WorldWideScience

Sample records for usa tank m4

  1. Composite Cryotank Technologies and Development 2.4 and 5.5M out of Autoclave Tank Test Results

    Science.gov (United States)

    Jackson, Justin R.; Vickers, John; Fikes, John

    2015-01-01

    The Composite Cryotank Technologies and Demonstration (CCTD) project substantially matured composite, cryogenic propellant tank technology. The project involved the design, analysis, fabrication, and testing of large-scale (2.4-m-diameter precursor and 5.5-m-diameter) composite cryotanks. Design features included a one-piece wall design that minimized tank weight, a Y-joint that incorporated an engineered material to alleviate stress concentration under combined loading, and a fluted core cylindrical section that inherently allows for venting and purging. The tanks used out-of-autoclave (OoA) cured graphite/epoxy material and processes to enable large (up to 10-m-diameter) cryotank fabrication, and thin-ply prepreg to minimize hydrogen permeation through tank walls. Both tanks were fabricated at Boeing using automated fiber placement on breakdown tooling. A fluted core skirt that efficiently carried axial loads and enabled hydrogen purging was included on the 5.5-m-diameter tank. Ultrasonic inspection was performed, and a structural health monitoring system was installed to identify any impact damage during ground processing. The precursor and 5.5-m-diameter tanks were tested in custom test fixtures at the National Aeronautics and Space Administration Marshall Space Flight Center. The testing, which consisted of a sequence of pressure and thermal cycles using liquid hydrogen, was successfully concluded and obtained valuable structural, thermal, and permeation performance data. This technology can be applied to a variety of aircraft and spacecraft applications that would benefit from 30 to 40% weight savings and substantial cost savings compared to aluminum lithium tanks.

  2. Tank 4 Characterization, Settling, And Washing Studies

    International Nuclear Information System (INIS)

    Bannochie, C.; Pareizs, J.; Click, D.; Zamecnik, J.

    2009-01-01

    A sample of PUREX sludge from Tank 4 was characterized, and subsequently combined with a Tank 51 sample (Tank 51-E1) received following Al dissolution, but prior to a supernate decant by the Tank Farm, to perform a settling and washing study to support Sludge Batch 6 preparation. The sludge source for the majority of the Tank 51-E1 sample is Tank 12 HM sludge. The Tank 51-E1 sample was decanted by SRNL prior to use in the settling and washing study. The Tank 4 sample was analyzed for chemical composition including noble metals. The characterization of the Tank 51-E1 sample, used here in combination with the Tank 4 sample, was reported previously. SRNL analyses on Tank 4 were requested by Liquid Waste Engineering (LWE) via Technical Task Request (TTR) HLE-TTR-2009-103. The sample preparation work is governed by Task Technical and Quality Assurance Plan (TTQAP), and analyses were controlled by an Analytical Study Plan and modifications received via customer communications. Additional scope included a request for a settling study of decanted Tank 51-E1 and a blend of decanted Tank 51-E1 and Tank 4, as well as a washing study to look into the fate of undissolved sulfur observed during the Tank 4 characterization. The chemistry of the Tank 4 sample was modeled with OLI Systems, Inc. StreamAnalyzer to determine the likelihood that sulfate could exist in this sample as insoluble Burkeite (2Na 2 SO 4 · Na 2 CO 3 ). The OLI model was also used to predict the composition of the blended tank materials for the washing study. The following conclusions were drawn from the Tank 4 analytical results reported here: (1) Any projected blend of Tank 4 and the current Tank 51 contents will produce a SB6 composition that is lower in Ca and U than the current SB5 composition being processed by DWPF. (2) Unwashed Tank 4 has a relatively large initial S concentration of 3.68 wt% on a total solids basis, and approximately 10% of the total S is present as an insoluble or undissolved form

  3. AT on Buried LPG Tanks Over 13 m3: An Innovative and Practical Solution

    Science.gov (United States)

    Di Fratta, Crescenzo; Ferraro, Antonio; Tscheliesnig, Peter; Lackner, Gerald; Correggia, Vincenzo; Altamura, Nicola

    In Italy, since 2005, techniques based on Acoustic Emission have been introduced for testing of underground LPG tanks up to 13 m3, according to the European standard EN 12818:2004. The testing procedure for these tanks plans to install one or more pairs of sensors inside the "dome" suited for the access to the valves and fittings of the tank, directly on the accessible metal shell. This methodology is not applicable for the underground LPG buried tanks, where it is necessary to install a larger number of AE sensors, in order to cover at 100% the whole tank shell, even at very deep positions. Already in 2004, the European standard EN 12820 (Appendix C - Informative)give the possibility to use Acoustic Emission testing of LPG underground or buried tanks with a capacity exceeding 13 m3, but no technique was specified for the application. In 2008, TÜV AUSTRIA ITALIA - BLU SOLUTIONS srl - Italian company of TÜV AUSTRIA Group - has developed a technique to get access at tank shell, where tank capacity is greater than 13 m3 and its' diameter greater than 3,5 m. This methodology was fully in comply with the provisions of the European Standard EN 12819:2010, becoming an innovative solution widely appreciated and is used in Italy since this time. Currently, large companies and petrochemical plants, at the occurrence of the tank's requalification, have engaged TÜV AUSTRIA ITALIA - BLU SOLUTIONS to install such permanent predispositions, which allow access to the tank shell - test object - with diameters from 4 to 8 m. Through this access, you can install the AE sensors needed to cover at 100% the tank surface and then to perform AE test. In an economic crisis period, this technique is proving a valid and practically applicable answer, in order to reduce inspection costs and downtime by offering a technically advanced solution (AT), increasing the safety of the involved operators, protecting natural resources and the environment.

  4. An evaluation on the design optimization of large capacity tanks in the chemical and volume control system for YGN 3 and 4

    International Nuclear Information System (INIS)

    Park, Byung Ho; Kim, Eun Ki; Ko, Deuk Yoon; Ko, Yong Sang; Kim, Seok Bum

    1996-06-01

    The design of Yonggwang nuclear power plant units 3 and 4 (YGN 3 and 4) is referenced to that of Palo Verde nuclear power plant (Palo Verde NPP) in Arizona, USA. The reactor vessel and steam generator of YGN 3 and 4 are smaller than that of Palo Verde NPP because Palo Verde NPP produces 1,300 Mw electricity, on the other hand, YGN 3 and 4 produces 1,000 Mw electricity. However, other components and systems of YGN 3 and 4 are the same as those of Palo verde NPP. The oversized system components may be considered to ensure the safety and operability by providing sufficient design margin, but it requires unnecessary cost burden to the owner of the plant. This report focuses on the optimization of the volume of the large tanks (i.e., above 400,000 gallons) in CVCS. These tanks are refueling water tank (RWT), reactor makeup water tank (RMWT) and holdup tank (HT). It has been performed that the calculation on the required tank volume based on design requirements, comparison on the calculation results with as-built design, and estimation on the instrumentation setpoint. 19 tabs., 12 figs., 13 refs. (Author)

  5. 49 CFR 179.4 - Changes in specifications for tank cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Changes in specifications for tank cars. 179.4... TANK CARS Introduction, Approvals and Reports § 179.4 Changes in specifications for tank cars. (a...—Tank Car Safety, AAR, for consideration by its Tank Car Committee. An application for construction of...

  6. System design specification for the 1/4-scale tank and ancillary equipment

    International Nuclear Information System (INIS)

    Bamberger, J.A.; Bates, J.M.; Waters, E.D.; Heimberger, D.T.

    1993-09-01

    The Fluid Dynamic Test Facility (FDTF) is located in the 336 Building at the 300 Area of the Hanford Site. The FDTF will contain tanks that model the average internal diameter and height of a 3875 m 3 (1-million-gal) double-shell tank at both 1/12- and 1/4-scale, as well as ancillary equipment required to store, mix, and transport waste simulants. Experiments to be conducted in this facility will include investigations of sludge mobilization, slurry uniformity, aerosol generation, sludge washing, and instrumentation development to support start-up of the Hanford Waste Vitrification Project. This facility will also be used to model concepts and mitigating strategies to be used in the resolution of tank safety issues and the retrieval of waste from watch-list tanks

  7. 14 CFR Appendix M to Part 25 - Fuel Tank System Flammability Reduction Means

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel Tank System Flammability Reduction... 25—Fuel Tank System Flammability Reduction Means M25.1Fuel tank flammability exposure requirements. (a) The Fleet Average Flammability Exposure of each fuel tank, as determined in accordance with...

  8. [Study on the quantitative estimation method for VOCs emission from petrochemical storage tanks based on tanks 4.0.9d model].

    Science.gov (United States)

    Li, Jing; Wang, Min-Yan; Zhang, Jian; He, Wan-Qing; Nie, Lei; Shao, Xia

    2013-12-01

    VOCs emission from petrochemical storage tanks is one of the important emission sources in the petrochemical industry. In order to find out the VOCs emission amount of petrochemical storage tanks, Tanks 4.0.9d model is utilized to calculate the VOCs emission from different kinds of storage tanks. VOCs emissions from a horizontal tank, a vertical fixed roof tank, an internal floating roof tank and an external floating roof tank were calculated as an example. The consideration of the site meteorological information, the sealing information, the tank content information and unit conversion by using Tanks 4.0.9d model in China was also discussed. Tanks 4.0.9d model can be used to estimate VOCs emissions from petrochemical storage tanks in China as a simple and highly accurate method.

  9. TANK 40 FINAL SB4 CHEMICAL CHARACTERIZATION RESULTS

    International Nuclear Information System (INIS)

    Best, J.

    2008-01-01

    A sample of Sludge Batch 4 (SB4) was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). This sample was also analyzed for elemental and chemical composition including noble metals. These analyses along with the WAPS analyses will help define the composition of the sludge currently in Tank 40 which is currently being fed to DWPF and will become part of Sludge Batch 5 (SB5). At SRNL the 3-L Tank 40 SB4 sample was transferred from the shipping container into a 4-L vessel and solids allowed to settle overnight. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 280 g sub-sample was removed. This sub-sample was then utilized for all subsequent analytical samples. Eight separate aliquots of the slurry were digested, four with HNO 3 /HCl in sealed Teflon(reg s ign) vessels and four in Na 2 O 2 using Zr crucibles. Due to the use of Zr crucibles and Na in the peroxide fusions, Na and Zr cannot be determined from this preparation. Three glass standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted and submitted to Analytical Development (AD) for inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma-mass spectrometry (ICP-MS) analysis, and cold vapor atomic absorption (CV-AA) analysis. Equivalent dilutions of the peroxide fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB4 supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES and ICP-MS. Weighted dilutions of slurry were submitted for ion chromatography (IC), total inorganic carbon/total organic carbon (TIC/TOC), and total base analyses. A sample of Tank 40 SB4 decant was collected by carefully removing the supernate phase

  10. EM modeling of RF drive in DTL tank 4

    International Nuclear Information System (INIS)

    Kurennoy, Sergey S.

    2012-01-01

    A 3-D MicroWave Studio model for the RF drive in the LANSCE DTL tank 4 has been built. Both eigensolver and time-domain modeling are used to evaluate maximal fields in the drive module and RF coupling. The LANSCE DTL tank 4 has recently been experiencing RF problems, which may or may not be related to its replaced RF coupler. This situation stimulated a request by Dan Rees to provide EM modeling of the RF drive in the DTL tank 4 (T4). Jim O'Hara provided a CAD model that was imported into the CST Microwave Studio (MWS) and after some modifications became a part of a simplified MWS model of the T4 RF drive. This technical note describes the model and presents simulation results.

  11. Tank Characterization report for single-shell tank 241-SX-103

    International Nuclear Information System (INIS)

    WILMARTH, S.R.

    1999-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report. This report and its appendices serve as the tank characterization report for single-shell tank 241-SX-103. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-SX-103 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, and Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15c, change request M-44-97-03 to ''issue characterization deliverables consistent with the Waste Information Requirements Document developed for fiscal year 1999'' (Adams et al. 1998)

  12. Tank characterization report for single-shell tank 241-U-103

    Energy Technology Data Exchange (ETDEWEB)

    SASAKI, L.M.

    1999-02-24

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report. This report and its appendices serve as the tank characterization report for single-shell tank 241-U-103. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-U-103 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03 to ''issue characterization deliverables consistent with Waste Information Requirements Documents developed for 1998.''

  13. Tank characterization report for single-shell tank 241-T-105

    International Nuclear Information System (INIS)

    Field, J.G.

    1998-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-T-105. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-T-105 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03, to ''issue characterization deliverables consistent with the waste information requirements documents developed for 1998''

  14. Tank characterization report for single-shell tank 241-U-112

    International Nuclear Information System (INIS)

    Field, J.G.

    1998-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-U-112. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-U-112 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendixes contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03 to issue characterization deliverables consistent with the Waste Information Requirements Document developed for 1998

  15. Tank characterization report for single-shell tank 241-T-112

    International Nuclear Information System (INIS)

    McCain, D.J.

    1998-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-T-112. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-T-112 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03, to ''issue characterization deliverables consistent with the Waste Information Requirements Documents developed for 1998.''

  16. Tank characterization report for single-shell tank 241-T-105

    Energy Technology Data Exchange (ETDEWEB)

    Field, J.G.

    1998-06-18

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-T-105. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-T-105 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03, to ``issue characterization deliverables consistent with the waste information requirements documents developed for 1998``.

  17. Tank characterization report for single-shell tank 241-TX-104

    International Nuclear Information System (INIS)

    FIELD, J.G.

    1999-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-TX-104. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-TX-104 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15c, change request M-44-97-03 to ''issue characterization deliverables consistent with the Waste Information Requirements Document developed for FY 1999'' (Adams et al. 1998)

  18. Tank characterization report for single-shell tank 241-B-104

    International Nuclear Information System (INIS)

    Field, J.G.

    1996-01-01

    This document summarizes information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-B-104. Sampling and analyses meet safety screening and historical data quality objectives. This report supports the requirements of Tri-party Agreement Milestone M-44-09. his characterization report summoned the available information on the historical uses and the current status of single-shell tank 241-B-104, and presents the analytical results of the June 1995 sampling and analysis effort. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-44-09 (Ecology et al. 1994). Tank 241-B-104 is a single-shell underground waste storage tank located in the 200 East Area B Tank Farm on the Hanford Site. It is the first tank in a three-tank cascade series. The tank went into service in August 1946 with a transfer of second-cycle decontamination waste generated from the bismuth phosphate process. The tank continued to receive this waste type until the third quarter of 1950, when it began receiving first-cycle decontamination waste also produced during the bismuth phosphate process. Following this, the tank received evaporator bottoms sludge from the 242-B Evaporator and waste generated from the flushing of transfer lines. A description and the status of tank 241-B-104 are sum in Table ES-1 and Figure ES-1. The tank has an operating capacity of 2,010 kL (530 kgal), and presently contains 1,400 kL (371 kgal) of waste. The total amount is composed of 4 kL (1 kgal) of supernatant, 260 kL (69 kgal) of saltcake, and 1,140 kL (301 kgal) of sludge (Hanlon 1995). Current surveillance data and observations appear to support these results

  19. Building M7-0505 Treatment Tank (SWMU 039) Annual Performance Monitoring Report

    Science.gov (United States)

    2015-01-01

    This Annual Performance Monitoring Report presents a summary of Interim Measure (IM) activities and an evaluation of data collected during the third year (June 2014 to September 2015) of operation, maintenance, and monitoring (OM&M) conducted at the Building M7-505 (M505) Treatment Tank area, Kennedy Space Center (KSC), Florida ("the Site"). Under KSC's Resource Conservation and Recovery Act Corrective Action Program, the M505 Treatment Tank area was designated Solid Waste Management Unit 039. Arcadis U.S., Inc. (Arcadis) began IM activities on January 10, 2012, after completion of construction of an in situ air sparge (IAS) system to remediate volatile organic compounds (VOCs) in groundwater at concentrations exceeding applicable Florida Department of Environmental Protection (FDEP) Chapter 62-777, Florida Administrative Code, Natural Attenuation Default Concentrations (NADCs). This report presents a summary of the third year of OM&M activities conducted between June 2014 and September 2015.

  20. Effect of tank geometry on its average performance

    Science.gov (United States)

    Orlov, Aleksey A.; Tsimbalyuk, Alexandr F.; Malyugin, Roman V.; Leontieva, Daria A.; Kotelnikova, Alexandra A.

    2018-03-01

    The mathematical model of non-stationary filling of vertical submerged tanks with gaseous uranium hexafluoride is presented in the paper. There are calculations of the average productivity, heat exchange area, and filling time of various volumes tanks with smooth inner walls depending on their "height : radius" ratio as well as the average productivity, degree, and filling time of horizontal ribbing tank with volume 6.10-2 m3 with change central hole diameter of the ribs. It has been shown that the growth of "height / radius" ratio in tanks with smooth inner walls up to the limiting values allows significantly increasing tank average productivity and reducing its filling time. Growth of H/R ratio of tank with volume 1.0 m3 to the limiting values (in comparison with the standard tank having H/R equal 3.49) augments tank productivity by 23.5 % and the heat exchange area by 20%. Besides, we have demonstrated that maximum average productivity and a minimum filling time are reached for the tank with volume 6.10-2 m3 having central hole diameter of horizontal ribs 6.4.10-2 m.

  1. Determination of mixing characterisitics in leaching tanks using ...

    African Journals Online (AJOL)

    The mixing characteristics in two gold leaching tanks each of volume 1.4 x 103 m3 were investigated with a pulse injection of 7.4 x 1010 Bq aqueous solution of 131I into the feed of the tanks to determine the flow model and mixing efficiency of the system. The flow patterns in the tanks connected in series were identical with ...

  2. Fracture Mechanics Testing of Titanium 6AL-4V in AF-M315E

    Science.gov (United States)

    Sampson, J. W.; Martinez, J.; McLean, C.

    2016-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the performance of AF-M315E monopropellant on orbit. Flight certification requires a safe-life analysis of the titanium alloy fuel tank to ensure inherent processing flaws will not cause failure during the design life of the tank. Material property inputs for this analysis require testing to determine the stress intensity factor for environment-assisted cracking (KEAC) of Ti 6Al-4V in combination with the AF-M315E monopropellant. Testing of single-edge notched, or SE(B), specimens representing the bulk tank membrane and weld material were performed in accordance with ASTM E1681. Specimens with fatigue pre-cracks were loaded into test fixtures so that the crack tips were exposed to AF-M315E at 50 C for a duration of 1,000 hours. Specimens that did not fail during exposure were opened to inspect the crack surfaces for evidence of crack growth. The threshold stress intensity value, KEAC, is the highest applied stress intensity that produced neither a failure of the specimen during the exposure nor showed evidence of crack growth. The threshold stress intensity factor for environment-assisted cracking of the Ti 6Al-4V forged tank material was found to be at least 22 ksivin and at least 31 ksivin for the weld material when exposed to AF-M315E monopropellant.

  3. Tank characterization report for double-shell tank 241-AN-105

    International Nuclear Information System (INIS)

    Jo, J.

    1997-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for double-shell tank 241-AN-105. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241-AN-105 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10

  4. Tank characterization report for single-shell tank 241-S-111

    International Nuclear Information System (INIS)

    Conner, J.M.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-S-111. The objectives of this report are: (1) to use characterization data to address technical issues associated with tank 241-S-111 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10

  5. Tank characterization report for single-shell tank 241-C-104

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, J.H.

    1997-05-21

    A major function of the Tank Waste Remediation System is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-104. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241-C-104 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10.

  6. Tank characterization report for single-shell tank 241-S-111

    Energy Technology Data Exchange (ETDEWEB)

    Conner, J.M.

    1997-04-28

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-S-111. The objectives of this report are: (1) to use characterization data to address technical issues associated with tank 241-S-111 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10.

  7. Tank characterization report for single-shell tank 241-U-106

    International Nuclear Information System (INIS)

    Brown, T.M.

    1997-01-01

    One major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-U-106. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241-U-106 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 of this report summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, and Section 4.0 makes recommendations regarding safety status and additional sampling. The appendixes contain supporting data and information. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ikology et al. 1996), Milestone M-44-10

  8. Tank characterization report for single-shell tank 241-U-106

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.M.

    1997-04-15

    One major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-U-106. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241-U-106 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 of this report summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, and Section 4.0 makes recommendations regarding safety status and additional sampling. The appendixes contain supporting data and information. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ikology et al. 1996), Milestone M-44-10.

  9. In-Tank Precipitation Facility (ITP) and H-Tank Farm (HTF) geotechnical report, WSRC-TR-95-0057, Revision 0, Volume 4

    International Nuclear Information System (INIS)

    1995-01-01

    A geotechnical study has been completed in H-Area for the In-Tank Precipitation Facility (ITP) and the balance of the H-Area Tank Farm (HTF) at the Savannah River Site (SRS) in South Carolina. The study consisted of subsurface field exploration, field and laboratory testing, and engineering analyses. The purpose of these investigations is to evaluate the overall stability of the H-Area tanks under static and dynamic conditions. The objectives of the study are to define the site-specific geological conditions at ITP and HTF, obtain engineering properties for the assessment of the stability of the native soils and embankment under static and dynamic loads (i.e., slope stability, liquefaction potential, and potential settlements), and derive properties for soil-structure interaction studies. This document (Volume 4) contains the laboratory test results for the In-Tank Precipitation Facility (ITP) and H-Tank Farm (HTF) Geotechnical Report

  10. The subcritical mass limit, 2.4 kgU, for the JCO's precipitation tank

    International Nuclear Information System (INIS)

    Komuro, Yuichi

    1999-01-01

    The critical safety on the precipitation tank in JCO Corporation forming a critical accident in September 30, 1999 had to be guaranteed by limiting amount of uranium contained into charging solution. The limited value of uranic mass in the precipitation tank was determined to be 2.4 kg, and from the dissolution tank positioned at upstream of this tank a solution not excess amount of solution to this value was designed to be transferred. In the 2nd Accident Survey Committee, there were found some discussions on a leading method of this value. In order to answer some requirements for this, here was described on outlines on U.S. Nuclear Safety Guide, TID-7016 Rev. 1, leading method of the limited value in 2.4 kg, and safety tolerance. As a result of reinvestigation, as it was confirmed that 2.4 kg in the limited amount contained an sufficient safety tolerance qualitatively and in comparison with already critical data. (G.K.)

  11. TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.; Leishear, R.; Poirier, M.

    2012-05-31

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest the solid

  12. Investeerija märksõnad : USA ning tervishoiu- ja IT-sektor / Uwe Zöllner

    Index Scriptorium Estoniae

    Zöllner, Uwe

    2008-01-01

    USA elanike tarbimise mõjust globaalsele majandusruumile. Aktsiainvesteeringuid plaanides tasuks silmas pidada tervishoiu- ja infotehnoloogiasektori ettevõtteid ning vaadata USA poole. Lisa: Hiina eksport võrreldes riigisisese tarbimisega

  13. Tank characterization report for double-shell tank 241-AP-101. Revision 1

    International Nuclear Information System (INIS)

    Conner, J.M.

    1997-01-01

    One major function of the Tank Waste Remediation System (TWRS) is to characterize wastes m support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for double-shell tank 241-AP-101. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AP-101 waste; and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 provides the best-basis inventory estimate, and Section 4.0 makes recommendations about safety status and additional sampling needs. The appendixes contain supporting data and information. This report supported the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-05. The characterization information in this report originated from sample analyses and known historical sources. Appendix A provides historical information for tank 241-AP-101 including surveillance, information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a model based upon process knowledge. Appendix B summarizes recent sampling events and historical sampling information. Tank 241-AP-101 was grab sampled in November 1995, when the tank contained 2,790 kL (737 kgal) of waste. An addition1034al 1,438 kL (380 kgal) of waste was received from tank 241-AW-106 in transfers on March 1996 and January 1997. This waste was the product of the 242-A Evaporator Campaign 95-1. Characterization information for the additional 1,438 kL (380 kgal) was obtained using grab sampling data from tank 241-AW-106 and a slurry sample from the evaporator. Appendix C reports on the statistical analysis and numerical manipulation of data used in

  14. Tank characterization report for single-shell tank 241-S-104

    International Nuclear Information System (INIS)

    Jo, J.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-S-104. The objectives of this report are: (1) to use characterization data in response to technical issues associated with 241-S- 104 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendixes. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-05

  15. Performance of 500 m3 TankCell® at Kevitsa Cu-Ni-PGM concentrator

    Directory of Open Access Journals (Sweden)

    Mattsson Toni

    2016-01-01

    Full Text Available Outotec TankCell e500 flotation cell, with 500 m3 of efficient flotation volume, has been in operation since October 2014 at Kevitsa Cu-Ni-PGM concentrator as the first Cu rougher flotation cell. The 500 m3 flotation cell has proven to provide metallurgical superiority at very low specific power. On average the cell has recovered 71% of copper contained in the flotation feed. The cell has produced the concentrate with the Cu grade equal to 17% Cu. The typical specific power for the cell is around 0.4 kW/m3 (blower power not included. After the start-up of the cell the operating parameters have varied. The mixing speed have varied from 4.9 to 7.0 m/s and the superficial gas velocity from 0.3 to 1.5 cm/s. At various operating parameters the mixing, gas dispersion and metallurgical performance of the cell have been evaluated. In this paper a review of the hydrodynamic and metallurgical performance of the cell is presented. The paper focuses on the interactions of mixing intensity, bubble size and metallurgical performance in industrial application.

  16. Sampling and Analysis Plan for the Gunite and Associated Tanks Treatability Study, wall coring and scraping in Tanks W-3 and W-4 (North Tank Farm), Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-08-01

    This plan documents the procedures for collecting and analyzing wall core and wall scraping samples from Tanks W-3 and W-4 in the North Tank Farm. This is in support of the Comprehensive Environmental Response, Compensation, and Liability Act Treatability Study of the Gunite and Associated Tanks at ORNL. The sampling and analysis will be in concert with sludge retrieval and sluicing of the tanks. Wall scraping and wall core samples will be collected from each quadrant in each tank by using a scraping sampler and a coring drill deployed by the Houdini robot vehicle. Each sample will be labeled, transported to the Radioactive Materials Analytical Laboratory and analyzed for physical/radiological characteristics, including total activity, gross alpha, gross beta, radioactive Sr + Cs, and other alpha and gamma emitting radionuclides. The Data Quality Objectives process, based on US EPA guidance (EPA QA/G-4, Sept. 1994), was applied to identify the objectives of this sampling and analysis. Results of the analysis will be used to validate predictions of a Sr concrete diffusion model, estimate the amount of radioactivity remaining in the tank shells, provide information to correlate with measurements taken by the Gunite Tank Isotope Mapping Probe and the Characterization End Effector, and estimate the performance of the wall cleaning system

  17. THE GROWTH OF PATIN Pangasiodon hypophthalmus IN A CLOSE SYSTEM TANK

    Directory of Open Access Journals (Sweden)

    Taufik Ahmad

    2007-06-01

    Full Text Available This experiment aimed to evaluate the possibility of using integrated recirculation production system for patin grow-out. Each of twelve concrete 2.5 m x 4.0 m x 1.0 m tanks filled to 0.73 m depth was stocked with 100 juvenile patin, 9-10g body weight. Six tanks were equipped with sand and palm (Arenga pinata fibre filters planted with vegetables, lettuce and kangkoong. A submersible pump was installed in each tank to assure continuous water recirculation at the rate of 0.4 L sec-1. The filtered water flowed into the tank at the surface (SC treatment, or at the bottom (BC treatment. In the other 6 tanks, the water flowed continuously from a concrete canal in an open culture system at a similar rate and with similar water entrance positions (SO and BO treatments. The experiment was arranged in a completely randomized design with three replicates. The fish were fed dry pelleted feed to satiation and sampled every other week for growth observation. After 90 days, the average individual weight of the fish attained the range of 80-100 g. The fish grew significantly faster (P0.05 among treatment, ranging from 99% to 100%. In terms of water usage, the closed system tanks produced fish weighing 202.38–220.05 g m-3, much more efficiently than did the open system tanks, 1.87–1.89 g/m3. The vegetables, either lettuce or water spinach, grew well on the filter. These results suggest that the integrated recirculation tank system is suitable for patin culture.

  18. Assessment of irradiation effects on beryllium reflector and heavy water tank of JRR-3M

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, Yoji; Kakehuda, Kazuhiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    The JRR-3M, a swimming pool type research reactor with beryllium and heavy water reflectors, has been operated since 1990. Since the beryllium reflectors are close to fuel and receive high fast neutron fluence in a relatively short time, they may be subject to change their dimensions by swelling due mostly to entrapped helium gaseous. This may bend the reflectors to the outside and narrow gaps between the reflectors and the fuel elements. The gaps have been measured with an ultrasonic thickness gage in an annual inspection. The results in 1996 show that the maximum of expansion in the diametral directions was 0.6 mm against 1.6 mm of a managed value for replacement of the reflector. A heavy water tank of the JRR-3M is made of aluminum alloy A5052. Surveillance tests of the alloy have been conducted to evaluate irradiation effects of the heavy water tank. Five sets of specimens of the alloy have been irradiated in the beryllium reflectors where fast neutron flux is higher than that in the heavy water tank. In 1994, one set of specimens had been unloaded and carried out the post-irradiation tests. The results show that the heavy water tank preserved satisfactory mechanical properties. (author)

  19. Tank characterization report for single-shell tank 241-BY-112

    International Nuclear Information System (INIS)

    Baldwin, J.H.

    1997-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-BY-112. This report supports the requirements of the Tri-Party Agreement Milestone M-44-10. (This tank has been designated a Ferrocyanide Watch List tank.)

  20. Tank 21 and Tank 24 Blend and Feed Study: Blending Times, Settling Times, and Transfers

    International Nuclear Information System (INIS)

    Lee, S.; Leishear, R.; Poirier, M.

    2012-01-01

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 (micro)m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion ( 60 days) settling times in Tank 21.

  1. M.A. Streicher findings regarding high-level waste tank corrosion issues

    International Nuclear Information System (INIS)

    Husa, E.I.

    1994-01-01

    Dr. Michael A. Streicher is a nationally recognized metallurgist and corrosion scientist. He has served on the Department of Energy, Headquarters Tank Structural Integrity panel as the primary corrosion technical expert since the panel's inception in October 1991. Attachments 3 through 13 are Dr. Streicher's correspondence and presentations to the panel between November 1991 and May 1994. This compilation addresses Dr. Streicher's findings on High-Level Waste tank corrosion issues such as: corrosion mechanisms in carbon steels; hydrogen generation from waste tank corrosion; stress corrosion cracking in carbon steel tanks; water line attack in Hanford's single-shell tanks; stress corrosion cracking of austenitic stainless steels; and materials selection for new Hanford waste tanks. These papers discuss both generic and specific corrosion issues associated with waste tanks and transfer systems at Hanford, Savannah River, Idaho National Engineering Laboratory, and West Valley Demonstration Project

  2. Disposal of Hanford site tank wastes

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1993-09-01

    Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at the U.S. Department of Energy (DOE) Hanford Site in Southeastern Washington state. The 149 SSTs, located in 12 separate areas (tank farms) in the 200 East and 200 West areas, currently contain about 1.4 x 10 5 m 3 of solid and liquid wastes. Wastes in the SSTs contain about 5.7 x 10 18 Bq (170 MCi) of various radionuclides including 90 Sr, 99 Tc, 137 Cs, and transuranium (TRU) elements. The 28 DSTs also located in the 200 East and West areas contain about 9 x 10 4 m 3 of liquid (mainly) and solid wastes; approximately 4 x 10 18 Bq (90 MCi) of radionuclides are stored in the DSTs. Important characteristics and features of the various types of SST and DST wastes are described in this paper. However, the principal focus of this paper is on the evolving strategy for final disposal of both the SST and DST wastes. Also provided is a chronology which lists key events and dates in the development of strategies for disposal of Hanford Site tank wastes. One of these strategies involves pretreatment of retrieved tank wastes to separate them into a small volume of high-level radioactive waste requiring, after vitrification, disposal in a deep geologic repository and a large volume of low-level radioactive waste which can be safely disposed of in near-surface facilities at the Hanford Site. The last section of this paper lists and describes some of the pretreatment procedures and processes being considered for removal of important radionuclides from retrieved tank wastes

  3. Tank characterization data report: Tank 241-C-112

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.; Borsheim, G.L.; Jensen, L.

    1993-09-01

    Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. Analysis of the process history of the tank as well as studies of simulants provided valuable information about the physical and chemical condition of the waste. This information, in combination with the analysis of the tank waste, sup ports the conclusion that an exothermic reaction in tank 241-C-112 is not plausible. Therefore, the contents of tank 241-C-112 present no imminent threat to the workers at the Hanford Site, the public, or the environment from its forrocyanide inventory. Because an exothermic reaction is not credible, the consequences of this accident scenario, as promulgated by the General Accounting Office, are not applicable.

  4. Tank characterization data report: Tank 241-C-112

    International Nuclear Information System (INIS)

    Simpson, B.C.; Borsheim, G.L.; Jensen, L.

    1993-09-01

    Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. Analysis of the process history of the tank as well as studies of simulants provided valuable information about the physical and chemical condition of the waste. This information, in combination with the analysis of the tank waste, sup ports the conclusion that an exothermic reaction in tank 241-C-112 is not plausible. Therefore, the contents of tank 241-C-112 present no imminent threat to the workers at the Hanford Site, the public, or the environment from its forrocyanide inventory. Because an exothermic reaction is not credible, the consequences of this accident scenario, as promulgated by the General Accounting Office, are not applicable

  5. 40 CFR Table 4 to Subpart Dd of... - Tank Control Levels for Tanks at New Affected Sources as Required by 40 CFR 63.685(b)(2)

    Science.gov (United States)

    2010-07-01

    ... Affected Sources as Required by 40 CFR 63.685(b)(2) 4 Table 4 to Subpart DD of Part 63 Protection of... Hazardous Air Pollutants from Off-Site Waste and Recovery Operations Pt. 63, Subpt. DD, Table 4 Table 4 to Subpart DD of Part 63—Tank Control Levels for Tanks at New Affected Sources as Required by 40 CFR 63.685(b...

  6. USA tankid jõudsid Tapale

    Index Scriptorium Estoniae

    2017-01-01

    Tapale saabus poolsada USA sõjamasinat, nende seas neli tanki Abrams M1A2 ja 15 jalaväe lahingumasinat Bradley. Tehnikat hakkab kasutama USA maaväe 4. jalaväediviisi 68. soomusrügemendi esimese pataljoni C-kompanii

  7. Tank 241-AZ-101 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, A revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process. Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information''. This document satisfies that requirement for Tank 241-AZ-101 (AZ-101) sampling activities. Tank AZ-101 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The contents of Tank AZ-101, as of October 31, 1994, consisted of 3,630 kL (960 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-101 is expected to have two primary layers. The bottom layer is composed of 132 kL of sludge, and the top layer is composed of 3,500 kL of supernatant, with a total tank waste depth of approximately 8.87 meters

  8. Tank characterization report for single-shell tank 241-U-110

    International Nuclear Information System (INIS)

    Brown, T.M.; Jensen, L.

    1993-09-01

    Tank 241-U-110 (U-110) is a Hanford Site waste tank that was;most recently sampled in November and December 1989. Analysis of the samples obtained from tank U-110 was conducted to support the characterization of the contents of this tank and to support Hanford Federal Facility Agreement and Consent Order milestone M-10-00 (Ecology, et al. 1992). Because of incomplete recovery of the waste during sampling, there may be bias in the results of this characterization report

  9. Pore Water Extraction Test Near 241-SX Tank Farm at the Hanford Site, Washington, USA

    International Nuclear Information System (INIS)

    Eberlein, Susan J.; Parker, Danny L.; Tabor, Cynthia L.; Holm, Melissa J.

    2013-01-01

    A proof-of-principle test is underway near the Hanford Site 241-SX Tank Farm. The test will evaluate a potential remediation technology that will use tank farm-deployable equipment to remove contaminated pore water from vadose zone soils. The test system was designed and built to address the constraints of working within a tank farm. Due to radioactive soil contamination and limitations in drilling near tanks, small-diameter direct push drilling techniques applicable to tank farms are being utilized for well placement. To address space and weight limitations in working around tanks and obstacles within tank farms, the above ground portions of the test system have been constructed to allow deployment flexibility. The test system utilizes low vacuum over a sealed well screen to establish flow into an extraction well. Extracted pore water is collected in a well sump,and then pumped to the surface using a small-diameter bladder pump.If pore water extraction using this system can be successfully demonstrated, it may be possible to target local contamination in the vadose zone around underground storage tanks. It is anticipated that the results of this proof-of-principle test will support future decision making regarding interim and final actions for soil contamination within the tank farms

  10. USA moos määrib Eesti naabritest mõjukamaks / Raimo Poom

    Index Scriptorium Estoniae

    Poom, Raimo

    2007-01-01

    Sel sügisel on toimunud mitu Eesti ja USA poliitikute kohtumist. Peaminister Andrus Ansipi ja kaitseminister Jaak Aaviksoo USA-visiitide korraldamisega kursis olevad ametnikud ei nõustu, et kohtumiste taga oleks olnud USA lobitöö Iraagi missiooni pikendamiseks

  11. Tank characterization report for double-shell Tank 241-AP-107

    International Nuclear Information System (INIS)

    DeLorenzo, D.S.; Simpson, B.C.

    1994-01-01

    The purpose of this tank characterization report is to describe and characterize the waste in Double-Shell Tank 241-AP-107 based on information gathered from various sources. This report summarizes the available information regarding the waste in Tank 241-AP-107, and arranges it in a useful format for making management and technical decisions concerning this particular waste tank. In addition, conclusion and recommendations based on safety and further characterization needs are given. Specific objectives reached by the sampling and characterization of the waste in Tank 241-AP-107 are: Contribute toward the fulfillment of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-44-05 concerning the characterization of Hanford Site high-level radioactive waste tanks; Complete safety screening of the contents of Tank 241-AP-107 to meet the characterization requirements of the Defense Nuclear Facilities Safety board (DNFSB) Recommendation 93-5; and Provide tank waste characterization to the Tank Waste Remediation System (TWRS) Program Elements in accordance with the TWRS Tank Waste Analysis Plan

  12. Case study to remove radioactive hazardous sludge from long horizontal storage tanks

    International Nuclear Information System (INIS)

    Hylton, T.D.; Youngblood, E.L.; Cummins, R.L.

    1995-01-01

    The removal of radioactive hazardous sludge from waste tanks is a significant problem at several US Department of Energy (DOE) sites. The use of submerged jets produced by mixing pumps lowered into the supernatant/sludge interface to produce a homogeneous slurry is being studied at several DOE facilities. The homogeneous slurry can be pumped from the tanks to a treatment facility or alternative storage location. Most of the previous and current studies with this method are for flat-bottom tanks with vertical walls. Because of the difference in geometry, the results of these studies are not directly applicable to long horizontal tanks such as those used at the Oak Ridge National Laboratory. Mobilization and mixing studies were conducted with a surrogate sludge (e.g., kaolin clay) using submerged jets in two sizes of horizontal tanks. The nominal capacities of these tanks were 0.87 m 3 (230 gal) and 95 m 3 (25,000 gal). Mobilization efficiencies and mixing times were determined for single and bidirectional jets in both tanks with the discharge nozzles positioned at two locations in the tanks. Approximately 80% of the surrogate sludge was mobilized in the 95-m 3 tank using a fixed bidirectional jet (inside diameter = 0.035 m) and a jet velocity of 6.4 m/s (21 ft/s)

  13. Tank 241-AZ-102 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, a revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process ... Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information''. This document satisfies that requirement for tank 241-AZ-102 (AZ-102) sampling activities. Tank AZ-102 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The current contents of Tank AZ-102, as of October 31, 1994, consisted of 3,600 kL (950 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-102 is expected to have two primary layers. The bottom layer is composed of 360 kL of sludge, and the top layer is composed of 3,240 kL of supernatant, with a total tank waste depth of approximately 8.9 meters

  14. Large Steel Tank Fails and Rockets to Height of 30 meters - Rupture Disc Installed Incorrectly

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess; Selig, Robert Simon; Kragh, Eva K.

    2016-01-01

    At a brewery, the base plate-to-shell weld seam of a 90-m3 vertical cylindrical steel tank failed catastrophically. The 4 ton tank “took off” like a rocket leaving its contents behind, and landed on a van, crushing it. The top of the tank reached a height of 30 m. The internal overpressure...

  15. Fracture Growth Testing of Titanium 6AL-4V in AF-M315E

    Science.gov (United States)

    Sampson, Jeffrey W.; Martinez, Jonathan; McLean, Christopher

    2015-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the performance of AF-M315E monopropellant in orbit. Flight certification requires a safe-life analysis of the titanium alloy fuel tank to ensure inherent flaws will not cause failure during the design life. Material property inputs for this analysis require testing to determine the stress intensity factor for environmentally-assisted cracking (K (sub EAC)) of Ti 6Al-4V in combination with the AF-M315E monopropellant. Testing of single-edge notched specimens SE(B) representing the bulk tank membrane and weld material were performed in accordance with ASTM E1681. Specimens with fatigue pre-cracks were loaded into test fixtures so that the crack tips were exposed to the monopropellant at 50 degrees Centigrade for a duration of 1,000 hours. Specimens that did not fail during exposure were opened to inspect the crack surfaces for evidence of crack growth. The threshold stress intensity value, KEAC, is the highest applied stress intensity that produced neither a failure of the specimen during the exposure nor showed evidence of crack growth. The threshold stress intensity factor of the Ti 6Al-4V forged tank material when exposed to AF-M315E monopropellant was found to be at least 22.0 kilopounds per square inch. The stress intensity factor of the weld material was at least 31.3 kilopounds per square inch.

  16. USA kahepaiksest mängust / Jüri Lina

    Index Scriptorium Estoniae

    Lina, Jüri, 1949-

    2000-01-01

    Sama artikkel on ilmunud ka Eesti 2000 : sõltumatu almanahh ühiskonna ja vaimuelu küsimustes nr. 4 ja nr. 6. Autori väitel on USA muu hulgas huvitatud maakera rahvastiku drastilisest vähendamisest, seepärast ongi pärast Teist maailmasõda kunstlikult lõkkele puhutud sadu sõjalisi konflikte. Lisatud Jüri Lina lühielulugu lk. 23

  17. Tank 241-B-103 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1995-01-01

    The Defense Nuclear Facilities Safety Board (DNFSB) has advised the US Department of Energy (DOE) to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The data quality objective (DQO) process was chosen as a tool to be used to identify sampling and analytical needs for the resolution of safety issues. As a result, a revision in the Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) milestone M-44-00 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process... Development of TCPs by the DQO process is intended to allow users (e.g., Hanford Facility user groups, regulators) to ensure their needs will be met and that resources are devoted to gaining only necessary information.'' This document satisfies that requirement for Tank 241-B-103 (B-103) sampling activities. Tank B-103 was placed on the Organic Watch List in January 1991 due to review of TRAC data that predicts a TOC content of 3.3 dry weight percent. The tank was classified as an assumed leaker of approximately 30,280 liters (8,000 gallons) in 1978 and declared inactive. Tank B-103 is passively ventilated with interim stabilization and intrusion prevention measures completed in 1985

  18. Tank characterization report for double-shell tank 241-AN-102

    International Nuclear Information System (INIS)

    Jo, J.

    1996-01-01

    This characterization report summarizes the available information on the historical uses, current status, and sampling and analysis results of waste stored in double-shell underground storage tank 241- AN-102. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09 (Ecology et al. 1996). Tank 241-AN-102 is one of seven double-shell tanks located in the AN Tank Farm in the Hanford Site 200 East Area. The tank was hydrotested in 1981, and when the water was removed, a 6-inch heel was left. Tank 241-AN-102 began receiving waste from tank 241-SY-102 beginning in 1982. The tank was nearly emptied in the third quarter of 1983, leaving only 125 kL (33 kgal) of waste. Between the fourth quarter of 1983 and the first quarter of 1984, tank 241-AN-102 received waste from tanks 241-AY-102, 241-SY-102, 241-AW-105, and 241- AN-101. The tank was nearly emptied in the second quarter of 1984, leaving a heel of 129 kL (34 kgal). During the second and third quarters of 1984, the tank was filled with concentrated complexant waste from tank 241-AW-101. Since that time, only minor amounts of Plutonium-Uranium Extraction (PUREX) Plant miscellaneous waste and water have been received; there have been no waste transfer to or from the tank since 1992. Therefore, the waste currently in the tank is considered to be concentrated complexant waste. Tank 241-AN-102 is sound and is not included on any of the Watch Lists

  19. Stabilization of In-Tank Residual Wastes and External-Tank Soil Contamination for the Hanford Tank Closure Program: Applications to the AX Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, H.L.; Dwyer, B.P.; Ho, C.; Krumhansl, J.L.; McKeen, G.; Molecke, M.A.; Westrich, H.R.; Zhang, P.

    1998-11-01

    Technical support for the Hanford Tank Closure Program focused on evaluation of concepts for immobilization of residual contaminants in the Hanford AX tanks and underlying soils, and identification of cost-effective approaches to improve long-term performance of AX tank farm cIosure systems. Project objectives are to develop materials or engineered systems that would significantly reduce the radionuclide transport to the groundwater from AX tanks containing residual waste. We pursued several studies that, if implemented, would help achieve these goals. They include: (1) tank fill design to reduce water inilltration and potential interaction with residual waste; (2) development of in-tank getter materials that would specifically sorb or sequester radionuclides; (3) evaluation of grout emplacement under and around the tanks to prevent waste leakage during waste retrieval or to minimize water infiltration beneath the tanks; (4) development of getters that will chemically fix specific radionuclides in soils under tanks; and (5) geochemical and hydrologic modeling of waste-water-soil-grout interactions. These studies differ in scope from the reducing grout tank fill employed at the Savannah River Site in that our strategy improves upon tank fill design by providing redundancy in the barriers to radionuclide migration and by modification the hydrogeochemistry external to the tanks.

  20. Tank characterization report for single-shell tank 241-U-110. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.M.; Jensen, L.

    1993-09-01

    Tank 241-U-110 (U-110) is a Hanford Site waste tank that was ;most recently sampled in November and December 1989. Analysis of the samples obtained from tank U-110 was conducted to support the characterization of the contents of this tank and to support Hanford Federal Facility Agreement and Consent Order milestone M-10-00 (Ecology, et al. 1992). Because of incomplete recovery of the waste during sampling, there may be bias in the results of this characterization report.

  1. Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank

    Science.gov (United States)

    Lin, C. S.; Hasan, M. M.; Vandresar, N. T.

    1994-01-01

    Experiments have been conducted to investigate the effect of fluid mixing on the depressurization of a large liquid hydrogen storage tank. The test tank is approximately ellipsoidal, having a volume of 4.89 m(exp 3) and an average wall heat flux of 4.2 W/m(exp 2) due to external heat input. A mixer unit was installed near the bottom of the tank to generate an upward directed axial jet flow normal to the liquid-vapor interface. Mixing tests were initiated after achieving thermally stratified conditions in the tank either by the introduction of hydrogen gas into the tank or by self-pressurization due to ambient heat leak through the tank wall. The subcooled liquid jet directed towards the liquid-vapor interface by the mixer induced vapor condensation and caused a reduction in tank pressure. Tests were conducted at two jet submergence depths for jet Reynolds numbers from 80,000 to 495,000 and Richardson numbers from 0.014 to 0.52. Results show that the rate of tank pressure change is controlled by the competing effects of subcooled jet flow and the free convection boundary layer flow due to external tank wall heating. It is shown that existing correlations for mixing time and vapor condensation rate based on small scale tanks may not be applicable to large scale liquid hydrogen systems.

  2. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford Tank Initiative: Applications to the AX tank farm

    International Nuclear Information System (INIS)

    Becker, D.L.

    1997-01-01

    This report investigates five technical areas for stabilization of decommissioned waste tanks and contaminated soils at the Hanford Site AX Farm. The investigations are part of a preliminary evacuation of end-state options for closure of the AX Tanks. The five technical areas investigated are: (1) emplacement of cementations grouts and/or other materials; (2) injection of chemicals into contaminated soils surrounding tanks (soil mixing); (3) emplacement of grout barriers under and around the tanks; (4) the explicit recognition that natural attenuation processes do occur; and (5) combined geochemical and hydrological modeling. Research topics are identified in support of key areas of technical uncertainty, in each of the five areas. Detailed cost-benefit analyses of the technologies are not provided. This investigation was conducted by Sandia National Laboratories, Albuquerque, New Mexico, during FY 1997 by tank Focus Area (EM-50) funding

  3. Tank 241-C-107 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    The Defense Nuclear Facilities Safety Board (DNFSB) has advised the US Department of Energy (DOE) to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The data quality objective (DQO) process was chosen as a tool to be used to identify sampling and analytical needs for the resolution of safety issues. As a result, a revision in the Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) milestone M-44-00 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process... Development of TCPs by the DQO process is intended to allow users (e.g., Hanford Facility user groups, regulators) to ensure their needs will be met and that resources are devoted to gaining only necessary information.'' This document satisfies that requirement for the Tank 241-C-107 (C-107) sampling activities. Currently tank C-107 is categorized as a sound, low-heat load tank with partial isolation completed in December 1982. The tank is awaiting stabilization. Tank C-107 is expected to contain three primary layers of waste. The bottom layer should contain a mixture of the following wastes: ion exchange, concentrated phosphate waste from N-Reactor, Hanford Lab Operations, strontium semi-works, Battelle Northwest, 1C, TBP waste, cladding waste, and the hot semi-works. The middle layer should contain strontium recovery supernate. The upper layer should consist of non-complexed waste

  4. Tank characterization report for single-shell tank 241-A-101

    International Nuclear Information System (INIS)

    Field, J.M.

    1997-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-A-101. This tank has been listed on the Hydrogen Watch List. This report supports the requirements of the Tri-Party Agreement Milestone M-44-10

  5. Tank characterization report for Single-Shell Tank B-111

    International Nuclear Information System (INIS)

    Remund, K.M.; Tingey, J.M.; Heasler, P.G.; Toth, J.J.; Ryan, F.M.; Hartley, S.A.; Simpson, D.B.; Simpson, B.C.

    1994-09-01

    Tank 241-B-111 (hereafter referred to as B-111) is a 2,006,300 liter (530,000 gallon) single-shell waste tank located in the 200 East B tank farm at Hanford. Two cores were taken from this tank in 1991 and analysis of the cores was conducted by Battelle's 325-A Laboratory in 1993. Characterization of the waste in this tank is being done to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-44-05. Tank B-111 was constructed in 1943 and put into service in 1945; it is the second tank in a cascade system with Tanks B-110 and B-112. During its process history, B-111 received mostly second-decontamination-cycle waste and fission products waste via the cascade from Tank B-110. This tank was retired from service in 1976, and in 1978 the tank was assumed to have leaked 30,300 liters (8,000 gallons). The tank was interim stabilized and interim isolated in 1985. The tank presently contains approximately 893,400 liters (236,000 gallons) of sludge-like waste and approximately 3,800 liters (1,000 gallons) of supernate. Historically, there are no unreviewed safety issues associated with this tank and none were revealed after reviewing the data from the latest core sampling event in 1991. An extensive set of analytical measurements was performed on the core composites. The major constituents (> 0.5 wt%) measured in the waste are water, sodium, nitrate, phosphate, nitrite, bismuth, iron, sulfate and silicon, ordered from largest concentration to the smallest. The concentrations and inventories of these and other constituents are given. Since Tanks B-110 and B-111 have similar process histories, their sampling results were compared. The results of the chemical analyses have been compared to the dangerous waste codes in the Washington Dangerous Waste Regulations (WAC 173-303). This assessment was conducted by comparing tank analyses against dangerous waste characteristics 'D' waste codes; and against state waste codes

  6. Tank 241-BY-108 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank BY-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-108 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-108 using the vapor sampling system (VSS) on october 27, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 25.7 C. Air from the Tank BY-108 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 1, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, and Pacific Northwest Laboratories. The 40 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks that accompanied the samples

  7. Tank 241-BY-110 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank BY-110 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-110 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-110 using the vapor sampling system (VSS) on November 11, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 27 C. Air from the Tank BY-110 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 12B, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, and Pacific Northwest Laboratories. The 40 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks that accompanied the samples

  8. Think tank (1) - Its definition and the overseas situation

    Science.gov (United States)

    Obara, Michio

    The definition as organization is that 1) the think tank should be policy oriented and propose the current issues, 2) it should be interdisciplinary and future oriented, and 3) it should be independent without any outside interference upon it. It is divided into three types in terms of business activity; 1) policy proposing, 2) R&D undertaking and 3) business consulting think tanks. Historically the U.S. has been leading the world because the first think tank was born in this country, and three types of think tanks have brought out the mature business undertakings there. Most of the countries other than the U.S. has held policy proposing type think tanks. The notable think tanks are Brookings Research Institute, Rand Research Institute, Battelle Memorial Institute, Arthur D. Little Co. Ltd. SRI International in the U.S.A., IFO Economic Research Institute, German Economic Research Institute in Germany, France International Relations Research Institute in France, Royal International Relations Research institute, International Strategic Matters Research Institute in the U.K., and Korean Development Research Institute, Korean industrial Research Institute in Korea. All of these have been active in the areas of politics, economics, industry and technology.

  9. Fish stocking density impacts tank hydrodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Lunger, Angela; Laursen, Jesper

    2006-01-01

    The effect of stocking density upon the hydrodynamics of a circular tank, configured in a recirculation system, was investigated. Red drums Sciaenops ocellatus of approximately 140 g wet weight, were stocked at five rates varying from 0 to 12 kg m-3. The impact of the presence of fish upon tank...... hydrodynamics was established using in-tank-based Rhodamine WT fluorometry at a flow rate of 0.23 l s-1 (tank exchange rate of 1.9 h-1). With increasing numbers of animals, curvilinear relationships were observed for dispersion coefficients and tank mixing times. Stocking densities of 3, 6, 9 and 12 kg m-3...

  10. Levitating Drop in a Tilted Rotating Tank - Gallery of Fluid Motion Entry V044

    OpenAIRE

    White, Andrew; Swan, David; Ward, Thomas

    2011-01-01

    A cylindrical acrylic tank with inner diameter D = 4 in. is mounted such that its axis of symmetry is at some angle measured from the vertical plane. The mixing tank is identical to that described in [1] The tank is filled with 200 mL of 1000 cSt silicone oil and a 5 mL drop of de-ionized water is placed in the oil volume. The water drop is allowed to come to rest and then a motor rotates the tank about its axis of symmetry at a fixed frequency = 0.3 Hz. Therefore the Reynolds number is fixed...

  11. Nitrogen tank

    CERN Multimedia

    2006-01-01

    Wanted The technical file about the pressure vessel RP-270 It concerns the Nitrogen tank, 60m3, 22 bars, built in 1979, and installed at Point-2 for the former L3 experiment. If you are in possession of this file, or have any files about an equivalent tank (probably between registered No. RP-260 and -272), please contact Marc Tavlet, the ALICE Glimos.

  12. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  13. Influence of slosh baffles on thermodynamic performance in liquid hydrogen tank.

    Science.gov (United States)

    Liu, Zhan; Li, Cui

    2018-03-15

    A calibrated CFD model is built to investigate the influence of slosh baffles on the pressurization performance in liquid hydrogen (LH 2 ) tank. The calibrated CFD model is proven to have great predictive ability by compared against the flight experimental results. The pressure increase, thermal stratification and wall heat transfer coefficient of LH 2 tank have been detailedly studied. The results indicate that slosh baffles have a great influence on tank pressure increase, fluid temperature distribution and wall heat transfer. Owning to the existence of baffles, the stratification thickness increases gradually with the distance from tank axis to tank wall. While for the tank without baffles, the stratification thickness decreases firstly and then increases with the increase of the distance from the axis. The "M" type stratified thickness distribution presents in tank without baffles. One modified heat transfer coefficient correlation has been proposed with the change of fluid temperature considered by multiplying a temperature correction factor. It has been proven that the average relative prediction errors of heat transfer coefficient reduced from 19.08% to 4.98% for the wet tank wall of the tank, from 8.93% to 4.27% for the dry tank wall, respectively, calculated by the modified correlation. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Contaminant Release from Residual Waste in Single Shell Tanks at the Hanford Site, Washington, USA - 9276

    International Nuclear Information System (INIS)

    Cantrell, Kirk J.; Krupka, Kenneth M.; Deutsch, William J.; Lindberg, Michael J.

    2009-01-01

    Determinations of elemental and solid-phase compositions, and contaminant release studies have been applied in an ongoing study of residual tank wastes (i.e., waste remaining after final retrieval operations) from five of 149 underground single-shell storage tanks (241-C-103, 241-C-106, 241-C-202, 241-C-203, and 241-S-112) at the U.S. Department of Energy's Hanford Site in Washington State. This work is being conducted to support performance assessments that will be required to evaluate long-term health and safety risks associated with tank site closure. The results of studies completed to date show significant variability in the compositions, solid phase properties, and contaminant release characteristics from these residual tank wastes. This variability is the result of differences in waste chemistry/composition of wastes produced from several different spent fuel reprocessing schemes, subsequent waste reprocessing to remove certain target constituents, tank farm operations that concentrated wastes and mixed wastes between tanks, and differences in retrieval processes used to remove the wastes from the tanks. Release models were developed based upon results of chemical characterization of the bulk residual waste, solid-phase characterization (see companion paper 9277 by Krupka et al.), leaching and extraction experiments, and geochemical modeling. In most cases empirical release models were required to describe contaminant release from these wastes. Release of contaminants from residual waste was frequently found to be controlled by the solubility of phases that could not be identified and/or for which thermodynamic data and/or dissolution rates have not been measured. For example, significant fractions of Tc-99, I-129, and Cr appear to be coprecipitated at trace concentrations in metal oxide phases that could not be identified unambiguously. In the case of U release from tank 241-C-103 residual waste, geochemical calculations indicated that leachate

  15. Tank 241-C-101 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank C-101 headspace gas and vapor samples were collected and analyzed to help determine the potential risks of fugitive emissions to tank farm workers. Gas and vapor samples from the Tank C-101 headspace were collected on July 7, 1994 using the in situ sampling (ISS) method, and again on September 1, 1994 using the more robust vapor sampling system (VSS). Gas and vapor concentrations in Tank C-101 are influenced by its connections to other tanks and its ventilation pathways. At issue is whether the organic vapors in Tank C-101 are from the waste in that tank, or from Tanks C-102 or C-103. Tank C-103 is on the Organic Watch List; the other two are not. Air from the Tank C-101 headspace was withdrawn via a 7.9-m long heated sampling probe mounted in riser 8, and transferred via heated tubing to the VSS sampling manifold. The tank headspace temperature was determined to be 34.0 C, and all heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 39 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks provided by the laboratories

  16. LH2 tank pressure control by thermodynamic vent system (TVS) at zero gravity

    Science.gov (United States)

    Wang, B.; Huang, Y. H.; Chen, Z. C.; Wu, J. Y.; Li, P.; Sun, P. J.

    2017-02-01

    Thermodynamic vent system (TVS) is employed for pressure control of propellant tanks at zero gravity. An analytical lumped parameter model is developed to predict pressure variation in an 18.09 m3 liquid hydrogen tank equipped with TVS. Mathematical simulations are carried out assuming tank is filled up to 75% volume (liquid mass equals to 945 kg) and is subjected to heat flux of 0.76 W/m2. Tank pressure controls at 165.5-172.4, 165.5-179.3 and 165.5-182.2 kPa are compared with reference to number of vent cycles, vent duration per cycle and loss of hydrogen. Analysis results indicate that the number of vent cycles significantly decreases from 62 to 21 when tank pressure control increases from 6.9 to 20.4 kPa. Also, duration of vent cycle increases from 63 to 152 and cycle duration decreases from 3920 to 3200 s. Further, the analysis result suggests that LH2 evaporation loss per day decreases from 0.17 to 0.14%. Based on the results of analysis, TVS is found effective in controlling the propellant tank pressure in zero gravity.

  17. Project W-320 Tank 106-C waste retrieval study analysis session report

    International Nuclear Information System (INIS)

    Bailey, J.W.

    1998-01-01

    This supporting document has been prepared to make the Kaiser Engineers Hanford Company Project W-320 Tank 106-C Waste Retrieval Study Analysis Session Report readily retrievable. This facilitated session was requested by Westinghouse Hanford Company (WHC) to review the characterization data and select the best alternatives for a double-shell receiver tank and for a sluicing medium for Tank 106-C waste retrieval. The team was composed of WHC and Kaiser Engineers Hanford Company (KEH) personnel knowledgeable about tank farm operations, tank 106-C requirements, tank waste characterization and analysis, and chemical processing. This team was assembled to perform a structured decision analysis evaluation and recommend the best alternative-destination double-shell tank between tanks 101-AY and 102-AY, and the best alternative sluicing medium among dilute complexant (DC), dilute noncomplexant (DNC), and water. The session was facilitated by Richard Harrington and Steve Bork of KEH and was conducted at the Bookwalter Winery in Richland from 7:30 a.m. to 4:00 p.m. from July 27 through July 29, 1993. Attachment 1 (Scope Statement Sheet) identifies the team members, scope, objectives, and deliverables for the session

  18. Development and testing of single-shell tank waste retrieval technologies: Milestone M-45-01 summary report

    International Nuclear Information System (INIS)

    Shen, E.J.

    1994-08-01

    This report summarizes the activities undertaken to develop single-shell tank (SST) waste retrieval technology and complete scale-model testing. Completion of these activities fulfills the commitment of Milestone M-45-01 of the Hanford Federal Facility Agreement and Consent Order (the Tri-Party Agreement). Initial activities included engineering studies that compiled and evaluated data on all known retrieval technologies. Based on selection criteria incorporating regulatory, safety, and operational issues, several technologies were selected for further evaluation and testing. The testing ranged from small-scale, bench-top evaluations of individual technologies to full-scale integrated tests of multiple subsystems operating concurrently as a system using simulated wastes. The current baseline retrieval method for SSTs is hydraulic sluicing. This method has been used successfully in the past to recover waste from SSTs. Variations of this hydraulic or ''past practice'' sluicing may be used to retrieve the waste from the majority of the SSTs. To minimize the potential for releases to the soil, arm-based retrieval systems may be used to recover waste from tanks that are known or suspected to have leaked. Both hydraulic sluicing and arm-based retrieval will be demonstrated in the first SST. Hydraulic sluicing is expected to retrieve most of the waste, and arm-based retrieval will retrieve wastes that remain after sluicing. Subsequent tanks will be retrieved by either hydraulic sluicing or arm-based methods, but not both. The method will be determined by waste characterization, tank integrity (leak status), and presence of in-tank hardware. Currently, it is assumed that approximately 75% of all SSTs will be retrieved by hydraulic sluicing and the remaining tanks by arm-based methods

  19. Large Steel Tank Fails and Rockets to Height of 30 meters − Rupture Disc Installed Incorrectly

    OpenAIRE

    Hedlund, Frank H.; Selig, Robert S.; Kragh, Eva K.

    2016-01-01

    At a brewery, the base plate-to-shell weld seam of a 90-m3 vertical cylindrical steel tank failed catastrophically. The 4 ton tank “took off” like a rocket leaving its contents behind, and landed on a van, crushing it. The top of the tank reached a height of 30 m. The internal overpressure responsible for the failure was an estimated 60 kPa. A rupture disc rated at <50 kPa provided overpressure protection and thus prevented the tank from being covered by the European Pressure Equipment Dir...

  20. CRED 20m Gridded bathymetry of Nihoa Island, Hawaii, USA (Arc ASCII format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (20m) of the shelf and slope environments of Nihoa Island, Hawaii, USA. The ASCII includes multibeam bathymetry from the Simrad EM120, Simrad...

  1. Sloshing Simulation of Three Types Tank Ship on Pitching and Heaving Motion

    Directory of Open Access Journals (Sweden)

    Edi Djatmiko

    2017-06-01

    Full Text Available As an important part of a ship, tanker / cargo hold specifically designed to distribute the load to be maintained safely. In a related IMO classification of LNG carrier, there are a wide variety of types of LNG tanks on ships. Are generally divided into two types, namely tank (Independent Self Supporting Tank and (Non Self Supporting Tanks. The tank-type variation will affect the characteristics of fluid motion that is inside the tank. Need for simulation of sloshing and analysis of the structure of the tank due to the force created by the load when the heaving and pitching. Sloshing the effect of the free movement of the fluid in the tank with the striking motion wall tank walls that can damage the walls of the tank. Type 1 tank is a tank octagonal (octogonal for membrane-type LNG carrier with dimensions of length 38 m width 39.17 m 14.5 m high side of the tank. Type 2 tank is a tank-shaped capsule with the long dimension of 26.6 m and a diameter of 10.5 m. Type 3 tank is rectangular tank (rectanguler with dimensions of length of 49.68 m, width 46.92 and 32.23 m high. Simulations conducted using Computational Fluid Dynamic (CFD using ANSYS FLUENT software. From the simulation results concluded that the tank 1 to form (octogonal have a total pressure of 3013.99 Pa on the front wall with a height of 13.65 m from the base of the tank

  2. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2006-03-17

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratory (PNNL) to perform seismic analysis of the Hanford Site double-shell tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project--DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST system at Hanford in support of Tri-Party Agreement Milestone M-48-14, The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DSTs assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil and the effects of the primary tank contents. The DSTs and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary

  3. Tank characterization report for single-shell tank 241-T-102

    International Nuclear Information System (INIS)

    Baldwin, J.H.

    1997-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-T-102. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-T-102 waste; and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendixes. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone M-44-05. Characterization information presented in this report originated from sample analyses and known historical sources. The most recent core sampling of tank 241-T-102 (March 1993) predated the existence of data quality objectives (DQOs). An assessment of the technical issues from the currently applicable DQOs was made using data from the 1993 push mode core sampling event, a July 1994 grab sampling event, and a May 1996 vapor flammability measurement. Historical information for tank 241-T-102, provided in Appendix A, includes surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. Appendix B contains further sampling and analysis data from the March 1993 push mode core sampling event and data from the grab sampling event in August 1994 and May 1996 vapor flammability measurement. Of the two push mode cores taken in March of 1993, cores 55

  4. Tank characterization report for single-shell tank 241-T-102

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, J.H.

    1997-06-24

    A major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-T-102. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-T-102 waste; and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendixes. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone M-44-05. Characterization information presented in this report originated from sample analyses and known historical sources. The most recent core sampling of tank 241-T-102 (March 1993) predated the existence of data quality objectives (DQOs). An assessment of the technical issues from the currently applicable DQOs was made using data from the 1993 push mode core sampling event, a July 1994 grab sampling event, and a May 1996 vapor flammability measurement. Historical information for tank 241-T-102, provided in Appendix A, includes surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. Appendix B contains further sampling and analysis data from the March 1993 push mode core sampling event and data from the grab sampling event in August 1994 and May 1996 vapor flammability measurement. Of the two push mode cores taken in March of 1993, cores 55

  5. Sludge mobilization with submerged nozzles in horizontal cylindrical tanks

    International Nuclear Information System (INIS)

    Hylton, T.D.; Cummins, R.L.; Youngblood, E.L.; Perona, J.J.

    1995-10-01

    The Melton Valley Storage Tanks (MVSTs) and the evaporator service tanks at the Oak Ridge National Laboratory (ORNL) are used for the collection and storage of liquid low-level waste (LLLW). Wastes collected in these tanks are typically acidic when generated and are neutralized with sodium hydroxide to protect the tanks from corrosion; however, the high pH of the solution causes the formation of insoluble compounds that precipitate. These precipitates formed a sludge layer approximately 0.6 to 1.2 m (2 to 4 ft) deep in the bottom of the tanks. The sludge in the MVSTs and the evaporator service tanks will eventually need to be removed from the tanks and treated for final disposal or transferred to another storage facility. The primary options for removing the sludge include single-point sluicing, use of a floating pump, robotic sluicing, and submerged-nozzle sluicing. The objectives of this study were to (1) evaluate the feasibility of submerged-nozzle sluicing in horizontal cylindrical tanks and (2) obtain experimental data to validate the TEMPEST (time-dependent, energy, momentun, pressure, equation solution in three dimensions) computer code

  6. SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 4 TANK 21H QUALIFICATION SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T.; Fink, S.

    2011-06-22

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H to qualify them for use in the Integrated Salt Disposition Program (ISDP) Batch 4 processing. All sample results agree with expectations based on prior analyses where available. No issues with the projected Salt Batch 4 strategy are identified. This revision includes additional data points that were not available in the original issue of the document, such as additional plutonium results, the results of the monosodium titanate (MST) sorption test and the extraction, scrub strip (ESS) test. This report covers the revision to the Tank 21H qualification sample results for Macrobatch (Salt Batch) 4 of the Integrated Salt Disposition Program (ISDP). A previous document covers initial characterization which includes results for a number of non-radiological analytes. These results were used to perform aluminum solubility modeling to determine the hydroxide needs for Salt Batch 4 to prevent the precipitation of solids. Sodium hydroxide was then added to Tank 21 and additional samples were pulled for the analyses discussed in this report. This work was specified by Task Technical Request and by Task Technical and Quality Assurance Plan (TTQAP).

  7. Tank characterization report for double-shell tank 241-AP-105

    International Nuclear Information System (INIS)

    DeLorenzo, D.S.; Simpson, B.C.

    1994-01-01

    Double-Shell Tank 241-AP-105 is a radioactive waste tank most recently sampled in March of 1993. Sampling and characterization of the waste in Tank 241-AP-105 contributes toward the fulfillment of Milestone M-44-05 of the Hanford Federal Facility Agreement and Consent Order (Ecology, EPA, and DOE, 1993). Characterization is also needed tot evaluate the waste's fitness for safe processing through an evaporator as part of an overall waste volume reduction program. Tank 241-AP-105, located in the 200 East Area AP Tank Farm, was constructed and went into service in 1986 as a dilute waste receiver tank; Tank 241AP-1 05 was considered as a candidate tank for the Grout Treatment Facility. With the cancellation of the Grout Program, the final disposal of the waste in will be as high- and low-level glass fractions. The tank has an operational capacity of 1,140,000 gallons, and currently contains 821,000 gallons of double-shell slurry feed. The waste is heterogeneous, although distinct layers do not exist. Waste has been removed periodically for processing and concentration through the 242-A Evaporator. The tank is not classified as a Watch List tank and is considered to be sound. There are no Unreviewed Safety Questions associated with Tank 241-AP-105 at this time. The waste in Tank 241-AP-105 exists as an aqueous solution of metallic salts and radionuclides, with limited amounts of organic complexants. The most prevalent soluble analytes include aluminum, potassium, sodium, hydroxide, carbonate, nitrate, and nitrite. The calculated pH is greater than the Resource Conservation and Recovery Act established limit of 12.5 for corrosivity. In addition, cadmium, chromium, and lead concentrations were found at levels greater than their regulatory thresholds. The major radionuclide constituent is 137 Cs, while the few organic complexants present include glycolate and oxalate. Approximately 60% of the waste by weight is water

  8. Hanford tank residual waste - Contaminant source terms and release models

    International Nuclear Information System (INIS)

    Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.; Lindberg, Michael L.; Jeffery Serne, R.

    2011-01-01

    Highlights: → Residual waste from five Hanford spent fuel process storage tanks was evaluated. → Gibbsite is a common mineral in tanks with high Al concentrations. → Non-crystalline U-Na-C-O-P ± H phases are common in the U-rich residual. → Iron oxides/hydroxides have been identified in all residual waste samples. → Uranium release is highly dependent on waste and leachant compositions. - Abstract: Residual waste is expected to be left in 177 underground storage tanks after closure at the US Department of Energy's Hanford Site in Washington State, USA. In the long term, the residual wastes may represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt.%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt.%, respectively. Aluminum concentrations are high (8.2-29.1 wt.%) in some tanks (C-103, C-106, and S-112) and relatively low ( 2 -saturated solution, or a CaCO 3 -saturated water. Uranium release concentrations are highly dependent on waste and leachant compositions with dissolved U concentrations one or two orders of magnitude higher in the tests with high U residual wastes, and also higher when leached with the CaCO 3 -saturated solution than with the Ca(OH) 2 -saturated solution. Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH) 2 -saturated solution than by the CaCO 3 -saturated solution. In general, Tc is much less leachable (<10 wt.% of the

  9. Flow rate analysis of wastewater inside reactor tanks on tofu wastewater treatment plant

    Science.gov (United States)

    Mamat; Sintawardani, N.; Astuti, J. T.; Nilawati, D.; Wulan, D. R.; Muchlis; Sriwuryandari, L.; Sembiring, T.; Jern, N. W.

    2017-03-01

    The research aimed to analyse the flow rate of the wastewater inside reactor tanks which were placed a number of bamboo cutting. The resistance of wastewater flow inside reactor tanks might not be occurred and produce biogas fuel optimally. Wastewater from eleven tofu factories was treated by multi-stages anaerobic process to reduce its organic pollutant and produce biogas. Biogas plant has six reactor tanks of which its capacity for waste water and gas dome was 18 m3 and 4.5 m3, respectively. Wastewater was pumped from collecting ponds to reactors by either serial or parallel way. Maximum pump capacity, head, and electrical motor power was 5m3/h, 50m, and 0.75HP, consecutively. Maximum pressure of biogas inside the reactor tanks was 55 mbar higher than atmosphere pressure. A number of 1,400 pieces of cutting bamboo at 50-60 mm diameter and 100 mm length were used as bacteria growth media inside each reactor tank, covering around 14,287 m2 bamboo area, and cross section area of inner reactor was 4,9 m2. In each reactor, a 6 inches PVC pipe was installed vertically as channel. When channels inside reactor were opened, flow rate of wastewater was 6x10-1 L.sec-1. Contrary, when channels were closed on the upper part, wastewater flow inside the first reactor affected and increased gas dome. Initially, wastewater flowed into each reactor by a gravity mode with head difference between the second and third reactor was 15x10-2m. However, head loss at the second reactor was equal to the third reactor by 8,422 x 10-4m. As result, wastewater flow at the second and third reactors were stagnant. To overcome the problem pump in each reactor should be installed in serial mode. In order to reach the output from the first reactor and the others would be equal, and biogas space was not filled by wastewater, therefore biogas production will be optimum.

  10. The modified swirl sedimentation tanks for water purification.

    Science.gov (United States)

    Ochowiak, Marek; Matuszak, Magdalena; Włodarczak, Sylwia; Ancukiewicz, Małgorzata; Krupińska, Andżelika

    2017-03-15

    This paper discusses design, evaluation, and application for the use of swirl/vortex technologies as liquid purification system. A study was performed using modified swirl sedimentation tanks. The vortex separators (OW, OWK, OWR and OWKR) have been studied under laboratory conditions at liquid flow rate from 2.8⋅10 -5 to 5.1⋅10 -4 [m 3 /s]. The pressure drop and the efficiency of purification of liquid stream were analyzed. The suspended particles of different diameters were successfully removed from liquid with the application of swirl chambers of proposed constructions. It was found that damming of liquid in the tank increases alongside liquid stream at the inlet and depends on the tank construction. The efficiency of the sedimentation tanks increases alongside the diameters of solid particles and decrease in the liquid flow rate. The best construction proved to be the OWR sedimentation tank due to smallest liquid damming, even at high flow rates, and the highest efficiency of the purification liquid stream for solid particles of the smallest diameter. The proposed solution is an alternative to the classical constructions of sedimentation tanks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Real-Time Dispatch of Petroleum Tank Trucks

    OpenAIRE

    Brown, Gerald G.; Graves, Glenn W.

    1981-01-01

    Management Science, 27, 1, pp. 19-32. (1982 International Management Science Achievement Award Finalist). A highly automated, real-time dispatch system is described which uses embedded optimization routines to replace extensive manual operations and to reduce substantially operating costs for a nation-wide fleet of petroleum tank trucks. The system is currently used in daily operations by the Order Entry and Dispatch segment of the Chevron U.S.A. Marketing System. Refined petroleum produ...

  12. On the capacity-formula for pressure relief devices of tanks for dangerous goods; Die Kapazitaetsformel fuer Druckentlastungsvorrichtungen von Gefahrguttanks

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, J. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2000-09-01

    Each tank-container respectively portable tank for multimodal purposes has to be closed and fitted with safety devices (pressure relief devices). Pressure relief devices have to meet essential requirements concerning their total delivery capacity in condition of complete engulfment of the tank in fire. The total capacity of these devices should be sufficient to limit the pressure in the tank in each case to its test pressure, maximally. The total delivery capacity has to be determined by applying a formula which had been developed in the USA and taken over later on into international and national regulations on the transport of dangerous goods. The derivation of this formula will be described and evaluated with regard to given facts related to general thermodynamics and fire test results. (orig.) [German] Wesentliche Anforderung an Sicherheitseinrichtungen (Druckentlastungsvorrichtungen) fuer Tanks und Tankcontainer im multimodalen Verkehr ist, dass diese Einrichtungen im Feuerfall eine Gesamtdurchflussmenge aufweisen muessen, die zumindest einen Druckanstieg ueber den Pruefdruck hinaus verhindert. Die Ermittlung der Gesamtdurchflussmenge erfolgt nach einer in den USA entwickelten, in internationale und nationale Verkehrsvorschriften uebernommenen Zahlenwertgleichung (Kapazitaetsformel). Die Herleitung dieser Zahlenwertgleichung sowohl aus allgemein thermodynamischen als auch empirischen Gegebenheiten wird beschrieben und bewertet. (orig.)

  13. 49 CFR 238.423 - Fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  14. 49 CFR 229.217 - Fuel tank.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum... to the fuel tank safety requirements of § 238.223 or § 238.423 of this chapter. The Director of the...

  15. Grout performance in support of in situ grouting of the TH4 tank sludge

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, R.D.; Kauschinger, J.L.; Spence, R.D.

    1999-04-01

    The cold demonstration test proved that less water was required to pump the in situ grout formulation than had been previously tested in the laboratory. The previous in situ grout formulation was restandardized with the same relative amounts of dry blend ingredients, albeit adding a fluidized admixture, but specifying less water for the slurry mix that must by pumped through the nozzles at high pressure. Also, the target GAAT tank for demonstrating this is situ grouting technique has been shifted to Tank TH4. A chemical surrogate sludge for TH4 was developed and tested in the laboratory, meeting expectations for leach resistance and strenght at 35 wt % sludge loading. It addition, a sample of hot TH4 sludge was also tested at 35 wt % sludge loading and proved to have superior strength and leach resistance compared with the surrogate test.

  16. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  17. Thomas M. Prymak. Gathering a Heritage: Ukrainian, Slavonic, and Ethnic Canada and the USA

    Directory of Open Access Journals (Sweden)

    Danielle Morrissette

    2017-03-01

    Full Text Available Book review of Thomas M. Prymak. Gathering a Heritage: Ukrainian, Slavonic, and Ethnic Canada and the USA. U of Toronto P, 2015. xiv, 370 pp. Illustrations. Tables. Appendix. Notes. Index. $29.95, paper.

  18. Tank car leaks gasoline

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    On January 27, 1994, a Canadian National (CN) tank car loaded with gasoline began to leak from a crack in the tank shell on the end of the car near the stub sill. The tank car had been damaged from impact switching. A part of the tank car was sent for laboratory analysis which concluded that: (1) the fracture originated in two locations in welds, (2) the cracks propagated in a symmetrical manner and progressed into the tank plate, (3) the fracture surface revealed inadequate weld fusion. A stress analysis of the tank car was conducted to determine the coupling force necessary to cause the crack. It was noted that over the last decade several problems have occurred pertaining to stub sill areas of tank cars that have resulted in hazardous material spills. An advisory was sent to Transport Canada outlining many examples where tank cars containing serious defects had passed CN inspections that were specifically designed to identify such defects. 4 figs

  19. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    International Nuclear Information System (INIS)

    Hubbard, Mike; Herbert, James E.; Scheele, Patrick W.

    2015-01-01

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m 3 to 4921 m 3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removal and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and product lubricated canned

  20. Real-Time Dispatch of Petroleum Tank Trucks

    OpenAIRE

    Gerald G. Brown; Glenn W. Graves

    1981-01-01

    A highly automated, real-time dispatch system is described which uses embedded optimization routines to replace extensive manual operations and to reduce substantially operating costs for a nation-wide fleet of petroleum tank trucks. The system is currently used in daily operations by the Order Entry and Dispatch segment of the Chevron U.S.A. Marketing System. Refined petroleum products valued at several billion dollars per year are dispatched from more than 80 bulk terminals on a fleet excee...

  1. 3-D Mapping Technologies For High Level Waste Tanks

    International Nuclear Information System (INIS)

    Marzolf, A.; Folsom, M.

    2010-01-01

    This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame

  2. Remaining Sites Verification Package for the 1607-F7, 141-M Building Septic Tank. Attachment to Waste Site Reclassification Form 2006-040

    International Nuclear Information System (INIS)

    Dittmer, L.M.

    2006-01-01

    The 1607-F7, 141-M Building Septic Tank waste site was a septic tank and drain field that received sanitary sewage from the former 141-M Building. Remedial action was performed in August and November 2005. The results of verification sampling demonstrate that residual contaminant concentrations support future unrestricted land uses that can be represented by a rural-residential scenario. These results also show that residual concentrations support unrestricted future use of shallow zone soil and that contaminant levels remaining in the soil are protective of groundwater and the Columbia River

  3. Tank characterization report for single-shell tank 241-C-109

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.

    1997-05-23

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices.

  4. Tank characterization report for single-shell tank 241-C-109

    International Nuclear Information System (INIS)

    Simpson, B.C.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices

  5. Rheology of Savannah River site tank 42 and tank 51 HLW radioactive sludges

    International Nuclear Information System (INIS)

    Ha, B.C.; Bibler, N.E.

    1996-01-01

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site (SRS) is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. The high activity radioactive wastes stored as caustic slurries at SRS result from the neutralization of acid waste generated from production of nuclear defense materials. During storage, the wastes separate into a supernate layer and a sludge layer. In the Defense Waste Processing Facility (DWPF) at SRS, the radionuclides from the sludge and supernate will be immobilized into borosilicate glass for long term storage and eventual disposal. Before transferring the waste from a storage tank to the DWPF, a portion of the aluminum in the waste sludge will be dissolved and the sludge will be extensively washed to remove sodium. Tank 51 and Tank 42 radioactive sludges represent the first batch of HLW sludge to be processed in the DWPF. This paper presents results of rheology measurements of Tank 51 and Tank 42 at various solids concentrations. The rheologies of Tank 51 and Tank 42 radioactive slurries were measured remotely in the Shielded Cells Operations (SCO) at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco RV-12 with an M150 measuring drive unit and TI sensor system. Rheological properties of the Tank 51 and Tank 42 radioactive sludges were measured as a function of weight percent solids. The weight percent solids of Tank 42 sludge was 27, as received. Tank 51 sludge had already been washed. The weight percent solids were adjusted by dilution with water or by concentration through drying. At 12, 15, and 18 weight percent solids, the yield stresses of Tank 51 sludge were 5, 11, and 14 dynes/cm2, respectively. The apparent viscosities were 6, 10, and 12 centipoises at 300 sec-1 shear rate, respectively

  6. 49 CFR 238.223 - Locomotive fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locomotive fuel tanks. 238.223 Section 238.223... Equipment § 238.223 Locomotive fuel tanks. Locomotive fuel tanks shall comply with either the following or....21: (a) External fuel tanks. External locomotive fuel tanks shall comply with the requirements...

  7. Efficacy of controlled-release KMnO4 (CRP) for controlling dissolved TCE plume in groundwater: a large flow-tank study.

    Science.gov (United States)

    Lee, Byung Sun; Kim, Jeong Hee; Lee, Ki Churl; Kim, Yang Bin; Schwartz, Franklin W; Lee, Eung Seok; Woo, Nam Chil; Lee, Myoung Ki

    2009-02-01

    A well-based, reactive barrier system using controlled-release potassium permanganate (CRP system) was recently developed as a long-term treatment option for dilute plumes of chlorinated solvents in groundwater. In this study, we performed large-scale (L x W x D = 8 m x 4 m x 2 m) flow-tank experiments to examine remedial efficacy of the CRP system. A total of 110 CRP rods (OD x L=5 cm x 150 cm) were used to construct a well-based CRP system (L x W x D = 3 m x 4 m x 1.5 m) comprising three discrete barriers installed at 1-m interval downstream. Natural sands having oxidant demand of 3.7 g MnO(4)(-)kg(-1) for 500 mg L(-1)MnO(4)(-) were used as porous media. After MnO(4)(-) concentrations were somewhat stabilized (0.5-6.0 mg L(-1)), trichloroethylene (TCE) plume was flowed through the flow-tank for 53 d by supplying 1.19 m(3)d(-1) of TCE solution. Mean initial TCE concentrations were 87 microg L(-1) for first 20 d and 172 microg L(-1) for the next 33 d. During TCE treatment, flow velocity (0.60md(-1)), pH (7.0-8.2), and concentrations of dissolved metals ([Al]=0.7 mg L(-1), [Fe]=0.01 mg L(-1)) showed little variations. The MnO(2)(s) contents in the sandy media measured after the TCE treatment ranged from 21 to 26 mg kg(-1), slightly increased from mean baseline value of 17 mg kg(-1). Strengths of the TCE plume considerably diminished by the CRP system. For the 87 microg L(-1) plume, TCE concentrations decreased by 38% (53), 67% (29), and 74% (23 microg L(-1)) after 1st, 2nd, and 3rd barriers, respectively. For the 172 microg L(-1) plume, TCE concentrations decreased by 27% (125), 46% (93), and 65% (61 microg L(-1)) after 1st, 2nd, and 3rd barriers, respectively. Incomplete destruction of TCE plume was attributed to the lack of lateral dispersion in the unpumped well-based barrier system. Development of delivery systems that can facilitate lateral spreading and mixing of permanganate with contaminant plume is warranted.

  8. CHARACTERIZATION AND SETTLING TESTS WITH TANK 51H SLURRY SAMPLES HTF-076-081

    International Nuclear Information System (INIS)

    HAY, MICHAEL

    2006-01-01

    Sludge Batch 4 (SB4) is the next sludge batch being prepared for feed to the Defense Waste Processing Facility (DWPF). SB4 includes sludge from Tanks 5F, 6F, and 11H and heels from Tanks 7F and 51H. In preparation of SB4, sludge was transferred from Tank 11H to Tank 51H. The sludge currently in Tank 51H has been found to settle at slower rates than previous sludge batches. The slow sludge settling in Tank 51H impacts the ability to wash SB4 to the desired final weight percent insoluble solids and sodium endpoint. This could impact the ability to have SB4 ready on time to support DWPF and result in increased recycle back to the Tank Farm, reduced waste loading at DWPF, and lengthened cycle time in the DWPF Chemical Processing Cell (CPC) Sludge Receipt and Adjustment Tank (SRAT). The Savannah River National Laboratory (SRNL) was requested to characterize and investigate the slower settling rate with six slurry dip samples of Tank 51H sludge. The filtered supernate and the total dried solids of the sludge were analyzed and summaries of the results published in the references listed below. The sludge composition was found to be consistent with H-Area high aluminum sludge. Difficulties were encountered with dissolving all of the material in the dried sludge solids. An analysis of the undissolved material from the digestions found the main constituent was Boehmite (AlO(OH)). This report provides all of the compositional data and an analysis of the data with recommended values to use for the composition of the Tank 51H composite sample. Tables 3-2 through 3-4 provide the composition of the Tank 51H composite sample. Settling tests conducted with the Tank 51H sludge showed a much slower settling rate than with the sludge in Sludge Batch 3 (SB3). A mixture of Tank 51H and sludge from SB3 was prepared to mimic the projected final composition of Sludge Batch 4 (SB4). The mixture showed minimal improvement in the settling rate versus Tank 51H sludge alone. An attempt to

  9. Treatment of domestic wastewater using conventional and baffled septic tanks.

    Science.gov (United States)

    Nasr, Fayza Aly; Mikhaeil, Basem

    2013-01-01

    The main theme of the study was a comparative study of domestic wastewater treatment using conventional and baffled septic tanks. The septic tanks were fed continuously with domestic wastewater at three different hydraulic retention times (HRTs). The HRTs chosen were 24, 48 and 72 h with corresponding organic loads of 0.321, 0.436 and 0.885 kg chemical oxygen demand (COD) per m3 per day, respectively. The performance of the septic tanks at the three HRTs gave satisfactory results. For the conventional septic tank, COD removal was 53.4%, 56% and 65.3%, at an HRT of 24, 48 and 72 h, respectively, with residual COD of 412, 380 and 334mg/l, respectively. At HRTs of 72, 48 and 24 h, the following percentages removals were realized for: biochemical oxygen demand (BOD), 68.4%, 57, 53.5%; total suspended solid (TSS), 65.3%, 58.3, 55%; phosphorus, 29.3%, 26.9, 25.6%; total Kjeldahl nitrogen 26.8%, 20.8, 17.7%, respectively. On the contrary, ammonia concentrations increased by 7.1%, 5.2 and 4.2% under the same conditions. Consequently, the results showed that the removal of fecal coliform at all HRTs was less than one log. The two baffled septic tanks exhibited superior results at HRTs of 72, 48 and 24 h. Comparing the treated domestic wastewater quality produced by the two types of septic tanks in terms of physico-chemical and biological characteristics, better results were obtained using the two baffles type.

  10. USA saadik loodab võita eestlaste poolehoiu / Joseph M. DeThomas

    Index Scriptorium Estoniae

    DeThomas, Joseph M.

    2003-01-01

    USA suursaadik Eestis Joseph DeThomas vastab on-line intervjuus Eesti Päevalehe lugejate küsimustele Iraagi ründamise, USA ja Euroopa vahelise lõhe, USA Eesti saatkonna võimaliku ümberkolimise kohta

  11. AX Tank Farm tank removal study

    Energy Technology Data Exchange (ETDEWEB)

    SKELLY, W.A.

    1999-02-24

    This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  12. Doublet III neutral beam injector test tank cryopanel design

    International Nuclear Information System (INIS)

    Doll, D.W.; Kamperschroer, J.H.; Arend, P.V.

    1980-03-01

    A simple condensing cryopanel has been designed for the Doublet III neutral beam test tank with a 320,000 liters per second pumping capacity for hydrogen. This maintains a vacuum in the test tank which simulates the Doublet III vessel, 1.3 x 10 -3 Pa (approx.10 -5 torr). The hydrogen gas load comes from the beam striking the test tank calorimeter and amounts to about 7.2 torr liters per second. The cryopanel is cylindrical shaped with a liquid helium (LHe) surface that pumps through liquid nitrogen (LN) cooled aluminum chevrons located in squirrel-cage fashion around the inside surface of the cylinder. The LHe cooled surface is a smooth cylinder 2.09m in diameter by .69m long with LHe flowing in a approx. 1mm annular space between concentric cylinders. The chevrons which are not blackened are cooled from each end with LN flowing in ring manifolds that serve as the primary cryopanel structure. The LHe is force fed at 55.2 kPa remaining in the liquid phase through the panel. External heat exchanger capability permits use of helium at 3.8 to 4.2 0 K. Normal operating flow rate is 1.4 g/sec for a heat load expected to be 12.2 W total

  13. AX Tank Farm tank removal study

    International Nuclear Information System (INIS)

    SKELLY, W.A.

    1998-01-01

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft 3 of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms

  14. Stabilization of in-tank residuals and external-tank soil contamination: FY 1997 interim report

    International Nuclear Information System (INIS)

    Becker, D.L.

    1997-01-01

    This interim report evaluates various ways to stabilize decommissioned waste tanks and contaminated soils at the AX Tank Farm as part of a preliminary evaluation of end-state options for the Hanford tanks. Five technical areas were considered: (1) emplacement of smart grouts and/or other materials, (2) injection of chemical-getters into contaminated soils surrounding tanks (soil mixing), (3) emplacement of grout barriers under and around the tanks, (4) the use of engineered barriers over the tanks, and (5) the explicit recognition that natural attenuation processes do occur. Research topics are identified in support of key areas of technical uncertainty, in each of the five technical areas. Detailed cost/benefit analyses of the recommended technologies are not provided in this evaluation, performed by Sandia National Laboratories, Albuquerque, New Mexico

  15. 111-B Metal Examination Facility Concrete Tanks Characterization Plan

    International Nuclear Information System (INIS)

    Encke, D.B.

    1997-08-01

    The 111-B Metal Examination Facility was a single-story, wood frame 'L'-shaped building built on a concrete floor slab. The facility served as a fuel failure inspection facility. Irradiated fuel pieces were stored and examined in two below grade concrete storage tanks filled with water. The tanks have been filled with grout to stabilize the contamination they contained, and overall dimensions are 5 ft 9 in. (1.5 m 22.8 cm ) wide, 9 ft 1 in. (2.7 m 2.54 cm ) deep, and 10 ft 8 in. (3.0 m 20.32 cm) long, and are estimated to weigh 39 tons. The tanks were used to store and examine failed fuel rods, using water as a radiation shield. The tanks were lined with stainless steel; however, drawings show the liner has been removed from at least one tank (south tank) and was partially filled with grout. The south tank was used to contain the Sample Storage Facility, a multi-level metal storage rack for failed nuclear fuel rods (shown in drawings H-1-2889 and -2890). Both tanks were completely grouted sometime before decontamination and demolition (D ampersand D) of the above ground facility in 1984. The 111-B Metal Examination Facility contained two concrete tanks located below floor level for storage and examination of failed fuel. The tanks were filled with concrete as part of decommissioning the facility prior to 1983 (see Appendix A for description of previous work). Funding for removal and disposal of the tanks ran out before they could be properly disposed

  16. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Mike [Savannah River Remediation, LLC., Aiken, SC (United States); Herbert, James E. [Savannah River Remediation, LLC., Aiken, SC (United States); Scheele, Patrick W. [Savannah River Remediation, LLC., Aiken, SC (United States)

    2015-01-12

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m3 to 4921 m3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removal and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and

  17. Impeller Submergence Depth for Stirred Tanks

    Directory of Open Access Journals (Sweden)

    Thiyam T. Devi

    2011-11-01

    Full Text Available Impeller submergence governs the performance of mixing tanks employed in oxygen transfer operation. Present work experimentally investigates the effect of impeller submergence depths on oxygen transfer and corresponding power consumption. It has been found that at higher range of impeller submergence, mixing tanks consume less power and gives higher values of oxygen transfer coefficient. Optimal range of submergence depth is 0.7 to 0.9 times the impeller diameter. Copyright ©2011 BCREC UNDIP. All rights reserved.(Received: 4th March 2011; Revised: 12nd July 2011; Accepted: 14th July 2011[How to Cite: T.T. Devi, A.P. Sinha, M. Thakre, and B. Kumar. (2011. Impeller Submergence Depth for Stirred Tanks. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2: 123-128. doi:10.9767/bcrec.6.2.826.123-128][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.826.123-128 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/826] | View in 

  18. Tank 241-BY-108 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1994-01-01

    The sampling and analytical needs associated with the 51 Hanford Site underground storage tanks classified on one or more of the four Watch Lists (ferrocyanide, organic, flammable gas, and high heat), and the safety screening of all 177 tanks have been identified through the Data Quality Objective (DQO) process. DQOs identity information needed by a program group in the Tank Waste Remediation System concerned with safety issues, regulatory requirements, or the transporting and processing of tank waste. This Tank Characterization Plan will identify characterization objectives for tank BY-108 pertaining to sample collection, sample preparation and analysis, and laboratory analytical evaluation and reporting requirements. In addition, an estimate of the current contents and status of the tank is given. Single-shell tank BY-108 is classified as a Ferrocyanide Watch List tank. The tank was declared an assumed leaker and removed from service in 1972; interim stabilized was completed in February 1985. Although not officially an Organic Watch List tank, restrictions have been placed on intrusive operations by Standing Order number-sign 94-16 (dated 09/08/94) since the tank is suspected to contain or to have contained a floating organic layer

  19. Annual Progress Report on the Development of Waste Tank Leak Monitoring and Detection and Mitigation Activities in Support of M-45-08

    International Nuclear Information System (INIS)

    DEFIGH PRICE, C.

    2000-01-01

    Milestone M-45-09E of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) [TPA 1996] requires submittal of an annual progress report on the development of waste tank leak detection, monitoring, and mitigation (LDMM) activities associated with the retrieval of waste from single-shell tanks (SSTs). This report details progress for fiscal year 2000, building on the current LDMM strategy and including discussion of technologies, applications, cost, schedule, and technical data. The report also includes discussion of demonstrations conducted and recommendations for additional testing. Tri-Party Agreement Milestones M-45-08A and M-45-08B required design and demonstration of LDMM systems for initial retrieval of SST waste. These specific milestones have recently been deleted as part of the M-45-00A change package. Future LDMM development work has been incorporated into specific technology demonstration milestones and SST waste retrieval milestones in the M-45-03 and M-45-05 milestone series

  20. Building 310 retention tanks characterization report

    International Nuclear Information System (INIS)

    Sholeen, C.M.; Geraghty, D.C.

    1996-12-01

    The Health Physics Section of ANL performed a characterization of the Building 310 Service Floor Retention Tank Facility during the months of July and August, 1996. The characterization included measurements for radioactivity, air sampling for airborne particles and sampling to determine the presence and quantity of hazardous materials requiring remediation. Copies of previous lead and asbestos sampling information was obtained from ESH-IH. The facility consists of ten retention tanks located in rooms, A-062A, A-050A, A-038A, A-026A, and an entry room A-068A which contained miscellaneous pumps and other scrap material. Significant contamination was found in each room except room A-068A which had two contaminated spots on the floor and a discarded contaminated pump. Room A-062A: This room had the highest radiation background. Therefore, beta readings reflected the background readings. The floor, west wall, and the exterior of tank No. 1 had areas of alpha contamination. The piping leading from the tank had elevated gamma readings. There were low levels of smearable contamination on the west wall-Room A-050A: Alpha and Beta contamination is wide spread on the floor, west wall and the lower portion of the north wall. An area near the electrical box on the west wall had alpha and beta loose contamination. The exterior of tank No. 4 also had contaminated areas. The grate in front of tank No. 4 was contaminated. The piping leading from tanks No. 2, 3, and 4 had elevated gamma readings. There were low levels of smearable contamination on tank No. 4 and on the tar paper that is glued to the floor

  1. CRITICAL ASSUMPTIONS IN THE F-TANK FARM CLOSURE OPERATIONAL DOCUMENTATION REGARDING WASTE TANK INTERNAL CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hommel, S.; Fountain, D.

    2012-03-28

    The intent of this document is to provide clarification of critical assumptions regarding the internal configurations of liquid waste tanks at operational closure, with respect to F-Tank Farm (FTF) closure documentation. For the purposes of this document, FTF closure documentation includes: (1) Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the FTF PA) (SRS-REG-2007-00002), (2) Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site (DOE/SRS-WD-2012-001), (3) Tier 1 Closure Plan for the F-Area Waste Tank Systems at the Savannah River Site (SRR-CWDA-2010-00147), (4) F-Tank Farm Tanks 18 and 19 DOE Manual 435.1-1 Tier 2 Closure Plan Savannah River Site (SRR-CWDA-2011-00015), (5) Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 (SRRCWDA-2010-00003), and (6) Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the Tank 18/Tank 19 Special Analysis) (SRR-CWDA-2010-00124). Note that the first three FTF closure documents listed apply to the entire FTF, whereas the last three FTF closure documents listed are specific to Tanks 18 and 19. These two waste tanks are expected to be the first two tanks to be grouted and operationally closed under the current suite of FTF closure documents and many of the assumptions and approaches that apply to these two tanks are also applicable to the other FTF waste tanks and operational closure processes.

  2. 49 CFR 230.115 - Feed water tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Feed water tanks. 230.115 Section 230.115... Tenders Steam Locomotive Tanks § 230.115 Feed water tanks. (a) General provisions. Tanks shall be maintained free from leaks, and in safe and suitable condition for service. Suitable screens must be provided...

  3. Tank characterization report for Single-Shell Tank 241-BX-107

    International Nuclear Information System (INIS)

    Raphael, G.F.

    1994-09-01

    This study examined and assessed the status, safety issues, composition, and distribution of the wastes contained in the tank 241-BX-107. Historical and most recent information, ranging from engineering structural assessment experiments, process history, monitoring and remediation activities, to analytical core sample data, were compiled and interpreted in an effort to develop a realistic, contemporary profile for the tank BX-107 contents. The results of this is study revealed that tank BX-107, a 2,006,050 L (530,000 gal) cylindrical single-shell, dished-bottom carbon-steel tank in the 200 East Area of the Hanford Site, was classified as sound. It has been interim stabilized and thus contains less than 189,250 L (50,000 gal) of interstitial liquid, and less than 18,925 L (5,000 gal) of supernatant. It has also been partially interim isolated, whereby all inlets to the tank are sealed to prevent inadvertent addition of liquid. At a residual waste level of ∼3.07 m (120.7 ± 2 in. from sidewall bottom or ∼132.9 in. from center bottom), it is estimated that the tank BX-107 contents are equivalent to 1,305,825 L (345,000 gal). The vapor space pressure is at atmospheric. The latest temperature readings, which were taken in July 1994, show a moderate temperature value of 19 degrees C (66 degrees F). Two supernatant samples were collected in 1974 and 1990, prior to interim stabilization. Sludge core samples were obtained in 1979 and 1992

  4. Evaluation of Flygt Mixers for Application in Savannah River Site Tank 19. Test Results from Phase B: Mid-Scale Testing at PNNL

    International Nuclear Information System (INIS)

    Powell, M.R.; Combs, W.H.; Farmer, J.R.; Gladki, H.; Hatchell, B.K.; Johnson, M.A.; Poirier, M.R.; Rodwell, P.O.

    1999-01-01

    Pacific Northwest National Laboratory (PNNL) performed mixer tests using 3-kW (4-hp) Flygt mixers in 1.8- and 5.7-m-diameter tanks at the 336 building facility in Richland, Washington to evaluate candidate scaling relationships for Flygt mixers used for sludge mobilization and particle suspension. These tests constituted the second phase of a three-phase test program involving representatives from ITT Flygt Corporation, the Savannah River Site (SRS), the Oak Ridge National Laboratory (ORNL), and PNNL. The results of the first phase of tests, which were conducted at ITT Flygt's facility in a 0.45-m-diameter tank, are documented in Powell et al. (1999). Although some of the Phase B tests were geometrically similar to selected Phase A tests (0.45-m tank), none of the Phase B tests were geometrically, cinematically, and/or dynamically similar to the planned Tank 19 mixing system. Therefore, the mixing observed during the Phase B tests is not directly indicative of the mixing expected in Tank 19 and some extrapolation of the data is required to make predictions for Tank 19 mixing. Of particular concern is the size of the mixer propellers used for the 5.7-m tank tests. These propellers were more than three times larger than required by geometric scaling of the Tank 19 mixers. The implications of the lack of geometric similarity, as well as other factors that complicate interpretation of the test results, are discussed in Section 5.4

  5. Single-Shell Tank (SST) Retrieval Project Plan for Tank 241-C-104 Retrieval

    International Nuclear Information System (INIS)

    DEFIGH PRICE, C.

    2000-01-01

    In support of the SST Interim Closure Project, Project W-523 ''Tank 241-C-104 Waste Retrieval System'' will provide systems for retrieval and transfer of radioactive waste from tank 241-C-104 (C-104) to the DST staging tank 241-AY-101 (AY-101). At the conclusion of Project W-523, a retrieval system will have been designed and tested to meet the requirements for Acceptance of Beneficial Use and been turned over to operations. Completion of construction and operations of the C-104 retrieval system will meet the recently proposed near-term Tri-Party Agreement milestone, M-45-03F (Proposed Tri-Party Agreement change request M-45-00-01A, August, 30 2000) for demonstrating limits of retrieval technologies on sludge and hard heels in SSTs, reduce near-term storage risks associated with aging SSTs, and provide feed for the tank waste treatment plant. This Project Plan documents the methodology for managing Project W-523; formalizes responsibilities; identifies key interfaces required to complete the retrieval action; establishes the technical, cost, and schedule baselines; and identifies project organizational requirements pertaining to the engineering process such as environmental, safety, quality assurance, change control, design verification, testing, and operational turnover

  6. Refurbishment and retrofitting of SF6 gas storage tanks of the pelletron accelerator

    International Nuclear Information System (INIS)

    Reddy, G.R.; Datar, V.M.; Parulekar, Y.M.

    2015-01-01

    The BARC-TIFR Pelletron Accelerator Facility has completed more than twenty six years of successful round-the-clock operation, serving diverse users from institutions within and outside DAE. The main accelerating structure and associated subsystems are housed in the accelerator tank under SF 6 gas medium. During maintenance of the accelerator, the SF 6 gas present in the accelerator tank is transferred in the four storage tanks located on the terrace of the building open to outside environment. These four storage tanks (with ∼ 1/4th of the main tank volume each) are ∼ 4.27 m in diameter and ∼ 10 m in height each and are supported on RCC ring beams which are monolithically connected with the RCC structure below. Over the years, the anchor bolts and the base plates of support structure of storage tanks were found corroded and the foundation RCC ring beam indicated a few corrosion cracks. Health assessment of relevant structures and components were carried out. Considering the limitations of existing anchorage and also giving due considerations for reparability and replaceability, a new anchorage system was designed. The entire refurbishment and retrofitting works pertaining to the four SF 6 gas storage tanks was executed in a time bound manner to comply with the then PASC (Particle Accelerator Safety Committee) recommendations successfully, without disrupting the operations of the round-the-clock running Pelletron Accelerator facility. In addition, the thickness measurements for the storage tanks were performed. The relief valves and rupture disc assemblies across the storage tanks were replaced and reinstalled after introducing appropriate manual valves as suggested by the PASC. A new test set up was fabricated to perform pneumatic testing at the recommended pressure off-line for these relief valves and rupture disc assemblies prior to reinstallation. This paper describes the comprehensive rehabilitation and retrofitting procedures that were carried out at the

  7. 46 CFR 119.435 - Integral fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Integral fuel tanks. 119.435 Section 119.435 Shipping... Machinery Requirements § 119.435 Integral fuel tanks. (a) Diesel fuel tanks may not be built integral with... for certification of a vessel, integral fuel tanks must withstand a hydrostatic pressure test of 35 k...

  8. Tank characterization report for single-shell tank 241-C-204

    International Nuclear Information System (INIS)

    Conner, J.M.

    1996-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-C-204. This report supports the requirements of Tri Party Agreement Milestone M 44 09

  9. Tank characterization report for single shell tank 241-SX-108

    Energy Technology Data Exchange (ETDEWEB)

    Eggers, R.F., Westinghouse Hanford

    1996-07-11

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in tank 241-SX-108. This report supports the requirements of Tri-Party Agreement Milestone M-44-09.

  10. Tank characterization report for single-shell tank 241-B-101

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1996-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in tank 241-B-101. This report supports the requirements of Tri-Party Agreement Milestone M-44-09

  11. Tank characterization report for single-shell tank 241-T-108

    International Nuclear Information System (INIS)

    Baldwin, J.H.

    1996-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-T-108. This report supports the requirements of Tri-Party Agreement Milestone M-44-09

  12. Tank characterization report for single-shell tank 241-T-106

    International Nuclear Information System (INIS)

    Jo, J.

    1996-03-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-T-106. This report supports the requirements of Tri-Party Agreement Milestone M-44-09

  13. Tank characterization report for double-shell tank 241-SY-103

    International Nuclear Information System (INIS)

    Conner, J.M.

    1996-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in tank 241-SY-103. This report supports the requirements of Tri-Party Agreement Milestone M-44 09

  14. Tank 244A tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    The Double-Shell Tank (DST) System currently receives waste from the Single-Shell Tank (SST) System in support of SST stabilization efforts or from other on-site facilities which generate or store waste. Waste is also transferred between individual DSTs. The mixing or commingling of potentially incompatible waste types at the Hanford Site must be addressed prior to any waste transfers into the DSTs. The primary goal of the Waste Compatibility Program is to prevent the formation of an Unreviewed Safety Question (USQ) as a result of improper waste management. Tank 244A is a Double Contained Receiver Tank (DCRT) which serves as any overflow tank for the East Area Farms. Waste material is able to flow freely between the underground storage tanks and tank 244A. Therefore, it is necessary to test the waste in tank 244A for compatibility purposes. Two issues related to the overall problem of waste compatibility must be evaluated: Assurance of continued operability during waste transfer and waste concentration and Assurance that safety problems are not created as a result of commingling wastes under interim storage. The results of the grab sampling activity prescribed by this Tank Characterization Plan shall help determine the potential for four kinds of safety problems: criticality, flammable gas accumulation, energetics, and corrosion and leakage

  15. Proceedings of the Fourth Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies

    OpenAIRE

    Deeb, Wissam; Giordano, James J.; Rossi, Peter J.; Mogilner, Alon Y.; Gunduz, Aysegul; Judy, Jack W.; Klassen, Bryan T.; Butson, Christopher R.; Van Horne, Craig; Deny, Damiaan; Dougherty, Darin D.; Rowell, David; Gerhardt, Greg A.; Smith, Gwenn S.; Ponce, Francisco A.

    2016-01-01

    This paper provides an overview of current progress in the technological advances and the use of deep brain stimulation (DBS) to treat neurological and neuropsychiatric disorders, as presented by participants of the Fourth Annual DBS Think Tank, which was convened in March 2016 in conjunction with the Center for Movement Disorders and Neurorestoration at the University of Florida, Gainesveille FL, USA. The Think Tank discussions first focused on policy and advocacy in DBS research and clinica...

  16. Remote inspection of underground storage tanks

    International Nuclear Information System (INIS)

    Griebenow, B.L.; Martinson, L.M.

    1992-01-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) operates the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy. The ICPP's mission is to process government-owned spent nuclear fuel. The process involves dissolving the fuel, extracting off uranium, and calcining the waste to a solid form for storage, Prior to calcining, WINCO temporarily stores the liquid waste from this process in eleven 1,135,600-l(300,000-gal), 15,2-m (50-ft)-diam, high-level liquid waste tanks. Each of these stainless steel tanks is contained within an underground concrete vault. The only access to the interior of the tanks is through risers that extend from ground level to the dome of the tanks. WINCO is replacing these tanks because of their age and the fact that they do not meet all of the current design requirements. The tanks will be replaced in two phases. WINCO is now in the Title I design stage for four new tank and vault systems to replace five of the existing systems. The integrity of the six remaining tanks must be verified to continue their use until they can be replaced in the second phase. To perform any integrity analysis, the inner surface of the tanks must be inspected. The remote tank inspection (RTI) robotic system, designed by RedZone Robotics of Pittsburgh, Pennsylvania, was developed to access the interior of the tanks and position various end effectors required to perform tank wall inspections

  17. Single-shell tank interim stabilization project plan

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W.E.

    1998-03-27

    Solid and liquid radioactive waste continues to be stored in 149 single-shell tanks at the Hanford Site. To date, 119 tanks have had most of the pumpable liquid removed by interim stabilization. Thirty tanks remain to be stabilized. One of these tanks (C-106) will be stabilized by retrieval of the tank contents. The remaining 29 tanks will be interim stabilized by saltwell pumping. In the summer of 1997, the US Department of Energy (DOE) placed a moratorium on the startup of additional saltwell pumping systems because of funding constraints and proposed modifications to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestones to the Washington State Department of Ecology (Ecology). In a letter dated February 10, 1998, Final Determination Pursuant to Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) in the Matter of the Disapproval of the DOE`s Change Control Form M-41-97-01 (Fitzsimmons 1998), Ecology disapproved the DOE Change Control Form M-41-97-01. In response, Fluor Daniel Hanford, Inc. (FDH) directed Lockheed Martin Hanford Corporation (LNMC) to initiate development of a project plan in a letter dated February 25, 1998, Direction for Development of an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan in Support of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In a letter dated March 2, 1998, Request for an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan, the DOE reaffirmed the need for an aggressive SST interim stabilization completion project plan to support a finalized Tri-Party Agreement Milestone M-41 recovery plan. This project plan establishes the management framework for conduct of the TWRS Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organizational structure, roles, responsibilities

  18. Single-shell tank interim stabilization project plan

    International Nuclear Information System (INIS)

    Ross, W.E.

    1998-01-01

    Solid and liquid radioactive waste continues to be stored in 149 single-shell tanks at the Hanford Site. To date, 119 tanks have had most of the pumpable liquid removed by interim stabilization. Thirty tanks remain to be stabilized. One of these tanks (C-106) will be stabilized by retrieval of the tank contents. The remaining 29 tanks will be interim stabilized by saltwell pumping. In the summer of 1997, the US Department of Energy (DOE) placed a moratorium on the startup of additional saltwell pumping systems because of funding constraints and proposed modifications to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestones to the Washington State Department of Ecology (Ecology). In a letter dated February 10, 1998, Final Determination Pursuant to Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) in the Matter of the Disapproval of the DOE's Change Control Form M-41-97-01 (Fitzsimmons 1998), Ecology disapproved the DOE Change Control Form M-41-97-01. In response, Fluor Daniel Hanford, Inc. (FDH) directed Lockheed Martin Hanford Corporation (LNMC) to initiate development of a project plan in a letter dated February 25, 1998, Direction for Development of an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan in Support of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In a letter dated March 2, 1998, Request for an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan, the DOE reaffirmed the need for an aggressive SST interim stabilization completion project plan to support a finalized Tri-Party Agreement Milestone M-41 recovery plan. This project plan establishes the management framework for conduct of the TWRS Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organizational structure, roles, responsibilities

  19. Theoretical comparison between solar combisystems based on bikini tanks and tank-in-tank solar combisystems

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon; Bales, Chris

    2008-01-01

    Theoretical investigations have shown that solar combisystems based on bikini tanks for low energy houses perform better than solar domestic hot water systems based on mantle tanks. Tank-in-tank solar combisystems are also attractive from a thermal performance point of view. In this paper......, theoretical comparisons between solar combisystems based on bikini tanks and tank-in-tank solar combisystems are presented....

  20. Tank characterization report for double-shell tank 241-AP-105

    International Nuclear Information System (INIS)

    Hu, T.A.

    1997-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-AP-105. This report supports the requirements of the Tri-Party Agreement Milestone M 44-05

  1. Tank characterization report for single-shell tank 241-B-107

    International Nuclear Information System (INIS)

    Conner, J.M.

    1998-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-B-107. This report supports the requirements of the Tri-Party Agreement Milestone M-44-ISB

  2. Tank characterization report for double-shell tank 241-SY-103

    International Nuclear Information System (INIS)

    Hansen, D.R.

    1996-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-SY-103. This report supports the requirements of the Tri-Party Agreement Milestone M-44-09

  3. Tank characterization report for double-shell tank 241-AW-102

    International Nuclear Information System (INIS)

    Bell, K.E.

    1997-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-AW-102. This report supports the requirements of the Tri-Party Agreement Milestone M-44-05

  4. Tank characterization report for double-shell tank 241-AW-102

    Energy Technology Data Exchange (ETDEWEB)

    Bell, K.E.

    1997-05-29

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-AW-102. This report supports the requirements of the Tri-Party Agreement Milestone M-44-05.

  5. Tank characterization report for single-shell tank 241-BX-111

    International Nuclear Information System (INIS)

    Anantatmula, R.P.

    1998-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste, stored in Tank 241-BX-111. This report supports the requirements of the Tri-Party Agreement Milestone M-44-ISB

  6. Tank characterization report for single-shell tank 241-B-108

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1997-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-B-108. This report supports the requirements of the Tri-Party Agreement Milestone M-44-05

  7. Tank characterization report for single-shell tank 241-b-110

    International Nuclear Information System (INIS)

    Field, J.G.

    1997-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-B-110. This report supports the requirements of the Tri-Party Agreement Milestone M-44-05

  8. HYDRAULICS AND MIXING EVALUATIONS FOR NT-21/41 TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.; Barnes, O.

    2014-11-17

    The hydraulic results demonstrate that pump head pressure of 20 psi recirculates about 5.6 liters/min flowrate through the existing 0.131-inch orifice when a valve connected to NT-41 is closed. In case of the valve open to NT-41, the solution flowrates to HB-Line tanks, NT-21 and NT-41, are found to be about 0.5 lpm and 5.2 lpm, respectively. The modeling calculations for the mixing operations of miscible fluids contained in the HB-Line tank NT-21 were performed by taking a three-dimensional Computational Fluid Dynamics (CFD) approach. The CFD modeling results were benchmarked against the literature results and the previous SRNL test results to validate the model. Final performance calculations were performed for the nominal case by using the validated model to quantify the mixing time for the HB-Line tank. The results demonstrate that when a pump recirculates a solution volume of 5.7 liters every minute out of the 72-liter tank contents containing two acid solutions of 2.7 M and 0 M concentrations (i.e., water), a minimum mixing time of 1.5 hours is adequate for the tank contents to get the tank contents adequately mixed. In addition, the sensitivity results for the tank contents of 8 M existing solution and 1.5 M incoming species show that the mixing time takes about 2 hours to get the solutions mixed.

  9. Tank 241-Z-361 process and characterization history

    International Nuclear Information System (INIS)

    Jones, S.A.

    1998-01-01

    An Unreviewed Safety Question (Wagoner, 1997) was declared based on lack of adequate authorization basis for Tank 241-Z-361 in the 200W Area at Hanford. This document is a summary of the history of Tank 241-Z-361 through December 1997. Documents reviewed include engineering files, laboratory notebooks from characterization efforts, waste facility process procedures, supporting documents and interviews of people's recollections of over twenty years ago. Records of transfers into the tank, past characterization efforts, and speculation were used to estimate the current condition of Tank 241-Z-361 and its contents. Information about the overall waste system as related to the settling tank was included to help in understanding the numbering system and process relationships. The Plutonium Finishing Plant was built in 1948 and began processing plutonium in mid-1949. The Incinerator (232-Z) operated from December 1961 until May 1973. The Plutonium Reclamation Facility (PRF, 236-Z) began operation in May 1964. The Waste Treatment Facility (242-Z) operated from August 1964 until August 1976. Waste from some processes went through transfer lines to 241-Z sump tanks. High salt and organic waste under normal operation were sent to Z-9 or Z-18 cribs. Water from the retention basin may have also passed through this tank. The transfer lines to 241-Z were numbered D-4 to D-6. The 241-Z sump tanks were numbered D-4 through D-8. The D-4, 5, and 8 drains went to the D-6 sump tank. When D-6 tank was full it was transferred to D-7 tank. Prior to transfer to cribs, the D-7 tank contents was sampled. If the plutonium content was analyzed to be more than 10 g per batch, the material was (generally) reprocessed. Below the discard limit, caustic was added and the material was sent to the cribs via the 241-Z-361 settling tank where solids settled out and the liquid overflowed by gravity to the cribs. Waste liquids that passed through the 241-Z-361 settling tank flowed from PFP to ground in

  10. Tank 241-BY-111 tank characterization plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1994-01-01

    The sampling and analytical needs associated with the 51 Hanford Site underground storage tanks classified on one or more of the four Watch Lists (ferrocyanide, organic, flammable gas, and high heat), and the safety screening of all 177 tanks have been identified through the Data Quality Objective (DQO) process. DQO's identify information needed by a program group in the Tank Waste Remediation System concerned with safety issues, regulatory requirements, or the transporting and processing of tank waste. This Tank Characterization Plan will identify characterization objectives for Tank BY-111 pertaining to sample collection, sample preparation and analysis, and laboratory analytical evaluation and reporting requirements. In addition, an estimate of the current contents and status of the tank is given

  11. Tank Characterization Report for Single-Shell Tank 241-U-103

    International Nuclear Information System (INIS)

    ADAMS, M.R.

    2000-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-U-103. This report supports the requirements of the Tri-Party Agreement Milestone M-44-15B

  12. Tank characterization report for single-shell tank 241-BY-109

    International Nuclear Information System (INIS)

    Jo, J.

    1998-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-BY-109. This report supports the requirements of the Tri-Party Agreement Milestone M-44-15B

  13. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TANK FARM CLOSURE

    International Nuclear Information System (INIS)

    JARAYSI, M.N.; SMITH, Z.; QUINTERO, R.; BURANDT, M.B.; HEWITT, W.

    2006-01-01

    The U. S. Department of Energy, Office of River Protection and the CH2M HILL Hanford Group, Inc. are responsible for the operations, cleanup, and closure activities at the Hanford Tank Farms. There are 177 tanks overall in the tank farms, 149 single-shell tanks (see Figure 1), and 28 double-shell tanks (see Figure 2). The single-shell tanks were constructed 40 to 60 years ago and all have exceeded their design life. The single-shell tanks do not meet Resource Conservation and Recovery Act of 1976 [1] requirements. Accordingly, radioactive waste is being retrieved from the single-shell tanks and transferred to double-shell tanks for storage prior to treatment through vitrification and disposal. Following retrieval of as much waste as is technically possible from the single-shell tanks, the Office of River Protection plans to close the single-shell tanks in accordance with the Hanford Federal Facility Agreement and Consent Order [2] and the Atomic Energy Act of 1954 [3] requirements. The double-shell tanks will remain in operation through much of the cleanup mission until sufficient waste has been treated such that the Office of River Protection can commence closing the double-shell tanks. At the current time, however, the focus is on retrieving waste and closing the single-shell tanks. The single-shell tanks are being managed and will be closed in accordance with the pertinent requirements in: Resource Conservation and Recovery Act of 1976 and its Washington State-authorized Dangerous Waste Regulations [4], US DOE Order 435.1 Radioactive Waste Management [5], the National Environmental Policy Act of 1969 [6], and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [7]. The Hanford Federal Facility Agreement and Consent Order, which is commonly referred to as the Tri-Party Agreement or TPA, was originally signed by Department of Energy, the State of Washington, and the U. S. Environmental Protection Agency in 1989. Meanwhile, the

  14. Underground Storage Tanks - Storage Tank Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  15. Tank waste remediation system: An update

    International Nuclear Information System (INIS)

    Alumkal, W.T.; Babad, H.; Dunford, G.L.; Honeyman, J.O.; Wodrich, D.D.

    1995-02-01

    The US Department of Energy's Hanford Site, located in southeastern Washington State, contains the largest amount and the most diverse collection of highly radioactive waste in the US. High-level radioactive waste has been stored at the Hanford Site in large, underground tanks since 1944. Approximately 217,000 M 3 (57 Mgal) of caustic liquids, slurries, saltcakes, and sludges have accumulated in 177 tanks. In addition, significant amounts of 90 Sr and 137 Cs were removed from the tank waste, converted to salts, doubly encapsulated in metal containers, and stored in water basins. The Tank Waste Remediation System Program was established by the US Department of Energy in 1991 to safely manage and immobilize these wastes in anticipation of permanent disposal of the high-level waste fraction in a geologic repository. Since 1991, significant progress has been made in resolving waste tank safety issues, upgrading Tank Farm facilities and operations, and developing a new strategy for retrieving, treating, and immobilizing the waste for disposal

  16. Impact of environmental conditions on sub-surface storage tanks ...

    African Journals Online (AJOL)

    Cast iron made storage tanks with gasoline fluid were buried under the soil at a depth of 4 m under various environment conditions. The simulated conditions include natural rain fail, temperature and acidic, alkaline and neutral soils. A control condition of neutral sea sand as base and filling materials were also investigated.

  17. Tank 241-AW-101 tank characterization plan

    International Nuclear Information System (INIS)

    Sathyanarayana, P.

    1994-01-01

    The first section gives a summary of the available information for Tank AW-101. Included in the discussion are the process history and recent sampling events for the tank, as well as general information about the tank such as its age and the risers to be used for sampling. Tank 241-AW-101 is one of the 25 tanks on the Flammable Gas Watch List. To resolve the Flammable Gas safety issue, characterization of the tanks, including intrusive tank sampling, must be performed. Prior to sampling, however, the potential for the following scenarios must be evaluated: the potential for ignition of flammable gases such as hydrogen-air and/or hydrogen-nitrous oxide; and the potential for secondary ignition of organic-nitrate/nitrate mixtures in crust layer initiated by the burning of flammable gases or by a mechanical in-tank energy source. The characterization effort applicable to this Tank Characterization Plan is focused on the resolution of the crust burn flammable gas safety issue of Tank AW-101. To evaluate the potential for a crust burn of the waste material, calorimetry tests will be performed on the waste. Differential Scanning Calorimetry (DSC) will be used to determine whether an exothermic reaction exists

  18. 49 CFR 231.8 - Tank cars without side sills and tank cars with short side sills and end platforms.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Tank cars without side sills and tank cars with... APPLIANCE STANDARDS § 231.8 Tank cars without side sills and tank cars with short side sills and end platforms. (a) Hand brakes—(1) Number. Same as specified for “Box and other house cars” (see § 231.1(a)(1...

  19. 49 CFR 229.97 - Grounding fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Grounding fuel tanks. 229.97 Section 229.97 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.97 Grounding fuel tanks. Fuel tanks and related piping shall be electrically grounded. ...

  20. Tank characterization report for single-shell tank 241-C-110. Revision 1

    International Nuclear Information System (INIS)

    Benar, C.J.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (IWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-C-110. The objectives of this report are to use characterization data in response to technical issues associated with 241-C-110 waste and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Supporting data and information are contained in the appendixes. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone M-44-05. Characterization information presented in this report originated from sample analyses and known historical sources. While only the results from recent sample events will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-C-110 are provided included surveillance information, records pertaining to waste transfers and tank operations, and 1124 expected tank contents derived from a process knowledge model. The sampling events are listed, as well as sample data obtained before 1989. The results of the 1992 sampling events are also reported in the data package. The statistical analysis and numerical manipulation of data used in issue resolution are reported in Appendix C. Appendix D contains the evaluation to establish the best basis for the inventory estimate and the statistical analysis performed for this evaluation. A bibliography that resulted from an in-depth literature search of all known information sources applicable to tank 241-C-110 and its respective waste types is contained in Appendix E

  1. Tank 241-C-103 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    The data quality objective (DQO) process was chosen as a tool to be used to identify the sampling analytical needs for the resolution of safety issues. A Tank Characterization Plant (TCP) will be developed for each double shell tank (DST) and single-shell tank (SST) using the DQO process. There are four Watch list tank classifications (ferrocyanide, organic salts, hydrogen/flammable gas, and high heat load). These classifications cover the six safety issues related to public and worker health that have been associated with the Hanford Site underground storage tanks. These safety issues are as follows: ferrocyanide, flammable gas, organic, criticality, high heat, and vapor safety issues. Tank C-103 is one of the twenty tanks currently on the Organic Salts Watch List. This TCP will identify characterization objectives pertaining to sample collection, hot cell sample isolation, and laboratory analytical evaluation and reporting requirements in accordance with the appropriate DQO documents. In addition, the current contents and status of the tank are projected from historical information. The relevant safety issues that are of concern for tanks on the Organic Salts Watch List are: the potential for an exothermic reaction occurring from the flammable mixture of organic materials and nitrate/nitrite salts that could result in a release of radioactive material and the possibility that other safety issues may exist for the tank

  2. Groundwater Contamination in Agbowo Community, Ibadan Nigeria: Impact of Septic Tanks Distances to Wells

    Directory of Open Access Journals (Sweden)

    Odetokun, I. A.

    2011-01-01

    Full Text Available In Nigeria, inadequate supply of pipe borne water is a major concern; hence many homes have wells as a source of water for household uses. The groundwater of forty wells in Agbowo community was assessed for Total Aerobic Bacteria Counts (TABC and Total Coliform Counts (TCC. The location and distances of wells from septic tanks were determined using the Global Positioning System (GPS device and a tape rule respectively. All the wells sampled had high TABC (4.76 ± 1.41 log CFU/mL and TCC (2.2 9± 0.67 log CFU/mL counts which exceeded the international standard of 0 per 100 mL of potable water. There were no significant differences in the bacterial counts between covered and uncovered wells (p>0.05. The mean distance (8.93±3.61m of wells from the septic tanks was below the limit (15.24 m or 50 ft set by United State Environmental Protection Agency (USEPA. TABC increased with a decrease in distance between the wells and septic tanks though not significant (p<0.05. A very weak positive correlation (r2 =0.021 ensued between the distance from septic tank and CC, while a weak negative correlation (r2 = ‒0.261 was obtained between the TCC and TABC. This study accentuates the need to set standards for the siting of wells from septic tanks while considering all possible sources of well contamination as well as treatment of ground water before use.

  3. Tank characterization report for double-shell tank 241-AW-105

    International Nuclear Information System (INIS)

    Sasaki, L.M.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for double-shell tank 241-AW-105. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AW-105 waste; and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone Characterization. information presented in this report originated from sample analyses and known historical sources. While only the results of a recent sampling event will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-AW-105 is provided in Appendix A, including surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. The recent sampling event listed, as well as pertinent sample data obtained before 1996, are summarized in Appendix B along with the sampling results. The results of the 1996 grab sampling event satisfied the data requirements specified in the sampling and analysis plan (SAP) for this tank. In addition, the tank headspace flammability was measured, which addresses

  4. Draft Environmental Impact Statement for the tank waste remediation system. Volume 4

    International Nuclear Information System (INIS)

    1996-04-01

    This appendix describes the current safety concerns associated with the tank waste and analyzes the potential accidents and associated potential health effects that could occur under the alternatives included in this Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS)

  5. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford tank initiative: Applications to the AX Tank Farm

    International Nuclear Information System (INIS)

    Balsley, S.D.; Krumhansl, J.L.; Borns, D.J.; McKeen, R.G.

    1998-07-01

    A combined engineering and geochemistry approach is recommended for the stabilization of waste in decommissioned tanks and contaminated soils at the AX Tank Farm, Hanford, WA. A two-part strategy of desiccation and gettering is proposed for treatment of the in-tank residual wastes. Dry portland cement and/or fly ash are suggested as an effective and low-cost desiccant for wicking excess moisture from the upper waste layer. Getters work by either ion exchange or phase precipitation to reduce radionuclide concentrations in solution. The authors recommend the use of specific natural and man-made compounds, appropriately proportioned to the unique inventory of each tank. A filler design consisting of multilayered cementitous grout with interlayered sealant horizons should serve to maintain tank integrity and minimize fluid transport to the residual waste form. External tank soil contamination is best mitigated by placement of grouted skirts under and around each tank, together with installation of a cone-shaped permeable reactive barrier beneath the entire tank farm. Actinide release rates are calculated from four tank closure scenarios ranging from no action to a comprehensive stabilization treatment plan (desiccant/getters/grouting/RCRA cap). Although preliminary, these calculations indicate significant reductions in the potential for actinide transport as compared to the no-treatment option

  6. Abundance of Naegleria fowleri in roof-harvested rainwater tank samples from two continents.

    Science.gov (United States)

    Waso, Monique; Dobrowsky, Penelope Heather; Hamilton, Kerry Ann; Puzon, Geoffrey; Miller, Haylea; Khan, Wesaal; Ahmed, Warish

    2018-02-01

    Roof-harvested rainwater (RHRW) has been used as an alternative source of water in water scarce regions of many countries. The microbiological and chemical quality of RHRW has been questioned due to the presence of bacterial and protozoan pathogens. However, information on the occurrence of pathogenic amoeba in RHRW tank samples is needed due to their health risk potential and known associations with opportunistic pathogens. Therefore, this study aims to determine the quantitative occurrence of Naegleria fowleri in RHRW tank samples from Southeast Queensland (SEQ), Australia (AU), and the Kleinmond Housing Scheme located in Kleinmond, South Africa (SA). In all, 134 and 80 RHRW tank samples were collected from SEQ, and the Kleinmond Housing Scheme, Western Cape, SA, respectively. Quantitative PCR (qPCR) assays were used to measure the concentrations of N. fowleri, and culture-based methods were used to measure fecal indicator bacteria (FIB) Escherichia coli (E. coli) and Enterococcus spp. Of the 134 tank water samples tested from AU, 69 and 62.7% were positive for E. coli, and Enterococcus spp., respectively. For the SA tank water samples, FIB analysis was conducted for samples SA-T41 to SA-T80 (n = 40). Of the 40 samples analyzed from SA, 95 and 35% were positive for E. coli and Enterococcus spp., respectively. Of the 134 water samples tested in AU, 15 (11.2%) water samples were positive for N. fowleri, and the concentrations ranged from 1.7 × 10 2 to 3.6 × 10 4 gene copies per 100 mL of water. Of the 80 SA tank water samples screened for N. fowleri, 15 (18.8%) tank water samples were positive for N. fowleri and the concentrations ranged from 2.1 × 10 1 to 7.8 × 10 4 gene copies per 100 mL of tank water. The prevalence of N. fowleri in RHRW tank samples from AU and SA thus warrants further development of dose-response models for N. fowleri and a quantitative microbial risk assessment (QMRA) to inform and prioritize strategies for reducing

  7. Characterization of Solids in Residual Wastes from Single-Shell Tanks at the Hanford Site, Washington, USA - 9277

    International Nuclear Information System (INIS)

    Krupka, Kenneth M.; Cantrell, Kirk J.; Schaef, Herbert T.; Arey, Bruce W.; Heald, Steve M.; Deutsch, William J.; Lindberg, Michael J.

    2009-01-01

    Solid-phase characterization methods have been used in an ongoing study of residual wastes (i.e., waste remaining after final retrieval operations) from the underground single-shell storage tanks 241-C-103, 241-C-106, 241-C-202, 241-C-203, and 241-S-112 at the U.S. Department of Energy's Hanford Site in Washington State. The results of studies completed to date show significant variability in the compositions of those residual wastes and the compositions, morphologies, and crystallinities of the individual phases that make up these wastes. These differences undoubtedly result from the various waste types stored and transferred in and out each tank and the sluicing and retrieval operations used for waste retrieval. Our studies indicate that these residual wastes are chemically-complex assemblages of crystalline and amorphous solids that contain contaminants as discrete phases and/or co-precipitated within oxide phases. Depending on the specific tank, various solids (e.g., gibbsite; boehmite; dawsonite; cancrinite; Fe oxides such as hematite, goethite, and maghemite; rhodochrosite; lindbergite; whewellite; nitratine; and numerous amorphous or poorly crystalline phases) have been identified by X-ray diffraction and scanning electron microscopy/energy dispersive X-ray spectroscopy in residual wastes studied to date. Our studies also show that contact of residual wastes with Ca(OH)2- and CaCO3-saturated aqueous solutions, which were used as surrogates for the compositions of pore-fluid leachants derived from young and aged cements respectively, may alter the compositions of solid phases present in the contacted wastes. Fe oxides/hydroxides have been identified in all residual wastes studied to date. They occur in these wastes as discrete particles, particles intergrown within a matrix of other phases, and surface coatings on other particles or particle aggregates. These Fe oxides/hydroxides typically contain trace concentrations of other transition metals, such Cr, Mn

  8. CRED 20 m Gridded bathymetry of Brooks Banks and St. Rogatien Bank, Hawaii, USA (Arc ASCII format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (20m) of the shelf and slope environments of Brooks Banks and St. Rogatien, Hawaii, USA. The ASCII includes multibeam bathymetry from the Simrad...

  9. Chemical information on tank supernatants, Cs adsorption from tank liquids onto Hanford sediments, and field observations of Cs migration from past tank leaks

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R.J.; Zachara, J.M.; Burke, D.S.

    1998-01-01

    Borehole gamma-logging profiles beneath the SX-Tank Farm suggest that contamination from Cs-137 extends to at least a depth of 40 m (130 ft), and may extend even deeper. What is presently not known is the pathway that Cs-137 has taken to reach these depths. In this report we provide an analysis of the chemistry of tank supernates with emphasis on the REDOX waste stream disposed in SX tanks, Cs chemistry in aqueous solutions and adsorption properties onto minerals, available data on Cs adsorption onto Hanford sediments, and information on Cs migration from other Hanford tank leaks that have been studied. The data in this report was used to help guide the vadose zone transport analysis of the SX Tank Farm presented in a companion report. The goal of the vadose zone transport modelling is to attempt to explain the depth and extent of the Cs-137 plume under the SX Tank farm, specifically in the vicinity of the greatest leak, near the SX-109 Tank as inferred from the gamma logs (DOE 1996). In solution Cs is present as the monovalent cation and shows very little tendency to form aqueous complexes with inorganic or organic ligands. Cs is expected to adsorb primarily onto selective minerals that have unique adsorption sites. The small Cs{sup +} ion is accommodated on these frayed edge and interlayer sites. Adsorption within the interlayers often leads to collapse of the layers such that the Cs{sup +} ion is effectively trapped and not readily exchangeable by all other common cations. The degree of adsorption is thus only moderately dependent on the types and high concentrations of other cations in leaking tank liquors.

  10. Chemical information on tank supernatants, Cs adsorption from tank liquids onto Hanford sediments, and field observations of Cs migration from past tank leaks

    International Nuclear Information System (INIS)

    Serne, R.J.; Zachara, J.M.; Burke, D.S.

    1998-01-01

    Borehole gamma-logging profiles beneath the SX-Tank Farm suggest that contamination from Cs-137 extends to at least a depth of 40 m (130 ft), and may extend even deeper. What is presently not known is the pathway that Cs-137 has taken to reach these depths. In this report we provide an analysis of the chemistry of tank supernates with emphasis on the REDOX waste stream disposed in SX tanks, Cs chemistry in aqueous solutions and adsorption properties onto minerals, available data on Cs adsorption onto Hanford sediments, and information on Cs migration from other Hanford tank leaks that have been studied. The data in this report was used to help guide the vadose zone transport analysis of the SX Tank Farm presented in a companion report. The goal of the vadose zone transport modelling is to attempt to explain the depth and extent of the Cs-137 plume under the SX Tank farm, specifically in the vicinity of the greatest leak, near the SX-109 Tank as inferred from the gamma logs (DOE 1996). In solution Cs is present as the monovalent cation and shows very little tendency to form aqueous complexes with inorganic or organic ligands. Cs is expected to adsorb primarily onto selective minerals that have unique adsorption sites. The small Cs + ion is accommodated on these frayed edge and interlayer sites. Adsorption within the interlayers often leads to collapse of the layers such that the Cs + ion is effectively trapped and not readily exchangeable by all other common cations. The degree of adsorption is thus only moderately dependent on the types and high concentrations of other cations in leaking tank liquors

  11. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  12. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    International Nuclear Information System (INIS)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-01-01

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  13. Tank Space Options Report

    International Nuclear Information System (INIS)

    BOYLES, V.C.

    2001-01-01

    A risk-based priority for the retrieval of Hanford Site waste from the 149 single-shell tanks (SSTs) has been adopted as a result of changes to the Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1997) negotiated in 2000. Retrieval of the first three tanks in the retrieval sequence fills available capacity in the double-shell tanks (DSTs) by 2007. As a result, the HFFACO change established a milestone (M-45-12-TO1) requiring the determination of options that could increase waste storage capacity for single-shell tank waste retrieval. The information will be considered in future negotiations. This document fulfills the milestone requirement. This study presents options that were reviewed for the purpose of increasing waste storage capacity. Eight options are identified that have the potential for increasing capacity from 5 to 10 million gallons, thus allowing uninterrupted single-shell tank retrieval until the planned Waste Treatment Plant begins processing substantial volumes of waste from the double-shell tanks in 2009. The cost of implementing these options is estimated to range from less than $1 per gallon to more than $14 per gallon. Construction of new double-shell tanks is estimated to cost about $63 per gallon. Providing 5 to 10 million gallons of available double-shell tank space could enable early retrieval of 5 to 9 high-risk single-shell tanks beyond those identified for retrieval by 2007. These tanks are A-101, AX-101, AX-103, BY-102, C-107, S-105, S-106, S-108, and S-109 (Garfield et al. 2000). This represents a potential to retrieve approximately 14 million total curies, including 3,200 curies of long-lived mobile radionuclides. The results of the study reflect qualitative analyses conducted to identify promising options. The estimated costs are rough-order-of magnitude and, therefore, subject to change. Implementing some of the options would represent a departure from the current baseline and may adversely impact the

  14. Procurement of Gun Mounts for the M1A2 Tank

    National Research Council Canada - National Science Library

    1997-01-01

    .... The inquiry resulted from constituent allegations that the Program Executive Officer for Armored Systems Modernization improperly communicated Government information on Army procurement of gun mounts for the MlA2 tank...

  15. SU-E-T-118: Analysis of Variability and Stability Between Two Water Tank Phantoms Utilizing Water Tank Commissioning Procedures

    International Nuclear Information System (INIS)

    Roring, J; Saenz, D; Cruz, W; Papanikolaou, N; Stathakis, S

    2015-01-01

    Purpose: The commissioning criteria of water tank phantoms are essential for proper accuracy and reproducibility in a clinical setting. This study outlines the results of mechanical and dosimetric testing between PTW MP3-M water tank system and the Standard Imaging Doseview 3D water tank system. Methods: Measurements were taken of each axis of movement on the tank using 30 cm calipers at 1, 5, 10, 50, 100, and 200 mm for accuracy and reproducibility of tank movement. Dosimetric quantities such as percent depth dose and dose profiles were compared between tanks using a 6 MV beam from a Varian 23EX LINAC. Properties such as scanning speed effects, central axis depth dose agreement with static measurements, reproducibility of measurements, symmetry and flatness, and scan time between tanks were also investigated. Results: Results showed high geometric accuracy within 0.2 mm. Central axis PDD and in-field profiles agreed within 0.75% between the tanks. These outcomes test many possible discrepancies in dose measurements across the two tanks and form a basis for comparison on a broader range of tanks in the future. Conclusion: Both 3D water scanning phantoms possess a high degree of spatial accuracy, allowing for equivalence in measurements regardless of the phantom used. A commissioning procedure when changing water tanks or upon receipt of a new tank is nevertheless critical to ensure consistent operation before and after the arrival of new hardware

  16. Litterfall mercury dry deposition in the eastern USA

    Science.gov (United States)

    Martin R. Risch; John F. DeWild; David P. Krabbenhoft; Randall K. Kolka; Leiming. Zhang

    2012-01-01

    Mercury (Hg) in autumn litterfall frompredominately deciduous forestswas measured in 3 years of samples from 23 Mercury Deposition Network sites in 15 states across the eastern USA. Annual litterfall Hg dry depositionwas significantly higher (median 12.3 micrograms per square meter (µg/m2), range 3.5-23.4 µg/m2...

  17. FSI effects and seismic performance evaluation of water storage tank of AP1000 subjected to earthquake loading

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chunfeng, E-mail: zhaowindy@126.com [Institute of Earthquake Engineering, Dalian University of Technology, Dalian 116024 (China); School of Civil Engineering, Hefei University of Technology, Anhui Province 230009 (China); Chen, Jianyun; Xu, Qiang [Institute of Earthquake Engineering, Dalian University of Technology, Dalian 116024 (China)

    2014-12-15

    Graphical abstract: - Highlights: • Water sloshing and oscillation of water tank under earthquake are simulated by FEM. • The influences of various water levels on seismic response are investigated. • ALE algorithm is applied to study the fluid–structure interaction effects. • The effects of different water levels in reducing seismic response are compared. • The optimal water level of water tank under seismic loading is obtained. - Abstract: The gravity water storage tank of AP1000 is designed to cool down the temperature of containment vessel by spray water when accident releases mass energy. However, the influence of fluid–structure interaction between water and water tank of AP1000 on dynamic behavior of shield building is still a hot research question. The main objective of the current study is to investigate how the fluid–structure interaction affects the dynamic behavior of water tank and whether the water sloshing and oscillation can reduce the seismic response of the shield building subjected to earthquake. For this purpose, a fluid–structure interaction algorithm of finite element technique is employed for the seismic analysis of water storage tank of AP1000. In the finite element model, 8 cases height of water, such as 10.8, 9.8, 8.8, 7.8, 6.8, 5.8, 4.8, and 3.8 m, are established and compared with the empty water tank in order to demonstrate the positive effect in mitigating the seismic response. An Arbitrary Lagrangian Eulerian (ALE) algorithm is used to simulate the fluid–structure interaction, fluid sloshing and oscillation of water tank under the El-Centro earthquake. The correlation between seismic response and parameters of water tank in terms of height of air (h{sub 1}), height of water (h{sub 2}), height ratio of water to tank (h{sub 2}/H{sub w}) and mass ratio of water to total structure (m{sub w}/m{sub t}) is also analyzed. The numerical results clearly show that the optimal h{sub 2}, h{sub 2}/H{sub w} and m{sub w}/m{sub t

  18. Tank 241-U-203: Tank Characterization Plan

    International Nuclear Information System (INIS)

    Sathyanarayana, P.

    1995-01-01

    The revised Federal Facility Agreement and Consent Order states that a tank characterization plan will be developed for each double-shell tank and single-shell tank using the data quality objective process. The plans are intended to allow users and regulators to ensure their needs will be met and resources are devoted to gaining only necessary information. This document satisfies that requirement for Tank 241-U-203 sampling activities

  19. PROGRESS & CHALLENGES IN CLEANUP OF HANFORDS TANK WASTES

    Energy Technology Data Exchange (ETDEWEB)

    HEWITT, W.M.; SCHEPENS, R.

    2006-01-23

    The River Protection Project (RPP), which is managed by the Department of Energy (DOE) Office of River Protection (ORP), is highly complex from technical, regulatory, legal, political, and logistical perspectives and is the largest ongoing environmental cleanup project in the world. Over the past three years, ORP has made significant advances in its planning and execution of the cleanup of the Hartford tank wastes. The 149 single-shell tanks (SSTs), 28 double-shell tanks (DSTs), and 60 miscellaneous underground storage tanks (MUSTs) at Hanford contain approximately 200,000 m{sup 3} (53 million gallons) of mixed radioactive wastes, some of which dates back to the first days of the Manhattan Project. The plan for treating and disposing of the waste stored in large underground tanks is to: (1) retrieve the waste, (2) treat the waste to separate it into high-level (sludge) and low-activity (supernatant) fractions, (3) remove key radionuclides (e.g., Cs-137, Sr-90, actinides) from the low-activity fraction to the maximum extent technically and economically practical, (4) immobilize both the high-level and low-activity waste fractions by vitrification, (5) interim store the high-level waste fraction for ultimate disposal off-site at the federal HLW repository, (6) dispose the low-activity fraction on-site in the Integrated Disposal Facility (IDF), and (7) close the waste management areas consisting of tanks, ancillary equipment, soils, and facilities. Design and construction of the Waste Treatment and Immobilization Plant (WTP), the cornerstone of the RPP, has progressed substantially despite challenges arising from new seismic information for the WTP site. We have looked closely at the waste and aligned our treatment and disposal approaches with the waste characteristics. For example, approximately 11,000 m{sup 3} (2-3 million gallons) of metal sludges in twenty tanks were not created during spent nuclear fuel reprocessing and have low fission product concentrations. We

  20. Waste Tank Vapor Project: Vapor characterization of Tank 241-C-103: Report for SUMMA trademark canister samples received 11/29/93 (sample jobs 4 and 5)

    International Nuclear Information System (INIS)

    Clauss, T.R.; Lucke, R.B.; McVeety, B.; Allwine, K.J.; Fruchter, J.S.

    1994-09-01

    The purpose of Sample Jobs 4 and 5 was to determine whether the organic nitrites observed on the outside of tank 241-C-103 originated in the tank or from degradation products of the high-efficiency particulate air (HEPA) filter. The plan was to take samples from either side of the HE-PA filter. The relative level of organic nitrites would help determine whether they were produced in the filter or the tank. Pacific Northwest Laboratory was responsible for analyzing the SUMMA trademark canisters collected in support of this study. The laboratory was to analyze the SUMMA trademark Canister samples according to letters of instruction and report all semivolatile and volatile organic constituents detected in the tank headspace. Pacific Northwest Laboratory was also to submit a letter report to the Program Manager of all qualitative and quantitative analytical data, and estimate concentrations of any aliphatic nitrites identified. This was one of the first sampling activities for this program, and a number of errors were made both in the field and in the laboratory. Because of these errors, the samples and results were of questionable value. Therefore, Westinghouse program management asked that the analysis of the samples for this report not be completed. This report describes the few results that were generated before we were asked to stop work on this activity. In addition to analyzing SUMMA trademark canisters, PNL operates a site portable weather station near tank 241-C-103. Pacific Northwest Laboratory was required to collect atmospheric data starting 11/15/93, but the weather station was already collecting data during the time of both these two sample jobs (11/12/93 and 11/16/93). Therefore, a summary of the atmospheric data is also presented in this report

  1. Theoretical study of solar combisystems based on bikini tanks and tank-in-tank stores

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon

    2012-01-01

    . Originality/value - Many different Solar Combisystem designs have been commercialized over the years. In the IEA-SHC Task 26, twenty one solar combisystems have been described and analyzed. Maybe the mantle tank approach also for solar combisystems can be used with advantage? This might be possible...... if the solar heating system is based on a so called bikini tank. Therefore the new developed solar combisystems based on bikini tanks is compared to the tank-in-tank solar combisystems to elucidate which one is suitable for three different houses with low energy heating demand, medium and high heating demand.......Purpose - Low flow bikini solar combisystems and high flow tank-in-tank solar combisystems have been studied theoretically. The aim of the paper is to study which of these two solar combisystem designs is suitable for different houses. The thermal performance of solar combisystems based on the two...

  2. Hanford tanks initiative alternatives generation and analysis plan for AX tank farm closure basis

    International Nuclear Information System (INIS)

    Schaus, P.S.

    1997-01-01

    The purpose of this document is: (1) to review the HTI Mission Analysis and related documents to determine their suitability for use in developing performance measures for AX Tank Farm closure, (2) to determine the completeness and representativeness of selected alternative closure scenarios, (3) to determine the completeness of current plans for development of tank end-state criteria, and (4) to analyze the activities that are necessary and sufficient to recommend the end-state criteria and performance measures for the AX Tank Farm and recommend activities not currently planned to support establishment of its end-state criteria

  3. Development of a remote tank inspection robotic system

    International Nuclear Information System (INIS)

    Knape, B.P.; Bares, L.C.

    1990-01-01

    RedZone Robotics is currently developing a remote tank inspection (RTI) robotic system for Westinghouse Idaho Nuclear Company (WINCO). WINCO intends to use the RTI robotic system at the Idaho Chemical Processing Plant, a facility that contains a tank farm of several 1,135,500-ell (300,000-gal), 15.2-m (50-ft)-diam, high-level liquid waste storage tanks. The primary purpose of the RTI robotic system is to inspect the interior of these tanks for corrosion that may have been caused by the combined effects of radiation, high temperature, and caustic by the combined effects of radiation, high temperature, and caustic chemicals present inside the tanks. The RTI robotic system features a vertical deployment unit, a robotic arm, and a remote control console and computer [located up to 30.5 m (100 ft) away from the tank site]. All actuators are high torque, electric dc brush motors that are servocontrolled with absolute position feedback. The control system uses RedZone's standardized intelligent controller for enhanced telerobotics, which provides a high speed, multitasking environment on a VME bus. Currently, the robot is controlled in a manual, job-button, control mode; however, control capability is available to develop preprogrammed, automated modes of operation

  4. Vitrification technology for Hanford Site tank waste

    International Nuclear Information System (INIS)

    Weber, E.T.; Calmus, R.B.; Wilson, C.N.

    1995-04-01

    The US Department of Energy's (DOE) Hanford Site has an inventory of 217,000 m 3 of nuclear waste stored in 177 underground tanks. The DOE, the US Environmental Protection Agency, and the Washington State Department of Ecology have agreed that most of the Hanford Site tank waste will be immobilized by vitrification before final disposal. This will be accomplished by separating the tank waste into high- and low-level fractions. Capabilities for high-capacity vitrification are being assessed and developed for each waste fraction. This paper provides an overview of the program for selecting preferred high-level waste melter and feed processing technologies for use in Hanford Site tank waste processing

  5. Hanford Site Tank 241-SY-101, damaged equipment removal

    International Nuclear Information System (INIS)

    Titzler, P.A.; Legare, D.E.; Barrus, H.G.

    1993-11-01

    Hanford Site Tank 241-SY-101 has a history of generating hydrogen-nitrous oxide gases. The gases are generated and trapped in the non-convective waste layer near the bottom of the 23-m- (75-ft-) diameter underground tank. Approximately every three months the pressure in the tank is relieved as the trapped gases are released through or around the surface crust into the tank dome. This process moves large amounts of liquid waste and crust material around in the tank. The moving waste displaced air lances and thermocouple assemblies (2-in. schedule-40 pipe) installed in four tank risers and permanently bent them to a maximum angle of 40 degrees. The bends were so severe that assemblies could not be removed from the tank using the originally designed hardware. Just after the tank releases the trapped gas, a 20-to-30-day work ''window'' opens

  6. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit fuel tanks containing a mixture of anhydrous hydrazine and monomethyl hydrazine (M86 fuel) and designed...

  7. Storage Tanks - Selection Of Type, Design Code And Tank Sizing

    International Nuclear Information System (INIS)

    Shatla, M.N; El Hady, M.

    2004-01-01

    The present work gives an insight into the proper selection of type, design code and sizing of storage tanks used in the Petroleum and Process industries. In this work, storage tanks are classified based on their design conditions. Suitable design codes and their limitations are discussed for each tank type. The option of storage under high pressure and ambient temperature, in spherical and cigar tanks, is compared to the option of storage under low temperature and slight pressure (close to ambient) in low temperature and cryogenic tanks. The discussion is extended to the types of low temperature and cryogenic tanks and recommendations are given to select their types. A study of pressurized tanks designed according to ASME code, conducted in the present work, reveals that tanks designed according to ASME Section VIII DIV 2 provides cost savings over tanks designed according to ASME Section VIII DlV 1. The present work is extended to discuss the parameters that affect sizing of flat bottom cylindrical tanks. The analysis shows the effect of height-to-diameter ratio on tank instability and foundation loads

  8. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; RINKER MW; CARPENTER BG; HENDRIX C; ABATT FG

    2009-01-15

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses. The original scope of the project was to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Although Milestone M-48-14 has been met, Revision I is being issued to address external review comments with emphasis on changes in the modeling of anchor bolts connecting the concrete dome and the steel primary tank. The work statement provided to M&D (PNNL 2003) required that a nonlinear soil structure interaction (SSI) analysis be performed on the DSTs. The analysis is required to include the effects of sliding interfaces and fluid sloshing (fluid-structure interaction). SSI analysis has traditionally been treated by frequency domain computer codes such as SHAKE (Schnabel, et al. 1972) and SASSI (Lysmer et al. 1999a). Such frequency domain programs are limited to the analysis of linear systems. Because of the contact surfaces, the response of the DSTs to a seismic event is inherently nonlinear and consequently outside the range of applicability of the linear frequency domain programs. That is, the nonlinear response of the DSTs to seismic excitation requires the use of a time domain code. The capabilities and limitations of the commercial time domain codes ANSYS{reg_sign} and MSC Dytran{reg_sign} for performing seismic SSI analysis of the DSTs and the methodology required to perform the detailed seismic analysis of the DSTs has been addressed in Rinker et al (2006a). On the basis of the results reported in Rinker et al

  9. Material selection for Multi-Function Waste Tank Facility tanks

    International Nuclear Information System (INIS)

    Carlos, W.C.

    1994-01-01

    This report briefly summarizes the history of the materials selection for the US Department of Energy's high-level waste carbon steel storage tanks. It also provide an evaluation of the materials for the construction of new tanks at the Multi-Function Waste Tank Facility. The evaluation included a materials matrix that summarized the critical design, fabrication, construction, and corrosion resistance requirements; assessed each requirement; and cataloged the advantages and disadvantages of each material. This evaluation is based on the mission of the Multi-Function Waste Tank Facility. On the basis of the compositions of the wastes stored in Hanford waste tanks, it is recommended that tanks for the Multi-Function Waste Tank Facility be constructed of normalized ASME SA 516, Grade 70, carbon steel

  10. Environmental fate of Ra in cation-exchange regeneration brine waste disposed to septic tanks, New Jersey Coastal Plain, USA: migration to the water table.

    Science.gov (United States)

    Szabo, Zoltan; Jacobsen, Eric; Kraemer, Thomas F; Parsa, Bahman

    2010-01-01

    Fate of radium (Ra) in liquid regeneration brine wastes from water softeners disposed to septic tanks in the New Jersey Coastal Plain was studied. Before treatment, combined Ra ((226)Ra plus (228)Ra) concentrations (maximum, 1.54 Bq L(-1)) exceeded the 0.185 Bq L(-1) Maximum Contaminant Level in 4 of 10 studied domestic-well waters (median pH, 4.90). At the water table downgradient from leachfields, combined Ra concentrations were low (commonly 5.3, indicating sequestration; when pH was septic-tank effluents (maximum, 0.243 Bq L(-1))), indicating Ra mobilization from leachfield sediments. Confidence in quantification of Ra mass balance was reduced by study design limitations, including synoptic sampling of effluents and ground waters, and large uncertainties associated with analytical methods. The trend of Ra mobilization in acidic environments does match observations from regional water-quality assessments.

  11. Laboratory septic tank performance response to electrolytic stimulation.

    Science.gov (United States)

    Zaveri, Rahul M; Flora, Joseph R V

    2002-11-01

    This research investigated the effects of electrolytic stimulation on the performance of two laboratory-scale septic tanks. The tanks were fed a synthetic solution that included cellulose, peptone trypticase, beef extract, and urea. After a baseline period with no passed current, currents ranging from 100 to 500 mA were passed through the electrodes. The chemical oxygen demand (COD) removal efficiency from the tanks improved when a current was passed, with higher removal efficiencies observed at higher levels of passed current. Hydrolytic reactions resulted in ammonia and phosphate levels in the tanks that were higher than the influent. At currents > 300 mA, these hydrolytic reactions were suppressed, resulting in phosphate levels similar to the influent and ammonia levels lower than the influent because of the settling of ammonia-containing components of the feed solution. A slight increase in nitrate levels was observed when a current was passed, indicating minimal stimulation of nitrification activity. Abiotic studies confirmed that the COD can be removed via electrolysis and the removal was proportional to the passed current. Under the conditions of this study, the primary benefit of electrolytic stimulation of the septic tank is enhanced COD removal.

  12. 46 CFR 119.450 - Vent pipes for fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Vent pipes for fuel tanks. 119.450 Section 119.450... Specific Machinery Requirements § 119.450 Vent pipes for fuel tanks. (a) Each unpressurized fuel tank must... area of the vent pipe for diesel fuel tanks must be as follows: (1) Not less than the cross sectional...

  13. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 4) presents the standards and requirements for the following sections: Radiation Protection and Operations.

  14. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 4

    International Nuclear Information System (INIS)

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 4) presents the standards and requirements for the following sections: Radiation Protection and Operations

  15. USA suursaadikuga Tallinna lahel / Katrin Kruss

    Index Scriptorium Estoniae

    Kruss, Katrin

    2007-01-01

    USA suursaadik Stanley Davis Phillips oma haridusteest, perekonnast, armastusest mere vastu, panusest isa Earl Phillipsi mööbliäri laiendamisse, golfiharrastusest, suursaadikute ettevalmistusest USA-s, suursaadiku residentsist Pirital ning uue saatkonnahoone otsingutest Tallinnas. Lisa: Stanley Davis Phillips

  16. Identification of single-shell tank in-tank hardware obstructions to retrieval at Hanford Site Tank Farms

    International Nuclear Information System (INIS)

    Ballou, R.A.

    1994-10-01

    Two retrieval technologies, one of which uses robot-deployed end effectors, will be demonstrated on the first single-shell tank (SST) waste to be retrieved at the Hanford Site. A significant impediment to the success of this technology in completing the Hanford retrieval mission is the presence of unique tank contents called in-tank hardware (ITH). In-tank hardware includes installed and discarded equipment and various other materials introduced into the tank. This paper identifies those items of ITH that will most influence retrieval operations in the arm-based demonstration project and in follow-on tank operations within the SST farms

  17. Quo vadis, USA dollar? : finantsturgude viimastest arengutest / Robert Liljequist

    Index Scriptorium Estoniae

    Liljequist, Robert

    2013-01-01

    Swedbank AB Soome strateegiajuht vastab küsimustele, mis puudutavad USA majandust alanud aastal, dollari n.-ö turvalise valuuta staatuse kaotamise ohtu, võlakirjade ostmise vähendamist ja selle mõju USA dollarile, Euroopa Keskpanga poliitika mõju euro ja USA dollari suhtele. Swebanki prognoos USA dollari kohta

  18. Modeling and analysis of ORNL horizontal storage tank mobilization and mixing

    International Nuclear Information System (INIS)

    Mahoney, L.A.; Terrones, G.; Eyler, L.L.

    1994-06-01

    The retrieval and treatment of radioactive sludges that are stored in tanks constitute a prevalent problem at several US Department of Energy sites. The tanks typically contain a settled sludge layer with non-Newtonian rheological characteristics covered by a layer of supernatant. The first step in retrieval is the mobilization and mixing of the supernatant and sludge in the storage tanks. Submerged jets have been proposed to achieve sludge mobilization in tanks, including the 189 m 3 (50,000 gallon) Melton Valley Storage tanks (MVST) at Oak Ridge National Laboratory (ORNL) and the planned 378 m 3 (100,000 gallon) tanks being designed as part of the MVST Capacity Increase Project (MVST-CIP). This report focuses on the modeling of mixing and mobilization in horizontal cylindrical tanks like those of the MVST design using submerged, recirculating liquid jets. The computer modeling of the mobilization and mixing processes uses the TEMPEST computational fluid dynamics program (Trend and Eyler 1992). The goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents

  19. A Test Study to Display Buried Anti-Tank Landmines with GPR and Research Soil Characteristics with CRS

    Science.gov (United States)

    Kadioglu, Selma; Kagan Kadioglu, Yusuf

    2014-05-01

    An anti-tank mine (AT mine) is a type of land mine designed to damage or destroy vehicles including tanks and armored fighting vehicles. Anti-tank mines typically have a much larger explosive charge, and a fuze designed only to be triggered by vehicles or, in some cases, tampering with the mine. There are a lot of AT mine types. In our test study, MK4 and MK5 AT mine types has been used. The Mk 5 was a cylindrical metal cased U.K. anti-tank blast mine that entered service in 1943, during the Second World War. General Specifications of them are 203 mm diameter, 127 mm height, 4.4-5.7 kg weight, 2.05-3.75 kg of TNT explosive content and 350 lbs operating pressure respectively. The aims of the test study were to image anti-tank landmine with GPR method and to analyse the soil characteristics before the mines made explode and after made be exploded and determine changing of the soil characteristics. We realized data measurement on the real 6 unexploded anti-tank landmine buried approximately 15 cm in depth. The mines spaced 3 m were buried in two lines. Space between lines was 1.5 m. We gathered data on the profiles, approximately 7 m, with a Ramac CUII system and 800 MHz shielded antenna. We collected soil samples on the mines, near and around the mines, on the area in village. We collected soil samples before exploding and after exploding mines. We imaged anti-tank landmines on the depth slices of the GPR data and in their interactive transparent 3D subsets successfully. We used polarized microscope and confocal Raman spectroscopy (CRS) to identify soil characteristic before and after exploitation. The results presented that GPR method and its 3D imaging were successful to determine AT mines, and there was no important changing on mineralogical and petrographical characterization of the soil before and after exploding processing. This project has been supported by Ankara University under grant no 11B6055002. The study is a contribution to the EU funded COST action TU

  20. Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce-fir forest soil in Maine, USA

    Science.gov (United States)

    Lindsey E. Rustad; Ivan J. Fernandez

    1998-01-01

    The effect of soil warming on CO2 and CH4 flux from a spruce-fir forest soil was evaluated at the Howland Integrated Forest Study site in Maine, USA from 1993 to 1995. Elevated soil temperatures (~5 °C) were maintained during the snow-free season (May-November) in replicated 15 × 15-m plots using electric cables buried 1-2...

  1. Phase Equilibrium Studies of Savannah River Tanks and Feed Streams for the Salt Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.F.

    2001-06-19

    A chemical equilibrium model is developed and used to evaluate supersaturation of tanks and proposed feed streams to the Salt Waste Processing Facility. The model uses Pitzer's model for activity coefficients and is validated by comparison with a variety of thermodynamic data. The model assesses the supersaturation of 13 tanks at the Savannah River Site (SRS), indicating that small amounts of gibbsite and or aluminosilicate may form. The model is also used to evaluate proposed feed streams to the Salt Waste Processing Facility for 13 years of operation. Results indicate that dilutions using 3-4 M NaOH (about 0.3-0.4 L caustic per kg feed solution) should avoid precipitation and reduce the Na{sup +} ion concentration to 5.6 M.

  2. Underground tank remediation by use of in situ vitrification

    International Nuclear Information System (INIS)

    Thompson, L.E.

    1991-02-01

    Pacific Northwest Laboratory (PNL) is developing a remedial action technology for underground storage tanks through the adaptation of the in situ vitrification (ISV) process. The ISV process is a thermal treatment processes that was originally developed for the stabilization of contaminated soil contaminated with transuranic waste at the Hanford Site in southeastern Washington for the Department of Energy (DOE). The application of ISV to underground storage tanks represents an entirely new application of the ISV technology and is being performed in support of the DOE primarily for the Hanford site and the Oak Ridge National Laboratory (ORNL). A field scale test was conducted in September 1990 at Hanford on a small cement and stainless steel tank (1-m dia.) that contained a simulated refractory sludge representing a worst-case sludge composition. The tank design and sludge composition was based on conditions present at the ORNL. The sludge contained high concentrations of heavy metals including lead, mercury, and cadmium, and also contained high levels of stable cesium and strontium to represent the predominant radionuclide species present in the tank wastes. The test was highly successful in that the entire tank and surrounding soil was transformed into a highly leach resistant glass and crystalline block with a mass of approximately 30 tons. During the process, the metal shell of the tank forms a metal pool at the base of the molten soil. Upon cooling, the glass and metal phases were subjected to TCLP (toxic characteristic leach procedure) testing and passed the TCLP criteria. Additional sampling and analyses are ongoing to determine the bulk composition of the waste forms, the fraction of volatile or semi-volatile species released to the off-gas treatment system, and to determine whether any soil surrounding the monolith was contaminated as a result of the ISV process. 4 refs., 5 figs., 3 tabs

  3. Alkaline-side extraction of technetium from tank waste using crown ethers and other extractants

    International Nuclear Information System (INIS)

    Bonnesen, P.V.; Moyer, B.A.; Presley, D.J.; Armstrong, V.S.; Haverlock, T.J.; Counce, R.M.; Sachleben, R.A.

    1996-06-01

    The chemical development of a new crown-ether-based solvent-extraction process for the separation of (Tc) from alkaline tank-waste supernate is ready for counter-current testing. The process addresses a priority need in the proposed cleanup of Hanford and other tank wastes. This need has arisen from concerns due to the volatility of Tc during vitrification, as well as 99 Tc's long half-life and environmental mobility. The new process offers several key advantages that direct treatability--no adjustment of the waste composition is needed; economical stripping with water; high efficiency--few stages needed; non-RCRA chemicals--no generation of hazardous or mixed wastes; co-extraction of 90 Sr; and optional concentration on a resin. A key concept advanced in this work entails the use of tandem techniques: solvent extraction offers high selectivity, while a subsequent column sorption process on the aqueous stripping solution serves to greatly concentrate the Tc. Optionally, the stripping solution can be evaporated to a small volume. Batch tests of the solvent-extraction and stripping components of the process have been conducted on actual melton Valley Storage Tank (MVST) waste as well as simulants of MVST and Hanford waste. The tandem process was demonstrated on MVST waste simulants using the three solvents that were selected the final candidates for the process. The solvents are 0.04 M bis-4,4'(5')[(tert-butyl)cyclohexano]-18-crown-6 (abbreviated di-t-BuCH18C6) in a 1:1 vol/vol blend of tributyl phosphate and Isopar reg-sign M (an isoparaffinic kerosene); 0.02 M di-t-BuCH18C6 in 2:1 vol/vol TBP/Isopar M and pure TBP. The process is now ready for counter-current testing on actual Hanford tank supernates

  4. Dual Tank Fuel System

    Science.gov (United States)

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  5. PROGRESS and CHALLENGES IN CLEANUP OF HANFORDS TANK WASTES

    International Nuclear Information System (INIS)

    HEWITT, W.M.; SCHEPENS, R.

    2006-01-01

    The River Protection Project (RPP), which is managed by the Department of Energy (DOE) Office of River Protection (ORP), is highly complex from technical, regulatory, legal, political, and logistical perspectives and is the largest ongoing environmental cleanup project in the world. Over the past three years, ORP has made significant advances in its planning and execution of the cleanup of the Hartford tank wastes. The 149 single-shell tanks (SSTs), 28 double-shell tanks (DSTs), and 60 miscellaneous underground storage tanks (MUSTs) at Hanford contain approximately 200,000 m 3 (53 million gallons) of mixed radioactive wastes, some of which dates back to the first days of the Manhattan Project. The plan for treating and disposing of the waste stored in large underground tanks is to: (1) retrieve the waste, (2) treat the waste to separate it into high-level (sludge) and low-activity (supernatant) fractions, (3) remove key radionuclides (e.g., Cs-137, Sr-90, actinides) from the low-activity fraction to the maximum extent technically and economically practical, (4) immobilize both the high-level and low-activity waste fractions by vitrification, (5) interim store the high-level waste fraction for ultimate disposal off-site at the federal HLW repository, (6) dispose the low-activity fraction on-site in the Integrated Disposal Facility (IDF), and (7) close the waste management areas consisting of tanks, ancillary equipment, soils, and facilities. Design and construction of the Waste Treatment and Immobilization Plant (WTP), the cornerstone of the RPP, has progressed substantially despite challenges arising from new seismic information for the WTP site. We have looked closely at the waste and aligned our treatment and disposal approaches with the waste characteristics. For example, approximately 11,000 m 3 (2-3 million gallons) of metal sludges in twenty tanks were not created during spent nuclear fuel reprocessing and have low fission product concentrations. We plan to

  6. Tank Characterization Report for Single-Shell Tank 241-C-104

    International Nuclear Information System (INIS)

    ADAMS, M.R.

    2000-01-01

    Interprets information about the tank answering a series of six questions covering areas such as information drivers, tank history, tank comparisons, disposal implications, data quality and quantity, and unique aspects of the tank

  7. Tank design

    International Nuclear Information System (INIS)

    Earle, F.A.

    1992-01-01

    This paper reports that aboveground tanks can be designed with innovative changes to complement the environment. Tanks can be constructed to eliminate the vapor and odor emanating from their contents. Aboveground tanks are sometimes considered eyesores, and in some areas the landscaping has to be improved before they are tolerated. A more universal concern, however, is the vapor or odor that emanates from the tanks as a result of the materials being sorted. The assertive posture some segments of the public now take may eventually force legislatures to classify certain vapors as hazardous pollutants or simply health risks. In any case, responsibility will be leveled at the corporation and subsequent remedy could increase cost beyond preventive measures. The new approach to design and construction of aboveground tanks will forestall any panic which might be induced or perceived by environmentalists. Recently, actions by local authorities and complaining residents were sufficient to cause a corporation to curtail odorous emissions through a change in tank design. The tank design change eliminated the odor from fuel oil vapor thus removing the threat to the environment that the residents perceived. The design includes reinforcement to the tank structure and the addition of an adsorption section. This section allows the tanks to function without any limitation and their contents do not foul the environment. The vapor and odor control was completed successfully on 6,000,000 gallon capacity tanks

  8. Tank 50H Tetraphenylborate Destruction Results

    International Nuclear Information System (INIS)

    Peters, T.B.

    2003-01-01

    We conducted several scoping tests with both Tank 50H surrogate materials (KTPB and phenol) as well as with actual Tank 50H solids. These tests examined whether we could destroy the tetraphenylborate in the surrogates or actual Tank 50H material either by use of Fenton's Reagent or by hydrolysis (in Tank 50H conditions at a maximum temperature of 50 degrees C) under a range of conditions. The results of these tests showed that destruction of the solids occurred only under a minority of conditions. (1)Using Fenton's Reagent and KTPB as the Tank 50H surrogate, no reaction occurred at pH ranges greater than 9. (2)Using Fenton's Reagent and phenol as the Tank 50H surrogate, no reaction occurred at a pH of 14. (3)Using Fenton's Reagent and actual Tank 50H slurry, a reaction occurred at a pH of 9.5 in the presence of ECC additives. (4)Using Fenton's Reagent and actual Tank 50H slurry, after a thirty three day period, all attempts at hydrolysis (at pH 14) were too slow to be viable. This happened even in the case of higher temperature (50 degrees C) and added (100 ppm) copper. Tank 50H is scheduled to return to HLW Tank Farm service with capabilities of transferring and receiving salt supernate solutions to and from the Tank Farms and staging feed for the Saltstone Facility. Before returning Tank 50H to Tank Farm service as a non-organic tank, less than 5 kg of TPB must remain in Tank 50H. Recently, camera inspections in Tank 50H revealed two large mounds of solid material, one in the vicinity of the B5 Riser Transfer Pump and the other on the opposite side of the tank. Personnel sampled and analyzed this material to determine its composition. The sample analysis indicated presence of a significant quantity of organics in the solid material. This quantity of organic material exceeds the 5 kg limit for declaring only trace amounts of organic material remain in Tank 50H. Additionally, these large volumes of solids, calculated as approximately 61K gallons, present other

  9. 27 CFR 24.229 - Tank car and tank truck requirements.

    Science.gov (United States)

    2010-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  10. Underground storage tanks

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Environmental contamination from leaking underground storage tanks poses a significant threat to human health and the environment. An estimated five to six million underground storage tanks containing hazardous substances or petroleum products are in use in the US. Originally placed underground as a fire prevention measure, these tanks have substantially reduced the damages from stored flammable liquids. However, an estimated 400,000 underground tanks are thought to be leaking now, and many more will begin to leak in the near future. Products released from these leaking tanks can threaten groundwater supplies, damage sewer lines and buried cables, poison crops, and lead to fires and explosions. As required by the Hazardous and Solid Waste Amendments (HSWA), the EPA has been developing a comprehensive regulatory program for underground storage tanks. The EPA proposed three sets of regulations pertaining to underground tanks. The first addressed technical requirements for petroleum and hazardous substance tanks, including new tank performance standards, release detection, release reporting and investigation, corrective action, and tank closure. The second proposed regulation addresses financial responsibility requirements for underground petroleum tanks. The third addressed standards for approval of state tank programs

  11. Results For The Third Quarter Calendar Year 2016 Tank 50H Salt Solution Sample

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-10-13

    In this memorandum, the chemical and radionuclide contaminant results from the Third Quarter Calendar Year 2016 (CY16) sample of Tank 50H salt solution are presented in tabulated form. The Third Quarter CY16 Tank 50H samples (a 200 mL sample obtained 6” below the surface (HTF-5-16-63) and a 1 L sample obtained 66” from the tank bottom (HTF-50-16-64)) were obtained on July 14, 2016 and received at Savannah River National Laboratory (SRNL) on the same day. Prior to obtaining the samples from Tank 50H, a single pump was run at least 4.4 hours, and the samples were pulled immediately after pump shut down. The information from this characterization will be used by Defense Waste Processing Facility (DWPF) & Saltstone Facility Engineering for the transfer of aqueous waste from Tank 50H to the Saltstone Production Facility, where the waste will be treated and disposed of in the Saltstone Disposal Facility. This memorandum compares results, where applicable, to Saltstone Waste Acceptance Criteria (WAC) limits and targets. Data pertaining to the regulatory limits for Resource Conservation and Recovery Act (RCRA) metals will be documented at a later time per the Task Technical and Quality Assurance Plan (TTQAP) for the Tank 50H saltstone task. The chemical and radionuclide contaminant results from the characterization of the Third Quarter CY16 sampling of Tank 50H were requested by Savannah River Remediation (SRR) personnel and details of the testing are presented in the SRNL TTQAP.

  12. Experimental Determination and Thermodynamic Modeling of Electrical Conductivity of SRS Waste Tank Supernate

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-06-01

    SRS High Level Waste Tank Farm personnel rely on conductivity probes for detection of incipient overflow conditions in waste tanks. Minimal information is available concerning the sensitivity that must be achieved such that that liquid detection is assured. Overly sensitive electronics results in numerous nuisance alarms for these safety-related instruments. In order to determine the minimum sensitivity required of the probe, Tank Farm Engineering personnel need adequate conductivity data to improve the existing designs. Little or no measurements of liquid waste conductivity exist; however, the liquid phase of the waste consists of inorganic electrolytes for which the conductivity may be calculated. Savannah River Remediation (SRR) Tank Farm Facility Engineering requested SRNL to determine the conductivity of the supernate resident in SRS waste Tank 40 experimentally as well as computationally. In addition, SRNL was requested to develop a correlation, if possible, that would be generally applicable to liquid waste resident in SRS waste tanks. A waste sample from Tank 40 was analyzed for composition and electrical conductivity as shown in Table 4-6, Table 4-7, and Table 4-9. The conductivity for undiluted Tank 40 sample was 0.087 S/cm. The accuracy of OLI Analyzer™ was determined using available literature data. Overall, 95% of computed estimates of electrical conductivity are within ±15% of literature values for component concentrations from 0 to 15 M and temperatures from 0 to 125 °C. Though the computational results are generally in good agreement with the measured data, a small portion of literature data deviates as much as ±76%. A simplified model was created that can be used readily to estimate electrical conductivity of waste solution in computer spreadsheets. The variability of this simplified approach deviates up to 140% from measured values. Generally, this model can be applied to estimate the conductivity within a factor of two. The comparison of the

  13. Results of Tank-Leak Detection Demonstration Using Geophysical Techniques at the Hanford Mock Tank Site-Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D BRENT.; Gee, Glendon W.; Sweeney, Mark D.

    2002-03-01

    During July and August of 2001, Pacific Northwest National Laboratory (PNNL), hosted researchers from Lawrence Livermore and Lawrence Berkeley National laboratories, and a private contractor, HydroGEOPHYSICS, Inc., for deployment of the following five geophysical leak-detection technologies at the Hanford Site Mock Tank in a Tank Leak Detection Demonstration (TLDD): (1) Electrical Resistivity Tomography (ERT); (2) Cross-Borehole Electromagnetic Induction (CEMI); (3) High-Resolution Resistivity (HRR); (4) Cross-Borehole Radar (XBR); and (5) Cross-Borehole Seismic Tomography (XBS). Under a ''Tri-party Agreement'' with Federal and state regulators, the U.S. Department of Energy will remove wastes from single-shell tanks (SSTs) and other miscellaneous underground tanks for storage in the double-shell tank system. Waste retrieval methods are being considered that use very little, if any, liquid to dislodge, mobilize, and remove the wastes. As additional assurance of protection of the vadose zone beneath the SSTs, tank wastes and tank conditions may be aggressively monitored during retrieval operations by methods that are deployed outside the SSTs in the vadose zone.

  14. Mobile storage tank-facility made of Polyethylene for evaporator concentrates

    Energy Technology Data Exchange (ETDEWEB)

    Koischwitz, Ingmar [Gesellschaft fuer Nuklear-Service mbH, 45127 Essen (Germany); Dinter, Andreas [E.ON Kernkraft GmbH, Kernkraftwerk Stade, 21657 Stade (Germany)

    2008-07-01

    In Nuclear Power Plants (NPP) there is the need to store any kind of liquid waste such as contaminated evaporator concentrates. NPPs which are in the decommissioning phase had to dismantle their installed storage tanks sometimes at an earlier step than the waste treatment facilities (evaporator). For that reason, GNS has developed a new mobile storage tank-facility (MOTA) for buffer storage of evaporator concentrates by using a capacity of 10 m{sup 3} in total, equally distributed into four storage tanks with a capacity of max 3 m{sup 3} for each. With this modular design it is even easier to install storage tanks in any location in any NPP in Germany. The design of the mobile storage tank-facility will be described under chemical engineering aspects as well as the results from the first experiences during the cold test at the end of the construction phase. GNS applied for a license to use and install the mobile storage tank-facility in nuclear installations and NPPs in Germany in accordance with chap. 7 of the Radioprotection Provision (Strahlenschutzverordnung) in Germany. GNS gets this license in February 2008 and will put the mobile storage tank system into operation in the first quarter of 2008 in Stade NPP. (authors)

  15. Mobile storage tank-facility made of Polyethylene for evaporator concentrates

    International Nuclear Information System (INIS)

    Koischwitz, Ingmar; Dinter, Andreas

    2008-01-01

    In Nuclear Power Plants (NPP) there is the need to store any kind of liquid waste such as contaminated evaporator concentrates. NPPs which are in the decommissioning phase had to dismantle their installed storage tanks sometimes at an earlier step than the waste treatment facilities (evaporator). For that reason, GNS has developed a new mobile storage tank-facility (MOTA) for buffer storage of evaporator concentrates by using a capacity of 10 m 3 in total, equally distributed into four storage tanks with a capacity of max 3 m 3 for each. With this modular design it is even easier to install storage tanks in any location in any NPP in Germany. The design of the mobile storage tank-facility will be described under chemical engineering aspects as well as the results from the first experiences during the cold test at the end of the construction phase. GNS applied for a license to use and install the mobile storage tank-facility in nuclear installations and NPPs in Germany in accordance with chap. 7 of the Radioprotection Provision (Strahlenschutzverordnung) in Germany. GNS gets this license in February 2008 and will put the mobile storage tank system into operation in the first quarter of 2008 in Stade NPP. (authors)

  16. Tank 241-TX-105 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-TX-105 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-TX-105 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  17. Tank 241-BY-107 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issuesclose quotes. Tank 241-BY-107 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolutionclose quotes

  18. Tank 241-BY-111 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-111 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-BY-111 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  19. Tank 241-C-108 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-C-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in Program Plan for the Resolution of Tank Vapor Issues (Osborne and Huckaby 1994). Tank 241-C-108 was vapor sampled in accordance with Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution (Osborne et al., 1994)

  20. Tank 241-TX-118 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-TX-118 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-TX-118 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  1. Tank 241-BY-112 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-112 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-BY-112 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  2. Tank 241-C-104 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-C-104 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-C-104 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  3. Tank 241-BY-103 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-103 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-BY-103 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  4. Tank 241-U-107 vapor sampling and analysis tank characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Huckaby, J.L.

    1995-05-31

    Tank 241-U-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-U-107 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  5. Numerical Investigation of Microgravity Tank Pressure Rise Due to Boiling

    Science.gov (United States)

    Hylton, Sonya; Ibrahim, Mounir; Kartuzova, Olga; Kassemi, Mohammad

    2015-01-01

    The ability to control self-pressurization in cryogenic storage tanks is essential for NASAs long-term space exploration missions. Predictions of the tank pressure rise in Space are needed in order to inform the microgravity design and optimization process. Due to the fact that natural convection is very weak in microgravity, heat leaks into the tank can create superheated regions in the liquid. The superheated regions can instigate microgravity boiling, giving rise to pressure spikes during self-pressurization. In this work, a CFD model is developed to predict the magnitude and duration of the microgravity pressure spikes. The model uses the Schrage equation to calculate the mass transfer, with a different accommodation coefficient for evaporation at the interface, condensation at the interface, and boiling in the bulk liquid. The implicit VOF model was used to account for the moving interface, with bounded second order time discretization. Validation of the models predictions was carried out using microgravity data from the Tank Pressure Control Experiment, which flew aboard the Space Shuttle Mission STS-52. Although this experiment was meant to study pressurization and pressure control, it underwent boiling during several tests. The pressure rise predicted by the CFD model compared well with the experimental data. The ZBOT microgravity experiment is scheduled to fly on February 2016 aboard the ISS. The CFD model was also used to perform simulations for setting parametric limits for the Zero-Boil-Off Tank (ZBOT) Experiments Test Matrix in an attempt to avoid boiling in the majority of the test runs that are aimed to study pressure increase rates during self-pressurization. *Supported in part by NASA ISS Physical Sciences Research Program, NASA HQ, USA

  6. Tank characterization report for single-shell Tank 241-B-110

    International Nuclear Information System (INIS)

    Amato, L.C.; De Lorenzo, D.S.; DiCenso, A.T.; Rutherford, J.H.; Stephens, R.H.; Heasler, P.G.; Brown, T.M.; Simpson, B.C.

    1994-08-01

    Single-shell Tank 241-B-110 is an underground storage tank containing radioactive waste. The tank was sampled at various times between August and November of 1989 and later in April of 1990. The analytical data gathered from these sampling efforts were used to generate this Tank Characterization Report. Tank 241-B-110, located in the 200 East Area B Tank Farm, was constructed in 1943 and 1944, and went into service in 1945 by receiving second cycle decontamination waste from the B and T Plants. During the service life of the tank, other wastes were added including B Plant flush waste, B Plant fission product waste, B Plant ion exchange waste, PUREX Plant coating waste, and waste from Tank 241-B-105. The tank currently contains 246,000 gallons of non-complexed waste, existing primarily as sludge. Approximately 22,000 gallons of drainable interstitial liquid and 1,000 gallons of supernate remain. The solid phase of the waste is heterogeneous, for the top layer and subsequent layers have significantly different chemical compositions and are visually distinct. A complete analysis of the top layer has not been done, and auger sampling of the top layer is recommended to fully characterize the waste in Tank 241-B-110. The tank is not classified as a Watch List tank; however, it is a Confirmed Leaker, having lost nearly 10,000 gallons of waste. The waste in Tank 241-B-110 is primarily precipitated salts, some of which are composed of radioactive isotopes. The most prevalent analytes include water, bismuth, iron, nitrate, nitrite, phosphate, silicon, sodium, and sulfate. The major radionuclide constituents are 137 Cs and 90 Sr

  7. RECOMMENDATIONS FOR SAMPLING OF TANK 19 IN F TANK FARM

    Energy Technology Data Exchange (ETDEWEB)

    Harris, S.; Shine, G.

    2009-12-14

    is needed and can be achieved by the addition of the archived samples, they will be analyzed and included in the statistical computations. Initially the analyte concentrations in the residual material on the floor of Tank 19 will be determined separately in the North and the South hemispheres. However, if final sampling results show that differences between the North and South samples are consistent within sampling variation, then the final computations can be based on consolidating all sample results from the tank floor. Recommended locations may be subject to physical tank access and sampling constraints for the additional samples. The recommendations have been discussed in Section 4 and are based on partitioning the Tank 19 floor into an inner and an outer ring and six 60{sup o} sectors depicted in Figure 1. The location of the border between the inner and outer rings is based on dividing the residual material into two approximately equal volumes.

  8. Tank drive : ZCL takes its composite tank technology worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Byfield, M.

    2010-06-15

    Edmonton-based ZCL Composites Inc. is North America's largest manufacturer and supplier of fibreglass reinforced plastic (FRP) underground storage tanks. The company has aggressively pursued new markets in the oil sands, shale gas gas, and other upstream petroleum industries. The manufacturer also targets water and sewage applications, and provides customized corrosion solutions for a variety of industries. The company developed its double-walled FRP tanks in response to Canadian Environmental Protection Act rules requiring cathodic protection for steel tanks, leak detection, and secondary containment. ZCL supplies approximately 90 per cent of the new tanks installed by gasoline retailers in Canada. Future growth is expected to be strong, as many old tanks will soon need to be replaced. The company has also developed a method of transforming underground single wall tanks into secondarily contained systems without digging them out. The company has also recently signed licence agreements with tank manufacturers in China. 3 figs.

  9. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and... liquid tank car tanks. ...

  10. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  11. Strategy plan for management of Hanford tank wastes

    International Nuclear Information System (INIS)

    Humphreys, L.L.; Morgan, S.R.

    1993-01-01

    The Secretary of Energy in 1992 directed Hanford to plan for the retrieval and processing of all stored high level waste at Hanford for disposal at an offsite repository. This substantial change in the tank disposal program's assignment has resulted in a reevaluation of the entire Tank Waste Remediation System (TWRS) strategy. This strategic plan covers that portion of the TWRS strategy related to management of stored tank waste until it is retrieved, processed, and disposed by the disposal program and covers the responsibilities assigned to the ''manage tank waste'' function. The ''manage tank waste'' function is one of the level 2 functions as set forth in the Tank Waste Remediation System Mission Analysis Report (Baynes et al. 1993) and depicted in Figure 1. The following level 3 functions have been developed below the level 2, ''manage tank waste'' function: (1) Store waste; (2) Transfer waste; (3) Characterize, surveil and monitor waste; (4) Restore and upgrade systems; (5) Manage tank waste management system

  12. Free-Spinning-Tunnel Investigation of a 1/28-Scale Model of the North American FJ-4 Airplane with External Fuel Tanks, TED No. NACA AD 3112

    Science.gov (United States)

    Healy, Frederick M.

    1958-01-01

    A supplementary investigation to determine the effect of external fuel tanks on the spin and recovery characteristics of a l/28-scale model of the North American FJ-4 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The model had been extensively tested previously (NACA Research Memorandum SL38A29) and therefore only brief tests were made to evaluate the effect of tank installation. Erect spin tests of the model indicate that flat-type spins-are more prevalent with 200-gallon external fuel tanks than with tanks not installed. The recovery technique determined for spins without tanks, rudder reversal to full against the spin accompanied by simultaneous movement of ailerons to full with the spin, is recommended for spins encountered with external tanks installed. If inverted spins are encountered with external tanks installed, the tanks should be jettisoned and recovery attempted by rudder reversal to full against the spin with ailerons maintained at neutral.

  13. Nuclear fuel technology - Tank calibration and volume determination for nuclear materials accountancy - Part 4: Accurate determination of liquid height in accountancy tanks equipped with dip tubes, slow bubbling rate

    International Nuclear Information System (INIS)

    2008-01-01

    ISO 18213 deals with the acquisition, standardization, analysis, and use of calibration to determine liquid volumes in process tanks for the accountancy of nuclear materials. This part of ISO 18213 is complementary to the other parts, ISO 18213-1 (procedural overview), ISO 18213-2 (data standardization), ISO 18213-3 (statistical methods), ISO 18213-5 (fast bubbling rate) and ISO 18213-6 (in-tank determination of liquid density). The procedure presented herein for determining liquid height from measurements of induced pressure applies specifically when a very slow bubbling rate is employed. A similar procedure that is appropriate for a fast bubbling rate is given in ISO 18213-5. Measurements of the volume and height of liquid in a process accountancy tank are often made in order to estimate or verify the tank's calibration or volume measurement equation. The calibration equation relates the response of the tank's measurement system to some independent measure of tank volume. Beginning with an empty tank, calibration data are typically acquired by introducing a series of carefully measured quantities of some calibration liquid into the tank. The quantity of liquid added, the response of the tank's measurement system, and relevant ambient conditions such as temperature are measured for each incremental addition. Several calibration runs are made to obtain data for estimating or verifying a tank's calibration or measurement equation. A procedural overview of the tank calibration and volume measurement process is given in ISO 18213-1. An algorithm for standardizing tank calibration and volume measurement data to minimize the effects of variability in ambient conditions that prevail during the measurement period is given in ISO 18213-2. The procedure presented in this part of ISO 18213 for determining the height of calibration liquid in the tank from a measurement of the pressure it induces in the tank's measurement system is a vital component of that algorithm. In some

  14. Effect of Tank Size on the Temperature Distributions for Hybrid Photovoltaic/Thermal Water Heaters

    OpenAIRE

    Al-Masri, Ahmad

    2016-01-01

    In the present study an investigation was conducted on the temperature distribution effect for several tank capacities (100 L, 120 L, 150 L and 200 L) having two different aspect ratios (H/D) for each capacity. Hot water is supplied to these tanks by a Hybrid PV/T collector of 4 m² illuminating area. The circulation of water within PV cells cools its surface area to solve the problem occurred in PV cells, where each 1°C increase in the surface module 0.45% of the electrical efficiency decreas...

  15. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to...

  16. Structural Performance Optimization and Verification of an Improved Thin-Walled Storage Tank for a Pico-Satellite

    Directory of Open Access Journals (Sweden)

    Lai Teng

    2017-11-01

    Full Text Available This paper presents an improved mesh storage tank structure obtained using 3D metal printing. The storage tank structure is optimized using a multi-objective uniform design method. Each parameter influencing the storage tank is considered as the optimization factor, and the compression stress ( σ , volume utilization ratio ( v , and weight ( m , are considered as the optimization objectives. Regression equations were established between the optimization factors and targets, the orders of the six factors affecting three target values are analyzed, and the relative deviations between the regression equation and calculation results for σ , v , and m were 9.72%, 4.15%, and 2.94%, respectively. The optimization results showed that the regression equations can predict the structure performance of the improved storage tank, and the values of the influence factors obtained through the optimization are effective. In addition, the compression stress was improved by 24.98%, the volume utilization ratio was increased by 26.86%, and the weight was reduced by 26.83%. The optimized storage tank was developed through 3D metal printing, and the compressive stress was improved by 58.71%, the volume utilization ratio was increased by 24.52%, and the weight was reduced by 11.67%.

  17. Tank characterization report for double-shell tank 241-AP-102

    International Nuclear Information System (INIS)

    LAMBERT, S.L.

    1999-01-01

    In April 1993, Double-Shell Tank 241-AP-102 was sampled to determine waste feed characteristics for the Hanford Grout Disposal Program. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics, expected bulk inventory, and concentration data for the waste contents based on this latest sampling data and information on the history of the tank. Finally, this report makes recommendations and conclusions regarding tank operational safety issues

  18. 27 CFR 24.230 - Examination of tank car or tank truck.

    Science.gov (United States)

    2010-04-01

    ... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall... calibration chart is available at the bonded wine premises, the spirits may be gauged by volume in the tank...

  19. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT... tank car tanks. Editorial Note: At 66 FR 45186, Aug. 28, 2001, an amendment published amending a table...

  20. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  1. Calibrating the input accountancy tanks on THORP

    International Nuclear Information System (INIS)

    Whyte, C.G.; Hillier, A.P.; Temple, A.

    1995-01-01

    BNFL's Thermal Oxide Reprocessing Plant (THORP), at Sellafield in the UK, processes oxide fuels from customers around the world. The fuel moves through the plant from shearing and dissolution in the Head End and subsequently to solvent extraction in the Chemical Plant. Clarified dissolver liquor is accumulated in three large buffer storage tanks (each of approximately 75 m 3 capacity), in the Head End prior to feeding to the Chemical Plant. The amount of dissolver liquor being passed to these tanks is accurately measured in one of two Input Accountancy Tanks, which are each of 23 m 3 working capacity, and are equipped with high accuracy weight and level measurement systems. Several papers have been published which describe the principles applied to achieve the Safeguarding of THORP. This paper describes the setting to work of a key measurement point in the THORP process and details the complex trials that were begun during the early commissioning phases, to ensure that these accountancy systems would eventually be fully characterized

  2. History of waste tank 1, 1954 through 1974

    International Nuclear Information System (INIS)

    McNatt, F.G.; Stevens, W.E.

    1978-10-01

    Tank 1 was placed in service as a receiver of high heat waste (HW) in October 1954. The supernate was removed from the tank in October 1961 and the tank began receiving low heat waste (LW) in January 1962. The LW supernate was decanted in October 1962 and prior to beginning a second HW filling in April 1963. The supernate from this HW filling was decanted twice in 1969. Sludge removal operations were conducted in May and August 1969 in order to use tank 1 for salt storage. The first evaporator concentrate receipt was in September 1969 and tank 1 has only been used as a salt storage tank since. Leakage from the tank into the annulus was discovered in February 1969. Deposits less than 1/4 inch deep of leaked waste were found on the pan floor. However, no leak sites have been found. Inspections of the tank interior and annulus were made by direct observation and by using a 40-ft optical periscope. Samples of sludge, supernate, tank vapors, and leaked material into the annulus were analyzed and tank temperature profiles were taken. Deflection measurements were made of the primary tank bottom knuckle plate while filling the tank with salt. Two vertical cooling coils have failed. Several equipment modifications and various equipment repairs were made. 18 figures, 2 tables

  3. Double-Shell Tank Visual Inspection Changes Resulting from the Tank 241-AY-102 Primary Tank Leak

    International Nuclear Information System (INIS)

    Girardot, Crystal L.; Washenfelder, Dennis J.; Johnson, Jeremy M.; Engeman, Jason K.

    2013-01-01

    As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY-102 (AY-102) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY-102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances of the tank AY-102 1eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor

  4. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In...

  5. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Boreholes C3830, C3831, C3832 and RCRA Borehole 299-W10-27

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28,4.43, and 4.59. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in April 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C3830, C3831, and C3832 in the TX Tank Farm, and from borehole 299-W-10-27 installed northeast of the TY Tank Farm.

  6. Advanced Design Mixer Pump Tank 18 Design Modifications Summary Report

    International Nuclear Information System (INIS)

    Adkins, B.J.

    2002-01-01

    The Westinghouse Savannah River Company (WSRC) is preparing to retrieve high level waste (HLW) from Tank 18 in early FY03 to provide feed for the Defense Waste Processing Facility (DWPF) and to support tank closure in FY04. As part of the Tank 18 project, WSRC will install a single Advanced Design Mixer Pump (ADMP) in the center riser of Tank 18 to mobilize, suspend, and mix radioactive sludge in preparation for transfer to Tank 7. The use of a single ADMP is a change to the current baseline of four (4) standard slurry pumps used during previous waste retrieval campaigns. The ADMP was originally conceived by Hanford and supported by SRS to provide a more reliable and maintainable mixer pump for use throughout the DOE complex. The ADMP underwent an extensive test program at SRS between 1998 and 2002 to assess reliability and hydraulic performance. The ADMP ran for approximately 4,200 hours over the four-year period. A detailed tear down and inspection of the pump following the 4,2 00-hour run revealed that the gas mechanical seals and anti-friction bearings would need to be refurbished/replaced prior to deployment in Tank 18. Design modifications were also needed to meet current Authorization Basis safety requirements. This report documents the modifications made to the ADMP in support of Tank 18 deployment. This report meets the requirements of Tanks Focus Area (TFA) Milestone 3591.4-1, ''Issue Report on Modifications Made to the ADMP,'' contained in Technical Task Plan (TTP) SR16WT51, ''WSRC Retrieval and Closure.''

  7. Tank Characterization Report for Double-Shell Tank (DST) 241-AN-107

    International Nuclear Information System (INIS)

    ADAMS, M.R.

    2000-01-01

    This report interprets information about the tank answering a series of six questions covering areas such as information drivers, tank history, tank comparisons, disposal implications, data quality and quantity, and unique aspects of the tank

  8. Stabilization of in-tank residual wastes and external tank soil contamination for the Hanford tank closure program: application to the AX tank farm

    Energy Technology Data Exchange (ETDEWEB)

    SONNICHSEN, J.C.

    1998-10-12

    Mixed high-level waste is currently stored in underground tanks at the US Department of Energy's (DOE's) Hanford Site. The plan is to retrieve the waste, process the water, and dispose of the waste in a manner that will provide less long-term health risk. The AX Tank Farm has been identified for purposes of demonstration. Not all the waste can be retrieved from the tanks and some waste has leaked from these tanks into the underlying soil. Retrieval of this waste could result in additional leakage. During FY1998, the Sandia National Laboratory was under contract to evaluate concepts for immobilizing the residual waste remaining in tanks and mitigating the migration of contaminants that exist in the soil column. Specifically, the scope of this evaluation included: development of a layered tank fill design for reducing water infiltration; development of in-tank getter technology; mitigation of soil contamination through grouting; sequestering of specific radionuclides in soil; and geochemical and hydrologic modeling of waste-water-soil interactions. A copy of the final report prepared by Sandia National Laboratory is attached.

  9. POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Eibling, R; Erich Hansen, E; Bradley Pickenheim, B

    2007-03-29

    High level waste tanks 18F and 19F have residual mounds of waste which may require removal before the tanks can be closed. Conventional slurry pump technology, previously used for waste removal and tank cleaning, has been incapable of removing theses mounds from tanks 18F and 19F. A mechanical cleaning method has been identified that is potentially capable of removing and transferring the mound material to tank 7F for incorporation in a sludge batch for eventual disposal in high level waste glass by the Defense Waste Processing Facility. The Savannah River National Laboratory has been requested to evaluate whether the material transferred from tanks 18F/19F by the mechanical cleaning technology can later be suspended in Tank 7F by conventional slurry pumps after mixing with high level waste sludge. The proposed mechanical cleaning process for removing the waste mounds from tanks 18 and 19 may utilize a high pressure water jet-eductor that creates a vacuum to mobilize solids. The high pressure jet is also used to transport the suspended solids. The jet-eductor system will be mounted on a mechanical crawler for movement around the bottom of tanks 18 and 19. Based on physical chemical property testing of the jet-eductor system processed IE-95 zeolite and size-reduced IE-95 zeolite, the following conclusions were made: (1) The jet-eductor system processed zeolite has a mean and median particle size (volume basis) of 115.4 and 43.3 microns in water. Preferential settling of these large particles is likely. (2) The jet-eductor system processed zeolite rapidly generates settled solid yield stresses in excess of 11,000 Pascals in caustic supernates and will not be easily retrieved from Tank 7 with the existing slurry pump technology. (3) Settled size-reduced IE-95 zeolite (less than 38 microns) in caustic supernate does not generate yield stresses in excess of 600 Pascals in less than 30 days. (4) Preferential settling of size-reduced zeolite is a function of the amount of

  10. 241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Gunter, Jason R.

    2013-08-26

    This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

  11. USA soovib relvatarnete abil vähendada Iraani mõjuvõimu / Jürgen Tamme

    Index Scriptorium Estoniae

    Tamme, Jürgen

    2007-01-01

    Ilmunud ka: Postimees : na russkom jazõke, 31. juuli 2007, lk. 5. USA president George W. Bushi administratsioon soovib Kongressi heakskiitu plaanile, mis näeb ette Pärsia lahe piirkonnas asuvate USA liitlaste rahaliste toetuste suurendamist ja neile relvastuse saatmist. Lisa: USA tarned

  12. Gravity settling of Hanford single-shell tank sludges

    International Nuclear Information System (INIS)

    Brooks, K.P.; Rector, D.R.; Smith, P.A.

    1999-01-01

    The US Department of Energy plans to use gravity settling in million-gallon storage tanks while pretreating sludge on the Hanford site. To be considered viable in these large tanks, the supernatant must become clear, and the sludge must be concentrated in an acceptable time. These separations must occur over the wide range of conditions associated with sludge pretreatment. In the work reported here, gravity settling was studied with liter quantities of actual single-shell tank sludge from hanford Tank 241-C-107. Because of limited sludge availability, an approach was developed using the results of these liter-scale tests to predict full-scale operation. Samples were centrifuged at various g-forces to simulate compaction with higher layers of sludge. A semi-empirical settling model was then developed incorporating both the liter-scale settling data and the centrifuge compression results to describe the sludge behavior in a million-gallon tank. The settling model predicted that the compacted sludge solids would exceed 20 wt% in less than 30 days of settling in a 10-m-tall tank for all pretreatment steps

  13. Tank characterization report for single-shell tank 241-T-104

    International Nuclear Information System (INIS)

    DiCenso, A.T.; Simpson, B.C.

    1994-01-01

    In August 1992, Single-Shell Tank 241-T-104 was sampled to determine proper handling of the waste, to address corrosivity and compatibility issues, and to comply with requirements of the Washington Administrative Code (Ecology, 1991). This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics. It also addresses expected concentration and bulk inventory data for the waste contents based on this latest sampling data and background tank information. The purpose of this report is to describe and characterize the waste in Single-Shall Tank 241-T-104 (hereafter, Tank 241-T-104) based on information given from various sources. This report summarizes the available information regarding the waste in Tank 241-T-104, and using the historical information to place the analytical data in context, arranges this information in a useful format for making management and technical decisions concerning this waste tank. In addition, conclusions and recommendations are given based on safety issues and further characterization needs

  14. Utilization of the MPI Process for in-tank solidification of heel material in large-diameter cylindrical tanks

    Energy Technology Data Exchange (ETDEWEB)

    Kauschinger, J.L.; Lewis, B.E.

    2000-01-01

    A major problem faced by the US Department of Energy is remediation of sludge and supernatant waste in underground storage tanks. Exhumation of the waste is currently the preferred remediation method. However, exhumation cannot completely remove all of the contaminated materials from the tanks. For large-diameter tanks, amounts of highly contaminated ``heel'' material approaching 20,000 gal can remain. Often sludge containing zeolite particles leaves ``sand bars'' of locally contaminated material across the floor of the tank. The best management practices for in-tank treatment (stabilization and immobilization) of wastes require an integrated approach to develop appropriate treatment agents that can be safely delivered and mixed uniformly with sludge. Ground Environmental Services has developed and demonstrated a remotely controlled, high-velocity jet delivery system termed, Multi-Point-Injection (MPI). This robust jet delivery system has been field-deployed to create homogeneous monoliths containing shallow buried miscellaneous waste in trenches [fiscal year (FY) 1995] and surrogate sludge in cylindrical (FY 1998) and long, horizontal tanks (FY 1999). During the FY 1998 demonstration, the MPI process successfully formed a 32-ton uniform monolith of grout and waste surrogates in about 8 min. Analytical data indicated that 10 tons of zeolite-type physical surrogate were uniformly mixed within a 40-in.-thick monolith without lifting the MPI jetting tools off the tank floor. Over 1,000 lb of cohesive surrogates, with consistencies similar to Gunite and Associated Tank (GAAT) TH-4 and Hanford tank sludges, were easily intermixed into the monolith without exceeding a core temperature of 100 F during curing.

  15. Determination of flow patterns in gold leaching tanks using Computational Fluid Dynamics code Comsol multiphysics 3.4

    International Nuclear Information System (INIS)

    Donkor, M. O.

    2013-06-01

    Computational fluid dynamics (CFD) technique was adopted to investigate the hydrodynamics of gold leaching tanks. Comsol multiphysics code 3.4 provided the platform for modelling and simulation of the flow pattern of the gold leaching process. The impeller motion was integrated in the geometry using the simplified numerical method technique. The k-ε model was used to solve the Reynolds-averaged Navier-Stokes equations and velocity distributions in the vertical and horizontal section in the tank was obtained. It was found that the flow distribution in the simulated flow field was consistent with the characteristic down pumping flow pattern of the axial impellers. The convergence of the iterative procedure was tested and reasonable predictions were achieved for an industrial reactor. There were significant variations in velocity magnitudes with the impeller discharge region recording the highest. CFD modelling was consistent with the tracer test results and demonstrated the use of reactors active volume. The obtained CFD results showed a good agreement with literature information. Because CFD is capable of predicting the complete velocity distribution and simulating the tracer experiment in a tank, it provided a good alternative to carry out resistance time distribution (RDT) studies. CFD modelling was useful and informative tool for analyzing problematic hydrodynamics of gold leaching tanks and for the design of theoretical corrective measures and can be extended to other plants like water treatment plant and oil processing plant. (author)

  16. FT-IR spectroscopic study on the hofmann-Td type complex: M(4-Phenylpyridine)2M'(CN)4 (M=Ni; M'=Cd)

    International Nuclear Information System (INIS)

    Parlak, C.

    2005-01-01

    New Hofmann-Td type complex in the form of M(4-Phenylpyridine) 2 M'(CN) 4 (M = Ni, M' = Cd) was prepared in powder form and its infrared spectra is reported in the region of 4000-200 cm-1. From the spectral findings, this compound is similar in structure to the Hofmann-Td type complexes

  17. Supporting document for the historical tank content estimate for S tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200 West Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to all the SSTs in the S Tank Farm of the southwest quadrant of the 200 West Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs

  18. Supporting document for the historical tank content estimate for A Tank Farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the A Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs

  19. Supporting document for the historical tank content estimate for A Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the A Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  20. Supporting document for the historical tank content estimate for S tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200 West Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to all the SSTs in the S Tank Farm of the southwest quadrant of the 200 West Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  1. Supporting document for the historical tank content estimate for B Tank Farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the B Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs

  2. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  3. Feasibility Study on Using Two Mixer Pumps for Tank 241-AY-102 Waste Mixing

    International Nuclear Information System (INIS)

    Onishi, Yasuo; Wells, Beric E.

    2004-01-01

    The current waste retrieval plan at Hanford calls for using two mixer pumps to mix the waste stored in double-shell Tank 214-AY-102. The objective of this evaluation was to determine whether two rotating 300-hp mixer pumps placed 22 ft (6.7 m) off-center in the tank could adequately mix the AY-102 waste. The tank currently contains high-level waste that is 248 inches (6.3 m) deep, comprising 62 inches (1.58 m) of sludge and 186 inches (4.72 m) of supernatant liquid (Galbraith and others 2002). Based on the available data, AY-102 waste properties were determined, including the densities of liquid and agglomerated settled solids and crystals, the volume fraction of settled solids, the solid particle size distribution, the liquid and slurry viscosities, and the yield stress in shear (shear strength) of the settled solids layer. To evaluate the likely and bounding cases of AY-102 waste mixing, sludge erosion modeling was performed with a median value of 1,090 Pa (likely condition) and a conservative (more difficult to erode) 97.5 percentile value of 2,230 Pa for shear strength. According to model predictions, the two rotating mixer pumps would erode 89% of the sludge with shear strength of 1,090 Pa. They would erode sludge up to 41 ft (12.5 m) away from the mixer pumps but would not mobilize the bottom 2.5 inches (0.06-m) of sludge or sludge in the areas next to the tank wall, more than 26 ft (7.9 m) away. Once the sludge is mobilized, the solids were predicted to be uniformly suspended within the tank within a 1-vol% concentration variation except those in few inches at the bottom. With shear strength of 2,230 Pa, the two pumps would erode 85% of the sludge, slightly less than the 1,090-Pa shear strength case. In this case, the pump jets would mobilize the sludge up to 38 ft (11.6 m), except the bottom 2.5 inches of sludge. The mixer pumps would also leave the sludge at the tank wall, which is 20 ft or more from the pumps. Similar to the 1,090 Pa case, the solids were

  4. Viewing Systems for Large Underground Storage Tanks

    International Nuclear Information System (INIS)

    Heckendorn, F.M.; Robinson, C.W.; Anderson, E.K.; Pardini, A.F.

    1996-01-01

    Specialized remote video systems have been successfully developed and deployed in a number of large radiological Underground Storage Tanks (USTs)that tolerate the hostile tank interior, while providing high resolution video to a remotely located operator. The deployment is through 100 mm (4 in) tank openings, while incorporating full video functions of the camera, lights, and zoom lens. The usage of remote video minimizes the potential for personnel exposure to radiological and hazardous conditions, and maximizes the quality of the visual data used to assess the interior conditions of both tank and contents. The robustness of this type of remote system has a direct effect on the potential for radiological exposure that personnel may encounter. The USTs typical of the Savannah River and Hanford Department Of Energy - (DOE) sites are typically 4.5 million liter (1.2 million gal) units under earth. or concrete overburden with limited openings to the surface. The interior is both highly contaminated and radioactive with a wide variety of nuclear processing waste material. Some of the tanks are -flammable rated -to Class 1, Division 1,and personnel presence at or near the openings should be minimized. The interior of these USTs must be assessed periodically as part of the ongoing management of the tanks and as a step towards tank remediation. The systems are unique in their deployment technology, which virtually eliminates the potential for entrapment in a tank, and their ability to withstand flammable environments. A multiplicity of components used within a common packaging allow for cost effective and appropriate levels of technology, with radiation hardened components on some units and lesser requirements on other units. All units are completely self contained for video, zoom lens, lighting, deployment,as well as being self purging, and modular in construction

  5. Assessment of gas accumulation and retention -- Tank 241-SY-101

    International Nuclear Information System (INIS)

    Alleman, R.T.; Burke, T.M.; Reynolds, D.A.; Simpson, D.E.

    1993-03-01

    An approximate analysis has been carried out to assess and estimate the maximum quantity of gas that is likely to be accumulated within waste tank 241-SY-101, and the maximum quantity which is likely to be retained after gas release events (GRE). According to the phenomenological models used for this assessment, based on interpretation of current and recent operational data, the estimated gas generation rate in the tank is approximately 4 m 3 /day (147 ft 3 /day). About half of this gas is released as it is generated, which is (essentially) continuously. The remainder is accumulated within the slurry layer of settled solids at the bottom of the tank, and released episodically in GREs, known as ''burps,'' that are induced by unstable buoyant conditions which develop when sufficient gas accumulates in the slurry. Calculations based on gas volumes to cause neutral buoyancy in the slurry predict the following: the maximum gas accumulation (at 1 atm pressure) that can occur without triggering a GRE is in the range of 606 to 1,039 m 3 (21,400 to 36,700 ft 3 ); and the maximum gas retention immediately after a GRE is equal to the maximum accumulation minus the gas released in the GRE. GREs do not necessarily involve all of the slurry. In the largest GREs, which are assumed to involve all of the slurry, the minimum gas release (at 1 atm pressure) is calculated to be in the range of 193 to 328 m 3 (6,800 to 11,600 ft 3 ). The corresponding maximum gas retention would be 413 to 711 m 3 (14,600 to 25,100 ft 3 )

  6. The Hanford Site Tank Waste Remediation System: An update

    International Nuclear Information System (INIS)

    Alumkal, W.T.; Babad, H.; Harmon, H.D.; Wodrich, D.D.

    1994-01-01

    The U.S. Department of Energy's Hanford Site, located in southeastern Washington State, has the most diverse and largest amount of highly radioactive waste in the United States. High-level radioactive waste has been stored in large underground tanks since 1944. Approximately 230,000 m 3 (61 Mgal) of caustic liquids, slurries, saltcakes, and sludges have 137 Cs accumulated in 177 tanks. In addition, significant amounts of 90 Sr and were removed from the tank waste, converted to salts, doubly encapsulated in metal containers., and stored in water basins. A Tank Waste Remediation System Program was established by the U.S. Department of Energy in 1991 to safely manage and immobilize these wastes in anticipation of permanent disposal of the high-level waste fraction in a geologic repository. Since 1991, progress has been made resolving waste tank safety issues, upgrading Tank Farm facilities and operations, and developing a new strategy for retrieving, treating, and immobilizing the waste for disposal

  7. Full tanks - empty plates. The price for agrian fuels. Hunger, expulsion, environmental destruction; Volle Tanks - leere Teller. Der Preis fuer Agrokraftstoffe. Hunger, Vertreibung, Umweltzerstoerung

    Energy Technology Data Exchange (ETDEWEB)

    Hees, W.; Mueller, O.; Schueth, M. (eds.)

    2007-07-01

    With the cereals, which is needed in order to fill a 100-Liter-tank of a jeep, one person can be nourished one year. Whether it ethically is justified to convert food into fuel, is one of the questions, which is discussed in the book under consideration. The agro fuels forced by the European Community and the U.S.A. have given rise to a gold-digger spirit in the agrarian industry. This also is applied to the Third World, where presently plantations of gigantic extent develop. The consequences are disastrous: loss of biodiversity, heating up of the world climate and hunger.

  8. Drift Tube Linac Conditioning of Tank1

    CERN Document Server

    Shafqat, N; Toor, W A

    2014-01-01

    Tank1 of the Drift Tube Linac (DTL) of the Linac4 has been conditioned at the Linac4 tunnel. The tank was tuned for resonance at 352.2 MHz, and stable operation has been achieved with 725 µs long RF pulses at a repetition rate of 1 Hz. The maximum RF level that has been reached is 810 kW with a pulse width of 600 µs. Since this was the first RF structure exclusively conditioned in the Linac4 tunnel with the operation and control software of Linac4, some related issues and limitations had to be taken into account.

  9. Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22

    International Nuclear Information System (INIS)

    Brown, Christopher F.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

    2008-01-01

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.7 and 4.25. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2006. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at the Hanford Site. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. This report also presents the interpretation of data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone below the C Tank Farm. The information presented in this report supports the WMA A-AX, C, and U field investigation report in preparation by CH2M HILL Hanford Group, Inc

  10. Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.7 and 4.25. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2006. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at the Hanford Site. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. This report also presents the interpretation of data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone below the C Tank Farm. The information presented in this report supports the WMA A-AX, C, and U field investigation report in preparation by CH2M HILL Hanford Group, Inc.

  11. Fuel tank integrity research : fuel tank analyses and test plans

    Science.gov (United States)

    2013-04-15

    The Federal Railroad Administrations Office of Research : and Development is conducting research into fuel tank : crashworthiness. Fuel tank research is being performed to : determine strategies for increasing the fuel tank impact : resistance to ...

  12. Tank characterization report for double-shell Tank 241-AW-105

    International Nuclear Information System (INIS)

    DiCenso, A.T.; Amato, L.C.; Franklin, J.D.; Lambie, R.W.; Stephens, R.H.; Simpson, B.C.

    1994-01-01

    In May 1990, double-shell Tank 241-AW-105 was sampled to determine proper handling of the waste, to address corrosivity and compatibility issues, and to comply with requirements of the Washington Administrative Code. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics. It also addresses expected concentration and bulk inventory data for the waste contents based on this latest sampling data and background tank information. This report summarizes the available information regarding the waste in Tank 241-AW-105, and using the historical information to place the analytical data in context, arranges this information in a useful format for making management and technical decisions concerning this waste tank. In addition, conclusions and recommendations are given based on safety issues and further characterization needs

  13. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    Radiation protection of personnel and the public is accomplished by establishing a well defined Radiation Protection Organization to ensure that appropriate controls on radioactive materials and radiation sources are implemented and documented. This Requirements Identification Document (RID) applies to the activities, personnel, structures, systems, components, and programs involved in executing the mission of the Tank Farms. The physical boundaries within which the requirements of this RID apply are the Single Shell Tank Farms, Double Shell Tank Farms, 242-A Evaporator-Crystallizer, 242-S, T Evaporators, Liquid Effluent Retention Facility (LERF), Purgewater Storage Facility (PWSF), and all interconnecting piping, valves, instrumentation, and controls. Also included is all piping, valves, instrumentation, and controls up to and including the most remote valve under Tank Farms control at any other Hanford Facility having an interconnection with Tank Farms. The boundary of the structures, systems, components, and programs to which this RID applies, is defined by those that are dedicated to and/or under the control of the Tank Farms Operations Department and are specifically implemented at the Tank Farms.

  14. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 4

    International Nuclear Information System (INIS)

    1994-04-01

    Radiation protection of personnel and the public is accomplished by establishing a well defined Radiation Protection Organization to ensure that appropriate controls on radioactive materials and radiation sources are implemented and documented. This Requirements Identification Document (RID) applies to the activities, personnel, structures, systems, components, and programs involved in executing the mission of the Tank Farms. The physical boundaries within which the requirements of this RID apply are the Single Shell Tank Farms, Double Shell Tank Farms, 242-A Evaporator-Crystallizer, 242-S, T Evaporators, Liquid Effluent Retention Facility (LERF), Purgewater Storage Facility (PWSF), and all interconnecting piping, valves, instrumentation, and controls. Also included is all piping, valves, instrumentation, and controls up to and including the most remote valve under Tank Farms control at any other Hanford Facility having an interconnection with Tank Farms. The boundary of the structures, systems, components, and programs to which this RID applies, is defined by those that are dedicated to and/or under the control of the Tank Farms Operations Department and are specifically implemented at the Tank Farms

  15. In-Tank Elutriation Test Report And Independent Assessment

    International Nuclear Information System (INIS)

    Burns, H. H.; Adamson, D. J.; Qureshi, Z. H.; Steeper, T. J.

    2011-01-01

    The Department of Energy (DOE) Office of Environmental Management (EM) funded Technology Development and Deployment (TDD) to solve technical problems associated with waste tank closure for sites such as Hanford Site and Savannah River Site (SRS). One of the tasks supported by this funding at Savannah River National Laboratory (SRNL) and Pacific Northwest Laboratory (PNNL) was In-Tank Elutriation. Elutriation is the process whereby physical separation occurs based on particle size and density. This report satisfies the first phase of Task WP 1 .3.1.1 In-Tank Elutriation, which is to assess the feasibility of this method of separation in waste tanks at Hanford Site and SRS. This report includes an analysis of scoping tests performed in the Engineering Development Laboratory of SRNL, analysis of Hanford's inadvertent elutriation, the viability of separation methods such as elutriation and hydrocyclones and recommendations for a path forward. This report will demonstrate that the retrieval of Hanford salt waste tank S-112 very successfully decreased the tank's inventories of radionuclides. Analyses of samples collected from the tank showed that concentrations of the major radionuclides Cs-136 and Sr-90 were decreased by factors of 250 and 6 and their total curie tank inventories decreased by factors of 60,000 and 2000. The total tank curie loading decreased from 300,000 Ci to 55 Ci. The remaining heel was nearly all innocuous gibbsite, Al(OH) 3 . However, in the process of tank retrieval approximately 85% of the tank gibbsite was also removed. Significant amounts of money and processing time could be saved if more gibbsite could be left in tanks while still removing nearly all of the radionuclides. There were factors which helped to make the elutriation of Tank S-112 successful which would not necessarily be present in all salt tanks. 1. The gibbsite particles in the tank were surprisingly large, as much as 200 o)m. The gibbsite crystals had probably grown in size over

  16. Reusable LH2 tank technology demonstration through ground test

    Science.gov (United States)

    Bianca, C.; Greenberg, H. S.; Johnson, S. E.

    1995-01-01

    The paper presents the project plan to demonstrate, by March 1997, the reusability of an integrated composite LH2 tank structure, cryogenic insulation, and thermal protection system (TPS). The plan includes establishment of design requirements and a comprehensive trade study to select the most suitable Reusable Hydrogen Composite Tank system (RHCTS) within the most suitable of 4 candidate structural configurations. The 4 vehicles are winged body with the capability to deliver 25,000 lbs of payload to a circular 220 nm, 51.6 degree inclined orbit (also 40,000 lbs to a 28.5 inclined 150 nm orbit). A prototype design of the selected RHCTS is established to identify the construction, fabrication, and stress simulation and test requirements necessary in an 8 foot diameter tank structure/insulation/TPS test article. A comprehensive development test program supports the 8 foot test article development and involves the composite tank itself, cryogenic insulation, and integrated tank/insulation/TPS designs. The 8 foot diameter tank will contain the integrated cryogenic insulation and TPS designs resulting from this development and that of the concurrent lightweight durable TPS program. Tank ground testing will include 330 cycles of LH2 filling, pressurization, body loading, depressurization, draining, and entry heating.

  17. Analysis of simulated hypervelocity impacts on a titanium fuel tank from the Salyut 7 space station

    Science.gov (United States)

    Jantou, V.; McPhail, D. S.; Chater, R. J.; Kearsley, A.

    2006-07-01

    The aim of this project was to gain a better understanding of the microstructural effects of hypervelocity impacts (HVI) in titanium alloys. We investigated a titanium fuel tank recovered from the Russian Salyut 7 space station, which was launched on April 19, 1982 before being destroyed during an un-controlled re-entry in 1991, reportedly scattering debris over parts of South America. Several sections were cut out from the tank in order to undergo HVI simulations using a two-stage light gas gun. In addition, a Ti-6Al-4V alloy was studied for further comparison. The crater morphologies produced were successfully characterised using microscope-based white light interferometry (Zygo ® Corp, USA), while projectile remnants were identified via secondary ion mass spectrometry (SIMS). Microstructural alterations were investigated using focused ion beam (FIB) milling and depth profiling, as well as transmission electron microscopy (TEM). There was evidence of a very high density of dislocations in the vicinity of the crater. The extent of the deformation was localised in a region of about one to two radii of the impact craters. No notable differences were observed between the titanium alloys used during the hypervelocity impact tests.

  18. Valitsus vaeb USA viisavabadusenõudeid / Raimo Poom

    Index Scriptorium Estoniae

    Poom, Raimo

    2008-01-01

    USA viisavabaduse aluseks oleva vastastikuse mõistmise memorandumi projekt on täna valitsuse istungi päevakorras. Tšehhi ja USA on juba sõlminud kahepoolse memorandumi, mõnedel hinnangutel on Tšehhi järele andnud kogu ameeriklaste nõudmiste paketile. Lisa: Andmekaitsjad pole viimase seisuga kursis

  19. The effect of dilution on the gas-retention behavior of Tank 241-SY-101 waste

    International Nuclear Information System (INIS)

    Bredt, P.R.; Tingey, S.M.; Shade, E.H.

    1995-09-01

    The effect of dilution on gas retention in waste from Tank 241-SY-101 was investigated. A composite sample was prepared from material collected during the Window ''C'' and Window ''E'' sampling events. The composite contained material from both the convective and nonconvective layer in the proportions existing in the tank. Operation of the mixer pump in Tank 241-SY-101 has homogenized the tank material, and dilution of the current waste would require additional mixing; therefore, no attempt was made to use unhomogenized tank waste to prepare the composite. The composite was diluted with 2 M NaOH at ratios of 0.5:1, 0.75: 1, 1:1, and 3:1 per volume (2 M NaOH:tank waste)

  20. Technical Baseline Summary Description for the Tank Farm Contractor

    International Nuclear Information System (INIS)

    TEDESCHI, A.R.

    2000-01-01

    This document is a revision of the document titled above, summarizing the technical baseline of the Tank Farm Contractor. It is one of several documents prepared by CH2M HILL Hanford Group, Inc. to support the U.S. Department of Energy Office of River Protection Tank Waste Retrieval and Disposal Mission at Hanford

  1. Tank characterization report for single-shell tank 241-U-110

    International Nuclear Information System (INIS)

    Brown, T.M.; Jensen, L.

    1993-04-01

    This report investigates the nature of the waste in tank U-110 using historical and current information. When characterizing tank waste, several important properties are considered. First, the physical characteristics of the waste are presented, including waste appearance, density, and size of waste particles. The existence of any exotherms in the tank that may present a safety concern is investigated. Finally, the radiological and chemical composition of the tank are presented

  2. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Special requirements for class 114A * * * tank car... SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  3. Feed tank transfer requirements

    Energy Technology Data Exchange (ETDEWEB)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

  4. Feed tank transfer requirements

    International Nuclear Information System (INIS)

    Freeman-Pollard, J.R.

    1998-01-01

    This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented

  5. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes... car tanks. ...

  6. Viisavabadus USA-ga läheneb vaidlustes / Ahto Lobjakas

    Index Scriptorium Estoniae

    Lobjakas, Ahto, 1970-

    2008-01-01

    USA soovib Eesti kodanike viisanõudest vabastamiseks kõrgendatud turvameetmeid. Viisavabadust taotlev Tšehhi sõlmis USA-ga vastastikuse mõistmise memorandumi, EL-i nn. vanad liikmesriigid ja Euroopa Komisjon süüdistavad USA-ga kahepoolsete lepingute sõlmijaid Euroopa ühtsuse lõhestamises. Lisa: Eesti sõlmib lepingu ilmselt märtsi keskel

  7. Tank 241-A-104 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of auger samples from tank 241-A-104. This Tank Characterization Plan will identify characterization objectives pertaining to sample collection, hot cell sample isolation, and laboratory analytical evaluation and reporting requirements in addition to reporting the current contents and status of the tank as projected from historical information

  8. Results for the first quarter calendar year 2017 tank 50H salt solution sample

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-04-12

    In this memorandum, the chemical and radionuclide contaminant results from the First Quarter Calendar Year 2017 (CY17) sample of Tank 50H salt solution are presented in tabulated form. The First Quarter CY17 Tank 50H samples [a 200 mL sample obtained 6” below the surface (HTF-50-17-7) and a 1 L sample obtained 66” from the tank bottom (HTF-50-17-8)] were obtained on January 15, 2017 and received at Savannah River National Laboratory (SRNL) on January 16, 2017. Prior to obtaining the samples from Tank 50H, a single pump was run at least 4.4 hours and the samples were pulled immediately after pump shut down. All volatile organic analysis (VOA) and semi-volatile organic analysis (SVOA) were performed on the surface sample and all other analyses were performed on the variable depth sample. The information from this characterization will be used by Savannah River Remediation (SRR) for the transfer of aqueous waste from Tank 50H to the Saltstone Production Facility, where the waste will be treated and disposed of in the Saltstone Disposal Facility. This memorandum compares results, where applicable, to Saltstone Waste Acceptance Criteria (WAC) limits and targets. The chemical and radionuclide contaminant results from the characterization of the First Quarter CY17 sampling of Tank 50H were requested by SRR personnel and details of the testing are presented in the SRNL Task Technical and Quality Assurance Plan (TTQAP). This memorandum is part of Deliverable 2 from SRR request. Data pertaining to the regulatory limits for Resource Conservation and Recovery Act (RCRA) metals will be documented at a later time per the TTQAP for the Tank 50H saltstone task.

  9. Impact of an exploding LPG rail tank car onto a CASTOR spent fuel cask

    Energy Technology Data Exchange (ETDEWEB)

    Droste, B.; Probst, U.; Heller, W

    1999-07-01

    On 27 April 1999 a fire test was performed with a 45 m{sup 3} rail tank car partially filled with 10 m3 pressurised liquid propane. A CASTOR THTR/AVR spent fuel transport cask was positioned beside the propane tank as to suffer maximum damage from any explosion. About 17 min after fire ignition the propane tank ruptured. This resulted in a BLEVE with an expanding fireball, heat radiation, explosion overpressure, and tank fragments projected towards the cask. This imposed severe mechanical and thermal impacts directly onto the CASTOR cask, moving it 17 m from its original position. This involved rotation of the cask with the lid end travelling 10 m before it crashed into the ground. Post-test investigations of the CASTOR cask demonstrated that no loss of leaktightness or containment and shielding integrity occurred. (author)

  10. Tank characterization report for single-shell tank 241-S-104

    International Nuclear Information System (INIS)

    DiCenso, A.T.; Simpson, B.C.

    1994-01-01

    In July and August 1992, Single-Shell Tank 241-S-104 was sampled as part of the overall characterization effort directed by the Hanford Federal Facility Agreement and Consent Order. Sampling was also performed to determine proper handling of the waste, to address corrosivity and compatibility issues, and to comply with requirements of the Washington Administrative Code. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics. It also presents expected concentration and bulk inventory data for the waste contents based on this latest sampling data and background historical and surveillance tank information. Finally, this report makes recommendations and conclusions regarding operational safety. The purpose of this report is to describe the characteristics the waste in Single-Shell Tank 241-S-104 (hereafter, Tank 241-S-104) based on information obtained from a variety of sources. This report summarizes the available information regarding the chemical and physical properties of the waste in Tank 241-S-104, and using the historical information to place the analytical data in context, arranges this information in a format useful for making management and technical decisions concerning waste tank safety and disposal issues. In addition, conclusions and recommendations are presented based on safety issues and further characterization needs

  11. Tank vent processing system having a corrosion preventive device

    International Nuclear Information System (INIS)

    Ouchi, Shoichi; Sato, Hirofumi

    1987-01-01

    Purpose: To prevent corrosion of a tank vent processing device by injecting an oxygen gas. Constitution: Oxygen gas and phosphorous at high temperature are poured into a tank vent processing device and amorphous oxide layers optimum to the prevention of external corrosion are formed to the inner surface of the device. Since the corrosion preventive device using the oxygen gas injection can be constituted as a relatively simple device, it is more economical than constituting a relatively large tank vent processing device with corrosion resistant stainless steels. (Kamimura, M.)

  12. Upscaling of U(VI) Desorption and Transport Using Decimeter-Scale Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Derrick [Colorado School of Mines, Golden, CO (United States)

    2014-12-22

    Two decimeter-scale 2D experiments were conducted in the proposed research. To the extent possible, the first experiment (2.44 m x 0.61 m x 10 cm) was be packed to reproduce the observed distributions of sediment size fractions in the subsurface at the tracer test site. Four size fractions of sediment (<125m, 125-250m, 250m to 2 mm, >2mm) were packed in the tank and the size fractions were placed in a sediment structure imitating pattern rather than the block pattern used in the previous experiments conducted with Naturita sediment. The second tank used the same total amount of sediment and proportions of the three size fractions used in the first experiment but was packed at larger geostatistical correlation lengths to evaluate how the scale of heterogeneity affects the upscaling results. This experiment was conducted with the goal of trying to determine how the upscaling would be affected by the diffusion path length associated with low permeability zones. The initial conditions in the tanks were based on observed field conditions. The influent was a synthetic groundwater that mimicked uncontaminated groundwater observed at the Naturita site. Samples were collected from side and end ports of the tank and were analyzed for U(VI), alkalinity, pH and major ions as was done in previous experiments. Each decimeter scale experiment was run for approximately 6 months and the experiments were run in parallel. Extensive premodeling occurred for both tanks and lasted the first year of the project.

  13. Large Steel Tank Fails and Rockets to Height of 30 meters - Rupture Disc Installed Incorrectly.

    Science.gov (United States)

    Hedlund, Frank H; Selig, Robert S; Kragh, Eva K

    2016-06-01

    At a brewery, the base plate-to-shell weld seam of a 90-m(3) vertical cylindrical steel tank failed catastrophically. The 4 ton tank "took off" like a rocket leaving its contents behind, and landed on a van, crushing it. The top of the tank reached a height of 30 m. The internal overpressure responsible for the failure was an estimated 60 kPa. A rupture disc rated at < 50 kPa provided overpressure protection and thus prevented the tank from being covered by the European Pressure Equipment Directive. This safeguard failed and it was later discovered that the rupture disc had been installed upside down. The organizational root cause of this incident may be a fundamental lack of appreciation of the hazards of large volumes of low-pressure compressed air or gas. A contributing factor may be that the standard piping and instrumentation diagram (P&ID) symbol for a rupture disc may confuse and lead to incorrect installation. Compressed air systems are ubiquitous. The medium is not toxic or flammable. Such systems however, when operated at "slight overpressure" can store a great deal of energy and thus constitute a hazard that ought to be addressed by safety managers.

  14. Tank 241-C-108 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-C-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-C-108 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  15. Tank 241-BY-107 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-BY-107 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  16. Tank 241-BY-108 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in ''Program Plan for the Resolution of Tank Vapor Issues'' (Osborne and Huckaby 1994). Tank 241-BY-108 was vapor sampled in accordance with ''Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution (Osborne et al., 1994)

  17. Tank 241-BY-106 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-106 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-BY-106 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  18. Tank 241-BY-105 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank BY-105 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-105 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-105 using the vapor sampling system (VSS) on July 7, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 26 C. Air from the Tank BY-105 headspace was withdrawn via a heated sampling probe mounted in riser 10A, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 65 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 46 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 10 trip blanks provided by the laboratories

  19. HANFORD DOUBLE-SHELL TANK THERMAL and SEISMIC PROJECT. DYTRAN ANALYSIS OF SEISMICALLY INDUCED FLUID-STRUCTURE INTERACTION IN A HANFORD DOUBLE-SHELL PRIMARY TANK

    International Nuclear Information System (INIS)

    MACKEY, T.C.

    2006-01-01

    M and D Professional Services, Inc. (M and D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS'. The global model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but has more limited capabilities for fluid-structure interaction analysis. The purpose of this study is to demonstrate the capabilities and investigate the limitations of the finite element code MSC.Dytranz for performing a dynamic fluid-structure interaction analysis of the primary tank and contained waste. To this end, the Dytran solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions to similar problems, and to the results from ANSYS simulations. Both rigid tank and flexible tank configurations were analyzed with Dytran. The response parameters of interest that are evaluated in this study are the total hydrodynamic reaction forces, the impulsive and convective mode frequencies, the waste pressures, and slosh

  20. Extraction of resins from WD-22 tank in Jose Cabrera Nuclear Power Plant

    International Nuclear Information System (INIS)

    Benavides, E.

    1997-01-01

    The Spent Resin Tank (WD-22) is located in the Auxiliary Building of Jose Cabrera Nuclear Plant (PWR 150 Mwe). This tank has a nominal capacity of 4 m 3 and is almost full of spent resins that has been stored from the late sixties to early eighties. As the lines are completely plugged with resins and due to the difficulties in the pipe lay-out, it has not been possible to transfer the resins to the cementation plant since that date. The plant decided, by an open bid quotation, to select the most suitable process to transfer the resins to the cementation plant avoiding the high doses existing in the tank cubicle and in a reasonable time schedule. The solution given in this paper contemplates that sometimes there is an imaginative answer to a problem that seems to be difficult to solve. (authors)

  1. Single-shell tank interim stabilization risk analysis

    International Nuclear Information System (INIS)

    Basche, A.D.

    1998-01-01

    The purpose of the Single-Shell Tank (SST) Interim Stabilization Risk Analysis is to provide a cost and schedule risk analysis of HNF-2358, Rev. 1, Single-Shell Tank Interim Stabilization Project Plan (Project Plan) (Ross et al. 1998). The analysis compares the required cost profile by fiscal year (Section 4.2) and revised schedule completion date (Section 4.5) to the Project Plan. The analysis also evaluates the executability of the Project Plan and recommends a path forward for risk mitigation

  2. Commissioning and cross-comparison of four scanning water tanks

    Directory of Open Access Journals (Sweden)

    Daniel Saenz

    2016-03-01

    Full Text Available Purpose: Water scanning systems are commonly used for data collection to characterize dosimetric properties of photon and electron beams, and the commissioning of such systems has been previously described. The aim in this study, however, was to investigate tank-specific dependencies as well as conduct a dosimetric comparison between four distinct water scanning systems.Methods: Four water scanning systems were studied including the PTW MP3-M Phantom Tank, the Standard Imaging DoseView 3D, the IBA Blue Phantom, and the Sun Nuclear 3D Scanner. Mechanical accuracy and reproducibility was investigated by driving the chamber holder to nominal positions relative to a zero point and using a leveled caliper with 30 cm range to measure the actual position. Dosimetric measurements were also performed not only to compare percent-depth-dose (PDD curves and profiles between tanks but also to assess dependencies such as directionality, scanning speed, and reproducibility for each tank individually. A PTW Semiflex 31010 ionization chamber with a sensitive volume of 0.125 cc was used at a Varian Clinac 2300 linear accelerator.Results: Mechanical precision was ensured to within 0.1 mm with the standard deviation (SD of reproducibility <0.1 mm for measurements made with calipers. Dependencies on scanning direction and speed are presented. 6 MV PDDs between tanks agreed to within 0.6% relative to an averaged PDD beyond dmax and within 2.5% in the build-up region. Specifically, the maximum difference was 1.0% between MP3-M and Blue Phantom at 6.1 cm depth. Lateral profiles agreed between tanks within 0.5% in the central 80% of the field. 6 MeV PDD maximum difference was 1.3% occurring at the steepest portion, where the R50 was nevertheless within 0.6 mm across tanks. Setup uncertainties estimated at ≤1 mm are presumed to have contributed some of the difference between water tank data.Conclusion: Modern water scanning systems have achieved high accuracy across

  3. Investigation of Composition of Particle Size in Sediments of Stormwater Sedimentation Tank

    Directory of Open Access Journals (Sweden)

    Daiva Laučytė

    2011-04-01

    Full Text Available The main object for the storm water runoff treatment is to remove suspended solids before the storm water runoff is discharged into surface waters. Therefore the sedimentation tank is the most often used treatment facility. In order to optimise the sedimentation, the tendency of particle size distribution in bottom sediments must be known. Two similar size storm water runoff sedimentation tanks in Vilnius city were selected for the analysis of the particle size distribution in sediments. The composite samples of drained storm water runoff sediments were collected at the sedimentation tanks located in the districts of Verkiai and Karoliniskes on the 2nd of June, 2008. The analyses of grain size distribution were performed according the standard ISO/TS 17892-4:2004. The results showed that the particles with the particle size of 1–2 mm were obtained up to 10 m from the inlet and the particles with the size of 0,01–0,05 mm mainly were obtained close to the outlet of sedimentation tank. It is recommended to divide the sedimentation tank in two parts in order to get proper management of sediments: the particles that size is 1–10 mm could be managed as waste from grit chambers and particles of smaller size could be managed as primary sludge.Article in Lithuanian

  4. Lahingustress ajab USA sõdurid jooma / Neeme Raud

    Index Scriptorium Estoniae

    Raud, Neeme, 1969-

    2007-01-01

    Ilmunud ka: Postimees : na russkom jazõke, 15. märts 2007, lk. 10. USA kaitseministeeriumi siseuurimuse kohaselt kasvas alkoholi kuritarvitamine tegevteenistuses olevate USA sõjaväelaste seas aastatel 2002-2005 enam kui 30%. Alkoholi ja uimastite tarvitamisest Iraagis ja Afganistanis teenivate USA sõdurite hulgas. Vt. samas: USA relvajõududes puhkes uus homoskandaal

  5. Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196, and RCRA Borehole 299-W11-39

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Schaef, Herbert T.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28, and 4.52. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the second of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and from borehole 299-W-11-39 installed northeast of the T Tank Farm. Finally, the measurements on sediments from borehole C4104 are compared with a nearby borehole drilled in 1993, 299- W10-196, through the tank T-106 leak plume.

  6. 241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-30

    This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

  7. Tank vapor mitigation requirements for Hanford Tank Farms

    Energy Technology Data Exchange (ETDEWEB)

    Rakestraw, L.D.

    1994-11-15

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.

  8. Tank vapor mitigation requirements for Hanford Tank Farms

    International Nuclear Information System (INIS)

    Rakestraw, L.D.

    1994-01-01

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks

  9. Supporting document for the Southeast Quadrant historical tank content estimate report for SY-tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Consort, S.D.

    1995-01-01

    Historical Tank Content Estimate of the Southeast Quadrant provides historical evaluations on a tank by tank basis of the radioactive mixed wastes stored in the underground double-shell tanks of the Hanford 200 East and West Areas. This report summarizes historical information such as waste history, temperature profiles, psychrometric data, tank integrity, inventory estimates and tank level history on a tank by tank basis. Tank Farm aerial photos and in-tank photos of each tank are provided. A brief description of instrumentation methods used for waste tank surveillance are included. Components of the data management effort, such as Waste Status and Transaction Record Summary, Tank Layer Model, Supernatant Mixing Model, Defined Waste Types, and Inventory Estimates which generate these tank content estimates, are also given in this report

  10. EXPECTED IMPACT OF HANFORD PROCESSING ORGANICS OF PLUTONIUM DURING TANK WASTE SLUDGE RETRIEVAL

    International Nuclear Information System (INIS)

    TROYER, G.L.; WINTERS, W.I.

    2004-01-01

    This document evaluates the potential for extracting plutonium from Hanford waste tanks into residual organic solvents and how this process may have an impact on criticality specifications during the retrieval of wastes. The two controlling factors for concentrating plutonium are the solubility of the plutonium in the wastes and the extraction efficiency of the potential organic extractants that may be found in these wastes. Residual Hanford tank sludges contain plutonium in solid forms that are expected to be primarily insoluble Pu(IV) hydroxides. Evaluation of thermodynamic Pourbaix diagrams, documentation on solubility studies of various components in waste tank matrices, and actual analysis of plutonium in tank supernates all indicate that the solubility of Pu in the alkaline waste is on the order of 10 -6 M. Based on an upper limit plutonium solubility of 10 -5 M in high pH and a conservative distribution coefficient for organic extractants of a 0 for plutonium in 30% TBP at 0.07 M HNO 3 ), the estimated concentration for plutonium in the organic phase would be -7 M. This is well below the process control criteria. A significant increase in plutonium solubility or the E a o would have to occur to raise this concentration to the 0.01 M concern level for organics. Measured tank chemical component values, expected operating conditions, and the characteristics of the expected chemistry and extraction mechanisms indicate that concentration of plutonium from Hanford tank residual sludges to associated process organic extractants is significantly below levels of concern

  11. Tank 241-U-106 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-U-106. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  12. 40 CFR 52.1931 - Petroleum storage tank controls.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Petroleum storage tank controls. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Oklahoma § 52.1931 Petroleum... plan, the petroleum storage tanks listed in paragraphs (b) through (e) of this section shall be subject...

  13. Underground Storage Tank Integrated Demonstration (UST-ID)

    International Nuclear Information System (INIS)

    1994-02-01

    The DOE complex currently has 332 underground storage tanks (USTs) that have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. Very little of the over 100 million gallons of high-level and low-level radioactive liquid waste has been treated and disposed of in final form. Two waste storage tank design types are prevalent across the DOE complex: single-shell wall and double-shell wall designs. They are made of stainless steel, concrete, and concrete with carbon steel liners, and their capacities vary from 5000 gallons (19 m 3 ) to 10 6 gallons (3785 m 3 ). The tanks have an overburden layer of soil ranging from a few feet to tens of feet. Responding to the need for remediation of tank waste, driven by Federal Facility Compliance Agreements (FFCAs) at all participating sites, the Underground Storage Tank Integrated Demonstration (UST-ID) Program was created by the US DOE Office of Technology Development in February 1991. Its mission is to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat to concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to the public and the regulators. The UST-ID has focused on five DOE locations: the Hanford Site, which is the host site, in Richland, Washington; the Fernald Site in Fernald, Ohio; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site in Savannah River, South Carolina

  14. HANFORD DOUBLE-SHELL TANK THERMAL and SEISMIC PROJECT-ANSYS BENCHMARK ANALYSIS OF SEISMICALLY INDUCED FLUID-STRUCTURE INTERACTION IN A HANFORD DOUBLE-SHELL PRIMARY TANK

    International Nuclear Information System (INIS)

    MACKEY, T.C.

    2006-01-01

    M and D Professional Services, Inc. (M and D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS. The overall model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but the capabilities and limitations of ANSYS to perform fluid-structure interaction are less well understood. The purpose of this study is to demonstrate the capabilities and investigate the limitations of ANSYS for performing a fluid-structure interaction analysis of the primary tank and contained waste. To this end, the ANSYS solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions of similar problems and to the results from Dytran simulations. The capabilities and limitations of the finite element code Dytran for performing a fluid-structure interaction analysis of the primary tank and contained waste were explored in a parallel investigation (Abatt 2006). In conjunction with the results of the global ANSYS

  15. Derivation of residual radionuclide inventory guidelines for implace closure of high-level waste tanks

    International Nuclear Information System (INIS)

    Yuan, L.; Yuan, Y.

    1999-01-01

    Residual radionuclide inventory guidelines were derived for the high-level waste tanks at a vitrification facility. The decommissioning scenario assumed for this derivation was that the tanks were to be stabilized at the present locations and the site is released for unrestricted use following a 100-year institutional control period. It was assumed that loss of institutional control would occur at 100-years following tank closure. The derivation of the residual radionuclide inventory guidelines was based on the requirement that the effective dose equivalent (EDE) to a hypothetical individual who lives in the vicinity of the site should not exceed a dose of 0.15 mSv/yr off-site and 5 mSv/yr on-site following closure of the tanks. The RESRAD computer code, modified for exposure scenarios specific for the site, was used for this evaluation. The results of the derivation indicate that the allowable off-site dose limit will not be exceeded. The estimated potential doses to individuals using water offsite from a creek are negligibly small fractions of the 0.15 mSv/yr allowable dose limit. With an assumed 3% heel remaining in the tanks, the estimated peak dose rate for the future offsite water user is about 0.00025 mSv/yr. The residual radionuclide inventory guidelines derived based on potential doses to the on-site resident farmer indicate that, with the exception of Tc-99 and C-14, a 3% heel remaining in the tanks would not result in doses exceeding the 5 mSv/yr allowable dose limit. For this on-site exposure scenario, the peak dose rates occur at about 2000 years after tank closure. The peak dose rate is calculated to be 25 mSv/yr, with greater than 99% produced by four radionuclides: C-14, Tc-99, Np-237, and Am-241. Ingestion of contaminated vegetation contributes most (90%) of the peak dose. Since the inventories used for the derivation are mostly estimated from fuel depletion calculations. There is a need to determine further the actual inventories of these

  16. 241-SY Tank Farm Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-25

    This report provides the results of an extent of condition construction history review for tanks 241-SY-101, 241-SY-102, and 241-SY-103. The construction history of the 241-SY tank farm has been reviewed to identify issues similar to those experienced during tank 241-AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank 241-AY-102 as the comparison benchmark. In the 241-SY tank farm, the third DST farm constructed, refractory quality and stress relief were improved, while similar tank and liner fabrication issues remained.

  17. Tank 18-F And 19-F Tank Fill Grout Scale Up Test Summary

    International Nuclear Information System (INIS)

    Stefanko, D.; Langton, C.

    2012-01-01

    High-level waste (HLW) tanks 18-F and 19-F have been isolated from FTF facilities. To complete operational closure the tanks will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) entombing waste removal equipment, (4) discouraging future intrusion, and (5) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. This report documents the results of a four cubic yard bulk fill scale up test on the grout formulation recommended for filling Tanks 18-F and 19-F. Details of the scale up test are provided in a Test Plan. The work was authorized under a Technical Task Request (TTR), HLE-TTR-2011-008, and was performed according to Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The bulk fill scale up test described in this report was intended to demonstrate proportioning, mixing, and transportation, of material produced in a full scale ready mix concrete batch plant. In addition, the material produced for the scale up test was characterized with respect to fresh properties, thermal properties, and compressive strength as a function of curing time.

  18. TANK 18-F AND 19-F TANK FILL GROUT SCALE UP TEST SUMMARY

    Energy Technology Data Exchange (ETDEWEB)

    Stefanko, D.; Langton, C.

    2012-01-03

    High-level waste (HLW) tanks 18-F and 19-F have been isolated from FTF facilities. To complete operational closure the tanks will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) entombing waste removal equipment, (4) discouraging future intrusion, and (5) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. This report documents the results of a four cubic yard bulk fill scale up test on the grout formulation recommended for filling Tanks 18-F and 19-F. Details of the scale up test are provided in a Test Plan. The work was authorized under a Technical Task Request (TTR), HLE-TTR-2011-008, and was performed according to Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The bulk fill scale up test described in this report was intended to demonstrate proportioning, mixing, and transportation, of material produced in a full scale ready mix concrete batch plant. In addition, the material produced for the scale up test was characterized with respect to fresh properties, thermal properties, and compressive strength as a function of curing time.

  19. Decay tank

    International Nuclear Information System (INIS)

    Matsumura, Seiichi; Tagishi, Akinori; Sakata, Yuji; Kontani, Koji; Sudo, Yukio; Kaminaga, Masanori; Kameyama, Iwao; Ando, Koei; Ishiki, Masahiko.

    1990-01-01

    The present invention concerns an decay tank for decaying a radioactivity concentration of a fluid containing radioactive material. The inside of an decay tank body is partitioned by partitioning plates to form a flow channel. A porous plate is attached at the portion above the end of the partitioning plate, that is, a portion where the flow is just turned. A part of the porous plate has a slit-like opening on the side close to the partitioning plate, that is, the inner side of the flow at the turning portion thereof. Accordingly, the primary coolants passed through the pool type nuclear reactor and flown into the decay tank are flow caused to uniformly over the entire part of the tank without causing swirling. Since a distribution in a staying time is thus decreased, the effect of decaying 16 N as radioactive nuclides in the primary coolants is increased even in a limited volume of the tank. (I.N.)

  20. Methane emissions from sugarcane vinasse storage and transportation systems: Comparison between open channels and tanks

    Science.gov (United States)

    Oliveira, Bruna Gonçalves; Carvalho, João Luís Nunes; Chagas, Mateus Ferreira; Cerri, Carlos Eduardo Pellegrino; Cerri, Carlos Clemente; Feigl, Brigitte Josefine

    2017-06-01

    Over the last few years the brazilian sugarcane sector has produced an average of 23.5 million liters of ethanol annually. This scale of production generates large amounts of vinasse, which depending on the manner that is disposed, can result significant greenhouse gas emissions. This study aimed to quantify the methane (CH4) emissions associated with the two most widespread systems of vinasse storage and transportation used in Brazil; open channel and those comprising of tanks and pipes. Additionally, a laboratory incubation study was performed with the aim of isolating the effects of vinasse, sediment and the interaction between these factors on CH4 emissions. We observed significant differences in CH4 emissions between the sampling points along the channels during both years of evaluation (2012-2013). In the channel system, around 80% of CH4 emissions were recorded from uncoated sections. Overall, the average CH4 emission intensity was 1.36 kg CO2eq m-3 of vinasse transported in open channels, which was 620 times higher than vinasse transported through a system of tanks and closed pipes. The laboratory incubation corroborated field results, suggesting that vinasse alone does not contribute significant emissions of CH4. Higher CH4 emissions were observed when vinasse and sediment were incubated together. In summary, our findings demonstrate that CH4 emissions originate through the anaerobic decomposition of organic material deposited on the bottom of channels and tanks. The adoption of coated channels as a substitute to uncoated channels offers the potential for an effective and affordable means of reducing CH4 emissions. Ultimately, the modernization of vinasse storage and transportation systems through the adoption of tank and closed pipe systems will provide an effective strategy for mitigating CH4 emissions generated during the disposal phase of the sugarcane ethanol production process.

  1. Ideaalne torm USA majanduses / Ken Goldstein ; interv. Neeme Raud

    Index Scriptorium Estoniae

    Goldstein, Ken

    2008-01-01

    USA majandusuuringute organisatsiooni The Conference Board analüütik USA majanduse olukorrast, mõjust maailmamajandusele, arenguvõimalustest ning uue presidendi vajalikest sammudest majanduses. Lisa: Enamuse arvates on USA valel teel

  2. Tank 241-TY-101 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-TY-101. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  3. Tank 241-C-107 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-107. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  4. Tank 241-C-102 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-102. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  5. Tank 241-B-103 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-B-103. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  6. Tank 241-BX-104 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-BX-104. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  7. Tank 241-SX-106 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-SX-106. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  8. Tank 241-T-107 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-T-107. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  9. Sampling and analysis of high level waste tank supernatant: an overview

    International Nuclear Information System (INIS)

    Goergen, C.R.

    1981-01-01

    The Savannah River Plant routinely samples its high level radioactive waste tank supernatants for analysis of major components. These results are important in maintaining proper levels of corrosion inhibiters for protection of the tank walls. Because the tank ambient temperature is elevated, the sample is heated to 70 0 C prior to removing aliquots for use in a variety of analytical methods. Typical analyses include density, pH, OH - , NO 3 - , and NO 2 - , with occasional requests for Al(OH) 4 - , CO 3 /sup =/, PO 4 /sup =/, SO 4 /sup =/, and various radionuclides

  10. Performances in Tank Cleaning

    Directory of Open Access Journals (Sweden)

    Fanel-Viorel Panaitescu

    2018-03-01

    Full Text Available There are several operations which must do to maximize the performance of tank cleaning. The new advanced technologies in tank cleaning have raised the standards in marine areas. There are many ways to realise optimal cleaning efficiency for different tanks. The evaluation of tank cleaning options means to start with audit of operations: how many tanks require cleaning, are there obstructions in tanks (e.g. agitators, mixers, what residue needs to be removed, are cleaning agents required or is water sufficient, what methods can used for tank cleaning. After these steps, must be verify the results and ensure that the best cleaning values can be achieved in terms of accuracy and reliability. Technology advancements have made it easier to remove stubborn residues, shorten cleaning cycle times and achieve higher levels of automation. In this paper are presented the performances in tank cleaning in accordance with legislation in force. If tank cleaning technologies are effective, then operating costs are minimal.

  11. Tank 241-U-111 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-U-111

  12. Tank 241-BX-104 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-BX-104

  13. Tank 241-U-103 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-U-103

  14. Tank 241-TX-118 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TX-118

  15. Tank 241-T-111 tank characterization plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-T-111

  16. Tank 241-TY-101 Tank Characterization Plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TY-101

  17. Tank 241-T-107 tank characterization plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-T-107

  18. Mapping sediment deposite on tank FB-901 using neutron back scattering technique

    International Nuclear Information System (INIS)

    Wibisono; Sugiharto; Zulkifli Lubis; Phyu Phyu Aung Myint; Thin Moe Hlaing

    2016-01-01

    Tank FB-901 is storage tank for temporary material production with a diameter 11 m and a high 12 m. This tank has been use about 10 years so it is suspected there is sediment in it. Neutron back scattering technique has been used to detected the level of sediment inside so it can be seen the volume of liquid properly and avoid problem in the nozzle outlet. AmBe neutron source with activity one Curie shoot into the tank to enable back scattering intensity from material. Measurement using He-3 detector, radiation counter Ludlum model 2200 scaler ratemeter and mechanical motor controlled by computer. Investigation were taken at around the tank from the bottom to the top on each step 50 mm height 8000 mm. Scan determined the distance between 500 mm and measurement time 3 seconds to each sample point. Investigation found the sediment level average 1000 mm by 1500 mm highest and lowest level 100 mm. Fluctuating liquid level observed maximum of 7800 mm and average of 7000 mm. Cleaning tank advised to avoid blockage of the nozzle and material volume is measured accurately. (author)

  19. Citizen Contributions to the Closure of High-Level Waste (HLW) Tanks 18 and 19 at the Department of Energy's (DOE) Savannah River Site (SRS) - 13448

    Energy Technology Data Exchange (ETDEWEB)

    Lawless, W.F. [Paine College, Departments of Math and Psychology, 1235 15th Street, Augusta, GA 30901 (United States)

    2013-07-01

    Citizen involvement in DOE's decision-making for the environmental cleanup from DOE's management of its nuclear wastes across the DOE complex has had a positive effect on the cleanup of its SRS site, characterized by an acceleration of cleanup not only for the Transuranic wastes at SRS, but also for DOE's first two closures of HLW tanks, both of which occurred at SRS. The Citizens around SRS had pushed successfully for the closures of Tanks 17 and 20 in 1997, becoming the first closures of HLW tanks under regulatory guidance in the USA. However, since then, HLW tank closures ceased due to a lawsuit, the application of new tank clean-up technology, interagency squabbling between DOE and NRC over tank closure criteria, and finally and almost fatally, from budget pressures. Despite an agreement with its regulators for the closure of Tanks 18 and 19 by the end of calendar year 2012, the outlook in Fall 2011 to close these two tanks had dimmed. It was at this point that the citizens around SRS became reengaged with tank closures, helping DOE to reach its agreed upon milestone. (authors)

  20. Fuel storage tank

    International Nuclear Information System (INIS)

    Peehs, M.; Stehle, H.; Weidinger, H.

    1979-01-01

    The stationary fuel storage tank is immersed below the water level in the spent fuel storage pool. In it there is placed a fuel assembly within a cage. Moreover, the storage tank has got a water filling and a gas buffer. The water in the storage tank is connected with the pool water by means of a filter, a surge tank and a water purification facility, temperature and pressure monitoring being performed. In the buffer compartment there are arranged catalysts a glow plugs for recombination of radiolysis products into water. The supply of water into the storage tank is performed through the gas buffer compartment. (DG) [de

  1. Experimental critical parameters of enriched uranium solution in annular tank geometries

    International Nuclear Information System (INIS)

    Rothe, R.E.

    1996-04-01

    A total of 61 critical configurations are reported for experiments involving various combinations of annular tanks into which enriched uranium solution was pumped. These experiments were performed at two widely separated times in the 1980s under two programs at the Rocky Flats Plant's Critical Mass Laboratory. The uranyl nitrate solution contained about 370 g of uranium per liter, but this concentration varied a little over the duration of the studies. The uranium was enriched to about 93% [sup 235]U. All tanks were typical of sizes commonly found in nuclear production plants. They were about 2 m tall and ranged in diameter from 0.6 m to 1.5 m. Annular thicknesses and conditions of neutron reflection, moderation, and absorption were such that criticality would be achieved with these dimensions. Only 13 of the entire set of 74 experiments proved to be subcritical when tanks were completely filled with solution. Single tanks of several radial thicknesses were studied as well as small line arrays (1 x 2 and 1 x 3) of annular tanks. Many systems were reflected on four sides and the bottom by concrete, but none were reflected from above. Many experiments also contained materials within and outside the annular regions that contained strong neutron absorbers. One program had such a thick external moderator/absorber combination that no reflector was used at all

  2. Experimental critical parameters of enriched uranium solution in annular tank geometries

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, R.E.

    1996-04-01

    A total of 61 critical configurations are reported for experiments involving various combinations of annular tanks into which enriched uranium solution was pumped. These experiments were performed at two widely separated times in the 1980s under two programs at the Rocky Flats Plant`s Critical Mass Laboratory. The uranyl nitrate solution contained about 370 g of uranium per liter, but this concentration varied a little over the duration of the studies. The uranium was enriched to about 93% [sup 235]U. All tanks were typical of sizes commonly found in nuclear production plants. They were about 2 m tall and ranged in diameter from 0.6 m to 1.5 m. Annular thicknesses and conditions of neutron reflection, moderation, and absorption were such that criticality would be achieved with these dimensions. Only 13 of the entire set of 74 experiments proved to be subcritical when tanks were completely filled with solution. Single tanks of several radial thicknesses were studied as well as small line arrays (1 x 2 and 1 x 3) of annular tanks. Many systems were reflected on four sides and the bottom by concrete, but none were reflected from above. Many experiments also contained materials within and outside the annular regions that contained strong neutron absorbers. One program had such a thick external moderator/absorber combination that no reflector was used at all.

  3. Modeling of storage tank settlement based on the United States standards

    Directory of Open Access Journals (Sweden)

    Gruchenkova Alesya

    2018-01-01

    Full Text Available Up to 60% of storage tanks in operation have uneven settlement of the outer bottom contour, which often leads to accidents. Russian and foreign regulatory documents have different requirements for strain limits of metal structures. There is an increasing need for harmonizing regulatory documents. The aim of this study is to theoretically justify and to assess the possibility of applying the U.S. standards for specifying the allowable settlement of storage tanks used in Russia. The allowable uneven settlement was calculated for a vertical steel tank (VST-20000 according to API-653, a standard of the American Petroleum Institute. The calculated allowable settlement levels were compared with those established by Russian standards. Based on the finite element method, the uneven settlement development process of a storage tank was modeled. Stress-strain state parameters of tank structures were obtained at the critical levels established in API-653. Relationships of maximum equivalent stresses in VST metal structures to the vertical settlement component for settlement zones of 6 to 72 m in length were determined. When the uneven settlement zone is 6 m in length, the limit state is found to be caused by 30-mm vertical settlement, while stresses in the wall exceed 330 MPa. When the uneven settlement zone is 36 m in length, stresses reach the yield point only at 100-mm vertical settlement.

  4. USA suurpanga krahh mõjutab siiski ka Eestit / Helga Koger

    Index Scriptorium Estoniae

    Koger, Helga, 1945-

    2008-01-01

    USA suuruselt neljas investeerimispank Lehman Brothers andis kohtusse avalduse pankrotimenetluseks. Endise Hansapanga juhatuse esimees Erkki Raasuke ei näe emapank Swedbanki positsioonidest tulenevalt Eesti või Balti pangandusega mingeid seoseid. Lisa: Lehmaniga seotud varad

  5. ICPP tank farm closure study. Volume 2: Engineering design files

    International Nuclear Information System (INIS)

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-grouted polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks

  6. ICPP tank farm closure study. Volume 2: Engineering design files

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-grouted polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.

  7. Briti valitsus usub USA mõjutamise võimalusse / Maris Lillak

    Index Scriptorium Estoniae

    Lillak, Maris, 1970-

    2004-01-01

    Suurbritannia endiste kõrgete diplomaatide kirjast, milles nad kritiseerivad peaminister Tony Blairi lähedasi suhteid USA presidendi George W. Bushiga seoses Iraagi ja Iisraeli poliitikaga. Briti välisministeeriumi ministri Mike O'Brien'i vastusest

  8. 46 CFR 116.620 - Ventilation of machinery and fuel tank spaces.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation of machinery and fuel tank spaces. 116.620... AND ARRANGEMENT Ventilation § 116.620 Ventilation of machinery and fuel tank spaces. In addition to the requirements of this subpart, ventilation systems for spaces containing machinery or fuel tanks...

  9. Flammable gas tank waste level reconciliation tank 241-SX-105

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddie, L.A.

    1997-01-01

    Fluor Daniel Northwest was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 241-SX-105 (SX-105, typical). The trapped gas evaluation document states that Tank SX-105 exceeds the 25% of the lower flammable limit criterion, based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the Welty Report is the basis for this letter report. The Welty Report is also a part of the trapped gas evaluation document criteria. The Welty Report contains various tank information, including: physical information, status, levels, and dry wells. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unaccounted for surface level rise. From 1973 through 1980, the Welty Report tracked Tank SX-105 transfers and reported a net cumulative change of 20.75 in. This surface level increase is from an unknown source or is unaccounted for. Duke Engineering and Services Hanford and Lockheed Martin Hanford Corporation are interested in determining the validity of unexplained surface level changes reported in the Welty Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unaccounted for surface level changes as shown in the Welty Report from 1973 through 1980. Tank SX-105 initially received waste from REDOX starting the second quarter of 1955. After June 1975, the tank primarily received processed waste (slurry) from the 242-S Evaporator/Crystallizer and transferred supernate waste to Tanks S-102 and SX-102. The Welty Report shows a cumulative change of 20.75 in. from June 1973 through December 1980

  10. Tank 241-TX-105 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TX-105

  11. Rangeland degradation in semi-arid Swaziland: effects of dip-tanks ...

    African Journals Online (AJOL)

    This study investigated dip-tank use effects on herbaceous vegetation and soil, and relationships between environmental and species variables. Eight dip-tanks, three each in sandy (DPBS) and loamy (DYRL) soils, and two in stony (ROSG) soils were used. Data were collected at 50, 100, 150, 300, 500, 700 and 900 m from ...

  12. Task 7c: Worm tank

    International Nuclear Information System (INIS)

    1999-01-01

    Worm tank has a unique shape. In the seismic design of a worm tank, it is desirable to clear the behavior of the worm tank under the seismic loading. We assumed that there are two phenomena in the seismic behavior of the worm tank same as the behavior of the cylindrical and rectangular tanks. One is a sloshing behavior of the water and another is the dynamic response of the worm tank. In this study, we investigate the dynamic characteristics of the worm tank during the strong earthquakes. We conducted the vibration tests to clarify the seismic behaviors of the worm tanks and obtained the valuable data to verify the analytical method. It was found that the natural frequency can be calculated using the eigenvalue formula of the cylindrical and rectangular tanks. Lower modes of the worm tank are identical with that of the rectangular tank. We can estimate the surface behavior and the impact mode using the data of the rectangular tank. (author)

  13. Sea cucumbers reduce chromophoric dissolved organic matter in aquaculture tanks.

    Science.gov (United States)

    Sadeghi-Nassaj, Seyed Mohammad; Catalá, Teresa S; Álvarez, Pedro A; Reche, Isabel

    2018-01-01

    Mono-specific aquaculture effluents contain high concentrations of nutrients and organic matter, which affect negatively the water quality of the recipient ecosystems. A fundamental feature of water quality is its transparency. The fraction of dissolved organic matter that absorbs light is named chromophoric dissolved organic matter (CDOM). A sustainable alternative to mono-specific aquaculture is the multitrophic aquaculture that includes species trophically complementary named "extractive" species that uptake the waste byproducts. Sea cucumbers are recognized as efficient extractive species due to the consumption of particulate organic matter (POM). However, the effects of sea cucumbers on CDOM are still unknown. During more than one year, we monitored CDOM in two big-volume tanks with different trophic structure. One of the tanks (-holothurian) only contained around 810 individuals of Anemonia sulcata , whereas the other tank (+holothurian) also included 90 individuals of Holothuria tubulosa and Holothuria forskali . We routinely analyzed CDOM absorption spectra and determined quantitative (absorption coefficients at 325 nm) and qualitative (spectral slopes) optical parameters in the inlet waters, within the tanks, and in their corresponding effluents. To confirm the time-series results, we also performed three experiments. Each experiment consisted of two treatments: +holothurians (+H) and -holothurians (-H). We set up three +H tanks with 80 individuals of A. sulcata and 10 individuals of H. tubulosa in each tank and four -H tanks that contained only 80 individuals of A. sulcata . In the time-series, absorption coefficients at 325 nm ( a 325 ) and spectral slopes from 275 to 295 nm ( S 275-295 ) were significantly lower in the effluent of the +holothurian tank (average: 0.33 m -1 and 16 µm -1 , respectively) than in the effluent of the -holothurian tank (average: 0.69 m -1 and 34 µm -1 , respectively), the former being similar to those found in the inlet

  14. Solvent extraction of technetium from alkaline waste media using bis-4,4'(5')[(tert-butyl)cyclohexano]-18-crown-6

    International Nuclear Information System (INIS)

    Bonnesen, P.V.; Presley, D.J.; Moyer, B.A.

    1995-01-01

    The crown ether bis-4,4'(5')[(tert-butyl)cyclohexano]-18-crown-6 can be utilized in a solvent-extraction process for the removal of technetium as pertechnetate ion, TcO 4 - from solutions simulating highly radioactive alkaline defense wastes (''tank wastes'') stored at several sites in the United States. The process employs non-halogenated and non-volatile diluents and modifiers and includes an efficient stripping procedure using only water. More than 95% of the pertechnetate present at 6 x 10 -5 M in Melton Valley (Oak Ridge, TN) and Hanford (Washington) tank-waste simulants was removed following two cross-current extraction contacts using 0.02 M bis-4,4'(5')[(tertbutyl)cyclohexano]- 18-crown-6 in 2:1 vol/vol TBP/Isopar reg-sign M diluent at 25 C. Similarly, for both simulants, more than 98% of the pertechnetate contained in the solvent was back-extracted following two cross-current stripping contacts using deionized water

  15. Application of Tank Model for Predicting Water Balance and Flow Discharge Components of Cisadane Upper Catchment

    Directory of Open Access Journals (Sweden)

    Nana Mulyana Arifjaya

    2012-01-01

    Full Text Available The concept of hydrological tank model was well described into four compartments (tanks. The first tank (tank A comprised of one vertical (qA0 and two lateral (qA1 and qA2 water flow components and tank B comprised of one vertical (qB0 and one lateral (qB1 water flow components. Tank C comprised of one vertical (qC0 and one lateral (qC1 water flow components, whereas tank D comprised of one lateral water flow component (qD1.  These vertical water flows would also contribute to the depletion of water flow in the related tanks but would replenish tanks in the deeper layers. It was assumed that at all lateral water flow components would finally accumulate in one stream, summing-up of the lateral water flow, much or less, should be equal to the water discharge (Qo at specified time concerns. Tank A received precipitation (R and evapo-transpiration (ET which was its gradientof (R-ET over time would become the driving force for the changes of water stored in the soil profiles and thosewater flows leaving the soil layer.  Thus tank model could describe th vertical and horizontal water flow withinthe watershed. The research site was Cisadane Upper Catchment, located at Pasir Buncir Village of CaringinSub-District within the Regency of Bogor in West Java Province.  The elevations ranged 512 –2,235 m above sealevel, with a total drainage area of 1,811.5 ha and total length of main stream of 14,340.7 m.  The land cover wasdominated by  forest  with a total of 1,044.6 ha (57.67%,  upland agriculture with a total of 477.96 ha (26.38%,mixed garden with a total of 92.85 ha(5.13% and semitechnical irigated rice field with a total of 196.09 ha (10,8%.  The soil was classified as hydraquent (96.6% and distropept (3.4%.  Based on the calibration of tank model application in the study area, the resulting coefficient of determination (R2 was 0.72 with model efficiency (NSEof= 0.75, thus tank model could well illustrate the water flow distribution of

  16. USA ja Iraak mängivad ÜROs kassi ja hiirt / Kadri Liik

    Index Scriptorium Estoniae

    Liik, Kadri, 1970-

    2002-01-01

    Arengutest USA-Iraagi konfliktis: ÜRO-sse saadetud Iraagi kirjast kutsuda relvastusinspektorid Iraaki tagasi; USA soovist võtta ÜRO-s vastu uus resolutsioon, mis lubaks relvastusinspektorid ka Saddam Husseini paleedesse, kaasaks sõjaväe, annaks õiguse Iraagi rünnata. Skeem: Iraaki puudutavad ÜRO resolutsioonid. Vt. samas kommenteerib Jüri Luik

  17. Vadose zone characterization project at the Hanford Tank Farms: U Tank Farm Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The U.S. Department of Energy Grand Junction Office (DOE-GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the gamma-ray-emitting radionuclides that are distributed in the vadose zone sediments beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources when possible, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information regarding vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. This information is presently limited to detection of gamma-emitting radionuclides from both natural and man-made sources. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank in a tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the U Tank Farm. Logging operations used high-purity germanium detection systems to acquire laboratory-quality assays of the gamma-emitting radionuclides in the sediments around and below the tanks. These assays were acquired in 59 boreholes that surround the U Tank Farm tanks. Logging of all boreholes was completed in December 1995, and the last Tank Summary Data Report for the U Tank Farm was issued in September 1996.

  18. Waste Tank Safety Screening Module: An aspect of Hanford Site tank waste characterization

    International Nuclear Information System (INIS)

    Hill, J.G.; Wood, T.W.; Babad, H.; Redus, K.S.

    1994-01-01

    Forty-five (45) of the 149 Hanford single-shell tanks have been designated as Watch-List tanks for one or more high-priority safety issues, which include significant concentrations of organic materials, ferrocyanide salts, potential generation of flammable gases, high heat generation, criticality, and noxious vapor generation. While limited waste characterization data have been acquired on these wastes under the original Tri-Party Agreement, to date all of the tank-by-tank assessments involved in these safety issue designations have been based on historical data rather than waste on data. In response to guidance from the Defense Nuclear Facilities Safety Board (DNFSB finding 93-05) and related direction from the US Department of Energy (DOE), Westinghouse Hanford Company, assisted by Pacific Northwest Laboratory, designed a measurements-based screening program to screen all single-shell tanks for all of these issues. This program, designated the Tank Safety Screening Module (TSSM), consists of a regime of core, supernatant, and auger samples and associated analytical measurements intended to make first-order discriminations of the safety status on a tank-by-tank basis. The TSSM combines limited tank sampling and analysis with monitoring and tank history to provide an enhanced measurement-based categorization of the tanks relative to the safety issues. This program will be implemented beginning in fiscal year (FY) 1994 and supplemented by more detailed characterization studies designed to support safety issue resolution

  19. Enhanced sludge reduction in septic tanks by increasing temperature.

    Science.gov (United States)

    Pussayanavin, Tatchai; Koottatep, Thammarat; Eamrat, Rawintra; Polprasert, Chongrak

    2015-01-01

    Septic tanks in most developing countries are constructed without drainage trenches or leaching fields to treat toilet wastewater and /or grey water. Due to the short hydraulic retention time, effluents of these septic tanks are still highly polluted, and there is usually high accumulation of septic tank sludge or septage containing high levels of organics and pathogens that requires frequent desludging and subsequent treatment. This study aimed to reduce sludge accumulation in septic tanks by increasing temperatures of the septic tank content. An experimental study employing two laboratory-scale septic tanks fed with diluted septage and operating at temperatures of 40 and 30°C was conducted. At steady-state conditions, there were more methanogenic activities occurring in the sludge layer of the septic tank operating at the temperature of 40°C, resulting in less total volatile solids (TVS) or sludge accumulation and more methane (CH4) production than in the unit operating at 30°C. Molecular analysis found more abundance and diversity of methanogenic microorganisms in the septic tank sludge operating at 40°C than at 30°C. The reduced TVS accumulation in the 40°C septic tank would lengthen the period of septage removal, resulting in a cost-saving in desluging and septage treatment. Cost-benefit analysis of increasing temperatures in septic tanks was discussed.

  20. Hanford Tank Cleanup Update

    International Nuclear Information System (INIS)

    Berriochoa, M.V.

    2011-01-01

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  1. Overview Of Hanford Single Shell Tank (SST) Structural Integrity - 12123

    International Nuclear Information System (INIS)

    Rast, R.S.; Rinker, M.W.; Washenfelder, D.J.; Johnson, J.B.

    2012-01-01

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS(reg s ign) The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and

  2. OVERVIEW OF HANFORD SINGLE SHELL TANK (SST) STRUCTURAL INTEGRITY - 12123

    Energy Technology Data Exchange (ETDEWEB)

    RAST RS; RINKER MW; WASHENFELDER DJ; JOHNSON JB

    2012-01-25

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS{reg_sign} The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and

  3. Eesti on USA uus lemmik / Argo Ideon

    Index Scriptorium Estoniae

    Ideon, Argo, 1966-

    2007-01-01

    President Toomas Hendrik Ilvese visiidist Washingtoni, kohtumistest USA presidendi George W. Bushi, asepresident Dick Cheney, asevälisminister John Negroponte, kaitseminister Robert M. Gates'i, USA Kongressi esindajatekoja spiikri Nancy Pelosi ja kongresmenidega. Eestil õnnestus korraldada USA pealinnas kohtumised, mille järjekorras ootab hulk palju suuremaid riike. Vabariigi President töövisiidil Ameerika Ühendriikides 25.-26.06.2007

  4. Industrial mixing techniques for Hanford double-shell tanks

    International Nuclear Information System (INIS)

    Daymo, E.A.

    1997-09-01

    Jet mixer pumps are currently the baseline technology for sludge mobilization and mixing in one-million gallon double-shell tanks at the Hanford and Savannah River Sites. Improvements to the baseline jet mixer pump technology are sought because jet mixer pumps have moving parts that may fail or require maintenance. Moreover, jet mixers are relatively expensive, they heat the waste, and, in some cases, may not mobilize enough of the sludge. This report documents a thorough literature search for commercially available applicable mixing technologies that could be used for double-shell tank sludge mobilization and mixing. Textbooks, research articles, conference proceedings, mixing experts, and the Thomas Register were consulted to identify applicable technologies. While there are many commercial methods that could be used to mobilize sludge or mix the contents of a one-million gallon tank, few will work given the geometrical constraints (e.g., the mixer must fit through a 1.07-m-diameter riser) or the tank waste properties (e.g., the sludge has such a high yield stress that it generally does not flow under its own weight). Pulsed fluid jets and submersible Flygt mixers have already been identified at Hanford and Savannah River Sites for double-shell tank mixing applications. While these mixing technologies may not be applicable for double-shell tanks that have a thick sludge layer at the bottom (since too many of these mixers would need to be installed to mobilize most of the sludge), they may have applications in tanks that do not have a settled solids layer. Retrieval projects at Hanford and other U.S. Department of Energy sites are currently evaluating the effectiveness of these mixing techniques for tank waste applications. The literature search did not reveal any previously unknown technologies that should be considered for sludge mobilization and mixing in one-million gallon double-shell tanks

  5. Tank characterization report for single-shell Tank B-201

    International Nuclear Information System (INIS)

    Heasler, P.G.; Remund, K.M.; Tingey, J.M.; Baird, D.B.; Ryan, F.M.

    1994-09-01

    The purpose of this report is to characterize the waste in single shell Tank B-201. Characterization includes the determination of the physical, chemical (e.g., concentrations of elements and organic species), and radiological properties of the waste. These determinations are made using analytical results from B-201 core samples as well as historical information about the tank. The main objective is to determine average waste properties: but in some cases, concentrations of analytes as a function of depth were also determined. This report also consolidates the available historical information regarding Tank B-201, arranges the analytical information from the recent core sampling in a useful format, and provides an interpretation of the data within the context of what is known about the tank

  6. Technetium removal column flow testing with alkaline, high salt, radioactive tank waste

    International Nuclear Information System (INIS)

    Blanchard, D.L. Jr.; Kurath, D.E.; Golcar, G.R.; Conradson, S.D.

    1996-01-01

    This report describes two bench-scale column tests conducted to demonstrate the removal of Tc-99 from actual alkaline high salt radioactive waste. The waste used as feed for these tests was obtained from the Hanford double shell tank AW-101, which contains double shell slurry feed (DSSF). The tank sample was diluted to approximately 5 M Na with water, and most of the Cs-137 was removed using crystalline silicotitanates. The tests were conducted with two small columns connected in series, containing, 10 mL of either a sorbent, ABEC 5000 (Eichrom Industries, Inc.), or an anion exchanger Reillex trademark-HPQ (Reilly Industries, Inc.). Both materials are selective for pertechnetate anion (TcO 4 - ). The process steps generally followed those expected in a full-scale process and included (1) resin conditioning, (2) loading, (3) caustic wash to remove residual feed and prevent the precipitation of Al(OH) 3 , and (4) elution. A small amount of Tc-99m tracer was added as ammonium pertechnetate to the feed and a portable GEA counter was used to closely monitor the process. Analyses of the Tc-99 in the waste was performed using ICP-MS with spot checks using radiochemical analysis. Technetium x-ray absorption spectroscopy (XAS) spectra of 6 samples were also collected to determine the prevalence of non-pertechnetate species [e.g. Tc(IV)

  7. Identification, expression and functional characterization of M4L, a muscarinic acetylcholine M4 receptor splice variant.

    Directory of Open Access Journals (Sweden)

    Douglas A Schober

    Full Text Available Rodent genomic alignment sequences support a 2-exon model for muscarinic M4 receptor. Using this model a novel N-terminal extension was discovered in the human muscarinic acetylcholine M4 receptor. An open reading frame was discovered in the human, mouse and rat with a common ATG (methionine start codon that extended the N-terminus of the muscarinic acetylcholine M4 receptor subtype by 155 amino acids resulting in a longer variant. Transcriptional evidence for this splice variant was confirmed by RNA-Seq and RT-PCR experiments performed from human donor brain prefrontal cortices. We detected a human upstream exon indicating the translation of the mature longer M4 receptor transcript. The predicted size for the longer two-exon M4 receptor splice variant with the additional 155 amino acid N-terminal extension, designated M4L is 69.7 kDa compared to the 53 kDa canonical single exon M4 receptor (M4S. Western blot analysis from a mammalian overexpression system, and saturation radioligand binding with [3H]-NMS (N-methyl-scopolamine demonstrated the expression of this new splice variant. Comparative pharmacological characterization between the M4L and M4S receptors revealed that both the orthosteric and allosteric binding sites for both receptors were very similar despite the addition of an N-terminal extension.

  8. Identification, expression and functional characterization of M4L, a muscarinic acetylcholine M4 receptor splice variant.

    Science.gov (United States)

    Schober, Douglas A; Croy, Carrie H; Ruble, Cara L; Tao, Ran; Felder, Christian C

    2017-01-01

    Rodent genomic alignment sequences support a 2-exon model for muscarinic M4 receptor. Using this model a novel N-terminal extension was discovered in the human muscarinic acetylcholine M4 receptor. An open reading frame was discovered in the human, mouse and rat with a common ATG (methionine start codon) that extended the N-terminus of the muscarinic acetylcholine M4 receptor subtype by 155 amino acids resulting in a longer variant. Transcriptional evidence for this splice variant was confirmed by RNA-Seq and RT-PCR experiments performed from human donor brain prefrontal cortices. We detected a human upstream exon indicating the translation of the mature longer M4 receptor transcript. The predicted size for the longer two-exon M4 receptor splice variant with the additional 155 amino acid N-terminal extension, designated M4L is 69.7 kDa compared to the 53 kDa canonical single exon M4 receptor (M4S). Western blot analysis from a mammalian overexpression system, and saturation radioligand binding with [3H]-NMS (N-methyl-scopolamine) demonstrated the expression of this new splice variant. Comparative pharmacological characterization between the M4L and M4S receptors revealed that both the orthosteric and allosteric binding sites for both receptors were very similar despite the addition of an N-terminal extension.

  9. Final Report of Tank 241-C-105 Dissolution, the Phase 2 Study

    International Nuclear Information System (INIS)

    Meznarich, Huei K.; Bolling, Stacey D.; Cooke, Gary A.; Ely, Thomas M.; Herting, Daniel L.; Lachut, James S.; LaMothe, Margaret E.

    2016-01-01

    Three clamshell grab samples were taken from Tank 241-C-105 in October 2015 in accordance with RPP-PLAN-60011. Analytical results of those samples were issued in the report RPP-RPT-59115 by Wastren Advantage, Inc., Hanford Laboratory. Solid phase characterization results were reported separately in LAB-RPT-15-00011 and in RPP-RPT-59147. The major solid phases reported to be present were dawsonite [NaAlCO 3 (OH) 2 ], trona [Na 3 (HCO 3 )(CO 3 )⋅2H 2 O], cejkaite [Na 4 (UO 2 )(CO 3 ) 3 ], and an unidentified organic solid, with minor amounts of gibbsite [Al(OH) 3 ], natrophosphate [Na 7 F(PO 4 ) 2 ⋅19H 2 O], and traces of unidentified iron-rich and manganese-rich phases. Note that the presence of dawsonite, trona, and cejkaite requires a relatively low pH, likely around pH 9 to 10. One aliquot of each grab sample was provided to 222-S Laboratory Process Chemistry for dissolution studies. Phase 1 of the dissolution testing followed the approved test plan, WRPS-1404813, Rev. 3, and examined the behavior of the Tank 241-C-105 solids treated with water, 19M sodium hydroxide, 2M nitric acid, and 0.5M oxalic acid/2M nitric acid. Phase 2 of the testing was conducted in accordance with instructions from the client and emphasized treatment with 19M sodium hydroxide followed by water washing. This is the report of the Phase 2 testing.

  10. Hanford Tank 241-C-106: Impact of Cement Reactions on Release of Contaminants from Residual Waste

    International Nuclear Information System (INIS)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2006-01-01

    The CH2M HILL Hanford Group, Inc. (CH2M HILL) is producing risk/performance assessments to support the closure of single-shell tanks at the U.S. Department of Energy's Hanford Site. As part of this effort, staff at Pacific Northwest National Laboratory were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. Initial work to produce release models was conducted on residual tank sludge using pure water as the leaching agent. The results were reported in an earlier report. The decision has now been made to close the tanks after waste retrieval with a cementitious grout to minimize infiltration and maintain the physical integrity of the tanks. This report describes testing of the residual waste with a leaching solution that simulates the composition of water passing through the grout and contacting the residual waste at the bottom of the tank.

  11. Thermal stratification in a hot water tank established by heat loss from the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2009-01-01

    Results of experimental and numerical investigations of thermal stratification and natural convection in a vertical cylindrical hot water tank during standby periods are presented. The transient fluid flow and heat transfer in the tank during cooling caused by heat loss are investigated...... on the natural buoyancy resulting in downward flow along the tank side walls due to heat loss of the tank and the influence on thermal stratification of the tank by the downward flow and the corresponding upward flow in the central parts of the tank. Water temperatures at different levels of the tank...... by computational fluid dynamics (CFD) calculations and by thermal measurements. A tank with uniform temperatures and thermal stratification is studied. The distribution of the heat loss coefficient for the different parts of the tank is measured by tests and used as input to the CFD model. The investigations focus...

  12. Ferrocyanide tank safety program: Cesium uptake capacity of simulated ferrocyanide tank waste. Final report

    International Nuclear Information System (INIS)

    Burgeson, I.E.; Bryan, S.A.

    1995-07-01

    The objective of this project is to determine the capacity for 137 Cs uptake by mixed metal ferrocyanides present in Hanford Site waste tanks, and to assess the potential for aggregation of these 137 Cs-exchanged materials to form ''hot-spots'' in the tanks. This research, performed at Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company, stems from concerns regarding possible localized radiolytic heating within the tanks. After ferrocyanide was added to 18 high-level waste tanks in the 1950s, some of the ferrocyanide tanks received considerable quantities of saltcake waste that was rich in 137 Cs. If radioactive cesium was exchanged and concentrated by the nickel ferrocyanide present in the tanks, the associated heating could cause tank temperatures to rise above the safety limits specified for the ferrocyanide-containing tanks, especially if the supernate in the tanks is pumped out and the waste becomes drier

  13. WWTP Process Tank Modelling

    DEFF Research Database (Denmark)

    Laursen, Jesper

    The present thesis considers numerical modeling of activated sludge tanks on municipal wastewater treatment plants. Focus is aimed at integrated modeling where the detailed microbiological model the Activated Sludge Model 3 (ASM3) is combined with a detailed hydrodynamic model based on a numerical...... solution of the Navier-Stokes equations in a multiphase scheme. After a general introduction to the activated sludge tank as a system, the activated sludge tank model is gradually setup in separate stages. The individual sub-processes that are often occurring in activated sludge tanks are initially...... hydrofoil shaped propellers. These two sub-processes deliver the main part of the supplied energy to the activated sludge tank, and for this reason they are important for the mixing conditions in the tank. For other important processes occurring in the activated sludge tank, existing models and measurements...

  14. Tank waste processing analysis: Database development, tank-by-tank processing requirements, and examples of pretreatment sequences and schedules as applied to Hanford Double-Shell Tank Supernatant Waste - FY 1993

    International Nuclear Information System (INIS)

    Colton, N.G.; Orth, R.J.; Aitken, E.A.

    1994-09-01

    This report gives the results of work conducted in FY 1993 by the Tank Waste Processing Analysis Task for the Underground Storage Tank Integrated Demonstration. The main purpose of this task, led by Pacific Northwest Laboratory, is to demonstrate a methodology to identify processing sequences, i.e., the order in which a tank should be processed. In turn, these sequences may be used to assist in the development of time-phased deployment schedules. Time-phased deployment is implementation of pretreatment technologies over a period of time as technologies are required and/or developed. The work discussed here illustrates how tank-by-tank databases and processing requirements have been used to generate processing sequences and time-phased deployment schedules. The processing sequences take into account requirements such as the amount and types of data available for the tanks, tank waste form and composition, required decontamination factors, and types of compact processing units (CPUS) required and technology availability. These sequences were developed from processing requirements for the tanks, which were determined from spreadsheet analyses. The spreadsheet analysis program was generated by this task in FY 1993. Efforts conducted for this task have focused on the processing requirements for Hanford double-shell tank (DST) supernatant wastes (pumpable liquid) because this waste type is easier to retrieve than the other types (saltcake and sludge), and more tank space would become available for future processing needs. The processing requirements were based on Class A criteria set by the U.S. Nuclear Regulatory Commission and Clean Option goals provided by Pacific Northwest Laboratory

  15. Vandose Zone Characterization Project at the Hanford Tank Farms: SX Tank Farm Report

    International Nuclear Information System (INIS)

    Brodeur, J.R.; Koizumi, C.J.; Bertsch, J.F.

    1996-09-01

    The SX Tank Farm is located in the southwest portion of the 200 West Area of the Hanford Site. This tank farm consists of 15 single-shell tanks (SSTs), each with an individual capacity of 1 million gallons (gal). These tanks currently store high-level nuclear waste that was primarily generated from what was called the oxidation-reduction or open-quotes REDOXclose quotes process at the S-Plant facility. Ten of the 15 tanks are listed in Hanlon as open-quotes assumed leakersclose quotes and are known to have leaked various amounts of high-level radioactive liquid to the vadose zone sediment. The current liquid content of each tank varies, but the liquid from known leaking tanks has been removed to the extent possible. In 1994, the U.S. Department of Energy Richland Office (DOE-RL) requested the DOE Grand Junction Projects Office (GJPO), Grand Junction, Colorado, to perform a baseline characterization of contamination in the vadose zone at all the SST farms with spectral gamma-ray logging of boreholes surrounding the tanks. The SX Tank Farm geophysical logging was completed, and the results of this baseline characterization are presented in this report

  16. Exposures to jet fuel and benzene during aircraft fuel tank repair in the U.S. Air Force.

    Science.gov (United States)

    Carlton, G N; Smith, L B

    2000-06-01

    Jet fuel and benzene vapor exposures were measured during aircraft fuel tank entry and repair at twelve U.S. Air Force bases. Breathing zone samples were collected on the fuel workers who performed the repair. In addition, instantaneous samples were taken at various points during the procedures with SUMMA canisters and subsequent analysis by mass spectrometry. The highest eight-hour time-weighted average (TWA) fuel exposure found was 1304 mg/m3; the highest 15-minute short-term exposure was 10,295 mg/m3. The results indicate workers who repair fuel tanks containing explosion suppression foam have a significantly higher exposure to jet fuel as compared to workers who repair tanks without foam (p fuel, absorbed by the foam, to volatilize during the foam removal process. Fuel tanks that allow flow-through ventilation during repair resulted in lower exposures compared to those tanks that have only one access port and, as a result, cannot be ventilated efficiently. The instantaneous sampling results confirm that benzene exposures occur during fuel tank repair; levels up to 49.1 mg/m3 were found inside the tanks during the repairs. As with jet fuel, these elevated benzene concentrations were more likely to occur in foamed tanks. The high temperatures associated with fuel tank repair, along with the requirement to wear vapor-permeable cotton coveralls for fire reasons, could result in an increase in the benzene body burden of tank entrants.

  17. Predicting Trainability of M1 Crewmen

    Science.gov (United States)

    1982-10-01

    Load Main Gun Clear Main Gun LOAD/UNLOAD M250 GRENADE LAUNCHER ON M1 TANK* Load Grenade Launcher Unload Grenade Launcher PREPARE GUNNER’S STATION...Clear Main Gun LOAD/UNLOAD M250 GRENADE LAUNCHER ON Ml TANK* Load Grenade Launcher Unload Grenade Lauacher PREPARE GUNNER’S STATION FOR OPERATION ON Ml

  18. Modeling needs assessment for Hanford Tank Farm Operations. Vadose Zone Characterization Project at the Hanford Tank Farms

    International Nuclear Information System (INIS)

    1996-04-01

    This report presents the results of a modeling-needs assessment conducted for Tank Farm Operations at the Hanford Site. The goal of this project is to integrate geophysical logging and subsurface transport modeling into a broader decision-based framework that will be made available to guide Tank Farm Operations in implementing future modeling studies. In support of this goal, previous subsurface transport modeling studies were reviewed, and stakeholder surveys and interviews were completed (1) to identify regulatory, stakeholder, and Native American concerns and the impacts of these concerns on Tank Farm Operations, (2) to identify technical constraints that impact site characterization and modeling efforts, and (3) to assess how subsurface transport modeling can best be used to support regulatory, stakeholder, Native American, and Tank Farm Operations needs. This report is organized into six sections. Following an introduction, Section 2.0 discusses background issues that relate to Tank Farm Operations. Section 3.0 summarizes the technical approach used to appraise the status of modeling and supporting characterization. Section 4.0 presents a detailed description of how the technical approach was implemented. Section 5.0 identifies findings and observations that relate to implementation of numerical modeling, and Section 6.0 presents recommendations for future activities

  19. Tank characterization report for single-shell tanks 241-T-201, 241-T-202, 241-T-203, and 241-T-204

    International Nuclear Information System (INIS)

    Simpson, B.C.

    1998-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, in addition to other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for the single-shell tank series consisting of 241-T-201, -T-202, -T-203, and -T-204. The objectives of this report are: (1) to use characterization data in response to technical issues associated with T-200 series tank waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. Appendix A contains historical information for 241-T-201 to T-204, including surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge-based computer program. Appendix B summarizes sampling events, sample data obtained before 1989, and the most current sampling results. Appendix C reports the statistical analysis and numerical manipulation of data used in issue resolution. Appendix D contains the evaluation to establish the best-basis for the inventory estimate and the statistical analysis performed for this evaluation. Appendix E is a bibliography that resulted from an in-depth literature search of all known information sources applicable to tanks 241-T-201, -T-202, -T-203, and -T-204. The reports listed in Appendix E are available in the Tank Characterization and Safety Resource Center

  20. Preliminary tank characterization report for single-shell tank 241-TX-101: best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1997-01-01

    This document is a preliminary Tank Characterization Report (TCR). It only contains the current best-basis inventory (Appendix D) for single-shell tank 241-TX-101. No TCRs have been previously issued for this tank, and current core sample analyses are not available. The best-basis inventory, therefore, is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  1. Preliminary tank characterization report for single-shell tank 241-TY-102: best-basis inventory

    International Nuclear Information System (INIS)

    Place, D.E.

    1997-01-01

    This document is a preliminary Tank Characterization Report (TCR). It only contains the current best-basis inventory (Appendix D) for single-shell tank 241-TY-102. No TCRs have been previously issued for this tank, and current core sample analyses are not available. The best-basis inventory, therefore, is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  2. Preliminary tank characterization report for single-shell tank 241-TX-113: best-basis inventory

    International Nuclear Information System (INIS)

    Place, D.E.

    1997-01-01

    This document is a preliminary Tank Characterization Report (TCR). It only contains the current best-basis inventory (Appendix D) for single-shell tank 241-TX-113. No TCRs have been previously issued for this tank, and current core sample analyses are not available. The best-basis inventory, therefore, is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  3. Gas retention and release behavior in Hanford single-shell waste tanks

    International Nuclear Information System (INIS)

    Stewart, C.W.; Brewster, M.E.; Gauglitz, P.A.; Mahoney, L.A.; Meyer, P.A.; Recknagle, K.P.; Reid, H.C.

    1996-12-01

    This report describes the current understanding of flammable gas retention and release in Hanford single-shell waste tanks based on theory, experimental results, and observations of tank behavior. The single-shell tanks likely to pose a flammable gas hazard are listed and described, and photographs of core extrusions and the waste surface are included. The credible mechanisms for significant flammable gas releases are described, and release volumes and rates are quantified as much as possible. The only mechanism demonstrably capable of producing large (∼100 m 3 ) spontaneous gas releases is the buoyant displacement, which occurs only in tanks with a relatively deep layer of supernatant liquid. Only the double-shell tanks currently satisfy this condition. All release mechanisms believed plausible in single-shell tanks have been investigated, and none have the potential for large spontaneous gas releases. Only small spontaneous gas releases of several cubic meters are likely by these mechanisms. The reasons several other postulated gas release mechanisms are implausible or incredible are also given

  4. Standard guide for three methods of assessing buried steel tanks

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1998-01-01

    1.1 This guide covers procedures to be implemented prior to the application of cathodic protection for evaluating the suitability of a tank for upgrading by cathodic protection alone. 1.2 Three procedures are described and identified as Methods A, B, and C. 1.2.1 Method A—Noninvasive with primary emphasis on statistical and electrochemical analysis of external site environment corrosion data. 1.2.2 Method B—Invasive ultrasonic thickness testing with external corrosion evaluation. 1.2.3 Method C—Invasive permanently recorded visual inspection and evaluation including external corrosion assessment. 1.3 This guide presents the methodology and the procedures utilizing site and tank specific data for determining a tank's condition and the suitability for such tanks to be upgraded with cathodic protection. 1.4 The tank's condition shall be assessed using Method A, B, or C. Prior to assessing the tank, a preliminary site survey shall be performed pursuant to Section 8 and the tank shall be tightness test...

  5. 46 CFR 119.470 - Ventilation of spaces containing diesel fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel fuel tanks. 119... fuel tanks. (a) Unless provided with ventilation that complies with § 119.465 of this part, a space containing a diesel fuel tank and no machinery must meet one of the following requirements: (1) A space of 14...

  6. 46 CFR 119.445 - Fill and sounding pipes for fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fill and sounding pipes for fuel tanks. 119.445 Section... INSTALLATION Specific Machinery Requirements § 119.445 Fill and sounding pipes for fuel tanks. (a) Fill pipes for fuel tanks must be not less than 40 millimeters (1.5 inches) nominal pipe size. (b) There must be...

  7. Specialized video systems for use in waste tanks

    International Nuclear Information System (INIS)

    Anderson, E.K.; Robinson, C.W.; Heckendorn, F.M.

    1992-01-01

    The Robotics Development Group at the Savannah River Site is developing a remote video system for use in underground radioactive waste storage tanks at the Savannah River Site, as a portion of its site support role. Viewing of the tank interiors and their associated annular spaces is an extremely valuable tool in assessing their condition and controlling their operation. Several specialized video systems have been built that provide remote viewing and lighting, including remotely controlled tank entry and exit. Positioning all control components away from the facility prevents the potential for personnel exposure to radiation and contamination. The SRS waste tanks are nominal 4.5 million liter (1.3 million gallon) underground tanks used to store liquid high level radioactive waste generated by the site, awaiting final disposal. The typical waste tank (Figure 1) is of flattened shape (i.e. wider than high). The tanks sit in a dry secondary containment pan. The annular space between the tank wall and the secondary containment wall is continuously monitored for liquid intrusion and periodically inspected and documented. The latter was historically accomplished with remote still photography. The video systems includes camera, zoom lens, camera positioner, and vertical deployment. The assembly enters through a 125 mm (5 in) diameter opening. A special attribute of the systems is they never get larger than the entry hole during camera aiming etc. and can always be retrieved. The latest systems are easily deployable to a remote setup point and can extend down vertically 15 meters (50ft). The systems are expected to be a valuable asset to tank operations

  8. Numerical analysis of the cylindrical rigidity of the vertical steel tank shell

    Science.gov (United States)

    Chirkov, Sergey; Tarasenko, Alexander; Chepur, Petr

    2017-10-01

    The paper deals with the study of rigidity of a vertical steel cylindrical tank and its structural elements with the development of inhomogeneous subsidence in ANSYS software complex. The limiting case is considered in this paper: a complete absence of a base sector that varies along an arc of a circle. The subsidence zone is modeled by the parameter n. A finite-element model of vertical 20000 m3 steel tank has been created, taking into account all structural elements of tank metal structures, including the support ring, beam frame and roof sheets. Various combinations of vertical steel tank loading are analyzed. For operational loads, the most unfavorable combination is considered. Calculations were performed for the filled and emptied tank. Values of the maximum possible deformations of the outer contour of the bottom are obtained with the development of inhomogeneous base subsidence for the given tank size. The obtained parameters of intrinsic rigidity (deformability) of vertical steel tank can be used in the development of new regulatory and technical documentation for tanks.

  9. TANK FARM CLOSURE - A NEW TWIST ON REGULATORY STRATEGIES FOR CLOSURE OF WASTE TANK RESIDUALS FOLLOWING NUREG

    International Nuclear Information System (INIS)

    LEHMAN LL

    2008-01-01

    Waste from a number of single-shell tanks (SST) at the U.S. Department of Energy's (DOE) Hanford Site has been retrieved by CH2M HILL Hanford Group to fulfill the requirements of the 'Hanford Federal Facility Agreement and Consent Order (HFFACO) [1]. Laboratory analyses of the Hanford tank residual wastes have provided concentration data which will be used to determine waste classification and disposal options for tank residuals. The closure of tank farm facilities remains one of the most challenging activities faced by the DOE. This is due in part to the complicated regulatory structures that have developed. These regulatory structures are different at each of the DOE sites, making it difficult to apply lessons learned from one site to the next. During the past two years with the passage of the Section 3116 of the 'Ronald Reagan Defense Authorization Act of 2005' (NDAA) [2] some standardization has emerged for Savannah River Site and the Idaho National Laboratory tank residuals. Recently, with the issuance of 'NRC Staff Guidance for Activities Related to US. Department of Energy Waste Determinations' (NUREG-1854) [3] more explicit options may be considered for Hanford tank residuals than are presently available under DOE Orders. NUREG-1854, issued in August 2007, contains several key pieces of information that if utilized by the DOE in the tank closure process, could simplify waste classification and streamline the NRC review process by providing information to the NRC in their preferred format. Other provisions of this NUREG allow different methods to be applied in determining when waste retrieval is complete by incorporating actual project costs and health risks into the calculation of 'technically and economically practical'. Additionally, the NUREG requires a strong understanding of the uncertainties of the analyses, which given the desire of some NRC/DOE staff may increase the likelihood of using probabilistic approaches to uncertainty analysis. The purpose

  10. Nuclear fuel technology - Tank calibration and volume determination for nuclear materials accountancy - Part 6: Accurate in-tank determination of liquid density in accountancy tanks equipped with dip tubes

    International Nuclear Information System (INIS)

    2008-01-01

    ISO 18213 deals with the acquisition, standardization, analysis, and use of calibration data to determine liquid volumes in process tanks for accountability purposes. This part of ISO 18213 is complementary to the other parts, ISO 18213-1 (procedural overview), ISO 18213-2 (data standardization), ISO 18213-3 (statistical methods), ISO 18213-4 (slow bubbling rate), ISO 18213-5 (fast bubbling rate). The procedure described in this part of ISO 18213 is a two-step procedure. First, a liquid of known density is used to determine the vertical distance between the tips of the two probes (i.e. to calibrate their separation). The calibration step requires synchronous (or as nearly synchronous as possible) measurements of the pressure exerted at the tips of two probes by the calibration liquid in which they are submerged. The measurements obtained are used to make an accurate determination of probe separation. Second, the unknown density of the process liquid is determined with the aid of the probe separation calibration. The density-determination step also requires (nearly) synchronous measurements of the pressure exerted at the tips of two probes by the process liquid of unknown density. With careful technique, it is possible to make determinations of liquid density with in-tank measurements that approach the accuracy and precision of those made in the laboratory. Moreover, density determinations made with in-tank measurements are automatically made at the observed temperature of the tank liquid. Thus, no additional information about the liquid is required to infer its density at its tank temperature from determinations of its density at some other temperature. Except that the density of the process liquid is generally not well characterized, the steps involved in determining the height of process liquid in the tank are the same as those for determining the height of calibration liquid. Thus, the method of density determination given in this part of ISO 18213 is very

  11. Ultrasonic Examination of Double-Shell Tank 241-AY-101 Examination Completed August 2003

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Posakony, Gerald J.

    2003-01-01

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic nondestructive examination of selected portions of Double-Shell Tank 241-AY-101. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the secondary tank. The requirements for the ultrasonic examination of Tank 241-AY-101 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning or pitting that might be present in the wall of the secondary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP--11832 (Jensen 2002) and summarized on page 1 of this document, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report that describes the results of the COGEMA ultrasonic examinations

  12. Ultrasonic Examination of Double-Shell Tank 241-AP-104. Examination Completed August 2004

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Posakony, Gerald J.

    2004-01-01

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic nondestructive examination of selected portions of Double-Shell Tank 241-AP-104. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-AP-104 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-17750 (Jensen 2003) and summarized on page 1 of this document, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report that describes the results of the COGEMA ultrasonic examinations

  13. Ultrasonic Examination of Double-Shell Tank 241-SY-103. Examination completed February 2004

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Posakony, Gerald J.

    2004-01-01

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic nondestructive examination of selected portions of Double-Shell Tank 241-SY-103. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-SY-103 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-17750 (Jensen 2003) and summarized on page 1 of this document, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report that describes the results of the COGEMA ultrasonic examinations

  14. Ultrasonic Examination of Double-Shell Tank 241-AZ-102 Examination Completed August 2003

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Posakony, Gerald J.

    2003-01-01

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic nondestructive examination of selected portions of Double-Shell Tank 241-AZ-102. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-AZ-102 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plat (ETP), RPP-11832 (Jensen 2002) and summarized on page 1 of this document, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report that describes the results of the COGEMA ultrasonic examinations

  15. Ultrasonic Examination of Double-Shell Tank 241-SY-102. Examination Completed June 2004

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Posakony, Gerald J.

    2004-01-01

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic nondestructive examination of selected portions of Double-Shell Tank 241-SY-102. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-SY-102 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-17750 (Jensen 2003) and/SUMmarized on page 1 of this document, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report that describes the results of the COGEMA

  16. Mobilization and mixing of settled solids in horizontal storage tanks

    International Nuclear Information System (INIS)

    Cummins, R.L.

    1995-01-01

    Studies were conducted using submerged jets for the mobilization and mixing of settled solids to form a suspension that can easily be removed from storage tanks. These studies focus on the specific problems relating to horizontal, cylindrical storage tanks. Of primary consideration are the storage tanks located at the Oak Ridge National Laboratory which are used for the collection of remote-handled, radioactive liquid wastes. These wastes are in two phases. A layer of undissolved, settled solids varying from 2 to 4 feet in depth under a layer of supernate. Using a surrogate of the tank contents and an approximate 2/3 dimensional scale tank, tests were performed to determine the optimum design and location of suction and discharge nozzles as well as the minimum discharge velocity required to achieve complete mobilization of the solids in the tank

  17. An old water tank from the time of the ISR is being converted into a temporary store for ATLAS muon chambers.

    CERN Multimedia

    maximilien brice

    2005-01-01

    This large underground water tank dates from the construction of the ISR when CERN had its own independent water supply. No longer needed for water storage, this interesting example of 1960s industrial architecture represents 6000 m3 of useful storage space that can now be accessed via a 4 m x 5 m door made in the wall.

  18. Final Report for the Erosion-Corrosion Anaysis of Tank 241-AW-02E Feed Pump Pit Jumpers B-2 and 1-4 Removed from Service in 2013

    Energy Technology Data Exchange (ETDEWEB)

    Page, Jason S.

    2014-04-07

    This document is the final report summarizing the results in the examination of two pipe sections (jumpers) from the tank 241-AW-02E feed pump pit in the 241-AW tank farm. These pipe section samples consisted of jumper AW02E-WT-J-[B – 2] and jumper AW02E-WT-J-[1 – 4]. For the remainder of this report, these jumpers will be referred to as B – 2 and 1 – 4.

  19. Safety Analysis Report for Packaging (SARP): USA/9507/BLF (ERDA--AL), Model AL-M1

    International Nuclear Information System (INIS)

    Watkins, R.A.; Bertram, R.E.; Blauvelt, R.K.; Edling, D.A.; Flanagan, T.M.; Griffin, J.F.; Rhinehammer, T.B.

    1977-01-01

    The SARP includes structural integrity, thermal resistance, radiation shielding and radiological safety, nuclear criticality safety, and quality control of three insulated drum shipping containers identified as USA/9507/BLF (ERDA-AL), also called AL-M1, configurations 1, 3, and 5. Complete physical and technical descriptions of the packages are presented. Each package consists of an inner container centered within an insulated steel drum. The contents are plutonium-239 and uranium-235 in configurations-1 and -3. The configuration-5 package is intended for shipment of up to 100,000 Ci of tritiated water immobilized on a sorbent such as molecular sieve

  20. Results For The Third Quarter 2010 Tank 50 WAC Slurry Sample: Chemical And Radionuclide Contaminant Results

    International Nuclear Information System (INIS)

    Reigel, M.; Bibler, N.

    2010-01-01

    This report details the chemical and radionuclide contaminant results for the characterization of the 2010 Third Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC). Information from this characterization will be used by Liquid Waste Operations (LWO) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System. The following conclusions are drawn from the analytical results provided in this report: (i) The concentrations of the reported chemical and radioactive contaminants were less than their respective WAC targets or limits unless noted in this section. (ii) The reported detection limits for 94 Nb, 247 Cm and 249 Cf are above the requested limits from Reference 4. However, they are below the limits established in Reference 3. (iii) The reported detection limit for 242m Am is greater than the requested limit from Attachment 8.4 of the WAC. (iv) The reported detection limit for Isopar L is greater than the limit from Table 3 of the WAC. (v) The reported concentration of Isopropanol is greater than the limit from Table 4 of the WAC. (vi) Isopar L and Norpar 13 have limited solubility in aqueous solutions making it difficult to obtain consistent and reliable sub-samples. The values reported in this memo are the concentrations in the sub-sample as detected by the GC/MS; however, the results may not accurately represent the concentrations of the analytes in Tank 50.

  1. Removing Phosphate from Hanford High-Phosphate Tank Wastes: FY 2010 Results

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Braley, Jenifer C.; Edwards, Matthew K.; Qafoku, Odeta; Felmy, Andrew R.; Carter, Jennifer C.; MacFarlan, Paul J.

    2010-09-22

    The U.S. Department of Energy (DOE) is responsible for environmental remediation at the Hanford Site in Washington State, a former nuclear weapons production site. Retrieving, processing, immobilizing, and disposing of the 2.2 × 105 m3 of radioactive wastes stored in the Hanford underground storage tanks dominates the overall environmental remediation effort at Hanford. The cornerstone of the tank waste remediation effort is the Hanford Tank Waste Treatment and Immobilization Plant (WTP). As currently designed, the capability of the WTP to treat and immobilize the Hanford tank wastes in the expected lifetime of the plant is questionable. For this reason, DOE has been pursuing supplemental treatment options for selected wastes. If implemented, these supplemental treatments will route certain waste components to processing and disposition pathways outside of WTP and thus will accelerate the overall Hanford tank waste remediation mission.

  2. In-Tank Peroxide Oxidation Process for the Decomposition of Tetraphenylborate in Tank 48H

    International Nuclear Information System (INIS)

    DANIEL, LAMBERT

    2005-01-01

    Tank 48H return to service is critical to the processing of high level waste (HLW) at the Savannah River Site (SRS). Tank 48H currently holds legacy material containing organic tetraphenylborate (TPB) compounds from the operation of the In-Tank Precipitation process. The TPB was added during an in-tank precipitation process to removed soluble cesium, but excessive benzene generation curtailed this treatment method. This material is not compatible with the waste treatment facilities at SRS and must be removed or undergo treatment to destroy the organic compounds before the tank can be returned to routine Tank Farm service. Tank 48H currently contains approximately 240,000 gallons of alkaline slurry with approximately 19,000 kg (42,000 lb) of potassium and cesium tetraphenylborate (KTPB and CsTPB). Out of Tank processing of the Tank 48H has some distinct advantages as aggressive processing conditions (e.g., high temperature, low pH) are required for fast destruction of the tetraphenylborate. Also, a new facility can be designed with the optimum materials of construction and other design features to allow the safe processing of the Tank 48H waste. However, it is very expensive to build a new facility. As a result, an in-tank process primarily using existing equipment and facilities is desirable. Development of an in-tank process would be economically attractive. Based on success with Fentons Chemistry (i.e., hydrogen peroxide with an iron or copper catalyst to produce hydroxyl radicals, strong oxidation agents), testing was initiated to develop a higher pH oxidation process that could be completed in-tank

  3. USA 2008 : maailma ilmselt mõjukaima mehe või naise valik sai hoo sisse / Liisa Past

    Index Scriptorium Estoniae

    Past, Liisa

    2008-01-01

    USA riigipea institutsiooni muutumisest. Autori sõnul on USA riigipea institutsioon võimsam kui kunagi varem ja pidevalt lisandunud uued rollid on muutunud selle lausa ohtlikult tugevaks. Kõige olulisemalt on viimase poole sajandi jooksul muutunud presidendi suhted kodumaise avalikkusega. Lisad: 2008. aasta USA presidendivalimised; Valimistsükkel

  4. Influence of tanks liner material on water quality and growth of ...

    African Journals Online (AJOL)

    Three tank liner materials: polyvinylchloride (PVC), polyethylene and polyester were evaluated in a 93 days experiment for their influence on culture water quality and growth performance of Clarias gariepinus. Fish of average weight of 5.03±0.21g were stocked at 375 per m3 in tanks lined with the aforementioned materials.

  5. Review of Tank Lay-Up Status at US Department of Energy Radioactive Waste Tank Sites

    International Nuclear Information System (INIS)

    Elmore, Monte R.; Henderson, Colin

    2002-01-01

    During fiscal year (FY) 2001 as part of a Tanks Focus Area strategic initiative, tank lay-up options were developed and evaluated for the two high-level waste (HLW) storage tanks at the West Valley Demonstration Project. As follow-on task, a list of key waste tank contacts throughout the US Department of Energy complex was developed. Visits were then made to the primary DOE sites with radioactive waste storage tanks to discuss the concept and applicability of tank lay-up. This report documents the results of individual discussions with tank closure staff at the four DOE Sites concerning tank closure status and plans as well as lay-up options and activities

  6. Thermal stratification in a hot water tank established by heat loss from the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2012-01-01

    This paper presents numerical investigations of thermal stratification in a vertical cylindrical hot water tank established by standby heat loss from the tank. The transient fluid flow and heat transfer in the tank during cooling caused by standby heat loss are calculated by means of validated...... computational fluid dynamics (CFD) models. The measured heat loss coefficient for the different parts of the tank is used as input to the CFD model. Parametric studies are carried out using the validated models to investigate the influence on thermal stratification of the tank by the downward flow...... the heat loss from the tank sides will be distributed at different levels of the tank at different thermal conditions. The results show that 20–55% of the side heat loss drops to layers below in the part of the tank without the presence of thermal stratification. A heat loss removal factor is introduced...

  7. Engineering task plan for tank farm ventilation strategy document preparation and maintenance

    International Nuclear Information System (INIS)

    VanderZanden, M.D.

    1994-01-01

    Active and passive systems provide ventilation for single shell tanks (SST), double shell tanks (DST), and doubly contained receiver tanks (DCRT). The systems perform or contribute to one or more of the following functions: maintain structural integrity (prevent overpressurization), confinement, cooling, vapor and gas removal, and leak detection. For certain tanks, ventilation also removes particles, in addition to vapors, to permit visual observation of the tank inner walls and waste surface. The function(s) performed are dependent on tank construction, watchlist classification, and tank contents. The function(s) should be maintained to support the TWRS mission. The tank farm mission is expected to extend to 2028, based on Tri-Party Agreement (TPA) milestone, M-50-00, for completion of waste pretreatment. Many systems are currently beyond service life expectations and continued operation will result in decreased reliability and increased maintenance. Therefore, the systems must be replaced or upgraded to ensure adequate reliability. Ventilation system upgrades are included in a capital Project W-314, Tank Farm Restoration and Safe Operations. The ventilation upgrades are expected to be completed by June 2002. The new ventilation systems will satisfy the required function(s) of the tanks and/or tank farms. However, interim component upgrades may be required to guarantee reliability of systems until the capital project is completed. Some upgrades originally identified in the project might more suitably be provided with non-project resources

  8. Investigation on flow pattern by submersible mechanical aerator aused in anaerobic-aerobic tank. Kenki koki ken'yo suichu aerator ni yoru sonai ryudo no chosa kensho

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, M; Inoue, H; Kamei, T; Kato, N [Ebara Corp., Tokyo (Japan)

    1994-01-20

    As explained in the present report, flow pattern was verified in a submersible aerator tank for both anaerobic and aerobic wastewater treatment (submersible plant for the mechanical agitation and aeration). The verification was made in a water passage of the sewage treatment plant. The flowing was conditioned as per the measurement of both flow velocity and activated sludge concentration. The submersible aerator was installed so that balance might be kept in ventilating pressure between it and the diffusing plate. The flowing on the tank bottom was stabilized by installing a special guide at the outlet of aerator. The result was as follows: in both tanks during the anaerobic operation, the flow velocity was 0.15m/s as a whole and higher than the standard of 0.1m/s on the tank bottom. Under the tank top and at the middle of tank height, the flow velocity is lower than that on the tank bottom and the intake of dissolved oxygen is weak. In both tanks during the aerobic operation, the flow velocity as a whole is higher than that during the anaerobic operation. It is attributable to the airlift effect. The flow pattern during the aerobic operation is characterized by the flow which is generated, by airlift effect, under the tank top toward the wall. Then, that flow effectively works for the flowing on the tank bottom. Hardly dispersed, the pollutant concentration indicates that the flowing is sufficient in the tank. 4 refs., 6 figs., 3 tabs.

  9. Supporting document for the historical tank content estimate for SY-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.

    1997-08-12

    The purpose of this historical characterization document is to present the synthesized summaries of the historical records concerning the physical characteristics, radiological, and chemical composition of mixed wastes stored in underground double-shell tanks and the physical condition of these tanks. The double-shell tanks are located on the United States Department of Energy`s Hanford Site, approximately 25 miles northwest or Richland, Washington. The document will be used to assist in characterizing the waste in the tanks in conjunction with the current program of sampling and analyzing the tank wastes. Los Alamos National Laboratory (LANL) developed computer models that used the historical data to attempt to characterize the wastes and to generate estimates of each tank`s inventory. A historical review of the tanks may reveal anomalies or unusual contents that could be critical to characterization and post characterization activities. This document was developed by reviewing the operating plant process histories, waste transfer data, and available physical and chemical data from numerous resources. These resources were generated by numerous contractors from 1945 to the present. Waste characterization, the process of describing the character or quality of a waste, is required by Federal law (Resource Conservation and Recovery Act [RCRA]) and state law (Washington Administrative Code [WAC] 173-303, Dangerous Waste Regulations). Characterizing the waste is necessary to determine methods to safely retrieve, transport, and/or treat the wastes.

  10. DEEP VADOSE ZONE CONTAMINATION DUE TO RELEASES FROM HANFORD SITE TANKS

    International Nuclear Information System (INIS)

    JARAYSI MN

    2008-01-01

    CH2M HILL Hanford Group, Inc. (the Hanford Tank Farm Operations contractor) and the Department of Energy's Office of River Protection have just completed the first phase of the Hanford Single-Shell Tank RCRA Corrective Action Program. The focus of this first phase was to characterize the nature and extent of past Hanford single-shell tank releases and to characterize the resulting fate and transport of the released contaminants. Most of these plumes are below 20 meters, with some reaching groundwater (at 60 to 120 meters below ground surface [bgs])

  11. Extended tank use analysis

    International Nuclear Information System (INIS)

    DeFigh-Price, C.; Green, D.J.

    1991-01-01

    The single-shell tanks at the Hanford Site were originally designed for open-quotes temporaryclose quotes use. The newer double-shell tanks were designed for 50 years of use. A number of single-shell tanks failed their original design criteria to contain liquid waste soon after they were constructed. These single-shell and double-shell tanks now will be required to contain semi-solid high-activity waste well beyond their design lives. It must be determined that the waste contained in these tanks will remain stable for up to an additional 30 years of storage. This paper describes the challenge of demonstrating that the tanks that have exceeded or will exceed their design lifetime can safely store high-level waste until planned disposal actions are taken. Considerations will include structural and chemical analyses

  12. Hanford Tank 241-C-106: Residual Waste Contaminant Release Model and Supporting Data

    International Nuclear Information System (INIS)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2005-01-01

    CH2M HILL is producing risk/performance assessments to support the closure of single-shell tanks at the DOE's Hanford Site. As part of this effort, staff at PNNL were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. This report provides the information developed by PNNL

  13. Aquatic Plant/microbial Filters for Treating Septic Tank Effluent

    Science.gov (United States)

    Wolverton, B. C.

    1988-01-01

    The use of natural biological processes for treating many types of wastewater have been developed by NASA at the John C. Stennis Space Center, NSTL, Mississippi, during the past 15 years. The simplest form of this technology involves the use of aquatic plant/marsh filters for treatment of septic tank effluent. Septic tank effluent from single home units can be treated to advanced secondary levels and beyond by using a 37.2 sq m (400 sq ft) surface area washed gravel filter. This filter is generally 0.3 m (1 ft) deep with a surface cover of approximately 0.15 m (6 in.) of gravel. The plants in this filter are usually aesthetic or ornamental such as calla lily (Zantedeschia aethiopica), canna lily (Canna flaccida), elephant ear (Colocasia esculenta), and water iris (Iris pseudacorus).

  14. Effect of soil fortified by polyurethane foam on septic tank effluent treatment.

    Science.gov (United States)

    Nie, J Y; Zhu, N W; Lin, K M; Song, F Y

    2011-01-01

    Fortified soil was made up of a mixture at a mass ratio 4/1000-6/1000 of sponge and natural soil according to the results of column experiment. The fortified soil had bigger porosity and higher hydraulic conductivity than the natural soil. The columns packed with 900 mm of the fortified soil endured a flow rate equivalent to 100 L/m(2)/d of septic tank effluent and the average chemical oxygen demand, nitrogen, and phosphorus removal rates were around 92%, 75% and 96%, respectively. After 100 weeks of operation, the saturated hydraulic conductivity of the fortified soil kept higher than 0.2 m/d. The bigger porosity of sponge improved the effective porosity, and the bigger specific surface area of sponge acted as an ideal support for biomat growth and ensured the sewage treatment performance of the fortified soil. The comparable performance was due to a similar and sufficient degree of soil clogging genesis coupled with bioprocesses that effectively purified the septic tank effluent given the adequate retention times.

  15. North Tank Farm data report for the Gunite and Associated Tanks at Oak Ridge National Laboratory Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Rule, V.A.; Burks, B.L.; Hoesen, S.D. van

    1998-05-01

    The US Department of Energy (DOE) Office of Science and Technology, in cooperation with the Oak Ridge Environmental Management Program, has developed and demonstrated the first full-scale remotely operated system for cleaning radioactive liquid and waste from large underground storage tanks. The remotely operated waste retrieval system developed and demonstrated at Oak Ridge National Laboratory (ORNL) is designed to accomplish both retrieval of bulk waste, including liquids, thick sludge, and scarified concrete, and final tank cleaning. This report provides a summary of the North Tank Farm (NTF) operations data and an assessment of the performance and efficiency of the waste retrieval system during NTF operations data and an assessment of the performance and efficiency of the waste retrieval system during NTF operations. The organization of this report is as follows: Section 1 provides an introduction to the report. Section 2 describes the NTF tank structures (W-3 and W-4 only) and the contents of the tanks. Section 3 outlines the objectives of the NTF testing and explains how these objectives were met. Section 4 provides a description of the various operating systems used in the NTF operations. Sections 5 and 6 present a summary of the data collected during NTF operations. Section 7 summarizes the maintenance activities performed and Section 8 summarizes the on-the-job training performed in the NTF. Section 9 summarizes the capital cost for the waste retrieval and characterization equipment and operating costs for performing the NTF work. Section 10 provides observations and lessons learned, and Section 11 provides a summary and conclusions

  16. Waste Tank Vapor Project: Tank vapor database development

    International Nuclear Information System (INIS)

    Seesing, P.R.; Birn, M.B.; Manke, K.L.

    1994-09-01

    The objective of the Tank Vapor Database (TVD) Development task in FY 1994 was to create a database to store, retrieve, and analyze data collected from the vapor phase of Hanford waste tanks. The data needed to be accessible over the Hanford Local Area Network to users at both Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL). The data were restricted to results published in cleared reports from the laboratories analyzing vapor samples. Emphasis was placed on ease of access and flexibility of data formatting and reporting mechanisms. Because of time and budget constraints, a Rapid Application Development strategy was adopted by the database development team. An extensive data modeling exercise was conducted to determine the scope of information contained in the database. a A SUN Sparcstation 1000 was procured as the database file server. A multi-user relational database management system, Sybase reg-sign, was chosen to provide the basic data storage and retrieval capabilities. Two packages were chosen for the user interface to the database: DataPrism reg-sign and Business Objects trademark. A prototype database was constructed to provide the Waste Tank Vapor Project's Toxicology task with summarized and detailed information presented at Vapor Conference 4 by WHC, PNL, Oak Ridge National Laboratory, and Oregon Graduate Institute. The prototype was used to develop a list of reported compounds, and the range of values for compounds reported by the analytical laboratories using different sample containers and analysis methodologies. The prototype allowed a panel of toxicology experts to identify carcinogens and compounds whose concentrations were within the reach of regulatory limits. The database and user documentation was made available for general access in September 1994

  17. Proceedings of the Fourth Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies

    Science.gov (United States)

    Deeb, Wissam; Giordano, James J.; Rossi, Peter J.; Mogilner, Alon Y.; Gunduz, Aysegul; Judy, Jack W.; Klassen, Bryan T.; Butson, Christopher R.; Van Horne, Craig; Deny, Damiaan; Dougherty, Darin D.; Rowell, David; Gerhardt, Greg A.; Smith, Gwenn S.; Ponce, Francisco A.; Walker, Harrison C.; Bronte-Stewart, Helen M.; Mayberg, Helen S.; Chizeck, Howard J.; Langevin, Jean-Philippe; Volkmann, Jens; Ostrem, Jill L.; Shute, Jonathan B.; Jimenez-Shahed, Joohi; Foote, Kelly D.; Wagle Shukla, Aparna; Rossi, Marvin A.; Oh, Michael; Pourfar, Michael; Rosenberg, Paul B.; Silburn, Peter A.; de Hemptine, Coralie; Starr, Philip A.; Denison, Timothy; Akbar, Umer; Grill, Warren M.; Okun, Michael S.

    2016-01-01

    This paper provides an overview of current progress in the technological advances and the use of deep brain stimulation (DBS) to treat neurological and neuropsychiatric disorders, as presented by participants of the Fourth Annual DBS Think Tank, which was convened in March 2016 in conjunction with the Center for Movement Disorders and Neurorestoration at the University of Florida, Gainesveille FL, USA. The Think Tank discussions first focused on policy and advocacy in DBS research and clinical practice, formation of registries, and issues involving the use of DBS in the treatment of Tourette Syndrome. Next, advances in the use of neuroimaging and electrochemical markers to enhance DBS specificity were addressed. Updates on ongoing use and developments of DBS for the treatment of Parkinson's disease, essential tremor, Alzheimer's disease, depression, post-traumatic stress disorder, obesity, addiction were presented, and progress toward innovation(s) in closed-loop applications were discussed. Each section of these proceedings provides updates and highlights of new information as presented at this year's international Think Tank, with a view toward current and near future advancement of the field. PMID:27920671

  18. MIXING OF INCOMPATIBLE MATERIALS IN WASTE TANKS TECHNICAL BASIS DOCUMENT

    International Nuclear Information System (INIS)

    SANDGREN, K.R.

    2006-01-01

    This document presents onsite radiological, onsite toxicological, and offsite toxicological consequences, risk binning, and control decision results for the mixing of incompatible materials in waste tanks representative accident. Revision 4 updates the analysis to consider bulk chemical additions to single shell tanks (SSTs)

  19. Failure analysis of buried tanks

    International Nuclear Information System (INIS)

    Watkins, R.K.

    1994-01-01

    Failure of a buried tank can be hazardous. Failure may be a leak through which product is lost from the tank; but also through which contamination can occur. Failures are epidemic -- because buried tanks are out of sight, but also because designers of buried tanks have adopted analyses developed for pressure tanks. So why do pressure tanks fail when they are buried? Most failures of buried tanks are really soil failures. Soil compresses, or slips, or liquefies. Soil is not only a load, it is a support without which the tank deforms. A high water table adds to the load on the tank. It also reduces the strength of the soil. Based on tests, structural analyses are proposed for empty tanks buried in soils of various quality, with the water table at various levels, and with internal vacuum. Failure may be collapse tank. Such collapse is a sudden, audible inversion of the cylinder when the sidefill soil slips. Failure may be flotation. Failure may be a leak. Most leaks are fractures in the welds in overlap seams at flat spots. Flat spots are caused by a hard bedding or a heavy surface wheel load. Because the tank wall is double thick at the overlap, shearing stress in the weld is increased. Other weld failures occur when an end plate shears down past a cylinder; or when the tank is supported only at its ends like a beam. These, and other, failures can be analyzed with justifiable accuracy using basic principles of mechanics of materials. 10 figs

  20. 49 CFR 231.9 - Tank cars without end sills.

    Science.gov (United States)

    2010-10-01

    ... clearance, within 30 inches of side of car, until car is shopped for work amounting to practically... 49 Transportation 4 2010-10-01 2010-10-01 false Tank cars without end sills. 231.9 Section 231.9..., DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.9 Tank cars without end sills. (a...

  1. Tank 241-C-111 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-111. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  2. Tank 241-BY-110 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-BY-110. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to the tank farm workers due to fugitive emissions from the tank

  3. CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Burns, H.; Stefanko, D.

    2012-01-10

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by

  4. Litterfall mercury dry deposition in the eastern USA

    International Nuclear Information System (INIS)

    Risch, Martin R.; DeWild, John F.; Krabbenhoft, David P.; Kolka, Randall K.; Zhang, Leiming

    2012-01-01

    Mercury (Hg) in autumn litterfall from predominately deciduous forests was measured in 3 years of samples from 23 Mercury Deposition Network sites in 15 states across the eastern USA. Annual litterfall Hg dry deposition was significantly higher (median 12.3 micrograms per square meter (μg/m 2 ), range 3.5–23.4 μg/m 2 ) than annual Hg wet deposition (median 9.6 μg/m 2 , range 4.4–19.7 μg/m 2 ). The mean ratio of dry to wet Hg deposition was 1.3–1. The sum of dry and wet Hg deposition averaged 21 μg/m 2 per year and 55% was litterfall dry deposition. Methylmercury was a median 0.8% of Hg in litterfall and ranged from 0.6 to 1.5%. Annual litterfall Hg and wet Hg deposition rates differed significantly and were weakly correlated. Litterfall Hg dry deposition differed among forest-cover types. This study demonstrated how annual litterfall Hg dry deposition rates approximate the lower bound of annual Hg dry fluxes. - Highlights: ► Annual litterfall mercury dry deposition was significantly higher than wet deposition. ► The mean ratio of dry to wet mercury deposition was 1.3–1. ► The sum of dry and wet mercury deposition averaged 55% litterfall dry deposition. ► Litterfall mercury deposition was highest in the oak-hickory forest-cover type. ► Methylmercury was a median 0.8% of mercury in litterfall and ranged to 1.5%. - A multi-year study of Mercury Deposition Network sites found that annual mercury dry deposition from litterfall in predominately deciduous forests exceeded annual mercury wet deposition in the eastern USA.

  5. Feasibility study of tank leakage mitigation using subsurface barriers. Revision 1

    International Nuclear Information System (INIS)

    Treat, R.L.; Peters, B.B.; Cameron, R.J.

    1995-01-01

    This document reflects the evaluations and analyses performed in response to Tri-Party Agreement Milestone M-45-07A - open-quotes Complete Evaluation of Subsurface Barrier Feasibilityclose quotes (September 1994). In addition, this feasibility study was revised reflecting ongoing work supporting a pending decision by the DOE Richland Operations Office, the Washington State Department of Ecology, and the US Environmental Protection Agency regarding further development of subsurface barrier options for SSTs and whether to proceed with demonstration plans at the Hanford Site (Tri-Party Agreement Milestone M-45-07B). Analyses of 14 integrated SST tank farm remediation alternatives were conducted in response to the three stated objectives of Tri-Party Agreement Milestone M-45-07A. The alternatives include eight with subsurface barriers and six without. Technologies used in the alternatives include three types of tank waste retrieval, seven types of subsurface barriers, a method of stabilizing the void space of emptied tanks, two types of in situ soil flushing, one type of surface barrier, and a clean-closure method. A no-action alternative and a surface-barrier-only alternative were included as nonviable alternatives for comparison. All other alternatives were designed to result in closure of SST tank farms as landfills or in clean-closure. Revision 1 incorporates additional analyses of worker safety, large leak scenarios, and sensitivity to the leach rates of risk controlling constituents. The additional analyses were conducted to support TPA Milestone M-45-07B

  6. Tank waste remediation system integrated technology plan. Revision 2

    International Nuclear Information System (INIS)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P.

    1995-01-01

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m 3 (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program

  7. Tank waste remediation system integrated technology plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-02-28

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

  8. Think tanks in Denmark

    DEFF Research Database (Denmark)

    Blach-Ørsten, Mark; Kristensen, Nete Nørgaard

    2016-01-01

    outside the media. The study shows that the two largest and oldest think tanks in Denmark, the liberal think tank CEPOS and the social democratic think tank ECLM, are very active and observable in the media; that the media’s distribution of attention to these think tanks, to some extent, confirms a re......-politicization of Danish newspapers; but also that the news media as an arena of influence is only one part of the equation, since some of the corporatist political networks are still intact and working outside the media...... half of the 2010s, because in this national setting think tanks are still a relatively new phenomenon. Based on theories of mediatization and de-corporatization, we present 1) an analysis of the visibility of selected Danish think tanks in the media and 2) an analysis of their political networks...

  9. Final Report of Tank 241-C-105 Dissolution, the Phase 2 Study

    Energy Technology Data Exchange (ETDEWEB)

    Meznarich, Huei K. [Washington River Protection Solutions LLC., Richland, WA (United States); bolling, Stacey D. [Washington River Protection Solutions LLC., Richland, WA (United States); Cooke, Gary A. [Washington River Protection Solutions LLC., Richland, WA (United States); Ely, Thomas M. [Washington River Protection Solutions LLC., Richland, WA (United States); Herting, Daniel L. [Washington River Protection Solutions LLC., Richland, WA (United States); Lachut, James S. [Washington River Protection Solutions LLC., Richland, WA (United States); LaMothe, Margaret E. [Washington River Protection Solutions LLC., Richland, WA (United States)

    2016-10-01

    Three clamshell grab samples were taken from Tank 241-C-105 in October 2015 in accordance with RPP-PLAN-60011. Analytical results of those samples were issued in the report RPP-RPT-59115 by Wastren Advantage, Inc., Hanford Laboratory. Solid phase characterization results were reported separately in LAB-RPT-15-00011 and in RPP-RPT-59147. The major solid phases reported to be present were dawsonite [NaAlCO3(OH)2], trona [Na3(HCO3)(CO3)·2H2O], cejkaite [Na4(UO2)(CO3)3], and an unidentified organic solid, with minor amounts of gibbsite [Al(OH)3], natrophosphate [Na7F(PO4)2·19H2O], and traces of unidentified iron-rich and manganese-rich phases. Note that the presence of dawsonite, trona, and cejkaite requires a relatively low pH, likely around pH 9 to 10. One aliquot of each grab sample was provided to 222-S Laboratory Process Chemistry for dissolution studies. Phase 1 of the dissolution testing followed the approved test plan, WRPS-1404813, Rev. 3, and examined the behavior of the Tank 241-C-105 solids treated with water, 19M sodium hydroxide, 2M nitric acid, and 0.5M oxalic acid/2M nitric acid. Phase 2 of the testing was conducted in accordance with instructions from the client and emphasized treatment with 19M sodium hydroxide followed by water washing. This is the report of the Phase 2 testing.

  10. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    International Nuclear Information System (INIS)

    Butterworth, St.W.; Shaw, M.R.

    2009-01-01

    Significant progress continued at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) with the completion of the closure process to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks had historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Four of the large storage tanks remain in use for waste storage while the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. During 2008 over seven miles of underground process piping along with associated tank valve boxes and secondary containment systems was stabilized with grout. Lessons learned were compiled and implemented during the closure process and will be utilized on the remaining four 1,135.6-kL (300,000-gal) underground stainless steel storage tanks. Significant progress has been made to clean and close emptied tanks at the INTEC TFF. Between 2002 and 2005, seven of the eleven 1,135.6-kL (300,000-gal) tanks and all four 113.5-kL (30,000-gal) tanks were cleaned and prepared

  11. Supporting document for the historical tank content estimate for AN-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AN-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  12. Supporting document for the historical tank content estimate for AY-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C H; Stroup, J L; Funk, J. W.

    1997-03-12

    This Supporting Document provides historical in-depth characterization information on AY-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  13. Supporting document for the historical tank content estimate for AW-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H., Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AW-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  14. Supporting document for the historical tank content estimate for AP-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AP-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  15. Supporting document for the historical tank content estimate for AP-tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W.

    1997-01-01

    This Supporting Document provides historical in-depth characterization information on AP-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas

  16. Supporting document for the historical tank content estimate for AW-tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W.

    1997-01-01

    This Supporting Document provides historical in-depth characterization information on AW-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas

  17. Gas retention and release behavior in Hanford single-shell waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, C.W.; Brewster, M.E.; Gauglitz, P.A.; Mahoney, L.A.; Meyer, P.A.; Recknagle, K.P.; Reid, H.C.

    1996-12-01

    This report describes the current understanding of flammable gas retention and release in Hanford single-shell waste tanks based on theory, experimental results, and observations of tank behavior. The single-shell tanks likely to pose a flammable gas hazard are listed and described, and photographs of core extrusions and the waste surface are included. The credible mechanisms for significant flammable gas releases are described, and release volumes and rates are quantified as much as possible. The only mechanism demonstrably capable of producing large ({approximately}100 m{sup 3}) spontaneous gas releases is the buoyant displacement, which occurs only in tanks with a relatively deep layer of supernatant liquid. Only the double-shell tanks currently satisfy this condition. All release mechanisms believed plausible in single-shell tanks have been investigated, and none have the potential for large spontaneous gas releases. Only small spontaneous gas releases of several cubic meters are likely by these mechanisms. The reasons several other postulated gas release mechanisms are implausible or incredible are also given.

  18. Performance of a lab-scale bio-electrochemical assisted septic tank for the anaerobic treatment of black water.

    Science.gov (United States)

    Zamalloa, Carlos; Arends, Jan B A; Boon, Nico; Verstraete, Willy

    2013-06-25

    Septic tanks are used for the removal of organic particulates in wastewaters by physical accumulation instead of through the biological production of biogas. Improved biogas production in septic tanks is crucial to increase the potential of this system for both energy generation and organic matter removal. In this study, the effect on the biogas production and biogas quality of coupling a 20 L lab-scale septic tank with a microbial electrolysis cell (MEC) was investigated and compared with a standard septic tank. Both reactors were operated at a volumetric organic loading rate of 0.5gCOD/Ld and a hydraulic retention time between 20 and 40 days using black water as an input under mesophilic conditions for a period of 3 months. The MEC-septic tank was operated at an applied voltage of 2.0±0.1V and the current experienced ranged from 40 mA (0.9A/m(2) projected electrode area) to 180 mA (5A/m(2) projected electrode area). The COD removal was of the order of 85% and the concentration of residual COD was not different between both reactors. Yet, the total phosphorous in the output was on average 39% lower in the MEC-septic tank. Moreover, the biogas production rate in the MEC-septic tank was a factor of 5 higher than in the control reactor and the H2S concentration in the biogas was a factor of 2.5 lower. The extra electricity supplied to the MEC-septic tank was recovered as extra biogas produced. Overall, it appears that the combination of MEC and a septic tank offers perspectives in terms of lower discharge of phosphorus and H2S, nutrient recuperation and a more reliable supply of biogas. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Creating Innovative Research Designs: The 10-Year Methodological Think Tank Case Study

    Science.gov (United States)

    Katerndahl, David; Crabtree, Benjamin

    2006-01-01

    PURPOSE Addressing important but complex research questions often necessitates the creation of innovative mixed methods designs. This report describes an approach to developing research designs for studying important but methodologically challenging research questions. METHODS The Methodological Think Tank has been held annually in conjunction with the Primary Care Research Methods and Statistics Conference in San Antonio since 1994. A group of 3 to 4 methodologists with expertise balanced between quantitative and qualitative backgrounds is invited by the think tank coordinators to serve on a 2-day think tank to discuss a research question selected from those submitted in response to a call for proposals. During the first half-day, these experts explore the content area with the investigator, often challenging beliefs and assumptions. During the second half-day, the think tank participants systematically prune potential approaches until a desirable research method is identified. RESULTS To date, the most recent 7 think tanks have produced fundable research designs, with 1 being funded by a K award and 4 by R01 grants. All participating investigators attributed much of their success to think tank participation. Lessons learned include (1) the importance of careful selection of participating methodologists, (2) all think tank communities of inquiry must go through 4 stages of development from pseudocommunity to community, and (3) the critical importance of listening by the investigator. CONCLUSION Researchers and academic departments could use this process locally to develop innovative research designs. PMID:17003146

  20. Vadose zone characterization project at the Hanford Tank Farms: BY Tank Farm report

    International Nuclear Information System (INIS)

    Kos, S.E.

    1997-02-01

    The US Department of Energy Grand Junction Office (GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the contamination distributed in the vadoze zone sediment beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information about the vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the BY Tank Farm

  1. Vadose zone characterization project at the Hanford Tank Farms: BY Tank Farm report

    Energy Technology Data Exchange (ETDEWEB)

    Kos, S.E.

    1997-02-01

    The US Department of Energy Grand Junction Office (GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the contamination distributed in the vadoze zone sediment beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information about the vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the BY Tank Farm.

  2. Supporting document for the historical tank content estimate for BY-Tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on BY-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  3. Supporting document for the historical tank content estimate for BY-Tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Newell, R.L.; Funk, J.W.

    1996-01-01

    This Supporting Document provides historical in-depth characterization information on BY-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area

  4. Supporting document for the historical tank content estimate for BX-tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.

    1996-01-01

    This Supporting Document provides historical in-depth characterization information on BX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area

  5. Supporting document for the historical tank content estimate for A-Tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Newell, R.L.; Funk, J.W.

    1996-01-01

    This Supporting Document provides historical in-depth characterization information on A-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area

  6. Evaluation of tank thermal expansion data in CALDEX

    International Nuclear Information System (INIS)

    Suda, S.; Weh, R.

    1991-01-01

    A thermal expansion test involving a large annular input reprocessing tank was carried out as a part of the CALDEX Project at the TEKO test facility in Karlsruhe, FRG. The objective of this test was to investigate thermal expansion properties of the tank and effects on various pressure and level measurement instruments used in the determination of liquid volume. In the thermal expansion test, a weak nitric acid solution was heated internally to a temperature of 60 degrees C by means of steam injection through the sparge ring. After heating, the annular tank took about one hour to thermally equilibrate, and it took another hour for the sparge ring and pulsator pipes to fill before thermal effects could be followed. The temperature at the end of the test, after tank and its contents had cooled undisturbed for fifty hours, was 29.9 degrees C. Thirteen instrument readings were obtained during each measurement cycle of roughly 70 seconds for a total of over 2800 readings per instrument. Thermal expansion effects for the CALDEX annular tank were consistent with that reported for cylindrical tanks. Temperature variations effect each type of probe in a way that depends on the properties of the probe and the characteristics of the measurement system. 3 refs., 4 figs., 3 tabs

  7. Structural failure modes in vertical tanks: reinforcement evaluation and solutions

    International Nuclear Information System (INIS)

    Alcantud Abellan, M.; Orden Martinez, A.

    1995-01-01

    Vertical storage tanks are essential components in the safety of nuclear plant systems. It has been shown that the traditional method of analysing seismic loads is not conservative, as it does not take account of the interaction between fluid and tank structure. This paper identifies different possible structural failure modes in tanks due to seismic load, and methods devised by various authors to evaluate tank structure capacity under different failure modes. These methods are based on experimental data relating to the structural behaviour of tanks during actual seismic events, tests, and theoretical analyses. The paper describes the problems of these structures under seismic loads in nuclear plants. It proposes solutions to the main structural problem, tank anchorage, for which the re-evaluation of the anchorage capacity is required, using methods (finite element) less conservative than those proposed by other authors. Also proposed is the local reinforcement of anchorages to increase their capacity. (Author) 4 refs

  8. Numerical Modeling of Mixing of Chemically Reacting, Non-Newtonian Slurry for Tank Waste Retrieval

    International Nuclear Information System (INIS)

    Yuen, D.A.; Onishi, Y.

    2001-01-01

    In the U.S. Department of Energy (DOE) complex, 100 million gallons of radioactive and chemical wastes from plutonium production are stored in 281 underground storage tanks. Retrieval of the wastes from the tanks is the first step in its ultimate treatment and disposal. Because billions of dollars are being spent on this effort, waste retrieval demands a strong scientific basis for its successful completion. As will be discussed in Section 4.2, complex interactions among waste chemical reactions, rheology, and mixing of solid and liquid tank waste (and possibly with a solvent) will occur in DSTs during the waste retrieval (mixer pump) operations. The ultimate goal of this study was to develop the ability to simulate the complex chemical and rheological changes that occur in the waste during processing for retrieval. This capability would serve as a scientific assessment tool allowing a priori evaluation of the consequences of proposed waste retrieval operations. Hanford tan k waste is a multiphase, multicomponent, high-ionic strength, and highly basic mixture of liquids and solids. Wastes stored in the 4,000-m3 DSTs will be mixed by 300-hp mixer pumps that inject high-speed (18.3 m/s) jets to stir up the sludge and supernatant liquid for retrieval. During waste retrieval operations, complex interactions occur among waste mixing, chemical reactions, and associated rheology. Thus, to determine safe and cost-effective operational parameters for waste retrieval, decisions must rely on new scientific knowledge to account for physical mixing of multiphase flows, chemical reactions, and waste rheology. To satisfy this need, we integrated a computational fluid dynamics code with state-of-the-art equilibrium and kinetic chemical models and non-Newtonian rheology (Onishi (and others) 1999). This development is unique and holds great promise for addressing the complex phenomena of tank waste retrieval. The current model is, however, applicable only to idealized tank waste

  9. Test Plan for the Demonstration of Geophysical Techniques for Single-Shell Tank Leak Detection at the Hanford Mock Tank Site: Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. Brent; Gee, Glendon W.; Sweeney, Mark D.

    2001-07-31

    As part of the Leak Detection, Monitoring and Mitigation (LDMM) program conducted by CH2M HILL 105-A during FY 2001. These tests are being conducted to assess the applicability of these methods (Electrical Resistance Tomography [ERT], High Resolution Resistivity [HRR], Cross-Borehole Seismography [XBS], Cross-Borehole Radar [XBR], and Cross-Borehole Electromagnetic Induction [CEMI]) to the detection and measurement of Single Shell Tank (SST) leaks into the vadose zone during planned sluicing operations. The testing in FY 2001 will result in the selection of up to two methods for further testing in FY 2002. In parallel with the geophysical tests, a Partitioning Interwell Tracer Test (PITT) study will be conducted simultaneously at the Mock Tank to assess the effectiveness of this technology in detecting and quantifying tank leaks in the vadose zone. Preparatory and background work using Cone Penetrometer methods (CPT) will be conducted at the Mock Tank site and an adjacent test area to derive soil properties for groundtruthing purposes for all methods.

  10. Application of mass-spring model in seismic analysis of liquid storage tank

    International Nuclear Information System (INIS)

    Liu Jiayi; Bai Xinran; Li Xiaoxuan

    2013-01-01

    There are many tanks for storing liquid in nuclear power plant. When seismic analysis is performed, swaying of liquid may change the mechanical parameters of those tanks, such as the center of mass and the moment of inertia, etc., so the load due to swaying of liquid can't be neglected. Mass-spring model is a simplified model to calculate the dynamic pressure of liquid in tank under earthquake, which is derived by the theory of Housner and given in the specification of seismic analysis of Safety-Related Nuclear Structures and Commentary-4-98 (ASCE-4-98 for short hereinafter). According to the theory of Housner and ASCE-4-98, the mass-spring 3-D FEM model for storage tank and liquid in it was established, by which the force of stored liquid acted on liquid storage tank in nuclear power plant under horizontal seismic load was calculated. The calculated frequency of liquid swaying and effect of liquid convection on storage tank were compared with those calculated by simplified formula. It is shown that the results of 3-D FEM model are reasonable and reliable. Further more, it is more direct and convenient compared with description in ASCE-4-98 when the mass-spring model is applied to 3-D FEM model for seismic analysis, from which the displacement and stress distributions of the plate-shell elements or the 3-D solid finite elements can be obtained directly from the seismic input model. (authors)

  11. Hanford Single-Shell Tank Leak Causes and Locations - 241-B Farm

    International Nuclear Information System (INIS)

    Girardot, Crystal L.; Harlow, Donald G.

    2013-01-01

    This document identifies 241-B Tank Farm (B Farm) leak cause and locations for the 100 series leaking tank (241-B-107) identified in RPP-RPT-49089, Hanford B-Farm Leak Inventory Assessments Report. This document satisfies the B Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F

  12. 49 CFR 231.7 - Tank cars with side platforms.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Tank cars with side platforms. 231.7 Section 231.7..., DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.7 Tank cars with side platforms. (a) Hand brakes—(1) Number. Same as specified for “Box and other house cars” (see § 231.1(a)(1)). (2...

  13. Investigation of cooling coil corrosion in storage tanks for radioactive waste

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.

    1978-01-01

    The high frequency of cooling coil leaks observed in high-heat waste storage tanks soon after sludge removal operations is attributed to pitting, according to laboratory corrosion studies. Experiments show that the most likely series of events leading to coil leakage is (1) excessive dilution of basic nitrite in the supernate, (2) initiation of attack in crevices due to oxygen depletion cells, and (3) acceleration of the attack by sulfate dissolved from the sludge. When sludge was slurried with water, the interstitial liquid was diluted. Nitrite, the anodic inhibitor that prevented attack on coils and tanks in normal operation when its concentration was 0.5 to 3.0M, could accelerate attack when diluted to 10 -4 to 10 -3 M. Attack was presumably initiated at oxygen depletion cells. The presence of sulfate, leached from the sludge, produced a conductive solution that could produce high current densities at the corroding steel surface. The proposed series of events leading to coil leakage agrees with the observations previously made on one leaking coil removed from Tank 2F after sludge removal in 1967. Examination revealed pitting that had originated on the outside of the coils. This pitting was attributed to oxygen depletion cells in coil crevices. To prevent recurrence of pitting attack on cooling coils during future sludge removal operations, the sludge should be slurried (1) with waste diluted less than one hundredfold with water, or (2) with a 500-ppm nitrite-H 2 O solution at pH 12. Either method should preclude pitting damage to the coils

  14. Think Tanks in Europe

    DEFF Research Database (Denmark)

    Kelstrup, Jesper Dahl

    in their national contexts. Questions regarding patterns and differences in think tank organisations and functions across countries have largely been left unanswered. This paper advances a definition and research design that uses different expert roles to categorise think tanks. A sample of 34 think tanks from...

  15. Environmental Assessment: Waste Tank Safety Program, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-02-01

    The US Department of Energy (DOE) needs to take action in the near-term, to accelerate resolution of waste tank safety issues at the Hanford Site near the City of Richland, Washington, and reduce the risks associated with operations and management of the waste tanks. The DOE has conducted nuclear waste management operations at the Hanford Site for nearly 50 years. Operations have included storage of high-level nuclear waste in 177 underground storage tanks (UST), both in single-shell tank (SST) and double-shell tank configurations. Many of the tanks, and the equipment needed to operate them, are deteriorated. Sixty-seven SSTs are presumed to have leaked a total approximately 3,800,000 liters (1 million gallons) of radioactive waste to the soil. Safety issues associated with the waste have been identified, and include (1) flammable gas generation and episodic release; (2) ferrocyanide-containing wastes; (3) a floating organic solvent layer in Tank 241-C-103; (4) nuclear criticality; (5) toxic vapors; (6) infrastructure upgrades; and (7) interim stabilization of SSTs. Initial actions have been taken in all of these areas; however, much work remains before a full understanding of the tank waste behavior is achieved. The DOE needs to accelerate the resolution of tank safety concerns to reduce the risk of an unanticipated radioactive or chemical release to the environment, while continuing to manage the wastes safely

  16. Do Fish Enhance Tank Mixing?

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Laursen, Jesper; Craig, Steven R.

    2005-01-01

    The design of fish rearing tanks represents a critical stage in the development of optimal aquaculture systems, especially in the context of recirculating systems. Poor hydrodynamics can compromise water quality, waste management and the physiology and behaviour of fish, and thence, production...... potential and operational profitability. The hydrodynamic performance of tanks, therefore, represents an important parameter during the tank design process. Because there are significant complexities in combining the rigid principles of hydrodynamics with the stochastic behaviour of fish, however, most data...... upon tank hydrokinetics has been derived using tanks void of fish. Clearly, the presence of randomly moving objects, such as fish, in a water column will influence not only tank volumes by displacing water, but due to their activity, water dynamics and associated in-tank processes. In order...

  17. Clinton: USA kaotab infosõjas Hiina, Venemaa ja Al Jazeeraga / Kaivo Kopli

    Index Scriptorium Estoniae

    Kopli, Kaivo

    2011-01-01

    USA välisministri Hillary Clintoni hinnangul on USA propaganda nõrgenenud ning USA mõjuvõim väheneb pidevalt. H. Clintoni vastusest Senati väliskomisjonis senaator Richard Lugari küsimusele USA pingutustest diplomaatilise kommunikatsiooni vallas

  18. Sample Results From Tank 48H Samples HTF-48-14-158, -159, -169, and -170

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hang, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-04-28

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 48H in support of determining the cause for the unusually high dose rates at the sampling points for this tank. A set of two samples was taken from the quiescent tank, and two additional samples were taken after the contents of the tank were mixed. The results of the analyses of all the samples show that the contents of the tank have changed very little since the analysis of the previous sample in 2012. The solids are almost exclusively composed of tetraphenylborate (TPB) salts, and there is no indication of acceleration in the TPB decomposition. The filtrate composition shows a moderate increase in salt concentration and density, which is attributable to the addition of NaOH for the purposes of corrosion control. An older modeling simulation of the TPB degradation was updated, and the supernate results from a 2012 sample were run in the model. This result was compared to the results from the 2014 recent sample results reported in this document. The model indicates there is no change in the TPB degradation from 2012 to 2014. SRNL measured the buoyancy of the TPB solids in Tank 48H simulant solutions. It was determined that a solution of density 1.279 g/mL (~6.5M sodium) was capable of indefinitely suspending the TPB solids evenly throughout the solution. A solution of density 1.296 g/mL (~7M sodium) caused a significant fraction of the solids to float on the solution surface. As the experiments could not include the effect of additional buoyancy elements such as benzene or hydrogen generation, the buoyancy measurements provide an upper bound estimate of the density in Tank 48H required to float the solids.

  19. Technical basis for a minimum hydroxide concentration in tanks containing dilute waste

    International Nuclear Information System (INIS)

    Zapp, P.E.

    1995-05-01

    Laboratory tests were performed to address the protection of waste tank steel from corrosion in situations of elevated temperatures up to 75 C (hot spots) in the sludge layer of Extended Sludge Processing (ESP) tanks. Coupon immersion tests were conducted at 75 C in two ESP simulants at four hydroxide (or pH) levels. The nitrite concentrations of the simulants were calculated from the ESP technical standards based on a temperature of 40 C. The results showed that a hydroxide concentration of at least 0.01 M prevented significant corrosion of the steel at the elevated temperature. This conclusion provides the technical basis for the revised minimum hydroxide concentration of 0.01 M in the draft WSRC 241-82H Control Room Process Requirements, for the ESP tanks

  20. Test plan for evaluation of primary exhaust ventilation flow meters for double shell hydrogen watch list tanks

    International Nuclear Information System (INIS)

    Willingham, W.E.

    1996-01-01

    This document is a plan for testing four different flow meters for use in the primary exhaust ventilation ducts of Double Shell Tanks on the hydrogen watch list that do not already have this capability. This currently includes tanks 241-AW-101, 241-AN-103, 241-AN-104, 241-AN-105, and 241-SY-103. The anticipated airflow velocity in these tanks range from 0.25 m/s(50 ft/min) to 1.78 m/s (350 ft/min). Past experiences at Hanford are forcing the evaluation and selection of instruments to be used at the low flow and relatively high humidity conditions found in these tanks. Based on the results of this test, a flow meter shall be chosen for installation in the primary exhaust ventilation ducts of the above mentioned waste tanks

  1. Tank farm health and safety plan. Revision 2

    International Nuclear Information System (INIS)

    Mickle, G.D.

    1995-01-01

    This Tank Farm Health and Safety Plan (HASP) for the conduct of all operations and work activities at the Hanford Site 200 Area Tank Farms is provided in order to minimize health and safety risks to workers and other onsite personnel. The HASP accomplishes this objective by establishing requirements, providing general guidelines, and conveying farm and facility-specific hazard communication information. The HASP, in conjunction with the job-specific information required by the HASP, is provided also as a reference for use during the planning of work activities at the tank farms. This HASP applies to Westinghouse Hanford Company (WHC), other prime contractors to the U.S. Department of Energy (DOE), and subcontractors to WHC who may be involved in tank farm work activities. This plan is intended to be both a requirements document and a useful reference to aid tank farm workers in understanding the safety and health issues that are encountered in routine and nonroutine work activities. The HASP defines the health and safety responsibilities of personnel working at the tank farms. It has been prepared in recognition of and is consistent with National Institute of Safety and Health (NIOSH), and Occupational Safety and Health Administration (OSHA)/Unlimited State Coast Guard (USCG)/U.S. Environmental Protection Agency (EPA), Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities (NIOSH 1985); WHC-CM-4-3, Industrial Safety Manual, Volume 4, open-quotes Health and Safety Programs for Hazardous Waste Operations;close quotes 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response; WHC-CM-1-1, Management Policies; and WHC-CM-1-3, Management Requirements and Procedures. When differences in governing regulations or policies exist, the more stringent requirements shall apply until the discrepancy can be resolved

  2. Tank farm health and safety plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Mickle, G.D.

    1995-03-29

    This Tank Farm Health and Safety Plan (HASP) for the conduct of all operations and work activities at the Hanford Site 200 Area Tank Farms is provided in order to minimize health and safety risks to workers and other onsite personnel. The HASP accomplishes this objective by establishing requirements, providing general guidelines, and conveying farm and facility-specific hazard communication information. The HASP, in conjunction with the job-specific information required by the HASP, is provided also as a reference for use during the planning of work activities at the tank farms. This HASP applies to Westinghouse Hanford Company (WHC), other prime contractors to the U.S. Department of Energy (DOE), and subcontractors to WHC who may be involved in tank farm work activities. This plan is intended to be both a requirements document and a useful reference to aid tank farm workers in understanding the safety and health issues that are encountered in routine and nonroutine work activities. The HASP defines the health and safety responsibilities of personnel working at the tank farms. It has been prepared in recognition of and is consistent with National Institute of Safety and Health (NIOSH), and Occupational Safety and Health Administration (OSHA)/Unlimited State Coast Guard (USCG)/U.S. Environmental Protection Agency (EPA), Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities (NIOSH 1985); WHC-CM-4-3, Industrial Safety Manual, Volume 4, {open_quotes}Health and Safety Programs for Hazardous Waste Operations;{close_quotes} 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response; WHC-CM-1-1, Management Policies; and WHC-CM-1-3, Management Requirements and Procedures. When differences in governing regulations or policies exist, the more stringent requirements shall apply until the discrepancy can be resolved.

  3. 9 CFR 316.14 - Marking tank cars and tank trucks used in transportation of edible products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Marking tank cars and tank trucks used in transportation of edible products. 316.14 Section 316.14 Animals and Animal Products FOOD SAFETY... CONTAINERS § 316.14 Marking tank cars and tank trucks used in transportation of edible products. Each tank...

  4. Hanford tanks initiative plan

    International Nuclear Information System (INIS)

    McKinney, K.E.

    1997-01-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy's Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System's tank waste retrieval Program

  5. Supporting document for the historical tank content estimate for SY-tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.

    1997-01-01

    The purpose of this historical characterization document is to present the synthesized summaries of the historical records concerning the physical characteristics, radiological, and chemical composition of mixed wastes stored in underground double-shell tanks and the physical condition of these tanks. The double-shell tanks are located on the United States Department of Energy's Hanford Site, approximately 25 miles northwest or Richland, Washington. The document will be used to assist in characterizing the waste in the tanks in conjunction with the current program of sampling and analyzing the tank wastes. Los Alamos National Laboratory (LANL) developed computer models that used the historical data to attempt to characterize the wastes and to generate estimates of each tank's inventory. A historical review of the tanks may reveal anomalies or unusual contents that could be critical to characterization and post characterization activities. This document was developed by reviewing the operating plant process histories, waste transfer data, and available physical and chemical data from numerous resources. These resources were generated by numerous contractors from 1945 to the present. Waste characterization, the process of describing the character or quality of a waste, is required by Federal law (Resource Conservation and Recovery Act CRA and state law (Washington Administrative Code AC 173-303, Dangerous Waste Regulations). Characterizing the waste is necessary to determine methods to safely retrieve, transport, and/or treat the wastes

  6. Computer modeling of jet mixing in INEL waste tanks

    International Nuclear Information System (INIS)

    Meyer, P.A.

    1994-01-01

    The objective of this study is to examine the feasibility of using submerged jet mixing pumps to mobilize and suspend settled sludge materials in INEL High Level Radioactive Waste Tanks. Scenarios include removing the heel (a shallow liquid and sludge layer remaining after tank emptying processes) and mobilizing and suspending solids in full or partially full tanks. The approach used was to (1) briefly review jet mixing theory, (2) review erosion literature in order to identify and estimate important sludge characterization parameters (3) perform computer modeling of submerged liquid mixing jets in INEL tank geometries, (4) develop analytical models from which pump operating conditions and mixing times can be estimated, and (5) analyze model results to determine overall feasibility of using jet mixing pumps and make design recommendations

  7. TANK FARM ENVIRONMENTAL REQUIREMENTS

    International Nuclear Information System (INIS)

    TIFFT, S.R.

    2003-01-01

    Through regulations, permitting or binding negotiations, Regulators establish requirements, limits, permit conditions and Notice of Construction (NOC) conditions with which the Office of River Protection (ORP) and the Tank Farm Contractor (TFC) must comply. Operating Specifications are technical limits which are set on a process to prevent injury to personnel, or damage to the facility or environment, The main purpose of this document is to provide specification limits and recovery actions for the TFC Environmental Surveillance Program at the Hanford Site. Specification limits are given for monitoring frequencies and permissible variation of readings from an established baseline or previous reading. The requirements in this document are driven by environmental considerations and data analysis issues, rather than facility design or personnel safety issues. This document is applicable to all single-shell tank (SST) and double-shell tank (DST) waste tanks, and the associated catch tanks and receiver tanks, and transfer systems. This Tank Farm Environmental Specifications Document (ESD) implements environmental-regulatory limits on the configuration and operation of the Hanford Tank Farms facility that have been established by Regulators. This ESD contains specific field operational limits and recovery actions for compliance with airborne effluent regulations and agreements, liquid effluents regulations and agreements, and environmental tank system requirements. The scope of this ESD is limited to conditions that have direct impact on Operations/Projects or that Operations Projects have direct impact upon. This document does not supercede or replace any Department of Energy (DOE) Orders, regulatory permits, notices of construction, or Regulatory agency agreements binding on the ORP or the TFC. Refer to the appropriate regulation, permit, or Notice of Construction for an inclusive listing of requirements

  8. Structural evaluation of W-211 flexible receiver platforms and tank pit walls

    International Nuclear Information System (INIS)

    Shrivastava, H.P.

    1997-01-01

    This document is a structural analysis of the Flexible Receiver Platforms and the tank-pit wall during removal of equipment and during a accidental drop of that equipment. The platform and the pit walls must withstand a accidental drop of a mixer and transfer pumps in specific pits in tanks 102-AP and 104-AP. A mixer pump will be removed from riser 11 in pit 2A on tank 241-AP-102. A transfer pump will be removed from riser 13 in pit 2D on tank 241-AP-102 and another transfer pump will be removed from riser 3A in pit 4A on tank 241-AP-104

  9. Tank Characterization Database (TCD) Data Dictionary: Version 4.0

    International Nuclear Information System (INIS)

    1996-04-01

    This document is the data dictionary for the tank characterization database (TCD) system and contains information on the data model and SYBASE reg-sign database structure. The first two parts of this document are subject areas based on the two different areas of the (TCD) database: sample analysis and waste inventory. Within each subject area is an alphabetical list of all the database tables contained in the subject area. Within each table defintiion is a brief description of the table and alist of field names and attributes. The third part, Field Descriptions, lists all field names in the data base alphabetically

  10. Recommendations for erosion-corrosion allowance for Multi-Function Waste Tank Facility tanks

    International Nuclear Information System (INIS)

    Carlos, W.C.; Brehm, W.F.; Larrick, A.P.; Divine, J.R.

    1994-10-01

    The Multi-Function Waste Tank Facility carbon steel tanks will contain mixer pumps that circulate the waste. On the basis of flow characteristics of the system and data from the literature, an erosion allowance of 0.075 mm/y (3 mil/year) was recommended for the tank bottoms, in addition to the 0.025 mm/y (1 mil/year) general corrosion allowance

  11. Final report for tank 241-AN-102, grab samples 2AN-95-1 through 2AN-95-6 and 102-AN-1 through 102-AN-4

    International Nuclear Information System (INIS)

    Esch, R.A.

    1996-01-01

    Ten grab samples (2AN-95-1, 2, 3, 4A, 5A; 102-AN-1, 2, 3(A), 3(B), and 4) and one field blank (2AN-95-6) were taken from tank 241-AN-102. In support of the safety screening program, total organic carbon and cyanide were performed as secondary analyses because the differential scanning calorimetry results exceeded the notification limit. These were compared to safety screening limits at a confidence level of 95%. Waste compatibility analyses were performed on the 3 supernate samples and the field blank from the latest sampling event. Results presented in the 45 day and in this report show that the waste in Tank 241-AN-1D2 has energetics greater than 480 J/g (dry) and total organic carbon > 3 wt%; however, with a moisture content > 17 wt%, the tank may be considered ''conditionally'' safe in accordance with the Data Quality Objective to Support Resolution of the Organic Complexant Safety Issue

  12. Hanford waste tank cone penetrometer

    International Nuclear Information System (INIS)

    Seda, R.Y.

    1995-12-01

    A new tool is being developed to characterize tank waste at the Hanford Reservation. This tool, known as the cone penetrometer, is capable of obtaining chemical and physical properties in situ. For the past 50 years, this tool has been used extensively in soil applications and now has been modified for usage in Hanford Underground Storage tanks. These modifications include development of new ''waste'' data models as well as hardware design changes to accommodate the hazardous and radioactive environment of the tanks. The modified cone penetrometer is scheduled to be deployed at Hanford by Fall 1996. At Hanford, the cone penetrometer will be used as an instrumented pipe which measures chemical and physical properties as it pushes through tank waste. Physical data, such as tank waste stratification and mechanical properties, is obtained through three sensors measuring tip pressure, sleeve friction and pore pressure. Chemical data, such as chemical speciation, is measured using a Raman spectroscopy sensor. The sensor package contains other instrumentation as well, including a tip and side temperature sensor, tank bottom detection and an inclinometer. Once the cone penetrometer has reached the bottom of the tank, a moisture probe will be inserted into the pipe. This probe is used to measure waste moisture content, water level, waste surface moisture and tank temperature. This paper discusses the development of this new measurement system. Data from the cone penetrometer will aid in the selection of sampling tools, waste tank retrieval process, and addressing various tank safety issues. This paper will explore various waste models as well as the challenges associated with tank environment

  13. Vapor space characterization of Waste Tank 241-TY-104: Results from samples collected on 4/27/95

    International Nuclear Information System (INIS)

    Klinger, G.S.; Olsen, K.B.; Clauss, T.W.

    1995-10-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-TY-104 (referred to as Tank TY-104). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, 8 were observed above the 5-ppbv reporting cutoff. Five tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 94% of the total organic components in Tank TY-104. Nitrous oxide (N 2 O) was the only permanent gas detected in the tank-headspace samples. Tank TY-104 is on the Ferrocyanide Watch List

  14. Reactor pressure tank

    International Nuclear Information System (INIS)

    Dorner, H.; Scholz, M.; Jungmann, A.

    1975-01-01

    In a reactor pressure tank for a nuclear reactor, self-locking hooks engage a steel ring disposed over the removable cover of the steel vessel. The hooks exert force upon the cover to maintain the cover in a closed position during operation of the reactor pressure tank. The force upon the removal cover is partly the result of the increasing temperature and thermal expansion of the steel vessel during operation. The steel vessel is surrounded by a reinforced-concrete tank. (U.S.)

  15. Single-shell tank closure work plan. Revision A

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    In January 1994, the Hanford Federal Facility Agreement and Conset Order (Tri-Party Agreement) was amended to reflect a revised strategy for remediation of radioactive waste in underground storage tanks. These amendments include milestones for closure of the single-shell tank (SST) operable units, to be initiated by March 2012 and completed by September 2024. This SST-CWP has been prepared to address the principal topical areas identified in Tri-Party Agreement Milestone M-45-06 (i.e., regulatory pathway, operable unit characterization, waste retrieval, technology development, and a strategy for achieving closure). Chapter 2.0 of this SST-CWP provides a brief description of the environmental setting, SST System, the origin and characteristics of SST waste, and ancillary equipment that will be remediated as part of SST operable unit closure. Appendix 2A provides a description of the hydrogeology of the Hanford Site, including information on the unsaturated sediments (vadose zone) beneath the 200 Areas Plateau. Chapter 3.0 provides a discussion of the laws and regulations applicable to closure of the SST farm operable units. Chapter 4.0 provides a summary description of the ongoing characterization activities that best align with the proposed regulatory pathway for closure. Chapter 5.0 describes aspects of the SST waste retrieval program, including retrieval strategy, technology, and sequence, potential tank leakage during retrieval, and considerations of deployment of subsurface barriers. Chapter 6.0 outlines a proposed strategy for closure. Chapter 7.0 provides a summary of the programs underway or planned to develop technologies to support closure. Ca. 325 refs.

  16. Single-shell tank closure work plan. Revision A

    International Nuclear Information System (INIS)

    1995-06-01

    In January 1994, the Hanford Federal Facility Agreement and Conset Order (Tri-Party Agreement) was amended to reflect a revised strategy for remediation of radioactive waste in underground storage tanks. These amendments include milestones for closure of the single-shell tank (SST) operable units, to be initiated by March 2012 and completed by September 2024. This SST-CWP has been prepared to address the principal topical areas identified in Tri-Party Agreement Milestone M-45-06 (i.e., regulatory pathway, operable unit characterization, waste retrieval, technology development, and a strategy for achieving closure). Chapter 2.0 of this SST-CWP provides a brief description of the environmental setting, SST System, the origin and characteristics of SST waste, and ancillary equipment that will be remediated as part of SST operable unit closure. Appendix 2A provides a description of the hydrogeology of the Hanford Site, including information on the unsaturated sediments (vadose zone) beneath the 200 Areas Plateau. Chapter 3.0 provides a discussion of the laws and regulations applicable to closure of the SST farm operable units. Chapter 4.0 provides a summary description of the ongoing characterization activities that best align with the proposed regulatory pathway for closure. Chapter 5.0 describes aspects of the SST waste retrieval program, including retrieval strategy, technology, and sequence, potential tank leakage during retrieval, and considerations of deployment of subsurface barriers. Chapter 6.0 outlines a proposed strategy for closure. Chapter 7.0 provides a summary of the programs underway or planned to develop technologies to support closure. Ca. 325 refs

  17. Particle behaviour consideration to maximize the settling capacity of rainwater storage tanks.

    Science.gov (United States)

    Han, M Y; Mun, J S

    2007-01-01

    Design of a rainwater storage tank is mostly based on the mass balance of rainwater with respect to the tank, considering aspects such as rainfall runoff, water usage and overflow. So far, however, little information is available on the quality aspects of the stored rainwater, such as the behavior of particles, the effect of retention time of the water in the tank and possible influences of system configuration on water quality in the storage tank. In this study, we showed that the performance of rainwater storage tanks could be maximized by recognizing the importance of water quality improvement by sedimentation and the importance of the system configuration within the tank, as well as the efficient collection of runoff. The efficiency of removal of the particles was increased by there being a considerable distance between the inlet and the outlet in the rainwater storage tank. Furthermore, it is recommended that the effective water depth in a rainwater tank be designed to be more than 3 m and that the rainwater be drawn from as close to the water surface as possible by using a floating suction device. An operation method that increases the retention time by stopping rainwater supply when the turbidity of rainwater runoff is high will ensure low turbidity in the rainwater collected from the tank.

  18. Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, P.K.

    1995-01-31

    The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm`s tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers.

  19. Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank

    International Nuclear Information System (INIS)

    Bhatia, P.K.

    1995-01-01

    The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm's tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers

  20. Process chemistry for the pretreatment of Hanford tank wastes

    International Nuclear Information System (INIS)

    Lumetta, G.J.; Swanson, J.L.; Barker, S.A.

    1992-08-01

    Current guidelines for disposing radioactive wastes stored in underground tanks at the US Department of Energy's Hanford Site call for the vitrification of high-level waste in borosilicate glass and disposal of the glass canisters in a deep geologic repository. Low-level waste is to be cast in grout and disposed of on site in shallow burial vaults. Because of the high cost of vitrification and geologic disposal, methods are currently being developed to minimize the volume of high-level waste requiring disposal. Two approaches are being considered for pretreating radioactive tank sludges: (1) leaching of selected components from the sludge and (2) acid dissolution of the sludge followed by separation of key radionuclides. The leaching approach offers the advantage of simplicity, but the acid dissolution/radionuclide extraction approach has the potential to produce the least number of glass canisters. Four critical components (Cr, P, S, and Al) were leached from an actual Hanford tank waste-Plutonium Finishing Plant sludge. The Al, P, and S were removed from the sludge by digestion of the sludge with 0.1 M NaOH at 100 degrees C. The Cr was leached by treating the sludge with alkaline KMnO 4 at 100 degrees C. Removing these four components from the sludge will dramatically lower the number of glass canisters required to dispose of this waste. The transuranic extraction (TRUEX) solvent extraction process has been demonstrated at a bench scale using an actual Hanford tank waste. The process, which involves extraction of the transuranic elements with octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), separated 99.9% of the transuranic elements from the bulk components of the waste. Several problems associated with the TRUEX processing of this waste have been addressed and solved

  1. Hanford Single-Shell Tank Leak Causes and Locations - 241-C Farm

    Energy Technology Data Exchange (ETDEWEB)

    Girardot, Crystal L.; Harlow, Donald G.

    2013-07-30

    This document identifies 241-C Tank Farm (C Farm) leak causes and locations for the 100 series leaking tanks (241-C-101 and 241-C-105) identified in RPP-RPT-33418, Rev. 2, Hanford C-Farm Leak Inventory Assessments Report. This document satisfies the C Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  2. Hanford Single Shell Tank Leak Causes and Locations - 241-TX Farm

    Energy Technology Data Exchange (ETDEWEB)

    Girardot, C. L.; Harlow, D> G.

    2014-07-22

    This document identifies 241-TX Tank Farm (TX Farm) leak causes and locations for the 100 series leaking tanks (241-TX-107 and 241-TX-114) identified in RPP-RPT-50870, Rev. 0, Hanford 241-TX Farm Leak Inventory Assessment Report. This document satisfies the TX Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  3. Hanford Single-Shell Tank Leak Causes and Locations - 241-A Farm

    Energy Technology Data Exchange (ETDEWEB)

    Girardot, Crystal L.; Harlow, Donald G.

    2013-09-10

    This document identifies 241-A Tank Farm (A Farm) leak causes and locations for the 100 series leaking tanks (241-A-104 and 241-A-105) identified in RPP-ENV-37956, Hanford A and AX Farm Leak Assessment Report. This document satisfies the A Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  4. Large Spun Formed Friction-Stir Welded Tank Domes for Liquid Propellant Tanks Made from AA2195: A Technology Demonstration for the Next Generation of Heavy Lift Launchers

    Science.gov (United States)

    Stachulla, M.; Pernpeinter, R.; Brewster J.; Curreri, P.; Hoffman, E.

    2010-01-01

    Improving structural efficiency while reducing manufacturing costs are key objectives when making future heavy-lift launchers more performing and cost efficient. The main enabling technologies are the application of advanced high performance materials as well as cost effective manufacture processes. This paper presents the status and main results of a joint industrial research & development effort to demonstrate TRL 6 of a novel manufacturing process for large liquid propellant tanks for launcher applications. Using high strength aluminium-lithium alloy combined with the spin forming manufacturing technique, this development aims at thinner wall thickness and weight savings up to 25% as well as a significant reduction in manufacturing effort. In this program, the concave spin forming process is used to manufacture tank domes from a single flat plate. Applied to aluminium alloy, this process allows reaching the highest possible material strength status T8, eliminating numerous welding steps which are typically necessary to assemble tank domes from 3D-curved panels. To minimize raw material costs for large diameter tank domes for launchers, the dome blank has been composed from standard plates welded together prior to spin forming by friction stir welding. After welding, the dome blank is contoured in order to meet the required wall thickness distribution. For achieving a material state of T8, also in the welding seams, the applied spin forming process allows the required cold stretching of the 3D-curved dome, with a subsequent ageing in a furnace. This combined manufacturing process has been demonstrated up to TRL 6 for tank domes with a 5.4 m diameter. In this paper, the manufacturing process as well as test results are presented. Plans are shown how this process could be applied to future heavy-lift launch vehicles developments, also for larger dome diameters.

  5. Radiological and toxicological analyses of tank 241-AY-102 and tank 241-C-106 ventilation systems

    International Nuclear Information System (INIS)

    Himes, D.A.

    1998-01-01

    The high heat content solids contained in Tank 241-C-106 are to be removed and transferred to Tank 241-AY-102 by sluicing operations, to be authorized under project W320. While sluicing operations are underway, the state of these tanks will be transformed from unagitated to agitated. This means that the partition fraction which describes the aerosol content of the head space will increase from IE-10 to IE-8 (see WHC-SD-WM-CN062, Rev. 2 for discussion of partition fractions). The head spare will become much more loaded with suspended material. Furthermore, the nature of this suspended material can change significantly: sluicing could bring up radioactive solids which normally would lay under many meters of liquid supernate. It is assumed that the headspace and filter aerosols in Tank 241-AY-102 are a 90/10 liquid/solid split. It is further assumed that the sluicing line, the headspace in Tank 241-C-106, and the filters on Tank 241-C-106 contain aerosols which are a 67/33 liquid/solid split. The bases of these assumptions are discussed in Section 3.0. These waste compositions (referred to as mitigated compositions) were used in Attachments 1 through 4 to calculate survey meter exposure rates per liter of inventory in the various system components. Three accident scenarios are evaluated: a high temperature event which melts or burns the HEPA filters and causes releases from other system components; an overpressure event which crushes and blows out the HEPA filters and causes releases from other system components; and an unfiltered release of tank headspace air. The initiating event for the high temperature release is a fire caused by a heater malfunction inside the exhaust dust or a fire outside the duct. The initiating event for the overpressure event could be a steam bump which over pressurizes the tank and leads to a blowout of the HEPA filters in the ventilation system. The catastrophic destruction of the HEPA filters would release a fraction of the accumulated

  6. Radiological and toxicological analyses of tank 241-AY-102 and tank 241-C-106 ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Himes, D.A.

    1998-08-11

    The high heat content solids contained in Tank 241-C-106 are to be removed and transferred to Tank 241-AY-102 by sluicing operations, to be authorized under project W320. While sluicing operations are underway, the state of these tanks will be transformed from unagitated to agitated. This means that the partition fraction which describes the aerosol content of the head space will increase from IE-10 to IE-8 (see WHC-SD-WM-CN062, Rev. 2 for discussion of partition fractions). The head spare will become much more loaded with suspended material. Furthermore, the nature of this suspended material can change significantly: sluicing could bring up radioactive solids which normally would lay under many meters of liquid supernate. It is assumed that the headspace and filter aerosols in Tank 241-AY-102 are a 90/10 liquid/solid split. It is further assumed that the sluicing line, the headspace in Tank 241-C-106, and the filters on Tank 241-C-106 contain aerosols which are a 67/33 liquid/solid split. The bases of these assumptions are discussed in Section 3.0. These waste compositions (referred to as mitigated compositions) were used in Attachments 1 through 4 to calculate survey meter exposure rates per liter of inventory in the various system components. Three accident scenarios are evaluated: a high temperature event which melts or burns the HEPA filters and causes releases from other system components; an overpressure event which crushes and blows out the HEPA filters and causes releases from other system components; and an unfiltered release of tank headspace air. The initiating event for the high temperature release is a fire caused by a heater malfunction inside the exhaust dust or a fire outside the duct. The initiating event for the overpressure event could be a steam bump which over pressurizes the tank and leads to a blowout of the HEPA filters in the ventilation system. The catastrophic destruction of the HEPA filters would release a fraction of the accumulated

  7. Tank farm potential ignition sources

    International Nuclear Information System (INIS)

    Scaief, C.C. III.

    1996-01-01

    This document identifies equipment, instrumentation, and sensors that are located in-tank as well as ex-tank in areas that may have communication paths with the tank vapor space. For each item, and attempt is made to identify the potential for ignition of flammable vapors using a graded approach. The scope includes all 177 underground storage tanks

  8. Tanks focus area. Annual report 1997

    International Nuclear Information System (INIS)

    Frey, J.

    1997-01-01

    The U.S. Department of Energy Office of Environmental Management is tasked with a major remediation project to treat and dispose of radioactive waste in hundreds of underground storage tanks. These tanks contain about 90,000,000 gallons of high-level and transuranic wastes. We have 68 known or assumed leaking tanks, that have allowed waste to migrate into the soil surrounding the tank. In some cases, the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in the safest possible condition until their eventual remediation to reduce the risk of waste migration and exposure to workers, the public, and the environment. Science and technology development for safer, more efficient, and cost-effective waste treatment methods will speed up progress toward the final remediation of these tanks. The DOE Office of Environmental Management established the Tanks Focus Area to serve as the DOE-EM's technology development program for radioactive waste tank remediation in partnership with the Offices of Waste Management and Environmental Restoration. The Tanks Focus Area is responsible for leading, coordinating, and facilitating science and technology development to support remediation at DOE's four major tank sites: the Hanford Site in Washington State, Idaho National Engineering and Environmental Laboratory in Idaho, Oak Ridge Reservation in Tennessee, and the Savannah River Site in South Carolina. The technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank. Safety is integrated across all the functions and is a key component of the Tanks Focus Area program

  9. In-tank photo analysis

    International Nuclear Information System (INIS)

    Vorvick, C.A.; Baird, D.B.; Heasler, P.G.

    1995-09-01

    This report documents an analysis performed by Pacific Northwest Laboratory (PNL) of photographs showing the interior of a single shell tank (SST) at the Hanford site. This report shows that in-tank photos can be used to create a plan-view map of the waste surface inside a tank, and that measuring the elevation of the waste surface from the photos is possible, but not accurate enough to be useful at this time. In-tank photos were acquired for Tanks BX111 and T111. The BX111 photos were used to create the waste surface map and to measure the waste surface elevation. T111 photos were used to measure the waste surface elevation. Uncertainty analyses of the mapping and surface elevation are included to show the accuracy of the calculations for both methods

  10. Tank characterization reference guide

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J.; Simpson, B.C.

    1994-09-01

    Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research

  11. Tanks Focus Area FY 1996 Site Needs Assessment

    International Nuclear Information System (INIS)

    1996-03-01

    The Tanks Focus Area's (TFA's) mission is to manage an integrated technology development program that results in the application of technology to safely and efficiently accomplish tank waste remediation across the US Department of Energy (DOE) complex. The TFA uses a systematic process for developing its annual program that draws from the tanks technology development needs expressed by four DOE tank waste sites--Hanford, Idaho, Oak Ridge, and Savannah River Sites. The process is iterative and involves four steps: (1) identify and validate tank technology needs at these four sites, (2) define a technical program that responds to these needs, (3) select specific tasks and schedules that accomplish program objectives, and (4) develop integrated teams to carry out selected tasks. This document describes the first of these four steps: identification of sites' tank technology needs. This step concentrates solely on needs identification, collection, and validation. Funding requirements and specific scope of responsive technical activities are not considered until later steps in program definition. This year, the collection and validation of site needs were accomplished through written input from the Site Technology Coordination Groups (STCGs). The TFA recognizes the importance of a continuing solid partnership with the sites through the STCG and DOE as well as contractor users and, therefore, ensured site participation and close coordination throughout the process

  12. Evaluation of tank waste transfers at 241-AW tank farm

    International Nuclear Information System (INIS)

    Willis, W.L.

    1998-01-01

    A number of waste transfers are needed to process and feed waste to the private contractors in support of Phase 1 Privatization. Other waste transfers are needed to support the 242-A Evaporator, saltwell pumping, and other ongoing Tank Waste Remediation System (TWRS) operations. The purpose of this evaluation is to determine if existing or planned equipment and systems are capable of supporting the Privatization Mission of the Tank Farms and continuing operations through the end of Phase 1B Privatization Mission. Projects W-211 and W-314 have been established and will support the privatization effort. Equipment and system upgrades provided by these projects (W-211 and W-314) will also support other ongoing operations in the tank farms. It is recognized that these projects do not support the entire transfer schedule represented in the Tank Waste Remediation system Operation and Utilization Plan. Additionally, transfers surrounding the 241-AW farm must be considered. This evaluation is provided as information, which will help to define transfer paths required to complete the Waste Feed Delivery (WFD) mission. This document is not focused on changing a particular project, but it is realized that new project work in the 241-AW Tank Farm is required

  13. 46 CFR 154.420 - Tank design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.420 Section 154.420 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Integral Tanks § 154.420 Tank design. (a) The structure of an integral tank must meet the deep tank scantling standards...

  14. Genomic and transcriptomic differences in community acquired methicillin resistant Staphylococcus aureus USA300 and USA400 strains.

    Science.gov (United States)

    Jones, Marcus B; Montgomery, Christopher P; Boyle-Vavra, Susan; Shatzkes, Kenneth; Maybank, Rosslyn; Frank, Bryan C; Peterson, Scott N; Daum, Robert S

    2014-12-19

    Staphylococcus aureus is a human pathogen responsible for substantial morbidity and mortality through its ability to cause a number of human infections including bacteremia, pneumonia and soft tissue infections. Of great concern is the emergence and dissemination of methicillin-resistant Staphylococcus aureus strains (MRSA) that are resistant to nearly all β-lactams. The emergence of the USA300 MRSA genetic background among community associated S. aureus infections (CA-MRSA) in the USA was followed by the disappearance of USA400 CA-MRSA isolates. To gain a greater understanding of the potential fitness advantages and virulence capacity of S. aureus USA300 clones, we performed whole genome sequencing of 15 USA300 and 4 USA400 clinical isolates. A comparison of representative genomes of the USA300 and USA400 pulsotypes indicates a number of differences in mobile genome elements. We examined the in vitro gene expression profiles by microarray hybridization and the in vivo transcriptomes during lung infection in mice of a USA300 and a USA400 MRSA strain by performing complete genome qRT-PCR analysis. The unique presence and increased expression of 6 exotoxins in USA300 (12- to 600-fold) compared to USA400 may contribute to the increased virulence of USA300 clones. Importantly, we also observed the up-regulation of prophage genes in USA300 (compared with USA400) during mouse lung infection (including genes encoded by both prophages ΦSa2usa and ΦSa3usa), suggesting that these prophages may play an important role in vivo by contributing to the elevated virulence characteristic of the USA300 clone. We observed differences in the genetic content of USA300 and USA400 strains, as well as significant differences of in vitro and in vivo gene expression of mobile elements in a lung pneumonia model. This is the first study to document the global transcription differences between USA300 and USA400 strains during both in vitro and in vivo growth.

  15. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Science.gov (United States)

    2010-07-01

    ... tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL... underground storage tank or underground storage tank system or facility or property on which an underground...

  16. Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA

    Science.gov (United States)

    Fenton, Cassandra R.; Webb, Robert H.; Cerling, Thure E.

    2006-03-01

    The failure of a lava dam 165,000 yr ago produced the largest known flood on the Colorado River in Grand Canyon. The Hyaloclastite Dam was up to 366 m high, and geochemical evidence linked this structure to outburst-flood deposits that occurred for 32 km downstream. Using the Hyaloclastite outburst-flood deposits as paleostage indicators, we used dam-failure and unsteady flow modeling to estimate a peak discharge and flow hydrograph. Failure of the Hyaloclastite Dam released a maximum 11 × 10 9 m 3 of water in 31 h. Peak discharges, estimated from uncertainty in channel geometry, dam height, and hydraulic characteristics, ranged from 2.3 to 5.3 × 10 5 m 3 s -1 for the Hyaloclastite outburst flood. This discharge is an order of magnitude greater than the largest known discharge on the Colorado River (1.4 × 10 4 m 3 s -1) and the largest peak discharge resulting from failure of a constructed dam in the USA (6.5 × 10 4 m 3 s -1). Moreover, the Hyaloclastite outburst flood is the oldest documented Quaternary flood and one of the largest to have occurred in the continental USA. The peak discharge for this flood ranks in the top 30 floods (>10 5 m 3 s -1) known worldwide and in the top ten largest floods in North America.

  17. Underground or aboveground storage tanks - A critical decision

    International Nuclear Information System (INIS)

    Rizzo, J.A.

    1992-01-01

    With the 1988 promulgation of the comprehensive Resource Conservation and Recovery Act (RCRA) regulations for underground storage of petroleum and hazardous substances, many existing underground storage tank (UST) owners have been considering making the move to aboveground storage. While on the surface, this may appear to be the cure-all to avoiding the underground leakage dilemma, there are many other new and different issues to consider with aboveground storage. The greatest misconception is that by storing materials above ground, there is no risk of subsurface environmental problems. It should be noted that with the aboveground storage tank (AGST) systems, there is still considerable risk of environmental contamination, either by the failure of onground tank bottoms or the spillage of product onto the ground surface where it subsequently finds its way to the ground water. In addition, there are added safety concerns that must be addressed. The greatest interest in AGSTs comes from managers with small volumes of used oil, fresh oil, solvents, chemicals, or heating oil. Dealing with small capacity tanks is not so different than large bulk storage - and, in fact, it lends itself to more options, such as portable storage, tank within tank configurations and inside installations. So what are the other specific areas of concern besides environmental to be addressed when making the decision between underground and aboveground tanks? The primary issues that will be addressed in this presentation are: (1) safety; (2) product losses; (3) cost comparison of USTs vs AGSTs; (4) space availability/accessibility; (5) precipitation handling; (6) aesthetics and security; (7) pending and existing regulations

  18. 46 CFR 154.439 - Tank design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent tank type A must meet the deep tank standard of the...

  19. Ultrasonic Examination of Double-Shell Tank 214-AW-102 Knuckle Region. Examination completed February 2003

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Posakony, Gerald J.

    2003-01-01

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic examination of the knuckle region of Double-Shell Tank 241-AW-102 utilizing the Remotely Operated Nondestructive Examination (RONDE) system. The purpose of this examination was to provide information that could be used to evaluate the integrity of the knuckle region of the primary tank. The requirements for the ultrasonic examination of Tank 241-AW-102 were to detect, characterize (identify, size, and locate), and record measurements made of any circumferentially oriented cracks that might be present in the knuckle area of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-7869, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided t o PNNL for third-party evaluation. PNNL is responsible for preparing a report(s) that describes the results of the COGEMA ultrasonic examinations

  20. Supporting document for the historical tank content estimate for the S-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H., Fluor Daniel Hanford

    1997-02-25

    This Supporting Document provides historical in-depth characterization information on S-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.