WorldWideScience

Sample records for urban soil profiles

  1. Source identification and apportionment of heavy metals in urban soil profiles.

    Science.gov (United States)

    Luo, Xiao-San; Xue, Yan; Wang, Yan-Ling; Cang, Long; Xu, Bo; Ding, Jing

    2015-05-01

    Because heavy metals (HMs) occurring naturally in soils accumulate continuously due to human activities, identifying and apportioning their sources becomes a challenging task for pollution prevention in urban environments. Besides the enrichment factors (EFs) and principal component analysis (PCA) for source classification, the receptor model (Absolute Principal Component Scores-Multiple Linear Regression, APCS-MLR) and Pb isotopic mixing model were also developed to quantify the source contribution for typical HMs (Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn) in urban park soils of Xiamen, a representative megacity in southeast China. Furthermore, distribution patterns of their concentrations and sources in 13 soil profiles (top 20 cm) were investigated by different depths (0-5, 5-10, 10-20 cm). Currently the principal anthropogenic source for HMs in urban soil of China is atmospheric deposition from coal combustion rather than vehicle exhaust. Specifically for Pb source by isotopic model ((206)Pb/(207)Pb and (208)Pb/(207)Pb), the average contributions were natural (49%)>coal combustion (45%)≫traffic emissions (6%). Although the urban surface soils are usually more contaminated owing to recent and current human sources, leaching effects and historic vehicle emissions can also make deep soil layer contaminated by HMs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. CONSIDERATIONS ON URBAN SOILS

    Directory of Open Access Journals (Sweden)

    Radu Lacatusu

    2005-10-01

    Full Text Available Urban soil is an material that has been manipulated, disturbed or transported by man’s activities in the urban environment and is used as a medium for plant growth and for constructions. The physical, chemical, and biological properties are generally less favorable as a rooting medium than soil found on the natural landscape. The main characteristics of urban soils are: great vertical and spatial variability; modified soil structure leading to compaction; presence of a surface crust; modified soil reaction, usually elevated; restricted aeration and water drainage; modified abundance of chemical elements, interrupted nutrient cycling and soil organism activity; presence of anthropic materials contaminants and pollutants; modified soil temperature regime. The urbic horizon is designated as U (always capital letter and for indication of processes are used different small letters. It is necessary elaboration a new classification of urban soils for our country.

  3. Surface-seismic imaging for nehrp soil profile classifications and earthquake hazards in urban areas

    Science.gov (United States)

    Williams, R.A.; Stephenson, W.J.; Odum, J.K.

    1998-01-01

    We acquired high-resolution seismic-refraction data on the ground surface in selected areas of the San Fernando Valley (SFV) to help explain the earthquake damage patterns and the variation in ground motion caused by the 17 January 1994 magnitude 6.7 Northridge earthquake. We used these data to determine the compressional- and shear-wave velocities (Vp and Vs) at 20 aftershock recording sites to 30-m depth ( V??s30, and V??p30). Two other sites, located next to boreholes with downhole Vp and Vs data, show that we imaged very similar seismic-vefocity structures in the upper 40 m. Overall, high site response appears to be associated with tow Vs in the near surface, but there can be a wide rangepf site amplifications for a given NEHRP soil type. The data suggest that for the SFV, if the V??s30 is known, we can determine whether the earthquake ground motion will be amplified above a factor of 2 relative to a local rock site.

  4. Solos urbanos Urban soils

    Directory of Open Access Journals (Sweden)

    Fabrício de Araújo Pedron

    2004-10-01

    Full Text Available A forte pressão provocada pela expansão urbana desordenada sobre os recursos naturais, principalmente os solos, tem provocado danos, muitas vezes de difícil reparo. A grande concentração populacional em centros urbanos cada vez maiores tem dirigido a atenção de diferentes profissionais para o recurso solo, no sentido de entender sua dinâmica para minimizar sua degradação. No entanto, a falta de conhecimento sobre as propriedades, bem como sobre a aptidão dos solos sob uso urbano tem provocado o seu mau uso, resultando em processos como compactação, erosão, deslizamentos e inundações, assim como poluição com substâncias orgânicas, inorgânicas e patógenos, aumentando os custos do desenvolvimento afetando toda a sociedade. Neste sentido, este texto discute como o conhecimento pedológico pode diminuir os efeitos negativos provocados pelo processo de urbanização.The strong pressure caused by the disordered urban expansion over the natural resources, mainly the soils, has caused damages, many times difficult to repair. The great population concentration in urban centers getting larger and larger has been driving the attention of different professionals to soil resource, in the sense of understanding its dynamics to minimize its degradation. The lack of knowledge related to the soils properties and capability promote their inappropriate use, resultig in degrading processes as compaction, erosion, sliding, floods, and organic, inorganic and patogenic pollution, increasing the cost of development and affecting the whole society. This text discusses how pedologic knowledge can reduce the negative effects caused by the urbanization process.

  5. The Vertical Structure of Urban Soils - Portland

    Science.gov (United States)

    We compared observed to reference pedons for two cities (Detroit MI; Cleveland OH), where it was clearly illustrated that urban soils had fewer soil horizons than their non-urban references. The ordering of observed urban soil horizons was distinct from both the theoretical (A-B-...

  6. Bioindication in Urban Soils in Switzerland

    Science.gov (United States)

    Amossé, J.; Le Bayon, C.; Mitchell, E. A. D.; Gobat, J. M.

    2012-04-01

    Urban development leads to profound changes in ecosystem structure (e.g. biodiversity) and functioning (e.g. ecosystem services). While above-ground diversity is reasonably well studied much less is known about soil diversity, soil processes and more generally soil health in urban settings. Soil invertebrates are key actors of soil processes at different spatial and temporal scales and provide essential ecosystem services. These functions may be even more vital in stressed environments such as urban ecosystems. Despite the general recognition of the importance of soil organisms in ecosystems, soil trophic food webs are still poorly known and this is especially the case in urban settings. As urban soils are characterised by high fragmentation and stress (e.g. drought, pollution) the structure and functioning of soil communities is likely to be markedly different from that of natural soils. It is for example unclear if earthworms, whose roles in organic matter transformation and soil structuration is well documented in natural and semi-natural soils, are also widespread and active in urban soils. Bioindication is a powerful tool to assess the quality of the environment. It is complementary to classical physicochemical soil analysis or can be used as sole diagnostic tool in cases where these analyses cannot be performed. However little is known about the potential use of bioindicators in urban settings and especially it is unclear if methods developped in agriculture can be applied to urban soils. The development of reliable methods for assessing the quality of urban soils has been identified as a priority for policy making and urban management in Switzerland, a high-urbanized country. We therefore initiated a research project (Bioindication in Urban Soil - BUS). The project is organised around four parts: (i) typology of urban soils in a study Region (Neuchâtel), (ii) sampling of soil fauna and analysis of soil physicochemical properties, (iii) comparison of the

  7. Soils in urban and industrial environments

    International Nuclear Information System (INIS)

    Burghardt, W.

    1994-01-01

    Urban areas are expanding rapidly. Therefore the interest in soil science activities on urban and industrial sites grows. The paper gives an overview of the research and mapping activities in Germany. A model of soils in urban ecosystems shows the relationships of development of soils and soil quality to land use. The water regime of soils is influenced by the characteristics of urban landscape and sealing. Of special interest are the typical substrates. Some properties of soils which develop on tipped substrates of natural material are discussed. Of importance are technological substrates as rubble, ash, slag, waste material and sludges in urban environments. Proposals of classification of urban and industrial soils are presented. For proper use by the municipal authorities availability and application of information on urban soils must be a part of research. (orig.) [de

  8. Soil invertebrates as bioindicators of urban soil quality

    International Nuclear Information System (INIS)

    Santorufo, Lucia; Van Gestel, Cornelis A.M.; Rocco, Annamaria; Maisto, Giulia

    2012-01-01

    This study aimed at relating the abundance and diversity of invertebrate communities of urban soils to chemical and physical soil characteristics and to identify the taxa most sensitive or tolerant to soil stressors. The invertebrate community of five urban soils in Naples, Italy, was sampled. To assess soil quality invertebrate community indices (Shannon, Simpson, Menhinick and Pielou indices), Acarina/Collembola ratios, and the soil biological quality index (QBS) were calculated. The chemical and physical characteristics of the soils strongly differed. Abundance rather than taxa richness of invertebrates were more affected by soil characteristics. The community was more abundant and diverse in the soils with high organic matter and water content and low metal (Cu, Pb, Zn) concentrations. The taxa more resistant to the urban environment included Acarina, Enchytraeids, Collembola and Nematoda. Collembolans appeared particularly sensitive to changing soil properties. Among the investigated indices, QBS seems most appropriate for soil quality assessment. - Highlights: ► The abundance and diversity of invertebrate communities was related to properties and metal contents of urban soils. ► Several (biodiversity) indices were calculated and compared to evaluate soil quality. ► Metal contamination affected invertebrate density and diversity. ► The taxa more tolerant to metal contamination were Acarina, Enchytraeids, Collembola and Nematoda. ► The soil biological quality index QBS index was most appropriate for soil quality assessment. - Soil metal contamination negatively affected soil invertebrate abundance and diversity.

  9. Urban logistics profile – Yogyakarta city, Indonesia

    Directory of Open Access Journals (Sweden)

    Maria Sri Asih Anna

    2018-01-01

    Full Text Available In recent years, more rural areas are becoming urban areas accompanied by escalation of logistics activities. Unlike passenger transport, the planning, policy and control of freight transport in developing countries have not been integrated into a reliable and efficient logistics system. Therefore, generating city logistics profile is necessary in order to support the planning of urban logistics system. This study aims to establish a logistics profile of Yogyakarta city, Indonesia, by dividing urban zones into several homogeneous groups, judging from several aspects, including city area features, product characteristics and agents/delivery profile. Logistics profile variables were calculated based on administrative boundaries, resulting in 45 areas to be investigated. Profiles were matched in groups of homogeneous stores (A, large commercial stores (C and residential areas with local trade (D,with one overlapping profile, i.e. profile A and profile D, in some locations in the middle of the city.

  10. Compost improves urban soil and water quality

    Science.gov (United States)

    Construction in urban zones compacts the soil, which hinders root growth and infiltration and may increase erosion, which may degrade water quality. The purpose of our study was to determine the whether planting prairie grasses and adding compost to urban soils can mitigate these concerns. We simula...

  11. Soil organic matter and soil biodiversity spots in urban and semi urban soils of southeast Mexico

    Science.gov (United States)

    Huerta, Esperanza

    2015-04-01

    We have observed how the constant use of compost or vermicompost has created spots of soil restoration in urban and semiurban soils of Chiapas (Huitepec and Teopisca), increasing soil organic matter amount, soil moisture and soil porosity, and enhancing then the presence of soil biodiversity; for example, in a Milpa with vermicompost (polyculture of Zea mays with Curcubita pepo, and Fasolius vulgaris) we have found a high density of an epigeic earthworm (640 ind.m2), Dichogaster bolahui, not present in the same type of soil just some meters of distance, in an Oak forest, where soil macroinvertebrates abundance decreased drastically. In another ecosystem within a Persea Americana culture, we found how above and below ground soil biodiversity is affected by the use of vermicompost, having clearly different microcosmos with and without vermicompost (30-50% more micro and macro invertebrates with vermicompost). So now in Campeche, within those soils that are classified by the mayas as tzequel, soils not use for agriculture, we have implemented home gardens and school gardens by the use of compost of vermicomposts in urban and semiurban soils. In school gardens (mainly primary schools) students have cultivated several plants with alimentary purposes; teachers have observed how the increase of soil biodiversity by the use of compost or vermicompost has enhanced the curiosity of children, even has promoted a more friendly behavior among students, they have learned how to do compost and how to apply it. Urban and semiurban soils can be modified by the use of compost and vermicompost, and soil biodiversity has extremely increased.

  12. Patterning between urban soil color and carbon stocks

    Science.gov (United States)

    Schifman, L. A.; Herrmann, D.; Shuster, W.

    2017-12-01

    Urban soils are extensively modified compared to their non-urban counterparts. These modifications are expected to affect the vertical distribution of total soil carbon as well as its constituent pools - soil organic carbon, black carbon, and inorganic carbon. Assigning color to soil horizons using the Munsell color system is a standard field method employed by soil scientists that can also reveal generalizable information about various environmental metrics. A new dataset on urban soils and their reference counterparts that cover 11 regions in the United States and advances in quantitative pedology allowed us to construct a log-linear model that relates Value, the lightness of a color hue, to the concentration of total carbon throughout a soil column of up to 450 cm depth. Overall, the relationship between 671 points resulted in an r2 of 0.23 with a p<0.001. As expected, organic carbon, shifted values to the lower end of the scale (darker), whereas inorganic carbon increased soil color values (lighter). These findings allow for a simplified understanding of shifts in carbon pools throughout a soil profile.

  13. Modelling of the urban wind profile

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekaterina

    2008-01-01

    Analysis of meteorological measurements from tall masts in rural and urban areas show that the height of the boundary layer influences the wind profile even in the lowest hundreds of meters. A parameterization of the wind profile for the entire boundary layer is formulated with emphasis on the lo...

  14. [Ecological hygienic assessment of soils quality in urban areas].

    Science.gov (United States)

    Vodyanova, M A; Kriatov, I A; Donerian, L G; Evseeva, I S; Ushakov, D I; Sbitnev, A V

    Assessment of the soil quality is ofprime importance essential for the characterization of the ecological and hygienic condition of the territory, as the soil is the first link of the food chain, the source of secondary air and water pollution, as well as an integral index of ecological well-being of the environment. Herewith the qualitative analysis of soil complicated by the specifics of the soil genesis in the urban environment, in which an important role is played by manmade land bulk and alluvial soils; the inclusion of construction of material debris and household garbage in upper horizons; the growing up of the profile due to the perpetual introduction of different materials and intensive aeolian deposition. It is advisable to consider the currently neglected question of the study of soil vapor containing volatile chemicals. These pollutants penetrate into the building through cracks in the foundation and openings for utilities. Soil evaporation may accumulate in residential areas or in the soil under the building. Because of this, it is necessary to pay attention to the remediation of areas allocated for the built-up area, possessing a large-scale underground parking. Soil contamination is the result of significant anthropogenic impacts on the environment components. In general, about 89.1 million people (62.6% of the population of the country) live in terms of complex chemical load, determined by contamination offood, drinking water, air and soil. The list of microbiological and sanitary-chemical indices of the assessment of soils of urban areas may vary in dependence on the data obtained in pilot studies due to changes and additions to the assigned tasks. Timely forecast for the possibility of the usage of released lands of urban territories for the construction and the creation of new objects for different purposes should become the prevention of chronic non-infectious diseases in the population residing in urban areas.

  15. Urban tree effects on soil organic carbon.

    Directory of Open Access Journals (Sweden)

    Jill L Edmondson

    Full Text Available Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ∼75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C∶N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered.

  16. Strengthening Carbon Sinks in Urban Soils to Mitigate and Adapt to Climate Change (Invited)

    Science.gov (United States)

    Lorenz, K.

    2010-12-01

    long industrial history and devastations during World War II. In most surface soils in Stuttgart, however, OM was dominated by plant litter derived compounds but in one urban soil anthropogenic OM and black carbon (BC) dominated soil organic carbon (SOC) as indicated by bloch decay solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Artifacts such as municipal solid waste, construction waste, and fragments of charcoal, coal and glass were also found in urban forest soil profiles to 1-m depth in Columbus, OH. To this depth, about 150 Mg SOC ha-1 were stored and, thus, more than in urban forest soils of Baltimore, MD, and New York City, NY. However, the contribution of litter derived vs. artifact derived OM compounds such as BC has not been assessed for urban soils in the U.S.. In summary, studies on biogeochemical cycles in urban ecosystems must include the entire soil profile as anthropogenic activities may create Technosols with properties not encountered in soils of natural ecosystems. As urban ecosystems are major sources of atmospheric carbon dioxide (CO2), Technosols may be tailor-made to imitate natural soils with high SOC pools and long carbon mean residence times. Thus, the C sink in urban soils must be strengthened to mitigate and adapt urban ecosystems to abrupt climate change.

  17. Nitrate Sorption in an Agricultural Soil Profile

    Directory of Open Access Journals (Sweden)

    Wissem Hamdi

    2013-01-01

    Full Text Available Increasing concentrations of in surface water and groundwater can cause ecological and public health effects and has come under increased scrutiny by both environmental scientists and regulatory agencies. For many regions though, including the Sahel of Tunisia, little is known about the sorption capacity of soils. In this project we measured sorption by a profile of an iso-humic soil from Chott Meriem, Tunisia. Soil samples were collected from four soil depths (0–25, 25–60, 60–90, and 90–120 cm on 1 June 2011, and their sorption capacity was determined using batch experiments under laboratory conditions. The effects of contact time, the initial concentration, and the soil-solution ratio on sorption were investigated. In general, the results suggested that was weakly retained by the Chott Meriem soil profile. The quantity of sorption increased with depth, contact time, initial concentration, and soil-solution ratios. To evaluate the sorption capacities of the soil samples at concentrations ranging between 25 and 150 mg L−1 experimental data were fitted to both Freundlich and Langmuir isotherm sorption models. The results indicated that Freundlich model was better for describing sorption in this soil profile.

  18. Urbanization in China drives soil acidification of Pinus massoniana forests

    Science.gov (United States)

    Huang, Juan; Zhang, Wei; Mo, Jiangming; Wang, Shizhong; Liu, Juxiu; Chen, Hao

    2015-09-01

    Soil acidification instead of alkalization has become a new environmental issue caused by urbanization. However, it remains unclear the characters and main contributors of this acidification. We investigated the effects of an urbanization gradient on soil acidity of Pinus massoniana forests in Pearl River Delta, South China. The soil pH of pine forests at 20-cm depth had significantly positive linear correlations with the distance from the urban core of Guangzhou. Soil pH reduced by 0.44 unit at the 0-10 cm layer in urbanized areas compared to that in non-urbanized areas. Nitrogen deposition, mean annual temperature and mean annual precipitation were key factors influencing soil acidification based on a principal component analysis. Nitrogen deposition showed significant linear relationships with soil pH at the 0-10 cm (for ammonium N (-N), P greatly contributed to a significant soil acidification occurred in the urbanized environment.

  19. Evaluation of urban soils. Subproject 4: Bonding of heavy metals in technological soils - mapping of urban soils for the city of Rostock. Final report

    International Nuclear Information System (INIS)

    Kretschmer, H.; Coburger, E.; Kahle, P.; Neumann, A.; Surkus, A.

    1995-01-01

    Within the framework of the project a conceptional soil map for the urban area of Rostock was drawn up. The starting point was formed by the collection and analysis of available information. The following maps were digitised with the help of the geographical information system Arc/Info: Soil estimation, middle scaled map of agricultural sites, geology, maps of bogs and forest sites, map of the bog-depth sourrounding the river Warnow by Geinitz from 1887. To characterise the influence by man information about impermeable covered areas, actual land use, thrown up areas and disposal sites as well as war-destroyed sites were digitally used. Till the beginning of this project no information about impermeable covered areas and about the actual land use were available. That's why these two maps were created within the framework of the project on the base of topographical maps, aerial photographs and results of on-site-captures. Afterwards the thematic layers were overlapped. The general conceptional map for the urban area of Rostock was created out of the three separate conceptional maps about groundwater-influence, natural soil inventory and man-influence. Soil societies were assigned to the units of this general conceptional map. At the end 35 units were given for Rostock. Detailed mappings were taken on areas of the following kinds of use: Living areas, city centre, gardens, parks, graveyards, industrial and military sites. 26 main profiles were described and soil-physically and soil-chemically examined. The total contents of the heavy metals Zn, Cu, Pb and Cd were determined for the horizons of the main profiles. The subproject of Rostock is also concerned with investigations on the heavy metals (hM) Cu, Pb, Cd, Zn and Ni in technological substrates (tS) from Kiel, Eckernfoerde, Halle and Rostock (11 main soil profiles). (orig./SR) [de

  20. Carbon Dioxide in Arable Soil Profiles

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Plauborg, Finn; Heckrath, Goswin Johann

    2014-01-01

    on the comparability of results obtained using different methods is limited. We therefore aimed to compare the dynamics in soil CO2 concentrations obtained from an automated system (GMP343 sensors) to those from a manually operated measurement system (i.e., soil gas sampled using stainless steel needles and rods......Carbon dioxide (CO2) concentrations in arable soil profiles are influenced by autotrophic and heterotrophic respiration as well as soil physical properties that regulate gas transport. Whereas different methods have been used to assess dynamics of soil CO2 concentrations, our understanding...... systems. Within the measurement range for the GMP343 sensors (0-20,000 ppm), mean results from the two systems were similar within the plough layer at the upslope (P = 0.060) and footslope (P = 0.139) position, and also below the plough layer at the upslope position (P = 0.795). However, results from...

  1. Smart system for safe and optimal soil investigation in urban areas

    Directory of Open Access Journals (Sweden)

    Ahmad Alqadad

    2017-12-01

    Full Text Available This paper discusses the challenges and difficulties experienced during soil investigation in urban areas using drilling machines and soil sampling. The focus is on the consequences of a lack of data on the subsoil profile and presence of utilities, which could cause major accidents with severe economic and social losses, resulting in constriction activities being delayed and urban services being disrupted. This paper describes certain accidents related to soil investigation in Qatar and their consequences, as well as the lessons learned from these accidents. In order to meet the challenges of soil investigation in urban areas, this paper presents a solution based on smart technology, which includes: (i a geotechnical information system with update data concerning the soil profile, soil surface, utilities locations, and water table level; (ii tools for data management, analysis, and visualization; and (iii a user interface that allows authorities, companies, and citizens to access authorized data via a graphic interface, update data, and send messages and alerts in the case of any incident occurring. Finally, the paper presents a promising perspective for the development of smart drilling devices, which record data related to the functioning of a drilling machine and transmit data to the smart soil investigation system. Keywords: Soil investigation, Smart, Urban area, Drill borehole, GIS, Underground utility

  2. Seasonal variability of microbial biomass phosphorus in urban soils.

    Science.gov (United States)

    Halecki, W; Gąsiorek, M

    2015-01-01

    Urban soils have been formed through human activities. Seasonal evaluation with time-control procedure are essential for plant, and activity of microorganisms. Therefore, these processes are crucial in the urban area due to geochemical changes in the past years. The purpose of this study was to investigate the changes of content of microbial biomass phosphorus (P) in the top layer of soils throughout the season. In this research, the concentration of microbial biomass P ranged from 0.01 to 6.29 mg·kg(-1). We used single-factor repeated-measure analysis of variance to test the effect of season on microbial biomass P content of selected urban soils. We found no statistically significant differences between the concentration of microbial biomass P in the investigated urban and sub-urban soils during the growing season. This analysis explicitly recognised that environmental urban conditions are steady. Specifically, we have studied how vegetation seasonality and ability of microbial biomass P are useful for detecting quality deviations, which affect the equilibrium of urban soil. In conclusion, seasonal variability of the stringency of assurance across the different compounds of soil reveals, as expected, the stable condition of the urban soils. Seasonal responses in microbial biomass P under urban soil use should establish a framework as a reference to the activity of the microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Lead in urban soils - A real or perceived concern for urban agriculture

    Science.gov (United States)

    Urban agriculture is growing in cities across the U.S. and it has the potential to provide multiple benefits including increased food security. Concerns about soil contamination in urban areas can be an impediment to urban agriculture. Lead is the most common contaminant in urban areas. A review ...

  4. Are soils in urban ecosystems compacted? A citywide analysis.

    Science.gov (United States)

    Edmondson, Jill L; Davies, Zoe G; McCormack, Sarah A; Gaston, Kevin J; Leake, Jonathan R

    2011-10-23

    Soil compaction adversely influences most terrestrial ecosystem services on which humans depend. This global problem, affecting over 68 million ha of agricultural land alone, is a major driver of soil erosion, increases flood frequency and reduces groundwater recharge. Agricultural soil compaction has been intensively studied, but there are no systematic studies investigating the extent of compaction in urban ecosystems, despite the repercussions for ecosystem function. Urban areas are the fastest growing land-use type globally, and are often assumed to have highly compacted soils with compromised functionality. Here, we use bulk density (BD) measurements, taken to 14 cm depth at a citywide scale, to compare the extent of surface soil compaction between different urban greenspace classes and agricultural soils. Urban soils had a wider BD range than agricultural soils, but were significantly less compacted, with 12 per cent lower mean BD to 7 cm depth. Urban soil BD was lowest under trees and shrubs and highest under herbaceous vegetation (e.g. lawns). BD values were similar to many semi-natural habitats, particularly those underlying woody vegetation. These results establish that, across a typical UK city, urban soils were in better physical condition than agricultural soils and can contribute to ecosystem service provision.

  5. Chemical, physical and biological characteristics of urban soils. Chapter 7

    Science.gov (United States)

    Richard V. Pouyat; Katalin Szlavecz; Ian D. Yesilonis; Peter M. Groffman; Kirsten. Schwarz

    2010-01-01

    Urban soils provide an array of ecosystem services to inhabitants of cities and towns. Urbanization affects soils and their capacity to provide ecosystem services directly through disturbance and management (e.g., irrigation) and indirectly through changes in the environment (e.g., heat island effect and pollution). Both direct and indirect effects contribute to form a...

  6. Sediment exchange to mitigate pollutant exposure in urban soil.

    Science.gov (United States)

    Walsh, Daniel; Glass, Katherine; Morris, Samantha; Zhang, Horace; McRae, Isabel; Anderson, Noel; Alfieri, Alysha; Egendorf, Sara Perl; Holberton, Shana; Owrang, Shahandeh; Cheng, Zhongqi

    2018-05-15

    Urban soil is an ongoing source for lead (Pb) and other pollutant exposure. Sources of clean soil that are locally-available, abundant and inexpensive are needed to place a protective cover layer over degraded urban soil to eliminate direct and indirect pollutant exposures. This study evaluates a novel sediment exchange program recently established in New York City (NYC Clean Soil Bank, CSB) and found that direct exchange of surplus sediment extracted from urban construction projects satisfies these criteria. The CSB has high total yield with 4.2 × 10 5  t of sediment exchanged in five years. Average annual yield (8.5 × 10 4  t yr -1 ) would be sufficient to place a 15-cm (6-in.) sediment cover layer over 3.2 × 10 5  m 2 (80 acres) of impacted urban soil or 1380 community gardens. In a case study of sediment exchange to mitigate community garden soil contamination, Pb content in sediment ranged from 2 to 5 mg kg -1 . This sediment would reduce surface Pb concentrations more than 98% if it was used to encapsulate soil with Pb content exceeding USEPA residential soil standards (400 mg kg -1 ). The maximum observed sediment Pb content is a factor of 42 and 71 lower than median surface soil and garden soil in NYC, respectively. All costs (transportation, chemical testing, etc.) in the CSB are paid by the donor indicating that urban sediment exchange could be an ultra-low-cost source for urban soil mitigation. Urban-scale sediment exchange has advantages over existing national- or provincial-scale sediment exchanges because it can retain and upcycle local sediment resources to attain their highest and best use (e.g. lowering pollutant exposure), achieve circular urban materials metabolism, improve livability and maximize urban sustainability. Published by Elsevier Ltd.

  7. Contamination of urban garden soils with copper and boron

    Energy Technology Data Exchange (ETDEWEB)

    Purves, D

    1966-06-04

    Spectrochemical analyses of garden soils sampled in the Edinburgh and Dundee areas indicate that there is substantial contamination of urban soils with copper and boron. These soils were analyzed spectrochemically with respect to total copper and water-extractable boron content with the view of comparing the levels obtained in urban areas with levels in arable soils in rural areas. The results indicate that urban garden soils contain about four times as much copper and two to three times as much water-soluble boron as rural arable soils. The existence of such a marked disparity between the levels of two potentially toxic elements in urban and rural areas is evidence of slow poisoning of the soil environment in built-up areas and is cause for concern. While the major source of contamination of soils with copper and boron is still a matter for speculation, it is probable that the addition of soot to garden soils and the fall-out of sooty material in built-up areas where atmospheric pollution is a problem make a substantial contribution to the water-extractable boron content of urban soils. Three samples of soot from domestic chimneys, obtained from independent sources, were found on analysis to contain 640, 650 and 555 p.p.m. water-extractable boron, and it is evident that the addition to soil of even small amounts of soot with a boron content of this order would have a marked effect on its water-extractable boron content.

  8. Seasonal dynamics of soil CO2 efflux and soil profile CO2 concentrations in arboretum of Moscow botanical garden

    Science.gov (United States)

    Goncharova, Olga; Udovenko, Maria; Matyshak, Georgy

    2016-04-01

    To analyse and predict recent and future climate change on a global scale exchange processes of greenhouse gases - primarily carbon dioxide - over various ecosystems are of rising interest. In order to upscale land-use dependent sources and sinks of CO2, knowledge of the local variability of carbon fluxes is needed. Among terrestrial ecosystems, urban areas play an important role because most of anthropogenic emissions of carbon dioxide originate from these areas. On the other hand, urban soils have the potential to store large amounts of soil organic carbon and, thus, contribute to mitigating increases in atmospheric CO2 concentrations. Research objectives: 1) estimate the seasonal dynamics of carbon dioxide production (emission - closed chamber technique and profile concentration - soil air sampling tubes method) by soils of Moscow State University Botanical Garden Arboretum planted with Picea obovata and Pinus sylvestris, 1) identification the factors that control CO2 production. The study was conducted with 1-2 weeks intervals between October 2013 and November 2015 at two sites. Carbon dioxide soil surface efflux during the year ranged from 0 to 800 mgCO2/(m2hr). Efflux values above 0 mgCO2/(m2hr) was observed during the all cold period except for only 3 weeks. Soil CO2 concentration ranged from 1600-3000 ppm in upper 10-cm layer to 10000-40000 ppm at a depth of 60 cm. The maximum concentrations of CO2 were recorded in late winter and late summer. We associate it with high biological activity (both heterotrophic and autotrophic) during the summer, and with physical gas jamming in the winter. The high value of annual CO2 production of the studied soils is caused by high organic matter content, slightly alkaline reaction, good structure and texture of urban soils. Differences in soil CO2 production by spruce and pine urban forest soils (in the pine forest 1.5-2.0 times higher) are caused by urban soil profiles construction, but not temperature regimes. Seasonal

  9. Chemometric characterization of soil depth profiles

    International Nuclear Information System (INIS)

    Krieg, M.; Einax, J.

    1994-01-01

    The application of multivariate-statistical methods to the description of the metal distribution in soil depth profiles is shown. By means of cluster analysis, it is possible to get a first overview of the main differences in the metal status of the soil horizons. In case of anthropogenic soil pollution or geogenic enrichment, cluster analysis was able to detect the extent of the polluted soil layer or the different geological layers. The results of cluster analysis can be confirmed by means of multidimensional variance and discriminant analysis. Methods of discriminant analysis can also be used as a tool to determine the optimum number of variables which has to be measured for the classification of unknown soil samples into different pollution levels. Factor analysis yields an identification of not directly observable relationships between the variables. With additional knowledge about the orographic situation of the area and the probable sources of emission the factor loadings give information on the immission structure at the sampling location. (orig.)

  10. Natural radioactive environment of urban soils in Shihezi, China

    International Nuclear Information System (INIS)

    Ge Benwei; Liu Anna

    2009-01-01

    Radionuclides, such as 238 U, 232 Th and 40 K, can be found in urban soil. To evaluate the natural radioactivity in the environment, soil samples were collected form Shihezi city and radioisotope concentrations were determined by X-ray fluorescence. The dose rate of urban soil (mGy per year, mGy/a) was calculated. The results indicate that the U, Th and K concentrations of the urban soils were, respectively, 1.2-3.2 mg/kg, 6.4-12.3 mg/kg and 2.05%-2.24%, with the mean values of 2.47 mg/kg, 10.47 mg/kg and 2.16 %. Dose rates of urban soils were 10.04-19.55 mGy/a with the mean value of 16.31 mGy/a. This dose rate is the perfect and maximum value of natural radiation in soil and different with the air absorbed dose rate from terrestrial γ-rays. The mean value of air absorbed dose rate was about 57.42 nGy/h. The annual effective dose rate in air was about 0.07 mSv/a and the average value of Ra eq in urban soil was 120.37 Bq/kg. The relative contribution of α particle to the dose rate is higher than that derived from β- and γ-rays in the urban soils. (authors)

  11. Sustainability Profile for Urban Districts in Copenhagen

    DEFF Research Database (Denmark)

    Jensen, Jesper Ole

    urban designers to creatively improve the sustainable performance of a district" (Kortman et al, 2001). Compared to other tools for assessing urban sustainability, DPL represents a simple and flexible approach. The idea is to use a limited number of indicators based on already collected data. Once...

  12. Assessing the Educational Needs of Urban Gardeners and Farmers on the Subject of Soil Contamination

    Science.gov (United States)

    Harms, Ashley Marie Raes; Presley, DeAnn Ricks; Hettiarachchi, Ganga M.; Thien, Stephen J.

    2013-01-01

    Participation in urban agriculture is growing throughout the United States; however, potential soil contaminants in urban environments present challenges. Individuals in direct contact with urban soil should be aware of urban soil quality and soil contamination issues to minimize environmental and human health risks. The study reported here…

  13. Main features of anthropogenic inner-urban soils in Szeged, Hungary

    Science.gov (United States)

    Puskás, Irén.; Farsang, Andrea

    2010-05-01

    At the beginning of the 21st century, due to the intensive urbanization it is necessary to gather more and more information on altered physical, chemical and biological parameters of urban soils in order to ensure their suitable management and protection for appropriate living conditions. Nowadays, these measures are very relevant since negative environmental effects can modify the soil forming factors in cities. Szeged, the 4th largest city of Hungary, proved to be an ideal sampling area for the research of urban soils since its original surface has been altered by intensive anthropogenic activities. The main objectives of my research are the investigation, description and evaluation of the altered soils in Szeged. For the physical and chemical analysis (humus, nitrogen, carbonate content, heavy metals, pH, artefacts etc.) of soils 124 samples were taken from the horizons of 25 profiles in Szeged and its peripherals (as control samples). The profiles were sampled at sites affected by different extent of artificial infill according to infill maps (1. profiles fully made up of infill; 2. so-called mixed profiles consisting of considerable amount of infill material and buried soil horizons; 3. natural profiles located in the peripherals of the city). With the help of the above-mentioned parameters, the studied soils of Szeged were assigned into the classification system of WRB(2006), which classifies the soils of urban and industrial areas as an individual soil group (under the term Technosols) for the first time. In accordance with the WRB(2006) nomenclature three main soil types can be identified in Szeged with respect to the degree of human influence: profiles slightly influenced, strongly modified, completely altered by human activities. During this poster, we present the peculiarities of typical urban profiles strongly and completely altered by human influence. Most profiles were placed into the group of Technosols due to the considerable transformation of their

  14. Lead in Urban Soils: A Real or Perceived Concern for Urban Agriculture?

    Science.gov (United States)

    Brown, Sally L; Chaney, Rufus L; Hettiarachchi, Ganga M

    2016-01-01

    Urban agriculture is growing in cities across the United States. It has the potential to provide multiple benefits, including increased food security. Concerns about soil contamination in urban areas can be an impediment to urban agriculture. Lead is the most common contaminant in urban areas. In this paper, direct (soil ingestion via outdoor and indoor exposure) and indirect (consumption of food grown in Pb-contaminated soils) exposure pathways are reviewed. It is highly unlikely that urban agriculture will increase incidences of elevated blood Pb for children in urban areas. This is due to the high likelihood that agriculture will improve soils in urban areas, resulting in reduced bioavailability of soil Pb and reduced fugitive dust. Plant uptake of Pb is also typically very low. The exceptions are low-growing leafy crops where soil-splash particle contamination is more likely and expanded hypocotyl root vegetables (e.g., carrot). However, even with higher bioaccumulation factors, it is not clear that the Pb in root vegetables or any other crops will be absorbed after eating. Studies have shown limited absorption of Pb when ingested with food. Best management practices to assure minimal potential for exposure are also common practices in urban gardens. These include the use of residuals-based composts and soil amendments and attention to keeping soil out of homes. This review suggests that benefits associated with urban agriculture far outweigh any risks posed by elevated soil Pb. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. urban soils of vasileostrovsky and elagin ostrov of saint petersburg

    African Journals Online (AJOL)

    Heavy metals (HM) arc among the most dangerous subsrances causing ... urban soils have become a secondary source of environmental pollution. The main ... and industries (an electronic. metallurgical complex and a dockyard for.

  16. PHOSPHOROUS AND POTASIUM MOBILITY IN PROTONATED URBAN SOILS

    Directory of Open Access Journals (Sweden)

    Radu Lacatusu

    2008-10-01

    Full Text Available This paper is devoted to an experiment in order to demonstrate how the pronation of alcaline urban soils, increase the mobility of nutritive macroelement such as phousphourus and potasium.

  17. Spectroscopy as a diagnostic tool for urban soil contaminants

    Science.gov (United States)

    Brook, Anna; Kopel, Daniella

    2014-05-01

    Urbanization has become one of the major forces of change around the globe. Land use transformation, especially urbanization has the most profound influences of human activities because it affects so many of the planet's physical and biological systems. Land use changes directly impact the ability of the earth to continue to provide ecological services to human society and the other occupants of the ecosystems. The urban process gradually degrades and transforms agricultural and natural ecosystems into built environments. The urban environment includes cities, suburbs, peri-urban areas and towns. Urban ecosystems are highly heterogeneous due to the variety of land covers and land purposes. Thus, the choices on managing the extent and arranging the land cover patches (e.g., lawns) assist to shape the emergent structure and function of the urban ecosystems. As a result of ecological conditions and current management status the urban soils show substantial spatial heterogeneity. Whereas, adverse effects of pollutants on ecosystems have been demonstrated, one important need for environmental impact assessment have been defined as maintenance of long-term monitoring systems, which can enable to improve monitoring, modelling and assessment of various stressors in agriculture environment. Diffuse reflectance spectroscopy and diffuse reflectance Fourier-transform infrared (FTIR) spectroscopy across visible-near- short- mid- and long- wave infrared (0.4-14μm) has the potential to meet this demand. Relationships between spectral reflectance and soil properties, such as grain size distribution, moisture, iron oxides, carbonate content, and organic matter, have already been established in many studies (Krishnan et al. 1980, Ben-Dor and Banin 1995, Jarmer et al. 2008, Richter et al. 2009). The aims of this study are to develop diagnostic tool for heavy metals, polycyclic aromatic hydrocarbons, asbestos and other anthropogenic contaminants in urban soil using spectroscopy

  18. Historical record of black carbon in urban soils and its environmental implications

    International Nuclear Information System (INIS)

    He Yue; Zhang Ganlin

    2009-01-01

    Energy use in urbanization has fundamentally changed the pattern and fluxes of carbon cycling, which has global and local environmental impacts. Here we have investigated organic carbon (OC) and black carbon (BC) in six soil profiles from two contrast zones in an ancient city (Nanjing) in China. BC in soils was widely variable, from 0.22 to 32.19 g kg -1 . Its average concentration in an ancient residential area (Zone 1) was, 0.91 g kg -1 , whereas in Zone 2, an industrial and commercial area, the figure was 8.62 g kg -1 . The ratio of BC/OC ranged from 0.06 to 1.29 in soil profiles, with an average of 0.29. The vertical distribution of BC in soil is suggested to reflect the history of BC formation from burning of biomass and/or fossil fuel. BC in the surface layer of soils was mainly from traffic emission (especially from diesel vehicles). In contrast, in cultural layers BC was formed from historical coal use. The contents of BC and the ratio of BC/OC may reflect different human activities and pollution sources in the contrasting urban zones. In addition, the significant correlation of heavy metals (Cu, Pb, and Zn) with BC contents in some culture layers suggests the sorption of the metals by BC or their coexistence resulted from the coal-involved smelting. - Soil black carbon can reflect the pollution history of a city during urbanization.

  19. Assessing the combined risks of PAHs and metals in urban soils by urbanization indicators

    International Nuclear Information System (INIS)

    Peng, Chi; Ouyang, Zhiyun; Wang, Meie; Chen, Weiping; Li, Xiaoma; Crittenden, John C.

    2013-01-01

    We quantitatively describe the impacts of urbanization on the accumulation of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) in urban soils as well as their health risks to residents. Residential building age, population density, road density, and distance from urban center were used as urbanization level indicators. Significant correlations were found between those urbanization indicators and the amounts of PAHs, Cu, Cd, Pb, Zn and As in residential soils. The exposure time of soils to urban air was the primary factor affecting soil pollution, followed by local road density and population density. Factor analysis suggested that 59.0% of the elevated pollutant concentrations were caused by citywide uniform deposition, and 15.3% were resulted from short-range deposition and/or non-combustion processes. The combined health risks posed by soil PAHs and HMs were aggravated with time and can be expressed as functions of residence age, road density, and other urbanization indicators. Highlights: •The soil PAH and HM contents were closely related to urbanization progression. •The PAH and HM contents were primarily affected by soil exposure time. •Local input loads of pollutants correlated with road density and population density. •The combined risks of PAHs and HMs increased with the urban development level. •The carcinogenic risks of PAHs and As were above 10 −5 and increased over time. -- The health risks of PAHs and HMs in residential soils were connected to building age, population density and road density of the community as well as its distance from urban center

  20. Spatial Relationships of Urban Land Use, Soils and Heavy Metal ...

    African Journals Online (AJOL)

    Michael Horsfall

    Urban soils are largely affected by impact of urbanization whose ... pattern is related to the social and economic aspect of the society. ... and tourists in the Lagos Mainland Area. .... humidity level is generally high all over the State .... environment and human health. ... The analysis of the concentration of heavy metals.

  1. Soil Temperature and Moisture Profile (STAMP) System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    The soil temperature and moisture profile system (STAMP) provides vertical profiles of soil temperature, soil water content (soil-type specific and loam type), plant water availability, soil conductivity, and real dielectric permittivity as a function of depth below the ground surface at half-hourly intervals, and precipitation at one-minute intervals. The profiles are measured directly by in situ probes at all extended facilities of the SGP climate research site. The profiles are derived from measurements of soil energy conductivity. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil. The STAMP system replaced the SWATS system in early 2016.

  2. Evaluation of Co and Cr mobility in soil profiles collected in a scrapyard of impounded vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Camila N.; Figueiredo, Ana Maria G., E-mail: clange@usp.br, E-mail: anamaria@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Enzweiler, Jacinta, E-mail: jacinta@ige.unicamp.br [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Instituto de Geociencias

    2015-07-01

    The number of motor vehicles in urban environments has increased dramatically in the past years. As a result, so has the number of impounded and end-of-life vehicles. Car wastes can have a very high metal content, which can cause important environmental impacts to the soil where these vehicles are kept. Most Brazilian vehicle impound scrapyards are currently operating at their maximum capacity and soils may have become contaminated by past or current vehicle handling practices. Most of these areas do not present an impermeable surface. The level of soil contamination with heavy metals depends on the type of soil, climate and management practices. Metals, such as Co and Cr, that are present in many auto-parts, may be considered potentially toxic elements in these areas. The aim of this study was to evaluate Co and Cr levels and behavior in soil profiles located in a scrapyard of impounded vehicles of Ribeirao Pires-SP city. For this purpose, samples from distinct horizons of three soil profiles were collected. Element concentrations were determined by Instrumental Neutron Activation Analysis (INAA). Soil parameters such as pH, organic matter content and clay, silt and sand percentage were also determined. The obtained data were statistically analyzed in order to establish correlations between elemental concentrations and the impounded vehicles scrapyard soil. Soil acidity showed to be the most remarkable property for Cr and Co mobility through soil profile. (author)

  3. Evaluation of Co and Cr mobility in soil profiles collected in a scrapyard of impounded vehicles

    International Nuclear Information System (INIS)

    Lange, Camila N.; Figueiredo, Ana Maria G.; Enzweiler, Jacinta

    2015-01-01

    The number of motor vehicles in urban environments has increased dramatically in the past years. As a result, so has the number of impounded and end-of-life vehicles. Car wastes can have a very high metal content, which can cause important environmental impacts to the soil where these vehicles are kept. Most Brazilian vehicle impound scrapyards are currently operating at their maximum capacity and soils may have become contaminated by past or current vehicle handling practices. Most of these areas do not present an impermeable surface. The level of soil contamination with heavy metals depends on the type of soil, climate and management practices. Metals, such as Co and Cr, that are present in many auto-parts, may be considered potentially toxic elements in these areas. The aim of this study was to evaluate Co and Cr levels and behavior in soil profiles located in a scrapyard of impounded vehicles of Ribeirao Pires-SP city. For this purpose, samples from distinct horizons of three soil profiles were collected. Element concentrations were determined by Instrumental Neutron Activation Analysis (INAA). Soil parameters such as pH, organic matter content and clay, silt and sand percentage were also determined. The obtained data were statistically analyzed in order to establish correlations between elemental concentrations and the impounded vehicles scrapyard soil. Soil acidity showed to be the most remarkable property for Cr and Co mobility through soil profile. (author)

  4. Spreading of 137 C in the Goiania urban area by resuspension and transport of surface soil

    International Nuclear Information System (INIS)

    Rio, Monica Pires do; Amaral, Eliana

    2002-01-01

    The resuspension of surface soil was considered the mechanism responsible by the spreading of 137 Cs after the Goiania accident, which affected an urban area of about 1 km 2 . Studies on the transport of 137 Cs associated to the surface soil were performed in a house located at 57 th Street, close to the main focus of contamination, from 05/89 to 07/00. Periodically, samples of surface soil and soil profile were collected at the house yards and street dust sampling at representative locations was performed in order to know the extension of the contamination in the city. The soil profile samples have shown the low mobility of 137 Cs in deep layers of the soil, although a slight long-term decrease of the 137 Cs activity concentration in the surface soil were observed. The 137 Cs activity concentration in the street dust samples also decrease with time, suggesting a natural dilution of the contamination in those samples; higher values were only found in few locations close to the foci of primary deposition and no additional spreading of the radionuclide is expected to occur from that area. Street dust sampling is a suitable method to assess the spreading of caesium in urban environment. (author)

  5. Using urbanization profiles to assess screening performance

    NARCIS (Netherlands)

    Boon, ME; Kok, LP

    The large Dutch data sets acquired as a result of population-based cervical smear screening programs can be further exploited to obtain an urbanization-weighted score to gain insight into the quality of the performance of the individual cytology laboratories. Based on the first four digits of the

  6. Assessment on urban soil pollution by biocides from building materials

    DEFF Research Database (Denmark)

    Bollmann, Ulla E.; Vollertsen, Jes; Bester, Kai

    2015-01-01

    . Based on a monitoring study of stormwater runoff from a residential catchment as well as direct façade runoff analysis, the present study was assessing the pollution of urban soil to biocides from building material. The stormwater runoff of a residential catchment in Silkeborg (Denmark) was monitored...... from a freshly painted or rendered house, it is obvious that a huge part is actually draining directly to the soil and not to the sewer system. Consequently, the soil in urban areas is exposed to stormwater highly polluted by biocides which might affect the microbial community there....

  7. Characterizations of Soil Profiles Through Electric Resistivity Ratio

    Directory of Open Access Journals (Sweden)

    Chik Z

    2015-04-01

    Full Text Available This paper presents how near surface soil characteristics are obtained through soil electric resistivity ratio from soil apparent resistivity profile. In recent advances of electrical sensors, soil apparent resistivity is implemented as nondestructive method for obtaining near surface soil profile. Although geo-electric techniques offer an improvement to traditional soil sampling methods, the resulting data are still often misinterpreted for obtaining soil characteristics through apparent electrical resistivity in the field. Because, soil resistivity as before rain and after rain are changeable due to the presence of more moisture contents in field investigations. In this study, the parameter of soil electric resistivity ratio is incorporated to obtain reliable near surface soil profiles from apparent resistivity of adjacent two layers in soil. The variations of potential differences are taken into account for using four probes method to get the soil apparent resistivity profile. The research is significant for simpler and faster soil characterizations using resistivity ratio of apparent resistivity in soil investigations.

  8. Urban community gardeners' knowledge and perceptions of soil contaminant risks.

    Science.gov (United States)

    Kim, Brent F; Poulsen, Melissa N; Margulies, Jared D; Dix, Katie L; Palmer, Anne M; Nachman, Keeve E

    2014-01-01

    Although urban community gardening can offer health, social, environmental, and economic benefits, these benefits must be weighed against the potential health risks stemming from exposure to contaminants such as heavy metals and organic chemicals that may be present in urban soils. Individuals who garden at or eat food grown in contaminated urban garden sites may be at risk of exposure to such contaminants. Gardeners may be unaware of these risks and how to manage them. We used a mixed quantitative/qualitative research approach to characterize urban community gardeners' knowledge and perceptions of risks related to soil contaminant exposure. We conducted surveys with 70 gardeners from 15 community gardens in Baltimore, Maryland, and semi-structured interviews with 18 key informants knowledgeable about community gardening and soil contamination in Baltimore. We identified a range of factors, challenges, and needs related to Baltimore community gardeners' perceptions of risk related to soil contamination, including low levels of concern and inconsistent levels of knowledge about heavy metal and organic chemical contaminants, barriers to investigating a garden site's history and conducting soil tests, limited knowledge of best practices for reducing exposure, and a need for clear and concise information on how best to prevent and manage soil contamination. Key informants discussed various strategies for developing and disseminating educational materials to gardeners. For some challenges, such as barriers to conducting site history and soil tests, some informants recommended city-wide interventions that bypass the need for gardener knowledge altogether.

  9. Urban community gardeners' knowledge and perceptions of soil contaminant risks.

    Directory of Open Access Journals (Sweden)

    Brent F Kim

    Full Text Available Although urban community gardening can offer health, social, environmental, and economic benefits, these benefits must be weighed against the potential health risks stemming from exposure to contaminants such as heavy metals and organic chemicals that may be present in urban soils. Individuals who garden at or eat food grown in contaminated urban garden sites may be at risk of exposure to such contaminants. Gardeners may be unaware of these risks and how to manage them. We used a mixed quantitative/qualitative research approach to characterize urban community gardeners' knowledge and perceptions of risks related to soil contaminant exposure. We conducted surveys with 70 gardeners from 15 community gardens in Baltimore, Maryland, and semi-structured interviews with 18 key informants knowledgeable about community gardening and soil contamination in Baltimore. We identified a range of factors, challenges, and needs related to Baltimore community gardeners' perceptions of risk related to soil contamination, including low levels of concern and inconsistent levels of knowledge about heavy metal and organic chemical contaminants, barriers to investigating a garden site's history and conducting soil tests, limited knowledge of best practices for reducing exposure, and a need for clear and concise information on how best to prevent and manage soil contamination. Key informants discussed various strategies for developing and disseminating educational materials to gardeners. For some challenges, such as barriers to conducting site history and soil tests, some informants recommended city-wide interventions that bypass the need for gardener knowledge altogether.

  10. Assessing the combined risks of PAHs and metals in urban soils by urbanization indicators.

    Science.gov (United States)

    Peng, Chi; Ouyang, Zhiyun; Wang, Meie; Chen, Weiping; Li, Xiaoma; Crittenden, John C

    2013-07-01

    We quantitatively describe the impacts of urbanization on the accumulation of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) in urban soils as well as their health risks to residents. Residential building age, population density, road density, and distance from urban center were used as urbanization level indicators. Significant correlations were found between those urbanization indicators and the amounts of PAHs, Cu, Cd, Pb, Zn and As in residential soils. The exposure time of soils to urban air was the primary factor affecting soil pollution, followed by local road density and population density. Factor analysis suggested that 59.0% of the elevated pollutant concentrations were caused by citywide uniform deposition, and 15.3% were resulted from short-range deposition and/or non-combustion processes. The combined health risks posed by soil PAHs and HMs were aggravated with time and can be expressed as functions of residence age, road density, and other urbanization indicators. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Radionuclide fractionation in a forest soil profile

    International Nuclear Information System (INIS)

    Rigol, A.; Vidal, M.; Rauret, G.

    1996-01-01

    Two alternative approaches, a sequential extraction scheme and the calculation of the variation of the distribution coefficient of radiocaesium in different K-Ca N H 4 scenarios, were used to study the behaviour and fractionation of this radionuclide in a forest soil profile. The first approach was applied to samples originating from an experiment in which the original L(litter) layer was replaced by an L layer contaminated with a radioactive aerosol, allowing a downward migration of radiocaesium. The samples belonged to different stages after the contamination. The second approach was applied to samples contaminated with soluble radiocaesium. The results indicate that the mineral matter seems to govern the behaviour of radiocaesium in case of direct condensed deposition or when radiocaesium is released from structural components of the organic matter phase. (author). 16 refs., 2 figs., 1 tab

  12. Denitrification controls in urban riparian soils: implications for reducing urban nonpoint source nitrogen pollution.

    Science.gov (United States)

    Li, Yangjie; Chen, Zhenlou; Lou, Huanjie; Wang, Dongqi; Deng, Huanguang; Wang, Chu

    2014-09-01

    The purpose of this research was to thoroughly analyze the influences of environmental factors on denitrification processes in urban riparian soils. Besides, the study was also carried out to identify whether the denitrification processes in urban riparian soils could control nonpoint source nitrogen pollution in urban areas. The denitrification rates (DR) over 1 year were measured using an acetylene inhibition technique during the incubation of intact soil cores from six urban riparian sites, which could be divided into three types according to their vegetation. The soil samples were analyzed to determine the soil organic carbon (SOC), soil total nitrogen (STN), C/N ratio, extractable NO3 (-)-N and NH4 (+)-N, pH value, soil water content (SWC), and the soil nitrification potential to evaluate which of these factors determined the final outcome of denitrification. A nitrate amendment experiment further indicated that the riparian DR was responsive to added nitrate. Although the DRs were very low (0.099 ~ 33.23 ng N2O-N g(-1) h(-1)) due to the small amount of nitrogen moving into the urban riparian zone, the spatial and temporal patterns of denitrification differed significantly. The extractable NO3 (-)-N proved to be the dominant factor influencing the spatial distribution of denitrification, whereas the soil temperature was a determinant of the seasonal DR variation. The six riparian sites could also be divided into two types (a nitrate-abundant and a nitrate-stressed riparian system) according to the soil NO3 (-)-N concentration. The DR in nitrate-abundant riparian systems was significantly higher than that in the nitrate-stressed riparian systems. The DR in riparian zones that were covered with bushes and had adjacent cropland was higher than in grass-covered riparian sites. Furthermore, the riparian DR decreased with soil depth, which was mainly attributed to the concentrated nitrate in surface soils. The DR was not associated with the SOC, STN, C/N ratio, and

  13. Heavy metal movement in metal-contaminated soil profiles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhenbin; Shuman, L.M. [Univ. of Georgia, Griffin, GA (United States)

    1996-10-01

    Heavy metal movement in soil profiles is a major environmental concern because even slow transport through the soil may eventually lead to deterioration of groundwater quality. In this study, three metal-contaminated soil (Fuquay, Dothan, and Clarendon) were selected from cropland were a high-metal flue dust had been applied annually for 6 years to raise soil pH, with application ending 4 years before sampling. One uncontaminated soil (Tifton) from the same physiographic area was also sampled as a control. Soil samples were collected in 15-cm increments from the surface to 105 cm in depth. Total contents of Zn, Cd, and Pb in the soils samples were determined. To better understand metal movement in relation to metal fractions in the soil profile, soil samples were also extracted sequentially for exchangeable (EXC), organic matter (OM), Mn oxide (MNO), amorphous Fe oxide (AFEO), crystalline Fe oxide (CFEO), and residual (RES) fractions. 35 refs., 6 figs., 2 tabs.

  14. 137Cs profiles in erosion plots with different soil cultivation

    International Nuclear Information System (INIS)

    Andrello, A.C.; Appoloni, C.R.; Cassol, E.A.; Melquiades, F.L.

    2006-01-01

    Cesium-137 methodology has been successfully used to assess soil erosion. Seven erosion plots were sampled to determine the 137 Cs profile and to assess the erosion rates. Cesium-137 profile for native pasture plot showed an exponential decline below 5 cm depth, with little 137 Cs activity in the superficial layer (0-5 cm). Cesium-137 profile for wheat-soybean rotation plot in conventional tillage showed a uniform distribution with depth. For this plot, the soil loss occurs more in middle than upper and lower level. Cesium-137 profile for wheat-soybean rotation and wheat-maize rotation plots in no-tillage showed a similar result to the native pasture, with a minimum soil loss in the superficial layer. Cesium-137 profile for bare soil and cultivated pasture plots are similar, with a soil erosion rate of 229 t ha -1 year -1 . In the plots with a conventional tillage a greater soil loss occur in middle than upper and lower level. In no-tillage cultivation plots occurs soil loss in lower level, but no sign of soil loss neither gain in the upper level is observed. Cesium-137 methodology is a good tool to assess soil erosion and the 137 Cs profile gives a possibility to understand the soil erosion behavior in erosion plots. (author)

  15. Soil nutrient assessment for urban ecosystems in Hubei, China.

    Directory of Open Access Journals (Sweden)

    Zhi-Guo Li

    Full Text Available Recent urban landscape vegetation surveys conducted in many cities in China identified numerous plant nutrient deficiencies, especially in newly developed cities. Soil nutrients and soil nutrient management in the cities of Hubei province have not received adequate attention to date. The aims of this study were to characterize the available nutrients of urban soils from nine cities in Hubei province, China, and to assess how soil nutrient status is related to land use type and topography. Soil nutrients were measured in 405 sites from 1,215 soil samples collected from four land use types (park, institutional [including government building grounds, municipal party grounds, university grounds, and garden city institutes], residential, and roadside verges and three topographies (mountainous [142-425 m a.s.l], hilly [66-112 m a.s.l], and plain [26-30 m a.s.l]. Chemical analyses showed that urban soils in Hubei had high pH and lower soil organic matter, available nitrogen (N, available phosphorus (P, and available boron (B concentrations than natural soils. Nutrient concentrations were significantly different among land use types, with the roadside and residential areas having greater concentrations of calcium (Ca, sulfur (S, copper (Cu, manganese (Mn, and zinc (Zn that were not deficient against the recommended ranges. Topographic comparisons showed statistically significant effects for 8 of the 11 chemical variables (p < 0.05. Concentrations of N, Ca, Mg, S, Cu, and Mn in plain cities were greater than those in mountainous cities and show a negative correlation with city elevation. These results provide data on urban soils characteristics in land use types and topography, and deliver significant information for city planners and policy makers.

  16. Development of generic soil profiles and soil data development for SSI analyses

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Josh, E-mail: jparker@nuscalepower.com [NuScale Power, 1000 NE Circle Boulevard, Suite 10310, Corvallis, OR 97330 (United States); Khan, Mohsin; Rajagopal, Raj [ARES Corporation, 1990N California Boulevard, Suite 500, Walnut Creek, CA 94596 (United States); Groome, John [NuScale Power, 1000 NE Circle Boulevard, Suite 10310, Corvallis, OR 97330 (United States)

    2014-04-01

    This paper presents the approach to developing generic soil profiles for the design of reactor building for small modular reactor (SMR) nuclear power plant developed by NuScale Power. The reactor building is a deeply embedded structure. In order to perform soil structure interaction (SSI) analyses, generic soil profiles are required to be defined for the standardized Nuclear Power Plant (NPP) designs for the United States Nuclear Regulatory Commission (NRC) in a design control document (DCD). The development of generic soil profiles is based on utilization of information on generic soil profiles from the new standardized nuclear power plant designs already submitted to the NRC for license certification. Eleven generic soil profiles have been recommended, and those profiles cover a wide range of parameters such as soil depth, shear wave velocity, unit weight, Poisson's ratio, water table, and depth to rock strata. The soil profiles are developed for a range of shear wave velocities between bounds of 1000 fps and 8000 fps as inferred from NRC Standard Review Plan (NUREG 0800) Sections 3.7.1 and 3.7.2. To account for the soil degradation due to seismic events, the strain compatible soil properties are based on the EPRI generic soil degradation curves. In addition, one dimensional soil dynamic response analyses were performed to study the soil layer input motions for performing the SSI analyses.

  17. [Soil meso- and micro-fauna community structures in different urban forest types in Shanghai, China.

    Science.gov (United States)

    Jin, Shi Ke; Wang, Juan Juan; Zhu, Sha; Zhang, Qi; Li, Xiang; Zheng, Wen Jing; You, Wen Hui

    2016-07-01

    Soil meso- and micro-fauna of four urban forest types in Shanghai were investigated in four months which include April 2014, July 2014, October 2014 and January 2015. A total of 2190 soil fauna individuals which belong to 6 phyla, 15 classes and 22 groups were collected. The dominant groups were Nematoda and Arcari, accounting for 56.0% and 21.8% of the total in terms of individual numbers respectively. The common groups were Enchytraeidae, Rotatoria, Collembola and Hymenoptera and they accounted for 18.7% of the total in terms of individual numbers. There was a significant difference (PMetasequoia glyptostroboides forest, the smallest in Cinnamomum camphora forest. The largest groupe number was found in near-nature forest, the smallest was found in M. glyptostroboides forest. There was obvious seasonal dynamics in each urban forest type and green space which had larger density in autumn and larger groupe number in summer and autumn. In soil profiles, the degree of surface accumulation of soil meso- and micro-fauna in C. camphora forest was higher than in other forests and the vertical distribution of soil meso- and micro-fauna in near-nature forest was relatively homogeneous in four layers. Density-group index was ranked as: near-nature forest (6.953)> C. camphora forest (6.351)> Platanus forest (6.313)>M. glyptostroboides forest (5.910). The community diversity of soil fauna in each vegetation type could be displayed preferably by this index. It could be inferred through redundancy analysis (RDA) that the soil bulk density, organic matter and total nitrogen were the main environmental factors influencing soil meso- and micro-fauna community structure in urban forest. The positive correlations occurred between the individual number of Arcari, Enchytraeidae and soil organic matter and total nitrogen, as well as between the individual number of Diptera larvae, Rotatoria and soil water content.

  18. Urbanization Effects on the Vertical Distribution of Soil Microbial Communities and Soil C Storage across Edge-to-Interior Urban Forest Gradients

    Science.gov (United States)

    Rosier, C. L.; Van Stan, J. T., II; Trammell, T. L.

    2017-12-01

    Urbanization alters environmental conditions such as temperature, moisture, carbon (C) and nitrogen (N) deposition affecting critical soil processes (e.g., C storage). Urban soils experience elevated N deposition (e.g., transportation, industry) and decreased soil moisture via urban heat island that can subsequently alter soil microbial community structure and activity. However, there is a critical gap in understanding how increased temperatures and pollutant deposition influences soil microbial community structure and soil C/N cycling in urban forests. Furthermore, canopy structural differences between individual tree species is a potentially important mechanism facilitating the deposition of pollutants to the soil. The overarching goal of this study is to investigate the influence of urbanization and tree species structural differences on the bacterial and fungal community and C and N content of soils experiencing a gradient of urbanization pressures (i.e., forest edge to interior; 150-m). Soil cores (1-m depth) were collected near the stem (urban pressure (i.e., forest edge). We further expect trees located on the edge of forest fragments will maintain greater surface soil (urbanization alters soil microbial community composition via reduced soil moisture and carbon storage potential via deposition gradients. Further analyses will answer important questions regarding how individual tree species alters urban soil C storage, N retention, and microbial dynamics.

  19. Elemental Concentrations in Urban Green Stormwater Infrastructure Soils.

    Science.gov (United States)

    Kondo, Michelle C; Sharma, Raghav; Plante, Alain F; Yang, Yunwen; Burstyn, Igor

    2016-01-01

    Green stormwater infrastructure (GSI) is designed to capture stormwater for infiltration, detention, evapotranspiration, or reuse. Soils play a key role in stormwater interception at these facilities. It is important to assess whether contamination is occurring in GSI soils because urban stormwater drainage areas often accumulate elements of concern. Soil contamination could affect hydrologic and ecosystem functions. Maintenance workers and the public may also be exposed to GSI soils. We investigated soil elemental concentrations, categorized as macro- and micronutrients, heavy metals, and other elements, at 59 GSI sites in the city of Philadelphia. Non-GSI soil samples 3 to 5 m upland of GSI sites were used for comparison. We evaluated differences in elemental composition in GSI and non-GSI soils; the comparisons were corrected for the age of GSI facility, underlying soil type, street drainage, and surrounding land use. Concentrations of Ca and I were greater than background levels at GSI sites. Although GSI facilities appear to accumulate Ca and I, these elements do not pose a significant human health risk. Elements of concern to human health, including Cd, Hg, and Pb, were either no different or were lower in GSI soils compared with non-GSI soils. However, mean values found across GSI sites were up to four times greater than soil cleanup objectives for residential use. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Profiling of Centella asiatica (L.) urban extract

    International Nuclear Information System (INIS)

    Zainol, N.A.; Voo, S.C.; Sarmidi, M.R.; Aziz, R.A.

    2008-01-01

    Centella Asiatica is one of those phyto chemical that has been consume for hundreds years and it is claimed that the plant possess various healing effect and antioxidant properties. For many years, a lot of commercial and medicinal researches have been focusing their resources on this plant. Hence, the profiling of this plant is vital. This study was done to investigate the behaviour of active components in two different accessions commercially grown in Johore Bahru. Research procedures were carried out according to the modified method utilizing TLC and HPLC analysis method. The findings suggested that in different parts of Centella Asiatica contain different amount of phytochemicals. The highest concentration of phytochemicals was found in the second accession that was asiaticoside (2.56 μg/ ml), madecasoside (5.30 μg/ ml) and asiatic acids (3421.60 μg/ ml). Leaves contain a higher concentration of those phytochemicals relative to the petioles and the roots. (author)

  1. Diversities of phthalate esters in suburban agricultural soils and wasteland soil appeared with urbanization in China

    International Nuclear Information System (INIS)

    Kong Shaofei; Ji Yaqin; Liu Lingling; Chen Li; Zhao Xueyan; Wang Jiajun; Bai Zhipeng; Sun Zengrong

    2012-01-01

    The distribution of six priority phthalic acid esters (PAEs) in suburban farmland, vegetable, orchard and wasteland soils of Tianjin were obtained with gas chromatography-mass spectrometer analysis in 2009. Results showed that total PAEs varied from 0.05 to 10.4 μg g −1 , with the median value as 0.32 μg g −1 . Di-(2-ethylhexyl) phthalate and di-n-butyl phthalate are most abundant species. PAEs concentrations for the four types of soils exhibited decreasing order as vegetable soil > wasteland soil > farmland soil > orchard soil. PAEs exhibited elevated levels in more developed regions when compared with other studies. The agricultural plastic film could elevate the PAEs contents in soils. Principal component analysis indicated the emission from cosmetics and personal care products and plasticizers were important sources for PAEs in suburban soils in Tianjin. The higher PAEs contents in wasteland soils from suburban area should be paid more attention owing to large amounts of solid wastes appeared with the ongoing urbanization. - Highlights: ► PAEs levels in four types of soils in suburban area of Tianjin were studied. ► Vegetable soil and wasteland soil exhibited higher PAEs concentrations. ► PAEs in wasteland soils from suburban area of cities in China should be paid attention. - (1) Vegetable soil and wasteland soil exhibited higher PAEs concentrations; (2) PAEs in wasteland soils from suburban area of cities in China should be paid attention.

  2. Bricks as indicators for an urban soil genesis

    Science.gov (United States)

    Nehls, Thomas; Rokia, Sarah; Schwartz, Christophe; Wessolek, Gerd

    2013-04-01

    Bricks can be considered as anthropogenic markers since they are regularly found in urban soils worldwide. They are among the most resistent residues of building materials, therefore are called technogenic substrates. They have been dumped to urban soils since more than 4000 years and can be dated back to their burning using thermoluminescence. In Berlin, bricks have been piled up to more than 37 rubble mountains in the city after WW II. The devils mountain, the most prominent of them is higher than 60m. However, bricks are known not to be isolated in the soil but to fulfill soil functions due to their porosity. Therefore, they are nice research objects for soil scientists. The purpose of this study is to investigate abundance and functions of bricks in urban soils, focusing on plant nutrition and contamination aspects. Three different Berlin urban soils have been studied for their brick contents in the coarse and fine earth fractions by endless hand sorting. Light and scanning electron microscopy was then employed to investigate the bricks for proofs of plant roots. Third, CEC, pH, EC, Corg, nutrient storage (XRF) and availability (2:1 extract, ion chromatography, AAS) of bricks and fine earth fractions of the corresponding soil horizons have been investigated. The fine earth fractions of the investigated soils contain 3 to 5% of bricks, while the coarse fractions contain up to 50%. We found roots entering brick pores or at least attached to brick surfaces. Therefore, plants can use the water and nutrients stored in bricks. The CEC of bricks is grain size dependent and reaches a maximum of 6 cmolc kg-1 for particles smaller than 0.063 mm. This dependency is not explained by a low pore connectivity. Rather, it is the result of the restricted diffusion into the brick pore system due to the short shaking time in the CEC analysis protocol. From the nutrient storage and availabilities we conclude that bricks can better supply plants with K, Mg, Ca and S than the bulk

  3. The Profile of Romanian Urban Inns

    Directory of Open Access Journals (Sweden)

    Monica Maria Coroș

    2016-11-01

    Full Text Available This paper is the third of a series of studies dedicated to tourist inns on the Romanian market. The previous papers focused on the identification of the tourist inns that currently function on the domestic market. Further, their potential as rural facilities was highlighted and their authenticity was discussed. The relevance of this research is linked to the fact that in the early 1990s tourist inns were excluded from the lists of lodging and food-serving facilities, ceasing to be officially ranked. Consequently, the inns’ owners were forced to reclassify as other accepted types or, even worse, to function in the shadow economy , without any official ranking. Moreover, the absence of inns on the market and the incoherent development of certain types of lodgings in Romania, have also led to the fact that entrepreneurs and tourists tend to be confused and, sometimes, not able to differentiate one type of accommodation unit from another. The main purpose of this research is to determine the extent to which urban inns can contribute to the authenticity of the Romanian tourism. From a methodological perspective, the paper relies on both official data (collected and processed based on the official Lists of Hospitality Facilities and on the information available on specialized websites. Thorough analyses have been run in order to identify the tourist structures pretending to be inns, to further categorize and discuss them according to various criteria. The main findings and conclusions of this paper reveal that inns have the potential to contribute to the authenticity of Romania’s hospitality industry .

  4. Ecotoxicological assessment of metal-polluted urban soils using bioassays with three soil invertebrates.

    NARCIS (Netherlands)

    Santarufo, L.; van Gestel, C.A.M.; Maisto, G.

    2012-01-01

    This study aimed at assessing the quality of urban soils by integrating chemical and ecotoxicological approaches. Soils from five sites in downtown Naples, Italy, were sampled and characterized for physical-chemical properties and total and water-extractable metal concentrations. Bioassays with

  5. Mass balance-based regression modeling of PAHs accumulation in urban soils, role of urban development

    International Nuclear Information System (INIS)

    Peng, Chi; Wang, Meie; Chen, Weiping; Chang, Andrew C.

    2015-01-01

    We investigated the polycyclic aromatic hydrocarbons (PAHs) contents in 68 soils samples collected at housing developments that represent different length of development periods across Beijing. Based on the data, we derived a mass balanced mathematical model to simulate the dynamics of PAH accumulations in urban soils as affected by the urban developments. The key parameters were estimated by fitting the modified mass balance model to the data of PAH concentrations vs. building age of the sampling green area. The total PAH concentrations would increase from the baseline of 267 ng g −1 to 3631 ng g −1 during the period of 1978–2048. It showed that the dynamic changes in the rates of accumulations of light and heavy PAH species were related to the shifting of sources of fuels, combustion efficiencies, and amounts of energy consumed during the course of development. - Highlights: • Introduced a mass balance model for soil PAHs accumulation with urbanization. • Reconstructed the historical data of PAH accumulation in soil of Beijing, China. • The soil PAH concentrations would be doubled in the following 40 years. • The composition of PAH emissions were shifting to light PAH species. - Introduced a regression modeling approach to predict the changes of PAH concentrations in urban soil

  6. Variability in urban soils influences the health and growth of native tree seedlings

    Science.gov (United States)

    Clara C. Pregitzer; Nancy F. Sonti; Richard A. Hallett

    2016-01-01

    Reforesting degraded urban landscapes is important due to the many benefits urban forests provide. Urban soils are highly variable, yet little is known about how this variability in urban soils influences tree seedling performance and survival. We conducted a greenhouse study to assess health, growth, and survival of four native tree species growing in native glacial...

  7. Assessment of Soil Health in Urban Agriculture: Soil Enzymes and Microbial Properties

    Directory of Open Access Journals (Sweden)

    Avanthi Deshani Igalavithana

    2017-02-01

    Full Text Available Urban agriculture has been recently highlighted with the increased importance for recreation in modern society; however, soil quality and public health may not be guaranteed because of continuous exposure to various pollutants. The objective of this study was to evaluate the soil quality of urban agriculture by soil microbial assessments. Two independent variables, organic and inorganic fertilizers, were considered. The activities of soil enzymes including dehydrogenase, β-glucosidase, arylsulfatase, urease, alkaline and acid phosphatases were used as indicators of important microbial mediated functions and the soil chemical properties were measured in the soils applied with organic or inorganic fertilizer for 10 years. Fatty acid methyl ester analysis was applied to determine the soil microbial community composition. Relatively higher microbial community richness and enzyme activities were found in the organic fertilizers applied soils as compared to the inorganic fertilizers applied soils. Principal component analysis explained the positive influence of organic fertilizers on the microbial community. The application of organic fertilizers can be a better alternative compared to inorganic fertilizers for the long-term health and security of urban agriculture.

  8. COPING WITH CONTAMINATED SEDIMENTS AND SOILS IN THE URBAN ENVIRONMENT.

    Energy Technology Data Exchange (ETDEWEB)

    JONES,K.W.; VAN DER LELIE,D.; MCGUIGAN,M.; ET AL.

    2004-05-25

    Soils and sediments contaminated with toxic organic and inorganic compounds harmful to the environment and to human health are common in the urban environment. We report here on aspects of a program being carried out in the New York/New Jersey Port region to develop methods for processing dredged material from the Port to make products that are safe for introduction to commercial markets. We discuss some of the results of the program in Computational Environmental Science, Laboratory Environmental Science, and Applied Environmental Science and indicate some possible directions for future work. Overall, the program elements integrate the scientific and engineering aspects with regulatory, commercial, urban planning, local governments, and community group interests. Well-developed connections between these components are critical to the ultimate success of efforts to cope with the problems caused by contaminated urban soils and sediments.

  9. Potentially pathogenic, pathogenic, and allergenic moulds in the urban soils

    Directory of Open Access Journals (Sweden)

    Đukić Dragutin A.

    2011-01-01

    Full Text Available The dynamics of soil mould populations that can compromise the human immune system was evaluated in experimental plots located at different distances (100, 300, 500, 700 and 900 m from the main source of pollution - the Podgorica Aluminum Plant. Soil samples were collected in July and October 2008 from three different plot zones at a depth of 0-10 cm. The count of potentially pathogenic, keratinolytic and allergenic (melaninogenic moulds was assessed, which can significantly contribute to both diagnosis and prophylaxis. The count of medically important moulds was higher in the urban soil than in the unpolluted (control soil. Their count decreased with increasing distance from the main pollution source (PAP. Their abundance in the soil was considerably higher in autumn than in spring.

  10. Vertical profile of 137Cs in soil.

    Science.gov (United States)

    Krstić, D; Nikezić, D; Stevanović, N; Jelić, M

    2004-12-01

    In this paper, a vertical distribution of 137Cs in undisturbed soil was investigated experimentally and theoretically. Soil samples were taken from the surroundings of the city of Kragujevac in central Serbia during spring-summer of 2001. The sampling locations were chosen in such a way that the influence of soil characteristics on depth distribution of 137Cs in soil could be investigated. Activity of 137Cs in soil samples was measured using a HpGe detector and multi-channel analyzer. Based on vertical distribution of 137Cs in soil which was measured for each of 10 locations, the diffusion coefficient of 137Cs in soil was determined. In the next half-century, 137Cs will remain as the source of the exposure. Fifteen years after the Chernobyl accident, and more than 30 years after nuclear probes, the largest activity of 137Cs is still within 10 cm of the upper layer of the soil. This result confirms that the penetration of 137Cs in soil is a very slow process. Experimental results were compared with two different Green functions and no major differences were found between them. While both functions fit experimental data well in the upper layer of soil, the fitting is not so good in deeper layers. Although the curves obtained by these two functions are very close to each other, there are some differences in the values of parameters acquired by them.

  11. Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach

    Directory of Open Access Journals (Sweden)

    Luan Pan

    2014-07-01

    Full Text Available Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument.

  12. Spectroscopy as a diagnostic tool for urban soil

    Science.gov (United States)

    Brook, Anna; Kopel, Daniella; Wittenberg, Lea

    2015-04-01

    Anthropogenic urban soil are the foundation of the urban green infrastructure, the green net quality is as good as each of its patches. In early days of pedology urban soil has been recognized with respect to contamination and the risks for human health but in study performed since the 70s, the importance of urban soil for the urban ecology became increasingly significant (Gómez-Baggethun and Barton 2013). Urban soils are highly disturbed land that was created by the process of urbanization. The dominant agent in the creation of urban soils is human activity which modifies the natural soil through mixing, filling or by contamination of land surfaces so as to create a layer of urban soil which can be more than 50 cm thick (Pavao-Zuckerman 2008). The objective of this study is to determine the extent to which field spectroscopy methods can be used to extend the knowledge of urban soils features and components. The majority of the studies on urban soils concentrate on identifying and mapping of pollution mostly heavy metals. In this study a top-down analysis is developed - a simple and intuitive spectral feature for detecting the presence of minerals, organic matter and pollutants in mixed soil samples. The developed method uses spectral activity (SA) detection in a structured hierarchical approach to quickly and, more importantly, correctly identify dominant spectral features. The developed method is adopted by multiple in-production tools including continuum removal normalization, guided by polynomial generalization, and spectral-likelihood algorithms: orthogonal subspace projection (OSP) and iterative spectral mixture analysis (ISMA) were compared to feature likelihood methods (Li et al. 2014). Results of the proposed top-down unmixing method suggest that the analysis is made very fast due to the simplified hierarchy which avoids the high-learning curve associated with unmixing algorithms showed that the most abundant components were coarse organic matter 12

  13. Community based bioremediation: grassroots responses to urban soil contamination

    Directory of Open Access Journals (Sweden)

    Scott Kellogg

    2016-12-01

    Full Text Available The past 150 years of industrial processes have left a legacy of toxicity in the soils of today’s urban environments. Exposure to soil based pollutants disproportionately affects low-income communities who are frequently located within formerly industrialized zones. Both gardeners, who come into direct contact with soil, as well as those who eat the products grown in the soil, are at risk to exposure from industrial contaminants. Options for low-income communities for remediating contaminated soils are limited, with most remediation work being carried out by costly engineering firms. Even more problematic is the overall lack of awareness and available information regarding safety and best practices with soils. In response to these challenges, a grassroots movement has emerged that seeks to empower urban residents with the tools and information necessary to address residual industrial toxicity in their ecosystems. Focusing on methods that are simple and affordable, this movement wishes to remove the barriers of cost and technical expertise that may be otherwise prohibitive. This paper will give an overview of this exemplar of generative justice, looking at case studies of organizations that have been successful in implementing these strategies.

  14. Ecotoxicological assessment of metal-polluted urban soils using bioassays with three soil invertebrates.

    Science.gov (United States)

    Santorufo, Lucia; Van Gestel, Cornelis A M; Maisto, Giulia

    2012-07-01

    This study aimed at assessing the quality of urban soils by integrating chemical and ecotoxicological approaches. Soils from five sites in downtown Naples, Italy, were sampled and characterized for physical-chemical properties and total and water-extractable metal concentrations. Bioassays with Eisenia andrei, Enchytraeus crypticus and Folsomia candida were performed to assess toxicity of the soils, using survival, reproduction and growth as the endpoints. Metal bioaccumulation in the animals was also measured. The properties and metal concentrations of the soils strongly differed. Metal bioaccumulation was related with total metal concentrations in soil and was highest in E. crypticus, which was more sensitive than E. andrei and F. candida. Responses of the three species to the investigated soils seemed due to both metal contamination and soil properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Contamination of urban garden soils with copper, boron, and lead

    Energy Technology Data Exchange (ETDEWEB)

    Purves, D

    1967-04-01

    Spectrochemical analysis of representative samples of topsoil from urban gardens and from individual fields in rural areas indicates that the level of total copper, EDTA-extractable copper, water-soluble boron, and acetic-acid extractable lead are markedly enhanced in urban areas. No significant differences were discovered between levels of these elements in soils from built-up areas in small towns and large conurbations. These results suggest the possibility of general enhancement of the trace element content of plants grown in private gardens in built-up areas.

  16. Social Profile Of The Aged In An Urban Population

    Directory of Open Access Journals (Sweden)

    J A Khan

    1997-08-01

    Full Text Available Research Problem: What is the socio-demographic profile of urban aged population in Aligarh city.Objectives: i To describe the socio-demographic profile of the aged population in an urban area, ii To describe the attitude of these people.Design:Cross-sectional study.Setting : Urban areas of Aligarh city.Participants : 3951 persons aged 60 years and aboveStudy Variables: Socio-demographic characteristics, attitudes.Statistical Analysis : By proportions.Result: 15% of the total estimated elderly population covering all 10 sectors of Aligarh city was studied. The majority ofthe elderly (72.4% belonged to 60-70 years age group. Most of them (77.2% were illiterate, 61.6% belonged to lower socio-economic classes (IV & V, 78.1 % lived in joint families. 39.6% of the aged felt that they were not being given due respect by family members. Nearly half of them had an indifferent or unhappy attitude towards life.Conclusion: The socio-demographic characteristics of the aged are important and must be kept in mind for developing programs to assist them in living as respectful senior citizens.

  17. Chemical profile of size-fractionated soils collected in a semiarid industrial area of Argentina

    Science.gov (United States)

    Morales Del Mastro, Anabella; Pereyra, Marcelo; Londonio, Agustín; Pereyra, Victoria; Rebagliati, Raúl Jiménez; Dawidowski, Laura; Gómez, Darío; Smichowski, Patricia

    2014-12-01

    A study was undertaken to assess the chemical profile of soil collected in Bahía Blanca (Argentina). In this industrial city, semiarid soils are affected by different industrial and agricultural activities, the presence of a saltpeter extraction facility, traffic and increasing urbanization. Sixteen soil samples (superficial and sub-superficial) were collected. Samples were sieved in two fractions (A plasma optical emission spectrometry (ICP OES). Anions (Cl-, F-, SO42-) and cations (K+, Na+ and NH4+) were determined by high performance liquid chromatography (HPLC) after an aqueous extraction. As expected, crustal elements namely, Al, Ca, Fe, Mg and Ti exhibited the highest concentrations. Mean elemental concentration ranged from Na+ ≅ SO42- > K+ > NO3-. Three indicators, namely, (i) coefficient of variation, (ii) coefficient of divergence and (iii) ratio of elemental concentration with respect to Ca were used to assess chemical, spatial and inter-profile variability. Chloride > Ca > Na+ > Mo > SO42-, dominated the variability indicating that these are key chemical markers for future assessment of crustal contribution to airborne particles in the area. The ratios Xi/Ca allowed discriminating the soil of the semi-arid region surrounding Bahía Blanca. The chemical profiles obtained in this study, particularly those of topsoil, will be a key input to characterize soil resuspension and its contribution to airborne particulate matter in a forthcoming receptor model analysis.

  18. Pollution of soils in urban areas in Serbia

    Science.gov (United States)

    Grujic, Gordana; Crnkovic, Dragan; Cerdà, Artemi

    2017-04-01

    Soil pollution is a world-wide problems that affect rural and urban areas of all the continents (Hu et al., 2015; Mao et al., 2016; Trujillo-González et al., 2016; Elkhatib et al., 2016; Roy and McDonad, 2015; Mahmoud and Abd El-Kader, 2015; Adamcová et al., 2016). There is a need to develop a program to achieve the sustainability of the soil system as the soils offers goods, services and resources to the humankind (Keesstra et al., 2012; Brevik et al., 2015; Keesstra et al., 2016). The program of systematic monitoring of soil pollution in Belgrade is aimed at testing the concentration of hazardous and harmful substances in soil at urban areas, interpretation of the results in accordance with current legislation, soil characteristics and geology and terrain, proposal of preventive and remedial measures in the wider territory of Belgrade. The paper gives an overview of the results of systematic monitoring of soil pollution in Belgrade in the period from 2009 to 2013. In accordance with the objectives of the investigation during the period from 2009-2013, while having in mind the purpose and manner of land use, the program of monitoring of soil pollution in the territory of Belgrade is oriented to the following areas: 1 - Land in the zone of the sanitary protection of the Belgrade water supply system, 2- Land in zone nearby the main roads, 3 - Land within the communal areas (public areas and agricultural land in the wider vicinity of Belgrade). On the basis of the conducted soil monitoring in the wider area of Belgrade, a large number of sites is contaminated with higher concentrations of hazardous and harmful substances that are exceeding the maximum allowed prescribed legal norms. The causes of soil contamination are both, anthropogenic and natural. Taking into account the all results, the most common deviation is referred to the increased nickel content in soil. A number of soil samples showed increase in concentrations of pollutants including Cu, Zn, Pb, Cd, As

  19. Presence of Beryllium (Be) in urban soils: human health risk

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.; Gonzalez, M. J.; Lobo, M. C.

    2009-07-01

    Berylium (Be) is, together with As, Cd, Hg, Pb and Ti, one of the trace elements more toxic for human being (Vaessen) and Szteke, 2000; Yaman and Avci, 2006), but in spite of the exponential increment of its applications during the last decades, surprisingly there isn't hardly information about its presence and environmental distribution. The aim of this work is to evaluate the presence of Beryllium in urban soils in Alcala de Henares, (Madrid Spain).

  20. Agricultural implications of providing soil-based constraints on urban expansion: Land use forecasts to 2050.

    Science.gov (United States)

    Smidt, Samuel J; Tayyebi, Amin; Kendall, Anthony D; Pijanowski, Bryan C; Hyndman, David W

    2018-07-01

    Urbanization onto adjacent farmlands directly reduces the agricultural area available to meet the resource needs of a growing society. Soil conservation is a common objective in urban planning, but little focus has been placed on targeting soil value as a metric for conservation. This study assigns commodity and water storage values to the agricultural soils across all of the watersheds in Michigan's Lower Peninsula to evaluate how cities might respond to a soil conservation-based urbanization strategy. Land Transformation Model (LTM) simulations representing both traditional and soil conservation-based urbanization, are used to forecast urban area growth from 2010 to 2050 at five year intervals. The expansion of urban areas onto adjacent farmland is then evaluated to quantify the conservation effects of soil-based development. Results indicate that a soil-based protection strategy significantly conserves total farmland, especially more fertile soils within each soil type. In terms of revenue, ∼$88 million (in current dollars) would be conserved in 2050 using soil-based constraints, with the projected savings from 2011 to 2050 totaling more than $1.5 billion. Soil-based urbanization also increased urban density for each major metropolitan area. For example, there were 94,640 more acres directly adjacent to urban land by 2050 under traditional development compared to the soil-based urbanization strategy, indicating that urban sprawl was more tightly contained when including soil value as a metric to guide development. This study indicates that implementing a soil-based urbanization strategy would better satisfy future agricultural resource needs than traditional urban planning. Copyright © 2018. Published by Elsevier Ltd.

  1. Soil sealing degree as factor influencing urban soil contamination with polycyclic aromatic hydrocarbons (PAHs

    Directory of Open Access Journals (Sweden)

    Mendyk Łukasz

    2016-03-01

    Full Text Available The objective of the study was to determine role of soil sealing degree as the factor influencing soil contamination with polycyclic aromatic hydrocarbons (PAHs. The study area included four sampling sites located within the administrative boundaries of the Toruń city, Poland. Sampling procedure involved preparing soil pits representing three examples of soil sealing at each site: non-sealed soil as a control one (I and two degrees of soil sealing: semi-pervious surface (II and totally impervious surface (III. Together with basic properties defined with standard procedures (particle size distribution, pH, LOI, content of carbonates content of selected PAHs was determined by dichloromethane extraction using gas chromatography with mass spectrometric detection (GC-MS. Obtained results show that urban soils in the city of Toruń are contaminated with polycyclic aromatic hydrocarbons. Soil sealing degree has a strong influence on the soil contamination with polycyclic aromatic hydrocarbons. Totally sealed soils are better preserved from atmospheric pollution including PAHs. Combustion of grass/wood/coal was the main source of determined PAHs content in examined soils.

  2. Urban soil pollution and the playfields of small children

    Science.gov (United States)

    Jartun, M.; Ottesen, R. T.; Steinnes, E.

    2003-05-01

    The chemical composition of urban surface soil in Tromsø, northern Norway has been mapped to describe the environmental load of toxic elements in different parts of the city. Surface soil samples were collected from 275 locations throughout the city center and nearby suburban areas. Natural background concentrations were determined in samples of the local bedrock. Surface soil in younger, suburban parts of the city shows low concentrations of heavy metals, reflecting the local geochemistry. The inner and older parts of the city are generally polluted with lead (Pb), zinc (Zn) and tin (Sn). The most important sources of this urban soil pollution are probably city fires, industrial and domestic waste, traffic, and shipyards. In this paper two different approaches have been used. First, as a result of the general mapping, 852 soil and sand samples from kindergartens and playgrounds were analyzed. In this study concentrations of arsenic (As) up to 1800ppm were found, most likely due to the extensive use of CCA (copper, chromium, arsenic) impregnated wood in sandboxes and other playground equipment. This may represent a significant health risk especially to children having a high oral intake of contaminated sand and soil. Secondly a pattern of tin (Sn) concentrations was found in Tromsøcity with especially high values near shipyards. Further investigation indicated that this pattern most probably reflected the use of the highty toxic tributyltin (TBT). Thus détermination of total Sn in surface soils could be a cost-effective way to localize sources of TBT contamination in the environment.

  3. Compaction stimulates denitrification in an urban park soil using 15N tracing technique

    DEFF Research Database (Denmark)

    Li, Shun; Deng, Huan; Rensing, Christopher Günther T

    2014-01-01

    Soils in urban areas are subjected to compaction with accelerating urbanization. The effects of anthropogenic compaction on urban soil denitrification are largely unknown. We conducted a study on an urban park soil to investigate how compaction impacts denitrification. By using 15N labeling method...... and acetylene inhibition technique, we performed three coherent incubation experiments to quantify denitrification in compacted soil under both aerobic and anaerobic conditions. Uncompacted soil was set as the control treatment. When monitoring soil incubation without extra substrate, higher nitrous oxide (N2O......) flux and denitrification enzyme activity were observed in the compacted soil than in the uncompacted soil. In aerobic incubation with the addition of K15NO3, N2O production in the compacted soil reached 10.11 ng N h-1 g-1 as compared to 0.02 ng N h-1 g-1 in the uncompacted soil. Denitrification...

  4. Heavy Metal Contamination in Urban Soils I Zinc Accumulation Phenomenon in Urban Environments as Clues of Study

    OpenAIRE

    KOMAI, Yutaka

    1981-01-01

    As an introduction of the continuing study on the heavy metal contamination in urban soils, zinc accumulation phenomenon observed in urban areas in south Osaka was reported. The survey of zinc concentration in soybean leaves taken in urban and suburban arable lands indicated its accumulation in a wide area. And a correlation between easy soluble zinc level in soils and leaf zinc content were shown. Zinc concentrations in suspended particles in air, falling dust and some water samples were che...

  5. Vegetative cover and PAHs accumulation in soils of urban green space

    International Nuclear Information System (INIS)

    Peng Chi; Ouyang Zhiyun; Wang Meie; Chen Weiping; Jiao Wentao

    2012-01-01

    We investigated how urban land uses influence soil accumulation of polycyclic aromatic hydrocarbons (PAHs) in the urban green spaces composed of different vegetative cover. How did soil properties, urbanization history, and population density affect the outcomes were also considered. Soils examined were obtained at 97 green spaces inside the Beijing metropolis. PAH contents of the soils were influenced most significantly by their proximity to point source of industries such as the coal combustion installations. Beyond the influence circle of industrial emissions, land use classifications had no significant effect on the extent of PAH accumulation in soils. Instead, the nature of vegetative covers affected PAH contents of the soils. Tree–shrub–herb and woodland settings trapped more airborne PAH and soils under these vegetative patterns accumulated more PAHs than those of the grassland. Urbanization history, population density and soil properties had no apparent impact on PAHs accumulations in soils of urban green space. - Highlights: ► Land use did not affect PAHs in soils except for areas adjacent to industrial sources. ► Tree–shrub–herb and woodland cover amass more PAHs in soils than grassland cover. ► Urban development and soil property factors had little effect on PAHs in soils. - Industrial emissions aside, vegetative cover is the dominant factor controlling accumulation of PAHs in urban green space soils.

  6. The Vertical Structure of Urban Soils and Their Convergence Across Cities

    Science.gov (United States)

    The theoretical patterns for vertical soil structure (e.g., A-B-C ordering of horizons) are a basis for research methods and our understanding of ecosystem structure and function in general. A general understanding of how urban soils differ from non-urban soils vertically is need...

  7. The vertical geography of urban soils and its convergence across cities

    Science.gov (United States)

    The theoretical patterns for vertical soil structure (e.g., A-B-C ordering of horizons) are a basis for research methods and our understanding of ecosystem structure and function in general. A general understanding of how urban soils differ from non-urban soils vertically is need...

  8. Soil solution interactions may limit Pb remediation using P amendments in an urban soil.

    Science.gov (United States)

    Obrycki, John F; Scheckel, Kirk G; Basta, Nicholas T

    2017-01-01

    Lead (Pb) contaminated soils are a potential exposure hazard to the public. Amending soils with phosphorus (P) may reduce Pb soil hazards. Soil from Cleveland, OH containing 726 ± 14 mg Pb kg -1 was amended in a laboratory study with bone meal and triple super phosphate (TSP) at 5:1 P:Pb molar ratios. Soil was acidified, neturalized and re-acidified to encourage Pb phosphate formation. PRSTM-probes were used to evaluate changes in soil solution chemistry. Soil acidification did not decrease in vitro bioaccessible (IVBA) Pb using either a pH 1.5, 0.4 M glycine solution or a pH 2.5 solution with organic acids. PRSTM-probe data found soluble Pb increased 10-fold in acidic conditions compared to circumnetural pH conditions. In acidic conditions (p = 3-4), TSP treated soils increased detected P 10-fold over untreated soils. Bone meal application did not increase PRSTM-probe detected P, indicating there may have been insufficient P to react with Pb. X-ray absorption spectroscopy suggested a 10% increase in pyromorphite formation for the TSP treated soil only. Treatments increased soil electrical conductivity above 16 mS cm -1 , potentially causing a new salinity hazard. This study used a novel approach by combining the human ingestion endpoint, PRSTM-probes, and X-ray absorption spectroscopy to evaluate treatment efficacy. PRSTM-probe data indicated potentially excess Ca relative to P across incubation steps that could have competed with Pb for soluble P. More research is needed to characterize soil solutions in Pb contaminated urban soils to identify where P treatments might be effective and when competing cations, such as Ca, Fe, and Zn may limit low rate P applications for treating Pb soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Sensitivity of the urban airshed model to mixing height profiles

    Energy Technology Data Exchange (ETDEWEB)

    Rao, S.T.; Sistla, G.; Ku, J.Y.; Zhou, N.; Hao, W. [New York State Dept. of Environmental Conservation, Albany, NY (United States)

    1994-12-31

    The United States Environmental Protection Agency (USEPA) has recommended the use of the Urban Airshed Model (UAM), a grid-based photochemical model, for regulatory applications. One of the important parameters in applications of the UAM is the height of the mixed layer or the diffusion break. In this study, we examine the sensitivity of the UAM-predicted ozone concentrations to (a) a spatially invariant diurnal mixing height profile, and (b) a spatially varying diurnal mixing height profile for a high ozone episode of July 1988 for the New York Airshed. The 1985/88 emissions inventory used in the EPA`s Regional Oxidant Modeling simulations has been regridded for this study. Preliminary results suggest that the spatially varying case yields a higher peak ozone concentrations compared to the spatially invariant mixing height simulation, with differences in the peak ozone ranging from a few ppb to about 40 ppb for the days simulated. These differences are attributed to the differences in the shape of the mixing height profiles and its rate of growth during the morning hours when peak emissions are injected into the atmosphere. Examination of the impact of emissions reductions associated with these two mixing height profiles indicates that NO{sub x}-focussed controls provide a greater change in the predicted ozone peak under spatially invariant mixing heights than under the spatially varying mixing height profile. On the other hand, VOC-focussed controls provide a greater change in the predicted peak ozone levels under spatially varying mixing heights than under the spatially invariant mixing height profile.

  10. Speciation and migration of 129I in soil profiles

    International Nuclear Information System (INIS)

    Luo, Maoyi; Hou, Xiaolin; Zhou, Weijian; He, Chaohui; Chen, Ning; Liu, Qi; Zhang, Luoyuan

    2013-01-01

    A method has been developed for speciation analysis of ultra low level 129 I in soil using sequential extraction combined with coprecipitation for separation of carrier free iodine and AMS measurement of 129 I. Two loess profiles collected from northwest China were analyzed for species of 129 I and 127 I. Similar partitioning of 129 I and 127 I was observed in the loess profiles, the distribution of iodine isotopes followed an order of organic > leachable > reducible > residue. The 129 I concentrations and 129 I/ 127 I ratios decreased exponentially with the depth, and 2 orders of magnitude lower in the deepest layer (60 and 90 cm) compared with the top layer, indicating a significant contribution of anthropogenic input in the upper layer, and high retention of 129 I in soil. The mobility of 129 I in different fractions decreased in an order of leachable > organic > oxides > residue. The results suggest that migration of iodine downwards in the soil profile is a slow process; the oxides and residue are the less mobile fractions of iodine. Highlights: ► 129 I concentration decreases exponentially with the depth of soil profile. ► The mobility of 129 I in fractions decreases: leachable > organic > oxides > residue. ► Iodine shows less mobility in oxides and residue fractions. ► High organic soil content can effectively reduce the migration of 129 I in the environment. ► Carrier free iodine AMS is an effective method for natural 129 I speciation analysis in the environment

  11. Composition of soil air in a profile

    International Nuclear Information System (INIS)

    Victoria, R.L.; Libardi, P.L.; Reichardt, K.

    1976-08-01

    With the objective of understanding microbiological transformations in the soil, measurements of concentration of N 2 , CO 2 , O 2 , and Ar have been made at depths of 30,45,60 and 105 cm on a typical red latosol (Latossol Roxo). The experiment consisted of nitrogen applications in the form of urea and ammonium sulphate, at the rates of 0,40 and 120 Kg N/ha, on bare and cropped plots of snap-beans(PHASEOLUS VULGARIS,L. cultivar goiano precoce.) Soil air samples were collected 20 and 36 days after emergence using special probes and the analysis was performed by mass spectrometry. The results show a variability only of CO 2 and O 2 concentrations remained relatively constant

  12. Microwave remote sensing of soil moisture for estimation of profile soil property

    International Nuclear Information System (INIS)

    Mattikalli, N.M.; Engman, E.T.; Ahuja, L.R.; Jackson, T.J.

    1998-01-01

    Multi-temporal microwave remotely-sensed soil moisture has been utilized for the estimation of profile soil property, viz. the soil hydraulic conductivity. Passive microwave remote sensing was employed to collect daily soil moisture data across the Little Washita watershed, Oklahoma, during 10-18 June 1992. The ESTAR (Electronically Steered Thin Array Radiometer) instrument operating at L -band was flown on a NASA C-130 aircraft. Brightness temperature (TB) data collected at a ground resolution of 200m were employed to derive spatial distribution of surface soil moisture. Analysis of spatial and temporal soil moisture information in conjunction with soils data revealed a direct relation between changes in soil moisture and soil texture. A geographical information system (GIS) based analysis suggested that 2-days initial drainage of soil, measured from remote sensing, was related to an important soil hydraulic property viz. the saturated hydraulic conductivity (Ksat). A hydrologic modelling methodology was developed for estimation of Ksat of surface and sub-surface soil layers. Specifically, soil hydraulic parameters were optimized to obtain a good match between model estimated and field measured soil moisture profiles. Relations between 2-days soil moisture change and Ksat of 0-5 cm, 0-30 cm and 0-60cm depths yielded correla tions of 0.78, 0.82 and 0.71, respectively. These results are comparable to the findings of previous studies involving laboratory-controlled experiments and numerical simulations, and support their extension to the field conditions of the Little Washita watershed. These findings have potential applications of microwave remote sensing to obtain 2-days of soil moisture and then to quickly estimate the spatial distribution of Ksat over large areas. (author)

  13. Establishing principal soil quality parameters influencing earthworms in urban soils using bioassays

    International Nuclear Information System (INIS)

    Hankard, Peter K.; Bundy, Jacob G.; Spurgeon, David J.; Weeks, Jason M.; Wright, Julian; Weinberg, Claire; Svendsen, Claus

    2005-01-01

    Potential contamination at ex-industrial sites means that, prior to change of use, it will be necessary to quantify the extent of risks to potential receptors. To assess ecological hazards, it is often suggested to use biological assessment to augment chemical analyses. Here we investigate the potential of a commonly recommended bioassay, the earthworm reproduction test, to assess the status of urban contaminated soils. Sample points at all study sites had contaminant concentrations above the Dutch soil criteria Target Values. In some cases, the relevant Intervention Values were exceeded. Earthworm survival at most points was high, but reproduction differed significantly in soil from separate patches on the same site. When the interrelationships between soil parameters and reproduction were studied, it was not possible to create a good model of site soil toxicity based on single or even multiple chemical measurements of the soils. We thus conclude that chemical analysis alone is not sufficient to characterize soil quality and confirms the value of biological assays for risk assessment of potentially contaminated soils. - Bioassays must be applied for the risk assessment complexly-polluted sites to complement chemical analysis of soils

  14. Spatial pattern of heavy metals accumulation risk in urban soils of Beijing and its influencing factors

    International Nuclear Information System (INIS)

    Liu, Rui; Wang, Meie; Chen, Weiping; Peng, Chi

    2016-01-01

    Accumulations of heavy metals in urban soils are highly spatial heterogeneity and affected by multiple factors including soil properties, land use and pattern, population and climatic conditions. We studied accumulation risks of Cd, Cu, Pb and Zn in unban soils of Beijing and their influencing based on the regression tree analysis and a GIS-based overlay model. Result shows that Zinc causes the most extensive soil pollution and Cu result in the most acute soil pollution. The soil's organic carbon content and CEC and population growth are the most significant factors affecting heavy metal accumulation. Other influence factors in land use pattern, urban landscape, and wind speed also contributed, but less pronounced. The soils in areas with higher degree of urbanization and surrounded by intense vehicular traffics have higher accumulation risk of Cd, Cu, Pb, and Zn. - Highlights: • Zn accumulations were the most extensive and Cu accumulations were the most acute. • Accumulations of Cd, Cu, Pb and Zn in urban soils were caused by different sets of influence factors. • Soil's organic carbon content and CEC and population growth were the most significant factors. • Accumulation risks were highly related with urbanization level and human activities. - A combined approach of employing geographical information systems and regression tree analyses identify the potential risks of accumulation Cd, Cu, Pb, and Zn in urban soils according to soil properties, urban land use patterns, urban landscape, demographics, and microclimatic conditions.

  15. Bioaccessibility of Ba, Cu, Pb, and Zn in urban garden and orchard soils

    International Nuclear Information System (INIS)

    Cai, Meifang; McBride, Murray B.; Li, Kaiming

    2016-01-01

    Exposure of young children to toxic metals in urban environments is largely due to soil and dust ingestion. Soil particle size distribution and concentrations of toxic metals in different particle sizes are important risk factors in addition to bioaccessibility of these metals in the particles. Analysis of particle size distribution and metals concentrations for 13 soils, 12 sampled from urban gardens and 1 from orchard found that fine particles (<105 μm) comprised from 22 to 66% by weight of the tested soils, with Ba, Cu, Pb and Zn generally at higher concentrations in the finer particles. However, metal bioaccessibility was generally lower in finer particles, a trend most pronounced for Ba and Pb. Gastric was higher than gastrointestinal bioaccessibility for all metals except Cu. The lower bioaccessibility of Pb in urban garden soils compared to orchard soil is attributable to the higher organic matter content of the garden soils. - Highlights: • The bioaccessibility of metals in urban garden and orchard soils was measured. • Ba, Cu, Pb, Zn were concentrated in fine particles of the soils. • Bioaccessibilities of Ba and Pb were generally lower in fine particles of soils. • Pb bioaccessibility was generally lower in soils with higher organic matter content. • Pb bioaccessibility was lower in urban garden soils than in an orchard soil. - Pb and other trace metals (Ba, Cu, Zn) were concentrated in fine particles of urban and orchard soils, but the bioaccessibility of Ba and Pb was generally lower in finer particles.

  16. Validation of predicted exponential concentration profiles of chemicals in soils

    International Nuclear Information System (INIS)

    Hollander, Anne; Baijens, Iris; Ragas, Ad; Huijbregts, Mark; Meent, Dik van de

    2007-01-01

    Multimedia mass balance models assume well-mixed homogeneous compartments. Particularly for soils, this does not correspond to reality, which results in potentially large uncertainties in estimates of transport fluxes from soils. A theoretically expected exponential decrease model of chemical concentrations with depth has been proposed, but hardly tested against empirical data. In this paper, we explored the correspondence between theoretically predicted soil concentration profiles and 84 field measured profiles. In most cases, chemical concentrations in soils appear to decline exponentially with depth, and values for the chemical specific soil penetration depth (d p ) are predicted within one order of magnitude. Over all, the reliability of multimedia models will improve when they account for depth-dependent soil concentrations, so we recommend to take into account the described theoretical exponential decrease model of chemical concentrations with depth in chemical fate studies. In this model the d p -values should estimated be either based on local conditions or on a fixed d p -value, which we recommend to be 10 cm for chemicals with a log K ow > 3. - Multimedia mass model predictions will improve when taking into account depth dependent soil concentrations

  17. Microbial biomass carbon and enzyme activities of urban soils in Beijing.

    Science.gov (United States)

    Wang, Meie; Markert, Bernd; Shen, Wenming; Chen, Weiping; Peng, Chi; Ouyang, Zhiyun

    2011-07-01

    To promote rational and sustainable use of soil resources and to maintain the urban soil quality, it is essential to assess urban ecosystem health. In this study, the microbiological properties of urban soils in Beijing and their spatial distribution patterns across the city were evaluated based on measurements of microbial biomass carbon and urease and invertase activities of the soils for the purpose of assessing the urban ecosystem health of Beijing. Grid sampling design, normal Kriging technique, and the multiple comparisons among different land use types were used in soil sampling and data treatment. The inherent chemical characteristics of urban soils in Beijing, e.g., soil pH, electronic conductivity, heavy metal contents, total N, P and K contents, and soil organic matter contents were detected. The size and diversity of microbial community and the extent of microbial activity in Beijing urban soils were measured as the microbial biomass carbon content and the ratio of microbial biomass carbon content to total soil organic carbon. The microbial community health measured in terms of microbial biomass carbon, urease, and invertase activities varied with the organic substrate and nutrient contents of the soils and were not adversely affected by the presence of heavy metals at p urban soils influenced the nature and activities of the microbial communities.

  18. Urbanization effects on soil nitrogen transformations and microbial biomass in the subtropics

    Science.gov (United States)

    Heather A. Enloe; B. Graeme Lockaby; Wayne C. Zipperer; Greg L. Somers

    2015-01-01

    As urbanization can involve multiple alterations to the soil environment, it is uncertain how urbanization effects soil nitrogen cycling. We established 22–0.04 ha plots in six different land cover types—rural slash pine (Pinus elliottii) plantations (n=3), rural natural pine forests (n=3), rural natural oak forests (n=4), urban pine forests (n=3), urban oak forests (n...

  19. A strategy for the survey of urban garden soils

    Science.gov (United States)

    Schwartz, C.; Chenot, E. D.; Cortet, J.; Douay, F.; Dumat, C.; Pernin, C.; Pourrut, B.

    2012-04-01

    the results highlights the main indicators of soil quality and the method for a survey of garden soils is proposed. These results and the resulting approach might be validated and used on a worldwide scale to collect garden soil samples with the objective of agronomic, environmental and sanitary studies adapted to this type of urban agriculture.

  20. The impact of human activities in soils and sediments on urban and peri-urban areas

    Science.gov (United States)

    Horváth, Adrienn; Szita, Renáta; Bidló, András; Gribovszki, Zoltán

    2017-04-01

    In this current research we would like to detect the amount of the differences between the natural, the suburb and the urban areas. The aim of the investigation was to determine the impact of human activities on urban and peri-urban soils of Sopron. 72 urban soil samples were collected on 6 sub-catchments for analysing the background pollution of Rák Creek in Sopron. After the analysis of chemical and physical properties of urban soil samples, two element fractions - the total (HNO3+H2O2-extractable) and the available NH4-acetate+EDTA-extractable - were used for element determination. Toxic elements were measured by ICP-OES in the urban soils and the sediments as well. in case of sediment samples from thalweg and dead region. That were collected from the bank of the Rák creek at 6 sampling points to calculate enrichment factors to assess the possible harmful effects of toxic metals. The field and laboratory data were processed using a GIS softver DigiTerraMap. Six elements were selected for analyses Co, Cd, Ni, Cu, Zn, Pb, which are prominent in urban soils. Statistical analysis was carried out with Microsoft Office Excel 2003, STATISTICA 11 and R Studio. C2 program was used for the distribution of toxic elements. Based on results e.g. pH, etc., there were definite differences between natural HAZ, BAN, semi-natural HAJNAL and urbanized FASOR, GYORI, TESCO areas and significant differences in toxic element distribution as well. The toxic elements of sediment showed the following tendency: Pb > Zn > Cu > Ni = Co. The Co and the Ni values were lower than the natural background limits. The Cutotal exceeded the first interventional pollution limit > 75 mg.kg-1 and the available Zn and Pb were higher than the suggested interventional pollution limits Znavailable >40 mg.kg-1; Pbavailable >25 mg.kg-1 at GYORI sub-catchment. The EF values were generally higher in dead region than in thalweg except of GYORI point. Lead had the highest EF values between the five metals

  1. Determining Arsenic Distribution in Urban Soils: A Comparison with Nonurban Soils

    Directory of Open Access Journals (Sweden)

    Tait Chirenje

    2002-01-01

    Full Text Available There are many challenges in the determination of arsenic background concentrations in soils. However, these challenges are magnified when those determinations are carried out on urban soils. Irrespective of this, it is important to correctly identify and understand the extent of pollution in order to provide efficient preventative, remedial actions and cost-effective management of contaminated areas. This review paper discusses the factors that make the determination of arsenic background concentrations in urban areas different from similar determinations in nonurban areas. It also proposes solutions, where applicable, that are based on experience in determining arsenic background concentrations in both urban and nonurban areas in Florida, and from other studies in the literature. Urban soils are considerably different from nonurban areas because they have significant human disturbance, making them more difficult to study. They are characterized by high spatial and temporal variability, compaction, and modified chemical and physical characteristics. These differences have to be addressed during site selection, sample collection, and statistical analyses when determining arsenic distribution.

  2. The Accelerated Urbanization Process: A Threat to Soil Resources in Eastern China

    Directory of Open Access Journals (Sweden)

    Jiadan Li

    2015-06-01

    Full Text Available The eastern coastal region of China has been experiencing rapid urbanization which has imposed great challenges on soil resources, characterized by soil sealing and fragmented soil landscapes. Taking Zhejiang Province—a fairly economically-developed and highly-urbanized region in eastern China—as a case study, a practical framework that integrates remote sensing, GIS, soil quality assessment and landscape analysis was employed to track and analyze the rapid urbanization process and spatiotemporal dynamics of soil sealing and landscape change from 1990 to 2010. Meanwhile, this paper qualitatively explored the regional inequality and characteristics in soil sealing intensity among cities of different geo-zones in Zhejiang Province. Results showed that total area of 6420 km2 had been sealed during the past two decades for the entire study area, which represents 6.2% of the provincial area. Among these sealed soils, 68.6% are fertile soils located in flat plains, such as Paddy soils. Soil landscapes became more fragmented and dispersed in distribution, more irregular and complex in shape, and less dominant and diverse in soil type, as evidenced by the constant change of various spatial landscape metrics. What is more, different geo-zones exhibited significant differences in dynamics of soil sealing intensity, soil composition and soil landscape patterns. The permanent loss of valuable soil resource and increasing fragmented soil landscape patterns concomitant with rapid urbanization processes may inevitably bring about potential threats to regional soil resources and food security.

  3. Urban gray vs. urban green vs. soil protection — Development of a systemic solution to soil sealing management on the example of Germany

    Energy Technology Data Exchange (ETDEWEB)

    Artmann, Martina, E-mail: m.artmann@ioer.de

    2016-07-15

    Managing urban soil sealing is a difficult venture due to its spatial heterogeneity and embedding in a socio-ecological system. A systemic solution is needed to tackle its spatial, ecological and social sub-systems. This study develops a guideline for urban actors to find a systemic solution to soil sealing management based on two case studies in Germany: Munich and Leipzig. Legal-planning, informal-planning, economic-fiscal, co-operative and informational responses were evaluated by indicators to proof which strategy considers the spatial complexity of urban soil sealing (systemic spatial efficiency) and, while considering spatial complexity, to assess what the key management areas for action are to reduce the ecological impacts by urban soil sealing (ecological impact efficiency) and to support an efficient implementation by urban actors (social implementation efficiency). Results suggest framing the systemic solution to soil sealing management through a cross-scale, legal-planning development strategy embedded in higher European policies. Within the socio-ecological system, the key management area for action should focus on the protection of green infrastructure being of high value for actors from the European to local scales. Further efforts are necessary to establish a systemic monitoring concept to optimize socio-ecological benefits and avoid trade-offs such as between urban infill development and urban green protection. This place-based study can be regarded as a stepping stone on how to develop systemic strategies by considering different spatial sub-targets and socio-ecological systems. - Highlights: • Urban soil sealing management is spatially complex. • The legal-planning strategy supports a systemic sealing management. • Urban green infrastructure protection should be in the management focus. • Soil protection requires policies from higher levels of government. • A systemic urban soil sealing monitoring concept is needed.

  4. Urban gray vs. urban green vs. soil protection — Development of a systemic solution to soil sealing management on the example of Germany

    International Nuclear Information System (INIS)

    Artmann, Martina

    2016-01-01

    Managing urban soil sealing is a difficult venture due to its spatial heterogeneity and embedding in a socio-ecological system. A systemic solution is needed to tackle its spatial, ecological and social sub-systems. This study develops a guideline for urban actors to find a systemic solution to soil sealing management based on two case studies in Germany: Munich and Leipzig. Legal-planning, informal-planning, economic-fiscal, co-operative and informational responses were evaluated by indicators to proof which strategy considers the spatial complexity of urban soil sealing (systemic spatial efficiency) and, while considering spatial complexity, to assess what the key management areas for action are to reduce the ecological impacts by urban soil sealing (ecological impact efficiency) and to support an efficient implementation by urban actors (social implementation efficiency). Results suggest framing the systemic solution to soil sealing management through a cross-scale, legal-planning development strategy embedded in higher European policies. Within the socio-ecological system, the key management area for action should focus on the protection of green infrastructure being of high value for actors from the European to local scales. Further efforts are necessary to establish a systemic monitoring concept to optimize socio-ecological benefits and avoid trade-offs such as between urban infill development and urban green protection. This place-based study can be regarded as a stepping stone on how to develop systemic strategies by considering different spatial sub-targets and socio-ecological systems. - Highlights: • Urban soil sealing management is spatially complex. • The legal-planning strategy supports a systemic sealing management. • Urban green infrastructure protection should be in the management focus. • Soil protection requires policies from higher levels of government. • A systemic urban soil sealing monitoring concept is needed.

  5. An applied hydropedological perspective on the rendering of ecosystem services from urban soils

    Science.gov (United States)

    Ecosystem services are benefits to human populations derived from natural capitals like soil. When a soil is urbanized during infrastructure and superstructure development, the related processes modulate the state and quality of natural resources, along with the form and function...

  6. Mineralogical and geochemical patterns of urban surface soils, the example of Pforzheim, Germany

    International Nuclear Information System (INIS)

    Norra, Stefan; Lanka-Panditha, Mahesh; Kramar, Utz; Stueben, Doris

    2006-01-01

    This study presents a combined geochemical and mineralogical survey of urban surface soils. Many studies on urban soils are restricted to purely chemical surveys in order to investigate soil pollution caused by anthropogenic activities such as traffic, heating, industrial processing, waste disposal and many more. In environmental studies, chemical elements are often distinguished as lithogenic and anthropogenic elements. As a novel contribution to those studies, the authors combined the analysis of a broad set of chemical elements with the analysis of the main mineralogical phases. The semi-quantification of mineralogical phases supported the assignment of groups of chemical elements to lithogenic or anthropogenic origin. Minerals are important sinks for toxic elements. Thus, knowledge about their distribution in soils is crucial for the assessment of the environmental hazards due to pollution of urban soils. In Pforzheim, surface soils (0-5 cm depth) from various land use types (forest, agriculture, urban green space, settlement areas of various site densities) overlying different geological units (clastic and chemical sediments) were investigated. Urban surface soils of Pforzheim reflect to a considerable degree the mineral and chemical composition of parent rocks. Irrespective of the parent rocks, elevated concentrations of heavy metals (Zn, Cu, Pb, Sn, Ag) were found in soils throughout the whole inner urban settlement area of Pforzheim indicating pollution. These pollutants will tend to accumulate in inner urban surface soils according to the available adsorption capacity, which is normally higher in soils overlying limestone than in soils overlying sandstone. However, inner urban surface soils overlying sandstone show elevated concentrations of carbonates, phyllo-silicates and Fe and elevated pH values compared with forest soils overlying sandstone. Thus, in comparison to forest soils overlying sandstones, inner urban soils overlying sandstone affected by

  7. An Assessment of the Impact of Urbanization on Soil Erosion in Inner Mongolia.

    Science.gov (United States)

    Wang, Li-Yan; Xiao, Yi; Rao, En-Ming; Jiang, Ling; Xiao, Yang; Ouyang, Zhi-Yun

    2018-03-19

    Inner Mongolia, an autonomous region of the People's Republic of China, has experienced severe soil erosion following a period of rapid economic development and urbanization. To investigate how urbanization has influenced the extent of soil erosion in Inner Mongolia, we used urbanization and soil erosion data from 2000 through 2010 to determine the relationship between urbanization and soil erosion patterns. Two empirical equations-the Revised Universal Soil Loss Equation (RUSLE) and the Revised Wind Erosion Equation (RWEQ)-were used to estimate the intensity of soil erosion, and we performed backward linear regression to model how it changed with greater urbanization. There was an apparent increase in the rate of urbanization and a decrease in the area affected by soil erosion in 2010 compared to the corresponding values for 2000. The urban population stood at 11.32 million in 2010, which represented a 16.47% increase over that in 2000. The area affected by soil erosion in 2000 totaled 704,817 km², yet it had decreased to 674,135 km² by 2010. However, a path of modest urban development (rural-urban mitigation) and reasonable industrial structuring (the development of GDP-2) may partially reduce urbanization's ecological pressure and thus indirectly reduce the threat of soil erosion to human security. Therefore, to better control soil erosion in Inner Mongolia during the process of urbanization, the current model of economic development should be modified to improve the eco-efficiency of urbanization, while also promoting new modes of urbanization that are environmentally sustainable, cost-effective, and conserve limited resources.

  8. Mechanistic modelling of the vertical soil organic matter profile

    NARCIS (Netherlands)

    Braakhekke, M.C.

    2014-01-01

    Soil organic matter (SOM) constitutes a large global pool of carbon that may play a considerable role for future climate. The vertical distribution of SOM in the profile may be important due to depth-dependence of physical, chemical, and biological conditions, and links to physical processes

  9. Speciation and migration of 129I in soil profiles

    DEFF Research Database (Denmark)

    Luo, Maoyi; Hou, Xiaolin; Zhou, Weijian

    2013-01-01

    A method has been developed for speciation analysis of ultra low level 129I in soil using sequential extraction combined with coprecipitation for separation of carrier free iodine and AMS measurement of 129I. Two loess profiles collected from northwest China were analyzed for species of 129I...

  10. Phosphorus distribution in sandy soil profile under drip irrigation system

    International Nuclear Information System (INIS)

    El-Gendy, R.W.; Rizk, M.A.; Abd El Moniem, M.; Abdel-Aziz, H.A.; Fahmi, A.E.

    2009-01-01

    This work aims at to studying the impact of irrigation water applied using drip irrigation system in sandy soil with snap bean on phosphorus distribution. This experiment was carried out in soils and water research department farm, nuclear research center, atomic energy authority, cairo, Egypt. Snap bean was cultivated in sandy soil and irrigated with 50,37.5 and 25 cm water in three water treatments represented 100, 75 and 50% ETc. Phosphorus distribution and direction of soil water movement had been detected in three sites on the dripper line (S1,S2 and S3 at 0,12.5 and 25 cm distance from dripper). Phosphorus fertilizer (super phosphate, 15.5% P 2 O 5 in rate 300 kg/fed)was added before cultivation. Neutron probe was used to detect the water distribution and movement at the three site along soil profile. Soil samples were collected before p-addition, at end developing, mid, and late growth stages to determine residual available phosphorus. The obtained data showed that using 50 cm water for irrigation caused an increase in P-concentration till 75 cm depth in the three sites of 100% etc treatment, and covered P-requirements of snap bean for all growth stages. As for 37.5 and 25 cm irrigation water cannot cover all growth stages for P-requirements of snap bean. It could be concluded that applied irrigation water could drive the residual P-levels till 75 cm depth in the three sites. Yield of the crop had been taken as an indicator as an indicator profile. Yield showed good response according to water quantities and P-transportation within the soil profile

  11. COMPARATIVE ANALYSIS OF APPROACHES TO ECOLOGICAL ASSESSMENT OF POLYELEMENT CONTAMINATION SOIL OF URBAN ECOSYSTEM BY HEAVY METALS

    Directory of Open Access Journals (Sweden)

    YAKOVYSHYNA T. F.

    2016-06-01

    Full Text Available Raising of problem. In modern conditions, anthropogenic impact to the soil urban ecosystems is fairly stable over time and space, is manifested in various forms, as the transformation of the soil profile, the change in direction of the soil-forming processes, contamination of the various pollutants, and, above all, heavy metals (HM – elements of the first class of the danger. Their sources of the income to the urban environment are industrial enterprises, transport, housing and communal services. Determination of the anthropogenic pressure to the urban soil is carried out by the environmental assessment of the HM polyelement contamination, which allows to establish not only the fact of pollution, but also limits of the possible load with considering regional background or sanitary standards – MPC. However, until now discussions arise regarding the index which will be carried out the valuation – the cornerstone of any methodological approach to the environmental assessment of the soil polyelement contamination by the HM of the urban ecosystems, which allows to establish not only the fact of contamination, but also limits the possible load, taking into account the regional background or sanitary norm – MPC. Purpose. Lies in the grounded selection of the environmental assessment indexes of the soil contamination by the HM of the urban ecosystems through a comparative analysis of the existing approaches, such as the determination of the summary contamination index (SCI, the index of the soil contamination (ISC, factor imbalance (Sd, taking into account environmental safety standards and binding to the specific conditions territory. Conclusion. In summary it should be noted that it is necessary to use a set of integrated indexes, including the SCI to determine the violation of the metals content with respect to the geochemical background of zonal soil, ISC – link the contamination level with health indexes of the environmental safety

  12. An Assessment of the Impact of Urbanization on Soil Erosion in Inner Mongolia

    Directory of Open Access Journals (Sweden)

    Li-Yan Wang

    2018-03-01

    Full Text Available Inner Mongolia, an autonomous region of the People’s Republic of China, has experienced severe soil erosion following a period of rapid economic development and urbanization. To investigate how urbanization has influenced the extent of soil erosion in Inner Mongolia, we used urbanization and soil erosion data from 2000 through 2010 to determine the relationship between urbanization and soil erosion patterns. Two empirical equations—the Revised Universal Soil Loss Equation (RUSLE and the Revised Wind Erosion Equation (RWEQ—were used to estimate the intensity of soil erosion, and we performed backward linear regression to model how it changed with greater urbanization. There was an apparent increase in the rate of urbanization and a decrease in the area affected by soil erosion in 2010 compared to the corresponding values for 2000. The urban population stood at 11.32 million in 2010, which represented a 16.47% increase over that in 2000. The area affected by soil erosion in 2000 totaled 704,817 km2, yet it had decreased to 674,135 km2 by 2010. However, a path of modest urban development (rural–urban mitigation and reasonable industrial structuring (the development of GDP-2 may partially reduce urbanization’s ecological pressure and thus indirectly reduce the threat of soil erosion to human security. Therefore, to better control soil erosion in Inner Mongolia during the process of urbanization, the current model of economic development should be modified to improve the eco-efficiency of urbanization, while also promoting new modes of urbanization that are environmentally sustainable, cost-effective, and conserve limited resources.

  13. Occurrence and distribution of antibiotics in urban soil in Beijing and Shanghai, China.

    Science.gov (United States)

    Gao, Lihong; Shi, Yali; Li, Wenhui; Liu, Jiemin; Cai, Yaqi

    2015-08-01

    The recycling of reclaimed wastewater for irrigation and road cleaning is an important strategy to minimize water scarcity in megacities. However, little is known regarding the potential accumulation of antibiotics contained in reclaimed wastewater in urban soil. We investigated the occurrence and distribution of eight quinolones (QNs), nine sulfonamides (SAs), and five macrolides (MLs) antibiotics in urban surface soil in Beijing and Shanghai, China. QNs, especially norfloxacin (NOR), ofloxacin (OFL), and ciprofloxacin (CIP) were the predominant antibiotics in urban surface soil, and NOR revealed the highest average concentration of 94.6 μg kg(-1). The antibiotic concentrations in urban soil in our study were higher than those detected in agricultural soils after long-term wastewater irrigation and manure fertilization. The concentrations of antibiotics in Shanghai urban soil showed a significant negative correlation with soil pH and a positive correlation with total organic carbon (TOC), reflecting the effect of speciation and soil organic matter content on sorption and retention. In addition, antibiotic concentrations in the urban soil were positively correlated with heavy metal contents, likely due to their coexistence in reclaimed wastewater and the promoting effect of metals on the sorption of antibiotics. In several soil samples, NOR, OFL, CIP, enrofloxacin (ENR), and fleroxacin (FLE) showed higher concentrations than the trigger value of 100 μg kg(-1) in soil, indicating a potential risk for the environment.

  14. A Canadian upland forest soil profile and carbon stocks database.

    Science.gov (United States)

    Shaw, Cindy; Hilger, Arlene; Filiatrault, Michelle; Kurz, Werner

    2018-04-01

    "A Canadian upland forest soil profile and carbon stocks database" was compiled in phases over a period of 10 years to address various questions related to modeling upland forest soil carbon in a national forest carbon accounting model. For 3,253 pedons, the SITES table contains estimates for soil organic carbon stocks (Mg/ha) in organic horizons and mineral horizons to a 100-cm depth, soil taxonomy, leading tree species, mean annual temperature, annual precipitation, province or territory, terrestrial ecozone, and latitude and longitude, with an assessment of the quality of information about location. The PROFILES table contains profile data (16,167 records by horizon) used to estimate the carbon stocks that appear in the SITES table, plus additional soil chemical and physical data, where provided by the data source. The exceptions to this are estimates for soil carbon stocks based on Canadian National Forest Inventory data (NFI [2006] in REFERENCES table), where data were collected by depth increment rather than horizon and, therefore, total soil carbon stocks were calculated separately before being entered into the SITES table. Data in the PROFILES table include the carbon stock estimate for each horizon (corrected for coarse fragment content), and the data used to calculate the carbon stock estimate, such as horizon thickness, bulk density, and percent organic carbon. The PROFILES table also contains data, when reported by the source, for percent carbonate carbon, pH, percent total nitrogen, particle size distribution (percent sand, silt, clay), texture class, exchangeable cations, cation and total exchange capacity, and percent Fe and Al. An additional table provides references (REFERENCES table) for the source data. Earlier versions of the database were used to develop national soil carbon modeling categories based on differences in carbon stocks linked to soil taxonomy and to examine the potential of using soil taxonomy and leading tree species to improve

  15. Urbanization alters the functional composition, but not taxonomic diversity, of the soil nematode community

    Science.gov (United States)

    Mitchell A. Pavao-Zuckerman; David C. Coleman

    2007-01-01

    We evaluated the response of riparian forest soil nematode community structure to the physico-chemical environment associated with urban land use. Soils were sampled seasonally between December 2000 and October 2002 along an urban-rural transect in Asheville, North Carolina. We characterized the taxonomic (to genus) and functional composition (trophic groups) of the...

  16. Heavy metal content of soil in urban parks of Belgrade

    Directory of Open Access Journals (Sweden)

    Kuzmanoski Maja M.

    2014-01-01

    Full Text Available This study focuses on soil pollution in four urban parks of Belgrade. The sampling locations within each park were chosen based on proximity to streets characterized by heavy traffic, and soil samples were taken at different depths down to 50 cm. Concentrations of six heavy metals (Cr, Cu, Fe, Mn, Ni and Zn were measured using Energy Dispersive X-Ray Fluorescence (EDXRF spectrometer. The following average abundance order of heavy metals was found: Fe >> Mn > Zn > Cr > Ni > Cu in topsoil samples. The highest enrichment in topsoil was observed for Zn. Copper and Zn, metals mainly related to traffic emissions, exhibited the highest concentrations at the sampling location close to a bus and trolleybus terminus. The highest Ni and Cr concentrations were observed in a park located in a city suburb, where a large number of individual heating units is present. The largest decrease in concentrations with soil dept was observed for Zn and Cu, followed by Ni and Cr, in the parks with the highest concentrations of these elements in topsoil. Generally high topsoil Cr and Ni concentrations were observed in comparison with average values reported in literature for other world cities. [Projekat Ministartsva nauke Republike Srbije, br. III43007

  17. 137Cs in soil profiles in NE Estonia

    International Nuclear Information System (INIS)

    Lust, M.; Realo, K.; Realo, E.

    2002-01-01

    Radiocaesium contamination in soil was produced by two fallout's: a global fallout caused by nuclear weapons testing in the atmosphere (1950s to 1970s) and a regional one - during/after the Chernobyl accident (1986). The area] distribution of the 137 CS fallout after the 1986 accident was extremely uneven in Estonia. Our previous studies showed that about 60% of its total deposition with the countrywide mean of 2 kBq m -2 occurred predominantly in the north-eastern part of Estonia. In this region the maximum deposition approached the values of 40 kBq m -2 . This is the reason why soil profiles in this region have been of interest. We have also determined the 137 Cs activity concentrations as a function of soil depth during 1991-2000. Attempts have been made to model the found depth-distributions of radiocaesium concentration and to find the possible time-dependent behaviour of these distributions in soil. The migration of radiocaesium into soil is dependent on several factors: soil properties, vegetation, mode of deposition, etc. For this reason, averaged distribution parameters for both total and Chernobyl 137 Cs have been used for deriving general trends of the migration processes. (au)

  18. Atmospheric carbon exchange associated with vegetation and soils in urban and suburban land uses

    Energy Technology Data Exchange (ETDEWEB)

    Rowntree, R.A. [Northeastern Forest Experiment Station, Berkeley, CA (United States)

    1993-12-31

    In studies of the global C cycle prior to the 1980s, urban ecosystems were largely ignored, in part because them were inadequate measures of phytomass and soil carbon for the various land uses associated with cities. In the last decade, progress has been made in gathering urban vegetation data and recently, estimates of urban land use carbon storage and fluxes have been attempted. Demographic trends in many countries suggest that urban areas are growing. Thus it is important to discover the appropriate concepts and methods for understanding greenhouse gas fluxes from urban-related vegetation and soils.

  19. Environmental isotope profiles and evaporation in shallow water table soils

    International Nuclear Information System (INIS)

    Hussein, M.F.; Froehlich, K.; Nada, A.

    2001-01-01

    Environmental isotope methods have been employed to evaluate the processes of evaporation and soil salinisation in the Nile Delta. Stable isotope profiles (δ 18 O and δ 2 H) from three sites were analysed using a published isothermal model that analyses the steady-state isotopic profile in the unsaturated zone and provides an estimate of the evaporation rate. Evaporation rates estimated by this method at the three sites range between 60 and 98 mm y -1 which translates to an estimate of net water loss of one billion cubic meters per year from fallow soils on the Nile delta. Capillary rise of water through the root zone during the crop growing season is estimated to be three times greater than evaporation rate estimate and a modified water management strategy could be adopted in order to optimize water use and its management on the regional scale. (author)

  20. Soil organic matter degradation and enzymatic profiles of intertidal and subaqueous soils

    Science.gov (United States)

    Ferronato, Chiara; Marinari, Sara; Bello, Diana; Vianello, Gilmo; Trasar-Cepeda, Carmen; Vittori Antisari, Livia

    2017-04-01

    The interest on intertidal and subaqueous soils has recently arisen because of the climate changes forecasts. The preservation of these habitats represents an important challenge for the future of humanity, because these systems represent an important global C sink since soil organic matter (SOM) on intertidal and subaqueous soils undergoes very slow degradation rates due to oxygen limitation. Publications on SOM cycle in saltmarshes are very scarce because of the difficulties involved on those studies i.e. the interaction of many abiotic and biotic factors (e.g., redox changes, water and bio-turbation processes, etc) and stressors (e.g., salinity and anoxia). However, saltmarshes constitute an unique natural system to observe the influence of anoxic conditions on SOM degradation, because the tide fluctuations on the soil surface allow the formation of provisionally or permanently submerged soils. With the aim to investigate the quality of SOM in subaqueous soils, triplicates of subaqueous soils (SASs), intertidal soils (ITSs) and terrestrial soils (TESs) were collected in the saltmarshes of the Baiona Lagoon (Northern Italy) and classified according to their pedogenetic horizons. The SOM quality on each soil horizon was investigated by quantifying SOM, total and water-soluble organic carbon (TOC, WSC) and microbial biomass carbon (MBC). Given the contribution of soil enzymes to the degradation of SOM, some enzymatic assays were also performed. Thereafter, soil classification and humus morpho-functional classification were used to join together similar soil profiles to facilitate the description and discussion of results. Soils were ranked as Aquent or Wassent Entisols, with an A/AC/C pedosequence. SOM, TOC and MBC were statistically higher in A than in AC and C horizons. Among the A horizons, ITSs were those showing the highest values for these parameters (11% TOC, 1.6 mg kg-1 MBC, 0.9 mg kg-1 WSC). These results, combined with the morpho-functional classification

  1. Organic soil production from urban soil, spent mushroom substrate, and other additives

    Science.gov (United States)

    Pham, Nhung Thi Ha

    2017-09-01

    In recent years, spent mushroom substrate (SMS) is becoming the huge problem in environmental pollution issues from mushroom production. However, SMS is also a nutrient-rich ogranic material with available nutrients and high porosity. Therefore, the value of products made from SMS should be exploited to take full advantage of agricultural by-product, support organic agriculture development without environmental pollution. The research has built 5 experimental formulas (4 mixed formulas and 1 control formulas with only urban soil). The analysis results of soil samples from mixed formulas and the control formula witness a significant increase in moisture and OM of mixed formulas (moisture from 36-42%, OM from 5.5-6.9%) after 20 treatment days, and N-P-K contents are also improved remarkably. 60 days later, soil nutrients in mixed formulas continue to rise, with highest OM (8.679%) at CT1; N (0.154%) at CT4; K2O (0,698%) and P2O5 (0,172%) at CT3, in addition, heavy metal contents in all formulas are under standard limit. Synthetic assessment of all norms indicates that the best organic soil product comes from CT3. The pak choi planting experiments are performed show that the growth of plants cultivated on organic soil products made from mixed formulas are much better than plants are grown on initially soil, and they also have no pestilent insect. Specially, pak choi planted on organic soil from CT3 have sharp developing with excellent tolerance ability, quantity and area of leaves are high. Thus, CT3 is the most suitable formula to increase soil nutrients, to solve spent mushroom subtrate streament problems after harvest, and for sustainable agricultural development.

  2. Woody vegetation and soil characteristics of residential forest patches and open spaces along an urban-to-rural gradient

    Science.gov (United States)

    Benjamin L. Reichert; Sharon R. Jean-Philippe; Christopher Oswalt; Jennifer Franklin; Mark Radosevich

    2015-01-01

    As the process of urbanization advances across the country, so does the importance of urban forests, which include both trees and the soils in which they grow. Soil microbial biomass, which plays a critical role in nutrient transformation in urban ecosystems, is affected by factors such as soil type and the availability of water, carbon, and nitrogen. The aim of this...

  3. Urban versus conventional agriculture, taxonomy of resource profiles: a review

    DEFF Research Database (Denmark)

    Goldstein, Benjamin Paul; Hauschild, Michael Zwicky; Fernandez, John

    2016-01-01

    Urban agriculture appears to be a means to combat the environmental pressure of increasing urbanization and food demand. However, there is hitherto limited knowledge of the efficiency and scaling up of practices of urban farming. Here, we review the claims on urban agriculture’s comparative...... performance relative to conventional food production. Our main findings are as follows: (1) benefits, such as reduced embodied greenhouse gases, urban heat island reduction, and storm water mitigation, have strong support in current literature. (2) Other benefits such as food waste minimization and ecological...... footprint reduction require further exploration. (3) Urban agriculture benefits to both food supply chains and urban ecosystems vary considerably with system type. To facilitate the comparison of urban agriculture systems we propose a classification based on (1) conditioning of the growing space and (2...

  4. Design and Test of a Soil Profile Moisture Sensor Based on Sensitive Soil Layers

    Science.gov (United States)

    Liu, Cheng; Qian, Hongzhou; Cao, Weixing; Ni, Jun

    2018-01-01

    To meet the demand of intelligent irrigation for accurate moisture sensing in the soil vertical profile, a soil profile moisture sensor was designed based on the principle of high-frequency capacitance. The sensor consists of five groups of sensing probes, a data processor, and some accessory components. Low-resistivity copper rings were used as components of the sensing probes. Composable simulation of the sensor’s sensing probes was carried out using a high-frequency structure simulator. According to the effective radiation range of electric field intensity, width and spacing of copper ring were set to 30 mm and 40 mm, respectively. A parallel resonance circuit of voltage-controlled oscillator and high-frequency inductance-capacitance (LC) was designed for signal frequency division and conditioning. A data processor was used to process moisture-related frequency signals for soil profile moisture sensing. The sensor was able to detect real-time soil moisture at the depths of 20, 30, and 50 cm and conduct online inversion of moisture in the soil layer between 0–100 cm. According to the calibration results, the degree of fitting (R2) between the sensor’s measuring frequency and the volumetric moisture content of soil sample was 0.99 and the relative error of the sensor consistency test was 0–1.17%. Field tests in different loam soils showed that measured soil moisture from our sensor reproduced the observed soil moisture dynamic well, with an R2 of 0.96 and a root mean square error of 0.04. In a sensor accuracy test, the R2 between the measured value of the proposed sensor and that of the Diviner2000 portable soil moisture monitoring system was higher than 0.85, with a relative error smaller than 5%. The R2 between measured values and inversed soil moisture values for other soil layers were consistently higher than 0.8. According to calibration test and field test, this sensor, which features low cost, good operability, and high integration, is qualified for

  5. Urban soils as hotspots of anthropogenic carbon accumulation: Review of stocks, mechanisms and factors

    Science.gov (United States)

    Vasenev, Viacheslav; Kuzyakov, Yakov

    2017-04-01

    Urban soils and cultural layers accumulate carbon (C) over centuries and consequently large C stocks are sequestered below the cities. These C stocks as well as the full range of processes and mechanisms leading to high C accumulation in urban soils remain unknown. We collected data on organic (SOC), inorganic (SOC) and black (pyrogenic) (BC) C content in urban and natural soils from 100 papers based on Scopus and Web-of-Knowledge databases. The yielded database includes 770 values on SOC, SIC and BC stocks from 118 cities worldwide. The collected data were analyzed considering the effects of climatic conditions and urban-specific factors: city size, age and functional zoning. For the whole range of climatic conditions, the C contents in urban soils were 1.5-3 times higher than in respective natural soils. This higher C content and much deeper C accumulation in urban soils resulted in 3 to 5 times higher C stocks compared to natural soils. Urban SOC stocks were positively correlated with latitude, whereas SIC stocks were less affected by climate. The city size and age were the main factors controlling intra-city variability of C stocks with higher stocks in small cities compared to megapolises and in medieval compared to new cities. The inter-city variability of C stocks was dominated by functional zoning: large SOC and N stocks in residential areas and large SIC and BC stocks in industrial zones and roadsides were similar for all climates and for cities of different size and age. Substantial stocks of SOC, SIC and N were sequestered for long-term in the subsoils and cultural layers of the sealed soils, which underline the importance of these 'hidden' stocks for C assessments. Typical and specific for urban soils is that the anthropogenic factor overshadows the other five factors of soil formation. Substantial C stocks in urban soils and cultural layers result from specific mechanisms of C accumulation in cities: i) large and long-term C inputs from outside the

  6. Urban legacies and soil management affect the concentration and speciation of trace metals in Los Angeles community garden soils.

    Science.gov (United States)

    Clarke, Lorraine Weller; Jenerette, G Darrel; Bain, Daniel J

    2015-02-01

    Heavy metals in urban soils can compromise human health, especially in urban gardens, where gardeners may ingest contaminated dust or crops. To identify patterns of urban garden metal contamination, we measured concentrations and bioavailability of Pb, As, and Cd in soils associated with twelve community gardens in Los Angeles County, CA. This included sequential extractions to partition metals among exchangeable, reducible, organic, or residual fractions. Proximity to road increased all metal concentrations, suggesting vehicle emissions sources. Reducible Pb increased with neighborhood age, suggesting leaded paint as a likely pollutant source. Exchangeable Cd and As both increased with road proximity. Only cultivated soils showed an increase in exchangeable As with road proximity, potentially due to reducing humic acid interactions while Cd bioavailability was mitigated by organic matter. Understanding the geochemical phases and metal bioavailability allows incorporation of contamination patterns into urban planning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. [Effects of land cover change on soil organic carbon and light fraction organic carbon at river banks of Fuzhou urban area].

    Science.gov (United States)

    Zeng, Hong-Da; Du, Zi-Xian; Yang, Yu-Sheng; Li, Xi-Bo; Zhang, Ya-Chun; Yang, Zhi-Feng

    2010-03-01

    By using Vario EL III element analyzer, the vertical distribution characteristics of soil organic carbon (SOC) and light-fraction organic carbon (LFOC) in the lawn, patch plantation, and reed wetland at river banks of Fuzhou urban area were studied in July 2007. For all the three land cover types, the SOC and LFOC contents were the highest in surface soil layer, and declined gradually with soil depth. Compared with reed wetland, the lawn and patch plantation had higher SOC and LFOC contents in each layer of the soil profile (0-60 cm), and the lawn had significantly higher contents of SOC and LFOC in 0-20 cm soil layer, compared with the patch plantation. After the reed wetland was converted into lawn and patch plantation, the SOC stock in the soil profile was increased by 94.8% and 72.0%, and the LFOC stock was increased by 225% and 93%, respectively. Due to the changes of plant species, plant density, and management measure, the conversion from natural wetland into human-manipulated green spaces increased the SOC and LFOC stocks in the soil profile, and improved the soil quality. Compared with the SOC, soil LFOC was more sensitive to land use/cover change, especially for those in 0-20 cm soil layer.

  8. A sodar for profiling in a spatially inhomogeneous urban environment

    Directory of Open Access Journals (Sweden)

    Stuart Bradley

    2015-11-01

    Full Text Available The urban boundary layer, above the canopy, is still poorly understood. One of the challenges is obtaining data by sampling more than a few meters above the rooftops, given the spatial and temporal inhomogeneities in both horizontal and vertical. Sodars are generally useful tools for ground-based remote sensing of winds and turbulence, but rely on horizontal homogeneity (as do lidars in building up 3-component wind vectors from sampling three or more spatially separated volumes. The time taken for sound to travel to a typical range of 200 m and back is also a limitation. A sodar of radically different design is investigated, aimed at addressing these problems. It has a single vertical transmitted sound pulse. Doppler shifted signals are received from a number of volumes around the periphery of the transmitted beam with microphones which each having tight angular sensitivity at zenith angles slightly off-vertical. The spatial spread of sampled volumes is therefore smaller. By having more receiver microphones than a conventional sodar, the effect of smaller zenith angle is offset. More rapid profiling is also possible with a single vertical transmitted beam, instead of the usual multiple beams.A prototype design is described, together with initial field measurements. It is found that the beam forming using a single dish antenna and the drift of the sound pulse downwind both give rise to reduced performance compared with expectations. It is concluded that, while the new sodar works in principle, the compromises arising in the design mean that the expected advantages have not been realized

  9. Release of cadmium, copper and lead from urban soils of Copenhagen

    International Nuclear Information System (INIS)

    Li, Lijun; Holm, Peter E.; Marcussen, Helle; Bruun Hansen, Hans Christian

    2014-01-01

    We studied the bonding and release kinetics of Cd, Cu and Pb from different soils in the older metropolitan area of Copenhagen. Total Cd, Cu and Pb concentrations were elevated 5–27 times in the urban soils compared to an agricultural reference soil, with Cd and Pb in mainly mobilisable pools and Cu in strongly bound pools. The soils were subjected to accelerated leaching studies in Ca(NO 3 ) 2 or HNO 3 solutions resulting in release up to 78, 18 and 15% of total Cd, Cu and Pb soil concentrations over a period of 15 weeks. The relative initial Cd and Pb release rates increased 10 fold when pH decreased 2 and 3 units, respectively, while increases in Cu release rates were only seen at pH below 4. The total leachable Cu and Pb pools were higher in urban soils compared the agricultural reference soil but not for Cd. - Highlights: • Total Cd, Cu and Pb concentrations were elevated 5–27 times in the urban soils. • Cd and Pb are potentially available from acid leachable and reducible soil fractions. • Up to 78, 18 and 15% of total soil Cd, Cu and Pb could be acid leached. • Initial Cd and Pb release rates increase 10 fold with pH decrease of 2 and 3 units. • The mobility of Cu and Pb were higher in urban compared to agricultural soils. - Cadmium, Cu and Pb were studied in Copenhagen urban soils. These soils show similar initial relative release rates but higher total mobility of Cu and Pb compared to a reference soil

  10. Nuclear techniques for measuring moisture content in soil profiles

    International Nuclear Information System (INIS)

    Barrada, Y.

    1983-01-01

    The prevailing severe shortage of animal feed in most of the developing countries could, to a considerable extent, be overcome through improved range management, which includes introduction of high yielding drought-resistant forage crops, development of adequate water conservation measures, and as far as possible growing annual forage crops on part of the vast areas of arable land currently left fallow each year. Year round measurements are essential for a good understanding of soil water and nutrients dynamics, which allow for adequate evaluation of pasture management alternatives. The methods most commonly used for moisture measurements in soil profiles are discussed because such measurements are likely to form an essential part of any investigation aimed at increasing animal feed production through the development of adequate pasture management practices. (author)

  11. Quantifying soil profile change caused by land use in central Missouri loess hillslopes

    Science.gov (United States)

    Samuel J. Indorante; John M. Kabrick; Brad D. Lee; Jon M. Maatta

    2014-01-01

    Three major challenges are present when studying anthropogenic impacts on soil profile properties: (i) site selection; (ii) sampling and modeling native and cultivated soil-landscape relationships; and (iii) graphically and statistically comparing native and cultivated sites to model soil profile changes. This study addressed those challenges by measuring and modeling...

  12. Urban legacies and soil management affect the concentration and speciation of trace metals in Los Angeles community garden soils

    International Nuclear Information System (INIS)

    Clarke, Lorraine Weller; Jenerette, G. Darrel; Bain, Daniel J.

    2015-01-01

    Heavy metals in urban soils can compromise human health, especially in urban gardens, where gardeners may ingest contaminated dust or crops. To identify patterns of urban garden metal contamination, we measured concentrations and bioavailability of Pb, As, and Cd in soils associated with twelve community gardens in Los Angeles County, CA. This included sequential extractions to partition metals among exchangeable, reducible, organic, or residual fractions. Proximity to road increased all metal concentrations, suggesting vehicle emissions sources. Reducible Pb increased with neighborhood age, suggesting leaded paint as a likely pollutant source. Exchangeable Cd and As both increased with road proximity. Only cultivated soils showed an increase in exchangeable As with road proximity, potentially due to reducing humic acid interactions while Cd bioavailability was mitigated by organic matter. Understanding the geochemical phases and metal bioavailability allows incorporation of contamination patterns into urban planning. - Highlights: • Road proximity, legacies, and management affect garden soil metal concentrations. • Soil near old houses had high reducible Pb, likely due to lead paint. • Pb, As, and Cd all increased with proximity to road. • As and Cd reacted with organic matter to become more or less bioavailable to crops. - Road proximity, legacies, and management affect garden soil metal concentrations. Soil near old houses had high reducible Pb due to lead paint, while all metals increased near the road

  13. Using DTPA-extractable soil fraction to assess the bioconcentration factor of plants in phytoremediation of urban soils

    Science.gov (United States)

    Rodríguez-Bocanegra, Javier; Roca, Núria; Tume, Pedro; Bech, Jaume

    2017-04-01

    Urban soils may be highly contaminated with potentially toxic metals, as a result of intensive anthropogenic activities. Developing cities are increasing the number of lands where is practiced the urban agriculture. In this way, it is necessary to assess the part of heavy metals that is transferred to plants in order to a) know the potential health risk that represent soils and b) know the relation soil-plant to assess the ability of these plants to remove heavy metals from soil. Nowadays, to assess the bioconcentration factor (BF) of plants in phytoremediation, the pseudototal o total concentration has been used by many authors. Two different urban soils with similar pH and carbonates content but with different pollution degree were phytoremediated with different plant species. Urban soil from one Barcelona district (Spain), the most contaminated soil, showed an extractability of Cu, Pb and Zn of 9.6, 6.7 and 5.8% of the total fraction respectively. The soil from Talcahuano city (Chile), with contents of heavy metals slightly above the background upper limit, present values of 15.5, 13.5 and 12% of the total fraction of studied heavy metals. Furthermore, a peri-urban analysed soil from Azul (Argentina) also showed an elevated extractability with values of 24, 13.5 and 14% of the Cu, Pb and Zn contents respectively. These soils presented more extractability than other disturbed soils, like for example, soils from mine areas. The urban soils present more developed soil with an interaction between solution and solid phase in polluted systems. The most important soil surface functional groups include the basal plane of phyllosilicates and metal hydroxyls at edge sites of clay minerals, iron oxyhydroxides, manganese oxyhydroxides and organic matter. The interaction between solution and solid phase in polluted urban systems tends to form labile associations and pollutants are more readily mobilized because their bonds with soil particles are weaker. Clay and organic

  14. Urban cultivation in allotments maintains soil qualities adversely affected by conventional agriculture.

    Science.gov (United States)

    Edmondson, Jill L; Davies, Zoe G; Gaston, Kevin J; Leake, Jonathan R

    2014-08-01

    Modern agriculture, in seeking to maximize yields to meet growing global food demand, has caused loss of soil organic carbon (SOC) and compaction, impairing critical regulating and supporting ecosystem services upon which humans also depend. Own-growing makes an important contribution to food security in urban areas globally, but its effects on soil qualities that underpin ecosystem service provision are currently unknown. We compared the main indicators of soil quality; SOC storage, total nitrogen (TN), C : N ratio and bulk density (BD) in urban allotments to soils from the surrounding agricultural region, and between the allotments and other urban greenspaces in a typical UK city. A questionnaire was used to investigate allotment management practices that influence soil properties. Allotment soils had 32% higher SOC concentrations and 36% higher C : N ratios than pastures and arable fields and 25% higher TN and 10% lower BD than arable soils. There was no significant difference between SOC concentration in allotments and urban non-domestic greenspaces, but it was higher in domestic gardens beneath woody vegetation. Allotment soil C : N ratio exceeded that in non-domestic greenspaces, but was lower than that in garden soil. Three-quarters of surveyed allotment plot holders added manure, 95% composted biomass on-site, and many added organic-based fertilizers and commercial composts. This may explain the maintenance of SOC, C : N ratios, TN and low BD, which are positively associated with soil functioning. Synthesis and applications . Maintenance and protection of the quality of our soil resource is essential for sustainable food production and for regulating and supporting ecosystem services upon which we depend. Our study establishes, for the first time, that small-scale urban food production can occur without the penalty of soil degradation seen in conventional agriculture, and maintains the high soil quality seen in urban greenspaces. Given the

  15. Remediation of metal-contaminated urban soil using flotation technique

    Energy Technology Data Exchange (ETDEWEB)

    Dermont, G., E-mail: dermonge@gmail.com [Institut National de la Recherche Scientifique Eau Terre et Environnement (INRS-ETE), 490, rue de la Couronne, Quebec, QC, Canada G1K 9A9 (Canada); Bergeron, M.; Richer-Lafleche, M.; Mercier, G. [Institut National de la Recherche Scientifique Eau Terre et Environnement (INRS-ETE), 490, rue de la Couronne, Quebec, QC, Canada G1K 9A9 (Canada)

    2010-02-01

    A soil washing process using froth flotation technique was evaluated for the removal of arsenic, cadmium, copper, lead, and zinc from a highly contaminated urban soil (brownfield) after crushing of the particle-size fractions > 250 {mu}m. The metal contaminants were in particulate forms and distributed in all the particle-size fractions. The particle-by-particle study with SEM-EDS showed that Zn was mainly present as sphalerite (ZnS), whereas Cu and Pb were mainly speciated as various oxide/carbonate compounds. The influence of surfactant collector type (non-ionic and anionic), collector dosage, pulp pH, a chemical activation step (sulfidization), particle size, and process time on metal removal efficiency and flotation selectivity was studied. Satisfactory results in metal recovery (42-52%), flotation selectivity (concentration factor > 2.5), and volume reduction (> 80%) were obtained with anionic collector (potassium amyl xanthate). The transportation mechanisms involved in the separation process (i.e., the true flotation and the mechanical entrainment) were evaluated by the pulp chemistry, the metal speciation, the metal distribution in the particle-size fractions, and the separation selectivity indices of Zn/Ca and Zn/Fe. The investigations showed that a great proportion of metal-containing particles were recovered in the froth layer by entrainment mechanism rather than by true flotation process. The non-selective entrainment mechanism of the fine particles (< 20 {mu}m) caused a flotation selectivity drop, especially with a long flotation time (> 5 min) and when a high collector dose is used. The intermediate particle-size fraction (20-125 {mu}m) showed the best flotation selectivity.

  16. Remediation of metal-contaminated urban soil using flotation technique.

    Science.gov (United States)

    Dermont, G; Bergeron, M; Richer-Laflèche, M; Mercier, G

    2010-02-01

    A soil washing process using froth flotation technique was evaluated for the removal of arsenic, cadmium, copper, lead, and zinc from a highly contaminated urban soil (brownfield) after crushing of the particle-size fractions >250microm. The metal contaminants were in particulate forms and distributed in all the particle-size fractions. The particle-by-particle study with SEM-EDS showed that Zn was mainly present as sphalerite (ZnS), whereas Cu and Pb were mainly speciated as various oxide/carbonate compounds. The influence of surfactant collector type (non-ionic and anionic), collector dosage, pulp pH, a chemical activation step (sulfidization), particle size, and process time on metal removal efficiency and flotation selectivity was studied. Satisfactory results in metal recovery (42-52%), flotation selectivity (concentration factor>2.5), and volume reduction (>80%) were obtained with anionic collector (potassium amyl xanthate). The transportation mechanisms involved in the separation process (i.e., the true flotation and the mechanical entrainment) were evaluated by the pulp chemistry, the metal speciation, the metal distribution in the particle-size fractions, and the separation selectivity indices of Zn/Ca and Zn/Fe. The investigations showed that a great proportion of metal-containing particles were recovered in the froth layer by entrainment mechanism rather than by true flotation process. The non-selective entrainment mechanism of the fine particles (flotation selectivity drop, especially with a long flotation time (>5 min) and when a high collector dose is used. The intermediate particle-size fraction (20-125 microm) showed the best flotation selectivity. Copyright 2009 Elsevier B.V. All rights reserved.

  17. Remediation of metal-contaminated urban soil using flotation technique

    International Nuclear Information System (INIS)

    Dermont, G.; Bergeron, M.; Richer-Lafleche, M.; Mercier, G.

    2010-01-01

    A soil washing process using froth flotation technique was evaluated for the removal of arsenic, cadmium, copper, lead, and zinc from a highly contaminated urban soil (brownfield) after crushing of the particle-size fractions > 250 μm. The metal contaminants were in particulate forms and distributed in all the particle-size fractions. The particle-by-particle study with SEM-EDS showed that Zn was mainly present as sphalerite (ZnS), whereas Cu and Pb were mainly speciated as various oxide/carbonate compounds. The influence of surfactant collector type (non-ionic and anionic), collector dosage, pulp pH, a chemical activation step (sulfidization), particle size, and process time on metal removal efficiency and flotation selectivity was studied. Satisfactory results in metal recovery (42-52%), flotation selectivity (concentration factor > 2.5), and volume reduction (> 80%) were obtained with anionic collector (potassium amyl xanthate). The transportation mechanisms involved in the separation process (i.e., the true flotation and the mechanical entrainment) were evaluated by the pulp chemistry, the metal speciation, the metal distribution in the particle-size fractions, and the separation selectivity indices of Zn/Ca and Zn/Fe. The investigations showed that a great proportion of metal-containing particles were recovered in the froth layer by entrainment mechanism rather than by true flotation process. The non-selective entrainment mechanism of the fine particles ( 5 min) and when a high collector dose is used. The intermediate particle-size fraction (20-125 μm) showed the best flotation selectivity.

  18. Relationship Between Total and Biaccessible Lead on Children's Blood Lead Levles in Urban Residential Philadelphia Soils.

    Data.gov (United States)

    U.S. Environmental Protection Agency — Relationship Between Total and Biaccessible Lead on Children's Blood Lead Levles in Urban Residential Philadelphia Soils. This dataset is not publicly accessible...

  19. Average pollutant concentration in soil profile simulated with Convective-Dispersive Equation. Model and Manual

    Science.gov (United States)

    Different parts of soil solution move with different velocities, and therefore chemicals are leached gradually from soil with infiltrating water. Solute dispersivity is the soil parameter characterizing this phenomenon. To characterize the dispersivity of soil profile at field scale, it is desirable...

  20. Soil Ingestion is Associated with Child Diarrhea in an Urban Slum of Nairobi, Kenya.

    Science.gov (United States)

    Bauza, Valerie; Ocharo, R M; Nguyen, Thanh H; Guest, Jeremy S

    2017-03-01

    AbstractDiarrhea is a leading cause of mortality in children under 5 years of age. We conducted a cross-sectional study of 54 children aged 3 months to 5 years old in Kibera, an urban slum in Nairobi, Kenya, to assess the relationship between caregiver-reported soil ingestion and child diarrhea. Diarrhea was significantly associated with soil ingestion (adjusted odds ratio = 9.9, 95% confidence interval = 2.1-47.5). Soil samples from locations near each household were also collected and analyzed for Escherichia coli and a human-associated Bacteroides fecal marker (HF183). Escherichia coli was detected in 100% of soil samples (mean 5.5 log colony forming units E. coli per gram of dry soil) and the Bacteroides fecal marker HF183 was detected in 93% of soil samples. These findings suggest that soil ingestion may be an important transmission pathway for diarrheal disease in urban slum settings.

  1. Quantifying Tree and Soil Carbon Stocks in a Temperate Urban Forest in Northeast China

    Directory of Open Access Journals (Sweden)

    Hailiang Lv

    2016-09-01

    Full Text Available Society has placed greater focus on the ecological service of urban forests; however, more information is required on the variation of carbon (C in trees and soils in different functional forest types, administrative districts, and urban-rural gradients. To address this issue, we measured various tree and soil parameters by sampling 219 plots in the urban forest of the Harbin city region. Averaged tree and soil C stock density (C stocks per unit tree cover for Harbin city were 7.71 (±7.69 kg C·m−2 and 5.48 (±2.86 kg C·m−2, respectively. They were higher than those of other Chinese cities (Shenyang and Changchun, but were much lower than local natural forests. The tree C stock densities varied 2.3- to 3.2-fold among forest types, administrative districts, and ring road-based urban-rural gradients. In comparison, soil organic C (SOC densities varied by much less (1.4–1.5-fold. We found these to be urbanization-dependent processes, which were closely related to the urban-rural gradient data based on ring-roads and settlement history patterns. We estimated that SOC accumulation during the 100-year urbanization of Harbin was very large (5 to 14 thousand tons, accounting for over one quarter of the stored C in trees. Our results provide new insights into the dynamics of above- and below-ground C (especially in soil during the urbanization process, and that a city’s ability to provide C-related ecosystem services increases as it ages. Our findings highlight that urbanization effects should be incorporated into calculations of soil C budgets in regions subject to rapid urban expansion, such as China.

  2. Characterization of sulfate reducing bacteria isolated from urban soil

    Science.gov (United States)

    Zhang, Mingliang; Wang, Haixia

    2017-05-01

    Sulfate reducing bacteria (SRB) was isolated from urban soil and applied for the remediation of heavy metals pollution from acid mine drainage. The morphology and physiological characteristics (e.g. pH and heavy metals tolerance) of SRB was investigated. The SRB was gram-negative bacteria, long rod with slight curve, cell size 0.5× (1.5-2.0) μm. The pH of medium had significant effect on SRB growth and the efficiency of sulfate reduction, and it showed that the suitable pH range was 5-9 and SRB could not survive at pH less than 4. The maximum tolerance of Fe (II), Zn (II), Cd (II), and Cu (II) under acidic condition (pH 5.0) was about 600 mg/L, 150 mg/L, 25 mg/L and 25 mg/L, respectively. The result indicated that SRB isolated in this study could be used for the bioremediation of acid mine drainage (pH>4) within the heavy metals concentrations tolerance.

  3. Cumulative impacts of human activities on urban garden soils: Origin and accumulation of metals

    International Nuclear Information System (INIS)

    Szolnoki, Zs.; Farsang, A.; Puskás, I.

    2013-01-01

    The concentration of heavy metals and soil properties in fifty urban garden soils of Szeged (SE Hungary) were determined to evaluate the cumulative impacts of urbanization and cultivation on these soils. Using two enrichment factors (EFs) (based on reference horizon; Ti as reference element) and multivariate statistical analysis (PCA), the origin of the studied elements was defined. According to statistical coincidence of EFs confirmed by t-test, anthropogenic enrichment of Cu (EF = 4), Zn (EF = 2.7) and Pb (EF = 2.5) was significant in topsoils. Moreover, PCA also revealed the geogenic origin of Ni, Co, Cr and As and differentiated two groups of the anthropogenic metals [Pb, Zn] [Cu]. Spatial distribution of the metals visualized by GIS reflected the traffic origin of Pb; while based on ANOVA, the anthropogenic source of Cu is relevant (mainly pesticides) and there is a statistically significant difference in its concentration depending on land use. -- Highlights: ► We determined heavy metal concentrations in urban garden soils of Szeged, Hungary. ► We used different statistical methods, enrichment factors to identify metal origin. ► Enrichment degree and sources of anthropogenic metals were successfully evaluated. ► Anthropogenic enrichment of Cu, Pb and Zn was significant in urban garden topsoils. ► Traffic emission and soil cultivation together are responsible for metal enrichment. -- Metal enrichment and sources in urban garden soils due to urban activities and cultivation were successfully identified by combining more methods (enrichment factors, statistical analysis, spatial distribution)

  4. Heavy Metal Contamination in Urban Soils II Comparison of Urban Park Soils Between Two Cities with Different City and Industrial Activities

    OpenAIRE

    KOMAI, Yutaka

    1981-01-01

    A comparative investigation on the state of heavy metal contamination in park soils of two cities with different city and industrial activities was carried out. Sakai and Kishiwada, both situated in southern Osaka Prefecture, were chosen as the investigated cities which had similar natural conditions but different human activities. Park soils were regarded as suitable sites for the investigation of heavy metal problem in urban environments. Samples were taken at 34 parks distributed widely in...

  5. Soil ecology of a rock outcrop ecosystem: Abiotic stresses, soil respiration, and microbial community profiles in limestone cedar glades

    Science.gov (United States)

    Cartwright, Jennifer M.; Advised by Dzantor, E. Kudjo

    2015-01-01

    Limestone cedar glades are a type of rock outcrop ecosystem characterized by shallow soil and extreme hydrologic conditions—seasonally ranging from xeric to saturated—that support a number of plant species of conservation concern. Although a rich botanical literature exists on cedar glades, soil biochemical processes and the ecology of soil microbial communities in limestone cedar glades have largely been ignored. This investigation documents the abiotic stress regime of this ecosystem (shallow soil, extreme hydrologic fluctuations and seasonally high soil surface temperatures) as well as soil physical and chemical characteristics, and relates both types of information to ecological structures and functions including vegetation, soil respiration, and soil microbial community metabolic profiles and diversity. Methods used in this investigation include field observations and measurements of soil physical and chemical properties and processes, laboratory analyses, and microbiological assays of soil samples.

  6. Profiling governance, planning, and urban violence in four Indian cities

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-11-17

    Nov 17, 2016 ... Explore the project Poverty, inequality and violence in urban India: Towards ... While it is the largest city in India's northeastern state of Assam, ... the culmination of three years of research on gender roles and how they contrib.

  7. Polychlorinated naphthalenes in urban soils: analysis, concentrations, and relation to other persistent organic pollutants

    International Nuclear Information System (INIS)

    Krauss, Martin; Wilcke, Wolfgang

    2003-01-01

    Some of the first data on polychlorinated naphthalenes (PCNs) in soils are presented from a rural-urban-industrial gradient. - We determined the concentrations of 35 PCNs, 12 PCBs, and 20 PAHs in 49 urban topsoils under different land use (house garden, roadside grassland, alluvial grassland, park areas, industrial sites, agricultural sites) and in nine rural topsoils. The sums of concentrations of 35 PCNs (Σ35 PCNs) were -1 in urban soils and -1 in rural soils. The PCN, PCB, and PAH concentrations were highest at industrial sites and in house gardens. While rural soils receive PCNs, PCBs, and PAHs by common atmospheric deposition, there are site-specific sources of PCNs, PCBs, and PAHs for urban soils such as deposition of contaminated technogenic materials. The PCN, PCB, and PAH concentrations decreased from the central urban to the rural area. In the same order the contribution of lower chlorinated PCNs and PCBs increased because they are more volatile and subject to increased atmospheric transport. The PCNs 52+60, and 73 were more abundant in soil samples than in Halowax mixtures, indicating that combustion contributed to the PCN contamination of the soils

  8. The Hydrologic Implications Of Unique Urban Soil Horizon Sequencing On The Functions Of Passive Green Infrastructure

    Science.gov (United States)

    Shuster, W.; Schifman, L. A.; Herrmann, D.

    2017-12-01

    Green infrastructure represents a broad set of site- to landscape-scale practices that can be flexibly implemented to increase sewershed retention capacity, and can thereby improve on the management of water quantity and quality. Although much green infrastructure presents as formal engineered designs, urbanized landscapes with highly-interspersed pervious surfaces (e.g., right-of-way, parks, lawns, vacant land) may offer ecosystem services as passive, infiltrative green infrastructure. Yet, infiltration and drainage processes are regulated by soil surface conditions, and then the layering of subsoil horizons, respectively. Drawing on a unique urban soil taxonomic and hydrologic dataset collected in 12 cities (each city representing a major soil order), we determined how urbanization processes altered the sequence of soil horizons (compared to pre-urbanized reference soil pedons) and modeled the hydrologic implications of these shifts in layering with an unsaturated zone code (HYDRUS2D). We found that the different layering sequences in urbanized soils render different types and extents of supporting (plant-available soil water), provisioning (productive vegetation), and regulating (runoff mitigation) ecosystem services.

  9. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs.

    Science.gov (United States)

    Edmondson, J L; Stott, I; Davies, Z G; Gaston, K J; Leake, J R

    2016-09-19

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.

  10. Dynamics of soil organic carbon and microbial activity in treated wastewater irrigated agricultural soils along soil profiles

    Science.gov (United States)

    Jüschke, Elisabeth; Marschner, Bernd; Chen, Yona; Tarchitzky, Jorge

    2010-05-01

    Treated wastewater (TWW) is an important source for irrigation water in arid and semiarid regions and already serves as an important water source in Jordan, the Palestinian Territories and Israel. Reclaimed water still contains organic matter (OM) and various compounds that may effect microbial activity and soil quality (Feigin et al. 1991). Natural soil organic carbon (SOC) may be altered by interactions between these compounds and the soil microorganisms. This study evaluates the effects of TWW irrigation on the quality, dynamics and microbial transformations of natural SOC. Priming effects (PE) and SOC mineralization were determined to estimate the influence of TWW irrigation on SOC along soil profiles of agricultural soils in Israel and the Westbank. The used soil material derived from three different sampling sites allocated in Israel and The Palestinian Authority. Soil samples were taken always from TWW irrigated sites and control fields from 6 different depths (0-10, 10-20, 20-30, 30-50, 50-70, 70-100 cm). Soil carbon content and microbiological parameters (microbial biomass, microbial activities and enzyme activities) were investigated. In several sites, subsoils (50-160 cm) from TWW irrigated plots were depleted in soil organic matter with the largest differences occurring in sites with the longest TWW irrigation history. Laboratory incubation experiments with additions of 14C-labelled compounds to the soils showed that microbial activity in freshwater irrigated soils was much more stimulated by sugars or amino acids than in TWW irrigated soils. The lack of such "priming effects" (Hamer & Marschner 2005) in the TWW irrigated soils indicates that here the microorganisms are already operating at their optimal metabolic activity due to the continuous substrate inputs with soluble organic compounds from the TWW. The fact that PE are triggered continuously due to TWW irrigation may result in a decrease of SOC over long term irrigation. Already now this could be

  11. Organochlorine pesticides in soils and air of southern Mexico: Chemical profiles and potential for soil emissions

    Science.gov (United States)

    Wong, Fiona; Alegria, Henry A.; Jantunen, Liisa M.; Bidleman, Terry F.; Salvador-Figueroa, Miguel; Gold-Bouchot, Gerardo; Ceja-Moreno, Victor; Waliszewski, Stefan M.; Infanzon, Raul

    The extent of organochlorine pesticides (OCs) contamination in southern Mexico was investigated in this study. Biweekly air samplings were carried out in two sites in the state of Chiapas (during 2002-2003), and one in each state of Veracruz and Tabasco (during 2003-2004). Corresponding to the air sampling locations, soil samples were also collected to gauge the soil-air exchange of OCs in the region. ∑DDTs in soils ranged from 0.057 to 360 ng g -1 whereas those in air ranged from 240 to 2400 pg m -3. DDT and metabolite DDE were expressed as fractional values, FDDTe = p, p'-DDT/( p, p'-DDT + p, p'-DDE) and FDDTo = p,p'-DDT/( p,p'-DDT + o,p'-DDT). FDDTe in soils ranged from 0.30 to 0.69 while those in air ranged from 0.45 to 0.84. FDDTe in air at a farm in Chiapas (0.84) was closer to that of technical DDT (0.95) which is suggestive of fresh DDT input. Enantiomer fractions (EF) of o,p'-DDT in air were racemic at all locations (0.500-0.504). However, nonracemic o,p'-DDT was seen in the soils (EFs = 0.456-0.647). Fugacities of OCs in soil ( fs) and air ( fa) were calculated, and the fugacity fraction, ff = fs/( fs + fa) of DDTs ranged from 0.013 to 0.97 which indicated a mix of net deposition ( ff 0.5) from soil among the sites. It is suggested that DDTs in Mexico air are due to a combination of ongoing regional usage and re-emission of old DDT residues from soils. Total toxaphene in soils ranged from 0.066 to 69 ng g -1 while levels in air ranged from 6.2 to 230 pg m -3. Chromatographic profiles of toxaphenes in both air and soil showed depletion of Parlar congeners 39 and 42. Fugacity fractions of toxaphene were within the equilibrium range or above the upper equilibrium threshold boundary. These findings suggested that soil emission of old residues is the main source of toxaphenes to the atmosphere. Results from this study provide baseline data for establishing a long-term OC monitoring program in Mexico.

  12. Predicting trace metal solubility and fractionation in Urban soils from isotopic exchangeability

    International Nuclear Information System (INIS)

    Mao, L.C.; Young, S.D.; Tye, A.M.; Bailey, E.H.

    2017-01-01

    Metal-salt amended soils (MA, n = 23), and historically-contaminated urban soils from two English cities (Urban, n = 50), were investigated to assess the effects of soil properties and contaminant source on metal lability and solubility. A stable isotope dilution method, with and without a resin purification step, was used to measure the lability of Cd, Cu, Ni, Pb and Zn. For all five metals in MA soils, lability (%E-values) could be reasonably well predicted from soil pH value with a simple logistic equation. However, there was evidence of continuing time-dependent fixation of Cd and Zn in the MA soils, following more than a decade of storage under air-dried conditions, mainly in high pH soils. All five metals in MA soils remained much more labile than in Urban soils, strongly indicating an effect of contaminant source on metal lability in the latter. Metal solubility was predicted for both sets of soil by the geochemical speciation model WHAM-VII, using E-value as an input variable. For soils with low metal solution concentrations, over-estimation of Cd, Ni and Zn solubility was associated with binding to the Fe oxide fraction while accurate prediction of Cu solubility was dependent on humic acid content. Lead solubility was most poorly described, especially in the Urban soils. Generally, slightly poorer estimation of metal solubility was observed in Urban soils, possibly due to a greater incidence of high pH values. The use of isotopically exchangeable metal to predict solubility is appropriate both for historically contaminated soils and where amendment with soluble forms of metal is used, as in toxicological trials. However, the major limitation to predicting solubility may lie with the accuracy of model input variables such as humic acid and Fe oxide contents where there is often a reliance on relatively crude analytical estimations of these variables. Trace metal reactivity in urban soils depends on both soil properties and the original source material

  13. Total and Bioaccessible Soil Arsenic and Lead Levels and Plant Uptake in Three Urban Community Gardens in Puerto Rico

    Science.gov (United States)

    Arsenic (As) and lead (Pb) are two contaminants of concern associated with urban gardening. In Puerto Rico, data currently is limited on As and Pb levels in urban garden soils, soil metal (loid) bioaccessibility, and uptake of As and Pb in soil by edible plants grown in the regio...

  14. A Global comparison of surface soil characteristics across five cities: A test of the urban ecosystem convergence hypothesis.

    Science.gov (United States)

    Richard V. Pouyat; Ian D. Yesilonis; Miklos Dombos; Katalin Szlavecz; Heikki Setala; Sarel Cilliers; Erzsebet Hornung; D. Johan Kotze; Stephanie Yarwood

    2015-01-01

    As part of the Global Urban Soil Ecology and Education Network and to test the urban ecosystem convergence hypothesis, we report on soil pH, organic carbon (OC), total nitrogen (TN), phosphorus (P), and potassium (K) measured in four soil habitat types (turfgrass, ruderal, remnant, and reference) in five metropolitan areas (Baltimore, Budapest,...

  15. Urban and agricultural soils: conflicts and trade-offs in the optimization of ecosystem services

    NARCIS (Netherlands)

    Setälä, H.; Bardgett, R.D.; Birkhofer, K.; Brady, M.; Byrne, L.; de Ruiter, P.C.; de Vries, F.T.; Gardi, C.; Hedlund, K.; Hemerik, L.; Hotes, S.; Liiri, M.; Mortimer, S.R.; Pavao-Zuckerman, M.; Pouyat, R.; Tsiafouli, M.; Van der Putten, W.H.

    2014-01-01

    [KEYWORDS: Agriculture Ecosystem services Land use Management optimization Soil Urban Trade-off] On-going human population growth and changing patterns of resource consumption are increasing global demand for ecosystem services, many of which are provided by soils. Some of these ecosystem services

  16. Determination of spatial continuity of soil lead levels in an urban residential neighborhood

    Energy Technology Data Exchange (ETDEWEB)

    Shinn, N.J.; Bing-Canar, J.; Cailas, M.; Peneff, N.; Binns, H.J.

    2000-01-01

    This study uses geostatistical techniques to model and estimate soil lead levels in an urban, residential neighborhood. Sixty-two composite soil samples in a four-block area of brick and stone homes were obtained. The spatial continuity of soil lead levels was modeled with a semi-variogram, which was then used to estimate lead levels at unsampled locations, a process called kriging. Because soil lead levels were spatially correlated, it is likely that a nonrandom process generated the lead distribution found. This finding signifies the existence of lead sources which were tentatively identified on historical maps of the area and from past traffic volume patterns. The distribution of kriged estimates of soil lead levels provides an explanatory tool for exploring and identifying potential sources and may be useful for targeting urban soil abatement efforts.

  17. Distribution of potentially toxic elements in urban soils of Bratislava; Distribucia potencialne toxickych prvkov v urbannych podach Bratislavy

    Energy Technology Data Exchange (ETDEWEB)

    Lahka, L.; Tatarkova, V.; Toth, R. [Univerzita Komenskeho, Prirodovedecka fakulta, Katedra geochemie, 84215 Bratislava (Slovakia)

    2013-04-16

    Potentially toxic elements naturally occur in soils, but their contents are increased in urban environment due to anthropogenic activities. The main sources of urban soil contamination with potentially toxic elements are chemical, energetic, building and blowing industry, engineering, traffic and municipal waste incineration plants. Contaminated urban soils can pose significant risks to human health trough dust inhalation, soil ingestion, and dermal contact. The primary objectives of the present study were: to assess concentrations of potentially toxic elements in soils of nursery schools, to investigate relationships between potentially toxic elements and physicochemical properties of soils, to identify the main possible sources. (authors)

  18. NIR & MIR spectroscopy as an effective tool for detecting urban influences on soils

    Science.gov (United States)

    Brook, Anna; Kopel, Daniella; Wittenberg, Lea

    2016-04-01

    Soil supports ecosystem functions and services, sustains ecosystems and biodiversity, yet in the urban spreading world of today, soil as a resource is in constant danger. Human society takes for granted the services provided by open green patches allocated within and nearby cities, with no consideration of ramifications of urban development on those areas. The urban ecology science recognizes the need to learn, identify and monitor the soils of cities - urban soils. The definitions of those soils are mainly descriptive, since urban soils do not submitted to the pedological process as natural soils. The main objective of this paper is to characterize urban soils in open green undisturbed patches by mineralogical composition. This goal was achieved using field and laboratory spectroscopy across visible near, short wave infrared regions and laboratory thermal mid infrared region. The majority of the studies on urban soils concentrate on identifying and mapping of pollution mostly heavy metals. In this study a top-down analysis (a simple and intuitive spectral feature for detecting the presence of minerals, organic matter and pollutants in mixed soil samples) is applied. This method uses spectral activity (SA) detection in a structured hierarchical approach to quickly and, more importantly, correctly identify dominant spectral features. The applied method is adopted by multiple in-production tools including continuum removal normalization, guided by polynomial generalization, and spectral-likelihood algorithms: orthogonal subspace projection (OSP) and iterative spectral mixture analysis (ISMA) were compared to feature likelihood methods. A total of 70 soil samples were collected at different locations: in remnant area within the city (edge and core), on the borders of the neighborhoods (edge) and in the fringe zone and in 2 locations in the protected park. The park samples were taken in locations found more than 100m from roads or direct anthropogenic disturbances. The

  19. Estimating cumulative soil accumulation rates with in situ-produced cosmogenic nuclide depth profiles

    International Nuclear Information System (INIS)

    Phillips, William M.

    2000-01-01

    A numerical model relating spatially averaged rates of cumulative soil accumulation and hillslope erosion to cosmogenic nuclide distribution in depth profiles is presented. Model predictions are compared with cosmogenic 21 Ne and AMS radiocarbon data from soils of the Pajarito Plateau, New Mexico. Rates of soil accumulation and hillslope erosion estimated by cosmogenic 21 Ne are significantly lower than rates indicated by radiocarbon and regional soil-geomorphic studies. The low apparent cosmogenic erosion rates are artifacts of high nuclide inheritance in cumulative soil parent material produced from erosion of old soils on hillslopes. In addition, 21 Ne profiles produced under conditions of rapid accumulation (>0.1 cm/a) are difficult to distinguish from bioturbated soil profiles. Modeling indicates that while 10 Be profiles will share this problem, both bioturbation and anomalous inheritance can be identified with measurement of in situ-produced 14 C

  20. Influence of the soil-atmosphere exchange on the hydric profile induced in soil-structure system

    Directory of Open Access Journals (Sweden)

    A. Al Qadad

    2012-06-01

    Full Text Available Soil-atmosphere exchange leads to a moisture change in the soil. This can cause major damage to engineering structures due to the soil expansion and shrinkage. The soil-atmosphere exchange is related to several parameters, in particular the soil characteristics and climate conditions. The presence of an engineering structure causes a variation of the hydraulic profile in the soil, which can lead to heterogeneous soil movement and consequently to structural damage. This paper presents a coupled numerical model based on the consideration of both water flow in unsaturated soils and soil-atmosphere exchange. After the validation of the model, the paper presents its use for the analysis of the influence of the presence of structures on moisture change induced under climatic conditions recorded in a semi-arid region. Analysis shows that the presence of the structure leads to important change in the moisture distribution, in particular in the vicinity of the structure.

  1. Use of Urban composts for the regeneration of a burnt Mediterranean soil

    Energy Technology Data Exchange (ETDEWEB)

    Cellier, A.; Baldy, V.; Ballini, C.; Houot, S.; Francou, C.

    2009-07-01

    In Mediterranean region, forest fires are a major problem towards the desertification of the environment. Use of composts is considered as a solution for soil and vegetation rehabilitation. In this study, we determined the effects of three urban composts and their mode of application (laid at the soil surface or buried) on soil restoration after fire: municipal wastes compost (MWC), sewage sludge and green wastes compost (SSC) and, green wastes compost (GWC). (Author)

  2. Availability of polycyclic aromatic hydrocarbons to earthworms in urban soils and its implications for risk assessment.

    Science.gov (United States)

    Cachada, A; Coelho, C; Gavina, A; Dias, A C; Patinha, C; Reis, A P; da Silva, E Ferreira; Duarte, A C; Pereira, R

    2018-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a global problem, and in urban soils they can be found at potentially hazard levels. Nevertheless, the real risks that these contaminants pose to the environment are not well known, since the bioavailability of PAHs in urban soils has been poorly studied. Therefore, the bioavailability of PAHs in some selected urban soils from Lisbon (Portugal) was evaluated. Moreover, the applicability of a first screening phase based on total contents of PAHs was assessed. Results show that bioavailability of PAHs is reduced (low levels in earthworms, low accumulation percentages, and low biota-to-soil accumulation factors values), especially in more contaminated soils. The aging of these compounds explains this low availability, and confirms the generally accepted assumption that accumulation of PAHs in urban areas is mostly related with a long-term deposition of contaminated particles. The comparison of measured PAHs concentrations in earthworm tissues with the ones predicted based on theoretical models, reinforce that risks based on total levels are overestimated, but it can be a good initial approach for urban soils. This study also highlights the need of more reliable ecotoxicological data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Pedogenesis, geochemical forms of heavy metals, and artifact weathering in an urban soil chronosequence, Detroit, Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Jeffrey L., E-mail: jhoward@wayne.edu [Department of Geology, Wayne State University, Detroit, MI 48202 (United States); Olszewska, Dorota [Department of Geology, Wayne State University, Detroit, MI 48202 (United States)

    2011-03-15

    An urban soil chronosequence in downtown Detroit, MI was studied to determine the effects of time on pedogenesis and heavy metal sequestration. The soils developed in fill derived from mixed sandy and clayey diamicton parent materials on a level late Pleistocene lakebed plain under grass vegetation in a humid-temperate (mesic) climate. The chronosequence is comprised of soils in vacant lots (12 and 44 years old) and parks (96 and 120 years old), all located within 100 m of a roadway. An A-horizon 16 cm thick with 2% organic matter has developed after only 12 years of pedogenesis. The 12 year-old soil shows accelerated weathering of iron (e.g. nails) and cement artifacts attributed to corrosion by excess soluble salts of uncertain origin. Carbonate and Fe-oxide are immobilizing agents for heavy metals, hence it is recommended that drywall, plaster, cement and iron artifacts be left in soils at brownfield sites for their ameliorating effects. - Research highlights: > An A horizon has developed in these urban soils after only 12 years of pedogenesis. > Iron and cement artifacts have undergone accelerated weathering due to deicing salts. > One soil is contaminated by lead derived from weathered paint. > Artifact weathering can have ameliorating effects on urban soils contaminated by heavy metals. - Weathering of artifacts can have ameliorating effects on heavy metal-polluted soils at brownfield sites.

  4. Pedogenesis, geochemical forms of heavy metals, and artifact weathering in an urban soil chronosequence, Detroit, Michigan

    International Nuclear Information System (INIS)

    Howard, Jeffrey L.; Olszewska, Dorota

    2011-01-01

    An urban soil chronosequence in downtown Detroit, MI was studied to determine the effects of time on pedogenesis and heavy metal sequestration. The soils developed in fill derived from mixed sandy and clayey diamicton parent materials on a level late Pleistocene lakebed plain under grass vegetation in a humid-temperate (mesic) climate. The chronosequence is comprised of soils in vacant lots (12 and 44 years old) and parks (96 and 120 years old), all located within 100 m of a roadway. An A-horizon 16 cm thick with 2% organic matter has developed after only 12 years of pedogenesis. The 12 year-old soil shows accelerated weathering of iron (e.g. nails) and cement artifacts attributed to corrosion by excess soluble salts of uncertain origin. Carbonate and Fe-oxide are immobilizing agents for heavy metals, hence it is recommended that drywall, plaster, cement and iron artifacts be left in soils at brownfield sites for their ameliorating effects. - Research highlights: → An A horizon has developed in these urban soils after only 12 years of pedogenesis. → Iron and cement artifacts have undergone accelerated weathering due to deicing salts. → One soil is contaminated by lead derived from weathered paint. → Artifact weathering can have ameliorating effects on urban soils contaminated by heavy metals. - Weathering of artifacts can have ameliorating effects on heavy metal-polluted soils at brownfield sites.

  5. SOCIO - DEMOGRAPHIC PROFILE OF OLD AGE PEOPLE LIVING IN URBAN & URBAN SLUM AREAS IN MAHARASHTRA, KARAD: A COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Leena Rahul Salunkhe

    2015-01-01

    Full Text Available NTRODUCTION: Aging refers to normal, progressive and irreversible biological changes that occur over an individual’s life span. The advancement of medical science and increased awareness among the people has brought about a sharp decline in mortality and a steady decline in fertility. This has resulted in a worldwide shift in the demographic profile and has led to significant increase in the aged population. About two thirds of all older people are concentrated in the developing world. OBJECTIVES: to study & compare socio - demographic variables of old age people living in Urban & Urban slum areas. MATERIAL & METHODS: all the old age people living in urb a n slum area & rando mly selected one urban area of K arad town were interviewed by using pre structured proforma about socio - demographic variable & compared with each other. OBSERVATIONS: Total 153 from urban & 135 from urban slum were enrolled for the study. Nearly 2/3 rd subjects were above age 65yrs in both areas with more female proportions in slum area than urban area. Significant difference was found with education, occupation & socio - economic status in both areas. CONCLUSION: Ageing is a universal phenomenon, with advanced fertility control, improvement in health and social services life expectancy has increased. Ageing has profound effect on the individual status in the family, the work force, goals and organization of health, social services, policies and practices of the government

  6. Impact of urban gardening in equatorial zone on soils and metal transfer to vegetables

    Directory of Open Access Journals (Sweden)

    Ondo Aubin Jean

    2013-01-01

    Full Text Available This study aimed at assessing the impact of urban agriculture on physicochemical soil properties and the metal uptake by some leafy vegetables cultivated in urban soils of Libreville, Gabon. Cultivated and uncultivated top-soil and vegetable samples were collected on two urban garden sites, and analyzed. The results showed that there was strong acidification and a decrease of nutrient and metal concentrations in soils due of agricultural practices. The metal transfer to plants was important, with the exception of iron. The non-essential metal cadmium and lead were not detectable in plant tissues. Amaranth accumulated more metals than other vegetables. Amaranth and Roselle were vegetables that preferentially concentrated metals in their leaves and can therefore be used for metal supplementation in food chain.

  7. A Case Study on Soil Antibiotic Resistome in an Urban Community Garden.

    Science.gov (United States)

    Mafiz, Abdullah Ibn; Perera, Liyanage Nirasha; He, Yingshu; Zhang, Wei; Xiao, Shujie; Hao, Weilong; Sun, Shi; Zhou, Kequan; Zhang, Yifan

    2018-05-29

    Urban agricultural soils can be an important reservoir of antibiotic resistance and have great food safety and public health indications. This study was to investigate antibiotic-resistant bacteria and antibiotic resistance genes in urban agricultural soils using phenotypic and metagenomic tools. A total of 207 soil bacteria were recovered from 41 soil samples collected from an urban agricultural garden in Detroit, USA. The most prevalent antibiotic resistance phenotypes demonstrated by Gram-negative bacteria was the resistance to ampicillin (94.2%), followed by chloramphenicol (80.0%), cefoxitin (79.5%), gentamicin (78.4%), and ceftriaxone (71.1%). Gram-positive bacteria were all resistant to gentamicin, kanamycin, and penicillin. Genes encoding resistance to quinolone, β-lactam, and tetracycline were the most prevalent and abundant in the soil. qepA and tetA, both encoding efflux pumps, predominated in quinolone and tetracycline resistance genes tested, respectively. Positive correlation (p < 0.05) was identified among groups of antibiotic resistance genes and between antibiotic resistance genes and metal resistance genes. The data demonstrated a diverse population of antibiotic resistance in urban agricultural soils. Phenotypic determination together with soil metagenomics proved to be a valuable tool to study the nature and extent of antibiotic resistance in the environment. Copyright © 2018. Published by Elsevier B.V.

  8. The role of soil in the generation of urban runoff : development and evaluation of a 2D model

    OpenAIRE

    BERTHIER, E; ANDRIEU, H; CREUTIN, JD

    2004-01-01

    A two-dimensional numerical model is developed to determine the role of soil in the formation of urban catchment runoff. The model is based on a modeling unit, called the Urban Hydrological Element (UHE), which corresponds to the cross-section of an urban cadastral parcel. Water flow in the soil of a UHE is explicitly simulated with a finite element code for solving the Richards' equation. Two runoff components, dependent on soil behavior, are represented: runoff from natural surfaces and dra...

  9. Physical activity profile of urbanized Rwandan women | Kagwiza ...

    African Journals Online (AJOL)

    It is estimated that by 2020 chronic diseases of lifestyle will be almost 50% of the burden of disease in Sub-Saharan Africa. Rapid urbanization with changes in lifestyle, such as physical activity patterns could explain at least partially the ongoing epidemiological transition. The purpose of this study was to assess levels of ...

  10. Profiling governance, planning, and urban violence in four Indian cities

    International Development Research Centre (IDRC) Digital Library (Canada)

    17 nov. 2016 ... Economic growth is driving population growth in Indian cities, particularly in small and medium-sized centres. This rapid urbanization is fueling conflict over scarce resources, including land, water, and public investment. With a high proportion of the poor living and working in the informal sector and ...

  11. Modeling the vertical soil organic matter profile using Bayesian parameter estimation

    NARCIS (Netherlands)

    Braakhekke, M.C.; Wutzler, T.; Beer, C.; Kattge, J.; Schrumpf, M.; Schöning, I.; Hoosbeek, M.R.; Kruijt, B.; Kabat, P.

    2012-01-01

    The vertical distribution of soil organic matter (SOM) in the profile may constitute a significant factor for soil carbon cycling. However, the formation of the SOM profile is currently poorly understood due to equifinality, caused by the entanglement of several processes: input from roots, mixing

  12. Modeling the vertical soil organic matter profile using Bayesian parameter estimation

    NARCIS (Netherlands)

    Braakhekke, M.C.; Wutzler, T.; Beer, C.; Kattge, J.; Schrumpf, M.; Ahrens, B.; Schoning, I.; Hoosbeek, M.R.; Kruijt, B.; Kabat, P.; Reichstein, M.

    2013-01-01

    The vertical distribution of soil organic matter (SOM) in the profile may constitute an important factor for soil carbon cycling. However, the formation of the SOM profile is currently poorly understood due to equifinality, caused by the entanglement of several processes: input from roots, mixing

  13. Spatial Relationships of Urban Land Use, Soils and Heavy Metal ...

    African Journals Online (AJOL)

    Soils are the basic and most important resources of any people. Differences in soil's physical and chemical properties are related to the spatial distribution of land uses. Most of these human activities generate toxic substances that are transported considerable distances away from source and become accumulated in soils, ...

  14. An examination of the spatial variability of CO2 in the profile of managed forest soils

    International Nuclear Information System (INIS)

    Black, M.; Kellman, L.; Beltrami, H.

    2005-01-01

    Soil carbon dioxide (CO 2 ) profiles are typically used in soil-gas exchange studies. Although surface flux measuring methods may be more efficient for deriving surface soil CO 2 exchange budgets, they do not provide enough information about the generation of gas through depth. This poses a challenge in quantifying the CO 2 generated from different zones and soil carbon pools through time. The combination of subsurface concentration profiles and estimates of soil diffusivity reveal where CO 2 is being generated in the soil. This combined approach offers greater awareness into processes controlling CO 2 production in soils through depth, and clarifies how soil CO 2 exchange processes in these ecosystems can be changed by management regimes and climate change. Although information about spatial variability in subsurface concentrations within forested soils is limited, it is assumed to be high because of the high spatial variability in soil CO 2 flux estimates and the large variation in vegetation distribution and topography within sites. In this study, the soil CO 2 profile was monitored during the fall of 2004 at depths of 0, 5, 20 and 35 cm at 10 microsites of a clear-cut and an 80 year old intact mixed forest in Atlantic Canada. Microsites were about 10 meters apart and represented a range of microtopographical conditions that typically encompass extremes in soil CO 2 profile patterns. Preliminary results reveal predictable patterns in concentration profiles through depth, and increasing CO 2 concentration with depth, consistent with a large soil source of CO 2 . The significant variability in the soil carbon profile between microsites in the clear-cut and intact forest sites will be investigated to determine if distinct microsite patterns can be identified. The feasibility of using this method for providing process-based versus soil C exchange budgeting information at forested sites will also be examined

  15. Sampling season affects conclusions on soil arthropod community structure responses to metal pollution in Mediterranean urban soils

    NARCIS (Netherlands)

    Santorufo, L.; van Gestel, C.A.M.; Maisto, G.

    2014-01-01

    This study aimed to assess if the period of sampling affected conclusions on the responses of arthropod community structure to metal pollution in urban soils in the Mediterranean area. Higher temperature and lower precipitation were detected in autumn than in spring. In both samplings, the most

  16. Relationship Between Total and Bioaccessible Lead on Children’s Blood Lead Levels in Urban Residential Philadelphia Soils

    Science.gov (United States)

    Relationships between total soil or bioaccessible lead (Pb), measured using an in vitro bioaccessibility assay, and children’s blood lead levels (BLL) were investigated in an urban neighborhood in Philadelphia, Pennsylvania, USA, with a history of soil Pb contamination....

  17. Application of Electromagnetic Induction to Monitor Changes in Soil Electrical Conductivity Profiles in Arid Agriculture

    KAUST Repository

    Jadoon, K.Z.

    2015-09-06

    In this research, multi-configuration electromagnetic induction (EMI) measurements were conducted in a corn field to estimate variation in soil electrical conductivity profiles in the roots zone. Electromagnetic forward model based on the full solution of Maxwell\\'s equation was used to simulate the apparent electrical conductivity measured with EMI system (the CMD mini-Explorer). Joint inversion of multi-configuration EMI measurements were performed to estimate the vertical soil electrical conductivity profiles. The inversion minimizes the misfit between the measured and modeled soil apparent electrical conductivity by DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, which is based on Bayesain approach. Results indicate that soil electrical conductivity profiles have low values close to the corn plants, which indicates loss of soil moisture due to the root water uptake. These results offer valuable insights into future potential and emerging challenges in the development of joint analysis of multi-configuration EMI measurements to retrieve effective soil electrical conductivity profiles.

  18. Detection and Identification of potentially toxic elements in urban soil using in situ spectroscopy

    Science.gov (United States)

    Brook, Anna; Kopel, Daniella; Wittenberg, Lea

    2017-04-01

    Anthropogenic urban soils are the foundation of the urban green infrastructure, the green net quality is as good as each of its patches. In early days of pedology urban soil has been recognized with respect to contamination and the risks for human health but in study performed since the 70s, the importance of urban soil for the urban ecology became increasingly significant. Urban soils are highly disturbed land that was created by the process of urbanization. The dominant agent in the creation of urban soils is human activity which modifies the natural soil through mixing, filling or by contamination of land surfaces so as to create a layer of urban soil which can be more than 50 cm thick. The objective of this study is to determine the extent to which field spectroscopy methods can be used to extend the knowledge of toxic elements in urban soils. The majority of the studies on urban soils concentrate on identifying and mapping of known pollution mostly certain heavy metals, we are focusing on almost non disturbed soils where no direct disturbance occurred but the urban matrix inflicted on it. The elements in those soils where an-knowns features. In this study a top-down analysis is applied for detecting the presence of minerals, organic matter and pollutants in mixed soil samples. Results of the proposed top-down unmixing method suggest that the analysis is made very fast due to the simplified hierarchy which avoids the high-learning curve associated with unmixing algorithms showed that the most abundant components were coarse organic matter 12% followed by concrete dust, plastic crumbs, other man made materials, clay and other minerals. The results of the soils pH, measured electrometrically and the particle size distribution, measured by Laser diffraction, indicate there is no big different between the samples particle size distribution and the pH values of the samples but they are not significantly different from the expected, except for the OM percentage which

  19. Estimating the Soil Temperature Profile from a single Depth Observation: A simple Empirical Heatflow Solution

    NARCIS (Netherlands)

    Holmes, T.R.H.; Owe, M.; de Jeu, R.A.M.; Kooi, H.

    2008-01-01

    Two field data sets are used to model near-surface soil temperature profiles in a bare soil. It is shown that the commonly used solutions to the heat flow equations by Van Wijk perform well when applied at deeper soil layers, but result in large errors when applied to near surface layers, where more

  20. Modeling Cd and Cu mobility in soils amended by long-term urban waste compost applications

    Science.gov (United States)

    Filipović, Vilim; Cambier, Philippe; Matijević, Lana; Coquet, Yves; Pot, Valérie; Houot, Sabine; Benoit, Pierre

    2016-04-01

    Urban waste compost application to soil is an effective way for organic waste disposal and at the same time may have a positive effect on various soil rhizosphere processes. However, long term applications of organic waste amendments may lead to a noteworthy accumulation of micropollutants in soil. The long-term field experiment QualiAgro, an INRA-Veolia partnership (https://www6.inra.fr/qualiagro_eng/), has been conducted since 1998 with the objectives to characterize the agronomic value of urban composts and the environmental impacts of their application. Numerical modeling was performed using HYDRUS-2D to estimate the movement of Cd and Cu from compost incroporation in the tilled layer. Experimental plots regularly amended with co-compost of sewage sludge and green wastes (SGW), or a municipal solid waste compost (MSW) have been compared to control plot without any organic amendment (CONT). Field site was equipped with wicks lysimeters, TDR probes and tensiometers in order to determine water balance and trace metal concentrations during a 6 years' time period (2004-2010). In the tilled layer different structures (Δ - compacted clods, Γ - macroporous zone, IF - interfurrows, PP - plough pan) corresponding to the tillage and compost incorporation were delimited and reproduced in a 2-D model. The increase of Cd and Cu concentrations due to each compost addition was assumed to be located in IFs for further modeling. Four compost additions were performed during 2004-2010 period which increased the Cd and Cu concentrations in the IF zones considerably. After successful model description of water flow in highly heterogeneous soil profiles, Cd and Cu were added into the model and their fate was simulated during the same time period. Two approaches were followed to estimate plausible trace metals sorption coefficients (Kd), both while assuming equilibrium between dissolved and EDTA-extractable metals. The first approach was based on Kd estimated from ratios between

  1. Natural radionuclides in soil profiles surrounding the largest coal-fired power plant in Serbia

    OpenAIRE

    Tanić Milan N.; Janković-Mandić Ljiljana J.; Gajić Boško A.; Daković Marko Z.; Dragović Snežana D.; Bačić Goran G.

    2016-01-01

    This study evaluates the influence of the largest Serbian coal-fired power plant on radionuclide concentrations in soil profiles up to 50 cm in depth. Thirty soil profiles were sampled from the plant surroundings (up to 10 km distance) and analyzed using standard methods for soil physicochemical properties and gamma ray spectrometry for specific activities of natural radionuclides (40K, 226Ra and 232Th). Spatial and vertical distribution of radionuclides wa...

  2. Connecting carbon and nitrogen storage in rural wetland soil to groundwater abstraction for urban water supply.

    Science.gov (United States)

    Lewis, David Bruce; Feit, Sharon J

    2015-04-01

    We investigated whether groundwater abstraction for urban water supply diminishes the storage of carbon (C), nitrogen (N), and organic matter in the soil of rural wetlands. Wetland soil organic matter (SOM) benefits air and water quality by sequestering large masses of C and N. Yet, the accumulation of wetland SOM depends on soil inundation, so we hypothesized that groundwater abstraction would diminish stocks of SOM, C, and N in wetland soils. Predictions of this hypothesis were tested in two types of subtropical, depressional-basin wetland: forested swamps and herbaceous-vegetation marshes. In west-central Florida, >650 ML groundwater day(-1) are abstracted for use primarily in the Tampa Bay metropolis. At higher abstraction volumes, water tables were lower and wetlands had shorter hydroperiods (less time inundated). In turn, wetlands with shorter hydroperiods had 50-60% less SOM, C, and N per kg soil. In swamps, SOM loss caused soil bulk density to double, so areal soil C and N storage per m(2) through 30.5 cm depth was diminished by 25-30% in short-hydroperiod swamps. In herbaceous-vegetation marshes, short hydroperiods caused a sharper decline in N than in C. Soil organic matter, C, and N pools were not correlated with soil texture or with wetland draining-reflooding frequency. Many years of shortened hydroperiod were probably required to diminish soil organic matter, C, and N pools by the magnitudes we observed. This diminution might have occurred decades ago, but could be maintained contemporarily by the failure each year of chronically drained soils to retain new organic matter inputs. In sum, our study attributes the contraction of hydroperiod and loss of soil organic matter, C, and N from rural wetlands to groundwater abstraction performed largely for urban water supply, revealing teleconnections between rural ecosystem change and urban resource demand. © 2014 John Wiley & Sons Ltd.

  3. Variations of Soil Lead in Different Land Uses Along the Urbanization Gradient in the Beijing Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Qizheng Mao

    2014-03-01

    Full Text Available Understanding the spatial pattern of soil lead (Pb levels is essential to protecting human health. Most previous studies have examined soil Pb distributions by either urbanization gradient or land-use type. Few studies, however, have examined both factors together. It remains unclear whether the impacts of land use on soil Pb levels are consistent along the urbanization gradient. To fill this gap, we investigated variations in soil Pb level under different land-use types along the urbanization gradient in Beijing, China. We classified the degree of urbanization as the urban core, transitional zone, or suburban area and the land-use type as industrial area, roadside, residential area, institutional area, road greenbelt, park, or forest. Our results showed that the range of soil Pb levels in Beijing is <1 mg/kg–292 mg/kg, with a mean of 22 mg/kg. Along the urbanization gradient, the mean soil Pb level increased from the suburban area to the urban core. Land-use types have an impact on soil Pb levels, however, when the degree of urbanization is considered, the impact from land use on soil Pb level was only significant in the transitional zone. Parks and road greenbelts were found to have lower soil Pb, primarily due to soil restoration. Roadside and residential areas were found to have higher soil Pb because of traffic emissions, leaded paint, and previous industrial contamination. In the urban core and suburban area, the soil Pb level showed no significant differences among various land-use types. Given the results of soil Pb in various land-use types, we suggest that future studies consider the urbanization gradient in which different land-use samples are located.

  4. Meteoric 10Be in soil profiles - A global meta-analysis

    Science.gov (United States)

    Graly, Joseph A.; Bierman, Paul R.; Reusser, Lucas J.; Pavich, Milan J.

    2010-01-01

    In order to assess current understanding of meteoric 10Be dynamics and distribution in terrestrial soils, we assembled a database of all published meteoric 10Be soil depth profiles, including 104 profiles from 27 studies in globally diverse locations, collectively containing 679 individual measurements. This allows for the systematic comparison of meteoric 10Be concentration to other soil characteristics and the comparison of profile depth distributions between geologic settings. Percent clay, 9Be, and dithionite-citrate extracted Al positively correlate to meteoric 10Be in more than half of the soils where they were measured, but the lack of significant correlation in other soils suggests that no one soil factor controls meteoric 10Be distribution with depth. Dithionite-citrate extracted Fe and cation exchange capacity are only weakly correlated to meteoric 10Be. Percent organic carbon and pH are not significantly related to meteoric 10Be concentration when all data are complied.The compilation shows that meteoric 10Be concentration is seldom uniform with depth in a soil profile. In young or rapidly eroding soils, maximum meteoric 10Be concentrations are typically found in the uppermost 20 cm. In older, more slowly eroding soils, the highest meteoric 10Be concentrations are found at depth, usually between 50 and 200 cm. We find that the highest measured meteoric 10Be concentration in a soil profile is an important metric, as both the value and the depth of the maximum meteoric 10Be concentration correlate with the total measured meteoric 10Be inventory of the soil profile.In order to refine the use of meteoric 10Be as an estimator of soil erosion rate, we compare near-surface meteoric 10Be concentrations to total meteoric 10Be soil inventories. These trends are used to calibrate models of meteoric 10Be loss by soil erosion. Erosion rates calculated using this method vary based on the assumed depth and timing of erosional events and on the reference data selected.

  5. The Spatial Variability of Soil Dehydrogenase Activity: A Survey in Urban Soils

    OpenAIRE

    Kizilkaya, Ridvan; Aşkin, Tayfun

    2007-01-01

    Information on soil microorganisms and their activity used to determine microbiological characteristics are very important for soil quality and productivity. Studies of enzyme activities provide information on the biochemical processes occurring in soil. There is growing evidence that soil biological parameters may be potential and sensitive indicators of soil ecological conditions and soil management. Soil microbiological parameters may be evaluated statistically due to application of geosta...

  6. Evaluation of anthropogenic urban soils. Final report; Bewertung anthropogener Stadtboeden. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Blume, H.P.; Schleuss, U. [eds.

    1997-12-31

    The research project `Evaluation of Anthropogenic Urban Soils` was subsidized by the German Federal Ministry of Education, Science, Research and Technology and adviced by the working group `Stadtboeden` of the German Society of Soil Science. It was realized as a cooperation between the universities of Berlin (TU), Halle-Wittenberg, Hohenheim, Kiel and Rostock and had three objectives: - to characterize soils developed from anthropogenic substratums (`urban soils`), - to figure out distribution patterns of such soils and - to verify whether urban soils could be evaluated according to their filtering and habitat function in the same way as soils developed from natural parent material. Evaluation methods based on easily obtainable field data had to be adapted to `urban soils` respectively developed anew. For that reason some typical soils of anthropogenic lithogenesis had to be examined between 1993 and 1996 both on their importance as habitats for plants and soil organisms and on their filtering, buffering and transforming capacities for organic and inorganic pollutants. Accordingly representative `urban soils` were gathered in the towns of Berlin, Eckernfoerde, Essen, Halle, Kiel, Rostock and Stuttgart; these soils had developed from technogenic substratums (brick and mortar debris, municipal waste, ashes, slag, sludge) and redeposited alkaline resp. acidic natural substratums (mud, coal mine and coking plant deposits). Some of the soils were influenced by ground water, and all soils developed from the same kind of parent material belonged to different stages of development. (orig./SR) [Deutsch] Ziele des vom BMBF gefoerderten und vom Arbeitskreis Stadtboeden der Deutschen Bodenkundlichen Gesellschaft beratenen Verbundprojektes `Bewertung anthropogener Stadtboeden` waren die Charakterisierung von Boeden anthropogener Substrate, die exemplarische Ermittlung des Verteilungsmusters derartiger Boeden und die Pruefung, inwieweit sie sich aehnlich den Boeden natuerlicher

  7. 222Rn flux and soil air concentration profiles in West-Germany. Soil 222Rn as tracer for gas transport in the unsaturated soil zone

    International Nuclear Information System (INIS)

    Doerr, H.; Muennich, K.O.

    1990-01-01

    Measurements of the 222 Rn activity concentration profile in the soil and the 222 Rn flux in West-Germany are presented. The spatial pattern of the 222 Rn flux depends more on soil type than on the 226 Ra activity of the soil material. The average 222 Rn flux from sandy soils is 1000-2000 dpm m -2 h -1 and 4000-6000 dpm m -2 h -1 froam loamy and clayey soils. Weekly 222 Rn flux measurements during a period of 1 year at a sandy site show no significant temporal variations. At a clayey site, the 222 Rn flux tends to be higher in summer than in winter. The permeability coefficient P Rn , obtained from simultaneous 222 Rn flux and concentration profile measurements in various soils, can be expressed as a function of the soil parameters total porosity ε 0 , soil moisture F, tortuosity k and the molecular diffusion coefficient D 0 of 222 Rn in air: P = D 0 ((ε 0 -F)/k-const.). The flux of any other gas into or out of the soil can thus be calculated from its measured concentration profile in the soil and from the 222 Rn permeability coefficient, replacing the molecular diffusion coefficient of 222 Rn by that of the specific gas under consideration. As an example, this method of flux determination is demonstrated for the soil CO 2 flux to the atmosphere and for the flux of atmospheric CH 4 into the soil. (author) 14 refs

  8. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs

    DEFF Research Database (Denmark)

    Edmondson, Jill L; Stott, Iain; Davies, Zoe G

    2016-01-01

    months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees...... in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce...

  9. Heavy metal concentrations in soils and vegetation in urban areas of Quezon City, Philippines.

    Science.gov (United States)

    Navarrete, Ian A; Gabiana, Christella C; Dumo, Joan Ruby E; Salmo, Severino G; Guzman, Maria Aileen Leah G; Valera, Nestor S; Espiritu, Emilyn Q

    2017-04-01

    Limited data have been published on the chemistry of urban soils and vegetation in the Philippines. The aim of this study is to quantify the concentrations of heavy metals (i.e., Cr, Ni, Cu, Zn, and Pb) in soils and vegetation in the urban landscape of Quezon City, Philippines, and to elucidate the relationships between soil properties and the concentration of heavy metals pertaining to different land uses [i.e., protected forest (LM), park and wildlife area (PA), landfill (PL), urban poor residential and industrial areas (RA), and commercial areas (CA)]. Soil (0-15 cm) and senescent plant leaves were collected and were analyzed for soil properties and heavy metal concentrations. Results revealed that the concentrations of heavy metals (i.e., Cr, Ni, Cu, Zn, and Pb) in urban soils were higher in areas where anthropogenic activities or disturbance (PL, RA, and CA) were dominant as compared to the less disturbed areas (LM and PA). Organic matter and available phosphorous were strongly correlated with heavy metal concentrations, suggesting that heavy metal concentrations were primarily controlled by these soil properties. The average foliar heavy metal concentrations varied, ranging from 0 to 0.4 mg/kg for Cd, 0-10 mg/kg for Cr, 2-22 mg/kg for Cu, 0-5 mg/kg for Pb, and 11-250 mg/kg for Zn. The concentrations of Cd and Cr exceeded the critical threshold concentrations in some plants. Leaves of plants growing in PL (i.e., landfill) showed the highest levels of heavy metal contamination. Our results revealed that anthropogenic activities and disturbance caused by the rapid urbanization of the city are major contributors to the heavy metal accumulation and persistence in the soils in these areas.

  10. Soil contamination from urban and industrial activity: example of the mining district of Linares (southern Spain)

    Science.gov (United States)

    Martínez, J.; Llamas, J. F.; de Miguel, E.; Rey, J.; Hidalgo, M. C.

    2008-04-01

    The Linares region (southern Spain) has been subjected to two important sources of pollution: the intensive mining works and the urban-industrial activity. To obtain a geochemical characterisation of the soil, 31 trace elements were analysed and 669 soil samples were collected. By means of clustering analysis, we identified groups of elements and grid squares in which relations could be established concerning soil lithology, urban and industrial activities and the degree of pollution impact; in addition, we were able to characterise the geochemical background of the study area. The multivariate study led us to identify four factors. Particularly important was factor 2, which represented the elements associated with mineral paragenesis (Cu, Pb, As, Co, Mn, Zn, Sn, Ba). This factor also contains elements related with an urban-industrial activity, such as Pb, Cu, Zn, As and Ba. Furthermore, we identified factor 4, associating Ni, V and Cr, and which is related to the use of fuels.

  11. Estimating the extractability of potentially toxic metals in urban soils: A comparison of several extracting solutions

    International Nuclear Information System (INIS)

    Madrid, F.; Reinoso, R.; Florido, M.C.; Diaz Barrientos, E.; Ajmone-Marsan, F.; Davidson, C.M.; Madrid, L.

    2007-01-01

    Metals released by the extraction with aqua regia, EDTA, dilute HCl and sequential extraction (SE) by the BCR protocol were studied in urban soils of Sevilla, Torino, and Glasgow. By multivariate analysis, the amounts of Cu, Pb and Zn liberated by any method were statistically associated with one another, whereas other metals were not. The mean amounts of all metals extracted by HCl and by SE were well correlated, but SE was clearly underestimated by HCl. Individual data for Cu, Pb and Zn by both methods were correlated only if each city was considered separately. Other metals gave poorer relationships. Similar conclusions were reached comparing EDTA and HCl, with much lower values for EDTA. Dilute HCl extraction cannot thus be recommended for general use as alternative to BCR SE in urban soils. - Dilute HCl extraction is tested as an alternative to the BCR sequential extraction in urban soils

  12. Geochemical study of urban soils in public areas of an industrialized town (Ajka, western Hungary)

    Science.gov (United States)

    Zacháry, D.; Jordán, Gy.; Szabó, Cs.

    2012-04-01

    Soil is one of the most essential parts of urban ecosystem contributing to the biogeochemical cycles along the rock-soil-plant-animal and human pathway. Soil plays a fundamental role in plant nutrient uptake and groundwater filtration, too. Urban soils differ from non-urban soils in many aspects, including their origin, and they may also concentrate contaminants in large quantities due to intensive human activities. The pollution sources are industry, traffic, fertilizer, tailing and waste. In addition to the increasing rate of urban areas, urban soils are under growing interest and their pollution have received significant attention in the past few decades. This work focuses on the toxic element (As, Hg, Pb, Cu, Zn, Cd, Ni) content of soils and their spatial distribution in order to find a link between contamination sources and the receiving urban soils at sensitive receptor locations such as children's playgrounds and parks. Ajka town is located in western Hungary. It has an old-established industrial history with multiple contamination sources of heavy alumina industry and coal-based power plants supplied by the nearby bauxite and coal mines. At 44 locations 46 soil samples have been collected at a depth of 0-10 cm along a 1x1 km grid. The whole grid covers an area of 48 km2. In each grid cell a sampling site was selected at public areas. Sample preparation included drying at 40 C°, thorough homogenization and sieving to 2 mm fine earth before chemical analysis. Grain size distribution and soil pH were also determined. Samples were analyzed with ICP-OES and SEM methods. The As, Hg, Pb, Cu, Zn, Cd and Ni concentrations range from 2.07 ppm to 9.48 ppm, 0.02 ppm to 2.84 ppm, 5.08 ppm to 35.74 ppm, 2.55 ppm to 47.78 ppm, 17.00 ppm to 91.00 ppm, 0.07 ppm to 0.61 ppm and 5.57 ppm to 32.09 ppm, respectively. The results revealed the contaminated areas associated with past industrial sites. This study also identified locations with considerable contamination at

  13. MODIS-based spatiotemporal patterns of soil moisture and evapotranspiration interactions in Tampa Bay urban watershed

    Science.gov (United States)

    Chang, Ni-Bin; Xuan, Zhemin; Wimberly, Brent

    2011-09-01

    Soil moisture and evapotranspiration (ET) is affected by both water and energy balances in the soilvegetation- atmosphere system, it involves many complex processes in the nexus of water and thermal cycles at the surface of the Earth. These impacts may affect the recharge of the upper Floridian aquifer. The advent of urban hydrology and remote sensing technologies opens new and innovative means to undertake eventbased assessment of ecohydrological effects in urban regions. For assessing these landfalls, the multispectral Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing images can be used for the estimation of such soil moisture change in connection with two other MODIS products - Enhanced Vegetation Index (EVI), Land Surface Temperature (LST). Supervised classification for soil moisture retrieval was performed for Tampa Bay area on the 2 kmx2km grid with MODIS images. Machine learning with genetic programming model for soil moisture estimation shows advances in image processing, feature extraction, and change detection of soil moisture. ET data that were derived by Geostationary Operational Environmental Satellite (GOES) data and hydrologic models can be retrieved from the USGS web site directly. Overall, the derived soil moisture in comparison with ET time series changes on a seasonal basis shows that spatial and temporal variations of soil moisture and ET that are confined within a defined region for each type of surfaces, showing clustered patterns and featuring space scatter plot in association with the land use and cover map. These concomitant soil moisture patterns and ET fluctuations vary among patches, plant species, and, especially, location on the urban gradient. Time series plots of LST in association with ET, soil moisture and EVI reveals unique ecohydrological trends. Such ecohydrological assessment can be applied for supporting the urban landscape management in hurricane-stricken regions.

  14. Simple and fast technique to measure CO2 profiles in soil

    International Nuclear Information System (INIS)

    Fang, C.; Moncrieff, J.B.

    1998-01-01

    We describe a simple method for sampling soil gas at different profile depths and analyzing CO 2 concentration in the gas sample. Soil gas samples were taken on the soil surface from each chosen depth through a gas circulation system and analyzed in situ with an infrared gas analyzer. The method is suitable for quickly handling a large number of soil gas samples in the field. (author)

  15. The effects of the urban built environment on the spatial distribution of lead in residential soils

    International Nuclear Information System (INIS)

    Schwarz, K.; Pickett, Steward T.A.; Lathrop, Richard G.; Weathers, Kathleen C.; Pouyat, Richard V.; Cadenasso, Mary L.

    2012-01-01

    Lead contamination of urban residential soils is a public health concern. Consequently, there is a need to delineate hotspots in the landscape to identify risk and facilitate remediation. Land use is a good predictor of some environmental pollutants. However, in the case of soil lead, research has shown that land use is not a useful proxy. We hypothesize that soil lead is related to both individual landscape features at the parcel scale and the landscape context in which parcels are embedded. We sampled soil lead on 61 residential parcels in Baltimore, Maryland using field-portable x-ray fluorescence. Thirty percent of parcels had average lead concentrations that exceeded the USEPA limit of 400 ppm and 53% had at least one reading that exceeded 400 ppm. Results indicate that soil lead is strongly associated with housing age, distance to roadways, and on a parcel scale, distance to built structures. - Highlights: ► We investigated the effect of landscape heterogeneity on lead in residential soil. ► Landscape heterogeneity was considered at two different spatial scales. ► We sampled soil lead on residential parcels using field-portable x-ray fluorescence. ► Soil lead was associated with housing age and distance to roadways and buildings. ► Research has implications for land planning, health policies and predictive models. - We investigated the influence of landscape heterogeneity on lead in residential soil using x-ray fluorescence and identified important correlations with elements of urban land cover.

  16. Solubility and Potential Mobility of Heavy Metals in Two Contaminated Urban Soils from Stockholm, Sweden

    International Nuclear Information System (INIS)

    Oborn, Ingrid; Linde, Mats

    2001-01-01

    The solubility and potential mobility of heavy metals (Cd, Cu,Hg, Pb and Zn) in two urban soils were studied by sequential and leaching extractions (rainwater). Compared to rural (arable) soils on similar parent material, the urban soils were highly contaminated with Hg and Pb and to a lesser extent also with Cd,Cu and Zn. Metal concentrations in rainwater leachates were related to sequential extractions and metal levels reported from Stockholm groundwater. Cadmium and Zn in the soils were mainly recovered in easily extractable fractions, whereas Cu and Pb were complex bound. Concentrations of Pb in the residual fraction were between two- and eightfold those in arable soils, indicating that the sequential extraction scheme did not reflect the solid phases affected by anthropogenic inputs. Cadmium and Zn conc. in the rainwater leachates were within the range detected in Stockholm groundwater, while Cu and Pb conc. were higher, which suggests that Cu and Pb released from the surface soil were immobilised in deeper soil layers. In a soil highly contaminated with Hg, the Hg conc. in the leachate was above the median concentration, but still 50 times lower than the max concentration found in groundwater, indicating the possibility of other sources. In conclusion, it proved difficult to quantitatively predict the mobility of metals in soils by sequential extractions

  17. Metal Distribution in Urban Agricultural Soils in the Inland Empire, California

    Science.gov (United States)

    Marin, C. C. E.

    2015-12-01

    Urban environments exhibit unique biogeochemistry due to the presence of a myriad of anthropogenic sources of contaminants. One potential route through which humans have been exposed to metal contaminants is the ingestion of food produced on urban soils. The Inland Empire is a metropolitan located in semi-arid region of Southern California with greater than 4 million residents, where the growing population is demonstrating an increase in citizen participation in contributing to expanding local food systems. In response to the demand for locally grown produce, the Inland Empire is undergoing rapid land use change, where large tracts of land on the periphery of cities, including Riverside, are being converted or set aside for urban agriculture, though the quality of the soil for food production is unknown. At the same time, smaller gardens and farms are growing in number within the more densely populated areas. Assessing the quality of urban soil currently used for food production in this region can aid in projecting how land use change will affect the quality of crops produced as urban agriculture continues to expand in arid regions. Soil samples were taken from a variety of land use types, including areas currently producing crops and areas set aside for future large scale food production. Samples were collected at the surface (0-2 cm) and below till depth (20-22 cm). These soils were analyzed for total carbon including organic and inorganic carbon fractions, total nitrogen, bulk metal and trace metal concentrations (including As, Mn, Cr, Pb, Cd, Zn, and Cu). To approximate the mobility of the trace elements under various conditions, extraction tests were also performed, including EPA Pb bioavailability analysis. Finally, we utilize statistical tools and spatial analysis to illustrate the relationship between previous land use, current land use, and soil quality for urban crop production.

  18. Distribution of heavy metals in peri-urban agricultural areas soils

    International Nuclear Information System (INIS)

    Iram, S.; Ahmad, I.; Akhtar, S.

    2012-01-01

    In industry oriented peri-urban areas, the heavy metals accumulation in soils caused by industrialization has become a potential threat. The top soil sample from 48 agricultural fields were collected from a typical industry based peri-urban areas (Lahore, Faisalabad, Multan, Kasur, Islamabad, Wah Cantt.) of Punjab, Pakistan to study the accumulation and distribution of heavy metals (Pb, Cd, Cr, Cu, Ni and Zn) by atomic absorption spectrophotometer. The aim of the study was to investigate influence of an industrialized environment on the accumulation of heavy metals in peri-urban agricultural soils. The results of the study showed that the Pb content in the soil ranged from 17.24 to 126.4 mg/kg and the highest Pb content was observed in Islamabad soil samples, and the lowest in that of Multan area. The Cd content ranged from 1.1 to 4.0 mg/kg in Lahore while the highest Cr concentration level was 210.2 mg/kg and it was observed in Kasur and lowest 30.60 in that of Multan. The Cu content ranged from 31.2 to 127.9 mg/kg (Kasur-Lahore). The highest Ni concentration (82.0 mg/kg) was observed in Lahore from the urban area and the lowest level of 12.15 mg/kg was observed in Multan. The Zn content ranged from 42.5 to 267.7 mg/kg (Faisalabad-Wah Cantt). The study concluded that the concentration level of the heavy metals (Pb, Cd, Cu, Ni, Cr, Zn) in the studied peri-urban areas was higher as compared to heavy metal content of normal Dutch soil. High automobile traffic and industrial waste both are the most likely sources of the contamination of the peri urban areas of Pakistan. (author)

  19. Human Effects and Soil Surface CO2 fluxes in Tropical Urban Green Areas, Singapore

    Science.gov (United States)

    Ng, Bernard; Gandois, Laure; Kai, Fuu Ming; Chua, Amy; Cobb, Alex; Harvey, Charles; Hutyra, Lucy

    2013-04-01

    Urban green spaces are appreciated for their amenity value, with increasing interest in the ecosystem services they could provide (e.g. climate amelioration and increasingly as possible sites for carbon sequestration). In Singapore, turfgrass occupies approximately 20% of the total land area and is readily found on both planned and residual spaces. This project aims at understanding carbon fluxes in tropical urban green areas, including controls of soil environmental factors and the effect of urban management techniques. Given the large pool of potentially labile carbon, management regimes are recognised to have an influence on soil environmental factors (temperature and moisture), this would affect soil respiration and feedbacks to the greenhouse effect. A modified closed dynamic chamber method was employed to measure total soil respiration fluxes. In addition to soil respiration rates, environmental factors such as soil moisture and temperature, and ambient air temperature were monitored for the site in an attempt to evaluate their control on the observed fluxes. Measurements of soil-atmosphere CO2 exchanges are reported for four experimental plots within the Singtel-Kranji Radio Transmission Station (103o43'49E, 1o25'53N), an area dominated by Axonopus compressus. Different treatments such as the removal of turf, and application of clippings were effected as a means to determine the fluxes from the various components (respiration of soil and turf, and decomposition of clippings), and to explore the effects of human intervention on observed effluxes. The soil surface CO2 fluxes observed during the daylight hours ranges from 2.835 + 0.772 umol m-2 s-1 for the bare plot as compared to 6.654 + 1.134 umol m-2 s-1 for the turfed plot; this could be attributed to both autotrophic and heterotrophic respiration. Strong controls of both soil temperature and soil moisture are observed on measured soil fluxes. On the base soils, fluxes were positively correlated to soil

  20. Hurricane Wilma's impact on overall soil elevation and zones within the soil profile in a mangrove forest

    Science.gov (United States)

    Whelan, K.R.T.; Smith, T. J.; Anderson, G.H.; Ouellette, M.L.

    2009-01-01

    Soil elevation affects tidal inundation period, inundation frequency, and overall hydroperiod, all of which are important ecological factors affecting species recruitment, composition, and survival in wetlands. Hurricanes can dramatically affect a site's soil elevation. We assessed the impact of Hurricane Wilma (2005) on soil elevation at a mangrove forest location along the Shark River in Everglades National Park, Florida, USA. Using multiple depth surface elevation tables (SETs) and marker horizons we measured soil accretion, erosion, and soil elevation. We partitioned the effect of Hurricane Wilma's storm deposit into four constituent soil zones: surface (accretion) zone, shallow zone (0–0.35 m), middle zone (0.35–4 m), and deep zone (4–6 m). We report expansion and contraction of each soil zone. Hurricane Wilma deposited 37.0 (± 3.0 SE) mm of material; however, the absolute soil elevation change was + 42.8 mm due to expansion in the shallow soil zone. One year post-hurricane, the soil profile had lost 10.0 mm in soil elevation, with 8.5 mm of the loss due to erosion. The remaining soil elevation loss was due to compaction from shallow subsidence. We found prolific growth of new fine rootlets (209 ± 34 SE g m−2) in the storm deposited material suggesting that deposits may become more stable in the near future (i.e., erosion rate will decrease). Surficial erosion and belowground processes both played an important role in determining the overall soil elevation. Expansion and contraction in the shallow soil zone may be due to hydrology, and in the middle and bottom soil zones due to shallow subsidence. Findings thus far indicate that soil elevation has made substantial gains compared to site specific relative sea-level rise, but data trends suggest that belowground processes, which differ by soil zone, may come to dominate the long term ecological impact of storm deposit.

  1. Soil microbial community profiles and functional diversity in limestone cedar glades

    Science.gov (United States)

    Cartwright, Jennifer M.; Dzantor, E. Kudjo; Momen, Bahram

    2016-01-01

    Rock outcrop ecosystems, such as limestone cedar glades (LCGs), are known for their rare and endemic plant species adapted to high levels of abiotic stress. Soils in LCGs are thin (< 25 cm), soil-moisture conditions fluctuate seasonally between xeric and saturated, and summer soil temperatures commonly exceed 48 °C. The effects of these stressors on soil microbial communities (SMC) remain largely unstudied, despite the importance of SMC-plant interactions in regulating the structure and function of terrestrial ecosystems. SMC profiles and functional diversity were characterized in LCGs using community level physiological profiling (CLPP) and plate-dilution frequency assays (PDFA). Most-probable number (MPN) estimates and microbial substrate-utilization diversity (H) were positively related to soil thickness, soil organic matter (OM), soil water content, and vegetation density, and were diminished in alkaline soil relative to circumneutral soil. Soil nitrate showed no relationship to SMCs, suggesting lack of N-limitation. Canonical correlation analysis indicated strong correlations between microbial CLPP patterns and several physical and chemical properties of soil, primarily temperature at the ground surface and at 4-cm depth, and secondarily soil-water content, enabling differentiation by season. Thus, it was demonstrated that several well-described abiotic determinants of plant community structure in this ecosystem are also reflected in SMC profiles.

  2. Concentrations of heavy metals in urban soils of Havana city, Cuba

    International Nuclear Information System (INIS)

    Diaz Rizo, O.; Echevarria Castillo, F.; Arado Lopez, J. O.; Hernandez Merlo, M.

    2011-01-01

    Concentrations of Cr, Co, Ni, Cu, Zn, Pb and Fe in the top-soils (0-10 cm) of Havana city urbanized and un-urbanized areas were measured by X-ray fluorescence analysis. The mean Cr, Co, Ni, Cu, Zn and Pb contents in the urban topsoil samples from Havana City (151 ± 90, 13.9 ± 4.1, 66 ± 26, 101 ± 51, 240 ± 132 and 101 ± 61 mg.kg -1 , respectively) were compared with mean concentrations for other cities around the world. The results revealed higher concentrations of heavy metals in topsoil samples from industrial sites. Lowest heavy metal contents were determined in the un-urbanized areas. The comparison with Dutch soil quality guidelines showed a slightly contamination with Cr, Co, Ni Cu and Zn in all studied sites and with Pb in industrial soils. On the other hand, the metal-to-iron normalisation using Earth crust contents as background showed that soils from urbanized areas in Havana city (industrial sites, parks and school grounds) are moderately enriched by zinc, moderately to severe enriched (city parks and school grounds) and severe enriched (industrial sites) by lead. (Author)

  3. Soil organic carbon stocks assessment in Mediterranean natural areas: a comparison of entire soil profiles and soil control sections.

    Science.gov (United States)

    Parras-Alcántara, L; Lozano-García, B; Brevik, E C; Cerdá, A

    2015-05-15

    Soil organic carbon (SOC) is an important part of the global carbon (C) cycle. In addition, SOC is a soil property subject to changes and highly variable in space and time. Over time, some researches have analyzed entire soil profile (ESP) by pedogenetic horizons and other researches have analyzed soil control sections (SCS) to different thickness. However, very few studies compare both methods (ESP versus SCS). This research sought to analyze the SOC stock (SOCS) variability using both methods (ESP and SCS) in The Despeñaperros Natural Park, a nature reserve that consists of a 76.8 km(2) forested area in southern Spain. Thirty-four sampling points were selected in the study zone. Each sampling point was analyzed in two different ways, as ESP (by horizons) and as SCS with different depth increments (0-25, 25-50, 50-75 and 75-100 cm). The major goal of this research was to study the SOCS variability at regional scale. The soils investigated in this study included Phaeozems, Cambisols, Regosols and Leptosols. Total SOCS in the Despeñaperros Natural Park was over 28.2% greater when SCS were used compared to ESP, ranging from 0.8144 Tg C (10,604.2 Mg km(-2)) to 0.6353 Tg C (8272.1 Mg km(-2)) respectively (1 Tg = 10(12) g). However, when the topsoil (surface horizon and superficial section control) was analyzed, this difference increased to 59.8% in SCS compared to ESP. The comparison between ESP and SCS showed the effect of mixing pedogenetic horizons when depth increments were analyzed. This indicates an overestimate of T-SOCS when sampling by SCS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. School Readiness amongst Urban Canadian Families: Risk Profiles and Family Mediation

    Science.gov (United States)

    Browne, Dillon T.; Wade, Mark; Prime, Heather; Jenkins, Jennifer M.

    2018-01-01

    There is an ongoing need for literature that identifies the effects of broad contextual risk on school readiness outcomes via family mediating mechanisms. This is especially true amongst diverse and urban samples characterized by variability in immigration history. To address this limitation, family profiles of sociodemographic and contextual risk…

  5. Cohort profile: the Healthy Life in an Urban Setting (HELIUS) study in Amsterdam, The Netherlands

    NARCIS (Netherlands)

    Snijder, Marieke B.; Galenkamp, Henrike; Prins, Maria; Derks, Eske M.; Peters, Ron J. G.; Zwinderman, Aeilko H.; Stronks, Karien

    2017-01-01

    Purpose Ethnic minority groups usually have a more unfavourable disease risk profile than the host population. In Europe, ethnic inequalities in health have been observed in relatively small studies, with limited possibilities to explore underlying causes. The aim of the Healthy Life in an Urban

  6. An Exploration of the Motivational Profile of Secondary Urban Agriculture Students

    Science.gov (United States)

    Anderson, James C., II

    2013-01-01

    This descriptive-correlational study examined the personal factors that may affect the self-determination of 110 freshmen who have elected to enroll in an urban agriculture program. The personal factors, termed the motivational profile, consisted of influences in the decision to enroll in the program, the student's type of motivation to attend the…

  7. Monitoring the Soil Water Availability of Young Urban Trees in Hamburg, Germany

    Science.gov (United States)

    Titel, Selina; Gröngröft, Alexander; Eschenbach, Annette

    2017-04-01

    In large cities numerous trees have to be planted each year to replace died off or cut down trees or for greening of constructed roads and newly built quarters. The typical age of planted trees is between five and fifteen years. Often the planting takes place in special planting pits to stimulate the tree growth under the restricted urban conditions. Consequently, trees are surrounded by different soil substrates: the soil from the nursery in the root ball, the special planting pit substrate and the surrounding urban soil which is often anthropogenic influenced. Being relocated in the city, trees have to cope with the warmer urban climate, the soil sealing and compaction and the low water storage capacity of the substrate. All factors together increase the probability of dry phases for roadside trees. The aim of this study is to monitor the soil water availability at sites of planted roadside trees during the first years after planting. Therefore, a measuring design was developed, which works automatically and takes the complex below ground structure of the soil into account. This approach consists of 13 soil water tension sensors inside and outside of each planting pit up to one meter depth connected to a data logger. The monitoring devices will finally be installed at 20 roadside trees (amongst others Quercus cerris, Quercus robur, Acer platanoides 'Fairview') in Hamburg, Germany, to identify phases of drought stress. The young trees were mainly planted in spring 2016. Data of the first year of measurements show, that the water tension varied between the different soil substrates and the depth. In the first year of tree growth in the city, soil in the tree root ball became significantly drier than the surrounding soil material. In late summer 2016 the water tension in the topsoil had the potential to cause drought stress below some trees.

  8. Effects of biochar, waste water irrigation and fertilization on soil properties in West African urban agriculture.

    Science.gov (United States)

    Häring, Volker; Manka'abusi, Delphine; Akoto-Danso, Edmund K; Werner, Steffen; Atiah, Kofi; Steiner, Christoph; Lompo, Désiré J P; Adiku, Samuel; Buerkert, Andreas; Marschner, Bernd

    2017-09-06

    In large areas of sub-Saharan Africa crop production must cope with low soil fertility. To increase soil fertility, the application of biochar (charred biomass) has been suggested. In urban areas, untreated waste water is widely used for irrigation because it is a nutrient-rich year-round water source. Uncertainty exists regarding the interactions between soil properties, biochar, waste water and fertilization over time. The aims of this study were to determine these interactions in two typical sandy, soil organic carbon (SOC) and nutrient depleted soils under urban vegetable production in Tamale (Ghana) and Ouagadougou (Burkina Faso) over two years. The addition of biochar at 2 kg m -2 made from rice husks and corn cobs initially doubled SOC stocks but SOC losses of 35% occurred thereafter. Both biochar types had no effect on soil pH, phosphorous availability and effective cation exchange capacity (CEC) but rice husk biochar retained nitrogen (N). Irrigation with domestic waste water increased soil pH and exchangeable sodium over time. Inorganic fertilization alone acidified soils, increased available phosphorous and decreased base saturation. Organic fertilization increased SOC, N and CEC. The results from both locations demonstrate that the effects of biochar and waste water were less pronounced than reported elsewhere.

  9. Perceived Benefits of Participation and Risks of Soil Contamination in St. Louis Urban Community Gardens.

    Science.gov (United States)

    Wong, Roger; Gable, Leah; Rivera-Núñez, Zorimar

    2018-06-01

    Community gardens are credited for promoting health within neighborhoods, by increasing healthy food intake and exercise frequency. These benefits, however, are potentially undermined as urban soils are often contaminated from industrial legacies. The purpose of this study was to examine the perceived benefits of participation and risks of soil contamination within urban community gardens, and factors associated with soil contamination concerns. Ninety-three gardeners were interviewed across 20 community gardens in St. Louis, Missouri between June and August 2015. Surveys included questions on demographics, gardening practices, and perceptions of community gardening. Multilevel logistic models assessed how gardener demographics, gardening practices, and garden characteristics were associated with soil contamination concerns. Common perceived benefits of community gardening were community building (68.8%), healthy and fresh food (35.5%), and gardening education (18.3%). Most gardeners (62.4%) were not concerned about soil contamination, but nearly half (48.4%) stated concerns about heavy metals. Black race was significantly associated with soil contamination concerns (OR 5.47, 95% CI 1.00-30.15, p = .04). Community gardens offer numerous social and health benefits. Although most gardeners were not concerned about soil contamination, black gardeners were more likely to have concerns. Garden leaders should provide resources to gardeners to learn about soil contamination and methods to manage their risk, particularly in minority neighborhoods.

  10. Metal assessment in urban park soils in Sao Paulo. 3. Aclimacao Park

    International Nuclear Information System (INIS)

    Pavese, Arthur C.; Figueiredo, Ana Maria G.; Camargo, Sonia P.; Gumiero, Felipe C.; Enzweiler, Jacinta

    2007-01-01

    As part of a project which aims metal assessment in urban park soils from Sao Paulo, in the present paper the concentration of the elements As, Ba, Zn, Sb, Se, Co, Cr, Cu and Pb were determined in surface soil samples (0-5 cm and 0-20 cm) from Aclimacao park of Sao Paulo. Urban soils play an important role in maintaining the environmental quality as they can act as both source and sink for pollutants that can affect human health. Parks and playgrounds are where urban children spend most of their time outdoors and are also where children most frequently come in contact with soil. Aclimacao park is located at the central region of the city, in a residential area. Instrumental Neutron Activation Analysis (INAA) and X-Ray Fluorescence (XRF) were used for metal analysis. The results obtained for Zn were higher than the values considered as reference values for soils in Sao Paulo, according to the Environmental Protection Agency of the State of Sao Paulo (CETESB), but lower than the Prevention values. For Ba, Cr, and Sb, the results obtained showed concentration levels higher than Prevention value reported by CETESB. According to CETESB, metal concentration levels above the Prevention value can cause prejudicial alterations in soil and subterranean water quality. For As, in the 0-5 cm samples, the concentration levels were near or above the Intervention value for agricultural area reported by CETESB. (author)

  11. Soil solution interactions may limit Pb remediation using P amendments in an urban soil

    Science.gov (United States)

    Lead (Pb) contaminated soils are a potential exposure hazard to the public. Amending soils with phosphorus (P) may reduce Pb soil hazards. Soil from Cleveland, OH containing 726 ± 14 mg Pb kg-1 was amended in a laboratory study with bone meal and triple super phospha...

  12. Soil profile property estimation with field and laboratory VNIR spectroscopy

    Science.gov (United States)

    Diffuse reflectance spectroscopy (DRS) soil sensors have the potential to provide rapid, high-resolution estimation of multiple soil properties. Although many studies have focused on laboratory-based visible and near-infrared (VNIR) spectroscopy of dried soil samples, previous work has demonstrated ...

  13. Microbial Community Dynamics in Soil Depth Profiles Over 120,000 Years of Ecosystem Development

    Directory of Open Access Journals (Sweden)

    Stephanie Turner

    2017-05-01

    Full Text Available Along a long-term ecosystem development gradient, soil nutrient contents and mineralogical properties change, therefore probably altering soil microbial communities. However, knowledge about the dynamics of soil microbial communities during long-term ecosystem development including progressive and retrogressive stages is limited, especially in mineral soils. Therefore, microbial abundances (quantitative PCR and community composition (pyrosequencing as well as their controlling soil properties were investigated in soil depth profiles along the 120,000 years old Franz Josef chronosequence (New Zealand. Additionally, in a microcosm incubation experiment the effects of particular soil properties, i.e., soil age, soil organic matter fraction (mineral-associated vs. particulate, O2 status, and carbon and phosphorus additions, on microbial abundances (quantitative PCR and community patterns (T-RFLP were analyzed. The archaeal to bacterial abundance ratio not only increased with soil depth but also with soil age along the chronosequence, coinciding with mineralogical changes and increasing phosphorus limitation. Results of the incubation experiment indicated that archaeal abundances were less impacted by the tested soil parameters compared to Bacteria suggesting that Archaea may better cope with mineral-induced substrate restrictions in subsoils and older soils. Instead, archaeal communities showed a soil age-related compositional shift with the Bathyarchaeota, that were frequently detected in nutrient-poor, low-energy environments, being dominant at the oldest site. However, bacterial communities remained stable with ongoing soil development. In contrast to the abundances, the archaeal compositional shift was associated with the mineralogical gradient. Our study revealed, that archaeal and bacterial communities in whole soil profiles are differently affected by long-term soil development with archaeal communities probably being better adapted to

  14. Lead Speciation and In Vitro Bioaccessibility of Compost-Amended Urban Garden Soils

    Energy Technology Data Exchange (ETDEWEB)

    Attanayake, Chammi P.; Hettiarachchi, Ganga M.; Ma, Qing; Pierzynski, Gary M.; Ransom, Michel D. (NWU); (KSU)

    2017-01-01

    In situ soil amendments can modify the Pb bioavailability by changing soil Pb speciation. Urban soils from three vegetable gardens containing different total Pb concentrations were used. The study evaluated how compost amendment and aging of soil-compost mixture in situ affected the following: (i) soil Pb speciation in the field and (ii) change of soil Pb speciation during an in vitro bioaccessibility extraction mimicking gastric phase dissolution at pH 2.5. X-ray absorption fine structure spectroscopy was used to determine Pb speciation in amended and nonamended soils and residues left after in vitro bioaccessibility extraction of those soils. Compost amendment and aging of compost in the field had a negligible effect on Pb bioaccessibility in the soils. Major Pb species in the soils were Pb sorbed to Fe oxy(hydr)oxide (Pb-Fh) and to soil organic C (Pb-Org). The fraction of Pb-Org was increased as soil-compost mixture aged in the field. During the in vitro extraction, the fraction of Pb-Fh was decreased, the fraction of Pb-Org was increased, and hydroxypyromorphite was formed in both amended and nonamended soils. Freshly incorporated compost enhanced the dissolution of Pb-Fh during the extraction. As soil-compost mixture aged in the field, the dissolution of Pb-Fh was low, demonstrating more stability of the Pb-Fh during the extraction. Compost amendment showed potential to contribute to reduced bioaccessibility of Pb as compost aged in the soil by increasing Pb-Org fraction in the field and stability of Pb-Fh during the in vitro bioaccessibility extraction.

  15. Exotic grasses and nitrate enrichment alter soil carbon cycling along an urban-rural tropical forest gradient.

    Science.gov (United States)

    Cusack, Daniela F; Lee, Joseph K; McCleery, Taylor L; LeCroy, Chase S

    2015-12-01

    Urban areas are expanding rapidly in tropical regions, with potential to alter ecosystem dynamics. In particular, exotic grasses and atmospheric nitrogen (N) deposition simultaneously affect tropical urbanized landscapes, with unknown effects on properties like soil carbon (C) storage. We hypothesized that (H1) soil nitrate (NO3 (-) ) is elevated nearer to the urban core, reflecting N deposition gradients. (H2) Exotic grasslands have elevated soil NO3 (-) and decreased soil C relative to secondary forests, with higher N promoting decomposer activity. (H3) Exotic grasslands have greater seasonality in soil NO3 (-) vs. secondary forests, due to higher sensitivity of grassland soil moisture to rainfall. We predicted that NO3 (-) would be positively related to dissolved organic C (DOC) production via changes in decomposer activity. We measured six paired grassland/secondary forest sites along a tropical urban-to-rural gradient during the three dominant seasons (hurricane, dry, and early wet). We found that (1) soil NO3 (-) was generally elevated nearer to the urban core, with particularly clear spatial trends for grasslands. (2) Exotic grasslands had lower soil C than secondary forests, which was related to elevated decomposer enzyme activities and soil respiration. Unexpectedly, soil NO3 (-) was negatively related to enzyme activities, and was lower in grasslands than forests. (3) Grasslands had greater soil NO3 (-) seasonality vs. forests, but this was not strongly linked to shifts in soil moisture or DOC. Our results suggest that exotic grasses in tropical regions are likely to drastically reduce soil C storage, but that N deposition may have an opposite effect via suppression of enzyme activities. However, soil NO3 (-) accumulation here was higher in urban forests than grasslands, potentially related to of aboveground N interception. Net urban effects on C storage across tropical landscapes will likely vary depending on the mosaic of grass cover, rates of N

  16. Urban Soil: Assessing Ground Cover Impact on Surface Temperature and Thermal Comfort.

    Science.gov (United States)

    Brandani, Giada; Napoli, Marco; Massetti, Luciano; Petralli, Martina; Orlandini, Simone

    2016-01-01

    The urban population growth, together with the contemporary deindustrialization of metropolitan areas, has resulted in a large amount of available land with new possible uses. It is well known that urban green areas provide several benefits in the surrounding environment, such as the improvement of thermal comfort conditions for the population during summer heat waves. The purpose of this study is to provide useful information on thermal regimes of urban soils to urban planners to be used during an urban transformation to mitigate surface temperatures and improve human thermal comfort. Field measurements of solar radiation, surface temperature (), air temperature (), relative humidity, and wind speed were collected on four types of urban soils and pavements in the city of Florence during summer 2014. Analysis of days under calm, clear-sky condition is reported. During daytime, sun-to-shadow differences for , apparent temperature index (ATI), and were significantly positive for all surfaces. Conversely, during nighttime, differences among all surfaces were significantly negative, whereas ATI showed significantly positive differences. Moreover, was significantly negative for grass and gravel. Relative to the shaded surfaces, was higher on white gravel and grass than gray sandstone and asphalt during nighttime, whereas gray sandstone was always the warmest surface during daytime. Conversely, no differences were found during nighttime for ATI and measured over surfaces that were exposed to sun during the day, whereas showed higher values on gravel than grass and asphalt during nighttime. An exposed surface warms less if its albedo is high, leading to a significant reduction of during daytime. These results underline the importance of considering the effects of surface characteristics on surface temperature and thermal comfort. This would be fundamental for addressing urban environment issues toward the heat island mitigation considering also the impact of urban

  17. Accumulation of Heavy Metals in Roadside Soil in Urban Area and the Related Impacting Factors.

    Science.gov (United States)

    Wang, Meie; Zhang, Haizhen

    2018-05-24

    Heavy metal contamination in roadside soil due to traffic emission has been recognized for a long time. However, seldom has been reported regarding identification of critical factors influencing the accumulation of heavy metals in urban roadside soils due to the frequent disturbances such as the repair of damaged roads and green belt maintanance. Heavy metals in the roadside soils of 45 roads in Xihu district, Hangzhou city were investigated. Results suggested the accumulation of Cu, Pb, Cd, Cr, and Zn in roadside soil was affected by human activity. However, only two sites had Pb and Zn excessing the standards for residential areas, respectively, according to Chinese Environmental Quality Standards for soils. The concentrations of Cu, Pb, Cd, and Zn were significantly and positively correlated to soil pH and organic matter. An insignificant correlation between the age of the roads or vegetation cover types and the concentration of heavy metals was found although they were reported closely relating to the accumulation of heavy metals in roadside soils of highways. The highest Pb, Cd, and Cr taking place in sites with heavy traffic and significant differences in the concentrations of Cu, Pb, Cd, and Zn among the different categories of roads suggested the contribution of traffic intensity. However, it was difficult to establish a quantitative relationship between traffic intensity and the concentrations of heavy metals in the roadside soil. It could be concluded that impaction of traffic emission on the accumulation of heavy metals in roadside soils in urban area was slight and soil properties such as pH and organic matters were critical factors influencing the retention of heavy metals in soils.

  18. Microbial degradation of street dust polycyclic aromatic hydrocarbons in microcosms simulating diffuse pollution of urban soil

    DEFF Research Database (Denmark)

    Johnsen, Anders R; de Lipthay, Julia R; Sørensen, Søren J

    2006-01-01

    Diffuse pollution with polycyclic aromatic hydrocarbons (PAHs) of topsoil in urban regions has caused increasing concerns in recent years. We simulated diffuse pollution of soil in microcosms by spiking sandy topsoil (A-horizon) and coarse, mineral subsoil (C-horizon) with street dust (PM63...... for the persistence and low bioaccessibility of 5- and 6-ring PAHs in diffusely polluted soil.......) isolated from municipal street sweepings from central Copenhagen. The microbial communities adapted to PAH degradation in microcosms spiked with street dust in both A-horizon and C-horizon soils, in spite of low PAH-concentrations. The increased potential for PAH degradation was demonstrated on several...

  19. Changes in soil carbon sequestration in Pinus massoniana forests along an urban-to-rural gradient of southern China

    Directory of Open Access Journals (Sweden)

    H. Chen

    2013-10-01

    Full Text Available Urbanization is accelerating globally, causing a variety of environmental changes such as increases in air temperature, precipitation, atmospheric CO2, and nitrogen (N deposition. However, the effects of these changes on forest soil carbon (C sequestration remain largely unclear. Here, we used urban-to-rural environmental gradients in Guangdong Province, southern China, to address the potential effects of these environmental changes on soil C sequestration in Pinus massoniana forests. In contrast to our expectations and earlier observations, soil C content in urban sites was significantly lower than that in suburban and rural sites. Lower soil C pools in urban sites were correlated with a significant decrease in fine root biomass and a potential increase in soil organic C decomposition. Variation of soil C pools was also a function of change in soil C fractions. Heavy fraction C content in urban sites was significantly lower than that in suburban and rural sites. By contrast, light fraction C content did not vary significantly along the urban-to-rural gradient. Our results suggest that urbanization-induced environmental changes may have a negative effect on forest soil C in the studied region.

  20. Evaluation of total petroleum hydrocarbons (TPH in urban soil from Maicao, Colombia

    Directory of Open Access Journals (Sweden)

    Martha L. Castellanos

    2015-09-01

    Full Text Available The presence of total petroleum hydrocarbons (TPH and their effects on soil properties in urban area of Maicao, Colombia, was evaluated. 18 sites were selected: nine contaminated and nine non-contaminated and two depths (0-30 cm and 30-60 cm were evaluated. The medium TPH fraction (Soxhlet reflux method, EPA 3540C and heavy TPH fraction (Soxhlet reflux method, EPA 3550C were extracted. TPH were identified by gas chromatography with flame ionization detector (GC-FID. Soil parameters related potential adsorption were determined: pH, electrical conductivity (EC, organic carbon (OC, cation exchange capacity (CEC, texture; soil moisture retention, aggregate stability. High contents of TPH was found in all fractions. No significant changes were found for texture and (EC. There was an increase in the content of OC (500%, soil aggregation and aggregate stability (200%; slight decrease pH, CEC and soil moisture retention (23.5% soil surface. These results show the vulnerability of the urban soils to the TPH contamination and exposure of the human population to these contaminants.

  1. The Influence of Heating Mains on Yeast Communities in Urban Soils

    Science.gov (United States)

    Tepeeva, A. N.; Glushakova, A. M.; Kachalkin, A. V.

    2018-04-01

    The number and species diversity of yeasts in urban soils (urbanozems) affected by heating mains and in epiphytic yeast complexes of grasses growing above them were studied. The number of yeasts in the soil reached 103-104 CFU/g; on the plants, 107 CFU/g. Significant (by an order of magnitude) increase in the total number of soil yeasts in the zone of heating mains in comparison with the surrounding soil was found in winter period. Overall, 25 species of yeasts were isolated in our study. Yeast community of studied urbanozems was dominated by the Candida sake, an eurybiont of the temperate zone and other natural ecotopes with relatively low temperatures, but its share was minimal in the zone of heating mains. In general, the structure of soil and epiphytic yeast complexes in the zones of heating mains differed from that in the surrounding area by higher species diversity and a lower share of pigmented species among the epiphytic yeasts. The study demonstrated that the number and species structure of soil yeast communities in urban soils change significantly under the influence of the temperature factor and acquire a mosaic distribution pattern.

  2. Application of Electromagnetic Induction to Monitor Changes in Soil Electrical Conductivity Profiles in Arid Agriculture

    KAUST Repository

    Jadoon, K.Z.; McCabe, Matthew; Moghadas, D.

    2015-01-01

    In this research, multi-configuration electromagnetic induction (EMI) measurements were conducted in a corn field to estimate variation in soil electrical conductivity profiles in the roots zone. Electromagnetic forward model based on the full

  3. Microbiomes structure and diversity in different horizons of full soil profiles

    Science.gov (United States)

    Chernov, Timofey; Tkhakakhova, Azida; Zhelezova, Alena; Semenov, Mikhail; Kutovaya, Olga

    2017-04-01

    Topsoil is a most common object for soil metagenomic studies; sometimes soil profile is being formally split in layers by depth. However, Russian Soil Science School formulated the idea of soil profile as a complex of soil horizons, which can differ in their properties and genesis. In this research we analyzed 57 genetic soil horizons of 8 different soils from European part of Russia: Albeluvisol, Greyzemic Phaeozem, three Chermozems (different land use - till, fallow, wind-protecting tree line), Rhodic Cambisol, Haplic Kastanozem and Salic Solonetz (WRB classification). Sampling was performed from all genetic horizons in each soil profile starting from topsoil until subsoil. Total DNA was extracted and 16S rRNA sequencing was provided together with chemical analysis of soil (pH measurement, C and N contents, etc.). Structure and diversity of prokaryotic community are significantly different in those soil horizons, which chemical properties and processes of origin are contrasting with nearest horizons: Na-enriched horizon of Solonetz, eluvial horizon of Albeluvisol, plough pan of Agrochernozem. Actinobacteria were abundant in top horizons of soils in warm and dry climate, while Acidobacteria had the highest frequency in soils of moist and cold regions. Concerning Archaea, Thaumarchaeota prevailed in all studied soils. Their rate was higher in microbiomes of upper horizons of steppe soils and it was reducing with depth down the profile. Prokaryotic communities in Chernozems were clustered by soil horizons types: microbiomes of A (organic topsoil) and B (mineral) horizons formed non-overlapping clusters by principal component analysis, cluster formed by prokaryotic communities of transitional soil horizons (AB) take place between clusters of A and B horizons. Moreover, prokaryotic communities of A horizons differ from each other strongly, while microbiomes of B horizons formed a narrow small cluster. It must be explaned by more diverse conditions in upper A horizons

  4. Urban-development-induced Changes in the Diversity and Composition of the Soil Bacterial Community in Beijing

    Science.gov (United States)

    Yan, Bing; Li, Junsheng; Xiao, Nengwen; Qi, Yue; Fu, Gang; Liu, Gaohui; Qiao, Mengping

    2016-12-01

    Numerous studies have implicated urbanization as a major cause of loss of biodiversity. Most of them have focused on plants and animals, even though soil microorganisms make up a large proportion of that biodiversity. However, it is unclear how the soil bacterial community is affected by urban development. Here, paired-end Illumina sequencing of the 16 S rRNA gene at V4 region was performed to study the soil microbial community across Beijing’s built-up area. Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, Verrucomicrobia, Planctomycetes, and Chloroflexi were the dominant phyla in all samples, but the relative abundance of these phyla differed significantly across these concentric zones. The diversity and composition of the soil bacterial community were found to be closely correlated with soil pH. Variance partitioning analysis suggested that urban ring roads contributed 5.95% of the bacterial community variation, and soil environmental factors explained 17.65% of the variation. The results of the current work indicate that urban development can alter the composition and diversity of the soil microbial community, and showed pH to be a key factor in the shaping of the composition of the soil bacterial community. Urban development did have a strong impact on the bacterial community of urban soil in Beijing.

  5. Putting urban soils in the spotlight: A learning experience through the Climate-KIC's initiative

    Science.gov (United States)

    Maymó, Ana; Gimeno-García, Eugenia; Pascual-Aguilar, Juan Antonio; Andreu, Vicente; Rubio, José Luis

    2015-04-01

    The European Commission encourages integrating ecosystem-based approaches in the portfolio of adaptation strategies also in the urban areas. However, the renewed interest in the environmental benefits from green infrastructures coexists with the marginality with which they are treated in practice and, especially, where soil is concerned. Despite its critical functions, soils in cities have often been neglected. In fact, urban soil issues rarely get society attention or even from our policy makers. But, how to make urban soils visible?. From academia we need to extend our communication and networking abilities to engage citizens with projects related to urban soils. Through the Climate-KIC's professional placement programme, Pioneers into Practice, we were able to connect with stakeholders with widely different interests, and engage a broad range of opinions and comments on local circumstances and needs in a semi-quantitative form. Methodology included an actor analysis, an actor network map and a set of semi-structured actor interviews. This involved a local stakeholder network establishment. This stakeholder network reaches out beyond the usual suspects we would expect to partner and it is represented by the following groups: local administration, local governmental services (e.g., forestry and agriculture extension), relevant non-governmental organizations (e.g., dedicated to environment or development) at local level, planners, developers, and individuals (e.g., long-term local residents). The approach is focused on the non-technical barriers to success, whether they are social, institutional, financial, behavioral or regulatory, and how to overcome them. In this context, of a raising environmental awareness, the principal response from interviews demonstrated strong support for a strategic approach to soil management at the urban core and the countryside fringe. Herein, the contribution of urban soils to the provision of ecosystem services, in the framework of

  6. Metal assessment in urban park soils in Sao Paulo 4. Alfredo Volpi (Morumbi Park)

    International Nuclear Information System (INIS)

    Camargo, Sonia P.; Figueiredo, Ana Maria G.; Pavese, Arthur C.; Gumiero, Felipe C.; Enzweiler, Jacinta

    2007-01-01

    The presence of elevated metal concentrations in soils of the urban environment has been recognized as an important source of metal intake to humans, particularly to children, which are more susceptible to the adverse effects of soil ingestion than adults. There has been little research on urban soils in Sao Paulo, a very populated city with severe pollution problems, and there is little information about metal concentration levels in public parks of Sao Paulo. As part of a project which aims metal assessment in urban park soils from Sao Paulo, in the present paper the concentration of the elements As, Ba, Cr, Sb and Zn were determined in topsoil samples (0- 5 cm and 0-20 cm) from Alfredo Volpi (Morumbi) park of Sao Paulo. Instrumental Neutron Activation Analysis (INAA) was used for metal analysis. Preliminary results showed higher concentrations of As, Ba and Sb compared with the values considered as reference for soils in Sao Paulo, according to Environmental Protection Agency of the State of Sao Paulo (CETESB). In some samples Ba showed concentration levels higher than the Prevention values reported by CETESB. (author)

  7. Chemical profiling of PM10 from urban road dust.

    Science.gov (United States)

    Alves, C A; Evtyugina, M; Vicente, A M P; Vicente, E D; Nunes, T V; Silva, P M A; Duarte, M A C; Pio, C A; Amato, F; Querol, X

    2018-09-01

    Road dust resuspension is one of the main sources of particulate matter with impacts on air quality, health and climate. With the aim of characterising the thoracic fraction, a portable resuspension chamber was used to collect road dust from five main roads in Oporto and an urban tunnel in Braga, north of Portugal. The PM 10 samples were analysed for: i) carbonates by acidification and quantification of the evolved CO 2 , ii) carbonaceous content (OC and EC) by a thermo-optical technique, iii) elemental composition by ICP-MS and ICP-AES after acid digestion, and iv) organic speciation by GC-MS. Dust loadings of 0.48±0.39mgPM 10 m -2 were obtained for asphalt paved roads. A much higher mean value was achieved in a cobbled pavement (50mgPM 10 m -2 ). In general, carbonates were not detected in PM 10 . OC and EC accounted for PM 10 mass fractions up to 11% and 5%, respectively. Metal oxides accounted for 29±7.5% of the PM 10 mass from the asphalt paved roads and 73% in samples from the cobbled street. Crustal and anthropogenic elements, associated with tyre and brake wear, dominated the inorganic fraction. PM 10 comprised hundreds of organic constituents, including hopanoids, n-alkanes and other aliphatics, polycyclic aromatic hydrocarbons (PAH), alcohols, sterols, various types of acids, glycerol derivatives, lactones, sugars and derivatives, phenolic compounds and plasticizers. In samples from the cobbled street, these organic classes represented only 439μgg -1 PM 10 , while for other pavements mass fractions up to 65mgg -1 PM 10 were obtained. Except for the cobbled street, on average, about 40% of the analysed organic fraction was composed of plasticizers. Although the risk via inhalation of PAH was found to be insignificant, the PM 10 from some roads can contribute to an estimated excess of 332 to 2183 per million new cancer cases in adults exposed via ingestion and dermal contact. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Unexpectedly high soil organic carbon stocks under impervious surfaces contributed by urban deep cultural layers

    Science.gov (United States)

    Bae, J.; Ryu, Y.

    2017-12-01

    The expansion of urban artificial structures has altered the spatial distribution of soil organic carbon (SOC) stocks. The majority of the urban soil studies within the land-cover types, however, focused on top soils despite the potential of deep soils to store large amounts of SOC. Here, we investigate vertical distribution of SOC stocks in both impervious surfaces (n = 11) and adjacent green spaces (n = 8) to a depth of 4 m with in an apartment complex area, Seoul, Republic of Korea. We found that more than six times differences in SOC stocks were observed at 0-1 m depth between the impervious surfaces (1.90 kgC m-2) and the green spaces (12.03 kgC m-2), but no significant differences appeared when comparing them at the depth of 0-4 m. We found "cultural layers" with the largest SOC stocks at 1-2 m depth in the impervious surfaces (15.85 kgC m-2) and 2-3 m depths in urban green spaces (12.52 kgC m-2). Thus, the proportions of SOC stocks at the 0-1 m depth to the total of 0-4 m depth were 6.83% in impervious surfaces and 32.15% in urban green spaces, respectively. The 13C and 15N stable isotope data with historical aerial photographs revealed that the cropland which existed before 1978 formed the SOC in the cultural layers. Our results highlight that impervious surface could hold large amount of SOC stock which has been overlooked in urban carbon cycles. We believe this finding will help city planners and policy makers to develop carbon management programs better towards sustainable urban ecosystems.

  9. Distribution of some organic components in two forest soils profiles with evidence of soil organic matter leaching.

    Science.gov (United States)

    Álvarez-Romero, Marta; Papa, Stefania; Lozano-García, Beatriz; Parras-Alcántara, Luis; Coppola, Elio

    2015-04-01

    Soil stores organic carbon more often than we can find in living vegetation and atmosphere together. This reservoir is not inert, but it is constantly in a dynamic phase of inputs and losses. Soil organic carbon mainly depends on land cover, environment conditions and soil properties. After soil deposition, the organic residues of different origin and nature, the Soil Organic Matter (SOM) can be seen involved in two different processes during the pedogenesis: mineralization and humification. The transport process along profile happens under certain conditions such as deposition of high organic residues amount on the top soil, high porosity of the soil caused by sand or skeleton particles, that determine a water strong infiltrating capacity, also, extreme temperatures can slow or stop the mineralization and/or humification process in one intermediate step of the degradation process releasing organic metabolites with high or medium solubility and high loads of water percolating in relation to intense rainfall. The transport process along soil profile can take many forms that can end in the formation of Bh horizons (h means accumulation of SOM in depth). The forest cover nature influence to the quantity and quality of the organic materials deposited with marked differences between coniferous and deciduous especially in relation to resistance to degradation. Two soils in the Campania region, located in Lago Laceno (Avellino - Italy) with different forest cover (Pinus sp. and Fagus sp.) and that meets the requirements of the place and pedological formation suitable for the formation and accumulation of SOM in depth (Bh horizon) were studied. The different soil C fractions were determinated and were assessed (Ciavatta C. et al. 1990; Dell'Abate M.T. et al. 2002) for each soil profile the Total Extractable Lipids (TEL). Furthermore, the lignin were considered as a major component of soil organic matter (SOM), influencing its pool-size and its turnover, due to the high

  10. Natural abundance N stable isotopes in plants and soils as an indicator of N deposition hotspots in urban environments

    Science.gov (United States)

    Trammell, T. L.

    2017-12-01

    The natural abundance of stable isotopes in plants and soils has been utilized to understand ecological phenomenon. Foliar δ15N is an integrator of soil δ15N, atmospheric N sources, and fractionation processes that occur during plant N uptake, plant N assimilation, and mycorrhizal associations. The amount of reactive N in the environment has greatly increased due to human activities, and urban ecosystems experience excess N deposition that can have cascading effects on plants and soils. Foliar δ15N has been shown to increase with increasing N deposition and nitrification rates suggesting increased foliar δ15N occurs with greater N inputs as a result of accelerated soil N cycling. Thus, foliar δ15N can be an indication of soil N availability for plant uptake and soil N cycling rates, since high N availability results in increased soil N cycling and subsequent loss of 14N. Limited research has utilized foliar and soil δ15N in urban forests to assess the importance of plant uptake of atmospheric N deposition and to gain insight about ecosystem processes. Previous investigations found foliar δ15N of mature trees in urban forests is not only related to elevated pollutant-derived N deposition, but also to soil N availability and soil N cycling rates. Similarly, enriched foliar δ15N of urban saplings was attributed to soil characteristics that indicated higher nitrification, thus, greater nitrate leaching and low N retention in the urban soils. These studies demonstrate the need for measuring the δ15N of various plant and soil N sources while simultaneously measuring soil N processes (e.g., net nitrification rates) in order to use natural abundance δ15N of plants and soils to assess N sources and cycling in urban forests. A conceptual framework that illustrates biogenic and anthropogenic controls on nitrogen isotope composition in urban plants and soils will be presented along with foliar and soil δ15N from urban forests across several cities as a proof of

  11. Impacts of Urban Sprawl on Soil Resources in the Changchun–Jilin Economic Zone, China, 2000–2015

    Directory of Open Access Journals (Sweden)

    Xiaoyan Li

    2018-06-01

    Full Text Available The Changchun–Jilin Economic Zone (CJEZ is one of the most rapidly developing areas in Northeast China, as well as one of the famous golden maize belts in the world. This is a case study to assess the impacts of urban sprawl on soil resources using remote sensing imagery and geographic spatial analysis methods. The common urbanization intensity index (CUII, soil quality index, and soil landscape metrics were calculated to reflect urbanization and the response of soil resource. Results showed that the area of soil sealing changed from 112,460 ha in 2000 to 139,233 ha in 2015, and in the rural region, the area occupied by urbanization nearly kept balance with the area of rural residential expansion. Urban land increased by 26,767 ha at an annual rate of 3.23% from 2000 to 2015. All seven soil types were occupied during the urbanization process, among which black soil ranked the highest (18,560 ha and accounted for 69.34% of the total occupied area. Soils of Grades I (3927 ha and II (15,016 ha were 64.75% of the total occupied soil areas. Urban land expanded in an irregular shape and a disordered way, which led to an increasing large patch index (LPI and aggregation index (AI, and a decreasing edge density (ED and Shannon’s diversity index (SHDI of the soil landscape in the study area during 2000–2015. According to the geographically weighted regression (GWR model analysis, the R2 between the CUII and soil landscape metrics decreased from the LPI and ED to SHDI and in turn to AI. The local R2 between SHDI, ED, and CUII showed a gradient structure from the inner city to peri-urban areas, in which larger values appeared with strongly intensive urbanization in urban fringes. Soil sealing induced by urbanization has become a significant factor threatening soil, the environment, and food security. How to coordinate regional development and ensure the sustainability of the multiple functions of soil is a problem that needs to be taken into account

  12. Metal assessment in urban park soils in Sao Paulo 1. Ibirapuera Park

    International Nuclear Information System (INIS)

    Figueiredo, Ana Maria G.; Camargo, Sonia P.; Pavese, Arthur C.; Gumiero, Felipe C.; Enzweiler, Jacinta; Sigolo, Joel B.

    2007-01-01

    In the last years urban soils received increasing attention by scientists, leading to studies focused on their description and investigation all over the world, due to the increasing metal pollution derived from incinerators, industrial waste, atmospheric deposition of dust and aerosols, and other activities. Metal contamination in Sao Paulo public parks is an important environmental question and there is little information on this subject. As part of a project which aims metal assessment in urban park soils from Sao Paulo, in the present paper the concentration of the elements As, Ba, Cr, Pb, Sb and Zn were determined in surface soil samples (0-5 cm) from Ibirapuera park of Sao Paulo. Ibirapuera park is one of the biggest and most visited parks of the city of Sao Paulo, receiving during the weekends more than 400,000 visitors. Instrumental Neutron Activation Analysis (INAA) and X-ray Fluorescence (FRX) were used for metal analysis. Preliminary results showed concentration levels of the analyzed elements higher than the values considered as reference values for soils in Sao Paulo, according to the Environmental Protection Agency of the State of Sao Paulo (CETESB). For As, Ba, Cr and Sb, in some samples the concentrations were even higher than the Prevention values reported by CETESB. The high concentrations of the elements As, Ba, Cr, Pb, Sb and Zn in the Ibirapuera park top soils suggest an anthropogenic source and indicate a potential damage to soil quality. (author)

  13. Trace metal uptake by tropical vegetables grown on soil amended with urban sewage sludge

    International Nuclear Information System (INIS)

    Nabulo, G.; Black, C.R.; Young, S.D.

    2011-01-01

    Trace metal uptake was measured for tropical and temperate leafy vegetables grown on soil from an urban sewage disposal farm in the UK. Twenty-four leafy vegetables from East Africa and the UK were assessed and the five vegetable types that showed the greatest Cd concentrations were grown on eight soils differing in the severity of contamination, pH and other physico-chemical properties. The range of Cd concentrations in the edible shoots was greater for tropical vegetables than for temperate types. Metal uptake was modelled as a function of (i) total soil metal concentration, (ii) CaCl 2 -soluble metal, (iii) soil solution concentration and (iv) the activity of metal ions in soil pore water. Tropical vegetables were not satisfactorily modelled as a single generic 'green vegetable', suggesting that more sophisticated approaches to risk assessment may be required to assess hazard from peri-urban agriculture in developing countries. - Research highlights: → Cadmium uptake by tropical green vegetables varies greatly between types. → Modelling metal uptake works best for Ni, Cd and Zn but is poor for Cu, Ba and Pb. → Modelling with dilute CaCl 2 extraction is as good as metal ion activity in pore water. - Trace metal uptake by tropical leaf vegetables can be predicted from dilute CaCl 2 extraction of soil but model parameters are genotype-specific.

  14. Trace metal uptake by tropical vegetables grown on soil amended with urban sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Nabulo, G.; Black, C.R. [School of Biosciences, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Young, S.D., E-mail: scott.young@nottingham.ac.u [School of Biosciences, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)

    2011-02-15

    Trace metal uptake was measured for tropical and temperate leafy vegetables grown on soil from an urban sewage disposal farm in the UK. Twenty-four leafy vegetables from East Africa and the UK were assessed and the five vegetable types that showed the greatest Cd concentrations were grown on eight soils differing in the severity of contamination, pH and other physico-chemical properties. The range of Cd concentrations in the edible shoots was greater for tropical vegetables than for temperate types. Metal uptake was modelled as a function of (i) total soil metal concentration, (ii) CaCl{sub 2}-soluble metal, (iii) soil solution concentration and (iv) the activity of metal ions in soil pore water. Tropical vegetables were not satisfactorily modelled as a single generic 'green vegetable', suggesting that more sophisticated approaches to risk assessment may be required to assess hazard from peri-urban agriculture in developing countries. - Research highlights: Cadmium uptake by tropical green vegetables varies greatly between types. Modelling metal uptake works best for Ni, Cd and Zn but is poor for Cu, Ba and Pb. Modelling with dilute CaCl{sub 2} extraction is as good as metal ion activity in pore water. - Trace metal uptake by tropical leaf vegetables can be predicted from dilute CaCl{sub 2} extraction of soil but model parameters are genotype-specific.

  15. Improved or Unimproved Urban Areas Effect on Soil and Water Quality

    Directory of Open Access Journals (Sweden)

    Sally D. Logsdon

    2017-04-01

    Full Text Available Construction in urban areas usually results in compacted soil, which restricts plant growth and infiltration. Nutrients may be lost in storm runoff water and sediment. The purpose of this study was to determine if existing lawns benefit from aeration and surface compost additions without the negative impact of nutrient loss in runoff. Four sets of lawns were compared, with or without compost plus aeration, as a paired comparison. Surface bulk density was significantly reduced in the treated lawns (1.32 versus 1.42 Mg·m−3. Visual evaluation of soil structure showed improvement in the treated lawns. Of fifteen measurement dates over four years, four dates showed significantly higher surface soil water contents in the treated lawns compared with the untreated lawns. When compared over time, three of the four treated lawns had significantly higher soil water content than the untreated lawns. Nutrient concentrations in rainfall simulator runoff were not significantly different between treated and control lawns, which showed that compost did not negatively impact water quality. Compost and aeration helped restore soil quality for urban soils of recent construction.

  16. Spatial Variation of Soil Lead in an Urban Community Garden: Implications for Risk-Based Sampling.

    Science.gov (United States)

    Bugdalski, Lauren; Lemke, Lawrence D; McElmurry, Shawn P

    2014-01-01

    Soil lead pollution is a recalcitrant problem in urban areas resulting from a combination of historical residential, industrial, and transportation practices. The emergence of urban gardening movements in postindustrial cities necessitates accurate assessment of soil lead levels to ensure safe gardening. In this study, we examined small-scale spatial variability of soil lead within a 15 × 30 m urban garden plot established on two adjacent residential lots located in Detroit, Michigan, USA. Eighty samples collected using a variably spaced sampling grid were analyzed for total, fine fraction (less than 250 μm), and bioaccessible soil lead. Measured concentrations varied at sampling scales of 1-10 m and a hot spot exceeding 400 ppm total soil lead was identified in the northwest portion of the site. An interpolated map of total lead was treated as an exhaustive data set, and random sampling was simulated to generate Monte Carlo distributions and evaluate alternative sampling strategies intended to estimate the average soil lead concentration or detect hot spots. Increasing the number of individual samples decreases the probability of overlooking the hot spot (type II error). However, the practice of compositing and averaging samples decreased the probability of overestimating the mean concentration (type I error) at the expense of increasing the chance for type II error. The results reported here suggest a need to reconsider U.S. Environmental Protection Agency sampling objectives and consequent guidelines for reclaimed city lots where soil lead distributions are expected to be nonuniform. © 2013 Society for Risk Analysis.

  17. Impervious Surfaces Alter Soil Bacterial Communities in Urban Areas: A Case Study in Beijing, China

    Directory of Open Access Journals (Sweden)

    Yinhong Hu

    2018-02-01

    Full Text Available The rapid expansion of urbanization has caused land cover change, especially the increasing area of impervious surfaces. Such alterations have significant effects on the soil ecosystem by impeding the exchange of gasses, water, and materials between soil and the atmosphere. It is unclear whether impervious surfaces have any effects on soil bacterial diversity and community composition. In the present study, we conducted an investigation of bacterial communities across five typical land cover types, including impervious surfaces (concrete, permeable pavement (bricks with round holes, shrub coverage (Buxus megistophylla Levl., lawns (Festuca elata Keng ex E. Alexeev, and roadside trees (Sophora japonica Linn. in Beijing, to explore the response of bacteria to impervious surfaces. The soil bacterial communities were addressed by high-throughput sequencing of the bacterial 16S rRNA gene. We found that Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, and Firmicutes were the predominant phyla in urban soils. Soil from impervious surfaces presented a lower bacterial diversity, and differed greatly from other types of land cover. Soil bacterial diversity was predominantly affected by Zn, dissolved organic carbon (DOC, and soil moisture content (SMC. The composition of the bacterial community was similar under shrub coverage, roadside trees, and lawns, but different from beneath impervious surfaces and permeable pavement. Variance partitioning analysis showed that edaphic properties contributed to 12% of the bacterial community variation, heavy metal pollution explained 3.6% of the variation, and interaction between the two explained 33% of the variance. Together, our data indicate that impervious surfaces induced changes in bacterial community composition and decrease of bacterial diversity. Interactions between edaphic properties and heavy metals were here found to change the composition of the bacterial community and

  18. Creating a soil-like profile for plant growth using tailings sand and fine tails

    International Nuclear Information System (INIS)

    Li, X.; Fung, M. P. Y.

    1996-01-01

    Development of a technology to create stable aggregates with a soil-like profile capable of supporting a stable plant community, was discussed as the major challenge and primary task in restoring oil sands processing wastes, and in re-creating a self-sustaining ecosystem. A procedure for creating a soil-like profile using oil sands mining wastes, was described. Clay and water content were critical factors in the aggregation procedure. A study to evaluate the physical, chemical and biological properties of these soils and their suitability as a plant growth medium is currently underway. 6 refs., 3 figs

  19. Distribution of yeast complexes in the profiles of different soil types

    Science.gov (United States)

    Glushakova, A. M.; Kachalkin, A. V.; Tiunov, A. V.; Chernov, I. Yu.

    2017-07-01

    The number and taxonomic structure of the yeast complexes were investigated in the full profiles of the soddy-podzolic soil (Central Forest State Nature Biosphere Reserve), dark gray forest soil (Kaluzhskie Zaseki Reserve), and chernozem (Privolzhskaya Forest-Steppe Reserve). In all these soils, the number of yeasts was maximal (104 CFU/g) directly under the litter; it drastically decreased with the depth. However, at the depth of 120-160 cm, the number of yeasts significantly increased in all the soils; their maximum was found in the illuvial horizon of the soddy-podzolic soil. Such a statistically significant increase in the number of yeasts at a considerable depth was found for the first time. Different groups of yeasts were present in the yeast communities of different soils. The species structure of yeast communities changed little in each soil: the same species were isolated both from the soil surface and from the depth of more than 2 m. The results showed that yeasts could be used for soil bioindication on the basis of specific yeast complexes in the profiles of different soil types rather than individual indicative species.

  20. Characterizing Changes of Heavy Metals in the Soils from Different Urban Location of Borujerd, Lorestan Province, Iran

    Directory of Open Access Journals (Sweden)

    Eisa Solgi

    2017-09-01

    Full Text Available As more people live in cities and urban areas, evaluation of urban environmental quality is nowadays an unavoidable necessity. Urbanization gives off heavy metals into urban soils and threatens the human health. In this study, urban soil samples were acquired from different locations (Public parks, streets, and squares from Borujerd, Iran. The levels of Cd and Pb in the soils, along with soil pH, electrical conductivity (EC, and particle size distribution (texture, were analyzed. Kriging method by Surfer software was employed to create the spatial distribution maps of Cd, Pb, and geoaccumulation index (Igeo. The average Cd and Pb concentrations in the surface soil samples were 2.50±1.14, and 50.37±34.77 mg/kg dry weight, respectively. The highest mean concentration of Cd was found in street soils and as for Pb in square soils. The interpolation maps illustrated the same behavior for Cd and Pb with elevated concentrations located in the southeast. The mean values of geoaccumulation index (Igeo showed that soils are moderately/strongly contaminated with Cd and moderately contaminated with Pb. In this study, traffic emission, textile industries and probably released untreated municipal wastewater into the soil are anthropogenic sources of Pb and Cd.

  1. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain)

    International Nuclear Information System (INIS)

    Peña-Fernández, A.; Lobo-Bedmar, M.C.; González-Muñoz, M.J.

    2015-01-01

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. - Highlights: • Anthropogenic activities may affect the seasonal metal variation in Alcalá's soils. • Weather characteristics may also influence the seasonal metal variation in soils. • Alcalá's continual urban growth may have increased the levels of metals in its soils. • Metal variability in Alcalá's industrial soils might be dependent on their sources. • High soil metal content might make it difficult to identify temporal variation

  2. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Peña-Fernández, A. [Departamento de Ciencias Biomédicas, Unidad de Toxicología, Universidad de Alcalá, Crta. Madrid-Barcelona Km, 33.6, 28871 Alcalá de Henares, Madrid (Spain); Lobo-Bedmar, M.C. [Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentario (IMIDRA), Finca el Encín, Crta. Madrid-Barcelona Km, 38.2, 28800 Alcalá de Henares, Madrid (Spain); González-Muñoz, M.J., E-mail: mariajose.gonzalez@uah.es [Departamento de Ciencias Biomédicas, Unidad de Toxicología, Universidad de Alcalá, Crta. Madrid-Barcelona Km, 33.6, 28871 Alcalá de Henares, Madrid (Spain)

    2015-01-15

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. - Highlights: • Anthropogenic activities may affect the seasonal metal variation in Alcalá's soils. • Weather characteristics may also influence the seasonal metal variation in soils. • Alcalá's continual urban growth may have increased the levels of metals in its soils. • Metal variability in Alcalá's industrial soils might be dependent on their sources. • High soil metal content might make it difficult to identify temporal variation.

  3. Availability and bio-accessibility of metals in the clay fraction of urban soils of Sevilla

    International Nuclear Information System (INIS)

    Madrid, F.; Diaz-Barrientos, E.; Madrid, L.

    2008-01-01

    The availability of Cd, Cr, Cu, Ni, Mn, Pb and Zn present in the finest size particles of urban soils is studied by comparing the concentrations in the clay fraction with those extracted from the whole soil by either single-extraction or sequential extraction method. Many metals are preferentially present in the finest particles as compared to coarser fractions. This is true for most metals studied, except Mn and, perhaps, Cd. Those metals present in the clay fraction are often in easily bio-accessible forms, especially Cu, Pb and Zn. The results suggest that bio-accessible forms of these three metals are distributed among the three sequential fractions, and even the fraction considered as 'residual' is also bio-accessible to a significant extent. The statistical analysis shows some distinctions among metals that are compared to the 'urban', 'natural', or intermediate behaviour of the various metals as proposed earlier in the literature. - The recreational use of most urban soils causes that the availability of metals in the finest soil particles must be studied and eventually controlled

  4. Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin

    Science.gov (United States)

    Wynn, J.G.; Harden, J.W.; Fries, T.L.

    2006-01-01

    Analysis of depth trends of 13C abundance in soil organic matter and of 13C abundance from soil-respired CO2 provides useful indications of the dynamics of the terrestrial carbon cycle and of paleoecological change. We measured depth trends of 13C abundance from cropland and control pairs of soils in the lower Mississippi Basin, as well as the 13C abundance of soil-respired CO2 produced during approximately 1-year soil incubation, to determine the role of several candidate processes on the 13C depth profile of soil organic matter. Depth profiles of 13C from uncultivated control soils show a strong relationship between the natural logarithm of soil organic carbon concentration and its isotopic composition, consistent with a model Rayleigh distillation of 13C in decomposing soil due to kinetic fractionation during decomposition. Laboratory incubations showed that initially respired CO 2 had a relatively constant 13C content, despite large differences in the 13C content of bulk soil organic matter. Initially respired CO2 was consistently 13C-depleted with respect to bulk soil and became increasingly 13C-depleted during 1-year, consistent with the hypothesis of accumulation of 13C in the products of microbial decomposition, but showing increasing decomposition of 13C-depleted stable organic components during decomposition without input of fresh biomass. We use the difference between 13C / 12C ratios (calculated as ??-values) between respired CO 2 and bulk soil organic carbon as an index of the degree of decomposition of soil, showing trends which are consistent with trends of 14C activity, and with results of a two-pooled kinetic decomposition rate model describing CO2 production data recorded during 1 year of incubation. We also observed inconsistencies with the Rayleigh distillation model in paired cropland soils and reasons for these inconsistencies are discussed. ?? 2005 Elsevier B.V. All rights reserved.

  5. Metal concentration in urban park soils of Sao Paulo 2. Buenos AiresPark

    International Nuclear Information System (INIS)

    Gumiero, Felipe C.; Figueiredo, Ana Maria G.; Camargo, Sonia P.; Pavese, Arthur; Sigolo, Joel B.

    2007-01-01

    As part of a project which aims metal concentration assessment in urban park soils of Sao Paulo, in the present paper the concentration of the elements As, Ba, Cr, Co, Cu, Pb, Sb and Zn were determined in surface soil samples (0-5 cm and 0-20 cm) from Buenos Aires park of Sao Paulo. This park is located in central region of the city, and is surrounded by avenues and streets, with different traffic volumes. Instrumental Neutron Activation Analysis (INAA) and X-ray Fluorescence (FRX) were used for metal analysis. Preliminary results showed concentration levels of the analyzed elements higher than the values considered as reference values for soils in Sao Paulo, according to the Environmental Protection Agency of the State of Sao Paulo (CETESB). These results suggest that these elements have anthropogenic origin and indicate a potential risk for soil quality. (author)

  6. Impact of prescribed burning on soils in urban interface areas in Granada (south-eastern Spain

    Directory of Open Access Journals (Sweden)

    Sara Montoya Sánchez-Camacho

    2014-03-01

    Full Text Available We report here on the effects of preventive burning on soils in peri-urban areas in Granada (Spain. The sampling area, located close to the Sacromonte Abbey on the outskirts of the city of Granada,used to be an agricultural plot devoted to olive trees and cereals but is now abandoned to scrub and the odd tree.The soils in question were entisols. Controlled burning was conductedfor six hours over an area of 13,300 m2and samples were taken at three different times: before burning, four days afterwards and a year afterwards. The parameters measured were: pH, organic matter, carbonates, soil moisture and nitrogen. The results reveal that whilst organic matter and nitrogen contents increased, pH, carbonates and soil moisture decreased after burning.

  7. Current and historical land use influence soil-based ecosystem services in an urban landscape.

    Science.gov (United States)

    Ziter, Carly; Turner, Monica G

    2018-04-01

    Urban landscapes are increasingly recognized as providing important ecosystem services (ES) to their occupants. Yet, urban ES assessments often ignore the complex spatial heterogeneity and land-use history of cities. Soil-based services may be particularly susceptible to land-use legacy effects. We studied indicators of three soil-based ES, carbon storage, water quality regulation, and runoff regulation, in a historically agricultural urban landscape and asked (1) How do ES indicators vary with contemporary land cover and time since development? (2) Do ES indicators vary primarily among land-cover classes, within land-cover classes, or within sites? (3) What is the relative contribution of urban land-cover classes to potential citywide ES provision? We measured biophysical indicators (soil carbon [C], available phosphorus [P], and saturated hydraulic conductivity [K s ]) in 100 sites across five land-cover classes, spanning an ~125-year gradient of time since development within each land-cover class. Potential for ES provision was substantial in urban green spaces, including developed land. Runoff regulation services (high K s ) were highest in forests; water quality regulation (low P) was highest in open spaces and grasslands; and open spaces and developed land (e.g., residential yards) had the highest C storage. In developed land covers, both C and P increased with time since development, indicating effects of historical land-use on contemporary ES and trade-offs between two important ES. Among-site differences accounted for a high proportion of variance in soil properties in forests, grasslands, and open space, while residential areas had high within-site variability, underscoring the leverage city residents have to improve urban ES provision. Developed land covers contributed most ES supply at the citywide scale, even after accounting for potential impacts of impervious surfaces. Considering the full mosaic of urban green space and its history is needed to

  8. Methane oxidation in soil profiles of Dutch and Finnish coniferous forests with different soil texture and atmospheric nitrogen deposition

    NARCIS (Netherlands)

    Saari, A.; Martikainen, P.J.; Ferm, A.; Ruuskanen, J.; Boer, W. de; Troelstra, S.R.; Laanbroek, H.J.

    1997-01-01

    We studied methane oxidation capacity in soil profiles of Dutch and Finnish coniferous forests. The Finnish sites (n = 9) had nitrogen depositions from 3 to 36 kg N ha⁻¹ a⁻¹. The deposition of N on the Dutch sites (n = 13) was higher ranging from 50 to 92 kg N ha⁻¹ a⁻¹. The Dutch sites had also

  9. Methane oxidation in soil profiles of Dutch and Finnish coniferous forests with different soil texture and atmospheric nitrogen deposition

    NARCIS (Netherlands)

    Saari, A.; Martikainen, P.J.; Ferm, A.; Ruuskanen, J.; De Boer, W.; Troelstra, S.R.; Laanbroek, H.J.

    1997-01-01

    We studied methane oxidation capacity in soil profiles of Dutch and Finnish coniferous forests. The Finnish sites (n = 9) had nitrogen depositions from 3 to 36 kg N ha(-1) a(-1). The deposition of N on the Dutch sites (n = 13) was higher ranging from 50 to 92 kg N ha(-1) a(-1). The Dutch sites had

  10. Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India.

    Science.gov (United States)

    Suman, Swapnil; Sinha, Alok; Tarafdar, Abhrajyoti

    2016-03-01

    Present study was carried out to assess and understand potential health risk and to examine the impact of vehicular traffic on the contamination status of urban traffic soils in Dhanbad City with respect to polycyclic aromatic hydrocarbons (PAHs). Eight urban traffic sites and two control/rural site surface soils were analyzed and the contents of 13 priority PAHs was determined. Total PAH concentration at traffic sites ranged from 1.019 μg g(-1) to 10.856 μg g(-1) with an average value of 3.488 μg g(-1). At control/rural site, average concentration of total PAHs was found to be 0.640 μg g(-1). PAH pattern was dominated by four- and five-ring PAHs (contributing >50% to the total PAHs) at all the eight traffic sites. On the other hand, rural soil showed a predominance of low molecular weight three-ring PAHs (contributing >30% to the total PAHs). Indeno[123-cd]pyrene/benz[ghi]perylene (IP/BgP) ratio indicated that PAH load at the traffic sites is predominated by the gasoline-driven vehicles. The ratio of Ant/(Ant+Phe) varied from 0.03 to 0.44, averaging 0.10; Fla/(Fla+Pyr) from 0.39 to 0.954, averaging 0.52; BaA/(BaA+Chry) from 0.156 to 0.60, averaging 0.44; and IP/(IP+BgP) from 0.176 to 0.811, averaging 0.286. The results indicated that vehicular emission was the major source for PAHs contamination with moderate effect of coal combustion and biomass combustion. Carcinogenic potency of PAH load in traffic soil was nearly 6.15 times higher as compared to the control/rural soil. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Identifying the role of historical anthropogenic activities on urban soils: geochemical impact and city scale mapping

    Science.gov (United States)

    Le Guern, Cecile; Baudouin, Vivien; Conil, Pierre

    2017-04-01

    Recently, European cities have faced several changes including deindustrialization and population increase. To limit urban sprawl, urban densification is preferred. It conducts to (re)develop available areas such as brownfields. Although these areas can be attractive for housing due to their location (in proximity to the city centre or to a riverside), their soils and subsoils are often contaminated. They are therefore potentially harmful for human health and the environment, and potentially costly to remediate. Currently, in case of contamination suspicion, depth geochemical characterization of urban soil and subsoil are carried out at site scale. Nevertheless, large redevelopment project occur at quarter to city scale. It appears therefore useful to acquire the preliminary knowledge on the structure and quality of soil and subsoils, as well as on the potential sources of contamination at quarter to city scale. In the frame of the Ile de Nantes (France) redevelopment project, we considered more particularly anthropogenic deposits and former industrial activities as main sources of contamination linked to human activities. To face the low traceability of the use of anthropogenic deposits and the lack of synthesis of former industrial activities, we carried out a historical study, synthetizing the information spread in numerous archive documents to spatialize the extent of the deposits and of the former activities. In addition we developed a typology of made grounds according to their contamination potential to build a 3D geological model with a geochemical coherence. In this frame, we valorized existing borehole descriptions coming mainly from pollution diagnosis and geotechnical studies. We also developed a methodology to define urban baseline compatibility levels using the existing analytical data at depth from pollution diagnosis. These data were previously gathered in a local geodatabase towards with borehole descriptions (more than 2000 borehole descriptions

  12. Parameters Affecting 137Cs Migration within Soil Profile

    International Nuclear Information System (INIS)

    Sefien, S.M.; Ibrahim, A.S.; Abdelmalik, W.E.Y.

    2013-01-01

    Some studies have been carried out on the adsorption, distribution and migration of 137 Cs within soils of the area in the vicinity of the Nuclear Research Centre, Egypt, and Ismailia Canal. The soil physicochemical and mineralogical characteristics were carried out and indicated that the soil samples consisted mainly of sand fraction (quartz) and silt fractions (semctite minerals). The kinetics of caesium adsorption and its adsorption isotherms for the tested soils were also studied. The sorption of 137 Cs on soil minerals markedly affects its migration rate. The natural background of both locations of study indicated that the amounts of 137 Cs present in the reactor site were found to be originated from the fallout and from the external contamination which affected the background level. The 137 Cs activity at the canal site was found to be 20.01 Bq/m 2 .cm, while that around the reactor site were found to be 231.15 Bq/m2.cm which may be originating from the fallout and from external contamination which affect the background level at that location. The activity in the canal soil which amounted to 20.01 Bq/m2/cm (0.87 Bq/kg) is about that of background.Based on the distribution data, the vertical distribution of 137 Cs has been studied for soil in both locations (the vicinity of the Nuclear Research Centre (NRC) and Ismailia canal). The vertical migration rates of 137 Cs were calculated for soil samples selected from different locations. These rates were found to be 0.056 and 0.031 cm/year for the reactor and canal site respectively.

  13. Vertical and horizontal differences of soil parameters and radiocaesium contents in soil profiles (dystric cambisol) under spruce

    International Nuclear Information System (INIS)

    Strebl, F.; Gerzabek, M.

    1997-05-01

    In a spruce forest stand 9 pooled soil profiles (ten auger cores each, 4 layers) were collected within a homogeneous area of 200 ha. This sampling technique provides sufficient accuracy for the determination of most physico-chemical soil characteristics as well as for the assessment of vertical gradients and horizontal variability within the investigation area. The results reveal the soils' tendency for podsolization and acidification processes. In spite of the small sample sizes cation wash-out (Ca, Mg) due to differences in the orographic situation was determined with high significance. 86 % of 137 Cs-contamination derived from the Chernobyl-fallout in 1986 are still found in the top-soil (10 cm). Nutrient-cycling and the high binding capacity of soil organic matter retard vertical migration of 137 Cs in forest soils effectively. From the present data sets for different soil parameters the minimum number of soil samples ensuring maximum admissible errors of 10 and 20 % were calculated. (author)

  14. Kinematic seismic response of piles in layered soil profile

    International Nuclear Information System (INIS)

    Ahmad, I.; Khan, A.N.

    2006-01-01

    This paper is aimed at highlighting the importance of Kinematic Seismic Response of Piles, a phenomenon often ignored in dynamic analysis. A case study is presented where the end bearing pile is embedded in two layer soil system of highly contrasting stiffnesses; a typical case where kinematic loading plays important role. The pile soil system is modeled as continuous system and as discrete parameter system; both are based on BDWF (Beam on Dynamic Winkler Foundation) formulation. For discrete parameter system, a finite element software SAP2000 is used and the modeling technique of kinematic interaction in finite element software is discussed. For pile soil system modeled as continuous system, a general MATLAB code is developed capable of performing elastic site response analysis in two layer soil system, solving differential equation governing kinematic interaction, and giving as output the maximum ground displacement, maximum pile displacement, rotation, moment and shear distribution along pile length. The paper concludes that kinematic seismic actions must be evaluated particularly at the interface of soil layers of significantly differing soil stiffnesses. (author)

  15. Urban soil biomonitoring by beetle and earthworm populations

    Energy Technology Data Exchange (ETDEWEB)

    Janossy, L.; Bitto, A. [ELTE Univ., Budapest (Hungary)

    1995-12-31

    Two macro invertebrate groups were chosen for biomonitoring environmental changes. The beetle population was pitfall trapped (five month in 1994) at five downtown sites (parks) of Budapest and in a hilly original woodland as a control site 33km NW of Budapest. Earthworms were collected by using formol solution. Five heavy metals were measured (Pb, Co, Hg, Zn, Cu) in the upper soil layer at the same sampling sites. Pb, Hg, Zn and Cu was over the tolerable limit in a park near the railway, extreme high Pb (530 mg/kg dry soil) and Zn content was measured in one park. Roads are also salted in wintertime. The number of beetle species in the downtown parks varied 10 to 22 (226--462 specimen). Near to the edge of the city up to 45 beetle species were found in a park with 1,027 specimen. In the woodland area 52 beetle species with 1,061 specimen were found. Less dominance and higher specific diversity showed the direction from downtown to woodland. Only 2 or 3 cosmopolitan earthworm species existed in downtown parks with 30--35 specimen/m{sup 2}, in the control woodland area 7 mostly endemic earthworm species were found with 74 specimens/m{sup 2}. But earthworm biomass was higher in three well fertilized parks (43--157 g/m{sup 2}), than in the original woodland (25-g/m{sup 2}). The beetle populations seem to be good tools for biomonitoring. Earthworms are susceptible to environmental changes but they also strongly depend on the leaf litter and the organic matter of the soil. The change in the animal populations is the result of summarized environmental impacts in such a big city like Budapest.

  16. Soil moisture and temperature profile effects on microwave emission at low frequencies

    International Nuclear Information System (INIS)

    Raju, S.; Chanzy, A.; Wigneron, J.P.; Calvet, J.C.; Kerr, Y.; Laguerre, L.

    1995-01-01

    Soil moisture and temperature vertical profiles vary quickly during the day and may have a significant influence on the soil microwave emission. The objective of this work is to quantify such an influence and the consequences in soil moisture estimation from microwave radiometric information. The analysis is based on experimental data collected by the ground-based PORTOS radiometer at 1.4, 5.05, and 10.65 GHz and data simulated by a coherent model of microwave emission from layered media [Wilheit model (1978)]. In order to simulate diurnal variations of the brightness temperature (TB), the Wilheit model is coupled to a mechanistic model of heat and water flows in the soil. The Wilheit model is validated on experimental data and its performances for estimating TB are compared to those of a simpler approach based on a description of the soil media as a single layer (Fresnel model). When the depth of this single layer (hereafter referred to as the sampling depth) is determined to fit the experimental data, similar accuracy in TB estimation is found with both the Wilheit and Fresnel models. The soil microwave emission is found to be strongly affected by the diurnal variations of soil moisture and temperature profiles. Consequently, the TB sensitivity to soil moisture and temperature profiles has an influence on the estimation, from microwave observations, of the surface soil moisture in a surface layer with a fixed depth (05): the accuracy of θs retrievals and the optimal sampling depth depends both on the variation in soil moisture and temperature profile shape. (author)

  17. [Cd Runoff Load and Soil Profile Movement After Implementation of Some Typical Contaminated Agricultural Soil Remediation Strategies].

    Science.gov (United States)

    Liu, Xiao-li; Zeng, Zhao-xia; Tie, Bai-qing; Chen, Qiu-wen; Wei, Xiang-dong

    2016-02-15

    Owing to the strong ability to immobilize and hyperaccumulate some toxic heavy metals in contaminated soils, the biochar, lime and such as hyperaccumulator ramie received increasing interests from crops and environment safety in recent years. Outdoor pot experiment was conducted to compare the impacts of lime and biochar addition in paddy rice treatment, hyperaccumulator ramie and ramie combined with EDTA of plant Phytoremediation methods on soil available Cd dynamics in rainfall runoff and the mobility along soil profile, under both natural acid precipitation and acid soil conditions. The results showed that, biochar addition at a 2% mass ratio application amount significantly increased soil pH, while ramie with EDTA application obviously decreased soil pH compared to ramie monoculture. Within the same rainfall events, water soluble Cd concentration in surface runoff of ramie treatments was significantly higher than those of waterlogged rice treatments, and Cd concentration in runoff was obviously increased after EDTA addition, whereas lime at a 0.3% mass ratio application amount as additive had no obvious impact on soil pH and Cd speciation change, which may be due to the low application amount. During the whole experimental period , water soluble Cd concentration of rainfall runoff in spring was higher than that in summer, showing the same seasonal characteristics in all treatments. Biochar addition could significantly decrease available Cd content in 0-20 cm soil layer and with certain preferable persistency effects, whereas EDTA addition treatment obviously increased available Cd of 0-20 cm soil layer compared to other treatments, and obvious Cd element activation phenomenon in 20-40 cm soil layer was observed after EDTA addition. In conclusion, lime and biochar as environmental and friendly alkaline Cd immobilization materials showed lower environment risk to surface and ground receiving water, but attention should be paid to phytoremediation enhanced with

  18. ORCHIDEE-SOM: modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe

    Science.gov (United States)

    Camino-Serrano, Marta; Guenet, Bertrand; Luyssaert, Sebastiaan; Ciais, Philippe; Bastrikov, Vladislav; De Vos, Bruno; Gielen, Bert; Gleixner, Gerd; Jornet-Puig, Albert; Kaiser, Klaus; Kothawala, Dolly; Lauerwald, Ronny; Peñuelas, Josep; Schrumpf, Marion; Vicca, Sara; Vuichard, Nicolas; Walmsley, David; Janssens, Ivan A.

    2018-03-01

    Current land surface models (LSMs) typically represent soils in a very simplistic way, assuming soil organic carbon (SOC) as a bulk, and thus impeding a correct representation of deep soil carbon dynamics. Moreover, LSMs generally neglect the production and export of dissolved organic carbon (DOC) from soils to rivers, leading to overestimations of the potential carbon sequestration on land. This common oversimplified processing of SOC in LSMs is partly responsible for the large uncertainty in the predictions of the soil carbon response to climate change. In this study, we present a new soil carbon module called ORCHIDEE-SOM, embedded within the land surface model ORCHIDEE, which is able to reproduce the DOC and SOC dynamics in a vertically discretized soil to 2 m. The model includes processes of biological production and consumption of SOC and DOC, DOC adsorption on and desorption from soil minerals, diffusion of SOC and DOC, and DOC transport with water through and out of the soils to rivers. We evaluated ORCHIDEE-SOM against observations of DOC concentrations and SOC stocks from four European sites with different vegetation covers: a coniferous forest, a deciduous forest, a grassland, and a cropland. The model was able to reproduce the SOC stocks along their vertical profiles at the four sites and the DOC concentrations within the range of measurements, with the exception of the DOC concentrations in the upper soil horizon at the coniferous forest. However, the model was not able to fully capture the temporal dynamics of DOC concentrations. Further model improvements should focus on a plant- and depth-dependent parameterization of the new input model parameters, such as the turnover times of DOC and the microbial carbon use efficiency. We suggest that this new soil module, when parameterized for global simulations, will improve the representation of the global carbon cycle in LSMs, thus helping to constrain the predictions of the future SOC response to global

  19. Factors of the accumulation of heavy metals and metalloids at geochemical barriers in urban soils

    Science.gov (United States)

    Kosheleva, N. E.; Kasimov, N. S.; Vlasov, D. V.

    2015-05-01

    The bulk contents and concentrations of mobile (extracted by an ammonium acetate buffer with EDTA) Cd, Pb, Sb, As, Bi, Zn, and Cu were determined in the surface horizons of urban soils in the Eastern administrative okrug of Moscow. The regression analysis showed that the accumulation of these metals and metalloids in the soils is controlled by the physicochemical soil properties and by number of anthropogenic factors and landscape conditions (geochemical position, type of loose deposits, character of land use, dust load, vehicle emissions, building pattern, percent of green areas, and the extent of sealed soils). The precipitation of studied elements on the geochemical barriers had the following regularities: Cd, Cu, and Zn accumulated on the alkaline barriers; Bi, Sb, As, Cu, Pb, and Zn, on chemisorption barriers; Sb, As, and Pb, on organomineral barriers; and Cd and Cu, on the sorption-sedimentation barriers. Technogenic transformation of the physicochemical properties of urban soils resulted in the increase of the mean bulk contents of heavy metals and metalloids by 33-99%; the portion of elements fixed on the geochemical barriers increased by 26-50%.

  20. The spread of 137Cs by resuspension of contaminated soil in the urban area of Goiania

    International Nuclear Information System (INIS)

    Pires do Rio, M.A.; Amaral, E.C.S.; Paretzke, H.G.

    2000-01-01

    Measurements regarding the population exposure were performed in Goiania after the radiological accident as well as studies on resuspension and redeposition of 137 Cs in urban areas, on the contribution of soil splash to the 137 Cs uptake by leafy vegetables and on the transfer of 137 Cs from soil to chicken meat and eggs. Periodical street dust sampling was used to follow-up the spreading of the radionuclide in the city. The results do not indicate a measurable spreading of this radionuclide throughout the city from the contaminated areas, but resuspension can lead to significant local contamination of agricultural products, equipment, structures, etc. (author)

  1. Influence of contrast morphogenetic features of urban constructed soils on the functioning of Moscow green lawn urban ecosystems: analysis based on the field model experiment

    Science.gov (United States)

    Epikhina, Anna; Vizirskaya, Mariya; Mazirov, Ilya; Vasenev, Vyacheslav; Vasenev, Ivan; Valentini, Riccardo

    2014-05-01

    Green lawns are the key element of the urban environment. They occupy a considerable part of the city area and locate in different urban functional zones. Urban constructed soils under green lawns have a unique spatial variability in chemical and morphogenetic features. So far, there is lack of information on the influence of morphogenetic features of urban soils on the functioning of the green lawn ecosystems especially in Moscow - the biggest megalopolis in Europe. Urban lawns perform a number of principal functions including both aesthetic and environmental. The role of the green lawn ecosystems in global carbon cycle is one of their main environmental functions. It is traditionally assessed through carbon stocks and fluxes in the basic ecosystem components. So far, such a data for the urban lawn ecosystems of the Moscow megapolis is lacking. In addition to environmental functions, green lawns perform an important ornamental role, which is also a critical criterion of their optimal functioning. Considering the variability of driving factors, influencing green lawns in urban environment, we carry out the model experiment in order to analyze "pure" effect of soil morphogenetic features. The current study aimed to analyze the influence of contrast morphogenetic features of urban constructed soils on the environmental and aesthetic functions of lawn ecosystems in Moscow megapolis basing in the model experiment. We carry out the model experiment located at the experimental field of the Russian State Agrarian University. Special transparent containers developed for the experiment, provided an option to observe soil morphogenetic features dynamics, including the depth and material of the organic transformation. At the same soil body inside the containers was united with the outside environment through the system of holes in the bottom and walls. The set of urban constructed soils includ four contrast types of the top soil (turf (T), turf-sand (TSa), turf-soil (TSo) and

  2. Outlier identification in urban soils and its implications for identification of potential contaminated land

    Science.gov (United States)

    Zhang, Chaosheng

    2010-05-01

    Outliers in urban soil geochemical databases may imply potential contaminated land. Different methodologies which can be easily implemented for the identification of global and spatial outliers were applied for Pb concentrations in urban soils of Galway City in Ireland. Due to its strongly skewed probability feature, a Box-Cox transformation was performed prior to further analyses. The graphic methods of histogram and box-and-whisker plot were effective in identification of global outliers at the original scale of the dataset. Spatial outliers could be identified by a local indicator of spatial association of local Moran's I, cross-validation of kriging, and a geographically weighted regression. The spatial locations of outliers were visualised using a geographical information system. Different methods showed generally consistent results, but differences existed. It is suggested that outliers identified by statistical methods should be confirmed and justified using scientific knowledge before they are properly dealt with.

  3. Exploring soil water budget of a pristine oak wood in peri-urban Rome, central Italy

    Directory of Open Access Journals (Sweden)

    Valerio Moretti

    2014-06-01

    Full Text Available 72 544x376 Normal 0 14 false false false IT X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabella normale"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif";} Exploring soil water budget of a pristine oak wood in peri-urban Rome, central Italy. The water budget in bounded and fenced areas was assessed by analyzing pedo-climatic conditions and the soil moisture content. Water content in the soil was measured using a Theta Probe Soil Moisture sensor (ML2x by Delta-T-Devices with a direct read-out device that provides soil moisture estimates as percent volume. The correlation between the experimental values obtained by the gravimetricmethod and thevalues directly measured by Theta Probe was found significant. Soil moisture at 100 cm depth indicates soil water as permanently available for plants through the year except during exceptionally dry summer periods. Therefore, oaks experienced no water deficiency with normal rainfall rates, possibly suffering root asphyxia during rainy years. Results are collected in fenced areas, sheltered by the action of the local fauna.

  4. Draft forces prediction model for standard single tines by using principles of soil mechanics and soil profile evaluation

    Directory of Open Access Journals (Sweden)

    Amer Khalid Ahmed Al-Neama

    2017-06-01

    Full Text Available This paper explains a model to predict the draft force acting on varying standard single tines by using principles of soil mechanics and soil profile evaluation. Draft force (Fd measurements were made with four standard single tines comprising Heavy Duty, Double Heart, Double Heart with Wings and Duck Foot. Tine widths were 6.5, 13.5, 45 and 40 cm, respectively. The test was conducted in a soil bin with sandy loam soil. The effects of forward speeds and working depths on draft forces were investigated under controlled lab conditions. Results were evaluated based on a prediction model. A good correlation between measured and predicted Fd values for all tines with an average absolute variation less than 15 % was found.

  5. Impacts of reclaimed water irrigation on soil antibiotic resistome in urban parks of Victoria, Australia

    International Nuclear Information System (INIS)

    Han, Xue-Mei; Hu, Hang-Wei; Shi, Xiu-Zhen; Wang, Jun-Tao; Han, Li-Li; Chen, Deli; He, Ji-Zheng

    2016-01-01

    The effluents from wastewater treatment plants have been recognized as a significant environmental reservoir of antibiotics and antibiotic resistance genes (ARGs). Reclaimed water irrigation (RWI) is increasingly used as a practical solution for combating water scarcity in arid and semiarid regions, however, impacts of RWI on the patterns of ARGs and the soil bacterial community remain unclear. Here, we used high-throughput quantitative PCR and terminal restriction fragment length polymorphism techniques to compare the diversity, abundance and composition of a broad-spectrum of ARGs and total bacteria in 12 urban parks with and without RWI in Victoria, Australia. A total of 40 unique ARGs were detected across all park soils, with genes conferring resistance to β-lactam being the most prevalent ARG type. The total numbers and the fold changes of the detected ARGs were significantly increased by RWI, and marked shifts in ARG patterns were also observed in urban parks with RWI compared to those without RWI. The changes in ARG patterns were paralleled by a significant effect of RWI on the bacterial community structure and a co-occurrence pattern of the detected ARG types. There were significant and positive correlations between the fold changes of the integrase intI1 gene and two β-lactam resistance genes (KPC and IMP-2 groups), but no significant impacts of RWI on the abundances of intI1 and the transposase tnpA gene were found, indicating that RWI did not improve the potential for horizontal gene transfer of soil ARGs. Taken together, our findings suggested that irrigation of urban parks with reclaimed water could influence the abundance, diversity, and compositions of a wide variety of soil ARGs of clinical relevance. One-sentence summary: Irrigation of urban parks with treated wastewater significantly increased the abundance and diversity of various antibiotic resistance genes, but did not significantly enhance their potential for horizontal gene transfer

  6. Plutonium, americium, and uranium concentrations in Nevada Test Site soil profiles

    International Nuclear Information System (INIS)

    Essington, E.H.; Gilbert, R.O.; Eberhardt, L.L.; Fowler, E.B.

    1975-01-01

    Many soil profile samples were collected by the Nevada Applied Ecology Group from five nuclear safety test sites on the Nevada Test Site and Tonopah Test Range in Nevada, U.S.A. The profile samples were analyzed for 239 Pu, 240 Pu, 241 Am, and in some cases 235 U and 238 U, in order to estimate the depth of radionuclide penetration and level of contamination at specific sampling depths after an extended period of time since deposition on the surface. Nearly 70 individual profiles were examined. About one-half of the profiles exhibited a smooth leaching pattern with more than 95 percent of the plutonium in the top 5 cm. Other profile patterns are discussed relative to mechanical disturbance of the profile after the initial deposition, accumulation of plutonium in specific zones within the soil profile, and occurrence of large amounts of plutonium in the deepest parts of the soil profile. The implications of these observations are discussed with respect to redistribution of radioactivity by wind, water, and burrowing animals, ingestion by burrowing and grazing animals, uptake by vegetation, and cleanup operations. (auth)

  7. De-icing salt contamination reduces urban tree performance in structural soil cells.

    Science.gov (United States)

    Ordóñez-Barona, Camilo; Sabetski, Vadim; Millward, Andrew A; Steenberg, James

    2018-03-01

    Salts used for de-icing roads and sidewalks in northern climates can have a significant impact on water quality and vegetation. Sub-surface engineering systems, such as structural soil cells, can regulate water runoff and pollutants, and provide the necessary soil volume and irrigation to grow trees. However, the ability of such systems to manage de-icing salt contamination, and the impact of this contamination on the trees growing in them, have not been evaluated. We report on an field investigation of de-icing salt contamination in structural cells in two street-revitalization projects in Toronto, Canada, and the impact of this contamination on tree performance. We analyzed soil chemistry and collected tree attributes; these data were examined together to understand the effect of salinity on tree mortality rates and foliar condition. Data collected from continuous soil salinity loggers from April to June for one of the two sites were used to determine whether there was a long-term accumulation of salts in the soils. Results for both sites indicate that both sites displayed high salinity and alkalinity, with levels elevated beyond those suggested before those reported to cause negative tree effects. For one site, trees that were alive and trees that had a better foliar condition had significantly lower levels of soil salinity and alkalinity than other trees. High salinity and alkalinity in the soil were also associated with lower nutrient levels for both sites. Although tests for salinity accumulation in the soils of one site were negative, a longer monitoring of the soil conditions within the soil cells is warranted. Despite structural cells being increasingly utilized for their dual role in storm-water management and tree establishment, there may be a considerable trade-off between storm-water management and urban-forest function in northern climates where de-icing salt application continues to be commonplace. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Impacts of reclaimed water irrigation on soil antibiotic resistome in urban parks of Victoria, Australia.

    Science.gov (United States)

    Han, Xue-Mei; Hu, Hang-Wei; Shi, Xiu-Zhen; Wang, Jun-Tao; Han, Li-Li; Chen, Deli; He, Ji-Zheng

    2016-04-01

    The effluents from wastewater treatment plants have been recognized as a significant environmental reservoir of antibiotics and antibiotic resistance genes (ARGs). Reclaimed water irrigation (RWI) is increasingly used as a practical solution for combating water scarcity in arid and semiarid regions, however, impacts of RWI on the patterns of ARGs and the soil bacterial community remain unclear. Here, we used high-throughput quantitative PCR and terminal restriction fragment length polymorphism techniques to compare the diversity, abundance and composition of a broad-spectrum of ARGs and total bacteria in 12 urban parks with and without RWI in Victoria, Australia. A total of 40 unique ARGs were detected across all park soils, with genes conferring resistance to β-lactam being the most prevalent ARG type. The total numbers and the fold changes of the detected ARGs were significantly increased by RWI, and marked shifts in ARG patterns were also observed in urban parks with RWI compared to those without RWI. The changes in ARG patterns were paralleled by a significant effect of RWI on the bacterial community structure and a co-occurrence pattern of the detected ARG types. There were significant and positive correlations between the fold changes of the integrase intI1 gene and two β-lactam resistance genes (KPC and IMP-2 groups), but no significant impacts of RWI on the abundances of intI1 and the transposase tnpA gene were found, indicating that RWI did not improve the potential for horizontal gene transfer of soil ARGs. Taken together, our findings suggested that irrigation of urban parks with reclaimed water could influence the abundance, diversity, and compositions of a wide variety of soil ARGs of clinical relevance. Irrigation of urban parks with treated wastewater significantly increased the abundance and diversity of various antibiotic resistance genes, but did not significantly enhance their potential for horizontal gene transfer. Copyright © 2015 Elsevier

  9. Trace element concentrations along a gradient of urban pressure in forest and lawn soils of the Paris region (France).

    Science.gov (United States)

    Foti, Ludovic; Dubs, Florence; Gignoux, Jacques; Lata, Jean-Christophe; Lerch, Thomas Z; Mathieu, Jérôme; Nold, François; Nunan, Naoise; Raynaud, Xavier; Abbadie, Luc; Barot, Sébastien

    2017-11-15

    The concentration, degree of contamination and pollution of 7 trace elements (TEs) along an urban pressure gradient were measured in 180 lawn and wood soils of the Paris region (France). Iron (Fe), a major element, was used as reference element. Copper (Cu), cadmium (Cd), lead (Pb) and zinc (Zn) were of anthropogenic origin, while arsenic (As), chromium (Cr) and nickel (Ni) were of natural origin. Road traffic was identified as the main source of anthropogenic TEs. In addition, the industrial activity of the Paris region, especially cement plants, was identified as secondary source of Cd. Soil characteristics (such as texture, organic carbon (OC) and total nitrogen (tot N) contents) tell the story of the soil origins and legacies along the urban pressure gradient and often can explain TE concentrations. The history of the land-use types was identified as a factor that allowed understanding the contamination and pollution by TEs. Urban wood soils were found to be more contaminated and polluted than urban lawns, probably because woods are much older than lawns and because of the legacy of the historical management of soils in the Paris region (Haussmann period). Lawn soils are similar to the fertile agricultural soils and relatively recently (mostly from the 1950s onwards) imported from the surrounding of Paris, so that they may be less influenced by urban conditions in terms of TE concentrations. Urban wood soils are heavily polluted by Cd, posing a high risk to the biological communities. The concentration of anthropogenic TEs increased from the rural to the urban areas, and the concentrations of most anthropogenic TEs in urban areas were equivalent to or above the regulatory reference values, raising the question of longer-term monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Distribution of dermatophytes from soils of urban and rural areas of cities of Paraiba State, Brazil.

    Science.gov (United States)

    Pontes, Zélia Braz Vieira da Silva; Oliveira, Aurylene Carlos de; Guerra, Felipe Queiroga Sarmento; Pontes, Luiz Renato de Araújo; Santos, Jozemar Pereira dos

    2013-01-01

    The dermatophytes, keratinophilic fungi, represent important microorganisms of the soil microbiota, where there are cosmopolitan species and others with restricted geographic distribution. The aim of this study was to broaden the knowledge about the presence of dermatophytes in soils of urban (empty lots, schools, slums, squares, beaches and homes) and rural areas and about the evolution of their prevalence in soils of varying pH in cities of the four mesoregions of Paraiba State, Brazil. Soil samples were collected from 31 cities of Paraiba State. Of 212 samples, 62% showed fungal growth, particularly those from the Mata Paraibana mesoregion (43.5%), which has a tropical climate, hot and humid. Soil pH varied from 4.65 to 9.06, with 71% of the growth of dermatophytes occurring at alkaline pH (7.02 - 9.06) (ρ = 0.000). Of 131 strains isolated, 57.3% were geophilic species, particularly Trichophyton terrestre (31.3%) and Mycrosporum gypseum (21.4%). M. nanum and T. ajelloi were isolated for the first time in Paraiba State. The zoophilic species identified were T. mentagrophytes var. mentagrophytes (31.3 %) and T. verrucosum (7.6 %), and T. tonsurans was isolated as an anthropophilic species. The soils of urban areas including empty lots, schools, slums and squares of cities in the mesoregions of Paraiba State were found to be the most suitable reservoirs for almost all dermatophytes; their growth may have been influenced by environmental factors, soils with residues of human and/or animal keratin and alkaline pH.

  11. [Distribution of Urban Soil Heavy Metal and Pollution Evaluation in Different Functional Zones of Yinchuan City].

    Science.gov (United States)

    Wang, You-qi; Bai, Yi-ru; Wang, Jian-yu

    2016-02-15

    Surface soil samples (0-20 cm) from eight different functional areas in Yinchuan city were collected. There were 10 samples respectively in each functional area. The urban soil heavy metals (Zn, Cd, Pb, Mn, Cu and Cr) pollution characteristics and sources in eight different functional areas were evaluated by mathematical statistics and geostatistical analysis method. Meanwhile, the spatial distributions of heavy metals based on the geography information system (GIS) were plotted. The average values of total Zn, Cd, Pb, Mn, Cu and Cr were 74.87, 0.15, 29.02, 553.55, 40.37 and 80.79 mg x kg(-1), respectively. The results showed that the average value of soil heavy metals was higher than the soil background value of Ningxia, which indicated accumulation of the heavy metals in urban soil. The single factor pollution index of soil heavy metals was in the sequence of Cu > Pb > Zn > Cr > Cd > Mn. The average values of total Zn, Cd, Pb and Cr were higher in north east, south west and central city, while the average values of Mn and Cu were higher in north east and central city. There was moderate pollution in road and industrial area of Yinchuan, while the other functional areas showed slight pollution according to Nemoro synthesis index. The pollution degree of different functional areas was as follows: road > industrial area > business district > medical treatment area > residential area > public park > development zone > science and education area. The results indicated that the soil heavy metal pollution condition in Yinchuan City has been affected by human activities with the development of economy.

  12. Polycyclic aromatic hydrocarbons in urban soil of Novi Sad, Serbia: occurrence and cancer risk assessment.

    Science.gov (United States)

    Škrbić, Biljana D; Đurišić-Mladenović, Nataša; Tadić, Đorđe J; Cvejanov, Jelena Đ

    2017-07-01

    Contents of 16 polycyclic aromatic hydrocarbons were analyzed in 30 soil samples from 15 locations in Novi Sad, Serbia, assessing for the first time the corresponding health risks in the Serbian urban zone. Total concentrations were in the range of 22-2247 μg kg -1 , with a mean and median value of 363 and 200 μg kg -1 , respectively. Comparison with the relevant maximum allowed contents proposed by the Serbian government and with the Dutch target values implied that soils from the urban area of Novi Sad were "suitable as residential soils" and that no intervention would be needed if the current levels were retained. Seven diagnostic ratios were calculated, indicating the pyrogenic sources of PAHs as the dominant. Cancer risks in humans via accidental ingestion, inhalation of soil particles, and dermal contact with soil were estimated. Cancer risk for soil ingestion by children was the highest. The total lifetime carcinogenic risk as sum of individual cancer risks for seven carcinogenic polycyclic aromatic hydrocarbons was within the range 10 -4 to 10 -6 , indicating acceptable risks at 30 and 47% of sites for children and adults, respectively. However, for the rest of the samples, total lifetime cancer risk was >10 -4 indicating over the acceptable risk, even though the contents in soil were not of concern as the comparison with the environmental guidance previously showed. This could be explained by (a) the dominant concentrations of higher molecular weight compounds with 4 to 6 rings, among which there are compounds with higher toxicity equivalents, but also with (b) the extreme conditions used for the conservative risk assessment under maximal exposure frequency, exposure time, and ingestion rates.

  13. Profiling water content in soils with TDR: Comparison with the neutron probe technique

    International Nuclear Information System (INIS)

    Laurent, J.P.

    2000-01-01

    In November 1996, at a site on the Grenoble campus a 1.2-m-long neutron access tube, a 0.8-m fibreglass Trime access tube and three sets of 1-m twin-rod TDR probes were installed. Weekly measurements were made over a 9-month period. In addition, soil samples were taken from time to time with an auger, to determine gravimetric water-contents. The soil bulk density profile was initially characterised by gammametry using a Campbell TM probe. A Troxler TM 4300 was used for the neutron-probe measurements. The TDR signals, for further processing by TDR-SSI, were logged using a Trase 2000 from Soil Moisture Equipment Corporation TM . TDR methods were employed without any special calibration of the permittivity/water-content relationship: standard internal calibrations of the devices or Topp polynomial relation were always applied. The results of all these water-content profiling methods were compared in three ways: (i) the water-content profiles were plotted directly on the same graph for different dates; (ii) all the water contents measured at all dates and all depths were plotted against a corresponding 'reference', namely neutron probe or gravimetry; (iii) water balances were calculated for each method and their respective time-profiles analysed. There was fairly good agreement among the three profiling methods, indicating that TDR is now a viable alternative to nuclear techniques for soil water-content profiling. (author)

  14. Assessment of soil GHG emission in different functional zones of Moscow urbanized areas

    Science.gov (United States)

    Vizirskaya, Maria; Epikhina, Anna; Vasenev, Ivan; Valentini, Riccardo; Mazirov, Il'ya

    2014-05-01

    Atmospheric greenhouse-gas concentrations are increasing rapidly, causing global climate changes. Growing concentrations of CO2, CH4 and N2O are occurring not only as a result of industry activity, but also from changes in land use and type of land management due to urbanization. Up to now there were not so many studies in Russia that dealt with urbanization effects (functional zoning, land-use type, soil contamination etc.) on GHG emission from the soil in spatial-temporal variability at the local and regional scale. The aim of our study is to provide the analysis of soil CO2, N2O and CH4 efflux's response to different biotic and abiotic factors, as well as to management activities and anthropogenic impact in different functional zones of the city. The principal objects of our study are representative urban landscapes with different land-use practices, typical for urbanized area. The varieties of urban ecosystems are represented by urban forest, green lawns with different functional subzoning and agro landscapes (16 sites in total). Forest sites have been studied during 7 years and they are differing in mezorelief (small hill summit and two slopes). Green lawns vary in level of human impact (normal, medium and high) and are represented by managed and non-managed lawns. Agro landscapes are represented by two crop types: barley and grass mixture (oats and vetch) with till and no-till cultivation. In each plot we measured: soil respiration in field conditions using system based on IR-gas analyzer Li- COR 820, CH4 and N2O emission using the method of exposition chamber. Samples were taken from soil exposition chamber by syringe, and then analyzed on gas chromatograph. The measurements with Li-COR have been done on 10 days base since June till October 2013, and till September by exposition chamber in 5 replicas per plot. The conducted research have shown high spatial and temporal variability of CO2, CH4 and N2O fluxes due to functional zoning, slope, vegetation type

  15. Matrix-specific distribution and diastereomeric profiles of hexabromocyclododecane (HBCD) in a multimedia environment: Air, soil, sludge, sediment, and fish.

    Science.gov (United States)

    Jo, Hyeyeong; Son, Min-Hui; Seo, Sung-Hee; Chang, Yoon-Seok

    2017-07-01

    Hexabromocyclododecane (HBCD) contamination and its diastereomeric profile were investigated in a multi-media environment along a river at the local scale in air, soil, sludge, sediment, and fish samples. The spatial distribution of HBCD in each matrix showed a different result. The highest concentrations of HBCD in air and soil were detected near a general industrial complex; in the sediment and sludge samples, they were detected in the down-stream region (i.e., urban area). Each matrix showed the specific distribution patterns of HBCD diastereomers, suggesting continuous inputs of contaminants, different physicochemical properties, or isomerizations. The particle phases in air, sludge, and fish matrices were dominated by α-HBCD, owing to HBCD's various isomerization processes and different degradation rate in the environment, and metabolic capabilities of the fish; in contrast, the sediment and soil matrices were dominated by γ-HBCD because of the major composition of the technical mixtures and the strong adsorption onto solid particles. Based on these results, the prevalent and matrix-specific distribution of HBCD diastereomers suggested that more careful consideration should be given to the characteristics of the matrices and their effects on the potential influence of HBCD at the diastereomeric level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Soil-Water Repellency Characteristic Curves for Soil Profiles with Organic Carbon Gradients

    DEFF Research Database (Denmark)

    Wijewardana, Nadeeka Senani; Muller, Karin; Moldrup, Per

    2016-01-01

    Soil water repellency (SWR) of soils is a property with significant consequences for agricultural water management, water infiltration, contaminant transport, and for soil erosion. It is caused by the presence of hydrophobic agents on mineral grain surfaces. Soils were samples in different depths......, and the sessile drop method (SDM). The aim to (i) compare the methods, (ii) characterize the soil-water repellency characteristic curves (SWRCC) being SWR as a function of the volumetric soil-water content (θ) or matric potential (ψ), and (iii) find relationships between SWRCC parameters and SOC content. The WDPT...... at three forest sites in Japan and three pasture sites in New Zealand, covering soil organic carbon (SOC) contents between 1 and 26%. The SWR was measured over a range of water contents by three common methods; the water drop penetration time (WDPT) test, the molarity of an ethanol droplet (MED) method...

  17. Multitemporal mapping of peri-urban carbon stocks and soil sealing from satellite data.

    Science.gov (United States)

    Villa, Paolo; Malucelli, Francesco; Scalenghe, Riccardo

    2018-01-15

    Peri-urbanisation is the expansion of compact urban areas towards low-density settlements. This phenomenon directly challenges the agricultural landscape multifunctionality, including its carbon (C) storage capacity. Using satellite data, we mapped peri-urban C stocks in soil and built-up surfaces over three areas from 1993 to 2014 in the Emilia-Romagna region, Italy: a thinly populated area around Piacenza, an intermediate-density area covering the Reggio Emilia-Modena conurbation and a densely anthropized area developing along the coast of Rimini. Satellite-derived maps enabled the quantitative analysis of spatial and temporal features of urban growth and soil sealing, expressed as the ratio between C in built-up land and organic C in soils (Cc/Co). The three areas show substantial differences in C stock balance and soil sealing evolution. In Piacenza (Cc/Co=0.07 in 1993), although questioned by late industrial expansion and connected residential sprawl (Cc/Co growth by 38%), most of the new urbanisation spared the best rural soils. The Reggio Emilia-Modena conurbation, driven by the polycentricism of the area and the heterogeneity of economic sectors (Cc/Co rising from 0.08 to 0.14 from 1993 to 2014), balances sprawl and densification. Rimini, severely sealed since the 1960s (Cc/Co=0.23 in 1993), densifies its existing settlements and develops an industrial expansion of the hinterland, with Cc/Co growth accelerating from +15% before 2003 to +36% for the last decade. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain).

    Science.gov (United States)

    Peña-Fernández, A; Lobo-Bedmar, M C; González-Muñoz, M J

    2015-01-01

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Soil nitrogen levels are linked to decomposition enzyme activities along an urban-remote tropical forest gradient

    Science.gov (United States)

    D. F. Cusack

    2013-01-01

    Urban areas in tropical regions are expanding rapidly, with significant potential to affect local ecosystem dynamics. In particular, nitrogen (N) availability may increase in urban-proximate forests because of atmospheric N deposition. Unlike temperate forests, many tropical forests on highly weathered soils have high background N availability, so plant growth is...

  20. Determination of multi-element profiles of soil using energy dispersive X-ray fluorescence (EDXRF)

    International Nuclear Information System (INIS)

    Yu, K.N.; Yeung, Z.L.L.; Lee, L.Y.L.; Stokes, M.J.; Kwok, R.C.W.

    2002-01-01

    The source profile for soil in Hong Kong is important both for determination of the main air pollutant source in Hong Kong and for assessment of the impact of Asian dust storms on Hong Kong. Soil associated with different rock types have been sampled, and the concentrations of 19 chemical elements, Na, Al, Si, Ti, V, Cr, Mn, Fe, Co, K, Ca, Ni, Cu, Zn, Pb, Rb, Sr, Y and Zr, have been determined using energy dispersive X-ray fluorescence. A profile for the average soil for Hong Kong has been determined by taking average values for the different soil categories. The values for the Hong Kong soil are commensurate with values for rural soil derived by other workers, except that Hong Kong soil has much lower Fe and Ca concentrations. The abundance of Al, Ca and Fe in the average Hong Kong soil are 9.23%, 0.11% and 0.85%. We conclude that Ca provides a good marker element for identifying dust episodes in Hong Kong while Al does not

  1. Evaluating lysimeter drainage against soil deep percolation modeled with profile soil moisture, field tracer propagation, and lab measured soil hydraulic properties

    DEFF Research Database (Denmark)

    Vasquez, Vicente; Thomsen, Anton Gårde; Iversen, Bo Vangsø

    them have been reported. To compare among methods, one year of four large-scale lysimeters drainage (D) was evaluated against modeled soil deep percolation using either profile soil moisture, bromide breakthrough curves from suction cups, or measured soil hydraulic properties in the laboratory....... Measured volumetric soil water content (q) was 3-4% higher inside lysimeters than in the field probably due to a zero tension lower boundary condition inside lysimeters. D from soil hydraulic properties measured in the laboratory resulted in a 15% higher evapotranspiration and 12% lower drainage...... predictions than the model calibrated with field measured q. Bromide (Br) breakthrough curves indicated high variability between lysimeters and field suction cups with mean Br velocities at first arrival time of 110 and 33 mm/d, respectively. D was 520 mm/yr with lysimeters, 613 mm/yr with the calibrated...

  2. Metal distribution in urban soil around steel industry beside Queen Alia Airport, Jordan.

    Science.gov (United States)

    Al-Khashman, Omar A; Shawabkeh, Reyad A

    2009-12-01

    The objective of this study was to assess the extent and severity of metal contamination in urban soil around Queen Alia Airport, Jordan. Thirty-two soil samples were collected around steel manufacturing plants located in the Al-Jiza area, south Jordan, around the Queen Alia Airport. The samples were obtained at two depths, 0-10 and 10-20 cm, and were analyzed by atomic absorption spectrophotometry for lead (Pb), zinc (Zn), cadmium (Cd), iron (Fe), copper (Cu) and chromium (Cr) levels. The physicochemical factors believed to affect the mobility of metals in the soil of the study area were also examined, including pH, electrical conductivity, total organic matter, calcium carbonate (CaCO(3)) content and cation exchange capacity. The high concentrations of Pb, Zn and Cd in the soil samples were found to be related to anthropogenic sources, such as the steel manufacturing plants, agriculture and traffic emissions, with the highest concentrations of these metals close to the site of the steel plants; in contrast the concentration of Cr was low in the soil sampled close to the steel plants. The metals were concentrated in the surface soil, and concentrations decreased with increasing depth, reflecting the physical properties of the soil and its alkaline pH. The mineralogical composition of the topsoil, identified by X-ray diffraction, was predominantly quartz, calcite, dolomite and minor minerals, such as gypsum and clay minerals. Metal concentrations were compared using one-way analysis of variance (ANOVA) to compute the statistical significance of the mean. The results of the ANOVA showed significant differences between sites for Pb, Cd and Cu, but no significant differences for the remaining metals tested. Factor analysis revealed that polluted soil occurs predominantly at sites around the steel plants and that there is no significant variation in the characteristics of the unpolluted soil, which are uniform in the study area.

  3. Persistence of selected ammonium- and phosphonium-based ionic liquids in urban park soil microcosms

    DEFF Research Database (Denmark)

    Sydow, Mateusz; Szczepaniak, Zuzanna; Framski, Grzegorz

    2015-01-01

    Knowledge about biodegradability of ionic liquids (ILs) in terrestrial systems is limited. Here, using urban park soil microcosms spiked with either ammonium- or phosphonium-based ILs [didecyldimethylammonium 3-amino-1,2,4-triazolate, benzalkonium 3-amino-1,2,4-triazolate, trihexyl(tetradecyl)pho......Knowledge about biodegradability of ionic liquids (ILs) in terrestrial systems is limited. Here, using urban park soil microcosms spiked with either ammonium- or phosphonium-based ILs [didecyldimethylammonium 3-amino-1,2,4-triazolate, benzalkonium 3-amino-1,2,4-triazolate, trihexyl......(tetradecyl)phosphonium chloride, or trihexyl(tetradecyl)phosphonium 1,2,4-triazolate], we studied their (i) 300-day primary biodegradation, and (ii) influence on CO2 evolution from the microcosms. The primary biodegradation ranged from 21 to 33% of total compound in the dissolved phase. The evolution of CO2 from spiked...... microcosms was either lower or within the range of background soil respiration, indicating no or small mineralization of the parent compounds and/or their metabolites, and their negligible or small toxicity to soil microorganisms. Our results suggest the potential for persistence of the four studied ILs...

  4. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China

    International Nuclear Information System (INIS)

    Shi Guitao; Chen Zhenlou; Xu Shiyuan; Zhang Ju; Wang Li; Bi Chunjuan; Teng Jiyan

    2008-01-01

    A detailed investigation was conducted to understand the contamination characteristics of a selected set of potentially toxic metals in Shanghai. The amount of Pb, Zn, Cu, Cr, Cd and Ni were determined from 273 soil/dust samples collected within urban area. The results indicated that concentration of all metals except Ni in soils was significant, and metal pollution was even severer in roadside dust. A series of metal spatial distribution maps were created through geostatistical analysis, and the pollution hotspots tended to associate with city core area, major road junctions, and the regions close to industrial zones. In attempt of identifying the source of metals through geostatistical and multivariate statistical analyses, it was concluded as follows: Pb, Zn and Cu mainly originated from traffic contaminants; soil Ni was associated with natural concentration; Cd largely came from point-sourced industrial pollution; and Cr, Ni in dust were mainly related to atmospheric deposition. - Human activities have led to high accumulation of potentially toxic metals in urban soils and roadside dust of Shanghai

  5. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China

    Energy Technology Data Exchange (ETDEWEB)

    Shi Guitao [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China); Chen Zhenlou [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China)], E-mail: gt_shi@163.com; Xu Shiyuan [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China); Zhang Ju [School of Environment and Planning, Liaocheng University, Liaocheng 252059 (China); Wang Li; Bi Chunjuan [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China); Teng Jiyan [Shanghai Chongming Dongtan National Nature Reserve, Shanghai 202183 (China)

    2008-11-15

    A detailed investigation was conducted to understand the contamination characteristics of a selected set of potentially toxic metals in Shanghai. The amount of Pb, Zn, Cu, Cr, Cd and Ni were determined from 273 soil/dust samples collected within urban area. The results indicated that concentration of all metals except Ni in soils was significant, and metal pollution was even severer in roadside dust. A series of metal spatial distribution maps were created through geostatistical analysis, and the pollution hotspots tended to associate with city core area, major road junctions, and the regions close to industrial zones. In attempt of identifying the source of metals through geostatistical and multivariate statistical analyses, it was concluded as follows: Pb, Zn and Cu mainly originated from traffic contaminants; soil Ni was associated with natural concentration; Cd largely came from point-sourced industrial pollution; and Cr, Ni in dust were mainly related to atmospheric deposition. - Human activities have led to high accumulation of potentially toxic metals in urban soils and roadside dust of Shanghai.

  6. Quantification of pathogenic Leptospira in the soils of a Brazilian urban slum.

    Directory of Open Access Journals (Sweden)

    Andrew G Schneider

    2018-04-01

    Full Text Available Leptospirosis is an important zoonotic disease that causes considerable morbidity and mortality globally, primarily in residents of urban slums. While contact with contaminated water plays a critical role in the transmission of leptospirosis, little is known about the distribution and abundance of pathogenic Leptospira spp. in soil and the potential contribution of this source to human infection.We collected soil samples (n = 70 from three sites within an urban slum community endemic for leptospirosis in Salvador, Brazil. Using qPCR of Leptospira genes lipl32 and 16S rRNA, we quantified the pathogenic Leptospira load in each soil sample. lipl32 qPCR detected pathogenic Leptospira in 22 (31% of 70 samples, though the median concentration among positive samples was low (median = 6 GEq/g; range: 4-4.31×102 GEq/g. We also observed heterogeneity in the distribution of pathogenic Leptospira at the fine spatial scale. However, when using 16S rRNA qPCR, we detected a higher proportion of Leptospira-positive samples (86% and higher bacterial concentrations (median: 4.16×102 GEq/g; range: 4-2.58×104 GEq/g. Sequencing of the qPCR amplicons and qPCR analysis with all type Leptospira species revealed that the 16S rRNA qPCR detected not only pathogenic Leptospira but also intermediate species, although both methods excluded saprophytic Leptospira. No significant associations were identified between the presence of pathogenic Leptospira DNA and environmental characteristics (vegetation, rat activity, distance to an open sewer or a house, or soil clay content, though samples with higher soil moisture content showed higher prevalences.This is the first study to successfully quantify the burden of pathogenic Leptospira in soil from an endemic region. Our results support the hypothesis that soil may be an under-recognized environmental reservoir contributing to transmission of pathogenic Leptospira in urban slums. Consequently, the role of soil should be

  7. An automated, noncontact laser profile meter for measuring soil roughness in situ

    International Nuclear Information System (INIS)

    Bertuzzi, P.; Caussignac, J.M.; Stengel, P.; Morel, G.; Lorendeau, J.Y.; Pelloux, G.

    1990-01-01

    This paper describes a new optical technique for measuring in situ soil surface roughness profiles using a laser profile meter. The described method uses a low-power HeNe (helium-neon) laser as a laser source and a matrix-array detector, as the laser image. The matrix-array detector gives a defect-of-focus laser image of the soil. Soil elevation is measured by projecting a laser beam normally onto the soil surface and measuring the ratio (Ir/It) on the matrix-array detector between the referenced intensity of the return Laser beam (Ir), measured by the central cell of the detector and the total intensity (It), measured by all the cells of the detector. The measured profile leads to 1001 sampled values (volt, range 0 to 10 V) of the surface height profile, at a constant increment of 0.002 m, registered automatically on a microcomputer. A calibration is made in the laboratory in order to convert the electrical measurements into elevation data. The method is universal and can be adapted to different scales of soil surface roughness. Changing the scale is done by changing the lens. Tests were carried out to improve this method for field use and to compare this technique with a method of reference. This technique is considerably quicker and causes no disturbance to the soil. The accuracy on height measurement depends on the choice of the lens. The small focal lens is convenient for smooth soil surfaces. The accuracy on height measurement is less than 0.75 mm. The wide focal lens is convenient for rough soil surfaces. The accuracy on height measurement is estimated at about 1.0 to 1.5 mm

  8. Field evaluation of a direct push deployed sensor probe for vertical soil water content profiling

    Science.gov (United States)

    Vienken, Thomas; Reboulet, Ed; Leven, Carsten; Kreck, Manuel; Zschornack, Ludwig; Dietrich, Peter

    2015-04-01

    Reliable high-resolution information about vertical variations in soil water content, i.e. total porosity in the saturated zone, is essential for flow and transport predictions within the subsurface. However, porosity measurements are often associated with high efforts and high uncertainties, e.g. caused by soil disturbance during sampling or sensor installation procedures. In hydrogeological practice, commonly applied tools for the investigation of vertical soil water content distribution include gravimetric laboratory analyses of soil samples and neutron probe measurements. A yet less well established technique is the use of direct push-deployed sensor probes. Each of these methods is associated with inherent advantages and limitations due to their underlying measurement principles and operation modes. The presented study describes results of a joint field evaluation of the individual methods under different depositional and hydrogeological conditions with special focus on the performance on the direct push-deployed water content profiler. Therefore, direct push-profiling results from three different test sites are compared with results obtained from gravimetric analysis of soil cores and neutron probe measurements. In direct comparison, the applied direct push-based sensor probe proved to be a suitable alternative for vertical soil water content profiling to neutron probe technology, and, in addition, proved to be advantageous over gravimetric analysis in terms vertical resolution and time efficiency. Results of this study identify application-specific limitations of the methods and thereby highlight the need for careful data evaluation, even though neutron probe measurements and gravimetric analyses of soil samples are well established techniques (see Vienken et al. 2013). Reference: Vienken, T., Reboulet, E., Leven, C., Kreck, M., Zschornack, L., Dietrich, P., 2013. Field comparison of selected methods for vertical soil water content profiling. Journal of

  9. Distribution of heavy metals in urban soils - a case study of Danang-Hoian area (Vietnam)

    Energy Technology Data Exchange (ETDEWEB)

    Thuy, H.T.T.; Tobschall, H.J. [Erlangen-Nuernberg Univ., Erlangen (Germany). Inst. fuer Geologie und Mineralogie; An, P.V. [Univ. of Mining and Geology, Hanoi (Viet Nam)

    2000-04-01

    This work is part of a research study which is intended to study the degree of anthropogenic influences of the trace metal distribution of soils from Danang-Hoian area (Vietnam). Cu, Ni, Zn and Zr show significant effects in most of the cultivated soil categories, especially in the industrial soils. Extremely high levels of Pb (up to 742 {mu}g/g) are observed in the industrial soil category, which shows an enrichment factor 114 as compared to rural soils. Cd shows only a relative local enrichment with the maximum level of 4.6 {mu}g/g in urban soils. Sequential extraction was performed in selected samples to evaluate the geochemical trace metals. The result indicates that Zn and Cr are mainly found in the crystal and amorphous Fe oxide bounded forms. The contents of Cr in these fractions comprise more than 94% of total extractable Cr. In the case of Zn, 85% of total extractable Zn is in fractions F{sub V} and F{sub VI}. Cu is mainly found in the organic fraction at an average of 39.3% of total extractable content. On the other hand, heavy metal contents show an increasing tendency in the fine fraction (slit and clay). (orig.)

  10. Adsorption of mercury compounds by tropical soils. I. Adsorption in soil profiles in relation to their physical, chemical, and mineralogical properties

    Energy Technology Data Exchange (ETDEWEB)

    Semu, E.; Singh, B.R.; Selmer-Olsen, A.R.

    1986-01-01

    Mercury adsorption of HgCl/sub 2/ and 2-methoxyethylmercury chloride (Aretan) (100 mg Hg L/sup -1/) was measured for three soil profiles from Morogoro, Arusha, and Dar es Salaam in Tanzania. The adsorption was investigated for the physical, chemical, and mineralogical properties of soils. All soil samples showed greater capacity for adsorption of Aretan than for HgCl/sub 2/. In the Morogoro profile Hg adsorption decreased with depth but in the other two soils, the minimum adsorption occurred in the third horizon and increased both upwards and downwards. In the Morogoro profile, Aretan adsorption correlated well with pH. Adsorption of both Aretan and HgCl/sub 2/ correlated well with the distribution of organic C and with the cation exchange capacity of the soils. In the Arusha and Dar es Salaam profiles Hg adsorption was not significantly correlated with any of the soil properties tested.

  11. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    Science.gov (United States)

    Raut, J.-C.; Chazette, P.

    2008-02-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  12. Profile constructing and elevation design of soil reclaimed by hydraulic dredge pump in mining areas

    Energy Technology Data Exchange (ETDEWEB)

    Longqian, C.; Aiqin, S.; Tianjian, Z. [China Univ. of Mining and Technology, Xuzhou, Jiangsu (China). School of Environmental Science and Spatial Informatics; Mei, L. [China Univ. of Mining and Technology, Xuzhou, Jiangsu (China)

    2007-07-01

    Underground coal mining is the main method of coal mining in China. The hydraulic dredge pump reclamation method is the basic method used for repairing hydraulic erosion. This paper reviewed land reclamation by hydraulic dredge pump in the Yi'an coal mine of Xuzhou mining area in the east of China, and analyzed the constructing theory of soil profiling. It examined factors such as the height of the ground-water table; the thickness of plough horizon; the length of crops root and the state of soil erosion; and the methods of profile construction and elevation design of soil reclaimed by hydraulic dredge pump. A relevant mathematical model was also developed. The paper discussed the general situation of the study site as well as the basic theory of profile constructing and the profile constructing method. The paper also discussed the elevation design of the reclaimed land. It was concluded that the practice has proved that the methods can make the reclaimed soil keep a similar characteristics to that of original cropped soil, and meet the requirements for elevation of reclaimed land. 8 refs., 1 tab., 2 figs.

  13. Distribution characteristics of 137Cs in soil profiles under different land uses and its implication

    International Nuclear Information System (INIS)

    Mian Li; Wenyi Yao; Jishan Yang; Zhenzhou Shen; Er Yang

    2016-01-01

    This paper presents a study of the distribution of 137 Cs in soils under three different land uses in a semiarid watershed. The results showed the average inventory of 137 Cs in the cultivated land, woodland and grassland was 888, 1489 and 1650 Bq/m 2 , respectively. The pattern of depth distribution of 137 Cs in the soil profiles with cultivated land, woodland and grassland was disturbed, eroding and aggrading, and normal profiles, respectively. The coefficient of variation of 137 Cs inventory varied from 8.9 to 38.8 % for different land uses. (author)

  14. BOREAS TGB-1 Soil CH4 and CO2 Profile Data from NSA Tower Sites

    Science.gov (United States)

    Crill, Patrick; Varner, Ruth K.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOREAS TGB-1 team made numerous measurements of trace gas concentrations and fluxes at various NSA sites. This data set contains methane (CH4) and carbon dioxide (CO2) concentrations in soil profiles from the NSA-OJP, NSA-OBS, NSA-YJP, and NSA-BP sites during the period of 23-May to 20-Sep-1994. The soil gas sampling profiles of CH 4 and CO 2 were completed to quantify controls on CO2 and CH4 fluxes in the boreal forest. The data are provided in tabular ASCII files.

  15. Magnetic Soils Profiles in the Volga-Kama Forest-Steppe Region

    Directory of Open Access Journals (Sweden)

    L.A. Fattakhova

    2016-09-01

    Full Text Available The magnetic properties of virgin forest-steppe soils developed on the originally vertically uniform unconsolidated parent material have been investigated. The profile samples of virgin dark-grey forest light-clayey soil derived from a siltstone of the Kazan layer of the Upper Permian and virgin leached medium-thick fertile light-clayey chernozem derived from a Quaternary heavy deluvial loam have been considered. Both soils are characterized by the accumulative type of magnetic susceptibility and F-factor values distribution patterns with depth. In the humus part of the soil profile, magnetics are present pre-dominantly in the < 2.5 µm fraction. The coercivity spectra allowed to determine the contribution of dia-/paramagnetic and ferromagnetic components to magnetic susceptibility. It has been found that magnetic susceptibility enhancement in the organogenic horizons of virgin forest-steppe soils occurs due to the contribution of ferromagnetic components. The results indicate a strong positive linear correlation between the magnetic susceptibility and oxalate-extractable Fe, as well as between the magnetic susceptibility and Schwertmann’s criterion values. Using the method of thermomagnetic analysis of the < 2.5 µm fraction, it has been found that the magnetic susceptibility enhancement in the profiles of forest-steppe soils took place due to the formation of maghemite-magnetite associations. The predominantly ferromagnetic fraction consists of small single-domain grains.

  16. The study of metal contamination in urban soils of Hong Kong using a GIS-based approach

    International Nuclear Information System (INIS)

    Li Xiangdong; Lee Siulan; Wong Szechung; Shi Wenzhong; Thornton, Iain

    2004-01-01

    The study of regional variations and the anthropogenic contamination by metals of soils is very important for environmental planning and monitoring in urban areas. An extensive survey was conducted in the highly urbanized Kowloon area (46.9 km 2 ) of Hong Kong, using a systematic sampling strategy with a sampling density of 3-5 composite soil samples (0-15 cm) per km 2 . Geochemical maps of 'total' metals (Cd, Cr, Cu, Ni, Pb and Zn) from strong acid extraction in the surface soils were produced based on geographical information system (GIS) technology. A significant spatial relationship was found for Ni, Cu, Pb and Zn in the soils using a GIS-based analysis, suggesting that these metal contaminants in the soils of the Kowloon area had common sources. Several hot-spot areas of metal contamination were identified from the composite metal geochemical map, mainly in the old industrial and residential areas. A further GIS analysis revealed that road junctions, major roads and industrial buildings were possible sources of heavy metals in the urban soils. The Pb isotope composition of the contaminated soils showed clear anthropogenic origins. - GIS can be used to identify soil contamination hot-spot areas and to assess potential pollutant sources in an urban community

  17. Multifractal analysis of vertical profiles of soil penetration resistance at the field scale

    Directory of Open Access Journals (Sweden)

    G. M. Siqueira

    2013-07-01

    Full Text Available Soil penetration resistance (PR is widely used as an indirect indicator of soil strength. Soil PR is linked to basic soil properties and correlated to root growth and plant production, and as such it is extensively used as a practical tool for assessing soil compaction and to evaluate the effects of soil management. This study investigates how results from multifractal analysis can quantify key elements of depth-dependent soil PR profiles and how this information can be used at the field scale. We analysed multifractality of 50 PR vertical profiles, measured from 0 to 60 cm depth and randomly located on a 6.5 ha sugar cane field in northeastern Brazil. The scaling property of each profile was typified by singularity, and Rényi spectra estimated by the method of moments. The Hurst exponent was used to parameterize the autocorrelation of the vertical PR data sets. The singularity and Rènyi spectra showed that the vertical PR data sets exhibited a well-defined multifractal structure. Hurst exponent values were close to 1, ranging from 0.944 to 0.988, indicating strong persistence in PR variation with soil depth. Also, the Hurst exponent was negatively and significantly correlated to coefficient of variation (CV, skewness and maximum values of the depth-dependent PR. Multifractal analysis added valuable information to describe the spatial arrangement of depth-dependent penetrometer data sets, which was not taken into account by classical statistical indices. Multifractal parameters were mapped over the experimental field and compared with mean and maximum values of PR. Combination of spatial variability survey and multifractal analysis appear to be useful to manage soil compaction.

  18. Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles.

    Science.gov (United States)

    Cheng, Guo; He, Yan-Nan; Yue, Tai-Xin; Wang, Jun; Zhang, Zhen-Wen

    2014-09-02

    Climatic conditions and soil type have significant influence on grape ripening and wine quality. The reported study was conducted in two "Cabernet Sauvignon (Vitis vinifera L.V)" vineyards located in Xinjiang, a semiarid wine-producing region of China during two vintages (2011 and 2012). The results indicate that soil and climate affected berry growth and anthocyanin profiles. These two localities were within a distance of 5 km from each other and had soils of different physical and chemical composition. For each vineyard, the differences of anthocyanin concentrations, and parameters concerning berry growth and composition between the two years could be explained by different climatic conditions. Soil effect was studied by investigation of differences in berry composition and anthocyanin profiles between the two vineyards in the same year, which could be explained mainly by the different soil properties, vine water and nitrogen status. Specifically, the soils with less water and organic matter produced looser clusters, heavier berry skins and higher TSS, which contributed to the excellent performance of grapes. Compared with 2011, the increases in anthocyanin concentrations for each vineyard in 2012 could be attributed to smaller number of extreme temperature (>35 °C) days and rainfall, lower vine water status and N level. The explanation for higher anthocyanin concentrations in grape skins from the soils with less water and organic matter could be the vine status differences, lighter berry weight and heavier skin weight at harvest. In particular, grapes from the soils with less water and organic matter had higher levels of 3'5'-substituded, O-methylated and acylated anthocyanins, which represented a positive characteristic conferring more stable pigmentation to the corresponding wine in the future. The present work clarifies the effects of climate and soil on berry growth and anthocyanin profiles, thus providing guidance for production of high-quality wine grapes

  19. Effects of Climatic Conditions and Soil Properties on Cabernet Sauvignon Berry Growth and Anthocyanin Profiles

    Directory of Open Access Journals (Sweden)

    Guo Cheng

    2014-09-01

    Full Text Available Climatic conditions and soil type have significant influence on grape ripening and wine quality. The reported study was conducted in two “Cabernet Sauvignon (Vitis vinifera L.V” vineyards located in Xinjiang, a semiarid wine-producing region of China during two vintages (2011 and 2012. The results indicate that soil and climate affected berry growth and anthocyanin profiles. These two localities were within a distance of 5 km from each other and had soils of different physical and chemical composition. For each vineyard, the differences of anthocyanin concentrations, and parameters concerning berry growth and composition between the two years could be explained by different climatic conditions. Soil effect was studied by investigation of differences in berry composition and anthocyanin profiles between the two vineyards in the same year, which could be explained mainly by the different soil properties, vine water and nitrogen status. Specifically, the soils with less water and organic matter produced looser clusters, heavier berry skins and higher TSS, which contributed to the excellent performance of grapes. Compared with 2011, the increases in anthocyanin concentrations for each vineyard in 2012 could be attributed to smaller number of extreme temperature (>35 °C days and rainfall, lower vine water status and N level. The explanation for higher anthocyanin concentrations in grape skins from the soils with less water and organic matter could be the vine status differences, lighter berry weight and heavier skin weight at harvest. In particular, grapes from the soils with less water and organic matter had higher levels of 3′5′-substituded, O-methylated and acylated anthocyanins, which represented a positive characteristic conferring more stable pigmentation to the corresponding wine in the future. The present work clarifies the effects of climate and soil on berry growth and anthocyanin profiles, thus providing guidance for production of

  20. Multifractal analysis of vertical profiles of soil penetration resistance at the field scale

    Science.gov (United States)

    Siqueira, G. M.; Silva, E. F. F.; Montenegro, A. A. A.; Vidal Vázquez, E.; Paz-Ferreiro, J.

    2013-07-01

    Soil penetration resistance (PR) is widely used as an indirect indicator of soil strength. Soil PR is linked to basic soil properties and correlated to root growth and plant production, and as such it is extensively used as a practical tool for assessing soil compaction and to evaluate the effects of soil management. This study investigates how results from multifractal analysis can quantify key elements of depth-dependent soil PR profiles and how this information can be used at the field scale. We analysed multifractality of 50 PR vertical profiles, measured from 0 to 60 cm depth and randomly located on a 6.5 ha sugar cane field in northeastern Brazil. The scaling property of each profile was typified by singularity, and Rényi spectra estimated by the method of moments. The Hurst exponent was used to parameterize the autocorrelation of the vertical PR data sets. The singularity and Rènyi spectra showed that the vertical PR data sets exhibited a well-defined multifractal structure. Hurst exponent values were close to 1, ranging from 0.944 to 0.988, indicating strong persistence in PR variation with soil depth. Also, the Hurst exponent was negatively and significantly correlated to coefficient of variation (CV), skewness and maximum values of the depth-dependent PR. Multifractal analysis added valuable information to describe the spatial arrangement of depth-dependent penetrometer data sets, which was not taken into account by classical statistical indices. Multifractal parameters were mapped over the experimental field and compared with mean and maximum values of PR. Combination of spatial variability survey and multifractal analysis appear to be useful to manage soil compaction.

  1. Moessbauer Study of Soil Profiles in Industrial Region of Ukraine

    International Nuclear Information System (INIS)

    Kopcewicz, B.; Jelenska, M.; Hasso-Agopsowicz, A.; Kopcewicz, M.

    2005-01-01

    Moessbauer spectroscopy was applied to study the influence of industrial activity on soil composition. Comparing the Moessbauer spectra of separate layers for the Mariupol sampling site (highly polluted industrial region of South -- East Ukraine) we observed: i) appearance of the Fe3O4 compound at top soil layers: 16.6% of relative spectral area (RA) at (0 - 10 cm) layer, 5.3% of RA at (30 - 40 cm) layer and no magnetite component at deeper layers, ii) a significant increase of the contribution of the magnetically split spectral components: from 10.9% of RA for (120 - 130 cm) layer to 32.8% of RA for (0-10 cm) layer. The differences in RA of the magnetically split spectral components between top soil layer and the (120 - 130 cm) layer at the Homutovski steppe sampling site (non-polluted area) are much smaller, 13.7% and 9.8%, respectively. From the temperature dependence of the Moessbauer spectra it was concluded that part of the iron-containing compounds appears in the form of ultra fine particles in the superparamagnetic state. The observed increase of total concentration of the magnetic minerals for polluted sampling sites is caused by an increase of the content of coarse fraction of the magnetic particles

  2. Trace metal concentrations in forest and lawn soils of Paris region (France) along a gradient of urban pressure

    Science.gov (United States)

    Ludovic, Foti

    2017-04-01

    Urban soils differ greatly from natural ones as they are located in areas of intense anthropogenic activity (e.g. pollution, physical disturbance, surface transformation). Urban soils are a crucial component of urban ecosystems, especially in public green spaces, and contribute to many ecosystem services from the mitigation of urban heat island to recreational services. In the last decade, the study of urban soils has emerged as an important frontier in environmental research, at least because of their impact on the quality of life of urban populations, because of the services they deliver and because they are more and more recognized as a valuable resource. One of the key issues is the pollution of urban soils because they receive a variety of deposits from local (vehicle emissions, industrial discharges, domestic heating, waste incineration and other anthropogenic activities) and from remote sources (through atmospheric transport). Typical contaminants include persistent toxic substances, such as trace metals (TMs) that have drawn wide attention due to their long persistence in the environment, their tendency to bioaccumulate in the food chain and their toxicity for humans and other organisms. Concentrations, spatial distributions, dynamics, impacts and sources of TMs (e.g. industry or fossil fuels combustion) have attracted a global interest in urban soils and are the subject of ongoing research (e.g. ecotoxicological urban ecology). Some studies have already documented soil pollution with TMs at both the town and regional scales. So far, several monitoring programs (e.g. National Network for the long term Monitoring of Forest Ecosystem, Regional Monitoring Quality of Soil in France) and studies have been carried out on a national scale to measure the ranges of TM concentrations and natural background values in French soils. These studies have focused on French agricultural and forest soils and have not tackled urban soils. No study has described TM

  3. Determination of multi-element profiles of soil at Visakhapatnam using EDXRF technique

    International Nuclear Information System (INIS)

    Sandeep, P.; Kothai, P.; Dusane, C.B.; Sahu, S.K.; Pandit, G.G.

    2014-01-01

    In the present study attempt has been made to generate elemental profile database for major sources of soil pollution, specific to Visakhapatnam. Representative road dust and soil samples from major industrial locations were collected and analyzed for various metals distribution using EDXRF. Analysis results indicate that V and Ni were predominant at PR and Zn was found to be dominating in road dust samples. Higher concentration of Arsenic was observed at TPP as compared to all other sites. Cr was found to be dominating at TPP and SP. I geo calculations suggest that soil is highly contaminated with heavy metal pollutants. (author)

  4. Effects of waste water irrigation on soil properties and soil fauna of spinach fields in a West African urban vegetable production system.

    Science.gov (United States)

    Stenchly, Kathrin; Dao, Juliane; Lompo, Désiré Jean-Pascal; Buerkert, Andreas

    2017-03-01

    The usage of inadequately processed industrial waste water (WW) can lead to strong soil alkalinity and soil salinization of agricultural fields with negative consequences on soil properties and biota. Gypsum as a soil amendment to saline-sodic soils is widely used in agricultural fields to improve their soil physical, chemical and hence biological properties. This study aimed at analysing the effects of intensive WW irrigation on the structure and composition of soil-dwelling arthropods on spinach fields (Spinacia oleracea L.) in a West African urban vegetable production system. We used gypsum as a soil amendment with the potential to alleviate soil chemical stress resulting in a potentially positive impact on soil arthropods. A total of 32 plots were established that showed a gradient in soil pH ranging from slight to strong soil alkalinity and that were irrigated with WW (n = 12) or clean water (CW; n = 20), including eight plots into which gypsum was incorporated. Our study revealed a high tolerance of soil-dwelling arthropods for alkaline soils, but spinach fields with increased soil electrical conductivity (EC) showed a reduced abundance of Hymenoptera, Diptera and Auchenorrhyncha. Arthropod abundance was positively related to a dense spinach cover that in turn was not affected by WW irrigation or soil properties. Gypsum application reduced soil pH but increased soil EC. WW irrigation and related soil pH affected arthropod composition in the investigated spinach fields which may lead to negative effects on agronomical important arthropod groups such as pollinators and predators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Characterization and origin of organic and inorganic pollution in urban soils in Pisa (Tuscany, Italy).

    Science.gov (United States)

    Cardelli, Roberto; Vanni, Giacomo; Marchini, Fausto; Saviozzi, Alessandro

    2017-10-12

    We assessed the quality of 31 urban soils in Pisa by analyzing total petroleum hydrocarbons (TPHs), Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn, and the platinum group elements (PGEs). The risk was evaluated by the geological accumulation index (I geo ) and the enrichment factor (EF). Results were compared with those obtained from a non-urban site and with the quantitative limits fixed by Italian legislation. In nearly all the monitored sites, the legal limit for TPH of 60 mg/kg in residential areas was exceeded, indicating widespread and intense pollution throughout the entire city area. The I geo indicated no Cd, Cu, Mn, Ni, and Zn pollution and minimal Pb and Cr pollution due to anthropogenic enrichment. Legal Hg and Zn limits of 1 and 150 mg/kg, respectively, were exceeded in about 20% of sites; Cd (2 mg/kg), Cr (150 mg/kg), and Cu (120 mg/kg) in only one site; and the Ni legal limit of 120 mg/kg was never exceeded. Some urban soils showed a higher Hg level than the more restrictive legal limit of 5 mg/kg concerning areas for industrial use. Based on the soluble, exchangeable, and carbonate-bound fractions, Mn and Zn showed the highest mobility, suggesting a more potential risk of soil contamination than the other metals. The TPH and both Cr and Hg amounts were not correlated with any of the other monitored metals. The total contents of Cd, Pb, Zn, and Cu in soils were positively correlated with each other, suggesting a common origin from vehicular traffic. The PGE values (Pt and Pd) were below the detection limits in 75%-90% of the monitored areas, suggesting that their accumulation is at an early stage.

  6. Natural radionuclides in soil profiles surrounding the largest coal-fired power plant in Serbia

    Directory of Open Access Journals (Sweden)

    Tanić Milan N.

    2016-01-01

    Full Text Available This study evaluates the influence of the largest Serbian coal-fired power plant on radionuclide concentrations in soil profiles up to 50 cm in depth. Thirty soil profiles were sampled from the plant surroundings (up to 10 km distance and analyzed using standard methods for soil physicochemical properties and gamma ray spectrometry for specific activities of natural radionuclides (40K, 226Ra and 232Th. Spatial and vertical distribution of radionuclides was determined and analyzed to show the relations between the specific activities in the soil and soil properties and the most influential factors of natural radionuclide variability were identified. The radiological indices for surface soil were calculated and radiological risk assessment was performed. The measured specific activities were similar to values of background levels for Serbia. The sampling depth did not show any significant influence on specific activities of natural radionuclides. The strongest predictor of specific activities of the investigated radionuclides was soil granulometry. All parameters of radiological risk assessment were below the recommended values and adopted limits. It appears that the coal-fired power plant does not have a significant impact on the spatial and vertical distribution of natural radionuclides in the area of interest, but technologically enhanced natural radioactivity as a consequence of the plant operations was identified within the first 1.5 km from the power plant. [Projekat Ministarstva nauke Republike Srbije br. III43009 i br. III41005

  7. Detection of novel brominated flame retardants (NBFRs in the urban soils of Melbourne, Australia

    Directory of Open Access Journals (Sweden)

    Thomas J. McGrath

    2017-03-01

    Full Text Available A range of brominated flame retardants (BFRs have been incorporated into polymeric materials like plastics, electronic equipment, foams and textiles to prevent fires. The most common of these, polybrominated diphenyl ethers (PBDEs, have been subject to legislated bans and voluntary withdrawal by manufacturers in North America, Europe and Australia over the past decade due to long-range atmospheric transport, persistence in the environment, and toxicity. Evidence has shown that replacement novel brominated flame retardants (NBFRs are released to the environment by the same mechanisms as PBDEs and share similar hazardous properties. The objective of the current research was to characterize soil contamination by NBFRs in the urban soils of Melbourne, Australia. A variety of industrial and non-industrial land-uses were investigated with the secondary objective of determining likely point sources of pollution. Six NBFRs; pentabromotoluene (PBT, pentabromoethylbenzene (PBEB, hexabromobenzene (HBB, 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB, 1,2-bis(2,4,6-tribromophenoxyethane (BTBPE and decabromodiphenyl ethane (DBDPE were measured in 30 soil samples using selective pressurized liquid extraction (S-PLE and gas chromatography coupled to triple quadrupole mass spectrometry (GC-MS/MS. NBFRs were detected in 24/30 soil samples with Σ5NBFR concentrations ranging from nd-385 ng/g dw. HBB was the most frequently detected compound (14/30, while the highest concentrations were observed for DBDPE, followed by BTBPE. Electronic waste recycling and polymer manufacturing appear to be key contributors to NBFR soil contamination in the city of Melbourne. A significant positive correlation between Σ8PBDEs and Σ5NBFR soil concentrations was observed at waste disposal sites to suggest that both BFR classes are present in Melbourne's waste streams, while no association was determined among manufacturing sites. This research provides the first account of NBFRs

  8. A lead isotopic study of the human bioaccessibility of lead in urban soils from Glasgow, Scotland

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, John G., E-mail: J.G.Farmer@ed.ac.uk [School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3JN, Scotland (United Kingdom); Broadway, Andrew [School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3JN, Scotland (United Kingdom); Cave, Mark R.; Wragg, Joanna [British Geological Survey, Keyworth, Nottingham NG12 5GG, England (United Kingdom); Fordyce, Fiona M. [British Geological Survey, Edinburgh, EH9 3LA, Scotland (United Kingdom); Graham, Margaret C.; Ngwenya, Bryne T. [School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3JN, Scotland (United Kingdom); Bewley, Richard J.F. [URS Corporation Ltd, Manchester, M1 6HS, England (United Kingdom)

    2011-11-01

    The human bioaccessibility of lead (Pb) in Pb-contaminated soils from the Glasgow area was determined by the Unified Bioaccessibility Research Group of Europe (BARGE) Method (UBM), an in vitro physiologically based extraction scheme that mimics the chemical environment of the human gastrointestinal system and contains both stomach and intestine compartments. For 27 soils ranging in total Pb concentration from 126 to 2160 mg kg{sup -1} (median 539 mg kg{sup -1}), bioaccessibility as determined by the 'stomach' simulation (pH {approx} 1.5) was 46-1580 mg kg{sup -1}, equivalent to 23-77% (mean 52%) of soil total Pb concentration. The corresponding bioaccessibility data for the 'stomach + intestine' simulation (pH {approx} 6.3) were 6-623 mg kg{sup -1} and 2-42% (mean 22%) of soil Pb concentration. The soil {sup 206}Pb/{sup 207}Pb ratios ranged from 1.057 to 1.175. Three-isotope plots of {sup 208}Pb/{sup 206}Pb against {sup 206}Pb/{sup 207}Pb demonstrated that {sup 206}Pb/{sup 207}Pb ratios were intermediate between values for source end-member extremes of imported Australian Pb ore (1.04) - used in the manufacture of alkyl Pb compounds (1.06-1.10) formerly added to petrol - and indigenous Pb ores/coal (1.17-1.19). The {sup 206}Pb/{sup 207}Pb ratios of the UBM 'stomach' extracts were similar (< 0.01 difference) to those of the soil for 26 of the 27 samples (r = 0.993, p < 0.001) and lower in 24 of them. A slight preference for lower {sup 206}Pb/{sup 207}Pb ratio was discernible in the UBM. However, the source of Pb appeared to be less important in determining the extent of UBM-bioaccessible Pb than the overall soil total Pb concentration and the soil phases with which the Pb was associated. The significant phases identified in a subset of samples were carbonates, manganese oxides, iron-aluminium oxyhydroxides and clays. - Highlights: {yields} We determined the human bioaccessibility of Pb in urban soils by in vitro extraction. {yields} We

  9. The impact of land use on water loss and soil desiccation in the soil profile

    Science.gov (United States)

    Zhang, Jing; Wang, Li

    2018-02-01

    Farmlands have gradually been replaced by apple orchards in Shaanxi province, China, and there will be a risk of severe soil-water-storage deficit with the increasing age of the apple trees. To provide a theoretical basis for the sustainable development of agriculture and forestry in the Loess Plateau, soil water content in a 19-year-old apple orchard, a 9-year-old apple orchard, a cornfield and a wheat field in the Changwu Tableland was investigated at different depths from January to October 2014. The results showed that: (1) the soil moisture content is different across the soil profile—for the four plots, the soil moisture of the cornfield is the highest, followed by the 9-year-old apple orchard and the wheat field, and the 19-year-old apple orchard has the lowest soil moisture. (2) There are varying degrees of soil desiccation in the four plots: the most serious degree of desiccation is in the 19-year-old apple orchard, followed by the wheat field and the cornfield, with the least severe desiccation occurring in the 9-year-old apple orchard. Farmland should replace apple orchards for an indefinite period while there is an extremely desiccated soil layer in the apple orchard so as to achieve the purpose of sustainable development. It will be necessary to reduce tree densities, and to carry out other research, if development of the economy and ecology of Changwu is to be sustainable.

  10. Soil erosion determination using the Cs-137 concentration in the soil profile, in a rain fall seasonal ecosystem of Mexico

    International Nuclear Information System (INIS)

    Martinez, L.R.; Garcia, O.F.; Mass, J.M.

    1992-01-01

    The soils erosion is one of the main processes of environmental degradation. Latin America presents high levels of erosion however the works that quantificate this problem are few. The application of methods agreed to the tropical countries conditions represents an important limitation in the developing of these works. A methodological option that has arisen in the last years is the application of the distribution analysis of Cs-137 concentration in the soil profile, for estimating the soil motion in a seasonal tropical ecosystem in Chamela, Jalisco, Mexico. The low concentrations of Cs-137 were determined with a gamma spectroscopy system of high resolution and low noise. It is confirmed that the redistribution of Cs-137 in the landscape depends on erosive processes. The conclusion is that in the interpretation of Cs-137 levels it is necessary to incorporate morphology analysis of declivity since this is a low scale measurement. (Author)

  11. Occurrence and sources of natural and anthropogenic lipid tracers in surface soils from arid urban areas of Saudi Arabia

    International Nuclear Information System (INIS)

    Rushdi, Ahmed I.; Al-Mutlaq, Khalid F.; El-Mubarak, Aarif H.; Al-Saleh, Mohammed A.; El-Otaibi, Mubarak T.; Ibrahim, Sami M.M.; Simoneit, Bernd R.T.

    2016-01-01

    Soil particles contain a variety of natural and anthropogenic organic components, and in urban areas can be considered as local collectors of pollutants. Surface soil samples were taken from ten urban areas in Riyadh during early winter of 2007. They were extracted with dichloromethane-methanol mixture and the extracts were analyzed by gas chromatography-mass spectrometry. The major compounds were unresolved complex mixture (UCM), plasticizers, n-alkanes, carbohydrates, n-alkanoic acids, hopanes, n-alkanols, and sterols. Vegetation detritus was the major natural source of organic compounds (24.0 ± 15.7%) in samples from areas with less human activities and included n-alkanes, n-alkanoic acids, n-alkanols, sterols and carbohydrates. Vehicular emission products and discarded plastics were the major anthropogenic sources in the soil particles (53.3 ± 21.3% and 22.7 ± 10.7%, respectively). The anthropogenic tracers were UCM, plasticizers, n-alkanes, hopanes and traces of steranes. Vegetation and human activities control the occurrence and distribution of natural and anthropogenic extractable organic matter in this arid urban area. - Highlights: • Human activities influence the distribution of EOM in soils of urban arid regions. • Petroleum residues and plastics are the dominant anthropogenic input. • Low soil organic matter and moisture limit microbial/fungal alteration. - This work shows that human activities are critical factors that influence the characteristics and distribution of EOM in soils of arid urban regions.

  12. Decoupling the deep: crop rotations, fertilization and soil physico-chemical properties down the profile

    Science.gov (United States)

    Hobley, Eleanor; Honermeier, Bernd; Don, Axel; Amelung, Wulf; Kögel-Knabner, Ingrid

    2017-04-01

    Crop fertilization provides vital plant nutrients (e.g. NPK) to ensure yield security but is also associated with negative environmental impacts. In particular, inorganic, mineral nitrogen (Nmin) fertilization leads to emissions during its energy intensive production as well as Nmin leaching to receiving waters. Incorporating legumes into crop rotations can provide organic N to the soil and subsequent crops, reducing the need for mineral N fertilizer and its negative environmental impacts. An added bonus is the potential to enhance soil organic carbon stocks, thereby reducing atmospheric CO2 concentrations. In this study we assessed the effects of legumes in rotation and fertilization regimes on the depth distribution - down to 1 m - of total soil nitrogen (Ntot), soil organic carbon (SOC) as well as isotopic composition (δ13C, δ15N), electrical conductivity and bulk density as well as agricultural yields at a long-term field experiment in Gießen, Germany. Fertilization had significant but small impacts on the soil chemical environment, most particularly the salt content of the soil, with PK fertilization increasing electrical conductivity throughout the soil profile. Similarly, fertilization resulted in a small reduction of soil pH throughout the soil profile. N fertilization, in particular, significantly increased yields, whereas PK fertilizer had only marginal yield effects, indicating that these systems are N limited. This N limitation was confirmed by significant yield benefits with leguminous crops in rotation, even in combination with mineral N fertilizer. The soil was physically and chemically influenced by the choice of crop rotation. Adding clover as a green mulch crop once every 4 years resulted in an enrichment of total N and SOC at the surface compared with fava beans and maize, but only in combination with PK fertilization. In contrast, fava beans and to a lesser extent maize in rotation lowered bulk densities in the subsoil compared with clover

  13. Effects of a holiday week on urban soil CO2 flux: an intensive study in Xiamen, southeastern China

    Science.gov (United States)

    Ye, H.; Wang, K.; Chen, F.

    2012-12-01

    To study the effects of a holiday period on urban soil CO2 flux, CO2 efflux from grassland soil in a traditional park in the city of Xiamen was measured hourly from 28th Sep to 11th Oct, a period that included China's National Day holiday week in 2009. The results of this study revealed that: a) The urban soil CO2 emissions were higher before and after the holiday week and lower during the National Day holiday reflecting changes in the traffic cycles; b) A diurnal cycle where the soil CO2 flux decreased from early morning to noon was associated with CO2 uptake by vegetation which strongly offset vehicle CO2 emissions. The soil CO2 flux increased from night to early morning, associated with reduced CO2 uptake by vegetation; c) During the National Day holiday week in 2009, lower rates of soil respiration were measured after Mid-Autumn Day than earlier in the week, and this was related to a reduced level of human activities and vehicle traffic, reducing the CO2 concentration in the air. Urban holidays have a clear effect on soil CO2 flux through the interactions between vehicle, visitor and vegetation CO2 emissions which indirectly control the use of carbon by plant roots, the rhizosphere and soil microorganisms. Consequently, appropriate traffic controls and tourism travel plans can have positive effects on the soil carbon store and may improve local air quality.

  14. INFILTRATION THROUGH DISTURBED URBAN SOILS AND COMPOST-AMENDED SOIL EFFECTS OF RUNOFF QUALITY AND QUANTITY

    Science.gov (United States)

    This project examined a common, but poorly understood, problem associated with land development, namely the modifications made to soil structure and the associated reduced rainfall infiltration and increased runoff. The project was divided into two separate major tasks: 1) to tes...

  15. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying; Li, Tingqiang; Wu, Chengxian [Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); He, Zhenli [University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, FL 34945 (United States); Japenga, Jan; Deng, Meihua [Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Yang, Xiaoe, E-mail: xeyang@zju.edu.cn [Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2015-12-15

    Highlights: • Heavy metal source apportionment was conducted in peri-urban agricultural areas. • Precise and quantified results were obtained by using isotope ratio analysis. • The integration of IRA, GIS, PCA, and CA was proved to be more reliable. • Hg pollution was from the use of organic fertilizers in this area. - Abstract: Three techniques (Isotope Ratio Analysis, GIS mapping, and Multivariate Statistical Analysis) were integrated to assess heavy metal pollution and source apportionment in peri-urban agricultural soils. The soils in the study area were moderately polluted with cadmium (Cd) and mercury (Hg), lightly polluted with lead (Pb), and chromium (Cr). GIS Mapping suggested Cd pollution originates from point sources, whereas Hg, Pb, Cr could be traced back to both point and non-point sources. Principal component analysis (PCA) indicated aluminum (Al), manganese (Mn), nickel (Ni) were mainly inherited from natural sources, while Hg, Pb, and Cd were associated with two different kinds of anthropogenic sources. Cluster analysis (CA) further identified fertilizers, waste water, industrial solid wastes, road dust, and atmospheric deposition as potential sources. Based on isotope ratio analysis (IRA) organic fertilizers and road dusts accounted for 74–100% and 0–24% of the total Hg input, while road dusts and solid wastes contributed for 0–80% and 19–100% of the Pb input. This study provides a reliable approach for heavy metal source apportionment in this particular peri-urban area, with a clear potential for future application in other regions.

  16. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils

    International Nuclear Information System (INIS)

    Huang, Ying; Li, Tingqiang; Wu, Chengxian; He, Zhenli; Japenga, Jan; Deng, Meihua; Yang, Xiaoe

    2015-01-01

    Highlights: • Heavy metal source apportionment was conducted in peri-urban agricultural areas. • Precise and quantified results were obtained by using isotope ratio analysis. • The integration of IRA, GIS, PCA, and CA was proved to be more reliable. • Hg pollution was from the use of organic fertilizers in this area. - Abstract: Three techniques (Isotope Ratio Analysis, GIS mapping, and Multivariate Statistical Analysis) were integrated to assess heavy metal pollution and source apportionment in peri-urban agricultural soils. The soils in the study area were moderately polluted with cadmium (Cd) and mercury (Hg), lightly polluted with lead (Pb), and chromium (Cr). GIS Mapping suggested Cd pollution originates from point sources, whereas Hg, Pb, Cr could be traced back to both point and non-point sources. Principal component analysis (PCA) indicated aluminum (Al), manganese (Mn), nickel (Ni) were mainly inherited from natural sources, while Hg, Pb, and Cd were associated with two different kinds of anthropogenic sources. Cluster analysis (CA) further identified fertilizers, waste water, industrial solid wastes, road dust, and atmospheric deposition as potential sources. Based on isotope ratio analysis (IRA) organic fertilizers and road dusts accounted for 74–100% and 0–24% of the total Hg input, while road dusts and solid wastes contributed for 0–80% and 19–100% of the Pb input. This study provides a reliable approach for heavy metal source apportionment in this particular peri-urban area, with a clear potential for future application in other regions.

  17. Vertical profile measurements of soil air suggest immobilization of gaseous elemental mercury in mineral soil.

    Science.gov (United States)

    Obrist, Daniel; Pokharel, Ashok K; Moore, Christopher

    2014-02-18

    Evasion of gaseous elemental Hg (Hg(0)g) from soil surfaces is an important source of atmospheric Hg, but the volatility and solid-gas phase partitioning of Hg(0) within soils is poorly understood. We developed a novel system to continuously measure Hg(0)g concentrations in soil pores at multiple depths and locations, and present a total of 297 days of measurements spanning 14 months in two forests in the Sierra Nevada mountains, California, U.S. Temporal patterns showed consistent pore Hg(0)g concentrations below levels measured in the atmosphere (termed Hg(0)g immobilization), ranging from 66 to 94% below atmospheric concentrations throughout multiple seasons. The lowest pore Hg(0)g concentrations were observed in the deepest soil layers (40 cm), but significant immobilization was already present in the top 7 cm. In the absence of sinks or sources, pore Hg(0)g levels would be in equilibrium with atmospheric concentrations due to the porous nature of the soil matrix and gas diffusion. Therefore, we explain decreases in pore Hg(0)g in mineral soils below atmospheric concentrations--or below levels found in upper soils as observed in previous studies--with the presence of an Hg(0)g sink in mineral soils possibly related to Hg(0)g oxidation or other processes such as sorption or dissolution in soil water. Surface chamber measurements showing daytime Hg(0)g emissions and nighttime Hg(0)g deposition indicate that near-surface layers likely dominate net atmospheric Hg(0)g exchange resulting in typical diurnal cycles due to photochemcial reduction at the surface and possibly Hg(0)g evasion from litter layers. In contrast, mineral soils seem to be decoupled from this surface exchange, showing consistent Hg(0)g uptake and downward redistribution--although our calculations indicate these fluxes to be minor compared to other mass fluxes. A major implication is that once Hg is incorporated into mineral soils, it may be unlikely subjected to renewed Hg(0)g re-emission from

  18. Widespread polybrominated diphenyl ether (PBDE) contamination of urban soils in Melbourne, Australia.

    Science.gov (United States)

    McGrath, Thomas J; Morrison, Paul D; Sandiford, Christopher J; Ball, Andrew S; Clarke, Bradley O

    2016-12-01

    Polybrominated diphenyl ethers (PBDEs) have been used as flame retardants in a variety of materials and products. PBDEs have been shown to accumulate in the environment and human populations while exhibiting a range of toxic effects. In this study, surface soil samples from 30 sites in the city of Melbourne, Australia, were analysed for PBDEs. Eight congeners of environmental concern (BDE-28, -47, -99, -100, -153, -154 -183 and -209) were assessed using selective pressurized liquid extraction (S-PLE) and gas chromatography coupled to triple quadrupole mass spectrometry (GC-MS/MS). PBDEs were detected in 29/30 samples with Σ 8 PBDE soil concentrations ranging nd-13,200 ng/g dw and Σ 7 PBDEs (excluding BDE-209) levels of nd-70.5 ng/g dw. Soils from waste disposal sites (n = 6) contained the highest median Σ 7 PBDE and Σ 8 PBDE concentrations, followed by manufacturing sites (n = 18) and then non-source sites (n = 6). Electronics recycling facilities contained the greatest levels of Σ 8 PBDEs by a significant margin (p production, with the most significant congener correlation existing between BDE-47 and BDE-99 (p < 0.001, r = 0.943). This first assessment of PBDEs in Melbourne soils indicates widespread contamination of the urban environment, including locations where direct sources to soil are not clear. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Organochlorines in urban soils from Central India: probabilistic health hazard and risk implications to human population.

    Science.gov (United States)

    Kumar, Bhupander; Mishra, Meenu; Verma, V K; Rai, Premanjali; Kumar, Sanjay

    2018-04-21

    This study presents distribution of organochlorines (OCs) including HCH, DDT and PCBs in urban soils, and their environmental and human health risk. Forty-eight soil samples were extracted using ultrasonication, cleaned with modified silica gel chromatography and analyzed by GC-ECD. The observed concentrations of ∑HCH, ∑DDT and ∑PCBs in soils ranged between < 0.01-2.54, 1.30-27.41 and < 0.01-62.8 µg kg -1 , respectively, which were lower than the recommended soil quality guidelines. Human health risk was estimated following recommended guidelines. Lifetime average daily dose (LADD), non-cancer risk or hazard quotient (HQ) and incremental lifetime cancer risk (ILCR) for humans due to individual and total OCs were estimated and presented. Estimated LADD were lower than acceptable daily intake and reference dose. Human health risk estimates were lower than safe limit of non-cancer risk (HQ < 1.0) and the acceptable distribution range of ILCR (10 -6 -10 -4 ). Therefore, this study concluded that present levels of OCs (HCH, DDT and PCBs) in studied soils were low, and subsequently posed low health risk to human population in the study area.

  20. Effect of an organic amendment on availability and bio-accessibility of some metals in soils of urban recreational areas

    Energy Technology Data Exchange (ETDEWEB)

    Florido, Maria del Carmen; Madrid, Fernando [Instituto de Recursos Naturales y Agrobiologia de Sevilla, CSIC, Apartado 1052, 41080 Sevilla (Spain); Madrid, Luis, E-mail: madrid@irnase.csic.e [Instituto de Recursos Naturales y Agrobiologia de Sevilla, CSIC, Apartado 1052, 41080 Sevilla (Spain)

    2011-02-15

    A composted biosolid from wastewater treatment was added to soils of two public parks of Sevilla, and successive samples were taken during one year. In one of the parks, a second addition of biosolid was carried out after the first year. The soil contents in metals (pseudo-total) and their plant-available and oral bio-accessible fractions were significantly altered when the soils were amended with biosolid. Increase of the bio-accessible metal contents represents a deterioration of the environmental quality of recreational areas, where hand-to-mouth transfer of pollutants to children is likely to occur, although part of the metals added might be leached by rainfall or irrigation. The limits established in several countries for metal contents of soils in recreational areas are often exceeded after application of the biosolid. A careful study of the metal contents of recycled wastes is thus recommended before being used for green area maintenance. - Research highlights: Metal bio-accessibility in urban soils is significant for quality of life of citizens. Some metal-rich amendments can alter metal availability in urban soils. Metal contents of amendments in recreational areas must then be kept to a minimum. A case study of a composted biosolid used in urban green areas of Sevilla is given. - Metal-containing amendments can deteriorate the environmental quality of soils of urban recreational areas.

  1. Effect of an organic amendment on availability and bio-accessibility of some metals in soils of urban recreational areas

    International Nuclear Information System (INIS)

    Florido, Maria del Carmen; Madrid, Fernando; Madrid, Luis

    2011-01-01

    A composted biosolid from wastewater treatment was added to soils of two public parks of Sevilla, and successive samples were taken during one year. In one of the parks, a second addition of biosolid was carried out after the first year. The soil contents in metals (pseudo-total) and their plant-available and oral bio-accessible fractions were significantly altered when the soils were amended with biosolid. Increase of the bio-accessible metal contents represents a deterioration of the environmental quality of recreational areas, where hand-to-mouth transfer of pollutants to children is likely to occur, although part of the metals added might be leached by rainfall or irrigation. The limits established in several countries for metal contents of soils in recreational areas are often exceeded after application of the biosolid. A careful study of the metal contents of recycled wastes is thus recommended before being used for green area maintenance. - Research highlights: → Metal bio-accessibility in urban soils is significant for quality of life of citizens. → Some metal-rich amendments can alter metal availability in urban soils. → Metal contents of amendments in recreational areas must then be kept to a minimum. → A case study of a composted biosolid used in urban green areas of Sevilla is given. - Metal-containing amendments can deteriorate the environmental quality of soils of urban recreational areas.

  2. Estimation of soil erosion risk within an important agricultural sub-watershed in Bursa, Turkey, in relation to rapid urbanization.

    Science.gov (United States)

    Ozsoy, Gokhan; Aksoy, Ertugrul

    2015-07-01

    This paper integrates the Revised Universal Soil Loss Equation (RUSLE) with a GIS model to investigate the spatial distribution of annual soil loss and identify areas of soil erosion risk in the Uluabat sub-watershed, an important agricultural site in Bursa Province, Turkey. The total soil loss from water erosion was 473,274 Mg year(-1). Accordingly, 60.3% of the surveyed area was classified into a very low erosion risk class while 25.7% was found to be in high and severe erosion risk classes. Soil loss had a close relationship with land use and topography. The most severe erosion risk typically occurs on ridges and steep slopes where agriculture, degraded forest, and shrubs are the main land uses and cover types. Another goal of this study was to use GIS to reveal the multi-year urbanization status caused by rapid urbanization that constitutes another soil erosion risk in this area. Urbanization has increased by 57.7% and the most areal change was determined in class I lands at a rate of 80% over 25 years. Urbanization was identified as one of the causes of excessive soil loss in the study area.

  3. Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics

    International Nuclear Information System (INIS)

    Lee, Celine Siu-lan; Li Xiangdong; Shi Wenzhong; Cheung, Sharon Ching-nga; Thornton, Iain

    2006-01-01

    The urban environment quality is of vital importance as the majority of people now live in cities. Due to the continuous urbanisation and industrialisation in many parts of the world, metals are continuously emitted into the terrestrial environment and pose a great threat on human health. An extensive survey was conducted in the highly urbanised and commercialised Hong Kong Island area (80.3 km 2 ) of Hong Kong using a systematic sampling strategy of five soil samples per km 2 in urban areas and two samples per km 2 in the suburban and country park sites (0-15 cm). The analytical results indicated that the surface soils in urban and suburban areas are enriched with metals, such as Cu, Pb, and Zn. The Pb concentration in the urban soils was found to exceed the Dutch target value. The statistical analyses using principal component analysis (PCA) and cluster analysis (CA) showed distinctly different associations among trace metals and the major elements (Al, Ca, Fe, Mg, Mn) in the urban, suburban, and country park soils. Soil pollution maps of trace metals (Cd, Co, Cr, Cu, Ni, Pb, and Zn) in the surface soils were produced based on geographical information system (GIS) technology. The hot-spot areas of metal contamination were mainly concentrated in the northern and western parts of Hong Kong Island, and closely related to high traffic conditions. The Pb isotopic composition of the urban, suburban, and country park soils showed that vehicular emissions were the major anthropogenic sources for Pb. The 206 Pb/ 207 Pb and 208 Pb/ 207 Pb ratios in soils decreased as Pb concentrations increased in a polynomial line (degree = 2)

  4. Soil bioretention protects juvenile salmon and their prey from the toxic impacts of urban stormwater runoff.

    Science.gov (United States)

    McIntyre, J K; Davis, J W; Hinman, C; Macneale, K H; Anulacion, B F; Scholz, N L; Stark, J D

    2015-08-01

    Green stormwater infrastructure (GSI), or low impact development, encompasses a diverse and expanding portfolio of strategies to reduce the impacts of stormwater runoff on natural systems. Benchmarks for GSI success are usually framed in terms of hydrology and water chemistry, with reduced flow and loadings of toxic chemical contaminants as primary metrics. Despite the central goal of protecting aquatic species abundance and diversity, the effectiveness of GSI treatments in maintaining diverse assemblages of sensitive aquatic taxa has not been widely evaluated. In the present study we characterized the baseline toxicity of untreated urban runoff from a highway in Seattle, WA, across six storm events. For all storms, first flush runoff was toxic to the daphniid Ceriodaphnia dubia, causing up to 100% mortality or impairing reproduction among survivors. We then evaluated whether soil media used in bioretention, a conventional GSI method, could reduce or eliminate toxicity to juvenile coho salmon (Oncorhynchus kisutch) as well as their macroinvertebrate prey, including cultured C. dubia and wild-collected mayfly nymphs (Baetis spp.). Untreated highway runoff was generally lethal to salmon and invertebrates, and this acute mortality was eliminated when the runoff was filtered through soil media in bioretention columns. Soil treatment also protected against sublethal reproductive toxicity in C. dubia. Thus, a relatively inexpensive GSI technology can be highly effective at reversing the acutely lethal and sublethal effects of urban runoff on multiple aquatic species. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. A lead isotopic study of the human bioaccessibility of lead in urban soils from Glasgow, Scotland

    International Nuclear Information System (INIS)

    Farmer, John G.; Broadway, Andrew; Cave, Mark R.; Wragg, Joanna; Fordyce, Fiona M.; Graham, Margaret C.; Ngwenya, Bryne T.; Bewley, Richard J.F.

    2011-01-01

    The human bioaccessibility of lead (Pb) in Pb-contaminated soils from the Glasgow area was determined by the Unified Bioaccessibility Research Group of Europe (BARGE) Method (UBM), an in vitro physiologically based extraction scheme that mimics the chemical environment of the human gastrointestinal system and contains both stomach and intestine compartments. For 27 soils ranging in total Pb concentration from 126 to 2160 mg kg -1 (median 539 mg kg -1 ), bioaccessibility as determined by the 'stomach' simulation (pH ∼ 1.5) was 46-1580 mg kg -1 , equivalent to 23-77% (mean 52%) of soil total Pb concentration. The corresponding bioaccessibility data for the 'stomach + intestine' simulation (pH ∼ 6.3) were 6-623 mg kg -1 and 2-42% (mean 22%) of soil Pb concentration. The soil 206 Pb/ 207 Pb ratios ranged from 1.057 to 1.175. Three-isotope plots of 208 Pb/ 206 Pb against 206 Pb/ 207 Pb demonstrated that 206 Pb/ 207 Pb ratios were intermediate between values for source end-member extremes of imported Australian Pb ore (1.04) - used in the manufacture of alkyl Pb compounds (1.06-1.10) formerly added to petrol - and indigenous Pb ores/coal (1.17-1.19). The 206 Pb/ 207 Pb ratios of the UBM 'stomach' extracts were similar ( 206 Pb/ 207 Pb ratio was discernible in the UBM. However, the source of Pb appeared to be less important in determining the extent of UBM-bioaccessible Pb than the overall soil total Pb concentration and the soil phases with which the Pb was associated. The significant phases identified in a subset of samples were carbonates, manganese oxides, iron-aluminium oxyhydroxides and clays. - Highlights: → We determined the human bioaccessibility of Pb in urban soils by in vitro extraction. → We determined the isotopic composition of Pb in soils and simulated stomach extracts. → Soil stable Pb isotope ratios (e.g. 206 Pb/ 207 Pb) indicated a range of sources of Pb. → 206 Pb/ 207 Pb ratios in soils and their simulated stomach extracts were very similar

  6. TDR water content inverse profiling in layered soils during infiltration and evaporation

    Science.gov (United States)

    Greco, R.; Guida, A.

    2009-04-01

    During the last three decades, time domain reflectometry (TDR) has become one of the most commonly used tools for soil water content measurements either in laboratory or in the field. Indeed, TDR provides easy and cheap water content estimations with relatively small disturbance to the investigated soil. TDR measurements of soil water content are based on the strong correlation between relative dielectric permittivity of wet soil and its volumetric water content. Several expressions of the relationship between relative dielectric permittivity and volumetric water content have been proposed, empirically stated (Topp et al., 1980) as well as based on semi-analytical approach to dielectric mixing models (Roth et al., 1990; Whalley, 1993). So far, TDR field applications suffered the limitation due to the capability of the technique of estimating only the mean water content in the volume investigated by the probe. Whereas the knowledge of non homogeneous vertical water content profiles was needed, it was necessary to install either several vertical probes of different length or several horizontal probes placed in the soil at different depths, in both cases strongly increasing soil disturbance as well as the complexity of the measurements. Several studies have been recently dedicated to the development of inversion methods aimed to extract more information from TDR waveforms, in order to estimate non homogeneous moisture profiles along the axis of the metallic probe used for TDR measurements. A common feature of all these methods is that electromagnetic transient through the wet soil along the probe is mathematically modelled, assuming that the unknown soil water content distribution corresponds to the best agreement between simulated and measured waveforms. In some cases the soil is modelled as a series of small layers with different dielectric properties, and the waveform is obtained as the result of the superposition of multiple reflections arising from impedance

  7. Impact of runoff infiltration on contaminant accumulation and transport in the soil/filter media of Sustainable Urban Drainage Systems: A literature review.

    Science.gov (United States)

    Tedoldi, Damien; Chebbo, Ghassan; Pierlot, Daniel; Kovacs, Yves; Gromaire, Marie-Christine

    2016-11-01

    The increasing use of Sustainable Urban Drainage Systems (SUDS) for stormwater management raises some concerns about the fate of ubiquitous runoff micropollutants in soils and their potential threat to groundwater. This question may be addressed either experimentally, by sampling and analyzing SUDS soil after a given operating time, or with a modeling approach to simulate the fate and transport of contaminants. After briefly reminding the processes responsible for the retention, degradation, or leaching of several urban-sourced contaminants in soils, this paper presents the state of the art about both experimental and modeling assessments. In spite of noteworthy differences in the sampling protocols, the soil parameters chosen as explanatory variables, and the methods used to evaluate the site-specific initial concentrations, most investigations undoubtedly evidenced a significant accumulation of metals and/or hydrocarbons in SUDS soils, which in the majority of the cases appears to be restricted to the upper 10 to 30cm. These results may suggest that SUDS exhibit an interesting potential for pollution control, but antinomic observations have also been made in several specific cases, and the inter-site concentration variability is still difficult to appraise. There seems to be no consensus regarding the level of complexity to be used in models. However, the available data deriving from experimental studies is generally limited to the contamination profiles and a few parameters of the soil, as a result of which "complex" models (including colloid-facilitated transport for example) appear to be difficult to validate before using them for predictive evaluations. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Spatial distribution and vertical variation of arsenic in Guangdong soil profiles, China

    International Nuclear Information System (INIS)

    Zhang, H.H.; Yuan, H.X.; Hu, Y.G.; Wu, Z.F.; Zhu, L.A.; Zhu, L.; Li, F.B.; LI, D.Q.

    2006-01-01

    Total of 260 soil profiles were reported to investigate the arsenic spatial distribution and vertical variation in Guangdong province. The arsenic concentration followed an approximately lognormal distribution. The arsenic geometric mean concentration of 10.4 mg/kg is higher than that of China. An upper baseline concentration of 23.4 mg/kg was estimated for surface soils. The influence of soil properties on arsenic concentration was not important. Arsenic spatial distributions presented similar patterns that high arsenic concentration mainly located in limestone, and sandshale areas, indicating that soil arsenic distribution was dependent on bedrock properties than anthropogenic inputs. Moreover, from A- to C-horizon arsenic geometric mean concentrations had an increasing tendency of 10.4, 10.7 to 11.3 mg/kg. This vertical variation may be related to the lower soil organic matter and soil degradation and erosion. Consequently, the soil arsenic export into surface and groundwaters would reach 1040 t year -1 in the study area. - Soil arsenic movement export is a potential threat to the water quality of the study area

  9. Distribution of active organic matter in the soil profiles of natural and agricultural ecosystems

    Science.gov (United States)

    Khodzhaeva, A. K.; Semenov, V. M.

    2015-12-01

    The amount of active (potentially mineralizable) organic carbon (C0) in the 1-m-deep layer of typical chernozem, dark-gray forest soil, and gray forest soil was estimated for virgin plots and arable land. It was shown that C0 is mainly found in the topsoil (0-20 cm), where its pool reaches 32-60% of the total amount of C0 in the layer of 0-100 cm. The C0 content and its portion in the total organic carbon decrease down the soil profiles. The disturbance of the structure of the pool of active organic carbon—the loss of the moderately mineralizable (0.1 > k 2 > 0.1 day-1) fraction—takes place in the upper horizon of plowed soils. The total pool of C0 in the upper meter of typical chernozem under cropland and under meadow-steppe cenosis comprises 2.8 and 5.2 t/ha, respectively; for the dark gray forest soil under cropland and forest, it reaches 5.5 and 9.8 t/ha, respectively; and for the gray forest soil under cropland and forest, 2.4 and 3.4 t/ha, respectively. The pools of C0 in the typical chernozem. dark gray forest, and gray forest soils are comparable with the values of the annual C-CO2 emission from the soils of these zones.

  10. PAHs contamination in urban soils from Lisbon: spatial variability and potential risks

    Science.gov (United States)

    Cachada, Anabela; Pereira, Ruth; Ferreira da Silva, Eduardo; Duarte, Armando

    2015-04-01

    Polycyclic Aromatic hydrocarbons (PAHs) can become major contaminants in urban and industrial areas, due to the existence of a plethora of diffuse and point sources. Particularly diffuse pollution, which is normally characterized by continuous and long-term emission of contaminants below risk levels, can be a major problem in urban areas. Since PAHs are persistent and tend to accumulate in soils, levels are often above the recommended guidelines indicating that ecological functions of soils may be affected. Moreover, due to the lipophilic nature, hydrophobicity and low chemical and biological degradation rates of PAHs, which leads to their bioconcentration and bioamplification, they may reach toxicological relevant concentrations in organisms. The importance and interest of studying this group of contaminants is magnified due to their carcinogenic, mutagenic and endocrine disrupting effects. In this study, a risk assessment framework has been followed in order to evaluate the potential hazards posed by the presence of PAHs in Lisbon urban soils. Hence, the first step consisted in screening the total concentrations of PAHs followed by the calculation of risks based on existing models. Considering these models several samples were identified as representing a potential risk when comparing with the guidelines for soil protection. Moreover, it was found that for 38% of samples more than 50% of species can be potentially affected by the mixture of PAHs. The use of geostatistical methods allowed to visualize the predicted distribution of PAHs in Lisbon area and identify the areas where possible risk to the environment are likely occurring However, it is known that total concentration may not allow a direct prediction of environmental risk, since in general only a fraction of total concentration is available for partitioning between soil and solution and thus to be uptake or transformed by organisms (bioacessible or bioavailable) or to be leached to groundwater. The

  11. A GIS technology based potential eco-risk assessment of metals in urban soils in Beijing, China

    International Nuclear Information System (INIS)

    Wang Meie; Bai Yanying; Chen Weiping; Markert, Bernd; Peng Chi; Ouyang Zhiyun

    2012-01-01

    Ecological risks of heavy metals in urban soils were evaluated using Beijing, China as an example. Cadmium, Cu, Zn, Pb, Cr and Ni contents of 233 surface soils sampled by 1 min latitude × 1 min longitude grid were used to identify their spatial distribution patterns and potential emission sources. Throughout the city, longer the duration of urbanization greater was the accumulations of heavy metals especially, Cd, Cu, Pb, and Zn. The soil Zn mainly came from the wears of vehicular tires. Point source emissions of heavy metals were few and far in the downwind south–east quadrant of Beijing. The calculated risk indices showed potential median eco-risks in the ancient central city. No potential high eco-risk due to soil-borne heavy metals was found. The potential medium eco-risk areas in Beijing would expand from the initial 24 to 110 km 2 if soil pH were to reduce by 0.5 units in anticipation. - Highlights: ► Longer the time of urbanization, greater heavy metal accumulations were in the soils. ► Point source emissions of heavy metals are few in Beijing urban areas. ► The Zn enrichments in urban soils were caused by vehicle tires wearing. ► No high eco-risk areas were observed in Beijing. ► The decrease of soil pH will cause the expansion of medium eco-risk areas in Beijing. - Spatial distributions and potential eco-risks of soil-borne heavy metals in Beijing.

  12. Risk assessment for Cd, Cu, Pb and Zn in urban soils: Chemical availability as the central concept

    International Nuclear Information System (INIS)

    Rodrigues, S.M.; Cruz, N.; Coelho, C.; Henriques, B.; Carvalho, L.; Duarte, A.C.; Pereira, E.; Römkens, Paul F.A.M.

    2013-01-01

    To assess the geochemical reactivity and oral bioaccessibility of Cd, Cu, Pb and Zn in urban soils from the Porto area, four extractions were performed including Aqua Regia (AR; pseudototal), 0.43 M HNO 3 (reactive), 0.01 M CaCl 2 (available), and 0.4 M glycine at pH = 1.5, SBET method (oral bioaccessible pool). Oral bioaccessibility in urban soils was higher than in samples from rural, industrial and mining areas which is most likely related to sources of metals and parent materials of corresponding soils. The availability and reactivity were described well by non-linear Freundlich-type equations when considering differences in soil properties. The resulting empirical models are able to predict availability and reactivity and can be used to improve the accuracy of risk assessment. Furthermore, a close 1:1 relationship exists between results from the 0.43 M HNO 3 method and the SBET method which substantially facilitates risk assessment procedures and reduces analytical costs. -- Highlights: ► Availability of PTEs in urban soils is described well by non-linear Freundlich-type equations. ► A 1:1 relationship was obtained between the 0.43 M HNO 3 method and the SBET method. ► A single soil extraction indicates reactivity and bioaccessibility of metals in soils. ► The reactive pool is suitable to assess risks of Cd, Cu, Pb and Zn in urban soils. -- A single analysis of the reactive pool by dilute nitric acid is suitable to assess risks of Cd, Cu, Pb and Zn in urban soils related to leaching to (ground)water and exposure to human beings (bioaccessibility)

  13. Soil bacterial and fungal communities along a soil chronosequence assessed by fatty acid profiling

    Czech Academy of Sciences Publication Activity Database

    Welc, M.; Bünemann, E. K.; Flieβbach, A.; Frossard, E.; Jansa, Jan

    2012-01-01

    Roč. 49, JUN 2012 (2012), s. 184-192 ISSN 0038-0717 Institutional support: RVO:61388971 Keywords : Fatty acid methyl esters * Glacier forefield * Soil chronosequence Subject RIV: EE - Microbiology, Virology Impact factor: 3.654, year: 2012

  14. Assimilation of Remotely Sensed Soil Moisture Profiles into a Crop Modeling Framework for Reliable Yield Estimations

    Science.gov (United States)

    Mishra, V.; Cruise, J.; Mecikalski, J. R.

    2017-12-01

    Much effort has been expended recently on the assimilation of remotely sensed soil moisture into operational land surface models (LSM). These efforts have normally been focused on the use of data derived from the microwave bands and results have often shown that improvements to model simulations have been limited due to the fact that microwave signals only penetrate the top 2-5 cm of the soil surface. It is possible that model simulations could be further improved through the introduction of geostationary satellite thermal infrared (TIR) based root zone soil moisture in addition to the microwave deduced surface estimates. In this study, root zone soil moisture estimates from the TIR based Atmospheric Land Exchange Inverse (ALEXI) model were merged with NASA Soil Moisture Active Passive (SMAP) based surface estimates through the application of informational entropy. Entropy can be used to characterize the movement of moisture within the vadose zone and accounts for both advection and diffusion processes. The Principle of Maximum Entropy (POME) can be used to derive complete soil moisture profiles and, fortuitously, only requires a surface boundary condition as well as the overall mean moisture content of the soil column. A lower boundary can be considered a soil parameter or obtained from the LSM itself. In this study, SMAP provided the surface boundary while ALEXI supplied the mean and the entropy integral was used to tie the two together and produce the vertical profile. However, prior to the merging, the coarse resolution (9 km) SMAP data were downscaled to the finer resolution (4.7 km) ALEXI grid. The disaggregation scheme followed the Soil Evaporative Efficiency approach and again, all necessary inputs were available from the TIR model. The profiles were then assimilated into a standard agricultural crop model (Decision Support System for Agrotechnology, DSSAT) via the ensemble Kalman Filter. The study was conducted over the Southeastern United States for the

  15. Geochemical legacies and the future health of cities: A tale of two neurotoxins in urban soils

    Directory of Open Access Journals (Sweden)

    Gabriel M. Filippelli

    2015-07-01

    Full Text Available Abstract The past and future of cities are inextricably linked, a linkage that can be seen clearly in the long-term impacts of urban geochemical legacies. As loci of population as well as the means of employment and industry to support these populations, cities have a long history of co-locating contaminating practices and people, sometimes with negative implications for human health. Working at the intersection between environmental processes, communities, and human health is critical to grapple with environmental legacies and to support healthy, sustainable, and growing urban populations. An emerging area of environmental health research is to understand the impacts of chronic exposures and exposure mixtures—these impacts are poorly studied, yet may pose a significant threat to population health. Acute exposure to lead (Pb, a powerful neurotoxin to which children are particularly susceptible, has largely been eliminated in the U.S. and other countries through policy-based restrictions on leaded gasoline and lead-based paints. But the legacy of these sources remains in the form of surface soil Pb contamination, a common problem in cities and one that has only recently emerged as a widespread chronic exposure mechanism in cities. Some urban soils are also contaminated with another neurotoxin, mercury (Hg. The greatest human exposure to Hg is through fish consumption, so eating fish caught in urban areas presents risks for toxic Hg exposure. The potential double impact of chronic exposure to these two neurotoxins is pronounced in cities. Overall, there is a paradigmatic shift from reaction to and remediation of acute exposures towards a more nuanced understanding of the dynamic cycling of persistent environmental contaminants with resultant widespread and chronic exposure of inner-city dwellers, leading to chronic toxic illness and disability at substantial human and social cost.

  16. Urban soil geochemistry in Athens, Greece: The importance of local geology in controlling the distribution of potentially harmful trace elements.

    Science.gov (United States)

    Argyraki, Ariadne; Kelepertzis, Efstratios

    2014-06-01

    Understanding urban soil geochemistry is a challenging task because of the complicated layering of the urban landscape and the profound impact of large cities on the chemical dispersion of harmful trace elements. A systematic geochemical soil survey was performed across Greater Athens and Piraeus, Greece. Surface soil samples (0-10cm) were collected from 238 sampling sites on a regular 1×1km grid and were digested by a HNO3-HCl-HClO4-HF mixture. A combination of multivariate statistics and Geographical Information System approaches was applied for discriminating natural from anthropogenic sources using 4 major elements, 9 trace metals, and 2 metalloids. Based on these analyses the lack of heavy industry in Athens was demonstrated by the influence of geology on the local soil chemistry with this accounting for 49% of the variability in the major elements, as well as Cr, Ni, Co, and possibly As (median values of 102, 141, 16 and 24mg kg(-1) respectively). The contribution to soil chemistry of classical urban contaminants including Pb, Cu, Zn, Sn, Sb, and Cd (medians of 45, 39, 98, 3.6, 1.7 and 0.3mg kg(-1) respectively) was also observed; significant correlations were identified between concentrations and urbanization indicators, including vehicular traffic, urban land use, population density, and timing of urbanization. Analysis of soil heterogeneity and spatial variability of soil composition in the Greater Athens and Piraeus area provided a representation of the extent of anthropogenic modifications on natural element loadings. The concentrations of Ni, Cr, and As were relatively high compared to those in other cities around the world, and further investigation should characterize and evaluate their geochemical reactivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Patrimonial volatility and new conceptualizations of urban soil value in intermediate cities

    Directory of Open Access Journals (Sweden)

    Beatriz Dillon

    2010-01-01

    Full Text Available The traditional systems of logic which have an impact on the value established for the urban soil have undergone change lately, due to the many dynamics taking place in intermediate cities. These cities' population growth and territorial expansion, as well as the changes in the way the real estate sector is conceived, the developers' proposals and the demand's perceptive components all make up an imperfect, heterogeneous market. Added to the traditional soil value theory are those theories related to the hedonistic aspects that grant symbolic value according to a complex psychosocial and economic structure. When fixing prices, consumers' payment disposition and the assessment of certain characteristics of the property, as well as the socio-economic status and the beauties of the geographical-scenic surroundings in which it is located are all combined.

  18. The astonishingly holistic role of urban soil in the exposure of children to lead.

    Science.gov (United States)

    Mielke, Howard; Gonzales, Christopher; Powell, Eric

    2017-04-01

    The long-term resilience and sustainability of urban communities is associated with its environmental quality. One major impediment to community welfare is children's exposure to lead because it is a root cause of disparity and chronic conditions including health, learning, and behavioral differences. There is no safe level of lead exposure and this revelation is confounded by the lack of an effective intervention after exposure takes place. In August, 2005, Hurricane Katrina flooded 80% of New Orleans. This report explores the natural experiment of the dynamic changes of soil and children's blood lead in New Orleans before and ten years after the flood. Matched pre- and post-Hurricane soil lead and children's blood lead results were stratified by 172 communities of New Orleans. GIS methods were used to organize, describe, and map the pre- and post-Katrina data. Comparing pre- and post-Katrina results, simultaneous decreases occurred in soil lead and children's blood lead response. Health and welfare disparities continue to exist between environments and children's exposure living in interior compared with outer communities of the city. At the scale of a city this investigation demonstrates that declining soil lead effectively reduces children's blood lead. The astonishingly holistic role of soil relates to its position as a lead dust deposition reservoir and, at the same time, as an open source of ingestible and inhalable lead dust. Decreasing the soil lead on play areas of urban communities is beneficial and economical as a method for effective lead intervention and primary prevention. References Mielke, H.W.; Gonzales, C.R.; Powell, E.T.; Mielke, P.W. Jr. Spatiotemporal dynamic transformations of soil lead and children's blood lead ten years after Hurricane Katrina: New grounds for primary prevention. Environ. Int. 2016, DOI: 10.1016/j.envint.2016.06.017. Mielke, H.W.; Gonzales, C.R.; Powell, E.T. In review. The dynamic lead exposome and children's health in New

  19. Soil quality is key for planning and managing urban allotments intended for the sustainable production of home-consumption vegetables.

    Science.gov (United States)

    Bretzel, F; Calderisi, M; Scatena, M; Pini, R

    2016-09-01

    The growing importance of urban allotments in planning and managing urban areas is due to the combined positive effects on ecosystem services, the economy and human well-being, especially of groups of the urban population that can be vulnerable (e.g. the elderly, immigrants, low-income families). Some studies have highlighted the potential risk of contamination by metals of vegetables grown in urban areas and the lack of appropriate site-specific risk assessments. However, surveys are still lacking on the possibilities of using urban soil as a good substrate to produce vegetables for home consumption. We assessed the soil quality in two areas in Pisa (Italy), one intended for urban horticulture and the other already cultivated for that purpose. We analysed the soils for the main chemical and physical characteristics (texture, bulk density, water stability index, pH, cation exchange capacity, organic carbon, total nitrogen, phosphorous) and elements (Pb, Cu, Ni, Cr, Zn, Cd, As, K, Al and Mn). Our results showed that both areas had physical and chemical heterogeneity due to the effects of urbanization and to the different cultivation techniques employed. The metal content was lower than the guidelines limits, and the soil conditions (pH = 8) greatly reduced the metal mobility. Copper concentration in some of the cultivated area samples was higher than the limits, representing a possible stress factor for the microbial biodiversity and fauna. Our findings demonstrate that site-specific surveys are necessary before planning urban cultivation areas, and educating urban gardeners regarding sustainable cultivation techniques is a priority for a safe environment.

  20. Monitoring of Urban Soil Contamination under Various Technogenic Impact: Comparison of the Two Seaside Cities

    Science.gov (United States)

    Miroshnychenko, Mykola; Krivitska, Ivetta; Hladkikh, Yevgenia

    2017-04-01

    of soil contamination in industrial, residential areas and parks has increased by 8-18%. This is caused by the accumulation of zinc, manganese, lead and mineral salts, sometimes in excess of the permitted rate. The contamination of plants in Mariupol is higher than soil contamination due to deposition of heavy metals directly from the atmosphere. Phytotoxicity effect has been discovered on the most of monitoring sites. Conclusions. Due to extremely high heterogeneity and combination of pollution from multiple sources, the changes of urban soil quality can be objectively assessed using observations which are systematic in space and time. The quality of urban soils is improving over five-ten years after reducing the amount of industrial pollution, but heavy metals are continuing to dissipate from the industrial zone to the surrounding land. Soil quality is deteriorating significantly in case of a constant dominance of the steel industry over other activities.

  1. Phthalate esters (PAEs): Emerging organic contaminants in agricultural soils in peri-urban areas around Guangzhou, China

    International Nuclear Information System (INIS)

    Zeng Feng; Cui Kunyan; Xie Zhiyong; Wu Lina; Liu Min; Sun Guoquan; Lin Yujun; Luo Danling; Zeng, Zunxiang

    2008-01-01

    This study reports the first data on the concentrations and distribution of phthalate esters (PAEs) in the agricultural soils from the peri-urban areas of Guangzhou city. Σ 16 PAEs concentrations ranged from 0.195 to 33.6 μg g -1 -dry weight (dw). Elevated levels of PAEs were recorded in the vegetable fields located next to the urban districts, and a decreasing trend exists following the distance away from the urban center. Diisobutyl phthalate (DiBP), Di-n-butyl phthalate (DnBP), and Di(2-ethylhexyl) phthalate (DEHP) dominated the PAEs in the agricultural soils. Significant relationship (correlation coefficient R 2 = 0.85, p < 0.01, n = 40) was present between the accumulation of PAEs and total organic carbons in agricultural soils. In addition, both pH and texture of soils are found to be important factors affecting the level of PAEs. This study shows that the agricultural soils in the peri-urban area of Guangzhou city were moderately polluted by PAEs. - PAEs are determined in agricultural soils at high concentration levels, which imply a potential risk for the food chain

  2. Texas market profile: soil and groundwater decontamination sector

    International Nuclear Information System (INIS)

    1998-12-01

    The soil and groundwater decontamination market in Texas generated $7 billion in earnings in 1997 and should reach almost $9 billion in 2002. While Texas has introduced voluntary clean-up programs, decontamination is required at more than 200,000 sites. Pollution has arisen from such industrial sectors as chemicals, crude oil and natural gas. In Texas, government agency decontamination activities provide major business opportunities. As in the base of the environmental sector as a whole, economic factors are gradually taking over from regulation as the prime demand drivers. Cost and risk are major concerns for clients. Because the incentive to reduce costs and the trend toward contracting out and privatization are becoming stronger, companies with specialized technologies have opportunities in this market. The government is the main client for environmental restoration services, but the private sector is accounting for an increased share of the market. Aspects of market access discussed include: implications of NAFTA and 'Buy America', ATA carnets, the Environmental Technology Verification Program, centralized database, federal government contracting announcements, partnerships, and payment conditions

  3. Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China

    Institute of Scientific and Technical Information of China (English)

    Guanghui Guo; FengchangWu; Fazhi Xie; Ruiqing Zhang

    2012-01-01

    To identify the concentrations and sources of heavy metals,and to assess soil environmental quality,63 soil samples were collected in Yibin City,Sichuan Province,China.Mean concentrations of As,Pb,Zn,and Cu were 10.55,61.23,138.88 and 56.35 mg/kg,respectively.As concentrations were comparable to background values,while Pb,Zn,and Cu concentrations were higher than their corresponding background values.Industrial areas exhibited the highest concentrations of As,Pb,Zn,and Cu,while the lowest concentrations occurred in parks.Statistical analysis was performed and two cluster groups of metals were identified with Pb,Zn,and Cu in one group and As in the other.Spatial distribution maps indicated that Pb,Zn,and Cu were mainly controlled by anthropogenic activities,whereas As could be mainly accounted for by soil parent materials.Pollution index values of As,Pb,Zn,and Cu varied in the range of 0.24-1.93,0.66-7.24,0.42-4.19,and 0.62-5.25,with mean values of 0.86,1.98,1.61,and 1.78,respectively.The integrated pollution index(IPI)values of these metals varied from 0.82 to 3.54,with a mean of 1.6 and more than 90% of soil samples were moderately or highly contaminated with heavy metals.The spatial distribution of IPI showed that newer urban areas displayed relatively lower heavy metal contamination in comparison with older urban areas.

  4. Testing single extraction methods and in vitro tests to assess the geochemical reactivity and human bioaccessibility of silver in urban soils amended with silver nanoparticles

    NARCIS (Netherlands)

    Cruz, N.; Rodrigues, S.M.; Tavares, D.; Monteiro, R.J.R.; Carvalho, L.; Trindade, T.; Duarte, A.C.; Pereira, E.; Romkens, Paul

    2015-01-01

    To assess if the geochemical reactivity and human bioaccessibility of silver nanoparticles (AgNPs) in soils can be determined by routine soil tests commonly applied to other metals in soil, colloidal Ag was introduced to five pots containing urban soils (equivalent to 6.8mgAgkg-1

  5. Urban airborne lead: X-ray absorption spectroscopy establishes soil as dominant source.

    Directory of Open Access Journals (Sweden)

    Nicholas E Pingitore

    Full Text Available BACKGROUND: Despite the dramatic decrease in airborne lead over the past three decades, there are calls for regulatory limits on this potent pediatric neurotoxin lower even than the new (2008 US Environmental Protection Agency standard. To achieve further decreases in airborne lead, what sources would need to be decreased and what costs would ensue? Our aim was to identify and, if possible, quantify the major species (compounds of lead in recent ambient airborne particulate matter collected in El Paso, TX, USA. METHODOLOGY/PRINCIPAL FINDINGS: We used synchrotron-based XAFS (x-ray absorption fine structure to identify and quantify the major Pb species. XAFS provides molecular-level structural information about a specific element in a bulk sample. Pb-humate is the dominant form of lead in contemporary El Paso air. Pb-humate is a stable, sorbed complex produced exclusively in the humus fraction of Pb-contaminated soils; it also is the major lead species in El Paso soils. Thus such soil must be the dominant source, and its resuspension into the air, the transfer process, providing lead particles to the local air. CONCLUSIONS/SIGNIFICANCE: Current industrial and commercial activity apparently is not a major source of airborne lead in El Paso, and presumably other locales that have eliminated such traditional sources as leaded gasoline. Instead, local contaminated soil, legacy of earlier anthropogenic Pb releases, serves as a long-term reservoir that gradually leaks particulate lead to the atmosphere. Given the difficulty and expense of large-scale soil remediation or removal, fugitive soil likely constrains a lower limit for airborne lead levels in many urban settings.

  6. Urban airborne lead: X-ray absorption spectroscopy establishes soil as dominant source.

    Science.gov (United States)

    Pingitore, Nicholas E; Clague, Juan W; Amaya, Maria A; Maciejewska, Beata; Reynoso, Jesús J

    2009-01-01

    Despite the dramatic decrease in airborne lead over the past three decades, there are calls for regulatory limits on this potent pediatric neurotoxin lower even than the new (2008) US Environmental Protection Agency standard. To achieve further decreases in airborne lead, what sources would need to be decreased and what costs would ensue? Our aim was to identify and, if possible, quantify the major species (compounds) of lead in recent ambient airborne particulate matter collected in El Paso, TX, USA. We used synchrotron-based XAFS (x-ray absorption fine structure) to identify and quantify the major Pb species. XAFS provides molecular-level structural information about a specific element in a bulk sample. Pb-humate is the dominant form of lead in contemporary El Paso air. Pb-humate is a stable, sorbed complex produced exclusively in the humus fraction of Pb-contaminated soils; it also is the major lead species in El Paso soils. Thus such soil must be the dominant source, and its resuspension into the air, the transfer process, providing lead particles to the local air. Current industrial and commercial activity apparently is not a major source of airborne lead in El Paso, and presumably other locales that have eliminated such traditional sources as leaded gasoline. Instead, local contaminated soil, legacy of earlier anthropogenic Pb releases, serves as a long-term reservoir that gradually leaks particulate lead to the atmosphere. Given the difficulty and expense of large-scale soil remediation or removal, fugitive soil likely constrains a lower limit for airborne lead levels in many urban settings.

  7. Soil diagnosis of an urban settlement with low levels of anthropogenic pollution (Stepnoe, Saratov region)

    Science.gov (United States)

    Ngun, C. T.; Pleshakova, Ye V.; Reshetnikov, M. V.

    2018-01-01

    A soil diagnosis of an urban territory Stepnoe (Saratov region) was conducted within the framework of soil research monitoring of inhabited localities with low levels of anthropogenic impact using chemical and microbiological analysis. Excess over maximum permissible concentration (MPC) of mobile forms of Cr, Zn and Cd were not observed within the researched territory. A universal excess over MPC of mobile forms of Ni, Cu and Pb was established which is most likely connected with anthropogenic contamination. It was discovered that, at the territory of the Stepnoe settlement, mobile forms of heavy metals compounds (HM) in most cases formed paragenetic associations with high correlation coefficient and despite this, an excess over MPC was not significant. This point to a common mineralogical origin of the elements inherited from the parent rock. The values of the total index of chemical contamination were not above 16, which puts the researched samples in a category with permissible contamination. The indices of the total number of heterotrophic bacteria, iron-oxidizing and hydrocarbon-oxidizing bacteria in most samples corresponded to normal indices for chestnut solonetsous and saline soils. In some samples, a deviation from the normal indices was observed justifying the impact of specific contaminants on the soil.

  8. Assessment of Metal Pollution in Soils from urban area: a preliminary study

    International Nuclear Information System (INIS)

    Alfonso Garcia, S.; Gelen, A.; Diaz Rizo, O.; D'Alessandro, K.; Saborit Sanchez, I.

    2015-01-01

    Concentration of heavy metals (Co, Ni, Cu, Zn and Pb) were determined by X-ray fluorescence in the top-soils (0-10 cm) from backyard of housing near to factory. In this housing lives a person that suffers of health problems which can be related with intoxication by heavy metals. The mean Co, Ni, Cu, Zn and Pb contents in the topsoil samples (4.3 ± 2.6; 32.2 ± 5.2; 86.3 ± 50; 451 ± 102; 162 ± 60 mg/kg -1 , respectively) were compared with mean concentrations for other cities around the world. The comparison with Dutch soil quality guidelines showed a median pollution with Co, Zn and Pb; however, other index: Integrated pollution index, Enrichment index and Enrichment factor showed soils are severely enriched with Pb and two stations are highly polluted and the enrichment index values shows that metal concentrations on the studied locations are above the permissible levels for urban agriculture. It is corroborated that the intoxication for heavy metals is one of the possible causes of the illness. It is recommended to make a deeper study of the soils around the factory. (Author)

  9. Assessing risk to human health from tropical leafy vegetables grown on contaminated urban soils

    International Nuclear Information System (INIS)

    Nabulo, G.; Young, S.D.; Black, C.R.

    2010-01-01

    Fifteen tropical leafy vegetable types were sampled from farmers' gardens situated on nine contaminated sites used to grow vegetables for commercial or subsistence consumption in and around Kampala City, Uganda. Trace metal concentrations in soils were highly variable and originated from irrigation with wastewater, effluent discharge from industry and dumping of solid waste. Metal concentrations in the edible shoots of vegetables also differed greatly between, and within, sites. Gynandropsis gynandra consistently accumulated the highest Cd, Pb and Cu concentrations, while Amaranthus dubius accumulated the highest Zn concentration. Cadmium uptake from soils with contrasting sources and severity of contamination was consistently lowest in Cucurbita maxima and Vigna unguiculata, suggesting these species were most able to restrict Cd uptake from contaminated soil. Concentrations of Pb and Cr were consistently greater in unwashed, than in washed, vegetables, in marked contrast to Cd, Ni and Zn. The risk to human health, expressed as a 'hazard quotient' (HQ M ), was generally greatest for Cd, followed successively by Pb, Zn, Ni and Cu. Nevertheless, it was apparent that urban cultivation of leafy vegetables could be safely pursued on most sites, subject to site-specific assessment of soil metal burden, judicious choice of vegetable types and adoption of washing in clean water prior to cooking.

  10. Soil or Dust for Health Risk Assessment Studies in Urban Environment.

    Science.gov (United States)

    Gabarrón, M; Faz, A; Acosta, J A

    2017-10-01

    To identify the best material (soil or dust) to be selected for health-risk assessment studies, road dust and urban soil from three cities with different population densities were collected, and size fractions were analysed for metal content (Pb, Zn, Cu, Cd, Cr, Co, and Ni). Results showed similar distribution of the size particles among cities, predominating fractions between 75 and 2000 μm in road dust and particles below 75 μm in soil. Metals were mainly bound to PM10 in both soil and road dust increasing the risk of adverse health effects, overall through inhalation exposure. The risk assessment showed that the most hazardous exposure pathway was the ingestion via, followed by dermal absorption and inhalation route. Values of hazard quotient showed that the risk for children due to the ingestion and dermal absorption was higher than adults, and slightly larger at PM10 comparing to <75-μm fraction for the inhalation route. Higher risk values were found for road dust, although any hazard index or cancer risk index value did not overreach the safe value of 10 -6 .

  11. Body composition indices and predicted cardiovascular disease risk profile among urban dwellers in Malaysia.

    Science.gov (United States)

    Su, Tin Tin; Amiri, Mohammadreza; Mohd Hairi, Farizah; Thangiah, Nithiah; Dahlui, Maznah; Majid, Hazreen Abdul

    2015-01-01

    This study aims to compare various body composition indices and their association with a predicted cardiovascular disease (CVD) risk profile in an urban population in Kuala Lumpur, Malaysia. A cross-sectional survey was conducted in metropolitan Kuala Lumpur, Malaysia, in 2012. Households were selected using a simple random-sampling method, and adult members were invited for medical screening. The Framingham Risk Scoring algorithm was used to predict CVD risk, which was then analyzed in association with body composition measurements, including waist circumference, waist-hip ratio, waist-height ratio, body fat percentage, and body mass index. Altogether, 882 individuals were included in our analyses. Indices that included waist-related measurements had the strongest association with CVD risk in both genders. After adjusting for demographic and socioeconomic variables, waist-related measurements retained the strongest correlations with predicted CVD risk in males. However, body mass index, waist-height ratio, and waist circumference had the strongest correlation with CVD risk in females. The waist-related indicators of abdominal obesity are important components of CVD risk profiles. As waist-related parameters can quickly and easily be measured, they should be routinely obtained in primary care settings and population health screens in order to assess future CVD risk profiles and design appropriate interventions.

  12. Body Composition Indices and Predicted Cardiovascular Disease Risk Profile among Urban Dwellers in Malaysia

    Directory of Open Access Journals (Sweden)

    Tin Tin Su

    2015-01-01

    Full Text Available Objectives. This study aims to compare various body composition indices and their association with a predicted cardiovascular disease (CVD risk profile in an urban population in Kuala Lumpur, Malaysia. Methods. A cross-sectional survey was conducted in metropolitan Kuala Lumpur, Malaysia, in 2012. Households were selected using a simple random-sampling method, and adult members were invited for medical screening. The Framingham Risk Scoring algorithm was used to predict CVD risk, which was then analyzed in association with body composition measurements, including waist circumference, waist-hip ratio, waist-height ratio, body fat percentage, and body mass index. Results. Altogether, 882 individuals were included in our analyses. Indices that included waist-related measurements had the strongest association with CVD risk in both genders. After adjusting for demographic and socioeconomic variables, waist-related measurements retained the strongest correlations with predicted CVD risk in males. However, body mass index, waist-height ratio, and waist circumference had the strongest correlation with CVD risk in females. Conclusions. The waist-related indicators of abdominal obesity are important components of CVD risk profiles. As waist-related parameters can quickly and easily be measured, they should be routinely obtained in primary care settings and population health screens in order to assess future CVD risk profiles and design appropriate interventions.

  13. Assessment of metal and PAH profiles in SUDS soil based on an improved experimental procedure.

    Science.gov (United States)

    Tedoldi, Damien; Chebbo, Ghassan; Pierlot, Daniel; Kovacs, Yves; Gromaire, Marie-Christine

    2017-11-01

    The increasing use of infiltration-based systems for stormwater management questions the soil's ability to act as a long-term filter for runoff contaminants, and brings about operational matters regarding the most effective maintenance practices to enhance contaminant retention in SUDS. This paper reports the vertical extent of metal and PAH contamination in the soil of seven source-control devices in operation for more than 10 years, assessed via a two-step sampling strategy to optimize the representativeness of the contamination profiles. Metal distribution was typically characterized by a significant surface buildup, followed by a decrease in concentrations with increasing depth, usually coming close to the background values. PAH were more heterogeneously distributed with depth, but their accumulation was globally restricted to the upper 10-40 cm. This indicates an interesting potential for pollution interception by the upper horizons of soil, but does not necessarily prevent from downward fluxes, even while measuring low surface contents, as deeper strata may have lesser retention capacities. Specific amendments of the surface soil may help prevent this problem. Surface soil renewal - which would be necessary over 2.5-30 cm in four sites, according to the "strictest" standards for soil remediation - may regenerate the soil's sorption potential, but such a practice could disrupt the interactions with the local ecosystem, so this should be carried out exceptionally and not as a preventive measure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Congener specific distribution and health risk assessment of polychlorinated biphenyls in urban soils

    Directory of Open Access Journals (Sweden)

    Bhupander Kumar

    2012-10-01

    Full Text Available Polychlorinated biphenyls (PCBs were primarily used in transformers and capacitors, lubricants, flame retardants, plasticizers, paint, carbonless papers, etc. These are capable of long-range atmospheric transport and have been designated as persistent organic pollutants by the Stockholm Convention. Due to their characteristic properties, PCBs are found worldwide in all environmental matrices (including human and biota. Soils are usually considered to be the source as well as sink for environmental pollutants, with cumulative effects of long-range atmospheric transport and local sources. Around the world, comparatively higher concentrations of PCBs have been reported in urban soils than suburban or rural soils. Higher amount of PCBs in urban soils may cause toxicological health risks to urban residents through ingestion, inhalation and skin contact. This paper presents the PCB distribution in soils from Delhi, India, and exposure risk estimates for human health through soil ingestion. The concentration of ΣPCBs ranged between 1.08-100.67 ng g–1 (mean 21.16 ng g–1±5.24 ng g–1, which was much lower than the Canadian soil quality guideline value of 1.3 mg/kg or 1300 ng g–1. Human health risk estimates through the soil ingestion pathway were made in terms of lifetime average daily dose (LADD, incremental lifetime cancer risks and non-carcinogenic hazard quotient (HQ. The LADD for Delhi adults and children was 3.02x10–8 mg kg–1 d–1 and 1.57x10–7 mg kg–1 d–1, respectively, which corresponds to toxic equivalent quotients (TEQ intake of 0.105 pg TEQ kg–1 d–1 (0.735 pg TEQ kg–1 week–1 and 0.543 pg TEQ kg–1 d–1 (3.801 pg TEQ kg–1 week–1, respectively. The estimated LADD for Delhi residents was lower than the acceptable

  15. Below the disappearing marshes of an urban estuary: historic nitrogen trends and soil structure

    Science.gov (United States)

    Wigand, Cathleen; Roman, Charles T.; Davey, Earl; Stolt, Mark; Johnson, Roxanne; Hanson, Alana; Watson, Elizabeth B.; Moran, S. Bradley; Cahoon, Donald R.; Lynch, James C.; Rafferty, Patricia

    2014-01-01

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and peat particle density significantly greater, and soil strength significantly lower compared to the stable JoCo Marsh, suggesting Black Bank has elevated decomposition rates, more decomposed peat, and highly waterlogged peat. Despite these differences, the rates of accretion and surface elevation change were similar for both marshes, and the rates of elevation change approximated the long term relative rate of sea level rise estimated from tide gauge data at nearby Sandy Hook, New Jersey. We hypothesize that Black Bank marsh kept pace with sea level rise by the accretion of material on the marsh surface, and the maintenance of soil volume through production of

  16. Moving beyond the udorthent - a proposed protocol for surveying urban soils to service data needs for contemporary urban ecosystem management

    Science.gov (United States)

    County-level, Order 2 soil surveys have been used for decades to illustrate the spatial distribution of soils and communicate the utility and limitations of soil series. For the vast majority of these soil surveys, however, there is a distinct lack of resolution of soil series an...

  17. A study of {sup 137}Cs in soil profiles from the Marshall Islands

    Energy Technology Data Exchange (ETDEWEB)

    Graham, J.C.; Simon, S.L. [Republic of the Marshall Islands, Nationwide Radiological Study, Majuro, MH (Marshall Islands)

    1996-04-11

    In late 1989, the Republic of the Marshall Islands commissioned an independent radiological monitoring program to determine the degree of deposition and the geographical extent of atomic weapons test fallout over its islands. The sampling and measurement of {sup 137}Cs in vertical soil profiles has been an important part of that monitoring program. Over 200 profiles were collected in 5-cm increments to a depth of 30 cm, including locations at all 29 of the nation`s atolls and five separate reef islands. Annual rainfall and soil particle size distribution was studied to determine the inter-relationships with cesium permeation and areal inventory (Bq/m{sup 2}). Relaxation lengths of cesium in the soil column were calculated from measurements of {sup 137}Cs activity in profile increments. Using a common model for a depth-dependent concentration gradient (C(d) C{sub o} e{sup -{alpha}d}), the inverse of the rate of change of concentration (i.e. 1/{alpha}) has been defined as the relaxation length of the profile. In this study, the relaxation length was calculated from the concentration data of the first three sample increments (i.e. 0 - 5, 5 - 10, 10 - 15 cm) and from all six increments to a total depth of 30 cm. Typical values for relaxation lengths in the drier northern atolls are 7 - 12 cm, though our observations included values between -800 and 3500 cm. Our findings showed that {sup 137}Cs permeation was highly variable with particle size, though relaxation length was significantly correlated with annual rainfall. Areal inventory was determined to be significantly correlated with the 0 - 5 cm {sup 137}Cs soil concentration. The 0 - 30 cm fitted relaxation length was also determined to give a good estimate of the areal inventory of {sup 137}Cs in the soil to a depth of 30 cm regardless of the rate of change in concentration with depth.

  18. A study of 137Cs in soil profiles from the Marshall Islands

    International Nuclear Information System (INIS)

    Graham, J.C.; Simon, S.L.

    1996-01-01

    In late 1989, the Republic of the Marshall Islands commissioned an independent radiological monitoring program to determine the degree of deposition and the geographical extent of atomic weapons test fallout over its islands. The sampling and measurement of 137 Cs in vertical soil profiles has been an important part of that monitoring program. Over 200 profiles were collected in 5-cm increments to a depth of 30 cm, including locations at all 29 of the nation's atolls and five separate reef islands. Annual rainfall and soil particle size distribution was studied to determine the inter-relationships with cesium permeation and areal inventory (Bq/m 2 ). Relaxation lengths of cesium in the soil column were calculated from measurements of 137 Cs activity in profile increments. Using a common model for a depth-dependent concentration gradient (C(d) C o e -αd ), the inverse of the rate of change of concentration (i.e. 1/α) has been defined as the relaxation length of the profile. In this study, the relaxation length was calculated from the concentration data of the first three sample increments (i.e. 0 - 5, 5 - 10, 10 - 15 cm) and from all six increments to a total depth of 30 cm. Typical values for relaxation lengths in the drier northern atolls are 7 - 12 cm, though our observations included values between -800 and 3500 cm. Our findings showed that 137 Cs permeation was highly variable with particle size, though relaxation length was significantly correlated with annual rainfall. Areal inventory was determined to be significantly correlated with the 0 - 5 cm 137 Cs soil concentration. The 0 - 30 cm fitted relaxation length was also determined to give a good estimate of the areal inventory of 137 Cs in the soil to a depth of 30 cm regardless of the rate of change in concentration with depth

  19. Seasonal variability of soil CO2 flux and its carbon isotope composition in Krakow urban area, Southern Poland.

    Science.gov (United States)

    Jasek, Alina; Zimnoch, Miroslaw; Gorczyca, Zbigniew; Smula, Ewa; Rozanski, Kazimierz

    2014-06-01

    As urban atmosphere is depleted of (13)CO2, its imprint should be detectable in the local vegetation and therefore in its CO2 respiratory emissions. This work was aimed at characterising strength and isotope signature of CO2 fluxes from soil in urban areas with varying distances from anthropogenic CO2 emissions. The soil CO2 flux and its δ(13)C isotope signature were measured using a chamber method on a monthly basis from July 2009 to May 2012 within the metropolitan area of Krakow, Southern Poland, at two locations representing different levels of anthropogenic influence: a lawn adjacent to a busy street (A) and an urban meadow (B). The small-scale spatial variability of the soil CO2 flux was also investigated at site B. Site B revealed significantly higher summer CO2 fluxes (by approximately 46 %) than site A, but no significant differences were found between their δ(13)CO2 signatures.

  20. Ammonium supply rate influences archaeal and bacterial ammonia oxidizers in a wetland soil vertical profile.

    Science.gov (United States)

    Höfferle, Špela; Nicol, Graeme W; Pal, Levin; Hacin, Janez; Prosser, James I; Mandić-Mulec, Ines

    2010-11-01

    Oxidation of ammonia, the first step in nitrification, is carried out in soil by bacterial and archaeal ammonia oxidizers and recent studies suggest possible selection for the latter in low-ammonium environments. In this study, we investigated the selection of ammonia-oxidizing archaea and bacteria in wetland soil vertical profiles at two sites differing in terms of the ammonium supply rate, but not significantly in terms of the groundwater level. One site received ammonium through decomposition of organic matter, while the second, polluted site received a greater supply, through constant leakage of an underground septic tank. Soil nitrification potential was significantly greater at the polluted site. Quantification of amoA genes demonstrated greater abundance of bacterial than archaeal amoA genes throughout the soil profile at the polluted site, whereas bacterial amoA genes at the unpolluted site were below the detection limit. At both sites, archaeal, but not the bacterial community structure was clearly stratified with depth, with regard to the soil redox potential imposed by groundwater level. However, depth-related changes in the archaeal community structure may also be associated with physiological functions other than ammonia oxidation. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. Taxonomic and functional profiles of soil samples from Atlantic forest and Caatinga biomes in northeastern Brazil.

    Science.gov (United States)

    Pacchioni, Ralfo G; Carvalho, Fabíola M; Thompson, Claudia E; Faustino, André L F; Nicolini, Fernanda; Pereira, Tatiana S; Silva, Rita C B; Cantão, Mauricio E; Gerber, Alexandra; Vasconcelos, Ana T R; Agnez-Lima, Lucymara F

    2014-06-01

    Although microorganisms play crucial roles in ecosystems, metagenomic analyses of soil samples are quite scarce, especially in the Southern Hemisphere. In this work, the microbial diversity of soil samples from an Atlantic Forest and Caatinga was analyzed using a metagenomic approach. Proteobacteria and Actinobacteria were the dominant phyla in both samples. Among which, a significant proportion of stress-resistant bacteria associated to organic matter degradation was found. Sequences related to metabolism of amino acids, nitrogen, and DNA and stress resistance were more frequent in Caatinga soil, while the forest sample showed the highest occurrence of hits annotated in phosphorous metabolism, defense mechanisms, and aromatic compound degradation subsystems. The principal component analysis (PCA) showed that our samples are close to the desert metagenomes in relation to taxonomy, but are more similar to rhizosphere microbiota in relation to the functional profiles. The data indicate that soil characteristics affect the taxonomic and functional distribution; these characteristics include low nutrient content, high drainage (both are sandy soils), vegetation, and exposure to stress. In both samples, a rapid turnover of organic matter with low greenhouse gas emission was suggested by the functional profiles obtained, reinforcing the importance of preserving natural areas. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  2. Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta-analysis of radiocarbon profiles.

    Science.gov (United States)

    Mathieu, Jordane A; Hatté, Christine; Balesdent, Jérôme; Parent, Éric

    2015-11-01

    The response of soil carbon dynamics to climate and land-use change will affect both the future climate and the quality of ecosystems. Deep soil carbon (>20 cm) is the primary component of the soil carbon pool, but the dynamics of deep soil carbon remain poorly understood. Therefore, radiocarbon activity (Δ14C), which is a function of the age of carbon, may help to understand the rates of soil carbon biodegradation and stabilization. We analyzed the published 14C contents in 122 profiles of mineral soil that were well distributed in most of the large world biomes, except for the boreal zone. With a multivariate extension of a linear mixed-effects model whose inference was based on the parallel combination of two algorithms, the expectation-maximization (EM) and the Metropolis-Hasting algorithms, we expressed soil Δ14C profiles as a four-parameter function of depth. The four-parameter model produced insightful predictions of soil Δ14C as dependent on depth, soil type, climate, vegetation, land-use and date of sampling (R2=0.68). Further analysis with the model showed that the age of topsoil carbon was primarily affected by climate and cultivation. By contrast, the age of deep soil carbon was affected more by soil taxa than by climate and thus illustrated the strong dependence of soil carbon dynamics on other pedologic traits such as clay content and mineralogy. © 2015 John Wiley & Sons Ltd.

  3. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils.

    Science.gov (United States)

    Huang, Ying; Li, Tingqiang; Wu, Chengxian; He, Zhenli; Japenga, Jan; Deng, Meihua; Yang, Xiaoe

    2015-12-15

    Three techniques (Isotope Ratio Analysis, GIS mapping, and Multivariate Statistical Analysis) were integrated to assess heavy metal pollution and source apportionment in peri-urban agricultural soils. The soils in the study area were moderately polluted with cadmium (Cd) and mercury (Hg), lightly polluted with lead (Pb), and chromium (Cr). GIS Mapping suggested Cd pollution originates from point sources, whereas Hg, Pb, Cr could be traced back to both point and non-point sources. Principal component analysis (PCA) indicated aluminum (Al), manganese (Mn), nickel (Ni) were mainly inherited from natural sources, while Hg, Pb, and Cd were associated with two different kinds of anthropogenic sources. Cluster analysis (CA) further identified fertilizers, waste water, industrial solid wastes, road dust, and atmospheric deposition as potential sources. Based on isotope ratio analysis (IRA) organic fertilizers and road dusts accounted for 74-100% and 0-24% of the total Hg input, while road dusts and solid wastes contributed for 0-80% and 19-100% of the Pb input. This study provides a reliable approach for heavy metal source apportionment in this particular peri-urban area, with a clear potential for future application in other regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Solidago canadensis invasion affects soil N-fixing bacterial communities in heterogeneous landscapes in urban ecosystems in East China.

    Science.gov (United States)

    Wang, Congyan; Jiang, Kun; Zhou, Jiawei; Wu, Bingde

    2018-03-12

    Soil nitrogen-fixing bacterial communities (SNB) can increase the level of available soil N via biological N-fixation to facilitate successful invasion of several invasive plant species (IPS). Meanwhile, landscape heterogeneity can greatly enhance regional invasibility and increase the chances of successful invasion of IPS. Thus, it is important to understand the soil micro-ecological mechanisms driving the successful invasion of IPS in heterogeneous landscapes. This study performed cross-site comparisons, via metagenomics, to comprehensively analyze the effects of Solidago canadensis invasion on SNB in heterogeneous landscapes in urban ecosystems. Rhizospheric soil samples of S. canadensis were obtained from nine urban ecosystems [Three replicate quadrats (including uninvaded sites and invaded sites) for each type of urban ecosystem]. S. canadensis invasion did not significantly affect soil physicochemical properties, the taxonomic diversity of plant communities, or the diversity and richness of SNB. However, some SNB taxa (i.e., f_Micromonosporaceae, f_Oscillatoriaceae, and f_Bacillaceae) changed significantly with S. canadensis invasion. Thus, S. canadensis invasion may alter the community structure, rather than the diversity and richness of SNB, to facilitate its invasion process. Of the nine urban ecosystems, the diversity and richness of SNB was highest in farmland wasteland. Accordingly, the community invasibility of farmland wasteland may be higher than that of the other types of urban ecosystem. In brief, landscape heterogeneity, rather than S. canadensis invasion, was the strongest controlling factor for the diversity and richness of SNB. One possible reason may be the differences in soil electrical conductivity and the taxonomic diversity of plant communities in the nine urban ecosystems, which can cause notable shifts in the diversity and richness of SNB. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Profile Changes in the Soil Microbial Community When Desert Becomes Oasis.

    Directory of Open Access Journals (Sweden)

    Chen-hua Li

    Full Text Available The conversion of virgin desert into oasis farmland creates two contrasting types of land-cover. During oasis formation with irrigation and fertilizer application, however, the changes in the soil microbial population, which play critical roles in the ecosystem, remain poorly understood. We applied high-throughput pyrosequencing to investigate bacterial and archaeal communities throughout the profile (0-3 m in an experimental field, where irrigation and fertilization began in 1990 and cropped with winter wheat since then. To assess the effects of cultivation, the following treatments were compared with the virgin desert: CK (no fertilizer, PK, NK, NP, NPK, NPKR, and NPKM (R: straw residue; M: manure fertilizer. Irrigation had a greater impact on the overall microbial community than fertilizer application. The greatest impact occurred in topsoil (0-0.2 m, e.g., Cyanobacteria (25% total abundance were most abundant in desert soil, while Actinobacteria (26% were most abundant in oasis soil. The proportions of extremophilic and photosynthetic groups (e.g., Deinococcus-Thermus and Cyanobacteria decreased, while the proportions of R-strategy (e.g., Gammaproteobacteria including Xanthomonadales, nitrifying (e.g., Nitrospirae, and anaerobic bacteria (e.g., Anaerolineae increased throughout the oasis profile. Archaea occurred only in oasis soil. The impact of fertilizer application was mainly reflected in the non-dominant communities or finer taxonomic divisions. Oasis formation led to a dramatic shift in microbial community and enhanced soil enzyme activities. The rapidly increased soil moisture and decreased salt caused by irrigation were responsible for this shift. Furthermore, difference in fertilization and crop growth altered the organic carbon contents in the soil, which resulted in differences of microbial communities within oasis.

  6. Distribution, correlation and risk assessment of selected metals in urban soils from Islamabad, Pakistan

    International Nuclear Information System (INIS)

    Iqbal, Javed; Shah, Munir H.

    2011-01-01

    Highlights: → Water-extract and acid-extract of the soils were analysed for selected metals. → The soils were anthropogenically polluted by Cd, Pb, Co, Cr, Cu, Li, Zn and Mn. → Moderate to heavy contamination for Pb and Cd was indicated by I geo and C f . → Most of the metals showed random distribution and diverse correlations. → Overall, considerable degree of contamination was observed in both seasons. - Abstract: Urban soil samples were analyzed for Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Pb, Sr and Zn by atomic absorption spectrophotometric method. Multivariate statistical approach was used to study the apportionment of selected metals in the soil samples during summer and winter. The degree of contamination along with the geoaccumulation index, enrichment factor and contamination factor was also evaluated. In water-extract of the soil samples, relatively higher levels were noted for Na, Ca, K, Fe, Mg, and Pb with average concentrations of 56.38, 33.82, 12.53, 7.127, 5.994, and 1.045 mg/kg during summer, while the mean metal levels during winter were 76.45, 38.05, 3.928, 0.627, 8.726, and 0.878 mg/kg, respectively. In case of acid-extract of the soils, Ca, Fe, Mg, Na, K, Mn and Sr were found at 27,531, 12,784, 2769, 999.9, 737.9, 393.5, and 115.1 mg/kg, during summer and 23,386, 3958, 3206, 254.6, 1511, 453.6, and 53.30 mg/kg, during winter, respectively. Most of the metals showed random distribution with diverse correlations in both seasons. Principal component analysis and cluster analysis revealed significant anthropogenic intrusions of Cd, Pb, Co, Cr, Cu, Li, Zn and Na in the soils. Geoaccumulation indices and contamination factors indicated moderate to heavy contamination for Pb and Cd in the soils, while enrichment factor exhibited significant enrichment (EF > 5) of Cd, Pb, Ca, Co, Li, Mn and Zn by anthropogenic activities. Overall, on the average basis, considerable degree of contamination (C deg > 16) was observed in both seasons, although

  7. Developing Soil Moisture Profiles Utilizing Remotely Sensed MW and TIR Based SM Estimates Through Principle of Maximum Entropy

    Science.gov (United States)

    Mishra, V.; Cruise, J. F.; Mecikalski, J. R.

    2015-12-01

    Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Earlier studies show that the principle of maximum entropy (POME) can be utilized to develop vertical soil moisture profiles with accuracy (MAE of about 1% for a monotonically dry profile; nearly 2% for monotonically wet profiles and 3.8% for mixed profiles) with minimum constraints (surface, mean and bottom soil moisture contents). In this study, the constraints for the vertical soil moisture profiles were obtained from remotely sensed data. Low resolution (25 km) MW soil moisture estimates (AMSR-E) were downscaled to 4 km using a soil evaporation efficiency index based disaggregation approach. The downscaled MW soil moisture estimates served as a surface boundary condition, while 4 km resolution TIR based Atmospheric Land Exchange Inverse (ALEXI) estimates provided the required mean root-zone soil moisture content. Bottom soil moisture content is assumed to be a soil dependent constant. Mulit-year (2002-2011) gridded profiles were developed for the southeastern United States using the POME method. The soil moisture profiles were compared to those generated in land surface models (Land Information System (LIS) and an agricultural model DSSAT) along with available NRCS SCAN sites in the study region. The end product, spatial soil moisture profiles, can be assimilated into agricultural and hydrologic models in lieu of precipitation for data scarce regions.Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Previous studies have shown that the principle of maximum entropy (POME) can be utilized with minimal constraints to develop vertical soil moisture profiles with accuracy (MAE = 1% for monotonically dry profiles; MAE = 2% for monotonically wet profiles and MAE = 3.8% for mixed profiles) when compared to laboratory and field

  8. Distribution, source identification and health risk assessment of soil heavy metals in urban areas of Isfahan province, Iran

    Science.gov (United States)

    Rastegari Mehr, Meisam; Keshavarzi, Behnam; Moore, Farid; Sharifi, Reza; Lahijanzadeh, Ahmadreza; Kermani, Maryam

    2017-08-01

    The present study examines some heavy metals (As, Cd, Co, Cr, Cu, Ni, Pb and Zn) contents in urban soils of 23 cities in Isfahan province, central Iran. For this purpose, 83 topsoil samples were collected and analyzed by ICP-MS. Results showed that the concentrations of As, Cd, Cu, Pb and Zn are higher than background values, while Co, Cr and Ni concentrations are close to the background. Compared with heavy metal concentrations in selected cities around the world, As, Cd, Cu, Pb and Zn concentrations in urban soils of Isfahan are relatively enriched. Moreover, natural background concentrations of Co, Cr and Ni in Isfahan province soil are high and the apparent enrichment relative to other major cities of the world is due to this high background contents. Calculated contamination factor (CF) confirmed that As, Cd, Cu, Pb and Zn are extremely enriched in the urban soils. Furthermore, pollution load index (PLI) and Geoaccumulation index (Igeo) highlighted that highly contaminated cities are mostly affected by pollution from traffic, industries and Shahkuh Pb-Zn mine. Based on hazard quotients (HQ), hazard index (HI) and cancer risk (CR) calculated in this study, human health risk (particularly for Pb and Cd) have reached alarming scales. Results from principle component analysis (PCA) and positive matrix factorization (PMF) introduces three sources for soils heavy metals including mine and industries (mainly for Pb, Zn, Cd and As); urban activities (particularly for Cu, Pb and Zn); and geogenic source (Ni, Co and Cr).

  9. Contamination and source differentiation of Pb in park soils along an urban-rural gradient in Shanghai

    International Nuclear Information System (INIS)

    Li Hongbo; Yu Shen; Li Guilin; Deng Hong; Luo Xiaosan

    2011-01-01

    Urban soil Pb contamination is a great human health risk. Lead distribution and source in topsoils from 14 parks in Shanghai, China were investigated along an urban-rural gradient. Topsoils were contaminated averagely with 65 mg Pb kg -1 , 2.5 times higher than local soil background concentrations. HCl-extracts contained more anthropogenic Pb signatures than total sample digests as revealed by the higher 207/206 Pb and 208/206 Pb ratios in extracts (0.8613 ± 0.0094 and 2.1085 ± 0.0121 versus total digests 0.8575 ± 0.0098 and 2.0959 ± 0.0116). This suggests a higher sensitivity of HCl-extraction than total digestion in identifying anthropogenic Pb sources. Coal combustion emission was identified as the major anthropogenic Pb source (averagely 47%) while leaded gasoline emission contributed 12% overall. Urbanization effects were observed by total Pb content and anthropogenic Pb contribution. This study suggests that to reduce Pb contamination, Shanghai might have to change its energy composition to clean energy. - Highlights: → Coal combustion emission is identified as a main Pb source in Shanghai park soils. → HCl-extraction is sensitive in identifying anthropogenic isotope Pb sources. → Soil Pb contamination and its anthropogenic sources showed urbanization effects. - Coal combustion emission was identified as the main anthropogenic source of soil Pb contamination affecting Shanghai parks.

  10. Bioavailability-Based In Situ Remediation To Meet Future Lead (Pb) Standards in Urban Soils and Gardens.

    Science.gov (United States)

    Henry, Heather; Naujokas, Marisa F; Attanayake, Chammi; Basta, Nicholas T; Cheng, Zhongqi; Hettiarachchi, Ganga M; Maddaloni, Mark; Schadt, Christopher; Scheckel, Kirk G

    2015-08-04

    Recently the Centers for Disease Control and Prevention lowered the blood Pb reference value to 5 μg/dL. The lower reference value combined with increased repurposing of postindustrial lands are heightening concerns and driving interest in reducing soil Pb exposures. As a result, regulatory decision makers may lower residential soil screening levels (SSLs), used in setting Pb cleanup levels, to levels that may be difficult to achieve, especially in urban areas. This paper discusses challenges in remediation and bioavailability assessments of Pb in urban soils in the context of lower SSLs and identifies research needs to better address those challenges. Although in situ remediation with phosphate amendments is a viable option, the scope of the problem and conditions in urban settings may necessitate that SSLs be based on bioavailable rather than total Pb concentrations. However, variability in soil composition can influence bioavailability testing and soil amendment effectiveness. More data are urgently needed to better understand this variability and increase confidence in using these approaches in risk-based decision making, particularly in urban areas.

  11. Vibrations in the urban environment controlling 222Rn migration in soils

    International Nuclear Information System (INIS)

    Wiegand, J.

    1998-01-01

    Comparable to investigations looking for a connection of 222 Rn and earthquakes, this study shows the influence of subsurface vibrations on the 222 Rn concentration of the soil-gas in urban environments. Generally, the 222 Rn concentration increases through vibrations induced by trains, street-traffic and activities at project sites. The spatial radius of the 222 Rn increase due to vibrations reach highest values at project sites where piled foundations or metal panels are rammed into the ground (> 60 m). Along railway tracks the radius is wider (> 30 m) than along heavy traffic roads ( 222 Rn concentrations in soil-gas due to vibrations is the highest at project sites (53%). Along heavy traffic roads the increase of 222 Rn concentrations by motor vehicle traffic is higher (37%) than that by railway traffic (11.5%). The maximum increase of 400% was observed in a distance of 1 m from a railway track. In the vicinity of railway tracks a difference of the vibration influence according to unconsolidated rock (11.1%) or solid rock (11.8%) was not noticed. Beside this vibration effect, the overall 222 Rn level decreases with increasing distance to the vibration source, but only at locations laying above solid rocks. The observation of the increase of 222 Rn concentrations can be explained by a 'pump effect': the mechanical vibration of soil and mineral particles leads to an upward motion of the whole volume of soil-gas. Therefore, 222 Rn is pumped out of the soil to the atmosphere and as a result the upward transport is increased. (author)

  12. Climate change in urban areas. Green and water storage in relation to soils

    International Nuclear Information System (INIS)

    Dirven-van Breemen, E.M.; Claessens, J.W.; Hollander, A.

    2011-08-01

    One of the possible effects of climate change in urban areas is an increased frequency of periods of extreme heat and extreme rainfall events. Public green areas provide shadow and therefore have a cooling effect during periods of extreme heat. Sufficient water storage capacity of the soil may reduce the overburdening of the public water system during extreme rainfall events. Governments do well by taking measures for climate-proofing of their towns. Also citizens may contribute to these climate issues. Governments and citizens should realize that investing in climate-proofing of their towns at this moment will pay off in the future. These are the outcomes of an inventory carried out by the National Institute for Public Health and the Environment, RIVM, ordered by the ministry of Infrastructure and the Environment. With measures for public green areas and water storage capacity local governments should link with other policy areas like infrastructure, public health, safety and sustainability. An example of more public green is a green infrastructure like parks and public gardens. An other advantage of public green is the unsealed soil; that is the soil not covered by roads, buildings, etc. The presence of unsealed soil increases the possibility for water infiltration. For favorable water storage local governments may construct wadis that prevent public water systems for being overburdened by extreme rainfall events. A wadi is a lowering of the surface level mostly covered with plants. During heavy rainfall the wadi is flooded, due to rainwater from the roofs of the surrounding buildings which drains away to the wadi. Citizens may construct green roofs or city gardens with unsealed soil. To promote this, subsidies for private initiatives are an additional boost. [nl

  13. Phylogenetic and Functional Diversity of Total (DNA) and Expressed (RNA) Bacterial Communities in Urban Green Infrastructure Bioswale Soils.

    Science.gov (United States)

    Gill, Aman S; Lee, Angela; McGuire, Krista L

    2017-08-15

    New York City (NYC) is pioneering green infrastructure with the use of bioswales and other engineered soil-based habitats to provide stormwater infiltration and other ecosystem functions. In addition to avoiding the environmental and financial costs of expanding traditional built infrastructure, green infrastructure is thought to generate cobenefits in the form of diverse ecological processes performed by its plant and microbial communities. Yet, although plant communities in these habitats are closely managed, we lack basic knowledge about how engineered ecosystems impact the distribution and functioning of soil bacteria. We sequenced amplicons of the 16S ribosomal subunit, as well as seven genes associated with functional pathways, generated from both total (DNA-based) and expressed (RNA) soil communities in the Bronx, NYC, NY, in order to test whether bioswale soils host characteristic bacterial communities with evidence for enriched microbial functioning, compared to nonengineered soils in park lawns and tree pits. Bioswales had distinct, phylogenetically diverse bacterial communities, including taxa associated with nutrient cycling and metabolism of hydrocarbons and other pollutants. Bioswale soils also had a significantly greater diversity of genes involved in several functional pathways, including carbon fixation ( cbbL-R [ cbbL gene, red-like subunit] and apsA ), nitrogen cycling ( noxZ and amoA ), and contaminant degradation ( bphA ); conversely, no functional genes were significantly more abundant in nonengineered soils. These results provide preliminary evidence that urban land management can shape the diversity and activity of soil communities, with positive consequences for genetic resources underlying valuable ecological functions, including biogeochemical cycling and degradation of common urban pollutants. IMPORTANCE Management of urban soil biodiversity by favoring taxa associated with decontamination or other microbial metabolic processes is a

  14. [Assessment of heavy metal pollution and potential ecological risks of urban soils in Kaifeng City, China].

    Science.gov (United States)

    Li, Yi-Meng; Ma, Jian-Hua; Liu, De-Xin; Sun, Yan-Li; Chen, Yan-Fang

    2015-03-01

    Ninety-nine topsoil (0-15 cm) samples were collected from Kaifeng City, China using the grid method, and then the concentrations of As, Cd, Cr, Cu, Ni, Pb and Zn in the samples were measured by standard methods. Soil pollution levels and potential ecological risks of the heavy metals were assessed using the pollution load index (PLI) and potential ecological risk index (RI), respectively. Ordinary Kriging interpolation technique was employed to investigate the spatial distribution of PLI and RI of the city. The results showed that high pollution of Cd occurred in Kaifeng urban soils, and there was moderate pollution of Zn, slight pollution of Pb and Cu, and no pollution of Ni, Cr and As. Very high ecological risk was posed by Cd and low risk by other metals. The mean PLI of the 7 metals from all sample points was 2.53, which was categorized as moderate pollution. The average RI was 344.58 which represented a considerable ecological risk. PLI and RI shared a similar spatial distribution with high values centralized in the old industrial area in the southeast and railway stations for passengers and goods in the south of the city, followed by the old town within the ancient city wall, and low values located in the north and west areas. Cadmium was the main factor for both soil pollution and potential ecological risk primarily due to farmland topsoil in the eastern suburb of Kaifeng City with high Cd concentrations resulted from sewage irrigation deposited in the urban area by wind, human activities such as soot discharged from the chemical fertilizer plant of Kaifeng, transportation and coal combustion.

  15. Pathogenic and Saprophytic Leptospira Species in Water and Soils from Selected Urban Sites in Peninsular Malaysia

    Science.gov (United States)

    Benacer, Douadi; Woh, Pei Yee; Mohd Zain, Siti Nursheena; Amran, Fairuz; Thong, Kwai Lin

    2013-01-01

    Leptospira species were studied in water and soils from selected urban sites in Malaysia. A total of 151 water (n=121) and soil (n=30) samples were collected from 12 recreational lakes and wet markets. All samples were filtered and inoculated into semi-solid Ellinghausen and McCullough modified by Johnson and Harris (EMJH) media supplemented with additional 5-fluorouracil. The cultures were then incubated at 30°C and observed under a dark field microscope with intervals of 10 days. A PCR assay targeting the rrs gene was used to confirm the genus Leptospira among the isolates. Subsequently, the pathogenic status of the isolates was determined using primer sets G1/G2 and Sapro1/Sapro2, which target the secY and rrs genes, respectively. The isolates were identified at serogroup level using the microscopic agglutination test (MAT) while their genetic diversity was assessed by pulsed field gel electrophoresis (PFGE). Based on dark field microscopy, 23.1% (28/121) water and 23.3% (7/30) soil cultures were positive for Leptospira spp. Of the 35 positive cultures, only 8 were pure and confirmed as Leptospira genus by PCR assay. Two out of 8 isolates were confirmed as pathogenic, 5 were saprophytic and one was intermediate. These 8 isolates were negative for the 25 reference hyperimmune rabbit sera tested in the MAT. PFGE showed that all 8 of these environmental Leptospira spp. were genetically diverse. In conclusion, the presence of pathogenic Leptospira spp. in the urban Malaysian environment may indicate and highlight the importance of water screening, especially in recreational lakes, in order to minimize any chance of Leptospira infection. PMID:23363618

  16. Mercury in urban soils: A comparison of local spatial variability in six European cities

    International Nuclear Information System (INIS)

    Rodrigues, S.; Pereira, M.E.; Duarte, A.C.; Ajmone-Marsan, F.; Davidson, C.M.; Grcman, H.; Hossack, I.; Hursthouse, A.S.; Ljung, K.; Martini, C.; Otabbong, E.; Reinoso, R.; Ruiz-Cortes, E.; Urquhart, G.J.; Vrscaj, B.

    2006-01-01

    The objective of this study was to quantify and assess for the first time the variability of total mercury in urban soils at a European level, using a systematic sampling strategy and a common methodology. We report results from a comparison between soil samples from Aveiro (Portugal), Glasgow (Scotland), Ljubljana (Slovenia), Sevilla (Spain), Torino (Italy) and Uppsala (Sweden). At least 25 sampling points (in about 4-5 ha) from a park in each city were sampled at two depths (0-10 and 10-20 cm). Total mercury was determined by pyrolysis atomic absorption spectrometry with gold amalgamation. The quality of results was monitored using certified reference materials (BCR 142R and BCR 141R). Measured total mercury contents varied from 0.015 to 6.3 mg kg -1 . The lowest median values were found in Aveiro, for both surface (0-10 cm) and sub-surface (10-20 cm) samples (0.055 and 0.054 mg kg -1 , respectively). The highest median mercury contents in soil samples were found in samples from Glasgow (1.2 and 1.3 mg kg -1 , for surface and sub-surface samples, respectively). High variability of mercury concentrations was observed, both within each park and between cities. This variability reflecting contributions from natural background, previous anthropogenic activities and differences in the ages of cities and land use, local environmental conditions as well as the influence of their location within the urban area. Short-range variability of mercury concentrations was found to be up to an order of magnitude over the distance of only a few 10 m

  17. Inversions of radiocarbon age of humus in the profile of modern soils

    International Nuclear Information System (INIS)

    Chichagova, O.A.; Cherkinskij, A.E.; Tolchel'nikov, Yu.S.

    1984-01-01

    Exogenous and endogenous inversions of humus radiocarbon age in the orofile of modern soils are studied. The reasons for exogenous and endogenous invesrsions are enumerated and examples are given. Thus, the exogenous inversion of the chernozem by the underbush (Kursk region) is explained by a high activity of soricids. The age determination of the disturbed profile in the depth of 49-59 cm turns out to be rejuvanated - 1820+-70 years and that of the non-disturbed one - 4050+-60 years. A conclusion is made on the necessity of a detailed analysis of each soil profile, specific features of its genesis as well as a possibility of postgenetic transformations, especially Anthropogenic ones. In this case an interpretation of the radiocarbon data will be more accurate

  18. [Effect of irregular bedrock topography on the soil profile pattern of water content in a Karst hillslope.

    Science.gov (United States)

    Jia, Jin Tian; Fu, Zhi Yong; Chen, Hong Song; Wang, Ke Lin; Zhou, Wei Jun

    2016-06-01

    Based on three manually excavated trenches (projection length of 21 m, width of 1 m) along a typical Karst hillslope, the changing trends for soil-bedrock structure, average water content of soil profile and soil-bedrock interface water content along each individual trench were studied. The effect of irregular bedrock topography on soil moisture distribution was discussed. The results showed that the surface topography was inconsistent with the bedrock topography in the Karst hill-slopes. The bedrock topography was highly irregular with a maximum variation coefficient of 82%. The distribution pattern of soil profile of moisture was significantly affected by the underlying undulant bedrock. The soil water content was related to slope position when the fluctuation was gentle, and displayed a linear increase from upslope to downslope. When the bedrock fluctuation increased, the downslope linear increasing trend for soil water content became unapparent, and the spatial continuity of soil moisture was weakened. The soil moisture was converged in rock dents and cracks. The average water content of soil profile was significantly positively correlated with the soil-bedrock interface water content, while the latter responded more sensitively to the bedrock fluctuation.

  19. Measurement and inference of profile soil-water dynamics at different hillslope positions in a semiarid agricultural watershed

    Science.gov (United States)

    Green, Timothy R.; Erskine, Robert H.

    2011-12-01

    Dynamics of profile soil water vary with terrain, soil, and plant characteristics. The objectives addressed here are to quantify dynamic soil water content over a range of slope positions, infer soil profile water fluxes, and identify locations most likely influenced by multidimensional flow. The instrumented 56 ha watershed lies mostly within a dryland (rainfed) wheat field in semiarid eastern Colorado. Dielectric capacitance sensors were used to infer hourly soil water content for approximately 8 years (minus missing data) at 18 hillslope positions and four or more depths. Based on previous research and a new algorithm, sensor measurements (resonant frequency) were rescaled to estimate soil permittivity, then corrected for temperature effects on bulk electrical conductivity before inferring soil water content. Using a mass-conservation method, we analyzed multitemporal changes in soil water content at each sensor to infer the dynamics of water flux at different depths and landscape positions. At summit positions vertical processes appear to control profile soil water dynamics. At downslope positions infrequent overland flow and unsaturated subsurface lateral flow appear to influence soil water dynamics. Crop water use accounts for much of the variability in soil water between transects that are either cropped or fallow in alternating years, while soil hydraulic properties and near-surface hydrology affect soil water variability across landscape positions within each management zone. The observed spatiotemporal patterns exhibit the joint effects of short-term hydrology and long-term soil development. Quantitative methods of analyzing soil water patterns in space and time improve our understanding of dominant soil hydrological processes and provide alternative measures of model performance.

  20. Risks and benefits of gardening in urban soil; heavy metals and nutrient content in Los Angeles Community Gardens

    Science.gov (United States)

    Clarke, L. W.; Jenerette, D.; Bain, D. J.

    2012-12-01

    The availability of soil nutrients and heavy metals in urban community gardens can influence health of crops and participants. Interactions between garden history, management, and soils are understudied in cities. In July 2011, we collected soil samples from 45 plots at 6 Los Angeles community gardens. For comparison, 3 samples were collected from uncultivated garden soils and 3 more from outside soils. Samples were then tested for major nutrients- Nitrogen(N), Potassium (K), and Phosphorous (P)- and organic matter (SOM). We also measured concentrations of 29 metals in 3 gardens using Inductively Coupled Plasma- Atomic Emission Spectroscopy. Potassium and phosphorus exceeded optimum levels in all plots, with some over twice the maximum recommended levels. Over-fertilized soils may contribute to local watershed pollution and crop micronutrient deficiencies. Low soil SOM was observed in gardens in impoverished neighborhoods, possibly due to low quality amendments. Our metals analysis showed dangerous levels of lead (Pb)-- up to 1700 ppm in outside soils and 150 ppm in garden soils-- near older gardens, indicating lead deposition legacies. California lead safety standards indicate that children should not play near soils with Pb above 200 ppm, indicating need for long term monitoring of lead contaminated gardens. Arsenic (As) levels exceeded federal risk levels (0.3 ppm) and average CA background levels (2 ppm) in all areas, with some gardens exceeding 10 ppm. Heavy metal legacies in gardens may pose risks to participants with prolonged exposure and remediation of soils may be necessary.

  1. The Role of Vegetation and Mulch in Mitigating the Impact of Raindrops on Soils in Urban Vegetated Green Infrastructure Systems

    Science.gov (United States)

    Alizadehtazi, B.; Montalto, F. A.; Sjoblom, K.

    2014-12-01

    Raindrop impulses applied to soils can break up larger soil aggregates into smaller particles, dispersing them from their original position. The displaced particles can self-stratify, with finer particles at the top forming a crust. Occurrence of this phenomenon reduces the infiltration rate and increases runoff, contributing to downstream flooding, soil erosion, and non point source pollutant loads. Unprotected soil surfaces (e.g. without vegetation canopies, mulch, or other materials), are more susceptible to crust formation due to the higher kinetic energy associated with raindrop impact. By contrast, soil that is protected by vegetation canopies and mulch layers is less susceptible to crust formation, since these surfaces intercept raindrops, dissipating some of their kinetic energy prior to their impact with the soil. Within this context, this presentation presents preliminary laboratory work conducted using a rainfall simulator to determine the ability of new urban vegetation and mulch to minimize soil crust formation. Three different scenarios are compared: a) bare soil, b) soil with mulch cover, and c) soil protected by vegetation canopies. Soil moisture, surface penetration resistance, and physical measurements of the volume of infiltrate and runoff are made on all three surface treatments after simulated rainfall events. The results are used to develop recommendations regarding surface treatment in green infrastructure (GI) system designs, namely whether heavily vegetated GI facilities require mulching to maintain infiltration capacity.

  2. Determination of metallic elements in soils and plants in industrial and urban sites

    Energy Technology Data Exchange (ETDEWEB)

    Delearte, E; Nangniot, P; Impens, R

    1973-01-01

    The first phase of a program to study metals in soils and plants in industrial and urban sites is reported. The metals analyzed were copper, cobalt, nickel, zinc, lead, and cadmium. The soil samples were taken at increasing distances from potential emission sources with respect to dominant wind directions. Ubiquitous plants, such as Tussilago farfara L., Plantago major L., Mercurialis annua L., and Agrostis velgaris With. were used as samples for differential oscillopolarographic analyses. Soil samples taken around a zinc ore roasting plant showed very high zinc contents, and irregular distribution of cadmium and copper. Plant samples taken at different distances from the plant revealed rapid reduction of the copper, zinc, and cadmium levels with increasing distance. Very high concentrations of copper were found in plants around a petroleum refinery. Leaves of Aeer platanoides variety Schwedlerii in a town contained an average of 14.1 ppM copper, 0.7 ppM cobalt, 5.4 ppM nickel, 160 ppM zinc, 145 ppM lead, and 0.08 ppM cadmium, relative to the dry weight. The findings indicate that samples should be obtained over a period of sufficient length.

  3. Temperature and Relative Humidity Vertical Profiles within Planetary Boundary Layer in Winter Urban Airshed

    Science.gov (United States)

    Bendl, Jan; Hovorka, Jan

    2017-12-01

    The planetary boundary layer is a dynamic system with turbulent flow where horizontal and vertical air mixing depends mainly on the weather conditions and geomorphology. Normally, air temperature from the Earth surface decreases with height but inversion situation may occur, mainly during winter. Pollutant dispersion is poor during inversions so air pollutant concentration can quickly rise, especially in urban closed valleys. Air pollution was evaluated by WHO as a human carcinogen (mostly by polycyclic aromatic hydrocarbons) and health effects are obvious. Knowledge about inversion layer height is important for estimation of the pollution impact and it can give us also information about the air pollution sources. Temperature and relative humidity vertical profiles complement ground measurements. Ground measurements were conducted to characterize comprehensively urban airshed in Svermov, residential district of the city of Kladno, about 30 km NW of Prague, from the 2nd Feb. to the 3rd of March 2016. The Svermov is an air pollution hot-spot for long time benzo[a]pyrene (B[a]P) limit exceedances, reaching the highest B[a]P annual concentration in Bohemia - west part of the Czech Republic. Since the Svermov sits in a shallow valley, frequent vertical temperature inversion in winter and low emission heights of pollution sources prevent pollutant dispersal off the valley. Such orography is common to numerous small settlements in the Czech Republic. Ground measurements at the sports field in the Svermov were complemented by temperature and humidity vertical profiles acquired by a Vaisala radiosonde positioned at tethered He-filled balloon. Total number of 53 series of vertical profiles up to the height of 300 m was conducted. Meteorology parameters were acquired with 4 Hz frequency. The measurements confirmed frequent early-morning and night formation of temperature inversion within boundary layer up to the height of 50 m. This rather shallow inversion had significant

  4. Effects of the Length of Jet Grouted Columns and Soil Profile on the Settlement of Shallow Foundations

    Directory of Open Access Journals (Sweden)

    Zaheer Ahmed Almani

    2012-07-01

    Full Text Available In this paper, the effect of length of jet grouted columns and varying soil profile under shallow foundations of buildings constructed on the liquefiable ground was studied. The isolated shallow footing pad which supports a typical simple frame structure was constructed on the liquefiable ground. This ground was reinforced with jet grouted column rows under the shallow foundations of structure. The system was modeled as plane-strain using the FLAC 2D (Fast Lagrangian Analysis of Continua dynamic modelling and analysis code. This case focuses on the length of jet grouted columns in a soil profile and the effect of soil profiles of varying thickness on the settlements of building structure when the soil is liquefied during an earthquake. The results show that liquefaction-induced large settlements of shallow foundation of building decrease to tolerable limits with the increase in the length of columns. For soil profiles, with a relatively thinner liquefiable layer, a certain minimum length of columns (extended in base non liquefiable layer is required to meet the settlement tolerable limits. For soil profiles, with a relatively thicker liquefiable layer, this length should be equal to the thickness of the liquefiable layer from the footing base plus some extension in the base non liquefiable dense layer. In the soil profile with the base liquefiable layer underlying the non liquefiable layer, settlements could not be reduced to the tolerable limits even with columns of relatively larger length which may be critical.

  5. Modeling carbon cycle process of soil profile in Loess Plateau of China

    Science.gov (United States)

    Yu, Y.; Finke, P.; Guo, Z.; Wu, H.

    2011-12-01

    SoilGen2 is a process-based model, which could reconstruct soil formation under various climate conditions, parent materials, vegetation types, slopes, expositions and time scales. Both organic and inorganic carbon cycle processes could be simulated, while the later process is important in carbon cycle of arid and semi-arid regions but seldom being studied. After calibrating parameters of dust deposition rate and segments depth affecting elements transportation and deposition in the profile, modeling results after 10000 years were confronted with measurements of two soil profiles in loess plateau of China, The simulated trends of organic carbon and CaCO3 in the profile are similar to measured values. Relative sensitivity analysis for carbon cycle process have been done and the results show that the change of organic carbon in long time scale is more sensitive to precipitation, temperature, plant carbon input and decomposition parameters (decomposition rate of humus, ratio of CO2/(BIO+HUM), etc.) in the model. As for the inorganic carbon cycle, precipitation and potential evaporation are important for simulation quality, while the leaching and deposition of CaCO3 are not sensitive to pCO2 and temperature of atmosphere.

  6. Iodine-129 depth profiles in soil within 30 km from Fukushima Daiichi Nuclear Power Plant

    International Nuclear Information System (INIS)

    Honda, M.; Matsuzaki, H.; Tsuchiya, Y.S.; Nakano, C.; Yamagata, T.; Nagai, H.; Matsushi, Y.; Maejima, Y.

    2013-01-01

    Iodine-129 depth profiles of 13 soil cores were analyzed by AMS to evaluate the distribution and the mobility in soil. The cores were sampled from various fields around the Fukushima Daiichi Nuclear Power Plant (FDNPP). Four cores out of the 13 were collected from almost the same position in Kawauchi village crop field 20 km apart from FDNPP at different times between April 2011 and June 2012 to observe the temporal variation of depth profile of "1"2"9I in soil. On the all of 13 soil cores, clear enhancement of the accident origin "1"2"9I was observed. From the crop field soil cores in Kawauchi village, "1"2"9I inventory was estimated as 43.4±2.7 mBq m"-"2 (3.10x10"1"3 atoms m"-"2). There is positive relationship between relaxation length and the elapsed time since the FDNPP accident. The increase rate of the relaxation length is about 1 cm yr"-"1 which should reflect the downward transfer rate of the Fukushima-derived "1"2"9I. Other 9 cores were collected from various fields including crop fields and man-made soils within 30 km from FDNPP on June 2012. Cumulative "1"2"9I inventory fraction [%] from the surface was calculated. The inventory fraction within top 5 cm varied widely, 65-100% with median 82%. Similarly the inventory fraction within top 10 cm varied 82 to 100% with the median 95%. (author)

  7. Toxocara (Nematoda: Ascaridida and Other Soil-Transmitted Helminth Eggs Contaminating Soils in Selected Urban and Rural Areas in the Philippines

    Directory of Open Access Journals (Sweden)

    Vachel Gay V. Paller

    2014-01-01

    Full Text Available The extent of contamination of soils with soil transmitted helminthes (STH eggs, particularly Toxocara, was determined in selected urban and rural towns of Laguna, Philippines. Soil samples were collected from public schools, house yards, and empty lots. Results revealed that, of the 1480 soil samples collected, 460 (31% were positive for STH eggs. Toxocara sp. was the most prevalent (77%, followed by Ascaris sp. (11%, hookworms/strongyles/free-living nematodes (7%, and Trichuris sp. (5%. Some soil physicochemical parameters were also determined and associated with Toxocara eggs prevalence and density in soil. Results revealed that Toxocara sp. eggs were most prevalent in less acidic, relatively high temperature and high moisture soil conditions. They were also prevalent in sandy, silty, and loamy soil textures but less prevalent in clayey. No significant differences were found between depth 1 (0–5 cm and depth 2 (6–10 cm. This study revealed that Toxocara sp. eggs are ubiquitous and the extent of contamination in soils from the selected towns of Laguna is relatively high. Hence, the data generated in this study can be used in promoting public awareness, particularly for pet owners and local health officials, for effective prevention and control of this parasitosis.

  8. Comparing earnings profiles in urban areas of an LDC: rural-to-urban migrants vs. native workers.

    Science.gov (United States)

    Vijverberg, W P; Zeager, L A

    1994-12-01

    "We use Tanzanian data to test a recently proposed hypothesis that rural-to-urban migrants have an incentive to supply greater work effort than native urban workers, because of the migrants' positive probability of returning to the low-wage rural areas. We treat the choice between public- and private-sector employment as endogenous and, for theoretical and empirical reasons, distinguish migrants with access to rural land from those without access. Our results show that migrants in both sectors face lower initial wage offers than native urban workers. But, the wage gap is eliminated within a decade or less, and thereafter, migrants surpass the wage offers of native workers." excerpt

  9. The 7Be profiles in the undisturbed soil used for reference site to estimate the soil erosion

    International Nuclear Information System (INIS)

    Raksawong, S; Bhongsuwan, T; Krmar, M

    2017-01-01

    The cosmogenic radionuclide 7 Be is increasingly used to obtain information on event-related soil erosion rates within agricultural landscapes. In this study, we select two undisturbed and flat areas to calculate the reference inventory and relaxation mass depth by using 7 Be technique to document short-term erosion. Our results showed that the depth distribution of 7 Be in undisturbed soil profiles was 1.0 cm in sites S02 and S03; the initial activities were 31.6 and 38.8 Bq.kg -1 , respectively. The relaxation mass depths were 5.4 and 7.2 kg.m -2 and the measured reference 7 Be inventories were 71 and 110 Bq.m -2 for sites S02 and S03, respectively. The difference values of the relaxation mass depth and the reference inventory of both sites implied that for determining a short term soil erosion using 7 Be, the reference site was suggested to be selected as close as possible to the study site. (paper)

  10. Oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) in urban soils of Bratislava, Slovakia: Patterns, relation to PAHs and vertical distribution

    International Nuclear Information System (INIS)

    Musa Bandowe, Benjamin A.; Sobocka, Jaroslava; Wilcke, Wolfgang

    2011-01-01

    We determined concentrations, sources, and vertical distribution of OPAHs and PAHs in soils of Bratislava. The Σ14 OPAHs concentrations in surface soil horizons ranged 88-2692 ng g -1 and those of Σ34 PAHs 842-244,870 ng g -1 . The concentrations of the Σ9 carbonyl-OPAHs (r = 0.92, p = 0.0001) and the Σ5 hydroxyl-OPAHs (r = 0.73, p = 0.01) correlated significantly with Σ34 PAHs concentrations indicating the close association of OPAHs with parent-PAHs. OPAHs were quantitatively dominated by 9-fluorenone, 9,10-anthraquinone, 1-indanone and benzo[a]anthracene-7,12-dione. At several sites, individual carbonyl-OPAHs had higher concentrations than parent PAHs. The concentration ratios of several OPAHs to their parent-PAHs and contribution of the more soluble OPAHs (1-indanone and 9-fluorenone) to Σ14 OPAHs concentrations increased with soil depth suggesting that OPAHs were faster vertically transported in the study soils by leaching than PAHs which was supported by the correlation of subsoil:surface soil ratios of OPAH concentrations at several sites with K OW . - Research highlights: → Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are closely associated with PAHs in all studied urban soils. → The concentrations of OPAHs in urban soils of Bratislava are similar as in other European and North American cities. → Concentrations of OPAHs are frequently higher than those of the corresponding parent-PAHs. → For 2-hydroxybenzaldehyde, 1-naphthaldehyde, 2-biphenylcarboxaldehyde and 1,8-naphthalic anhydride there are indications for abiotic or biological production. → The OPAHs are faster vertically transported in soils than their parent-PAHs. - OPAHs and PAHs in urban soils are closely associated but OPAHs are faster translocated than PAHs.

  11. Changing the physical and chemical composition of the soil in the area of man-made impact in urban areas

    Directory of Open Access Journals (Sweden)

    N.V. Zuievska

    2017-04-01

    Full Text Available The research analyzes the application of method of horizontal directional drilling (HDD for the construction of engineering communication for Kyiv’s dense urban development. The main advantages of this modern technology of laying pipes of different diameter in complicated hydrogeological conditions are high accuracy and constant control of the trajectory, the possibility of work regardless of the season and work in a confined space without disturbing the surface structures that already exist. The most common depth of HDD in urban areas is about 2–3 m. As a result of intensive anthropogenic and technological impact in urban soils negative processes are developing that impair their strength characteristics. Soil decompression, violations of water-air and thermal balance, chemical and biological contamination lead to the surface deformations in the field of application of horizontal drilling. The negative aspect is that after filling of soil and repair of surface subsidence, these processes do not stop over time and continue to fracture surface. The aim of the research is to establish the causes of the continuation of active deformation processes of soil environment after the construction of engineering communication using the method of horizontal directional drilling. Most of sewage networks are within the impact zone of roads, so the research was conducted for soil near their proximity, samples were taken at various depths to allow man-made human impact on the deformation properties of soil foundations. For the qualitative and quantitative analysis of substances in soils, roentgen spectral analysis was used. It is a non-destructive method for determining element composition. To determine the oil content we used nuclear magnetic resonance spectroscopy.The study was conducted to determine the salt content of soils and their elemental composition depending on the depth and determination of petroleum products, which may reduce the carrying

  12. An inverse analysis reveals limitations of the soil-CO2 profile method to calculate CO2 production and efflux for well-structured soils

    Directory of Open Access Journals (Sweden)

    M. D. Corre

    2010-08-01

    Full Text Available Soil respiration is the second largest flux in the global carbon cycle, yet the underlying below-ground process, carbon dioxide (CO2 production, is not well understood because it can not be measured in the field. CO2 production has frequently been calculated from the vertical CO2 diffusive flux divergence, known as "soil-CO2 profile method". This relatively simple model requires knowledge of soil CO2 concentration profiles and soil diffusive properties. Application of the method for a tropical lowland forest soil in Panama gave inconsistent results when using diffusion coefficients (D calculated based on relationships with soil porosity and moisture ("physically modeled" D. Our objective was to investigate whether these inconsistencies were related to (1 the applied interpolation and solution methods and/or (2 uncertainties in the physically modeled profile of D. First, we show that the calculated CO2 production strongly depends on the function used to interpolate between measured CO2 concentrations. Secondly, using an inverse analysis of the soil-CO2 profile method, we deduce which D would be required to explain the observed CO2 concentrations, assuming the model perception is valid. In the top soil, this inversely modeled D closely resembled the physically modeled D. In the deep soil, however, the inversely modeled D increased sharply while the physically modeled D did not. When imposing a constraint during the fit parameter optimization, a solution could be found where this deviation between the physically and inversely modeled D disappeared. A radon (Rn mass balance model, in which diffusion was calculated based on the physically modeled or constrained inversely modeled D, simulated observed Rn profiles reasonably well. However, the CO2 concentrations which corresponded to the constrained inversely modeled D were too small compared to the measurements. We suggest that, in well-structured soils, a missing description of steady state CO2

  13. AirMOSS P-Band Radar Retrieval of Subcanopy Soil Moisture Profile

    Science.gov (United States)

    Tabatabaeenejad, A.; Burgin, M. S.; Duan, X.; Moghaddam, M.

    2013-12-01

    Knowledge of soil moisture, as a key variable of the Earth system, plays an important role in our under-standing of the global water, energy, and carbon cycles. The importance of such knowledge has led NASA to fund missions such as Soil Moisture Active and Passive (SMAP) and Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS). The AirMOSS mission seeks to improve the estimates of the North American Net Ecosystem Exchange (NEE) by providing high-resolution observations of the root zone soil moisture (RZSM) over regions representative of the major North American biomes. AirMOSS flies a P-band SAR to penetrate vegetation and into the root zone to provide estimates of RZSM. The flights cover areas containing flux tower sites in regions from the boreal forests in Saskatchewan, Canada, to the tropical forests in La Selva, Costa Rica. The radar snapshots are used to generate estimates of RZSM via inversion of a scattering model of vegetation overlying soils with variable moisture profiles. These retrievals will be used to generate a time record of RZSM, which will be integrated with an ecosystem demography model in order to estimate the respiration and photosynthesis carbon fluxes. The aim of this work is the retrieval of the moisture profile over AirMOSS sites using the collected P-band radar data. We have integrated layered-soil scattering models into a forest scattering model; for the backscattering from ground and for the trunk-ground double-bounce mechanism, we have used a layered small perturbation method and a coherent scattering model of layered soil, respectively. To estimate the soil moisture profile, we represent it as a second-order polynomial in the form of az2 + bz + c, where z is the depth and a, b, and c are the coefficients to be retrieved from radar measurements. When retrieved, these coefficients give us the soil moisture up to a prescribed depth of validity. To estimate the unknown coefficients of the polynomial, we use simulated

  14. 1H-NMR metabolic profiling of wines from three cultivans, three soil types and two contrasting vintages

    Directory of Open Access Journals (Sweden)

    Giuliano Elias Pereira

    2007-06-01

    Significance and impact of study: After validation on a larger number of wine samples this chemical profiling will be a useful new method to the qualify wines in relation to climate, soil, and cultivar effects which contribute to the terroir.

  15. Modeling the vertical soil organic matter profile using Bayesian parameter estimation

    Directory of Open Access Journals (Sweden)

    M. C. Braakhekke

    2013-01-01

    Full Text Available The vertical distribution of soil organic matter (SOM in the profile may constitute an important factor for soil carbon cycling. However, the formation of the SOM profile is currently poorly understood due to equifinality, caused by the entanglement of several processes: input from roots, mixing due to bioturbation, and organic matter leaching. In this study we quantified the contribution of these three processes using Bayesian parameter estimation for the mechanistic SOM profile model SOMPROF. Based on organic carbon measurements, 13 parameters related to decomposition and transport of organic matter were estimated for two temperate forest soils: an Arenosol with a mor humus form (Loobos, the Netherlands, and a Cambisol with mull-type humus (Hainich, Germany. Furthermore, the use of the radioisotope 210Pbex as tracer for vertical SOM transport was studied. For Loobos, the calibration results demonstrate the importance of organic matter transport with the liquid phase for shaping the vertical SOM profile, while the effects of bioturbation are generally negligible. These results are in good agreement with expectations given in situ conditions. For Hainich, the calibration offered three distinct explanations for the observations (three modes in the posterior distribution. With the addition of 210Pbex data and prior knowledge, as well as additional information about in situ conditions, we were able to identify the most likely explanation, which indicated that root litter input is a dominant process for the SOM profile. For both sites the organic matter appears to comprise mainly adsorbed but potentially leachable material, pointing to the importance of organo-mineral interactions. Furthermore, organic matter in the mineral soil appears to be mainly derived from root litter, supporting previous studies that highlighted the importance of root input for soil carbon sequestration. The 210

  16. Risk assessment for Cd, Cu, Pb, and Zn in urban soils: chemical availability as the central concept

    NARCIS (Netherlands)

    Rodrigues, S.R.; Cruz, N.; Coelho, C.; Henriques, B.; Carvalho, L.; Duarte, A.C.; Pereira, E.; Römkens, P.F.A.M.

    2013-01-01

    To assess the geochemical reactivity and oral bioaccessibility of Cd, Cu, Pb and Zn in urban soils from the Porto area, four extractions were performed including Aqua Regia (AR; pseudototal), 0.43 M HNO(3) (reactive), 0.01 M CaCl(2) (available), and 0.4 M glycine at pH = 1.5, SBET method (oral

  17. Using an Automatic Resistivity Profiler Soil Sensor On-The-Go in Precision Viticulture

    Directory of Open Access Journals (Sweden)

    Mariana Amato

    2013-01-01

    Full Text Available Spatial information on vineyard soil properties can be useful in precision viticulture. In this paper a combination of high resolution soil spatial information of soil electrical resistivity (ER and ancillary topographic attributes, such as elevation and slope, were integrated to assess the spatial variability patterns of vegetative growth and yield of a commercial vineyard (Vitis vinifera L. cv. Tempranillo located in the wine-producing region of La Rioja, Spain. High resolution continuous geoelectrical mapping was accomplished by an Automatic Resistivity Profiler (ARP on-the-go sensor with an on-board GPS system; rolling electrodes enabled ER to be measured for a depth of investigation approximately up to 0.5, 1 and 2 m. Regression analysis and cluster analysis algorithm were used to jointly process soil resistivity data, landscape attributes and grapevine variables. ER showed a structured variability that matched well with trunk circumference spatial pattern and yield. Based on resistivity and a simple terrain attribute uniform management units were delineated. Once a spatial relationship to target variables is found, the integration of point measurement with continuous soil resistivity mapping is a useful technique to identify within-plots areas of vineyard with similar status.

  18. Treatability of volatile chlorinated hydrocarbon-contaminated soils of different textures along a vertical profile by mechanical soil aeration: A laboratory test.

    Science.gov (United States)

    Ma, Yan; Shi, Yi; Hou, Deyi; Zhang, Xi; Chen, Jiaqi; Wang, Zhifen; Xu, Zhu; Li, Fasheng; Du, Xiaoming

    2017-04-01

    Mechanical soil aeration is a simple, effective, and low-cost soil remediation technology that is suitable for sites contaminated with volatile chlorinated hydrocarbons (VCHs). Conventionally, this technique is used to treat the mixed soil of a site without considering the diversity and treatability of different soils within the site. A laboratory test was conducted to evaluate the effectiveness of mechanical soil aeration for remediating soils of different textures (silty, clayey, and sandy soils) along a vertical profile at an abandoned chloro-alkali chemical site in China. The collected soils were artificially contaminated with chloroform (TCM) and trichloroethylene (TCE). Mechanical soil aeration was effective for remediating VCHs (removal efficiency >98%). The volatilization process was described by an exponential kinetic function. In the early stage of treatment (0-7hr), rapid contaminant volatilization followed a pseudo-first order kinetic model. VCH concentrations decreased to low levels and showed a tailing phenomenon with very slow contaminant release after 8hr. Compared with silty and sandy soils, clayey soil has high organic-matter content, a large specific surface area, a high clay fraction, and a complex pore structure. These characteristics substantially influenced the removal process, making it less efficient, more time consuming, and consequently more expensive. Our findings provide a potential basis for optimizing soil remediation strategy in a cost-effective manner. Copyright © 2016. Published by Elsevier B.V.

  19. Monitoring soil bacteria with community-level physiological profiles using Biolog™ ECO-plates in the Netherlands and Europe

    DEFF Research Database (Denmark)

    Rutgers, Michiel; Wouterse, Marja; Drost, Sytske M.

    2016-01-01

    Soil samples were analyzed with community-level physiological profiles (CLPP) using Biolog™ ECO-plates in the Netherlands Soil Monitoring Network (NSMN; 704 samples) and in a European-wide transect (73 samples). The selection of sites was based on a representative sample of major soil texture types...... of the bacterial inoculum. The CLPP in Dutch and European soil samples appeared to be reproducible and sensitive to land use and/or soil texture. Although the method is selective, CLPP based parameters correlated well with other microbial parameters and soil characteristics. Consistent patterns in CLPP and soil...... habitat characteristics are emerging, as brought about by environmental disturbances, land management and soil texture. The applicability of CLPP analysis in monitoring systems is discussed....

  20. Trace element concentration and speciation in selected urban soils in New York City.

    Science.gov (United States)

    Burt, R; Hernandez, L; Shaw, R; Tunstead, R; Ferguson, R; Peaslee, S

    2014-01-01

    A long history of urbanization and industrialization has affected trace elements in New York City (NYC) soils. Selected NYC pedons were analyzed by aqua regia microwave digestion and sequential chemical extraction as follows: water soluble (WS); exchangeable (EX); specifically sorbed/carbonate bound (SS/CAR); oxide-bound (OX); organic/sulfide bound (OM/S). Soils showed a range in properties (e.g., pH 3.9 to 7.4). Sum of total extractable (SUMTE) trace elements was higher in NYC parks compared to Bronx River watershed sites. NYC surface horizons showed higher total extractable (TE) levels compared to US non-anthropogenic soils. TE levels increased over 10 year in some of the relatively undisturbed and mostly wooded park sites. Surface horizons of park sites with long-term anthropogenic inputs showed elevated TE levels vs. subsurface horizons. Conversely, some Bronx River watershed soils showed increased concentrations with depth, reflective of their formation in a thick mantle of construction debris increasing with depth and intermingled with anthrotransported soil materials. Short-range variability was evident in primary pedons and satellite samples (e.g., Pb 253 ± 143 mg/kg). Long-range variability was indicated by PbTE (348 versus 156 mg/kg) and HgTE (1 versus 0.3 mg/kg) concentrations varying several-fold in the same soil but in different geographic locations. Relative predominance of fractions: RES (37 %) > SS/CAR (22 %) > OX (20 %) > OM/S (10 %) > EX (7 %) > WS (4 %). WS and EX fractions were greatest for Hg (7 %) and Cd (14 %), respectively. RES was predominant fraction for Co, Cr, Ni, and Zn (41 to 51 %); SS/CAR for Cd and Pb (40 and 63 %); OM/S for Cu and Hg (36 and 37 %); and OX for As (59 %).

  1. Physical data of soil profiles formed on late Quaternary marine terraces near Santa Cruz, California

    Science.gov (United States)

    Munster, Jennie; Harden, Jennifer W.

    2002-01-01

    last site selected, and this report contains minimal data on this terrace. Sites on the second, third, and fourth terraces are located in Wilder Ranch, Santa Cruz, California. Site five is on private property north of Wilder Ranch. Careful consideration was taken in selecting field sites, choosing locations in a topographically flat area to avoid effects of erosion, and trying to keep parent material similar. This report contains physical properties of the soil profiles on four of the five marine terraces near Santa Cruz, California, excluding the youngest terrace in all tables except 6 and 7. Data includes field descriptions, bulk density, grain size analyses, weight percent magnetic fraction, and the soil development index. Soil properties are important when trying to understand the chemistry of a given profile or when comparing profiles. Grain size constrains the movement of water in a profile, thus controlling movement of chemicals and weathering rates. Bulk density is a useful property to calculate chemical inventory. Quantifying the magnetic fraction aids in understanding the Fe inventory for these soils. The soil development index is a semi-quantitative way to define the degree of development of a soil profile. This is a useful way to compare development of profiles for this chronosequence or compare the Santa Cruz terraces to a suit of other terraces or another chronosequence.

  2. Short-term nitrous oxide profile dynamics and emissions response to water, nitrogen and carbon additions in two tropical soils

    Science.gov (United States)

    A. D. Nobre; M. Keller; P. M. Crill; R. C. Harriss

    2001-01-01

    Tropical soils are potentially the highest and least studied nitrous oxide (N2O) production areas in the world. The effect of water, nitrate and glucose additions on profile concentrations and episodic emissions of N2O for two volcanic soils in Costa Rica was examined. Magnitudes of episodic N2O pulses, as well as overall N2O emissions, varied considerably and...

  3. Soil CO2 flux baseline in an urban monogenetic volcanic field: the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Mazot, Agnès; Smid, Elaine R.; Schwendenmann, Luitgard; Delgado-Granados, Hugo; Lindsay, Jan

    2013-11-01

    The Auckland Volcanic Field (AVF) is a dormant monogenetic basaltic field located in Auckland, New Zealand. Though soil gas CO2 fluxes are routinely used to monitor volcanic regions, there have been no published studies of soil CO2 flux or soil gas CO2 concentrations in the AVF to date or many other monogenetic fields worldwide. We measured soil gas CO2 fluxes and soil gas CO2 concentrations in 2010 and 2012 in varying settings, seasons, and times of day to establish a baseline soil CO2 flux and to determine the major sources of and controlling influences on Auckland's soil CO2 flux. Soil CO2 flux measurements varied from 0 to 203 g m-2 day-1, with an average of 27.1 g m-2 day-1. Higher fluxes were attributed to varying land use properties (e.g., landfill). Using a graphical statistical approach, two populations of CO2 fluxes were identified. Isotope analyses of δ13CO2 confirmed that the source of CO2 in the AVF is biogenic with no volcanic component. These data may be used to assist with eruption forecasting in the event of precursory activity in the AVF, and highlight the importance of knowing land use history when assessing soil gas CO2 fluxes in urban environments.

  4. Distribution of 90Sr and 137Cs in Arctic soil profiles polluted by heavy metals

    International Nuclear Information System (INIS)

    Puhakainen, M.; Heikkinen, T.; Steinnes, E.; Thorring, H.; Outola, I.

    2005-01-01

    Effects of industrial pollution on the behaviour of radionuclides in spruce forest ecosystems were studied along a gradient from of a copper-nickel smelter in Monchegorsk, NW Russia. A reference site was situated in Lapland, Finland, 152 km west of Monchegorsk. Most of the total 137 Cs activity in soil was in mineral (E and B) horizons, except at the reference site where the major part was still in the organic surface layer. Most of the total 90 Sr activity still remaining in the soil profile was found in the surface layer, but the relative amount decreased with increasing level of industrial pollution. Pollutants from the smelter clearly affected the chemical speciation of radionuclides. Smaller amounts of exchangeable radionuclides were present in the organic surface layer at the most polluted sites. The decline of 137 Cs with decreasing distance from the smelter correlated strongly with a similar depletion in exchangeable K and Mg. Total concentrations of 137 Cs and 90 Sr showed high correlations with exchangeable cations, particularly in the E and upper B horizon. A sudden change in behaviour of 137 Cs in the lower B horizon may be associated with changes in clay mineralogy along the soil profile caused by weathering

  5. Urban waste compost: Effects on physical, chemical, and biochemical soil properties

    Energy Technology Data Exchange (ETDEWEB)

    Giusquiani, P.L.; Gigliotti, G.; Businelli, D. [Istituto di Chimica Agraria dell`Universita, Perugia (Italy)] [and others

    1995-01-01

    A long-term field experiment was conducted to determine the effect of the additions of urban waste compost on the physical and chemical properties and enzymatic activities in a calcareous soil (Fluventic Xerochrept). Total Porosity (pores >50 pm measured on thin soil sections from undisturbed samples by image analysis) was greater in the plots treated with compost than the control plots due to a larger amount of elongated pores. In the amended plots total and humified organic C, Pb, Cu, and Zn showed a significant increase compared with nonamended plots. Enzymatic activities (L-asparaginase, arylsulphatase, dehydrogenase, phosphodiesterase, and alkaline phosphomonoesterase) were significantly enhanced by the compost addition thus indicating no inhibiting influence of the heavy metals present. The increased levels of the arylsulphatase, dehydrogenase, phosphodiesterase, and phosphomonoesterase activities were significantly correlated with total porosity: the first three with pores ranging from 50 to 1000 {mu}m, mainly with pores 50 to 200 {mu}m in size and phosphomonoesterase only with pores whose size was <500 {mu}m. L-asparaginase activity was not correlated with porosity. Only arylsulphatase, dehydrogenase, and phosphodiesterase were negatively correlated with bulk density. 44 refs., 4 figs., 6 tabs.

  6. Heavy metal status of soil and vegetables grown on peri-urban area of Lahore district

    Directory of Open Access Journals (Sweden)

    Ajmal Khan, Shahid Javid, Atif Muhmood, Tahir Mjeed, Abid Niaz and Abdul Majeed

    2013-05-01

    Full Text Available Use of wastewater for growing vegetables has become a common practice around big cities. Wastewater contains organic material and inorganic elements essential for plant growth but also contain heavy metals which may be lethal for animals and humans if their concentration increases than permissible limit. To monitor this situation, a survey was conducted to ascertain the addition of heavy metals into agricultural fields through wastewater irrigation and their translocation in to the edible parts of the vegetables. For this purpose, during year 2009-10, 25 sewage water, 76 soil, 40 leaf and 30 vegetable samples (tomato, spinach, carrot and cauliflower were taken from peri-urban area of Lahore district. These samples were analyzed for Zn, Cu, Fe, Mn, Pb, Cd and Ni contents. The analysis showed that in wastewater concentration of Cu (100 %, Mn (72 %, Ni (32 % and Cd (44% were higher than the safe limits while Zn, Fe and Pb concentration was below permissible limits. In soil DTPA extractable concentration of Zn, Cu, Fe, Mn, Pb, Ni and Cd was in safe limit and ranged between 1.30-8.02, 1.06 -5.42, 8.60-35.03, 8.7-30.07, 2.11-30.86, 0.28-1.76 and 0.05-0.52 mg kg-1 respectively. In vegetable, 100 % leaf and fruit samples were contaminated and accumulation of heavy metals was higher than the WHO/FAO recommended permissible limits.

  7. Geospatial Distribution of Heavy Metals in an Urban Soil, El Paso, Texas, USA

    Science.gov (United States)

    Amaya, M. A.; Elkekli, A. R.; Clague, J. W.; Grimida, S. E.; Pingitore, N. E., Jr.

    2014-12-01

    Some 500 city blocks were selected randomly via population-based stratification. Equal volumes of soil collected from the public space (where present) in front of each house on a block yielded a composite sample. Composites provide neighborhood level "smoothing" relative to sampling many individual houses, and greatly decrease laboratory effort/cost. In the laboratory 10 g of soil were comminuted in a ceramic ball mill, mixed with cellulose/ paraffin binder, and pressed (20 tons) into a pellet. A Panalytical Epsilon5 EDS-XRF, using 8 sequential secondary target conditions and 12 NIST and USGS multi-element rock standards provided analyses. The concentration of Pb ranged from 11 to 420 ppm; Cr, 4.3 - 52 ppm; Cu, 6.5 - 390 ppm; Zn, 17 - 480 ppm; Cd, 0.4 - 12 ppm; and Sb, 2.9 - 20 ppm. High levels of all metals characterize the urban core area of El Paso, which dates to the late 19th Century. This area hosts both commercial and old residential structures, as well as major highways and a large railroad yard. There currently is, and was in the past, considerable light industry in the area. Two highly traveled highway and one railroad border crossing over the Rio Grande into contiguous Cd. Juarez (population close to 2 million) add to current and past contamination. A century-old Pb-Cu-Zn smelter, recently demolished, forms the western boundary of the urban core. Heavy metal pollution from the smelter is recognized near the former site. Its effect on the rest of the urban core is uncertain due to the current and former presence of other heavy metal sources. Aggressive post-World War II growth and expansion of El Paso into the surrounding desert, as is common in the US Southwest, placed newer housing onto more pristine land surfaces. This is reflected in generally low-to-background levels of heavy metals in these newer areas of the city. Thus there is a strong contamination and heavy metals exposure risk gradient between older and newer neighborhoods within a single city

  8. Qualitative relation between heavy metal concentration in soil and agricultural products: a Chinese peri-urban case study

    Science.gov (United States)

    Kikuchi, Ryunosuke; Ferreira, Carla Sofia; Dinis Ferreira, Antonio

    2017-04-01

    A peri-urban area refers to a transition or interaction zone, where urban and rural activities are juxtaposed, and landscape features are subject to rapid modifications, mainly due to human activities. It is reported that peri-urban areas which might include valuable protected areas (e.g. forested hills, preserved woodlands, prime agricultural lands, etc.) can provide essential life support services for urban residents. A peri-urban area is not only a zone experiencing the immediate impacts of land demands from urban growth and pollution, but it is also a wider market-related zone of influence, recognized for the supply of agricultural and natural resource products. It is reported that China's environmental crisis is one of the most pressing challenges to emerge from the country's rapid industrialization; therefore a field study was carried out to investigate the qualitative relation of soil property with vegetable agricultural products in the Chinese peri-urban area located in Luoyang city (34°37'N and 112°27'E). Soil, water and plant (e.g. squash, Cucurbita maxima) samples were taken over the study site, and heavy metal concentrations were analyzed. All the soil samples showed Cd concentrations exceeded the permissible level established by Chinese guidelines for soil quality (0.3 mg/kg). The contents of Zn, Pb and Cu also surpassed the Chinese guideline levels (Zn = 250 mg/kg, Pb = 50 mg/kg and Cu = 100 mg/kg) in several soil samples. Although the sampled plants contained some degree of all the heavy metals, only the Al concentration was high in the Cucurbita maxima samples (317 mg/kg), which is a specie of cultivated squash. Considering the world market and the global trade of agricultural products, it can be said that the food risk associated with farm products containing Al is not local but global. It is concluded that an environmental contamination of the peri-urban areas may lead to the threat to food security.

  9. Vegetation cover and land use impacts on soil water repellency in an Urban Park located in Vilnius, Lithuania

    Science.gov (United States)

    Pereira, Paulo; Cerda, Artemi

    2015-04-01

    It is strongly recognized that vegetation cover, land use have important impacts on the degree of soil water repellency (SWR). Soil water repellency is a natural property of soils, but can be induced by natural and anthropogenic disturbances as fire and soil tillage (Doerr et al., 2000; Urbanek et al., 2007; Mataix-Solera et al., 2014). Urban parks are areas where soils have a strong human impact, with implications on their hydrological properties. The aim of this work is to study the impact of different vegetations cover and urban soils impact on SWR and the relation to other soil variables as pH, Electrical Conductivity (EC) and soil organic matter (SOM) in an urban park. The study area is located in Vilnius city (54°.68' N, 25°.25' E). It was collected 15 soil samples under different vegetation cover as Pine (Pinus Sylvestris), Birch (Alnus glutinosa), Penduculate Oak (Quercus robur), Platanus (Platanus orientalis) and other human disturbed areas as forest trails and soils collected from human planted grass. Soils were taken to the laboratory, air-dried at room temperature and sieved with the 3600 (extremely water repellent). The results showed significant differences among the different vegetation cover (Kruskal-Wallis H=20.64, ppost-fire management scenarios, CGL2013-47862-C2-1-R), funded by the Spanish Ministry of Economy and Competitiveness; Fuegored; RECARE (Preventing and Remediating Degradation of Soils in Europe Through Land Care, FP7-ENV-2013-TWO STAGE), funded by the European Commission; and for the COST action ES1306 (Connecting European connectivity research). References Bisdom, E.B.A., Dekker, L., Schoute, J.F.Th. (1993) Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma, 56, 105-118. Doerr, S.H., Shakesby, R.A., Walsh, R.P.D. (2000) Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews, 51, 33-65. Doerr, S.H. (1998

  10. Evaluation of 137Cs mobility in soil profiles from the Pantanal region, Brazil

    International Nuclear Information System (INIS)

    Silva, Fernanda Leite da

    2013-01-01

    Radioactive pollutants can cause impact on the environmental quality of soils and pose a risk to human health. The release of radioactive materials through nuclear testing or nuclear accidents cause the deposition of radionuclides on the ground,· it may be leached by rain, transported to the sources of natural waters and absorbed by the soil fauna and flora, and thus enter the human food chain. Radioecological studies have shown that soils with low pH, low organic matter content and low fertility are more vulnerable to contamination by 137 Cs, since the transfer to plants is high. In this study, we aimed to assess and map the vulnerability to contamination by 137 Cs surface horizons of the soils from the Pantanal and propose mitigation measures adapted to the regional scenario to optimize radiological protection of agricultural areas. Therefore, selected soil profiles located in the municipality of Jaraguari, state of Mato Grosso do Sul, and applied the conceptual model developed by Picanco Jr (2012), which was used in the reference values of the factor of soil-plant transfer (FT) for 137 Cs in corn, related soil variables (pH, CTC and exchangeable K) and relevance of parameters and variations of amplitudes for each value range of FT. The application of this conceptual model established to detect the vulnerability of soils to radioactive contamination generated maps vulnerability showing that the region is very heterogeneous as this criterion, showing low levels of vulnerability for most of the region and in some areas, extreme vulnerability. This result identified the Pantanal as one of the less vulnerable to the radioactive contamination, but the sparse areas of extreme vulnerability can lead to contamination of subsoil and a significant spread of contamination via groundwater. This conceptual model, which defines vulnerability classification, is a first step for the study and determination of a numerical index of vulnerability to 137 Cs soil and can be used in

  11. Metabolomic Profiles of a Midge (Procladius villosimanus, Kieffer Are Associated with Sediment Contamination in Urban Wetlands

    Directory of Open Access Journals (Sweden)

    Katherine J. Jeppe

    2017-12-01

    Full Text Available Metabolomic techniques are powerful tools for investigating organism-environment interactions. Metabolite profiles have the potential to identify exposure or toxicity before populations are disrupted and can provide useful information for environmental assessment. However, under complex environmental scenarios, metabolomic responses to exposure can be distorted by background and/or organismal variation. In the current study, we use LC-MS (liquid chromatography-mass spectrometry and GC-MS (gas chromatography-mass spectrometry to measure metabolites of the midge Procladius villosimanus inhabiting 21 urban wetlands. These metabolites were tested against common sediment contaminants using random forest models and metabolite enrichment analysis. Sediment contaminant concentrations in the field correlated with several P. villosimanus metabolites despite natural environmental and organismal variation. Furthermore, enrichment analysis indicated that metabolite sets implicated in stress responses were enriched, pointing to specific cellular functions affected by exposure. Methionine metabolism, sugar metabolism and glycerolipid metabolism associated with total petroleum hydrocarbon and metal concentrations, while mitochondrial electron transport and urea cycle sets associated only with bifenthrin. These results demonstrate the potential for metabolomics approaches to provide useful information in field-based environmental assessments.

  12. Specific Features of Profile Distribution and Crystallochemistry of Phyllosilicates in Soils of the Cisbaikal Forest-Steppe

    Science.gov (United States)

    Chizhikova, N. P.; Gamzikov, G. P.; Chechetko, E. S.

    2018-01-01

    The mineralogical composition of agrogray, dark gray, and agro-dark gray soils (Luvic Greyzemic Retic Phaeozems); agro-dark gray residual-calcareous soils (Calcaric Cambic Phaeozems); clay-illuvial agrochernozems (Luvic Chernic Phaeozems); and agrochernozems with migrational-mycelial carbonates (Haplic Chernozems) developed in the forest-steppe of Central Siberia within the Irkutsk Depression has been studied. The clay (smectite, vermiculite, and chlorite; the proportions between them change within the soil profiles. The clay fraction also contains hydromicas, kaolinite, chlorite, and some admixture of the fine-dispersed quartz. Each type of the soils is characterized by its own distribution pattern of clay material with specific alternation of layers in the mixed-layer formations. Mixed-layer minerals of the chlorite-vermiculite type predominate in the upper horizons of texture-differentiated soils. Down the soil profile, the content of mixed-layer mica-smectitic minerals increases. In the clay fraction of arable dark gray-humus soils with residual carbonates, the distribution of the clay fraction and major mineral phases in the soil profile is relatively even. An increased content of well-crystallized kaolinite is typical of these soils. The parent material of agrochernozems has a layered character: the upper horizons are generally depleted of clay, and the middle-profile and lower horizons are characterized by the considerable kaolinite content. In general, the clay material of soils of the Tulun-Irkutsk forest-steppe differs considerably from the clay material of foreststeppe soils developed from loesslike and mantle loams in the European part of Russia. In particular, this difference is seen in the proportions between major mineral phases and between biotitic and muscovitic components, as well as in the degree of crystallinity and behavior of kaolinite and chlorite.

  13. An evaluation of machine processing techniques of ERTS-1 data for user applications. [urban land use and soil association mapping in Indiana

    Science.gov (United States)

    Landgrebe, D.

    1974-01-01

    A broad study is described to evaluate a set of machine analysis and processing techniques applied to ERTS-1 data. Based on the analysis results in urban land use analysis and soil association mapping together with previously reported results in general earth surface feature identification and crop species classification, a profile of general applicability of this procedure is beginning to emerge. Put in the hands of a user who knows well the information needed from the data and also is familiar with the region to be analyzed it appears that significantly useful information can be generated by these methods. When supported by preprocessing techniques such as the geometric correction and temporal registration capabilities, final products readily useable by user agencies appear possible. In parallel with application, through further research, there is much potential for further development of these techniques both with regard to providing higher performance and in new situations not yet studied.

  14. Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach.

    Science.gov (United States)

    Hu, Wenyou; Wang, Huifeng; Dong, Lurui; Huang, Biao; Borggaard, Ole K; Bruun Hansen, Hans Christian; He, Yue; Holm, Peter E

    2018-06-01

    Intensive human activities, in particular agricultural and industrial production have led to heavy metal accumulation in the peri-urban agricultural soils of China threatening soil environmental quality and agricultural product security. A combination of spatial analysis (SA), Pb isotope ratio analysis (IRA), input fluxes analysis (IFA), and positive matrix factorization (PMF) model was successfully used to assess the status and sources of heavy metals in typical peri-urban agricultural soils from a rapidly developing region of China. Mean concentrations of Cd, As, Hg, Pb, Cu, Zn and Cr in surface soils (0-20 cm) were 0.31, 11.2, 0.08, 35.6, 44.8, 119.0 and 97.0 mg kg -1 , respectively, exceeding the local background levels except for Hg. Spatial distribution of heavy metals revealed that agricultural activities have significant influence on heavy metal accumulation in the surface soils. Isotope ratio analysis suggested that fertilization along with atmospheric deposition were the major sources of heavy metal accumulation in the soils. Based on the PMF model, the relative contribution rates of the heavy metals due to fertilizer application, atmospheric deposition, industrial emission, and soil parent materials were 30.8%, 33.0%, 25.4% and 10.8%, respectively, demonstrating that anthropogenic activities had significantly higher contribution than natural sources. This study provides a reliable and robust approach for heavy metals source apportionment in this particular peri-urban area with a clear potential for future application in other regions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Differences in Sexual Practices, Sexual Behavior and HIV Risk Profile between Adolescents and Young Persons in Rural and Urban Nigeria.

    Science.gov (United States)

    Folayan, Morenike Oluwatoyin; Adebajo, Sylvia; Adeyemi, Adedayo; Ogungbemi, Kayode Micheal

    2015-01-01

    We aimed to determine differences in sexual practices, HIV sexual risk behaviors, and HIV risk profile of adolescents and young persons' in rural and urban Nigeria. We recruited 772 participants 15 to 24 years old from urban and rural townships in Nigeria through a household survey. Information on participants' socio-demographic profile (age sex, residential area, number of meals taken per day), sexual practices (vagina, oral and anal sex; heterosexual and homosexual sex; sex with spouse, casual acquaintances, boy/girlfriend and commercial sex workers), sexual behavior (age of sexual debut, use of condom, multiple sex partners, transactional sex and age of sexual partner), and other HIV risk factors (use of alcohol and psychoactive substances, reason for sexual debut, knowledge of HIV prevention and HIV transmission, report of STI symptoms) were collected through an interviewer administered questionnaire. Differences in sexual behavior and sexual practices of adolescents and HIV risk profile of adolescents and young persons resident in urban and rural areas were determined. More than half (53.5%) of the respondents were sexually active, with more residing in the rural than urban areas (64.9% vs 44.1%; p<0.001) and more resident in the rural area reporting having more than one sexual partner (29.5% vs 20.4%; p = 0.04). Also, 97.3% of sexually active respondents reported having vaginal sex, 8.7% reported oral sex and 1.9% reported anal sex. More male than female respondents in the urban area used condoms during the last vaginal sexual intercourse (69.1% vs 51.9%; p = 0.02), and reported sex with casual partners (7.0% vs 15.3%; p = 0.007). More female than male respondents residing in the rural area engaged in transactional sex (1.0% vs 6.7%; p = 0.005). More females than males in both rural (3.6% vs 10.2%; p = 0.04) and urban (4.7% vs 26.6%; p<0.001) areas self-reported a history of discharge. More females than males in both rural (1.4% vs 17.0%; p = 0.04) and urban

  16. Differences in Sexual Practices, Sexual Behavior and HIV Risk Profile between Adolescents and Young Persons in Rural and Urban Nigeria.

    Directory of Open Access Journals (Sweden)

    Morenike Oluwatoyin Folayan

    Full Text Available We aimed to determine differences in sexual practices, HIV sexual risk behaviors, and HIV risk profile of adolescents and young persons' in rural and urban Nigeria.We recruited 772 participants 15 to 24 years old from urban and rural townships in Nigeria through a household survey. Information on participants' socio-demographic profile (age sex, residential area, number of meals taken per day, sexual practices (vagina, oral and anal sex; heterosexual and homosexual sex; sex with spouse, casual acquaintances, boy/girlfriend and commercial sex workers, sexual behavior (age of sexual debut, use of condom, multiple sex partners, transactional sex and age of sexual partner, and other HIV risk factors (use of alcohol and psychoactive substances, reason for sexual debut, knowledge of HIV prevention and HIV transmission, report of STI symptoms were collected through an interviewer administered questionnaire. Differences in sexual behavior and sexual practices of adolescents and HIV risk profile of adolescents and young persons resident in urban and rural areas were determined.More than half (53.5% of the respondents were sexually active, with more residing in the rural than urban areas (64.9% vs 44.1%; p<0.001 and more resident in the rural area reporting having more than one sexual partner (29.5% vs 20.4%; p = 0.04. Also, 97.3% of sexually active respondents reported having vaginal sex, 8.7% reported oral sex and 1.9% reported anal sex. More male than female respondents in the urban area used condoms during the last vaginal sexual intercourse (69.1% vs 51.9%; p = 0.02, and reported sex with casual partners (7.0% vs 15.3%; p = 0.007. More female than male respondents residing in the rural area engaged in transactional sex (1.0% vs 6.7%; p = 0.005. More females than males in both rural (3.6% vs 10.2%; p = 0.04 and urban (4.7% vs 26.6%; p<0.001 areas self-reported a history of discharge. More females than males in both rural (1.4% vs 17.0%; p = 0.04 and

  17. Ecological and human health risks from metal(loid)s in peri-urban soil in Nanjing, China.

    Science.gov (United States)

    Ding, Zhuhong; Hu, Xin

    2014-06-01

    In order to investigate the ecological and human health risks of metal(loid)s (Cu, Pb, Zn, Ni, Cd, Mn, Cr, and As) in peri-urban soils, 43 surface soil samples were collected from the peri-urban area around Nanjing, a megacity in China. The average contents were 1.19, 67.8, 37.6, 105, 167, 44.6, 722, and 50.8 mg kg(-1) for Cd, Cr, Ni, Pb, Zn, Cu, Mn, and As, respectively. A significant positive correlation was found between Cu, Pb, Zn, Cd, Mn, and As (p urban soil samples. Potential ecological risk indices show that the metal(loid)s in the soil could result in higher ecological risks. Cd is the main contributor to the risk, followed by As. The levels of Cu, Pb, Zn, Cd, Mn, and As in stomach and intestinal phases show a positive linear correlation with their total contents. Mn, Zn, Ni, Cd, and Pb in stomach phase showed higher bioaccessibility, while in intestinal phase, Cu, Cr, and As had the higher bioaccessibility. The carcinogenic risk in children and adults posed by As, Pb, and Cr via ingestion was deemed acceptable. The non-carcinogenic risks posed by these metal(loid)s via ingestion to children are higher than to adults and mainly result from As.

  18. Determination of REE in urban park soils from Sao Paulo city for fingerprint of traffic emission contamination

    International Nuclear Information System (INIS)

    Figueiredo, Ana Maria G.; Camargo, Sonia P.; Sigolo, Joel B.

    2009-01-01

    The study of rare earth elements (REE) distribution in urban environments has become very interesting in the last years, due to the increasing industrial use of these elements. The REE La, Ce and Nd are used in automobile converter catalysts to stabilize the catalyst support and to enhance the oxidation of pollutants. The honeycomb structure has a typical association of a high Ce (and often also La) concentration combined with high concentrations of Platinum Group Elements. Due to thermal and mechanical wear of catalysts, fine particles enriched in REE are released to the environment. These catalyst particles can accumulate in urban soils, mainly in soils located near high density traffic roads. The aim of this paper was to study the REE distribution and ratios in surface soil samples collected in fourteen urban public parks of Sao Paulo city, to assess the influence of vehicular emissions. Instrumental Neutron Activation Analysis (INAA) was used for the REE analysis. The diagrams normalized to chondrite values showed an enrichment of the light REE (La to Sm), in contrast to the heavy REE (Eu to Lu), with a negative anomaly of Eu. The results obtained indicated that the enrichment in REE is not clearly attributed to vehicular traffic, because of high background values associated to the natural geological composition of the soils. (author)

  19. Neural Network-Based Model for Landslide Susceptibility and Soil Longitudinal Profile Analyses

    DEFF Research Database (Denmark)

    Farrokhzad, F.; Barari, Amin; Choobbasti, A. J.

    2011-01-01

    The purpose of this study was to create an empirical model for assessing the landslide risk potential at Savadkouh Azad University, which is located in the rural surroundings of Savadkouh, about 5 km from the city of Pol-Sefid in northern Iran. The soil longitudinal profile of the city of Babol......, located 25 km from the Caspian Sea, also was predicted with an artificial neural network (ANN). A multilayer perceptron neural network model was applied to the landslide area and was used to analyze specific elements in the study area that contributed to previous landsliding events. The ANN models were...... studies in landslide susceptibility zonation....

  20. Dynamics of Physical and Physicochemical Properties of Urban Soils under the Effect of Ice-Melting Salts

    Science.gov (United States)

    Azovtseva, N. A.; Smagin, A. V.

    2018-01-01

    Physical (water content, density, and air and water regimes) and physicochemical (electrical conductivity, pH, and SAR) properties of urban soils were investigated on test plots of Moscow to evaluate their dynamics under anthropogenic impact. The wilting point and the dependence of the capillary-sorption and total water potentials of the soil water content were determined in laboratory experiments with natural and artificially saline soil samples to evaluate the effect of salt antifreeze substances on water availability for plants under conditions of active application of deicing reagents. Seasonal dynamics of these parameters were investigated. It was found that electrolytes display a steady tendency for the accumulation and redistribution in the root zone rather than for their deep leaching despite humid climatic conditions in Moscow megalopolis. In summer, regular droughts result in drying of the root zone to critical values and to the concentration of electrolytes up to the values that make the total water potential of soil unsuitable for water uptake by roots. The key factor of soil degradation under the impact of electrolytes is the soil dispersity: the finer the texture, the higher the soil salinization and solonetzicity and the stronger irreversible changes in the soil water retention capacity and physical properties.

  1. Inventories of fallout 21Pb and 137Cs radionuclides in moorland and woodland soils around Edinburgh urban area (UK)

    International Nuclear Information System (INIS)

    Likuku, A.S.; Branford, D.; Fowler, D.; Weston, K.J.

    2006-01-01

    Inventories of fallout 21 Pb and 137 Cs have been measured in moorland and woodland soils around the Edinburgh urban area, using a high purity germanium detector. The 21 Pb inventories in moorland soils were relatively uniform, with a mean value of 2520 ± 270 Bq m -2 . The mean 137 Cs inventory in moorland soils varied greatly from 1310 to 2100 Bq m -2 , with a mean value of 1580 ± 310 Bq m -2 . The variability was ascribed mainly to the non-uniform distribution of fallout Chernobyl 137 Cs. The mean 21 Pb and 137 Cs inventories in woodland canopy soils were found to be 3630 ± 380 Bq m -2 and 2510 ± 510 Bq m -2 , respectively. At sites for which both moorland and woodland data were available, the mean inventories provided fairly similar average enhancements of (47 ± 7)% and (46 ± 18)% of 21 Pb and 137 Cs under woodland canopy soils relative to open grassland soils, respectively. The enhancement factors are broadly in line with other independent findings in literature. Enhancement of both 21 Pb and 137 Cs in woodland soils relative to moorland soils is, in part, due to deposition by impaction during air turbulence, wash-off, gravitational settling and deposition during leaf senescence. Results of this study suggest that these processes affect both 21 Pb and 137 Cs carrier aerosols in a similar way

  2. Are levels of perfluoroalkyl substances in soil related to urbanization in rapidly developing coastal areas in North China?

    International Nuclear Information System (INIS)

    Meng, Jing; Wang, Tieyu; Wang, Pei; Zhang, Yueqing; Li, Qifeng; Lu, Yonglong; Giesy, John P.

    2015-01-01

    Concentrations of 13 perfluoroalkyl substances (PFASs) were quantified in 79 surface soil samples from 17 coastal cities in three provinces and one municipality along the Bohai and Yellow Seas. The ∑PFASs concentrations ranged from less than limitation of quantification (LOQ) to 13.97 ng/g dry weight (dw), with a mean of 0.98 ng/g dw. The highest concentration was observed along the Xiaoqing River from Shandong province, followed by that from the Haihe River in Tianjin (10.62 ng/g dw). Among four regions, ∑PFASs concentrations decreased in the order of Tianjin, Shandong, Liaoning and Hebei, which was consistent with levels of urbanization. Fluorine chemical industries allocated in Shandong and Liaoning played important roles in terms of point emission and contamination of PFASs, dominated by perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Intensive anthropogenic activities involved in urbanization possibly resulted in increasing releases of PFASs from industrial and domestic sources. - Highlights: • PFASs were detected in the soil of rapidly developing coastal regions in China. • PFAS concentrations ranged from LOQ to 13.97 ng/g dw, with a mean of 0.98 ng/g dw. • Higher concentrations of PFASs correspond to higher levels of urbanization. • Existence of fluorine industry induced PFAS pollutions dominated by PFOA and PFOS. • Intensive urbanization caused increasing emission of industrial and domestic PFASs. - Among urban, suburban and rural areas in the coasts, soils from urban area showed high degrees of PFASs contamination with the existence of industrial emissions dominated by PFOA and PFOS

  3. Using Community-Based Participatory Research to Explore Backyard Gardening Practices and Soil Lead Concentrations in Urban Neighborhoods.

    Science.gov (United States)

    Johnson, Sheri; Cardona, Dalila; Davis, Jeremy; Gramling, Benjamin; Hamilton, Chelsea; Hoffmann, Ray; Ruis, Sabrina; Soldat, Doug; Ventura, Steve; Yan, Ke

    2016-01-01

    Lead exposure is a serious health threat for children. Soil is an important exposure pathway, primarily through ingestion and inhalation. Urban agriculture is increasing. Potential environmental health risks associated with residential gardening may not be well known to community residents. A community-based participatory research (CBPR) approach was implemented to explore the relationship between urban residential vegetable gardening and lead exposure in children. The primary objectives were to characterize local backyard vegetable gardening practices, measure residential and commercial soil lead concentrations and spatial distributions, and identify priorities for individual and collective action. Participants were recruited in two stages. In phase 1, adult gardeners participated in structured interviews. In phase 2, a multistage representative sampling approach was implemented to recruit adult gardeners for interviews and soil testing. Twenty adults participated in gardening practice interviews. Adults perceive many benefits from backyard gardening and initially expressed few concerns about lead exposure risk. Results indicate that children are actively involved in backyard gardening. Total soil lead concentrations from 17 residential properties ranged from 7 to 3,234 mg kg-1(median, 187; mean, 432). Commercial soils had lead concentrations that ranged from 6 to 13 mg kg(-1) (median, 6.5; mean, 7.6). Nonparametric Mann-Whitney comparisons indicated a significant difference in lead concentration between commercial soil and residential soil (p<0.0001). Advocacy for resources needed to eliminate dangerous levels of lead from the environment, especially in communities where divestment has occurred, is enhanced through CBPR. Increasing access to soil testing is an important action step.

  4. Analyzing spatial variability of soil properties in the urban park before and after reconstruction to support decision-making in landscaping

    Science.gov (United States)

    Romzaikina, Olga; Vasenev, Viacheslav; Khakimova, Rita

    2017-04-01

    On-going urbanization stresses a necessity for structural and aesthetically organized urban landscapes to improve citizen's life quality. Urban soils and vegetation are the main components of urban ecosystems. Urban greenery regulates the climate, controls and air quality and supports biodiversity in urban areas. Soils play a key role in supporting urban greenery. However, soils of urban parks also perform other important environmental functions. Urban soils are influenced by a variety of environmental and anthropogenic factors and, in the result, are highly heterogeneous and dynamic. Reconstructions of green zones and urban parks, usually occurring in cities, alter soil properties. Analyzing spatial variability and dynamics of soil properties is important to support decision-making in landscaping. Therefore, the research aimed to analyze the spatial distribution of the key soil properties (acidity, soil organic carbon (SOC) and nutrient contents) in the urban park before and after reconstruction to support decision-making in selecting ornamental plants for landscaping. The research was conducted in the urban park named after Artyom Borovik in Moscow before (2012) and after (2014) the reconstruction. Urban soil's properties maps for both periods were created by interpolation of the field data. The observed urban soils included recreazems, urbanozems and constuctozems. Before the reconstruction soils were sampled using the uniform design (the net with 100 m side and key plots with 50m size). After the reconstructions the additional samples were collected at locations, where the land cover and functional zones changed in a result of the reconstruction.We sample from the depths 0-30, 30-50 and 50-100 cm. The following soil properties were measured: pH, SOC, K2O and P2O5. The maps of the analyzed properties were developed using open QGIS2.4 software by IDW. The vegetation in the park was examined using the scale of the visual assessment. The results of the visual

  5. A GIS technology based potential eco-risk assessment of metals in urban soils in Beijing, China.

    Science.gov (United States)

    Wang, Meie; Bai, Yanying; Chen, Weiping; Markert, Bernd; Peng, Chi; Ouyang, Zhiyun

    2012-02-01

    Ecological risks of heavy metals in urban soils were evaluated using Beijing, China as an example. Cadmium, Cu, Zn, Pb, Cr and Ni contents of 233 surface soils sampled by 1 min latitude × 1 min longitude grid were used to identify their spatial distribution patterns and potential emission sources. Throughout the city, longer the duration of urbanization greater was the accumulations of heavy metals especially, Cd, Cu, Pb, and Zn. The soil Zn mainly came from the wears of vehicular tires. Point source emissions of heavy metals were few and far in the downwind south-east quadrant of Beijing. The calculated risk indices showed potential median eco-risks in the ancient central city. No potential high eco-risk due to soil-borne heavy metals was found. The potential medium eco-risk areas in Beijing would expand from the initial 24 to 110 km(2) if soil pH were to reduce by 0.5 units in anticipation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Ecological and human health risks arising from exposure to metals in urban soils under different land use in Nigeria.

    Science.gov (United States)

    Iwegbue, Chukwujindu M A; Martincigh, Bice S

    2018-05-01

    The concentrations of eight metals (Cd, Pb, Cr, Ni, Cu, Mn, Zn and Fe) were measured in soils under different land use in an urban environment of the Niger Delta in Nigeria. The aim was to provide information on the potential ecological and human health risks associated with human exposure to metals in these soils. The potential ecological risk due to metals in soils of these land use types falls in the range of low to moderate ecological risk with a significant contribution from Cd. The severity of the individual metals to ecological risk in these land use types followed the order Cd > Pb > Zn > Cu > Ni > Cr > Mn. The non-carcinogenic risk, expressed in terms of the hazard index (HI), arising through exposure to metals through oral, dermal and inhalation pathways, was greater than 1 for children in the majority of the land use types and less than 1 for adults for all land use types. This indicated that there are considerable non-cancer risks arising from childhood exposure to metals in soils of these land use types. The cancer risk values were within acceptable threshold values indicating a negligible cancer risk for both children and adults exposed to metals in these urban soils.

  7. Pollution characteristics and health risk assessment of phthalate esters in urban soil in the typical semi-arid city of Xi'an, Northwest China.

    Science.gov (United States)

    Wang, Lijun; Liu, Mengmei; Tao, Wendong; Zhang, Wenjuan; Wang, Li; Shi, Xingmin; Lu, Xinwei; Li, Xiaoping

    2018-01-01

    A total of 62 urban soil samples were collected in the city of Xi'an in Northwest China, and analyzed for six U.S. Environmental Protection Agency priority phthalate esters (PAEs). Unlike earlier studies on PAEs in agricultural soil as well as urban soil in humid climates, this paper for the first time comprehensively assessed pollution characteristics and health risks of human exposure to PAEs in urban soil in a typical semi-arid climate. The total concentrations of the six PAEs (Σ6PAEs) in the urban soil varied between 193.0 and 19146.4 μg kg -1 with a mean of 1369.3 μg kg -1 . The PAEs were dominated by di-n-butyl phthalate and di(2-ethylhexyl) phthalate. Magnetic susceptibility and soil texture were controlling factors influencing the concentrations of PAEs in the urban soil. The concentrations of benzyl butyl phthalate, di(2-ethylhexyl) phthalate, and Σ6PAEs increased from the first to third ring roads, while the concentrations of di-n-octyl phthalate decreased. Relatively higher levels of PAEs were observed in industrial, traffic, and residential areas. The PAEs in the urban soil originated mainly from the application of plasticizers or additives, use of cosmetics and personal care products, emissions of construction materials and home furnishings, industrial processes, and atmospheric deposition. The concentrations of some PAEs in the urban soil exceeded soil allowable concentrations and environmental risk levels. The non-cancer and carcinogenic risks of human exposure to the PAEs were relatively low. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Soil organic carbon stocks quantification in Mediterranean natural areas, a trade-off between entire soil profiles and soil control sections

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz; Brevik, Eric. C.; Cerdá, Artemi

    2015-04-01

    Soil organic carbon (SOC) is extremely important in the global carbon (C) cycle; also, SOC is a soil property subject to changes, inasmuch as SOC is highly variable in space and time. The scientific community is researching the fate of the organic carbon in the ecosystems and this is why there is a blooming interest on this topic (Oliveira et al., 2014; Kukal et al., 2015). Soil organic matter play a key role in the Soil System (Fernández-Romero et al., 2014; Parras-Alcántara and Lozano García, 2014; Lozano-García and Parras-Alcántara; Parras-Alcántara et al., 2015).Globally it is known that soil C sequestration is a strategy to mitigate climate change. Over time, some researchers have analyzed entire soil profiles (ESP) by pedogenetic horizons and other researchers have analyzed soil control sections (SCS) (edaphic controls to different thickness), and in each case the benefits of the methodology established was justified. However, very few studies compare both methods (ESP versus SCS). This research sought to analyze the SOC stock (SOCS) variability using both methods (ESP and SCS) in The Despeñaperros Natural Park, a nature reserve that consists of a 76.8 km2 forested area in southern Spain. The park is in a Mediterranean environment and is a natural area (free of human disturbance). Thirty-four sampling points were selected in the study zone. Each sampling point was analyzed in two different ways, as ESP (by horizons) and as SCS with different depth increments (0-25, 25-50, 50-75 and 75-100 cm). The major goal of this research was to study the SOCS variability at regional scale. The studied soils were classified as Phaeozems, Cambisols, Regosols and Leptosols. The total SOCS in the Despeñaperros Natural Park was over 28.2% greater when SCS were used compared to ESP, ranging from 0.8144 Tg C to 0.6353 Tg C respectively (1 Tg = 10E12 g). However, when the top soil (surface horizon and superficial section control) was analyzed, this difference increased to

  9. Molecular distributions of phospholipid ester-linked fatty acids in a soil profile of the Dinghushan Biosphere Reserve

    Directory of Open Access Journals (Sweden)

    Shengyi Mao

    2018-01-01

    Full Text Available Phospholipid ester-linked fatty acids (PLFA were used to investigate the microbial ecology and its association with carbon accumulation in one soil profile from the Dinghushan Biosphere Preserve in south China, in order to probe the mechanisms that control the carbon accumulation at the depth of 0 - 20 cm in the Dinghushan forest soil profile. The data show that sulfate reducing bacteria (SRB occur in the top 10 cm, and methanotrophic bacteria and fungi are not present below 10 cm, and the gram-negative bacteria are reduced with gram-positive bacteria dominating at that depth; all of which indicated that the activities of some of the microorganisms were inhibited, from which we infer that the available carbon source and oxygen content of micro environment may be reduced below 10 cm of the profile. The shallow depth (top 10 cm of the soil anaerobic zone at the Wukesong profile, compared to the normal soil anaerobic zone (top 20 - 30 cm, is considered to be mainly the result of the high precipitation of acidic rain. The physicochemical reactions caused by acid rain in the soil system result in a decreased soil porosity, and a correspondingly decreased porosity-dependent oxygen concentration, leading to the thriving of SRB in the shallow depth. Although the increase of soil organic carbon stock is attributed to numerous factors, the decreasing rate of litter decomposition in the topsoil layer, together with the rise of the depth of the anaerobic zone, may play key roles in the carbon accumulation in the depth of 0 - 20 cm in the soil profile from the Dinghushan Biosphere Preserve.

  10. Water Redistribution, Temperature Change and CO2 Diffusion of Reconstruction Soil Profiles Filled with Gangue in Coal Mining Areas

    Science.gov (United States)

    Wang, S.; Zhan, H.; Chen, X.; Hu, Y.

    2017-12-01

    There were a great many projects of reconstruction soil profile filled with gangue to restore ecological environment and land resources in coal mining areas. A simulation experimental system in laboratory was designed for studying water transport and gas-heat diffusion of the reconstruction soil as to help the process of engineering and soil-ripening technology application. The system could be used for constantly measuring soil content, temperature and soil CO2 concentration by laid sensors and detectors in different depth of soil column. The results showed that soil water infiltration process was slowed down and the water-holding capacity of the upper soil was increased because of good water resistance from coal gangue layer. However, the water content of coal gangue layer, 10% approximately, was significantly lower than that of topsoil for the poor water-holding capacity of gangue. The temperature of coal gangue layer was also greater than that of soil layer and became easily sustainable temperature gradient under the condition with heating in reconstruction soil due to the higher thermal diffusivity from gangue, especially being plenty of temperature difference between gangue and soil layers. The effects of heated from below on topsoil was small, which it was mainly influenced from indoor temperature in the short run. In addition, the temperature changing curve of topsoil is similar with the temperature of laboratory and its biggest fluctuation range was for 2.89°. The effects of aerating CO2 from column bottom on CO2 concentration of topsoil soil was also very small, because gas transport from coal gangue layers to soil ones would easily be cut off as so to gas accumulated below the soil layer. The coal gangue could have a negative impact on microbial living environment to adjacent topsoil layers and declined microorganism activities. The effects of coal gangue on topsoil layer were brought down when the cove soil thickness was at 60 cm. And the influences

  11. Crossed optical and chemical evaluations of modern glass soiling in various European urban environments

    Science.gov (United States)

    Favez, Olivier; Cachier, Hélène; Chabas, Anne; Ausset, Patrick; Lefevre, Roger

    As part of the MULTI-ASSESS and VIDRIO EC projects, the soiling of modern glass is characterised in various European urban atmospheres. Our original methodology relies on crossed chemical measurements of the deposit (evaluation of the ion, elemental and organic carbon contents, and subsequent "mass closure") and exhaustive measurements of glass optical properties (light reflectance, transmittance and absorption). Samples were exposed sheltered from rain in Athens, Krakow, London, Montelibretti (Italy), Prague and Troyes (France), during increasing exposure durations, up to more than two years. Although a slowing down of the deposition rate is observed for some species at some sites, no obvious saturation phenomenon seems to occur for the particle deposition. The chemical composition of the deposit is shown to reflect the atmospheric environment of the exposure site. Some post-deposit evolutions, such as the disappearance of ammonium and possibly of particulate organic matter, are found to occur. For thin deposits, the glass optical properties (e.g. light absorption and diffuse transmittance) are found to evolve quasi-linearly with species concentrations (EC and ions, respectively). However, for conditions creating heavier deposits such as long time exposures in rather polluted environments, a saturation phenomenon is observed. Using a simple model, light absorption, which is primarily due to EC particles, is shown to reach the saturation level ( S) for A≈16% and the concentration for which the semi-saturation level is reached (C 1/2) is found to be about 15 μgC of EC/cm 2. For diffuse transmittance, due to scattering species, these parameters are found to be about 30% and 65 μg of ions/cm 2, respectively. These values may be considered as representative of the soiling in Europe.

  12. Integrating retention soil filters into urban hydrologic models - Relevant processes and important parameters

    Science.gov (United States)

    Bachmann-Machnik, Anna; Meyer, Daniel; Waldhoff, Axel; Fuchs, Stephan; Dittmer, Ulrich

    2018-04-01

    Retention Soil Filters (RSFs), a form of vertical flow constructed wetlands specifically designed for combined sewer overflow (CSO) treatment, have proven to be an effective tool to mitigate negative impacts of CSOs on receiving water bodies. Long-term hydrologic simulations are used to predict the emissions from urban drainage systems during planning of stormwater management measures. So far no universally accepted model for RSF simulation exists. When simulating hydraulics and water quality in RSFs, an appropriate level of detail must be chosen for reasonable balancing between model complexity and model handling, considering the model input's level of uncertainty. The most crucial parameters determining the resultant uncertainties of the integrated sewer system and filter bed model were identified by evaluating a virtual drainage system with a Retention Soil Filter for CSO treatment. To determine reasonable parameter ranges for RSF simulations, data of 207 events from six full-scale RSF plants in Germany were analyzed. Data evaluation shows that even though different plants with varying loading and operation modes were examined, a simple model is sufficient to assess relevant suspended solids (SS), chemical oxygen demand (COD) and NH4 emissions from RSFs. Two conceptual RSF models with different degrees of complexity were assessed. These models were developed based on evaluation of data from full scale RSF plants and column experiments. Incorporated model processes are ammonium adsorption in the filter layer and degradation during subsequent dry weather period, filtration of SS and particulate COD (XCOD) to a constant background concentration and removal of solute COD (SCOD) by a constant removal rate during filter passage as well as sedimentation of SS and XCOD in the filter overflow. XCOD, SS and ammonium loads as well as ammonium concentration peaks are discharged primarily via RSF overflow not passing through the filter bed. Uncertainties of the integrated

  13. Evaluation of landscape coverings to reduce soil lead hazards in urban residential yards: The Safer Yards Project

    International Nuclear Information System (INIS)

    Binns, H.J.; Gray, K.A.; Chen Tianyue; Finster, M.E.; Peneff, Nicholas; Schaefer, Peter; Ovsey, Victor; Fernandes, Joyce; Brown, Mavis; Dunlap, Barbara

    2004-01-01

    This study was designed primarily to evaluate the effectiveness of landscape coverings to reduce the potential for exposure to lead-contaminated soil in an urban neighborhood. Residential properties were randomized in to three groups: application of ground coverings/barriers plus placement of a raised garden bed (RB), application of ground coverings/barriers only (no raised bed, NRB), and control. Outcomes evaluated soil lead concentration (employing a weighting method to assess acute hazard soil lead [areas not fully covered] and potential hazard soil lead [all soil surfaces regardless of covering status]), density of landscape coverings (6=heavy, >90% covered; 1=bare, <10% covered), lead tracked onto carpeted entryway floor mats, and entryway floor dust lead loadings. Over 1 year, the intervention groups had significantly reduced acute hazard soil lead concentration (median change: RB, -478 ppm; NRB, -698 ppm; control, +52 ppm; Kruskal-Wallis, P=0.02), enhanced landscape coverings (mean change in score: RB, +0.6; NRB, +1.5; control, -0.6; ANOVA, P<0.001), and a 50% decrease in lead tracked onto the floor mats. The potential hazard soil lead concentration and the entryway floor dust lead loading did not change significantly. Techniques evaluated by this study are feasible for use by property owners but