry to constrain magma compositions and origins. Electron microprobe analyses on feldspars have been completed to

  12. The application of mathematical transformation in order to define edges of pluton Valja Strž

    Directory of Open Access Journals (Sweden)

    Ignjatović Snežana M.

    2014-01-01

    Full Text Available The Timok Magmatic Complex (TMC belongs to the East Serbian and is the largest volcanic area in our country. The largest pluton in this area is Valja Strž. This pluton is situated in the northwestern part of the complex. Applying different methods of mathematical transformation on aeromagnetic data facilitated outlining of pluton edges in subsurface of surrounding rocks. In this paper we used mathematical transformation on anomaly values of the magnetic field, obtained from processing of aeromagnetic data. In order to detect the edges of pluton Valja Strž we used following set of mathematical transformation: first vertical derivative, the total horizontal derivative, tilt derivative, upward continuation, and combination of upward continuation and tilt derivative. Results of application of mathematical transformation showed that outspread of the pluton Valja Strž in the subsurface is larger than its extend on the surface.

  13. Primer registro de Dasypsyllus (Avesopsylla lasius lasius (Siphonaptera: Ceratophyllidae en nidos de golondrina chilena, Tachycineta meyeni (Passeriformes: Hirundinidae, en Ushuaia (Tierra del Fuego, Argentina First record of Dasypsyllus (Avesopsylla lasius lasius (Siphonaptera: Ceratophyllidae in Chilean swallow nests Tachycineta meyeni (Passeriformes: Hirundinidae in Ushuaia (Tierra del Fuego, Argentina

    Directory of Open Access Journals (Sweden)

    Rosana Aramburú

    2009-12-01

    Full Text Available La golondrina chilena, Tachycineta meyeni (Cabanis, nidifica en el centro de Chile y suroeste de Argentina. En invierno migra a Bolivia, Paraguay y al sureste de Brasil. Estas golondrinas ocuparon una serie de cajas-nido en Ushuaia, Tierra del Fuego. Luego de la temporada de cría, tratamos los nidos con acetato de etilo y los revisamos en búsqueda de artrópodos hematófagos. Encontramos pulgas adultas, que fueron fijadas, aclaradas, deshidratadas, diafanizadas y montadas en un derivado de clavo de olor para su observación al microsocopio óptico. Identificamos machos y hembras de Dasypsyllus (Avesopsylla lasius lasius (Rothschild. En Argentina, esta pulga es conocida solamente en Sierra de la Ventana (Buenos Aires, donde se la halló parasitando la golondrina barranquera, Notiochelidon cyanoleuca patagonica (Vieillot. La información disponible debería complementarse con prospecciones en localidades intermedias. Otras aves relacionadas con ambas golondrinas por la ocupación de nidos, como el rayadito (Aphrastura spinicauda (Gmelin, ratona común (Troglodytes aedon Vieillot, caminera común (Geositta cunicularia (Vieillot, hornero (Furnarius rufus (Gmelin, podrían contribuir a la dispersión de la pulga entre las dos localidades registradas.Chilean swallows Tachycineta meyeni (Cabanis nest in the central area in Chile and Southwest in Argentina. In winter, they migrate to Bolivia, Paraguay and Southeast of Brazil. A nest box population of Chilean swallows was established in Ushuaia, Tierra del Fuego. After the breeding season, we collected all nests, treated them with ethyl acetate, and inspected all the nest material for hematophagous arthropods. We found adult fleas, which were fixed, cleared, diaphanized, dehydrated, and mounted in a clove derivative for observation under a microscope. We identified males and females of Dasypsyllus (Avesopsylla lasius lasius (Rothschild. In Argentina, this flea is only known for Sierra de la Ventana

  14. Geological, geochemical and isotopic characteristics of the Archaean Kaap Valley pluton, Barberton mountain land, South Africa

    International Nuclear Information System (INIS)

    Robb, L.J.; Barton, J.M. Jr.; Kable, E.J.D.; Wallace, R.C.

    1984-01-01

    The Kaap Valley pluton consists predominantly of a homogeneous weakly foliated, hornblende-bearing tonalite. It is among the oldest granitoid bodies yet recognized in the environs of the Barberton greenstone belt, yielding 207 Pb/ 206 Pb mineral ages of about 3300 Ma and a Rb-Sr whole rock isochron age of about 3500 Ma. The Kaap Valley pluton is distinctive in many respects. Whereas all other gneiss plutons in the area are characterized by a trondhjemitic bulk composition with mafic mineralogies dominated by biotite, the Kaap Valley pluton is tonalitic in bulk composition with hornblende (plus minus minor biotite) as its major mafic phase. In this paper, the results of a detailed geological, geochemical and Pb-isotopic study of the Kaap Valley pluton are presented. Questions relating to the origin of the body are considered, with an emphasis on the formation of a tonalitic magma which is more mafic than those typically encountered in the region. Although exposure does not permit a detailed structural study of the gneiss pluton consideration is given to its mode of emplacement

  15. Population structure and maturity stages of Fritillaria borealis (Appendicularia, Tunicata: seasonal cycle in Ushuaia Bay (Beagle Channel

    Directory of Open Access Journals (Sweden)

    María Laura Presta

    2015-09-01

    Full Text Available AbstractFritillaria borealis is a cosmopolitan species, very frequent in sub-antarctic and antarctic waters. The objective of this paper was to analyze its size structure and maturity stages at two sites in Ushuaia Bay: a coastal site exposed to anthropogenic pressure (E1 and a reference site (E2 located in the external zone of the bay. Zooplankton was collected during the 2012 seasonal cycle. The sampling method involved the use of a 67 µm-mesh net. Appendicularians were classified in four maturity stages: I undifferentiated gonads, II testis and ovary differentiated, III expanded testis, IV discharged testis, expanded ovary. Our results showed that the highest densities of F. borealisoccurred in spring and summer at both sites; coinciding with high values of chlorophyll-a. The percentage of juveniles (I and II exhibited a spatial and temporal pattern similar to that observed for chlorophyll-a values. During spring-summer, juveniles and mature specimens (III and IV showed a greater gonadal development than those individuals found in autumn-winter. In conclusion, the mismatching in the population structure and the pattern of densities of F. borealis between coastal and external zones would suggest the existence of two sub-populations susceptible to the influence of the anthropogenic impact in the bay.

  16. Granitoid emplacement during syn-convergent transtension: An example from the Huamenlou pluton in North Qinling, central China

    Directory of Open Access Journals (Sweden)

    Yang Li

    2018-01-01

    Full Text Available The Huamenlou pluton, is an elongated granite intrusion with high aspect ratio, emplaced within the southern margin of the North Qinling (central China. Here we investigate this pluton through multiple techniques including the fabric study, microstructural observation and zircon geochronology. Our zircon U–Pb data confirm that the granite crystallized at ca. 462 Ma which is consistent with the ages of other linear plutons in North Qinling. Microstructural observations of the Huamenlou granites illustrate that the pluton has undergone superimposed deformation during its emplacement, from magmatic to high-temperature solid state conditions. The internal fabric obtained by anisotropy of magnetic susceptibility (AMS and shape preferred orientation (SPO show similar results. The fabrics are relatively concordant and generally vary from NE–SW to NEE–SWW which are roughly oblique to the trend of the pluton elongation and the regional structures. Meanwhile, scalar parameters reflect two completely different strain regimes for the pluton and its host rocks, i.e., the fabrics within host rocks are mainly oblate while the central part of the intrusion displays mainly prolate fabrics. It is inferred that the structural pattern recorded in this pluton was caused by local dextral transtension in consequence of oblique convergence between the South and North China Blocks. We propose that the local transtension in convergence setting probably evolved from vertical extrusion tectonics that provided room for the magma emplacement and imparted prolate fabrics in the Huamenlou pluton.

  17. Strontium and oxygen isotopic variations in mesozoic and tertiary plutons of central Idaho

    International Nuclear Information System (INIS)

    Fleck, R.J.; Criss, R.E.

    1985-01-01

    Regional variations in initial 87 Sr/ 86 Sr ratios (rsub(i)) of Mesozoic plutons in central Idaho locate the edge of Precambrian continental crust at the boundary between the late Paleozoic-Mesozoic accreted terranes and Precambrian sialic crust in western Idaho. The rsub(i) values increase abruptly but continuously from less than 0.704 in the accreted terranes to greater than 0.708 across a narrow, 5 to 15 km zone, characterized by elongate, lens-shaped, highly deformed plutons and schistose metasedimentary and metavolcanic units. The chemical and petrologic character of the plutons changes concomitantly from ocean-arc-type units to a weakly peraluminous, calcit to calcalkalic suite. Plutons in both suites yield Late Cretaceous ages, but Permian through Early Cretaceous bodies are confined to the accreted terranes and early Tertiary intrusions are restricted to areas underlain by Precambrian crust. The two major terranes were juxtaposed between 75 and 130 m.y. ago, probably between 80 and 95 m.y. Oxygen and strontium isotopic ratios and Rb and Sr concentrations of the plutonic rocks document a significant upper-crustal contribution to the magmas that intrude Precambrian crust. Magmas intruding the arc terranes were derived from the upper mantle/subducted oceanic lithosphere and may have been modified by anatexis of earlier island-arc volcanic and sedimentary units. (orig./PW)

  18. Subsurface profiling of granite pluton using microtremor method: southern Aravalli, Gujarat, India

    Science.gov (United States)

    Joshi, Aditya U.; Sant, Dhananjay A.; Parvez, Imtiyaz A.; Rangarajan, Govindan; Limaye, Manoj A.; Mukherjee, Soumyajit; Charola, Mitesh J.; Bhatt, Meghnath N.; Mistry, Sagar P.

    2018-01-01

    We report, using the microtremor method, a subsurface granitic pluton underneath the Narukot Dome and in its western extension along a WNW profile, in proximity of eastern fringe of Cambay Rift, India. The dome and its extension is a part of the Champaner Group of rocks belonging to the Mesoproterozoic Aravalli Supergroup. The present finding elucidates development of an asymmetric double plunge along Narukot Dome. Microtremor measurements at 32 sites were carried out along the axial trace (N95°) of the dome. Fourier amplitude spectral studies were applied to obtain the ratio between the horizontal and vertical components of persisting Rayleigh waves as local ambient noise. Fundamental resonant frequencies with amplitude ≥1-sigma for each site are considered to distinguish rheological boundary. Two distinct rheological boundaries are identified based on frequency ranges determined in the terrain: (1) 0.2219-10.364 Hz recorded at 31 stations identified as the Champaner metasediment and granite boundary, and (2) 10.902-27.1119 Hz recorded at 22 stations identified as the phyllite and quartzite boundary. The proposed equation describing frequency-depth relationship between granite and overlaying regolith matches with those already published in the literature. The morphology of granite pluton highlights the rootless character of Champaner Group showing sharp discordance with granitic pluton. The findings of manifestation of pluton at a shallower depth imply a steep easterly plunge within the Champaner metasediments, whereas signature of pluton at a deeper level implies a gentle westerly plunge. The present method enables to assess how granite emplacement influences the surface structure.

  19. Panorama Pluton : a composite gabbro-monzodiorite early Ross Orogeny intrusion in southern Victoria Land, Antarctica

    International Nuclear Information System (INIS)

    Mellish, S.D.; Cooper, A.F.; Walker, N.W.

    2002-01-01

    The Koettlitz Glacier Alkaline Province of the Walcott Glacier to Radian Glacier area of the Transantarctic Mountains contains a diverse suite of intrusions ranging from gabbro and diorite to granite, nepheline syenite, and carbonatite. Most of the plutons are alkaline (A-type), although the Panorama Pluton is mafic, comprising both hypersthene normative gabbroic and quartz normative monzodioritic lithologies. The pluton has a composite nature, determined by whole-rock geochemical trends and Nd-Sr isotope data that reflect distinctive source regions for the different components. U-Pb geochronology of zircon and titanite indicates the Panorama Pluton was intruded during the early stages of the Neoproterozoic-early Paleozoic Ross Orogeny at 535 ± 9 Ma, and that it is coeval with the geochemically similar Dromedary Mafic Complex which crops out 10 km to the southeast. The Panorama Pluton is a volumetrically minor mafic component of the Koettlitz Glacier Alkaline Province, which predates, by at least 15 m.y., the dominant calc-alkaline suites that occur along-strike in the Dry Valleys area to the north, and the central Transantarctic Mountains to the south. The Panorama Pluton magmas, and other Koettlitz Glacier Alkaline Province lithologies, are interpreted to have formed in an extensional or transtensional jog that predates the onset of widespread Ross Orogeny subduction. (author). 48 refs., 7 figs., 3 tabs

  20. Thermal modification of hematite-ilmenite intergrowths in the Ecstall pluton, British Columbia, Canada

    DEFF Research Database (Denmark)

    Brownlee, S.J.; Feinberg, J.M.; Harrison, R.J.

    2010-01-01

    In this study, we examine the effects of reheating on finely exsolved hematite-ilmenite intergrowths from the similar to 91 Ma Ecstall pluton using reflected light microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). As a result of the emplacement of the you......In this study, we examine the effects of reheating on finely exsolved hematite-ilmenite intergrowths from the similar to 91 Ma Ecstall pluton using reflected light microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). As a result of the emplacement...... of the younger adjacent similar to 52 Ma Quottoon pluton, samples closer to a thermal boundary have experienced greater degrees of thermal alteration. Five main microstructural features characterize hematite-ilmenite intergrowths from the Ecstall: (I) exsolution lamellae of hematite and ilmenite; (II) oxidation....... Higher temperatures also enhanced oxidation in ilmenite. The formation of magnetite altered the bulk magnetic properties of these samples, increasing NRM intensity. This study underscores the need to consider a pluton's post-emplacement thermal history before making tectonic interpretations based...

  1. Oster pluton (Central Karelia) - the ancient massif of two-feldspar granites of Baltic Shield

    International Nuclear Information System (INIS)

    Kovalenko, A.V.; Rizvanova, N.G.

    2000-01-01

    Geochronological study of two-feldspar granites forming the Oster pluton in the Central Karelia was performed using the methods of U-Pb- and Sm-Nd-dating. U-Pb isotope data for zircons from granite of the Oster pluton correspond to the age of 2876±21 mln. years, whereas Sm-Nd isotope data obtained for three samples of the garnet correspond to the age varying from 3.0 to 3.5 bln. years. The ancient age of granites of the Oster pluton is explained by the presence of a sufficiently powerful crust in the region by that moment [ru

  2. Radiogeologic assessment for nuclear waste isolation: studies of the Stripa pluton

    International Nuclear Information System (INIS)

    Wollenberg, H.; Flexser, S.; Andersson, L.

    1982-01-01

    To properly characterize candidate sites for radioactive waste isolation, it will be necessary to obtain a good understanding of their radiogeologic settings. The distribution and abundance of the naturally occurring radioelements - 238 U, 232 Th, their daughters, and 40 K, both in the rock mass encompassing the repository and in the neighboring rocks - constitute the baseline upon which the effects of the radioactive waste are superimposed. The distribution of these radioelements is also a good indicator of the geochemical homogeneity of the rock mass. At the Stripa experimental facility in an inactive iron mine in central Sweden, radiogeologic studies included gamma-spectrometric surveys, on the surface and underground, of the U, Th, and K contents of the quartz monzonite pluton encompassing the experiments, the high-grade metamorphic rocks surrounding the pluton, and the neighboring larger granitic plutons. The gamma-spectral surveys were calibrated by laboratory analyses of hand specimens and drill cores, permitting calculation of radioelement concentrations from field counting rates

  3. LA-ICPMS zircon U-Pb age of Maofeng pluton of uranium deposit No.337 and its significance

    International Nuclear Information System (INIS)

    Zhang Zhanshi; Hua Renmin; Yao Junmin; Gu Shengyan; Deng Ping; Wu Lieqin

    2007-01-01

    Maofeng pluton is the most important uranium-host granite in Xiazhuang uranium orefield. The accurate granite formation age and its evolution history is crucial for understanding the mineralization in this district. LA-ICPMS zircon dating was applied in this paper and found the formation age of Maofeng pluton is 238.2 ± 2.3 Ma which suggests that Maofeng pluton was produced in the Indosinian magmatic event. Uranium mineralization age of No.337 deposit is commonly recognized to be 138 Ma. Therefore No.337 uranium deposit was not the typical magma hydrothermal deposit due to the long time gap between the pluton formation and the uranium mineralization. (authors)

  4. Geology of the plutonic basement rocks of Stewart Island, New Zealand

    International Nuclear Information System (INIS)

    Allibone, A.H.; Tulloch, A.J.

    2004-01-01

    Exposures of basement rocks on Stewart Island provide a c. 70 km long by 50 km wide map of part of the Median Batholith that spans the margin of the Western Province. Because of their distance from the present plate boundary, these rocks are relatively unaffected by Cenozoic tectonism, allowing examination of unmodified Carboniferous-Cretaceous relationships within the Median Batholith. Thirty individual plutons (>c.20 km 2 ) have been mapped along with numerous relatively small intrusions ( 2 ). The large plutons form 85-90% of the Median Batholith on Stewart Island while the many smaller intrusions comprise 10-15%, mostly in the north. Lithologies include: biotite ± minor hornblende granodiorite, granite and leucogranite with accessory titanite - magmatic epidote and allanite (c. 50%); biotite ± muscovite ± garnet granite with S-type affinities (c. 10%); alkaline quartz monzonite, granite, and alkali feldspar granite with rare aegirine and blue-green amphibole (c. 3%); quartz monzodiorite and diorite with hornblende > biotite (c. 23%); gabbro and anorthosite (c. 12%) and ultramafic rocks (c. 2%). U-Pb zircon and monazite dating indicates that c. 12% of these plutonic rocks were emplaced during the Carboniferous between 345 and 290 Ma, c. 20% in the Early-Middle Jurassic at c. 170-165 Ma, c. 30% in the latest Jurassic to earliest Cretaceous between 152 and 128 Ma, and c. 38% in the Early Cretaceous between 128 and 100 Ma. The distribution of Pegasus Group schists and peraluminous granitoid rocks indicates that the northern limit of extensive early Paleozoic Western Province basement is located either within the Gutter Shear Zone or at the Escarpment Fault, 10-15 km south of the Freshwater Fault System previously thought to mark this boundary. Carboniferous and Middle Jurassic magmatism extended plutonic basement northwards as far as the Freshwater Fault System, while further magmatism during the latest Jurassic and earliest Cretaceous produced the basement

  5. Amphibole Thermometry and a Comparison of Results from Plutonic and Volcanic Systems

    Science.gov (United States)

    Sherman, T. M.; Putirka, K. D.; De Los Reyes, A. M. A.; Ratschbacher, B. C.

    2015-12-01

    Recent work (Ridolfi and Renzulli 2014) shows that amphiboles can be used to infer magmatic temperatures, even without knowledge of co-existing liquids. Here, we apply this approach, using new calibrations, to investigate felsic-mafic magma interactions, in a volcanic (Lassen Volcanic Center, a Cascade volcano) and plutonic (the Jurassic Guadalupe Igneous Complex) system. Preliminary data suggest that volcanic processes, as might be expected, preserve higher temperatures than plutonic materials (on average, volcanic amphiboles recorded 907±57.3°C while plutonic amphiboles recorded 764±59.7°C). We also find that the average T of a given mineral grain decreases with increased mineral size such that those crystallized below 800°C sometimes reach sizes beyond ~1mm, while those near 900°C appear truncated to ~0.3mm. It is not clear if T is the only control on amphibole crystal growth; however, our results would imply that larger grains not only require more time to grow but require continued undercooling. Significant cooling or heating is also recorded in many volcanically- and plutonically-grown grains, which may reflect transitioning between magmas of different T and composition. Core-to-rim cooling trends (with a common T of drop of 80oC) likely represent mafic-to-felsic magma transitions, whereas core-to-rim heating of similar magnitudes indicate a felsic-mafic transition. Some grains, though, exhibit a constant T (in the range 700-900°C) from core to rim, which perhaps indicates some shielding from magma mixing processes. Amphiboles might thus provide a reliable record of the intensity of magma mingling and mixing experienced by any particular enclave. Interestingly, volcanically-derived amphiboles appear to mostly record cooling towards the rims, while their plutonic counterparts tend to experience heating. It would thus appear that at Lassen, amphiboles are unaffected by later mafic magma recharge, but at the GIC, the plutonic amphiboles are more likely to

  6. Discussion on the petrochemistry characteristics and uranium deposit of Xiazhuang pluton in northern Guangdong province

    International Nuclear Information System (INIS)

    Wu Jiguang

    2011-01-01

    The element characteristic of Indo-Chinese epoch Xiazhuang granite is rich in silicon (SiO 2 =69.13%∼73.39%), alkalis (K 2 O+Na 2 O=7.49%∼8.69%), the ASI=1.01∼1.21 and ratio of w (K 2 O)/w (Na 2 O)>1, Xiazhuang pluton is belong to high potassium calcium-alkaline and aluminous series rocks. It shows that the pluton is typical S-type granite, little part is A-type granite character. Under the extension tectonic setting of lithosphere, the Xiazhuang pluton is partial melting product that making up metamorphic mud and sandstone together. By analysing the tectonic setting,the pluton is belong to post-collision granite that original rock provide abundant of uranium content for granite and the tectonic setting of forming provide the moving channels and occurrence space for uranium deposit. (authors)

  7. U-Pb and Rb-Sr geochronology of the Wedgeport granitoid pluton, southwestern Nova Scotia

    International Nuclear Information System (INIS)

    Cormier, R.F.; Keppie, J.D.; Odom, A.L.

    1988-01-01

    Zircons from biotite monzogranite of the Wedgeport Pluton, intrusive into deformed metasediments of the Cambrian(?) Goldenville formation in the southwestern Meguma Terrane of Nova Scotia, yield concordant U-Pb ages of 316 ± 5 Ma. This is interpreted as the time of intrusion and crystallization. Within the error limits, the 323 ± 0.0056 Rb-Sr analyses of mineral separates of biotite, potassium feldspar, and quartz-plagioclase from several samples yield subparallel, internal isochrons with an average age of 257 ± 8 Ma. Initial ratios of the internal isochrons range from 0.716 to 0.759. A slow-cooling model for the latter data is discarded because the mineral data fall on straight lines. Instead, a reheating event related to plutonism ca 257 Ma ago, which was sufficient to cause local grain-to-grain migration and reequilibration of strontium and rubidium but not large-scale redistribution, is invoked. This reheating is also inferred to be responsible for the hydrothermal alteration and Sn-U mineralization concentrated along the northwestern margin of the pluton. A dextral northeast-southeast shear zone cutting the pluton is also inferred to be ca. 257 Ma old. It may be related to the last stages of westward abduction of the Meguma Terrane. These results provide a clear example of Permo-Carboniferous plutonism in the southwestern Meguma Terrane and suggest a similar interpretation may apply to other anomalously young ages recorded in this area. In light of these results, the Permo-Carboniferous age of the large East Kemptville tin deposit and its location in a dextral shear zone suggest that the association of younger plutonism and shear zones may be a significant factor for economic mineralization. (22 refs., 4 tabs., 3 figs.)

  8. Quantifying the Plutonic to Volcanic Relationship Along the Puna Plateau: Implications for Cordilleran Plateau Evolution

    Science.gov (United States)

    Ward, K. M.; Delph, J. R.; Zandt, G.; Beck, S. L.; Ducea, M. N.

    2016-12-01

    Quantifying well constrained plutonic to volcanic (P:V) ratios is inherently difficult because the tectonic processes that exhume intrusive bodies rarely preserve their extrusive equivalents. Conversely, active magmatic systems that have well-preserved volcanic deposits require sophisticated geophysical or geochemical approaches to estimate their plutonic roots and even when these sophisticated approaches are available, it is not always clear what constitutes a plutonic volume. Further complicating the enigmatic plutonic to volcanic relationship is the highly episodic nature of pluton emplacement where magmatic flare-ups produce several orders of magnitude more magmatism when compared against magmatic lulls. Despite this inherent difficulty, a growing body of independently measured P:V ratios (e.g. seismic tomography, geomorphic modeling, geological mapping/dating, and Zircon age spectra modeling) suggests the contribution of magmatic addition as an uplift mechanism in Cordilleran systems is much larger than is currently accepted. However, it remains unclear if these studies can be generalized to represent type behavior in Cordilleran systems or result from the non-uniform sampling imposed by the ability to measure large P:V ratios in only a few select and potentially anomalous regions of the American Cordillera. To better examine the role of magmatic processes in building Cordilleran high plateaus, we image the crustal seismic shear-wave velocity for an 800 km section (20.5°-28°S) of the active South American Cordillera (Puna Plateau). When placed in the context of existing geological and geophysical datasets, our seismic model reveals numerous mid-crustal low-velocity zones that we unambiguously interpret as the plutonic underpinnings associated with the voluminous silicic volcanics of the Puna Plateau. These larger P:V ratios are consistent with recent thermomechanical modeling of granitic magma intrusions that support the existence of long-lived, partially

  9. U-Pb zircon dating of the Bassies granite (Pyrenees): a syn-tectonic pluton of Westphalian age

    International Nuclear Information System (INIS)

    Paquette, J.L.

    1997-01-01

    A new U-Pb zircon age of 312 ± 2 Ma for the Bassies pluton (Pyrenees) contradicts the previous whole-rock Rb-Sr dating at 276 ± 16 Ma, which was considered as the age of emplacement, therefore regarded as post-tectonic. The new date is in agreement with recent structural studies which suggest a Hercynian syn-tectonic emplacement for the Bassies pluton. These results strengthen the few U-Pb ages already published for the Pyrenean granites and indicate that the Hercynian plutonism of the Pyrenees is essentially Carboniferous in age and syn-tectonic. (authors)

  10. Reconnaissance geochemical exploration of plutons of syenite and shonkinite, southern Asir, Kingdom of Saudi Arabia

    Science.gov (United States)

    Overstreet, W.C.; Assegaff, A.B.; Hussain, M.A.; Naqvi, M.I.; Selner, G.I.; Matzko, J.J.

    1985-01-01

    Reconnaissance geochemical exploration for rare metals in plutons of syenite and shonkinite disclosed generally less than 20 ppm Nb in rocks, wadi sediments, and concentrates. The sparsity of Nb is accompanied by low values for La, Sn, W, Y, and Zr and relatively high but insignificant values for Be and Mo. Base and precious metals are either below their respective limits of determination in the various sample media or are present at background levels commensurate with average crustal abundances in felsic rocks. Pegmatite dikes associated with the syenite plutons are rare and lack vermiculite. The present investigation disclosed no possible ore deposits in the plutons covered by the field work.

  11. Potassium, rubidium, strontium, thorium and uranium of the cretaceous plutons in the Kitakami Mountains

    International Nuclear Information System (INIS)

    Katada, Masato; Kanaya, Hiroshi.

    1980-01-01

    The Cretaceous plutonic rocks in the Kitakami Mountains, 110 to 125 Ma in K-Ar ages on biotite, etc., can be petrographically and petrochemically classified into seven groups; Zones I, II, III, IV, V, VIa and VIb. Some of them are arranged in the east to west direction. The plutons of Zones II and V are mainly felsic. They are of comparatively big dimension reaching 600 square kilometers. The plutons of other zones are composed of felsic and mafic rocks. They occur on a small scale. The plutonic rocks have been chemically analysed for CaO, K 2 O, Rb, Sr, Th, and U. In the mafic rocks of CaO > 8.2 percent, the contents of CaO and Na 2 O are nearly equal in each zone throughout the Kitakami Mountains. K 2 O, Rb, Th, and U contents, however, generally increase westward. Sr also does. In the westernmost zone, Zone IV, the mafic rocks resemble shoshonite concerning their major elements. Some of the plutons, especially in Zones II and V, are zonally divided into marginal and central facies. The two facies are different in their K 2 O, Rb, etc. contents, and K/Rb and other ratios. In the marginal facies K 2 O and Rb are richer and K/Rb is smaller than those in the central facies. This fact suggests the different processes of magmatic differentiation in the two facies. Intrusion of the marginal facies have successively followed by that of the central facies. (author)

  12. Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma

    Science.gov (United States)

    Wiebe, R. A.; Collins, W. J.

    1998-09-01

    Many granitic plutons contain sheet-like masses of dioritic to gabbroic rocks or swarms of mafic to intermediate enclaves which represent the input of higher temperature, more mafic magma during crystallization of the granitic plutons. Small-scale structures associated with these bodies (e.g. load-cast and compaction features, silicic pipes extending from granitic layers into adjacent gabbroic sheets) indicate that the sheets and enclave swarms were deposited on a floor of the magma chamber (on granitic crystal mush and beneath crystal-poor magma) while the mafic magma was incompletely crystallized. These structures indicate 'way up', typically toward the interior of the intrusions, and appear to indicate that packages of mafic sheets and enclave concentrations in these plutons are a record of sequential deposition. Hence, these plutons preserve a stratigraphic history of events involved in the construction (filling, replenishment) and crystallization of the magma chamber. The distinctive features of these depositional portions of plutons allow them to be distinguished from sheeted intrusions, which usually preserve mutual intrusive contacts and 'dike-sill' relations of different magma types. The considerable thickness of material that can be interpreted as depositional, and the evidence for replenishment, suggest that magma chamber volumes at any one time were probably much less than the final size of the pluton. Thus, magma chambers may be constructed much more slowly than presently envisaged. The present steep attitudes of these structures in many plutons may have developed gradually as the floor of the chamber (along with the underlying solidified granite and country rock) sank during continuing episodes of magma chamber replenishment. These internal magmatic structures support recent suggestions that the room problem for granites could be largely accommodated by downward movement of country rock beneath the magma chamber.

  13. Petrology and Geochemistry of Neoproterozoic Arc Plutons Beneath the Atlantic Coastal Plain, SRS, SC

    Energy Technology Data Exchange (ETDEWEB)

    Maryak, M.

    1998-10-21

    In this report is presented first a brief review of the regional geologic setting of the Savannah River Site, descriptions of the plutonic rock units sampled here, whole rock geochemical data on the plutonic igneous rocks, and finally, a discussion of how the crystalline basement rocks of the Savannah River Site formed and how they may correlate with other terranes exposed in the Piedmont of the Carolinas, Georgia, and Virginia.

  14. Syn-extensional plutonism and peak metamorphism in the albion-raft river-grouse creek metamorphic core complex

    Science.gov (United States)

    Strickland, A.; Miller, E.L.; Wooden, J.L.; Kozdon, R.; Valley, J.W.

    2011-01-01

    The Cassia plutonic complex (CPC) is a group of variably deformed, Oligocene granitic plutons exposed in the lower plate of the Albion-Raft River- Grouse Creek (ARG) metamorphic core complex of Idaho and Utah. The plutons range from granodiorite to garnet-bearing, leucogranite, and during intrusion, sillimanite- grade peak metamorphism and ductile attenuation occurred in the country rocks and normal-sense, amphibolite-grade deformation took place along the Middle Mountain shear zone. U-Pb zircon geochronology from three variably deformed plutons exposed in the lower plate of the ARG metamorphic core complex revealed that each zircon is comprised of inherited cores (dominantly late Archean) and Oligocene igneous overgrowths. Within each pluton, a spread of concordant ages from the Oligocene zircon overgrowths is interpreted as zircon recycling within a long-lived magmatic system. The plutons of the CPC have very low negative whole rock ??Nd values of -26 to -35, and initial Sr values of 0.714 to 0.718, consistent with an ancient, crustal source. Oxygen isotope ratios of the Oligocene zircon overgrowths from the CPC have an average ??18O value of 5.40 ?? 0.63 permil (2SD, n = 65) with a slight trend towards higher ??18O values through time. The ??18O values of the inherited cores of the zircons are more variable at 5.93 ?? 1.51 permil (2SD, n = 29). Therefore, we interpret the plutons of the CPC as derived, at least in part, from melting Archean crust based on the isotope geochemistry. In situ partial melting of the exposed Archean basement that was intruded by the Oligocene plutons of the CPC is excluded as the source for the CPC based on field relationships, age and geochemistry. Correlations between Ti and Hf concentrations in zircons from the CPC suggest that the magmatic system may have become hotter (higher Ti concentration in zircon) and less evolved (lower Hf in zircon concentration) through time. Therefore, the CPC represents prolonged or episodic magmatism

  15. Searching pristine source of two gabbric plutons outcroping in Central Sierras Pampeanas Range, Argentina

    International Nuclear Information System (INIS)

    Daziano, C.; Ayala, R.

    2010-01-01

    This work is about the study of two gabbric plutons outcrop ing throughout Central Sierras Pampeanas range (Cordoba province, Argentina). San Lorenzo hill gabbric plutons is in the Upper proterozoic age whereas Cañada del Puerto belongs to the Early proterozoic.They are stock-type igneous bodies and they are intrusive s in an Upper Precambrian crystalline basement; it is mainly composed by gneisses, migmatites, schistes, marbles, amphibolite s, tact's, serpentinites and related rocks

  16. Contribution to the radioactivity of Um Ara granitic pluton, south-eastern desert, Egypt

    International Nuclear Information System (INIS)

    El Reedy, M.W.; Kamel, A.F.; Mansour, S.E.I.

    1988-01-01

    Um Ara area lies in the southern part of the eastern desert between latitudes 22 0 30' and 22 0 41'N and longitudes 33 0 46' and 33 0 54'E. Several types of granitic varieties ranging from high silica granite (SiO 2 >75%) to low silica granite (SiO 2 68-70%) occur in Um Ara granitic pluton. Surface samples were collected from the high anomalous locations in the pluton together with trenches samples (about 50cm in depth). The U content in the surface samples ranges from 69 to 7 ppm while in trenches samples, it ranges from 38 to 759 ppm. The thorium content on the other hand ranges from 34 to 402 ppm in surface samples and from 158 to 316 ppm in trenches samples. Some samples show no Th contents. The Th/U ratios ranges from 0.065 to 3.137 in surface samples and from 0.386 to 2.590 in trenches samples. An enrichment of U content is the main feature characterising this granitic pluton, it is mainly connected with the fractured zones. Uranium is mostly present as secondary U mineralization accompanied by Fe, Mn and to some extent by carbonate materials. A hydrothermal origin could be considered for this U mineralization in the pluton. Primary U mineralization (pitchblende) together with secondary mineralization was observed in some locations in the area disseminated in the granite, this reflects the syngenetic origin of this granitic type

  17. Map showing the distribution and characteristics of plutonic rocks in the Tonopah 1 degree by 2 degrees Quadrangle, central Nevada

    Science.gov (United States)

    John, D.A.

    1987-01-01

    Plutonic rocks, mostly granite and granodiorite, are widely distributed in the west two-thirds of the Tonopah 1 degree by 2 degree quadrangle, Nevada. These rocks were systematically studied as part of the Tonopah CUSMAP project. Studies included field mapping, petrographic and modal analyses, geochemical studies of both fresh and altered plutonic rocks and altered wallrocks, and K-Ar and Rb-Sr radiometric dating. Data collected during this study were combined with previously published data to produce a 1:250,000-scale map of the Tonopah quadrangle showing the distribution of individual plutons and an accompanying table summarizing composition, texture, age, and any noted hydrothermal alteration and mineralization effects for each pluton.

  18. The Fontaine Pluton : an early Ross Orogeny calc-alkaline gabbro from southern Victoria Land, Antarctica

    International Nuclear Information System (INIS)

    Cottle, J.M.; Cooper, A.F.

    2006-01-01

    The Fontaine Pluton is a previously undescribed mafic intrusion outcropping at Fontaine Bluff on the south side of the Carlyon Glacier in southern Victoria Land, Antarctica. It is the southern-most member of a laterally extensive mafic suite emplaced at mid-crustal depths during the initial stages of the Ross Orogeny. The pluton comprises recrystallised hornblende-biotite gabbro, which in places shows well-defined centimetre to metre scale primary igneous layering. Recrystallised ultramafic enclaves composed of amphibole-chlorite-talc are inferred to be remnants of a chemically and mineralogically distinct cumulate fraction. The intrusion has a 87 Sr/ 86 Sr (i) ratio of 0.70679 and a 143 Nd/ 144 Nd (i) ratio of 0.51187 (εNd (i) = -1.2). This, coupled with other geochemical data, implies that the Fontaine Pluton was formed by c. 15% partial melting of a depleted mantle source that was subsequently contaminated by continental crust. Preliminary U-Pb geochronology on zircon suggests an emplacement age for the pluton of 546 ± 10 Ma. These new data indicate that Ross Orogeny magmatism in this area of southern Victoria Land was initiated in the late Neoproterozoic along a subducting plate margin. (author). 55 refs., 10 figs., 3 tabs

  19. Death Valley turtlebacks: Mesozoic contractional structures overprinted by Cenozoic extension and metamorphism beneath syn-extensional plutons

    Science.gov (United States)

    Pavlis, T. L.; Miller, M.; Serpa, L.

    2008-07-01

    The term turtleback was first coined to describe the curvilinear fault surfaces that produced a distinctive geomorphic form in the Black Mountains east of Death Valley, and although it was decades before their full significance was appreciated, they remain one of the most distinctive features of the extensional structure of the Death Valley region. Historically the interpretation of the features has varied markedly, and misconceptions about their character continue to abound, including descriptions in popular field guides for the area. It the 1990's, however, the full history of the systems began to be apparent from several key data: 1) the dating of the plutonic assemblage associated with the turtlebacks demonstrated that late Miocene, syn-extensional plutonism was fundamental to their formation; 2) the plutonic assemblage forms an intrusive sheet structurally above the turtlebacks, indicating a tie between much of the high grade metamorphism and Cenozoic plutonism; 3) a modern analog for the syn-extensional plutonism in the Black Mountains was recognized beneath Death Valley with the imaging of a mid-crustal magma body; 4) the Neogene structural history was worked out in the turtlebacks showing that folding of early-formed shear zones formed the turtleback anticlinoria but overprinting by brittle faults produced the final form as they cut obliquely across the older structure; and 5) the pre-extensional structural history was clarified, demonstrating that Mesozoic basement-involved thrust systems are present within the turtlebacks, but have been overprinted by the extensional system. An unresolved issue is the significance of Eocene U-Pb dates for pegmatites within the region, but presumably these relate somehow to the pre-extensional history. Miller and Pavlis (2005; E. Sci. Rev.) reviewed many features of the turtlebacks, and our working model for the region is that the turtlebacks originated as mid-crustal ductile-thrust systems within the Cordilleran fold

  20. Compositional Evolution of Pyrochlore-Group Minerals in Carbonatites of the Belaya Zima Pluton, Eastern Sayan

    Science.gov (United States)

    Khromova, E. A.; Doroshkevich, A. G.; Sharygin, V. V.; Izbrodin, L. A.

    2017-12-01

    Pyrochlore-group minerals are the main concentrators of niobium in carbonatites of the Belaya Zima alkaline pluton. Fluorcalciopyrochlore, kenopyrochlore and hydropyrochlore were identified in chemical composition. Their main characteristics are given: compositional variation, morphology, and zoning. During evolution from early calcite to late ankerite carbonatites, the UO2, TiO2, REE, and Y contents gradually increased. All carbonatite types are suggested to contain initial fluorcalciopyrochlore. However, in calcite-dolomite and ankerite carbonatites, it is partially or completely hydrated due to hydrothermal processes at the late stage of the pluton. This hydration resulted in the appearance of kenopyrochlore and hydropyrochlore due to removal of Ca, Na and F, and input of Ba, H2O, K, Si, Fe, and probably U and REE. At the last stage of the pluton, this hydrated pyrochlore was replaced by Fe-bearing columbite.

  1. Investigation of the mineral potential of the Clipper Gap, Lone Mountain-Weepah, and Pipe Spring plutons, Nevada

    International Nuclear Information System (INIS)

    Tingley, J.V.; Maldonado, F.

    1983-01-01

    The Clipper Gap pluton, composed mostly of quartz monzonite with minor granite, granodiorite, and crosscutting alaskite dikes, intrudes Paleozoic western facies strata. A narrow zone of contact metamorphism is present at the intrusive-sediment contact. No mineral production has been recorded from Clipper Gap, but quartz veins containing gold-silver-copper mineral occurrences have been prospected there from the late 1800's to the present. Areas of the Lone Mountain-Weepah plutons that were studied are located in Esmeralda County about 14 km west of Tonopah, Nevada. At Lone Mountain, a Cretaceous intrusive cuts folded Precambrian and Cambrian sediments. Lead-zinc ores have been mined from small replacement ore bodies in the Alpine district, west of Lone Mountain. Copper and molybdenum occurrences have been found along the east flank of Lone Mountain, and altered areas were noted in intrusive outcrops around the south end of Lone Mountain. Mineral occurrences are widespread and varied with mining activity dating back to the 1860's. The Pipe Spring pluton study area is flanked by two important mining districts, Manhattan to the north and Belmont to the northeast. Mining activity at Belmont dates from 1865. Activity at Manhattan was mainly between 1907 and 1947, but the district is active at the present time (1979). Four smaller mining areas, Monarch, Spanish Springs, Baxter Spring, and Willow Springs, are within the general boundary of the area. The Pipe Spring pluton study area contains numerous prospects along the northern contact zone of the pluton. Tungsten-bearing veins occur within the pluton near Spanish Springs, with potential for gold-tungsten placer in the Ralston Valley. Nickel and associated metals occur at Willow Spring and Monarch Ranch, where prospects may be associated with the margin of the Big Ten Peak Caldera

  2. Paleomagnetic and stable isotope study of the pluton at Rio Hondo near Questa, New Mexico: Implications for CRM related to hydrothermal alteration

    Energy Technology Data Exchange (ETDEWEB)

    Hagstrum, J T; Johnson, C M

    1986-06-01

    Paleomagnetic and rock magnetic data combined with stable isotope data from the middle Tertiary pluton along the Rio Hondo in northern New Mexico suggest that its magnetic remanence has both thermal (TRM) and high-temperature chemical (CRM) components. Oxygen isotope temperatures indicate that magnetite associated with the more rapidly cooled higher levels of the pluton, and with mafic inclusions and cogenetic rhyolitic dikes sampled at lower levels of exposure, ceased subsolidus recrystallization and isotopic exchange above its Curie temperature (580/sup 0/C) in the presence of a magmatic fluid. Continued cooling imparted a TRM to these portions of the pluton. The more slowly cooled granodiorite at lower levels has quartz-magnetite isotopic temperatures that are below the Curie temperature of magnetite implying that its magnetization is high-temperature CRM. Sub-Curie isotopic temperatures for other granitic plutons in the western U.S.A. suggest that CRM may be commonly derived from subsolidus interactions between magnetite and magmatic fluids in plutonic rocks. A meteoric-hydrothermal system generated by the cooling Rio Hondo pluton, and not by younger adjacent intrusions, resulted in limited alteration along zones of high permeability near the southern margin of the Rio Hondo pluton, and in more prevasive alteration of the pluton to the north. The meteoric-hydrothermal alteration occurred at relatively high temperatures (>350/sup 0/C) and, with the exception of local chloritization, caused little visible alteration of the rocks. The isotopic ratios indicate that little of the magnetite could have grown from or exchanged with a meteoric-hydrothermal fluid.

  3. Characterizing and modelling the radionuclide transport properties of fracture zones in plutonic rocks of the Canadian Shield

    International Nuclear Information System (INIS)

    Davison, C.C.; Kozak, E.T.; Frost, L.H.; Everitt, R.A.; Brown, A.; Gascoyne, M.; Scheier, N.W.

    1999-01-01

    Plutonic rocks of the Canadian Shield were investigated as a potential host medium for nuclear fuel waste disposal of used CANDU nuclear fuel. Field investigations at several geologic research areas on the Shield have shown that major fracture zones are the dominant pathways for the large scale movement of groundwater and solutes through plutonic rock bodies. Because of this, a significant amount of the geoscience work has focused on methods to identify, characterize and model the radionuclide transport properties of major fracture zones in the fractured plutonic rocks of the Shield. In order to quantify the transport properties of such fracture zones a series of, groundwater tracer tests were performed over a period of several years in several major, low dipping fracture zones. Sixteen tracer tests were performed using dipole recirculation methods to evaluate transport over distance scales ranging from 17 m to 700 m. It was concluded that only tracer tests can provide useful estimates of the effective porosity and dispersivity characteristics of these large fracture zones in plutonic rocks of the Canadian Shield. (author)

  4. Geochemical constraints on the link between volcanism and plutonism at the Yunshan caldera complex, SE China

    Science.gov (United States)

    Yan, Lili; He, Zhenyu; Beier, Christoph; Klemd, Reiner

    2018-01-01

    The Yunshan caldera complex is part of a larger scale, ca. 2000-km-long volcanic-plutonic complex belt in the coastal region of SE China. The volcanic rocks in the caldera complex are characterized by high-silica peraluminous and peralkaline rhyolites associated with an intracaldera porphyritic quartz monzonite pluton. In this study, we present zircon U-Pb, Hf and stable O isotopes along with geochemical data of both volcanic and plutonic rocks to evaluate the potential petrogenetic link between volcanism and plutonism in the Yunshan caldera complex. SHRIMP zircon U-Pb geochronology of both volcanic and plutonic rocks yields almost identical ages ranging from 95.6 to 93.1 Ma. The peraluminous and peralkaline rhyolites show negative anomalies of Sr, P, Ti and Ba and to a lesser extent negative Nb and Ta anomalies, along with positive Rb anomalies and `seagull-like' rare earth element (REE) patterns with negative Eu anomalies and low (La/Yb)N ratios. The intracaldera porphyritic quartz monzonite displays minor negative Rb, Nb, Ta, Sr, P and Ti anomalies and a positive Ba anomaly with REE patterns characterized by relatively high (La/Yb)N ratios and lack significant Eu anomalies. The peraluminous and peralkaline rhyolites and the porphyritic quartz monzonite exhibit consistent ɛ Nd( t) of - 3.7 to - 2.2 and display zircon ɛ Hf( t) values of - 2.1 to 3.7. They further have similar, mantle-like, zircon oxygen isotopic compositions (δ18OVSMOW mainly = 4.63 to 5.76‰). We interpret these observations to be in agreement with a crystal mush model in which the parental magma of the volcanic and plutonic rocks of the Yunshan caldera complex was likely produced by interaction of asthenosphere melts with subduction-influenced enriched mantle wedge. The peralkaline rhyolites are interpreted to represent the most differentiated magma that has subsequently experienced significant fluid-melt interactions, whereas the porphyritic quartz monzonite may be representative of the

  5. Erupted frothy xenoliths may explain lack of country-rock fragments in plutons

    Science.gov (United States)

    Burchardt, Steffi; Troll, Valentin R.; Schmeling, Harro; Koyi, Hemin; Blythe, Lara

    2016-01-01

    Magmatic stoping is discussed to be a main mechanism of magma emplacement. As a consequence of stoping, abundant country-rock fragments should occur within, and at the bottom of, magma reservoirs as “xenolith graveyards”, or become assimilated. However, the common absence of sufficient amounts of both xenoliths and crustal contamination have led to intense controversy about the efficiency of stoping. Here, we present new evidence that may explain the absence of abundant country-rock fragments in plutons. We report on vesiculated crustal xenoliths in volcanic rocks that experienced devolatilisation during heating and partial melting when entrained in magma. We hypothesise that the consequential inflation and density decrease of the xenoliths allowed them to rise and become erupted instead of being preserved in the plutonic record. Our thermomechanical simulations of this process demonstrate that early-stage xenolith sinking can be followed by the rise of a heated, partially-molten xenolith towards the top of the reservoir. There, remnants may disintegrate and mix with resident magma or erupt. Shallow-crustal plutons emplaced into hydrous country rocks may therefore not necessarily contain evidence of the true amount of magmatic stoping during their emplacement. Further studies are needed to quantify the importance of frothy xenolith in removing stoped material. PMID:27804996

  6. Geographically diverse Australian isolates of Melissococcus pluton exhibit minimal genotypic diversity by restriction endonuclease analysis.

    Science.gov (United States)

    Djordjevic, S P; Smith, L A; Forbes, W A; Hornitzky, M A

    1999-04-15

    Melissococcus pluton, the causative agent of European foulbrood is an economically significant disease of honey bees (Apis mellifera) across most regions of the world and is prevalent throughout most states of Australia. 49 Isolates of M. pluton recovered from diseased colonies or honey samples in New South Wales, Queensland, South Australia, Tasmania and Victoria were compared using SDS-PAGE, Western immunoblotting and restriction endonuclease analyses. DNA profiles of all 49 geographically diverse isolates showed remarkably similar AluI profiles although four isolates (one each from Queensland, South Australia, New South Wales and Victoria) displayed minor profile variations compared to AluI patterns of all other isolates. DNA from a subset of the 49 Australian and three isolates from the United Kingdom were digested separately with the restriction endonucleases CfoI, RsaI and DraI. Restriction endonuclease fragment patterns generated using these enzymes were also similar although minor variations were noted. SDS-PAGE of whole cell proteins from 13 of the 49 isolates from different states of Australia, including the four isolates which displayed minor profile variations (AluI) produced indistinguishable patterns. Major immunoreactive proteins of approximate molecular masses of 21, 24, 28, 30, 36, 40, 44, 56, 60, 71, 79 and 95 kDa were observed in immunoblots of whole cell lysates of 22 of the 49 isolates and reacted with rabbit hyperimmune antibodies raised against M. pluton whole cells. Neither SDS-PAGE or immunoblotting was capable of distinguishing differences between geographically diverse isolates of M. pluton. Collectively these data confirm that Australian isolates of M. pluton are genetically homogeneous and that this species may be clonal. Plasmid DNA was not detected in whole cell DNA profiles of any isolate resolved using agarose gel electrophoresis.

  7. Distinctly different parental magmas for plutons and lavas in the central Aleutian arc

    Science.gov (United States)

    Cai, Y.; Rioux, M. E.; Kelemen, P. B.; Goldstein, S. L.; Bolge, L.; Kylander-Clark, A. R.

    2014-12-01

    While it is generally agreed that continental crust is generated by arc magmatism, average arc lavas are basaltic while the bulk continental crust is andesitic, and this has led to many models for secondary reprocessing of the arc crust in order to form continental crust. We report new data on calc-alkaline plutons in the central Aleutians showing that they have distinctly different sources compared to Holocene tholeiitic lavas. Therefore the lavas are not representative of the net magmatic transfer from the mantle into the arc crust. Eocene to Miocene (9-39 Ma) intermediate to felsic plutonic rocks from the central Aleutian arc show higher SiO2 at a given Mg#, higher ɛNd- and ɛHf-values, and lower Pb isotope ratios than Holocene volcanic rocks from the same region. Instead, the plutonic rocks resemble volcanics from the western Aleutians isotopically, and have chemical compositions similar to bulk continental crust. These data could reflect temporal variation of Aleutian magma source compositions, from Eocene-Miocene "isotopically depleted" and predominantly calc-alkaline to Holocene "isotopically enriched" and predominantly tholeiitic. Alternatively, they may reflect different transport and emplacement processes for the magmas that form plutons and lavas: calc-alkaline magmas with higher Si content and high viscosity may preferentially form plutons, perhaps after extensive mid-crustal degassing of initially high water contents. The latter case implies that the upper and middle arc crust is more like the calc-alkaline bulk composition of the continental crust than the lavas alone. Crustal reprocessing mechanisms that preserve upper and middle arc crust, while removing lower arc crust, can account for the genesis and evolution of continental crust. Since gabbroic lower arc crust extends from ca 20-40 km depth, and is density stable over most of this depth range, "delamination" of dense lithologies [1] may not be sufficient to accomplish this. Alternatively

  8. The Jeffers Brook diorite-granodiorite pluton: style of emplacement and role of volatiles at various crustal levels in Avalonian appinites, Canadian Appalachians

    Science.gov (United States)

    Pe-Piper, Georgia; Piper, David J. W.

    2018-04-01

    Small appinite plutons ca. 610 Ma outcrop in the peri-Gondwanan Avalon terrane of northern Nova Scotia, with different structural levels exposed. Field mapping shows that the Jeffers Brook pluton is a laccolith emplaced along an upper crustal thrust zone, likely in a dilational jog in a regional dextral strike-slip system. The oldest rocks are probably mafic sills, which heated the area facilitating emplacement of intermediate magmas. Cross-cutting relationships show that both mafic and intermediate magmas were supplied throughout the history of pluton emplacement. The modal composition, mineral chemistry, and bulk chemistry of gabbro, diorite, tonalite, granodiorite, and granite have been studied in the main plutonic phases, dykes, and sills, and mafic microgranular enclaves. As with the type appinites in the Scottish Caledonides, the pluton shows evidence of high water content: the dominance of hornblende, locally within pegmatitic texture; vesicles and irregular felsic patches in enclaves; and late aplite dykes. Analyzed mafic microgranular enclaves are geochemically similar to larger diorite bodies in the pluton. Tonalite-granodiorite is distinct from the diorite in trace-element geochemistry and radiogenic isotopes. Elsewhere to the east, similar rocks of the same age form vertically sheeted complexes in major shear zones; hornblende chemistry shows that they were emplaced at a deeper upper crustal level. This implies that little of the observed geochemical variability in the Jeffers Brook pluton was developed within the pluton. The general requirements to form appinites are proposed to be small magma volumes of subduction-related magmas that reach the upper crust because of continual heating by mafic magmas moving through strike-slip fault pathways and trapping of aqueous fluids rather than venting through volcanic activity.

  9. The Precambrian/Lower Cambrian pluton from Vila Nova (Central Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Reis, A. I. M.; Silva, M. M. V. G.; Antunes, I. M. H. R.

    2010-07-01

    The Vila Nova pluton is a small, Pre-Variscan granitic body that intruded rocks of the Central Iberian Zone near the contact with the Ossa Morena Zone and is affected by several shear zones and faults. Its contact metamorphic aureole is constituted by micaschist with porphyroblasts in the outer zone and hornfels in the inner zone. Small mainstreamed xenoliths are dispersed all over the body. The pluton has a great mineralogical heterogeneity with pronounced variations in muscovite/biotite and plagioclase/ microcline contents and is classified as granite, granodiorite or tonalite. It is a leuco granite, highly peraluminous (A/CN K = 1.31 - 1.64), magnesian and calc-alkaline to alkaline-calcic. The variation diagrams show curvilinear trends with silica. Eu/Eu* = 0.47 - 0.77 and there is a slight enrichment in LREE relative to HREE. The normalized diagrams indicated dominantly crustal granite, related to subduction. U-Pb isotopic data of zircon and monazite gives 540-542 Ma age. (Author) 19 refs.

  10. A paleomagnetic and stable isotope study of the pluton at Rio Hondo near Questa, New Mexico: Implications for CRM related to hydrothermal alteration

    International Nuclear Information System (INIS)

    Hagstrum, J.T.; Johnson, C.M.

    1986-01-01

    Paleomagnetic and rock magnetic data combined with stable isotope data from the middle Tertiary pluton along the Rio Hondo in northern New Mexico suggest that its magnetic remanence has both thermal (TRM) and high-temperature chemical (CRM) components. Oxygen isotope temperatures indicate that magnetite associated with the more rapidly cooled higher levels of the pluton, and with mafic inclusions and cogenetic rhyolitic dikes sampled at lower levels of exposure, ceased subsolidus recrystallization and isotopic exchange above its Curie temperature (580 0 C) in the presence of a magmatic fluid. Continued cooling imparted a TRM to these portions of the pluton. The more slowly cooled granodiorite at lower levels has quartz-magnetite isotopic temperatures that are below the Curie temperature of magnetite implying that its magnetization is high-temperature CRM. Sub-Curie isotopic temperatures for other granitic plutons in the western U.S.A. suggest that CRM may be commonly derived from subsolidus interactions between magnetite and magmatic fluids in plutonic rocks. A meteoric-hydrothermal system generated by the cooling Rio Hondo pluton, and not by younger adjacent intrusions, resulted in limited alteration along zones of high permeability near the southern margin of the Rio Hondo pluton, and in more prevasive alteration of the pluton to the north. The meteoric-hydrothermal alteration occurred at relatively high temperatures (>350 0 C) and, with the exception of local chloritization, caused little visible alteration of the rocks. The isotopic ratios indicate that little of the magnetite could have grown from or exchanged with a meteoric-hydrothermal fluid. (orig.)

  11. Determination of emplacement mechanism of Zafarghand granitoid Pluton (Southeast of Ardestan by using anisotropy of magnetic susceptibility method (AMS

    Directory of Open Access Journals (Sweden)

    Mahmoud Sadeghian

    2017-03-01

    Full Text Available Zafarghand granitoid pluton with compositional range from gabbro to granite and early to middle Miocene age cropped out about 35 km of SE Ardestan. This pluton intrudedthe Eocene volcanic and volcanosedimentary rocks of the Urumieh - Dokhtar structuralzone. In this research, for the first time, the emplacement mechanism of Zafarghandgranitoidic pluton method has been investigated using of anisotropy of magneticsusceptibility (AMS. Based on field observations, as well as petrography andinterpretations of magnetic parameters, Zafarghand pluton divided into 5 domains (1A,1B, 2, 3, 4 and 5. Domain 1, in turn, is divided into 1A and 1B. Domains 2 and 4 arelithologically, gabbro to quartzdiorite and have been emplaced first. They have playedas feeder zones. Domains 1A, 1B, 3, and 5 are dominantly granodioritic to graniticcomposition and have been emplaced as a big and low dip magmatic flow (or possibly as a sill. The occurrence of gabbro to quartzdiorite as well as grandiorite, granite andtonalite in the margin borders of the body, are all indication of magma mixing. It isshould be noted that during emplacement of the pluton studied, fractionalcrystallization, magma mixing and crustal contamination contributed to its generationand the evolution as well.

  12. Use of olivine and plagioclase saturation surfaces for the petrogenetic modeling of recrystallized basic plutonic systems

    Science.gov (United States)

    Hanson, G. N.

    1983-01-01

    During petrogenetic studies of basic plutonic rocks, there are at least three major questions to be considered: (1) what were the relative proportions of cumulate crystals and intercumulus melt in a given sample? (2) what is the composition and variation in composition of the melts within the pluton? and (3) what is the original composition of the liquids, their source and evolution prior to the time of emplacement? Use of both saturation surfaces can place strong limits on the compositions of potential cumulate phases and intercumulus melts. Consideration of appropriate trace elements can indicate whether a sample is an orthocumulate, adcumulate or mesocumulate. Thus, when trace element and petrographic data are considered together with the saturation surfaces, it should be possible to begin to answer the three major questions given above, even for strongly recrystallized basic plutons.

  13. Transformation of juvenile Izu-Bonin-Mariana oceanic arc into mature continental crust: An example from the Neogene Izu collision zone granitoid plutons, Central Japan

    Science.gov (United States)

    Saito, Satoshi; Tani, Kenichiro

    2017-04-01

    Granitic rocks (sensulato) are major constituents of upper continental crust. Recent reviews reveal that the average composition of Phanerozoic upper continental crust is granodioritic. Although oceanic arcs are regarded as a site producing continental crust material in an oceanic setting, intermediate to felsic igneous rocks occurring in modern oceanic arcs are dominantly tonalitic to trondhjemitic in composition and have lower incompatible element contents than the average upper continental crust. Therefore, juvenile oceanic arcs require additional processes in order to get transformed into mature continental crust enriched in incompatible elements. Neogene granitoid plutons are widely exposed in the Izu Collision Zone in central Japan, where the northern end of the Izu-Bonin-Mariana (IBM) arc (juvenile oceanic arc) has been colliding with the Honshu arc (mature island arc) since Middle Miocene. The plutons in this area are composed of various types of granitoids ranging from tonalite to trondhjemite, granodiorite, monzogranite and granite. Three main granitoid plutons are distributed in this area: Tanzawa plutonic complex, Kofu granitic complex, and Kaikomagatake granitoid pluton. Tanzawa plutonic complex is dominantly composed of tonalite and trondhjemite and characterized by low concentration of incompatible elements and shows geochemical similarity with modern juvenile oceanic arcs. In contrast, Kofu granitic complex and Kaikomagatake granitoid pluton consists mainly of granodiorite, monzogranite and granite and their incompatible element abundances are comparable to the average upper continental crust. Previous petrogenetic studies on these plutons suggested that (1) the Tanzawa plutonic complex formed by lower crustal anatexis of juvenile basaltic rocks occurring in the IBM arc, (2) the Kofu granitic complex formed by anatexis of 'hybrid lower crust' comprising of both basaltic rocks of the IBM arc and metasedimentary rocks of the Honshu arc, and (3) the

  14. An integrated geological, geochemical, and geophysical investigation of uranium metallogenesis in selected granitic plutons of the Miramichi Anticlinorium, New Brunswick

    International Nuclear Information System (INIS)

    Hassan, H.H.; McAllister, A.L.

    1992-01-01

    Integrated geological, geochemical, and geophysical data for the post-tectonic granitic rocks of the North Pole, Burnthill, Dungarvon, Trout Brook, and Rocky Brook plutons and surrounding areas were examined to assess their potential for uranium mineralization. Geological, geochemical, and geophysical criteria that are thought to be useful guides for uranium exploration were also established for the host granites. The granitic plutons were emplaced discordantly, late in the tectonomagmatic sequence and at shallow depths within the metasedimentary rocks of the Miramichi Anticlinorium. Geochemically, the host granites are highly evolved (Si0 2 > 75 wt. %), peraluminous and have strong similarities with ilmenite-series 'S-type' and 'A-type' granitoids. Uranium occurrences are spatially and perhaps temporally associated with late-phase differentiates of the plutons where elevated levels of other lithophile elements such as Sn, W, Mo, and F were also detected. Geophysically, the granitic plutons are associated with distinctively high aeroradiometric eU, eTh, and K anomalies that coincide with strong negative Bouguer anomalies and low magnetic values. Conceptual models involving magmatic and hydrothermal processes have been adopted to explain the concentration of uranium and associated metals in the granitic plutons

  15. Death Valley turtlebacks: Mesozoic contractional structures overprinted by Cenozoic extension and metamorphism beneath syn-extensional plutons

    Energy Technology Data Exchange (ETDEWEB)

    Pavlis, T L; Serpa, L [Department of Geological Sciences, University of Texas at El Paso, El Paso, TX 7996 (United States); Miller, M [Department of Geological Sciences, University of Oregon, Eugene, OR 97403 (United States)], E-mail: tlpavlis@utep.edu

    2008-07-01

    The term turtleback was first coined to describe the curvilinear fault surfaces that produced a distinctive geomorphic form in the Black Mountains east of Death Valley, and although it was decades before their full significance was appreciated, they remain one of the most distinctive features of the extensional structure of the Death Valley region. Historically the interpretation of the features has varied markedly, and misconceptions about their character continue to abound, including descriptions in popular field guides for the area. It the 1990's, however, the full history of the systems began to be apparent from several key data: 1) the dating of the plutonic assemblage associated with the turtlebacks demonstrated that late Miocene, syn-extensional plutonism was fundamental to their formation; 2) the plutonic assemblage forms an intrusive sheet structurally above the turtlebacks, indicating a tie between much of the high grade metamorphism and Cenozoic plutonism; 3) a modern analog for the syn-extensional plutonism in the Black Mountains was recognized beneath Death Valley with the imaging of a mid-crustal magma body; 4) the Neogene structural history was worked out in the turtlebacks showing that folding of early-formed shear zones formed the turtleback anticlinoria but overprinting by brittle faults produced the final form as they cut obliquely across the older structure; and 5) the pre-extensional structural history was clarified, demonstrating that Mesozoic basement-involved thrust systems are present within the turtlebacks, but have been overprinted by the extensional system. An unresolved issue is the significance of Eocene U-Pb dates for pegmatites within the region, but presumably these relate somehow to the pre-extensional history. Miller and Pavlis (2005; E. Sci. Rev.) reviewed many features of the turtlebacks, and our working model for the region is that the turtlebacks originated as mid-crustal ductile-thrust systems within the Cordilleran fold

  16. Death Valley turtlebacks: Mesozoic contractional structures overprinted by Cenozoic extension and metamorphism beneath syn-extensional plutons

    International Nuclear Information System (INIS)

    Pavlis, T L; Serpa, L; Miller, M

    2008-01-01

    The term turtleback was first coined to describe the curvilinear fault surfaces that produced a distinctive geomorphic form in the Black Mountains east of Death Valley, and although it was decades before their full significance was appreciated, they remain one of the most distinctive features of the extensional structure of the Death Valley region. Historically the interpretation of the features has varied markedly, and misconceptions about their character continue to abound, including descriptions in popular field guides for the area. It the 1990's, however, the full history of the systems began to be apparent from several key data: 1) the dating of the plutonic assemblage associated with the turtlebacks demonstrated that late Miocene, syn-extensional plutonism was fundamental to their formation; 2) the plutonic assemblage forms an intrusive sheet structurally above the turtlebacks, indicating a tie between much of the high grade metamorphism and Cenozoic plutonism; 3) a modern analog for the syn-extensional plutonism in the Black Mountains was recognized beneath Death Valley with the imaging of a mid-crustal magma body; 4) the Neogene structural history was worked out in the turtlebacks showing that folding of early-formed shear zones formed the turtleback anticlinoria but overprinting by brittle faults produced the final form as they cut obliquely across the older structure; and 5) the pre-extensional structural history was clarified, demonstrating that Mesozoic basement-involved thrust systems are present within the turtlebacks, but have been overprinted by the extensional system. An unresolved issue is the significance of Eocene U-Pb dates for pegmatites within the region, but presumably these relate somehow to the pre-extensional history. Miller and Pavlis (2005; E. Sci. Rev.) reviewed many features of the turtlebacks, and our working model for the region is that the turtlebacks originated as mid-crustal ductile-thrust systems within the Cordilleran fold

  17. The rapakivi granite plutons of Bodom and Obbnäs, southern Finland: petrography and geochemistry

    Directory of Open Access Journals (Sweden)

    Kosunen, P.

    1999-12-01

    Full Text Available The Obbnäs and Bodom granite plutons of southernmost Finland show the typical petrographic and geochemical features of the Proterozoic rapakivi granites in Finland and elsewhere: they cut sharply across the 1900 Ma Svecofennian metamorphic bedrock and have the geochemical characteristics of subalkaline A-type granites. The Bodom pluton is composed of porphyritic granites (hornblende-, hornblende-biotite-, and biotite-bearing varieties and an even-grained granite that probably represent two separate intrusive phases. This lithologic variation does not occur in the Obbnäs pluton, which is almost entirely composed of porphyritic hornblende-biotite granite that gradually becomes more mafic to the southwest. Three types of hybrid granitoids resulting from magma mingling and mixing occur on the southwestern tip of the Obbnäs peninsula. The Bodom granites are syenogranites, whereas the composition of the Obbnäs granite varies from syeno- to monzogranite. The main silicates of both the Bodom and Obbnäs granites are quartz, microcline, plagioclase (An1541, biotite (siderophyllite, and generally also amphibole (ferropargasite or hastingsite. Plagioclase-mantled alkali feldspar megacrysts are absent or rare. The accessory minerals are fluorite, allanite, zircon, apatite, and iron-titanium oxides; the Obbnäs granite also contains titanite. The Bodom and Obbnäs granites are metaluminous to weakly peraluminous, with average A/CNK of 1.00 and 1.05, respectively, have high Fe/Mg (average FeOtot/[FeOtot+MgO] is 0.94 for the Bodom and 0.87 for the Obbnäs granites, and high Ga/Al (3.78 to 5.22 in Bodom and 2.46 to 4.18 in Obbnäs. The REE contents are high with LREE-enriched chondrite-normalized patterns and moderate (Obbnäs to relatively strong (Bodom negative Eu-anomalies. The Obbnäs granite is enriched in CaO, TiO2, MgO, and FeO, and depleted in SiO2 and K2O compared to the Bodom granites. Also, there are differences in the Ba, Rb, and Sr contents of

  18. Petrological studies of plutonic rocks of Ecuador

    International Nuclear Information System (INIS)

    Aly, S.

    1980-01-01

    The feldspars of many tonalitic plutonic rocks in the coastal regions and West Andean regions are zoned. This leads to the conclusion that they are relatively flat intrusions and to some extent transition rocks in the subvulcanite direction. This is in accordance with the genetic and chronological relationship between plutonites and the surrounding vulcanites of the Basic Igreous Complex (BIC). The composition of representative minerals, e.g. alkali feldspar, plagioclase feldspar, biotite, chlorite, and amphibole has been determined as well as the age of plutonite samples by the K/Ar dating method. (DG) [de

  19. Site investigation methods used in Canada's nuclear fuel waste management program to determine the hydrogeological conditions of plutonic rock

    International Nuclear Information System (INIS)

    Davison, C.C.

    1985-01-01

    Atomic Energy of Canada Limited (AECL) is investigating the concept of disposing of Canada's nuclear fuel wastes in a mined vault at a depth of 500 m to 1000 m within a plutonic rock body. Much effort has been directed at developing site investigation methods that can be used to determine the hydrogeological conditions of plutonic rock bodies. The primary objective of this research is to define the physical and chemical characteristics of groundwater flow systems at the various scales that are relevant to the prediction of potential radionuclide migration from a disposal vault. Groundwater movement through plutonic rock is largely controlled by fractures within the rock, and the hydrogeological parameters of fractured geological media are extremely scale dependent

  20. PLUTON, Isotope Generation and Depletion in Highly Irradiated LWR Fuel Rods

    International Nuclear Information System (INIS)

    Lemehov, Sergei; Motoe, Suzuki

    2003-01-01

    1 - Description of program or function: The PLUTON-PC is a three-group neutronic code analyzing, as functions of time and burnup, the change of radial profiles, together with average values, of power density, burnup, concentration of trans-uranium elements, plutonium buildup, depletion of fissile elements, and fission product generation in water reactor fuel rod with standard UO 2 , UO 2 -Gd 2 O 3 , inhomogeneous MOX, and UO 2 -ThO 2 . The PLUTON-PC code, which has been designed to be run on Windows PC, has adopted a theoretical shape function of neutron attenuation in pellet, which enables users to perform a very fast and accurate calculation easily. The code includes the irradiation conditions of the Halden Reactor which gives verification data for the code. Verification has been performed up to 83 GWd/tU, and a satisfactory agreement has been obtained. 2 - Methods: Based upon cumulative yields, the PLUTON-PC code calculates as a function of radial position and local burnup concentrations of fission products, macroscopic scattering cross-sections and self-shielding effect which is important for standard fuel (for Pu-242 mainly) and more importantly for homogeneous and inhomogeneous MOX fuel because of higher concentrations of fissile and fertile isotopes of plutonium. The code results in burnup dependent fission rate density profiles throughout the in-reactor irradiation of LWR fuel rods. The isotopes included in calculations have been extended to cover all trans-uranium groups (plutonium plus higher actinides) of fissile and fertile isotopes. Self-shielding problem and scattering effects have been revised and solved for all isotopes in the calculations for adequacy at high burnup, different irradiation conditions and cladding materials

  1. Geology, geochemistry, age and tectonic setting of the Gore-Gambella plutonic rocks, western Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Alemayehu, T.A.

    1989-01-01

    In transect across the Birbir and Baro domains of western Ethiopia, distinct granitoid suites are recognized on the basis of their field relations, petrology, chemical features and age. The Baro Domain consists of migmatitic, upper amphibolite facies gneisses and metaleucogranites. The Birbir Domain consists of lower amphibolite facies rocks with abundant intrusive and meta-intrusive rocks of mafic and intermediate composition. A ductile, transcurrent fault system, the Birbir Shear Zone, traverses the Birbir Domain. Kinematic indicators such as disrupted dykes and sills within the shear zone suggest major dextral movement which was succeeded by sinistral movement during its final stage. The pre- to syn-kinematic intrusives within the Birbir Domain are metamorphosed and mylonitized to variable degrees. Geochemical and isotopic data from early plutonic units in the Birbir Domain reflect arc-type igneous activity; late- to post-kinematic plutons are more alkalic and of intraplate character. U-Pb zircon and Rb-Sr whole-rock isochron dates show plutonic activity between 830 and 540 Ma. A whole-rock Rb-Sr date of 760 Ma from a pre- to syn-kinematic pluton coincides with the age of low-grade metamorphism of arc-related rocks of the Red Sea Hills of NE Africa and the Jeddah terrane of Arabia. The Birbir Domain is a southward extension of the Pan-African crust of NE Africa and Arabia. The Birbir shear zone indicates a tectonically active continental margin along which magmatic arc rocks were accreted. The Baro Domain is interpreted as a reactivated pre-Pan-African continental margin linked to the Mozambique Belt of east Africa. A subduction model, involving closure of an ocean basin, is proposed for the evolution of rocks of the Birbir Domain.

  2. La Escalerilla pluton, San Luis Argentina: The orogenic and post-orogenic magmatic evolution of the famatinian cycle at Sierras de San Luis

    Science.gov (United States)

    Morosini, Augusto Francisco; Ortiz Suárez, Ariel Emilio; Otamendi, Juan Enrique; Pagano, Diego Sebastián; Ramos, Gabriel Alejandro

    2017-01-01

    Field relationships, geochemical analysis and two new absolute ages (LA-MC-ICP-MS U/Pb-zircon) allow the division of the La Escalerilla pluton (previously considered to be a single granitic body) into two different plutons: a new La Escalerilla pluton (s.s.), dated at 476.7 ± 9.6 Ma, that represents the northern portion, and the El Volcán pluton, dated at 404.5 ± 8.5 Ma, located in the southern sector. The La Escalerilla pluton is composed of three facies: (1) biotite-bearing granodiorite, (2) porphyritic biotite-bearing granite, and (3) porphyritic two micas-bearing leucogranite, being the presence of late-magmatic dykes in these facies common. The El Volcán pluton is composed of two main facies: 1) porphyritic biotite-bearing granite, and 2) two micas-bearing leucogranite, but amphibole-bearing monzodioritic and tonalititic mega-enclaves are also common, as well as some dykes of amphibole and clinopyroxene-bearing syenites. A peculiarity between the two plutons is that their most representative facies (porphyritic biotite-bearing granites) have, apart from different absolute ages, distinctive geochemical characteristics in their concentrations of trace elements; the La Escalerilla granite is comparatively poorer in Ba, Sr, Nb, La, Ce, P, and richer in Rb, Tb, Y, Tm and Yb. The El Volcán granite is notably enriched in Sr and depleted in Y, resulting in high Sr/Y ratios (12.67-39.08) compared to the La Escalerilla granite (1.11-2.41). These contrasts indicate that the separation from their sources occurred at different depths: below 25 km for the La Escalerilla, and above 30 km for the El Volcán. Moreover, the contrasts allow us to interpret a thin crust linked to an environment of pre-collisional subduction for the first case, and a thickened crust of post-collisional environment for the second, respectively.

  3. Transpressional granite-emplacement model: Structural and magnetic study of the Pan-African Bandja granitic pluton (West Cameroon)

    Science.gov (United States)

    Sandjo, A. F. Yakeu; Njanko, T.; Njonfang, E.; Errami, E.; Rochette, P.; Fozing, E.

    2016-02-01

    The Pan-African NE-SW elongated Bandja granitic pluton, located at the western part of the Pan-African belt in Cameroon, is a K-feldspar megacryst granite. It is emplaced in banded gneiss and its NW border underwent mylonitization. The magmatic foliation shows NE-SW and NNE-SSW strike directions with moderate to strong dip respectively in its northern and central parts. This mostly, ferromagnetic granite displays magnetic fabrics carried by magnetite and characterized by (i) magnetic foliation with best poles at 295/34, 283/33 and 35/59 respectively in its northern, central and southern parts and (ii) a subhorizontal magnetic lineation with best line at 37/8, 191/9 and 267/22 respectively in the northern, central and southern parts. Magnetic lineation shows an `S' shape trend that allows to (1) consider the complete emplacement and deformation of the pluton during the Pan-African D 2 and D 3 events which occurred in the Pan-African belt in Cameroon and (2) reorganize Pan-African ages from Nguiessi Tchakam et al. (1997) compared with those of the other granitic plutons in the belt as: 686 ±17 Ma (Rb/Sr) for D 1 age of metamorphism recorded in gneiss; and the period between 604-557 Ma for D 2-D 3 emplacement and deformation age of the granitic pluton in a dextral ENE-WSW shear movement.

  4. Primer registro de Dasypsyllus (Avesopsylla lasius lasius (Siphonaptera: Ceratophyllidae en nidos de golondrina chilena, Tachycineta meyeni (Passeriformes: Hirundinidae, en Ushuaia (Tierra del Fuego, Argentina

    Directory of Open Access Journals (Sweden)

    Rosana ARAMBURÚ

    2009-01-01

    Full Text Available La golondrina chilena, Tachycineta meyeni (Cabanis, nidifica en el centro de Chile y suroeste de Argentina. En invierno migra a Bolivia, Paraguay y al sureste de Brasil. Estas golondrinas ocuparon una serie de cajas-nido en Ushuaia, Tierra del Fuego. Luego de la temporada de cría, tratamos los nidos con acetato de etilo y los revisamos en búsqueda de artrópodos hematófagos. Encontramos pulgas adultas, que fueron fijadas, aclaradas, deshidratadas, diafanizadas y montadas en un derivado de clavo de olor para su observación al microsocopio óptico. Identificamos machos y hembras de Dasypsyllus (Avesopsylla lasius lasius (Rothschild. En Argentina, esta pulga es conocida solamente en Sierra de la Ventana (Buenos Aires, donde se la halló parasitando la golondrina barranquera, Notiochelidon cyanoleuca patagonica (Vieillot. La información disponible debería complementarse con prospecciones en localidades intermedias. Otras aves relacionadas con ambas golondrinas por la ocupación de nidos, como el rayadito (Aphrastura spinicauda (Gmelin, ratona común (Troglodytes aedon Vieillot, caminera común (Geositta cunicularia (Vieillot, hornero (Furnarius rufus (Gmelin, podrían contribuir a la dispersión de la pulga entre las dos localidades registradas.

  5. Plutonic rocks in the Mineoka-Setogawa ophiolitic mélange, central Japan: Fragments of middle to lower crust of the Izu-Bonin-Mariana Arc?

    Science.gov (United States)

    Ichiyama, Yuji; Ito, Hisatoshi; Hokanishi, Natsumi; Tamura, Akihiro; Arai, Shoji

    2017-06-01

    A Paleogene accretionary complex, the Mineoka-Setogawa Belt, is distributed around the Izu Collision Zone, central Japan. Plutonic rocks of gabbro, diorite and tonalite compositions are included as fragments and dykes in an ophiolitic mélange in this belt. Zircon U-Pb dating of the plutonic rocks indicates that they were formed at ca. 35 Ma simultaneously. These ages are consistent with Eocene-Oligocene tholeiite and calc-alkaline arc magmatism in the Izu-Bonin-Mariana (IBM) Arc and exclude several previous models for the origin of the Mineoka-Setogawa ophiolitic rocks. The geochemical characteristics of these plutonic rocks are similar to those of the Eocene-Oligocene IBM tholeiite and calc-alkaline volcanic rocks as well as to the accreted middle crust of the IBM Arc, the Tanzawa Plutonic Complex. Moreover, their lithology is consistent with those of the middle and lower crust of the IBM Arc estimated from the seismic velocity structure. These lines of evidence strongly indicate that the plutonic rocks in the Mineoka-Setogawa ophiolitic mélange are fragments of the middle to lower crust of the IBM Arc. Additionally, the presence of the Mineoka-Setogawa intermediate to felsic plutonic rocks supports the hypothesis that intermediate magma can form continental crust in intra-oceanic arcs.

  6. Bedrock geologic map of the Knox Mountain pluton area, Marshfield and Peacham, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG08-3 Kim, J., Charnock, R., Chow, D. and Springston, G., 2008, Bedrock geologic map of the Knox Mountain pluton area, Marshfield and Peacham,...

  7. Evidence for a close phylogenetic relationship between Melissococcus pluton, the causative agent of European foulbrood disease, and the genus Enterococcus.

    Science.gov (United States)

    Cai, J; Collins, M D

    1994-04-01

    The 16S rRNA gene sequence of Melissococcus pluton, the causative agent of European foulbrood disease, was determined in order to investigate the phylogenetic relationships between this organism and other low-G + C-content gram-positive bacteria. A comparative sequence analysis revealed that M. pluton is a close phylogenetic relative of the genus Enterococcus.

  8. An evolving tectonic environment of Late Carboniferous to Early Permian granitic plutons in the Chinese Altai and Eastern Junggar terranes, Central Asian Orogenic Belt, NW China

    Science.gov (United States)

    Zhang, Chen; Liu, Dongdong; Luo, Qun; Liu, Luofu; Zhang, Yunzhao; Zhu, Deyu; Wang, Pengfei; Dai, Quanqi

    2018-06-01

    The Central Asian Orogenic Belt (CAOB) represents one of the most important sites of juvenile crustal growth during the Phanerozoic. Located in the central part of the CAOB, the Chinese Altai and Eastern Junggar terranes record the collisional processes between the peri-Siberian and Kazakhstan orogenic systems. However, the precise timing of collision between the two terranes remains controversial. The Wukuli and Kadelat plutons in the Chinese Altai belt are dated at ∼305 and ∼280 Ma respectively, whereas the Aketas pluton in the Eastern Junggar terrane is dated at ∼308 Ma. Granites from the Wukuli and Kadelat plutons are strongly peraluminous (A/CNK > 1.1), and are characterized by low Al2O3, Na2O, MnO, MgO, CaO and heavy rare earth element (HREE) contents, but with high SiO2, K2O and Rb contents as well as high Rb/Sr ratios. Granites from the Wukuli pluton have low εNd(t) and εHf(t) values of -3.7 to -3.4 and -9.7 to +4.9, whereas those from the Kadelat pluton have values of -3.6 to -3.4 and -8.0 to +2.6. These features suggest S-type affinity for the Wukuli and Kadelat plutons with magma derivation through partial melting of Mesoproterozoic metasediments. The Aketas pluton is composed of weakly peraluminous quartz monzonites that have A/CNK values ranging from 0.92 to 1.08, with high Na2O, Sr, and Sr/Y, and low Y, Yb, Nb, and Ta. These rocks display positive εNd(t) (+4.8 to +6.4) and εHf(t) (+9.7 to +14.6) values, and low initial 87Sr/86Sr ratios (0.703357-0.703868), similar to modern adakites, suggesting that the quartz monzonites were derived from the partial melting of lower crustal material. The geochemical characteristics suggest that the Aketas pluton was formed in a subduction-related setting, the Wukuli pluton in a syn-collisional setting, and the Kadelat pluton in the subsequent post-orogenic strike-slip-related setting. In combination with data from other granitoids in these two terranes, the Aketas pluton represents the youngest record of

  9. A review on the nomenclature of Angadimogar and Kumbdaje plutons, Kasaragod district, Kerala

    Digital Repository Service at National Institute of Oceanography (India)

    AnilKumar, A.; Gopinathan, V.; Gopinath, K.S.; Rao, V.P.

    These granites are coarse grained and traversed by anastomising patches of aplite They are in sharp contact with the country rock The Angadimogar pluton was earlier considered a syenitic body Normative mineralogy and petrography of the Angadimogar and Kumbdaje...

  10. PLUTON: A Three-Group Model for the Radial Distribution of Plutonium, Burnup, and Power Profiles in Highly Irradiated LWR Fuel Rods

    International Nuclear Information System (INIS)

    Lemehov, Sergei; Nakamura, Jinichi; Suzuki, Motoe

    2001-01-01

    A three-group model (PLUTON) is described, which predicts the power density distribution, plutonium buildup, and burnup profiles across the fuel pellet radius as a function of in-pile time and parameters characterizing the type of reactor system with respect to fuel temperature and changes of density during the irradiation period. The PLUTON model is a part of two fuel performance codes (ASFAD and FEMAXI-V), which provide all necessary input for this model, mainly local temperatures and fuel matrix density across the radius. Comparisons between measurements and predictions of the PLUTON model are made on fuels with enrichments in the range 2.9 to 8.25% and with burnup between 21 000 and 64 000 MWd/t. It is shown that the PLUTON predictions are in good agreement with measurements as well as with predictions of the well-known TUBRNP model. The proposed model is flexibly applicable for all types of light water reactor (LWR) fuels, including mixed oxide, and for fuel tested in the Organization for Economic Corporation and Development's Halden heavy water reactor. The PLUTON three-group model is based on analytical (theoretical) consideration of neutron absorption in a resonant region of the fuel in its apparent form. It makes the model more flexible in comparison with the semi-empirical TUBRNP one-group model and allows the physically based model analysis of commercial LWR-type fuels at high burnup as well as analysis of experimental fuel rods tested in the Halden heavy water reactor, which is one of the main test reactors in the world. The differences in fuel behavior in the Halden reactor in terms of burnup distribution and plutonium buildup can be more clearly understood with the PLUTON model

  11. Isotopic characteristics (Nd and Sr) of the intrusive plutonism at the northwestern Amazonian Craton, Venezuela, and implications for the Paleoproterozoic evolution

    International Nuclear Information System (INIS)

    Teixeira, Wilson; Tassinari, Colombro Celso G.; Mondin, M.

    2002-01-01

    Nd and Sr analyses were performed on selected granitoid plutons that intrude Archean and Paleoproterozoic domains of the Guyana shield (Venezuela). The isotopic signatures of these plutons together with the geochronologic background of the country rocks are used to constrain their magma genesis and tectonic setting within the Paleoproterozoic evolutions of mobile belts (Maroni-Itacaiunas and Ventuari-Tapajos provinces) of the Amazonian Craton. The Encrucijada Suite (2187 +- 94 Ma), which intrudes Archean rocks of the Imataca Complex, originated predominantly from partial melt of this crust, as supported by negative epsilon Nd(2.1Ga ) values (-2.2 to - 4.9) and T DM ages between 2.82 and 2.49 Ga. Conversely, the plutons from the Supamo Complex (2230 - 2050 Ma) and Cuchivero Group (1980 - 1830 Ma), occurring within the adjoining Paleoproterozoic provinces, are juvenile in nature (derived from roughly contemporary protoliths). These bodies display T DM ages between 2.13 and 2.22 Ga, as well as positive epsilon Nd(2.1Ga ) values (+0.74 to + 3.05). Isotopic correlation diagrams 143 Nd/144 Nd vs. 147 Sm/144 Nd and 143 Nd/144 Nd vs. time) plotted together with the plutonic rocks and Imataca Complex rocks were evaluated taking into account the geologic background of the NW part of the Amazonian Craton. Interpretation of these isotopic data supports the idea of tectonic juxtaposition between the Imataca Complex and the Maroni-Itacaiunas province during the Transamazonian orogeny (2.25 - 2.05 Ga). On the other hand, the Cuchivero Group plutons have a contrasting isotopic signature compared to the other Paleoproterozoic plutonic rocks. This is consistent with the existence of a tectonic boundary between the Maroni-Itacaiunas and the Ventuari-Tapajos province in the late Paleoproterozoic. (author)

  12. Multistage magma emplacement and progressive strain accumulation in the shallow-level Krkonoše-Jizera plutonic complex, Bohemian Massif

    Science.gov (United States)

    Žák, Jiří; Verner, Kryštof; Sláma, Jiří; Kachlík, Václav; Chlupáčová, Marta

    2013-09-01

    relationships combined with new U-Pb zircon geochronology suggest that the shallow-level Krkonoše-Jizera plutonic complex, northern Bohemian Massif, was assembled successively from bottom to top, starting with emplacement of the separately evolved S-type Tanvald granite (317.3 ± 2.1 Ma), followed by at least two voluminous batches of the I-type porphyritic Liberec (319.5 ± 2.3 Ma) and Jizera (320.1 ± 3.0 Ma and 319.3 ± 3.7 Ma) granites. The intrusive sequence was completed by uppermost, minor intrusions of the equigranular Harrachov (315.0 ± 2.7 Ma) and Krkonoše granites. The I-type granites exhibit an unusually complex pattern of superposed feldspar phenocryst and magnetic fabrics as revealed from the anisotropy of magnetic susceptibility (AMS). The outer Liberec granite preserves margin-parallel foliations and lineations, interpreted to record emplacement-related strain captured by cooling from the pluton floor and walls. In contrast, the inner Jizera, Harrachov, and Krkonoše granites were overprinted by synmagmatic strain resulting from dextral movements along regional strike-slip faults cutting the opposite ends of the plutonic complex. Late-stage felsic dikes in the Liberec and Jizera granites reorient from horizontal to vertical (lineation-perpendicular) attitude in response to changing the least principal stress direction, whereas mafic schlieren do not do so, representing only randomly oriented small-scale thermal-mechanical instabilities in the phenocryst framework. In general, this case example challenges the common approach of inferring pluton-wide magma flow from interpolated foliation, lineation, and schlieren patterns. More likely, magmatic fabrics in large plutons record complex temporal succession of superposed strains resulting from diverse processes at multiple scales.

  13. Petrography and geochemistry of five granitic plutons from south central Uruguay: contribution to the knowledge of the Piedra Alta terrane

    International Nuclear Information System (INIS)

    Preciozzi, F.

    2005-01-01

    Granitoid rocks in south-central Uruguay are largely concentrated in three east-west trending metamorphic belts, known as (from south to north) the Montevideo Belt, the San José Belt and the Arroyo Grande Belt. These belts are separated from one another by intervening bands of gneisses of granitic composition. The whole assemblage, the gneisses as well as the metamorphic belts and their associated granites, collectively constitute the Piedra Alta Terrane. Five of these granite plutons, two from the San José Belt and three from the Arroyo Grande Belt, have been studied in some detail and the chemical composition of 86 samples (major elements as well as a selected suite of trace elements) have been determined. These data, as well as Rb-Sr isotopic data, show that these plutons are typically composite in nature, and that the various units range in age from 1900 Ma to 2500 Ma. The older ages were obtained from the main units of the plutons themselves whereas the younger ages are from late dykes which were emplaced into the plutons and which are clearly not related to them. The plutons are predominantly, but not exclusively, of calc-alkaline affinity and are typically synorogenic whereas the dykes are post-orogenic and are either calc-alkaline or alkaline in composition. These data have been incorporated into a tectonic model for the Piedra Alta Terrane which is considerably different from that heretofore proposed. The essential features of the geological history of the area are: 1) development of an older ''basement'' of granitic gneisses 2) deposition, upon or adjacent to this gneisses basement, of a typical Archean greenstone belt assemblage (no komatiites so far reported) 3) Paleo-proterozoic metamorphism, followed by syn-tectonic to post-tectonic intrusion of the plutonic rocks 4) major tectonic dislocation(s) associated with the Transamazonian orogeny 5) dyke emplacement (post-orogenic to anorogenic) following the Transamazonian orogeny

  14. GEOCHEMICAL CHARACTERISTICS OF TIANMENSHAN COMPOSITE PLUTON, SOUTH CHINA

    Directory of Open Access Journals (Sweden)

    Yanjiao Chen

    2017-01-01

    Full Text Available The southern Jiangxi province is located at east Nanling range, which is an important W-Sn metallogenic province of China. The Early Yanshanian Tianmenshan is composed of the main-phase porphyritic biotite granite and the highly differentiated fine-gained biotite granite, intruding in the Lower Cambrian Niujiaohe Formation. The main-phase granite and the late-stage highly differentiated granite emplaced at 152–158 Ma and 152–151 Ma, respectively. The later was in the center of the pluton as a ovalize shape, with a transitional contact with the main-phase granite.

  15. Guidelines to classification and nomenclature of Arabian felsic plutonic rocks

    Science.gov (United States)

    Ramsay, C.R.; Stoeser, D.B.; Drysdall, A.R.

    1986-01-01

    Well-defined procedures for classifying the felsic plutonic rocks of the Arabian Shield on the basis of petrographic, chemical and lithostratigraphic criteria and mineral-resource potential have been adopted and developed in the Saudi Arabian Deputy Ministry for Mineral Resources over the past decade. A number of problems with conventional classification schemes have been identified and resolved; others, notably those arising from difficulties in identifying precise mineral compositions, continue to present difficulties. The petrographic nomenclature used is essentially that recommended by the International Union of Geological Sciences. Problems that have arisen include the definition of: (1) rocks with sodic, zoned or perthitic feldspar, (2) trondhjemites, and (3) alkali granites. Chemical classification has been largely based on relative molar amounts of alumina, lime and alkalis, and the use of conventional variation diagrams, but pilot studies utilizing univariate and multivariate statistical techniques have been made. The classification used in Saudi Arabia for stratigraphic purposes is a hierarchy of formation-rank units, suites and super-suites as defined in the Saudi Arabian stratigraphic code. For genetic and petrological studies, a grouping as 'associations' of similar and genetically related lithologies is commonly used. In order to indicate mineral-resource potential, the felsic plutons are classed as common, precursor, specialized or mineralized, in order of increasing exploration significance. ?? 1986.

  16. The distribution, geochronology and geochemistry of early Paleozoic granitoid plutons in the North Altun orogenic belt, NW China: Implications for the petrogenesis and tectonic evolution

    Science.gov (United States)

    Meng, Ling-Tong; Chen, Bai-Lin; Zhao, Ni-Na; Wu, Yu; Zhang, Wen-Gao; He, Jiang-Tao; Wang, Bin; Han, Mei-Mei

    2017-01-01

    Abundant early Paleozoic granitoid plutons are widely distributed in the North Altun orogenic belt. These rocks provide clues to the tectonic evolution of the North Altun orogenic belt and adjacent areas. In this paper, we report an integrated study of petrological features, U-Pb zircon dating, in situ zircon Hf isotope and whole-rock geochemical compositions for the Abei, 4337 Highland and Kaladawan Plutons from north to south in the North Altun orogenic belt. The dating yielded magma crystallization ages of 514 Ma for the Abei Pluton, 494 Ma for the 4337 Highland Pluton and 480-460 Ma for the Kaladawan Pluton, suggesting that they are all products of oceanic slab subduction because of the age constraint. The Abei monzogranites derived from the recycle of Paleoproterozoic continental crust under low-pressure and high-temperature conditions are products of subduction initiation. The 4337 Highland granodiorites have some adakitic geochemical signatures and are sourced from partial melting of thickened mafic lower continental crust. The Kaladawan quartz diorites are produced by partial melting of mantle wedge according to the positive εHf(t) values, and the Kaladawan monzogranite-syenogranite are derived from partial melting of Neoproterozoic continental crust mixing the juvenile underplated mafic material from the depleted mantle. These results, together with existing data, provide significant information about the evolution history of oceanic crust subduction during the 520-460 Ma. The initiation of subduction occurred during 520-500 Ma with formation of Abei Pluton; subsequent transition from steep-angle to flat-slab subduction at ca.500 Ma due to the arrival of buoyant oceanic plateaus, which induces the formation of 4337 Highland Pluton. With ongoing subduction, the steep-angle subduction system is reestablished to cause the formation of 480-460 Ma Kaladawan Pluton. Meanwhile, it is this model that account for the temporal-spatial distribution of these early

  17. Microstructures and magnetic fabrics of the Ngaoundéré granite pluton (Cameroon): Implications to the late-Pan-African evolution of Central Cameroon Shear Zone

    Science.gov (United States)

    Dawaï, Daouda; Tchameni, Rigobert; Bascou, Jérome; Awe Wangmene, Salomon; Fosso Tchunte, Périclex Martial; Bouchez, Jean-Luc

    2017-05-01

    The Ngaoundéré granite pluton, in Central-North Cameroon, located near the Central Cameroon Shear zone (CCSZ), and previously studied for its petrography and geochemistry, is characterized by the absence of macroscopic markers of deformation. In this study, we report microstructures and magnetic fabrics (AMS) of this pluton and discuss the relationship with the Pan-African evolution of the CCSZ. The pluton consists of a porphyritic Hbl-Bt-monzogranite at its rim and a porphyritic biotite-granite at its core, a petrographic distribution denoting a normal zoning pattern, i.e. more silicic toward the centre. As expected, magnetic susceptibilities values also exhibit a zoning pattern in agreement with petrographic zonation. Thermomagnetic data indicate that this pluton is dominantly ferromagnetic in behaviour. As indicated by its microstructures, the pluton has suffered a continuum of deformation from the magmatic state to the high temperature solid-state during magma crystallization and solidification. The magnetic foliations dominantly strike NE-SW and dip moderately to steeply and the lineations mostly plunge shallowly to the NE or SW, roughly parallel to NE-to ENE-trending Central Cameroun Shear Zone (CCSZ). The foliation poles define a girdle pattern with a zone axis (52°/11°) rather close to the best line of the lineations (44°/21°). These fabrics correlate with the structures of the country rocks ascribed by several workers to a regional transpression. Toward the margins of the pluton, particularly the northern one, the lineations tend to rotate from NE to N in azimuth. This change is interpreted as due to strain partitioning, simple shearing with NE-SW extension being relayed by compression toward the northern pluton border. This new magnetic fabric study suggests that the Ngaoundéré pluton (poorly dated at c. 575 Ma) was emplaced during the late stages of the CCSZ dextral transpressive movement. It also provides some more constraints on the correlation

  18. Composition of coarse-grained magnetite from pegmatite dikes related to plutons of quartz monzonite in the Jabal Lababa area, Kingdom of Saudi Arabia

    Science.gov (United States)

    Overstreet, William C.; Mousa, Hassan; Matzko, John J.

    1985-01-01

    Crystals of magnetite as large as 30 mm long and 7 mm thick are locally present in quartz-rich zones of interior and exterior pegmatite dikes related to plutons of quartz monzonite in the Jabal Lababa area. Niobium, tin, and yttrium are strongly enriched in six specimens of magnetite from interior pegmatite dikes in a small pluton where these elements form geochemical anomalies in nonmagnetic heavy-mineral concentrates from wadi sediment. Less abundant anomalous elements in the magnetite are molybdenum, lead, and zirconium, which also tend to be present in anomalous amounts in the nonmagnetic concentrates from the niobium-bearing pluton. The most anomalous trace element in the magnetite is zinc, which is at least 10 times as abundant as it is in the quartz monzonite plutons or in the nonmagnetic concentrates. The capacity of magnetite to scavenge molybdenum, zinc, niobium, lead, tin, yttrium, and zirconium suggests the possible utility of magnetite as a geochemical sample medium.

  19. Genesis of zoned granite plutons in the Iapetus Suture Zone: new constraints from high-precision micro-analysis of accessory minerals

    OpenAIRE

    Miles, Andrew James

    2013-01-01

    The Trans-Suture Suite (TSS) of granitic plutons located in Northern Britain span the Iapetus Suture and represent a particularly enigmatic stage of post-Caledonian Devonian magmatism. Despite calc-alkaline affinities, proximity to the Iapetus Suture precludes a direct relationship to active subduction. Furthermore, the absence of inherited zircons distinguishes the TSS from plutons of a similar age throughout the Scottish Highlands, and is not easily reconciled with the abunda...

  20. U-Pb ages and Hf isotope compositions of zircons in plutonic rocks from the central Famatinian arc, Argentina

    Science.gov (United States)

    Otamendi, Juan E.; Ducea, Mihai N.; Cristofolini, Eber A.; Tibaldi, Alina M.; Camilletti, Giuliano C.; Bergantz, George W.

    2017-07-01

    The Famatinian arc formed around the South Iapetus rim during the Ordovician, when oceanic lithosphere subducted beneath the West Gondwana margin. We present combined in situ U-Th-Pb and Lu-Hf isotope analyses for zircon to gain insights into the origin and evolution of Famatinian magmatism. Zircon crystals sampled from four intermediate and silicic plutonic rocks confirm previous observations showing that voluminous magmatism took place during a relatively short pulse between the Early and Middle Ordovician (472-465 Ma). The entire zircon population for the four plutonic rocks yields coherent εHf negative values and spreads over several ranges of initial εHf(t) units (-0.3 to -8.0). The range of εHf units in detrital zircons of Famatinian metasedimentary rocks reflects a prolonged history of the cratonic sources during the Proterozoic to the earliest Phanerozoic. Typical tonalites and granodiorites that contain zircons with evolved Hf isotopic compositions formed upon incorporating (meta)sedimentary materials into calc-alkaline metaluminous magmas. The evolved Hf isotope ratios of zircons in the subduction related plutonic rocks strongly reflect the Hf isotopic character of the metasedimentary contaminant, even though the linked differentiation and growth of the Famatinian arc crust was driven by ascending and evolving mantle magmas. Geochronology and Hf isotope systematics in plutonic zircons allow us understanding the petrogenesis of igneous series and the provenance of magma sources. However, these data could be inadequate for computing model ages and supporting models of crustal evolution.

  1. Magma flow paths and strain patterns in magma chambers growing by floor subsidence: a model based on magnetic fabric study of shallow-level plutons in the Stiavnica volcano-plutonic complex, Western Carpathians

    Czech Academy of Sciences Publication Activity Database

    Tomek, Filip; Žák, J.; Chadima, Martin

    2014-01-01

    Roč. 76, č. 11 (2014), Article 873 ISSN 0258-8900 Institutional support: RVO:67985831 Keywords : anisotropy of magnetic susceptibility (AMS) * caldera * intrusive strain * magma emplacement * pluton floor subsidence * stratovolcano Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.519, year: 2014

  2. K, Rb and Sr abundances and Sr isotopic composition of the Tanzawa granitic and associated gabbroic rocks, Japan: low-potash island arc plutonic complex

    International Nuclear Information System (INIS)

    Ishizaka, K.; Yanagi, T.

    1977-01-01

    The granitic and associated gabbroic rocks of the Tanzawa plutonic complex of Miocene age occurring in the northern part of the Izu-Bonin arc are characterized by low abundances of K (229-6790 ppm) and Rb (0.414-12.1 ppm), low K 2 O/Na 2 O ratios (0.037-0.21), moderately high K/Rb ratios (541-630), low Rb/Sr ratios (0.00137-0.0579) and low initial 87 Sr/ 86 Sr ratios (0.70332-0.70372). This indicates that acid to intermediate plutonic rocks with these geochemical characteristics also occur in island arc environments besides mid-oceanic ridge environments. They represent, together with associated gabbroic rocks, a low-potash island arc plutonic complex and are expected to occur beneath young island arcs, although now unexposed. The Tanzawa plutonic complex may have been formed by differentiation of low-K calc-alkaline magma. (Auth.)

  3. Mineralization related to Alvand pluton in the Hamadan, western Iran

    Science.gov (United States)

    Salehi, M. H.; Doosti, E. A.; Ahadnejad, V.

    2009-04-01

    The Alvand (Hamadan) plutonic batholith is one of the largest plutonic bodies in the Sanandaj-Sirjan metamorphic belt. This complex is consist of mafic part (gabbro-diorite-tonalite), intermediate (granite-granodiorite porphyroids), and hololeucocratic granitoids. Previous studies have shown that S-type granite-granodiorites are mostly peraluminous and calc-alkaline; the gabbro-diorite-tonalite suite is mostly metaluminous and tholeiitic to calc-alkaline (Sepahi, 2008). High initial 87Sr-86Sr ratios (0.7081 to 0.7115), low epsilon Nd values (-1.0 to -3.3), and peraluminous character reflects a different origin for the granites, possibly crustal sources (Ghalamghash et al, 2007). Aplite-pegmatite dikes are intruded in granitoide rocks, metamorphic rocks and the contact of Alvand granite with metamorphic rocks. The contact of Alvand granite with metamorphic rocks is sharp. By using heavy mineral studies on the alluvium of Alvand complex, it is recognized 28 minerals amongst Scheelite, Cassiterite, Ilmenite, Zircon and Garnet. Different geostatistical studies such as variant, bivariant and multivariant studies have been done on rough data of heavy minerals. They showed normal concentration of gold in studied rocks and low enrichment of tin and tungsten. The index of the ore elements average, frequeney distribution criteria of elements, the ratio of elements index and multielements show that Alvand granite is barren. Mineralography studies did not recognized any tin and tungsten minerals. The grains of gold was recognized in some of the microscopic thin sections. Calcopyrotite is the most important ore mineral that is accompanied with oxides and iron carbonates. The contacts of aplite-pegmatite dikes with granitoide rocks mostly are not prolific. For recognizing Scheelite, some samples of rocks studied by ultraviolet and few Scheelite is recognized in the samples. Some alteration zone observed in this area but they are not accompany with main mineralization. Although

  4. Isotopic studies of the Eye-Dashwa Lakes pluton and the long-term integrity of whole-rock and mineral systems

    International Nuclear Information System (INIS)

    Peterman, Z.E.; Kamineni, D.C.

    1990-05-01

    This report presents results of isotopic studies of the Eye-Dashwa Lakes pluton, located near Atikokan, Ontario. Suites of pristine unaltered and highly altered core samples from deep boreholes were used to study Rb-Sr, U-Th-Pb and Sr-Nd systematics, whole-rock Pb isotopes and fission track dating of apatite. The results have been used to investigate natural analogues for radionuclide migration in the geosphere, the tectonic stability of the pluton and the extent of water-rock interaction in fracture zones

  5. Magmatic Flow Record From AMS Data La Gloria Pluton, Central Chile

    Science.gov (United States)

    Gutierrez, F.; Payacan, I. J.; Calderon, S.

    2011-12-01

    La Gloria Pluton (LGP) is a 10 Ma epizonal intrusion in the Southern Andes, located 40 km east of Santiago, in central Chile. 20 km long and 5 km wide LPG has a thickness of 2.5 km, in the form of a NW elongating inverted canoe. LGP intrudes Miocene volcanics as NS extending cluster of Miocene granitoids. LGP was emplaced at the west of an inverse fault system without exhibiting significant post-intrusion deformation. The fault system includes the Laguna Negra Fault and the El Coironal Fault, at its southern and northern ends respectively. LGP has been interpreted to have had a short cooling time, where subsolidus reequilibration was not pervasive, allowing identification of early and late magmatic conditions and suggesting it to be a single closed chamber. LGP is zoned vertically from granodiorite/quartz monzodiorite to quartz monzonite towards the roof, where hornblende and biotite and minor magnetite-ilmenite are omnipresent. AMS samples were collected at 39 sites to determine of the magnetic anisotropy susceptibility tensor. Magnetic fabric is generally oblate and anisotropy values range from 1.3 to 13.9%, consistent with the prescience magnetite and ilmenite. Magnetic lineation (ML) has a NNW trend, a subhorizontal dip and values between 0.4 and 5.3%. Magnetic foliation (MF) has a NW trend and dip varying from vertical at the walls of the intrusive to subhorizontal inside and under the roof. MF values ranges between 0.8 and 13.3%. Since linear trend of MF is restricted to the LGP interior only and can not be caused by a simple inverse fault system, we interpret the AMS results as a consequence of magmatic flow. ML represents the main flow direction, where several shallow plutons intrude at 10Ma in NW direction. MF is consequence of convection, related to cooling and differentiation, and is comparable to numerical simulations of magma fluid-dynamics during differentiation (R4). Two profiles (EW and NS) indicate that MF linear trend is from 29°/km to 50

  6. Characteristics and mode of emplacement of gneiss domes and plutonic domes in central-eastern Pyrenees

    Science.gov (United States)

    Soula, Jean-Claude

    Gneiss domes and plutonic granitoid domes make up almost 50% of the pre-Hercynian terrains in the Central and Eastern Pyrenees. From a structural study of the shape and internal structure of the domes and of their relationships with the enclosing rocks, it can be shown that both types of domes were emplaced diapirically during the major regional deformation phase and the peak of regional metamorphism. The study also shows that the internal structure, the overall shape and general behaviour relative to the host rocks are similar for plutonic domes and for gneiss domes. This appears to be in good agreement with H. Ramberg's (1967, Gravity Deformation and the Earth's Crust. Academic Press, London; 1970, Model studies in relation to intrusion of plutonic bodies. In: Mechanisms of Igneous Intrusion (edited by Newall, G. & Rast, N.) Geol. J. Spec. Issue2, 261-286.) model studies showing that dome or mushroom-like structures, similar to those observed, develop when there is a small viscosity ratio between the rising body and its enclosing medium. This implies a high crystal content for the granitoid magma. This crystal content has been estimated by (i) calculating the viscosity and density in natural conditions from petrological data for the magma considered as a suspension, using the model and program of J. P. Carron et al. (1978 Bull Soc. géol. Fr.20, 739-744.); (ii) using the recent results of experimental deformation of partially melted granites of I. van der Molen & M. S. Paterson (1979, Contr. Miner. Petrol.70, 299-318.) and (ii) comparing the preceding results with the data obtained by deformation experiments on rocks similar to those enclosing the domes. The minimum crystal content for the development of a dome-like structure has been, thus, estimated to about 70%, i.e. a value very close to that estimated by van der Molen & Paterson (1979) to be the critical value separating the granular framework flow from suspension-like behaviour. The effect of small

  7. Three-dimensional cooling pattern of a granitic pluton 2. The study of deuteric sub-solidus reactions in the Toki granite, Central Japan

    International Nuclear Information System (INIS)

    Yuguchi, Takashi; Tsuruta, Tadahiko; Nishiyama, Tadao

    2011-01-01

    Petrographical studies examining the development and variations of sub-solidus reactions recorded in the Toki granite represent the three-dimensional cooling pattern of this zoned pluton in Central Japan. Samples collected from 19 boreholes in the Toki granite show characteristics indicative of spatial variations in the extent of the sub-solidus reactions. Exsolution coarsening has produced microperthite, including albite-rich lamellae, in this pluton, while deuteric coarsening has resulted in the formation of patchperthite, myrmekite, and the reaction rim. The extent of the deuteric coarsening reactions can be evaluated from the width and spacing of the albite-rich patch in patchperthite and from the thickness of myrmekite and the reaction rim. The width, spacing, and thickness of these textural features increase systematically with elevation; they also increase gradually in the horizontal inward direction in the western part of the pluton but not in the eastern part of the pluton. The systematic variations in textural development indicate that the Toki granite cooled effectively from the roof and from the western margin during the deuteric coarsening stage. The deuteric coarsening may have occurred at temperatures below 500°C, as indicated by ternary feldspar thermometry. (author)

  8. Volcanic-plutonic connections and metal fertility of highly evolved magma systems: A case study from the Herberton Sn-W-Mo Mineral Field, Queensland, Australia

    Science.gov (United States)

    Cheng, Yanbo; Spandler, Carl; Chang, Zhaoshan; Clarke, Gavin

    2018-03-01

    Understanding the connection between the highly evolved intrusive and extrusive systems is essential to explore the evolution of high silicic magma systems, which plays an important role in discussions of planetary differentiation, the growth of continents, crustal evolution, and the formation of highly evolved magma associated Sn-W-Mo mineral systems. To discern differences between "fertile" and "non-fertile" igneous rocks associated with Sn-W-Mo mineralization and reveal the genetic links between coeval intrusive and extrusive rocks, we integrate whole rock geochemistry, geochronology and Hf isotope signatures of igneous zircons from contemporaneous plutonic and volcanic rocks from the world-class Herberton Mineral Field of Queensland, Australia. The 310-300 Ma intrusive rocks and associated intra-plutonic W-Mo mineralization formed from relatively oxidized magmas after moderate degrees of crystal fractionation. The geochemical and isotopic features of the coeval volcanic succession are best reconciled utilizing the widely-accepted volcanic-plutonic connection model, whereby the volcanic rocks represent fractionated derivatives of the intrusive rocks. Older intrusions emplaced at 335-315 Ma formed from relatively low fO2 magmas that fractionated extensively to produce highly evolved granites that host Sn mineralization. Coeval volcanic rocks of this suite are compositionally less evolved than the intrusive rocks, thereby requiring a different model to link these plutonic-volcanic sequences. In this case, we propose that the most fractionated magmas were not lost to volcanism, but instead were effectively retained at the plutonic level, which allowed further localized build-up of volatiles and lithophile metals in the plutonic environment. This disconnection to the volcanism and degassing may be a crucial step for forming granite-hosted Sn mineralization. The transition between these two igneous regimes in Herberton region over a ∼30 m.y. period is attributed to

  9. Geochronological, geochemical, and Sr-Nd-Hf isotopic characteristics of Cretaceous monzonitic plutons in western Zhejiang Province, Southeast China: New insights into the petrogenesis of intermediate rocks

    Science.gov (United States)

    Liu, Liang; Qiu, Jian-Sheng; Zhao, Jiao-Long; Yang, Ze-Li

    2014-05-01

    We present comprehensive petrological, geochemical, and Sr-Nd-Hf isotopic data for the Matou and Dalai plutons in western Zhejiang Province, Southeast China, with the aim of constraining the petrogenesis of monzonites and to offer new insights into the deep processes of interaction between crustal- and mantle-derived magmas beneath SE China. The Matou pluton comprises quartz monzonite, whereas the Dalai pluton consists of quartz monzodiorite. Zircon U-Pb ages obtained by laser ablation-inductively coupled plasma-mass spectrometry show that both plutons were emplaced at 99-101 Ma. Rocks of both plutons are intermediate to silicic, metaluminous to weakly peraluminous, subalkaline, and K-rich in composition. Samples of the plutons are enriched in large ion lithophile (e.g., Rb, K, and Pb) and light rare earth elements, depleted in high-field strength elements (e.g., Nb, Ta, and Ti), and have small negative or no Eu anomalies. In addition, the rocks have high Mg# values (up to 53.9), high zircon ɛHf(t) values (up to - 1.4), and low Nb/U and Ta/U ratios. Geochemical evidence suggests that both depleted asthenospheric and metasomatically enriched mantle components were involved in the formation of these monzonitic rocks. The presence of inherited zircons with Palaeoproterozoic ages and zircons with unusually low ɛHf(t) values (- 12.9) in the Matou quartz monzonites indicates that ancient crustal materials were also involved in their petrogenesis. In combination with the presence of abundant mafic microgranular enclaves (MMEs) with spheroidal to ellipsoidal-ovoidal shapes and xenocrysts within the more diffused enclaves, and the results of trace element modelling, we suggest that the Matou quartz monzonites were generated by mixing between mantle-derived mafic magmas and crustally derived silicic magmas. The Dalai pluton is relatively homogeneous and contains fewer MMEs than the Matou pluton. Zircons from the Dalai pluton show no inherited components, indicating that

  10. The Transhimalaya (Gangdese) plutonism in the Ladakh region: A U-Pb and Rb-Sr study

    International Nuclear Information System (INIS)

    Schaerer, U.; Hamet, J.; Allegre, C.J.

    1984-01-01

    The age and origin of the Transhimalaya (Gangdese) plutonic belt in the Ladakh area has been studied by high-resolution U-Pb analyses of accessory minerals (zircon and monazite/allanite) and Rb-Sr measurements on whole rock samples. The ages determined of 101+-2 m.y. for a granodiorite and of 60.7+-0.4 m.y. for a granite substantiate that the Transhimalaya plutonism was active at least in mid-Cretaceous (Albian) and earliest Tertiary (Palaeocene) times. A Rb-Sr isochron of 73.4+-2.4 m.y. might be fortuitous because the Rb-Sr systematics shows important heterogeneities on the whole rock scale. The inherited radiogenic lead in zircon demonstrates that anatexis of continental crust was involved in magma genesis. The thus recycled continental material was heterogeneous with respect to its primary ages and/or metamorphic history; the approximate minimum ages of the continental sources range from 350 to 590 m.y. The 101+-2 m.y. old Transhimalaya granodiorite, which intrudes a series of mainly basaltic island arc rocks (Dras Series) shows that this island arc was attached to the continental margin at that times. This is consistent with the hypothesis that the ''Ladakh Tethys'' closed through two subduction regimes: (1) an early Cretaceous subduction, which formed the Dras island arc, and (2) a late Cretaceous to Palaeocene subduction at the continental margin, which caused the emplacement of the Transhimalaya plutonic belt. (orig.)

  11. River Valley pluton, Ontario - A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    Science.gov (United States)

    Ashwal, Lewis D.; Wooden, Joseph L.

    1989-01-01

    This paper presents Nd, Sr, and Pb isotopic data indicating a late-Archean/early-Proterozoic age for the River Valley anorthositic pluton of the southwestern Grenville Province of Sudbury, Ontario. Pb-Pb isotopic data on 10 whole-rock samples ranging in composition from anorthosite to gabbro yield an age of 2560 + or - 155 Ma. The River Valley pluton is thus the oldest anorthositic intrusive yet recognized within the Grenville Province. The Sm-Nd isotopic system records an age of 2377 + or - 68 Ma. High Pb-208/Pb-204 of deformed samples relative to igneous-textured rocks implies Th introduction and/or U loss during metamorphism in the River Valley area. Rb-Sr data from igneous-textured and deformed samples and from mineral separates give an age of 2185 + or - 105 Ma, indicating substantial disturbance of the Rb-Sr isotopic system.

  12. A tale of 10 plutons - Revisited: Age of granitic rocks in the White Mountains, California and Nevada

    Science.gov (United States)

    McKee, E.H.; Conrad, J.E.

    1996-01-01

    40Ar/39Ar incremental heating analysis and conventional K-Ar age determinations on plutonic rocks of the White Mountains define two stages of magmatic emplacement: Late Cretaceous, between ca. 90 Ma and 75 Ma, and Middle-Late Jurassic, between ca. 180 and 140 Ma. The Jurassic stage can be divided into two substages, 180-165 Ma and 150-140 Ma. Thermal effects of the younger plutons on the older granitoids partially to completely reset ages, making it difficult to determine the age of emplacement and cooling of several of the plutons even by 40Ar/39Ar incremental heating analyses. New data together with published ages and regional geochronological synthesis of the Sierra Nevada batholith indicate that regions within the batholith have coherent periods or episodes of magmatic activity. In the White Mountains and Sierra Nevada directly to the west there was little or no activity in Early Jurassic and Early Cretaceous time; magmatism took place during relatively short intervals of 15 m.y. or less in the Middle and Late Jurassic and Late Cretaceous periods. The new K-Ar and 40Ar/39Ar analyses of granitoids from the White Mountains help, but do not completely clarify the complex history of emplacement, cooling, and reheating of the batholith.

  13. Geochemical Relationships between Volcanic and Plutonic Upper to Mid Crustal Exposures of the Rosario Segment, Alisitos Arc (Baja California, Mexico): An Outstanding Field Analog to the Izu-Bonin-Mariana Arc

    Science.gov (United States)

    Morris, R.; DeBari, S. M.; Busby, C. J.; Medynski, S.

    2015-12-01

    Exposed paleo-arcs, such as the Rosario segment of the Cretaceous Alisitos Arc in Baja California, Mexico, provide an opportunity to explore the evolution of arc crust through time. Remarkable 3-D exposures of the Rosario segment record crustal generation processes in the volcanic rocks and underlying plutonic rocks. In this study, we explore the physical and geochemical connection between the plutonic and volcanic sections of the extensional Alisitos Arc, and elucidate differentiation processes responsible for generating them. These results provide an outstanding analog for extensional active arc systems, such as the Izu-Bonin-Mariana (IBM) Arc. Upper crustal volcanic rocks have a coherent stratigraphy that is 3-5 km thick and ranges in composition from basalt to dacite. The most felsic compositions (70.9% SiO2) are from a welded ignimbrite unit. The most mafic compositions (51.5% SiO2, 3.2% MgO) are found in basaltic sill-like units. Phenocrysts in the volcanic units include plagioclase +/- amphibole and clinopyroxene. The transition to deeper plutonic rocks is clearly an intrusive boundary, where plutonic units intrude the volcanic units. Plutonic rocks are dominantly a quartz diorite main phase with a more mafic, gabbroic margin. A transitional zone is observed along the contact between the plutonic and volcanic rocks, where volcanics have coarsely recrystallized textures. Mineral assemblages in the plutonic units include plagioclase +/- quartz, biotite, amphibole, clinopyroxene and orthopyroxene. Most, but not all, samples are low K. REE patterns are relatively flat with limited enrichment. Normalization diagrams show LILE enrichment and HFSE depletion, where trends are similar to average IBM values. We interpret plutonic and volcanic units to have similar geochemical relationships, where liquid lines of descent show the evolution of least to most evolved magma types. We provide a model for the formation and magmatic evolution of the Alisitos Arc.

  14. Discordant K-Ar ages between hornblende and biotite from the Tanzawa tonalitic pluton in the southern Fossa Magna, central Japan

    International Nuclear Information System (INIS)

    Sato, Kohei; Shibata, Ken; Uchiumi, Shigeru

    1986-01-01

    K-Ar ages were determined for hornblende and biotite in three tonalites from the Tanzawa pluton in the southern Fossa Magna, central Japan. The two minerals show discordant ages of 10.1 and 10.7 Ma for hornblende and 4.6 - 5.1 Ma for biotite. The age data and field evidence indicate that the pluton was emplaced in the Tanzawa Group in Middle Miocene time and its slow cooling (ca. 50 deg C/Ma in average) resulted in younger ages of boitites than hornblendes due to lower closure temperature for biotite. (author)

  15. The chemical and isotopic differentiation of an epizonal magma body: Organ Needle pluton, New Mexico

    Science.gov (United States)

    Verplanck, P.L.; Farmer, G.L.; McCurry, M.; Mertzman, S.A.

    1999-01-01

    Major and trace element, and Nd and Sr isotopic compositions of whole rocks and mineral separates from the Oligocene, alkaline Organ Needle pluton (ONP), southern New Mexico, constrain models for the differentiation of the magma body parental to this compositionally zoned and layered epizonal intrusive body. The data reveal that the pluton is rimmed by lower ??(Nd) (~-5) and higher 87Sr/86Sr (~0.7085) syenitic rocks than those in its interior (??(Nd) ~ 2, 87Sr/86Sr ~0.7060) and that the bulk compositions of the marginal rocks become more felsic with decreasing structural depth. At the deepest exposed levels of the pluton, the ??(Nd)~-5 lithology is a compositionally heterogeneous inequigranular syenite. Modal, compositional and isotopic data from separates of rare earth element (REE)-bearing major and accesory mineral phases (hornblende, titanite, apatite, zircon) demonstrate that this decoupling of trace and major elements in the inequigranular syenite results from accumulation of light REE (LREE)-bearing minerals that were evidently separated from silicic magmas as the latter rose along the sides of the magma chamber. Chemical and isotopic data for microgranular mafic enclaves, as well as for restite xenoliths of Precambrian granite wall rock, indicate that the isotopic distinction between the marginal and interior facies of the ONP probably reflects assimilation of the wall rock by ??(Nd) ~-2 mafic magmas near the base of the magma system. Fractional crystallization and crystal liquid separation of the crystally contaminated magma at the base and along the margins of the chamber generated the highly silicic magmas that ultimately pooled at the chamber top.

  16. Geochemistry of mylonitic tourmaline-bearing granite- gneiss pluton in the northeast of June mine

    Directory of Open Access Journals (Sweden)

    Arezoo Moradi

    2017-07-01

    Full Text Available Introduction Studied mylonitic granite-gneiss body is located in the Northwest of the Azna region in the Lorestan province close to the June dimension stone mine. It is a part of the metamorphic- magmatic complex including granite-gneiss, amphibolite, marble and schist. The crystalline basement is attributed to late-Neoproterozoic and it indicates a Panafrican basement, which yields a laser-ablation ICP–MS U–Pb zircon ages of 608 ± 18 Ma and 588 ± 41 Ma (Shakerardakani et al., 2015. There are two granite-gneiss plutons in the complex that are Galeh– Dezh (Shabanian et al., 2009, and June plutons. The Galeh-Doz pluton are previously proposed as syn-deformation pluton with a major S-shaped bend which has been imparted during dextral shearing with a Late Cretaceous (Mohajjel and Fergusson, 2000. However, new age dating on the pluton using U–Pb in the magmatic zircon produced the late-Neoproterozoic dates (Nutman et al., 2014; Shakerardakani et al., 2015. The granite-gneiss plutons show mylonitic fabrics and microstructures (Shabanian et al., 2010. The geochemical characteristics of mylonitic granite-gneiss body near June mine in NW Azna, is in the focus of our research. Materials and methods Petrographic investigations of 30 thin sections were made. Then eight samples were selected and analyzed for whole rock major, trace and REE compositions by ICP-emission spectrometry and ICP-mass spectrometry using natural rock standards as reference samples for calibration at the ACME Analytical Laboratories in Vancouver, British Columbia, Canada. Results The studied gneiss- granitic body has lepido-granoblastic texture as its major texture. It variably shows evidence of dynamic deformation from ultramylonite to protomylonite. The gneiss- granite consists of quartz, alkali feldspar (mostly as perthite, plagioclase, biotite, white mica (muscovite and phengitic muscovite. Accessory phases in the granitoid include, tourmaline, zircon, magmatic epidote

  17. Ion-adsorption REEs in regolith of the Liberty Hill pluton, South Carolina, USA: An effect of hydrothermal alteration

    Science.gov (United States)

    Bern, Carleton R.; Yesavage, Tiffany; Foley, Nora K.

    2017-01-01

    Ion-adsorbed rare earth element (REE) deposits supply the majority of world heavy REE production and substantial light REE production, but relatively little is known of their occurrence outside Southeast Asia. We examined the distribution and forms of REEs on a North American pluton located in the highly weathered and slowly eroding South Carolina Piedmont. The Hercynian Liberty Hill pluton experiences a modern climate that includes ~ 1500 mm annual rainfall and a mean annual temperature of 17 °C. The pluton is medium- to coarse-grained biotite-amphibole granite with minor biotite granite facies. REE-bearing phases are diverse and include monazite, zircon, titanite, allanite, apatite and bastnäsite. Weathered profiles were sampled up to 7 m-deep across the ~ 400 km2 pluton. In one profile, ion-adsorbed REEs plus yttrium (REE + Y) ranged up to 581 mg/kg and accounted for up to 77% of total REE + Y in saprolite. In other profiles, ion-adsorbed REE + Y ranged 12–194 mg/kg and only accounted for 3–37% of totals. The profile most enriched in ion-adsorbed REEs was located along the mapped boundary of two granite facies and contained trioctahedral smectite in the saprolite, evidence suggestive of hydrothermal alteration of biotite at that location. Post-emplacement deuteric alteration can generate easily weathered REE phases, particularly fluorocarbonates. In the case of Liberty Hill, hydrothermal alteration may have converted less soluble to more soluble REE minerals. Additionally, regolith P content was inversely correlated with the fraction ion-adsorbed REEs, and weathering related secondary REE-phosphates were found in some regolith profiles. Both patterns illustrate how low P content aids in the accumulation of ion-adsorbed REEs. The localized occurrence at Liberty Hill sheds light on conditions and processes that generate ion-adsorbed REEs.

  18. Rb-Sr isochronous age of Vepor pluton granitoids

    International Nuclear Information System (INIS)

    Bagdasaryan, G.P.; Gykasyan, R.Kh.; Cambel, B.

    1986-01-01

    The result are presented of geochronological investigations of the Vepor pluton granitoids by the Rb-Sr isochronous method. The results prove the Variscan age of granodiorite magmatism of the Sihla type (387±27 m.y.) and the Early Variscan age of leucocratic granitoids of the Vepor and the Ipel types (284±22 m.y.). Since the initial ratio of 87 Sr/ 86 Sr in granitoids of the Sihla type is 0.7054 and of the Vepor type 0.7060, it can be assumed that during the formation of the granitoids of veporides there was an increased supply of matter from the main source affecting genesis of granitoids. The results prove a polyphase character of the Variscan granitoids of Veporicum. (author)

  19. [Discussion on diagenesis of Xilingang pluton-constrained by X-ray Fluorescence spectroscopy, plasma mass spectrometry and Raman spectroscopy].

    Science.gov (United States)

    Tang, Yu-Kun; Chen, Guo-Neng; Zhang, Ke; Huang, Hai-Hua

    2013-05-01

    The results on Xilingang pluton, mainly consisting of red beds, granites containing numerous debris of red beds and granites, obtained by X-ray fluorescence spectroscopy, plasma mass spectrometry and Raman spectroscopy show: (1) Xilingang pluton from red beds, granites containing numerous debris of red beds to granites has obvious characteristics of decreasing silicon and alkali content, and rising ignition loss, dark mineral content and oxidation index; (2) Chondrite-normalized REE distribution curves and primitive mantle-normalized spider diagram for trace elements of redbed, granites containing numerous debris of red beds and granites have a good consistency, the distribution characteristics of elements are similar to Nanling transformation-type granite; (3) The value of Raman spectrogram characteristic peak of quartz crystal in Xilingang granite decreased from the center of quartz crystal, and FWHM is steady. According to the above, the authors believe that Xilingang granite formed was related to in-situ melting of red beds and underlying strata and magma consolidation. Volatile components were discharged continuously, and oxidation index decreased gradually in the melting process. In the process of diagenesis, the top of pluton tend to be an ongoing silicon and alkali increase, while TFeO and MgO continue to migrate to bottom, and crystallization environment is a relatively closed and steady system.

  20. The link between volcanism and plutonism in epizonal magma systems; high-precision U–Pb zircon geochronology from the Organ Mountains caldera and batholith, New Mexico

    Science.gov (United States)

    Rioux, Matthew; Farmer, Lang; Bowring, Samuel; Wooton, Kathleen M.; Amato, Jeffrey M.; Coleman, Drew S.; Verplanck, Philip L.

    2016-01-01

    The Organ Mountains caldera and batholith expose the volcanic and epizonal plutonic record of an Eocene caldera complex. The caldera and batholith are well exposed, and extensive previous mapping and geochemical analyses have suggested a clear link between the volcanic and plutonic sections, making this an ideal location to study magmatic processes associated with caldera volcanism. Here we present high-precision thermal ionization mass spectrometry U–Pb zircon dates from throughout the caldera and batholith, and use these dates to test and improve existing petrogenetic models. The new dates indicate that Eocene volcanic and plutonic rocks in the Organ Mountains formed from ~44 to 34 Ma. The three largest caldera-related tuff units yielded weighted mean 206Pb/238U dates of 36.441 ± 0.020 Ma (Cueva Tuff), 36.259 ± 0.016 Ma (Achenback Park tuff), and 36.215 ± 0.016 Ma (Squaw Mountain tuff). An alkali feldspar granite, which is chemically similar to the erupted tuffs, yielded a synchronous weighted mean 206Pb/238U date of 36.259 ± 0.021 Ma. Weighted mean 206Pb/238U dates from the larger volume syenitic phase of the underlying Organ Needle pluton range from 36.130 ± 0.031 to 36.071 ± 0.012 Ma, and the youngest sample is 144 ± 20 to 188 ± 20 ka younger than the Squaw Mountain and Achenback Park tuffs, respectively. Younger plutonism in the batholith continued through at least 34.051 ± 0.029 Ma. We propose that the Achenback Park tuff, Squaw Mountain tuff, alkali feldspar granite and Organ Needle pluton formed from a single, long-lived magma chamber/mush zone. Early silicic magmas generated by partial melting of the lower crust rose to form an epizonal magma chamber. Underplating of the resulting mush zone led to partial melting and generation of a high-silica alkali feldspar granite cap, which erupted to form the tuffs. The deeper parts of the chamber underwent continued recharge and crystallization for 144 ± 20 ka after the

  1. Sm-Nd whole-rock isotope system of the Eye-Dashwa Lakes pluton

    International Nuclear Information System (INIS)

    Futa, K.

    1990-01-01

    An unaltered drill-core sample of the Eye-Dashwa Lakes pluton (sample ATK-1 (990.97-996.78)) is light rare earth enriched, with a 147 Sm/ 144 Nd ratio of 0.08699 and a 143 Nd/ 144 Nd ratio of 0.510815. The depleted mantle model age of 2.68 Ga agrees with emplacement ages, indicating that parental magma or its protolith was derived directly from a depleted mantle and that the crustal residence time was short

  2. Petrographical and geochemical characterization and deformation conditions of the San Cristobal pluton, Sierra de Velasco, La Rioja, Argentina; Caracterizacion petrografica y geoquimica y condiciones de deformacion del pluton San Cristobal, Sierra de Velasco, La Rioja, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Bellos, L.I.; Toselli, A.J.; Rossi, J.N.; Grosse, P.; Rosa, J.D. de la; Castro, A.

    2010-07-01

    The San Cristobal pluton is a 35 km2 granitic body that outcrops at the southestern tip of the Sierra de Velasco, located west of La Rioja city, Argentina. It is formed by monzogranites and syenogranites, together with scarce granodiorites, with medium to fine-grained, equigranular to slightly porphyritic textures. Their mineral assemblage consists of quartz + microcline + plagioclase + biotite {+-} muscovite + zircon + apatite + magnetite. The granite contains dioritic to tonalitic mafic enclaves. The central and eastern parts of the granite have been deformed by the NNW-SSE trending South Mylonitic shear zone formed by mylonitic rocks. The metamorphic host-rock is represented by scarce greenschist facies xenoliths and hornfels with the high T/P assemblage K-feldspar - cordierite - biotite {+-} sillimanite. The granites are calc-alkaline, weak- to moderately peraluminous, and formed as part of a continental magmatic arc developed along the active margin of western Gondwana during the Early Paleozoic. The depth of emplacement of the San Cristobal pluton is estimated at {approx}12 km. (Author).

  3. Time-scales of assembly and thermal history of a composite felsic pluton: constraints from the Emerald Lake area, northern Canadian Cordillera, Yukon

    Science.gov (United States)

    Coulson, Ian M.; Villeneuve, Mike E.; Dipple, Gregory M.; Duncan, Robert A.; Russell, James K.; Mortensen, James K.

    2002-05-01

    Knowledge of the time-scales of emplacement and thermal history during assembly of composite felsic plutons in the shallow crust are critical to deciphering the processes of crustal growth and magma chamber development. Detailed petrological and chemical study of the mid-Cretaceous, composite Emerald Lake pluton, from the northern Canadian Cordillera, Yukon Territory, coupled with U-Pb and 40Ar/ 39Ar geochronology, indicates that this pluton was intruded as a series of magmatic pulses. Intrusion of these pulses produced a strong petrological zonation from augite syenite, hornblende quartz syenite and monzonite, to biotite granite. Our data further indicate that multiple phases were emplaced and cooled to below the mineral closure temperatures over a time-scale on the order of the resolution of the 40Ar/ 39Ar technique (˜1 Myr), and that emplacement occurred at 94.3 Ma. Simple thermal modelling and heat conduction calculations were used to further constrain the temporal relationships within the intrusion. These calculations are consistent with the geochronology and show that emplacement and cooling were complete in less than 100 kyr and probably 70±5 kyr. These results demonstrate that production, transport and emplacement of the different phases of the Emerald Lake pluton occurred essentially simultaneously, and that these processes must also have been closely related in time and space. By analogy, these results provide insights into the assembly and petrogenesis of other complex intrusions and ultimately lead to an understanding of the processes involved in crustal development.

  4. The ultimate fate of a synmagmatic shear zone. Interplay between rupturing and ductile flow in a cooling granite pluton

    Science.gov (United States)

    Zibra, I.; White, J. C.; Menegon, L.; Dering, G.; Gessner, K.

    2018-05-01

    The Neoarchean Cundimurra Pluton (Yilgarn Craton, Western Australia) was emplaced incrementally along the transpressional Cundimurra Shear Zone. During syndeformational cooling, discrete networks of cataclasites and ultramylonites developed in the narrowest segment of the shear zone, showing the same kinematics as the earlier synmagmatic structures. Lithological boundaries between aplite/pegmatite veins and host granitic gneiss show more intense pre-cataclasite fabrics than homogeneous material, and these boundaries later became the preferred sites of shear rupture and cataclasite nucleation. Transient ductile instabilities established along lithological boundaries culminated in shear rupture at relatively high temperature (∼500-600 °C). Here, tensile fractures at high angles from the fault plane formed asymmetrically on one side of the fault, indicating development during seismic rupture, establishing the oldest documented earthquake on Earth. Tourmaline veins were emplaced during brittle shearing, but fluid pressure probably played a minor role in brittle failure, as cataclasites are in places tourmaline-free. Subsequent ductile deformation localized in the rheologically weak tourmaline-rich aggregates, forming ultramylonites that deformed by grain-size sensitive creep. The shape and width of the pluton/shear zone and the regime of strain partitioning, induced by melt-present deformation and established during pluton emplacement, played a key role in controlling the local distribution of brittle and then ductile subsolidus structures.

  5. Contrasting magmatic structures between small plutons and batholiths emplaced at shallow crustal level (Sierras de Córdoba, Argentina)

    Science.gov (United States)

    Pinotti, Lucio P.; D'Eramo, Fernando J.; Weinberg, Roberto F.; Demartis, Manuel; Tubía, José María; Coniglio, Jorge E.; Radice, Stefania; Maffini, M. Natalia; Aragón, Eugenio

    2016-11-01

    Processes like injection, magma flow and differentiation and influence of the regional strain field are here described and contrasted to shed light on their role in the formation of small plutons and large batholiths their magmatic structures. The final geometric and compositional arrangement of magma bodies are a complex record of their construction and internal flow history. Magma injection, flow and differentiation, as well as regional stresses, all control the internal nature of magma bodies. Large magma bodies emplaced at shallow crustal levels result from the intrusion of multiple magma batches that interact in a variety of ways, depending on internal and external dynamics, and where the early magmatic, growth-related structures are commonly overprinted by subsequent history. In contrast, small plutons emplaced in the brittle-ductile transition more likely preserve growth-related structures, having a relatively simple cooling history and limited internal magma flow. Outcrop-scale magmatic structures in both cases record a rich set of complementary information that can help elucidate their evolution. Large and small granitic bodies of the Sierra Pampeanas preserve excellent exposures of magmatic structures that formed as magmas stepped through different rheological states during pluton growth and solidification. These structures reveal not only the flow pattern inside magma chambers, but also the rheological evolution of magmas in response to temperature evolution.

  6. Magmatic-hydrothermal fluids and volatile metals in the Spirit Lake pluton and Margaret Cu-Mo porphyry system, SW Washington, USA

    Science.gov (United States)

    Iveson, Alexander A.; Webster, James D.; Rowe, Michael C.; Neill, Owen K.

    2016-03-01

    The halogen-bearing minerals tourmaline, amphibole, and biotite formed during magmatic-hydrothermal processes associated with the late-stage cooling of the Spirit Lake granitoid pluton (Mt. St. Helens, WA) and with the younger sulphide-mineralised rocks of the Margaret Cu-Mo porphyry deposit located entirely within the pluton. Major- and trace-element discrimination suggests that one tourmaline population crystallised from fractionated late-stage melt pockets in granodiorite-monzogranitic dykes of the pluton. These coarse, euhedral, oscillatory, and complexly sector-zoned uvite tourmalines span a limited range in Mg/(Mg + Fe) [Mg#] space (0.4-0.7 apfu) and show the highest Ti, Ca, F, Nb, and Ta contents, and low X-site vacancies (X-site vacancies (>0.6 apfu), lower Ca and F contents, and the highest Li, As, and HREE contents (>80 ppm Li, >1200 ppm As). This population appears to record direct, rapid crystallisation from magmatic ± meteoric fluid(s) bearing the signature of the breakdown of primary feldspars and pyroxenes, with fluid exsolution from fractionated melt patches likely triggered by the formation of the previous generation of tourmaline. Mineralised porphyry deposit tourmaline compositions from the stockwork span a much larger range in Mg# space (0.05-0.9 apfu) and are almost entirely Ca-free. X-sites of these schorl tourmalines are dominated by Na or vacancies, and the Y-sites are strongly Fe enriched. The highest Mn and Zn concentrations (>4000 and >1000 ppm, respectively) potentially reflect the composition of mineralising fluids during ore deposition. A number of boron isotopic analyses yield predominantly heavy boron, but δ11B values range from -5.2 to 6.2 ‰ and average 1.4 ‰. Whilst most plutonic tourmalines conform to reported a- and c-sector element partitioning models, those from the mineralised porphyry show large and variable sector fractionation differences, suggesting that external controls may also be important. Wider evidence for

  7. Loparite-(Ce) from the Khibiny Alkaline Pluton, Kola Peninsula, Russia

    Science.gov (United States)

    Konopleva, N. G.; Ivanyuk, G. Yu.; Pakhomovsky, Ya. A.; Yakovenchuk, V. N.; Mikhailova, Yu. A.

    2017-12-01

    Data on the occurrence, morphology, anatomy, composition, and formation conditions of loparite-(Ce) in the Khibiny alkaline pluton are given. Loparite-(Ce), (Na,Ce,Sr)(Ce,Th)(Ti,Nb)2O6, resulted from metasomatic alteration and assimilation of metamorphic host rocks at the contact with foyaite as well as foyaite on the contact with foidolite. This alteration was the highest in pegmatite, and albitite developed there. A decrease in temperature resulted in enrichment of the perovskite and tausonite endmembers in loparite-(Ce) owing to a decrease in the loparite and lueshite endmembers. La and Ce sharply predominate among rare earth elements in the composition of loparite-(Ce).

  8. Zircon and allanite U-Pb ID-TIMS ages of vaugnerites from the Calzadilla pluton, Salamanca (Spain): dating mantle-derived magmatism and post-magmatic subsolidus overprint

    International Nuclear Information System (INIS)

    López-Moro, F.J.; Romer, R. L.; López-Plaza, M.; González Sánchez, M.

    2017-01-01

    Basic to intermediate high-K, high-Mg mantle-derived rocks occur throughout the Iberian Massif and are particularly important in the Tormes Dome, where vaugnerites form several stocks and small plutons. One of the largest and geochemically most variable among these plutons is the Calzadilla pluton in the Tormes Dome that crystallized at 318 ± 1.4Ma (Bashkirian; U-Pb TIMS zircon). This age reveals that the vaugnerite pluton was emplaced during the transition from late D2 extensional deformation to early D3 contractional deformation (319 to 317Ma). Large-scale extension in the area resulted, on one hand, in extensive anatexis in the crust due to quasiisothermal decompression and mica-dehydration melting and, on the other hand, in the upwelling of the mantle, which induced partial melting of the enriched domains in the lithospheric mantle. The driving reason why crustal and mantle melts were coeval is extension. The U-Pb ID-TIMS age of allanite is not related to the emplacement nor cooling of the Calzadilla vaugnerite, but it seems to be related to a younger subsolidus overprint ca. 275Ma that, in the scale of the Central Iberian Zone, corresponds to a period of hydrothermal alteration, including episyenite formation and tungsten mineralization.

  9. Zircon and allanite U-Pb ID-TIMS ages of vaugnerites from the Calzadilla pluton, Salamanca (Spain): dating mantle-derived magmatism and post-magmatic subsolidus overprint

    Energy Technology Data Exchange (ETDEWEB)

    López-Moro, F.J.; Romer, R. L.; López-Plaza, M.; González Sánchez, M.

    2017-07-01

    Basic to intermediate high-K, high-Mg mantle-derived rocks occur throughout the Iberian Massif and are particularly important in the Tormes Dome, where vaugnerites form several stocks and small plutons. One of the largest and geochemically most variable among these plutons is the Calzadilla pluton in the Tormes Dome that crystallized at 318 ± 1.4Ma (Bashkirian; U-Pb TIMS zircon). This age reveals that the vaugnerite pluton was emplaced during the transition from late D2 extensional deformation to early D3 contractional deformation (319 to 317Ma). Large-scale extension in the area resulted, on one hand, in extensive anatexis in the crust due to quasiisothermal decompression and mica-dehydration melting and, on the other hand, in the upwelling of the mantle, which induced partial melting of the enriched domains in the lithospheric mantle. The driving reason why crustal and mantle melts were coeval is extension. The U-Pb ID-TIMS age of allanite is not related to the emplacement nor cooling of the Calzadilla vaugnerite, but it seems to be related to a younger subsolidus overprint ca. 275Ma that, in the scale of the Central Iberian Zone, corresponds to a period of hydrothermal alteration, including episyenite formation and tungsten mineralization.

  10. Geochemistry of the Serra das Melancias Pluton in the Serra da Aldeia Suite: a classic post-collisional high Ba-Sr granite in The Riacho do Pontal Fold Belt, NE Brazil

    Directory of Open Access Journals (Sweden)

    Marcela Paschoal Perpétuo

    Full Text Available ABSTRACT: The Serra da Aldeia Suite is composed by circular or oval-shaped plutons, intrusive in meta-sedimentary and meta-volcanosedimentary rocks in the Riacho do Pontal Fold Belt, NE Brazil. The Serra das Melancias Pluton, belonging to Serra da Aldeia Suite, is located southeastern of Piaui state, near Paulistana city. These plutons represent a major magmatic expression in this area and contain important information about the late magmatic/collisional geologic evolution of the Brasiliano Orogeny. Based on petrographic and geochemical data, three facies were defined in the Serra das Melancias Pluton: granites, syenites and quartz monzonites. The rocks display high-K and alkaline to shoshonitic affinities, are metaluminous and show ferrous character. They are enriched in Light Rare Earth Elements and Large Ion Lithophile Elements, with negative anomalies in Nb, Ta and Ti. Their high Ba, Sr, K/Rb, low Rb, relatively low U, Th, Nb to very low Heavy Rare Earth Elements and Y resemble those of typical high Ba-Sr granitoids. The geochemical data suggest the emplacement of Serra das Melancias Pluton in a transitional, late to post-orogenic setting in the Riacho do Pontal Fold Belt during the late Brasiliano-Pan African Orogeny.

  11. Insights into the emplacement of upper-crustal plutons and their relationship to large silicic calderas, from field relationships, geochronology, and zircon trace element geochemistry in the Stillwater - Clan Alpine caldera complex, western Nevada, USA

    Science.gov (United States)

    Colgan, Joseph P.; John, David A.; Henry, Christopher D.; Watts, Kathryn E.

    2018-01-01

    Geologic mapping, new U-Pb zircon ages, and new and published 40Ar/39Ar sanidine ages document the timing and extent of Oligocene magmatism in the southern Stillwater Range and Clan Alpine Mountains of western Nevada, where Miocene extension has exposed at least six nested silicic calderas and underlying granitic plutons to crustal depths locally ≥ 9 km. Both caldera-forming rhyolitic tuffs and underlying plutons were emplaced in two episodes, one from about 30.4-28.2 Ma that included the Deep Canyon, Job Canyon, and Campbell Creek calderas and underlying plutons, and one from about 25.3-24.8 Ma that included the Louderback Mountains, Poco Canyon, and Elevenmile Canyon calderas and underlying plutons. In these two 1-2 m.y. periods, almost the entire Mesozoic upper crust was replaced by Oligocene intrusive and extrusive rocks to depths ≥ 9 km over an estimated total area of 1500 km2 (pre-extension). Zircon trace element geochemistry indicates that some plutonic rock can be solidified residual magma from the tuff eruptions. Most plutons are not solidified residual magma, although they directly underlie calderas and were emplaced along the same structures shortly after to as much as one million years after caldera formation. Magma chambers and plutons grew by floor subsidence accommodated by downward transfer of country rocks. If other Great Basin calderas are similar, the dense concentration of shallowly exposed calderas in central Nevada is underlain by a complexly zoned mid-Cenozoic batholith assembled in discrete pulses that coincided with formation of large silicic calderas up to 2500-5000 km3.

  12. Zircon U-Pb age, Lu-Hf isotope, mineral chemistry and geochemistry of Sundamalai peralkaline pluton from the Salem Block, southern India: Implications for Cryogenian adakite-like magmatism in an aborted-rift

    Science.gov (United States)

    Renjith, M. L.; Santosh, M.; Li, Tang; Satyanarayanan, M.; Korakoppa, M. M.; Tsunogae, T.; Subba Rao, D. V.; Kesav Krishna, A.; Nirmal Charan, S.

    2016-01-01

    The Sundamalai peralkaline pluton is one among the Cryogenian alkaline plutons occurring in the Dharmapuri Rift Zone (DRZ) of the Salem Block in the Southern Granulite Terrane (SGT) of India. Here we present zircon U-Pb age and Lu-Hf isotopic composition, mineral chemistry and geochemistry of the pluton to explore the petrogenesis and geodynamic implications. Systematic modal variation of orthoclase, Na-plagioclase, Ca-amphibole (ferro-edenite and hastingsite) and quartz developed quartz-monzonite and granite litho units in the Sundamalai pluton. Thermometry based on amphibole-plagioclase pair suggests that the pluton was emplaced and solidified at around 4.6 kbar pressure with crystallization of the major phases between 748 and 661 °C. Estimated saturation temperature of zircon (712-698 °C) is also well within this range. However, apatite saturation occurred at higher temperatures between 835 and 870 °C, in contrast with monazite saturation (718-613 °C) that continued up to the late stage of crystallization. Estimated oxygen fugacity values (log fO2: -14 to -17) indicate high oxidation state for the magma that stabilized titanite and magnetite. The magmatic zircons from Sundamalai pluton yielded a weighted mean 206Pb/238U age of 832.6 ± 3.2 Ma. Geochemically, the Sundamalai rocks are high-K to shoshonitic, persodic (Na2O/K2O ratio > 1), silica-saturated (SiO2:65-72 wt.%), and peralkaline in composition (aluminum saturation index, ASI Sc(2-3 ppm), positive Sr anomaly and predominantly negative zircon εHf(t) values (-10.8 to -9.3 with an average of -10.2) and initial 176Hf/177Hf ratios (0.281947-0.282022) confirm a Paleoproterozoic crustal source. Based on the field and geochemical evidences, we propose that a previously metasomatized mafic lower-crustal source enriched in alkalis has undergone CO2-present partial melting as a result of asthenospheric upwelling beneath an aborted rifting along the DRZ generating the magma that crystallized the Sundamalai rocks

  13. Relative contributions of crust and mantle to generation of Campanian high-K calc-alkaline I-type granitoids in a subduction setting, with special reference to the Harsit Pluton, Eastern Turkey

    NARCIS (Netherlands)

    Karsli, O.; Dokuz, A.; Uysal, I.; Aydin, F.; Chen, B.; Kandemir, R.; Wijbrans, J.R.

    2010-01-01

    We present elemental and Sr-Nd-Pb isotopic data for the magmatic suite (~79 Ma) of the Harşit pluton, from the Eastern Pontides (NE Turkey), with the aim of determining its magma source and geodynamic evolution. The pluton comprises granite, granodiorite, tonalite and minor diorite (SiO

  14. Intrusion of basaltic magma into a crystallizing granitic magma chamber: The Cordillera del Paine pluton in southern Chile

    Science.gov (United States)

    Michael, Peter J.

    1991-10-01

    The Cordillera del Paine pluton in the southernmost Andes of Chile represents a deeply dissected magma chamber where mafic magma intruded into crystallizing granitic magma. Throughout much of the 10x15 km pluton, there is a sharp and continuous boundary at a remarkably constant elevation of 1,100 m that separates granitic rocks (Cordillera del Paine or CP granite: 69 77% SiO2) which make up the upper levels of the pluton from mafic and comingled rocks (Paine Mafic Complex or PMC: 45 60% SiO2) which dominate the lower exposures of the pluton. Chilled, crenulate, disrupted contacts of mafic rock against granite demonstrate that partly crystallized granite was intruded by mafic magma which solidified prior to complete crystallization of the granitic magma. The boundary at 1,100 m was a large and stable density contrast between the denser, hotter mafic magma and cooler granitic magma. The granitic magma was more solidified near the margins of the chamber when mafic intrusion occurred, and the PMC is less disrupted by granites there. Near the pluton margins, the PMC grades upward irregularly from cumulate gabbros to monzodiorites. Mafic magma differentiated largely by fractional crystallization as indicated by the presence of cumulate rocks and by the low levels of compatible elements in most PMC rocks. The compositional gap between the PMC and CP granite indicates that mixing (blending) of granitic magma into the mafic magma was less important, although it is apparent from mineral assemblages in mafic rocks. Granitic magma may have incorporated small amounts of mafic liquid that had evolved to >60% SiO2 by crystallization. Mixing was inhibited by the extent of crystallization of the granite, and by the thermal contrast and the stable density contrast between the magmas. PMC gabbros display disequilibrium mineral assemblages including early formed zoned olivine (with orthopyroxene coronas), clinopyroxene, calcic plagioclase and paragasite and later-formed amphibole

  15. Geochronology of plutonic rocks and their tectonic terranes in Glacier Bay National Park and Preserve, southeast Alaska: Chapter E in Studies by the U.S. Geological Survey in Alaska, 2008-2009

    Science.gov (United States)

    Brew, David A.; Tellier, Kathleen E.; Lanphere, Marvin A.; Nielsen, Diane C.; Smith, James G.; Sonnevil, Ronald A.

    2014-01-01

    We have identified six major belts and two nonbelt occurrences of plutonic rocks in Glacier Bay National Park and Preserve and characterized them on the basis of geologic mapping, igneous petrology, geochemistry, and isotopic dating. The six plutonic belts and two other occurrences are, from oldest to youngest: (1) Jurassic (201.6–145.5 Ma) diorite and gabbro of the Lituya belt; (2) Late Jurassic (161.0–145.5 Ma) leucotonalite in Johns Hopkins Inlet; (3) Early Cretaceous (145.5–99.6 Ma) granodiorite and tonalite of the Muir-Chichagof belt; (4) Paleocene tonalite in Johns Hopkins Inlet (65.5–55.8 Ma); (5) Eocene granodiorite of the Sanak-Baranof belt; (6) Eocene and Oligocene (55.8–23.0 Ma) granodiorite, quartz diorite, and granite of the Muir-Fairweather felsic-intermediate belt; (7) Eocene and Oligocene (55.8–23.0 Ma) layered gabbros of the Crillon-La Perouse mafic belt; and (8) Oligocene (33.9–23.0 Ma) quartz monzonite and quartz syenite of the Tkope belt. The rocks are further classified into 17 different combination age-compositional units; some younger belts are superimposed on older ones. Almost all these plutonic rocks are related to Cretaceous and Tertiary subduction events. The six major plutonic belts intrude the three southeast Alaska geographic subregions in Glacier Bay National Park and Preserve, from west to east: (1) the Coastal Islands, (2) the Tarr Inlet Suture Zone (which contains the Border Ranges Fault Zone), and (3) the Central Alexander Archipelago. Each subregion includes rocks assigned to one or more tectonic terranes. The various plutonic belts intrude different terranes in different subregions. In general, the Early Cretaceous plutons intrude rocks of the Alexander and Wrangellia terranes in the Central Alexander Archipelago subregion, and the Paleogene plutons intrude rocks of the Chugach, Alexander, and Wrangellia terranes in the Coastal Islands, Tarr Inlet Suture Zone, and Central Alexander Archipelago subregions.

  16. Sm-Nd, Rb-Sr and K-Ar age constraints of the El Molle and Barroso plutons, western Sierra de San Luis, Argentina

    International Nuclear Information System (INIS)

    Sato, A.M.; Gonzalez, P.D; Petronilho, L.A; Llambias, E.J.; Varela, R; Basei, M.A.S

    2001-01-01

    Within the Early Paleozoic Famatinian orogeny of Southern Sierras Pampeanas (Sierra de San Luis and Sierra de Cordoba), the post-orogenic granitoids are characterized by circular intrusions. The published Rb-Sr and K-Ar ages from plutons in the Sierra de San Luis range between 408 and 320 Ma (see synthesis in Llambias et al., 1998). The El Molle and Barroso plutons (Sims et al., 1997; Gonzalez and Sato, 2000) are the two main exposures of a post-orogenic intrusive complex located in the western area of the Sierra de San Luis basement. They also exhibit an overall circular map view of almost 8 km in diameter, and are emplaced in a metamorphic complex developed through pre-Famatinian (Proterozoic? to Early Paleozoic) to Famatinian (Early Paleozoic) orogenies (Gonzalez and Llambias, 1998; von Gosen and Prozzi, 1998). We are carrying out isotopic datings of the El Molle and Barroso plutons in order to contribute to the understanding of the magmatic and metamorphic evolution of the final stages of the Famatinian orogenic cycle in the Sierra de San Luis. The first results of the Sm-Nd, Rb-Sr and K-Ar dates are here presented (au)

  17. Oxygen isotope exchange kinetics between coexistent minerals and water in the Ertaibei granite pluton, northern Xinjiang

    Institute of Scientific and Technical Information of China (English)

    刘伟; 李志安; 赵志忠

    1996-01-01

    Coexistent minerals quartz, feldspar and biotite vary widely in δ18O value and display remarkable 18O/16O disequilibrium relations in the Ertaibei granite pluton, northern Xinjiang. The 18O/16O exchange reaction definitely occurred between granite and water. Initial δ18O values of the granite and exotic water are evaluated by the mass balance consideration. The results show that the 18O/16O exchange reaction is not necessarily accompanied by what geologists describe as petrological and mineralogiesl alteration effects, indicating that the exchange reaction occurs at a comparatively high temperature during subsolidus cooling of magmas. Exchange mechanism is mainly controlled by diffusion. It is demonstrated through quantitative modelling that the hydrothermal system associated with the Ertaibei pluton lived for 0.8-3 Ma, with a fluid flow rate of 3 × 10-14 mol · s-1 and water/rock (W/R) ratio of 0.79 - 3.08. Flow path and initial heterogeneity of the exotic metamorphic fluid are modelled with the δ1

  18. The Shahewan rapakivi-textured granite – quartz monzonite pluton, Qinling orogen, central China: mineral composition and petrogenetic significance

    Directory of Open Access Journals (Sweden)

    Xiaoxia Wang

    2002-01-01

    Full Text Available The Mesozoic Shahewan pluton consists of four texturally different types of biotite-hornblende quartz monzonite. In the porphyritic types alkali feldspar occurs as euhedral or ovoidal megacrysts that are often mantled by one or more plagioclase shells, and as smaller grains in the groundmass. Quartz, plagioclase (An20–28, biotite, and hornblende occur as inclusions in the alkali feldspar megacrystsand, more abundantly, in the groundmass. Euhedral quartz crystals in the groundmass are not as common and well developed as in typical rapakivi granite. Compared to typical rapakivi granites, the mafic minerals (biotite and hornblende are rich in Mg and poor in Fe, and the whole rock is low in Si, K, F, Ga, Zr, LREE, Fe/Mg, and K/Na. The rocks of the Shahewan pluton are thus regarded as rapakivi-textured quartz monzonites and granites but not true rapakivi granites.

  19. Insights into the emplacement of upper-crustal plutons and their relationship to large silicic calderas, from field relationships, geochronology, and zircon trace element geochemistry in the Stillwater – Clan Alpine caldera complex, western Nevada, USA

    Science.gov (United States)

    Colgan, Joseph P.; John, David A.; Henry, Christopher D.; Watts, Kathryn E.

    2018-01-01

    Geologic mapping, new U-Pb zircon ages, and new and published 40Ar/39Ar sanidine ages document the timing and extent of Oligocene magmatism in the southern Stillwater Range and Clan Alpine Mountains of western Nevada, where Miocene extension has exposed at least six nested silicic calderas and underlying granitic plutons to crustal depths locally ≥ 9 km. Both caldera-forming rhyolitic tuffs and underlying plutons were emplaced in two episodes, one from about 30.4–28.2 Ma that included the Deep Canyon, Job Canyon, and Campbell Creek calderas and underlying plutons, and one from about 25.3–24.8 Ma that included the Louderback Mountains, Poco Canyon, and Elevenmile Canyon calderas and underlying plutons. In these two 1–2 m.y. periods, almost the entire Mesozoic upper crust was replaced by Oligocene intrusive and extrusive rocks to depths ≥ 9 km over an estimated total area of ~ 1500 km2 (pre-extension). Zircon trace element geochemistry indicates that some plutonic rock can be solidified residual magma from the tuff eruptions. Most plutons are not solidified residual magma, although they directly underlie calderas and were emplaced along the same structures shortly after to as much as one million years after caldera formation. Magma chambers and plutons grew by floor subsidence accommodated by downward transfer of country rocks. If other Great Basin calderas are similar, the dense concentration of shallowly exposed calderas in central Nevada is underlain by a complexly zoned mid-Cenozoic batholith assembled in discrete pulses that coincided with formation of large silicic calderas up to 2500–5000 km3.

  20. Emplacement and geochemical evolution of eocene plutonic rocks in the Colville batholith

    International Nuclear Information System (INIS)

    Holder, R.W.

    1986-01-01

    Eocene plutonic rocks in the Colville batholith are divided on the basis of field evidence and chemical composition into, in order of decreasing age, (1) several calc-alkalic biotite-hornblende monzodiorite to granodiorite intrusions referred to as the Devils Elbow suite, and (2) compositionally variable calc-alkalic to alkali-calcic intrusions referred to as the Herron Creek suite. These Eocene suites are distinct from older, more voluminous, leucocratic granite and granodiorite intrusions, designated the Keller Butte suite, which are calcic and characteristically lack hornblende. Results of qualitative and computer modeling of major element variation and quantitative models of trace element variation in the chemically coherent Bridge Creek intrusions, a member of the Herron Creek suite, are compatible with fractionation of plagioclase feldspar + hornblende + biotite + magnetite + apatite from a parent magma of andesitic composition to account for the observed variation. Strongly curved variation trends preclude mixing as the primary mechanism for the observed variation. It is suggested that parallel variation trends in the other Eocene intrusions are also the result of crystal fractionation. Lateral chemical variations including a decrease in silica saturation suggest the chemical characteristics of these rocks reflect those of parental magmas derived from the mantle, with an unknown amount of crustal contribution. Rotated and angular xenoliths, discordant contacts, and temporal and spatial proximity to graben structures indicate that the Eocene plutons were passively implaced into the upper crust along graben-bounding faults during graben formation, the earlier stages of which appear to have been contemporaneous with regional mylonitic deformation

  1. Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt, NW China: Constraints on the initiation of a magmatic arc in the southern Central Asian Orogenic Belt

    Science.gov (United States)

    Du, Long; Long, Xiaoping; Yuan, Chao; Zhang, Yunying; Huang, Zongying; Sun, Min; Zhao, Guochun; Xiao, Wenjiao

    2018-03-01

    Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt (ETOB) have been studied in order to constraint the initiation of a magmatic arc formed in this region. Zircon U-Pb dating indicates that two dioritic plutons in the northern ETOB were generated in the Late Ordovician (452 ± 4 Ma) and the Early Silurian (442 ± 3 Ma), respectively. Diorites from the two plutons are characterized by enrichments in large ion lithophile elements (LILE) and highly incompatible elements, with depletions in high field strength elements (HSFE) displaying typical geochemical features of a subduction-related origin. They have positive εNd(t) values (+5.08-+6.58), relatively young Nd model ages (TDM = 0.71-1.08 Ga), with Ta/Yb (0.05-0.09) and Nb/Ta ratios (12.06-15.19) similar to those of depleted mantle, suggesting a juvenile mantle origin. Their high Ba/La (13.3-35.9), low Th/Yb (0.72-2.02), and relatively low Ce/Th (4.57-14.7) and Ba/Th (47.8-235) ratios indicate that these diorites were probably produced by partial melting of a depleted mantle wedge metasomatized by both subducted sediment-derived melts and slab-derived aqueous fluids. Zircon U-Pb dating of a granitic pluton in the northern ETOB yielded a Late Ordovician intrusion age of 447 ± 5 Ma. Granites from this pluton show calc-alkaline compositions with geochemical characteristics of I-type granites. They also show positive εNd(t) values (+6.49-+6.95) and young Nd model ages (TDM = 0.69-0.87 Ga), indicating that the granites were most likely derived from juvenile lower crust. Our new dating results on the dioritic and granitic plutons suggest that arc-type magmatism in the northern ETOB began prior to or at the Late Ordovician (452-442 Ma). In addition, north-dipping subduction of the Kangguertage oceanic lithosphere may account for the arc-type magmatism and the geodynamic process of the ETOB in the Early Paleozoic.

  2. Rare earths, thorium, and other minor elements in sphene from some plutonic rocks in West-Central Alaska

    International Nuclear Information System (INIS)

    Staatz, M.H.; Conklin, N.M.; Brownfield, I.K.

    1977-01-01

    Sphene is an abundant accessory mineral in some abnormally radioactive plutonic rocks in west-central Alaska. Seven samples of sphene from four different areas in west-central Alaska contained from 20,350 to 39,180 parts per million total rare earths and 390 to 2000 ppM thorium. The lanthanide content in six of the seven sphenes is chiefly the light rare earths and is similar to that of crystal abundance; a seventh sphene from the Darby Mountains, however, contains above average amounts of the heavy rare earths. A comparison of the lanthanide distribution in sphene from several areas indicates that the structure of sphene will accommodate whatever lanthanides are available when the mineral crystallizes. The amount of thorium and rare earths in sphene is also affected by the presence of other accessory minerals. Sphene in rocks containing either allanite or zircon has a lower thorium content than in rocks that do not contain allanite or zircon. Sphene, because of its abundance, may contain the greater part of the rare earths and thorium in some of the plutonic rocks of west-central Alaska

  3. Recognition of favorable zones for uranium and thorium accumulation, at Um Ara-Um Shilman granitic pluton, south eastern desert, Egypt, using airborne spectrometric and magnetic data

    International Nuclear Information System (INIS)

    Elkattan, E.M.

    1995-01-01

    The objective is aimed at identifying significant U and Th anomalies, the amount of re-mobilization of U and Th, the structural framework of the granite pluton and the distribution of spectrometric anomalies. The study revealed that the granite pluton could be represented as a single radio-lithologic unit excluding abnormal measurements exceeding Xban + 2S. It also revealed the existence of eight strong spectrometric anomalies. Observed values of eU correlate well with eTh, r=0.72 while the correlation between eU/eTh and eU is lacking, r=0.190. Meanwhile, there is a negative correlation between eU/eTh and eTh,r= -0.335. This deficiency in correlation suggests a limited or zero remobilization of uranium, which was partly governed by magmatic processes. Most of the radioactive anomalies were found within or near the major contact faults which may act as channels for mineralized fluids from the subsurface. These fluids possess increased concentrations of U and/or Th which could exist in appropriate chemical and/or structural traps. The U and Th anomalies were found to be associated with the northern and southern parts of the granite pluton respectively. The difference between the northern and southern parts of the granite pluton may be attributed to differences in radioelement content, the effect of partial and/or complete digestion of older rocks, or to different levels of erosion. (author)

  4. Growth of plutons by incremental emplacement of sheets in crystal-rich host: Evidence from Miocene intrusions of the Colorado River region, Nevada, USA

    Science.gov (United States)

    Miller, C.F.; Furbish, D.J.; Walker, B.A.; Claiborne, L.L.; Koteas, G.C.; Bleick, H.A.; Miller, J.S.

    2011-01-01

    Growing evidence supports the notion that plutons are constructed incrementally, commonly over long periods of time, yet field evidence for the multiple injections that seem to be required is commonly sparse or absent. Timescales of up to several million years, among other arguments, indicate that the dominant volume does not remain largely molten, yet if growing plutons are constructed from rapidly solidifying increments it is unlikely that intrusive contacts would escape notice. A model wherein magma increments are emplaced into melt-bearing but crystal-rich host, rather than either solid or crystal-poor material, provides a plausible explanation for this apparent conundrum. A partially solidified intrusion undoubtedly comprises zones with contrasting melt fraction and therefore strength. Depending on whether these zones behave elastically or ductilely in response to dike emplacement, intruding magma may spread to form sheets by either of two mechanisms. If the melt-bearing host is elastic on the relevant timescale, magma spreads rather than continuing to propagate upward, where it encounters a zone of higher rigidity (higher crystal fraction). Similarly, if the dike at first ascends through rigid, melt-poor material and then encounters a zone that is weak enough (poor enough in crystals) to respond ductilely, the ascending material will also spread because the dike tip ceases to propagate as in rigid material. We propose that ascending magma is thus in essence trapped, by either mechanism, within relatively crystal-poor zones. Contacts will commonly be obscure from the start because the contrast between intruding material (crystal-poorer magma) and host (crystal-richer material) is subtle, and they may be obscured even further by subsequent destabilization of the crystal-melt framework. Field evidence and zircon zoning stratigraphy in plutons of the Colorado River region of southern Nevada support the hypothesis that emplacement of magma replenishments into a

  5. Neogene Uplift and Exhumation of Plutonic Bodies in the Beni Bou Ifrour Massif (Nador, northeastern Morocco)

    Science.gov (United States)

    Lebret, Noëmie; Jolivet, Laurent; Branquet, Yannick; Bourdier, Jean-Louis; Jolivet, Marc; Marcoux, Eric

    2013-04-01

    In Neogene times, the whole Mediterranean Sea was the center of an intense magmatic activity. This post-collisional magmatism produced a large amount of volcanic edifices through the Alpine belts, together with some intrusives. These plutonic bodies can be associated with skarn-type mineralization, well-known in Elba Island or Serifos Island (Cyclades), where they are generally exhumed by detachment faults. In Morocco, the plutons hosted by the Beni Bou Ifrour massif are connected to the biggest skarn-type iron concentrations of the country (production > 60 Mt, reserves ≈ 25 Mt). The purpose of this work is to explain the late uplift of this massif and subsequent exhumation of the intrusives. As a final product of the Africa-Eurasia plate convergence since ca. 70 Ma, the Rif Mountains constitute the westernmost segment of the Mediterranean Alpine belts. In the oriental part of this range, volcanic summits and Paleozoic to Mesozoic massifs outcrop in the surrounding Mio-Pliocene plains. The Beni Bou Ifrour massif, in the Nador province, consists in a dome-shaped folded Mesozoic series (Domerian to Barremian) affected by a slight epizonal regional metamorphism (ca. 14-12 Ma), dislocated by Neogene NE-SW faults and eventually sealed by upper Miocene transgressive sediments. The hosted intrusives (7.58 ± 0.03 Ma; Duggen et al., 2005) are the plutonic equivalents to the potassic calc-alkaline lavas (andesites mainly) from the surrounding "satellite" volcanic massifs. They turn out to stand in higher topographic position than the younger shoshonitic lavas of the neighboring Gourougou stratovolcano (6.12 ± 0.01 Ma; Duggen et al., 2005). Previous studies have attributed this uplift to the action of normal faults (pull-apart basins; Guillemin & Houzay, 1982), thrusting (Kerchaoui, 1985; 1995) or even of a caldeira resurgence (El Bakkali, 1995). To discriminate against those exhumation mechanisms, field work has been performed, coming along with new cross-sections to

  6. U-Pb geochronology of Gangdese (Transhimalaya) plutonism in the Lhasa-Xigaze region, Tibet

    International Nuclear Information System (INIS)

    Schaerer, U.; Allegre, C.J.; Paris-6 Univ., 75; Paris-7 Univ., 75; Xu, R.H.

    1984-01-01

    A series of different plutons from the Lhasa-Xigaze segment of the Gangdese (Transhimalaya) belt has been studied by high-resolution U-Pb analyses of zircon (using zircon fractions of 5-100 grains each, selected upon specific grain characteristics). For two diorites, located east of Xigaze (Dazhuka), the zircons yield concordant ages of 93.4 +- 1.0 and 94.2 +- 1.0 m.y., respectively. Also concordant ages of 41.1 +- 0.4 and 41.7 +- 0.4 m.y. have been obtained for two granodiorites, collected southwest of Lhasa (Qushui). The precision on the ages of two granites from the Xigaze and Lhasa area, is limited by two factors: the presence of inherited radiogenic lead and the occurrence of subsequent lead loss. However, some concordant zircons, detected in both granites, define approximate ages of about 67 and 53 m.y., respectively. The inherited lead components show the melting of Precambrian material was involved in magma genesis. The U-Pb ages substantiate a magmatic activity lasting from mid-Cretaceous (Cenomanian) to Eocene (Lutetian) time. Such a period of plutonism at the southern margin of Eurasia, as well as the occurrence of magma generation from continental crust, suggest that the Gangdese range results from the subduction of Tethys oceanic lithosphere (Indian plate) underneath Eurasia (Eurasian plate). If this model is true, the collision of India with Eurasia (Along the Lhasa-Xigaze sector) postdates the emplacement of the 41 m.y. old Gangdese granodiorites, i.e. the collision occurred after Lutetian time. (orig.)

  7. The Merensky Reef in the Chineisky Pluton (Siberia)? A myth or a reality?

    Science.gov (United States)

    Zhitova, L.; Sharapov, V.; Zhukova, I.

    2006-12-01

    It is a dream of each geologist to find a `Merensky Reef' in each layered basic intrusion. Scientists have been trying many various techniques to come this dream to reality. The most perspective way to do so is probably a combination of physicochemical and computer modeling of layered basic intrusion crystallization together with fluid and melt inclusions studies in situ. This combination allows us to do the following: 1. To study boundary conditions for separation of low density gas phase and salt melt from the crystallizing primary basic melt in large magma chamber. 2. To determine correct quantitative parameters for formation of residual fluid-bearing brines extracting high metal concentrations. 3. To compute critical levels for substance differentiation at phase, geochemical and other `barriers' in those basic mantle-crust ore magmatic systems. 4. To model metal extraction, transportation and deposition at these `barriers' for systems of various `silicate melt - residual salt brines' ratios under the conditions of continental lithosphere. Comparison of real and modeled data allows us to conclude if a formation of a narrow zone of high metal concentration is possible at those critical levels (phase and geochemical `barriers'). The above-mentioned algorithm has been used for the Chineisky Pluton (the Transbaikal region, Siberia). Fortunately we have found our own `Merensky Reef', which happened to be a PGE enrichment marginal zone of the Chineisky Pluton due to specific fluid regime of crystallization! This work was supported by the Ministry for Russian Science and Education, Grant #DSP.2.1.1.702.

  8. Petrotectonic characteristics, geochemistry, and U-Pb geochronology of Jurassic plutons in the Upper Magdalena Valley-Colombia: Implications on the evolution of magmatic arcs in the NW Andes

    Science.gov (United States)

    Rodríguez, G.; Arango, M. I.; Zapata, G.; Bermúdez, J. G.

    2018-01-01

    Field, petrographic, and geochemical characterization along with U-Pb zircon geochronology of the Jurassic plutons exposed in the Upper Magdalena Valley (Colombia) allowed recognizing distinct western and eastern suites formed in at least three magmatic pulses. The western plutons crop out between the eastern flank of the Central Cordillera and the Las Minas range, being limited by the Avirama and the Betania-El Agrado faults. The western suite comprises a quartz monzonite - quartz monzodiorite - quartz diorite series and subordinate monzogranites. Chemically, the rocks are high-K calc-alkaline I-type granitoids (some reaching the shoshonitic series) with metaluminous of magnesium affinity. Trace-element tectonic discrimination is consistent with magmatism in a continental arc environment. Most rocks of this suite crystallized between 195 and 186 Ma (Early Jurassic, Pliensbachian), but locally some plutons yielded younger ages between 182 and 179 Ma (Early Jurassic, Toarcian). The eastern suite crops out in the eastern margin of the Upper Magdalena Valley, east of the Betania - El Agrado fault. Plutons of this unit belong to the monzogranite series with rock types ranging between syenogranites and granodiorites. They are high-K calc-alkaline continental granitoids, some metaluminous and some peraluminous, related to I-type granites generated in a volcanic arc. Crystallization of the suite was between 173 and 169 Ma (Middle Jurassic, Aalenian-Bajocian), but locally these rocks contain zircon with earlier inherited ages related to the magmatic pulse of the western suite between 182 and 179 Ma (Early Jurassic, Toarcian). The evolution of the Jurassic plutons in the Upper Magdalena Valley is best explained by onset or increase in subduction erosion of the accretionary prism. This explains the eastward migration of the arc away from the trench. Subduction of prism sediments increased the water flux from the subducting slab, decreasing solidus temperatures, therefore

  9. Geochemistry and meaning of the geotectonic position of plutonic rocks from Chapada region, Goias, Brazil

    International Nuclear Information System (INIS)

    Kuyumjian, R.M.

    1989-01-01

    In common with other orogenic belts, in which the presence of both, granitic and small basic-ultrabasic intrusions are characteristics of medium-high pressure metamorphic terranes, the geological and geochemical evidences indicate a close relationship between the granitoid, gabbroic and pyroxenitic plutons and the orogenic metabasaltic rocks from the Chapada volcano-sedimentary sequence. The granitoids are tonalitic and, on discriminant diagrams, they plot in the volcanic arc and pre-collisional fields. They display geochemical characteristics similar to the Jamaican oceanic arc-related granities. They show low LIL and HSF element abundances, low (Ta, Nb)/(K, La, etc) ratios and very low concentrations of Th, Hf, K and Y, when compared to patterns of calkaline, alkali-calcic and alkaline-peralkaline granitoids of magmatic arcs. These chemical features are characteristic of immature island arcs mantle-derived intrusives. The Chapada olivine gabbro has a chondrite-normalized spidergram, closely resembling those of island-arc basaltic lavas, the compositions of its coexisting olivine and plagioclase been similar to those from arc-related cumulate gabbros, and therefore, it could be the plutonic equivalent of the arc volcanics in the Chapada region. It is suggested that the evolution of the granitoids and gabbro intrusives from Chapada are related to a process of subduction that occurred in central Brazil during the Brasiliano/Pan-African event. (author) [pt

  10. Indoor radon risk associated to post-tectonic biotite granites from Vila Pouca de Aguiar pluton, northern Portugal.

    Science.gov (United States)

    Martins, L M O; Gomes, M E P; Teixeira, R J S; Pereira, A J S C; Neves, L J P F

    2016-11-01

    At Vila Pouca de Aguiar area, northern Portugal, crops out a post-tectonic Variscan granite pluton, related with the Régua-Vila Real-Verín fault zone, comprising three types of biotite granites. Among these granites, PSG granite yield the highest average contents of U, probably due to its enrichment in accessory U-bearing minerals such as zircon. In the proximity of faults and joints, these granites are often affected by different degrees of hydrothermal alteration, forming reddish altered rocks, commonly known as "episyenites". These altered rocks are probably associated to the occurrence of hydrothermal processes, which led to uranium enrichment in the most advanced stages of episyenitization. In these granites, both average gamma absorbed dose rates in outdoor and indoor air are higher than those of the world average. Furthermore, even in the worst usage scenario, all these granites can be used as a building material, since their annual effective doses are similar to the limit defined by the European Commission. The geometric mean of radon activity of 91 dwellings located at the Vila Pouca de Aguiar pluton is 568Bqm(-3), exceeding that of other northern Portuguese granites. Measurements carried out during a winter season, indicate that 62.6% of the analysed dwellings yield higher indoor radon average values than the Portuguese legislation limit (400Bqm(-3)), and annual effective doses due higher than the world's average value (1.2mSvy(-1)). The interaction of geogenic, architectural and anthropogenic features is crucial to explain the variance in the geometric mean of radon activity of dwellings from Vila Pouca de Aguiar pluton, but the role of geologic faults is probably the most important decisive factor to increase the indoor radon concentration in dwellings. Hence, the development of awareness campaigns in order to inform population about the incurred radiological risks to radon exposure are highly recommended for this specific area. Copyright © 2016

  11. Zircon U–Pb–Hf isotopic and geochemical characteristics of the Xierzi biotite monzogranite pluton, Linxi, Inner Mongolia and its tectonic implications

    Directory of Open Access Journals (Sweden)

    Qing-Bin Guan

    2018-03-01

    Full Text Available The opening, subduction and final closure of the Paleo-Asian Ocean led to the formation of the Central Asian Orogenic Belt. Controversy has long surrounded the timing of final closure of the Paleo-Asian Ocean. Here we present zircon U–Pb ages and petrological, geochemical and in situ Hf isotope data for the Xierzi biotite monzogranite pluton, Linxi, SE Inner Mongolia. U–Pb dating of zircon by LA-ICP-MS yields a middle Permian emplacement age (268.7 ± 2.3 Ma for the Xierzi pluton that is dominated by biotite monzogranites with high SiO2 (71.2–72.8 wt.%, alkali (Na2O + K2O = 8.05–8.44 wt.%, Al2O3 (14.4–15.2 wt.% and Fe2O3T relative to low MgO contents, yielding Fe2O3T/MgO ratios of 2.87–3.44, and plotting within the high-K calc-alkaline field on a SiO2 vs. K2O diagram. The aluminum saturation indexes (A/CNK of the biotite monzogranites range from 1.06 to 1.19, corresponding to weakly to strongly peraluminous. They are enriched in rare earth elements (REE, high field strength elements (HFSEs; Zr, Hf, and large ion lithophile elements (LILEs; Rb, U, Th. The LREEs are enriched relative to the HREEs, with a distinct negative Eu anomaly in a chondrite–normalized REE diagram. Geochemically, the Xierzi biotite monzogranite is classified as an aluminous A-type granite, with all samples plotting within the A2-type granite field on a Y/Nb vs. Rb/Nb diagram. Zircon εHf(t values and two-stage modal ages of the zircons within the pluton range from +4.80 to +13.65 and from 983 to 418 Ma, respectively, indicating that the primary magma was generated through partial melting of felsic rocks from juvenile crust. Consequently, these results demonstrate that the Xierzi pluton formed under the post-orogenic extensional setting after arc–continent collision in the middle Permian.

  12. The Precambrian/Lower Cambrian pluton from Vila Nova (Central Portugal

    Directory of Open Access Journals (Sweden)

    Reis, A. I.M.

    2010-06-01

    Full Text Available The Vila Nova pluton is a small, Pre-Variscan granitic body that intruded rocks of the Central Iberian Zone near the contact with the Ossa Morena Zone and is affected by several shear zones and faults. Its contact metamorphic aureole is constituted by micaschist with porphyroblasts in the outer zone and hornfels in the inner zone. Small metasedimentar xenoliths are dispersed all over the body. The pluton has a great mineralogical heterogeneity with pronounced variations in muscovite/biotite and plagioclase/microcline contents and is classified as granite, granodiorite or tonalite. It is a leucogranite, highly peraluminous (A/CNK = 1.31 – 1.64, magnesian and calc-alkaline to alkaline-calcic. The variation diagrams show curvilinear trends with silica. Eu/Eu* = 0.47 – 0.77 and there is a slight enrichment in LREE relative to HREE. The normalized diagrams indicated dominantly crustal granite, related to subduction. U-Pb isotopic data of zircon and monazite gives 540-542 Ma age.

    El plutón de Vila Nova es un pequeño cuerpo granítico pre-varisco, que intruyó en las rocas de la Zona Centro Ibérica, cerca del contacto con la Zona de Ossa Morena, siendo afectado por varias fallas y zonas de cizalla. Su aureola de metamorfismo de contacto consiste en esquistos con porfiroblastos y corneanas. Pequeños xenolitos metasedimentarios aparecen dispersos por todo el cuerpo granítico. Presenta una gran diversidad mineralógica, con amplias variaciones en las relaciones biotita/moscovita y microclina/plagioclasa, siendo clasificado como tonalita-granodiorita-granito. Se trata de un leucogranito fuertemente peralumínico (A/CNK = 1.31 – 1.64, magnesiano y calco-alcalino a alcalino-cálcico. Los diagramas muestran variaciones curvilíneas con la variación de sílice. Eu/Eu* = 0.47 – 0.77 y hay un ligero enriquecimiento de LREE en relación con HREE. Los diagramas indican que la norma es un granito dominante de la corteza, relacionados con la

  13. Structure, emplacement, and tectonic setting of Late Devonian granitoid plutons in the Teplá–Barrandian unit, Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Žák, J.; Kratinová, Zuzana; Trubač, J.; Janoušek, V.; Sláma, Jiří; Mrlina, Jan

    2011-01-01

    Roč. 100, č. 7 (2011), s. 1477-1495 ISSN 1437-3254 R&D Projects: GA AV ČR KJB300120702 Institutional research plan: CEZ:AV0Z30120515; CEZ:AV0Z30130516 Keywords : Bohemian Massif * Teplá-Barrandian unit * Variscan orogeny * granite * pluton * subduction Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.342, year: 2011

  14. Zircon U-Pb Ages Chronicle 3 Myr of Episodic Crystallization in the Composite Miocene Tatoosh Pluton, Mount Rainier National Park, Washington Cascades

    Science.gov (United States)

    Bacon, C. R.; Du Bray, E. A.; Wooden, J. L.; Mazdab, F. K.

    2007-12-01

    Zircon geochronology of upper crustal plutons can constrain longevities of intermediate to silicic magmatic systems. As part of a larger study of the geochemistry and metallogeny of Tertiary Cascades magmatic arc rocks, we used the USGS-Stanford SHRIMP RG to determine 20 to 28 238U-206Pb ages for zircons from each of 6 quartz monzodiorite (qmd), quartz monzonite (qm), or granodiorite (grd) samples representative of the Tatoosh pluton, and one grd from the nearby Carbon River stock. The 7x12 km composite Tatoosh pluton, discontinuously exposed on the south flank of Mount Rainier, consists of at least 4 petrographic/compositional phases, here termed Pyramid Peak, Nisqually, Reflection Lake, and Tatoosh. These collectively intrude gently folded and weakly metamorphosed basaltic andesite flows and volcaniclastic rocks of the Eocene Ohanapecosh Formation, silicic ignimbrites and sedimentary rocks of the Oligocene Stevens Ridge Formation, and basaltic to intermediate volcanic rocks of the Miocene Fifes Peak Formation. Histograms and relative probability plots of U- Pb ages indicate 2 to 4 age populations within each sample. The weighted mean age of each of the youngest populations (all ±2σ) is interpreted as the time of final solidification: Pyramid Peak qmd (58.5% SiO2) 17.4±0.2 Ma, Nisqually grd (in Paradise Valley; 65.4% SiO2) 16.7±0.2 Ma, Nisqually grd (at Christine Falls; 66.4% SiO2) 17.3±0.2 Ma, Reflection Lake qm (along Pinnacle Peak trail; 66.6% SiO2) 17.1±0.2 Ma, Tatoosh grd (in Stevens Canyon; 67.8% SiO2) 18.2±0.2 Ma, Tatoosh grd (south of Louise Lake; 69.3% SiO2) 19.3±0.1 Ma, and Carbon River grd (68.0% SiO2) 17.4±0.3 Ma. The older Nisqually grd age is indistinguishable from a TIMS zircon age of 17.5±0.1 Ma reported by Mattinson (GSA Bulletin 88:1509-1514, 1977) for grd from a nearby locality. None of the 164 SHRIMP-RG U-Pb ages, including cores, is older than 21 Ma. The relatively small, high-level pluton likely was emplaced and solidified in pulses

  15. Porfiroblastic hornblendites: lithological, guide of arch root plutonism in Piedra Alta Terrane. (Paleoproterozoic, Uruguay)

    International Nuclear Information System (INIS)

    Bossi, J.; Pineyro, D.

    2004-01-01

    Petrographic and geochemical features of porphyroblastic hornblendites in Piedra Alta Terrene of Uruguay are described. Their spatial and genetic relationships whith hornblendic gabbros and other basic plutonic rocks is also stablished. Their association with low grade metamorphic supracrustals inmagmatic mingling structures and late development, suggests an origin related to high vapour pressure that take off stability to gabbro paragenesis and favours Deer's reaction:pyroxene+ plagioclase +water= hornblende + SIO2. The silica produced is expressed as quartz dikes frequently mineralized with gold and platinum group elements. San Carlos gabbro is an uruguayan exemple of such proposed model.

  16. Paleozoic subduction complex and Paleozoic-Mesozoic island-arc volcano-plutonic assemblages in the northern Sierra terrane

    Science.gov (United States)

    Hanson, Richard E.; Girty, Gary H.; Harwood, David S.; Schweickert, Richard A.

    2000-01-01

    This field trip provides an overview of the stratigraphic and structural evolution of the northern Sierra terrane, which forms a significant part of the wall rocks on the western side of the later Mesozoic Sierra Nevada batholith in California. The terrane consists of a pre-Late Devonian subduction complex (Shoo Fly Complex) overlain by submarine arc-related deposits that record the evolution of three separate island-arc systems in the Late Sevonian-Early Mississippian, Permian, and Late Triassic-Jurassic. The two Paleozoic are packages and the underlying Shoo Fly Complex have an important bearing on plate-tectonic processes affecting the convergent margin outboard of the Paleozoic Cordilleran miogeocline, although their original paleogeographic relations to North America are controversial. The third arc package represents an overlap assemblage that ties the terrane to North America by the Late Triassic and helps constrain the nature and timing of Mesozoic orogenesis. Several of the field-trip stops examine the record of pre-Late Devonian subduction contained in the Shoo Fly Complex, as well as the paleovolcanology of the overlying Devonian to Jurassic arc rocks. Excellent glaciated exposures provide the opportunity to study a cross section through a tilted Devonian volcano-plutonic association. Additional stops focus on plutonic rocks emplaced during the Middle Jurassic arc magmatism in the terrane, and during the main pulse of Cretaceous magmatism in the Sierra Nevada batholith to the east.

  17. Late magmatic controls on the origin of schorlitic and foititic tourmalines from late-Variscan peraluminous granites of the Arbus pluton (SW Sardinia, Italy): Crystal-chemical study and petrological constraints

    Science.gov (United States)

    Bosi, Ferdinando; Naitza, Stefano; Skogby, Henrik; Secchi, Francesco; Conte, Aida M.; Cuccuru, Stefano; Hålenius, Ulf; De La Rosa, Nathaly; Kristiansson, Per; Charlotta Nilsson, E. J.; Ros, Linus; Andreozzi, Giovanni B.

    2018-05-01

    Tourmalines from the late-Variscan Arbus pluton (SW Sardinia) and its metamorphic aureole were structurally and chemically characterized by single-crystal X-ray diffraction, electron and nuclear microprobe analysis, Mössbauer, infrared and optical absorption spectroscopy, to elucidate their origin and relationships with the magmatic evolution during the pluton cooling stages. The Arbus pluton represents a peculiar shallow magmatic system, characterized by sekaninaite (Fe-cordierite)-bearing peraluminous granitoids, linked via AFC processes to gabbroic mantle-derived magmas. The Fe2+-Al-dominant tourmalines occur in: a) pegmatitic layers and pods, as prismatic crystals; b) greisenized rocks and spotted granophyric dikes, as clots or nests of fine-grained crystals in small miaroles locally forming orbicules; c) pegmatitic veins and pods close to the contacts within the metamorphic aureole. Structural formulae indicate that tourmaline in pegmatitic layers is schorl, whereas in greisenized rocks it ranges from schorl to fluor-schorl. Tourmalines in thermometamorphosed contact aureole are schorl, foitite and Mg-rich oxy-schorl. The main substitution is Na + Fe2+ ↔ □ + Al, which relates schorl to foitite. The homovalent substitution (OH) ↔ F at the O1 crystallographic site relates schorl to fluor-schorl, while the heterovalent substitution Fe2+ + (OH, F) ↔ Al + O relates schorl/fluor-schorl to oxy-schorl. Tourmaline crystallization in the Arbus pluton was promoted by volatile (B, F and H2O) enrichment, low oxygen fugacity and Fe2+ activity. The mineralogical evolutive trend is driven by decreasing temperature, as follows: sekaninaite + quartz → schorl + quartz → fluor-schorl + quartz → foitite + quartz. The schorl → foitite evolution represents a distinct trend towards (Al + □) increase and unit-cell volume decrease. These trends are typical of granitic magmas and consistent with Li-poor granitic melts, as supported by the absence of elbaite and other

  18. Petrography and geochemistry of granitoids from the Samphire Pluton, South Australia: Implications for uranium mineralisation in overlying sediments

    Science.gov (United States)

    Domnick, Urs; Cook, Nigel J.; Bluck, Russel; Brown, Callan; Ciobanu, Cristiana L.

    2018-02-01

    The Blackbush uranium deposit (JORC Inferred Resource: 12,580 tonnes U), located on the north-eastern Eyre Peninsula, is currently the only sediment-hosted U deposit investigated in detail in the Gawler Craton. Uranium is hosted within Eocene sandstone of the Kanaka Beds, overlying Mesoproterozoic granites of the Samphire pluton, affiliated with the Hiltaba Intrusive Suite ( 1.6 Ga). These are considered the most probable source rocks for uranium mineralisation. By constraining the petrography and mineralogy of the granites, insights into the post-emplacement evolution can be gained, which may provide an exploration indicator for other sediment-hosted uranium systems. Three geochemically distinct granite types were identified in the Samphire Pluton and correspond to domains interpreted from geophysical data. All granites show complex alteration overprints and textures with increasing intensity closer to the deposit, as well as crosscutting veining. Alkali feldspar has been replaced by porous K-feldspar and albite, and plagioclase is overprinted by an assemblage of porous albite + sericite ± calc-silicates (prehnite, pumpellyite and epidote). This style of feldspar alteration is regionally widespread and known from Hiltaba-aged granites associated with iron-oxide copper-gold mineralisation at Olympic Dam and in the Moonta-Wallaroo region. In two granite types biotite is replaced by calcic garnet. Calc-silicates are indicative of Ca-metasomatism, sourced from the anorthite component of altered plagioclase. Minor clay alteration of feldspars is present in all samples. Mineral assemblages in veins include quartz + hematite, hematite + coffinite, fluorite + quartz, and clay minerals. Minor chlorite and sericite are found in all vein types. All granite types are anomalously rich in U (concentrations between 10 and 81 ppm). Highly variable Th/U ratios, as well as hydrothermal U minerals (mostly coffinite) in granites and veins, are clear evidence for U mobility. Uranium

  19. U-Pb zircon geochronology and Sm-Nd-Pb isotopic constraint for precambrian plutonic rocks in the northeastern part of Ryeongnam massif, Korea

    International Nuclear Information System (INIS)

    Chang, Ho-Wan

    2003-01-01

    The Ryeongnam massif is composed of Precambrian gneisses, Paleozoic and Mesozoic sedimentary rocks and extensive Triassic-Jurassic plutonic rocks of felsic to mafic composition. In the northeast Ryeongnam massif, the oldest rocks belong to the Sobaegsan gneiss complex, which is composed of orthogneisses, paragneisses and mafic plutonic rocks. U-Pb zircon ages for the felsic and mafic intrusive bodies within the Sobaegsan gneiss complex are: the Icheon granite gneiss, 2357±43 and 2342±47 Ma; the Buncheon granite gneiss, 1963±5 Ma; the Pyeonghae granite gneiss, 1936±21 Ma; the Ogbang amphibolite, 1918±10 Ma; the Imwon leucogranite gneiss, 1826±20 Ma. The Hyeondong biotite schist, which is intruded by the Buncheon granite gneiss and the Ogbang amphibolite, yielded an age of 2271±44 Ma. The Nd-Sm-Pb isotopic data indicate that the felsic plutonic rocks are derived from an older Archean crust. The Nd T DM ages are Archean, and the εNd values are negative for the felsic rocks and positive for the amphibolite. Common Pb isotope compositions also indicate a crustal source for the felsic intrusives. The U-Pb ages of Precambrian rocks of the Ryeongnam massifs are similar to those in the Gyeonggi massif, and may have a similar crustal evolutionary history. The Precambrian rocks of South Korea could be related either to the North China block or to the South China block, as the isotope ages and patterns are not unique to either block. Similarly, a geologic correlation with Japan, although possible, is tenuous at present. (author)

  20. U-Pb ages and geochemistry of zircon from Proterozoic plutons of the Sawatch and Mosquito ranges, Colorado, U.S.A.: Implications for crustal growth of the central Colorado province

    Science.gov (United States)

    Moscati, Richard J.; Premo, Wayne R.; Dewitt, Ed; Wooden, Joseph L.

    2017-01-01

    A broad study of zircons from plutonic rocks of the Sawatch and Mosquito ranges of west-central Colorado (U.S.A.) was undertaken to significantly refine the magmatic chronology and chemistry of this under-studied region of the Colorado province. This region was chosen because it lies just to the north of the suspected arc-related Gunnison-Salida volcano-plutonic terrane, which has been the subject of many recent investigations—and whose origin is still debated. Our new results provide important insights into the processes active during Proterozoic crustal evolution in this region, and they have important ramifications for broader-scope crustal evolution models for southwestern North America.Twenty-four new U-Pb ages and sequentially acquired rare-earth element (REE), U, Th, and Hf contents of zircon have been determined using the sensitive high-resolution ion microprobe-reverse geometry (SHRIMP-RG). These zircon geochemistry data, in conjunction with whole-rock major- and trace-element data, provide important insights into zircon crystallization and melt fractionation, and they help to further constrain the tectonic environment of magma generation.Our detailed zircon and whole-rock data support the following three interpretations:(1) The Roosevelt Granite in the southern Sawatch Range was the oldest rock dated at 1,766 ± 7 Ma, and it intruded various metavolcanic and metasedimentary rocks. Geochemistry of both whole-rock and zircon supports the contention that this granite was produced in a magmatic arc environment and, therefore, is likely an extension of the older Dubois Greenstone Belt of the Gunnison Igneous Complex (GIC) and the Needle Mountains (1,770–1,755 Ma). Rocks of the younger Cochetopa succession of the GIC, the Salida Greenstone Belt, and the Sangre de Cristo Mountains (1,740–1,725 Ma) were not found in the Sawatch and Mosquito ranges. This observation strongly suggests that the northern edge of the Gunnison-Salida arc terrane underlies the

  1. Geochronology and geochemistry of the Borohoro pluton in the northern Yili Block, NW China: Implication for the tectonic evolution of the northern West Tianshan orogen

    Science.gov (United States)

    Wang, Meng; Zhang, Jinjiang; Zhang, Bo; Liu, Kai; Chen, Youxin; Zheng, Yanrong

    2018-03-01

    The closure of the North Tianshan Ocean between the Junggar Terrane and the Yili Block is a longtime debated issue in literature, because of the different understanding of the Carboniferous volcanic rocks in the northern margin of the Yili Block. This study presents new geochronological and whole-rock geochemical data for the granitic rocks from the Borohoro pluton to provide constraints on the tectonic regime for the northern West Tianshan during the Carboniferous. LA-ICP-MS U-Pb dating results reveal two magmatic phases for the Borohoro pluton. The former magmatic activity in the Early Carboniferous formed the fine-grained granodiorite (332 Ma). The later magmatic activity occurred during the Late Carboniferous (305-300 Ma), forming a diversity of granitic rocks, involving quartz diorite, granodiorite and granite. Geochemical and mineralogical studies reveal that the studied granitic rocks from the Borohoro pluton all belong to metaluminous to weakly peraluminous, calc-alkaline I-type granites. They are characterized by enrichment in LILEs relative to HFSEs, and depletion of Nb, Ti and P, typical of continental arc-type granites. The intermediate SiO2, high Al2O3, and relatively low Fe2O3T, MgO and TiO2 contents reflect that these granitic rocks are mainly crust-derived. But the high Mg# values for most samples and the occurrence of microgranular mafic enclaves indicate that their magma sources were mixed by mantle-derived components. Especially, the Late Carboniferous rocks define an elegant mixing trend in both the Rb-Rb/V and the 1/V-Rb/V diagrams, consistent with mixing between magmas from subcontinental lithospheric mantle and mafic lower crust. Taking into consideration of the facts that all the Devonian to Carboniferous granitoids belong to calc-alkaline I-type granites, and granitoids of A-type didn't appear until the Early Permian, we suggest that the subduction of the North Tianshan Ocean continued to the Late Carboniferous, generating the granitic

  2. Occurrence of parsonite, a secondary uranium mineral, in alaskite of the Wheeler Creek pluton, Alaska

    International Nuclear Information System (INIS)

    Miller, T.P.; Johnson, B.

    1978-01-01

    Reconnaissance investigations in the Purcell Mountains of westcentral Alaska in 1977 revealed the presence of parsonite, a hydrous phosphate of lead and uranium with the formula Pb 2 UO 2 (PO 4 ) 2 2H 2 O. This is the first reported occurrence of parsonite in Alaska. The parsonite occurs as a soft, yellow to chocolate brown coating closely associated with green muscovite on fracture surfaces in a shear zone in alaskite of the Wheeler Creek pluton. Thin magnetite veinlets are also present. The identification of parsonite was confirmed by x-ray diffraction. Delayed neutron analysis were run on samples of the Alaskite

  3. Mn-Cr dating of Fe- and Ca-rich olivine from 'quenched' and 'plutonic' angrite meteorites using Secondary Ion Mass Spectrometry

    Science.gov (United States)

    McKibbin, Seann J.; Ireland, Trevor R.; Amelin, Yuri; Holden, Peter

    2015-05-01

    Angrite meteorites are suitable for Mn-Cr relative dating (53Mn decays to 53Cr with a half life of 3.7 Myr) using Secondary Ion Mass Spectrometry (SIMS) because they contain olivine and kirschsteinite with very high 55Mn/52Cr ratios arising from very low Cr concentrations. Discrepant Mn-Cr and U-Pb time intervals between the extrusive or 'quenched' angrite D'Orbigny and some slowly cooled or 'plutonic' angrites suggests that some have been affected by secondary disturbances, but this seems to have occurred in quenched rather than in slow-cooled plutonic angrites, where such disturbance or delay of isotopic closure might be expected. Using SIMS, we investigate the Mn-Cr systematics of quenched angrites to higher precision than previously achieved by this method and extend our investigation to non-quenched (plutonic or sub-volcanic) angrites. High values of 3.54 (±0.18) × 10-6 and 3.40 (±0.19) × 10-6 (2-sigma) are found for the initial 53Mn/55Mn of the quenched angrites D'Orbigny and Sahara 99555, which are preserved by Cr-poor olivine and kirschsteinite. The previously reported initial 53Mn/55Mn value of D'Orbigny obtained from bulk-rock and mineral separates is slightly lower and was probably controlled by Cr-rich olivine. Results can be interpreted in terms of the diffusivity of Cr in this mineral. Very low Cr concentrations in Ca-rich olivine and kirschsteinite are probably charge balanced by Al; this substitutes for Si and likely diffuses at a very slow rate because Si is the slowest-diffusing cation in olivine. Diffusion in Cr-rich Mg-Fe olivine is probably controlled by cation vacancies because of deficiency in charge-balancing Al and is therefore more prone to disturbance. The higher initial 53Mn/55Mn found by SIMS for extrusive angrites is more likely to reflect closure of Cr in kirschsteinite at the time of crystallisation, simultaneous with closure of U-Pb and Hf-W isotope systematics for these meteorites obtained from pyroxenes. For the younger

  4. AN EARLY PERMIAN GARNET-BEATING PERALUMINOUS GRANITIC PLUTON IN THE SOUTH TIANSHAN OROGENIC BELT, NW CHINA: PETROLOGICAL, MINERALOGICAL AND GEOCHEMICAL CONSTRAINTS

    Directory of Open Access Journals (Sweden)

    Qie Qin

    2017-01-01

    Full Text Available The Ku’erchu granitic pluton (283±4 Ma was exposed in the eastern part of the South Tianshan Orogenic Belt. The granites from the intrusion are mainly composed of orthoclase (~45 vol. %, plagioclase (~15 vol. %, quartz (~20 vol. %, muscovite (~10 vol. % and biotite (~5 vol. %, with accessory minerals including garnet, zircon and Fe-Ti oxide.

  5. Metamorphism and plutonism around the middle and south forks of the Feather River, California

    Science.gov (United States)

    Hietanen, Anna Martta

    1976-01-01

    The area around the Middle and South Forks of the Feather River provides information on metamorphic and igneous processes that bear on the origin of andesitic and granitic magmas in general and on the variation of their potassium content in particular. In the north, the area joins the Pulga and Bucks Lake quadrangles studied previously. Tectonically, this area is situated in the southern part of an arcuate segment of the Nevadan orogenic belt in the northwestern Sierra Nevada. The oldest rocks are metamorphosed calcalkaline island-arc-type andesite, dacite, and sodarhyolite with interbedded tuff layers (the Franklin Canyon Formation), all probably correlative with Devonian rocks in the Klamath Mountains. Younger rocks form a sequence of volcanic, volcaniclastic, and sedimentary rocks including some limestone (The Horseshoe Bend Formation), probably Permian in age. All the volcanic and sedimentary rocks were folded and recrystallized to the greenschist facies during the Nevadan (Jurassic) orogeny and were invaded by monzotonalitic magmas shortly thereafter. A second lineation and metamorphism to the epidote-amphibolite facies developed in a narrow zone around the plutons. In light of the concept of plate tectonics, it is suggested that the early (Devonian?) island-arc-type andesite, dacite, and sodarhyolite (the Franklin Canyon Formation) were derived from the mantle above a Benioff zone by partial melting of peridotite in hydrous conditions. The water was probably derived from an oceanic plate descending to the mantle. Later (Permian?) magmas were mainly basaltic; some discontinuous layers of potassium-rich rhyolite indicate a change into anhydrous conditions and a deeper level of magma generation. The plutonic magmas that invaded the metamorphic rocks at the end of the Jurassic may contain material from the mantle, the subducted oceanic lithosphere, and the downfolded metamorphic rocks. The ratio of partial melts from these three sources may have changed with time

  6. Pluton emplacement and magmatic arc construction: A model from the Patagonian batholith

    Science.gov (United States)

    Bruce, Robert; Nelson, Eric; Weaver, Stephen

    1988-01-01

    A model of batholithic construction in Andean arcs and its applicability to possibly similar environments in the past is described. Age and compositional data from the Patagonian batholith of southern Chile show a long history of magmatism in any given area (total age range is 15 to 157 Ma), but different regions appear to have different magmatic starting ages. Furthermore, mafic rocks seem to be the oldest components of any given region. An assembly line model involving semicontinuous magmatism and uplift was outlined, which has implications for other terranes: uplift rates will be proportional to observed ranges in age, and total uplift will be proportional to the age of the oldest pluton in any given area. It is suggested that misleading results would be obtained if only small areas of similar terranes in the Archean were available for study.

  7. Evaluating the controls on Tourmaline Crystallization in the mylonitic granite-gneiss pluton in the Northeastern of Jan mine (Lorestan province

    Directory of Open Access Journals (Sweden)

    Arezoo Moradi

    2017-02-01

    Full Text Available Introduction The study area is a part of the Sanandaj- Sirjan zone that is located in the NW of Azna city and NE of the dimension stone mine of Jan between 49° 11' 41"and 49° 16' 07" E longitude and 33° 36'35" and 33° 38'12" N latitude., A pluton of mylonitic granite-gneiss is exposed in the area which contains abundant tourmalines as black and patchy or subgrain association. Geochemically, the studied granite-gneiss is A-type, peraluminous to slightly metaluminous and calc – alkaline to slightly alkaline (Moradi et al., 7. The electron microprobe analyses of the tourmalines display shorl-dravite in composition with more tendency to shorl (Moradi et al., 2015. In this paper we try to study the petrological sites of tourmaline formation with associated minerals, controller factors of crystallization using mineral chemistry of tourmaline, comprehensive behavior of trace elements in the tourmaline, synthetic phase diagrams and finally relationships between the associated minerals. Materials and methods The results of trace-element and major-element analyses were obtained from one polished thin section including 2 tourmaline grains. Major-element analyses of tourmaline were obtained at Oklahama City University of America using the JEOL 8200 electron microprobe with a spot size of 5 μm and trace-element analyses were performed on just a sample by Laser Ablation-Inductively Coupled Plasma-Mass Spectroscopy (LA-ICP-MS a 193nm ArF excimer laser ablation system (MicroLas GeoLas 200Q in combination with a quadrupole ICP-MS (Micromass Platform ICP at Utrecht University of Netherland. Representative EMP and LA-ICP-MS analyses of tourmaline samples are presented in Tables1 and 2. Results The results of LA-ICP-MS on tourmalines of Jan mine in the North east of mylonitic granite-gneiss body show that distribution and diffusion of trace elements during the growth of tourmaline trend is positive on the plots of binary Mn versus Fetot / (Fetot +Mg and it

  8. The geology and geochronology of the Belmont pluton and microgranite dykes from the Margate area

    International Nuclear Information System (INIS)

    Thomas, R.J.; Eglington, B.M.; Kerr, A.

    1990-01-01

    Field, petrographic, geochemical and Rb-Sr isotope data are presented for two granitic units which are considered to represent amongst the youngest intrusive rocks in the Natal Metamorphic Province. These are the Belmont granite pluton and a suite of unfoliated biotite microgranite dykes from the Margate area. The data suggest that these rocks do not form part of a consanguineous suite as previously envisaged. It is concluded that the Belmont pluton (1055 ± 60Ma) should be assigned to the garnet leucogranite phase of the syntectonic Margate Suite, and that the dykes (∼965 Ma) represent the products of a discrete, late-stage magmatic event which took place towards the end of the Natal orogenesis. Furthermore, the high initial Sr isotopic ratio (∼0,715) of the dykes suggests that they were derived from the melting of pre-existing radiogenic crust. The termination of major tectono-magmatic events in the Late Proterozoic Namaqua-Natal Belt apparently youngs from west to east across South Africa. Reconstructions of Gondwanaland place the Falkland Plateau and the Maudheim Province of Antarctica off the southeast of Africa. Dates obtained from this region range from ∼1000Ma to ∼500Ma, suggesting a continued decrease in age of tectono-magmatic activity eastwards. The microgranite dykes described here are unequivocally amongst the youngest post-tectono-metamorphic intrusions of southern Natal, yet they do not preserve any whole-rock indication of Pan-African isotopic disturbances. Sparse Rb-Sr mineral isotopic data support this indication that there was no significant Pan-African activity in the Natal Metamorphic Province. 8 figs., 7 tabs., 38 refs

  9. The Variscan calc-alkalic plutonism of western Corsica: mineralogy and major and trace element geochemistry

    Science.gov (United States)

    Cocherie, A.; Rossi, Ph.; Le Bel, L.

    1984-10-01

    Petrographic and structural observations on the calc-alkalic plutonism of western Corsica revealed the existence of several successively emplaced units associated with large basic bodies. The present mineralogical and geochemical study deals with the genesis, evolution and relationships of these different units. Basic plutonism is represented by three genetically linked types of rock: norites and troctolites with cumulate textures characterized by low REE contents and either no Eu anomaly or a positive Eu anomaly; gabbros with enriched LREE relatively to HREE patterns, probably close to an initial basaltic liquid; and diorites ranging up to charnockites which represent liquids evolved to varying degrees, mainly by fractional crystallization. Trace element data and studies on the evolution of pyroxene pairs demonstrate the consanguinity of these calc-alkaline basic rocks which are derived from a high alumina basaltic melt. The various granitoids (granodiorites, monzogranites and leucocratic monzogranites, i.e., adamellites) have distinct evolution trends as shown by the composition of their mafic minerals and by trace element distributions. They cannot be considered as being derivatives of the basic suite and they cannot be related by a common fractionation sequence. Rather, they represent distinctive batches of crustal anatexis. In addition, hybridization phenomena with the basic melt are noticed in granodiorites. The particular problem of the low La/Yb, Eu/Eu∗ and the high U, Th, Cs leucocratic monzogranites is discussed in detail. In addition to more conventional trace element diagrams, the simultaneous statistical treatment of all the geochemical data by correspondence factor analysis is shown to be a very use tool in distinguishing between the different units and to classify the elements according to their geochemical properties.

  10. Platinum, palladium, and rhodium in volcanic and plutonic rocks from the Gravina-Nutzotin belt, Alaska

    Science.gov (United States)

    Page, Norman J; Berg, Henry C.; Haffty, Joseph

    1977-01-01

    The Gravina-Nutzotin belt of Middle (?) Jurassic to middle Cretaceous sedimentary and volcanic rocks in south and southeastern Alaska includes concentrically zoned ultramafic complexes known to contain platinum-group metals. Previous isotopic, petrologic, and geologic studies suggested a close relation in time and space between the volcanic rocks and the ultramafic complexes. Interpretation of 40 analyses for platinum, palladium, and rhodium in volcanic and plutonic rocks of the belt indicates a strong geochemical correlation between the two groups of rocks and is in support of their being cogenetic either from directly connected magma chambers and flows or indirectly by selective concentration processes from similar mantle material.

  11. Tourmaline occurrences within the Penamacor-Monsanto granitic pluton and host-rocks (Central Portugal): genetic implications of crystal-chemical and isotopic features

    Science.gov (United States)

    da Costa, I. Ribeiro; Mourão, C.; Récio, C.; Guimarães, F.; Antunes, I. M.; Ramos, J. Farinha; Barriga, F. J. A. S.; Palmer, M. R.; Milton, J. A.

    2014-04-01

    Tourmalinization associated with peraluminous granitic intrusions in metapelitic host-rocks has been widely recorded in the Iberian Peninsula, given the importance of tourmaline as a tracer of granite magma evolution and potential indicator of Sn-W mineralizations. In the Penamacor-Monsanto granite pluton (Central Eastern Portugal, Central Iberian Zone), tourmaline occurs: (1) as accessory phase in two-mica granitic rocks, muscovite-granites and aplites, (2) in quartz (±mica)-tourmaline rocks (tourmalinites) in several exocontact locations, and (3) as a rare detrital phase in contact zone hornfels and metapelitic host-rocks. Electron microprobe and stable isotope (δ18O, δD, δ11B) data provide clear distinctions between tourmaline populations from these different settings: (a) schorl-oxyschorl tourmalines from granitic rocks have variable foititic component (X□ = 17-57 %) and Mg/(Mg + Fe) ratios (0.19-0.50 in two-mica granitic rocks, and 0.05-0.19 in the more differentiated muscovite-granite and aplites); granitic tourmalines have constant δ18O values (12.1 ± 0.1 ‰), with wider-ranging δD (-78.2 ± 4.7 ‰) and δ11B (-10.7 to -9.0 ‰) values; (b) vein/breccia oxyschorl [Mg/(Mg + Fe) = 0.31-0.44] results from late, B- and Fe-enriched magma-derived fluids and is characterized by δ18O = 12.4 ‰, δD = -29.5 ‰, and δ11B = -9.3 ‰, while replacement tourmalines have more dravitic compositions [Mg/(Mg + Fe) = 0.26-0.64], close to that of detrital tourmaline in the surrounding metapelitic rocks, and yield relatively constant δ18O values (13.1-13.3 ‰), though wider-ranging δD (-58.5 to -36.5 ‰) and δ11B (-10.2 to -8.8 ‰) values; and (c) detrital tourmaline in contact rocks and regional host metasediments is mainly dravite [Mg/(Mg + Fe) = 0.35-0.78] and oxydravite [Mg/(Mg + Fe) = 0.51-0.58], respectively. Boron contents of the granitic rocks are low (<650 ppm) compared to the minimum B contents normally required for tourmaline saturation in

  12. Rb-Sr, Pb-Pb, U-Pb dating in the Bandja plutonic series of Western Cameroon. Donnees geochronologiques (Rb-Sr, Pb-Pb, U-Pb) sur le complexe plutonique de Bandja (Centre-Ouest Cameroun)

    Energy Technology Data Exchange (ETDEWEB)

    Tchankam, C N [Nancy-1 Univ., 54 (France); Vialette, Y [Clermont-Ferrand-2 Univ., 63 - Aubiere (France)

    1994-08-01

    The results of U-Pb zircon and Pb-Pb on minerals and whole rocks are reported on a charnockite syn-D1 from the Bandja series in the western Cameroon. Data are interpreted as representing a plutonic emplacement at 640 Ma. A syn- to post-tectonic pluton is dated at 557 [+-] 8 Ma (Rb-Sr whole rocks isochron). These results confirm the Pan-African age of the charnockitic intrusive body. Initial isotopic [sup 87]Sr/[sup 86]Sr ratios of charnockite (0.709) and granite (0.7089) show the importance of crustal imprint in the magma genesis. (authors).

  13. Multiple magmatic pulses of the Eastern Volcano-Plutonic Complex, Krušné hory/ Erzgebirge batholith, and their phosphorus contents

    Czech Academy of Sciences Publication Activity Database

    Štemprok, M.; Holub, F. V.; Novák, Jiří Karel

    2003-01-01

    Roč. 78, č. 3 (2003), s. 277-296 ISSN 1214-1119 R&D Projects: GA ČR GA205/95/0149 Grant - others:GA UK(CZ) 165/1998 Institutional research plan: CEZ:AV0Z3013912 Keywords : volcano-plutonic complex * phosphorus * Krušné hory Mts. batholith Subject RIV: DB - Geology ; Mineralogy http://www.geology.cz/bulletin/contents/2003/vol78no3/bulgeosci200303277.pdf

  14. Geochemistry of the Serifos calc-alkaline granodiorite pluton, Greece: constraining the crust and mantle contributions to I-type granitoids

    Science.gov (United States)

    Stouraiti, C.; Baziotis, I.; Asimow, P. D.; Downes, H.

    2017-11-01

    The Late Miocene (11.6-9.5 Ma) granitoid intrusion on the island of Serifos (Western Cyclades, Aegean Sea) is composed of syn- to post-tectonic granodiorite with quartz monzodiorite enclaves, cut by dacitic and aplitic dikes. The granitoid, a typical I-type metaluminous calcic amphibole-bearing calc-alkaline pluton, intruded the Cycladic Blueschists during thinning of the Aegean plate. Combining field, textural, geochemical and new Sr-Nd-O isotope data presented in this paper, we postulate that the Serifos intrusion is a single-zoned pluton. The central facies has initial 87Sr/86Sr = 0.70906 to 0.7106, ɛNd(t) = - 5.9 to - 7.5 and δ18Οqtz = + 10 to + 10.6‰, whereas the marginal zone (or border facies) has higher initial 87Sr/86Sr = 0.711 to 0.7112, lower ɛ Nd(t) = - 7.3 to - 8.3, and higher δ18Οqtz = + 10.6 to + 11.9‰. The small range in initial Sr and Nd isotopic values throughout the pluton is paired with a remarkable uniformity in trace element patterns, despite a large range in silica contents (58.8 to 72 wt% SiO2). Assimilation of a crustally derived partial melt into the mafic parental magma would progressively add incompatible trace elements and SiO2 to the evolving mafic starting liquid, but the opposite trend, of trace element depletion during magma evolution, is observed in the Serifos granodiorites. Thermodynamic modeling of whole-rock compositions during simple fractional crystallization (FC) or assimilation-fractional crystallization (AFC) processes of major rock-forming minerals—at a variety of pressure, oxidation state, and water activity conditions—fails to reproduce simultaneously the major element and trace element variations among the Serifos granitoids, implying a critical role for minor phases in controlling trace element fractionation. Both saturation of accessory phases such as allanite and titanite (at SiO2 ≥ 71 wt%)(to satisfy trace element constraints) and assimilation of partial melts from a metasedimentary component (to

  15. Tyramine functions as a toxin in honey bee larvae during Varroa-transmitted infection by Melissococcus pluton.

    Science.gov (United States)

    Kanbar, G; Engels, W; Nicholson, G J; Hertle, R; Winkelmann, G

    2004-05-01

    From wounds of honey bee pupae, caused by the mite Varroa destructor, coccoid bacteria were isolated and identified as Melissococcus pluton. The bacterial isolate was grown anaerobically in sorbitol medium to produce a toxic compound that was purified on XAD columns, gelfiltration and preparative HPLC. The toxic agent was identified by GC-MS and FTICR-MS as tyramine. The toxicity of the isolated tyramine was tested by a novel mobility test using the protozoon Stylonychia lemnae. A concentration of 0.2 mg/ml led to immediate inhibition of mobility. In addition the toxicity was studied on honey bee larvae by feeding tyramine/water mixtures added to the larval jelly. The lethal dosis of tyramine on 4-5 days old bee larvae was determined as 0.3 mg/larvae when added as a volume of 20 microl to the larval food in brood cells. Several other biogenic amines, such as phenylethylamine, histamine, spermine, cadaverine, putrescine and trimethylamine, were tested as their hydrochloric salts for comparison and were found to be inhibitory in the Stylonychia mobility test at similar concentrations. A quantitative hemolysis test with human red blood cells revealed that tyramine and histamine showed the highest membranolytic activity, followed by the phenylethylamine, trimethylamine and spermine, while the linear diamines, cadaverine and putrescine, showed a significantly lower hemolysis when calculated on a molar amine basis. The results indicate that tyramine which is a characteristic amine produced by M. pluton in culture, is the causative agent of the observed toxic symptoms in bee larvae. Thus this disease, known as European foulbrood, is possibly an infection transmitted by the Varroa destructor mite.

  16. Fission track thermochronology of Neogene plutons in the Principal Andean Cordillera of central Chile (33-35°S: Implications for tectonic evolution and porphyry Cu-Mo mineralization Termocronología mediante trazas de fision de plutones neógenos en la Cordillera Principal Andina de Chile central (33-35°S: Implicancias para la evolución tectónica y mineralización de pórfidos de Cu-Mo

    Directory of Open Access Journals (Sweden)

    Víctor Maksaev

    2009-07-01

    Full Text Available Apatite fission track data for Miocene plutons of the western slope of the Principal Andean Cordillera in central Chile (33-35°S define a distinct episode of enhanced crustal cooling through the temperature range of the apatite partial annealing zone (~125-60°C from about 6 to 3 Ma. This cooling episode is compatible with accelerated exhumation of the plutons at the time of Pliocene compressive tectonism, and mass wasting on the western slope of the Principal Andean Cordillera in central Chile. The timing coincides with the southward migration of the subducting Juan Fernández Ridge and the development of progressive subduction flattening northward of 33°S. It also corresponds to the time of active magmatic-hydrothermal processes and rapid unroofing of the world class Río Blanco-Los Bronces and El Teniente porphyry Cu-Mo deposits. Zircon fission track ages coincide with previous 40Ar/39Ar dates of the intrusions, and with some of the apatite fission track ages, being coherent with igneous-linked, rapid cooling following magmatic intrusion. The thermochronologic data are consistent with a maximum of about 8 km for Neogene exhumation of the plutons.Los datos de trazas de fision en apatita de plutones miocenos del flanco oeste de la Cordillera Principal de Chile central (33-35°S definen un episodio distintivo de enfriamiento acelerado a través del rango de temperatura de la zona de acortamiento parcial de trazas en apatita (~125-60°C entre los 6 a 3 Ma. Este episodio de enfriamiento es compatible con exhumación rápida de los plutones al tiempo del tectonismo compresivo plioceno y remociones en masa en el flanco oeste de la Cordillera Principal en Chile central. El período de tiempo coincide con la migración hacia el sur de la subducción de la Dorsal de Juan Fernández y con el desarrollo de un aplanamiento progresivo de la subducción hacia el norte de los 33°S. También corresponde al tiempo de actividad magmático-hidrotermal y r

  17. Understanding the evolution of S- and I-type granitic plutons through analysis of apatite.

    Science.gov (United States)

    Hess, B. L.; Fiege, A.; Tailby, N.

    2017-12-01

    The major and trace element composition of apatites from the Lachlan fold belt (LFB) S- and I-type granitoids (Australia) and the Central French Massif (CFM) S-type leucogranites (France) were analyzed to investigate their compositional and redox variation. Apatite is a common accessory mineral in magmatic systems that can incorporate a variety of trace elements, including the polyvalent elements sulfur (S), iron (Fe), and manganese (Mn). It was recently discovered that apatite can incorporate three oxidation states of S (S6+, S4+, S2-) into its structure as a function of oxygen fugacity [1]. However, the oxidation states of Mn and Fe in apatite are essentially unknown (2+ and/or 3+). In this study, we collected many electron probe line transects across apatites in several different host phases from a variety of S- and I-type plutons. The F-H-Cl contents of the S- and I-type LFB samples were similar ( 2.9 wt% F, 0.4 wt% Cl, 0.5 wt% OH). The CFM S-types contained virtually no Cl and ranged from near-endmember OH-apatite to near-endmember F-apatite. The apatites of all studied the S- and I-type plutons are characterized by similar ranges of Fe content (X-ray absorption near-edge structure (XANES) spectroscopy. The spectra show variability in S oxidation states ranging from mostly sulfate down to nearly equal S6+/S2- ratios, indicating redox variations during apatite formation. The S-type Mn + Fe content plots in a 1:1 ratio against calcium (Ca) in atoms per formula unit, while the I-type apatites have too low Mn and Fe to show a clear trend. Thus, divalent Mn and Fe probably replace Ca2+ in the S-types' apatite structure, while the incorporation of trivalent Mn or Fe in apatite is rather unlikely. We suggest that Mn and Fe contents in apatite may become a useful tracer of melt evolution once the distributions coefficients are experimentally calibrated. [1] Konecke et al. (2017), Am Mineral

  18. The use of borehole geophysical logs and hydrologic tests to characterize plutonic rock for nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Davison, C.C.

    1984-05-01

    The selection of an igneous rock body for the disposal of nuclear fuel waste will likely require the drilling and testing of a number of deep investigative boreholes in the rock body. Although coring of at least one hole at each Research Area will be essential, methods for making in situ geophysical and hydrological measurements can substitute for widespread coring and result in significant savings in time and money. A number of borehole methods have been applied to the investigation of plutonic rocks at Whiteshell Nuclear Research Establishment and Chalk River Nuclear Laboratories in Canada

  19. Emplacement and deformation of the Cerro Durazno Pluton delineates stages of the lower Paleozoic tectono-magmatic evolution in NW-Argentina

    Science.gov (United States)

    Hongn, F.; Riller, U.

    2003-04-01

    Regional-scale transpression and transtension are considered to be important in the lower Paleozoic tectono-magmatic evolution of metamorphic and granitoid basement rocks of the southern central Andes. In order to test whether such kinematic changes affected Paleozoic basement rocks on the local scale, i.e. in the Eastern Cordillera of NW-Argentina, we performed a detailed field-based structural analysis of the 456 Ma granitoid Cerro Durazno pluton (CDP). The results of our analysis point to the following stages in the geodynamic evolution of this area: (1) Metamorphism and deformation of Neoproterozoic-Paleozoic basement rocks occurred at high T and low to medium P prior to emplacement of the CDP. This lead to the formation of schists and migmatites characterized by pervasive planar and linear mineral shape fabrics and the growth of andalusite, cordierite and fibrolite. (2) Magmatic foliation in the CDP is defined by the shape-preferred orientation of euhedral feldspar phenocrysts and microgranitoid enclaves. These fabrics are concordant to the NE-SW striking intrusive contact with migmatitic host rocks. The lack of submagmatic or high-T solid-state fabrics in the CDP may indicate that cooling and solidification of granitoid magma was not accompanied by regional deformation. Alternatively, emplacement of granitoid magma may have been facilitated by the creation of open space at mid-crustal level induced by regional deformation. (3) Ductile deformation under greenschist metamorphic conditions overprinted magmatic fabrics of the CDP. This is evident by NW-SE striking metamorphic foliation surfaces transecting magmatic shape fabrics at high angles. During this deformation, the pluton was thrust on a SW-dipping shear zone toward the NE over low-grade metamorphic host rocks which lead to a condensation of metamorphic isograds in the host rocks. Ages of strained pegmatitic dikes indicate that this deformation occurred at about 430 Ma. In summary, the difference in age

  20. Evidence of recent plutonic magmatism beneath Northeast Peloponnesus (Greece) and its relationship to regional tectonics

    Science.gov (United States)

    Tzanis, A.; Efstathiou, A.; Chailas, S.; Stamatakis, M.

    2018-03-01

    This work reports evidence of recent tectonically controlled plutonic magmatism related to Neogene volcanism in a broad area of Northeast Peloponnesus (Greece) that is straddled by the Hellenic Volcanic Arc and comprises the Argolid, the Argolic and Saronic gulfs and eastern Corinthia including the province of Crommyonia at the western half of Megaris peninsula (western Attica). We assess the contemporary stress field based on formal inversion of well-constrained crustal earthquake focal mechanisms and determine that it is principally extensional and NE-SW oriented, with σ1 strike and plunge being N64° and 77°, respectively and σ3 strikes and plunge N210° and 10°. This generates WNW-ESE and NW-SE faults, the former being dominant in the Saronic Gulf and the latter in the Argolic. In addition, the analysis predicts E-W and N330° faults with non-trivial right- and left-lateral heave, respectively, which are consistent with the R and R΄ directions of Riedel shear theory and explain a number of observed earthquake focal mechanisms and earthquake epicentre alignments. We also present a semi-quantitative analysis of observed aeromagnetic anomalies by performing numerical modelling of the radially averaged power spectrum with an efficient anomaly separation scheme based on a new type of 2-D Fourier domain filter introduced herein, the Radial Extended Meyer Window. This analysis identifies an extensive complex of magnetized rock formations buried at depths greater than 3 km which, given the geology and geotectonic setting of the area, can hardly be explained with anything other than calc-alkaline intrusions (plutons). At northeastern Corinthia and Crommyonia, this type of intrusive activity is unexceptional, mainly concentrated in the Gulf of Megara-Sousaki areas and consistent with the low-intensity, small-scale Pliocene dacitic volcanism observed therein. Conversely, large-scale elongate anomalies of E-W and N330° orientation have been identified in the Argolid

  1. [Analysis of X-Ray Fluorescence Spectroscopy and Plasma Mass Spectrometry of Pangxidong Composite Granitoid Pluton and Its Implications for Magmatic Differentiation].

    Science.gov (United States)

    Zeng, Chang-yu; Ding, Ru-xin; Li, Hong-zhong; Zhou, Yong-zhang; Niu, Jia; Zhang, Jie-tang

    2015-11-01

    Pangxidong composite granitoid pluton located in the southwestern margin of Yunkai massif. The metamorphic grade of this pluton increases from outside to inside, that is, banded-augen granitic gneisses, gneissoid granites and granites distribute in order from edge to core. X-Ray Fluorescence Spectroscopy and Plasma Mass Spectrometry are conducted to study the geochemical characteristics of the three types of rocks. The result shows that all the three types of rocks are peraluminous rocks and their contents of main elements and rare earth elements change gradually. From granitic gneisses to granites, the contents of Al₂O₃, CaO, MgO, TiO₂, total rare earth elements and light rare earth elements increase, but the contents of SiO₂ and heavy rare earth elements decrease. It is suggested that the phylogenetic relationship exists between granitic gneisses, gneissoid granites and granites during the multi-stage tectonic evolution process. Furthermore, the remelting of metamorphosed supracrustal rocks in Yunkai massif is probably an important cause of granitoid rocks forming. The evolutionary mechanism is probably that SiO₂ and heavy rare earth elements were melt out from the protolith and gradually enriched upward, but Al₂O₃, CaO, MgO, TiO₂ and light rare earth elements enriched downward.

  2. Petrogenesis of granitoids and associated xenoliths in the early Paleozoic Baoxu and Enping plutons, South China: Implications for the evolution of the Wuyi-Yunkai intracontinental orogen

    Science.gov (United States)

    Yu, Yang; Huang, Xiao-Long; Sun, Min; He, Peng-Li

    2018-05-01

    The early Paleozoic Wuyi-Yunkai orogen was associated with extensive felsic magmatic activities and the orogenic core was mainly distributed in the Yunkai and Wugong domains located in the western Cathaysia block and in the Wuyi domain located in the central part of the Cathaysia block. In order to investigate the evolution of the Wuyi-Yunkai orogen, elemental and Sr-Nd isotopic analyses were performed for granites from the Baoxu pluton in the Yunkai domain and from the Enping pluton in the central part of the Cathaysia block. The Baoxu pluton consists of biotite granite with abundant xenoliths of gneissic granite, granodiorite and diorite, and the Enping pluton is mainly composed of massive granodiorite. Biotite granites (441 ± 5 Ma) and gneissic granite xenolith (443 ± 4 Ma) of the Baoxu pluton are all weakly peraluminous (A/CNK = 1.05-1.10). They show high Sr/Y and La/Yb ratios and have negative bulk-rock εNd(t) values (-7.0 to -4.4), which are similar to coeval gneissic S-type granites in the Yunkai domain and were probably derived from dehydration melting of a sedimentary source with garnet residue in the source. Granodiorites (429 ± 3 Ma) from Enping and granodiorite xenolith (442 ± 4 Ma) from Baoxu are metaluminous and have REE patterns with enriched light REE and flat middle to heavy REE, possibly generated by the dehydration melting of an igneous basement at middle to lower crustal level. Diorite xenolith from Baoxu is ultrapotassic (K2O = 4.9 wt%), has high contents of MgO (7.0 wt%), Cr (379 ppm) and Ni (171 ppm) and shows pronounced negative Nb, Ta and Ti anomalies. This xenolith also has negative εNd(t) value (-3.6) and low Rb/Ba and high Ba/Sr ratios, and is thus interpreted to be derived from an enriched lithospheric mantle with the breakdown of phlogopite. Early Paleozoic I- and S-type granites in the Wuyi-Yunkai orogen mostly have negative εNd(t) values and do not have juvenile components, consistent with genesis by an intracontinental

  3. Composite Sunrise Butte pluton: Insights into Jurassic–Cretaceous collisional tectonics and magmatism in the Blue Mountains Province, northeastern Oregon

    Science.gov (United States)

    Johnson, Kenneth H.; Schwartz, J.J.; Žák, Jiří; Verner, Krystof; Barnes, Calvin G.; Walton, Clay; Wooden, Joseph L.; Wright, James E.; Kistler, Ronald W.

    2015-01-01

    The composite Sunrise Butte pluton, in the central part of the Blue Mountains Province, northeastern Oregon, preserves a record of subduction-related magmatism, arc-arc collision, crustal thickening, and deep-crustal anatexis. The earliest phase of the pluton (Desolation Creek unit) was generated in a subduction zone environment, as the oceanic lithosphere between the Wallowa and Olds Ferry island arcs was consumed. Zircons from this unit yielded a 206Pb/238U age of 160.2 ± 2.1 Ma. A magmatic lull ensued during arc-arc collision, after which partial melting at the base of the thickened Wallowa arc crust produced siliceous magma that was emplaced into metasedimentary rocks and serpentinite of the overthrust forearc complex. This magma crystallized to form the bulk of the Sunrise Butte composite pluton (the Sunrise Butte unit; 145.8 ± 2.2 Ma). The heat necessary for crustal anatexis was supplied by coeval mantle-derived magma (the Onion Gulch unit; 147.9 ± 1.8 Ma).The lull in magmatic activity between 160 and 148 Ma encompasses the timing of arc-arc collision (159–154 Ma), and it is similar to those lulls observed in adjacent areas of the Blue Mountains Province related to the same shortening event. Previous researchers have proposed a tectonic link between the Blue Mountains Province and the Klamath Mountains and northern Sierra Nevada Provinces farther to the south; however, timing of Late Jurassic deformation in the Blue Mountains Province predates the timing of the so-called Nevadan orogeny in the Klamath Mountains. In both the Blue Mountains Province and Klamath Mountains, the onset of deep-crustal partial melting initiated at ca. 148 Ma, suggesting a possible geodynamic link. One possibility is that the Late Jurassic shortening event recorded in the Blue Mountains Province may be a northerly extension of the Nevadan orogeny. Differences in the timing of these events in the Blue Mountains Province and the Klamath–Sierra Nevada Provinces suggest that

  4. Age and isotopic fingerprints of some plutonic rocks in the Wiborg rapakivi granite batholith with special reference to the dark wiborgite of the Ristisaari Island

    Directory of Open Access Journals (Sweden)

    Rämö, O.T.

    2014-12-01

    Full Text Available The mid-Proterozoic, locus classicus Wiborg rapakivi granite batholith of southeastern Finland and adjacent Russia comprises a varying, bimodal (silicic-basic sequence of plutonic, subvolcanic, and volcanic rocks. At the current level of erosion silicic rocks are dominant, the most prominent of which are wiborgites and dark wiborgites (that have been considered to mark the main build-up stage of the batholith and pyterlites. New observations and optical microscopy data from the dark wiborgite-dominated Ristisaari Island in the southern, off-shore part of the Wiborg batholith show that dark plagioclase megacrysts in dark wiborgite are calcic xenocrysts. They were probably incorporated into wiborgite magma from consanguineous massiftype anorthosite magmas in the course of the evolution of the bimodal magmatic system. Our new ID-TIMS U-Pb zircon age of the Ristisaari Island dark wiborgite, 1627±3 Ma, is the youngest isotopic age so far determined for the plutonic rocks of the Wiborg batholith. This, combined with preexisting U-Pb zircon data, implies a minimum duration of 12 m.y. (1642–1630 Ma for the emplacement of the plutonic rocks of the batholith. Combined with data on highlevel dike rocks, a window of at least 20 m.y. (1642–1622 Ma is implied. Furthermore, as the batholith grew, the overall locus of magmatism may have shifted southwards. New whole-rock Nd isotope data on the dark wiborgite of the Ristisaari Island and three further granites of the batholith, as well as Nd (whole-rock and Sr (whole-rock, plagioclase isotope data on a spectrolite massif-type anorthosite from the east-central part of the batholith, are also presented. These data suggest that the lithosphere across the Wiborg batholith area in the southeastern part of the Svecofennian orogen may vary slightly in overall mantle separation age.

  5. Formation of Intermediate Plutonic Rocks by Magma Mixing: the Shoshonite Suite of Timna, Southern Israel.

    Science.gov (United States)

    Fox, S.; Katzir, Y.

    2017-12-01

    In magmatic series considered to form by crystal fractionation intermediate rocks are usually much less abundant than expected. Yet, intermediate plutonic rocks, predominantly monzodiorites, are very abundant in the Neoproterozoic Timna igneous complex, S. Israel. A previously unnoticed plutonic shoshonitic suite was recently defined and mapped in Timna (Litvinovsky et al., 2015). It mostly comprises intermediate rocks in a seemingly 'continuous' trend from monzodiorite through monzonite to quartz syenite. Macroscale textures including gradational boundaries of mafic and felsic rocks and MME suggest that magma mixing is central in forming intermediate rocks in Timna. Our petrographic, microtextural and mineral chemistry study delineates the mode of incipient mixing, ultimate mingling and crystal equilibration in hybrid melts. An EMP study of plagioclase from rocks across the suite provides a quantitative evaluation of textures indicative of magma mixing/mingling, including recurrent/patchy zoning, Ca spike, boxy/sponge cellular texture and anti-Rapakivi texture. Each texture has an affinity to a particular mixing region. A modal count of these textures leads to a kinetic mixing model involving multi temporal and spatial scales necessary to form the hybrid intermediate rocks. A `shell'-like model for varying degrees of mixing is developed with the more intensive mixing at the core and more abundant felsic and mafic end-members towards the outer layer. REE patterns in zircon shows that it originated from both mafic and felsic parent melts. Whole rock Fe vs Sr plot suggests a two-stage mixing between the monzogabbro and quartz-syenite producing first mesocratic syenite, and subsequent mixing with a fractionating monzogabbro resulting in monzonitic compositions. A fractionating monzogabbro intruded into a syenitic melt sequentially. While slowly cooling, the monzogabbro heated the immediate syenitic melt, lowering the viscosity and rheological obstruction to overturn

  6. Anomally '60': a uraniferous granitic pluton on Melville Peninsula, N.W.T

    International Nuclear Information System (INIS)

    Delpierre, M.E.

    1982-01-01

    The Proterozoic (Aphebian) Penrhyn Group in the Foxe Fold Belt in south-central Melville Peninsula, N.W.T. hosts numerous coarse-grained to pegmatitic granitic plutons, some of which show a definite enrichment in uranium with a few being significantly anomalous. Anomaly '60' is caused by a strongly radioactive pegmatitic granite intrusion that occurs at the base of the Penrhyn metasediments which rest unconformably on Archean gneisses. The granite is both discordant and concordant with the Proterozoic country rocks (marbles and paragneisses) and exhibits ghost layering at numerous localities. Uranium mineralization as uranophane and other secondary minerals sometimes forming pseudomorphs after uraninite appears to show a strong association with biotite accumulations. Thorium is variably present and may exceed the uranium content. Results from rock geochemistry, ground radiometry, detailed prospecting and a diamond drill program of six short holes conducted in 1979, indicate that although some ore grade mineralization occurs over short sections, the low grade and tonnage potential coupled with logistical difficulties, makes this 'porphyry uranium' occurrence uneconomic at present

  7. Origin and mobility of hydrocarbon gases in alkaline plutons : the example of the Khibina complex, NW Russia

    Energy Technology Data Exchange (ETDEWEB)

    Treloar, P.J.; Beeskow, B.; Rankin, A.H. [Kingston Univ., Kingston upon Thames (United Kingdom). School of Earth Sciences; Potter, J. [Western Ontario Univ., London, ON (Canada). Dept. of Earth Science; Nivin, V. [Geological Inst., Apatity (Russian Federation). Kola Science Centre

    2006-07-01

    The origin and distribution of abiogenic hydrocarbon gases (HCGs) was discussed with particular reference to HCGs in the Khibina pluton which are dominated by methane (CH{sub 4}) with minor amounts of higher hydrocarbons and hydrogen (H{sub 2}). Although isotopic data and hydrocarbon species ratios point to an abiogenic source, they do not distinguish between primary magmatic hydrocarbons and those generated by late magmatic re-speciation or post-magmatic Fischer-Tropsch (FT) synthesis. Some rock textures suggest limited CH{sub 4} production by FT synthesis, but the presence of primary, syn-magmatic CH{sub 4}-rich fluid inclusions, and the absence of primary and secondary carbon dioxide (CO{sub 2}) rich inclusions, suggest a dominantly early magmatic origin for the HCGs. The permeability and porosity in the Khibina pluton can be constrained by the distribution and geometry of fluid inclusion planes (FIPs) and open cracks (OCs), as well as by the magnitude and pathways of fluid flow. Orientation data for FIPs and OCs, obtained from oriented thin sections, revealed a range of orientations in sub-parallel arrays, suggesting continual re-activation of old fracture systems. The extensive occurrence of OCs and sealed FIPs points to long lived porosities and permeabilities with large fluid fluxes integrated over time. FIP and OC density values were found to be consistent with gas release patterns characterized by spontaneous release during mining of large volumes of HCG stored in a network of interconnected, sealed microfractures and fluid inclusion planes that unzip during stress. It was determined that the HCGs have a primary magmatic origin although there is local evidence for limited post-magmatic FT synthesis. Long term continuous gas migration has occurred within the complex through an interconnected set of fractures. FIPs represent aliquots of gas sealed during open system migration. It was concluded that the complex contains a potentially economically viable

  8. Incremental growth of an upper crustal, A-type pluton, Argentina: Evidence of a re-used magma pathway

    Science.gov (United States)

    Alasino, Pablo H.; Larrovere, Mariano A.; Rocher, Sebastián; Dahlquist, Juan A.; Basei, Miguel A. S.; Memeti, Valbone; Paterson, Scott; Galindo, Carmen; Macchioli Grande, Marcos; da Costa Campos Neto, Mario

    2017-07-01

    Carboniferous igneous activity in the Sierra de Velasco (NW Argentina) led to the emplacement of several magmas bodies at shallow levels (relationships) intrusive units are: (1) the Asha unit (340 ± 7 Ma): a tabular to funnel-shaped intrusion emplaced during a regional strain field dominated by WSW-ENE shortening with contacts discordant to regional host-rock structures; (2) the San Blas unit (344 ± 2 Ma): an approximate cylindrical-shaped intrusion formed by multiple batches of magmas, with a roughly concentric fabric pattern and displacement of the host rock by ductile flow of about 35% of shortening; and (3) the Hualco unit (346 ± 6 Ma): a small body with a possible mushroom geometry and contacts concordant to regional host-rock structures. The magma pulses making up these units define two groups of A-type granitoids. The first group includes the peraluminous granitic rocks of the Asha unit generated mostly by crustal sources (εNdt = - 5.8 and εHft in zircon = - 2.9 to - 4.5). The second group comprises the metaluminous to peraluminous granitic rocks of the youngest units (San Blas and Hualco), which were formed by a heterogeneous mixture between mantle and crustal sources (εNdt = + 0.6 to - 4.8 and εHft in zircon = + 3 to - 6). Our results provide a comprehensive view of the evolution of an intrusive complex formed from multiple non-consanguineous magma intrusions that utilized the same magmatic plumbing system during downward transfer of host materials. As the plutonic system matures, the ascent of magmas is governed by the visco-elastic flow of host rock that for younger batches include older hot magma mush. The latter results in ductile downward flow of older, during rise of younger magma. Such complexes may reflect the plutonic portion of volcanic centers where chemically distinct magmas are erupted.

  9. Exploring the plutonic crust at a fast-spreading ridge:new drilling at Hess Deep

    Energy Technology Data Exchange (ETDEWEB)

    Gillis, Kathryn M. [Univ. of Victoria, BC (Canada). School of Earth and Ocean Sciences; Snow, Jonathan E. [Univ. of Houston, Houston, TX (United States). Earth & Atmospheric Sciences; Klaus, Adam [Texas A & M Univ., College Station, TX (United States). Integrated Ocean Drilling Program (IODP). United States Implementing Organization.; Guerin, Gilles [Lamont-Doherty Earth Observatory of Columbia Univ., Palisades, NY (United States). Borehole Research Group; Abe, Natsue [Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka (Japan). Inst. for Research on Earth Evolution (IFREE); Akizawa, Norikatsu [Kanazawa Univ. (Japan). Dept. of Earth Sciences; Ceuleneer, Georges [Univ. Paul Sabatier, Toulouse (France). Observatoire Midi-Pyrenees (UMS 831), CNRS; Cheadle, Michael J. [Univ. of Wyoming, Laramie, WY (United States). Dept. of Geology and Geophysics; Adriao, Alden de Brito [Federal Univ. of Rio Grande do Sul, Porto Alegre (Brazil). Geology Inst. (IGEO); Faak, Kathrin [Ruhr Univ., Bochum (Germany). Geological Inst.; Falloon, Trevor J. [Univ. of Tasmania, Hobart, TAS (Australia). Inst. for Marine and Antarctic Studies; Friedman, Sarah A. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology; Godard, Marguerite M. [Univ. Montpellier II (France). Geosciences Montpellier-UMR 5243; Harigane, Yumiko [National Inst. of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Marine Geology Dept.; Horst, Andrew J. [Syracuse Univ., NY (United States). Dept. of Earth Science; Hoshide, Takashi [Tohoku Univ., Sendai (Japan). Graduate School of Science; Ildefonse, Benoit [Univ. Montpellier II (France). Lab. de Tectonophysique; Jean, Marlon M. [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Geology and Environmental Geosciences; John, Barbara E. [Univ. of Wyoming, Laramie, WY (United States). Dept. of Geology and Geophysics; Koepke, Juergen H. [Univ. of Hannover (Germany). Inst. of Mineralogy; Machi, Sumiaki [Kanazawa Univ. (Japan). Dept. of Earth Sciences; Maeda, Jinichiro [Hokkaido Univ., Sapporo (Japan). Dept. of Natural History Sciences; Marks, Naomi E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Chemistry and Material Sciences Dept.; McCaig, Andrew M. [Univ. of Leeds (United Kingdom). School of Earth and Environment; Meyer, Romain [Univ. of Bergen (Norway). Dept. of Earth Science and Centre for Geobiology; Morris, Antony [Univ. of Plymouth (United Kingdom). School of Earth, Ocean & Environmental Sciences; Nozaka, Toshio [Okayama Univ. (Japan). Dept. of Earth Sciences; Python, Marie [Hokkaido Univ., Sapporo (Japan). Dept. of Earth and Planetary Sciences; Saha, Abhishek [Indian Inst. of Science (IISC), Bangalore (India). Centre for Earth Sciences; Wintsch, Robert P. [Indiana Univ., Bloomington, IN (United States). Dept. of Geological Sciences

    2013-02-28

    Integrated Ocean Drilling Program (IODP) Hess Deep Expedition 345 was designed to sample lower crustal primitive gabbroic rocks that formed at the fast-spreading East Pacific Rise (EPR) in order to test models of magmatic accretion and the intensity of hydrothermal cooling at depth. The Hess Deep Rift was selected to exploit tectonic exposures of young EPR plutonic crust, building upon results from ODP Leg 147 as well as more recent submersible, remotely operated vehicle, and near-bottom surveys. The primary goal was to acquire the observations required to test end-member crustal accretion models that were in large part based on relationships from ophiolites, in combination with mid-ocean ridge geophysical studies. This goal was achieved with the recovery of primitive layered olivine gabbros and troctolites with many unexpected mineralogical and textural relationships, such as the abundance of orthopyroxene and the preservation of delicate skeletal olivine textures.

  10. Evidence in Variscan Corsica of a brief and voluminous Late Carboniferous to Early Permian volcanic-plutonic event contemporaneous with a high-temperature/low-pressure metamorphic peak in the lower crust

    International Nuclear Information System (INIS)

    Rossi, Philippe; Cocherie, Alain; Fanning, C. Mark

    2015-01-01

    The U2 group of plutonic rocks constituting the main exposed part of the Corsica-Sardinia batholith (CSB) was emplaced from 308 to 275 Ma (the early Visean U1 group of Mg-K intrusions is not considered here). Field evidence earlier established volcanic-plutonic relationships in the U2 group of calc-alkaline intrusions of the CSB, though detailed chronological data were still lacking. Large outcrops of U2 volcanic formations are restricted to the less eroded zone north-west of the Porto-Ponte Leccia line in Corsica, but volcanic and volcano-sedimentary formations were widely eroded elsewhere since Permian times. They probably covered most of the batholith before the Miocene, as testified by the volcanic nature of the pebbles that form much of the Early Miocene conglomerates of eastern Corsica. U-Pb zircon dating (SHRIMP) was used for deciphering the chronology and duration of different volcanic pulses and for better estimating the time overlap between plutonic and volcanic rock emplacement in the CSB. The obtained ages fit well with field data, showing that most of the U2 and U3 volcanic formations were emplaced within a brief time span of roughly 15 m.y., from 293 to 278 Ma, coeval with most U2 monzo-granodiorites and leuco-monzo-granites (295-280 Ma), alkaline U3 complexes (about 288 Ma), and mafic-ultramafic tholeiitic complexes (295-275 Ma). The same chronological link between deep-seated magma chambers and eruptions was identified in the Pyrenees. These results correlate with U-Pb zircon dating of HT-LP granulites from the Variscan deep crust exhumed along the 'European' margin of the thinned Tethys margin in Corsica and Calabria. Here, the peak of the low-pressure/high-temperature metamorphism was dated at about 285-280 Ma. Our results throw light on the condition of magma production during the orogenic collapse in the southern Variscan realm. While juvenile tholeiitic basaltic magma was produced by the melting of spinel mantle lithosphere, all

  11. Oxygen and hydrogen isotope studies of plutonic granitic rocks

    International Nuclear Information System (INIS)

    Taylor, H.P. Jr.

    1978-01-01

    The primary deltaD values of the biotites and hornblendes in granitic batholiths are remarkably constant at about -50 to -85, identical to the values in regional metamorphic rocks, marine sediments and greenstones, and most weathering products in temperate climates. Therefore the primary water in these igneous rocks is probably not 'juvenile', but is ultimately derived by dehydration and/or partial melting of the lower crust or subducted lithosphere. Most granitic rocks have delta 18 O = +7.0 to +10.0, probably indicating significant involvment of high- 18 O metasedimentary or altered volcanic rocks in the melting process; such an origin is demanded for many other granodiorites and tonalites that have delta 18 O = +10 to +13. Gigantic meteoric-hydrothermal convective circulation systems were established in the epizonal portions of all batholiths, locally producing very low delta 18 O values (particularly in feldspars) during subsolidus exchange. Some granitic plutons in such environments also were emplaced as low- 18 O magmas probably formed by melting or assimilation of hydrothermally altered roof rocks. However, the water/rock ratios were typically low enough that over wide areas the only evidence for meteoric water exchange in the batholiths is given by low D/H ratios (deltaK as low as -180); for example, because of latitudinal isotopic variations in meteoric waters, as one moves north through the Cordilleran batholiths of western North America an increasingly higher proportion of the granitic rocks have deltaD values lower than -120. The lowering of deltaD values commonly corelates with re-setting of K-Ar ages. (Auth.)

  12. Petrology of the Porriño late-Variscan pluton from NW Iberia. A model for post-tectonic plutons in collisional settings

    Energy Technology Data Exchange (ETDEWEB)

    González Menéndez, L.; Gallastegui, G.; Cuesta, A.; Montero, P.; Rubio-Ordoñez, A.; Molina, J.F.; Bea, F.

    2017-07-01

    The Variscan orogen of NW Iberia contains abundant syn- and post-tectonic granitoids. The post-tectonic granitoids are metaluminous to slightly peraluminous, I-type granites, monzogranites ± granodiorites ± tonalites. The Porriño pluton studied here is a representative example. It consists of two units: i) a pink-red, peraluminous, biotite granite and ii) a gray, metaluminous to peraluminous, biotite (± amphibole ± titanite) monzogranite, including maficintermediate enclaves. SHRIMP U-Pb dating yielded 290-295Ma ages for all the units. The mineralogy and geochemistry show that the pink-red granite has features of I- and A-type granites, whereas the gray monzogranite and enclaves are I-types. Sr isotopes show scattered values for the pink-red granite (87Sr/86Sr295Ma ≈ 0.702-0.710) and uniform values for the gray monzogranite and enclaves (87Sr/86Sr295Ma≈ 0.705-0.706). Geochemical results indicate a peritectic entrainment of clinopyroxene + orthopyroxene ± Ca-plagioclase ± ilmenite ± garnet, and minor accessory phases (± zircon ± titanite ± apatite) into a melt similar to the leucocratic gray monzogranite. A mafic-intermediate source is proposed for the gray monzogranite and its enclaves. Restitic protoliths generated granitic melts with A-type features such as the pink-red granite. The I-type nature of many post-tectonic granitoids could be explained by the previous extraction of S-type syn-tectonic granites that left restites and less fertile rocks. Late orogenic new melting affected the previously unmelted and more mafic lithologies of the lower-middle crust, and gave rise to I-type granitoids. Repeated melting events affecting such lithologies and previous restites could have generated granitic melts with A-type features.

  13. Natural radionuclides in the rocks of the Valle del Cervo Pluton in Piedmont.

    Science.gov (United States)

    Sesana, Lucia; Fumagalli, Marco; Carnevale, Mauro; Polla, Giancarla; Facchini, Ugo; Colombo, Annita; Tunesi, Annalisa; De Capitani, Luisa; Rusconi, Rosella

    2006-01-01

    Monitoring of the gamma radiation in Valle del Cervo Pluton was performed by determining U and Th contents in the main rock types cropping out over the entire area and pertaining to the granitic complex, syenitic complex and monzonitic complex. In particular, syenitic rocks were largely used as building and ornamental materials (e.g. Sienite della Balma). All the samples are fresh and do not present joints or fractures filled with U minerals. In the crushed samples the activity of uranium varies from 346 to 764 Bq/kg. Concentration of thorium varies from 202 to 478 Bq/kg. For all the analysed rocks uranium activity is higher than thorium one. The lowest value of radioactive concentration is referred to rocks of the granitic complex. The most active rocks are syenites. The data confirm the high activities of Valle del Cervo rock types, strongly connected with high K content of the source magma (geochemical signature); on the contrary, the activity seems to be not related to the location of the samples.

  14. Episodic growth and homogenization of plutonic roots in arc volcanoes from combined U-Th and (U-Th)/He zircon dating

    Science.gov (United States)

    Schmitt, Axel K.; Stockli, Daniel F.; Lindsay, Jan M.; Robertson, Richard; Lovera, Oscar M.; Kislitsyn, Roman

    2010-06-01

    Tracing the fate of unerupted magma is challenging because plutonic roots of young volcanoes are largely inaccessible. Here we develop the use of zircon age spectra to determine crystal provenance and source rocks for volcanic products, in analogy to detrital crystals in sediments. U-Th zircon crystallization ages for the Soufrière Volcanic Complex, Saint Lucia (Lesser Antilles) frequently predate their eruption as determined from combined U-Th and (U-Th)/He zircon dating. The oldest dated eruptions are 273 ± 15 ka and 264 ± 8 ka (1σ uncertainty) for Morne Bonin dacite and Bellevue pumice deposit, respectively. The most recent eruptions formed morphologically pristine domes in the center of the Qualibou depression (Belfond: 13.6 ± 0.4 ka; Terre Blanche: 15.3 ± 0.4 ka). U-Th (U-Pb) zircon crystallization ages determined for crystal rims and interiors range between near-eruption ages to ∼ 600 ka. Older xenocrysts are absent. Zircon crystallization age distributions are complex, yet systematic: crystal rim ages in the most recently erupted volcanic rocks match those of co-erupted plutonic inclusions, whereas crystal interiors are equivalent to the cumulative distribution of zircon ages from older eruptions. This is evidence that silicic lava domes and pyroclastic flows share a common source that is located underneath the Qualibou depression, where the intrusive roots of this long-lived arc volcanic system became homogenized through thermal and mechanical reprocessing of individual batches of unerupted magma from earlier volcanic episodes within timescales of < 100 ka.

  15. Growth of a Large Composite Magma System: the EJB Pluton, Eastern California.

    Science.gov (United States)

    Matty, D. J.; Vervoort, J.; Dufrane, A.; Hart, G.; Student, J.; Morgan, S.

    2008-12-01

    The composite EJB pluton crops out in the White-Inyo Mountains of eastern California, and comprises the Eureka Valley monzonite (EVM), the Joshua Flat quartz monzonite (JFQM), the Beer Creek granite (BCG), and an unnamed diorite. While sometimes equivocal, field relationships suggest that the EVM was emplaced first, followed by the JFQM, and finally the BCG; the diorite predates the BCG. Sylvester and others (GSAB, 1978) reported zircon U-Pb ages of 179±2 Ma for the EVM and 174±5 Ma for the JFQM. Coleman and others (GSAB, 2003) determined a U-Pb age of 179±3 Ma (via Pb-loss trajectory) for the BCG. Because of the uncertainty in the ages and ambiguous field relations, the sequence and duration of EJB magmatism remain unclear. To understand more fully the timing of EJB magmatism, we separated zircons from 12 samples collected from each of the main EJB units. These samples were characterized using light microscopy, SEM and CL techniques. U-Pb ages were determined from individual zircons by LA-ICP-MS following the method of Chang and others (G3, 2006). For the ages reported below, the reported uncertainties are based on factors within the analysis, but do not include external factors such as sample/standard bias or other matrix effects. Overall uncertainty in LA-ICPMS U-Pb geochronology is hard to assess, but we estimate that all ages reported below are subject to a minimum 2% uncertainty. We determined a concordant U-Pb age of 180±2 Ma for the EVM, which agrees with the results of Sylvester and others (1978). The unnamed diorite produced a concordant U-Pb age of 177±3 Ma. Concordant U-Pb ages of 172±2, 172±3, 173±2, 174±2, and 175±2 Ma were determined for individual samples of the JFQM and agree with the age reported by Sylvester and others (1978) of 174±5 Ma. Concordant U-Pb ages of 168±4, 168±3, 169±1, 172±2, and 172±2 Ma were determined for individual BCG samples. Within the reported error, there is no difference in age between individual samples of

  16. Reference levels of natural radioactivity and (137)Cs in and around the surface soils of Kestanbol pluton in Ezine region of Çanakkale province, Turkey.

    Science.gov (United States)

    Öztürk, Buket Canbaz; Çam, N Füsun; Yaprak, Günseli

    2013-01-01

    The aim of the study was to conduct a systematic investigation on the natural gamma emitting radionuclides ((226)Ra, (232)Th and (40)K) as well as (137)Cs in the surface soils from Kestanbol/Ezine plutonic area in Çanakkale province as part of the environmental monitoring program on radiologic impact of the granitoid areas in Western Anatolia. The activity measurements of the gamma emitters in the surface soil samples collected from 52 sites distributed all over the region has been carried out, by means of HPGe gamma-ray spectrometry system. The activity concentrations of the relevant radionuclides in the soil samples appeared in the ranges as follows: (226)Ra was 20-521 Bq kg(-1); (232)Th, 11-499 Bq kg(-1)and; (40)K, 126-3181 Bq kg(-1), yet the (137)Cs was much lower than 20 Bq kg(-1)at most. Furthermore, based on the available data, the radiation hazard parameters associated with the surveyed soils were calculated. The present data also allowed evaluation of some correlations that may exist in the investigated natural radionuclides of the soil samples from the plutonic area in Çanakkale province. It is concluded from the above that the concerned region did not lead to any significant radiological exposure to the environment.

  17. Statistical analysis of the geological-hydrological conditions within part of the Eye-Dashwa pluton, Atikokan, northwestern Ontario

    International Nuclear Information System (INIS)

    Brown, P.A.; Rey, N.A.C.

    1989-01-01

    The occurrence and distribution of fracture-filling material within the Eye-Dashwa granite indicate that the dominant fracture system formed shortly after emplacement and cooling of the pluton at 2678 ± 67 Ma. Subsequent reactivation of these ancient fractures was accompanied by sequentially younger and lower temperature filling materials. These reopened ancient fractures are best developed in the upper 300-400 m of the rock mass and are commonly conduits for present-day groundwater flow. Multiple linear regression analysis performed on the geological variables identified a highly significant correlation between a number of these variable and hydraulic conductivity values measured in 25 m test sections of the boreholes. The predictive capability of the regression design was tested with seven new test data and found to be a valid estimator of the hydrogeological conditions

  18. Magmatic evolution and controls on rare metal-enrichment of the Strange Lake A-type peralkaline granitic pluton, Québec-Labrador

    Science.gov (United States)

    Siegel, Karin; Vasyukova, Olga V.; Williams-Jones, Anthony E.

    2018-05-01

    Although it is well known that A-type granites are enriched in the rare earth elements (REE) and other high field strength elements (HFSE), the magmatic processes that concentrate these elements are still poorly understood. The 1.24 Ga Strange Lake pluton in northern Québec-Labrador provides an extraordinary example of hyper-enrichment in the REE, Zr, and Nb in a peralkaline A-type granite. The pluton consists of two hypersolvus granite units (southern and northern) and a transsolvus granite, all of which contain perthitic alkali feldspar as the earliest major mineral; the transsolvus granite also contains separate albite and microcline crystals. Arfvedsonite, a sodic amphibole, occurs exclusively as phenocrysts in the transsolvus granite, whereas in the hypersolvus granite it is present as a late, interstitial phase. The primary HFSE minerals are zircon, monazite-(Ce), gagarinite-(Ce) and the pyrochlore group minerals. Magma evolution was monitored by the alumina content in the bulk rock, which decreases from the southern to the northern hypersolvus granite and is lowest in the transsolvus granite. Alkalinity indices and bulk Si, Fe, Rb, REE, Zr, Nb concentrations show the opposite trend. Alkali feldspar compositions mirror the trend shown by the bulk rock, i.e., decreasing Al contents are accompanied by increasing Si, Fe3+, REE, Zr and Nb contents. The major driving forces for the evolution of the hypersolvus magma prior to emplacement were the early separation of a fluoride melt from the silicate melt and the crystallization of alkali feldspar and HFSE-rich phases (zircon, monazite-(Ce), pyrochlore group). An alkali feldspar-rich crystal-mush containing LREE-fluoride melt droplets was emplaced as the least evolved southern hypersolvus granite. Massive fractionation of alkali feldspar led to a sharp increase in ƒH2O and F- activity in the magma chamber that triggered the crystallization of arfvedsonite and was followed by emplacement of the northern hypersolvus

  19. U-Pb geochronology on zircon from the Aouli pluton, Haute Moulouya area, Morocco

    International Nuclear Information System (INIS)

    Oukemeni, D.; Krogh, T.E.

    1995-01-01

    The Aouli Pluton consists of four units: (1) granodiorite; (2) grey granite; (3) pink granite - these three units constituting a spatially continuous massif, and (4) muscovite granite, which is exposed in two small stocks somewhat removed from the other units. U-Pb ages obtained on zircon and titanite are 333 ± 2 Ma and 319 ± 1.5 Ma for the granodiorite and grey granite respectively. The 14 ma age difference between the granodiorite and the grey granite supports the multiple injection hypothesis which was the outcome of geochemical studies (Oukemeni and Bourne, 1993). These two rocks also contain an inherited component which has been dated at 1520 Ma in the granudiorite and at 1245 ma and 1804 Ma in the grey granite. The inherited components suggest the possible presence of Precambian crust below the Haute Moulouya. Since the intrusion is late-to post-tectonic (Oukemeni and Bourne, 1993), the age of the granodiorite (333 ± 2 Ma) indicates that the Hercynian deformation is pre-Visean in the Haute Moulouya area, and, by extension, throughout the eastern meseta region. (authors). 14 refs. 4 figs. 3 tabs

  20. Temporal Evolution of Volcanic and Plutonic Magmas Related to Porphyry Copper Ores Based on Zircon Geochemistry

    Science.gov (United States)

    Dilles, J. H.; Lee, R. G.; Wooden, J. L.; Koleszar, A. M.

    2015-12-01

    Porphyry Cu (Mo-Au) and epithermal Au-Ag ores are globally associated with shallow hydrous, strongly oxidized, and sulfur-rich arc intrusions. In many localities, long-lived magmatism includes evolution from early andesitic volcanic (v) and plutonic (p) rocks to later dacitic or rhyolitic compositions dominated by plutons. We compare zircon compositions from three igneous suites with different time spans: Yerington, USA (1 m.y., p>v), El Salvador, Chile (4 m.y., p>v), and Yanacocha, Peru (6 m.y., v>p). At Yerington granite dikes and ores formed in one event, at ES in 2 to 3 events spanning 3 m.y., and at Yanacocha in 6 events spanning 5 m.y. At both ES and Yanacocha, high-Al amphiboles likely crystallized at high temperature in the mid-crust and attest to deep magmas that periodically recharged the shallow chambers. At Yanacocha, these amphiboles contain anhydrite inclusions that require magmas were sulfur-rich and strongly oxidized (~NNO+2). The Ti-in-zircon geothermometer provides estimates of 920º to 620º C for zircon crystallization, and records both core to rim cooling and locally high temperature rim overgrowths. Ore-related silicic porphyries yield near-solidus crystallization temperatures of 750-650°C consistent with low zircon saturation temperatures. The latter zircons have large positive Ce/Ce* and small negative Eu/Eu*≥0.4 anomalies attesting to strongly oxidized conditions (Ballard et al., 2001), which we propose result from crystallization and SO2 loss to the magmatic-hydrothermal ore fluid (Dilles et al., 2015). The Hf, REE, Y, U, and Th contents of zircons are diverse in the magma suites, and Th/U vs Yb/Gd plots suggest a dominant role of crystal fractionation with lesser roles for both crustal contamination and mixing with high temperature deep-sourced mafic magma. Ce/Sm vs Yb/Gd plots suggest that magma REE contents at contamination are most evident in pre-ore magmas, whereas ore-forming intrusions at low temperatures are dominated by crystal

  1. The questa magmatic system: Petrologic, chemical and isotopic variations in cogenetic volcanic and plutonic rocks of the latir volcanic field and associated intrusives, northern New Mexico

    International Nuclear Information System (INIS)

    Johnson, C.M.

    1986-01-01

    Field, chemical and isotopic data demonstrate that nearly all igneous rocks at Questa resulted from interactions between mantle-derived parental magmas and the crust. Strontium, neodymium and lead isotope ratios of early andesites to rhyolites (28 to 26 Ma) indicate that these magmas assimilated > 25% lower crust. Injection of basaltic magmas extensively modified the strontium and neodymium but not the lead isotope compositions of the lower crust. Eruption of comendite magmas and the peralkaline Amalia Tuff 26 Ma is correlated with inception of regional extension. Lead isotope ratios identify different sources for the metaluminous granites and the peralkaline rocks. 26 Ma metaluminous granite to granodiorite intrusions have chemical and isotopic compositions to those of the precaldera intermediate-composition rocks, and are interpreted as representing the solidified equivalents of the precaldera magmatic episode. However, both conventional and ion-microprobe isotopic data prohibit significant assimilation of crustal rocks at the level of exposure, suggesting that the plutons were emplaced a relatively crystal-rich mushes which did not have sufficient heat to assimilate country rocks. This suggest that in some cases plutonic rocks are better than volcanic rocks in representing the isotopic compositions of their source regions, because the assimilation potential of crystal-rich magmas is significantly less than that of largely liquid magmas

  2. The disposal of Canada's nuclear fuel waste: a study of postclosure safety of in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock volume 1: summary

    International Nuclear Information System (INIS)

    Wikjord, A.G.; Baumgartner, P.; Johnson, L.H.; Stanchell, F.W.; Zach, R.; Goodwin, B.W.

    1996-06-01

    The concept for disposal of Canada's nuclear fuel waste involves isolating the waste in corrosion-resistant containers emplaced and sealed within a vault at a depth of 500 to 1000 m in plutonic rock of the Canadian Shield. The case for the acceptability of the concept as a means of safely disposing of Canada's nuclear fuel waste is presented in an Environmental Impact Statement (EIS) The disposal concept permits a choice of methods, materials, site locations and designs. The EIS presents a case study of the long-term (i.e., postclosure) performance of a hypothetical implementation of the concept, referred to in this report as the reference disposal system. The reference disposal system is based on borehole emplacement of used CANDU fuel in Grade-2 titanium alloy containers in low-permeability, sparsely fractured plutonic rock of the Canadian Shield. We evaluate the long-term performance of another hypothetical implementation of the concept based on in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock. The geological characteristics of the geosphere assumed for this study result in short groundwater travel times from the disposal vault to the surface. In the present study, the principal barrier to the movement of contaminants is the long-lasting copper container. We show that the long-lasting container can effectively compensate for a permeable host rock which results in an unfavourable groundwater flow condition. These studies illustrate the flexibility of AECL's disposal concept to take advantage of the retention, delay, dispersion, dilution and radioactive decay of contaminants in a system of natural barriers provided by the geosphere and hydrosphere and of engineered barriers provided by the waste form, container, buffer, backfills, other vault seals and grouts. In an actual implementation, the engineered system would be designed for the geological conditions encountered at the host site. 34 refs., 2 tabs., 11 figs

  3. Poly-phase Deformation Recorded in the Core of the Coast Plutonic Complex, Western British Columbia

    Science.gov (United States)

    Hamblock, J. M.; Andronicos, C. L.; Hurtado, J. M.

    2006-05-01

    The Coast Plutonic Complex of western British Columbia constitutes the largest batholith within the North American Cordillera. The field area for this study is Mt. Gamsby, an unexplored region above the Kitlope River, east of the Coast Shear Zone and at the southern end of the Central Gneiss Complex. The dominant lithologies on Mt. Gamsby include amphibolite and metasedimentary gneiss, gabbro-diorite, and orthogneiss. The amphibolite gneiss contains alternating amphibolite and felsic layers, with chlorite and epidote pervasive in some regions and garnet rare. This unit is commonly migmatized and contains various folds, boudins, and shear zones. The metasedimentary gneiss contains quartz, k-spar, graphite, chlorite, and perhaps cordierite, but appears to lack muscovite and aluminosilicates. The gabbro-diorite is salt and pepper in color and contains ca. 50% pyroxene and plagioclase. The orthogneiss is light in color and plagioclase-rich, with a texture varying from coarse-grained and undeformed to mylonitic. In some regions, this unit contains abundant mafic enclaves. At least four deformational events (D1-4) are observed. The second generation of folding, F2, is dominant in the area and resulted in the production of a large synform during sinistral shearing. The S1 foliation is observed only in the amphibolite gneiss and is orthogonal to S2, creating mushroom- type fold interference patterns. S2 foliations strike NW-SE and dip steeply to the SW, suggesting SW-NE directed shortening. L2 lineations developed on S2 plunge shallowly to the NW and SE, implying strike-slip motion. Although both dextral and sinistral motions are indicated by shear band data, sinistral motion is dominant. The average right and left lateral shear band orientation is nearly identical to S2, suggesting that right and left lateral shearing were synchronous. Foliations within the orthogneiss are parallel to the axes of S2 folds and boudins in the amphibolite gneiss, suggesting that emplacement

  4. Isotopic disequilibrium among commingled hybrid magmas: Evidence for a two-stage magma mixing-commingling process in the Mt. Perkins Pluton, Arizona

    International Nuclear Information System (INIS)

    Metcalf, R.V.; Smith, E.I.; Reed, R.C.

    1995-01-01

    The syn-extensional Miocene Mt. Perkins pluton, northwestern Arizona, cooled rapidly due to its small size (6 km 2 ) and shallow emplacement (7.5 km) and allows examination of commingled rocks that experienced little isotopic exchange. Within the pluton, quartz dioritic to granodioritic host rocks (58-68 wt% SiO 2 ) enclose dioritic enclaves (50-55 wt% SiO 2 ) and a portion contains enclave-free granodiorite (70-74 wt% SiO 2 ). Fine-grained, crenulate enclave margins and a lack of advanced mixing structures (e.g., schlieren, flow fabrics, etc.) indicate an incipient stage of commingling. Isotopic variation between enclaves and enclosing host rocks is large (6.8 to 10.6 ε Nd units; 0.0036 to 0.0046 87 Sr/ 86 Sr units), suggesting isotopic disequilibrium. Comparison of an enclave core and rim suggests that isotopic exchange with the host magma was limited to the enclave rim. Enclaves and hosts collectively form a calc-alkaline suite exhibiting a large range of ε Nd (+1.2 to -12.5) and initial 87 Sr/ 86 Sr (0.705 to 0.71267) with a correlation among ε Nd , initial 87 Sr/ 86 Sr, and major and trace element compositions. Modeling suggests that the suite formed by magma hybridization involving magma mixing accompanied by fractional crystallization. The magma mixing must have predated commingling at the present exposure level and indicates a larger mixing chamber at depth. Isotopic and trace element data suggests mixing end-members were asthenospheric mantle-derived mafic and crustal-derived felsic magmas. Fractional crystallization facilitated mixing by reducing the rheological contrasts between the mafic and felsic mixing end-members. 58 refs., 11 figs., 3 tabs

  5. Probing the volcanic-plutonic connection and the genesis of crystal-rich rhyolite in a deeply dissected supervolcano in the Nevada Great Basin: Source of the late Eocene Caetano Tuff

    Science.gov (United States)

    Watts, Kathryn E.; John, David A.; Colgan, Joseph P.; Henry, Christopher D.; Bindeman, Ilya N.; Schmitt, Axel K.

    2016-01-01

    Late Cenozoic faulting and large-magnitude extension in the Great Basin of the western USA has created locally deep windows into the upper crust, permitting direct study of volcanic and plutonic rocks within individual calderas. The Caetano caldera in north–central Nevada, formed during the mid-Tertiary ignimbrite flare-up, offers one of the best exposed and most complete records of caldera magmatism. Integrating whole-rock geochemistry, mineral chemistry, isotope geochemistry and geochronology with field studies and geologic mapping, we define the petrologic evolution of the magmatic system that sourced the >1100 km3Caetano Tuff. The intra-caldera Caetano Tuff is up to ∼5 km thick, composed of crystal-rich (30–45 vol. %), high-silica rhyolite, overlain by a smaller volume of comparably crystal-rich, low-silica rhyolite. It defies classification as either a monotonous intermediate or crystal-poor zoned rhyolite, as commonly ascribed to ignimbrite eruptions. Crystallization modeling based on the observed mineralogy and major and trace element geochemistry demonstrates that the compositional zonation can be explained by liquid–cumulate evolution in the Caetano Tuff magma chamber, with the more evolved lower Caetano Tuff consisting of extracted liquids that continued to crystallize and mix in the upper part of the chamber following segregation from a cumulate-rich, and more heterogeneous, source mush. The latter is represented in the caldera stratigraphy by the less evolved upper Caetano Tuff. Whole-rock major, trace and rare earth element geochemistry, modal mineralogy and mineral chemistry, O, Sr, Nd and Pb isotope geochemistry, sanidine Ar–Ar geochronology, and zircon U–Pb geochronology and trace element geochemistry provide robust evidence that the voluminous caldera intrusions (Carico Lake pluton and Redrock Canyon porphyry) are genetically equivalent to the least evolved Caetano Tuff and formed from magma that remained in the lower chamber after

  6. Probing the volcanic-plutonic connection and the genesis of crystal-rich rhyolite in a deeply dissected supervolcano in the Nevada Great Basin: Source of the late Eocene Caetano Tuff

    Science.gov (United States)

    Watts, Kathryn E.; John, David A.; Colgan, Joseph P.; Henry, Christopher D.; Bindeman, Ilya N.; Schmitt, Axel K.

    2016-01-01

    Late Cenozoic faulting and large-magnitude extension in the Great Basin of the western USA has created locally deep windows into the upper crust, permitting direct study of volcanic and plutonic rocks within individual calderas. The Caetano caldera in north–central Nevada, formed during the mid-Tertiary ignimbrite flare-up, offers one of the best exposed and most complete records of caldera magmatism. Integrating whole-rock geochemistry, mineral chemistry, isotope geochemistry and geochronology with field studies and geologic mapping, we define the petrologic evolution of the magmatic system that sourced the >1100 km3Caetano Tuff. The intra-caldera Caetano Tuff is up to ∼5 km thick, composed of crystal-rich (30–45 vol. %), high-silica rhyolite, overlain by a smaller volume of comparably crystal-rich, low-silica rhyolite. It defies classification as either a monotonous intermediate or crystal-poor zoned rhyolite, as commonly ascribed to ignimbrite eruptions. Crystallization modeling based on the observed mineralogy and major and trace element geochemistry demonstrates that the compositional zonation can be explained by liquid–cumulate evolution in the Caetano Tuff magma chamber, with the more evolved lower Caetano Tuff consisting of extracted liquids that continued to crystallize and mix in the upper part of the chamber following segregation from a cumulate-rich, and more heterogeneous, source mush. The latter is represented in the caldera stratigraphy by the less evolved upper Caetano Tuff. Whole-rock major, trace and rare earth element geochemistry, modal mineralogy and mineral chemistry, O, Sr, Nd and Pb isotope geochemistry, sanidine Ar–Ar geochronology, and zircon U–Pb geochronology and trace element geochemistry provide robust evidence that the voluminous caldera intrusions (Carico Lake pluton and Redrock Canyon porphyry) are genetically equivalent to the least evolved Caetano Tuff and formed from magma that remained in the lower chamber after

  7. Sample-scale zircon geochemical and geochronological heterogeneities as indicators of residual liquid infiltration events in the incrementally assembled Caleu Pluton, Central Chile

    Science.gov (United States)

    Molina, P. G.; Parada, M. A.; Gutiérrez, F. J.; Ma, C.; Li, J.; Liu, Y.

    2013-12-01

    The Upper Cretaceous metaluminous Caleu Pluton is emplaced at a depth equivalent of 2kbar and consists of four lithological zones: the Gabbro-Dioritic Zone (GDZ), the Quartz-Monzodioritic Zone (QMDZ), the Granodioritic Zone (GZ) and the Monzogranitic Zone (MGZ). The zones would have been fed from a deeper magma reservoir emplaced at a 4 kbar. U238/Pb206 LA-ICP-MS geochronology of zircon grains of the four lithological zones (82 analyzed spots, 4 samples) indicates a maximum zircon crystallization range of ca. 106-91 Ma for the pluton as a whole. The U-Pb zircon age distribution of the four samples shows three inflection points at about 101, 99 and 96 Ma, separating four zircon crystallization events with the following weighted average ages and 2σ confidence intervals: 103.×1.6 Ma (n=4), 100.3×0.68 Ma (n=14), 97.49×0.49 Ma (n=25) and 94.66×0.44 Ma (n=30). The GDZ sample records the first three events, the GZ and QMDZ samples record the last three events while the MGZ only have zircons formed during the last two events. It is interesting to note that the youngest event of zircon formation coincide with the Ar/Ar cooling ages (95-93 Ma) previously obtained in hornblende, biotite and plagioclase of the four lithological zones, as a consequence of a rapid pluton exhumation. Temperatures of zircon crystallization (Ti-in-Zrn) obtained in each sample are variable and roughly lower than the zircon saturation temperatures. Most of the Ti-in-Zrn temperatures indicate late-stage crystallization conditions, consistent with the calculated melt composition from which zircons would have crystallized and the observed coexistence of zircons with quartz-orthoclase symplectites, hornblende and interstitial anhedral biotite. There are variable and overlapped total incompatible element concentrations in zircons of the four lithological zones regardless its age and Ti-in-Zrn temperatures, indicating that the melts from which zircon crystallized at different moments, were equivalent

  8. Origin of the mafic microgranular enclaves (MMEs) and their host granitoids from the Tagong pluton in Songpan-Ganze terrane: An igneous response to the closure of the Paleo-Tethys ocean

    Science.gov (United States)

    Chen, Qiong; Sun, Min; Zhao, Guochun; Yang, Fengli; Long, Xiaoping; Li, Jianhua; Wang, Jun; Yu, Yang

    2017-10-01

    The Songpan-Ganze terrane is mainly composed of a Triassic sedimentary sequence and late Triassic-Jurassic igneous rocks. A large number of plutons were emplaced as a result of tectono-magmatic activity related to the late stages of Paleo-Tethys ocean closure and ensuing collision. Granitoids and their hosted mafic enclaves can provide important constraints on the crust-mantle interaction and continental crustal growth. Mesozoic magmatism of Songpan-Ganze remains enigmatic with regard to their magma generation and geodynamic evolution. The Tagong pluton (209 Ma), in the eastern part of the Songpan-Ganze terrane, consists mainly of monzogranite and granodiorite with abundant coeval mafic microgranular enclaves (MMEs) (ca. 208-209 Ma). The pluton comprises I-type granitoid that possesses intermediate to acidic compositions (SiO2 = 61.6-65.8 wt.%), high potassium (K2O = 3.2-4.1 wt.%), and high Mg# (51-54). They are also characterized by arc-type enrichment of LREEs and LILEs, depletion of HFSEs (e.g. Nb, Ta, Ti) and moderate Eu depletions (Eu/Eu* = 0.46-0.63). Their evolved zircon Hf and whole-rock Nd isotopic compositions indicate that their precursor magmas were likely generated by melting of old lower continental crust. Comparatively, the MMEs have lower SiO2 (53.4-58.2 wt.%), higher Mg# (54-67) and show covariation of major and trace elements, coupled with field and petrographic observations, such as the disequilibrium textures of plagioclase and amphibole, indicating that the MMEs and host granitoids were originated from different magma sources but underwent mafic-felsic magma mixing process. Geochemical and isotopic data further suggest that the precursor magma of the MMEs was formed in the continental arc setting, mainly derived from an ancient metasomatized lithospheric mantle wedge. The Triassic granitoids from the Songpan-Ganze terrane show remarkable temporal-spatial-petrogenetic affinities to the counterparts of subduction zones in the Yidun and Kunlun arc

  9. Zircon Lu-Hf isotope systematics and U-Pb geochronology, whole-rock Sr-Nd isotopes and geochemistry of the early Jurassic Gokcedere pluton, Sakarya Zone-NE Turkey: a magmatic response to roll-back of the Paleo-Tethyan oceanic lithosphere

    Science.gov (United States)

    Karsli, Orhan; Dokuz, Abdurrahman; Kandemir, Raif

    2017-05-01

    The early Mesozoic was a critical era for the geodynamic evolution of the Sakarya Zone as transition from accretion to collision events in the region. However, its complex evolutionary history is still debated. To address this issue, we present new in situ zircon U-Pb ages and Lu-Hf isotope data, whole-rock Sr-Nd isotopes, and mineral chemistry and geochemistry data of plutonic rocks to better understand the magmatic processes. The Gokcedere pluton is mainly composed of gabbro and gabbroic diorite. LA-ICP-MS zircon U-Pb dating reveals that the pluton was emplaced in the early Jurassic (177 Ma). These gabbros and gabbroic diorites are characterized by relatively low SiO2 content of 47.09 to 57.15 wt% and high Mg# values varying from 46 to 75. The samples belong to the calc-alkaline series and exhibit a metaluminous I-type character. Moreover, they are slightly enriched in large ion lithophile elements (Rb, Ba, Th and K) and light rare earth elements and depleted in high field strength elements (Nb and Ti). Gabbroic rocks of the pluton have a depleted Sr-Nd isotopic composition, including low initial 87Sr/86Sr ranging from 0.705124 to 0.705599, relatively high ɛ Nd ( t) values varying from 0.1 to 3.5 and single-stage Nd model ages ( T DM1 = 0.65-0.95 Ga). In situ zircon analyses show that the rocks have variable and positive ɛ Hf ( t) values (4.6 to 13.5) and single-stage Hf model ages ( T DM1 = 0.30 to 0.65 Ga). Both the geochemical signature and Sr-Nd-Hf isotopic composition of the gabbroic rocks reveal that the magma of the studied rocks was formed by the partial melting of a depleted mantle wedge metasomatized by slab-derived fluids. The influence of slab fluids is mirrored by their trace-element characteristics. Trace-element modeling suggests that the primary magma was generated by a low and variable degree of partial melting ( 5-15%) of a depleted and young lithospheric mantle wedge consisting of phlogopite- and spinel-bearing lherzolite. Heat to melt the

  10. A transformation for predicting mechanical changes resulting from time-dependent microcracking in plutonic rock

    International Nuclear Information System (INIS)

    Heinrich, W.F.

    1987-01-01

    A transformation for a simple phenomenological model of microcracking is proposed. It relates the evolution of microcrack size in an elastic solid (plutonic rock) under different temporal macro- and microstresses. In this model, for a rock property that changes as a result of microcracking, both the calculated and the experimentally determined evolution of that property for a given stress history can be used to determine the evolution of that property (for the same range) for any other stress history. For example, the transformation can be used to extrapolate the short-term extent of microcracking due to thermally induced stresses to time scales too long for experimental determination. This is of interest in assessing the long-term behaviour of rock surrounding a high level nuclear waste vault, where thermally induced microcracking may take tens of thousands of years to develop. Experimental strategies are suggested for validation of the phenomenological model. Where results are obtained from the corresponding mathematical models, the transformation facilitates the efficient calculation of functions that depend only on the state of microcrack size once the functions have been calculated for any convenient stress history

  11. The 226Ra isotope activities in ground water samples drawn of two wells from the Meridional Pluton, Morungaba Granitoids, eastern Sao Paulo State; Atividades do 226Ra em aguas subterraneas extraidas de dois pocos localizados no pluton meridional, granitoides de Morungaba, SP

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Fabio de Oliveira; Silva Junior, Mario Goncalves da; Bertolla, Luciana; Ribeiro, Fernando Brenha [Sao Paulo Univ., SP (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas. Dept. de Geofisica]. E-mail: brenha@iag.usp.br

    2005-07-01

    The 226Ra activities, both in solution and associated with suspended solids, were measured in ground water samples drawn from two wells drilled in a fractured granitic aquifer from the Meridional Pluton, Morungaba Granitoids, eastern Sao Paulo State. The 226Ra isotope activities were measured in a sequence of samples collected about one month apart between March, 2003 and April 2004. The 226Ra activities were measured by radon gas emanometry. The mean dissolved 226Ra activity concentration activities observed in the two wells were (44.9 {+-} 7.1) mBq/L and (51.6 {+-} 8.8) mBq/L. The 226Ra activity of the suspend solids in a liter of these waters varied between (0,6 {+-} 0,1) mBq and (13 {+-} 1) mBq, respectively. (author)

  12. Reconnaissance geochemical exploration of the plutons of quartz monzonite and granite in the Jabal Lababa and Ar Rayth areas, southern Asir, Kingdom of Saudi Arabia

    Science.gov (United States)

    Overstreet, W.C.; Assegaff, A.B.; Jambi, Mohammed; Hussain, M.A.; Selner, G.I.; Matzko, J.J.

    1985-01-01

    Geochemical reconnaissance for rare metals in plutons of albite-muscovite granite and quartz monzonite in the vicinity of Jabal Lababa disclosed positive geochemical anomalies for beryllium, tantalum, thorium, lanthanum, niobium, tin, yttrium, and zirconium. The low anomalous values for the rare metals in rocks and the short mechanical dispersion trains, seldom exceeding 4 km in length, of rare-metal-bearing heavy minerals, are interpreted to indicate that primary deposits of these metals are lacking, and any placers would be small and low in tenor.

  13. Norite and charnockites from the Venda Nova Pluton, SE Brazil: Intensive parameters and some petrogenetic constraints

    Directory of Open Access Journals (Sweden)

    Julio Cezar Mendes

    2012-11-01

    Full Text Available The Venda Nova Pluton (VNP is a zoned ring structure emplaced in the southern portion of the Neoproterozoic Araçuai Belt, in Espírito Santo, Brazil. It is a slightly westward tilted cylinder-like intrusion, with an almost circular horizontal section. In the center of this structure, an off-centered gabbro-noritic core, surrounded by syeno-monzonitic rocks, intrudes an outer ring of charnockites and norite. These envelop the syeno-monzonitic and gabbro-noritic center, as a narrow discontinuous belt. While, in the core intrusion, mingling and mixing processes are widespread and well documented in the literature, in the outer ring, the norite and charnockite layers show predominantly homogeneous and isotropic internal structures. Nevertheless, smaller interaction zones between charnockites and norite denote a comparatively more restricted mingling process. The norite is a fine-grained rock with hypidiomorphic granular to intergranular texture. The charnockites are medium-grained and made up of: (a orthopyroxene-tonalite, (b orthopyroxene-quartz-diorite, and (c orthopyroxene-granodiorite with hypidiomorphic granular to porphyritic textures. In all lithotypes both ortho- and clinopyroxene are replaced by hornblende and biotite. Two contrasting compositional sequences have been recognized, based on whole rock geochemistry: (1 a basic, with tholeiitic affinities (norite and, (2 an intermediate, medium-K calc-alkaline, comprising the charnockites. Estimated crystallization temperatures, which have been calculated from micro-probe analysis of pyroxenes, range from 915 ± 25 °C to 960 ± 50 °C. Re-equilibration temperature (ilmenite-magnetite calibration is around 600 ± 50 °C. This indicates oxygen fugacities four order of magnitude below the FMQ-buffer and a reduced environment. Coeval pressure conditions estimated from the Al-content in hornblende range from 5.5 ± 0.6 kbar. Data obtained for the norite point toward an evolution from

  14. PLUTON: Three-group neutronic code for burnup analysis of isotope generation and depletion in highly irradiated LWR fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Lemehov, Sergei E; Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-08-01

    PLUTON is a three-group neutronic code analyzing, as functions of time and burnup, the change of radial profiles, together with average values, of power density, burnup, concentration of trans-uranium elements, plutonium buildup, depletion of fissile elements, and fission product generation in water reactor fuel rod with standard UO{sub 2}, UO{sub 2}-Gd{sub 2}O{sub 3}, inhomogeneous MOX, and UO{sub 2}-ThO{sub 2}. The PLUTON code, which has been designed to be run on Windows PC, has adopted a theoretical shape function of neutron attenuation in pellet, which enables users to perform a very fast and accurate calculation easily. The present code includes the irradiation conditions of the Halden Reactor which gives verification data for the code. The total list of trans-uranium elements included in the calculations consists of {sub 92}U{sup 233-239}, {sub 93}Np{sup 237-239}, {sub 94}Pu{sup 238-243}, {sub 95}Am{sup 241-244} (including isomers), and {sub 96}Cm{sup 242-245}. Poisoning fission products are represented by {sub 54}Xe{sup 131,133,135}, {sub 48}Cd{sup 113}, {sub 62}Sm{sup 149,151,152}, {sub 64}Gd{sup 154-160}, {sub 63}Eu{sup 153,155}, {sub 36}Kr{sup 83,85}, {sub 42}Mo{sup 95}, {sub 43}Tc{sup 99}, {sub 45}Rh{sup 103}, {sub 47}Ag{sup 109}, {sub 53}I{sup 127,129,131}, {sub 55}Cs{sup 133}, {sub 57}La{sup 139}, {sub 59}Pr{sup 141}, {sub 60}Nd{sup 143-150}, {sub 61}Pm{sup 147}. Fission gases and volatiles included in the code are {sub 36}Kr{sup 83-86}, {sub 54}Xe{sup 129-136}, {sub 52}Te{sup 125-130}, {sub 53}I{sup 127-131}, {sub 55}Cs{sup 133-137}, and {sub 56}Ba{sup 135-140}. Verification has been performed up to 83 GWd/tU, and a satisfactory agreement has been obtained. (author)

  15. A source-depleted Early Jurassic granitic pluton from South China: Implication to the Mesozoic juvenile accretion of the South China crust

    Science.gov (United States)

    Zhou, Zuo-Min; Ma, Chang-Qian; Wang, Lian-Xun; Chen, Shu-Guang; Xie, Cai-Fu; Li, Yong; Liu, Wei

    2018-02-01

    Source-depleted granites were rarely reported in South China. Hereby we identified such a granitic pluton, the Tiandong pluton, at Northeastern Guangdong province in Southeastern (SE) China. Whole-rock Sr-Nd and zircon Hf isotopes of the Tiandong granites both revealed obviously depleted source signatures, with initial isotopic values of initial 87Sr/86Sr = 0.7032-0.7040, εNd(t) = 1.1-1.5, and εHf(t) = 6-13, respectively. Zircon U-Pb dating implied the granite was intruded in Early Jurassic (188 Ma). The dominant minerals of the Tiandong granite consist of K-feldspar, plagioclase, quartz and biotite, with accessory mineral assemblage of apatite + zircon + magnetite. Based on the mineralogy and the depleted isotopic signature, the granites chemically show I-type affinity such as low Zr + Nb + Ce + Y (131.6 to 212.2), 104 × Ga/Al (2.12-2.27), A/CNK values ages (TDM = 0.89 to 0.84 Ga, T2DM = 0.88 to 0.85 Ga) are consistent. TDM(Hf) values of 0.31-0.63 Ga are also indistinguishable from T2DM(Hf) values of 0.35-0.75 Ga. The Nd and Hf isotopic compositions confirm that the Tiandong granites are juvenile crustal accretion but decoupled Nd-Hf isotopic systems. The juvenile crust is likely to originate from a mixed source of the primary asthenospheric mantle and the subordinate EMII. Combined with early studies of adjacent rocks, we propose that the early Jurassic ( 200-175 Ma) magmatism as evidenced by the Tiandong granites might be driven by upwelling of asthenosphere and subsequent underplating of mafic melts in an intra-plate extensional setting as a response to far-field stress during early stage subduction of the paleo-pacific plate.

  16. Plutonic mobilization, sodium metasomatism, propylitic wall-rock alteration and element partitioning from Hoehensteinweg uranium occurrence (Northeast Bavaria, F.R.G.)

    International Nuclear Information System (INIS)

    Dill, H.

    1983-01-01

    The investigated U deposit near Poppenreuth (Hoehensteinweg) in northeast Bavaria is situated among Upper Proterozoic biotite gneisses and mica schists with ENE- to NE-striking foliation. In this paper, the element distribution is determined of the elements involved in the U-Th petrogenic cycle (Zr, Ce, Th, U, P and Na); as are the mineralogical changes of the primary U minerals. The problem of lithogene element supply is studied. The area abundant in U is compared with other U-bearing sodium enriched host rocks in order to improve the selection of exploration target areas. Content: the primary U and Th minerals; plutonic mobilizates; episyenites and sodium metasomatites; propylitic rocks; U minerals and their relation to the primary U minerals; the origin of Hoehensteinweg uranium deposits. (Auth.)

  17. Plutonic mobilization, sodium metasomatism, propylitic wall-rock alteration and element partitioning from Hoehensteinweg uranium occurrence (Northeast Bavaria, F. R. G. )

    Energy Technology Data Exchange (ETDEWEB)

    Dill, H. (Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany, F.R.))

    1983-05-01

    The investigated U deposit near Poppenreuth (Hoehensteinweg) in northeast Bavaria is situated among Upper Proterozoic biotite gneisses and mica schists with ENE- to NE-striking foliation. In this paper, the element distribution is determined of the elements involved in the U-Th petrogenic cycle (Zr, Ce, Th, U, P and Na); as are the mineralogical changes of the primary U minerals. The problem of lithogene element supply is studied. The area abundant in U is compared with other U-bearing sodium enriched host rocks in order to improve the selection of exploration target areas. Content: the primary U and Th minerals; plutonic mobilizates; episyenites and sodium metasomatites; propylitic rocks; U minerals and their relation to the primary U minerals; the origin of Hoehensteinweg uranium deposits.

  18. Late Variscan, Permo-Carboniferous, Al-K plutonism in the South Portuguese Zone: El Crispinejo cordierite-bearing granite

    Energy Technology Data Exchange (ETDEWEB)

    Díez Montes, A.; Valverde-Vaquero, P.; Rey-Moral, C.; Sánchez García, L.

    2017-07-01

    The El Crispinejo granite forms part of a small, but distinctive late intrusive suite of cordierite-bearing peraluminous granites in the South Portuguese Zone (SPZ). This granite has the best outcrop relationships of the suite. It cross-cuts different members of the Sierra Norte Batholith of the SPZ and the Carboniferous Volcano-Sedimentary Complex of the Iberian Pyrite Belt, producing contact metamorphism. This late pluton has a high K content which results in a contrasting geophysical response (K-Th-U) with respect to the surrounding trondhjemitic granitoids of the TTG suite of the Sierra Norte Batholith. A concordant monazite-zircon U-Pb ID-TIMS age of 300.5 +0.5/-1.5Ma demonstrates Permo-Carboniferous age for this late Variscan magmatic event. The granite is associated with a series of ore showings (F-Pb-Zn and Sn-W) which are completely different from the nearby, massive sulphide and manganese ore deposits of the Iberian Pyrite Belt, indicating the unique character of this intrusion.

  19. A review of the compositional variation of amphiboles in alkaline plutonic complexes

    Science.gov (United States)

    Mitchell, Roger H.

    1990-12-01

    Compositional data for amphiboles occurring in alkaline plutonic complexes are reviewed and a standard procedure for plotting these data in an isometric prism is proposed. The main compositional trend found in both oversaturated and undersaturated complexes of either miascitic or peralkaline affinity is referred to as the primary magmatic trend. Amphiboles range in composition from magnesian hastingsitic hornblende and ferro-edenitic hornblende through katophorite to ferro-richterite and arfvedsonite. Individual complexes differ with respect to the amphibole {Mg}/{Fe} and {Si}/{Al} ratio and the extent of Na-enrichment. Extensive or limited ranges in the composition of amphiboles may occur in a given complex. A subtrend found only in oversaturated complexes is from ferro-edenitic hornblende to ferro-actinolite. This trend termed the ferro-actinolitic subtrend is found only in low temperature non-peralkaline residua. Some aluminous nepheline syenites and associated alkali gabbros contain amphiboles which range in composition from kaersutite through ferroan pargasitic hornblende to hastingsite. This trend termed the primary miascitic magmatic trend is is one of decreasing {Mg}/{Fe}, at essentially constant {Si}/{Al} and Ca content. Na-enrichment does not occur. Amphiboles formed by reactions of preexisting phases with hydrothermal or deuteric fluids are termed the late stage reaction assemblage. Amphibole compositional trends from calcic through sodic-calcic to sodic amphiboles reflect decreasing temperature and oxygen fugacity at or below the QFM oxygen buffer. The compositional trends are of use in determining petrogenetic relationships between apparently consanguineous syenites.

  20. The disposal of Canada`s nuclear fuel waste: a study of postclosure safety of in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock volume 1: summary

    Energy Technology Data Exchange (ETDEWEB)

    Wikjord, A G; Baumgartner, P; Johnson, L H; Stanchell, F W; Zach, R; Goodwin, B W

    1996-06-01

    The concept for disposal of Canada`s nuclear fuel waste involves isolating the waste in corrosion-resistant containers emplaced and sealed within a vault at a depth of 500 to 1000 m in plutonic rock of the Canadian Shield. The case for the acceptability of the concept as a means of safely disposing of Canada`s nuclear fuel waste is presented in an Environmental Impact Statement (EIS) The disposal concept permits a choice of methods, materials, site locations and designs. The EIS presents a case study of the long-term (i.e., postclosure) performance of a hypothetical implementation of the concept, referred to in this report as the reference disposal system. The reference disposal system is based on borehole emplacement of used CANDU fuel in Grade-2 titanium alloy containers in low-permeability, sparsely fractured plutonic rock of the Canadian Shield. We evaluate the long-term performance of another hypothetical implementation of the concept based on in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock. The geological characteristics of the geosphere assumed for this study result in short groundwater travel times from the disposal vault to the surface. In the present study, the principal barrier to the movement of contaminants is the long-lasting copper container. We show that the long-lasting container can effectively compensate for a permeable host rock which results in an unfavourable groundwater flow condition. These studies illustrate the flexibility of AECL`s disposal concept to take advantage of the retention, delay, dispersion, dilution and radioactive decay of contaminants in a system of natural barriers provided by the geosphere and hydrosphere and of engineered barriers provided by the waste form, container, buffer, backfills, other vault seals and grouts. In an actual implementation, the engineered system would be designed for the geological conditions encountered at the host site. 34 refs., 2 tabs., 11 figs.

  1. Thermal effects of the Santa Eulália Plutonic Complex (southern Portugal on the meta-igneous and metasedimentary host rocks

    Directory of Open Access Journals (Sweden)

    Cruz, C.

    2014-12-01

    Full Text Available The Santa Eulália Plutonic Complex (SEPC is a late-Variscan granitic body located in the northern part of the Ossa Morena Zone, a inner zone of the Variscan Iberian Massif. The SEPC host rocks are composed of meta-igneous and metasedimentary units, from Upper Proterozoic to Paleozoic ages, with a NW-SE structure, cross-cut by the SEPC. The SEPC host rocks, with low grade metamorphism show well preserved primary sedimentary or igneous mineralogical, textural and structural features. The thermal effect induced by the SEPC is restricted to the roof pendants. At N and NE of the SEPC, textures and paragenesis resulting from thermal metamorphism, are not related to the SEPC intrusion but to a previous magmatism, controlled by the NW-SE regional anisotropies. The restriction of the thermal effects to the pluton roof may be caused by a combination of several interrelated factors: higher volume of granitic mass, thermal effect by advection of fluids and longer period of prevalence of high thermal conditions. The geochemical study of SEPC host rocks shows the heterogeneous character and diversity of metasedimentary, igneous and meta-igneous rocks. The whole rock geochemical data indicate that all the metasedimentary lithologies derived from an upper continental crustal source and the igneous and meta-igneous rocks show no evidence of metasomatic effects by the SEPC emplacement.El Complejo Plutónico de Santa Eulalia (CPSE es un cuerpo granítico tardi-Varisco situado en la parte norte de la Zona de Ossa Morena, en la zona interior del Macizo Ibérico Varisco. Las rocas encajantes del CPSE están compuestas por unidades meta-ígneas y metasedimentarias, de edades que van desde el Proterozoico Superior hasta el Paleozoico, con una estructura de dirección NW-SE, cortada por el CPSE. Las rocas encanjantes del CPSE, con metamorfismo de bajo grado conservan estructuras, mineralogía y textura primarias. El efecto térmicoinducido por el CPSE se limita a los

  2. Characterizing fractured plutonic rocks of the Canadian shield for deep geological disposal of Canada's radioactive wastes

    International Nuclear Information System (INIS)

    Lodha, G.S.; Davison, C.C.; Gascoyne, M.

    1998-01-01

    Since 1978 AECL has been investigating plutonic rocks of the Canadian Shield as a potential medium for the disposal of Canada's nuclear fuel waste. During the last two years this study has been continued as part of Ontario Hydro's used fuel disposal program. Methods have been developed for characterizing the geotechnical conditions at the regional scale of the Canadian Shield as well as for characterizing conditions at the site scale and the very near-field scale needed for locating and designing disposal vault rooms and waste emplacement areas. The Whiteshell Research Area (WRA) and the Underground Research Laboratory (URL) in southeastern Manitoba have been extensively used to develop and demonstrate the different scales of characterization methods. At the regional scale, airborne magnetic and electromagnetic surveys combined with LANDSAT 5 and surface gravity survey data have been helpful in identifying boundaries of the plutonic rocks , overburden thicknesses, major lineaments that might be geological structures, lithological contacts and depths of the batholiths. Surface geological mapping of exposed rock outcrops, combined with surface VLF/EM, radar and seismic reflection surveys were useful in identifying the orientation and depth continuity of low-dipping fracture zones beneath rock outcrops to a depth of 500 to 1000 m. The surface time-domain EM method has provided encouraging results for identifying the depth of highly saline pore waters. The regional site scale investigations at the WRA included the drilling of twenty deep boreholes (> 500 m) at seven separate study areas. Geological core logging combined with borehole geophysical logging, TV/ATV logging, flowmeter logging and full waveform sonic logging in these boreholes helped to confirm the location of hydro geologically important fractures, orient cores and infer the relative permeability of some fracture zones. Single-hole radar and crosshole seismic tomography surveys were useful to establish the

  3. Late magmatic stage of the zoned Caleu pluton (Central Chile): insights from zircon crystallization conditions

    Science.gov (United States)

    Molina, P. G.; Parada, M.; Gutierrez, F. J.; Chang-Qiang, M.; Jianwei, L.; Yuanyuan, L.

    2012-12-01

    The Caleu pluton consists of three N-S elongated lithological zones: Gabbro-Diorite Zone (GDZ), Tonalite Zone (TZ) and Granodiorite Zone (GZ); western, middle and eastern portions of the pluton, respectively. The zones are thought to be previously differentiated in a common, isotopically depleted (Sr-Nd), subjacent magma reservoir at a 4 kbar equivalent depth. The emplacement should have occurred at the climax of the Cretaceous rifting. We present preliminary results of U238/Pb206 zircon geochronology; zircon saturation, Tsat(Zrn), and crystallization temperatures (Ti-in-Zrn); as well as relative oxidation states at time of crystallization, based on: (i) the sluggish REE and HFSE subsolidus diffusivities in zircon; (ii) the behavior of Ti4+↔Si4+ and Ce4+↔Zr4+ isovalent replacement, in addition to a constrained TiO2 activity in almost all typical crustal rocks; and (iii) relative oxidation states at time of crystallization, respectively. The latter are obtained by interpolation of the partition coefficients of trivalent (REE) and tetravalent (HFSE) curves in Onuma diagrams for each zircon, and then estimating relative Ce(IV)/Ce(III) ratios. Results obtained from 4 samples (a total of 77 zircon grains) collected from the three mentioned lithological zones indicate U/Pb ages of approximately 99.5 ±1.5 Ma, 96.8 ±0.6 Ma, and 94.4 +2.2 -0.8 Ma; and Ti-in Zrn ranges of ca. 720-870°C, ca. 680-820°C and ca. 750-840°C, for the GDZ, TZ and GZ samples, respectively. On the other hand Tsat(Zrn) of ca. 750-780°C in the TZ, and ca. 830-890°C in the GZ, were obtained. As expected saturation temperatures are similar or higher than Ti-in-Zrn obtained in zircon grains of TZ and GZ, respectively. Cathodoluminiscence images in zircon suggest a magmatic origin, due to absence of complex zoning patterns and fairly well conserved morphologies. Exceptionally the GDZ sample zircons show evidence of inheritance, indicating a xenocrystic and/or antecrystic origin. A relative Ce

  4. New petrographic, geochemical and geochronological data for the Reguengos de Monsaraz pluton (Ossa Morena Zone, SW Iberian Massif, Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, A.; Santos, J. F.; Azevedo, M. R.; Mendez, M. H.; Ribeiro, S.

    2010-07-01

    The Reguengos de Monsaraz pluton is a late to post-tectonic Variscan intrusion occurring in the Ossa Morena Zone (Iberian Variscan Chain). The dominant lithological types are tonalites and granodiorites, but the internal area of the massif is composed of gabbro-dioritic rocks. Field evidence shows that the intrusion is heterogeneous at mesoscopic scale suggesting that the emplacement of mafic and felsic magmas was contemporaneous. Petrographic and geochemical studies reveal that the different lithologic types define a continuous sequence with compositions varying from metaluminous to slightly peraluminous and a typical calc-alkaline signature. In Harker variation diagrams, it is possible to observe systematic rectilinear correlations pointing to the involvement of magma mingling/mixing processes in the petrogenesis of this sequence. Rb-Sr isotopic data, using a mineral-mineral pair from a granodiorite sample, yielded an age of 298 Ma, interpreted as a cooling age after igneous crystallization. (Author) 13 refs.

  5. An autochthonous Avalonian basement source for the latest Ordovician Brenton Pluton in the Meguma terrane of Nova Scotia: U-Pb-Hf isotopic constraints and paleogeographic implications

    Science.gov (United States)

    Duncan Keppie, J.; Gregory Shellnutt, J.; Dostal, Jaroslav; Fraser Keppie, D.

    2018-04-01

    The Ediacaran-Ordovician Meguma Supergroup was thrust over Avalonia basement prior to the intrusion of post-Acadian, ca. 370 Ma, S-type granitic batholiths. This has led to two main hypotheses regarding the original location of the Meguma terrane, a continental rise prism bordering either NW Africa or Avalonia. On the other hand, the pre-Acadian, ca. 440 Ma Brenton pluton has yielded the following U/Pb LA-ICP-MS zircon data: (1) 448 ± 3 Ma population peak inferred to be the intrusive age and (2) ca. 550 and 700 Ma inherited ages common to both Avalonia and NW Africa. In contrast, Hf isotopic analyses of zircon yielded model ages ranging from 814 to 1127 Ma with most between 940 and 1040 Ma: such ages are typical of Avalonia and not NW Africa. The ages of the inherited zircons found within the Brenton pluton suggest that it was probably derived by partial melting of sub-Meguma, mid-crustal Avalonian rocks, upon which the Meguma Supergroup was deposited. Although Avalonia is commonly included in the peri-Gondwanan terranes off NW Africa or Amazonia, paleomagnetic data, faunal provinciality, and Hf data suggest that, during the Ediacaran-Early Cambrian, it was an island chain lying near the tropics (ca. 20-30 °S) and was possibly a continuation of the Bolshezemel volcanic arc accreted to northern Baltica during the Ediacaran Timanide orogenesis. This is consistent with the similar derital zircon population in the Ediacaran-Cambrian Meguma Supergroup and the Dividal Group in northeastern Baltica.

  6. Isotope dates and strontium isotopic ratios for plutonic and volcanic rocks in the Quesnel Trough and Nicola Belt, south central British Columbia

    International Nuclear Information System (INIS)

    Preto, V.A.; McMillan, W.J.; Armstrong, R.L.

    1979-01-01

    Four distinct events of the southern Intermontane Belt are represented in new K-Ar and Rb-Sr dates. The first and regionally most important event is sharply defined by new K-Ar dates between 200 and 209 Ma for the Thuya, Wildhorse, Iron Mask, and Allison batholiths and a 205 +- 10 Ma Rb-Sr isochron for the Guichon Creek batholith. All these plutons were emplaced approximately at the change from Triassic to Jurassic time. The related and slightly older Nicola volcanic rocks are altered by addition of more radiogenic sedimentary Sr (Carnian Nicola limestone having 87 Sr/ 86 Sr=0.7075+- 1) and do not give an isochron date. The Coldwater stock is anomalously old (K-Ar dates range from 215-267 Ma). The Mid- to late Jurassic igneous event is indicated by a 141 Ma K-Ar date for the Mount Martley batholith. Mid-Cretaceous volcanic rocks of the Kingsvale Group give a Rb-Sr isochron date of 112 +- 10 Ma and are postdated by the crosscutting and slightly younger Summers Creek stock (100 Ma by K-Ar). The final event straddles the Cretaceous-Tertiary boundary with the Nicola batholith emplaced about 60 Ma ago (K-Ar) and the Rey Lake stock perhaps slightly earlier (69 Ma by K-Ar). Initial 87 Sr/ 86 Sr ratios range from 0.7025-0.7046 with a mean and mode near 0.7037 which is within the range of modern circum-Pacific volcanoes. Initial ratios of 0.7034 +- 1 for the Guichon Creek batholith, 0.7035 +- 1 for the Iron Mask batholith 70435 +-10 for the Thuya batholith, and 0.70379 +- 4 for the Kingsvale volcanic rocks are the most precisely determined. The Coldwater stock is anomalously low at 0.7025. For the other plutonic bodies only scattered or single analyses are available. The Nicola volcanic rocks appear to have once been similar in initial ratio the the Guichon Creek batholith but their calculated initial ratios now scatter from 0.7034-0.7073. (auth)

  7. Neutron activation and other analytical data for plutonic rocks from North America and Africa. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Price, V.; Fay, W.M.; Cook, J.R.

    1982-09-01

    The objective of this report is to retrieve the elements of an analytical study of granites and associated other plutonic rocks which was begun as a part of the U.S. Department of Energy's National Uranium Resource Evaluation (NURE) program. A discussion of the Savannah River Laboratory (SRL) neutron activation analysis system is given so that a user will understand the linmitations of the data. Enough information is given so that an experienced geochemist can clean up the data set to the extent required by any project. The data are generally good as they are presented. It is intended that the data be read from a magnetic tape written to accompany this report. Microfiche tables of the data follow the text. These tables were prepared from data on the tape, and programs which will read the tape are presented in the section THE DATA TAPE. It is our intent to write a later paper which will include a thoroughly scrubbed data set and a technical discussion of results of the study. 1 figure

  8. Breaking away to South America

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    In December 2010, Peter Dreesen of CERN’s Technology Department (TE) returned from a long trip to South America. In four months he traversed the entire Andean range, from the equator to a latitude of 55 degrees south—on a bicycle!   Peter Dreesen on the Salar de Uyuni Lake, Bolivia. 11 000 kilometres is one long bike ride! And yet, that’s what Peter Dreesen did, travelling from Quito, Ecuador to Ushuaia, Argentina. Peter, an engineer in the TE Department, is no novice: the year before, he cycled from Paris to Peking, a distance of 13 500 kilometres, in just over four months. His latest voyage began last August, when he loaded his bicycle and boarded a plane for South America. In the saddle. After a week of acclimatisation at three thousand metres altitude, Peter left Quito on 6 August 2010. He arrived in Ushuaia (el fin del mundo, the end of the world, as it’s known in South America) on 12 December 2010. He recounts: “It was a bizarre sensation...

  9. The late-Variscan peraluminous Valdepeñas pluton (southern Central Iberian Zone)

    Energy Technology Data Exchange (ETDEWEB)

    Errandonea-Martín, J.; Carracedo-sánchez, M.; Sarrionandia, F.; Santos Zalduegui, J.F.; García de Madinabeitia, S.; Gil-Ibarguchi, J.I.

    2017-07-01

    The Valdepeñas pluton is the easternmost outcrop of the Cáceres-Valdepeñas magmatic alignment (southern Central Iberian Zone). This massif is constituted by a cordierite-bearing porphyritic monzogranite and may be grouped within the so-called “Serie Mixta” granitoids. The Valdepeñas monzogranite is of magnesian [FeOt/(FeOt+MgO)~0.76], alkali-calcic [(Na2O+K2O)–CaO=7.8–8.5] and peraluminous (A/CNK=1.14–1.20). Multielemental- and REE-normalized patterns are comparable to those of similar rocks in the Nisa- Alburquerque-Los Pedroches magmatic alignment, and slightly differ from those of the Montes de Toledo batholith, both in the southern Central Iberian Zone. The U-Pb zircon age of 303±3Ma is consistent with the late-orogenic character of the intrusion and is in accordance with most of the granitic peraluminous intrusions in the southern Central Iberian Zone. 86Sr/87Sr300Ma ratios (0.707424–0.711253), εNd300Mavalues (-5.53 to -6.68) and whole-rock major and trace element compositions of the studied rocks, suggest that the parental magma of the Valdepeñas monzogranite could derive from a crustal metaigneous source. The U-Pb ages (552–650Ma) of inherited zircon cores found in Valdepeñas monzogranite samples match those often found in Lower Paleozoic metavolcanics and granitic orthogneisses of Central Iberia and, furthermore, point to Upper Neoproterozoic metaigneous basement rocks as possible protoliths at the magma source. Based on the solubility of monazite in peraluminous melts, the estimated emplacement temperature of the studied monzogranite is 742–762ºC. The results obtained in this work would contribute to a better understanding of the origin of the “Serie Mixta” granitoids.

  10. Spinel and orthopyroxene exsolved from clinopyroxene in the Haladala pluton in the middle Tianshan (Xinjiang, China)

    Science.gov (United States)

    Zhu, Yongfeng; Chen, Jing; Xue, Yunxin; Feng, Wanyi; Jiang, Jiuyang

    2017-12-01

    The Haladala pluton, consisting of troctolite, olivine gabbro and gabbro with zircon SHRIMP U-Pb age of 309 ± 2 Ma (MSWD = 0.72), intruded the Devonian-Carboniferous arc segments in the middle Tianshan. Amphibole, coexisting with magnetite, amphibole, and phlogopite, crystallized in a magma chamber at depth of 20 km (6.9-7.4 kbar, 934-943 °C) based on various thermobaramoters. Two kinds of exsolution textures (spinel rods in clinopyroxene, orthopyroxene lamellae in clinopyroxene) occur in troctolite and olivine gabbro. We describe oriented spinel rods and orthopyroxene lamellae exsolved from the host clinopyroxene based on optical and high-resolution transmission electron microscope (HRTEM) observations. The spinel rods (100) are parallel to their host clinopyroxene (010). Orthopyroxene lamellae (010) are coherent and strictly parallel to their host clinopyroxene (010). Exsolution of spinel rods from the host clinopyroxene is controlled by the reaction of (Ca0.5M2+ 0.5)Fe3+[AlSiO6]in clinopyroxene → (Ca0.86-0.17M2+ 0.14-0.17)(M2 + 1.00-0.96Al0-0.04)[Al0.17-0.10Si1.83-1.90O6] + Fe3O4 + O2.

  11. The intrusive complexof the Island of Giglio: geomagnetic characteristics of plutonic facies with low susceptibility contrast

    Directory of Open Access Journals (Sweden)

    R. Cavallini

    1998-06-01

    Full Text Available Two main plutonic facies characterize the intrusive complex of the Island of Giglio, and the trend of their contact at depth has been modelled using a 2D½ analysis based on a detailed geomagnetic survey in order to verify the geological hypothesis of the subsurface geometry of this contact. The magnetic anomaly connected with the discontinuity is quite low, due to the small difference between the magnetic susceptibilities of the two granitic facies. Development of this model of inversion of the magnetic field, which is in good agreement with the geological interpretation, was made possible by: 1 accurate control of the geomagnetic time variations and consequent temporal reduction, 2 a very low level of the artificial magnetic noise, 3 high density of the magnetic survey, 4 detailed knowledge of the mapped geologic contact between facies and of their petrologic characteristics, and 5 direct local measurements of the magnetic susceptibilities of the key lithologies. The model shows the trends of the geological contact, as projected in three E-W sections, that dips eastward in the range between 210 and 540, supporting the geologic hypothesis that the Pietrabona facies represents an external shell of the shallowly emplaced Giglio monzogranite intrusion.

  12. Thermal modeling of pluton emplacement and associated contact metamorphism:Parashi stock emplacement in the Serranía de Jarara (Alta Guajira, Colombia

    Directory of Open Access Journals (Sweden)

    Zuluaga C. Carlos A.

    2010-12-01

    Full Text Available

    In the northernmost portion of the Serrania de Jarara (Alta Guajira, Colombia, low - medium grade metamorphic rocks from the Etpana Metamorphic Suite were thermally affected by emplacement of a small calc-alkaline intrusion (Parashi Stock. Detailed petrographic analysis in collected rock samples across the NE and NW plutonic contacts show occurrences of textural and mineralogical changes in the country rock fabric that evidence contact metamorphism overprinting regional metamorphism of the Etpana Suite. These changes include growth of andalusite (chiastolite, calcic clinopyroxeneand amphibole porphyroblast crosscutting Sn+1 metamorphicfoliation. Hornblende-plagioclase barometry (ca. 3.1 kbar and cooling models for the stock show maximum time temperature evolution in the country rock at the interpreted depth of intrusion (ca. 11 km and help to evaluate the behavior of the country rock with the changing local geotherm.

  13. Rock deformation in hydrothermal systems: the nature of fractures in plutons and their host rocks. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Norton, D.

    1981-11-01

    The purpose of this program is to accumulate the types of field data which are important for the analysis of magma-hydrothermal systems. The structural effects of thermal processes were identified in order to distinguish the thermally induced deformations from the deformations that occurred subsequent to complete cooling of the system. Mapping techniques were developed to record the structural data on the ground from local domains characteristic of larger areas in the magma chamber, and in the air from low-angle oblique aerial photography of the entire region. The ground system is complete and preliminary testing is currently being carried out to verify the method. The results indicate that granitic crystalline rocks have no structural resistance to thermal perturbations. If nuclear wastes are to be stored in granite, precautionary buffers would have to be incorporated into the system. A total of 30 fossil magma chambers have been studied over the past 2 years. An extensive set of fracture imagery has been collected, together with information related to the geological history of the plutons. Fossil magma chambers in Arizona, Utah, California, Washington, Montana, and British Columbia have been studied.

  14. Magmatic structures in the Krkonoše Jizera Plutonic Complex, Bohemian Massif: evidence for localized multiphase flow and small-scale thermal mechanical instabilities in a granitic magma chamber

    Science.gov (United States)

    Žák, Jiří; Klomínský, Josef

    2007-08-01

    The present paper examines magmatic structures in the Jizera and Liberec granites of the Krkonoše-Jizera Plutonic Complex, Bohemian Massif. The magmatic structures are here interpreted to preserve direct field evidence for highly localized magma flow and other processes in crystal-rich mushes, and to capture the evolution of physical processes in an ancient granitic magma chamber. We propose that after chamber-wide mixing and hybridization, as suggested by recent petrological studies, laminar magma flow became highly localized to weaker channel-like domains within the higher-strength crystal framework. Mafic schlieren formed at flow rims, and their formation presumably involved gravitational settling and velocity gradient flow sorting coupled with interstitial melt escape. Local thermal or compositional convection may have resulted in the formation of vertical schlieren tubes and ladder dikes whereas subhorizontal tubes or channels formed during flow driven by lateral gradients in magma pressure. After the cessation or deceleration of channel flow, gravity-driven processes (settling of crystals and enclaves, gravitational differentiation, development of downward dripping instabilities), accompanied by compaction, filter pressing and melt segregation, dominated in the crystal mush within the flow channels. Subsequently, magmatic folds developed in schlieren layers and the magma chamber recorded complex, late magmatic strains at high magma crystallinities. Late-stage magma pulsing into localized submagmatic cracks represents the latest events of magmatic history of the chamber prior to its final crystallization. We emphasize that the most favorable environments for the formation and preservation of magmatic structures, such as those hosted in the Jizera and Liberec granites, are slowly cooling crystal-rich mushes. Therefore, where preserved in plutons, these structures may lend strong support for a "mush model" of magmatic systems.

  15. Syn-collisional I-type Esenköy Pluton (Eastern Anatolia-Turkey): An indication for collision between Arabian and Eurasian plates

    Science.gov (United States)

    Açlan, Mustafa; Altun, Yusuf

    2018-06-01

    The Esenköy pluton which is situated in the East Anatolian Accretionary Complex (EACC) is represented by I-type, metalumino, calc-alkaline, VAG + syn-COLG, gabbro, diorite, quartz diorite, tonalite and granodiorite type rocks. This paper presents the characteristics of the above granitoids on their major, trace, rare earth elements (REE) and their zircon U-Pb dating. Zircon U-Pb crystallisation ages for gabbro, tonalite and granodiorite are 22.3 ± 0.2 Ma, 21.7 ± 0.2 Ma and 21.8 ± 0.2 Ma respectively. Esenköy granitoids show medium and high-K calc-alkaline character, with six exceptional K-poor sample plot in tholeiitic series field. The Rb/Y-Nb/Y diagram for Esenköy granitoids display subduction zone enrichment trend. The data which obtained from major, trace and REE geochemical characteristics and 206Pb/238U ages indicate that the collision which is take place between Arabian and Eurasian plates along the Bitlis-Zagros suture zone has begun in the Early Miocene (Aquitanian) or before from Early Miocene.

  16. Source and fractionation controls on subduction-related plutons and dike swarms in southern Patagonia (Torres del Paine area) and the low Nb/Ta of upper crustal igneous rocks

    Science.gov (United States)

    Müntener, Othmar; Ewing, Tanya; Baumgartner, Lukas P.; Manzini, Mélina; Roux, Thibaud; Pellaud, Pierre; Allemann, Luc

    2018-05-01

    The subduction system in southern Patagonia provides direct evidence for the variability of the position of an active continental arc with respect to the subducting plate through time, but the consequences on the arc magmatic record are less well studied. Here we present a geochemical and geochronological study on small plutons and dykes from the upper crust of the southern Patagonian Andes at 51°S, which formed as a result of the subduction of the Nazca and Antarctic plates beneath the South American continent. In situ U-Pb geochronology on zircons and bulk rock geochemical data of plutonic and dyke rocks are used to constrain the magmatic evolution of the retro-arc over the last 30 Ma. We demonstrate that these combined U-Pb and geochemical data for magmatic rocks track the temporal and spatial migration of the active arc, and associated retro-arc magmatism. Our dataset indicates that the rear-arc area is characterized by small volumes of alkaline basaltic magmas at 29-30 Ma that are characterized by low La/Nb and Th/Nb ratios with negligible arc signatures. Subsequent progressive eastward migration of the active arc culminated with the emplacement of calc-alkaline plutons and dikes 17-16 Ma with elevated La/Nb and Th/Nb ratios and typical subduction signatures constraining the easternmost position of the southern Patagonian batholith at that time. Geochemical data on the post-16 Ma igneous rocks including the Torres del Paine laccolith indicate an evolution to transitional K-rich calc-alkaline magmatism at 12.5 ± 0.2 Ma. We show that trace element ratios such as Nb/Ta and Dy/Yb systematically decrease with increasing SiO2, for both the 17-16 Ma calc-alkaline and the 12-13 Ma K-rich transitional magmatism. In contrast, Th/Nb and La/Nb monitor the changes in the source composition of these magmas. We suggest that the transition from the common calc-alkaline to K-rich transitional magmatism involves a change in the source component, while the trace element ratios

  17. Geocronologia e aspectos estruturais e petrológicos do Pluton Bravo, Domínio Central da Província Borborema, Nordeste do Brasil: um granito transalcalino precoce no estágio pós-colisional da Orogênese Brasiliana

    Directory of Open Access Journals (Sweden)

    Geysson de Almeida Lages

    Full Text Available RESUMO: O Pluton Bravo (no Estado da Paraíba constitui um stock elipsoidal formado por monzo/sienogranitos porfiríticos, enclaves dioritos e zonas híbridas. Está intrudido em gnaisses migmatíticos paleoproterozoicos do Domínio Central da Província Borborema. Os sienogranitos são metaluminosos a levemente peraluminosos, e exibem altas razões de K2O/Na2O > 1,5 e FeOt/(FeOt + MgO > 0,86. Os dioritos possuem alto conteúdo de Zr (> 1.134 ppm, TiO2 ~ 1,6% e Nb > (49 ppm. As razões (LaN/YbNN estão entre 14 e 19,4, e (Eu/Eu*N, entre 0,31 e 0,37. As rochas do Pluton Bravo são moderadamente fracionadas com picos em La, Zr e forte depressão em P, Ti e menor em Sr. Os dados plotam no campo discriminante de granitos pós-tectônicos/intraplaca. As estimativas de pressão (4,4 a 6,0 Kbar baseadas no conteúdo de Alt em anfibólio sugerem posicionamento do pluton na crosta superior a média. A temperatura do liquidus de acordo com o conteúdo de Zr e SiO2 oscilou entre 847 e 893°C, e a de cristalização, calculada pelo par anfibólio-plagioclásio, entre 581 e 785°C. Exibem idades-modelo TDM = 2,35 a 2,18 e εNd (580 Ma = -18,32 a -17,03. A idade U-Pb (LA-MC-ICP-MS U-Th-Pb em zircão indica cristalização ao redor de 581 ± 2 Ma. A relação entre a idade de cristalização (~ 580 Ma, as características químicas de granito tipo-A, idades-modelo Sm-Nd maiores que 2,1 Ga e a associação com regime tectônico transcorrente contrastam com outros granitos similares, porém ligeiramente mais novos (~ 570 Ma, que ocorrem nos Domínios Central, Rio Grande do Norte e no leste da Nigéria. Isso sugere que a transição do regime compressional para direcional/componente extensional precedeu no caso deste corpo evidenciando o caráter episódico e diacrônico da Orogênese Brasiliana. Conclui-se que o Pluton Bravo constitui um bom exemplo de magmatismo pós-colisional transalcalino no Domínio Central, que, com outros exemplos no Domínio Rio Grande

  18. Pluton emplacement in a releasing bend in a transpressive regime: the arrozal granite in the Paraíba do Sul shear belt, Rio de Janeiro.

    Science.gov (United States)

    Nummer, Alexis R; Machado, Rômulo; Dehler, Nolan M

    2007-06-01

    The Arrozal Granite, situated in the southwestern region of the State of Rio de Janeiro, has a granitic to granodioritic composition. It contains a strong mylonitic foliation along its border, passing gradually to a well-developed magmatic foliation towards its center. Structural analysis indicates that the Arrozal Granite was emplaced along the Além-Paraíba Shear Zone in a dextral transpressive tectonic regime. A regional shift of the trend along this shear zone from NE-SW to E-W, observed in the area, is interpreted to be casually related to the creation of space for the emplacement of the granite. Our data indicate that releasing bends may have played an important role for space generation during the emplacement of the Arrozal Granite and other plutons.

  19. Ladder Structures and Magnetic Surveys: New Insights into the Near Surface, Three-Dimensional Shape and Orientation of Plutonic Structures in the Tuolumne Intrusive Suite, Yosemite National Park, California

    Science.gov (United States)

    Boyd, J. D.

    2017-12-01

    The study of pluton emplacement and growth history offers a window into the evolution of the continental crust. Plutons, however, are often largely homogeneous in outcrop, lacking reliable structural markers for tracking their emplacement and growth through time. The ladder structures exposed on the glacially polished surfaces of the Tuolumne Intrusive Suite (TIS) in Yosemite National Park, California are an exception. Ladder structures (LS) are eye-catching concentrations of alternating mafic and felsic mineral assemblages in dominantly cresent-shaped, meter to sub-meter scale bands in outcrop that locally terminate into a mafic band forming a circular-shaped enclosure. Their geochemistry and modal mineralogy diverge sharply from host rock trends with large quantities of magnetite, titanite, and zircon in the mafic assemblages. The limited exposure of LS in outcrops has led to much debate as to their true geometries and orientations. The high concentration of magnetite in the LS is fortuitous in that it allows these features to be investigated by magnetic techniques. The preliminary results of new high resolution magnetic surveys of these LS are presented here. A grid of total magnetic intensity (TMI) was collected across the ladder structures. The TMI's were then inverted and modeled to determine the orientation of the magnetic bodies with depth using PyGMI freeware. With sufficient contrast in the magnetic susceptibility (Km) between the feature being imaged and the host rock, meter to sub-meter scale features can be resolved. The average Km of the LS mafic bands and the host rock is approximately 200-850 x10-3 and 15-20×10-3 SI units respectively. These measurements along with oriented samples were collected to determine input parameters (e.g. anisotropy and remanence) for the geocellular model used in this study.

  20. Geology, petrology and U-Pb geochronology of Serra da Rajada Granitic Pluton: implications about ediacaran magmatic evolution in NE portion of the Rio Piranhas-Serido Domain (NE of Borborema Province); Geologia, petrologia e geocronologia U-Pb do Pluton Granitico Serra da Rajada: implicacoes sobre a evolucao magmatica ediacarana na porcao do Dominio Rio Piranhas-Serido (NE da Provincia Borborema)

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Alan Pereira da; Dantas, Alexandre Ranier, E-mail: alan.costa@cprm.gov.br, E-mail: alexandre.dantas@cprm.gov.br [Servico Geologico do Brasil (CPRM), Natal, RN (Brazil). Nucleo de Apoio de Natal/Superintendencia Regional de Recife; Nascimento, Marcos Antonio Leite do; Galindo, Antonio Carlos, E-mail: marcos@geologia.ufrn.br, E-mail: galindo@geologia.ufrn.br [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Departamento de Geologia

    2015-12-15

    The Ediacaran plutonic activity, related to the Brazilian/Pan-African orogeny, is one of the most important geological features in the Borborema Province, formed by batholiths, stocks and dikes. The Serra da Rajada Granitic Pluton (SRGP), located in the central portion of the Rio Piranhas-Serido Domain, is an example of these bodies. This site is the target of cartographic, petrographic, lithochemical and geochronological studies. Its rocks are described as monzogranites consisting of K-feldspar, plagioclase (oligoclase-An{sub 23-24%}), quartz and biotite (main mafic), having as accessory minerals opaque, titanite, allanite, apatite and zircon. Chlorite, white mica and carbonate are alteration minerals. Lithochemical data from 15 samples show quite evolved rocks (SiO{sub 2} , 69% to 75%), rich in alkalis (Na{sub 2}O + K{sub 2}O ≥ 8.0%), depleted in MgO (≤ 0.45%), CaO (≤ 1.42%) and TiO{sub 2} (≤ 0.36%), and displaying moderate levels of Fe{sub 2}O{sub 3} t (2.16 to 3.53%). These rocks present a transitional nature between metaluminous and peraluminous (predominance of the latter) and have subalkaline/monzonitic affinity (high-K Calc-alkaline). Harker diagrams represent negative correlations in Fe{sub 2}O{sub 3}t, MgO and CaO, indicating fractionation of mafic and plagioclase. The REE spectrum show enrichment of light in relation to heavy REE (LaN/YbN = 23.70 to 10.13), with negative anomaly in Eu (Eu/ Eu* = 0.70 to 10.13) suggesting fractionation or accumulation in the feldspars source (plagioclase). Data integration allows correlating the SRGP rocks with those described as Equigranular high-K Calc-alkaline Suite. The U-Pb geochronology and Sm-Nd isotope dating indicate that the biotite monzogranite have a crystallization age of 557 ± 13 Ma and TDM model age of 2.36 Ga, respectively, and ε{sub Nd} value of - 20.10 for the crystallization age, allowing to infer a crustal source for the magma generated in the Paleoproterozoic age. (author)

  1. The role of pegmatites and acid fluids for REE/HFSE mobilization in the Strange Lake peralkaline granitic pluton, Canada

    Science.gov (United States)

    Gysi, A. P.; Williams-Jones, A.

    2012-12-01

    The Strange Lake pluton in Canada is a mid-Proterozoic peralkaline granitic intrusion that is host to a world-class rare earth element (REE), yttrium (Y) and high-field strength element (HFSE) deposit containing more than 50 Mt ore at >1.5 wt.% REE and >3 wt.% Zr. The highest REE/HFSE concentrations are found in pegmatite-rich zones characterized by intense alteration. Previous studies of Strange Lake and other peralkaline and alkaline intrusions, such as Khan Bogd (Mongolia) and Tamazeght (Morocco) plutons have shown that hydrothermal alteration may play an important role in the mobility of the REE/HFSE. However, the fluid chemistry and conditions of alteration (i.e., P, T, pH, fO2, ligand activity) in these systems still need to be constrained to evaluate the importance and scale of such hydrothermal mobilization. We present new data from the B-zone, a pegmatite-rich zone located in NW Strange Lake. The pegmatites are generally zoned and form two main types. The border-type pegmatites consist of quartz, K-feldspar and hematized aegirine, whereas volatile-rich pegmatites consist of hydrothermal quartz and fluorite. Transitions between both types were also observed, with the K-feldspar being partly altered and replaced by Al-Si-rich phyllosilicates. The heavy (H)REE and Zr were primarily concentrated in zirconosilicates such as elpidite, now pseudomorphed by zircon or gittinsite, whereas light (L)REE and Y were concentrated in REE-F-(CO2)-minerals such as fluocerite and bastnäsite. Textural and mineralogical observations indicate that these minerals are primary and were partly to completely leached upon fluid-rock interaction in the pegmatites. Secondary phases include Ca-F-Y-rich minerals, mainly hydrothermal fluorite, that fill vugs and replaced primary REEHFSE minerals. The presence of hydrothermal fluorite veins, micro-veins, vugs and micro-breccia in the most altered parts of the B-zone are interpreted to reflect interaction of the rocks with a F-rich fluid

  2. Crystal Chemistry of Pyroaurite from the Kovdor Pluton, Kola Peninsula, Russia, and the Långban Fe-Mn deposit, Värmland, Sweden

    Science.gov (United States)

    Zhitova, E. S.; Ivanyuk, G. Yu.; Krivovichev, S. V.; Yakovenchuk, V. N.; Pakhomovsky, Ya. A.; Mikhailova, Yu. A.

    2017-12-01

    Pyroaurite [Mg6Fe2 3+ (OH)16][(CO3)(H2O)] from the Kovdor Pluton on the Kola Peninsula, Russia, and the Långban deposit in Filipstad, Värmland, Sweden were studied with single crystal and powder X-ray diffraction, an electron microprobe, and Raman spectroscopy. Both samples are rhombohedral, space group R3̅ m, a = 3.126(3), c = 23.52(2) Å (Kovdor), and a = 3.1007(9), c = 23.34(1) (Långban). The powder XRD revealed only the 3 R polytype. The ratio of di- and trivalent cations M 2+: M 3+ was determined as 3.1-3.2 (Kovdor) and 3.0 (Långban). The Raman spectroscopy of the Kovdor sample verified hydroxyl groups and/or water molecules in the mineral (absorption bands in the region of 3600-3500 cm-1) and carbonate groups (absorption bands in the region of 1346-1058 cm-1). Based on the data obtained, the studied samples should be identified as pyroaurite-3 R (hydrotalcite group).

  3. Petrological and geochemical characterization of the plutonic rocks of the Sierra de La Aguada, Province of San Luis, Argentina: Genetic implications with the Famatinian magmatic arc

    Directory of Open Access Journals (Sweden)

    E. Cristofolini

    2017-07-01

    Full Text Available This study presents a synthesis on the geology of the crystalline complex that constitute the Sierra de la Aguada, San Luis province, Argentine, from an approach based on field relations, petrologic and structural features and geochemical characteristic. This mountain range exposes a basement dominated by intermediate to mafic calcalkaline igneous rocks and peraluminous felsic granitoids, both emplaced in low to medium grade metamorphic rocks stabilized under low amphibolite facies. All this lithological terrane has been grouped in the El Carrizal-La Aguada Complex. Field relations, petrographic characterization and geochemical comparison of the plutonic rocks from the study area with those belonging to the Ordovician Famatinian suit exposed in the Sierra Grande de San Luis, suggest a genetic and temporal relation linked to the development of the Famatinian magmatic arc.

  4. Oxygen and Hydrogen Isotope Values for Unaltered and Hydrothermally Altered Samples from the Cretaceous Linga Plutonic Complex of the Peruvian Coastal Batholith near Ica.

    Science.gov (United States)

    Gonzalez, L. U.; Holk, G. J.; Clausen, B. L.; Poma Porras, O. A.

    2015-12-01

    A portion of the Peruvian Coastal Batholith near Ica, Peru is being studied using stable isotopes to determine the source of hydrothermal fluids that caused propylitic, phyllic, and potassic alteration in the mineralized Linga plutonic complex. Sources of hydrothermal fluids and water/rock ratios are estimated to understand the role of such fluids in alteration during cooling. A set of 64 mineral analysis from 18 igneous samples, 7 unaltered and 11 altered, were analyzed for D/H and 18O/16O isotopes. The δ18O values for whole rocks with no apparent alteration vary from +6.8‰ to +7.9‰, with sets of δ18O mineral values indicating isotopic equilibrium at closure temperatures from 571°C to 651°C, and no interaction with meteoric water. This conclusion is bolstered by hornblende (-87‰ to -64‰) and biotite (-81‰ to -74‰) δD values Most δ18O values for samples with hydrothermal alteration suggest that alteration results from magmatic fluids; however, several analyses indicate interaction with other fluids. The high δ18O values for plagioclase (+9.3‰) and hornblende (+6.3‰) from a metamorphic aureole in volcanic host rock near a plutonic intrusion may be due to interaction with metamorphic or low temperature magmatic fluids. Plagioclase (+2.6‰) and biotite (+0.1‰) δ18O values in a sample from the Jurassic volcanic envelope indicate a significant effect from meteoric-hydrothermal fluids. An altered monzonite yielded δ18O values for quartz (+5.5‰), K-spar (+5.6‰), and magnetite (+0.4‰), also suggesting interaction with meteoric fluids. A diorite from an area with strong epidotization produced an epidote δD value of -25.8‰ and a monzonite from a highly veined area has an epidote δD value of -36.1‰ suggesting interaction with sea water. This new data indicate that the Linga complex was primarily influenced by magmatic hydrothermal fluids, but metamorphic, meteoric, and sea water may have had some influence in producing alteration

  5. Zircon growth in a granitic pluton with specific mechanisms, crystallization temperatures and U-Pb ages. Implication to the 'spatiotemporal' formation process of the Toki granite, central Japan

    International Nuclear Information System (INIS)

    Yuguchi, Takashi; Ishibashi, Masayuki; Sasao, Eiji; Iwano, Hideki; Danhara, Tohru; Kato, Takenori; Sakata, Shuhei; Hattori, Kentaro; Hirata, Takafumi; Sueoka, Shigeru; Nishiyama, Tadao

    2016-01-01

    Zircons collected from a granitic pluton provide evidence of serial growth events with specific mechanisms, crystallization temperatures and U-Pb ages, revealing details of the sequential formation process from intrusion through emplacement to crystallization/solidification. The events have been identified by: 1) the study of the internal structure of zircon using cathodoluminescence, 2) deriving crystallization temperatures using Ti-in-zircon thermometry of the internal structure and 3) U-Pb age dating of the internal structure. The magmatic zircons from the Toki granite, central Japan, show two kinds in their internal structure: a low luminescence core (LLC) and oscillatory zonation (OZ). The LLC was produced by interfacial reaction-controlled growth in the granitic magma with cooling from about 910 to 760°C. The formation of OZ occurred by diffusion-controlled growth in a cooling magma chamber from about 850 to 690°C. The U-Pb ages derived from the LLC ranges from 74.7 ± 4.2 to 70.5 ± 1.3 Ma, indicating the incipient intrusion timing of the magma into the shallow crust. The OZ ages distribute from 72.7 ± 0.6 to 70.4 ± 1.7 Ma, which mean the timing from emplacement to crystallization/solidification of the granite pluton. Thus, the serial processes from intrusion through emplacement to crystallization/solidification occurred within a few million years. The old LLC and OZ ages are recognized in the western margins of the Toki granite, implying that the magma forming the western margins was the first to intrude, emplace and crystallize/solidify. The western margins with initial intrusion may accompany the crustal assimilation in order to create sufficient magma reservoir space, which is consistent with larger SrI and ASI values found in the western margins of the granite. (author)

  6. Carboniferous continental arc in the Hegenshan accretionary belt: Constrains from plutonic complex in central Inner Mongolia

    Science.gov (United States)

    Wei, Ruihua; Gao, Yongfeng; Xu, Shengchuan; Santosh, M.; Xin, Houtian; Zhang, Zhenmin; Li, Weilong; Liu, Yafang

    2018-05-01

    The architecture and tectonic evolution of the Hegenshan accretionary belt in the Central Asian Orogenic Belt (CAOB) remains debated. Here we present an integrated study of zircon U-Pb isotopic ages, whole rock major-trace elements, and Sr-Nd-Pb isotopic data from the Hegenshan volcanic-plutonic belt in central Inner Mongolia. Field observations and zircon U-Pb ages allow us to divide the intrusive complex into an early phase at 329-306 Ma and a late phase at 304 to 299 Ma. The intrusive bodies belong to two magma series: calc-alkaline rocks with I-type affinity and A-type granites. The early intrusions are composed of granodiorite, monzogranite and porphyritic granite, and the late calc-alkaline intrusions include gabbro though diorite to granodiorite. The calc-alkaline intrusive rocks exhibit a well-defined compositional trend from gabbro to granite, reflecting continuous fractional crystallization. These rocks show obvious enrichment in LILEs and LREEs and relative depletion of HFSEs, typical of subduction-related magma. They also exhibit isotopic characteristics of mantle-derived magmas such as low initial 87Sr/86Sr (0.7029-0.7053), positive ɛNd(t) values (0.06-4.76) and low radiogenic Pb isotopic compositions ((206Pb/204Pb)I = 17.907-19.198, (207Pb/204Pb)I = 15.474-15.555, (208Pb/204Pb)I = 37.408-38.893). The marked consistency in geochemical and isotopic compositions between the intrusive rocks and the coeval Baoligaomiao volcanic rocks define a Carboniferous continental arc. Together with available regional data, we infer that this east-west trending continental arc was generated by northward subduction of the Hegenshan ocean during Carboniferous. The late alkali-feldspar granites and the high-Si rhyolites of the Baoligaomiao volcanic succession show similar geochemical compositions with high SiO2 and variable total alkali contents, and low TiO2, MgO and CaO. These rocks are characterized by unusually low Sr and Ba, and high abundances of Zr, Th, Nb, HREEs

  7. Tectono-metamorphic evolution and magmatic processes in the thermo-metamorphic aureole of the Monte Capanne pluton (Elba Island, Northern Tyrrhenian Sea, Italy).

    Science.gov (United States)

    Morelli, M.; Pandeli, E.; Principi, G.

    2003-04-01

    main foliation. Both at the meso- and micro-scale few generations of syn-/inter-kinematic and static thermo-metamorphic blasteses (e.g. biotite, wollastonite, garnet, epidote etc.) are evident. Finally weak local folding and faulting affected the Monte Capanne thermo-metamorphic aureole during the uplift of the cooled pluton. Along the coast of Spartaia (north-eastern side of Monte Capanne) the meta-sedimentary upper portion of the Punta Nera Unit crops out and it is represented by alternating marbles and phyllites with rare meta-arenites. Here, the relationships between tectono-metamorphic and thermo-metamorphic structures, and intrusive magmatic bodies are particularly evident. D_1M_1: is recognizable at the meso-scale only as rare relics of intrafolial isoclinal rootless hinges and locally as a transposed foliation (S1). At the microscope a relic fine-spaced foliation, locally preserved by the following re-crystallization and parallel to the original lithological partitions, is evident. The original mineral associations is often replaced by HT/LP mimetic and syn-kinematic or static blasteses. D_2M_2 is the most evident structural fabric pre-dating the thermo-metamorphic events. It is represented by tight to isoclinal folds with N-S trending axes and easternward vergence. At the microscope the S2 foliation deformed the previously S1 and at the fold hinges a variously penetrative discrete crenulation cleavage (S2) is recognizable. M_3 is the first thermo-metamorphic event. It is associated to the intrusions of the Capo Bianco, San Martino and Portoferraio laccoliths (between ca. 8 and 7.2 Ma, Rocchi et alii, 2002) along pre-existing tectonic and lithological discontinuity. The laccoliths clearly crosscut the tectono-metamorphic fabric of the Punta Nera Unit. At this first magmatic event is associated a HT/LP blastesis of static garnet, wollastonite and epidote. Close to the contact between the magmatic intrusive bodies the country rocks are strongly re

  8. The impact of geology on the migration of fluorides in mineral waters of the Bukulja and Brajkovac pluton area, Serbia

    Directory of Open Access Journals (Sweden)

    Papić Petar

    2012-01-01

    Full Text Available One of the hydrogeochemical parameters that classify groundwater as mineral water is the content of fluoride ions. Their concentration is both important and limited for bottled mineral waters. Hydrochemical research of mineral waters in the surrounding area of Bukulja and Brajkovac pluton, in central Serbia, was conducted in order to define the chemical composition and genesis of these waters. They are carbonated waters, with content of fluoride ranging from 0.2 up to 6.6 mg/L. Since hydrochemical analyses showed variations in the major water chemistry, it was obvious that, apart from hydrochemical research, some explorations of the structure of the regional terrain would be inevitable. For these purposes, some additional geological research was performed, creating an adequate basis for the interpretation of the genesis of these carbonated mineral waters. The results confirmed the significance of the application of hydrochemical methods in the research of mineral waters. The work tended to emphasize that “technological treatment” for decreasing the concentration of fluoride in mineral waters occurs in nature, indicating the existence of natural defluoridization. [Projekat Ministarstva nauke Republike Srbije, br. 43004

  9. Indoor radon related to uranium in granitoids of the Central Bohemian plutonic complex

    International Nuclear Information System (INIS)

    Barnet, I.; Fojtikova, I.

    2004-01-01

    The study is based on the indoor radon data (one year measurements, Kodak LR 115 track etch detectors), vectorized geological maps 1:50000, vectorized coordinates of dwellings and uranium data for granitoid types of the Central Bohemian Plutonic Complex (CBPC). Using ArcGis 8.2 programme, the position of 16145 dwellings was linked to a geological database covering the CBPC (approx. 3200 km 2 ), and the type of underlying rock type was specified for each house. The resulting databases enabled us to calculate the mean EEC indoor Rn data for particular granitoid types and to study the relationship between the indoor Rn and the U concentrations. The petrogenetically variable CBPC was emplaced during Variscan orogenesis (330-350 Ma) and is among the most radioactive rock types within the Bohemian Massif. A long-term process of CBPC genesis resulted in more than 20 granitoid types, differing by their petrogenetic characteristics as well as mineralogical and chemical composition, including uranium concentration. The relation between the mean indoor radon values and uranium concentrations in particular rock types was examined. A positive regression between indoor Rn and uranium as the source of Rn soil gas clearly demonstrates how regional geology influences the indoor radon activity concentration in dwellings. The highest indoor Rn concentrations were observed in the Sedlcany granodiorite and Certovo bremeno syenite, where also the highest gamma dose rates (150-210 nGy.h -1 ) within all granitoid types in the Czech Republic were observed. The two rock types differ from other granitoids by a relatively high zircon concentration, which is the main source of U and subsequently of soil gas Rn being released from the bedrock. The lower indoor Rn values of Certovo bremeno syenite which do not correspond with the high U concentrations can be explained by a relatively low permeability of its clayey weathering crust. This feature was also observed for soil gas radon concentration

  10. Distinct 238U/235U ratios and REE patterns in plutonic and volcanic angrites: Geochronologic implications and evidence for U isotope fractionation during magmatic processes

    Science.gov (United States)

    Tissot, François L. H.; Dauphas, Nicolas; Grove, Timothy L.

    2017-09-01

    Angrites are differentiated meteorites that formed between 4 and 11 Myr after Solar System formation, when several short-lived nuclides (e.g., 26Al-26Mg, 53Mn-53Cr, 182Hf-182W) were still alive. As such, angrites are prime anchors to tie the relative chronology inferred from these short-lived radionuclides to the absolute Pb-Pb clock. The discovery of variable U isotopic composition (at the sub-permil level) calls for a revision of Pb-Pb ages calculated using an ;assumed; constant 238U/235U ratio (i.e., Pb-Pb ages published before 2009-2010). In this paper, we report high-precision U isotope measurement for six angrite samples (NWA 4590, NWA 4801, NWA 6291, Angra dos Reis, D'Orbigny, and Sahara 99555) using multi-collector inductively coupled plasma mass-spectrometry and the IRMM-3636 U double-spike. The age corrections range from -0.17 to -1.20 Myr depending on the samples. After correction, concordance between the revised Pb-Pb and Hf-W and Mn-Cr ages of plutonic and quenched angrites is good, and the initial (53Mn/55Mn)0 ratio in the Early Solar System (ESS) is recalculated as being (7 ± 1) × 10-6 at the formation of the Solar System (the error bar incorporates uncertainty in the absolute age of Calcium, Aluminum-rich inclusions - CAIs). An uncertainty remains as to whether the Al-Mg and Pb-Pb systems agree in large part due to uncertainties in the Pb-Pb age of CAIs. A systematic difference is found in the U isotopic compositions of quenched and plutonic angrites of +0.17‰. A difference is also found between the rare earth element (REE) patterns of these two angrite subgroups. The δ238U values are consistent with fractionation during magmatic evolution of the angrite parent melt. Stable U isotope fractionation due to a change in the coordination environment of U during incorporation into pyroxene could be responsible for such a fractionation. In this context, Pb-Pb ages derived from pyroxenes fraction should be corrected using the U isotope composition

  11. Pb-Pb age and Rb-Sr and Sm-Nd isotope signature of paleoproterozoic syenitic plutonism in the south of Salvador-Curaca mobile belt: Sao Felix Syenitic Massif, Bahia-Brazil

    International Nuclear Information System (INIS)

    Rosa, Maria de Lourdes da Silva; Conceicao, Herbet; Leal, Luiz Rogerio Bastos

    2001-01-01

    The Sao Felix Syenitic Massif (MSSF) has a tabular shape with about 32 km 2 that represents the south expression of the aligned syenitic plutonism, which occur in the middle part of Salvador-Curaca mobile belt (CMSC). Single zircon dating by stepwise Pb evaporation methodology yields an age of 2098 ± 1 Ma to SFSM. This data correlate the emplacement of the SFSM with the late stages of SCMB stabilization. This massif is isotopically characterized by negative epsilon neodymium values (-1.45 to -2.89) and low initial strontium ratio (0.701 to 0.704). SFSM isotopic signature is similar to the ones displayed by the others syenites from the belt and reflects an enriched source which should be related to a metasomatic enriched mantle. (author)

  12. Interaction of the lithospheric mantle and crustal melts for the generation of the Horoz pluton (Niğde, Turkey: whole-rock geochemical and Sr–Nd–Pb isotopic evidence

    Directory of Open Access Journals (Sweden)

    Kerim Kocak

    2016-08-01

    Full Text Available The Horoz pluton includes granitic and granodioritic rocks, with widespread mafic microgranular enclaves (MMEs. Petrochemically, the rocks of the pluton show calc-alkaline to shoshonitic and metaluminous to slightly peraluminous composition. The rocks also exhibit an enrichment in large ion lithophile elements, e.g. Rb, K, and depletions of high field strength elements such as Y, Lu, and Mg#, Ni, with a slightly concave-upward rare earth element pattern. Both granitic and granodioritic rocks exhibit geochemical characteristics of tonalite, trondhjemite and granodiorite assemblages, possibly developed by the partial melting of a thickened lower crust. The granitoids have high concentrations of Na2O (2.6–4.5 wt%, Sr (347–599 ppm, intermediate-high (La/YbN (8.2–18.1, mostly >11 , Al2O3 (13.2–16.9 wt%, average 15.3 wt%, low MgO (0.2–1.4 wt%, average 0.84 wt% and Co (0.7–10.3 ppm. The MMEs include higher Na2O (4.5–5.5 wt%, Sr (389–1149 ppm, Al2O3 (16.9–19.2 wt%, average 17.8 wt%, MgO (1.4–4.4 wt%, average 2.75 wt% and Co (6.2–18.7 ppm contents in comparison with that of their hosts. There is a lack of negative Eu anomalies, except a few samples. Both host rocks and MMEs have a low initial 87Sr/86Sr ratio (respectively 0.7046–0.7051 and 0.7047–0.7058, low eNd value (–1.8 to –0.2 and –0.6 to 0.7 at 50 Ma and highly radiogenic 208Pb/204Pb ratios (39.43–39.47 and 39.39–39.54. Whole-rock chemistry and isotopic data suggest that parent magmas of both MMEs and their hosts have derived from melts of the mixing between the lithospheric mantle and crustal end members, than fractional crystallization processes in crustal levels.

  13. Juvenile helium in ancient rocks: II. U-He,K-Ar, Sm-Nd, and Rb-Sr systematics in the Monche Pluton. 3He/4He ratios frozen in uranium-free ultramafic rocks

    International Nuclear Information System (INIS)

    Tolstikhin, I.N.; Dokuchaeva, V.S.; Kamensky, I.L.; Amelin, Yu.V.

    1992-01-01

    The important geodynamic parameter, the 3 He/ 4 He ratio in rocks and fluids of the continental crust, is generally decreasing from the mantle values (≅ 10 -5 ) to the radiogenic ratio (≅ 10 -8 ) on the time scale of about 1 Ga or less. However, the ratios, observed in some ancient rocks and minerals, are much higher than the radiogenic value due to a preferential retention of trapped He, when compared with radiogenic helium and/or a low U/ 3 He ratio in a sample. The distribution of He, Ar, Nd, and Sr isotopes, K, Rb, Sm, and U in ultrabasic rocks, in rock-forming minerals, in ores from the 2.49 Ga Monche Pluton, and in basic rocks of the Main Range (the Kola Peninsula) enables one to distinguish sources of the rocks and trapped fluids and outline some peculiarities of petrogenetic and fluid processes. The initial values of var-epsilon Nd (T) = -0.9 ± 0.5 , 87 Sr/ 86 Sr(T) = 0.7021 ± 0.0002, for the 2.49 Ga Monche Pluton are rather similar to these for other layered intrusions of the Baltic Shield. They differ considerably from the model values for the depleted 2.5 Ga old mantle. The observed and rather different sources of 3 He and 4 He as well as the considerable constancy of their ratio in different minerals, separated from both the ultramafic rocks and gabbros, implies: (1) an intensive process of mixing between mantle and crustal components: a melt convection in the chamber may have occurred; (2) the two types of rocks could originate by crystallization differentiation of one and the same melt. Practically all 3 He and 4 He are concentrated in secondary amphiboles; hence the fluid which stimulated the metamorphic process was probably released from the ultramafite-bearing melt

  14. Aeolus or Pluton?; Eole ou pluton?

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-07-01

    In the next years the french government will have to take great decisions in matter of energy and specifically electric power. This report aims to give an estimation of wind power channel in France supposing financial possibilities equivalent to those implemented for the EPR (European Pressurized Reactor) channel. After a presentation of the electric power industry in France, the two channels are compared. (A.L.B.)

  15. Textures, trace element compositions, and U-Pb ages of titanite from the Mangling granitoid pluton, East Qinling Orogen: Implications for magma mixing and destruction of the North China Craton

    Science.gov (United States)

    Hu, Hao; Li, Jian-Wei; McFarlane, Christopher R. M.; Luo, Yan; McCarron, Travis

    2017-07-01

    The Mangling granitoid pluton, located along the southern margin of the North China Craton, consists mainly of monzogranite with minor amounts of diorite. The monzogranite contains abundant mafic microgranular enclaves (MMEs) and is intruded by numerous mafic dikes, providing an opportunity to study magma mixing and its role in the formation of the granitioid pluton. In this paper, we present in situ analysis of U-Pb isotopes and trace element compositions of titanite from the MMEs and the host monzogranite using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to document the role of magma mixing in the formation of the Mangling granitoid pluton. Titanite grains from the MMEs (type 1) are euhedral with patchy zoning, whereas the varieties from the closely associated host monzogranite are euhedral and consist of two types (type 2 and type 3). Type 2 titanite is more abundant and has oscillatory zoning without Fe-Ti oxide inclusions, whereas type 3 grains commonly have Fe-Ti oxide inclusions in the core that is rimmed by inclusion-free overgrowths with weak oscillatory zoning. Titanite from monzogranite without MMEs (type 4) is euhedal and has weak oscillatory zoning, with rare ilmenite inclusions in the core. Titanite from a mafic dike intruding the monzogranite (type 5) is anhedral and has sector zoning. Titanite grains from MMEs and the monzogranite (type 1, 2 and 3) have U-Pb ages that are indistinguishable (149 ± 1 Ma, 148 ± 1 Ma and 148 ± 2 Ma, respectively). These ages agree well with zircon U-Pb ages of 150 ± 1 Ma, 150 ± 1 Ma and 149 ± 1 Ma for the MMEs, host monzogranite, and mafic dike, respectively. The age consistency thus confirms coeval formation of the MMEs, the host monzogranite, and the mafic dikes, demonstrating a mafic magmatic, rather than extraneous or restitic origin for the MMEs. Titanite grains from the MMEs (type 1) and mafic dike (type 5) have much lower Al2O3, REE, Nb/Zr, Y/Zr, and Lu/Hf, but higher (Ce + Nd)/Y and La

  16. Mesozooplankton assemblages in two bays in the Beagle Channel (Argentina during January, 2001

    Directory of Open Access Journals (Sweden)

    Melisa Daiana Fernández-Severini

    2005-12-01

    Full Text Available This paper describes the composition and abundance of mesozooplankton of Bahía Ushuaia and Bahía Golondrina. These small bays are located in the northern Beagle Channel. Sampling was carried out from January 20 to 23, 2001 and samples were collected from the upper layer at nine stations. This study is the first research on mesozooplankton in this part of the Beagle Channel. Due to their dominance in the mesozooplankton community, we compared our Copepoda data with those reported by other authors from Antarctic coastal environments. By applying cluster analysis, we found two station groups in both bays: one in slightly polluted zones and the other in undisturbed external zones. Four assemblages in Bahía Ushuaia and two in Bahía Golondrina were determined by using non-metric multidimensional scaling (MDS and cluster analysis. Mesozooplanktonic assemblages showed a certain resemblance in zones with and without anthropogenic influence. Most of the copepod species in our samples are typical of the sub-Antarctic region. Oithona similis (=O. helgolandica sensu Ramírez, 1966, Oncaea curvata, and Ctenocalanus citer show either similar or higher abundances at Antarctic coastal sites, including the upper layer in oceanic areas, in comparison with sub-Antarctic coastal localities. This suggests that, in agreement with other findings, the Polar Front is probably not a major geographic boundary for the distribution of these species.

  17. Petrology, Magnetic susceptibility, Tectonic setting and mineralization associated with Plutonic and Volcanic Rocks, Eastern Bajestan and Taherabad, Iran

    Directory of Open Access Journals (Sweden)

    Malihe Ghoorchi

    2009-09-01

    Full Text Available Study area is located in district of Bajestan and Ferdows cities, NE of Iran. Structurally, this area is part of Lut block. The oldest exposed rocks, to the north of intrusive rocks and in Eastern Bajestan, are meta-chert, slate, quartzite, thin-bedded crystalline limestone and meta-argillite. The sedimentary units are: Sardar Formation (Carboniferous, Jamal Formation (Permian, Sorkh Shale and Shotori Formations (Triassic, carbonateous rocks (Cretaceous and lithostratigraphically equivalent to Kerman conglomerate (Cretaceous-Paleocene are exposed in this area. Based on relative age, magmatism in eastern Bajestan and Taherabad started after Late Cretaceous and it has been active and repeated during Tertiary time. At least, three episodes of volcanic activities are recognized in this area. The first stage was mainly volcanic flow with mafic composition and minor intermediate. The second episode was mainly intermediate in composition. The third stage was changed to acid-intermediate in composition. Since the plutonic rocks intruded the volcanic rocks, therefore they may be Oligo-Miocene age. Bajestan intrusive rocks are granite-granodiorite-quartz monzonite. Taherabad intrusive rocks are diorite-quartz diorite- monzonite-latite. Bajestan intrusive rocks are reduced type (ilmenite series and Taherabad intrusive rocks are oxidized type (magnetite series.Based on geochemical analysis including trace elements, REE and isotopic data, Bajestan intrusive rocks formed in continental collision zone and the magma has crustal origin. Taherabad intrusive rocks were formed in subduction zone and magma originated from oceanic crust. Taherabad intrusive rock has exploration potential for Cu-Au and pb.

  18. Magnetic Fabric and Paleomagnetism of the Peninsular Ranges Batholith, Sierra San Pedro M rtir, Baja California.

    Science.gov (United States)

    Knight, M.; Herrero-Bervera, E.; Molina-Garza, R. S.; Böhnel, H. N.

    2003-12-01

    We summarize results of recent paleomagnetic, structural, petrologic and magnetic fabric studies along an east-west (60 km long) transect across the Peninsular Ranges Batholith (PRB) in north-central Baja California. The transect includes both magnetite rich plutons from the western sector of the PRB, and ilmenite rich plutons from the eastern sector, as well as plutons on the eastern and western side of major tectonic discontinuities. We include results for 8 plutons, included well-characterized bodies such as San Pedro M rtir (SP), San José (SJ) and La Zarza (LZ), and relatively little known plutons such as Potrero (PO), Aguaje del Burro (AB), El Milagro (MI), and San Telmo (ST). Plutons on the western sector of the PRB yield a paleomagnetic pole at 82° N-186.4° E (A95=4.8° ). When rotated into a pre- Gulf of California position, the pole (79.2° -188.2° ) is statistically undistinguishable from the North American reference pole. In contrast, SP, SJ and PO plutons, on either side of the NW trending Main Martir Thrust yield clearly discordant direction that can only be reconciled with results for the western plutons assuming southwestward tilt of ˜ 25° for SP and greater than 45° for SJ and PO. We find strong evidence in support of tilt of the plutons from thermochronological, structural, and geobarometric data. These data will be discussed elsewhere. Here we focus on magnetic fabric data. AMS for SJ is strongly developed with high values for degree of anisotropy (P= 1.14 a 1.40), but marked east-west asymmetry that contrasts with the general symmetry of the pluton along a north-south axis. Oblate fabrics (T ˜ +0.4) with dispersed lineation directions dominate the west side of the pluton and prolate fabrics (T ˜ -0.15) with steep to vertical lineations dominate on its eastern side. This fabric is interpreted to result from magma flow. SP, a much larger pluton and sensibly asymmetric, displays high degrees of anisotropy (P ˜1.2) on its western side but

  19. Cooling age of the Birimian juvenile crust in West Africa. U-Pb, Rb-Sr and K-Ar data on the 2.1 Ga granite-greenstone terrains from SW-Niger

    International Nuclear Information System (INIS)

    Lama, C.; Dautel, D.; Zimmermann, J.L.; Cheilletz, A.; Pons, J.

    1994-01-01

    A comparison between zircon U-Pb, whole-rock Rb-Sr and biotite-amphibole K-Ar data on Birimian granite-greenstone terrains from SW-Niger indicates that the youngest granitic plutons were emplaced at 2.115 ± 5 Ma and that both the plutons and the surrounding greenstones yield cooling ages around 2.118 Ma. The age similarity between the end of the plutonism and the cooling of plutons and surrounding greenstone further suggests rapid cooling at the end of the plutonic event and, thus, corroborates a model of greenstone metamorphism linked to the thermal effect of the plutons. (authors)

  20. PROCESSO DE IMPEACHMENT NO BRASIL, DEMOCRACIA E O PROTOCOLO DE USHUAIA: POSSÍVEIS DESDOBRAMENTOS (IMPEACHMENT IN BRAZIL, DEMOCRACY AND THE USHUAIA PROTOCOL: POSSIBLE PROSPECTS)

    OpenAIRE

    Gomes, Eduardo Biacchi; Brandalise, Ane Elise

    2017-01-01

    Observa-se que são várias as vozes, tanto em âmbito local e regional quanto na esfera global e internacional, proclamando pela democracia, verdadeiro valor fundamental e um desafio constante. No contexto regional, a busca da ordem democrática destaca-se no processo de integração do chamado Mercado Comum do Sul (Mercosul), marcado por caso de suspensão e de questionamentos sobre os Governos dos respectivos Estados membros do bloco. Nessa toada, o presente artigo analisa, como ponto central, o ...

  1. An algorithm to evaluate solar irradiance and effective dose rates using spectral UV irradiance at four selected wavelengths

    International Nuclear Information System (INIS)

    Anav, A.; Rafanelli, C.; Di Menno, I.; Di Menno, M.

    2004-01-01

    The paper shows a semi-analytical method for environmental and dosimetric applications to evaluate, in clear sky conditions, the solar irradiance and the effective dose rates for some action spectra using only four spectral irradiance values at selected wavelengths in the UV-B and UV-A regions (305, 320, 340 and 380 nm). The method, named WL4UV, is based on the reconstruction of an approximated spectral irradiance that can be integrated, to obtain the solar irradiance, or convoluted with an action spectrum to obtain an effective dose rate. The parameters required in the algorithm are deduced from archived solar spectral irradiance data. This database contains measurements carried out by some Brewer spectrophotometers located in various geographical positions, at similar altitudes, with very different environmental characteristics: Rome (Italy), Ny Aalesund (Svalbard Islands (Norway)) and Ushuaia (Tierra del Fuego (Argentina)). To evaluate the precision of the method, a double test was performed with data not used in developing the model. Archived Brewer measurement data, in clear sky conditions, from Rome and from the National Science Foundation UV data set in San Diego (CA, USA) and Ushuaia, where SUV 100 spectro-radiometers operate, were drawn randomly. The comparison of measured and computed irradiance has a relative deviation of about ±2%. The effective dose rates for action spectra of Erythema, DNA and non-Melanoma skin cancer have a relative deviation of less than ∼20% for solar zenith angles <50 deg.. (authors)

  2. Episodic intrusion, internal differentiation, and hydrothermal alteration of the miocene tatoosh intrusive suite south of Mount Rainier, Washington

    Science.gov (United States)

    du Bray, E.A.; Bacon, C.R.; John, D.A.; Wooden, J.L.; Mazdab, F.K.

    2011-01-01

    The Miocene Tatoosh intrusive suite south of Mount Rainier is composed of three broadly granodioritic plutons that are manifestations of ancestral Cascades arc magmatism. Tatoosh intrusive suite plutons have individually diagnostic characteristics, including texture, mineralogy, and geochemistry, and apparently lack internal contacts. New ion-microprobe U-Pb zircon ages indicate crystallization of the Stevens pluton ca. 19.2 Ma, Reflection-Pyramid pluton ca. 18.5 Ma, and Nisqually pluton ca. 17.5 Ma. The Stevens pluton includes rare, statistically distinct ca. 20.1 Ma zircon antecrysts. Wide-ranging zircon rare earth element (REE), Hf, U, and Th concentrations suggest late crystallization from variably evolved residual liquids. Zircon Eu/Eu*-Hf covariation is distinct for each of the Reflection-Pyramid, Nisqually, and Stevens plutons. Although most Tatoosh intrusive suite rocks have been affected by weak hydrothermal alteration, and sparse mineralized veins cut some of these rocks, significant base or precious metal mineralization is absent. At the time of shallow emplacement, each of these magma bodies was largely homogeneous in bulk composition and petrographic features, but, prior to final solidification, each of the Tatoosh intrusive suite plutons developed internal compositional variation. Geochemical and petrographic trends within each pluton are most consistent with differential loss of residual melt, possibly represented by late aplite dikes or erupted as rhyolite, from crystal-rich magma. Crystal-rich magma that formed each pluton evidently accumulated in reservoirs below the present level of exposure and then intruded to a shallow depth. Assembled by episodic intrusion, the Tatoosh intrusive suite may be representative of midsized composite plutonic complexes beneath arc volcanoes. ?? 2011 Geological Society of America.

  3. Characteristics of Young Rhyolites at Taupo, New Zealand: Implications for the Sub-Surface Plutonic System

    Science.gov (United States)

    Wilson, C. J.; Charlier, B. L.

    2007-12-01

    The young history of Taupo volcano captures the growth and destruction in the 26.5 ka ca. 530 km3 Oruanui eruption of a large rhyolitic magma body, together with the subsequent rejuvenation of magma sources below the volcano. Integration of field information with petrological and isotopic studies at the whole-pumice and single- crystal scales provide a picture of this history. Several important contrasts are inferred to exist between Taupo and comparably-sized, long-lived silicic foci such at Long Valley and in the Bishop Tuff. At Taupo the following are demonstrable. 1. Even in crystal-poor rhyolites like the Oruanui, many grains are inherited antecrysts or xenocrysts. The Oruanui crystal-poor rhyolite body was an open system, with influxes of crystals (plus melt) from remobilised older crystal mush, melted metasedimentary country rocks and plutonics, and crystal-poor basaltic to andesitic magmas. 2. All the Taupo rhyolites were well mixed prior to eruption, and there are no gradients in the eruption products to suggest that the holding chamber(s) were stratified to any extent. 3. Mafic magmas rose into, interacted with, and ponded on the floors of crystal-poor rhyolite in the Oruanui and Waimihia (3.5 ka) examples, again implying that the chamber floor was sharply defined, not a gradual progression down into a more crystal- rich root zone. 4. Pre-Oruanui activity involved contrasting magma types being generated simultaneously, but erupting from geographically separated vents. Post-Oruanui activity has seen (subtly) contrasting magma groups being erupted from vents in the same geographic area, but separated in time. The Oruanui and post-Oruanui magmas are different and do not appear to be related by consanguinity or by mixing - the Oruanui eruption effectively destroyed its magma body. These features are consistent with rhyolite magma generation at Taupo that is exceptionally fast, driven by high fluxes of mafic magmas into a highly heterogeneous crustal melange

  4. Taller: mecanismos de reuso en OO : Arquitectura, patrones y frameworks

    OpenAIRE

    Urciuolo, Adriana Beatriz; Sandoval, Sandra

    2002-01-01

    En el presente trabajo se describe la experiencia de dictado de un taller sobre mecanismos orientados a objetos para diseño de software reusable, dirigido a alumnos de la carrera Licenciatura en Informática (U.N.P.S.J.B. – Sede Ushuaia); el mismo ha sido implementado en forma preliminar, durante el presente ciclo lectivo, dada la necesidad de incorporar conceptos avanzados de diseño orientado a objetos, que permitan una mejor comprensión de las ventajas del paradigma. No siendo posible alcanz...

  5. Análisis metagenómico de la biodegradación de hidrocarburos aromáticos policíclicos en sedimentos marinos subantárticos

    OpenAIRE

    Loviso, Claudia Lorena

    2015-01-01

    Los hidrocarburos aromáticos policíclicos (HAPs), algunos de ellos tóxicos y mutagénicos, son compuestos hidrofóbicos altamente persistentes en el ambiente. Estudios previos realizados en la región Costera Patagónica, particularmente en un sitio crónicamente contaminado con hidrocarburos en Bahía Ushuaia, demostraron un alto potencial para la degradación microbiana de estos compuestos. Sin embargo, estos estudios sólo se orientaron al análisis de fragmentos de genes codificantes para enzimas...

  6. Geochemistry, mineralization and age of tin-bearing ganites from Pitinga, nortwestern Brazil

    International Nuclear Information System (INIS)

    Macambira, M.J.B.; Teixeira, J.T.; Daoud, W.E.K.; Costi, H.T.

    1987-01-01

    One of the important geological units of the Central Amazonian Provinceis formed by anarogenic granit plutons, some of them associated with important ore deposits. The larget ore deposits of SN,Zr,Nb,Ta, and REE in this Province are associeted with the madeira (MD) and Agua Boa (AB) plutons, Pitinga region, NW Brazil. These plutons crosscut the volcanic rocks from Iricoume Group and sediments from Urupi formation, and follow the regional trend, suggesting magma ascension along deep faults. These plutons are composed by three granitic units, which are, in order of emplacement: granite with rapakivi tendency; fine-grained porphyritic granite; and biotite granite. There are metasomatic variations to greisen (in AB pluton) and apogranite (in MD pluton) associated genetically with ore deposits. Major and trace elements contents shown sub-alkalic to peraluminous characteristics, with an increasing of SiO 2 , F,Sn,Rb, and Y, and a decreasing of Al 2 O 3 , FeO,Fe 2 O 3 ,CaO,MgO,TiO 2 ,Sr,Zr and Nb toward the biotite granite. As a whole, AB pluton has the lowest Nb contents, while the MD pluton has the lowest Y and REE contents. The REE patterns of AB and MD are similar, showing high absolute contents, pronounced negative Eu anomalies, and a little fractionated patterns. The apogranite is depleted in LREE by albitization process. Rb-Sr whole-rock isochron constructed with nine samples from AB and MD plutons indicates an age of 1,691 +- 34 Ma with initial ratio of 0.7062 +- 0.0067. The geological and geochemical features of AB and MD plutons are similar with cratogenic bodies originated in tensional regions, as A-type granites. However, the classifications of these plutons in separated regional suites is not well established due to absence of more strong criteria to do so, up to now. (author) [pt

  7. Using restored cross sections to evaluate magma emplacement, White Horse Mountains, Eastern Nevada, U.S.A.

    Science.gov (United States)

    Marko, Wayne T.; Yoshinobu, Aaron S.

    2011-03-01

    New field observations and cross section restoration from the Jurassic White Horse pluton-host rock system, Goshute Range, eastern Nevada, USA, indicate a sequential variation of host rock rheology attending magma emplacement. The pluton intruded weakly to nondeformed Devonian-Mississippian limestone, argillite and quartzite at shallow crustal levels (ca. 7 km). The contact aureole is well exposed along the southern, eastern and northern margin of the intrusive body and is less than 1 km wide. Rocks outside of the aureole are sub-horizontal and do not contain a penetrative fabric or are gently folded (interlimb angles > 120°) about sub-vertical axial planes. Within the contact aureole, continuous and discontinuous spaced, axial planar foliations and harmonic to disharmonic, tight to isoclinal folds wrap around the eastern margin of the pluton. Folds verge toward and away from the pluton and rim anticlines, synclines, and monoclines with wavelength in excess of 250 m are preserved along the pluton margin. The spatial proximity of these ductile structures to the pluton and the apparent increase in intensity of structure development approaching the pluton is compatible with contraction within the aureole attending pluton emplacement. However, all of the above structures are truncated by the intrusive contact at various scales. Granodioritic dikes ranging in thickness from 1 m up to ˜ 10 m emanate from the intrusion and cut host rock structure at high angles and turn to propagate towards one another, parallel to the pluton margin and host rock anisotropy. Such features are interpreted to reflect the last stages of diking and brittle deformation that modified the pluton contact after emplacement-related folding of the carbonate rocks, but before final solidification of the pluton. Eight serial geologic cross sections were constructed and evaluated to place geometric constraints on the shape and growth of the White Horse intrusion. Based on line-length restoration of

  8. The spatial variation of initial 87Sr/86Sr ratios in the Toki granite, Central Japan. Implications for the intrusion and cooling processes of a granitic pluton

    International Nuclear Information System (INIS)

    Yuguchi, Takashi; Tsuruta, Tadahiko; Hama, Katsuhiro; Nishiyama, Tadao

    2013-01-01

    The spatial variation in initial 87 Sr/ 86 Sr ratios (SrI) in the Toki granite, Central Japan, shows heterogeneity ranging from 0.708942 to 0.710069, which provides information on the intrusion and cooling processes of plutons. The Toki granite has three mineralogy-based rock facies: muscovite-biotite granite (MBG), hornblende-biotite granite (HBG) and biotite granite (BG). Large SrI values were found to be distributed at the western margin (west MBG) and the lithologically central region (central BG), while small SrI values were found at the northeast margin (northeast MBG). Regions with high and low Sr concentrations were also found in the Toki granite. In the Sr-rich samples, SrI (0.708942-0.709789) increases with 100/Sr (0.7-1.5). This geochemical trend extends towards the country sedimentary rocks of the Mino Terrane, which can be interpreted to result from assimilation and fractional crystallization (AFC) between the original granitic magma and the Mino sedimentary rocks. The SrI values in the Sr-rich regions show a correlation with the Alumina Saturation Index (ASI). In particular, the west MBG, with large SrI values, is classified as a peraluminous granitoid with large ASI, suggesting that the western margin of the pluton was strongly affected by assimilation during the intrusion process. The Sr-poor samples are present both in the central BG, with large SrI values, and in the northeast MBG, with small SrI values. The Sr-poor samples have small ASI and large differentiation indices, indicating that the central BG and the northeast MBG were generated either by different AFC process with different amounts of contaminants or by the intrusion and fractionation of different source magma with different SrI values. Overall, the geochemical spatial variations found in the Toki granite can be explained by various degrees of assimilation and fractional crystallization in the magma chamber and/or multi-stage intrusions with different degrees of crystallization of

  9. Automated mineralogy based on micro-energy-dispersive X-ray fluorescence microscopy (µ-EDXRF) applied to plutonic rock thin sections in comparison to a mineral liberation analyzer

    Science.gov (United States)

    Nikonow, Wilhelm; Rammlmair, Dieter

    2017-10-01

    Recent developments in the application of micro-energy-dispersive X-ray fluorescence spectrometry mapping (µ-EDXRF) have opened up new opportunities for fast geoscientific analyses. Acquiring spatially resolved spectral and chemical information non-destructively for large samples of up to 20 cm length provides valuable information for geoscientific interpretation. Using supervised classification of the spectral information, mineral distribution maps can be obtained. In this work, thin sections of plutonic rocks are analyzed by µ-EDXRF and classified using the supervised classification algorithm spectral angle mapper (SAM). Based on the mineral distribution maps, it is possible to obtain quantitative mineral information, i.e., to calculate the modal mineralogy, search and locate minerals of interest, and perform image analysis. The results are compared to automated mineralogy obtained from the mineral liberation analyzer (MLA) of a scanning electron microscope (SEM) and show good accordance, revealing variation resulting mostly from the limit of spatial resolution of the µ-EDXRF instrument. Taking into account the little time needed for sample preparation and measurement, this method seems suitable for fast sample overviews with valuable chemical, mineralogical and textural information. Additionally, it enables the researcher to make better and more targeted decisions for subsequent analyses.

  10. Geologic setting and chemical characteristics of hot springs in central and western Alaska

    Science.gov (United States)

    Miller, Thomas P.; Barnes, Ivan; Pattan, William Wallace

    1973-01-01

    Numerous hot springs occur in a variety of geologic provinces in central and western Alaska. Granitic plutons are common to all the provinces and the hot springs are spatially associated with the contacts of these plutons. Of 23 hot springs whose bedrock geology is known, all occur within 3 miles of a granitic pluton. The occurrence of hot springs, however, appears to be independent of the age, composition, or magmatic history of the pluton.

  11. Pan-African alkali granites and syenites of Kerala as imprints of taphrogenic magmatism in the South Indian shield

    Science.gov (United States)

    Santosh, M.; Drury, S. A.; Iyer, S. S.

    1988-01-01

    Granite and syenite plutons with alkaline affinities ranging in age from 550 to 750 Ma sporadically puncture the Precambrian granulites of the Kerala region. All the bodies are small (20 to 60 sq km), E-W to NW-SE elongated elliptical intrusives with sharp contacts and lie on or close to major late Proterozoic lineaments. Geochemical plots of A-F-M and An-Ab-Or relations show an apparent alkali enrichment trend on the former, but the plutons define relatively distinct fields on the latter. Most of the plutons are adamellitic to granitic by chemistry. The variations of SiO2 with log sub 10 K2O/MgO (1) brings out the distinct alkaline nature of the plutons. Some of the granites are extremely potassic, like the Peralimala pluton, which shows up to 11.8 percent K2O. On a SiO2-Al2O3-Na2O+K2O (mol percent) plot, the plutons vary from peraluminous to peralkaline, but none are nepheline normative. Low MgO, low to moderate CaO and high Fe2O3/FeO values are other common characteristics. Among trace elements, depletion of Ba, Sr and Rb with high K/Ba and K/Rb values are typical. Overall, the plutons show a trend of decreasing K/Rb ratio with increasing K content. Individual plutons show more clearly defined trends similar to those from granitic masses characterized by plagioclase fractionation.

  12. Isotopic evidence for multiple contributions to felsic magma chambers

    DEFF Research Database (Denmark)

    Waight, Tod Earle; Wiebe, R.A.; Krogstad, E.J.

    2007-01-01

    The Gouldsboro Granite forms part of the Coastal Maine Magmatic Province, a region characterized by granitic plutons that are intimately linked temporally and petrogenetically with abundant co-existing mafic magmas. The pluton is complex and preserves a felsic magma chamber underlain...... with identical isotopic compositions to more mafic dikes suggest that closed system fractionation may be occurring in deeper level chambers prior to injection to shallower levels. The granitic portion of the pluton has the highest Nd isotopic composition (eNd=+3.0) of plutons in the region whereas the mafic...

  13. U-Pb zircon and monazite geochronology of the Hercynian two-mica granite composite pluton of Cabeceiras de Basto (Northern Portugal); Geochronologie U-Pb sur zircon et monazite du massif composite de granite a deux micas hercynien de Cabeceiras de Basto (Nord-Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, A.; Noronha, F. [Universidade do Porto (Portugal). Centro de Geologia; Leterrier, J. [Centre de Recherches Petrographiques et Geochimiques, 54 - Vandoeuvre-les-Nancy (France); Bertrand, J.M. [Universite de Savoie, 73 - Le-Bourget-du-Lac (France). Laboratoire de geodynamique des Chaines alpines

    1998-06-01

    The zircon and monazite U-Pb minimum age of the Hercynian peraluminous two-mica composite granite pluton of Cabeceiras de Basto (Northern Portugal) is 311 {+-} 1 Ma (2 {sigma}). This age, well constrained by a concordant monazite of 311{+-}4 Ma (2{sigma}), is in good agreement with the age suggested for the syn-kinematic, syn-D3, Iberian granites of the Hercynian orogeny (315-305; Pinto et al., 1987). The ({sup 87}Sr/{sup 86}Sr){sub i} and {xi}{sub Nd} isotopic ratios, calculated for 311 Ma, suggest that the three granite units which constitute the massif may derive from an heterogeneous crustal source dated (upper intercept of the discordance) around 1200 Ma. (authors) 21 refs.

  14. Incremental assembly and prolonged consolidation of Cordilleran magma chambers--Evidence from the Southern Rocky Mountain volcanic field

    Science.gov (United States)

    Lipman, Peter W.

    2007-01-01

    Recent inference that Mesozoic Cordilleran plutons grew incrementally during >106 yr intervals, without the presence of voluminous eruptible magma at any stage, minimizes close associations with large ignimbrite calderas. Alternatively, Tertiary ignimbrites in the Rocky Mountains and elsewhere, with volumes of 1–5 × 103 km3, record multistage histories of magma accumulation, fractionation, and solidification in upper parts of large subvolcanic plutons that were sufficiently liquid to erupt. Individual calderas, up to 75 km across with 2–5 km subsidence, are direct evidence for shallow magma bodies comparable to the largest granitic plutons. As exemplified by the composite Southern Rocky Mountain volcanic field (here summarized comprehensively for the first time), which is comparable in areal extent, magma composition, eruptive volume, and duration to continental-margin volcanism of the central Andes, nested calderas that erupted compositionally diverse tuffs document deep composite subsidence and rapid evolution in subvolcanic magma bodies. Spacing of Tertiary calderas at distances of tens to hundreds of kilometers is comparable to Mesozoic Cordilleran pluton spacing. Downwind ash in eastern Cordilleran sediments records large-scale explosive volcanism concurrent with Mesozoic batholith growth. Mineral fabrics and gradients indicate unified flow-age of many pluton interiors before complete solidification, and some plutons contain ring dikes or other textural evidence for roof subsidence. Geophysical data show that low-density upper-crustal rocks, inferred to be plutons, are 10 km or more thick beneath many calderas. Most ignimbrites are more evolved than associated plutons; evidence that the subcaldera chambers retained voluminous residua from fractionation. Initial incremental pluton growth in the upper crust was likely recorded by modest eruptions from central volcanoes; preparation for caldera-scale ignimbrite eruption involved recurrent magma input and

  15. The timing and sources of intraplate magmatism related to continental breakup in southern New Zealand

    DEFF Research Database (Denmark)

    van der Meer, Quinten

    related I- to I/S-type plutons of the Rahu suite up to 105 Ma. Isolated plutonism continued on a smaller scale after 105 Ma. O and Hf isotopes in zircon from later felsic plutons indicate waning subduction related magmatism up to 101 Ma. This is followed by the regional dominance of intraplate signatures...

  16. Regional geological setting

    International Nuclear Information System (INIS)

    Kamineni, D.C.; Stone, D.

    1990-01-01

    The Eye-Dashwa Lake pluton is a zoned pluton with a monzodioritic to gronodioritic rim and a granitic core. During late crystallization stages, the pluton was extensively fractured and altered, developing brittle faults and greenschist facies minerals dominated by epidote. Subsequent reactivation of these faults involved permeation of groundwater and formation of low-temperature minerals

  17. Geochemistry of biotite granites from the Lamas de Olo Pluton, northern Portugal

    Science.gov (United States)

    Fernandes, Susana; Gomes, Maria; Teixeira, Rui; Corfu, Fernando

    2013-04-01

    In the Central Iberian Zone (CIZ) extensive crustal recycling occurred during the post-thickening extension stage of the Variscan orogeny (~330-290 Ma). After the ductile deformation phase D3 (~320-300 Ma), characterized by the intrusion of large volumes of highly peraluminous granitic magmas, rapid and drastic tectonic changes at about 300 Ma gave rise to the brittle phase of deformation D4 that controlled the emplacement of Fe-K subalkaline granites (296-290 Ma; Dias et al. 1998). The Lamas de Olo Pluton (LOP) is controlled by NE-SW and NW-SE fracture systems, probably related to the Régua-Verin fault zone (Pereira, 1989). The LOP is a medium to coarse-grained, porphyritic biotite granite, accompanied by medium- to fine grained, porphyritic biotite granite (Alto dos Cabeços- AC) and a more leucocratic, fine-grained, slightly porphyritic biotite-muscovite granite (Barragens- BA). The contacts between LO and AC are generally diffuse, whereas those to BA are sharp. In fact, the BA granite can occur in dykes and sills cutting LO and AC. Microgranular enclaves and xenoliths are very rare. The LOP intrudes the Douro Group, presumably of Precambrian to Cambrian age, and two-mica granites from the Vila Real composite massif. The LOP granites consist of quartz, microcline, plagioclase, biotite, zircon, titanite, tourmaline apatite, fluorite, ilmenite, magnetite, and rutile, with muscovite in BA granite and rare allanite in the LO and AC granites. The plagioclase composition is of oligoclase (An12) - andesine (An35) for LO granite, albite (An9) - andesine (An30) for CA granite and albite (An5) - oligoclase (An20) for BA granite. There are decreases in: a) anorthite content from phenocryst to matrix plagioclase; b) Ba content from phenocryst to matrix microcline in all granites. The Fe2+ biotite has a composition similar to that of biotite from calc-alkaline to sub-alkaline rock series. The LO and AC granites are meta- to peraluminous with ASI variable between 1.05 and 1

  18. The composition of zircon in Variscan granites from Northern Portugal

    Directory of Open Access Journals (Sweden)

    Martins, H. C.B.

    2014-12-01

    Full Text Available A group of slightly peraluminous Variscan plutons in Northern Portugal were selected from the study of zircon composition. The selected plutons are: the Vila Pouca de Aguiar and the Lavadores-Madalena plutons with I-type affinities and the Vieira do Minho pluton, an l-S transitional type. Zircon occurs as euhedral to subhedral crystals and exhibit finely concentric oscillatory magmatic zoning mainly related to variations of Hf, Y, U and Th concentrations. Most zircon crystals show the dominant “xenotime” substitution. The zircon crystals have Zr/Hf ratio in the range of 21 to 52, with no significant differences between the different granites. These values are in the same range of other peraluminous granites and are in accordance with a crustal signature of zircon. Moreover, the range of Zr/Hf values in zircon crystals overlaps with that of crustal sources and consequently to the potential protoliths proposed in the genesis of the Vieira do Minho and the Vila Pouca de Aguiar plutons, namely meta-igneous crustal sources at different levels. Although zircon from the Lavadores-Madalena pluton has a compositional range similar to the other plutons, an origin by hibridisation has been proposed. However, similar zircon chemistry between this pluton and Vila Pouca de Aguiar and Vieira do Minho plutons could also suggest a similar crustal source.Se han seleccionado tres plutones graniticos variscos en el norte de Portugal para el estudio de la composición del circón. Los plutones son: Vila Pouca de Aguiar y Lavadores-Madalena con afinidad de tipo-I y el plutón de Vieira do Minho de tipo transicional I-S. Los circones se presentan en cristales euhédricos a subhédricos y tienen zonados magmáticos, concéntricos oscilatorios finos ligados principalmente a variaciones de las concentraciones del Hf, Y, U y Th. La mayoría de los cristales de circón muestran la sustitución dominante “xenotima”. Los zircones tienen relaciones Zr/Hf que var

  19. Micro-structural and compositional variations of hydrothermal epidote-group minerals from a peralkaline granite, Corupá Pluton, Graciosa Province, South Brazil, and their petrological implications

    Directory of Open Access Journals (Sweden)

    Silvio R.F. Vlach

    2012-06-01

    Full Text Available Epidote-group minerals, together with albite, quartz, fluorite, Al-poor and Fe-rich phyllosilicates, zircon, and minor oxides and sulphides, are typical hydrothermal phases in peralkaline alkali-feldspar granites from the Corupá Pluton, Graciosa Province, South Brazil. The epidote-group minerals occur as single crystals and as aggregates filling in rock interstices and miarolitic cavities. They display complex recurrent zoning patterns with an internal zone of ferriallanite-(Ce, followed by allanite-(Ce, then epidote-ferriepidote, and an external zone with allanite-(Ce, with sharp limits, as shown in BSE and X-ray images. REE patterns show decreasing fractionation degrees of LREE over HREE from ferriallanite to epidote. The most external allanite is enriched in MREE. LA-ICP-MS data indicate that ferriallanite is enriched (>10-fold in Ti, Sr and Ga, and depleted in Mg, Rb, Th and Zr relative to the host granite. Allanite has lower Ga and Mn and higher Zr, Nb and U contents as compared to ferriallanite, while epidote is enriched in Sr, U and depleted in Pb, Zr, Hf, Ti and Ga. The formation of these minerals is related to the variable concentrations of HFSE, Ca, Al, Fe and F in fluids remaining from magmatic crystallization, in an oxidizing environment, close to the HM buffer. L-MREE were in part released by the alteration of chevkinite, their main primary repository in the host rocks.Minerais do grupo do epidoto, com albita, quartzo, fluorita, filossilicatos pobres em Al e ricos em Fe, zircão e quantidades menores de óxidos e sulfetos são fases hidrotermais típicas em álcali-feldpato granitos peralcalinos do Pluton Corupá, Província Graciosa, Sul do Brasil. Os minerais do grupo do epidoto ocorrem como cristais individuais ou agregados que preenchem interstícios e cavidades miarolíticas na rocha. Mostram zonamento complexo, recorrente, descrito por uma zona interna de ferriallanita-(Ce, seguida por allanita-(Ce, epidoto-ferriepidoto e uma

  20. Metasedimentary, granitoid, and gabbroic rocks from central Stewart Island, New Zealand

    International Nuclear Information System (INIS)

    Allibone, A.H.; Tulloch, A.J.

    1997-01-01

    A NNE-NE trending strip, 3-8 km wide, extending from the Freshwater valley across Mt Rakeahua Table Hill, and Mt Allen to the northern end or the Tin Range was mapped at a scale of 1:12,500 to locate and investigate the boundary between the Median Tectonic Zone (MTZ) and Western Province on Stewart Island. A NNE-trending fault, herein termed the Escarpment Fault, separates predominantly ductily deformed rocks on its south side from essentially undeformed rocks to the north. North of the Escarpment Fault, a small (2-3 km 2 ) pluton of alkali-feldspar granite (Freds Camp) intruded gabbroic rocks tentatively considered to be associated with gabbro/anorthosite/diorite of the Rakeahua pluton, centred on Mt Rakeahua. Both units were subsequently intruded by I-type biotite granite of the South West Arm pluton. South of the Escarpment Fault the oldest intrusions are biotite tonalite-granite orthogneisses (Ridge and Table Hill plutons) intercalated with the sillimanite-cordierite-bearing Pegasus Group metasedimentary rocks, considered to represent the Western Province. They contain titanite, allanite, and magmatic epidote-bearing assemblages, implying affinities with I-type granitoids. These older granitoids have been affected by at least three phases of ductile deformation. Immediately south of the Escarpment Fault, the Escarpment pluton (hornblende, biotite, quartz, monzonite-quartz monzodiorite) only exhibit effects of the third phase of deformation. Minor gabbroic intrusives concordant with the S 3 fabric intrude the Pegasus Group and intercalated orthogneisses. Plutons of two-mica, garnet ±cordierite granite (Blaikies and Knob) and younger biotite-titanite-magmatic epidote granite (Campsite) cut fabrics associated with the third phase of ductile deformation. Preliminary U-Pb dating indicate Devonian-Carboniferous, Jurassic, and Early Cretaceous emplacement ages for Ridge Orthogneiss, Freds Camp pluton, South West Arm pluton, and Blaikies pluton, respectively. South

  1. Electron probe micro analyser chemical zircon ages of the Khetri granitoids, Rajasthan, India: records of widespread late palaeoproterozoic extension-related magmatism

    International Nuclear Information System (INIS)

    Kaur, Parampreet; Chaudhri, Naveen; Biju-Sekhar, S.; Yokoyama, K.

    2006-01-01

    A number of granitoid plutons were emplaced in the northernmost entity of the Aravalli craton, the Khetri Copper Belt (KCB). We report here Th-U-Pb electron probe micro analyser chemical ages for zircon and monazite from two granitoid plutons of the north KCB, the Biharipur and Dabla. Zircons occurring in the granitoids depict well-developed magmatic zoning and are chronologically unzoned. Both the plutons and their diverse granitoid facies are coeval and provide ages around 1765-1710 Ma. Geochemical attributes of the studied plutons are typical of A-type within-plate granites and consistent with an extensional tectonic environment. Our new age data are comparable to the petrologically similar A-type granitoids of the Alwar region, which have provided zircon chemical ages around 1780-1710 Ma. These analogous ages imply a widespread late palaeoproterozoic extension-related plutonism in the northern part of the Aravalli craton. The monazites, which were recovered only from the mafic magmatic rocks of the Biharipur pluton, yielded an isochron age of 910 ±10 Ma, signifying an over- print of a younger neoproterozoic thermal event in the region. (author)

  2. Earth's youngest exposed granite and its tectonic implications: the 10–0.8 Ma Kurobegawa Granite

    Science.gov (United States)

    Ito, Hisatoshi; Yamada, Ryuji; Tamura, Akihiro; Arai, Shoji; Horie, Kenji; Hokada, Tomokazu

    2013-01-01

    Although the quest for Earth's oldest rock is of great importance, identifying the youngest exposed pluton on Earth is also of interest. A pluton is a body of intrusive igneous rock that crystallized from slowly cooling magma at depths of several kilometers beneath the surface of the Earth. Therefore, the youngest exposed pluton represents the most recent tectonic uplift and highest exhumation. The youngest exposed pluton reported to date is the Takidani Granodiorite (~ 1.4 Ma) in the Hida Mountain Range of central Japan. Using LA-ICP-MS and SHRIMP U-Pb zircon dating methods, this study demonstrates that the Kurobegawa Granite, also situated in the Hida Mountain Range, is as young as ~ 0.8 Ma. In addition, data indicate multiple intrusion episodes in this pluton since 10 Ma with a ~ 2-million-year period of quiescence; hence, a future intrusion event is likely within 1 million years. PMID:23419636

  3. Earth's youngest exposed granite and its tectonic implications: the 10-0.8 Ma Kurobegawa Granite.

    Science.gov (United States)

    Ito, Hisatoshi; Yamada, Ryuji; Tamura, Akihiro; Arai, Shoji; Horie, Kenji; Hokada, Tomokazu

    2013-01-01

    Although the quest for Earth's oldest rock is of great importance, identifying the youngest exposed pluton on Earth is also of interest. A pluton is a body of intrusive igneous rock that crystallized from slowly cooling magma at depths of several kilometers beneath the surface of the Earth. Therefore, the youngest exposed pluton represents the most recent tectonic uplift and highest exhumation. The youngest exposed pluton reported to date is the Takidani Granodiorite (~ 1.4 Ma) in the Hida Mountain Range of central Japan. Using LA-ICP-MS and SHRIMP U-Pb zircon dating methods, this study demonstrates that the Kurobegawa Granite, also situated in the Hida Mountain Range, is as young as ~ 0.8 Ma. In addition, data indicate multiple intrusion episodes in this pluton since 10 Ma with a ~ 2-million-year period of quiescence; hence, a future intrusion event is likely within 1 million years.

  4. Minor elements in magnetic concentrates from the Syenite-Shonkinite Province, southern Asir, Kingdom of Saudi Arabia

    Science.gov (United States)

    Overstreet, W.C.; Day, G.W.; Botinelly, Theodore; VanTrump, George

    1987-01-01

    Magnetic concentrates from 106 localities in three plutons of syenite and one pluton of shonkinite in the southern Asir were analyzed spectrographically for 31 elements to determine if anomaly-enhancement techniques would identify mineralization not disclosed by conventional geochemical sample media. Positive anomalies are lacking for all elements except vanadium. Vanadium contents as high as 0.7 percent were identified in magnetic concentrates from the syenite pluton to the southeast of Suq al Ithnayn, but magnetite is sparse. This observation indicates a need to reexamine magnetite-rich drill core for possible ore-grade tenors in vanadium from the zoned pluton at Lakathah. Experimental analyses for platinum-group metals in magnetic concentrates from layered mafic plutons at Jabal Sha'i', Jabal al Ashshar, and Hishshat al Hawi should be performed to determine whether micron-size particles of the platinum-group metals are present in mafic rocks of the Arabian Shield.

  5. Courtright intrusive zone: Sierra National Forest, Fresno County, California.

    Science.gov (United States)

    Bateman, P.C.; Kistler, R.W.; DeGraff, J.V.

    1984-01-01

    This is a field guide to a well-exposed area of plutonic and metamorphic rocks in the Sierra National Forest, Fresno County, California. The plutonic rocks, of which three major bodies are recognized, besides aplite and pegmatite dykes, range 103 to approx 90 m.y. in age. Points emphasized include cataclastic features within the plutonic rocks, schlieren and mafic inclusions. (M.A. 83M/0035).-A.P.

  6. Granitoids of the Dry Valleys area, southern Victoria Land : geochemistry and evolution along the early Paleozoic Antarctic Craton margin

    International Nuclear Information System (INIS)

    Allibone, A.H.; Cox, S.C.; Smillie, R.W.

    1993-01-01

    Field relationships and geochemistry indicate granitoid plutons of the Dry Valleys area comprise at least three petrogenetically distinct suites. The older Dry Valleys 1a (DV1a) suite, comprising the Bonney, Catspaw, Denton, Cavendish, and Wheeler Plutons and hornblende-biotite orthogneisses, and Dry Valleys 1b (DV1b) suite, comprising the Hedley, Valhalla, St Johns, Dun, Calkin, and Suess Plutons, biotite granitoid dikes and biotite orthogneisses, were emplaced before prominent swarms of Vanda mafic and felsic dikes. Both the DV1a and DV1b suites are time transgressive, with older intrusions in each suite being emplaced during the later stages of deformation of the Koettlitz Group. Younger granitoids that postdate the majority of the Vanda dikes include: the Dry Valleys 2 (DV2) suite, comprising the Pearse and Nibelungen Plutons plus several smaller, unnamed plugs; and the Harker, Swinford, Orestes, and Brownworth Plutons with identical field relationships and enclaves but distinct chemistries. Chemical characteristics and limited Rb-Sr isotopic dating indicate plutonism before c. 500 Ma was dominated by the Cordilleran I-type DV1a suite, inferred to have developed during melting above a west-dipping subduction zone along the Antarctic Craton margin. The chemical characteristics of the DV1b suite indicate large-scale melting of a quartzo-feldspathic protolith lacking residual plagioclase, but containing refractory garnet. Potential DV1b suite source rocks include metamorphosed immature sediments, possibly underplated along the subduction zone associated with DV1a magmatism, or older granitoid orthogneisses. Major DV1b plutonism at 490 Ma marks the end of subduction-related plutonism in southern Victoria Land. Younger DV2 alkali-calcic, Caledonian I-type plutonism is inferred to have formed in response to uplift and extension between 480 and 455 Ma. Lack of DV2 suite correlatives and Vanda mafic and felsic dikes in northern Victoria Land suggests significantly

  7. High magnetic susceptibility granodiorite as a source of surface magnetic anomalies in the King George Island, Antarctica

    Science.gov (United States)

    Kon, S.; Nakamura, N.; Funaki, M.; Sakanaka, S.

    2012-12-01

    Change in plate motion produces convergence of the two oceanic lithospheres and the formation of volcanic island arcs above the subducted older and thicker plate. The association of calc-alkaline diorites to tonalites and granodiorites (ACG) is typical plutonic rocks of the volcanic arcs. In the many island arcs that surround the Pacific Ocean, ACG generally forms shallow level plutons and is closely associated with volcanic rocks. The Japan Arc setting had occurred the emplacement of the highly magnetic granitoid along the fore-arc basin before back-arc spreading at middle Miocene, showing a linear positive magnetic anomaly. Similar magnetic anomalies have also been exhibited along the Circum-Pacific Belt. Along East Antarctica, it is well known that the South Shetland Islands have been formed by back-arc spreading related to the subduction along the South Shetland trench during the late Cretaceous and middle Miocene. Moreover, geology in the South Shetland Islands consists of lava flows with subordinate pyroclastic deposits, intrusive dykes-sills, granitic plutons, displaying a typical subduction-related calc-alkaline volcanic association. However, there is little report on the presence of fore-arc granitoid. Here we report the distribution and structure of the granitic plutons around Marian Cove in the King George Island, South Shetland, East Antarctica by surface geological survey and magnetic anisotropic studies. Then we compare the distribution of granitic plutons with surface magnetic anomalies through our ship-borne and foot-borne magnetic surveys. The granitic plutons are distributed only shallow around the Marian cove in the King George Island, and the plutons had been intruded in the Sejong formation with pyroclastic deposits and basaltic/rhyoritic lavas, suggesting the post back-arc spreading. We sampled 8 plutons, 12 basaltic lavas and 6 andestic dykes, all located within four kilometer radius from the Korean Antarctic research station (King Sejong

  8. Reaction of alkali nitrates with PuO2

    International Nuclear Information System (INIS)

    Yamashita, T.; Ohuchi, K.; Takahashi, K.; Fujino, T.

    1990-01-01

    Improvement of solubility of plutonium dioxide (PuO 2 ) in acid solution is important to establish the nuclear fuel reprocessing technique for uranium-plutonium mixed oxide fuels. If insoluble PuO 2 can be converted into any soluble plutonium compounds, problems arising from the fuel dissolution process will be reduced to a great extent. Alkali metal plutonates and alkaline-earth plutonates are known to have enhanced solubility in mineral acids. However, the reaction conditions to form such plutonates and characterization thereof are not well elucidated. Then the reactivity and reaction conditions to form lithium and sodium plutonates from their nitrates and PuO 2 were studied at temperatures between 500 and 900 degree C and alkali metal to plutonium atom ratios between 0.5 and 6 by means of thermogravimetry as well as X-ray diffraction technique. The reaction behavior of alkali plutonates will be discussed in comparison with corresponding alkali uranates

  9. Geochemical and isotopic characterization of the granitic magmatism along the Remígio - Pocinhos shear zone, Borborema Province, NE Brazil

    Science.gov (United States)

    de Lima, Jefferson V.; Guimarães, Ignez de P.; Santos, Lucilene; Amorim, José Victor A.; Farias, Douglas José S.

    2017-04-01

    Two granitoid plutons (Pilõezinhos and Curral de Cima) intruded along the Remígio - Pocinhos shear zone, eastern part of the Borborema Province. The Pilõezinhos and Curral de Cima granites were dated at 566 ± 3 Ma and 618 ± 5 Ma respectively. The granitoids from both plutons have distinct initial 143Nd/144Nd ratios, expressed by εNd(t) values, i.e. the granitoids of Pilõezinhos pluton have lower εNd(t) values (-15.47 to -15.81) and negative εHf (t = 570 Ma) values (-16.0 to -18.6), while the granitoids of the Curral de Cima pluton have εNd(t) values between -1.12 and -5.23. The granitoids of the Curral de Cima pluton are epidote bearing, magnesian calcalkaline I-type granitoids, crystallized under high fO2 conditions. The granitoids of the Pilõezinhos pluton are alkaline, low-fO2, ferroan, ilmenite-series, A2-type granite intrusions. The geochemical and isotopic signatures suggest that the origin of magma of the Curral de Cima granitoids involved mixing/mingling at depth between crustal and mantle magmas, associated to decompression (lateral escape) during the convergent stage of Brasiliano/Pan/African orogeny, which lead the asthenosphere melts to rise into the lower crust. The source of magma of the granitoids of the Pilõezinhos pluton involved a strong crustal component with geochemical and isotopic signatures similar to the orthogneisses of the Serrinha-Pedro Velho Complex, and small mantle component. The emplacement of the Pilõezinhos pluton is associated to an extensional space formed during high-T strike-slip shearing developed by the synchronic movement of the Matinhas sinistral shear zone and Remígio - Pocinhos dextral shear zone.

  10. Tipología del plutón de Campanario-La Haba: implicaciones petrogenéticas

    OpenAIRE

    Alonso Olazabal, Ainhoa; Aranguren, A.; Carracedo Sánchez, Manuel; Larrea Bilbao, F. J.

    1996-01-01

    The Campanario-La Haba pluton is located in the suothern part of the Central-Iberian Zone. It is a coarse-grained 5 type granitoid with cordierite. Typologicaly, this pluton is a peraluminous granitoid , CCA type. Mineralogy and petrologycally, the Campanario-La Haba pluton is closer to the Central Extremadura Bath olith ( Cabeza de Araya type) than to the granitic unit of the Los Pedrodres Batholith (Sta. Eufemia, El Guijo, Cerro Mogabar, Cardeña)

  11. Comparative Study on The Geological and Geochemical Characteristics of Some Rare-Metal Granites, Southeastern Desert, Egypt

    International Nuclear Information System (INIS)

    El Galy, M.M.; Khaleal, F.M.; Bakhit, A.F.

    2016-01-01

    The Egyptian younger granites are characterized by the presence of more than 14 exposures of rare- metal granites. The studied granites are included into three geological modes of occurrence. The first includes Igla and Abu Dabbab plutons, which occur as small stocks of circular, ovoid, or apophyses and leucocratic outcrops. The second comprises the plugs and dyke-like bodies intruded peralkaline granites of Bir Um Hibal. The third includes Homrit Waggat and Muweilha plutons. vThey cover small areas and exhibit obvious pervasive post magmatic alterations. The petrographic and mineralogical studies are confirmed by the geochemical investigations indicating that the concerned rare-metal granites being broadly distinguished into magmatic and metasomatic associations. The magmatic granite associations are further subdivided into two subgroups; i) peraluminous granites (Li-mica rich) including Igla and Abu Dabbab plutons and ii) peralkaline granites including Um Hibal pluton. The studied peraluminous granites are generally enriched in Nb, Rb, Ta, Li, F, Y, Zr, U and Th elements. The peralkaline granites are enriched in K_,0 oxide as well as Zr, Nb, F, U, Th and Ta elements. On the other hand, the metasomatic granite associations are represented by Homrit Waggat and Muweilha plutons. They are characterized by high contents of Na_2O oxide as well as Nb, Ta, U, Th and Rb elements. Igla pluton has highest average U and Th contents (42 ppm and 58 ppm respectively), while Um Hibal pluton has lowest average U and Th contents (14 ppm and 26 ppm respectively)

  12. New petrographic, geochemical and geochronological data for the Reguengos de Monsaraz pluton (Ossa Morena Zone, SW Iberian Massif, Portugal

    Directory of Open Access Journals (Sweden)

    Antunes, A.

    2010-06-01

    Full Text Available The Reguengos de Monsaraz pluton is a late to post-tectonic Variscan intrusion occurring in the Ossa Morena Zone (Iberian Variscan Chain. The dominant lithological types are tonalites and granodiorites, but the internal area of the massif is composed of gabbro-dioritic rocks. Field evidence shows that the intrusion is heterogeneous at mesoscopic scale suggesting that the emplacement of mafic and felsic magmas was contemporaneous. Petrographic and geochemical studies reveal that the different lithologic types define a continuous sequence with compositions varying from metaluminous to slightly peraluminous and a typical calc-alkaline signature. In Harker variation diagrams, it is possible to observe systematic rectilinear correlations pointing to the involvement of magma mingling/mixing processes in the petrogenesis of this sequence. Rb-Sr isotopic data, using a mineral-mineral pair from a granodiorite sample, yielded an age of 298 Ma, interpreted as a cooling age after igneous crystallization.

    El plutón de Reguengos de Monsaraz es una intrusión varisca tardi- a post- tectónica localizada en la Zona de Ossa Morena (Cadena Varisca Ibérica. Los tipos litológicos dominantes son las tonalitas y las granodioritas aunque la zona mas interna del macizo está formada por rocas gabro-dioríticas. Las evidencias de campo muestran que todos los tipos litológicos son heterogéneos a escala mesoscópica y sugieren que el emplazamiento de los magmas máficos y félsicos fue contemporáneo. Los estudios petrográficos y geoquímicos muestran que los diferentes litotipos definen una secuencia continua con una afinidad calcoalcalina típica y composiciones variando desde metaluminosas a peraluminosas. En los diagramas de Harker se observan correlaciones rectilíneas sistemáticas, lo que sugiere que la mezcla de magmas tuvo un papel decisivo en su petrogénesis. Los datos isotópicos de Rb-Sr, usando un par mineral-mineral de una granodiorita

  13. Evaluation and targeting of geothermal energy resources in the southeastern United States. Progress report, November 1, 1976--March 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Costain, J.K.; Glover, L. III; Sinha, A.K.

    1977-01-01

    The objective of this research is to develop and apply targeting procedures for the evaluation of low-temperature radiogenically-derived geothermal resources in the eastern United States utilizing geological, geochemical, and geophysical data. Detailed study of the Liberty Hill and Winnsboro plutons, South Carolina, is continuing in order to provide insight into the behavior of uranium and thorium in unmetamorphosed granitic plutons during periods of crystallization, deuteric alteration and weathering. The importance of the oxidation state of uranium has become apparent because the transition from U/sup 4 +/ to U/sup 6 +/ represents the division between immobile and labile uranium. Accessory uraninite has been found in the Liberty Hill pluton, and molybdenite mineralization occurs in both the Liberty Hill and Winnsboro plutons. The molybdenum mineralization is present in a number of 300 m.y. granitic plutons in the southeastern U.S. A steep metamorphic gradient across the Roxboro, North Carolina, metagranite, which was metamorphosed during Devonian time, should provide a good opportunity to study the effect of prograde metamorphism on the distribution of uranium and thorium. Three holes have been drilled into the Roxboro metagranite for the purpose of examining the effect of metamorphism on heat generation and heat flow. Preliminary modeling of negative gravity anomalies in the Coastal Plain supports the interpretation of a deep granitic pluton near Norfolk, Virginia, and probably at Georgetown, South Carolina.

  14. Natural and anthropogenic radionuclides in rocks and beach sands from Ezine region (Canakkale), Western Anatolia, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Orguen, Y. [Faculty of Mines, Istanbul Technical University (ITU), Ayazaga Kampusu, 34469-Istanbul (Turkey)]. E-mail: orgun@itu.edu.tr; Altinsoy, N. [Institute of Energy, Istanbul Technical University (ITU), Ayazaga Kampusu, 34469-Istanbul (Turkey); Sahin, S.Y. [Department of Geophysics, Engineering Faculty, Istanbul University, Istanbul (Turkey); Guengoer, Y. [Department of Geophysics, Engineering Faculty, Istanbul University, Istanbul (Turkey); Gueltekin, A.H. [Faculty of Mines, Istanbul Technical University (ITU), Ayazaga Kampusu, 34469-Istanbul (Turkey); Karahan, G. [Cekmece Nuclear Research and Training Center, P.O. Box 1, Atatuerk Airport, 34149-Istanbul (Turkey); Karacik, Z. [Faculty of Mines, Istanbul Technical University (ITU), Ayazaga Kampusu, 34469-Istanbul (Turkey)

    2007-06-15

    This paper represents the first reports on the natural and anthropogenic radionuclides in Kestanbol granitic pluton and surrounding rocks, and coastal region of the Ezine town. To assess the radiological hazard of the natural radioactivity, the radium equivalent activity, the absorbed dose rate and the external hazard index were calculated, and in situ gamma dose rates were measured. The high-activity concentrations were measured in the pluton and sands, which was originated mainly from the pluton, due to the presence of zircon, allanite, monazite, thorite, uranothorite and apatite. The average activity concentrations of {sup 238}U, {sup 232}Th and {sup 40}K are 174.78, 204.69 and 1171.95 Bq kg{sup -1} for pluton, and 290.36, 532.04 and 1160.75 Bq kg{sup -1} for sands, respectively. {sup 137}Cs in Ezine region ranged from 0-6.57 Bq kg{sup -1}. The average absorbed dose rate for the granitic and sand samples were calculated to be 251.6 and 527.92 nGy h{sup -1}, respectively. The maximum contribution to the total absorbed gamma dose rate in air was due to the {sup 232}Th (52.3% for pluton and 67.1% for sands). The Raeq activities of the pluton and sands are higher than the recommended maximum value of 370 Bq kg{sup -1} criterion limit of Raeq activity for building materials.

  15. Petrology and isotope systematics of magma mushes: some porphyritic granitoids of northeastern Brazil

    International Nuclear Information System (INIS)

    McMurry, J.; Long, L.E.; Sial, A.N.

    1987-01-01

    More than 80 coarsely porphyritic granitoid plutons with K-feldspar megacrysts (Itaporanga-type granites) intrude metamorphic rocks of Northeastern Brazil. Textural evidence for filter pressing and flow foliation indicates that these bodies were emplaced as viscous, crystal-laden mushes. A representative Itaporanga-type pluton, the Monte das Gameleiras intrusion, consists of a variety of rock types with SiO 2 ranging from 49.5 to 71.6 weight percent. Chemically and petrographically, this hornblende-bearing pluton has I-type characteristics with some S-type affinities. Whole-rock oxygen isotope data are in keeping with the distribution of δO 18 , for unaltered granitic rocks. Similarly, REE data suggest a single magmatic process, at least for the more felsic rock types, without post-intrusive effects. A 5-point, whole-rock Rb-Sr isochron for the Monte das Gameleiras pluton gives t = 511 ± 26 Ma andan initial, 87 Sr/ 86 Sr = 0.7099 ± 0.0004. This is contrasted with disparate ages calculated from texturally similar bodies such as the Fazenda Nova pluton, for which a 5-point whole-rock isochron gives t = 630 ± 24 Ma with initial 87 Sr/ 86 Sr = 0.7065 ± 0.0005, and the type locality Itaporanga pluton, for which a 6-point isochron gives t= 625 ± 22 Ma. (author) [pt

  16. Understanding Magmatic Timescales and Magma Dynamics in Proterozoic Anorthosites: a Geochronological Investigation of the Kunene Complex (Angola)

    Science.gov (United States)

    Brower, A. M.; Corfu, F.; Bybee, G. M.; Lehmann, J.; Owen-Smith, T.

    2016-12-01

    The Kunene Anorthosite Complex, located in south west Angola, is one of the largest massif-type anorthosite intrusions on Earth, with an areal extent of at least 18 000 km2. Previous studies considered the Complex to consist of a series of coalesced plutons. However, the ages and relative emplacement sequence of these plutons are unknown. Understanding the relative timing of the pluton emplacement is crucial for understanding how these enigmatic magmas form and how they rise through the crust. Here we present new high precision U-Pb ID-TIMS ages (n=10) on zircons and baddeleyites for many of the coalesced plutons across the 300-km-long anorthositic complex. These new geochronological results reveal subtle variations in crystallization age between the coalesced plutons. There is no gradual age progression between plutons, but distinct groupings of ages (Fig.1). Age clusters of 1379.8 ± 2 Ma (n=5) occur north of the Red Granite NE-SW-striking intrusions, whereas in the south there is an older age grouping of 1390.4 ± 2.3 (n=3). Two additional ages of 1400.5 ± 1.3 in the centre and 1438.4 ± 1.1 Ma in the south east have been obtained. These results indicate that the Kunene anorthosites were emplaced over 60 Ma and may suggest long-lived magmatic systems and/or slowly ascending plutons. We also find a link between pluton composition and age. In general, leuconoritic domains are older than the leucotroctolitic domains. This may imply that the first pulses of magma received a greater degree of contamination, forcing the broadly basaltic magma to produce orthopyroxene as the main mafic phase. The later pulses receive less contamination as they ascend through the already partially melted crust, producing olivine as the mafic phase and deforming the older domains. This study reiterates the multiphase petrogenesis of Proterozoic anorthosites and sheds light on the assembly of crystal-rich magmas as they ascend through the crust.

  17. Pre-Alpine evolution of the Seckau Complex (Austroalpine basement/Eastern Alps): Constraints from in-situ LA-ICP-MS Usbnd Pb zircon geochronology

    Science.gov (United States)

    Mandl, Magdalena; Kurz, Walter; Hauzenberger, Christoph; Fritz, Harald; Klötzli, Urs; Schuster, Ralf

    2018-01-01

    The Variscan European Belt is a complex orogen with its southern margin partly obscured by Alpine tectonics and metamorphism. We present a study of one of the units, the Seckau Complex, that constitute the southern part of the Variscan European Belt in the Eastern Alps in order to clarify its origin, age and lithostratigraphy. The magmatic and geochronological evolution of this Complex in the northwestern part of the Seckau Nappe (as part of the Austroalpine Silvretta-Seckau Nappe System) was investigated by zircon Usbnd Pb dating of paragneisses and metagranitoids coupled with petrological and geochemical data. This reveals the distinction of three newly defined lithostratigraphic/lithodemic sub-units: (1) Glaneck Metamorphic Suite, (2) Hochreichart Plutonic Suite and (3) Hintertal Plutonic Suite. The Glaneck Metamorphic Suite is mainly composed of fine-grained paragneisses that yield Usbnd Pb zircon ages in the range between 2.7 Ga and 2.0 Ga, as well as concordia ages from 572 ± 7 Ma to 559 ± 11 Ma. All of these ages are interpreted as detrital zircon ages originating from an igneous source. The paragneisses are the host rock for the large volumes of metagranitoids of the Hochreichart Plutonic Suite and the Hintertal Plutonic Suite. The Hochreichart Plutonic Suite comprises highly fractionated melts with mainly S-type characteristics and late Cambrian to Early Ordovician Usbnd Pb zircon ages (508 ± 9 Ma to 486 ± 9 Ma), interpreted as magmatic protolith ages. The Hintertal Plutonic Suite is composed of metagranitoids with Late Devonian to early Carboniferous (365 ± 11 Ma and 331 ± 10 Ma) protolith ages, that intruded during an early phase of the Variscan tectonometamorphic event. The metagranitoids of the Hintertal Plutonic Suites define a magmatic fractionation trend, seen in variable Rb/Sr ratios. On this base they can be further subdivided into (a) the Griessstein Pluton characterized by S-type metagranitoids and (b) the Pletzen Pluton distinguished by

  18. Uranium mineralization environment and prospecting potential of Dawan ore field in Nanling metallogenic belt

    International Nuclear Information System (INIS)

    Yang Shanghai

    2011-01-01

    Located in the middle part of Jiuyishan complex pluton, Nanling metallogenic belt, Dawan uranium ore field in Hunan Province is an important uranium-producing and rare metal, nonferrous metal cluster area due to the favourable mineralization environment. The Cambrian is the main uranium source bed and their contact zone to the pluton is the favorable part for mineralization. The uranium deposits which have been explored are all located in the exocontact zone of Jinjiling pluton in the middle part of Jiuyishan complex pluton which is composed of the independent eastern and western magma evolution centers. In the west center, Jinjiling pluton is closely related to uranium mineralization where the trinity geologic setting was formed with magma evolution, hydrothermal fluid action and mineralization. The deep slitted and large faults provide the pathway and thermodynamic source for circulating migration of mineralizing fluid. The uranium mineralization mainly occurred in crustal stress conversion period of Late Cretaceous and related to the tensive NW extending fault and deep originated fluid. The gravity, aero magnetic, airborne gamma-ray spectrometry anomalies and radioactivity hydrochemical anomaly are important criteria for uranium prospecting. Based on the analysis of regional uranium mineralization environment, the prospecting potential is forecasted. (authors)

  19. Dating emplacement and evolution of the orogenic magmatism in the internal Western Alps

    DEFF Research Database (Denmark)

    Berger, Alfons; Thomsen, Tonny B.; Ovtcharova, Maria

    2012-01-01

    The Canavese Line in the Western Alps represents the position in the Alpine chain, where alkaline and calc-alkaline magmatism occur in close spatial and temporal association. In addition to available data on the alkaline Valle del Cervo Pluton, we present petrological and geochemical data...... on the Miagliano tonalite. The latter is of special interest, because it is located in the south-eastern side of the Canavese Line, in contrast to most Periadriatic Plutons. The dioritic to tonalitic rocks of the Miagliano Pluton represent an intermediate stage of a calc-alkaline differentiation, demonstrated...... by relics of two different pyroxenes as well as the texture of allanite. Hornblende barometry indicates pressures of similar to 0.46 GPa consistent with the presence of magmatic epidote. Field relationships between the two Plutons, the volcanic and volcaniclastic rocks of the Biella Volcanic Suite...

  20. Pluton emplacement in a releasing bend in a transpressive regime: the arrozal granite in the Paraíba do Sul shear belt, Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Alexis R. Nummer

    2007-06-01

    Full Text Available The Arrozal Granite, situated in the southwestern region of the State of Rio de Janeiro, has a granitic to granodioritic composition. It contains a strong mylonitic foliation along its border, passing gradually to a well-developed magmatic foliation towards its center. Structural analysis indicates that the Arrozal Granite was emplaced along the Além-Paraíba Shear Zone in a dextral transpressive tectonic regime. A regional shift of the trend along this shear zone from NE-SW to E-W, observed in the area, is interpreted to be casually related to the creation of space for the emplacement of the granite. Our data indicate that releasing bends may have played an important role for space generation during the emplacement of the Arrozal Granite and other plutons.O Granito Arrozal ocorre na porção sudoeste do Estado do Rio de Janeiro e associa-se à Zona de Cisalhamento de Além-Paraíba. Possui composição granítica a granodiorítica eexibe predomínio de estruturas magmáticas na parte central, e estruturas de alto strain (miloníticas nas bordas. Os dados estruturais sugerem colocação em segmentos extensionais(releasing bends associados a uma tectônica transcorrentedestral, sob regime transpressivo. A forte mudança do trend estrutural desta zona de cisalhamento na região, passando de NE-SW para próximo de E-W, criou condições para geração de espaços que favoreceram a colocação do Granito Arrozal, além de outros granitos associados à referida zona.

  1. Assessment of the long-term risks of inadvertent human intrusion into a proposed Canadian nuclear fuel waste disposal vault in deep plutonic rock -revision 1

    International Nuclear Information System (INIS)

    Wuschke, D.M.

    1996-04-01

    Canada has conducted an extensive research program on a concept of safe disposal of nuclear fuel wastes deep In plutonic rock of the Canadian Shield. An essential goal of this program has been to develop and demonstrate a methodology to evaluate the performance of the facility against safety criteria established by Canada's regulatory agency, the Atomic Energy Control Board. These criteria are expressed in terms of risk, where risk is defined as the sum, over all significant scenarios, of the product of the probability of the scenario, the magnitude of the resultant dose, and the probability of a health effect per unit dose. This report describes the methodology developed to assess the long-term risk from inadvertent human intrusion into such a facility, and the results of its application to the proposed facility. Four intrusion scenarios were analysed, all initiated by a drilling operation. These scenarios are exposure of a member of the drilling crew, of a technologist conducting a core examination, of a construction worker and of a resident. The consequence of each scenario was estimated using standard computer codes for environmental pathways analysis and radiation dosimetry. For comparison with the risk criterion, an estimate of the probability of each scenario is also required. An event-tree methodology was used to estimate these probabilities. The estimated risks from these intrusion scenarios are several orders of magnitude below the established risk criterion. The event-tree methodology has the advantages of explicity displaying the assumptions made, of permitting easy testing of the sensitivity of the risk estimates to assumptions, and of combining technical and sociological information. (author). 53 refs., 8 tabs., 2 figs

  2. Assessment of the long-term risks of inadvertent human intrusion into a proposed Canadian nuclear fuel waste disposal vault in deep plutonic rock -revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Wuschke, D M

    1996-04-01

    Canada has conducted an extensive research program on a concept of safe disposal of nuclear fuel wastes deep In plutonic rock of the Canadian Shield. An essential goal of this program has been to develop and demonstrate a methodology to evaluate the performance of the facility against safety criteria established by Canada`s regulatory agency, the Atomic Energy Control Board. These criteria are expressed in terms of risk, where risk is defined as the sum, over all significant scenarios, of the product of the probability of the scenario, the magnitude of the resultant dose, and the probability of a health effect per unit dose. This report describes the methodology developed to assess the long-term risk from inadvertent human intrusion into such a facility, and the results of its application to the proposed facility. Four intrusion scenarios were analysed, all initiated by a drilling operation. These scenarios are exposure of a member of the drilling crew, of a technologist conducting a core examination, of a construction worker and of a resident. The consequence of each scenario was estimated using standard computer codes for environmental pathways analysis and radiation dosimetry. For comparison with the risk criterion, an estimate of the probability of each scenario is also required. An event-tree methodology was used to estimate these probabilities. The estimated risks from these intrusion scenarios are several orders of magnitude below the established risk criterion. The event-tree methodology has the advantages of explicity displaying the assumptions made, of permitting easy testing of the sensitivity of the risk estimates to assumptions, and of combining technical and sociological information. (author). 53 refs., 8 tabs., 2 figs.

  3. Emplacement, petrological and magnetic susceptibility characteristics of diverse magmatic epidote-bearing granitoid rocks in Brazil, Argentina and Chile

    Science.gov (United States)

    Sial, A. N.; Toselli, A. J.; Saavedra, J.; Parada, M. A.; Ferreira, V. P.

    1999-03-01

    Magmatic epidote (mEp)-bearing granitoids from five Neoproterozoic tectonostratigraphic terranes in Northeastern (NE) Brazil, Early Palaeozoic calc-alkalic granitoids in Northwestern (NW) Argentina and from three batholiths in Chile have been studied. The elongated shape of some of these plutons suggests that magmas filled fractures and that dyking was probably the major mechanism of emplacement. Textures reveal that, in many cases, epidote underwent partial dissolution by host magma and, in these cases, may have survived dissolution by relatively rapid upward transport by the host magma. In plutons where such a mechanism is not evident, unevenly distributed epidote at outcrop scale is armoured by biotite or near-solidus K-feldspar aggregates, which probably grew much faster than epidote dissolution, preventing complete resorption of epidote by the melt. Al-in-hornblende barometry indicates that, in most cases, amphibole crystallized at P≥5 kbar. Kyanite-bearing thermal aureoles surrounding plutons that intruded low-grade metamorphic rocks in NE Brazil support pluton emplacement at intermediate to high pressure. mEp show overall chemical variation from 20 to 30 mol% (mole percent) pistacite (Ps) and can be grouped into two compositional ranges: Ps 20-24 and Ps 27-30. The highest Ps contents are in epidotes of plutons in which hornblende solidified under Pcorrosion of individual epidote crystals included in plagioclase in high-K calc-alkalic granitoids in NE Brazil, emplaced at 5-7 kbar pressure, yielded estimates of magma transport rate from 70 to 350 m year -1. Most of these plutons lack Fe-Ti oxide minerals and Fe +3 is mostly associated with the epidote structure. Consequently, magnetic susceptibility (MS) in the Neoproterozoic granitoids in NE Brazil, as well as Early Palaeozoic plutons in Argentina and Late Palaeozoic plutons in Chile, is usually low (3.0×10 -3 SI, typical of magnetite-series granitoids crystallized under higher oxygen fugacity. In NE

  4. Alteration and mineralization in the eastern part of the Soldier Mountains, Camas County, Idaho

    Science.gov (United States)

    Lewis, Reed S.

    2001-01-01

    The eastern part of the Soldier Mountains in Camas County, south-central Idaho, is underlain principally by plutonic rocks of Cretaceous and Eocene age that locally have undergone propylitic, potassic, and muscovite-quartz alteration. Muscovite- quartz alteration is Cretaceous in age and is localized along joints and fractures, some of which are filled with quartz. Associated veins have yielded minor amounts of gold. Potassic alteration is probably both Cretaceous and Eocene in age but is weakly developed and limited in extent. Propylitic alteration is Eocene in age and is pronounced around biotite granite plutons. Despite a clear association between plutons of biotite granite and widespread propylitic alteration, mineralization associated with these rocks was minimal. Mineralized areas within more mafic Eocene plutons are characterized by veins and (or) stockworks(?) enriched in copper, molybdenum, and silver, but these areas are restricted in size and have not been productive.

  5. Petrology and geochronology of metamorphosed volcanic rocks and a middle Cretaceous volcanic neck in the east-central Sierra Nevada, California.

    Science.gov (United States)

    Kistler, R.W.; Swanson, S.E.

    1981-01-01

    Metamorphosed Mesozoic volcanic rocks from the E-central Sierra Nevada range in composition from basalt to rhyolite and have ages, based on whole rock Rb-Sr and U-Pb zircon dating, of about 237- 224, 185, 163, 134, and 100Ma. The major plutons of the batholith in this area are of Triassic (215-200Ma) and Cretaceous (94-80Ma) ages. Initial 87Sr/86Sr values for the metamorphosed volcanic rocks of the area are in the range from 0.7042 to 0.7058 and are generally different from the values for the surrounding batholithic rocks (0.7056-0.7066). A circular, zoned granitic pluton, with an outcrop area of 2.5km2, similar in appearance to a ring dike complex, was apparently a conduit for some or possibly all of the middle-Cretaceous metamorphosed volcanic rocks exposed about 5km to the S in the western part of the Ritter Range. Samples from the metamorphosed volcanic rocks and the pluton yield a Rb/Sr whole rock isochron age of 99.9+ or -2.2Ma with an intitial 87Sr/86Sr of 0.7048+ or -0.00001. Major element variation diagrams of the pluton and volcanic rocks define coincident compositional trends. The ages of volcanic events relative to the ages of the major intrusive epochs and the major element and isotopic compositions of the volcanic rocks relative to the major plutons indicate that the volcanic rocks are not simply or directly related to the major plutons in the Sierra Nevada. -from Authors

  6. A preliminary analysis of the variability of ionospheric characteristics from ionosonde data

    International Nuclear Information System (INIS)

    Mosert, M.; Ezquer, R.; Miro, G.; Corbella, R.; Zerda, L. de la

    2003-01-01

    We use ionosonde data obtained at El Arenosillo (37.1, 353.2), Tucuman (-26.9, 294.6), San Juan (-31.5, 294.5), Buenos Aires (-34.6, 301.7), Ushuaia (-54.8, 291.7) and Puerto Belgrano (-77.9, 321.4) to study the variability of the critical frequencies foE, foF1, foF2 and the propagation factor M(3000)F2 as a function of local time, season, latitude and solar cycle. Two variability indexes were introduced: Clo= Qlo/ median and Cup= Qup/ median, in order to quantify the variability of the parameters. The results indicate that these parameters are helpful to the development of a quantitative model of the variability of the different ionospheric parameters. (author)

  7. Reaction induced nucleation and growth v. grain coarsening in contact metamorphic, impure carbonates

    DEFF Research Database (Denmark)

    Berger, Alfons; Brodhag, Sabine; Herwegh, Marco

    2010-01-01

    aureole of the Adamello pluton (N-Italy). As a function of increasing distance from the pluton contact, the investigated samples have peak metamorphic temperatures ranging from the stability field of diopside/tremolite down to diagenetic conditions. All samples consist of calcite as the dominant matrix...

  8. Magma sources during Gondwana breakup: chemistry and chronology of Cretaceous magmatism in Westland, New Zealand

    DEFF Research Database (Denmark)

    van der Meer, Quinten Har Adriaan; Waight, Tod Earle; Scott, James M.

    2013-01-01

    by emplacement of granitoid plutons, the deposition of terrestrial Pororari Group sediments in extensional half-grabens across on- and offshore Westland, and the intrusion of mafic dikes from 90 Ma. These dikes are concentrated in the swarms of the Paparoa and Hohonu Ranges and were intruded prior...... to and simultaneous with volumetrically minor A-type plutonism at 82 Ma. The emplacement of mafic dikes and A-type plutonism at 82 Ma is significant as it coincides with the age of the oldest seafloor in the Tasman Sea, therefore it represents magmatism coincident with the initiation of seafloor spreading which...

  9. The search for the youngest granites in the southern part of the Natal Metamorphic Province

    International Nuclear Information System (INIS)

    Thomas, R.J.; Eglington, B.M.

    1990-01-01

    It is clear that the Belmont Pluton and the dykes are geochemically, isotopically and therefore, genetically distinct. The Belmont pluton is probably related to the garnet leucogranite phase of the Margate Complex. It is suggested that the dykes (∼ 965 Ma) are younger than the Belmont pluton (∼1055 Ma). The relatively low initial 87 Sr/ 86 Sr are typical of the granites intruded at ∼1000 Ma. The age of the dykes is comparable with the 951 ± 16 Ma (R o =.70320 ± 13) given for the Sezela pluton. The high R o (∼0.715) of the dykes is similar to other, minor granite sheets from southern Natal, and is compatible with an origin by late-stage melting of pre-existing radiogenic material. Both the dykes and the Sezela pluton are unequivocally younger than the D 3 deformation, whereas the young dates from the Oribi Gorge Suite are controversial. Thus, although it is possible that some of the minor, intrusive granitic sheets could yet be shown to be of Pan-African age, it is evident that no significant Pan-African magmatism or thermal overprinting has affected the Natal sector of the Namaqua-Natal-Maudheim belt. 1 fig., 7 refs

  10. Review of potential host rocks for radioactive waste disposal in the Piedmont Province of Georgia

    International Nuclear Information System (INIS)

    Wenner, D.B.; Gillon, K.A.

    1980-10-01

    A literature study was conducted on the Piedmont province of Georgia to designate areas that may be favorable for field exploration for consideration of a repository for storage of radioactive waste. The criteria utilized in such a designation was based upon consideration of the rock unit having favorable geological, geotechnical, and geohydrological features. The most important are that the rock unit have: (1) satisfactory unit dimensions (> 100 km 2 outcrop area and at least 1500 meters (approx. 5000 feet) depth of a continuous rock type); and (2) acceptable geohydrological conditions. Among all rock types, it is concluded that the granites of the large post-metamorphic plutons and large, homogeneous orthogneissic units offer the most favorable geologic settings for exploration for siting a radioactive waste repository. Virtually all other rock types, including most metavolcanic and metasedimentary lithologies have unacceptable unit dimensions, generally unfavorable geohydrologic settings, and deleterious mechanical and physical geotechnical properties. After consideration of all major lithologies that comprise the Georgia Piedmont, the following units were deemed favorable: (1) the Elberton Pluton; (2) the Siloam Pluton; (3) the Sparta Pluton; (4) two unnamed plutons adjacent to the Snelson body of S.W. Georgia; (5) the Lithonia Gneiss; (6) basement orthogneisses and charnockites of the Pine Mountain Belt

  11. Cooling, exhumation, and deformation in the Hindu Kush, NW Pakistan: New constraints from preliminary 40Ar/39Ar and fission track analyses

    Science.gov (United States)

    Faisal, Shah; Larson, Kyle P.; Camacho, Alfredo; Coutand, Isabelle

    2018-06-01

    Asian crust in the Hindu Kush region in northern Pakistan records a protracted history of rifting, subduction and collision not commonly preserved within the Himalaya. Because of this, it is key to understanding the development of the southern Eurasian margin both prior to and after collision with India. New mica 40Ar/39Ar and apatite fission track geochronologic data from this region provide constraints on the kinematics of the Hindu Kush. 40Ar/39Ar muscovite and biotite ages from the late Cambrian Kafiristan pluton are 379.7 ± 1.7 Ma and 47.2 ± 0.3 Ma, respectively. The muscovite age may record cooling or partial resetting, while the biotite age is interpreted to record a thermal disruption associated with the early stages of continental collision in the Himalayan system. A 111.0 ± 0.6 Ma muscovite age from the northern part of the Tirich Mir pluton (∼123 Ma old; U-Pb) is interpreted to indicate a recrystallization event ∼12 Myrs after its intrusion. In addition, a younger muscovite age of 47.5 ± 0.2 Ma was derived from the opposite side of the same pluton in the immediate hanging wall of the Tirich Mir fault. This Eocene age is interpreted to represent the time of recrystallization during fault (re)activation in the early stages of India-Asia continent-continent collision. 40Ar/39Ar biotite analysis from the Buni-Zom pluton yields an age of 61.6 ± 1.1 Ma and is interpreted to reflect cooling at mid-upper crustal levels subsequent to the pluton's emplacement in the middle Cretaceous. Finally, 17.1-21.3 Ma 40Ar/39Ar ages from the Garam Chasma pluton and surrounding metapelites indicate cooling immediately following crystallization of the leucogranite body in the earliest Miocene/latest Oligocene. The younger cooling history is resolved by fission track dating of apatite (AFT). In the vicinity of the bounding Tirich Mir fault, the Tirich Mir pluton yields an AFT age of 1.4 ± 0.3 Ma, which is consistent with active exhumation associated with the surface

  12. Controls on intrusion of near-trench magmas of the Sanak-Baranof Belt, Alaska, during Paleogene ridge subduction, and consequences for forearc evolution

    Science.gov (United States)

    Kusky, Timothy M.; Bradley, Dwight C.; Donely, D. Thomas; Rowley, David; Haeussler, Peter J.

    2003-01-01

    A belt of Paleogene near-trench plutons known as the Sanak-Baranof belt intruded the southern Alaska convergent margin. A compilation of isotopic ages of these plutons shows that they range in age from 61 Ma in the west to ca. 50 Ma in the east. This migrating pulse of magmatism along the continental margin is consistent with North Pacific plate reconstructions that suggests the plutons were generated by migration of a trench-ridge-trench triple junction along the margin. On the Kenai Peninsula the regional lower greenschist metamorphic grade of the turbiditic host rocks, texture of the plutons, contact-metamorphic assemblage, and isotopic and fluid inclusion studies suggest that the plutons were emplaced at pressures of 1.5–3.0 kbars (5.2–10.5 km) into a part of the accretionary wedge with an ambient temperature of 210–300 °C. The presence of kyanite, garnet, and cordierite megacrysts in the plutons indicates that the melts were generated at a depth greater than 20 km and minimum temperature of 650 °C. These megacrysts are probably xenocrystic remnants of a restitic or contact metamorphic phase entrained by the melt during intrusion. However, it is also possible that they are primary magmatic phases crystallized from the peraluminous melt.Plutons of the Sanak-Baranof belt serve as time and strain markers separating kinematic regimes that predate and postdate ridge subduction. Pre-ridge subduction structures are interpreted to be related to the interaction between the leading oceanic plate and the Chugach terrane. These include regional thrust faults, NE-striking map-scale folds with associated axial planar foliation, type-1 mélanges, and an arrayof faults within the contact aureole indicating shortening largely accommodated by layer-parallel extension. Syn-ridge subduction features include the plutons, dikes, and ductile shear zones within contact aureoles with syn-kinematic metamorphic mineral growth and foliation development. Many of the studied plutons

  13. Mineral Resource Team 2010 Activities Summary

    Science.gov (United States)

    2011-01-29

    similar to pluton -related gold deposits rather than the regional metamorphic deposits that are thought to make up deposits in the Ragh District (2010...missions are located along the southern margins of the Zarkashan pluton . These locations match up with hyperspectral anomalies and anomalous gold and

  14. Small-Volume U-Pb Zircon Geochronology by Laser Ablation-Multicollector-ICP-MS

    Science.gov (United States)

    2008-11-03

    Ecstall pluton in the Coast Mountains of British Columbia: Evidence for local deformation rather than large-scale transport. Journal of Geophysical...Journal of Metamorphic Geology 18, 719–735. Kalsbeek, F., Jepsen, H.F., Nutman, A.P., 2001. From source migmatites to plutons : tracking the origin of

  15. Petrography, geochemistry and tectonic setting of Rigi granitoid body (east of Lut Block, Central Iran)

    International Nuclear Information System (INIS)

    Ghonjalipour, R.; Biabangard, H.; Ahmadi, A.

    2016-01-01

    The Rigi Granitoid Mountain is located in 5 Km West of Dehsalm and 85 Km West of Nehbandan city, southeast of Birjand province and east of Lut Block. This granitoid with Eocene-Oligocene age was penetrated into sedimentary rocks (shale, limestone and sandstone) and changes theses rocks to skarn, hornfels and calcsilicate rocks. This granitoid consist of granodiorite, quartz monzonite and syenogranite with plagioclase, orthose, biotite, hornblende and quartz minerals. Sericite, chlorite, and Magnetite are secondary mineral in these rocks. Geochemical properties this pluton showes that it subalkaline and has metaluminous. Geochemical diagrams and presence of hornblende mineral in this pluton shows that belong to I-type granite. The rocks in granitoid pluton are enrichment LREE compare to HREE, high contents of LILE relative to HFSE and negative anomalies of Nb, Ti and P show it granitoid related to subduction zone. Also, tectonomagmatic diagrams improve that this pluton has belong to active continental margin.

  16. Isotopic geochronology of granitic rocks from the Central Iberian Zone: comparison of methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, I. M. H. R.; Neiva, A. M. R.; Silva, M. M. V. G.

    2010-07-01

    Five granitic rocks, concentrically disposed from core to rim, were distinguished in the Castelo Branco pluton. U-Pb-Th electron microprobe monazite ages from granitic rocks are similar and ranging between 297-303 Ma. The granitic rocks from Castelo Branco pluton are 310 {+-} 1 Ma old, obtained by U-Pb (ID-TIMS) in separated zircon and monazite crystals, indicating a similar emplacement age for all granitic rocks of the pluton. Initial {sup 8}7Sr/{sup 8}6Sr isotopic ratios and {epsilon}Nd{sub 3}10 and {delta}{sup 1}8O values suggest three distinct pulses of granitic magma and that they are derived from partial melting of heterogeneous metasedimentary materials. The other granitic rocks are related by magmatic differentiation and show small variations in ({sup 8}7Sr/{sup 8}6Sr)310, {epsilon}Nd{sub 3}10 and {delta}{sup 1}8O. The granitic pluton of Castelo Branco shows a rare reverse zoning. (Author) 12 refs.

  17. Preliminary study of the uranium favorability of granitic and contact-metamorphic rocks of the Owens Valley area, Inyo and Mono Counties, California, and Esmeralda and Mineral Counties, Nevada

    International Nuclear Information System (INIS)

    Cupp, G.M.; Mitchell, T.P.

    1978-01-01

    Granitic and contact-metamorphic rocks of the Owens Valley area were sampled to determine their favorability for uranium. Uranium deposits associated with these rocks were examined to determine the mode of occurrence. Metamorphic rocks near contacts with intrusive rocks include skarns, schists, quartzites, metaconglomerates, hornfels, gneisses, and metavolcanics. The grade of contact metamorphism ranges from slight to intense, depending upon the distance from the intrusive contact. The average U 3 O 8 content of the metamorphic rock samples is 3 ppM. Metamorphic rock samples in a roof pendant at the Claw prospect contain as much as 3 percent U 3 O 8 . Skarn samples from the Birch Creek pluton contain as much as 114 ppM U 3 O 8 ; those from the Santa Rita Flat pluton contain as much as 23 ppM U 3 O 8 . Most of the intrusive rocks are granite, quartz monzonite, or monzonite. Granodiorite and diorite are less common, and gabbro is rare. The average U 3 O 8 content of the crystalline rock samples is 4 ppM. Samples from a quartz-monzonite pluton east of Lone Pine, California, and quartz monzonite in the Santa Rosa Hills had maximum contents of 28 and 13 ppM U 3 O 8 , respectively. Areas of contact metamorphism and metasomatism, such as those at the Claw prospect and Birch Creek pluton, are probably the most favorable sites for uranium deposits. There are many miles of granitic and contact-metamorphic zones in which undiscovered uranium deposits may exist. Although the overall uranium content of granitic rocks appears to be low, the pluton east of Lone Pine and the Hunter Mountain pluton in the area of the Santa Rosa Hills have sufficient uranium to have acted as uranium and detrital source rocks for uranium deposits that may now be buried in Tertiary sediments in the basins around the plutons. The Claw deposit is the only known uranium deposit of a size and grade to be of possible commercial interest

  18. Synthesis of petrographic, geochemical, and isotopic data for the Boulder batholith, southwest Montana

    Science.gov (United States)

    du Bray, Edward A.; Aleinikoff, John N.; Lund, Karen

    2012-01-01

    The Late Cretaceous Boulder batholith in southwest Montana consists of the Butte Granite and a group of associated smaller intrusions emplaced into Mesoproterozoic to Mesozoic sedimentary rocks and into the Late Cretaceous Elkhorn Mountains Volcanics. The Boulder batholith is dominated by the voluminous Butte Granite, which is surrounded by as many as a dozen individually named, peripheral intrusions. These granodiorite, monzogranite, and minor syenogranite intrusions contain varying abundances of plagioclase, alkali feldspar, quartz, biotite, hornblende, rare clinopyroxene, and opaque oxide minerals. Mafic, intermediate, and felsic subsets of the Boulder batholith intrusions are defined principally on the basis of color index. Most Boulder batholith plutons have inequigranular to seriate textures although several are porphyritic and some are granophyric (and locally miarolitic). Most of these plutons are medium grained but several of the more felsic and granophyric intrusions are fine grained. Petrographic characteristics, especially relative abundances of constituent minerals, are distinctive and foster reasonably unambiguous identification of individual intrusions. Seventeen samples from plutons of the Boulder batholith were dated by SHRIMP (Sensitive High Resolution Ion Microprobe) zircon U-Pb geochronology. Three samples of the Butte Granite show that this large pluton may be composite, having formed during two episodes of magmatism at about 76.7 ± 0.5 Ma (2 samples) and 74.7 ± 0.6 million years ago (Ma) (1 sample). However, petrographic and chemical data are inconsistent with the Butte Granite consisting of separate, compositionally distinct intrusions. Accordingly, solidification of magma represented by the Butte Granite appears to have spanned about 2 million year (m.y.). The remaining Boulder batholith plutons were emplaced during a 6-10 m.y. span (81.7 ± 1.4 Ma to 73.7 ± 0.6 Ma). The compositional characteristics of these plutons are similar to those

  19. Geochemical and Isotopic Features of Çaykara (Trabzon, NE Turkey) Intrusive Complex

    Science.gov (United States)

    Sen, Cuneyt; Aydınçakır, Emre; Aydin, Faruk; Dokuz, Abdurrahman; Karslı, Orhan; Yılmazer, Sinan; Dündar, Buket

    2017-04-01

    Çaykara (Trabzon) Intrusive Complex is located at the eastern part of the Kaçkar Batholith. In the complex, Gündoǧdu-Boǧalı Plutons is Upper Cretaceous in aged, and Uzundere and Eǧerler Plutons are Eocene in aged. Gündoǧdu-Boǧa Plutons crop out around Araklı-Bahçecik villages, and are represented by the granitic to granodioritic rocks in composition showing porphyritic-granular texture. These rocks contain dark coloured, semi-rounded to rounded, wedged, fine-grained diorite and monzodiorite anclaves. Uzuntarla Pluton extends at E-W from Köknar-Karaçam-Uzuntarla sub-districs to south of Çaykara towards Bahçecik sub-district of Araklı. The rocks of the Uzuntarla Pluton are generally diorite to granodiorite in composition with porphyritic in texture. Eǧerler Pluton exposes at southern of the Çaykara Intrusive Complex. It's mineralogical composition is changing from diorite to granite with medium-coarse grain granular texture. The Upper Cretaceous plutonic rocks are characterized by ɛNd(i) values range from -1.5 to -9.7, whereas 87Sr/86Sr(i) values range from 0.7052 to 0.7119. Nd model ages are between 0.94 and 1.52 Ga. 206Pb/204Pb(i), 207Pb/204Pb(i) and 208Pb/204Pb(i) contents of samples change from 18.24 to 18.72, 15.59 to 15.66 and 37.93-38.64, respectively. The δ18O values in the investigated samples range from 4.0 ‰ to 6.7 ‰ and have similar ratios to I-type granitoides.The Eocene plutonic rocks are characterized by ɛNd(i) values range from -0.4 to -6.0, whereas 87Sr/86Sr(i) values range from 0.7050 to 0.7143. Nd model ages are between 0.81 and 1.32 Ga. 206Pb/204Pb(i), 207Pb/204Pb(i) and 208Pb/204Pb(i) contents of samples change from 18.241to 18.57, 15.58 to 15.63 and 38.22-38.92, respectively. The δ18O values in the investigated samples range from 5.8 ‰ to 7.1 ‰ and have similar ratios to I-type granitoides. Upper Cretaceous and Eocene aged Plutons in the study area are high-K calc-alkaline in composition and display metaluminous to

  20. Mineralization mechanism and geodynamic setting of No. 337 deposit in Xiazhuang uranium orefield

    International Nuclear Information System (INIS)

    Zhang Zhanshi; Wu Jianhua; Liu Shuai; Hua Renmin

    2009-01-01

    Uranium deposit No.337 in Xiazhuang uranium orefield has been regarden as a representative of the earliest forming, relatively high temperature and short time gap between the formation of pluton and the mineralization. But the latest study revealed that the formation age of the Maofeng pluton, which is the most important uranium host granite in Xiazhuang uranium orefield, is 206-238.2 Ma by LA-ICP-MS zircon dating, while the secondary origin muscovite in Maofeng pluton has the age of 131-136 Ma by 40 Ar/ 39 Ar dating which correspond to the main mineralization age of 130.3-138 Ma in uranium deposit No.337. In Guidong granitic complex, Maofeng pluton shown some unique characteristics. It has the Al 2 O 3 /TiO 2 ratio that infers the lowest forming temperature, the lowest ΣREE and it is the only pluton which presents typical tetrad effects of REE, it is also shown a varying δ 18 O values and the lowest( 87 Sr/ 86 Sr) i values. According to the above findings, a concept model of uranium mineralization and geodynamic setting for No.337 uranium deposit might be presented: in late or post-collision stage of Indosinian orogeny, strongly peraluminous granite of Maofeng pluton formed from partial melting of uranium rich formations. Intrusion of maficdyke in late Yanshanian Period(<140 Ma), caused large fluid movement. Uranium was reactivated and extracted from the altered granite,and precipitated in some favorite places to form uranium ore bodies. Uranium deposit No.337 is the typical representative of the first stage uranium mineralization in Xiazhuang uranium orefield. (authors)

  1. Crustally derived granites in Dali, SW China: new constraints on silicic magmatism of the Central Emeishan Large Igneous Province

    Science.gov (United States)

    Zhu, Bei; Peate, David W.; Guo, Zhaojie; Liu, Runchao; Du, Wei

    2017-10-01

    We have identified a new crustally derived granite pluton that is related to the Emeishan Large Igneous Province (ELIP). This pluton (the Wase pluton, near Dali) shows two distinct SHRIMP zircon U-Pb age groups ( 768 and 253 Ma). As it has an intrusive relationship with Devonian limestone, the younger age is interpreted as its formation, which is related to the ELIP event, whereas the 768 Ma Neoproterozoic-aged zircons were inherited from Precambrian crustal component of the Yangtze Block, implying the pluton has a crustally derived origin. This is consistent with its peraluminous nature, negative Nb-Ta anomaly, enrichment in light rare earth elements, high 87Sr/86Sr(i) ratio (0.7159-0.7183) and extremely negative ɛ(Nd)(i) values (-12.15 to -13.70), indicative of melts derived from upper crust materials. The Wase pluton-intruded Devonian strata lie stratigraphically below the Shangcang ELIP sequence, which is the thickest volcanic sequence ( 5400 m) in the whole ELIP. The uppermost level of the Shangcang sequence contains laterally restricted rhyolite. Although the rhyolite has the same age as the Wase pluton, its geochemical features demonstrate a different magma origin. The rhyolite displays moderate 87Sr/86Sr(i) (0.7053), slightly negative ɛ(Nd)(i) (-0.18) and depletions in Ba, Cs, Eu and Sr, implying derivation from differentiation of a mantle-derived mafic magma source. The coexistence of crustally and mantle-derived felsic systems, along with the robust development of dike swarms, vent proximal volcanics and thickest flood basalts piles in Dali, shows that the Dali area was probably where the most active Emeishan magmatism had once existed.

  2. Petrogenesis of Luchuba and Wuchaba granitoids in western Qinling: geochronological and geochemical evidence

    Science.gov (United States)

    Kong, Juanjuan; Niu, Yaoling; Duan, Meng; Zhang, Yu; Hu, Yan; Li, Jiyong; Chen, Shuo

    2017-12-01

    The West Qinling Orogenic Belt (WQOB) is a major portion of the Qinling-Dabie-Sulu Orogen and holds essential information for understanding the prolonged evolution of the northeastern branch of the Paleo-Tethys in East Asia. This study focuses on the petrogenesis of granitoids from Luchuba and Wuchaba plutons in the WQOB. We obtained zircon U-Pb ages of 211 ± 1.4 Ma for the Luchuba pluton and 218.7 ± 1.3 Ma for the Wuchaba pluton, which are the same as the proposed timing of continental collision at ˜220 Ma. We thus interpret the granitoids to represent a magmatic response to the collision between the North China Craton (NCC) and the Yangtze Block (YB). The two plutons are metaluminous to weakly peraluminous I-type granitoids. Samples from the two plutons show strong light rare earth element (REEs) enrichment and weak heavy REE depletion, with varying negative Eu anomalies, which is most consistent with significant plagioclase fractionation although the possible effect of plagioclase as residual phase in the magma source region cannot be ruled out. In primitive mantle normalized multi-element variation diagrams, nearly all the samples show negative Nb, Ta, P and Ti anomalies and relative enrichment in Rb, Pb, U and K. These characteristics resemble those of the average continental crust. The Luchuba pluton has lower (87Sr/86Sr)i (0.7051 to 0.7104), higher ɛNd(t) (-8.11 to -5.73) and ɛHf(t) (-6.70 to -1.65) than mature continental crust ([87Sr/86Sr] i > 0.72, ɛNd(t) pluton also has lower (87Sr/86Sr)i (0.7069 to 0.7080), higher ɛNd(t) (-9.86 to -3.34) and ɛHf(t) (-5.69 to 1.58) than mature continental crust. We conclude that the Luchuba and Wuchaba granitoids in the WQOB are best explained as resulting from fractional crystallization with crustal assimilation of parental magmas derived from melting of Mianlue oceanic crust under amphibolite facies conditions during the initial stage of continental collision between the North China Craton and the Yangtze Block

  3. Petrology and U-PB geochronology of the Robertson River Igneous Suite, Blue Ridge province, Virginia - Evidence for multistage magmatism associated witn an early episode of Laurentian rifting

    Science.gov (United States)

    Tollo, R.P.; Aleinikoff, J.N.

    1996-01-01

    The Late Neoproterozoic (735-702 Ma) Robertson River Igneous Suite includes at least eight plutons ranging in composition from syenogranite to alkali feldspar granite to alkali feldspar syenite. These plutons intruded Mesoproterozoic (1.2-1.0 Ga) gneissic basement of the Blue Ridge anticlinorium in northern and central Virginia during an early episode of Laurentian rifting. Robertson River plutons range in composition from metaluminous to peralkaline and, relative to other granite types, exhibit compositional characteristics of A-type granitoids including (1) marked enrichment in Nb, Zr, Y, REE (except Eu), and Ga, (2) high Ga/Al and FeO(total)/MgO, and (3) depletion of Ba and Sr. High Ga/Al ratios are particularly diagnostic of the suite and serve as an effective discriminant between originally metaluminous and peralkaline bulk compositions, providing a useful proxy for widely used indicators based on major elements that are prone to remobilization. U-Pb isotopic analyses of zircons indicate that the suite was emplaced in two pulses, occurring at 735 to 722 and 706 to 702 Ma. Metaluminous magmas were emplaced during both pulses, formed most of the main batholith, and fractionated as independent, time-correlative groups. Peralkaline magmas were emplaced only during the final pulse, formed a volcanic center that erupted unknown quantities of rhyolite, and experienced a style of fractionation similar to the metaluminous types. Differences in Ce/Nb, Y/Nb, and Yb/Ta ratios suggest that the metaluminous and peralkaline magmas were derived from different sources. The Robertson River Igneous Suite is part of a regional group of Late Neoproterozoic (760-700 Ma) plutons including at least 20 other A-type granitoid bodies exposed throughout the Laurentian terrane of Virginia and northwestern North Carolina. Like the Robertson River, most of the other granitoids are metaluminous in composition, typically form multi-intrusive, elongate plutons, and are not geographically

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Inliers of alkali pyroxenite and alkali gabbro occur within this ijolite –melteigite suite of rocks.The pluton is also traversed by younger intrusives of nepheline syenite and carbonatite.Development of sporadic,lumpy magnetite ore bodies is also recorded within the pluton.Petrographic details of the constituent lithomembers of ...

  5. Latest Pleistocene and Holocene Glacier Fluctuations in southernmost Patagonia

    Science.gov (United States)

    Menounos, B.; Maurer, M.; Clague, J. J.; osborn, G.; Ponce, F.; Davis, P. T.; Rabassa, J.; Coronato, A.; Marr, R.

    2011-12-01

    Summer insolation has been proposed to explain long-term glacier fluctuations during the Holocene. If correct, the record of glacier fluctuations at high latitudes in the Southern Hemisphere should differ from that in the Northern Hemisphere. Testing this insolation hypothesis has been hampered by dating uncertainties of many Holocene glacier chronologies from Patagonia. We report on our ongoing research aimed at developing a regional glacier chronology at the southern end of the Andes north and west of Ushuaia, Argentina. We have found evidence for an advance of cirque glaciers at the end of the Pleistocene; one or locally two closely spaced moraines extend up to 2 km beyond Little Ice Age moraines. Radiocarbon dating of terrestrial macrofossils recovered from basal sediments behind two of these moraines yielded ages of 10,320 ± 25 and 10,330 ± 30 14C yr BP. These moraines may record glacier advances coeval with the Antarctic Cold Reversal; surface exposure dating of these moraines is currently in progress to test this hypothesis. We find no evidence of Holocene moraines older than 6800 14C yr BP, based on the distribution of Hudson tephra of that age. At some sites, there is evidence for an early Neoglacial advance of glaciers slightly beyond (Peru. We have documented multiple wood mats with stumps in growth position separated by till units in a 100 m section of the northeast lateral moraine at Stoppani Glacier (54.78 S, 68.98 W), 50 km west of Ushuaia. Ten radiocarbon ages on these wood mats range in age from 3510 ± 15 to 135 ± 15 14C yr BP. The mats decrease in age up-section; many overlap with published age ranges for Neoglacial advances in western Canada. Taken together, these data: a) do not support the summer insolation hypothesis for Holocene glacier fluctuations in southernmost Patagonia; b) confirm paleobotanical evidence for a warm, dry early Holocene; and c) suggest that many Neoglacial advances in southernmost Patagonia and western North America

  6. Assessment of the long-term risks of inadvertent human intrusion into a disposal vault in deep plutonic rock: reassessment using ICRP recommendations

    International Nuclear Information System (INIS)

    Wuschke, D.M.

    1996-06-01

    Canada has conducted an extensive research program on the safe disposal of nuclear fuel waste. The program has focussed on the concept of disposal in durable containers in an engineered facility or 'vault' located 500 to 1000 m deep in plutonic rock on the Canadian Shield. As part of this task, a methodology was developed to assess the long-term risk from inadvertent intrusion scenarios, and applied to a reference conceptual design of a facility for disposal of used fuel. The AECB has specified that 'the predicted radiological risk to individuals from a waste disposal facility shall not exceed 10 -6 fatal cancers and serious genetic effects in a year.' Risk is defined as the sum, of the product of the probability of the scenario, the magnitude of the resultant radiation dose, and the probability of a health effect per unit dose. The AECB also specifies that 'calculations of individual risk should be made by using the risk conversion factor of 2 x 10 -2 per sievert.' Our earlier assessment of four human intrusion scenarios showed that the estimated risk using the risk conversion factor recommended by the AECB was at least 3 orders of magnitude below the AECB risk criterion, at all times up to 10 000 a, for each of the four scenarios analysed. The AECB risk criterion and risk conversion factor are based on the recommendations of the Intemafional Commission on Radiological Protection (ICRP) in their Publication ICRP 26. More recently, in its Publication ICRP 60, the ICRP has recommended dose factors for fatal cancers that are larger than those in ICRP 26 and an increase in the risk factor for serious hereditary effects in all future generations. Another ICRP Publication, ICRP 64, states that 'For potential exposure situations, the consideration of the basic dose response used for stochastic effects must be extended into the range of high doses where deterministic effects also occur.' For the new assessments of risk we use the estimated doses and probabilities of

  7. Uranium-lead isotopic ages from the Sierra Nevada Batholith, California

    Science.gov (United States)

    Chen, J.

    1982-01-01

    This study provides new information on the timing and distribution of Mesozoic magmatic events in the Sierra Nevada batholithic complex chiefly between 36° and 37°N. latitude. U-Pb ages have been determined for 133 zircon and 7 sphene separates from 82 samples of granitoid rocks. Granitoid rocks in this area range in age from 217 to 80 m.y. Triassic intrusions are restricted to the east side of the batholith; Jurassic plutons occur south of the Triassic plutons east of the Sierra Nevada, as isolated masses within the Cretaceous batholith, and in the western foothills of the range; Cretaceous plutons form a continuous belt along the axis of the batholith and occur as isolated masses east of the Sierra Nevada. No granitic intrusions were emplaced for 37 m.y. east of the Sierra Nevada following the end of Jurassic plutonism. However, following emplacement of the eastern Jurassic granitoids, regional extension produced a fracture system at least 350 km long into which the dominantly mafic, calc-alkalic Independence dike swarm was intruded 148 m.y. ago. The dike fractures probably represents a period of regional crustal extension caused by a redistribution of the regional stress pattern accompanying the Nevadan orogeny. Intrusion of Cretaceous granitic plutons began in large volume about 120 m.y. ago in the western Sierra Nevada and migrated steadily eastward for 40 m.y. at a rate of 2.7 mm/y. This slow and constant migration indicates remarkably uniform conditions of subduction with perhaps downward migration of parent magma generation or a slight flattening of the subduction zone. Such steady conditions could be necessary for the production of large batholithic complexes such as the Sierra Nevada. The abrupt termination of plutonism 80 m.y. ago may have resulted from an increased rate of convergence of the American and eastern Pacific plates and dramatic flattening of the subduction zone. U-Pb ages of the Giant Forest-alaskite sequence in Sequoia National Park are

  8. Field characteristics, petrography, and geochronology of the Hohonu Batholith and the adjacent Granite Hill Complex, North Westland, New Zealand

    International Nuclear Information System (INIS)

    Waight, T.E.; Weaver, S.D.; Ireland, T.R.; Maas, R.; Muir, R.J.; Shelley, D.

    1997-01-01

    Detailed geological mapping, petrography, geochemistry and geochronological studies in the Hohonu Batholith, North Westland, have identified 10 granitoid plutons emplaced during three intrusive episodes. The earliest episode is represented by a single dated Paleozoic pluton, Summit Granite (new) (381.2 ± 7.3 Ma), which is correlated with a discrete pulse of Mid-Late Devonian plutonism recognised in the Karamea Batholith. The undated Mount Graham Granite (new) is also likely to be Paleozoic, based on chemical and petrographic characteristics. The bulk of the batholith (seven plutons) was emplaced in the mid Cretaceous (114-109 Ma) and comprises two related, yet distinct, geochemical suites, which correlate with the previously defined Rahu Suite. The plutons identified are (from north to south): Pah Point Granite; Jays Creek Granodiorite (new); Uncle Bay Tonalite; Te Kinga Monzogranite; Deutgam Granodiorite; Turiwhate Granodiorite (new); and Arahura Granite (new). Mid-Cretaceous plutonism in the Western Province is considered to be the result of crustal thinning and extension following overthickening during collision of the Early Cretaceous Median Tectonic Zone volcanic arc. Late Cretaceous alkaline activity is represented by the emplacement of the A-type French Creek Granite at 1.7 ± 1.8 Ma, contemporaneous with intrusion of a major swarm of doleritic-lamprophyric dikes - the Hohonu Dike Swarm. These events correlate with the first appearance of oceanic crust in the Tasman Sea. The Granite Hill Complex is a suite of amphibolite facies gneisses occurring as an uplifted wedge between the Alpine Fault nd the Hohonu Batholith. These gneisses are considered to represent an extension of the Fraser Complex to the south. A detailed understanding of their geological affinities and history is yet to be established. (author). 66 refs., 7 figs., 3 tabs

  9. Bulk rock and mineral chemistries and ascent rates of high-K calc-alkalic epidote-bearing magmas, Northeastern Brazil

    Science.gov (United States)

    Brasilino, R. G.; Sial, A. N.; Ferreira, V. P.; Pimentel, M. M.

    2011-12-01

    A manifestation of the Pan-African-Brasiliano orogeny (700-550 Ma) in northeastern Brazil was the emplacement of widespread Neoproterozoic granitoids in diverse tectonic terranes. Among these plutons are the magmatic epidote-bearing Conceição das Creoulas, Caldeirão Encantado, Murici, and Boqueirão plutons, located close to the boundary between the Alto Pajeú and Cachoeirinha-Salgueiro terranes. The plutons are high-K calc-alkalic granodiorites to monzogranites, with tabular K-feldspar megacrysts. Pistacite [atomic Fe+ 3/(Fe3++ Al)] in epidote in these granitoids ranges from 21 to 27%. High oxygen fugacity (log fO2 - 19 to - 13) and the preservation of epidote suggest that the magma was oxidized. Al-in-hornblende barometry indicates hornblende solidification between 6 and 8 kbar, at 620 to 780 °C according to the hornblende-plagioclase thermometer. Zircon saturation thermometry attests to a near-liquidus temperature range from 794 to 853 °C. Partial corrosion of magmatic epidote in these four plutons occurred during an interval of no more than 10-30 years, which corresponds to maximum magma ascent rates of 650-1000 m/year. Diking, associated with regional shearing, probably facilitated rapid transport of granitic magma through hot continental crust at peak metamorphism, and permitted survival of epidote that was out of equilibrium at the low pressure of final emplacement. Similarities between mineralogical composition, chemistry, and isotopic compositions (εNd(0.60Ga) between - 2 and - 5,TDM from 1.2 to 1.3 Ga, δ18O values > 10‰, V-SMOW) of these four plutons and Neoproterozoic magmatic epidote-bearing plutons elsewhere in northeastern Brazil, argue for similar metabasaltic/mafic sources that had previously experienced low-temperature alteration.

  10. Geologic Map of the Tower Peak Quadrangle, Central Sierra Nevada, California

    Science.gov (United States)

    Wahrhaftig, Clyde

    2000-01-01

    Introduction The Tower Peak quadrangle, which includes northernmost Yosemite National Park, is located astride the glaciated crest of the central Sierra Nevada and covers an exceptionally well-exposed part of the Sierra Nevada batholith. Granitic plutonic rocks of the batholith dominate the geology of the Tower Peak quadrangle, and at least 18 separate pre-Tertiary intrusive events have been identified. Pre-Cretaceous metamorphic rocks crop out in the quadrangle in isolated roof pendants and septa. Tertiary volcanic rocks cover granitic rocks in the northern part of the quadrangle, but are not considered in this brief summary. Potassium-argon (K-Ar) age determinations for plutonic rocks in the quadrangle range from 83 to 96 million years (Ma), including one of 86 Ma for the granodiorite of Lake Harriet (Robinson and Kistler, 1986). However, a rubidium-strontium whole-rock isochron age of 129 Ma has been obtained for the Lake Harriet pluton (Robinson and Kistler, 1986), which field evidence indicates is the oldest plutonic body within the quadrangle. This suggests that some of the K-Ar ages record an episode of resetting during later thermal events and are too young. The evidence indicates that all the plutonic rocks are of Cretaceous age, with the youngest being the Cathedral Peak Granodiorite at about 83 Ma. The pre-Tertiary rocks of the Tower Peak quadrangle fall into two groups: (1) an L-shaped area of older plutonic and metamorphic rocks, 3 to 10 km wide, that extends diagonally both northeast and southeast from near the center of the quadrangle; and (2) a younger group of large, probably composite intrusions that cover large areas in adjacent quadrangles and extend into the Tower Peak quadrangle from the east, north, and southwest.

  11. To Capture Student Interest in Geosciences, Plan an Adventure

    Science.gov (United States)

    Sassier, Caroline; Galland, Olivier; Mair, Karen

    2011-01-01

    It is dawn, -17°C, and 4700 meters above sea level, and two young scientists are alone in a tiny tent in the middle of the immense desert of the Bolivian Altiplano. Their bicycles and sleeping bags are coated with a thin layer of ice. Muscles aching, as they did yesterday and probably will tomorrow, they shrug off their sleepiness as the sunrise heats up their tent. After a simple breakfast, the researchers peek out and feast their eyes on a stunning view of high volcanic peaks and salt lakes. They are on the Andean Geotrail, a 9-month bike adventure through the Andes mountains, from Ushuaia in Argentinean Tierra del Fuego to Nazca, Peru (see Figure 1). Their goal is to share this spectacular geological setting with primary-, secondary- and high-school students.

  12. Magma mixing in granitic rocks of the central Sierra Nevada, California

    Science.gov (United States)

    Reid, John B.; Evans, Owen C.; Fates, Dailey G.

    1983-12-01

    The El Capitan alaskite exposed in the North American Wall, Yosemite National Park, was intruded by two sets of mafic dikes that interacted thermally and chemically with the host alaskite. Comparisons of petrographic and compositional data for these dikes and alaskite with published data for Sierra Nevada plutons lead us to suggest that mafic magmas were important in the generation of the Sierra Nevada batholith. Specifically, we conclude that: (1) intrusion of mafic magmas in the lower crust caused partial melting and generation of alaskite (rhyolitic) magmas; (2) interaction between the mafic and felsic magmas lead to the observed linear variation diagrams for major elements; (3) most mafic inclusions in Sierra Nevada plutons represent chilled pillows of mafic magmas, related by fractional crystallization and granitoid assimilation, that dissolve into their felsic host and contaminate it to intermediate (granodioritic) compositions; (4) vesiculation of hydrous mafic magma upon chilling may allow buoyant mafic inclusions and their disaggregation products to collect beneath a pluton's domed ceiling causing the zoning (mafic margins-to-felsic core) that these plutons exhibit.

  13. Past and future fracturing in AECL Research areas in the superior province of the Canadian Precambrian Shield, with emphasis on the Lac du Bonnet Batholith

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A; Everitt, R A; Martin, C D; Davison, C C [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1995-10-01

    The likelihood that future fracturing, arising from geologic causes, could occur in the vicinity of a nuclear fuel waste repository in plutonic rock of the Canadian Precambrian Shield, is examined. The report discusses the possible causes of fracturing (both past and future) in Shield rocks. The report then examines case histories of fracture formation in Precambrian plutonic rocks in AECL`s Research Areas, especially the history of the Lac du Bonnet Batholith, in the Whiteshell Area, Manitoba. Initially, fractures can be introduced into intrusive plutonic rocks during crystallization and cooling of an intrusive magma. These fractures are found at all size scales; as late residual magma dyking, hydraulic fracturing by retrograde boiling off of hydrothermal fluids, and, in some cases, through local differential cooling. Subsequent fracturing is largely caused by changes in environmental temperature and stress field, rather than by alteration of the material behaviour of the rock. Pluton emplacement during orogeny is commonly accompanied by uplift and erosional exhumation, altering both the tectonic and the lithostatic stresses, the rock temperature gradient and the pore fluid characteristics.

  14. Past and future fracturing in AECL Research areas in the superior province of the Canadian Precambrian Shield, with emphasis on the Lac du Bonnet Batholith

    International Nuclear Information System (INIS)

    Brown, A.; Everitt, R.A.; Martin, C.D.; Davison, C.C.

    1995-10-01

    The likelihood that future fracturing, arising from geologic causes, could occur in the vicinity of a nuclear fuel waste repository in plutonic rock of the Canadian Precambrian Shield, is examined. The report discusses the possible causes of fracturing (both past and future) in Shield rocks. The report then examines case histories of fracture formation in Precambrian plutonic rocks in AECL's Research Areas, especially the history of the Lac du Bonnet Batholith, in the Whiteshell Area, Manitoba. Initially, fractures can be introduced into intrusive plutonic rocks during crystallization and cooling of an intrusive magma. These fractures are found at all size scales; as late residual magma dyking, hydraulic fracturing by retrograde boiling off of hydrothermal fluids, and, in some cases, through local differential cooling. Subsequent fracturing is largely caused by changes in environmental temperature and stress field, rather than by alteration of the material behaviour of the rock. Pluton emplacement during orogeny is commonly accompanied by uplift and erosional exhumation, altering both the tectonic and the lithostatic stresses, the rock temperature gradient and the pore fluid characteristics

  15. From Crustal Anatexis to Pluton Emplacement: High-Precision Zircon Geochronology Reveals the Thermal History of the Larderello-Travale Geothermal System (Italy)

    Science.gov (United States)

    Farina, F.; Dini, A.; Ovtcharova, M.; Davies, J.; Bouvier, A. S.; Baumgartner, L. P.; Caricchi, L.; Schaltegger, U.

    2017-12-01

    Late Miocene to recent post-collisional extension in Tuscany (Italy) led to the emplacement of shallow-level granitic plutons and to the eruption of small rhyolitic bodies. The intrusion of peraluminous two-mica and tourmaline-bearing granites triggered the formation of the steam-dominated Larderello-Travale geothermal system. In this study, zircon crystals from granite samples obtained from drill holes at 3.0-4.5 km depth were investigated by combining in-situ oxygen isotopes analysis and high-precision CA-ID-TIMS U-Pb age determinations to gain insight into the nature of the magmatic heat source fuelling the geothermal field. Magmatic zircon crystals display δ18O values ranging from 8.6 to 13.5‰ and crystals from individual samples exhibit inter- and intra-grain oxygen isotope variability exceeding 3‰. The geochronological data indicates the existence of three magmatic pulses with ages between 3.637 ± 0.008 and 1.671 ± 0.004 Ma. More importantly, zircon crystals from individual samples exhibit an age spread as large as 200-400 ky. This age dispersion, which is more than one order of magnitude greater than the uncertainty on a single date, suggest that most of the zircon did not crystallize at the emplacement level, but within isolated and isotopically distinct magma batches before large-scale homogenization in a magmatic reservoir at depth. The rate of assembly and final volume of this reservoir is estimated using the distribution of precise U-Pb zircon dates following the approach of Caricchi et al. (2014). Thermal modelling indicates that the heat flow at the surface in the geothermal field cannot be sustained by the inferred reservoir or by heat advection from the mantle. Our data suggest the existence of a younger shallow-level intrusion, whose occurrence also accounts for the existence of confined magmatic fluids at the top of the Larderello-Travale intrusion. We conclude that a multi-disciplinary approach, integrating high-precision zircon dating, in

  16. Geochemistry and Nd-Sr isotopic signatures of the Pensamiento Granitoid Complex, Rondonian-San Ignacio Province, eastern precambrian shield of Bolivia: petrogenetic constraints for a mesoproterozoic magmatic arc setting;Geoquimica e assinaturas Nd-Sr do Complexo Granitoide Pensamiento, provincia Rondoniana-San Ignacio, pre-cambriano de Bolivia Oriental: caracterizacao petrogenetica de um arco magmatico no mesoproterozoico

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Ramiro, E-mail: rmatoss@igc.usp.b [Universidad Mayor de San Andre (UMSA), La Paz (Bolivia, Plurinational State of). Inst. de Investigaciones Geologicas y del Medio Ambiente; Teixeira, Wilson; Bettencourt, Jorge Silva, E-mail: wteixeir@usp.b, E-mail: jsbetten@usp.b [Universidade de Sao Paulo (IGC/USP), SP (Brazil). Inst. de Geociencias. Dept. de Mineralogia e Geotectonica; Geraldes, Mauro Cesar, E-mail: geraldes@uerj.b [Universidade do Estado do Rio de Janeiro (FG/UERJ), RJ (Brazil). Faculdade de Geologia

    2009-07-01

    The Pensamiento Granitoid Complex (PGC), located in the northern part of the eastern Precambrian shield of Bolivia, is tectonically assigned to the Rondonian-San Ignacio Province (1.55 - 1.30 Ga) of the Amazonian Craton that is made up by Archean and Proterozoic provinces. The Proterozoic ones result from accretionary orogens that become successively younger south westwards, such as the Rondonian/San Ignacio (1.37 - 1.32 Ga) and the Sunsas orogenies (1.20 - 1.00 Ga). The PGC crops out mainly on the 'Paragua craton' bounded to the south by the Sunsas belt, and composed of granites and subvolcanic terms, and subordinately of syenites, granodiorites, tonalites, trondhjemites and diorites as orogenic representatives of the Rondonian/San Ignacio Orogeny, intrusive into the Lomas Maneches (ca. 1.68 Ga) and Chiquitania (ca. 1.7 Ga) complexes. Thirteen whole rock chemical analyses for major, trace and REE elements were performed for the La Junta, San Martin, Diamantina, Porvernir, San Cristobal, Piso Firme plutons of the PGC. The negative trends of MgO, Al{sub 2}O{sub 3} and CaO contents with increasing SiO{sub 2} suggest that fractional crystallization played an important role in the petrogenesis of the investigated rocks. The data also indicate a mainly peraluminous, sub-alkaline to high-K calc-alkaline composition, and fractionated LREE/HREE patterns are consistent with a magmatic arc character for these plutons. SHRIMP U-Pb zircon ages of the La Junta and San Martin syn- to late-kinematic plutons are 1347 {+-} 21 Ma and 1373 {+-} 20 Ma respectively, and the Sm-Nd T{sub DM} model ages are between 1.9 to 2.0 Ga, while {epsilon}{sub Nd(1330)} values range from +1.8 to -4.3, respectively. In addition, the late- to post-kinematic Diamantina pluton yields SHRIMP U-Pb zircon age of 1340 {+-} 20 Ma, and variable Sm-Nd T{sub DM} model ages (1.6 to 1.9 Ga) and {epsilon}{sub Nd(1330)} values (+0.4 to -1.2) that are comparable with previous results found for other coeval

  17. Geochemistry and Nd-Sr isotopic signatures of the Pensamiento Granitoid Complex, Rondonian-San Ignacio Province, eastern precambrian shield of Bolivia: petrogenetic constraints for a mesoproterozoic magmatic arc setting

    International Nuclear Information System (INIS)

    Matos, Ramiro; Teixeira, Wilson; Bettencourt, Jorge Silva; Geraldes, Mauro Cesar

    2009-01-01

    The Pensamiento Granitoid Complex (PGC), located in the northern part of the eastern Precambrian shield of Bolivia, is tectonically assigned to the Rondonian-San Ignacio Province (1.55 - 1.30 Ga) of the Amazonian Craton that is made up by Archean and Proterozoic provinces. The Proterozoic ones result from accretionary orogens that become successively younger south westwards, such as the Rondonian/San Ignacio (1.37 - 1.32 Ga) and the Sunsas orogenies (1.20 - 1.00 Ga). The PGC crops out mainly on the 'Paragua craton' bounded to the south by the Sunsas belt, and composed of granites and subvolcanic terms, and subordinately of syenites, granodiorites, tonalites, trondhjemites and diorites as orogenic representatives of the Rondonian/San Ignacio Orogeny, intrusive into the Lomas Maneches (ca. 1.68 Ga) and Chiquitania (ca. 1.7 Ga) complexes. Thirteen whole rock chemical analyses for major, trace and REE elements were performed for the La Junta, San Martin, Diamantina, Porvernir, San Cristobal, Piso Firme plutons of the PGC. The negative trends of MgO, Al 2 O 3 and CaO contents with increasing SiO 2 suggest that fractional crystallization played an important role in the petrogenesis of the investigated rocks. The data also indicate a mainly peraluminous, sub-alkaline to high-K calc-alkaline composition, and fractionated LREE/HREE patterns are consistent with a magmatic arc character for these plutons. SHRIMP U-Pb zircon ages of the La Junta and San Martin syn- to late-kinematic plutons are 1347 ± 21 Ma and 1373 ± 20 Ma respectively, and the Sm-Nd T DM model ages are between 1.9 to 2.0 Ga, while ε Nd(1330) values range from +1.8 to -4.3, respectively. In addition, the late- to post-kinematic Diamantina pluton yields SHRIMP U-Pb zircon age of 1340 ± 20 Ma, and variable Sm-Nd T DM model ages (1.6 to 1.9 Ga) and ε Nd(1330) values (+0.4 to -1.2) that are comparable with previous results found for other coeval plutons. The Porvenir, San Cristobal and Piso Firme plutons

  18. Mantle contribution and tectonic transition in the Aqishan-Yamansu Belt, Eastern Tianshan, NW China: Insights from geochronology and geochemistry of Early Carboniferous to Early Permian felsic intrusions

    Science.gov (United States)

    Du, Long; Long, Xiaoping; Yuan, Chao; Zhang, Yunying; Huang, Zongying; Wang, Xinyu; Yang, Yueheng

    2018-04-01

    Late Paleozoic is a key period for the accretion and collision of the southern Central Asian Orogenic Belt (CAOB). Here, we present new zircon U-Pb ages, whole-rock geochemistry and Sr-Nd isotopic compositions for four Late Paleozoic felsic plutons in Eastern Tianshan (or Tienshan in some literatures) in order to constrain the tectonic evolution of the southern CAOB. The granodioritic pluton and its dioritic enclaves were synchronously formed in the Early Carboniferous (336 ± 3 Ma and 335 ± 2 Ma, respectively). These rocks are depleted in Nb, Ta and Ti, and enriched in Rb, Ba, Th and U related to the primitive mantle, which show typical features of arc rocks. They both have similar Sr-Nd isotopic ratios to those granitic rocks from the eastern Central Tianshan Block and have the latest Mesoproterozoic two stage Nd model ages (TDM2) (1111-1195 Ma for the granodioritic pluton and 1104-1108 Ma for the enclaves, respectively), indicating that their source magmas may have been derived from the Mesoproterozoic crust. The albitophyric pluton was also emplaced in the Early Carboniferous (333 ± 3 Ma). Rocks of this pluton have similar εNd(t) values (-0.69 to -0.37) and TDM2 ages (1135-1161 Ma) to those of the granodioritic rocks, suggest similar crustal source for both types of rocks. In contrast, the K-feldspar granitic and monzonitic plutons were emplaced in the Early Permian (292 ± 3 Ma and 281 ± 2 Ma, respectively). Samples of the K-feldspar granitic pluton have high K2O + Na2O, FeO/MgO, Ga/Al, HFSE (e.g., Zr and Hf) and low CaO, Sr and Ba, exhibiting characteristics of A2-type granites, which probably emplaced in a post-collisional extension environment. They have higher εNd(t) values (+2.77 to +3.27) and more juvenile TDM2 ages (799-841 Ma) than the Early Carboniferous plutons, suggesting that they were derived from relatively younger crustal sources. The monzonitic granites are metaluminous to weakly peraluminous with A/CNK ranging from 0.93 to 1.05, and have

  19. U-Pb SHRIMP data and geochemical characterization of granitoids intruded along the Coxixola shear zone, Provincia Borborema, NE Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Ignez de Pinho; Silva Filho, Adejardo Francisco da; Silva, Francis M.J.V. da, E-mail: ignez@ufpe.br [Universidade Federal de Pernanmbuco (UFPE), Recife, PE (Brazil). Dept. de Geologia; Armstrong, Richard [Australian National University (Australia)

    2011-07-01

    A large volume of granitic magmatism associated with large scale shear zone and metamorphism under high-T amphibolite facies conditions characterize the Brasiliano Orogeny in the Borborema Province, NE Brazil. Granitoids from two plutons and later dykes intruded along the Coxixola shear zone show distinct crystallization ages and geochemical signature. The oldest granitoids (618 ± 5 Ma), Serra de Inacio Pereira Pluton are coeval with the peak of regional metamorphism and they were probably originated by melting of a paleoproterozoic source. The granitoids from the Serra do Marinho Pluton show crystallization age of 563 ± 4 Ma and geochemical signature of post-collisional A-type granites. The later dykes have crystallization age of 526 ± 7 Ma, geochemical signature of A-type granitoids. (author)

  20. Nuclear fuel waste management program geotechnical studies of Eye-Dashwa Lakes research area rock properties

    International Nuclear Information System (INIS)

    Chernis, P.J.; Robertson, P.B.

    1992-05-01

    The Eye-Dashwa Lakes pluton near Atikokan Ontario has been used as a study area for the Canadian nuclear fuel waste management research program. The pluton consists predominately of granite. Fractures formed during cooling of the pluton were filled with a succession of different materials at different times. Measurements of a series of geophysical and geotechnical properties of rock samples are published here in this report, including especially microcrack and pore structures. An indication has been found that a larger proportion of the porosity of Whiteshell and Atikokan samples is contained in connecting pores, compared to other rocks. This may seem surprising in view of the finding that approximately 70% of the effective porosity of Atikokan samples is contained in pockets

  1. Hydrogen and oxygen isotope constraints on hydrothermal alteration of the Trinity peridotite, Klamath Mountains, California

    Science.gov (United States)

    Liakhovitch, V.; Quick, J.E.; Gregory, R.T.

    2005-01-01

    The Trinity peridotite represents a rare opportunity to examine a relatively fertile plagioclase peridotite that was exhumed and later subjected to intrusive events in a seafloor environment, followed by its emplacement and incorporation into a continent. Over 250 stable isotopic determinations on whole rocks and minerals elucidate the hydrothermal evolution of the Trinity complex. All three serpentine polymorphs are present in the Trinity peridotite; these separate on the basis of their ??D values: antigorite, -46 serpentinization, or overprinting of earlier low-temperature seafloor serpentinization. Regionally, contours of ??D values exhibit bull's-eye patterns associated with the gabbroic plutons, with ??D maxima coinciding with the blackwall alteration at the margins on the plutons. In contrast to the hydrogen isotope behavior, oxygen isotope values of the three polymorphs are indistinguishable, spanning the range 5.3 history: (1) lithospheric emplacement and cooling of the peridotite in an oceanic environment ??? 472 Ma; (2) intrusion of gabbroic plutons into cold peridotite in an arc environment between 435 and 404 Ma; and finally (3) intrusion of felsic plutons between 171 and 127 Ma, long after the peridotite was incorporated into the continental crust. Copyright ?? 2005 by V. H. Winston & Son, Inc. All rights reserved.

  2. Timing of Secondary Hydrothermal Alteration of the Luobusa Chromitites Constrained by Ar/Ar Dating of Chrome Chlorites

    Directory of Open Access Journals (Sweden)

    Wei Guo

    2018-05-01

    Full Text Available Chrome chlorites are usually found as secondary phases formed by hydrothermal alteration of chromite deposits and associated mafic/ultramafic rocks. Here, we report the 40Ar/39Ar age of chrome chlorites separated from the Luobusa massive chromitites which have undergone secondary alteration by CO2-rich hydrothermal fluids. The dating results reveal that the intermediate heating steps (from 4 to 10 of sample L7 generate an age plateau of 29.88 ± 0.42 Ma (MSWD = 0.12, plateau 39Ar = 74.6%, and the plateau data points define a concordant inverse isochron age of 30.15 ± 1.05 Ma (MSWD = 0.08, initial 40Ar/36Ar = 295.8 ± 9.7. The Ar release pattern shows no evidence of later degassing or inherited radiogenic component indicated by an atmospheric intercept, thus representing the age of the hydrothermal activity. Based on the agreement of this hydrothermal age with the ~30 Ma adakitic plutons exposed in nearby regions (the Zedong area, tens of kilometers west Luobusa and the extensive late Oligocene plutonism distributed along the southeastern Gangdese magmatic belt, it is suggested that the hydrothermal fluids are likely related to the ~30 Ma magmatism. The hydrothermal fluid circulation could be launched either by remote plutons (such as the Sangri granodiorite, the nearest ~30 Ma pluton west Luobusa or by a similar coeval pluton in the local Luobusa area (inferred, not found or reported so far. Our results provide important clues for when the listwanites in Luobusa were formed.

  3. [Tierra del Fuego: the scientific-political construction of exclusion and counter-image of the ideal city dweller].

    Science.gov (United States)

    Nacach, Gabriela

    2012-01-01

    Due to its late incorporation into the national State, the social, economic and political setting of the Argentine province Tierra del Fuego differed from that of the rest of the national territory. In the construction of dependent otherness, objectifications and representations were imposed by state-related and non-state-related institutions, among other agencies. In this context, the Salesian mission of La Candelaria and Ushuaia's Jail for recidivists stand out as spaces in which biopolitics was concretised. The native population and criminals in Tierra del Fuego were those to be subjugated. The thesis of the extinction of the Indian and the simultaneous exaltation of the criminal as the subject of progress identified the scientific and political mechanisms by which the exclusion of certain social groups (Tierra del Fuego's indigenous population) and the inclusion of others (criminals) were regulated.

  4. Nd-Sr isotopic geochemistry and U-Pb geochronology of the Fe granitic gneiss and Lajedo Granodiorite: implications for paleoproterozoic evolution of the Mineiro Belt, southern Sao Francisco craton, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Wilson [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Geociencias. Centro de Pesquisas Geocronologicas]. E-mail: wteixeir@usp.br; Avila, Ciro Alexandre [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Museu Nacional. Dept. de Geologia e Paleontologia]. E-mail: avila@mn.ufrj.br; Nunes, Luciana Cabral [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Geociencias]. E-mail: luciana@igc.usp.br

    2008-07-01

    The Fe granitic gneiss and Lajedo granodiorite belong to a voluminous felsic-mafic plutonism, tectonically linked to Paleoproterozoic magmatic evolution of the Mineiro Belt, southern portion of the Sao Francisco Craton, central-eastern Brazil. The Fe pluton is located north of the Lenheiros shear zone and is intrusive with respect to the Rio das Mortes greenstone belt and pyroxenite - gabbroic bodies, as indicated by xenoliths of gneiss and amphibolite, in the first case, and pyroxenite in the latter. The Lajedo granodiorite is located south of the Lenheiros shear zone and cuts the metamafic rocks of the Forro peridotite - pyroxenite and mafic and intermediate rocks of the Nazareno greenstone belt, as evidenced by xenoliths from the latter unit. The modal composition of the Fe granitic gneiss lies within the ranges of monzogranite and syenogranite. It is peraluminous and shows a large variation in K{sub 2}O content, which implies a middle-K calc-alkaline to high-K calc-alkaline tendency. The Lajedo modal composition is consistent with granodioritic and tonalitic compositions. It indicates a predominantly peraluminous composition and calc-alkaline character. The U-Pb zircon crystallization age of the Fe granitic gneiss is 2191 {+-} 9 Ma, whereas the Lajedo granodiorite yields 2208 {+-} 26 Ma. The Nd/Sr characteristics of the Fe and Lajedo plutons are consistent with mixtures of enriched mantle (EMI-type), DMM and crustal components during magma genesis in a plutonic arc setting, while the low {sup 87}Sr/{sup 86}Sri ratios point to contribution of mafic rock protoliths during magma genesis. This is also in accordance with the characteristic xenoliths observed within the investigated plutons from the Nazareno and Rio das Mortes greenstone belts. The Fe granitic gneiss and Lajedo granodiorite show tectonic characteristics which are comparable to those of nearby coeval plutons: Brito quartz-diorite (2221 +- 2 Ma), Brumado de Cima granodiorite (2219 {+-} 2 Ma), Brumado

  5. Nd-Sr isotopic geochemistry and U-Pb geochronology of the Fe granitic gneiss and Lajedo Granodiorite: implications for paleoproterozoic evolution of the Mineiro Belt, southern Sao Francisco craton, Brazil

    International Nuclear Information System (INIS)

    Teixeira, Wilson; Avila, Ciro Alexandre; Nunes, Luciana Cabral

    2008-01-01

    The Fe granitic gneiss and Lajedo granodiorite belong to a voluminous felsic-mafic plutonism, tectonically linked to Paleoproterozoic magmatic evolution of the Mineiro Belt, southern portion of the Sao Francisco Craton, central-eastern Brazil. The Fe pluton is located north of the Lenheiros shear zone and is intrusive with respect to the Rio das Mortes greenstone belt and pyroxenite - gabbroic bodies, as indicated by xenoliths of gneiss and amphibolite, in the first case, and pyroxenite in the latter. The Lajedo granodiorite is located south of the Lenheiros shear zone and cuts the metamafic rocks of the Forro peridotite - pyroxenite and mafic and intermediate rocks of the Nazareno greenstone belt, as evidenced by xenoliths from the latter unit. The modal composition of the Fe granitic gneiss lies within the ranges of monzogranite and syenogranite. It is peraluminous and shows a large variation in K 2 O content, which implies a middle-K calc-alkaline to high-K calc-alkaline tendency. The Lajedo modal composition is consistent with granodioritic and tonalitic compositions. It indicates a predominantly peraluminous composition and calc-alkaline character. The U-Pb zircon crystallization age of the Fe granitic gneiss is 2191 ± 9 Ma, whereas the Lajedo granodiorite yields 2208 ± 26 Ma. The Nd/Sr characteristics of the Fe and Lajedo plutons are consistent with mixtures of enriched mantle (EMI-type), DMM and crustal components during magma genesis in a plutonic arc setting, while the low 87 Sr/ 86 Sri ratios point to contribution of mafic rock protoliths during magma genesis. This is also in accordance with the characteristic xenoliths observed within the investigated plutons from the Nazareno and Rio das Mortes greenstone belts. The Fe granitic gneiss and Lajedo granodiorite show tectonic characteristics which are comparable to those of nearby coeval plutons: Brito quartz-diorite (2221 +- 2 Ma), Brumado de Cima granodiorite (2219 ± 2 Ma), Brumado de Baixo

  6. Sm-Nd geochemistry and U-Pb geochronology of the Preissac and Lamotte leucogranites, Abitibi Subprovince

    International Nuclear Information System (INIS)

    Ducharme, Y.; Stevenson, R.K.; Machado, N.

    1997-01-01

    The Lacorne Block in the Southern Volcanic Zone of the Abitibi Subprovince is composed of interleaved metavolcanic and metasedimentary rocks that are intruded by syn- to posttectonic diorites, granodiorites, and granites. These rocks form the Lacorne, Lamotte, and Preissac plutons, which can be divided into an early suite of dioritic - granodioritic rocks and a later suite of S-type, Ieucocratic granites with an estimated age of 2640 Ma. This study presents Sm - Nd data and U - Pb monazite and titanite ages for the late leucocratic granites of the Preissac and Lamotte plutons. A biotite -muscovite monzogranitic phase of the Lamotte pluton is dated at 2647 ± 2 Ma, but similar phases of the Preissac pluton are dated at 2681 - 2660 Ma. These ages extend the period of leucogranitic plutonism for this area to 40 Ma and suggest that the age of collision of the Abitibi and the Pontiac subprovinces occurred before 2685 Ma. The ε Nd values for the leucogranites range from -1 to +3 and suggest an origin largely through melting of sediments having a juvenile isotopic signature (i.e.. a short crustal residence time). Possible sources of the leucogranites include metasedimentary rocks of the Pontiac Subprovince, the Lacorne Block, and the Southern Abitibi Volcanic Zone, but the ε Nd values of the granites are most consistent with melting of metasediments of the Southern Volcanic Zone. We suggest that sediments of the Southern Volcanic Zone formed an accretionary prism along the southern continental margin of the Abitibi before collision with the Pontiac Subprovince. This prism was subsequently trapped between the two colliding margins, subducted, and partially melted to produce the Lamotte, Preissac, and Lacorne leucogranites. (author)

  7. Age constraints on deformation of the eastern Hodgkinson Province, north Queensland: new perspectives on the evolution of the northern Tasman Orogenic Zone

    International Nuclear Information System (INIS)

    Zucchetto, R.G.; Henderson, R.A.; Davis, B.K.; Wysoczanski, R.

    1999-01-01

    Granitic plutons of the Wangetti and Mt Formartine Supersuites intrude the Hodgkinson Formation of the Macalister Range district of the eastern Hodgkinson Province, north Queensland, Australia. Field and microstructural analyses of country-rock fabrics and those of the granites show four deformational events (D 1 -D 4 ) for the district, in common with other sectors of the Hodgkinson Province. Structural relationships show that plutons of the two supersuites were emplaced at different times. The Wangetti Granite lacks fabric development, but the deflection of country-rock cleavage trends around it and the microscale crenulation of S 2 on the rims of D 4 porphyroblasts within its aureole indicate syn-D 4 emplacement, consistent with the Early Permian crystallisation age attributed to this pluton from isotopic evidence. Plutons of the Mt Formartine Supersuite show the effects of multiple (D 2 -D 4 ) deformation. An emplacement age of 357 ± 6 Ma (latest Devonian) was obtained for this granite by SHRIMP U-Pb analyses of zircon. This identifies an early episode of plutonism for the Hodgkinson Province, most granites from which are of Permian age. The new date constrains the age of D 2 for the Macalister Range district and the age of the protolith of the Hodgkinson Formation as pre-Carboniferous. It matches the age previously determined for one of several small, related granitic stocks in the southeastern Camel Creek Subprovince of the Broken River Province. Structural relationships for granites of this age suggest that their emplacement was broadly associated with the first episode of regional-scale orogenesis and the development of penetrative fabrics in the Hodgkinson - Broken River Fold Belt. Copyright (1999) Blackwell Science Pty Ltd

  8. National Uranium Resource Evaluation: Okanogan Quadrangle, Washington

    International Nuclear Information System (INIS)

    Bernardi, M.L.; Powell, L.K.; Wicklund, M.A.

    1982-06-01

    The Okanogan Quadrangle, Washington, was evaluated to identify and delineate areas containing environments favorable for the occurrence of uranium deposits using criteria developed for the National Uranium Resource Evaluation program. Reconnaissance and detailed surface studies were augmented by aerial radiometric surveys and hydrogeochemical and stream-sediment reconnaissance studies. The results of the investigations indicate six environments favorable for uranium deposits. They are unclassified, anatectic, allogenic, and contact-metasomatic deposits in Late Precambrian and (or) Early Paleozoic mantling metamorphic core-complex rocks of the Kettle gneiss dome; magmatic-hydrothermal deposits in the Gold Creek pluton, the Magee Creek pluton, the Wellington Peak pluton, and the Midnite Mine pluton, all located in the southeast quadrant of the quadrangle; magmatic-hydrothermal allogenic deposits in Late Paleozoic and (or) Early Mesozoic black shales in the Castle Mountain area; allogenic deposits in Early Paleozoic metasedimentary rocks in the Harvey Creek area and in Late Precambrian metasedimentary rocks in the Blue Mountain area; and sandstone deposits in Eocene sedimentary rocks possibly present in the Enterprise Valley. Seven geologic units are considered unfavorable for uranium deposits. They are all the remaining metamorphic core-complex rocks, Precambrian metasedimentary rocks,Tertiary sedimentary and volcanic rocks, and all Pleistocene and Recent deposits; and, excluding those rocks in the unevaluated areas, include all the remaining plutonic rocks, Paleozoic miogeoclinical rocks, and Upper Paleozoic and Mesozoic eugeosynclinal rocks. Three areas, the Cobey Creek-Frosty Creek area, the Oregon City Ridge-Wilmont Creek area, and the area underlain by the Middle Cambrian Metaline Formation and its stratigraphic equivalents may possibly be favorable but are unevaluated due to lack of data

  9. Early Cretaceous I-type granites in the Tengchong terrane: New constraints on the late Mesozoic tectonic evolution of southwestern China

    Directory of Open Access Journals (Sweden)

    Yi Fang

    2018-03-01

    Full Text Available The Early Cretaceous granitoids that are widespread in the Tengchong terrane of Southwest China play a critical role in understanding the tectonic framework associated with the Tethyan oceans. In this study, we present a detailed description of zircon U–Pb ages, whole-rock geochemistry and Hf isotopes for the Laoxiangkeng pluton in the eastern Tengchong terrane and elucidate their petrogenesis and geodynamic implications. Zircon U–Pb dating of the Laoxiangkeng pluton yields ages of 114 ± 1 Ma and 115 ± 1 Ma, which imply an Early Cretaceous magmatic event. The Laoxiangkeng pluton enriched in Si and Na, is calc-alkaline and metaluminous, and has the characteristics of highly fractionated I-type granites. Zircons from the pluton have calculated εHf(t values of −12.7 to −3.7 and two-stage model ages of 1327–1974 Ma, respectively, indicating a mixed source of partial melting of Paleo-Neoproterozoic crust-derived compositions with some inputs of mantle-derived magmas. By integrating all available data for the regional tectonic evolution of the eastern Tethys tectonic domain, we conclude that the Early Cretaceous magmatism in the Tengchong terrane was produced by the northeastward subduction of the Meso-Tethyan Bangong–Nujiang Ocean.

  10. Review of potential host rocks for radioactive waste disposal in the southeast United States-Southern Piedmont subregion

    International Nuclear Information System (INIS)

    1980-10-01

    A literature study was conducted on the geology of the Southern Piedmont province in the states of Maryland, Virginia, North Carolina, South Carolina, and Georgia. The purpose was to identify geologic areas potentially suitable for containment of a repository for the long-term isolation of solidified radioactive waste. The crystalline rocks of the Southern Piedmont province range in age from Precambrian to Paleozoic, and are predominantly slates, phyllites, argillites, schists, metavolcanics, gneisses, gabbros, and granites. These rock units were classified as either favorable, potentially favorable, or unfavorable as potential study areas based on an evaluation of the geologic, hydrologic, and geotechnical characteristics. No socio-economic factors were considered. Rocks subjected to multiple periods of deformation and metamorphism, or described as highly fractured, or of limited areal extent were generally ranked as unfavorable. Potentially favorable rocks are primarily the high-grade metamorphic gneisses and granites. Sixteen areas were classified as being favorable for additional study. These areas are primarily large igneous granite plutons as follows: the Petersburg granite in Virginia; the Rolesville-Castallia, Churchland, and Landis plutons in North Carolina; the Liberty Hill, Winnsboro, and Ogden plutons in South Carolina; and the Siloam, Elberton, and six unnamed granite plutons in Georgia

  11. Multiple alteration events in the East Bull Lake anorthosite-gabbro layered complex, NE Ontario, Canada: evidence from fracture mineralogy and 40Ar-39Ar dating

    International Nuclear Information System (INIS)

    Kamineni, D.C.; McCrank, G.F.; Stone, D.; Geological Survey of Canada, Ottawa, Ontario)

    1987-01-01

    The East Bull Lake anorthosite-gabbro layered complex contains a variety of alteration minerals. Some of the more common ones are calcic amphiboles, biotite, epidote, adularia, quartz, chlorite, calcite, prehnite, pumpellyite, laumontite, gypsum, iron hydroxides and clays. The mode of occurrence and the data related to the stability of the alteration minerals suggest that they were formed under pressure-temperature conditions of: (1) epidote-amphibolite/greenschist facies; (2) prehnite-pumpellyite facies; (3) zeolite facies; and (4) low-temperature mineral facies. 40 Ar- 39 Ar data of hornblende and adularia indicate that the pluton is affected by distinct alteration events. Two mafic dyke intrusions, that overlap the alteration events, are recognised in the pluton. Synthesis of available radiometric ages suggests that the pluton intruded at 2472 +- 70 Ma, and was subjected to alteration as late as the Paleozoic and Cenozoic Eras. (author)

  12. The Marbat metamorphic core-complex (Southern Arabian Peninsula) : reassessment of the evolution of a Neoproterozoic island-arc from petrological, geochemical and U-Pb zircon data

    OpenAIRE

    Barbey, P.; Denele, Y.; Paquette, J. L.; Berger, J.; Ganne, Jérôme; Roques, D.

    2018-01-01

    The Marbat basement (Sultanate of Oman) belongs to the Neoproterozoic accretion domain of the Arabian-Nubian shield. We present new geochronological, petrological and geochemical data as an extension of our previous study (Denele et al., 2017) re-interpreting this basement as a metamorphic core complex (MCC). We showed that this MCC consists of a metamorphic unit (Juffa complex) separated by an extensional detachment from a plutonic unit (Sadh complex and Tonalite plutons). Geochemical data s...

  13. Age and kinematics of ductile deformation in the Cerro Durazno area, NW Argentina: Significance for orogenic processes operating at the western margin of Gondwana during Ordovician-Silurian times

    OpenAIRE

    M. I. Wegmann; U. Riller; F. D. Hongn; Johannes Glodny; Onno Oncken

    2008-01-01

    The Cerro Durazno Pluton belongs to a suite of Paleozoic granitoid intrusions in NWArgentina, that are central for understanding the tectonic setting of the western margin of Gondwana in Ordovician and Silurian times. The pluton and its host rocks were tectonically overprinted by metamorphic mineral shape fabrics formed under middle greenschist-facies metamorphic conditions and associated with the nearby Agua Rosada Shear Zone. Kinematic analysis of the shear zone based on the geometric relat...

  14. Ignimbrites to batholiths: integrating perspectives from geological, geophysical, and geochronological data

    Science.gov (United States)

    Lipman, Peter W.; Bachmann, Olivier

    2015-01-01

    Multistage histories of incremental accumulation, fractionation, and solidification during construction of large subvolcanic magma bodies that remained sufficiently liquid to erupt are recorded by Tertiary ignimbrites, source calderas, and granitoid intrusions associated with large gravity lows at the Southern Rocky Mountain volcanic field (SRMVF). Geophysical data combined with geological constraints and comparisons with tilted plutons and magmatic-arc sections elsewhere are consistent with the presence of vertically extensive (>20 km) intermediate to silicic batholiths (with intrusive:extrusive ratios of 10:1 or greater) beneath the major SRMVF volcanic loci (Sawatch, San Juan, Questa-Latir). Isotopic data require involvement of voluminous mantle-derived mafic magmas on a scale equal to or greater than that of the intermediate to silicic volcanic and plutonic rocks. Early waxing-stage intrusions (35–30 Ma) that fed intermediate-composition central volcanoes of the San Juan locus are more widespread than the geophysically defined batholith; these likely heated and processed the crust, preparatory for ignimbrite volcanism (32–27 Ma) and large-scale upper-crustal batholith growth. Age and compositional similarities indicate that SRMVF ignimbrites and granitic intrusions are closely related, but the extent to which the plutons record remnants of former magma reservoirs that lost melt to volcanic eruptions has been controversial. Published Ar/Ar-feldspar and U-Pb-zircon ages for plutons spatially associated with ignimbrite calderas document final crystallization of granitoid intrusions at times indistinguishable from the tuff to ages several million years younger. These ages also show that SRMVF caldera-related intrusions cooled and solidified soon after zircon crystallization, as magma supply waned. Some researchers interpret these results as recording pluton assembly in small increments that crystallized rapidly, leading to temporal disconnects between

  15. Dating quartz: Ar/Ar analyses of coexisting muscovite and fluid inclusion - rich quartz from paleocene amorphic aureole

    International Nuclear Information System (INIS)

    Matthews, S.J.; Perez de Arce, C.; Cornejo, P.; Cuitino, L; Klein, J

    2001-01-01

    We present Ar/Ar total fusion and step-heating data for coexisting muscovite and white quartz from the metamorphic aureole of the Lower Paleocene La Copiapina Pluton, 6 km south of Inca de Oro, III Region, Chile. The pluton intrudes the upper clastic sedimentary member of the Punta del Cobre Group (Upper Jurassic - Lower Cretaceous) and the calcareous sedimentary rocks of the Chanarcillo Group (Neocomian), and comprises fine to coarse grained pyroxene-hornblende-biotite quartz diorites and monzodiorites. Its emplacement was controlled on its north-western side by a subvertical NE-trending fault, along which were developed vertically banded skarns (skarn mylonite), suggesting syntectonic intrusion. Biotite K-Ar ages for the pluton fall in the range 61-63 Ma, relating it to a latest Cretaceous to Lowest Paleocene syn-compressional intrusive belt which is present in the area (Matthews and Cornejo, 2000). A metamorphic / metasomatic aureole is developed within the sandstones of the Punta del Cobre Group, on the extreme northern limit of the pluton. In this area, the sedimentary rocks have been replaced by quartz-sericite and quartz-muscovite assemblages, with minor hematite and tourmaline, and late supergene kaolinite and pyrophyllite. A coarse muscovite-quartz-tourmaline-hematite assemblage is developed in and around older (early Upper Cretaceous) andesitic dykes, in the form of replacement / fracture fill veins and replacement zones. Further from the contact with the pluton, fine-grained quartz-sericite rock with coarser muscovite-rich replacement veins represents the dominant lithology. Quartz in the coarse replacement rock is very rich in fluid inclusions. Primary inclusions are mainly of two coexisting types; bi-phase (liquid and gas bubble) and tri-phase (liquid, gas bubble and halite crystal), indicating that the quartz formed in the presence of a boiling fluid. Some inclusions also contain sylvite and occasional hematite daughter crystals. Secondary inclusions

  16. Orogenic potassic mafic magmatism, a product of alkaline-peraluminous mixing ? Variscan 'calc-alkaline' rocks from the Central Iberian and Ossa Morena Zones, Central Spain.

    Science.gov (United States)

    Scarrow, Jane H.; Cambeses, Aitor; Bea, Fernando; Montero, Pilar; Molina, José F.; Moreno, Juan Antonio

    2013-04-01

    Orogenic magmatic rocks provide information about mantle and crust melt-generation and -interaction processes. In this context, minor potassic mafic stocks which are formed of enriched mantle and crustal components and are common as late-orogenic intrusions in granitic plutons give insight into the timing of new crust formation and crustal recycling. Potassic mafic stocks are prevalent, albeit low volume, constituents of granite batholiths all through the European Variscan (350-280 Ma). In the Central Iberia Zone, Spanish Central System, crustal-melt, S-type, granitoid plutons are intruded by minor concomitant ultramafic-intermediate appinitic-vaugneritic stocks. Notwithstanding their whole-rock calc-alkaline composition, the stocks apparently did not have a subduction-related origin. Recent studies have attributed their genesis to mixing of alkaline mantle and peraluminous crustal melts. Their primary alkaline character, as indicated by amphibole and biotite mineral chemistry data, points, rather, towards an extension-related genesis. In the Ossa Morena Zone, south of the Central Iberian Zone, the igneous rocks also have a whole-rock calc-alkaline composition which has been considered to be the result of northward subduction of the South Portuguese Zone. Nevertheless, identification of a 'sill' of significant volume of mafic magma in the middle crust, the ´IBERSEIS reflective body', in a seismic profile across the Ossa Morena and South Portuguese Zones has cast doubt upon the calc-alkaline magmatism-subduction model; leading, instead, to the magmatism being attributed to intra-orogenic extension related to a mantle plume active from 340 Ma to 330 Ma. The aim here, then, is to reinvestigate the petrogenesis and age of the calc-alkaline rocks of the Ossa Morena Zone to determine their tectonomagmatic context be it subduction-, plume- or extension-related, and establish what they may reveal about mantle-crust interactions. Focussing, initially, on the Valencia del

  17. Interpretation of ground and aeromagnetic surveys of Palmer Land, Antarctic Peninsula

    Directory of Open Access Journals (Sweden)

    V. N. Masolov

    2000-06-01

    Full Text Available Aeromagnetic data for Palmer Land provide new information on crustal structures of the Antarctic Peninsula. Features shown on the compilation of the Lassiter Coast and Orville Coast are characterized by systems of subparallel regional anomaly zones and lineaments. The magnetic data reveal the widespread presence of an orthogonal pattern of crosscutting linear discontinuities that can be interpreted as a Late Cretaceous/Early Tertiary fracture pattern. The main displacements in the anomaly pattern between the two units are recognized in Wetmore-Irvine glaciers area where the structure of the Antarctic Peninsula changes orientation from SW-NE to S-N. The NW-SE trending transitional zone is probably a transfer zone associated with north-westerly movement of the Lassiter Coast crustal segment relative to the Orville Coast segment. Within the Lassiter Coast a fragment of Pacific Margin Anomaly (PMA, Central Plateau Magnetic Anomaly and East Coast Magnetic Anomaly (ECMA are mapped. Two-dimensional modelling suggests that PMA is caused by a limited depth body (8 km consisting of numerous plutons, probably, of different ages, composition and magnetization. The Central Plateau Magnetic Anomaly and the Merrick-Sweeney-Latady zone of the Orville Coast are represented by strong positive anomaly bands that are associated with gabbro-diorite rocks and accompanying plutons intruded near by the border of Mount Poster Formation and Latady Formation. The ECMA are alignments of high-amplitude magnetic anomalies caused by gabbro-diorite bodies, which are located within the framework of the Cretaceous granite-granodiorite plutons. Granite-granodiorite plutons of Lassiter Coast Intrusive Suite are mostly reflected by positive anomalies (100-500 nT. Modelling studies and the character of distribution of the magnetic anomalies suggest that the plutons of Lassiter Coast Intrusive Suite are prominently reflected in magnetic anomalies of regional extent. The plutonic

  18. Geologic map of the Big Delta B-2 quadrangle, east-central Alaska

    Science.gov (United States)

    Day, Warren C.; Aleinikoff, John N.; Roberts, Paul; Smith, Moira; Gamble, Bruce M.; Henning, Mitchell W.; Gough, Larry P.; Morath, Laurie C.

    2003-01-01

    New 1:63,360-scale geologic mapping of the Big Delta B-2 quadrangle provides important data on the structural setting and age of geologic units, as well as on the timing of gold mineralization plutonism within the Yukon-Tanana Upland of east-central Alaska. Gold exploration has remained active throughout the region in response to the discovery of the Pogo gold deposit, which lies within the northwestern part of the quadrangle near the south bank of the Goodpaster River. Geologic mapping and associated geochronological and geochemical studies by the U.S. Geological Survey (USGS) and the Alaska Department of Natural Resources, Division of Mining and Water Management, provide baseline data to help understand the regional geologic framework. Teck Cominco Limited geologists have provided the geologic mapping for the area that overlies the Pogo gold deposit as well as logistical support, which has lead to a much improved and informative product. The Yukon-Tanana Upland lies within the Tintina province in Alaska and consists of Paleozoic and possibly older(?) supracrustal rocks intruded by Paleozoic (Devonian to Mississippian) and Cretaceous plutons. The oldest rocks in the Big Delta B-2 quadrangle are Paleozoic gneisses of both plutonic and sedimentary origin. Paleozoic deformation, potentially associated with plutonism, was obscured by intense Mesozoic deformation and metamorphism. At least some of the rocks in the quadrangle underwent tectonism during the Middle Jurassic (about 188 Ma), and were subsequently deformed in an Early Cretaceous contractional event between about 130 and 116 Ma. New U-Pb SHRIMP data presented here on zircons from the Paleozoic biotite gneisses record inherited cores that range from 363 Ma to about 2,130 Ma and have rims of euhedral Early Cretaceous metamorphic overgrowths (116 +/- 4 Ma), interpreted to record recrystallization during Cretaceous west-northwest-directed thrusting and folding. U-Pb SHRIMP dating of monazite from a Paleozoic

  19. Geochemistry and petrogenesis of the Dehe Bala calc-alkaline granodiorites, south west of Boein Zahra

    Directory of Open Access Journals (Sweden)

    Zeynab Gharamohammadi

    2016-09-01

    Full Text Available The Dehe Bala pluton is exposed approximately 45 km south-west of Boein Zahra town, Qazvin province. This Pluton which intruded the Eocene volcano-sedimentary rocks of the Urumieh-Dokhtar Magmatic assemblage (UDMA, is mainly composed of granodiorite and produced narrow thermal metamorphic contact aureoles surrounding the intrusion. The body is characterized by SiO2 content ranging from 64.2 to 66.9 wt%, high-k calc-alkaline nature and metaluminous character (A/CNK

  20. Geochemical studies, magmatic evolution, microstructures and replacement mechanisms in Jebale-Barez granitoid Complex (East and Southeast Jiroft)

    OpenAIRE

    Jamal Rasouli; Mansour Ghorbani; Vahid Ahadnejad

    2017-01-01

    Introduction The Jebale-Barez Plutonic Complex (JBPC) is composed of many intrusive bodies and is located in the southeastern province of Kerman on the longitude of the 57◦ 45 ' east to 58◦ 00' and Northern latitudes 28◦ 30' to 29◦ 00'. The petrologic composition is composed of granodiorite, quartzdiorite, granite, alkali-granite, and trace amounts of tonalite with dominant granodiorite composition. Previously, the JBPC was separated into three plutonic phases by Ghorbani (2014). The fi...

  1. Age and isotopic systematics of Cretaceous borehole and surface samples from the greater Los Angeles Basin region: Implications for the types of crust that might underlie Los Angeles and their distribution along late Cenozoic fault systems

    Science.gov (United States)

    Premo, Wayne R.; Morton, Douglas M.; Kistler, Ronald W.

    2014-01-01

    Nine U-Pb zircon ages were determined on plutonic rocks sampled from surface outcrops and rock chips of drill core from boreholes within the greater Los Angeles Basin region. In addition, lead-strontium-neodymium (Pb-Sr-Nd) whole-rock isotopic data were obtained for eight of these samples. These results help to characterize the crystalline basement rocks hidden in the subsurface and provide information that bears on the tectonic history of the myriad of fault systems that have dissected the Los Angeles region over the past 15 m.y. Seven of the nine samples have U-Pb ages ranging from 115 to 103 Ma and whole-rock Pb-Sr-Nd isotopic characteristics that indicate the crystalline basement underneath the greater Los Angeles Basin region is mostly part of the Peninsular Ranges batholith. Furthermore, these data are interpreted as evidence for (1) the juxtaposition of mid-Cretaceous, northern Peninsular Ranges batholith plutonic rocks against Late Cretaceous plutonic rocks of the Transverse Ranges in the San Fernando Valley, probably along the Verdugo fault; (2) the juxtaposition of older northwestern Peninsular Ranges batholith rocks against younger northeastern Peninsular Ranges batholith rocks in the northern Puente Hills, implying transposition of northeastern Peninsular Ranges batholith rocks to the west along unrecognized faults beneath the Chino Basin; and (3) juxtaposition of northern Peninsular Ranges batholith plutonic rocks against Late Cretaceous plutonic rocks of the Transverse Ranges along the San Jose fault in the northern San Jose Hills at Ganesha Park. These mainly left-lateral strike-slip faults of the eastern part of the greater Los Angeles Basin region could be the result of block rotation within the adjacent orthogonal, right-lateral, Elsinore-Whittier fault zone to the west and the subparallel San Jacinto fault zone to the east. The San Andreas fault system is the larger, subparallel, driving force further to the east.

  2. Geology, petrography and geochemistry of the A-type granites from the Morro Redondo Complex (PR-SC, southern Brazil, Graciosa Province

    Directory of Open Access Journals (Sweden)

    FREDERICO C.J. VILALVA

    2014-03-01

    Full Text Available The Morro Redondo Complex is one of the most important occurrences of the Graciosa A-type Province, southern Brazil. It consists of the Papanduva and Quiriri granitic plutons and a contemporaneous bimodal volcanic association. The Papanduva Pluton includes massive and deformed peralkaline alkali-feldspar granites with Na-Ca and Na-amphiboles and clinopyroxenes. The deformed types are the most evolved rocks in the province and carry rare ‘agpaitic’ minerals, some being described for the first time in granites from Brazil. The larger Quiriri Pluton comprises massive, slightly peraluminous, biotite syeno- and monzogranites with rare Ca-amphibole. Biotite compositions are relatively homogeneous, whereas sodic amphiboles and clinopyroxenes show increasing Na and Fe3+ evolving paths. The Morro Redondo granites are ferroan, with high SiO2, alkalis and HFSE contents; the peralkaline types registering the highest fe#. LILE and HFSE abundances increase with the agpaitic index and the most evolved are HHP granites, with radiogenic heat production up to 5.7 µWm–3. Geothermobarometric estimates indicate emplacement under low pressures (∼100 MPa, at temperatures up to 850-800 °C, and relatively reduced (QFM and oxidized (+1 REPLACE_LT ΔQFM REPLACE_LT +3 environments for the Papanduva and Quiriri Plutons, respectively. In both cases, melts evolved to relatively high oxidation states upon crystallization progress.

  3. Banatitic magmatic and metallogenetic belt: metallogeny of the Romanian Carpathians segment

    Directory of Open Access Journals (Sweden)

    S̡erban-Nicolae Vlad

    2003-04-01

    Full Text Available The Romanian Carpathians sector of the Late Cretaceous Banatitic Magmatic and Metallogenetic belt (BMMB contains 1 plutons and volcano-plutonic complexes, i. e. calc-alkaline, I-type granitoids, with related ores; 2 shoshonitic plutons that lack economic interest. Two provinces have been delineated: the Apuseni Mts. Province in the North and the Western South Carpathians in the South. Apuseni Mts. Province is a non-porphyry environment related to more evolved (granodioritic-granitic magmatism. It is subdivided into three zones: Vlădeasa (Pb-Zn ores of restricted metallogenetic potential; Gilău-Bihor (Fe, Bi, Mo, Cu, W, Au, Ni, Co, Pb, Zn, Ag, U, B ores / conspicuous peri-batholitic arrangement and South Apuseni (only one minor Fe-skarn occurrence. Western South Carpathians Province occurs in Romania and extends in Eastern Serbia. It is subdivided into South Banat Mts.–Timok Zone (SBTZ and Poiana Ruscă Mts.– North Banat Mts.– Ridanj-Krepoljin Zone (PR-NB-RKZ. SBTZ is a typical porphyry environment of high metallogenetic potential (Cu, Au, Pb, Zn, while PR-NB-RKZ is a non-porphyry environment with small to medium size Pb, Zn, Fe, Cu deposits/prospects exhibiting commonly a peri-plutonic zoning. The metallogenetic model of the Romanian Carpathians segment of BMMB is conceived based on correlating magma composition/level of emplacement and ore types.

  4. The disposal of Canada's nuclear fuel waste: a study of postclosure safety of in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock. Volume 2: vault model

    International Nuclear Information System (INIS)

    Johnson, L.H.; LeNeveu, D.M.; King, F.; Shoesmith, D.W.; Kolar, M.; Oscarson, D.W.; Sunder, S.; Onofrei, C.; Crosthwaite, J.L.

    1996-06-01

    A study has been undertaken to evaluate the design and long-term performance of a nuclear fuel waste disposal vault based on a concept of in-room emplacement of copper containers at a depth of 500 m in plutonic rock in the Canadian Shield. The containers, each with 72 used CANDU fuel bundles, would be surrounded by clay-based buffer and backfill materials in an array of parallel rooms, with the excavation boundary assumed to have an excavation-disturbed zone (EDZ) with a higher permeability than the surrounding rock. In the anoxic conditions of deep rock of the Canadian Shield, the copper containers are expected to survive for >10 6 a. Thus container manufacturing defects, which are assumed to affect approximately 1 in 5000 containers, would be the only potential source of radionuclide release in the vault. The vault model is a computer code that simulates the release of radionuclides that would occur upon contact of the used fuel with groundwater, the diffusive transport of these radionuclides through the defect in the container shell and the surrounding buffer, and their dispersive and convective transport through the backfill and EDZ into the surrounding rock. The vault model uses a computationally efficient boundary integral model (BIM) that simulates radionuclide mass transport in the engineered barrier system as a point source (representing the defective container) that releases radionuclides into concentric cylinders, that represent the buffer, backfill and EDZ. A 3-dimensional finite-element model is used to verify the accuracy of the BIM. The results obtained in the present study indicates the effectiveness of a design using in-room emplacement of long-lived containers in providing a safe disposal system even under permeable geosphere conditions. (author). refs., tabs., figs

  5. Plankton of Southern Chilean fjords: trends and linkages

    Directory of Open Access Journals (Sweden)

    Tarcisio Antezana

    1999-12-01

    Full Text Available The present paper compiles and reviews past and recent results from Magellan and Fuegian fjords for an overview of the planktonic assemblage there. It first examines linkages to local, adjacent and remote environments. The plankton assemblage presents deviations from the biota of the Magellan biogeographic Province, where the occasional presence of Antarctic species is related to oceanographic phenomena at the Polar Front. Complex bathymetric and hydrographic features within the fjords suggest that the plankton is rather isolated. Adaptations and constraints for population survival, and the role of diel migrators and gregarious zooplankters with regard to bentho-pelagic coupling are discussed. Results on seasonal differences in the plankton of the largest and most isolated basin of the Strait of Magellan are compiled. In spring the plankton was dominated by large diatoms suggesting a short food chain where most of the phytoplankton bloom goes to the bottom, to the meroplankton and to a few dominant holoplankters. In summer, the phytoplankton was dominated by pico- and nanophytoplankton suggesting a more complex food web mediated by a bacterial loop. High abundance of holo- and meroplanktonic larvae coincided with spring blooming conditions.

  6. Naturally etched tracks in apatites and the correction of fission track dating

    CERN Document Server

    Tien, J L

    1999-01-01

    Naturally etched tracks have been found in apatites from the rapid cooled, high-level Kunon pluton in the Zhangzhou Igneous Complex, SE China. This is manifested by the fact that the apatite fission track (FT) age derived from conventional counting of spontaneous and induced tracks yields a result of 140.6+-6.5 Ma, which is much older than the ages determined using other methods on different minerals from the same rock. When tracks are observed after etching the polished inner sections of the apatite grains, the naturally etched tracks characterized by having hazy boundaries can be distinguished from the normal tracks with sharp boundaries. The age obtained by omitting these fading-resistant hazy tracks, 76.5+-4.0 Ma, indicates the time of the Kunon pluton cooling down to approx 100 deg. C. The corrected peak age (73.8 Ma) is consistent with the other apatite FT peak ages (79.2 to 70.2 Ma) of the nearly contemporaneous plutons in the same igneous complex.

  7. Geologic strip map along the Hines Creek Fault showing evidence for Cenozoic displacement in the western Mount Hayes and northeastern Healy quadrangles, eastern Alaska Range, Alaska

    Science.gov (United States)

    Nokleberg, Warren J.; Aleinikoff, John N.; Bundtzen, Thomas K.; Hanshaw, Maiana N.

    2013-01-01

    Geologic mapping of the Hines Creek Fault and the adjacent Trident Glacier and McGinnis Glacier Faults to the north in the eastern Alaska Range, Alaska, reveals that these faults were active during the Cenozoic. Previously, the Hines Creek Fault, which is considered to be part of the strike-slip Denali Fault system (Ridgway and others, 2002; Nokleberg and Richter, 2007), was interpreted to have been welded shut during the intrusion of the Upper Cretaceous Buchanan Creek pluton (Wahrhaftig and others, 1975; Gilbert, 1977; Sherwood and Craddock, 1979; Csejtey and others, 1992). Our geologic mapping along the west- to west-northwest-striking Hines Creek Fault in the northeastern Healy quadrangle and central to northwestern Mount Hayes quadrangle reveals that (1) the Buchanan Creek pluton is truncated by the Hines Creek Fault and (2) a tectonic collage of fault-bounded slices of various granitic plutons, metagabbro, metabasalt, and sedimentary rock of the Pingston terrane occurs south of the Hines Creek Fault.

  8. The crystalline basement of Estonia: rock complexes of the Palaeoproterozoic Orosirian and Statherian and Mesoproterozoic Calymmian periods, and regional correlations

    Directory of Open Access Journals (Sweden)

    Kirs, Juho

    2009-12-01

    Full Text Available New data on the Fennoscandian Shield and the Baltic area suggest a need for reinterpretation of the stratigraphy of Estonian Precambrian rock complexes. The rocks of the Tallinn Zone formed in the framework of the Fennian orogeny at the margin of the Bergslagen microcontinent 1.90–1.88 Ga ago. The precise age of the Alutaguse Zone is not known. It may have formed either during the 1.93–1.91 Ga Lapland–Savo orogeny or as a rifted eastern part of the Tallinn Zone in the Fennian orogeny. The granulites of western and southern Estonia belong to the volcanic arcs inside the 1.84–1.80 Ga Svecobaltic orogenic belt and show peak metamorphic conditions of 1.78 Ga. Small shoshonitic plutons formed 1.83–1.63 Ga, the small granitic plutons of the Wiborg Rapakivi Subprovince 1.67–1.62 Ga, and the Riga pluton 1.59–1.54 Ga ago.

  9. Magnetic fabrics in characterization of magma emplacement and tectonic evolution of the Moyar Shear Zone, South India

    Directory of Open Access Journals (Sweden)

    P. Pratheesh

    2013-01-01

    Full Text Available The Moyar Shear Zone (MSZ of the South Indian granulite terrain hosts a prominent syenite pluton (∼560 Ma and associated NW-SE to NE-SW trending mafic dyke swarm (∼65 Ma and 95 Ma. Preliminary magnetic fabric studies in the mafic dykes, using Anisotropy of Magnetic Susceptibly (AMS studies at low-field, indicate successive emplacement and variable magma flow direction. Magnetic lineation and foliation in these dykes are identical to the mesoscopic fabrics in MSZ mylonites, indicating shear zone guided emplacement. Spatial distribution of magnetic lineation in the dykes suggests a common conduit from which the source magma has been migrated. The magnetic foliation trajectories have a sigmoidal shape to the north of the pluton and curve into the MSZ suggesting dextral sense of shear. Identical fabric conditions for magnetic fabrics in the syenite pluton and measured field fabrics in mylonite indicate syntectonic emplacement along the Proterozoic crustal scale dextral shear zone with repeated reactivation history.

  10. Regional Tectonic Control of Tertiary Mineralization and Recent Faulting in the Southern Basin-Range Province, an Application of ERTS-1 Data

    Science.gov (United States)

    Bechtold, I. C.; Liggett, M. A.; Childs, J. F.

    1973-01-01

    Research based on ERTS-1 MSS imagery and field work in the southern Basin-Range Province of California, Nevada and Arizona has shown regional tectonic control of volcanism, plutonism, mineralization and faulting. This paper covers an area centered on the Colorado River between 34 15' N and 36 45' N. During the mid-Tertiary, the area was the site of plutonism and genetically related volcanism fed by fissure systems now exposed as dike swarms. Dikes, elongate plutons, and coeval normal faults trend generally northward and are believed to have resulted from east-west crustal extension. In the extensional province, gold silver mineralization is closely related to Tertiary igneous activity. Similarities in ore, structural setting, and rock types define a metallogenic district of high potential for exploration. The ERTS imagery also provides a basis for regional inventory of small faults which cut alluvium. This capability for efficient regional surveys of Recent faulting should be considered in land use planning, geologic hazards study, civil engineering and hydrology.

  11. Search for underground openings for in situ test facilities in crystalline rock

    Energy Technology Data Exchange (ETDEWEB)

    Wollenberg, H.A.; Strisower, B.; Corrigan, D.J.; Graf, A.N.; O' Brien, M.T.; Pratt, H.; Board, M.; Hustrulid, W.

    1980-01-01

    With a few exceptions, crystalline rocks in this study were limited to plutonic rocks and medium to high-grade metamorphic rocks. Nearly 1700 underground mines, possibly occurring in crystalline rock, were initially identified. Application of criteria resulted in the identification of 60 potential sites. Within this number, 26 mines and 4 civil works were identified as having potential in that they fulfilled the criteria. Thirty other mines may have similar potential. Most of the mines identified are near the contact between a pluton and older sedimentary, volcanic and metamorphic rocks. However, some mines and the civil works are well within plutonic or metamorphic rock masses. Civil works, notably underground galleries associated with pumped storage hydroelectric facilities, are generally located in tectonically stable regions, in relatively homogeneous crystalline rock bodies. A program is recommended which would identify one or more sites where a concordance exists between geologic setting, company amenability, accessibility and facilities to conduct in situ tests in crystalline rock.

  12. Search for underground openings for in situ test facilities in crystalline rock

    International Nuclear Information System (INIS)

    Wollenberg, H.A.; Strisower, B.; Corrigan, D.J.; Graf, A.N.; O'Brien, M.T.; Pratt, H.; Board, M.; Hustrulid, W.

    1980-01-01

    With a few exceptions, crystalline rocks in this study were limited to plutonic rocks and medium to high-grade metamorphic rocks. Nearly 1700 underground mines, possibly occurring in crystalline rock, were initially identified. Application of criteria resulted in the identification of 60 potential sites. Within this number, 26 mines and 4 civil works were identified as having potential in that they fulfilled the criteria. Thirty other mines may have similar potential. Most of the mines identified are near the contact between a pluton and older sedimentary, volcanic and metamorphic rocks. However, some mines and the civil works are well within plutonic or metamorphic rock masses. Civil works, notably underground galleries associated with pumped storage hydroelectric facilities, are generally located in tectonically stable regions, in relatively homogeneous crystalline rock bodies. A program is recommended which would identify one or more sites where a concordance exists between geologic setting, company amenability, accessibility and facilities to conduct in situ tests in crystalline rock

  13. Ediacaran to Cambrian magmatic suites in the Rio Grande do Norte domain, extreme Northeastern Borborema Province (NE of Brazil): Current knowledge

    Science.gov (United States)

    do Nascimento, Marcos Antonio Leite; Galindo, Antonio Carlos; de Medeiros, Vladimir Cruz

    2015-03-01

    The Ediacaran-Cambrian plutonic activity is one of the most important geological features of the Rio Grande do Norte Domain (Borborema Province, NE Brazil). It is represented by several batholiths, stocks and dykes. Based on the petrographic, geochemical and geochronological characteristic of different rocks, this plutonic activity can be grouped in six separate suites: shoshonitic (Shos), porphyritic high-K calc-alkaline (PHKCalcAlk), equigranular high K calc-alkaline (EHKCalcAlk), calc-alkaline (CalcAlk), alkaline (Alk) and charnockitic alkaline (ChAlk). Geochemically, the Shos, CalcAlk and Alk suites are differentiated from the others, while ChAlc can be distinguished from the others in some diagrams. The greatest difficulty lies in distinguishing between the chemically similar PHKCalcAlk and EHKCalcAlk. To this end, existing geochronological data as well as related petrographic and textural field aspects may be used to distinguish the two mentioned suites (PHKCalcAlk and EHKCalcAlk). Petrographically, the Shos suite has composition between gabbro/diorite and quartz monzonite. Monzogranites (with subordinate granodiorites and quartz monzonites) predominate in both PHKCalcAlk and EHKCalcAlk. Calc is composed of granodiorites to tonalites. Alc is formed by alkali feldspar granites (with subordinate alkali feldspar quartz syenites and syenogranites), whereas ChAlc has quartz mangerites and charnockites. The suites were emplaced between the Ediacaran (635-541 Ma) and Cambrian (541-485 Ma), predominantly in the Ediacaran, based on 34 U-Pb datings (zircon, titanite, monazite and columbite-tantalite), 17 Rb-Sr (whole rock) and 1 Sm-Nd (total rock and mineral) internal isochrons. The Shos suite has U-Pb ages varying from 599 ± 16 (Poço Verde pluton) to 579 ± 7 (Acari and São João do Sabugi plutons), slightly older than those of the PHKCalcAlk suite, which ranges between 591 ± 4 Ma (Totoró pluton) and 544 ± 7 Ma (São José de Espinharas pluton). The Calc

  14. Silurian to Devonian magmatism, molybdenite mineralization, regional exhumation and brittle strike-slip deformation along the Loch Shin Line, NW Scotland

    OpenAIRE

    Holdsworth, R.; Dempsey, E.; Selby, D.; Darling, James Richard; Feely, M.; Costanzo, A.; Strachan, Robin A; Waters, P.; Finlay, A.J.

    2015-01-01

    The Loch Shin Line is a geological–geophysical lineament associated with a zone of mantle-derived appinites, granites and strike-slip faulting that runs NW–SE across the Moine Nappe, northern Scotland. U–Pb zircon and Re–Os molybdenite dating of the Loch Shin and Grudie plutons, which lie immediately SW of the NW–SE Loch Shin–Strath Fleet fault system, yield c. 427–430 Ma ages that overlap within error. They also coincide with previously obtained U–Pb zircon ages for the Rogart pluton, which ...

  15. Post-collisional polycyclic plutonism from the Zagros hinterland: the Shaivar Dagh plutonic complex, Alborz belt, Iran

    NARCIS (Netherlands)

    Aghazadeh, Mehraj; Castro, Antonio; Badrzadeh, Zahra; Vogt, Katharina

    2011-01-01

    The petrological and geochronological study of the Cenozoic Shaivar Dagh composite intrusion in the Alborz Mountain belt (NW Iran) reveals important clues to decipher complex relations between magmatic and tectonic processes in the central sectors of the Tethyan (Alpine–Himalayan) orogenic belt.

  16. Health at the Extremes. Epidemiological and Sanitary Scene in Tierra del Fuego, 1890-1930

    Directory of Open Access Journals (Sweden)

    Romina Casali

    2014-05-01

    Full Text Available Objective: To characterize the epidemiological and sanitary conditions of the city of Ushuaia (National Territory of Tierra del Fuego at a key time in its history- a time in which interethnic contact and the consolidation of the Argentine nation-state were intensified as two parallel and related processes. Materials and methods: All death certificates available for the period 1890-1930 were analyzed, as well as relevant government documents and secondary sources in order to ob¬tain the health profile of the city and its relationship with the country in the following aspects: type of epidemiological phase, mortality rates, population structure, and the structure in health¬care. Conclusions: There was a great relevance of infectious diseases, and specially tuberculosis, among the population of the city in general, and among the indigenous and criminal population in particular. This epidemiological profile showed the shortcomings of a national health system that was trying to establish at the time, especially in a region difficult to reach.

  17. The Vertical-Tube Solar Collector: A Low-Cost Design Suitable for Temperate High-Latitude Locations

    Directory of Open Access Journals (Sweden)

    Luis Juanicó

    2014-01-01

    Full Text Available A new low-cost solar collector based on thick (4.5′′ vertical tubes related to the previous design based on long 1.5′′ plastic hoses connected directly between water-grid supply and consumption is presented. This novel design could noticeably improve its performance for temperate locations mid and high latitudes, as was demonstrated by dynamic thermal modeling. This tool has been useful for understanding the particular characteristics of this kind of water-pond collector and besides, for noticeably improving its performance by optimizing its parameters, like tube diameter and number of glazing layers. By this way, the optimized design could fully satisfy the household demand up to midnight along the whole year for Buenos Aires (35°S and during summers (remaining as a useful preheater for the whole year for Ushuaia (55°S. Besides, its high simplicity makes it available for user’s own construction, costing down 50 dollars for a single-family unit.

  18. PRÁCTICAS RELIGIOSAS EN CONTEXTOS DE MIGRACIÓN. ALGUNAS ARTICULACIONES ENTRE TRANSNACIONALIDAD, LOCALIDAD E IDENTIDADES

    Directory of Open Access Journals (Sweden)

    Ana Inés Mallimaci Barral

    2016-01-01

    Full Text Available En los últimos años el campo de los estudios migratorios se ha visto atravesado por una disputa entre dos perspectivas. Por un lado, el paradigma asimilacionista relacionado con cierto “nacionalismo metodológico”, clásico pero algo arcaico. Por otro lado, la perspectiva transnacional que ha sostenido que los desplazamientos de personas no derivan de manera necesaria en la generación de prácticas de asimilación por parte de los y las migrantes ni tampoco por parte de las sociedades receptoras. Desde la convicción de que los debates conceptuales deben estar encarnados y construidos desde trabajos empíricos, este trabajo propone el análisis de un caso, la festividad religiosa de los y las migrantes bolivianos en Ushuaia, para analizar las tensiones y articulaciones entre lógicas transnacionales y asimilacionistas que atraviesan la vida cotidiana de las poblaciones migrantes.

  19. Cracking the Stoping Paradigm: Field and Modeling Constraints From the Sierra Nevada Batholith

    Science.gov (United States)

    Pignotta, G. S.; Paterson, S. R.; Okaya, D.

    2001-12-01

    The significance of stoping during pluton emplacement remains a controversial issue. This mechanism has fallen out of favor recently largely due to the apparent lack of stoped blocks preserved in plutons. Our field studies in plutons in a variety of tectonic settings clearly show evidence of stoping. This is not surprising since stoping should be favored when large thermal gradients exist at magma-host rock boundaries. Preservation of stoped blocks is uncommon however, since the rate at which blocks sink is much greater than the rate at which magmas crystallize (Paterson and Okaya, 1999). Thus, only during final crystallization when magmatic yield strength is high, should stoped blocks be trapped. The Mitchell Peak granodiorite, Sierra Nevada is a rare example of a pluton that preserves abundant stoped blocks, with the youngest intrusive phase preserving >25% stoped blocks, and locally, near the margins >50% of exposed surface area is stoped blocks. Thus stoping is an important process here, at least during the final stages of emplacement. This area is ideal to study the mechanisms of block formation and disintegration using both field and modeling techniques, because of abundant stoped blocks, excellent exposure, and nature of host rock. The host rock is a slightly older, coarse grained, granodioritic intrusion that preserves extremely weak to no magmatic fabric, and thus can be treated as a "homogeneous and isotropic" medium for the purposes of thermal-mechanical modeling. Detailed mapping indicates that preserved stoped blocks range in size from hundreds of m's to xenocrystic feldspars, and there is abundant evidence for mechanical disintegration of blocks. Thermal-mechanical models, using detailed maps from the Mitchell Peak area, further support field observations. Rates at which thermal stresses develop and exceed host rock tensile strength are extremely rapid (hours to days) compared to onset of crystal plastic flow and/or melting. The calculated pattern of

  20. Ordovician A-type granitoid magmatism on the Ceará Central Domain, Borborema Province, NE-Brazil

    Science.gov (United States)

    Castro, Neivaldo A.; Ganade de Araujo, Carlos E.; Basei, Miguel A. S.; Osako, Liliane S.; Nutman, Alan A.; Liu, Dunyi

    2012-07-01

    We present field relationships, major and trace element geochemistry and U-Pb SHRIMP and ID-TIMS geochronology of the A-type Ordovician Quintas pluton located in the Ceará Central Domain of the Borborema Province, in northeastern Brazil. This pluton presents a concentric geometry and is composed mainly of syenogranite, monzogranite, quartz syenite to quartz monzodiorite, monzogabbro and diorite. Its geochemical characteristics [SiO2 (52-70%), Na2O/K2O (1.55-0.65), Fe2O3/MgO (2.2-7.3), metaluminous to sligthly alkaline affinity, post-collisional type in (Y + Nb) × Rb diagram, and A-type affinity (Ga > 22 ppm, Nb > 20 ppm, Zn > 60 ppm), REE fractioned pattern with negative Eu anomaly] are coherent with post-collisional A2-type granitoids. However, the emplacement of this pluton is to some extent temporally associated with the deposition of the first strata of the Parnaíba intracratonic basin, attesting also to a purely anorogenic character (A1-type granitoid). The emplacement of this pluton is preceded by one of the largest known orogenesis of the planet (Neoproterozoic Pan-African/Brasiliano) and, if it is classified as an A2-type granitoid, it provides interesting constraints about how long can last A2-type magmatic activity after a major collisional episode, arguably triggered by disturbance of the underlying mantle, a topic extensively debated in the geoscience community.

  1. Investigation of Alaska's uranium potential. Part 1. Reconnaissance program, West-Central Alaska and Copper River basin. Part 2. Uranium and thorium in granitic and alkaline rocks in Western Alaska

    International Nuclear Information System (INIS)

    Eakins, G.R.; Jones, B.K.; Forbes, R.B.

    1977-02-01

    A 6-week reconnaissance program was conducted in west-central Alaska and in the Copper River basin--Chitina River valley area to aid in determining the uranium potential of the state. Division personnel also submitted samples from the Healy, Eagle, and Charley River quadrangles. Collected were 916 stream-sediment samples and 427 bedrock samples for uranium, thorium, and potassium oxide determinations, and 565 water samples for uranium analyses. A statistical analysis of the determinations was made using a computer at the University of Alaska. Thresholds, anomalies, and U:Th ratios were calculated for eight separate regions. Anomalous values of the U, Th, and K 2 O, and radiometric measurements are discussed. A combination of all uranium exploration techniques is needed to locate potential uranium deposits in Alaska. Correlations between aerial and ground radiometric surveys and geochemical surveys were often lacking, indicating that each method may or may not be effective, depending on local conditions. One hundred and eight rock samples were selected from traverses across five plutons in western Alaska and analyzed for uranium, thorium, and potassium. The highest uranium concentrations detected were 86 and 92 ppM from a mineralized dike intrusion zone in the Selawik Lake Complex. Analysis of individual plutons yields strong correlations between mineralogy and radioactivity. The mineralogical variable that correlates with uranium or thorium varies from one pluton to the next. Based on these correlations, mineralogical guidelines are offered for the selection of uranium enriched variants in four of the five plutons

  2. Control estructural sobre el plutón Los Ratones y la mineralización de uranio en la Sierra de Fiambalá, Sierras Pampeanas, Catamarca

    International Nuclear Information System (INIS)

    Hongn, F.; Kirschbaum, A.; Ferreira, L.; Morello, O.; Guidi, F.; Anesa, J.; Rubinstein, N.

    2010-01-01

    The Carboniferous Los Ratones pluton is composed by two main facies: equigranular and porphyric. The uranium mineralization hosted by the metamorphic rock on the NW border of the pluton is related to a fluor- rich greisen related to the equigranular facies. The detailed mapping of the pluton host rock and the uranium mineralization shows a well-defined structural control on both the granite emplacement, particularly on the porphyric facies, and on the migration of the mineralized fluids. Four sets of fractures participate on this control. The two main with N and NE trends coincide clearly with the west and northwest border of the pluton as well as with the high-grade uranium manifestations. The third and fourth ones respectively corresponds to E-W and NW striking fractures, which are less developed in relation to the main fractures considering their frequency and size. Fractures of the four sets are high dipping close to vertical, attitude corroborated by geophysical studies in the area where the NE fractures are the best developed. In addition to the mentioned features, granite-related acidic and basic dikes follow mainly these orientations. The fracture sets seem to be related to a high-east dipping meridian fault system with right horizontal main movement component and subordinate normal displacement. These faults partially reactivated heterogeneities of the metamorphic rocks, mainly the dominant foliation. Changes on the strike of these fractures formed dilatant zones where magmatism and related mineralization were concentrated. (authors) [es

  3. Rare metal granites and related rocks of the Ukrainian shield

    Directory of Open Access Journals (Sweden)

    Esipchuk, K.Ye.

    1993-12-01

    Full Text Available Two rare metal leucocratic granites, Perga and Kamennaya complexes, can be distinquished on the Ukrainian shield. The Perga complex consists of medium- and coarse grained, mainly porphyric, biotite, riebeckite and aegirine granites, granite porphyries, microclinites and albitites with rare metal mineralization (genthelvite, phenacite, tantalite, cassiterite and wolframite etc.. Granites from several stocks (up to 30 km2 in the northwestern part of the shield, situated along the fracture zone, restricted the large Korosten pluton of rapakivi granites to the northwest. The age of these granites (Pb-Pb and U-Pb methods on zircon and monazite practically coincide with the age of rapakivi granites being 1750 Ma. Within the Korosten complex of rapakivi granites we consider that zinnwaldite granites, which are characterized by fluorite and topazine mineralization, represent the final phase of pluton. These granites differ from the Perga ones by their low content of rare metals. The Kamennaya Mogila complex lies in the southeastern part of the Ukrainian shield. It consists of biotite and muscovite-biotite, medium- and coarse-grained (also porphyric, and occasionally greisining granites with rare metal mineralization (cassiterite, columbite, molybdenite, wolframite and beryl. Granites form several stocks (5-30 km2 situated 10-30 km to the west-northwest of the South-Kalchik gabbro-syenite-granite pluton. Granitoids in both of these complexes have similar isotopic ages (1800 Ma. Leucocratic subalkaline granites (the Novoyanisol type are known within the pluton itself, occupying an intermediate position between the above mentioned in terms of mineral and geochemical composition. The gabbro-syenite-granite formation of the Nearazov region has a substantial similarity to the anorthosite-rapakivi-granite formation. In this respect the relation of each of them to rare metal granites is rather remarkable. This relation is, most probably, not only spatial, but

  4. Geochemistry and geochronology of ore-bearing and barren intrusions in the Luanchuan ore fields of East Qinling metallogenic belt, China: Diverse tectonic evolution and implications for mineral exploration

    Science.gov (United States)

    Xue, Fei; Wang, Gongwen; Santosh, M.; Yang, Fan; Shen, Zhiwei; Kong, Liang; Guo, Nana; Zhang, Xuhuang; Jia, Wenjuan

    2018-05-01

    The Luanchuan ore fields form part of the East Qinling metallogenic belt in central China. In this study, we compare two ore-bearing intrusions, the Shibaogou granitic pluton (SBG) and the Zhongyuku granitic pluton (ZYK), with the ore-barren Laojunshan intrusion (LJS) from the Luanchuan ore field. Geochemically, all the three intrusions are characterized by high-Si, high-K, and alkalis, together with moderate-ASI, exhibiting I-type granite features. The rocks, especially the ore-related plutons also show enrichment in LREEs. Mineral chemistry of biotite from the intrusions exhibits similar features of high Si and Mg, and low Al and Fe. Zircon grains from the ZYK intrusion yielded a U-Pb age of 149.6 ± 2.4 Ma. The zircon grains show εHf (t) values and two stage model ages (TDM2) in the range of -16.8 to -19.7 and 1998-2156 Ma respectively. The biotite composition and Hf isotopic data indicate that the magma was derived by re-melting of deep crustal material with minor input of mantle components. We evaluate the results to understand the physico-chemical conditions, petrogenesis, and tectonic setting, and their implications for mineral exploration. The ore-bearing plutons show wide ranges of temperature and oxygen fugacity, favoring Mo-W mineralization. In addition, estimates on pressure and depth of emplacement suggest that lower solidification pressure in a decompressional setting contributed to the evolution of magmatic hydrothermal deposits. Our data suggest that the ZYK has the highest potential for Mo-W mineralization. The ore-bearing plutons of ZYK and SBG were formed in a transitional tectonic setting from compression to extension, with the large-scale metallogeny triggered by slab melts at ca. 145 Ma. However, the ore-barren LJS batholith formed in an extension-related geodynamic setting at ∼115 Ma. Our study shows that different tectonic settings and consequent physico-chemical conditions dictated the ore potential of the intrusions in the Luanchuan ore

  5. Petrogenesis of the middle Jurassic appinite and coeval granitoids in the Eastern Hebei area of North China Craton

    Science.gov (United States)

    Fan, Wenbo; Jiang, Neng; Xu, Xiyang; Hu, Jun; Zong, Keqing

    2017-05-01

    An integrated study of zircon U-Pb ages and Hf-O isotopic compositions, whole rock elemental and Sr-Nd isotope geochemistry was conducted on three lithologically diverse middle Jurassic plutons from the Eastern Hebei area of the North China Craton (NCC), in order to reveal both their petrogenesis and possible tectonic affinity. The three plutons have consistent magmatic zircon U-Pb ages from 167 ± 1 Ma to 173 ± 1 Ma. The Nianziyu pluton has typical characteristics of appinite with low SiO2 (43.7-52.6%), high Ca, Mg, Fe and H2O contents. It possesses subduction-related trace element patterns, enriched Nd-Hf isotopic signatures as well as elevated zircon δ18O values (6.2-7.2‰), arguing for an enriched mantle source metasomatized by fluids related to subduction. The Shuihutong monzogranites have high silica (SiO2 = 75.4-75.9%) and alkali contents, low Ca contents and striking negative Ba, Sr and Eu anomalies. Samples from the pluton have more evolved Nd-Hf isotopic values and are considered to be most likely derived from anatexis of ancient lower continental crust. Hybridization between mantle- and ancient lower crust-derived magmas is proposed for the mafic microgranular enclave-bearing Baijiadian granitoids, which are characterized by variable εNd (t) and εHf(t) values. Integrated with the regional geologic history, we suggest that the formation of the three middle Jurassic plutons were related to the subduction of the Paleo-Pacific ocean plate beneath the NCC. Their petrogenetic differences reflect complex magmatic processes in subduction settings involving melting of multiple sources, possible partly facilitated by fluid metasomatism and water-rich magma injection, accompanied with various degrees of magma mixing. The appearance of middle Jurassic appinitic rocks leads us to propose that the NCC destruction and lithosphere thinning were facilitated and controlled by the weakening of the lithospheric mantle after hydration because of the subduction of the

  6. Lithospheric delamination in post-collisional setting: Evidence from intrusive magmatism from the North Qilian orogen to southern margin of the Alxa block, NW China

    Science.gov (United States)

    Zhang, Liqi; Zhang, Hongfei; Zhang, Shasha; Xiong, Ziliang; Luo, Biji; Yang, He; Pan, Fabin; Zhou, Xiaochun; Xu, Wangchun; Guo, Liang

    2017-09-01

    Post-collisional granitoids are widespread in the North Qilian and southern margin of the Alxa block and their petrogenesis can provide important insights into the lithospheric processes in a post-collisional setting. This paper carries out an integrated study of U-Pb zircon dating, geochemical and Sr-Nd-Hf isotopic compositions for five early Paleozoic intrusive plutons from the North Qilian to southern margin of the Alxa block. The geochronological and geochemical results show that their magmatism can be divided into three periods with distinct geochemical features. The early-period intrusive rocks ( 440 Ma) include the Lianhuashan (LHS) and Mengjiadawan (MJDW) granodiorites. Both of them display high Sr/Y ratios (52-91), coupled with low Y and HREE contents, implying that they were derived from partial melting of thickened lower crust, with garnet in the residue. The middle-period intrusive rocks ( 430 Ma), including the MJDW quartz diorites and Yangqiandashan (YQDS) granodiorites, are high-K calc-alkaline with low Sr/Y values. The geochemical and isotopic data suggest that they are generated from partial melting of lower crust without garnet in the residue. The late-period intrusive rocks (414-422 Ma), represented by the Shengrongsi (SRS) and Xinkaigou (XKG) plutons, are A-type or alkali-feldspar granites. They are possibly derived from partial melting of felsic crustal material under lower pressure condition. Our data show decreasing magma crystallization ages from MJDW pluton in the north and LHS pluton in the south to the SRS and XKG plutons in the central part of the study area. We suggest that such spatial and temporal variations of magmatic suites were caused by lithospheric delamination after the collision between the Central Qilian and the Alxa block. A more plausible explanation is that the delamination propagated from the margin part of the thickened lithosphere to inward beneath the North Qilian and southern margin of the Alxa block.

  7. Exotic Members of Southern Alaska's Jurassic Arc

    Science.gov (United States)

    Todd, E.; Jones, J. V., III; Karl, S. M.; Box, S.; Haeussler, P. J.

    2017-12-01

    The Jurassic Talkeetna arc and contemporaneous plutonic rocks of the Alaska-Aleutian Range batholith (ARB) are key components of the Peninsular terrane of southern Alaska. The Talkeetna arc, considered to be a type example of an intra-oceanic arc, was progressively accreted to northwestern North America in the Jurassic to Late Cretaceous, together with associated components of the Wrangellia Composite terrane. Older Paleozoic and Mesozoic rock successions closely associated with the ARB suggest that at least part of the Peninsular terrane might be an overlap succession built on pre-existing crust, possibly correlative with the Wrangellia terrane to the east. However, the relationship between the Talkeetna arc, ARB, and any pre-existing crust remains incompletely understood. Field investigations focused on the petrogenesis of the ARB near Lake Clark National Park show that Jurassic to Late Cretaceous plutonic rocks commonly host a diverse range of mineralogically distinct xenolith inclusions, ranging in size from several cm to hundreds of meters. The modal fraction of these inclusions ranges from 50% in some outcrops. They are generally mafic in composition and, with few exceptions, are more mafic than host plutonic rocks, although they are observed as both igneous (e.g., gabbro cumulate, diorite porphyry) and metamorphic types (e.g., amphibolite, gneiss and quartzite). Inclusion shapes range from angular to rounded with sharp to diffuse boundaries and, in some instances, are found as planar, compositionally distinct bands or screens containing high-temperature ductile shear fabrics. Other planar bands are more segmented, consistent with lower-temperature brittle behavior. Comparison of age, geochemical fractionation trends, and isotope systematics between the inclusions and host plutons provides a critical test of whether they are co-genetic with host plutons. Where they are related, mafic inclusions provide clues about magmatic evolution and fractionation history

  8. Formation of Cretaceous Cordilleran and post-orogenic granites and their microgranular enclaves from the Dalat zone, southern Vietnam: Tectonic implications for the evolution of Southeast Asia

    Science.gov (United States)

    Shellnutt, J. Gregory; Lan, Ching-Ying; Van Long, Trinh; Usuki, Tadashi; Yang, Huai-Jen; Mertzman, Stanley A.; Iizuka, Yoshi; Chung, Sun-Lin; Wang, Kuo-Lung; Hsu, Wen-Yu

    2013-12-01

    Cordilleran-type batholiths are useful in understanding the duration, cyclicity and tectonic evolution of continental margins. The Dalat zone of southern Vietnam preserves evidence of Late Mesozoic convergent zone magmatism superimposed on Precambrian rocks of the Indochina Block. The Dinhquan, Deoca and Ankroet plutons and their enclaves indicate that the Dalat zone transitioned from an active continental margin producing Cordilleran-type batholiths to highly extended crust producing within-plate plutons. The Deoca and Dinhquan plutons are compositionally similar to Cordilleran I-type granitic rocks and yield mean zircon U/Pb ages between 118 ± 1.4 Ma and 115 ± 1.2 Ma. Their Sr-Nd whole rock isotopes (ISr = 0.7044 to 0.7062; εNd(T) = - 2.4 to + 0.2) and zircon Hf isotopes (εHf(T) = + 8.2 ± 1.2 and + 6.4 ± 0.9) indicate that they were derived by mixing between a mantle component and an enriched component (i.e. GLOSS). The Ankroet pluton is chemically similar to post-orogenic/within-plate granitic rocks and has a zircon U/Pb age of 87 ± 1.6 Ma. Geobarometric calculations indicate that amphibole within the Ankroet pluton crystallized at a depth of ~ 6 kbar which is consistent with the somewhat more depleted Sr-Nd isotope (ISr = 0.7017 to 0.7111; εNd(T) = - 2.8 to + 0.6) and variable εHf(T) compositions suggesting a stronger influence of crustal material in the parental magma. The compositional change of the Dalat zone granitic rocks during the middle to late Cretaceous indicates that the tectonic regime evolved from a continental arc environment to one of post-orogenic extension. The appearance of sporadic post-90 Ma magmatism in the Dalat zone and along the eastern margin of Eurasian indicates that there was no subsequent orogenic event and the region was likely one of highly extended crust that facilitated the opening of the South China Sea during the latter half of the Cenozoic.

  9. Backarc extension, detachments and granitoids in the Aegean, their relations to slab tear and asthenospheric flow

    Science.gov (United States)

    Jolivet, Laurent; Menant, Armel; Rabillard, Aurélien; Arbaret, Laurent; Augier, Romain; Gumiaux, Charles

    2013-04-01

    The Cycladic granitoids (Ikaria, Mykonos, Naxos, Kos, Lavrion, Serifos, Tinos) intruded the Aegean crust during a rather short period (17-10 Ma) compared to the much longer Oligo-Miocene crustal thinning phase (35 Ma to the Present). Their geochemical characteristics show that their sources have changed through time and space, with a progressive decreasing component of continental crust contamination with time and from east to west. They all interacted with large-scale detachments, namely the North Cycladic Detachment System (NCDS) in the north and the West Cycladic Detachment System (WCDS) in the south. In Mykonos, Naxos, Serifos and Ikaria the plutons are also associated with a high-temperature metamorphic dome of Miocene age. Their intrusion period roughly covers the same time window as the fast clockwise rotation of the western Aegean evidenced by paleomagnetic measurements and they are contemporaneous with a surge of alkaline volcanism in the eastern Aegean that can be related to a slab tear imaged below western Anatolia. The continental crust component in the Middle Miocene Cycladic plutons is not found in the early Miocene plutons of the northern Aegean, like in Kavala and Vrondou. They thus probably record a quite sudden thermal event in the Cyclades that led to the partial melting of the extending deep crust. We propose a model involving slab tear starting at ~17 Ma, fast retreat of the slab west of the tear and southwestward influx of hot asthenospheric material below the Aegean crust, leading to melting of the lower crust. Partial melting of the whole lower crust above the hot asthenospheric flow could explain the flat Moho observed below the Cyclades. The close proximity of plutons with the detachments suggests that their ascent toward the upper crust is favoured by the extreme extension at work there. The first granitoids in the region of the tear (Ikaria) are the richest in crustal component and this component decreases while the crust thins more and

  10. Emplacement mechanisms and structural influences of a younger granite intrusion into older wall rocks - a principal study with application to the Goetemar and Uthammar granites. Site-descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Cruden, Alexander R.

    2008-12-01

    The c. 1.80 Ga old bedrock in the Laxemar-Simpevarp area, which is the focus of the site investigation at Oskarshamn, is dominated by intrusive rocks belonging to the c. 1.86-1.65 Ga Transscandinavian Igneous Belt (TIB). However, the site investigation area is situated in between two c. 1.45 Ga old anorogenic granites, the Goetemar granite in the north and the Uthammar granite in the south. This study evaluates the emplacement mechanism of these intrusions and their structural influence on the older bedrock. Field observations and structural measurements indicate that both the Goetemar and the Uthammar granites are discordant and have not imposed any significant ductile deformation on their wall-rocks. The apparent conformity of geological contacts and fabrics in the wall rocks and the southern margin of the Goetemar granite is coincidental and inherited from the pattern of Svecokarelian deformation of the TIB. However, interpretation of regional aeromagnetic data suggests that the granites occur within a broad, NNE-SSW trending linear belt, pointing to deep seated tectonic control on their generation, ascent and emplacement. Thermochronology indicates that the granites were emplaced at depths between 4 and 8 km into brittle wall rocks. The 3-D shape of the Goetemar and Uthammar plutons has been investigated by 2.75D forward modelling of the residual gravity anomalies due to both granites. Both granites are associated with strong residual gravity anomalies of up to -10 mgal. Constraints on the geometry of the plutons at the surface are provided from surface geology maps and several deep boreholes located on or close to the model profiles. A further variable in the gravity modelling is introduced by either allowing the upper contact of the plutons to assume the most suitable orientation to produce the best fit between the modelled and observed gravity ('unconstrained models') or by forcing the near surface orientation of the contacts to be vertical ('constrained

  11. Mesozoic Magmatism and Base-Metal Mineralization in the Fortymile Mining District, Eastern Alaska - Initial Results of Petrographic, Geochemical, and Isotopic Studies in the Mount Veta Area

    Science.gov (United States)

    Dusel-Bacon, Cynthia; Slack, John F.; Aleinikoff, John N.; Mortensen, James K.

    2009-01-01

    We present here the initial results of a petrographic, geochemical, and isotopic study of Mesozoic intrusive rocks and spatially associated Zn-Pb-Ag-Cu-Au prospects in the Fortymile mining district in the southern Eagle quadrangle, Alaska. Analyzed samples include mineralized and unmineralized drill core from 2006 and 2007 exploration by Full Metal Minerals, USA, Inc., at the Little Whiteman (LWM) and Fish prospects, and other mineralized and plutonic samples collected within the mining district is part of the USGS study. Three new ion microprobe U-Pb zircon ages are: 210 +- 3 Ma for quartz diorite from LWM, 187 +- 3 Ma for quartz monzonite from Fish, and 70.5 +- 1.1 Ma for altered rhyolite porphyry from Fish. We also present 11 published and unpublished Mesozoic thermal ionization mass spectrometric U-Pb zircon and titanite ages and whole-rock geochemical data for the Mesozoic plutonic rocks. Late Triassic and Early Jurassic plutons generally have intermediate compositions and are slightly foliated, consistent with synkinematic intrusion. Several Early Jurassic plutons contain magmatic epidote, indicating emplacement of the host plutons at mesozonal crustal depths of greater than 15 km. Trace-element geochemical data indicate an arc origin for the granitoids, with an increase in the crustal component with time. Preliminary study of drill core from the LWM Zn-Pb-Cu-Ag prospect supports a carbonate-replacement model of mineralization. LWM massive sulfides consist of sphalerite, galena, and minor pyrite and chalcopyrite, in a gangue of calcite and lesser quartz; silver resides in Sb-As-Ag sulfosalts and pyrargyrite, and probably in submicroscopic inclusions within galena. Whole-rock analyses of LWM drill cores also show elevated In, an important metal in high-technology products. Hypogene mineralized rocks at Fish, below the secondary Zn-rich zone, are associated with a carbonate host and also may be of replacement origin, or alternatively, may be a magnetite

  12. Cryogenian alkaline magmatism in the Southern Granulite Terrane, India: Petrology, geochemistry, zircon U-Pb ages and Lu-Hf isotopes

    Science.gov (United States)

    Santosh, M.; Yang, Qiong-Yan; Ram Mohan, M.; Tsunogae, T.; Shaji, E.; Satyanarayanan, M.

    2014-11-01

    The Southern Granulite Terrane (SGT) in India preserves the records of the formation and recycling of continental crust from Mesoarchean through Paleoproterozoic to Neoproterozoic and Cambrian, involving multiple subduction-accretion-collision associated with major orogenic cycles. A chain of unmetamorphosed and undeformed alkaline magmatic intrusions occurs along the northern margin of the SGT aligned along paleo-suture zones. Here we investigate two representative plutons from this suite, the Angadimogar syenite (AM) and the Peralimala alkali granite (PM) through field, petrological, geochemical, zircon U-Pb and Lu-Hf studies. Magma mixing and mingling textures and mineral assemblages typical of alkaline rocks are displayed by these plutons. The whole-rock major and trace element data characterize their alkaline nature. In trace element discrimination diagrams, the AM rocks straddle between the VAG (volcanic-arc granites) and WPG (within plate granites) fields with most of the samples confined to the VAG field, whereas the PM rocks are essentially confined to the WPG field. The diversity in some of the geochemical features between the two plutons is interpreted to be the reflection of source heterogeneities. Most zircon grains from the AM and PM plutons display oscillatory zoning typical of magmatic crystallization although some grains, particularly those from the PM pluton, show core-rim structures with dark patchy zoned cores surrounded by irregular thin rims resulting from fluid alteration. The weighted mean 206Pb/238U ages of the magmatic zircons from three samples of the AM syenite are in the range of 781.8 ± 3.8 Ma to 798 ± 3.6 Ma and those from two samples of the PM alkali granite yield ages of 797.5 ± 3.7 Ma and 799 ± 6.2 Ma. A mafic magmatic enclave from the AM pluton shows weighted mean 206Pb/238U age of 795 ± 3.3 Ma. The AM and PM plutons also carry rare xeneocrystic zircons which define upper intercept concordia ages of 3293 ± 13 Ma and 2530

  13. Emplacement mechanisms and structural influences of a younger granite intrusion into older wall rocks - a principal study with application to the Goetemar and Uthammar granites. Site-descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Cruden, Alexander R. (Dept. of Geology, Univ. of Toronto (Canada))

    2008-12-15

    The c. 1.80 Ga old bedrock in the Laxemar-Simpevarp area, which is the focus of the site investigation at Oskarshamn, is dominated by intrusive rocks belonging to the c. 1.86-1.65 Ga Transscandinavian Igneous Belt (TIB). However, the site investigation area is situated in between two c. 1.45 Ga old anorogenic granites, the Goetemar granite in the north and the Uthammar granite in the south. This study evaluates the emplacement mechanism of these intrusions and their structural influence on the older bedrock. Field observations and structural measurements indicate that both the Goetemar and the Uthammar granites are discordant and have not imposed any significant ductile deformation on their wall-rocks. The apparent conformity of geological contacts and fabrics in the wall rocks and the southern margin of the Goetemar granite is coincidental and inherited from the pattern of Svecokarelian deformation of the TIB. However, interpretation of regional aeromagnetic data suggests that the granites occur within a broad, NNE-SSW trending linear belt, pointing to deep seated tectonic control on their generation, ascent and emplacement. Thermochronology indicates that the granites were emplaced at depths between 4 and 8 km into brittle wall rocks. The 3-D shape of the Goetemar and Uthammar plutons has been investigated by 2.75D forward modelling of the residual gravity anomalies due to both granites. Both granites are associated with strong residual gravity anomalies of up to -10 mgal. Constraints on the geometry of the plutons at the surface are provided from surface geology maps and several deep boreholes located on or close to the model profiles. A further variable in the gravity modelling is introduced by either allowing the upper contact of the plutons to assume the most suitable orientation to produce the best fit between the modelled and observed gravity ('unconstrained models') or by forcing the near surface orientation of the contacts to be vertical (&apos

  14. Lead isotopes in archaean plutonic rocks

    International Nuclear Information System (INIS)

    Oversby, V.M.

    1978-01-01

    Archaean intrusive rocks have initial Pb isotopic compositions which show a varied and complex history for the source regions of the rocks. Even the oldest rocks from Greenland indicate heterogenous U and Pb distribution prior to 3800 m.y. ago. Source regions with μ values less than 7 must have played a significant role in the early history of the earth. By late Archaean time U/Pb ratios of source regions had increased substantially. Data from Australia and North America show distinct regional differences, both within and between continents. (Auth.)

  15. Middle to Late Jurassic Tectonic Evolution of the Klamath Mountains, California-Oregon

    Science.gov (United States)

    Harper, Gregory D.; Wright, James E.

    1984-12-01

    The geochronology, stratigraphy, and spatial relationships of Middle and Late Jurassic terranes of the Klamath Mountains strongly suggest that they were formed in a single west-facing magmatic arc built upon older accreted terranes. A Middle Jurassic arc complex is represented by the volcanic rocks of the western Hayfork terrane and consanguineous dioritic to peridotitic plutons. New U/Pb zircon dates indicate that the Middle Jurassic plutonic belt was active from 159 to 174 Ma and is much more extensive than previously thought. This plutonic belt became inactive just as the 157 Ma Josephine ophiolite, which lies west and structurally below the Middle Jurassic arc, was generated. Late Jurassic volcanic and plutonic arc rocks (Rogue Formation and Chetco intrusive complex) lie outboard and structurally beneath the Josephine ophiolite; U/Pb and K/Ar age data indicate that this arc complex is coeval with the Josephine ophiolite. Both the Late Jurassic arc complex and the Josephine ophiolite are overlain by the "Galice Formation," a Late Jurassic flysch sequence, and are intruded by 150 Ma dikes and sills. The following tectonic model is presented that accounts for the age and distribution of these terranes: a Middle Jurassic arc built on older accreted terranes undergoes rifting at 160 Ma, resulting in formation of a remnant arc/back-arc basin/island arc triad. This system collapsed during the Late Jurassic Nevadan Orogeny (150 Ma) and was strongly deformed and stacked into a series of east-dipping thrust sheets. Arc magmatism was active both before and after the Nevadan Orogeny, but virtually ceased at 140 Ma.

  16. Preserved magnetic fabrics vs. annealed microstructures in the syntectonic recrystallised George granite, South Africa

    Science.gov (United States)

    Ferré, E. C.; Améglio, L.

    2000-08-01

    The Saldanian basement of the Cape Fold Belt of South Africa outcrops in the Kaaimans inlier with granite plutons intruded in low-grade pelitic and quartzitic metasediments around 535 Ma. New field data support a ubiquitous Saldanian top-to-the-north thrust kinematics coeval with granite emplacement with no substantial Cape tectonic overprint. The granites and their contact aureoles display both synkinematic and post-kinematic fabrics. This and the high strain zone commonly observed all along the contact between the Kaaimans inlier and the Cape Fold Belt, suggest a structural decoupling between the basement and its cover. Microstructures in the Kaaimans inlier and in the George pluton establish a post-kinematic, pervasive and thermal overprint of Saldanian age. Granites and country rocks record a medium-temperature/high-strain deformation phase followed by a strong low-temperature/static recrystallisation. Two sets of andalusite porphyroblasts occur systematically in the contact aureoles of the studied plutons and cannot be explained by successive magmatic pulses. The granites, studied by the Anisotropy of Magnetic Susceptibility (AMS) technique, are paramagnetic (20law) and on intrinsic mineral susceptibilities. The magnetic foliations and lineations are homogeneous throughout the George pluton and are consistent with field structures. The AMS results mainly from the magneto-crystalline anisotropy of biotite and from its lattice preferred orientation (LPO) in the rock. The magnetic fabric reveals the biotite subfabrics that had been acquired before static recrystallisation and which was not modified by the subsequent thermal metamorphic event. The magnetic fabric therefore preserves the emplacement-related deformation fabric.

  17. The disposal of Canada's nuclear fuel waste: a study of postclosure safety of in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock. Volume 4: biosphere model

    International Nuclear Information System (INIS)

    Zach, R.; Amiro, B.D.; Bird, G.A.; Macdonald, C.R.; Sheppard, M.I.; Sheppard, S.C.; Szekely, J.G.

    1996-06-01

    AECL (Atomic Energy of Canada Limited) has developed a disposal concept for Canada's nuclear fuel waste, which calls for a vault deep in plutonic rock of the Canadian Shield. The concept has been fully, documented in an environmental impact statement (EIS) for review by a panel under the Canadian Environmental Assessment Agency. The EIS includes the results of the EIS postclosure assessment case study to address the long term safety of the disposal concept. To more fully demonstrate the flexibility of the disposal concept and our assessment methodology, we are now carrying out another postclosure assessment study, which involves different assumptions and engineering options than those used in the EIS. In response to these changes, we have updated the BIOTRAC (BIOsphere Transport and Assessment Code) model developed for the EIS postclosure assessment case study. The main changes made to the BIOTRAC model are the inclusion of 36 Cl, 137 Cs, 239 Np and 243 Am; animals inhalation pathway; International Commission on Radiological Protection 60/61 human internal dose conversion factors; all the postclosure assessment nuclides in the dose calculations for non-human biota; and groundwater dose limits for 14 C, 16 C1 and 129 I for non-human biota to parallel these limits for humans. We have also reviewed and changed several parameter values, including evasion rates of gaseous nuclides from soil and release fractions of various nuclides from domestic water, and indicated changes that affect the geosphere/biosphere interface model. These changes make the BIOTRAC model more flexible. As a result of all of these changes, the BIOTRAC model has been significantly expanded and improved, although the changes do not greatly affect model predictions. The modified model for the present study is called BIOTRAC2 (BIOTRAC - Version 2). The full documentation of the BIOTRAC2 model includes the report by Davis et al. (1993a) and this report. (author). 105 refs., 13 tabs., 8 figs

  18. The disposal of Canada's nuclear fuel waste: a study of postclosure safety of in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock. Volume 5: radiological assessment

    International Nuclear Information System (INIS)

    Goodwin, B.W.; Andres, T.H.; Hajas, W.C.

    1996-06-01

    The concept for disposal of Canada's nuclear fuel waste involves isolating the waste in long-lived containers placed in a sealed vault at a depth of 500 to 1000 m in plutonic rock of the Canadian Shield. The concept permits a choice of methods, materials, sites and designs. The engineered system would be designed for the geological conditions of the disposal site. The technical feasibility of the disposal concept, and its impact on the environment and human health, have been presented in an Environmental Impact Statement (EIS) (AECL 1994a,b), supported by nine primary references (Davis et al. 1993; Davison et al. 1994a,b; Goodwin et al. 1994; Greber et al. 1994; Grondin et al. 1994; Johnson et al. 1994a,b; Simmons and Baumgartner 1994). In this report, we evaluate the long-term safety of a second hypothetical implementation of the concept that has several notable differences in site and design features compared to the EIS case study. We assume that the containers are constructed from copper, that they are placed within the disposal rooms, and that the vault is located in a more permeable rock domain. In this study, we consider the groundwater transport scenario and the radionuclides expected to be the most important contributors to dose and radiological risk. We use a prototype systems assessment code, comprising the SYVAC3 executive (the third generation of the SYstems Variability Analysis Code) and models representing the vault, geosphere and biosphere. We have not dealt with other, less likely scenarios, other radionuclides, chemically toxic elements, and some aspects of software quality assurance. The present study provides evidence that the second hypothetical implementation of the disposal concept would meet the radiological risk criterion established by the Atomic Energy Control Board by about an order of magnitude. The study illustrates the flexibility for designing engineered barriers to accommodate a permeable host-rock condition in which advection is the

  19. The disposal of Canada's nuclear fuel waste: a study of postclosure safety of in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock. Volume 3: geosphere model

    International Nuclear Information System (INIS)

    Stanchell, F.W.; Davison, C.C.; Melnyk, T.W.; Scheier, N.W.; Chan, T.

    1996-06-01

    This report discusses the approach we used to develop a model of the 3-D network of transport pathways through the geosphere from the location of a nuclear fuel waste disposal vault at a depth of 500 m in a hypothetical permeable plutonic rock mass. The transport pathways correspond to the pathways of advective groundwater movement through this permeable rock from the disposal vault to discharge areas at groundsurface. In this analysis we assumed the permeability of the region of rock immediately surrounding the waste emplacement areas of the disposal vault was considerably higher than the permeability used in the geosphere model for the EIS case study. We also assumed the porosity of the rock could fall within the range 10 -3 to 10 -5 to represent the range of effects by alternative conceptual models of flow through fracture networks in the rock. Advection by the groundwater flow field in the rock surrounding the disposal vault entirely controls the rate and direction of transport from the vault in this geosphere model. The hydrogeological environment we assumed for this geosphere model is entirely hypothetical, unlike the model we developed for the EIS case study which was a conservative, yet realistic, representation of the hydrogeological conditions encountered at the site of our Underground Research Laboratory in the Whiteshell Research Area. We used the same geometry of rock structures for this model as we used in the geosphere model for the EIS case study but we assigned hydrogeologic properties to the various rock domains of the model that result in relatively rapid groundwater flow from the depth of the disposal vault to surface discharge areas. This report desribes the modelling and sensitivity analyses we performed with the MOTIF finite element model to develop the GEONET transport network for this hypothetical geosphere situation. The geosphere model accounts for the effects of natural geothermal heat and vault-induced heat on transport pathways

  20. Avance de la interpretación Geotectónica del emplazamiento del plutón granítico de Madridejos (Toledo, basada en determinaciones gravimétricas

    Directory of Open Access Journals (Sweden)

    Berjamín, J. F.

    1986-10-01

    Full Text Available The outcrops and subsurface geometry of Madridejos granitic body, has been studied using gravimetric and geological methods.
    This pluton is emplaced in a border of Urda-Consuegra antiform, this structure is high modification in the border where the pluton is emplaced.

    En función de datos gravimétricos y geológicos se establecen los límites del plutón granítico de Madridejos, tanto superficialmente como en profundidad.
    Este plutón se aloja en un extremo del domo de Urda-Consuegra, estructura a la que modifica sustancialmente.

  1. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon

    Science.gov (United States)

    Kemp, , A. I. S.; Hawkesworth, , C. J.; Foster, , G. L.; Paterson, , B. A.; Woodhead, , J. D.; Hergt, , J. M.; Gray, , C. M.; Whitehouse, M. J.

    2007-02-01

    Granitic plutonism is the principal agent of crustal differentiation, but linking granite emplacement to crust formation requires knowledge of the magmatic evolution, which is notoriously difficult to reconstruct from bulk rock compositions. We unlocked the plutonic archive through hafnium (Hf) and oxygen (O) isotope analysis of zoned zircon crystals from the classic hornblende-bearing (I-type) granites of eastern Australia. This granite type forms by the reworking of sedimentary materials by mantle-like magmas instead of by remelting ancient metamorphosed igneous rocks as widely believed. I-type magmatism thus drives the coupled growth and differentiation of continental crust.

  2. Hydrogeologic factors to be addressed in disposal guidelines

    International Nuclear Information System (INIS)

    Lafleur, D.W.; Raven, K.G.

    1986-12-01

    This report identifies the physical hydrogeologic factors that should be addressed for performance assessment of a radioactive waste disposal facility in plutonic rock. The hydrogeologic factors include theoretical methods, groundwater flow factors and solute transport parameters. Theoretical methods, including different deterministic and stochastic approaches for evaluating physical hydrogeolgic conditions, are evaluated with respect to data requirements, applications and limitations. Preferred methods for measurement and determination of the identified groundwater flow factors and solute transport parameters are discussed. A recommended set of procedures for reliable hydrogeologic characterization of a plutonic rock mass at both regional and site scales is also presented

  3. Bedrock geologic map of the Lisbon quadrangle, and parts of the Sugar Hill and East Haverhill quadrangles, Grafton County, New Hampshire

    Science.gov (United States)

    Rankin, Douglas W.

    2018-04-20

    The bedrock geologic map of the Lisbon quadrangle, and parts of the Sugar Hill and East Haverhill quadrangles, Grafton County, New Hampshire, covers an area of approximately 73 square miles (189 square kilometers) in west-central New Hampshire. This map was created as part of a larger effort to produce a new bedrock geologic map of Vermont through the collection of field data at a scale of 1:24,000. A large part of the map area consists of the Bronson Hill anticlinorium, a post-Early Devonian structure that is cored by metamorphosed Cambrian to Devonian sedimentary, volcanic, and plutonic rocks.The Bronson Hill anticlinorium is the apex of the Middle Ordovician to earliest-Silurian Bronson Hill magmatic arc that contains the Ammonoosuc Volcanics, Partridge Formation, and Oliverian Plutonic Suite, and extends from Maine, through western New Hampshire (down the eastern side of the Connecticut River), through southern New England to Long Island Sound. The deformed and partially eroded arc is locally overlain by a relatively thin Silurian section of metasedimentary rocks (Clough Quartzite and Fitch Formation) that thickens to the east. The Silurian section near Littleton is disconformably overlain by a thicker, Lower Devonian section that includes mostly metasedimentary and minor metavolcanic rocks of the Littleton Formation. The Bronson Hill anticlinorium is bisected by a series of northeast-southwest trending Mesozoic normal faults. Primarily among them is the steeply northwest-dipping Ammonoosuc fault that divides older and younger units (lower and upper sections) of the Ammonoosuc Volcanics. The Ammonoosuc Volcanics are lithologically complex and predominantly include interlayered and interfingered rhyolitic to basaltic volcanic and volcaniclastic rocks, as well as lesser amounts of slate, phyllite, ironstone, chert, sandstone, and pelite. The Albee Formation underlies the Ammonoosuc Volcanics and is predominantly composed of interbedded metamorphosed sandstone

  4. The disposal of Canada`s nuclear fuel waste: a study of postclosure safety of in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock. Volume 4: biosphere model

    Energy Technology Data Exchange (ETDEWEB)

    Zach, R; Amiro, B D; Bird, G A; Macdonald, C R; Sheppard, M I; Sheppard, S C; Szekely, J G

    1996-06-01

    AECL (Atomic Energy of Canada Limited) has developed a disposal concept for Canada`s nuclear fuel waste, which calls for a vault deep in plutonic rock of the Canadian Shield. The concept has been fully, documented in an environmental impact statement (EIS) for review by a panel under the Canadian Environmental Assessment Agency. The EIS includes the results of the EIS postclosure assessment case study to address the long term safety of the disposal concept. To more fully demonstrate the flexibility of the disposal concept and our assessment methodology, we are now carrying out another postclosure assessment study, which involves different assumptions and engineering options than those used in the EIS. In response to these changes, we have updated the BIOTRAC (BIOsphere Transport and Assessment Code) model developed for the EIS postclosure assessment case study. The main changes made to the BIOTRAC model are the inclusion of {sup 36}Cl, {sup 137}Cs, {sup 239}Np and {sup 243}Am; animals inhalation pathway; International Commission on Radiological Protection 60/61 human internal dose conversion factors; all the postclosure assessment nuclides in the dose calculations for non-human biota; and groundwater dose limits for {sup 14}C, {sup 16}C1 and {sup 129}I for non-human biota to parallel these limits for humans. We have also reviewed and changed several parameter values, including evasion rates of gaseous nuclides from soil and release fractions of various nuclides from domestic water, and indicated changes that affect the geosphere/biosphere interface model. These changes make the BIOTRAC model more flexible. As a result of all of these changes, the BIOTRAC model has been significantly expanded and improved, although the changes do not greatly affect model predictions. The modified model for the present study is called BIOTRAC2 (BIOTRAC - Version 2). The full documentation of the BIOTRAC2 model includes the report by Davis et al. (1993a) and this report. (author). 105

  5. Bedrock geologic map of the Miles Pond and Concord quadrangles, Essex and Caledonia Counties, Vermont, and Grafton County, New Hampshire

    Science.gov (United States)

    Rankin, Douglas W.

    2018-04-20

    The bedrock geologic map of the Miles Pond and Concord quadrangles covers an area of approximately 107 square miles (276 square kilometers) in east-central Vermont and adjacent New Hampshire, north of and along the Connecticut River. This map was created as part of a larger effort to produce a new bedrock geologic map of Vermont through the collection of field data at a scale of 1:24,000. The majority of the map area consists of the Bronson Hill anticlinorium, a post-Early Devonian structure that is cored by metamorphosed Cambrian to Silurian sedimentary, volcanic, and plutonic rocks. A major feature on the map is the Monroe fault, interpreted to be a west-directed, steeply dipping Late Devonian (Acadian) thrust fault. To the west of the Monroe fault, rocks of the Connecticut Valley-Gaspé trough dominate and consist primarily of metamorphosed Silurian and Devonian sedimentary rocks. To the north, the Victory pluton intrudes the Bronson Hill anticlinorium. The Bronson Hill anticlinorium consists of the metamorphosed Albee Formation, the Ammonoosuc Volcanics, the Comerford Intrusive Complex, the Highlandcroft Granodiorite, and the Joselin Turn tonalite. The Albee Formation is an interlayered, feldspathic metasandstone and pelite that is locally sulfidic. Much of the deformed metasandstone is tectonically pinstriped. In places, one can see compositional layering that was transposed by a steeply southeast-dipping foliation. The Ammonoosuc Volcanics are lithologically complex and predominantly include interlayered and interfingered rhyolitic to basaltic volcanic and volcaniclastic rocks, as well as lesser amounts of siltstone, phyllite, graywacke, and grit. The Comerford Intrusive Complex crops out east of the Monroe fault and consists of metamorphosed gabbro, diorite, tonalite, aplitic tonalite, and crosscutting diabase dikes. Abundant mafic dikes from the Comerford Intrusive Complex intruded the Albee Formation and Ammonoosuc Volcanics east of the Monroe fault. The

  6. Repeated granitoid intrusions during the Neoproterozoic along the western boundary of the Saharan metacraton, Eastern Hoggar, Tuareg shield, Algeria: An AMS and U-Pb zircon age study

    Science.gov (United States)

    Henry, B.; Liégeois, J. P.; Nouar, O.; Derder, M. E. M.; Bayou, B.; Bruguier, O.; Ouabadi, A.; Belhai, D.; Amenna, M.; Hemmi, A.; Ayache, M.

    2009-09-01

    The N-S oriented Raghane shear zone (8°30') delineates the western boundary of the Saharan metacraton and is, with the 4°50' shear zone, the most important shear zone in the Tuareg shield. It can be followed on 1000 km in the basement from southern Aïr, Niger to NE Hoggar, Algeria. Large subhorizontal movements have occurred during the Pan-African orogeny and several groups of granitoids intruded during the Neoproterozoic. We report U-Pb zircon datings (laser ICP-MS) showing that three magmatic suites of granitoids emplaced close to the Raghane shear zone at c. 790 Ma, c. 590 and c. 550 Ma. A comprehensive and detailed (158 sites, more than 1000 cores) magnetic fabric study was performed on 8 plutons belonging to the three magmatic suites and distributed on 200 km along the Raghane shear zone. The main minerals in all the target plutons do not show visible preferential magmatic orientation except in narrow shear zones. The AMS study shows that all plutons have a magnetic lineation and foliation compatible with the deformed zones that are zones deformed lately in post-solidus conditions. These structures are related to the nearby mega-shear zones, the Raghane shear zone for most of them. The old c. 793 Ma Touffok granite preserved locally its original structures. The magnetic structures of the c. 593 Ma Ohergehem pluton, intruded in the Aouzegueur terrane, are related to thrust structures generated by the Raghane shear zone while it is not the case of the contemporaneous plutons in the Assodé-Issalane terrane whose structures are only related to the subvertical shear zones. Finally, the c. 550 Ma granite group has magnetic structure related to the N-S oriented Raghane shear zone and its associated NNE-SSW structures when close to them, but NW-SE oriented when further. These NW-SE oriented structures appear to be characteristic of the late Neoproterozoic evolution of the Saharan metacraton and are in relation to the convergence with the Murzuq craton. This

  7. Reconnaissance geology of the Jibal Matalli Quadrangle, sheet 27/40 D, Kingdom of Saudi Arabia

    Science.gov (United States)

    Ekren, E.B.

    1984-01-01

    The Jibal Matalli quadrangle lies along the northern boundary of the Arabian Shield about 90 km west-southwest of Ha'il. The quadrangle consists of about 45 percent Precambrian bedrock, 50 percent Quaternary deposits, and 5 percent sedimentary cover rocks. The Precambrian rocks include volcaniclastic and volcanic rocks that are slightly metamorphosed and various granitic plutons. The volcaniclastic and volcanic rocks are correlated with the Hulayfah group and the Hadn formation. The older Hulayfah is principally basalt of probably submarine origin that has locally been metamorphosed to greenschist facies. The Hadn is composed of submarine and subaerial deposits. These consist of volcanic-derived sandstone and siltstone and lesser amounts of chiefly rhyolite volcanic rocks. In most areas, the Hadn shows little in the way of metamorphic effects, but locally it too has been metamorphosed to greenschist facies. The volcanic rocks of the Hadn include ash-flow tuffs; some appear to be water-laid, but others are subaerial. The oldest pluton is diorite, those of intermediate age are monzogranite and syenogranite, and the youngest are alkali feldspar granites. The largest pluton, a metaluminous, low-calcium, biotite monzogranite, occupies much of the southern part of the quadrangle. The alkali feldspar granites are mostly peralkaline; the two youngest are particularly so. The latter two are located in the southwest and southeast corners of the quadrangle, and both contain arfvedsonite and kataphorite. The pluton in the southeast grades outward from a peraluminous core to a peralkaline, comenditic peripheral zone and is inferred to be genetically related to a spectacular, west-trending comendite dike swarm in the southern half of the quadrangle.

  8. METALLOGENY OF EOCENE SYNCOLLISIONAL GRANITES OF MOTAJICA AND PROSARA MOUNTAINS

    Directory of Open Access Journals (Sweden)

    Ivan Jurković

    2004-12-01

    Full Text Available The geological setting is dominated by Eocene (48.7 Ma syncollisional granitoids in the form of a small pluton in the Motajica Mt. and in the form of numerous sills and dykes in the Prosara Mt. Microelement paragenesis of these magmatites, pegmatites, greisens and quartz veins are distinguished by U, Th, Ce, Y, P, Nb, Ta, B, Li, F, Be, Sn, Mo, W, Fe, Cu, Pb. These elements and 87Sr/86Sr and 18O isotopic values indicate the mantle origin of magma contaminated by relatively sterile lithospheric rocks. The most probable hypothesis of such a hybrid magma formation is the "slab break-off model". Deep erosion of Motajica granitoid pluton opened its acrobatholitic and epibatholitic level with numerous, but small pegmatite deposits (beryllites, tourmalinites, emeraldites and sylexites with piezoelectric quartz. Greisenization marked by strong silicification and muscovitization affected less than 1% of pluton. It is characterized by minor and accessory molybdenite, wolframite, huebnerite, scheelite, fluorite. Hydrothermal occurrences, galena and Fe minerals have only a mineralogical significance. Economically significant are numerous autochthonous kaolin deposits formed in Pliocene-Pleistocene time. Prosara apomagmatic granitoids, exclusively granite dykes are metallogenetically sterile.

  9. Sphene and zircon in the Highland Range volcanic sequence (Miocene, southern Nevada, USA): Elemental partitioning, phase relations, and influence on evolution of silicic magma

    Science.gov (United States)

    Colombini, L.L.; Miller, C.F.; Gualda, G.A.R.; Wooden, J.L.; Miller, J.S.

    2011-01-01

    Sphene is prominent in Miocene plutonic rocks ranging from diorite to granite in southern Nevada, USA, but it is restricted to rhyolites in coeval volcanic sequences. In the Highland Range volcanic sequence, sphene appears as a phenocryst only in the most evolved rocks (72-77 mass% SiO2; matrix glass 77-78 mass% SiO2). Zr-in-sphene temperatures of crystallization are mostly restricted to 715 and 755??C, in contrast to zircon (710-920??C, Ti-in-zircon thermometry). Sphene rim/glass Kds for rare earth elements are extremely high (La 120, Sm 1200, Gd 1300, Lu 240). Rare earth elements, especially the middle REE (MREE), decrease from centers to rims of sphene phenocrysts along with Zr, demonstrating the effect of progressive sphene fractionation. Whole rocks and glasses have MREE-depleted, U-shaped REE patterns as a consequence of sphene fractionation. Within the co-genetic, sphene-rich Searchlight pluton, only evolved leucogranites show comparable MREE depletion. These results indicate that sphene saturation in intruded and extruded magmas occurred only in highly evolved melts: abundant sphene in less silicic plutonic rocks represents a late-stage 'bloom' in fractionated interstitial melt. ?? 2011 Springer-Verlag.

  10. The effect of secondary apatite on the initial 87Sr/86Sr ratio determination in granitic rocks: a case study of the Tadamigawa pluton, northeastern Japan

    Science.gov (United States)

    Wakasugi, Y.; Ichino, K.; Tanioka, Y.; Wakaki, S.; Tsuboi, M.; Ishikawa, T.

    2017-12-01

    Apatite is a major accessory mineral in igneous rocks. Because Rb contents in apatite are very low, 87Sr/86Sr ratios of magmatic apatite are useful to estimate the initial 87Sr/86Sr ratio (SrI) of igneous rocks. Secondary post-magmatic event such as hydrothermal alteration may also crystallize secondary apatite, which may inhibit the estimation of SrI of igneous rocks. In this study, we examine the effects of secondary apatite on the initial 87Sr/86Sr ratio determination of granitic rocks by using acid leaching technique. Leached apatite samples were first separated from the whole rock powder as a heavy mineral fraction by heavy liquid technique, and the heavy mineral fraction was then leached by 3 M HNO3. The isotopic ratios of Sr and the concentrations of Rb and Sr were analyzed by TIMS and ICP-MS at Kochi Core Center, respectively. The Tadamigawa Older-stage granites, which locate in the Taishaku Mountains at the northeastern part of Japan, intrude into the Ashio Jurassic complex, and the ages of these rocks are late Cretaceous to Paleogene. The U-Pb ages of zircon and the K-Ar ages of biotite for these rocks are c. 100 Ma [1, 2]. Rb-Sr whole-rock isochron age of the pluton is 96.5 ± 1.3 Ma (SrI = 0.70534 ± 0.00003) and it is concordant with other radiometric ages. Rb-Sr mineral isochron ages range from 84.4 to 97.3 Ma and these ages are relatively younger than the Rb-Sr whole-rock isochron age. The difference among radiometric ages may reflect the difference of the closure temperature in each isotopic system. The Tadamigawa Older-stage granites have SrI for Rb-Sr mineral isochron range from 0.7053 to 0.7061 and are very similar to that (0.70534) for Rb-Sr whole-rock isochron. These may suggest that the Tadamigawa Older-stage granites are generated from same parental magma. However, 87Sr/86Sr ratios of the leached apatite samples were 0.70544-0.70856 and are relatively higher than SrI obtained from the Rb-Sr mineral isochrons (0.7053-0.7061). This result

  11. Chronology of neoproterozoic-cambrian granitic magmatism in the Aracuai Belt, Eastern Brazil, based on single zircon evaporating dating

    International Nuclear Information System (INIS)

    Noce, Carlos Mauricio; Soares, Antonio Carlos Pedrosa; Macambira, Moacir Jose Buenano

    2000-01-01

    Granitic magmatism related to the orogenic stages of the Aracuai Belt took place at 595-575 Ma, and are represented by two distinct suites. One is composed of I-type granitoids and includes the following plutons: Brasilandia (595±3 Ma), Sao Vitor (576±4 Ma) and Guarataia (574± 2 Ma). The other suite comprises S-type granites like the Ataleia (591±5 Ma) and Wolf (582±5 Ma) plutons. After a long period of magnetic quiescence, a batholith composed of the Caladao granite and Padre Paraiso charnockite intruded at 519±2 Ma. This magmatic episode is probably associated to the collapse of the orogen. (author)

  12. CONCENTRATION OF Pu USING AN IODATE PRECIPITATE

    Science.gov (United States)

    Fries, B.A.

    1960-02-23

    A method is given for separating plutonium from lanthanum in a lanthanum fluoride carrier precipitation process for the recovery of plutonium values from an aqueous solution. The carrier precipitation process includes the steps of forming a lanthanum fluoride precipi- . tate, thereby carrying plutonium out of solution, metathesizing the fluoride precipitate to a hydroxide precipitate, and then dissolving the hydroxide precipitate in nitric acid. In accordance with the invention, the nitric acid solution, which contains plutonium and lanthanum, is made 0.05 to 0.15 molar in potassium iodate. thereby precipitating plutonium as plutonous iodate and the plutonous iodate is separated from the lanthanum- containing supernatant solution.

  13. Seismically-induced soft-sediment deformation structures associated with the Magallanes-Fagnano Fault System (Isla Grande de Tierra del Fuego, Argentina)

    Science.gov (United States)

    Onorato, M. Romina; Perucca, Laura; Coronato, Andrea; Rabassa, Jorge; López, Ramiro

    2016-10-01

    In this paper, evidence of paleoearthquake-induced soft-sediment deformation structures associated with the Magallanes-Fagnano Fault System in the Isla Grande de Tierra del Fuego, southern Argentina, has been identified. Well-preserved soft-sediment deformation structures were found in a Holocene sequence of the Udaeta pond. These structures were analyzed in terms of their geometrical characteristics, deformation mechanism, driving force system and possible trigger agent. They were also grouped in different morphological types: sand dykes, convolute lamination, load structures and faulted soft-sediment deformation features. Udaeta, a small pond in Argentina Tierra del Fuego, is considered a Quaternary pull-apart basin related to the Magallanes-Fagnano Fault System. The recognition of these seismically-induced features is an essential tool for paleoseismic studies. Since the three main urban centers in the Tierra del Fuego province of Argentina (Ushuaia, Río Grande and Tolhuin) have undergone an explosive growth in recent years, the results of this study will hopefully contribute to future analyses of the seismic risk of the region.

  14. Thermochronology of Cretaceous batholithic rocks in the northern Peninsular Ranges batholith, southern California: Implications for the Late Cretaceous tectonic evolution of southern California

    Science.gov (United States)

    Miggins, Daniel P.; Premo, Wayne R.; Snee, Lawrence W; Yeoman, Ross; Naeaer, Nancy D.; Naeser, Charles W.; Morton, Douglas M.

    2014-01-01

    The thermochronology for several suites of Mesozoic metamorphic and plutonic rocks collected throughout the northern Peninsular Ranges batholith (PRB) was studied as part of a collaborative isotopic study to further our understanding of the magmatic and tectonic history of southern California. These sample suites include: a traverse through the plutonic rocks across the northern PRB (N = 29), a traverse across a central structural and metamorphic transition zone of mainly metasedimentary rocks at Searl ridge (N = 20), plutonic samples from several drill cores (N = 7) and surface samples (N = 2) from the Los Angeles Basin, a traverse across the Eastern Peninsular Ranges mylonite zone (N = 6), and a suite of plutonic samples collected across the northern PRB (N = 13) from which only biotite 40Ar/39Ar ages were obtained. These geochronologic data help to characterize five major petrologic, geochemical, and isotopic zonations of the PRB (western zone, WZ; western transition zone, WTZ; eastern transition zone, ETZ; eastern zone, EZ; and upper-plate zone, UPZ).Apparent cooling rates were calculated using U-Pb zircon (zr) and titanite (sphene) ages; 40Ar/39Ar ages from hornblende (hbl), biotite (bi), and K-feldspar (Kf); and apatite fission-track (AFT) ages from the same samples. The apparent cooling rates across the northern PRB vary from relatively rapid in the west (zr-hbl ~210 °C/m.y.; zr-bio ~160 °C/m.y.; zr-Kf ~80 °C/m.y.) to less rapid in the central (zr-hb ~280 °C/m.y.; zr-bio ~90 °C/m.y.; zr-Kf ~60 °C/m.y.) and eastern (zr-hbl ~185 °C/m.y.; zr-bio ~180 °C/m.y.; zr-Kf ~60 °C/m.y.) zones. An exception in the eastern zone, the massive San Jacinto pluton, appears to have cooled very rapidly (zr-bio ~385 °C/m.y.). Apparent cooling rates for the UPZ samples are consistently slower in comparison (~25–45 °C/m.y.), regardless of which geochronometers are used.Notable characteristics of the various ages from different dating methods include: (1) Zircon

  15. U-Pb geochronologic constraints on Paleoproterozoic orogenesis in the northwestern Makkovik Province, Labrador, Canada

    International Nuclear Information System (INIS)

    Ketchum, J.W.F.; Dunning, G.R.; Dunning, G.R.

    1997-01-01

    A 45 km wide, shear-zone-bounded segment of the northwestern Makkovik Province, Labrador, is underlain by Archean gneisses derived from the adjacent Nain craton. This lithotectonic block (Kaipokok domain) was reworked at high metamorphic grade, overthrust by supracrustal sequences (Lower Aillik and Moran Lake groups), and intruded by granitoid plutons during the Paleoproterozoic. Initial amphibolite-facies reworking of the Kaipokok domain at 1896 ± 6 Ma is indicated by U-Pb ages of metamorphic zircon from a foliated Kikkertavak metadiabase dyke. This is one of the oldest Paleoproterozoic tectonic events dated thus far in northeast Laurentia and may be linked with ca. 1890 Ma plutonism documented elsewhere in the Kaipokok domain. Intrusion of granitoid plutons at 1882 -6 +10 , 1877 ± 5, and 1871 -3 +4 Ma in the Kaipokok Bay area postdates early thick- and thin-skinned thrusting (possibly east to northeast directed) that involved Lower Aillik Group strata. U-Pb titanite ages of 1866 - 1847 Ma in part record a metamorphic event that followed this plutonic-tectonic activity. These early events are temporally and kinematically difficult to reconcile with accretion of juvenile Makkovikian terranes in the southeast and may instead be related to early stages of the ca. 1.91 - 1.72 Ga Torngat orogeny along the western margin of the Nain craton. In contrast, high-grade metamorphism, dextral shearing, and northwestward thrusting between 1841 and 1784 Ma, including crystallization of an Iggiuk granitic vein at 1811 ± 8 Ma, are in accord with accretion of Makkovikian terranes in a dextral transpressional regime (Makkovikian orogeny sensu stricto). Coeval sinistral transpression in the Torngat orogen suggests that both orogenic belts accommodated relative northward tectonic escape of the Nain craton during this interval. (author)

  16. Musa's granite and Rio Maria's granodiorite Rb/Sr isotopic ages and geochemistry

    International Nuclear Information System (INIS)

    Gastal, M.C.P.; Macambira, M.J.B.; Medeiros, H.; Dall'Agnol, R.

    1987-01-01

    The Musa Granite and the Rio Maria Granodiorite are located at the eastern margin of the Amazonian craton, in the Rio Maria region, where a typical granite-greenstone terrain is characterized. Rb-Sr dating of six samples from different facies of Rio Maria Granodiorite furnished an age of 2564 ± 68 Ma with initial 87 Sr/ 86 Sr radio (IR) of 0.70288 ± 0.00092 (whole rock isochron; 1 ο error; MSWD = 2.26). Thirteen samples from the three facies of Musa Granite (monzogranites, syenogranites and intermediate to felsic hypabyssal rocks) gave Rb-Sr whole rock isochron with an age of 1692 ± 11 Ma and IR of 0.70777 ± 0.00023 (1 ο error, MSWD = 1.89). A preliminary attempt to individualize geochronologically the three facies was done resulting different ages and IRs. There is a coincidence between these ages and the emplacement sequence of these facies of the pluton. The actual meaning of the Rio Maria Granodiorite Rb-Sr age is still uncertain. It could be related to the end of the magmatic crystallization of the batholith as well as to the metamorphic-mylonitic event that affect it. Considering that the Jamon and Musa Granites are petrologically similar that they occur in the same area, it is interesting to note that latter is apparently a little older than the former. The IRs obtained for the two plutons are also not coincident. The isotopic Rb-Sr available data show that the exposed rocks of the Rio Maria Granodiorite have not been able to generate magmas with the compositions of the monzongranitic and the hypabyssal facies of the Musa pluton. On the other hand, rocks isotopically similar to the Rio Maria Granodiorite would theorically be able to generate the Jamon and a magma with the characteristics of the syenogranitic facies of the Musa pluton. (author) [pt

  17. Uranium hydrogeochemical and stream sediment reconnaissance of the Lime Hills and Tyonek NTMS Quadrangles, Alaska, including concentrations of forty-three additional elements

    International Nuclear Information System (INIS)

    Jacobsen, S.I.; Aamodt, P.L.; Sharp, R.R. Jr.

    1979-01-01

    The U contents of the 671 waters from the Lime Hills quadrangle range from below 0.02 ppB to a high of 11.29 ppB. U contents of the 667 sediments from this quadrangle range from a low of 0.1 ppM to a high of 94.9 ppM. Both waters and sediments containing relatively high U concentrations are found to cluster in association with plutonic rocks in the Alaska Range, and particularly so in the vicinity of the Tired Pup batholith and Mount Estelle pluton. The U contents of 575 waters from the Tyonek quadrangle range from below the detection limit to 13.13 ppB. Relatively high U concentrations in waters were found to cluster near the Mount Estelle pluton and undifferentiated igneous, metasedimentary, and volcanic rocks in the Alaska Range and in Pleistocene deposits along the Castle Mountain fault. Uranium contents in 502 sediments from the Tyonek quadrangle range from 0.1 to 58 ppM. Most sediment samples having high U concentrations are from locations near the Mount Estelle pluton and Styx River batholith in the Alaska Range. Data for samples collected in the Alaska Range and the two flanking lowlands were also examined separately. Water samples from all source types in the Alaska Range had a higher mean U concentration (0.85 ppB) than those from the Western Lowland (0.34 ppB) or the Susitna Lowland (0.51 ppB). The mean U concentrations for lake water samples from the Alaska Range and the lowland areas are similar. Sediment samples from streams and lakes in the Alaska Range have a markedly higher mean U concentration (7.00 ppM) than sediment samples from either the Western Lowland (2.46 ppM) or the Susitna Lowland area

  18. Geophysical methods for evaluation of plutonic rocks

    International Nuclear Information System (INIS)

    Gibb, R.A.; Scott, J.S.

    1986-04-01

    Geophysical methods are systematically described according to the physical principle and operational mode of each method, the type of information produced, limitations of a technical and/or economic nature, and the applicability of the method to rock-mass evaluation at Research Areas of the Nuclear Fuel Waste Management Program. The geophysical methods fall into three categories: (1) airborne and other reconnaissance surveys, (2) detailed or surface (ground) surveys, and (3) borehole or subsurface surveys. The possible roles of each method in the site-screening and site-evaluation processes of disposal vault site selection are summarized

  19. Rapid middle Miocene extension and unroofing of the southern Ruby Mountains, Nevada

    Science.gov (United States)

    Colgan, Joseph P.; Howard, Keith A.; Fleck, Robert J.; Wooden, Joseph L.

    2010-01-01

    Paleozoic rocks in the northern Ruby Mountains were metamorphosed during Mesozoic crustal shortening and Cenozoic magmatism, but equivalent strata in the southern Ruby Mountains were never buried deeper than stratigraphic depths prior to exhumation in the footwall of a west dipping brittle normal fault. In the southern Ruby Mountains, Miocene sedimentary rocks in the hanging wall of this fault date from 15.2 to 11.6 Ma and contain abundant detritus from the Paleozoic section. Apatite fission track and (U-Th)/He samples of the Eocene Harrison Pass pluton record rapid cooling that peaked ca. 17–15 Ma, while apatite fission track data from Jurassic plutons east and west of the southern Ruby Mountains indicate near-surface temperatures (pluton to be partially reset rather than to directly record fault slip. Our new data, together with published data on the distribution and composition of Miocene basin fill, suggest that rapid middle Miocene slip took place on the west dipping brittle detachment that bounds the Ruby Mountains and East Humboldt Range for 150 km along strike. This fault was thus active during a period of rapid extension (ca. 17–15 to 12–10 Ma) documented widely across the northern Basin and Range Province.

  20. Ultrapotassic rocks geology from Salgueiro region, Pernambuco state, Brazil

    International Nuclear Information System (INIS)

    Silva Filho, A.F. da; Guimaraes, I.P.

    1990-01-01

    The Cachoeirinha-Salgueiro belt has Proterozoic age and is located in the Borborema Province, NE Brazil. The ultrapotassic rocks from Salgueiro region intrudes the Cachoeirinha-Salgueiro belt rocks. The ultrapotassics from Salgueiro region constitutes of three units; Serra do Livramento pluton, and two dyke swarms called respectively beige alkali feldspar granites and green alkali feldspar syenite/quartz-syenite. The Serra do Livramento pluton shows E-W direction, boudin shape, width between 0,15 and 2,10 km, and it is intruded into metamorphic rocks and into the Terra Nova complex. Detailed geological mapping at the Serra das Duas Irmas allowed us to establish the dyke swarm chronology. The mapping reveals seven intrusion episodes, into the Terra Nova pluton, of green alkali feldspar syenite/quartz-syenite and five episodes of bege alkali feldspar granite. They alternate between them in space and time, and there are evidence that they were intruded under the tectonic control of the Pernambuco lineament. A systematic whole-rock Rb-Sr geochronology was done in the green alkali feldspar syenite/quartz-syenite, and an age of 514,8 ± 20,3 Ma was obtained. The initial ratio is 0,710615 + 0,000441. The age obtained shows small error and an initial ratio compatible with a strong crustal contamination. (author)

  1. Magma interaction in the root of an arc batholith

    Science.gov (United States)

    Chapman, T.; Robbins, V.; Clarke, G. L.; Daczko, N. R.; Piazolo, S.

    2016-12-01

    Fiordland, New Zealand, preserves extensive Cretaceous arc plutons, emplaced into parts of the Delamerian/Ross Orogen. Dioritic to gabbroic material emplaced at mid to lower crustal levels are exposed in the Malaspina Pluton (c. 1.2 GPa) and the Breaksea Orthogneiss (c. 1.8 GPa). Distinct magmatic pulses can be mapped in both of these plutons consistent with cycles of melt advection. Relationships are consistent with predictions from lower crustal processing zones (MASH and hot zones) considered important in the formation of Cordilleran margins. Metamorphic garnet growth is enhanced along magmatic contacts, such as where hornblende gabbronorite is cut by garnet-clinopyroxene-bearing diorite. Such features are consistent with cycles of incremental emplacement, younger magma having induced localised garnet granulite metamorphism in wall rock of older material. Temperature estimates and microstructures preserved in garnet granulite are consistent with sub-solidus, water-poor conditions in both the Malaspina and Breaksea Orthogneiss. The extent and conditions of the metamorphism implies conditions and duration was incapable of partially melting older wall rock material. The nature of interactions in intermediate to basic compositions are assessed in terms of magma genesis in the Cretaceous batholith. Most of the upper crustal felsic I-type magmatism along the margin being controlled by high-pressure garnet-clinopyroxene fractionation.

  2. Rubidium-strontium ages from the Oxford Lake-Knee Lake greenstone belt, northern Manitoba

    International Nuclear Information System (INIS)

    Clark, G.S.; Cheung, S.-P.

    1980-01-01

    Rb-Sr whole-rock ages have been determined for rocks from the Oxford Lake-Knee Lake-Gods Lake geenstone belt in the Superior Province of northeastern Manitoba. The age of the Magill Lake Pluton is 2455 +- 35 Ma(lambda 87 Rb = 1.42 x 10 -11 yr -1 ), with an initial 87 Sr/ 86 Sr ratio of 0.7078 +- 0.0043. This granite stock intrudes the Oxford Lake Group, so it is post-tectonic and probably related to the second, weaker stage of metamorphism. The age of the Bayly Lake Pluton is 2424 +- 74 Ma, with an initial 87 Sr/ 86 Sr ratio of 0.7029 +- 0.0001. This granodioritic batholith complex does not intrude the Oxford Lake Group. It is syn-tectonic and metamorphosed. The age of volcanic rocks of the Hayes River Group, from Goose Lake (30 km south of Gods Lake Narrows), is 2680 +- 125 Ma, with an initial 87 Sr/ 86 Sr ratio of 0.7014 +- 0.0009. The age for the Magill Lake and Bayly Lake Plutons can be interpreted as the minimum ages of granite intrusion in the area. The age for the Hayes River Group volcanic rocks is consistent with Rb-Sr ages of volcanic rocks from other Archean greenstone belts within the northwestern Superior Province. (auth)

  3. Climax Granite, Nevada Test Site, as a host for a rock mechanics test facility related to the geologic disposal of high level nuclear wastes

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-02-01

    This document discusses the potential of the Climax pluton, at the Nevada Test Site, as the host for a granite mechanics test facility related to the geologic disposal of high-level nuclear waste. The Climax granitic pluton has been the site of three nuclear weapons effects tests: Hard Hat, Tiny Tot, and Piledriver. Geologic exploration and mapping of the granite body were performed at the occasion of these tests. Currently, it is the site Spent Fuel Test (SFT-C) conducted in the vicinity of and at the same depth as that of the Piledriver drifts. Significant exploration, mapping, and rock mechanics work have been performed and continue at this Piledriver level - the 1400 (ft) level - in the context of SFT-C. Based on our technical discussions, and on the review of the significant geological and rock mechanics work already achieved in the Climax pluton, based also on the ongoing work and the existing access and support, it is concluded that the Climax site offers great opportunities for a rock mechanics test facility. It is not claimed, however, that Climax is the only possible site or the best possible site, since no case has been made for another granite test facility in the United States. 12 figures, 3 tables

  4. Lesser Antillean Arc Initiation and Migration as a Proxy of Slab Dynamics: Geothermochronology, Thermobarometry and Structure of Saint Martin Granodiorites

    Science.gov (United States)

    Noury, M.; Münch, P.; Philippon, M. M.; Bernet, M.; Bruguier, O.; Balvay, M.

    2017-12-01

    In subduction zones, volcanic arc initiation, cessation, migration and associated upper plate deformation -i.e faulting and vertical motions- reflect large-scale slab dynamics. At the northeastern edge of the Caribbean plate, the Greater Caribbean subduction zone waned out during the Mid Eocene, following the subduction of the Bahamas bank. This arc cessation was contemporaneous with (i) a plate boundary re-organization (evolving from subduction to transform), (ii) upper plate deformation and (iii) arc initiation in the Lesser Antilles. As part of the GAARANTI project that aims at unraveling the relationships between the evolution of terrestrial Caribbean biodiversity and vertical motions resulting from the Lesser Antilles subduction zone dynamic, we study the Saint Martin granodiorites, one of the two Oligocene plutons outcropping in the Lesser Antillean forearc. We investigate the birth and evolution of the Lesser Antillean arc and its thermo-mechanical impact on the Caribbean upper plate. In order to characterize the P,T,t path of the pluton we performed several thermochronological analyses covering a wide range of temperature (U-Pb on zircon -Tc 850°C, Ar/Ar on amphibole -Tc 550°C- and biotite -Tc 325°C-, zircon and apatite fission-tracks -Tc 250 and 110°C, respectively as well as U-Th/He on apatite -Tc 60°C) coupled with in-situ thermobarometry analyses (Al in hornblendes) and structural data. Geochronology and thermobarometry reveal that the granodiorites emplaced at ca. 28 Ma, at a depth of 5 km. Based on the age difference between amphibole and biotite Ar/Ar ages, we show that the northern pluton cooled faster than the southern one. Preliminary thermochronological results show a fast cooling between 29 and 25 Ma and then a continuous and slow cooling since 25 Ma and inverse modeling points to a 10 Ma cooling event. Our investigations give insights on the thermo-mechanical evolution of the arc-forearc region of the Lesser Antilles subduction zone

  5. The evaluation of physico-chemical parameters of the Nasrand Plutonic complex by using mineral composition

    Directory of Open Access Journals (Sweden)

    Fatemeh Sarjoughian

    2017-02-01

    Full Text Available Introduction Mineral composition is sensitive to variations in the composition of the magma and can be used to characterize the physical conditions of crystallization such as temperature, pressure, oxygen fugacity and water content. The studies have demonstrated that geobarometery by amphibole provides a tool for determining the depth of crystallization and knowledge of the depth of crystallization of hornblende through to solidification of calc-alkaline plutons (Anderson and Smith, 1995. The composition of pyroxene can be used as crystallization pressure and temperature indicators of pyroxene too. Anlytical methods The mineral compositions of the Nasrand intrusion were determined by electron microprobe, with special emphasis on the amphibole, feldspar, and pyroxene at the Naruto University, Japan, the EPMA (Jeol- JXA-8800R was used at operating conditions of 15 kV, 20 nA acceleration voltage and 20s counting time. Results The Nasrand intrusion (33°13'–33°15' N, 52°33'–52°34'E with an outcrop area of about 40 km2 is situated in the Urumieh–Dokhtar magmatic belt, SE of Ardestan. It is composed of granite and granodiorite and various dikes of diorite and gabbro which are intruded in it. It is intruded into Eocene volcanic rocks, including andesite, rhyolite, and dacite. The petrographical studies indicate that the granitic and granodioritic rocks contain major minerals such as quartz, K-feldspar, plagioclase, and amphibole, which are in an approximate equilibrium state. The gabbroic-dioritic dikes usually show microgranular porphyric texture. They mainly consist of plagioclase, amphibole, and pyroxene. The plagioclase shows variable composition from albite to oligoclase in the granitoid rocks and from oligoclase to bytownite in dioritic and gabbroic dikes (Deer et al., 1991. The amphiboles are calcic and their composition varies from hornblende to actinolite, whereas the composition of the basic dikes is inclined to hastingsite (Leake et

  6. Did the Malaysian Main Range record a weak hot Mega Shear?

    Science.gov (United States)

    Sautter, Benjamin; Pubellier, Manuel

    2015-04-01

    The Main Range of Peninsular Malaysia is a batholith that extends over more than 500km from Malacca in the South to the Thailand border in the North. It results from the subduction/accretion history of the western margin of Sunda Plate by Late Triassic times. We present a structural analysis based on geomorphology, field observations and geochronological data. While most of the basement fabrics are characterized by N-S structures such as granitic plutons, sutures, and folds, a prominent oblique deformation occurred by the End of the Mesozoics synchronous with a widespread thermal anomaly (eg Tioman, Stong, Gunung Jerai, Khanom, Krabi plutons). Morphostructures and drainage anomalies from Digital Elevation Model (SRTM and ASTER), allow us to highlight 2 major groups of penetrative faults in the Central Range Batholith: early NW-SE (5km spaced faults some of which are identified as thrust faults) cross-cut and offset by NNE-SSW dextral normal faults. The regularly spaced NW-SE faults bend toward the flanks of the Batholith and tend to parallel both the Bentong Raub Suture Zone to the East and the strike slip Bok Bak Fault to the West, thus giving the overall fault network the aspect of a large C/S band. Hence, a ductile/brittle behavior can be proposed for the sigmoid faults in the core of the Batholith, whereas the NNE faults are clearly brittle, more linear and are found on the smaller outlying plutons. Radiogenic crystallization ages are homogenous at 190±20Ma (U-Pb Zircon, Tc>1000°C and K-Ar Muscovite, Tc350°C) whereas Zircon fission tracks(Tc=250°C) show specific spatial zoning of the data distribution with ages at 100±10Ma for the outlying plutons and ages at 70±10Ma for the Main Range. We propose a structural mechanism according to which the Main Range would be the ductile core of a Mega-Shear Zone exhumed via transpressive tectonics by the end of Mesozoic Times. A first stage between 100 and 70Ma (Upper Cretaceous) of dextral transpression affected

  7. REE in cretaceous to tertiary granitoids of Chugoku and Shikoku district, SW Japan

    Energy Technology Data Exchange (ETDEWEB)

    Imaoka, Teruyoshi [Yamaguchi Univ. (Japan). Faculty of Science; Harada, Michiru

    1998-01-01

    `Niho plutonic composite rocks` distributed in Niho Kamigo area in the northeast of Yamaguchi-city in Japan. It is small plutonic composite rocks, of about 2 km in long length and 1 km of short length. The rocks were studied by the geological survey. Many kinds of rock and rare earth elements were determined. The constitution process is estimated by these results. It consists of gabbro-quartz diorite-tonalite{center_dot}granodiorite-granito. The more inside of rock existed, the more felsic rock are discovered. Chemical compositions were TiO{sub 2}, FeO, MnO and K{sub 2}O. It is estimated that intrusion of tonalite and successive intrusion of granodiorite generated and then formed in situ crystallization differentiation. (S.Y.)

  8. The distribution and uranium content characteristics of Indosinian granite in South China

    International Nuclear Information System (INIS)

    Sun Wenliang; Zhang Zhuo; Chen Wenwen; Chen Lulu; Xu Wenzheng

    2014-01-01

    In recent years, more and more Indosinian granite plutons has been found in South China, so some new ideas about the granity were proposed by scholars. The Indosinian granite in South China distributed in lineshape, and is controlled by some regional faults. Its formation was mainly related to geodynamic setting which began in the late Permian (about 256 Ma) by the subduction of the ancient Pacific Plate to the Eurasia. The average uranium content of Indosinian granite is 10.34ppm, much higher than the average value of world's acid rock. There occurs some couplings between the distribution of the Indosinian granite plutons and uranium mineralization belt in South China. So the Indosinian granite in South China may act as important uranium sources for the mineralization. (authors)

  9. Southwest Alaska Regional Geothermal Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Holdmann, Gwen [Univ. of Alaska, Fairbanks, AK (United States)

    2015-04-30

    The village of Elim, Alaska is 96 miles west of Nome, on the Seward Peninsula. The Darby Mountains north of the village are rich with hydrothermal systems associated with the Darby granitic pluton(s). In addition to the hot springs that have been recorded and studied over the last 100 years, additional hot springs exist. They are known through a rich oral history of the region, though they are not labeled on geothermal maps. This research primarily focused on Kwiniuk Hot Springs, Clear Creek Hot Springs and Molly’s Hot Springs. The highest recorded surface temperatures of these resources exist at Clear Creek Hot Springs (67°C). Repeated water sampling of the resources shows that maximum temperatures at all of the systems are below boiling.

  10. The physical properties of coal

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M

    2015-01-01

    Full Text Available FORMATION KIMBERLITE LAMPROPHYRE LAVA LIMESTONE LUTACEOUS ARENITE LUTITE MAGNETITE METAMORPHIC ROCKS MONZONITE NORITE OLIVINE GABBRO PLUTONIC ROCKS PYROCLASTIC BRECCIA PYROXENITE QUARTZ DIORITE RHYOLITE RUDITE SAND SEDIMENTARY SILCRETE SILICICLASTIC SEDIMENT...

  11. Uranium in granites

    International Nuclear Information System (INIS)

    Maurice, Y.T.

    1982-01-01

    Recent research activities of the Canadian Uranium in Granites Study are presented in 18 papers and 3 abstracts. 'Granites' is used as a generic term for granitoids, granitic rocks, and plutonic rocks

  12. Evaluating the importance of metamorphism in the foundering of continental crust.

    Science.gov (United States)

    Chapman, Timothy; Clarke, Geoffrey L; Piazolo, Sandra; Daczko, Nathan R

    2017-10-12

    The metamorphic conditions and mechanisms required to induce foundering in deep arc crust are assessed using an example of representative lower crust in SW New Zealand. Composite plutons of Cretaceous monzodiorite and gabbro were emplaced at ~1.2 and 1.8 GPa are parts of the Western Fiordland Orthogneiss (WFO); examples of the plutons are tectonically juxtaposed along a structure that excised ~25 km of crust. The 1.8 GPa Breaksea Orthogneiss includes suitably dense minor components (e.g. eclogite) capable of foundering at peak conditions. As the eclogite facies boundary has a positive dP/dT, cooling from supra-solidus conditions (T > 950 ºC) at high-P should be accompanied by omphacite and garnet growth. However, a high monzodioritic proportion and inefficient metamorphism in the Breaksea Orthogneiss resulted in its positive buoyancy and preservation. Metamorphic inefficiency and compositional relationships in the 1.2 GPa Malaspina Pluton meant it was never likely to have developed densities sufficiently high to founder. These relationships suggest that the deep arc crust must have primarily involved significant igneous accumulation of garnet-clinopyroxene (in proportions >75%). Crustal dismemberment with or without the development of extensional shear zones is proposed to have induced foundering of excised cumulate material at P > 1.2 GPa.

  13. Geochronological and mineralogical constraints on depth of emplacement and ascencion rates of epidote-bearing magmas from northeastern Brazil

    Science.gov (United States)

    Sial, Alcides N.; Vasconcelos, Paulo M.; Ferreira, Valderez P.; Pessoa, Ricardo R.; Brasilino, Roberta G.; Morais Neto, João M.

    2008-10-01

    Calc-alkalic to high-K calc-alkalic granitoid plutons in the Borborema province, northeastern Brazil, have been studied to constrain depth of emplacement by mineralogical and geological methods and to estimate upward magma transport rate based on partial dissolution of magmatic epidote. Laser-probe incremental heating 40Ar/ 39Ar dating of biotite and hornblende single crystals from the Neoproterozoic Tavares and Brejinho high-K calc-alkalic magmatic epidote (mEp)-bearing plutons reveals age differences of around 60 M.y. between these two minerals in each of these two intrusions. These data suggest solidification at relatively great depth followed by prolonged cooling interval between the closure temperatures of biotite and hornblende. Al-in-hornblende barometry indicates that hornblende in several mEp-bearing plutons in the Transversal Domain of the Borborema province solidified at 5 to 7 kbar, whereas in the Seridó and Macururé terranes, solidification pressures range from 3 to 4 kbar. Partial dissolution of epidote indicates very rapid upward transport. Partial corrosion occurred during 15-35 years (Cachoerinha-Salgueiro terrane), 10-30 years (Alto Pajeú), 15 years (Seridó), and 10 years (Macururé) corresponding to upward transport rates of 450-1300, 650-1050, 1200, and 1800 m/year respectively in these four terranes. Rapid upward magma migration in most cases was probably facilitated by diking simultaneous with regional shearing.

  14. Region-scale groundwater flow modelling of generic high level waste disposal sites

    International Nuclear Information System (INIS)

    Metcalfe, D.

    1996-02-01

    Regional-scale groundwater flow modelling analyses are performed on generic high level waste (HLW) disposal sites to assess the extent to which a large crystalline rock mass such as a pluton or batholith can be expected to contain and isolate HLW in terms of hydraulic considerations, for a variety of geologic and hydrogeologic conditions. The two-dimensional cross-sectional conceptual models of generic HLW disposal sites are evaluated using SWIFT III, which is a finite-difference flow and transport code. All steps leading to the final results and conclusions are incorporated in this report. The available data and information on geological and hydrogeologic conditions in plutons and batholiths are summarized. The generic conceptual models developed from this information are defined in terms of the finite difference grid, the geologic and hydrogeologic properties and the hydrologic boundary conditions used. The modelled results are described with contour maps showing the modelled head fields, groundwater flow paths and travel times and groundwater flux rates within the modelled systems. The results of the modelling analyses are used to develop general conclusions on the scales and patterns of groundwater flow in granitic plutons and batholiths. The conclusions focus on geologic and hydrogeologic characteristics that can result in favourable conditions, in terms of hydraulic considerations, for a HLW repository. (author) 43 refs., 9 tabs., 40 figs

  15. Intrusion of Magmatic Bodies Into the Continental Crust: 3-D Numerical Models

    Science.gov (United States)

    Gorczyk, Weronika; Vogt, Katharina

    2018-03-01

    Magma intrusion is a major material transfer process in the Earth's continental crust. Yet the mechanical behavior of the intruding magma and its host are a matter of debate. In this study we present a series of numerical thermomechanical simulations on magma emplacement in 3-D. Our results demonstrate the response of the continental crust to magma intrusion. We observe change in intrusion geometries between dikes, cone sheets, sills, plutons, ponds, funnels, finger-shaped and stock-like intrusions, and injection time. The rheology and temperature of the host are the main controlling factors in the transition between these different modes of intrusion. Viscous deformation in the warm and deep crust favors host rock displacement and plutons at the crust-mantle boundary forming deep-seated plutons or magma ponds in the lower to middle crust. Brittle deformation in the cool and shallow crust induces cone-shaped fractures in the host rock and enables emplacement of finger- or stock-like intrusions at shallow or intermediate depth. Here the passage of magmatic and hydrothermal fluids from the intrusion through the fracture pattern may result in the formation of ore deposits. A combination of viscous and brittle deformation forms funnel-shaped intrusions in the middle crust. Intrusion of low-density magma may more over result in T-shaped intrusions in cross section with magma sheets at the surface.

  16. Stream-sediment geochemical exploration for uranium in Narigan area Central Iran

    International Nuclear Information System (INIS)

    Yazdi, M.; Khoshnoodi, K.; Kavand, M.; Ashteyani, A. R.

    2009-01-01

    Uranium deposits of Iran occur mainly in the Central Iran zone. Several uranium deposits have been discovered in this zone. The Narigan area is one of the most important uranium mineralized area in this zone. The uranium bearing sequences in this area are contained in the plutonic to volcanic rocks of Narigan which intruded to the Pre-Cambrian pyroclastics rocks. Plutonic and volcanic rocks are granite, rhyolite and volcanoclastic. Diabasic dykes have been intruded to these igneous rocks. The plutonic and volcanic rocks have been covered by Cretaceous limestones which seem to be youngest the rocks in this area. The aim of our project is to develop a regional exploration strategy for uranium in these igneous rocks. A grid-based sampling was planned following the results of the previous geochemical mapping at a scale of 1:100,000, integrated with geophysical data and alteration zones and outcrop of intrusive rocks. The following results are based on geological, and stream geochemical explorations in 1:20000 scale of this area. During this study 121 samples were collected from the stream sediments of <80 mesh for final sampling. Ten percent of the samples were used for checking laboratories errors. The samples were collected according to conventional methods from 30-40 cm depth of stream sediments. Finally, geochemical and radiometric data were combined and the results introduced 3 anomalies in the Narigan area

  17. Geology of the central Mineral Mountains, Beaver County, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Sibbett, B.S.; Nielson, D.L.

    1980-03-01

    The Mineral Mountains are located in Beaver and Millard Counties, southwestern Utah. The range is a horst located in the transition zone between the Basin and Range and Colorado Plateau geologic provinces. A multiple-phase Tertiary pluton forms most of the range, with Paleozoic rocks exposed on the north and south and Precambrian metamorphic rocks on the west in the Roosevelt Hot Springs KGRA (Known Geothermal Resource Area). Precambrian banded gneiss and Cambrian carbonate rocks have been intruded by foliated granodioritic to monzonitic rocks of uncertain age. The Tertiary pluton consists of six major phases of quartz monzonitic to leucocratic granitic rocks, two diorite stocks, and several more mafic units that form dikes. During uplift of the mountain block, overlying rocks and the upper part of the pluton were partially removed by denudation faulting to the west. The interplay of these low-angle faults and younger northerly trending Basin and Range faults is responsible for the structural control of the Roosevelt Hot Springs geothermal system. The structural complexity of the Roosevelt Hot Springs KGRA is unique within the range, although the same tectonic style continues throughout the range. During the Quaternary, rhyolite volcanism was active in the central part of the range and basaltic volcanism occurred in the northern portion of the map area. The heat source for the geothermal system is probably related to the Quaternary rhyolite volcanic activity.

  18. Reconnaissance geology of the Thaniyah Quadrangle, sheet 20/42 C, Kingdom of Saudi Arabia

    Science.gov (United States)

    Greene, Robert C.

    1983-01-01

    The Thaniyah quadrangle, sheet 20/42 C, is located in the transition zone between the Hijaz Mountains and the Najd Plateau of southwestern Saudi Arabia between lat 20?00' and 20?30' N., long 42?00' to 42?30' E. The quadrangle is underlain by Precambrian metavolcanic, metasedimentary, plutonic, and dike rocks. Metavolcanic rocks consist of metamorphosed basalt and andesite with minor dacite and rhyolite and underlie three discontinuous northwest-trending belts. Metasedimentary rocks are confined to small areas underlain by quartzite, metasandstone, marble, and calc-silicate rock. Plutonic rocks include an extensive unit of tonalite and quartz diorite and a smaller unit of diorite and quartz diorite, which occupy much of the central part of the quadrangle. A small body of diorite and gabbro and a two-part zone of tonalite gneiss are also present. All of these plutonic rocks are assigned to the An Nimas batholith. Younger plutonic rocks include extensive graphic granite and rhyolite in the northeastern part of the quadrangle and several smaller bodies of granitic rocks and of gabbro. The metavolcanic rocks commonly have strong foliation with northwest strike and steep to vertical dip. Diorite and quartz diorite are sheared and brecciated and apparently syntectonic. Tonalite and quartz diorite are both foliate and nonfoliate and were intruded in episodes both preceding and following shearing. The granitic rocks and gabbro are post-tectonic. Trends of faults and dikes are mostly related to the Najd faulting episode. Radiometric ages, mostly from adjacent quadrangles, suggest that the An Nimas batholith is 835 to 800 Ma, gabbro and granite, except the graphic granite and rhyolite unit, are about 640 to 615 Ma, and the graphic granite and rhyolite 575 to 565 Ma old. Metavolcanic rocks similar to those hosting copper and gold mineralization in the Wadi Shuwas mining district adjacent to the southwestern part of the quadrangle are abundant. An ancient copper mine was

  19. An autochthonous geological model for the eastern Andes of Ecuador

    Science.gov (United States)

    Pratt, Warren T.; Duque, Pablo; Ponce, Miguel

    2005-04-01

    We describe a traverse across the Cordillera Real and sub-Andean Zone of Ecuador, poorly known areas with very little detailed mapping and very little age control. The spine of the Cordillera comprises deeply eroded Triassic and Jurassic plutons, the roots of a major arc, emplaced into probable Palaeozoic pelites and metamorphosed volcanic rocks. The W flank comprises a Jurassic (?) submarine basaltic-andesitic volcanic sequence, which grades up into mixed Jurassic/Cretaceous volcanic and sedimentary rocks of the Inter-Andean Valley. The sub-Andean Zone, on the E flank of the Cordillera, comprises a newly recognized Cretaceous basin of cleaved mudrocks, quartz arenites and limestones. East of the syndepositional Cosanga Fault, the Cretaceous basin thins into a condensed sequence that is indistinguishable from the rocks of the adjacent hydrocarbon-bearing Oriente Basin. The principal penetrative deformation of the Cordillera Real was probably latest Cretaceous/Palaeocene. It telescoped the magmatic belts, but shortening was largely partitioned into the pelites between plutons. The plutons suffered inhomogenous deformation; some portions completely escaped tectonism. The pelites conserve two foliations. The earliest comprises slaty cleavage formed under low- or sub-greenschist conditions. The later is a strong schistosity defined by new mica growth. It largely transposed and obliterated the first. Both foliations may have developed during a single progressive deformation. We find inappropriate recent terrane models for the Cordillera Real and sub-Andean Zone of Ecuador. Instead we find remarkable similarities from one side of the Cordillera to the other, including a common structural history. In place of sutures, we find mostly intrusive contacts between major plutons and pelites. Triassic to Cretaceous events occurred on the autochthonous western edge of the Archaean Guyana Shield. The latest Cretaceous-Paleocene deformation is interpreted as the progressive

  20. Quartz-molybdenite veins in the Priestly Lake granodiorite, north-central Maine

    Science.gov (United States)

    Ayuso, Robert A.; Shank, Stephen G.

    1983-01-01

    Quartz-molybdenite veins up to 15 cm in width occur in fine to medium-grained porphyritic biotite-hornblende granodiorite at Priestly Lake north-central Maine. An area of about 150 m x 150 m contains quartz-molybdenite veins; a larger area is characterized by barren quartz veins. Quartz-molybdenite veins are concentrated within the most felsic variants of the intrusion as suggested by lower mafic mineral contents. The pluton has a narrow range in SiO2 (67-70 wt.%), major oxides, and in trace-element compositions. Molybdenite occurs as coarse grained clusters in pockets within the quartz veins, and fills fractures in the quartz veins and host rocks. Disseminated molybdenite in the granodiorite is relatively rare and occurs only in the area characterized by a high density of quartz veins (up to 50 veins per square meter). Alteration envelopes along the quartz veins are very thin or absent, although in some areas the granodiorite appears to be selectively and pervasively altered. Sericite, chlorite, epidote, calcite, pyrite, and quartz are concentrated near the quartz-molybdenite veins. Many of the field and geochemical characteristics of the Priestly Lake pluton are unlike those of major molybdenum-producing areas (Climax, Henderson, Urad). For example, the area of alteration seems to be of limited extent, the host rock is not intensely altered hydrothermally at the surface, the density of fractures is rather low in the mineralized area, and the amount of disseminated molybdenite appears to be small. However, the Priestly Lake pluton may be a small fraction of a concealed batholith as suggested by geophysical data. It is conceivable that the type of mineralization at the surface might be the expression of more extensive molybdenite mineralization at depth. The quartz-molybdenite veins in the Priestly Lake pluton are significant because they indicate that potential molybdenum sources for producing mineralized granites were available at depth. Future studies should be

  1. Exhumation History of the North Queensland Segment of Australia's Elevated Passive Margin Escarpment as Revealed by (U-Th)/He Analysis of Apatite and Zircon

    Science.gov (United States)

    Abbott, L. D.; Glass, J.; Flowers, R. M.; Metcalf, J. R.

    2016-12-01

    Australia's east coast constitutes an elevated passive continental margin that developed in response to Cretaceous-Paleogene rifting during opening of the Tasman and Coral seas. Typical of elevated passive margins around the world, Australia's east coast consists of a high plateau bounded by an abrupt escarpment, known as the Great Escarpment. We employed the apatite (AHe) and zircon (ZHe) (U-Th)/He low temperature thermochronometers to explore the exhumation history of the North Queensland segment of the Great Escarpment. Our 1500m vertical transect was conducted up the southeast flank of Mount Bartle Frere, which exposes the Bartle Frere pluton of the ca. 280 Ma Bellenden Ker Batholith. A previous apatite fission track (AFT) study determined that an outcrop of the Bartle Frere pluton at Josephine Falls, which constitutes the base of our transect, cooled through 110 °C at 142.3 ±9.9Ma. Our preliminary ZHe analysis of the same outcrop reveals that it passed through 180 °C at ca. 155 Ma. These data point to an episode of relatively rapid exhumation during the latest Jurassic to earliest Cretaceous, which brought the Bartle Frere pluton from approximately 6 km burial depth to 3.5 km depth (assuming a 30 °C/km geothermal gradient). Samples throughout our entire transect yield AHe dates that range between 72Ma and 182Ma, with no apparent elevation-date relationship. These data suggest that the pluton cooled below 65 °C during the Cretaceous, indicating unroofing to less than 2 km depth by that time. The data scatter makes it difficult to resolve the details of this Cretaceous cooling episode. However, the fact that we obtain Cretaceous AHe dates across the entire 1500 m height of the transect suggests that the Great Escarpment in North Queensland has existed at approximately its current location and height since at least the Late Cretaceous. The Cretaceous age for this segment of the Great Escarpment is similar to the age determined by other AHe workers for the

  2. Preliminary calculations on the cooling rate of the Renca batholit, Sierra de San Luis, Argentina

    International Nuclear Information System (INIS)

    Lopez de Luchi, M.G.; Ostera, H.A.; Linares, E; Rosello, E.A

    2001-01-01

    Cooling rates can be used to constrain the unroofing history of plutonic-metamorphic system. Geocronological cooling rates (Spear and Parrish, 1996) can be unravelled using age calculations on minerals that were open systems and subsequently passed through their closure temperatures (Dodson, 1973) during cooling. Several age determinations on different minerals are needed in order to accurately constrain the cooling path of a pluton (Hodges 1991, Spear and Parrish, 1996 and references therein). Isotopic open-system behaviour in minerals can be modelled as volume diffusion process (Hodges, 1991 and references therein), which depends on the cooling rate of the whole system. We present the first results on the calculation of the cooling rate of the Renca batholith on the basis of the combination of both thermometric calculations and available crystallization and cooling ages (au)

  3. A study of the hydrothermal alteration in Paleoproterozoic volcanic centers, São Félix do Xingu region, Amazonian Craton, Brazil, using short-wave infrared spectroscopy

    Science.gov (United States)

    da Cruz, Raquel Souza; Fernandes, Carlos Marcello Dias; Villas, Raimundo Netuno Nobre; Juliani, Caetano; Monteiro, Lena Virgínia Soares; de Almeida, Teodoro Isnard Ribeiro; Lagler, Bruno; de Carvalho Carneiro, Cleyton; Misas, Carlos Mario Echeverri

    2015-10-01

    Hypogene hydrothermal minerals have been identified by short-wave infrared spectroscopy in hydrothermally altered rocks from the Sobreiro and Santa Rosa formations, which belong to a Paleoproterozoic volcano-plutonic system in Amazonian craton. Three clay minerals are spectrally recognized: montmorillonite, kaolinite, and illite. The integration of these data with those available in the literature, including gold occurrences, suggests that those rocks are hydrothermal products of both volcanic thermal sources and later crustal intrusions, as evidenced by variable styles of propylitic, sericitic, potassic, and intermediate argillic alteration. The influence of meteoric fluids is emphasized. This low cost exploratory technique, which can be applied to hand samples, seems to be promising in the separation of hydrothermally altered volcano-plutonic centers in regions submitted to severe weathering conditions, in addition to aid elaborating models for prospecting mineral deposits.

  4. Study of air pollution in Buenos Aires city. Appendix 1

    International Nuclear Information System (INIS)

    Pla, R.R.; Moreno, M.A.; Tafuri, V.; Cussto, G.S.; Adler, M.

    1995-01-01

    The work performed since 1993 on the study of the elemental profile of Buenos Aires atmosphere is presented. Both aerosol direct sampling and biomonitors have been used and the samples have been analyzed mainly by Instrumental Neutron Activation Analysis (INAA). Due to problems with XRF, Anodic Stripping Voltammetry has been chosen for lead determination and Ion Chromatography for soluble anions. For aerosol direct sampling, analytical and sampling methods are described, as well as the sampling campaigns. Experiments have been performed for studying differences between day/night elemental concentrations along the week and a possible seasonal dependence. Some results of mass concentrations and others from INAA are presented. Sampling with the 'Gent sampler' began during August 1994 at an urban residential area of the city. The results of mass concentrations for the first 28 pairs of samples are shown together with some INAA results, as this is the only technique used for the analysis. Lichens and tree bark were the chosen biomonitors. Sampling and analytical methods by INAA are exposed, presenting some of the results that have been obtained. The participation in the aerosol analysis for the Ushuaia Global Atmospheric Watch Station is also commented. (author)

  5. Orogeny, migmatites and leucogranites: A review

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Based on geochemical data, we can use statistical methods and modeling to evaluate whether migmatites are sources ...... interrelated factors, but in which the style of this switch and ..... ballooning plutons: A return to nested diapirs emplaced.

  6. Evidence of mingling between contrasting magmas in a deep plutonic environment: the example of Várzea Alegre, in the Ribeira Mobile Belt, Espírito Santo, Brazil

    Directory of Open Access Journals (Sweden)

    SILVIA R. MEDEIROS

    2001-03-01

    Full Text Available At the end of the geotectonic cycle that shaped the northern segment of the Ribeira Mobile Belt (Upper Proterozoic to Paleozoic age, a late to post-collisional set of plutonic complexes, consisting of a wide range of lithotypes, intruded all metamorphic units. The Várzea Alegre Intrusive Complex is a post-collisional complex. The younger intrusion consists of an inversely zoned multistage structure envolved by a large early emplaced ring of megaporphyritic charnoenderbitic rocks. The combination of field, petrographic and geochemical data reveals the presence of at least two different series of igneous rocks. The first originated from the partial melting of the mantle. This was previously enriched in incompatible elements, low and intermediate REE and some HFS-elements. A second enrichment in LREE and incompatible elements in this series was due to the mingling with a crustal granitic magma. This mingling process changed the composition of the original tholeiitic magma towards a medium-K calc-alkalic magma to produce a suite of basic to intermediate rock types. The granitic magma from the second high-K, calc-alkalic suite originated from the partial melting of the continental crust, but with strong influence of mantle-derived melts.No final do ciclo tectônico que originou o segmento norte do Cinturão Móvel Ribeira (de idade Proterozóica Superior a Paleozóica, uma série de complexos plutônicos tardi- a pós-colisionais, consistindo de larga gama de litotipos, intrudiu todas as unidades metamórficas. O Complexo Intrusivo de Várzea Alegre é um desses complexos pós-colisionais. A intrusão mais jovem consiste de uma estrutura de multiplos estágios, envolvida por um largo anel de rochas charnoenderbíiticas megaporfirícas de posicionmento anterior. A combinação de dados de campo, petrográficos e geoquímicos revela a presença de pelo menos duas séries distintas de rochas ígneas. A primeira foi originada por fusão parcial do manto

  7. Rb-Sr geochronology of neoproterozoic syenites in parts of northern Tamil Nadu: implication on Pan-African magmatism

    International Nuclear Information System (INIS)

    Pandey, U.K.; Prasad, R.N.; Krishna, Veena; Paneer Selvam, A.; Chabria, Tikam

    1996-01-01

    This paper presents Rb-Sr whole rock isochron age data on two syenite plutons viz. Elagiri and Rasimalai, and results of this study may constrain the timing of magmatic event and crystal evolution in northern granulite segment

  8. Rb-Sr whole-rock and mineral ages, K-Ar, 40Ar/39Ar, and U-Pb mineral ages, and strontium, lead, neodymium, and oxygen isotopic compositions for granitic rocks from the Salinian Composite Terrane, California:

    Science.gov (United States)

    Kistler, R.W.; Champion, D.E.

    2001-01-01

    This report summarizes new and published age and isotopic data for whole-rocks and minerals from granitic rocks in the Salinian composite terrane, California. Rubidium-strontium whole-rock ages of plutons are in two groups, Early Cretaceous (122 to 100 Ma) and Late Cretaceous (95 to 82 Ma). Early Cretaceous plutons occur in all granitic rock exposures from Bodega Head in the north to those from the Santa Lucia and Gabilan Ranges in the central part of the terrane. Late Cretaceous plutons have been identified in the Point Reyes Peninsula, the Santa Lucia and the Gabilan Ranges, and in the La Panza Range in the southern part of the terrane. Ranges of initial values of isotopic compositions are 87Sr/86Sr, 0.7046-0.7147, δ18O, +8.5 to +12.5 per mil, 206Pb/204Pb, 18.901-19.860, 207Pb/204Pb, 15.618-15.814, 208Pb/204Pb, 38.569- 39.493, and εNd, +0.9 to -8.6. The initial 87Sr/86Sr=0.706 isopleth is identified in the northern Gabilan Range and in the Ben Lomond area of the Santa Cruz Mountains, in Montara Mountain, in Bodega Head, and to the west of the Farallon Islands on the Cordell Bank. This isotopic boundary is offset about 95 miles (160km) by right-lateral displacements along the San Gregorio-Hosgri and San Andreas fault systems.

  9. Syn-collisional felsic magmatism and continental crust growth: A case study from the North Qilian Orogenic Belt at the northern margin of the Tibetan Plateau

    Science.gov (United States)

    Chen, Shuo; Niu, Yaoling; Xue, Qiqi

    2018-05-01

    The abundant syn-collisional granitoids produced and preserved at the northern Tibetan Plateau margin provide a prime case for studying the felsic magmatism as well as continental crust growth in response to continental collision. Here we present the results from a systematic study of the syn-collisional granitoids and their mafic magmatic enclaves (MMEs) in the Laohushan (LHS) and Machangshan (MCS) plutons from the North Qilian Orogenic Belt (NQOB). Two types of MMEs from the LHS pluton exhibit identical crystallization age ( 430 Ma) and bulk-rock isotopic compositions to their host granitoids, indicating their genetic link. The phase equilibrium constraints and pressure estimates for amphiboles from the LHS pluton together with the whole rock data suggest that the two types of MMEs represent two evolution products of the same hydrous andesitic magmas. In combination with the data on NQOB syn-collisional granitoids elsewhere, we suggest that the syn-collisional granitoids in the NQOB are material evidence of melting of ocean crust and sediment. The remarkable compositional similarity between the LHS granitoids and the model bulk continental crust in terms of major elements, trace elements, and some key element ratios indicates that the syn-collisional magmatism in the NQOB contributes to net continental crust growth, and that the way of continental crust growth in the Phanerozoic through syn-collisional felsic magmatism (production and preservation) is a straightforward process without the need of petrologically and physically complex processes.

  10. Petrology, geochemistry of hornblende gabbro and associated ...

    Indian Academy of Sciences (India)

    ... in gabbroic rocks of subduction zone has been considered either as .... The northern margin of the gabbroic body shows crude E–W foli- ...... eral accumulation (migration of interstitial melt ..... pluton in a continental magmatic arc; J. Petrol. 35.

  11. Comments to the article by Verner et al.: Magmatic history and geophysical signature of a post-collisional intrusive center

    Czech Academy of Sciences Publication Activity Database

    Breiter, Karel

    2011-01-01

    Roč. 100, č. 4 (2011), s. 889-891 ISSN 1437-3254 Institutional research plan: CEZ:AV0Z30130516 Keywords : Bohemian Massif * Boehmerwald * Ploeckenstein pluton * granite Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.342, year: 2011

  12. SHRIMP chronology of the Magallanes Basin basement, Tierra del Fuego: Cambrian plutonism and Permian high-grade metamorphism Geocronología SHRIMP del basamento de la Cuenca de Magallanes, Tierra del Fuego: plutonismo Cámbrico y metamorfismo Pérmico de alto grado

    Directory of Open Access Journals (Sweden)

    Francisco Hervé

    2010-07-01

    Full Text Available Five new SHRTMP U-Pb zircon ages are reported for gneisses and foliated plutonic rocks belonging to the Tierra del Fuego igneous and metamorphic basement complex (TFIMC, obtained from the bottom of borehole cores through the Magallanes Basin. Three of the samples yielded weighted mean 206Pb/238U ages (523±7 Ma, 522±6 Ma and 538±6 Ma, interpreted as indicating Early Cambrian igneous crystallization of the host rocks. A migmatitic gneiss shows peaks at ca. 950-1,100 Ma and 560-650 Ma from inherited zircon grains in addition to two grains with ages of ca. 525 Ma, suggesting involvement of Grenvillian and Brasiliano material in the protolith of a Cambrian migmatite. A cordierite-sillimanite-garnet gneiss contains igneous zircons of Cambrian age and a population of U-rich metamorphic Permian zircons, indicating that a Permian high-grade metamorphic and anatectic (P=2-3 kbar, T=730-770°C event affected the Cambrian igneous rocks or sedimentary rocks derived from them. Cambrian/Ediacaran plutonic rocks are known from the basement of NW Argentina, the Sierra de la Ventana, the Cape Fold Belt in South Africa, and the Ross Orogen in Antarctica. The Permian metamorphic event is coeval with the deformation and low-grade metamorphism of the sedimentary successions that overlie the basement in many of these areas. In Tierra del Fuego at least 8 to 12 km of cover rocks were removed following the high-grade Permian metamorphic episode and the unconformable deposition of the Tobífera Formation volcanic rocks in the Middle to Late Jurassic. This eroded cover could nave been an important source of detritus for the conglomeratic Permian and Triassic? Successions of neighboring regions in South America, Africa and Antarctica.Cinco nuevas edades radiométricas logradas mediante análisis U-Pb en circón utilizando el SHRIMP, fueron determinadas en gneises y rocas plutónicas foliadas obtenidas desde el fondo de pozos de sondajes en la Cuenca de Magallanes y

  13. Recovery of uranium and molybdenum elements from gebel gattar raw material, eastern desert, Egypt. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    El-Hazek, N T; Mahdy, M A; Mahmoud, H M.K. [Nuclear Materials Authority, Cairo, (Egypt)

    1996-03-01

    G. Gatter uranium mineralizations are located along the faults and fracture zones crossing G.Gattar granitic pluton and long the contact of the pluton with the hammamat sediments. Also, molybdenum id presented in more than one mode of occurrence. The molybdenum mineralization treated in this work is the dessimenated type. The uranium and molybdenum raw material was subjected to series of leaching experiments including acid and alkaline agitation, alkaline percolation, and acid heap leaching techniques. Recovery of uranium and molybdenum was achieved by anion-exchange method followed by their elution by acidified sodium chloride. Uranium precipitation was performed in the form of ammonium diuranate (Yellow Cake). On the other hand molybdenum was precipitated in the form of molybdenum oxide. A tentative flowsheet for the extraction of both uranium and molybdenum is proposed and discussed. 13 figs., 3 tabs.

  14. Les granitoïdes néoprotérozoïques de Khzama, Anti-Atlas central, Maroc: marqueurs de l'évolution d'un magmatisme d'arc à un magmatisme alcalineNeoproterozoic granitoids from Khzama, central Anti-Atlas, Morocco: evolution markers from arc magmatism to alkaline magmatism

    Science.gov (United States)

    El-Khanchaoui, T.; Lahmam, M.; El-Boukhari, A.; El-Beraaouz, H.

    2001-05-01

    Petrological study and zircon typology provide important information that is related to the classification and genesis of Neoproterozoic granitoids in the Khzama area (northeast Siroua). The Pan-African granitoids show a transition from island-arc magmatism to alkaline magmatism. A space and time zonation of magmatism from the north to the south is evident. Early Pan-African granitoids were generated from various magma sources through different petrogenetic mechanisms. The first association corresponds to the low-K calc-alkaline plutons of Ait Nebdas, the second one correponds to high-K calc-alkaline post-collisional granites (Tamassirte-Tiferatine and Ifouachguel). Finally, shoshonitic magmatism (Irhiri) ends the magmatic evolution of the region. Thus, the late Pan-African granitic plutonism began with calc-alkaline associations and ended with K-alkaline magmatism in a transtensional setting, heralding the onset of the Moroccan Palæozoic cycle.

  15. Water - rock interaction in different rock environments

    International Nuclear Information System (INIS)

    Lamminen, S.

    1995-01-01

    The study assesses the groundwater geochemistry and geological environment of 44 study sites for radioactive waste disposal. Initially, the study sites were divided by rock type into 5 groups: (1) acid - intermediate rocks, (2) mafic - ultramafic rocks, (3) gabbros, amphibolites and gneisses that contain calc-silicate (skarn) rocks, (4) carbonates and (5) sandstones. Separate assessments are made of acid - intermediate plutonic rocks and of a subgroup that comprises migmatites, granite and mica gneiss. These all belong to the group of acid - intermediate rocks. Within the mafic -ultramafic rock group, a subgroup that comprises mafic - ultramafic plutonic rocks, serpentinites, mafic - ultramafic volcanic rocks and volcanic - sedimentary schists is also evaluated separately. Bedrock groundwaters are classified by their concentration of total dissolved solids as fresh, brackish, saline, strongly saline and brine-class groundwaters. (75 refs., 24 figs., 3 tabs.)

  16. Petrology and geochronology of the Cacapava do Sul batholith, state of Rio Grande do Sul, Brazil

    International Nuclear Information System (INIS)

    Sartori, P.L.P.; Kawashita, K.

    1985-01-01

    The batholith of Cacapava do Sul, Brazil, is composed of granitic rocks represented by leucogranites, syenogranites, monzogranites and granodiorites, arranged in a complex way. These rocks represent a calcalkaline suite of compressional tectonic setting. The general characteristics described with respect to it's petrography, chemical composition and geological setting show similarities with mesozone plutons. The pluton intruded the metamorphic rocks of the Vacacai Formation and the type of emplacement mechanism was forceful. According to the Rb-Sr total rock isochron age determinations, its consolidation took place throughout the Cambrian period. This result agrees with previous K-Ar age determinations. The intrusion occurred at the end of the Brasiliano orogenic cycle, when the metamorphic and folding phenomena had already ceased and the morphogenesis was in progress, since the temperature for radiometric argon retention was reached rapidly. (D.J.M.) [pt

  17. Recovery of uranium and molybdenum elements from gebel gattar raw material, eastern desert, Egypt. Vol. 3

    International Nuclear Information System (INIS)

    El-Hazek, N.T.; Mahdy, M.A.; Mahmoud, H.M.K.

    1996-01-01

    G. Gatter uranium mineralizations are located along the faults and fracture zones crossing G.Gattar granitic pluton and long the contact of the pluton with the hammamat sediments. Also, molybdenum id presented in more than one mode of occurrence. The molybdenum mineralization treated in this work is the dessimenated type. The uranium and molybdenum raw material was subjected to series of leaching experiments including acid and alkaline agitation, alkaline percolation, and acid heap leaching techniques. Recovery of uranium and molybdenum was achieved by anion-exchange method followed by their elution by acidified sodium chloride. Uranium precipitation was performed in the form of ammonium diuranate (Yellow Cake). On the other hand molybdenum was precipitated in the form of molybdenum oxide. A tentative flowsheet for the extraction of both uranium and molybdenum is proposed and discussed. 13 figs., 3 tabs

  18. National Uranium Resource Evaluation, Tonopah quadrangle, Nevada

    International Nuclear Information System (INIS)

    Hurley, B.W.; Parker, D.P.

    1982-04-01

    The Tonopah Quadrangle, Nevada, was evaluated using National Uranium Resource Evaluation criteria to identify and delineate areas favorable for uranium deposits. Investigations included reconnaissance and detailed surface geologic and radiometric studies, geochemical sampling and evaluation, analysis and ground-truth followup of aerial radiometric and hydrogeochemical and stream-sediment reconnaissance data, and subsurface data evaluation. The results of these investigations indicate environments favorable for hydroallogenic uranium deposits in Miocene lacustrine sediments of the Big Smoky Valley west of Tonopah. The northern portion of the Toquima granitic pluton is favorable for authigenic uranium deposits. Environments considered unfavorable for uranium deposits include Quaternary sediments; intermediate and mafic volcanic and metavolcanic rocks; Mesozoic, Paleozoic, and Precambrian sedimentary and metasedimentary rocks; those plutonic rocks not included within favorable areas; and those felsic volcanic rocks not within the Northumberland and Mount Jefferson calderas

  19. Fluid inclusion, geochemical, Rb-Sr and Sm-Nd isotope studies on ...

    Indian Academy of Sciences (India)

    10

    geochemistry and geochronology of two such tungsten mineralized granite plutons at. 18 ... 55 et al. 1994, Torsvik et al. 2001a; Pandit et al. 2003; Ashwal et al. 2013). ..... fractionation of plagioclase feldspar (Chappell and White, 1974). Pearce ...

  20. Geochemistry and petrogenesis of anorogenic basic volcanic ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The Kundal area of Malani Igneous Suite consists of volcano-plutonic rocks. Basalt flows ...... genesis of lavas erupted along the south west Indian ridge between the ... Schilling J G 1966 Rare earth fractionation in Hawaiian vol- canic rocks ...

  1. Petrology and geochemistry of Variscan dykes from the Jáchymov (Joachimsthal) ore district, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Štemprok, M.; Seifert, T.; Holub, F. V.; Chlupáčová, M.; Dolejš, D.; Novák, Jiří Karel; Pivec, E.; Lang, Miloš

    2008-01-01

    Roč. 53, č. 1 (2008), s. 65-104 ISSN 1802-6222 Institutional research plan: CEZ:AV0Z30130516 Keywords : lamprophyre * granite porphyry * uranium mineralization * magma mixing * Western Krušné hory/Erzgebirge Pluton Subject RIV: DB - Geology ; Mineralogy

  2. Granitic magma emplacement and deformation during early-orogenic syn-convergent transtension: The Stare Sedlo complex, Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Tomek, Filip; Žák, J.; Chadima, Martin

    2015-01-01

    Roč. 87, JUL (2015), s. 50-66 ISSN 0264-3707 Institutional support: RVO:67985831 Keywords : anisotropy of magnetic susceptibility (AMS) * Bohemian Massif * pluton emplacement * granite * transtension * Variscan orogeny Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.926, year: 2015

  3. A Paleozoic Japan-type subduction-accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt

    Science.gov (United States)

    Song, Dongfang; Xiao, Wenjiao; Windley, Brian F.; Han, Chunming; Tian, Zhonghua

    2015-05-01

    Magmatic arcs ascribed to oceanic lithosphere subduction played a dominant role in the construction of the accretionary Central Asian Orogenic Belt (CAOB). The Beishan orogenic collage, situated between the Tianshan Orogen to the west and the Inner Mongolia Orogen to the east, is a key area to understanding the subduction and accretionary processes of the southern CAOB. However, the nature of magmatic arcs in the Beishan and the correlation among different tectonic units along the southern CAOB are highly ambiguous. In order to investigate the subduction-accretion history of the Beishan and put a better spatial and temporal relationship among the tectonic belts along the southern CAOB, we carried out detailed field-based structural geology and LA-ICP-MS zircon U-Pb geochronological as well as geochemical studies along four cross-sections across crucial litho-tectonic units in the central segment of the Beishan, mainly focusing on the metamorphic assemblages and associated plutons and volcanic rocks. The results show that both the plutonic and volcanic rocks have geochemical characteristics similar to those of subduction-related rocks, which favors a volcanic arc setting. Zircons from all the plutonic rocks yield Phanerozoic ages and the plutons have crystallization ages ranging from 464 ± 2 Ma to 398 ± 3 Ma. Two volcanic-sedimentary rocks yield zircons with a wide age range from Phanerozoic to Precambrian with the youngest age peaks at 441 Ma and 446 Ma, estimated to be the time of formation of the volcanic rocks. These new results, combined with published data on ophiolitic mélanges from the central segment of the Beishan, favor a Japan-type subduction-accretion system in the Cambrian to Carboniferous in this part of the Paleo-Asian Ocean. The Xichangjing-Niujuanzi ophiolite probably represents a major suture zone separating different tectonic units across the Beishan orogenic collage, while the Xiaohuangshan-Jijitaizi ophiolitic mélange may represent a

  4. The W (Sn-Mo)-specialized catinga suite and other granitoids of the Brusque Group, neo proterozoic of the state of Santa Catarina, Southern Brazil

    International Nuclear Information System (INIS)

    Castro, Neivaldo Araujo de; Crosta, Alvaro Penteado; Basei, Miguel Angelo Stipp

    1999-01-01

    The petrographic, geochemical and isotopic data on the granitoids intrusive in the Brusque Group, State of Santa Catarina, southern Brazil, are presented in this paper. These are late-to post-tectonic rocks, being the most evolved ones those that constitute the Catinga Suite. The granitoids intrusive in the southern domain of the Brusque Group are grayish rocks, in which biotite (when present) is practically the only mafic mineral. They are rather reduced, slightly alkalic, transitional between meta-and peraluminous. An acid subvolcanic pluton, the Ribeirao da Velha pluton, has similar petrographic and geochemical characteristics, and seems to be genetically related to these granitoids. LREE fractionation relative to HREE is incipient for the Catinga suite, and the REE patterns showing strong negative Eu anomaly. Initial 87 Sr/ 86 Sr ratios, from the literature for these granitoids are around 0.721 (Sao Joao Batista granitoid) and the only available t DM model age (Valsungana granitoid) points to a genesis from a continental crust of ca. 2020 Ma old. Gneiss-migmatitic rocks such as those that occur in the eastern portion of Brusque Group domain and as enclaves in the Nova Italia granitoid are strong candidates for protoliths of these granitoids. Little available information on the granitoids intrusive in the northern domain of the Brusque Group reports the presence of pink K-feldspar hornblende granitoids (Faxinal pluton) and light pink K-feldspar biotite granitoid (Guabiruba pluton). These granitoids are more enriched in K and more oxidized than those in the southern domain, and the LREE fractionation relative to HREE is strong, with the REE patterns showing incipient negative Eu anomaly. It is suggested that part of the Au concentrations found in the northern domain may be genetically associated with the granitoids, since they present characteristics favorable to promote Au mineralizations than the granitoids in the southern domain. Distinct protoliths and

  5. Stable Isotope Evidence for a Complex Fluid Evolution of the Northwestern British Columbia Coast Ranges Related to Terrane Accretion

    Science.gov (United States)

    Moertle, J.; Holk, G. J.

    2015-12-01

    Stable isotope geochemistry reveals a complex fluid evolution for the Western Metamorphic Belt (WMB), Coast Ranges Batholith (CRB), Central Gneiss Complex (CGC) and Coast Ranges Megalineament (CRM). These fluids are a product of a complex tectonic history related to terrane accretion that includes oblique convergence, metamorphism, magmatism, and orogenic collapse. From W-to-E, these fluid systems are as follows. High-pressure greenschist-to-amphibolite facies metasedimentary rocks of the WMB record variable mineral δD (-61 to -104‰) and δ18O (e.g., quartz +9.6 to +13.4‰) values with multiple minerals in apparent isotopic equilibrium (T ~ 450-550°C) suggest a low W/R system dominated by metamorphic fluids. Variable and non-equilibrium δD (-53 to -143‰) and δ18O (e.g., biotite +2.3 to +5.3‰) values from diorites of the Quottoon pluton affected by the ductile CRM suggest a complex evolution that involved both metamorphic and meteoric-hydrothermal fluids in this dextral shear zone; these results differ from those 300 km along strike to the north that documented only metamorphic fluids in the CRM (Goldfarb et al., 1988). Our data and those of Magaritz and Taylor (1976) from granulite facies metasediments of the CGC and plutons of the western CRB reveal homogeneous δD values (-62 to -78‰) and a restricted range of δ18O values (e.g., quartz +8.5 to +11.5‰) with all minerals in equilibrium at T > 570°C indicate a system dominated by magmatic fluids. Calculated whole-rock δ18O values (~ +7‰) for the Quottoon pluton and CRB intrusive rocks suggest a mantle origin for these magmas. Reinterpretation of very low δD (< -150‰) and quartz-feldspar δ18O pairs that display extreme disequilibrium (feldspar δ18O values as low as -5‰) from the Ponder pluton, eastern CRB, and Hazelton Group point reveals that the major meteoric-hydrothermal system that affected these rocks was related to Eocene detachment faulting along the Shames Lake fault system, a

  6. The timing of the tectono-metamorphic evolution at the Neoproterozoic-Phanerozoic boundary in central southern Madagascar

    DEFF Research Database (Denmark)

    Giese, Jörg; Berger, Alfons; Schreurs, Guido

    2011-01-01

    of monazite and structural relationships,twodistinct phases of major ductile deformation, the Andreaba and Ihosy phases can be distinguished in central southern Madagascar. Both these deformation phases occur between ~550 and 520 Ma. Coeval with, and outlasting deformation, granitic plutons and dykes were...

  7. ISOTOPIC COMPOSITIONS OF SULFATE ASSOCIATED WITH THE OXIDATION OF ARSENIAN SULFIDE MINERALOGY IN THE GOOSE RIVER GROUNDWATERSHED, MAINE

    Science.gov (United States)

    Geogenic arsenic occurs in groundwater within the polymethamorphic amphibolite-grade Waldoboro Pluton Complex in mid-coastal Maine. A few As water samples exceeded 10 ug l(-1). Part of the fractured hydrogeologic "aquifer" is exposed in the Goose River groundwatershed (33 km(2))....

  8. Geochemistry of rare earths and oxygen isotopes in granitic rocks from Monte das Gameleiras and Dona Ines, Rio Grande do Norte-Paraiba border, Brazil

    International Nuclear Information System (INIS)

    Sial, A.N.

    1984-01-01

    The study of oxygen isotopes and rare earth elements in granitic plutons of Monte das Gameleiras and Dona Ines, Rio Grande do Norte-Paraiba border, in Brazil, to define the nature of source rock of progenitor magmas, is presented. (M.C.K.) [pt

  9. Subsurface Geology of the Fenton Hill Hot Dry Rock Geothermal Energy Site

    Energy Technology Data Exchange (ETDEWEB)

    Levey, Schon S.

    2010-12-01

    The Precambrian rock penetrated by wells EE-2A and -3A belongs to one or more granitic to granodioritic plutons. The plutonic rock contains two major xenolith zones of amphibolite, locally surrounded by fine-grained mafic rock of hybrid igneous origin. The granodiorite is cut by numerous leucogranite dikes that diminish in abundance with depth. The most prominent structural feature is the main breccia zone, in which the rock is highly fractured and moderately altered. This zone is at least 75 m thick and is of uncertain but near-horizontal orientation. Fracture abundance decreases with increasing depth below the main breccia zone, and fractures tend to be associated with leucogranite dikes. This association suggests that at least some of the fractures making up the geothermal reservoir are of Precambrian age or have long-range orientations controlled by the presence of Precambrian-age granitic dikes.

  10. Geological, petrogical and geochemical characteristics of granitoid rocks in Burma: with special reference to the associated WSn mineralization and their tectonic setting

    Science.gov (United States)

    Zaw, Khin

    The granitoid rocks in Burma extend over a distance of 1450 km from Putao, Kachin State in the north, through Mogok, Kyaukse, Yamethin and Pyinmana in the Mandalay Division, to Tavoy and Mergui areas, Tenasserim Division, in the south. The Burmese granitoids can be subdivided into three N-S trending, major belts viz. western granitoid belt, central graniotoid belt and eastern granitoid belt. The Upper Cretaceous-Lower Eocene western belt granitoids are characterized by high-level intrusions associated with porphyry Cu(Au) related, younger volcanics; these plutonic and volcanic rocks are thought to have been emplaced as a magmatic-volcanic arc (inner magmatic-volcanic arc) above an east-dipping, but westwardly migrating, subduction zone related to the prolonged plate convergence which occurred during Upper Mesozoic and Cenozoic. The central granitoid belt is characterized by mesozonal, Mostly Upper Cretaceous to Lower Eocene plutons associated with abundant pegmalites and aplites, numerous vein-type W-Sn deposits and rare co-magmatic volcanics. The country rocks are structurally deformed, metamorphic rocks of greenschist to upper amphibolite facies ranging in age as early as Upper Precambrian to Upper Paleozoic and locally of fossiliferous, metaclastic rocks (Mid Jurassic to Lower Cretaceous). Available K/Ar radiometric data indicate significant and possibly widespread thermal disturbances in the central granitoid belt during the Tertiary (mostly Miocence). In this study, the distribution, lithological, textural and structural characteristics of the central belt granitoids are reviewed, and their mineralogical, petrological, and geochemical features are presented. A brief description of W-Sn ore veins associated with these granitoid plutons is also reported. Present geological, petrological and geochemical evidences demonstrate that the W-Sn related, central belt granitoids are mostly granodiorite and granite which are commonly transformed into granitoid gneisses

  11. Crustal melting and recycling: geochronology and sources of Variscan syn-kinematic anatectic granitoids of the Tormes Dome (Central Iberian Zone). A U-Pb LA-ICP-MS study

    Science.gov (United States)

    López-Moro, F. J.; López-Plaza, M.; Gutiérrez-Alonso, G.; Fernández-Suárez, J.; López-Carmona, A.; Hofmann, M.; Romer, R. L.

    2018-04-01

    In this study, we report U-Pb Laser Ablation ICP-MS zircon and ID-TIMS monazite ages for peraluminous granitoid plutons (biotite ± muscovite ± cordierite ± sillimanite) in the Tormes Dome, one of the gneiss-cored domes located in the Central Iberian Zone of the Variscan belt of northern Spain. Textural domains in zircon, interpreted to represent the magmatic crystallization of the granitoids (and one monazite fraction in the Ledesma pluton) yielded ages around 320 Ma, in agreement with other geochronological studies in the region. This age is interpreted to date the timing of decompression crustal melting driven by the extensional collapse of the orogenic belt in this domain of the Variscan chain of western Europe. In addition, there are several populations of inherited (xenocrystic) zircon: (1) Carboniferous zircon crystals (ca. 345 Ma) as well as one of the monazite fractions in the coarse-grained facies of the Ledesma pluton that also yielded an age of ca. 343 Ma. (2) Devonian-Silurian zircon xenocrysts with scattered ages between ca. 390 and 432 Ma. (3) Middle Cambrian-Ordovician (ca. 450-511 Ma). (4) Ediacaran-Cryogenian zircon ages (ca. 540-840 Ma). (5) Mesoproterozoic to Archaean zircon (900-2700 Ma). The abundance of Carboniferous-inherited zircon shows that crustal recycling/cannibalization may often happen at a fast pace in orogenic scenarios with only short lapses of quiescence. In our case study, it seems plausible that a "crustal layer" of ca. 340 Ma granitoids/migmatites was recycled, partially or totally, only 15-20 My after its emplacement.

  12. Age and kinematics of ductile deformation in the Cerro Durazno area, NW Argentina: Significance for orogenic processes operating at the western margin of Gondwana during Ordovician - Silurian times

    Science.gov (United States)

    Wegmann, Maja I.; Riller, Ulrich; Hongn, Fernando D.; Glodny, Johannes; Oncken, Onno

    2008-07-01

    The Cerro Durazno Pluton belongs to a suite of Paleozoic granitoid intrusions in NW-Argentina, that are central for understanding the tectonic setting of the western margin of Gondwana in Ordovician and Silurian times. The pluton and its host rocks were tectonically overprinted by metamorphic mineral shape fabrics formed under middle greenschist-facies metamorphic conditions and associated with the nearby Agua Rosada Shear Zone. Kinematic analysis of the shear zone based on the geometric relationship between individual segments of the shear plane and principal axes of mineral fabric ellipsoids indicates reverse-sense of shear with a minor component of left-lateral displacement. This is compatible with the kinematics of other ductile deformation zones in this area, collectively forming a network, which accomplished orogen-parallel extension in addition to vertical thickening. Using the Rb-Sr isotopic system, an undeformed pegmatite dike of the Cerro Durazno Pluton was dated at 455.8 ± 3.6 Ma and mineral fabrics of the Agua Rosada Shear Zone formed at middle greenschist-facies metamorphism gave deformation ages of 437.0 ± 3.8 Ma and ⩽428.4 ± 4.5 Ma. Thus, tectonic overprint at low metamorphic grade occurred about 20-30 Ma after terminal magmatism in the Cerro Durazno area. Our data from the Cerro Durazno area and regional considerations suggest that the western margin of Gondwana was characterized by orogen-parallel extension in addition to crustal thickening as well as episodes of magmatism and ductile deformation that varied greatly in time and space.

  13. Gold and uranium metallogenesis in the framework of Neo-proterozoic crust growth and differentiation: example of the Mayo-Kebbi Massif (Chad) in the Central Africa Orogenic belt

    International Nuclear Information System (INIS)

    Mbaguedje, Diondoh

    2015-01-01

    The Mayo Kebbi massif located in southwestern Chad between the Congo craton in the South, the West African craton in the west and the Sahara meta-craton to the east exposes a segment of Neo-proterozoic juvenile crust accreted in the Central African orogenic belt during the Pan African orogeny. It consists of two greenstone belts (Zalbi and Goueygoudoum) separated by the May Kebbi calc-alkaline batholith complexes and intruded by calc-alkaline high-K granitic plutons. The whole is covered by Phanerozoic sedimentary formations. The greenstone belts contain sulphide zones hosted mainly by meta-plutonic rocks (granodiorites) and meta-basalts and meta-volcaniclastics. The mineralization comprises pyrite, pyrrhotite, arsenopyrite, chalcopyrite, pentlandite, pentlandite silver, pentlandite cobaltiferous, sphalerite, cobaltite. These sulphides are disseminated, aggregated in form of layers or are filling veins and cracks. The greenstones also contain quartz veins with calcite and chlorite comprising a mineralization made of pyrite, chalcopyrite, galena and gold. Gold is present both as native crystals and as electrum. The high-K calc-alkaline Zabili granitic pluton hosts uranium mineralization related to a superposition of: (1) ductile deformation and metasomatic alteration implying the interaction between magmatic minerals with a Na-rich fluid, of potential magmatic origin, coeval to the main deposition of uranium oxides, followed by (2) brittle deformation and deposition of secondary hydrated uranium silicates involving a Na-Ca-rich fluid. We propose that these uranium mineralizations represent the extreme expression of crustal differentiation as a result of Pan-African reworking of a Neo-proterozoic juvenile crustal segment. (author) [fr

  14. Rb-Sr geochronological study on Tatehira granodiorite, Oshima Peninsula, Southwest Hokkaido, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Iizumi, Shigeru; Kobayashi, Hideo; Toyoda, Minoru

    1984-10-01

    It has been known that Tatehira granodiorite, a pluton which occurs sporadically in the southwest region of Hokkaido, is related with Kanoite formation. The radiometric age of this granodiorite still remains unknown. The Tatehira granodiorite intrudes into late Paleozoic or early Mesozoic Matsumae group, and is overlain by Miocene Usubetsu formation unconformably. It occurs as several separated small plutons. The samples for Rb-Sr analysis were collected from one of the plutons in southern part. The determination of the isochron age of rock-minerals and the initial Sr isotopic ratio of Tatehira granodiorite were carried out. This granodiorite is able to be classified into two phases, namely melanocratic (WRM) and leucocratic (WRL) phases. The samples of WRM and WRL were powdered and subjected to X-ray analysis. It was found that the chemical compositions were similar except slight differences in FeO + Fe2O3, CaO and K2O. The Sr isotopic ratio was determined with a MAT 261 mass spectrometer, and the results were analyzed statistically. The Rb and Sr concentrations and the Sr isotopic ratio of WRM, WRL, and PRF (plagio-clase rich fraction) and BRF (biotite rich fraction) separated from the WRL were determined, and the age of 102.5 +- 0.3 Ma and the initial ratio of 0.70538 +- 0.00001 were obtained. The ratio of Tatehira granodiorite is comparable to that of Okushiri Island. Comparing with the data obtained from other region, the granodiorites of Tatehira and Okushiri Island should be related with the granitoids of Abukuma granite province.

  15. A Rb-Sr geochronological study on Tatehira granodiorite, Oshima Peninsula, Southwest Hokkaido, Japan

    International Nuclear Information System (INIS)

    Iizumi, Shigeru; Kobayashi, Hideo; Toyoda, Minoru.

    1984-01-01

    It has been known that Tatehira granodiorite, a pluton which occurs sporadically in the southwest region of Hokkaido, is related with Kanoite formation. The radiometric age of this granodiorite still remains unknown. The Tatehira granodiorite intrudes into late Paleozoic or early Mesozoic Matsumae group, and is overlain by Miocene Usubetsu formation unconformably. It occurs as several separated small plutons. The samples for Rb-Sr analysis were collected from one of the plutons in southern part. The determination of the isochron age of rock-minerals and the initial Sr isotopic ratio of Tatehira granodiorite were carried out. This granodiorite is able to be classified into two phases, namely melanocratic (WRM) and leucocratic (WRL) phases. The samples of WRM and WRL were powdered and subjected to X-ray analysis. It was found that the chemical compositions were similar except slight differences in FeO + Fe 2 O 3 , CaO and K 2 O. The Sr isotopic ratio was determined with a MAT 261 mass spectrometer, and the results were analyzed statistically. The Rb and Sr concentrations and the Sr isotopic ratio of WRM, WRL, and PRF (plagio-clase rich fraction) and BRF (biotite rich fraction) separated from the WRL were determined, and the age of 102.5 +- 0.3 Ma and the initial ratio of 0.70538 +- 0.00001 were obtained. The ratio of Tatehira granodiorite is comparable to that of Okushiri Island. Comparing with the data obtained from other region, the granodiorites of Tatehira and Okushiri Island should be related with the granitoids of Abukuma granite province. (Ishimitsu, A.)

  16. Geological Geophysical and structural studies in Mina Ratones (Pluton de Albala); Estudios geologico-estructurales y geofisicos en Mina Ratones (Pluton de Albala)

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Estaun, A; Carbonell, R; Marti, D; Flecha, I [Instituto de Ciencias de la Tierra Jaume Almera. Barcelona (Spain); Escuder Viruete, J [Universidad complutense de Madrid. Madrid (Spain)

    2002-07-01

    Mina Ratones environmental restoration project included petrological, structural,geophysical, hydrogeological and hydrogeochemical studies. The main objective of the geologic-structural and geophysical studies was the Albala granite structural characterization around the Mina Ratones uranium mine. The location of facies, fault zones (faults and dykes) as well as the distribution of some physical properties inside the rock massif was obtained for a granitic black of 900, 500, and 500 m. The geologic-structural and geophysical techniques applied to Mina Ratones provided a multidisciplinary approach for high resolution characterization of rock massif, and the structures potentially containing fluids,able to be applied to the hydrogeological modelling to a particular area. Geological studies included a detailed structural mapping of the area surrounding the mine (1:5,000 scale), the geometric, kinematics, and dynamics analysis of fractures of all scales, the petrology and geochemistry of fault rocks and altered areas surrounding fractures, and the microstructural studies of samples from surface and core lags. The construction of geostatistical models in two and three dimensions had helped to characterize the Mina Ratones rock massif showing the spatial distribution of fault zones, fracture intensity, granite composition heterogeneities, fluid-rock interaction zones, and physical properties. (Author)

  17. Skarn and ore formation at Seriphos, Greece as a consequence of granodiorite intrusion

    NARCIS (Netherlands)

    Salemink, J.

    1985-01-01

    On the island of Seriphos, Greece, the shallow intrusion of a granodiorite pluton into a series of previously regionally metamorphosed gneisses, marbles and marble-bearing schists produced a contact metamorphic aureole and extensive deposits of Ca-Fe-Mg skarns and Fe-ores. Structural and

  18. Nové U-Pb datování zirkonů z bohutínského pně v příbramské rudní oblasti

    Czech Academy of Sciences Publication Activity Database

    Žák, Karel; Svojtka, Martin; Breiter, Karel; Ďurišová, Jana; Veselovský, F.; Pašava, J.

    2015-01-01

    Roč. 2014, č. 1 (2015), s. 43-49 ISSN 0514-8057 R&D Projects: GA ČR GA13-15390S Institutional support: RVO:67985831 Keywords : Bohemian Massif * Central Bohemian Pluton * Bohutím Stock * zircon U-Pb dating Subject RIV: DB - Geology ; Mineralogy

  19. Late Cretaceous evolution of the northern Sistan suture zone ...

    Indian Academy of Sciences (India)

    Department of Geology, Birjand University, Birjand, Iran. ∗ ... Anisotropy of magnetic susceptibility (AMS) survey supported by field and ...... the ca. 1.45 Ga Karlshamn granitoid pluton, southeastern. Sweden, during .... Vernon R H 2004 A Practical Guide to Rock Microstructure;. UK, Cambridge University Press, 594p.

  20. Geochemistry of the Bayonplutonic Complex – Western Cameroon ...

    African Journals Online (AJOL)

    The BayonNeoproterozoic plutonic complex located in Western Cameroon intrudes gneisses of Paleo to Neo Proterozoic age. The complex is composed of gabbro, monzogabbro and monzonites frequently crosscut by trachytic and granitic veins. The primary mineral assemblages of the gabbro and monzogabbro is ...