WorldWideScience

Sample records for urban particulate modeling

  1. Particulate matter urban air pollution from traffic car

    Science.gov (United States)

    Filip, G. M.; Brezoczki, V. M.

    2017-05-01

    The particulate matters (PM) are very important compounds of urban air pollution. There are a lot of air pollution sources who can generate PM and one of the most important of them it is urban traffic car. Air particulate matters have a major influence on human health so everywhere are looking for PM reducing solutions. It is knows that one of the solution for reduce the PM content from car traffic on ambient urban air is the fluidity of urban traffic car by introduction the roundabout intersections. This paper want to present some particulate matter determinations for PM10 and PM2.5 conducted on the two types of urban intersection respectively traffic light and roundabout intersections in Baia Mare town in the approximate the same work conditions. The determinations were carried out using a portable particulate matter monitor Haz - Dust model EPAM - 5000, who can provide a real time data for PM10, PM 2.5.Determinations put out that there are differences between the two locations regarding the PM content on ambient air. On roundabout intersection the PM content is less than traffic light intersection for both PM10 and PM 2.5 with more than 30%.

  2. NICKEL SPECIATION OF URBAN PARTICULATE MATTER

    Energy Technology Data Exchange (ETDEWEB)

    Kevin C. Galbreath; Charlene R. Crocker; Carolyn M. Nyberg; Frank E. Huggins; Gerald P. Huffman

    2003-10-01

    A four-step sequential Ni extraction method, summarized in Table AB-1, was evaluated for identifying and quantifying the Ni species occurring in urban total suspended particulate (TSP) matter and fine particulate matter (<10 {micro}m [PM{sub 10}] and <2.5 {micro}m [PM{sub 2.5}] in aerodynamic diameter). The extraction method was originally developed for quantifying soluble, sulfidic, elemental, and oxidic forms of Ni that may occur in industrial atmospheres. X-ray diffraction (XRD) and x-ray absorption fine structure (XAFS) spectroscopy were used to evaluate the Ni species selectivity of the extraction method. Uncertainties in the chemical speciation of Ni in urban PM{sub 10} and PM{sub 2.5} greatly affect inhalation health risk estimates, primarily because of the large variability in acute, chronic, and cancer-causing effects for different Ni compounds.

  3. Urban tree effects on fine particulate matter and human health

    Science.gov (United States)

    David J. Nowak

    2014-01-01

    Overall, city trees reduce particulate matter and provide substantial health benefits; but under certain conditions, they can locally increase particulate matter concentrations. Urban foresters need to understand how trees affect particulate matter so they can select proper species and create appropriate designs to improve air quality. This article details trees'...

  4. Spatial and temporal variability in urban fine particulate matter concentrations

    International Nuclear Information System (INIS)

    Levy, Jonathan I.; Hanna, Steven R.

    2011-01-01

    Identification of hot spots for urban fine particulate matter (PM 2.5 ) concentrations is complicated by the significant contributions from regional atmospheric transport and the dependence of spatial and temporal variability on averaging time. We focus on PM 2.5 patterns in New York City, which includes significant local sources, street canyons, and upwind contributions to concentrations. A literature synthesis demonstrates that long-term (e.g., one-year) average PM 2.5 concentrations at a small number of widely-distributed monitoring sites would not show substantial variability, whereas short-term (e.g., 1-h) average measurements with high spatial density would show significant variability. Statistical analyses of ambient monitoring data as a function of wind speed and direction reinforce the significance of regional transport but show evidence of local contributions. We conclude that current monitor siting may not adequately capture PM 2.5 variability in an urban area, especially in a mega-city, reinforcing the necessity of dispersion modeling and methods for analyzing high-resolution monitoring observations. - Highlights: →Fine particulate matter (PM 2.5 ) hot spots are hard to identify in urban areas. → Literature conclusions about PM 2.5 hot spots depend on study design and methods. → Hot spots are more likely for short-term concentrations at high spatial density. → Statistical methods illustrate local source impacts beyond regional transport. → Dispersion models and high-resolution monitors are both needed to find hot spots. - Fine particulate matter can vary spatially within large urban areas, in spite of the significant contribution from regional atmospheric transport.

  5. Characterization of Urban Runoff Pollution between Dissolved and Particulate Phases

    OpenAIRE

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitr...

  6. Estimation of exposure to fine particulate air pollution using GIS-based modeling approach in an urban area in Tehran

    Directory of Open Access Journals (Sweden)

    M. Memarianfard

    2016-10-01

    Full Text Available In many industrialized areas, the highest concentration of particulate matter, as a major concern on public health, is being felt worldwide problem. Since the air pollution assessment and its evaluation with considering spatial dispersion analysis because of various factors are complex, in this paper, GIS-based modeling approach was utilized to zoning PM2.5 dispersion over Tehran, during one year, from 21 March 2014 to 20 March 2015. The RBF method was applied to obtain the zoning maps and determining the highest concentration of PM2.5 in the 22 Tehran’s regions for each season. The RMSEmin values according to the number of neighbors and types of functions in the radial basis function method, including completely regularized spline, Spline with tension, Multiquadric function, Inverse multiquadric function, and Thin-plate spline  for each month have been assessed. By performing analysis on the errors, the numbers of neighbors were estimated. The numbers of neighbors in the model for each function were varied from 2 to 30. The results indicate that the models with 3 and 4 neighbors have the best performance with the lowest RMSE values with using RBF method. The highest PM2.5 concentrations have been occurred in the summer and winter especially at the center, south, and in some cases at northeast of the city.

  7. Samplings of urban particulate matter for mutagenicity assays

    International Nuclear Information System (INIS)

    De Zaiacono, T.

    1996-07-01

    In the frame of a specific program relating to the evaluation of mutagenic activity of urban particulate matter, an experimental arrangement has been developed to sample aerosuspended particles from the external environment carried indoor by means of a fan. Instrumentation was placed directly in the air flow to minimize particle losses, and consisted of total filter, collecting particles without any size separation; cascade impactor, fractioning urban particulate to obtain separate samples for analyses; an optical device, for real time monitoring of aerosol concentration, temperature and relative humidity sensors. Some of the samples obtained were analysed to investigate: particle morphology, aerosol granulometric distributions, effect of relative humidity on collected particulate, amount of ponderal mass compared with real time optical determinations. The results obtained are reported here, together with some considerations about carbonaceous particles, in urban areas mainly originated from diesel exhausts, their degree of agglomeration and role to vehiculate substances into the human respiratory

  8. Particulate matter pollution over a Mediterranean urban area.

    Science.gov (United States)

    Pateraki, St; Assimakopoulos, V D; Maggos, Th; Fameli, K M; Kotroni, V; Vasilakos, Ch

    2013-10-01

    The main purpose of this study is to investigate the aerosols' (PM10, PM2.5, and PM1) spatial and temporal distribution in different types of environment in a Mediterranean urban region, the Greater Athens Area based on data from a sampling campaign that took place during the cold and warm period of 2008. The influence of the atmospheric circulation patterns, the possible local transport mechanisms, as well as the differentiation of the PM behaviour from that of the inorganic pollutants (NOx, O3), are analysed and discussed. Furthermore, the Comprehensive Air Quality Model with extensions (CAMx) was applied for selected sampling dates and its results were evaluated against measurements in order to interpret qualitatively the configured picture of the air pollution above the GAA. Analysis of the measurement data show that local sources such as traffic and industry dominate over the prevailing PM loads, especially at the 'hot spot' areas. Moreover, the synoptic circulation patterns associated with calm conditions and southerly flows lead to high particulate pollution levels that also affect the urban background stations. Saharan dust outbreaks appeared to increase the particles' diameter as well as the number of E.U. limit value exceedances within the stations of our network. Without any dependence on the characteristics of the investigated atmosphere, PM1 always constituted the greatest part of the PM2.5 mass while PM10, especially during the Saharan dust episodes, was mainly constituted by the coarse fraction. The numerical modelling approach of the geographical distribution of PM10, PM2.5, NOx and O3 justified the design of the sampling campaign, indicating the need for the systematic and parallel monitoring and modelling of the pollutants' dispersion in order to understand the particulate pollution problem in the GAA and to aid to the formulation of pollution control strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Traffic-related particulate air pollution exposure in urban areas

    Science.gov (United States)

    Borrego, C.; Tchepel, O.; Costa, A. M.; Martins, H.; Ferreira, J.; Miranda, A. I.

    In the last years, there has been an increase of scientific studies confirming that long- and short-term exposure to particulate matter (PM) pollution leads to adverse health effects. The development of a methodology for the determination of accumulated human exposure in urban areas is the main objective of the current work, combining information on concentrations at different microenvironments and population time-activity pattern data. A link between a mesoscale meteorological and dispersion model and a local scale air quality model was developed to define the boundary conditions for the local scale application. The time-activity pattern of the population was derived from statistical information for different sub-population groups and linked to digital city maps. Finally, the hourly PM 10 concentrations for indoor and outdoor microenvironments were estimated for the Lisbon city centre, which was chosen as the case-study, based on the local scale air quality model application for a selected period. This methodology is a first approach to estimate population exposure, calculated as the total daily values above the thresholds recommended for long- and short-term health effects. Obtained results reveal that in Lisbon city centre a large number of persons are exposed to PM levels exceeding the legislated limit value.

  10. Characterization of Urban Runoff Pollution between Dissolved and Particulate Phases

    Science.gov (United States)

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%–30.91%, 83.29%–90.51%, and 61.54–68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff. PMID:23935444

  11. Characterization of urban runoff pollution between dissolved and particulate phases.

    Science.gov (United States)

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%-30.91%, 83.29%-90.51%, and 61.54-68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff.

  12. Particulate matter in rural and urban nursery schools in Portugal

    International Nuclear Information System (INIS)

    Nunes, R.A.O.; Branco, P.T.B.S.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V.

    2015-01-01

    Studies have been showing strong associations between exposures to indoor particulate matter (PM) and health effects on children. Urban and rural nursery schools have different known environmental and social differences which make their study relevant. Thus, this study aimed to evaluate indoor PM concentrations on different microenvironments of three rural nursery schools and one urban nursery school, being the only study comparing urban and rural nursery schools considering the PM 1 , PM 2.5 and PM 10 fractions (measured continuously and in terms of mass). Outdoor PM 2.5 and PM 10 were also obtained and I/O ratios have been determined. Indoor PM mean concentrations were higher in the urban nursery than in rural ones, which might have been related to traffic emissions. However, I/O ratios allowed concluding that the recorded concentrations depended more significantly of indoor sources. WHO guidelines and Portuguese legislation exceedances for PM 2.5 and PM 10 were observed mainly in the urban nursery school. - Highlights: • This is the only study comparing urban and rural nurseries considering PM fractions. • A low number of children in classrooms is enough to increase PM concentrations. • Children in urban nurseries are exposed to higher PM concentrations than in rural. • Children were mainly exposed to the finer fractions, which are worse to health. - PM levels were higher in the urban nursery than in the rural ones, which might have been related to traffic emissions. Still concentrations depended more significantly of indoor sources

  13. Validation of NAA Method for Urban Particulate Matter

    International Nuclear Information System (INIS)

    Woro Yatu Niken Syahfitri; Muhayatun; Diah Dwiana Lestiani; Natalia Adventini

    2009-01-01

    Nuclear analytical techniques have been applied in many countries for determination of environmental pollutant. Method of NAA (neutron activation analysis) representing one of nuclear analytical technique of that has low detection limits, high specificity, high precision, and accuracy for large majority of naturally occurring elements, and ability of non-destructive and simultaneous determination of multi-elemental, and can handle small sample size (< 1 mg). To ensure quality and reliability of the method, validation are needed to be done. A standard reference material, SRM NIST 1648 Urban Particulate Matter, has been used to validate NAA method. Accuracy and precision test were used as validation parameters. Particulate matter were validated for 18 elements: Ti, I, V, Br, Mn, Na, K, Cl, Cu, Al, As, Fe, Co, Zn, Ag, La, Cr, and Sm,. The result showed that the percent relative standard deviation of the measured elemental concentrations are found to be within ranged from 2 to 14,8% for most of the elements analyzed whereas Hor rat value in range 0,3-1,3. Accuracy test results showed that relative bias ranged from -11,1 to 3,6%. Based on validation results, it can be stated that NAA method is reliable for characterization particulate matter and other similar matrix samples to support air quality monitoring. (author)

  14. Urban particulate matter pollution: a tale of five cities.

    Science.gov (United States)

    Pandis, Spyros N; Skyllakou, Ksakousti; Florou, Kalliopi; Kostenidou, Evangelia; Kaltsonoudis, Christos; Hasa, Erion; Presto, Albert A

    2016-07-18

    Five case studies (Athens and Paris in Europe, Pittsburgh and Los Angeles in the United States, and Mexico City in Central America) are used to gain insights into the changing levels, sources, and role of atmospheric chemical processes in air quality in large urban areas as they develop technologically. Fine particulate matter is the focus of our analysis. In all cases reductions of emissions by industrial and transportation sources have resulted in significant improvements in air quality during the last few decades. However, these changes have resulted in the increasing importance of secondary particulate matter (PM) which dominates over primary in most cases. At the same time, long range transport of secondary PM from sources located hundreds of kilometres from the cities is becoming a bigger contributor to the urban PM levels in all seasons. "Non-traditional" sources including cooking, and residential and agricultural biomass burning contribute an increasing fraction of the now reduced fine PM levels. Atmospheric chemistry is found to change the chemical signatures of a number of these sources relatively fast both during the day and night, complicating the corresponding source apportionment.

  15. Chemical and biological characterization of urban particulate matter

    International Nuclear Information System (INIS)

    Agurell, E.; Alsberg, T.; Assefaz-Redda, Y.

    1990-11-01

    Airborne particulate matter has been collected on glass fiber filter by high volume sampling in the Goeteborg urban area. The samples were, after extraction with respect to organic components, tested for biological effect in the Salmonella mutagenicity assay, affinity to the cytosol TCDD receptor and toxicity towards a mammalian cell system and analysed chemically for selected polycyclic aromatic compounds. A series of samples collected simultaneously at a street level location and a rooftop site showed that most parameters associated with the organic compounds adsorbed to airborne particulate matter has similar concentrations at the two levels. The differences observed for the mutagenic effect in different strains and conditions showed that the rooftop samples had a different composition compared to the street samples indicating that atmospheric transformations have occurred. Chemical fractionation of representative samples showed that the distribution of mutagenic activity among different fractions is dissimilar to the distribution obtained in the fractionation of both gasoline and diesel engine exhaust particles. Partial least squares regression analysis showed qualitatively that diesel exhaust is a major source of airborne particulate mutagenic activity and source apportionment with chemical mass balance and multilinear regression corroborated this quantitatively. The multilinear regression analysis gave the result that the airborne activity in Salmonella TA90-S9 originated to 54±4% from diesel exhaust and to 26±3% from gasoline exhaust. The contribution is more equal for the activity measured with TA98+S9. The usefulness of short-term bioassays as an addition to chemical analysis of airborne particulate matter depends on whether only polycylic aromatic hydrocarbons (PAH) are major carcinogens, as has been suggested in the literature, or whether also other polycyclic aromatic compound (PAC) are of importance. (au)

  16. Modelling airborne dispersion of coarse particulate material

    International Nuclear Information System (INIS)

    Apsley, D.D.

    1989-03-01

    Methods of modelling the airborne dispersion and deposition of coarse particulates are presented, with the emphasis on the heavy particles identified as possible constituents of releases from damaged AGR fuel. The first part of this report establishes the physical characteristics of the irradiated particulate in airborne emissions from AGR stations. The second part is less specific and describes procedures for extending current dispersion/deposition models to incorporate a coarse particulate component: the adjustment to plume spread parameters, dispersion from elevated sources and dispersion in conjunction with building effects and plume rise. (author)

  17. Homogenized thermal conduction model for particulate foods

    OpenAIRE

    Chinesta , Francisco; Torres , Rafael; Ramón , Antonio; Rodrigo , Mari Carmen; Rodrigo , Miguel

    2002-01-01

    International audience; This paper deals with the definition of an equivalent thermal conductivity for particulate foods. An homogenized thermal model is used to asses the effect of particulate spatial distribution and differences in thermal conductivities. We prove that the spatial average of the conductivity can be used in an homogenized heat transfer model if the conductivity differences among the food components are not very large, usually the highest conductivity ratio between the foods ...

  18. Characteristics of thin and coarse particulates of urban and natural brazilian aerosols

    International Nuclear Information System (INIS)

    Orsini, C.Q.; Tabacnics, M.H.; Artaxo, P.; Andrade, M.F.; Kerr, A.S.

    1994-01-01

    Thin and coarse particulate were sampled during the period 1982-1985 in a natural coastal forest (Jureia), and five urban-industrial regions (Vitoria, Salvador, Porto Alegre, Sao Paulo and Belo Horizonte). The time variation of the concentration in the air, and the relative elementary composition of the thin and coarse particulate, sampled by thin and Coarse Particulate Sampler (AFG), were determined by gravimetric method and PIXE analysis respectively. The results demonstrated that the ground dust and salt from the sea are unequivocally one of the largest sources of coarse particulate, and also the ground is a significant thin particulate source. 25 refs, 22 figs, 28 tabs. (L.C.J.A.)

  19. Characterization of urban particulate matter by diffusive gradients in thin film technique

    Czech Academy of Sciences Publication Activity Database

    Dufka, Michaela; Dočekal, Bohumil

    (2018), s. 1-8, č. článku 9698710. ISSN 2090-8865 R&D Projects: GA ČR GAP503/10/2002 Institutional support: RVO:68081715 Keywords : thin film technique * urban particulate matter * particulate air pollution Subject RIV: CB - Analytical Chemistry , Separation OBOR OECD: Analytical chemistry Impact factor: 1.801, year: 2016

  20. Characterization of urban particulate matter by diffusive gradients in thin film technique

    Czech Academy of Sciences Publication Activity Database

    Dufka, Michaela; Dočekal, Bohumil

    (2018), s. 1-8, č. článku 9698710. ISSN 2090-8865 R&D Projects: GA ČR GAP503/10/2002 Institutional support: RVO:68081715 Keywords : thin film technique * urban particulate matter * particulate air pollution Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 1.801, year: 2016

  1. PARTICULATE MATTER IN ATMOSPHERIC AIR IN URBAN AGGLOMERATION

    Directory of Open Access Journals (Sweden)

    Halina Marczak

    2017-05-01

    Full Text Available The study aimed to determine the mass concentration of PM10 in the air in urban area. The specific objective of the research was to analyze and assess the impact of transport road emissions on the level of concentration of particulate matter in the atmosphere in the Lublin agglomeration. The measuring points were located in places at different distances from the communications emission sources and, at the same time, possibly varying degrees of air pollution dust. Measuring the concentration of dust at the measuring points was performed using an indirect method using a laser photometer. In the research point which was not under direct influence of a heavy traffic road dust levels lower by 10.5% to 65.4% than in the vicinity of the transport route were reported. Small particle air pollution at all the points covered by the study increased significantly during the heating season. Based on the comparison of the obtained values of PM10 concentrations with legal standards, it was found that the air pollution exceeded the limits in all measurement points only during a series of measurements in the months of November-December. The recorded increase in air pollution during the heating season should be associated with an increased dust emissions in this period from the "low" emitters - local house boilers and detached houses.

  2. Estimating the influence of different urban canopy cover types on atmospheric particulate matter (PM10) pollution abatement in London UK.

    Science.gov (United States)

    Tallis, Matthew; Freer-Smith, Peter; Sinnett, Danielle; Aylott, Matthew; Taylor, Gail

    2010-05-01

    In the urban environment atmospheric pollution by PM10 (particulate matter with a diameter less than 10 x 10-6 m) is a problem that can have adverse effects on human health, particularly increasing rates of respiratory disease. The main contributors to atmospheric PM10 in the urban environment are road traffic, industry and power production. The urban tree canopy is a receptor for removing PM10s from the atmosphere due to the large surface areas generated by leaves and air turbulence created by the structure of the urban forest. In this context urban greening has long been known as a mechanism to contribute towards PM10 removal from the air, furthermore, tree canopy cover has a role in contributing towards a more sustainable urban environment. The work reported here has been carried out within the BRIDGE project (SustainaBle uRban plannIng Decision support accountinG for urban mEtabolism). The aim of this project is to assess the fluxes of energy, water, carbon dioxide and particulates within the urban environment and develope a DSS (Decision Support System) to aid urban planners in sustainable development. A combination of published urban canopy cover data from ground, airborne and satellite based surveys was used. For each of the 33 London boroughs the urban canopy was classified to three groups, urban woodland, street trees and garden trees and each group quantified in terms of ground cover. The total [PM10] for each borough was taken from the LAEI (London Atmospheric Emissions Inventory 2006) and the contribution to reducing [PM10] was assessed for each canopy type. Deposition to the urban canopy was assessed using the UFORE (Urban Forest Effects Model) approach. Deposition to the canopy, boundary layer height and percentage reduction of the [PM10] in the atmosphere was assessed using both hourly meterological data and [PM10] and seasonal data derived from annual models. Results from hourly and annual data were compared with measured values. The model was then

  3. Factors influencing mobile source particulate matter emissions-to-exposure relationships in the Boston urban area.

    Science.gov (United States)

    Greco, Susan L; Wilson, Andrew M; Hanna, Steven R; Levy, Jonathan I

    2007-11-15

    Benefit-cost and regulatory impact analyses often use atmospheric dispersion models with coarse resolution to estimate the benefits of proposed mobile source emission control regulations. This approach may bias health estimates or miss important intra-urban variability for primary air pollutants. In this study, we estimate primary fine particulate matter (PM2.5) intake fractions (iF; the fraction of a pollutant emitted from a source that is inhaled by the population) for each of 23 398 road segments in the Boston Metro Core area to evaluate the potential for intra-urban variability in the emissions-to-exposure relationship. We estimate iFs using the CAL3QHCR line source model combined with residential populations within 5000 m of each road segment. The annual average values for the road segments range from 0.8 to 53 per million, with a mean of 12 per million. On average, 46% of the total exposure is realized within 200 m of the road segment, though this varies from 0 to 93% largely due to variable population patterns. Our findings indicate the likelihood of substantial intra-urban variability in mobile source primary PM2.5 iF that accounting for population movement with time, localized meteorological conditions, and street-canyon configurations would likely increase.

  4. Particulate Matter Air Pollution in an Urban Area : a Case Study

    Directory of Open Access Journals (Sweden)

    Piotr Holnicki

    2016-01-01

    Full Text Available Many European agglomerations suffer from high concentrations of particulate matter (PM, which is now one of the most detrimental pollutants characterizing the urban atmospheric environment. This paper addresses the problem of PM10 pollution in the Warsaw metropolitan area, including very harmful fine fractions (PM2.5, and also some heavy metals. The analysis of air quality in the Warsaw agglomeration discussed in this study is based on results from computer modeling presented elsewhere, and refers to emission and meteorological data for the year 2012. The range of emissions considered in this analysis includes the main sectors of municipal activity: energy generation, industry, urban transport, residential sector. The trans-boundary inflow of the main pollutants coming from distant sources is also taken into account. The regional scale computer model CALPUFF was used to assess the annual mean concentrations of major pollutants in the urban area. The results show the regions where the air quality limits are exceeded and indicate the dominant sources of emission which are responsible for these violations (source apportionment. These are the key data required to implement efficient regulatory actions. (original abstract

  5. Influence of background particulate matter (PM) on urban air quality in the Pacific Northwest.

    Science.gov (United States)

    Timonen, H; Wigder, N; Jaffe, D

    2013-11-15

    Elevated particulate matter concentrations due to Asian long-range transport (LRT) are frequently observed in the free troposphere (FT) above the Pacific Northwest, U.S. Transport of this aerosol from the FT to the boundary layer (BL) and its effect to local air quality remain poorly constrained. We used data collected at the Mount Bachelor observatory (MBO, 2.8 km a.s.l) and from ground stations in the Pacific Northwest to study transport of fine particulate matter (PM) from the FT to the BL. During Asian LRT episodes PM concentrations were clearly elevated above the corresponding monthly averages at MBO as well as at low elevation sites across Washington and Oregon. Also, a clear correlation between MBO and low elevation sites was observed, indicating that LRT episodes are seen in both the FT and BL. In addition, drum impactor measurements show that the chemical composition of PM at MBO was similar to that measured at the BL sites. Using a simple regression model, we estimate that during springtime, when the transport from Asia is most effective, the contribution of Asian sources to PM2.5 in clean background areas of the Pacific Northwest was on average 1.7 μg m(-3) (representing approximately 50-80% of PM). The influence of LRT PM was also seen in measurement stations situated in the urban and urban background areas. However, the fraction of LRT PM was less pronounced (36-50% of PM) due to larger local emissions in the urban areas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Trace metals concentration assessment in urban particulate matter ...

    African Journals Online (AJOL)

    This study was conducted to investigate the distribution and correlation of selected trace elements (Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in Yenagoa, Bayelsa State and its environs. Air particulate matter was collected gravimetrically at five stations (using a high volume portable SKC air check MTXSidekickair sampler ...

  7. Determination of trace elements in urban airborne particulates (PM ...

    African Journals Online (AJOL)

    Assessment of the air quality in Newcastle upon Tyne, UK was performed by determining the trace element content in airborne particulates (PM10). Samples were collected over a 12 month period (March 2011 to April 2012) using two high volume air sampler provided with a PM10 size selective inlet. The concentrations of ...

  8. Measurement and analysis of ambient atmospheric particulate matter in urban and remote environments

    Science.gov (United States)

    Hagler, Gayle S. W.

    Atmospheric particulate matter pollution is a challenging environmental concern in both urban and remote locations worldwide. It is intrinsically difficult to control, given numerous anthropogenic and natural sources (e.g. fossil fuel combustion, biomass burning, dust, and seaspray) and atmospheric transport up to thousands of kilometers after production. In urban regions, fine particulate matter (particles with diameters under 2.5 mum) is of special concern for its ability to penetrate the human respiratory system and threaten cardiopulmonary health. A second major impact area is climate, with particulate matter altering Earth's radiative balance through scattering and absorbing solar radiation, modifying cloud properties, and reducing surface reflectivity after deposition in snow-covered regions. While atmospheric particulate matter has been generally well-characterized in populated areas of developed countries, particulate pollution in developing nations and remote regions is relatively unexplored. This thesis characterizes atmospheric particulate matter in locations that represent the extreme ends of the spectrum in terms of air pollution-the rapidly-developing and heavily populated Pearl River Delta Region of China, the pristine and climate-sensitive Greenland Ice Sheet, and a remote site in the Colorado Rocky Mountains. In China, fine particles were studied through a year-long field campaign at seven sites surrounding the Pearl River Delta. Fine particulate matter was analyzed for chemical composition, regional variation, and meteorological impacts. On the Greenland Ice Sheet and in the Colorado Rocky Mountains, the carbonaceous fraction (organic and elemental carbon) of particulate matter was studied in the atmosphere and snow pack. Analyses included quantifying particulate chemical and optical properties, assessing atmospheric transport, and evaluating post-depositional processing of carbonaceous species in snow.

  9. Generation of hydroxyl radicals by urban suspended particulate air matter. The role of iron ions

    Science.gov (United States)

    Valavanidis, Athanasios; Salika, Anastasia; Theodoropoulou, Anna

    Recent epidemiologic studies showed statistical associations between particulate air pollution in urban areas and increased morbidity and mortality, even at levels well within current national air quality standards. Inhalable particulate matter (PM 10) can penetrate into the lower airways where they can cause acute and chronic lung injury by generating toxic oxygen free radicals. We tested inhalable total suspended particulates (TSP) from the Athens area, diesel and gasoline exhaust particles (DEP and GED), and urban street dusts, by Electron Paramagnetic Resonance (EPR). All particulates can generate hydroxyl radicals (HO ṡ), in aqueous buffered solutions, in the presence of hydrogen peroxide. Results showed that oxidant generating activity is related with soluble iron ions. Leaching studies showed that urban particulate matter can release large amounts of Fe 3+ and lesser amounts of Fe 2+, as it was shown from other studies. Direct evidence of HO ṡ was confirmed by spin trapping with DMPO and measurement of DMPO-OH adduct by EPR. Evidence was supported with the use of chelator (EDTA), which increases the EPR signal, and the inhibition of the radical generating activity by desferrioxamine or/and antioxidants ( D-mannitol, sodium benzoate).

  10. Carbonaceous material in fine particulate matter (PM10) of urban areas

    International Nuclear Information System (INIS)

    Brocco, Domenico; Leonardi, Vittorio; Maso; Marco; Prignani, Patrizia

    2006-01-01

    Total carbon (TC), elemental carbon (EC) and organic carbon (OC) in the fine particulate matter (PM10) were measured in the urban areas of Rome and Marino (Castelli Romani) by means a thermal method with a non-dispersive infrared detector (NDIR). The results showed that carbonaceous material constitutes 30-40% of the total aerosols in Rome and about 20% in Marino [it

  11. Modeling urban fire growth

    International Nuclear Information System (INIS)

    Waterman, T.E.; Takata, A.N.

    1983-01-01

    The IITRI Urban Fire Spread Model as well as others of similar vintage were constrained by computer size and running costs such that many approximations/generalizations were introduced to reduce program complexity and data storage requirements. Simplifications were introduced both in input data and in fire growth and spread calculations. Modern computational capabilities offer the means to introduce greater detail and to examine its practical significance on urban fire predictions. Selected portions of the model are described as presently configured, and potential modifications are discussed. A single tract model is hypothesized which permits the importance of various model details to be assessed, and, other model applications are identified

  12. Atmospheric particulate mercury at the urban and forest sites in central Poland.

    Science.gov (United States)

    Siudek, Patrycja; Frankowski, Marcin; Siepak, Jerzy

    2016-02-01

    Particulate mercury concentrations were investigated during intensive field campaigns at the urban and forest sites in central Poland, between April 2013 and October 2014. For the first time, quantitative determination of total particulate mercury in coarse (PHg2.2) and fine (PHg0.7) aerosol samples was conducted in Poznań and Jeziory. The concentrations in urban fine and coarse aerosol fractions amounted to mercury concentrations. A strong impact of meteorological conditions (wind velocity, air mass direction, air temperature, and precipitation amount) on particulate mercury concentrations was also observed. In particular, higher variation and concentration range of PHg0.7 and PHg2.2 was reported for wintertime measurements. An increase in atmospheric particulate mercury during the cold season in the study region indicated that coal combustion, i.e., residential and industrial heating, is the main contribution factor for the selected particle size modes. Coarse particulate Hg at the urban site during summer was mainly attributed to anthropogenic sources, with significant contribution from resuspension processes and long-range transport. The highest values of PHg0.7 and PHg2.2 were found during westerly and southerly wind events, reflecting local emission from highly polluted areas. The period from late fall to spring showed that advection from the southern part of Poland was the main factor responsible for elevated Hg concentrations in fine and coarse particles in the investigated region. Moreover, September 2013 could be given as an example of the influence of additional urban activities which occurred approx. 10 m from the sampling site-construction works connected with replacement of the road surface, asphalting, etc. The concentrations of particulate Hg (>600.0 pg m(-3)) were much higher than during the following months when any similar situation did not occur. Our investigations confirmed that Hg in urban aerosol samples was predominantly related to local

  13. Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon

    International Nuclear Information System (INIS)

    Mazurek, M.A.; Hildemann, L.M.; Simoneit, B.R.T.

    1990-10-01

    Organic aerosols comprise approximately 30% by mass of the total fine particulate matter present in urban atmospheres. The chemical composition of such aerosols is complex and reflects input from multiple sources of primary emissions to the atmosphere, as well as from secondary production of carbonaceous aerosol species via photochemical reactions. To identify discrete sources of fine carbonaceous particles in urban atmospheres, analytical methods must reconcile both bulk chemical and molecular properties of the total carbonaceous aerosol fraction. This paper presents an overview of the analytical protocol developed and used in a study of the major sources of fine carbon particles emitted to an urban atmosphere. 23 refs., 1 fig., 2 tabs

  14. Spatial distribution assessment of particulate matter in an urban street canyon using biomagnetic leaf monitoring of tree crown deposited particles

    International Nuclear Information System (INIS)

    Hofman, Jelle; Stokkaer, Ines; Snauwaert, Lies; Samson, Roeland

    2013-01-01

    Recently, biomagnetic monitoring of tree leaves has proven to be a good estimator for ambient particulate concentration. This paper investigates the usefulness of biomagnetic leaf monitoring of crown deposited particles to assess the spatial PM distribution inside individual tree crowns and an urban street canyon in Ghent (Belgium). Results demonstrate that biomagnetic monitoring can be used to assess spatial PM variations, even within single tree crowns. SIRM values decrease exponentially with height and azimuthal effects are obtained for wind exposed sides of the street canyon. Edge and canyon trees seem to be exposed differently. As far as we know, this study is the first to present biomagnetic monitoring results of different trees within a single street canyon. The results not only give valuable insights into the spatial distribution of particulate matter inside tree crowns and a street canyon, but also offer a great potential as validation tool for air quality modelling. Highlights: ► Spatial distribution of tree crown deposited PM was evaluated. ► SIRM values decrease exponentially with height. ► Azimuthal effects were observed at wind exposed sides of the street canyon. ► Edge and canyon trees seem to be exposed differently. ► Biomagnetic monitoring offers a great potential as validation of air quality models. -- Biomagnetic leaf monitoring provides useful insights into the spatial distribution of particulates inside individual tree crowns and an urban street canyon in Ghent (Belgium)

  15. Prenatal Particulate Air Pollution and Asthma Onset in Urban Children. Identifying Sensitive Windows and Sex Differences.

    Science.gov (United States)

    Hsu, Hsiao-Hsien Leon; Chiu, Yueh-Hsiu Mathilda; Coull, Brent A; Kloog, Itai; Schwartz, Joel; Lee, Alison; Wright, Robert O; Wright, Rosalind J

    2015-11-01

    The influence of particulate air pollution on respiratory health starts in utero. Fetal lung growth and structural development occurs in stages; thus, effects on postnatal respiratory disorders may differ based on timing of exposure. We implemented an innovative method to identify sensitive windows for effects of prenatal exposure to particulate matter with a diameter less than or equal to 2.5 μm (PM2.5) on children's asthma development in an urban pregnancy cohort. Analyses included 736 full-term (≥37 wk) children. Each mother's daily PM2.5 exposure was estimated over gestation using a validated satellite-based spatiotemporal resolved model. Using distributed lag models, we examined associations between weekly averaged PM2.5 levels over pregnancy and physician-diagnosed asthma in children by age 6 years. Effect modification by sex was also examined. Most mothers were ethnic minorities (54% Hispanic, 30% black), had 12 or fewer years of education (66%), and did not smoke in pregnancy (80%). In the sample as a whole, distributed lag models adjusting for child age, sex, and maternal factors (education, race and ethnicity, smoking, stress, atopy, prepregnancy obesity) showed that increased PM2.5 exposure levels at 16-25 weeks gestation were significantly associated with early childhood asthma development. An interaction between PM2.5 and sex was significant (P = 0.01) with sex-stratified analyses showing that the association exists only for boys. Higher prenatal PM2.5 exposure at midgestation was associated with asthma development by age 6 years in boys. Methods to better characterize vulnerable windows may provide insight into underlying mechanisms.

  16. Particulate Matter and Black Carbon Concentration Levels in Ashaiman, a Semi-Urban Area of Ghana, 2008

    OpenAIRE

    Sam-Quarcoo Dotse; Joshua Kwame Asane; F.G. Ofosu

    2012-01-01

    Particulate matter and black carbon concentration levels in Ashaiman, a semi-urban area of Ghana was assessed. Using IVL PM2.5 and PM10 particle samplers, airborne particulate matter was sampled on Teflon filters for a period of three months. In addition to determination of particulate mass in the two fractions by gravimetrical method, aerosol filters were analyzed to determine Black Carbon (BC) concentration levels using the black smoke method. BC fractions in fine and coarse, together with ...

  17. Chemical characterization of urban air particulate matter of Kuala Lumpur 2002-2004

    International Nuclear Information System (INIS)

    Wee Boon Siong; Ab. Khalik Bin Haji Wood

    2006-01-01

    Urban air particulate samples of Kuala Lumpur ambient air have been collected characterize according to fine and coarse airborne particulates. The air filters containing particulate matter were collected using GENT stack filter unit fitted with appropriate polycarbonate filters. The sampling location site (Lat: 03deg 10'30''; Long: 101deg 43'24.2'') is approximately 1 km from the Kuala Lumpur city center. All the sampling conducted from January 2002 until October 2004 was included in the analysis and results were reported. The mass loading for finest air particulate matter (PM 2.5) in Kuala Lumpur are 199±55 μg (2002), 171±53 μg (2003), and 171±61 μg (2004), respectively. The mass loading for coarse air particulate matter (PM 10) in Kuala Lumpur were 125±29 μg (2002), 134±48 μg (2003), and 137 ± 57 μg (2004), respectively. The elemental concentration of the air filters were determined using INAA technique utilizing both short and long irradiation facilities at MINT's TRIGA MKII reactor. Upon irradiation the air filters were counted at suitable counting time using HPGe gamma-ray detectors. The elements reported for this monitoring are Al, As, Br, Co, Cr, K, Lu, Mn, Na, Sb, Sc, Ti, V, and Zn. Certified reference materials were also included in the sample analysis function as quality control materials. (author)

  18. PIXE analysis of tree leaves as a possible comparative integral monitor of particulates in urban areas

    International Nuclear Information System (INIS)

    Zucchiati, A.; Annegarm, H.J.; Chisci, R.

    1988-01-01

    The possibility of obtaing integral comparative data for particulate distribution in urban areas from PIXE analysis of tree leaves is discussed in relation to the leaf gross anatomy, to the diffusion of selected tree species in such areas and to the implementation of experimental techniques necessary to make PIXE analysis effective. Multielemental scans were performed on a small set samples; results are compared to PIXE analysis of typical urban aerosols. The validity of the method and the criteria for yearly relative comparisons of different areas are discissed

  19. Mobile Monitoring of Diesel Particulate Matter Exposure within Five Urban Microenvironments, Portland, OR

    Science.gov (United States)

    Orlando, P. J.; Bennett, B. A.; George, L. A.

    2016-12-01

    Diesel particulate matter (DPM) is a hazardous air pollutant linked to mortality and morbidity outcomes including cancer, cardiovascular disease, and adverse respiratory effects. The EPA's Air Toxics Assessment indicated that more than 50% of Oregonians are exposed to 10 times the ambient benchmark concentration (ABC) of 0.1 μgm-3 for DPM. These model estimates have not been verified with measurements, potentially limiting policy action. We developed a mobile monitoring platform to ground-truth model predictions and characterize DPM spatial variation. Using black carbon (BC) as a marker, concentrations within five urban microenvironments (a construction site, an arterial, a bus mall, a city park, and an indoor workspace) were sampled within Portland, OR. The mobile monitoring platform consisted of a bicycle and trailer equipped with an aethalometer measuring BC mass, a Data Ram 4 measuring total PM2.5 mass, and a Q-Starz GPS recording location; each instrument was monitoring in 1 second intervals. Concentrations of BC were used as an indicator of DPM. The construction site had the highest DPM concentration (7 μg m-3). The indoor workspace and the park had the lowest DPM (0.3 μg m-3). Near the construction site, DPM constituted approximately 50% of the total PM2.5. However, at the park, DPM was attributed to only 6% of the total PM2.5, while the indoor space constituted 15%. Concentrations of BC near construction sites were observed to exceed 67 times the state ABC of 0.1 μg m-3 (Figure). These results signify the need to better characterize the urban exposure to DPM, as even the cleanest microenvironments may be 3 times above the ABC. Our mobile monitoring platform will help further elucidate how local-scale sources contribute to the broader distribution of DPM within Portland, while providing a tool for both residents and DEQ to effectively mitigate the health impacts from DPM exposure.

  20. Herbaceous plants as filters: Immobilization of particulates along urban street corridors

    International Nuclear Information System (INIS)

    Weber, Frauke; Kowarik, Ingo; Säumel, Ina

    2014-01-01

    Among air pollutants, particulate matter (PM) is considered to be the most serious threat to human health. Plants provide ecosystem services in urban areas, including reducing levels of PM by providing a surface for deposition and immobilization. While previous studies have mostly addressed woody species, we focus on herbaceous roadside vegetation and assess the role of species traits such as leaf surface roughness or hairiness for the immobilization of PM. We found that PM deposition patterns on plant surfaces reflect site-specific traffic densities and that strong differences in particulate deposition are present among species. The amount of immobilized PM differed according to particle type and size and was related to specific plant species traits. Our study suggests that herbaceous vegetation immobilizes a significant amount of the air pollutants relevant to human health and that increasing biodiversity of roadside vegetation supports air filtration and thus healthier conditions along street corridors. -- Highlights: • We assessed PM immobilization by common urban herbaceous roadside species. • PM deposition was related to traffic density and plant species traits. • Amount of PM deposited differed according to particle type and size. • Increasing biodiversity of roadside vegetation supports air filtration. -- Herbaceous urban roadside vegetation immobilizes particulate matter relevant to human health, thus supporting healthier conditions next to busy roads

  1. Thia-arenes as source apportionment tracers for urban air particulate

    International Nuclear Information System (INIS)

    McCarry, B.E.; Allan, L.M.; Mehta, S.; Marvin, C.H.

    1995-01-01

    Over sixty respirable air particulate samples were selected from a large number of filters collected in Hamilton, Ontario, Canada. Depending on the wind direction these sites were either predominantly upwind or predominantly downwind of the industrial sources. The sixty filters were extracted and analyzed using GC-MS for a range of PAH and sulfur-containing PAH (thia-arenes). Various reference standards (coal tar, diesel exhaust, urban air particulate) and source samples (coke oven condensate) were analyzed as well. A set of air particulate samples collected in another city alongside a highway provided an urban vehicular air sample. Unique thia-arene profiles were noted in the reference and source samples which provided the basis for this source apportionment work; two main approaches were used: (1) analysis of alkylated derivatives of thia-arenes with a molecular mass of 184 amu and (2) analysis of 234 amu isomers. The diesel exhaust and urban vehicular samples gave identical profiles while the coal tar and coke oven samples also had identical profiles but in different respects. The air samples collected at samplers located upwind of the coke ovens showed thia-arene profiles which were similar to the profile observed with a diesel exhaust reference material. However, air samples collected downwind of the coke ovens were heavily loaded samples and resembled the coal tar coke and oven condensate samples

  2. Characterisation of urban catchment suspended particulate matter (Auckland region, New Zealand); a comparison with non-urban SPM

    International Nuclear Information System (INIS)

    Bibby, Rebecca L.; Webster-Brown, Jenny G.

    2005-01-01

    Suspended particulate matter (SPM) is an important transport agent for metal contaminants in streams, particularly during high flow periods such as storm events. For highly contaminated urban catchments in the greater Auckland (New Zealand) area, trace metal partitioning between the dissolved phase and SPM was determined, and SPM characterised in terms of its Si, Al, Fe, Mn, Zn, Cu, Pb, TOC, TON and PO 4 concentrations, as well as particle size, abundance, type and surface area. This data was compared to similar data from representative non-urban catchments in the Auckland region, the Kaipara River and Waikato River catchments, to identify any significant differences in the SPM and its potential trace metal adsorption capacity. Trace metal partitioning was assessed by way of a distribution coefficient: K D =[Me SPM ]/[Me DISS ]. Auckland urban SPM comprises quartz, feldspars and clay minerals, with Fe-oxides and minor Mn-oxides. No particles of anthropogenic origin, other than glass shards, were observed. No change in urban SPM particle size or SSA was observed with seasonal change in temperature, but the nature of the SPM was observed to change with flow regime. The abundance of finer particles, SSA and Al content of the SPM increased under moderate flow conditions; however, Si/Al ratios remained constant, confirming the importance of aluminosilicate detrital minerals in surface run-off. The SPM Fe content was observed to decrease with increased flow and was attributed to dilution of SPM Fe-oxide of groundwater origin. The Kaipara River SPM was found to be mineralogically, chemically and biologically similar to the urban SPM. However, major differences between urban catchment SPM and SPM from the much larger (non-urban) Waikato River were observed, and attributed to a higher abundance of diatoms. The Fe content of the Waikato River SPM was consistently lower (<5%), and the Si/Al ratio and Mn content was higher. Such differences observed between urban and non-urban

  3. Dust particulate absorption by ivy (Hedera helix L) on historic walls in urban environments

    International Nuclear Information System (INIS)

    Sternberg, Troy; Viles, Heather; Cathersides, Alan; Edwards, Mona

    2010-01-01

    The potential bio-protective role of urban greenery and how it interacts with airborne dust and pollutants has been the subject of much recent research. As particulate pollution has been implicated in both the deterioration of building materials and in damaging human health, understanding how it interacts with urban greenery is of great applied interest. Common or English Ivy (Hedera helix L) grows widely on urban walls in many parts of the world, and thus any bio-protective role it might play is of broad relevance. Using Scanning Electron Microscopy ivy leaves collected on roadways were examined to determine if ivy can absorb dust and pollutants that can instigate decay processes on stone walls and impact human health in urban environments. Results showed that ivy acts as a 'particle sink', absorbing particulate matter, particularly in high-traffic areas. It was effective in adhering fine ( 10 per m 2 . Our findings suggest that through absorbing pollutant particles ivy can retard bio-deteriorative processes on historic walls and reduce human exposure to respiratory problems caused by vehicle pollutants.

  4. Characterization of particulate matter deposited on urban tree foliage: A landscape analysis approach

    Science.gov (United States)

    Lin, Lin; Yan, Jingli; Ma, Keming; Zhou, Weiqi; Chen, Guojian; Tang, Rongli; Zhang, Yuxin

    2017-12-01

    Plants can mitigate ambient particulate matter by cleaning the air, which is crucial to urban environments. A novel approach was presented to quantitatively characterize particulate matter deposited on urban tree foliage. This approach could accurately quantify the number, size, shape, and spatial distribution of particles with different diameters on leaves. Spatial distribution is represented by proximity, which measures the closeness of particles. We sampled three common broadleaf species and obtained images through field emission scanning electron microscopy. We conducted the object-based method to extract particles from images. We then used Fragstats to analyze the landscape characteristics of these particles in term of selected metrics. Results reveal that Salix matsudana is more efficient than Ailanthus altissima and Fraxinus chinensis in terms of the number and area of particles per unit area and the proportion of fine particulate matter. The shape complexity of the particles increases with their size. Among the three species, S. matsudana and A. altissima particles respectively yield the highest and lowest proximity. PM1 in A. altissima and PM10 in F. chinensis and S. matsudana show the highest proximity, which may influence subsequent particle retention. S. matsudana should be generally considered to collect additional small particles. Different species and particle sizes exhibit various proximities, which should be further examined to elucidate the underlying mechanism.

  5. Automated particulate sampler field test model operations guide

    Energy Technology Data Exchange (ETDEWEB)

    Bowyer, S.M.; Miley, H.S.

    1996-10-01

    The Automated Particulate Sampler Field Test Model Operations Guide is a collection of documents which provides a complete picture of the Automated Particulate Sampler (APS) and the Field Test in which it was evaluated. The Pacific Northwest National Laboratory (PNNL) Automated Particulate Sampler was developed for the purpose of radionuclide particulate monitoring for use under the Comprehensive Test Ban Treaty (CTBT). Its design was directed by anticipated requirements of small size, low power consumption, low noise level, fully automatic operation, and most predominantly the sensitivity requirements of the Conference on Disarmament Working Paper 224 (CDWP224). This guide is intended to serve as both a reference document for the APS and to provide detailed instructions on how to operate the sampler. This document provides a complete description of the APS Field Test Model and all the activity related to its evaluation and progression.

  6. More than 500 million Chinese urban residents (14% of the global urban population) are imperiled by fine particulate hazard.

    Science.gov (United States)

    He, Chunyang; Han, Lijian; Zhang, Robin Q

    2016-11-01

    China's urbanization and the subsequent public vulnerability to degenerated environment is important to global public health. Among the environmental problems, fine particulate (PM 2.5 ) pollution has become a serious hazard in rapidly urbanizing China. However, quantitative information remains inadequate. We thus collected PM 2.5 concentrations and population census records, to illustrate the spatial patterns and changes in the PM 2.5 hazard levels in China, and to quantify public vulnerability to the hazard during 2000-2010, following the air quality standards of World Health Organization. We found that 28% (2.72 million km 2 ) of China's territory, including 78% of cities (154 cities) with a population of >1 million, was exposed to PM 2.5 hazard in 2010; a 15% increase (1.47 million km 2 ) from 2000 to 2010. The hazards potentially impacted the health of 72% of the total population (942 million) in 2010, including 70% of the young (206 million) and 76% of the old (71 million). This was a significant increase from the 42% of total the population (279 million) exposed in 2000. Of the total urban residents, 76% (501 million) were affected in 2010. Along with PM 2.5 concentration increase, massive number of rural to urban migration also contributed greatly to China's urban public health vulnerability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy)

    Science.gov (United States)

    Caricchia, Anna Maria; Chiavarini, Salvatore; Pezza, Massimo

    An investigation on PAH in the atmospheric particulate matter of the city of Naples has been carried out. Urban atmospheric particulate matter was sampled in three sampling sites (West, East and central areas of the city), whose characteristics were representative of the prevailing conditions. In each site, 24 h samplings for 7 consecutive days were performed during three sampling campaigns, in 1996-1997. The results were comparable with those reported in literature for similar investigations. Total PAH were in the range 2-130 ng m -3, with a seasonal variation (autumn/winter vs. summer) in the range 1.5-4.5. The relative contribution of diesel engines vs. gasoline fuelled engines was evidenced.

  8. Partition of pollution between dissolved and particulate phases: what about emerging substances in urban stormwater catchments?

    Science.gov (United States)

    Zgheib, Sally; Moilleron, Régis; Saad, Mohamed; Chebbo, Ghassan

    2011-01-01

    This paper presents results about the occurrence, the concentrations of urban priority substances on both the dissolved and the particulate phases in stormwater. Samples were collected at the outlet of a dense urban catchment in Paris suburb (2.30 km(2)). 13 chemical groups were investigated including 88 individual substances. Results showed that stormwater discharges contained 45 substances among them some metals, organotins, PAHs, PCBs, alkylphenols, pesticides, phthalates, cholorophenols and one volatile organic compound, i.e. methylene chloride. With respect to the European Water Framework Directive, these substances included 47% of the priority hazardous substances (n = 8), 38% of the priority substances (n = 10). The remaining substances (n = 27) belong to a list of others specific urban substances not included in the Water Framework Directive but monitored during this work. Finally, stormwater quality was evaluated by comparing the substance concentrations to environmental quality standards (EQS) and the particulate content to Canadian sediment quality guidelines. This showed that stormwater was highly contaminated and should be treated before being discharged to receiving waters in order to avoid any adverse impact on the river quality. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Fine Particulate Pollution and Source Apportionment in the Urban Centers for Africa, Asia and Latin America

    Science.gov (United States)

    Guttikunda, S. K.; Johnson, T. M.; Procee, P.

    2004-12-01

    Fossil fuel combustion for domestic cooking and heating, power generation, industrial processes, and motor vehicles are the primary sources of air pollution in the developing country cities. Over the past twenty years, major advances have been made in understanding the social and economic consequences of air pollution. In both industrialized and developing countries, it has been shown that air pollution from energy combustion has detrimental impacts on human health and the environment. Lack of information on the sectoral contributions to air pollution - especially fine particulates, is one of the typical constraints for an effective integrated urban air quality management program. Without such information, it is difficult, if not impossible, for decision makers to provide policy advice and make informed investment decisions related to air quality improvements in developing countries. This also raises the need for low-cost ways of determining the principal sources of fine PM for a proper planning and decision making. The project objective is to develop and verify a methodology to assess and monitor the sources of PM, using a combination of ground-based monitoring and source apportionment techniques. This presentation will focus on four general tasks: (1) Review of the science and current activities in the combined use of monitoring data and modeling for better understanding of PM pollution. (2) Review of recent advances in atmospheric source apportionment techniques (e.g., principal component analysis, organic markers, source-receptor modeling techniques). (3) Develop a general methodology to use integrated top-down and bottom-up datasets. (4) Review of a series of current case studies from Africa, Asia and Latin America and the methodologies applied to assess the air pollution and its sources.

  10. Analysis of aliphatic and aromatic hydrocarbons in particulate matter in Madrid urban area

    International Nuclear Information System (INIS)

    Perez, M.; Mendez, J.; Bomboi, M.T.

    1988-01-01

    Levels of n-alkanes and polycyclic aromatic hydrocarbons have been measured in the air particulate matter during six months, from January to June of 1987, in an urban area of Madrid. The hydrocarbons were collected on glass fiber filters by high volumen sampling. The extraction was carried out by Sohxlet and ultrasonic techniques. The extracts were clean-up on silicagel fractionation and the chromatographic analysis was performed by capillary column gas chromatographic. Final results are discussed as well as the immission values related to the possible emission sources. (Author)

  11. Evaluation of total suspended particulate matter in some urban and industrial cities of Pakistan

    International Nuclear Information System (INIS)

    Qadir, M.A.; Iqbal, M.Z.

    1996-01-01

    Environmental studies are very important as the living beings depend greatly on the conditions of the environment. Air is an important component of the environment, which greatly affects the health of humans, animals and plants. Environmental problems in Pakistan are growing with the rise in total sectorial growth in population, economy and industrialization. In connection with atmospheric pollution, measurement of the total suspended particulate matter (TSP) in the urban atmosphere of Lahore, Faisalabad, Rawalpindi, Islamabad, Wah Cantt. and Khanispur (background area) has been carried out and compared to that of U.S. Environmental Protection Agency Standards. (author)

  12. Trace element composition of airborne particulate matter in urban and rural areas of Bangladesh

    International Nuclear Information System (INIS)

    Khaliquzzaman, M.; Biswas, S. K.; Tarafdar, S.A.; Isalam, A.; Khan, A.H.

    1995-11-01

    Size fractionated aerosol samples were collected at an urban site (Dhaka) in Bangladesh for a period of 17 months and at a rural site for six months. The samples were collected using a 'Gent' stacked filter unit in two fractions of 0-2 μm and 2-10 μm sizes. Proton induced x-ray emission (PIXE) spectroscopy has been used to determine the concentrations of 18 elements in the range of ng/m 3 . The elements range from Si to Sr and include Pb. The results of analysis of 292 air particulate samples of course and fine types from the urban site are presented. The results are discussed in the context of air pollution specially that of Pb. 6 refs., 7 tables., 2 figs

  13. Samplings of urban particulate matter for mutagenicity assays; Campionamenti di particolato atmosferico in area urbana per valutazioni di potenziale mutageno

    Energy Technology Data Exchange (ETDEWEB)

    De Zaiacomo, T. [ENEA, Centro Ricerche Bologna (Italy). Dip. Ambiente

    1996-07-01

    In the frame of a specific program relating to the evaluation of mutagenic activity of urban particulate matter, an experimental arrangement has been developed to sample aerosuspended particles from the external environment carried indoor by means of a fan. Instrumentation was placed directly in the air flow to minimize particle losses, and consisted of total filter, collecting particles without any size separation; cascade impactor, fractioning urban particulate to obtain separate samples for analyses; an optical device, for real time monitoring of aerosol concentration, temperature and relative humidity sensors. Some of the samples obtained were analysed to investigate: particle morphology, aerosol granulometric distributions, effect of relative humidity on collected particulate, amount of ponderal mass compared with real time optical determinations. The results obtained are reported here, together with some considerations about carbonaceous particles, in urban areas mainly originated from diesel exhausts, their degree of agglomeration and role to vehiculate substances into the human respiratory.

  14. An Application Of Receptor Modeling To Identify Airborne Particulate ...

    African Journals Online (AJOL)

    An Application Of Receptor Modeling To Identify Airborne Particulate Sources In Lagos, Nigeria. FS Olise, OK Owoade, HB Olaniyi. Abstract. There have been no clear demarcations between industrial and residential areas of Lagos with focus on industry as the major source. There is need to identify potential source types in ...

  15. Modelling Urban Experiences

    DEFF Research Database (Denmark)

    Jantzen, Christian; Vetner, Mikael

    2008-01-01

    How can urban designers develop an emotionally satisfying environment not only for today's users but also for coming generations? Which devices can they use to elicit interesting and relevant urban experiences? This paper attempts to answer these questions by analyzing the design of Zuidas, a new...

  16. Monitoring particulate matters in urban areas in Malaysia using remote sensing and ground-based measurements

    Science.gov (United States)

    Kanniah, K. D.; Kamarul Zaman, Nurul Amalin Fatihah; Lim, H. Q.; Reba, Mohd Nadzri Md.

    2014-10-01

    Monitoring particulate matter less than 10 μm (PM10) near the ground routinely is critical for Malaysia for emergency management because Malaysia receives considerable amount of pollutants from both local and trans-boundary sources. Nevertheless, aerosol data covering major cities over a large spatial extent and on a continuous manner are limited. Thus, in the present study we aimed to estimate PM10 at 5 km spatial scale using AOD derived from MERIS sensor at 3 metropolitan cities in Malaysia. MERIS level 2 AOD data covering 5 years (2007-2011) were used to develop an empirical model to estimate PM10 at 11 locations covering Klang valley, Penang and Johor Bahru metropolitan cities. This study is different from previous studies conducted in Malaysia because in the current study we estimated PM10 by considering meteorological parameters that affect aerosol properties, including atmospheric stability, surface temperature and relative humidity derived from MODIS data and our product will be at ~5 km spatial scale. Results of this study show that the direct correlation between monthly averaged AOD and PM10 yielded a low and insignificant relationship (R2= 0.04 and RMSE = 7.06μg m-3). However, when AOD, relative humidity, land surface temperature and k index (atmospheric stability) were combined in a multiple linear regression analysis the correlation coefficient increased to 0.34 and the RMSE decreased to 8.91μg m-3. Among the variables k- index showed highest correlation with PM 10 (R2=0.35) compared to other variables. We further improved the relationship among PM10 and the independent variables using Artificial Neural Network. Results show that the correlation coefficient of the calibration dataset increased to 0.65 with low RMSE of 6.72μg m-3. The results may change when we consider more data points covering 10 years (2002- 2011) and enable the construction of a local model to estimate PM10 in urban areas in Malaysia.

  17. EVALUATION OF RETENTION POND AND CONSTRUCTED WETLAND BMPS FOR TREATING PARTICULATE-BOUND HEAVY METALS IN URBAN STORMWATER RUNOFF - 2007

    Science.gov (United States)

    The sources of heavy metals in urban stormwater runoff are diverse (e.g., highways, road surfaces, roofs) and the release of metals into the environment is governed by several complex mechanisms. Heavy metals in stormwater are associated with suspended particulate materials that ...

  18. Multitechnique determination of elemental concentrations in NBS Urban Air Particulate SRM 1648 and evaluation of its use for quality assurance

    International Nuclear Information System (INIS)

    Gladney, E.S.; Perrin, D.R.; Robinson, R.D.; Trujillo, P.E.

    1984-01-01

    Concentrations of forty-one elements were determined in NBS Urban Air Particulate materials using neutron activation, atomic absorption, and instrumental combustion methods. The usefulness of this reference material is evaluated as a function of composition, certified value availability, matrix format, and cost. (author)

  19. Toxicologically important trace elements and organic compounds investigated in size-fractionated urban particulate matter collected near the Prague highway

    Czech Academy of Sciences Publication Activity Database

    Sysalová, J.; Sýkorová, Ivana; Havelcová, Martina; Száková, J.; Trejtnarová, Hana; Kotlík, B.

    2012-01-01

    Roč. 437, October (2012), s. 127-136 ISSN 0048-9697 R&D Projects: GA ČR GA205/09/1162 Institutional support: RVO:67985891 Keywords : urban particulate matter * grain- size partitioning * grain- size partitioning Subject RIV: DI - Air Pollution ; Quality Impact factor: 3.258, year: 2012

  20. A comparison of particulate matter from biomass-burning rural and non-biomass-burning urban households in northeastern China.

    Science.gov (United States)

    Jiang, Ruoting; Bell, Michelle L

    2008-07-01

    Biomass fuel is the primary source of domestic fuel in much of rural China. Previous studies have not characterized particle exposure through time-activity diaries or personal monitoring in mainland China. In this study we characterized indoor and personal particle exposure in six households in northeastern China (three urban, three rural) and explored differences by location, cooking status, activity, and fuel type. Rural homes used biomass. Urban homes used a combination of electricity and natural gas. Stationary monitors measured hourly indoor particulate matter (PM) with an aerodynamic diameter urban kitchens, urban sitting rooms, and outdoors. Personal monitors for PM with an aerodynamic diameter urban kitchens during cooking. PM10 was 6.1 times higher during cooking periods than during noncooking periods for rural kitchens. Personal PM2.5 levels for rural cooks were 2.8-3.6 times higher than for all other participant categories. The highest PM2.5 exposures occurred during cooking periods for urban and rural cooks. However, rural cooks had 5.4 times higher PM2.5 levels during cooking than did urban cooks. Rural cooks spent 2.5 times more hours per day cooking than did their urban counterparts. These findings indicate that biomass burning for cooking contributes substantially to indoor particulate levels and that this exposure is particularly elevated for cooks. Second-by-second personal PM2.5 exposures revealed differences in exposures by population group and strong temporal heterogeneity that would be obscured by aggregate metrics.

  1. Monitoring of urban particulate using an electret-based passive sampler

    Energy Technology Data Exchange (ETDEWEB)

    Thorpe, A.; Hemingway, M.A.; Brown, R.C.

    1999-11-01

    Site sampling trials have been carried out in the urban environment in order to assess the usefulness of a passive sampling device, originally developed for personal monitoring of airborne dust levels in industry. The sampling element is a small disc of elect material (polymer carrying a permanent electric charge) within a metal frame weighing approximately 15 g. The sampler is designed to capture particles by electrostatic attraction, in which case the capture rate depends on their electrical mobility but is independent of the rate at which air flows past the device. Passive samplers, along with miniaturized cascade impactors, have been exposed to urban particulate for periods of up to 28 days in locations with significant different levels of airborne pollution. The cascade impactor data enabled good estimates to be made of PM{sub 10} and PMN{sub 2.5} levels, and data from the passive sampler correlated with the total dust sampled by the impactor and with both the size fractions, that with the PM{sub 10} being better. Too few data have yet been obtained for its accuracy to be established, but it is unlikely that it will approach that of pumped samplers. It has been shown to be potentially useful for multiple, simultaneous site sampling and for monitoring personal environmental exposure situations in which dispensing with a power source is particularly useful. Being small, the sampler is easy to hide or camouflage, and because it is cheap, its loss or damage is not a serious matter.

  2. Modelling urban travel times

    NARCIS (Netherlands)

    Zheng, F.

    2011-01-01

    Urban travel times are intrinsically uncertain due to a lot of stochastic characteristics of traffic, especially at signalized intersections. A single travel time does not have much meaning and is not informative to drivers or traffic managers. The range of travel times is large such that certain

  3. Methodological Aspects of In Vitro Assessment of Bio-accessible Risk Element Pool in Urban Particulate Matter

    Czech Academy of Sciences Publication Activity Database

    Sysalová, J.; Száková, J.; Tremlová, J.; Kašparovská, Kateřina; Kotlík, B.; Tlustoš, P.; Svoboda, Petr

    2014-01-01

    Roč. 161, č. 2 (2014), s. 216-222 ISSN 0163-4984 Grant - others:GA ČR(CZ) GA521/09/1150; GA ČR(CZ) GAP503/12/0682 Program:GA; GA Institutional support: RVO:67985823 Keywords : risk elements * urban particulate matter * in vitro tests * bio-accessibility Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.748, year: 2014

  4. Assessment of Population Exposure to Coarse and Fine Particulate Matter in the Urban Areas of Chennai, India

    Directory of Open Access Journals (Sweden)

    Ramachandran Prasannavenkatesh

    2015-01-01

    Full Text Available Research outcomes from the epidemiological studies have found that the course (PM10 and the fine particulate matter (PM2.5 are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013–January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution.

  5. Assessment of Population Exposure to Coarse and Fine Particulate Matter in the Urban Areas of Chennai, India.

    Science.gov (United States)

    Prasannavenkatesh, Ramachandran; Andimuthu, Ramachandran; Kandasamy, Palanivelu; Rajadurai, Geetha; Kumar, Divya Subash; Radhapriya, Parthasarathy; Ponnusamy, Malini

    2015-01-01

    Research outcomes from the epidemiological studies have found that the course (PM10) and the fine particulate matter (PM2.5) are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013-January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT) guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution.

  6. Source identification of particulate matter in a semi-urban area of Malaysia using multivariate techniques.

    Science.gov (United States)

    Wahid, N B A; Latif, M T; Suan, L S; Dominick, D; Sahani, M; Jaafar, S A; Mohd Tahir, N

    2014-03-01

    This study aims to determine the composition and sources of particulate matter with an aerodynamic diameter of 10 μm or less (PM10) in a semi-urban area. PM10 samples were collected using a high volume sampler. Heavy metals (Fe, Zn, Pb, Mn, Cu, Cd and Ni) and cations (Na(+), K(+), Ca(2+) and Mg(2+)) were detected using inductively coupled plasma mass spectrometry, while anions (SO4 (2-), NO3 (-), Cl(-) and F(-)) were analysed using Ion Chromatography. Principle component analysis and multiple linear regressions were used to identify the source apportionment of PM10. Results showed the average concentration of PM10 was 29.5 ± 5.1 μg/m(3). The heavy metals found were dominated by Fe, followed by Zn, Pb, Cu, Mn, Cd and Ni. Na(+) was the dominant cation, followed by Ca(2+), K(+) and Mg(2+), whereas SO4 (2-) was the dominant anion, followed by NO3 (-), Cl(-) and F(-). The main sources of PM10 were the Earth's crust/road dust, followed by vehicle emissions, industrial emissions/road activity, and construction/biomass burning.

  7. Silkworm cocoons inspire models for random fiber and particulate composites

    Energy Technology Data Exchange (ETDEWEB)

    Fujia, Chen; Porter, David; Vollrath, Fritz [Department of Zoology, University of Oxford, Oxford OX1 3PS (United Kingdom)

    2010-10-15

    The bioengineering design principles evolved in silkworm cocoons make them ideal natural prototypes and models for structural composites. Cocoons depend for their stiffness and strength on the connectivity of bonding between their constituent materials of silk fibers and sericin binder. Strain-activated mechanisms for loss of bonding connectivity in cocoons can be translated directly into a surprisingly simple yet universal set of physically realistic as well as predictive quantitative structure-property relations for a wide range of technologically important fiber and particulate composite materials.

  8. Urban tree growth modeling

    Science.gov (United States)

    E. Gregory McPherson; Paula J. Peper

    2012-01-01

    This paper describes three long-term tree growth studies conducted to evaluate tree performance because repeated measurements of the same trees produce critical data for growth model calibration and validation. Several empirical and process-based approaches to modeling tree growth are reviewed. Modeling is more advanced in the fields of forestry and...

  9. Organic, elemental and inorganic carbon in particulate matter of six urban environments in Europe

    Directory of Open Access Journals (Sweden)

    M. Sillanpää

    2005-01-01

    Full Text Available A series of 7-week sampling campaigns were conducted in urban background sites of six European cities as follows: Duisburg (autumn, Prague (winter, Amsterdam (winter, Helsinki (spring, Barcelona (spring and Athens (summer. The campaigns were scheduled to include seasons of local public health concern due to high particulate concentrations or findings in previously conducted epidemiological studies. Aerosol samples were collected in parallel with two identical virtual impactors that divide air particles into fine (PM2.5 and coarse (PM2.5-10 size ranges. From the collected filter samples, elemental (EC and organic (OC carbon contents were analysed with a thermal-optical carbon analyser (TOA; total Ca, Ti, Fe, Si, Al and K by energy dispersive X-ray fluorescence (ED-XRF; As, Cu, Ni, V, and Zn by inductively coupled plasma mass spectrometry (ICP/MS; Ca2+, succinate, malonate and oxalate by ion chromatography (IC; and the sum of levoglucosan+galactosan+mannosan (∑MA by liquid chromatography mass spectrometry (LC/MS. The campaign means of PM2.5 and PM2.5-10 were 8.3-29.6 µg m-3 and 5.4-28.7 µg m-3, respectively. The contribution of particulate organic matter (POM to PM2.5 ranged from 21% in Barcelona to 54% in Prague, while that to PM2.5-10 ranged from 10% in Barcelona to 27% in Prague. The contribution of EC was higher to PM2.5 (5-9% than to PM2.5-10 (1-6% in all the six campaigns. Carbonate (C(CO3, that interferes with the TOA analysis, was detected in PM2.5-10 of Athens and Barcelona but not elsewhere. It was subtracted from the OC by a simple integration method that was validated. The CaCO3 accounted for 55% and 11% of PM2.5-10 in Athens and Barcelona, respectively. It was anticipated that combustion emissions from vehicle engines affected the POM content in PM2.5 of all the six sampling campaigns, but a comparison of mass concentration ratios of the selected inorganic and organic tracers of common sources of organic material to POM suggested

  10. Urban Studies: A Learning Model.

    Science.gov (United States)

    Cooper, Terry L.; Sundeen, Richard

    1979-01-01

    The urban studies learning model described in this article was found to increase students' self-esteem, imbue a more flexible and open perspective, contribute to the capacity for self-direction, produce increases on the feeling reactivity, spontaneity, and acceptance of aggression scales, and expand interpersonal competence. (Author/WI)

  11. Transport and solubility of Hetero-disperse dry deposition particulate matter subject to urban source area rainfall-runoff processes

    Science.gov (United States)

    Ying, G.; Sansalone, J.

    2010-03-01

    SummaryWith respect to hydrologic processes, the impervious pavement interface significantly alters relationships between rainfall and runoff. Commensurate with alteration of hydrologic processes the pavement also facilitates transport and solubility of dry deposition particulate matter (PM) in runoff. This study examines dry depositional flux rates, granulometric modification by runoff transport, as well as generation of total dissolved solids (TDS), alkalinity and conductivity in source area runoff resulting from PM solubility. PM is collected from a paved source area transportation corridor (I-10) in Baton Rouge, Louisiana encompassing 17 dry deposition and 8 runoff events. The mass-based granulometric particle size distribution (PSD) is measured and modeled through a cumulative gamma function, while PM surface area distributions across the PSD follow a log-normal distribution. Dry deposition flux rates are modeled as separate first-order exponential functions of previous dry hours (PDH) for PM and suspended, settleable and sediment fractions. When trans-located from dry deposition into runoff, PSDs are modified, with a d50m decreasing from 331 to 14 μm after transport and 60 min of settling. Solubility experiments as a function of pH, contact time and particle size using source area rainfall generate constitutive models to reproduce pH, alkalinity, TDS and alkalinity for historical events. Equilibrium pH, alkalinity and TDS are strongly influenced by particle size and contact times. The constitutive leaching models are combined with measured PSDs from a series of rainfall-runoff events to demonstrate that the model results replicate alkalinity and TDS in runoff from the subject watershed. Results illustrate the granulometry of dry deposition PM, modification of PSDs along the drainage pathway, and the role of PM solubility for generation of TDS, alkalinity and conductivity in urban source area rainfall-runoff.

  12. Multiscale Modeling of Dewetting Damage in Highly Filled Particulate Composites

    Science.gov (United States)

    Geubelle, P. H.; Inglis, H. M.; Kramer, J. D.; Patel, J. J.; Kumar, N. C.; Tan, H.

    2008-02-01

    Particle debonding or dewetting constitutes one of the key damage processes in highly filled particulate composites such as solid propellant and other energetic materials. To analyze this failure process, we have developed a multiscale finite element framework that combines, at the microscale, a nonlinear description of the binder response with a cohesive model of the damage process taking place in a representative periodic unit cell (PUC). To relate micro-scale damage to the macroscopic constitutive response of the material, we employ the mathematical theory of homogenization (MTH). After a description of the numerical scheme, we present the results of the damage response of a highly filled particulate composite subjected to a uniaxial macroscopic strain, and show the direct correlation between the complex damage processes taking place in the PUC and the nonlinear macroscopic constitutive response. We also present a detailed study of the PUC size and a comparison between the finite element MTH-based study and a micromechanics model of the dewetting process.

  13. Impacts modeling using the SPH particulate method. Case study

    International Nuclear Information System (INIS)

    Debord, R.

    1999-01-01

    The aim of this study is the modeling of the impact of melted metal on the reactor vessel head in the case of a core-meltdown accident. Modeling using the classical finite-element method alone is not sufficient but requires a coupling with particulate methods in order to take into account the behaviour of the corium. After a general introduction about particulate methods, the Nabor and SPH (smoothed particle hydrodynamics) methods are described. Then, the theoretical and numerical reliability of the SPH method is determined using simple cases. In particular, the number of neighbours significantly influences the preciseness of calculations. Also, the mesh of the structure must be adapted to the mesh of the fluid in order to reduce the edge effects. Finally, this study has shown that the values of artificial velocity coefficients used in the simulation of the BERDA test performed by the FZK Karlsruhe (Germany) are not correct. The domain of use of these coefficients was precised during a low speed impact. (J.S.)

  14. On street observations of particulate matter movement and dispersion due to traffic on an urban road

    Science.gov (United States)

    Patra, Aditya; Colvile, Roy; Arnold, Samantha; Bowen, Emma; Shallcross, Dudley; Martin, Damien; Price, Catheryn; Tate, James; ApSimon, Helen; Robins, Alan

    Empirical models for particulate matter emissions from paved road surfaces have been criticised for their lack of realism and accuracy. To support the development of a less empirical model, a study was conducted in a busy street at the DAPPLE site in Central London to understand the processes and to identify important parameters that influence emission from paved roads. Ordinary road gritting salt was applied to the road and the particulate matter entering the air at near-road surface level was monitored using optical particle counters. The grit acted as a tracer. The grit moved rapidly along the road in the direction of traffic flow. Build-up of material at the kerb indicated material being thrown across the road by the traffic. Coarser particles were resuspended faster than the finer ones. A clear decay profile was seen in the case of particles larger than 2μm; particles smaller than 2μm did not show any decay pattern during the experiment duration. Grinding of material appears to control the reservoir of fine particles on the road surface. The amount of material resuspended by traffic is about 30% less than those removed along the road and a factor of 6 higher than the amount removed across the road. Resuspension accounts for 40% of the total material removed from a road segment and 70% of the material removed together along and across the road. On average a single vehicle pass removes 0.08% of material present on a road segment at that instant. The calculation scheme is obtained from a short-duration study and therefore further studies of long duration involving varying road geometry and different traffic and meteorological condition need to be carried out before applying parameter estimates presented in this paper.

  15. Dispersion model for airborne radioactive particulates inside a process building

    International Nuclear Information System (INIS)

    Perkins, W.C.; Stoddard, D.H.

    1984-02-01

    An empirical model, predicting the spread of airborne radioactive particles after they are released inside a building, has been developed. The basis for this model is a composite of data for dispersion of airborne activity recorded during 12 case incidents. These incidents occurred at the Savannah River Plant (SRP) during approximately 90 plant-years of experience with the chemical and metallurgical processing of purified neptunium and plutonium. The model illustrates that the multiple-air-zone concept, used in the designs of many nuclear facilities, can be an efficient safety feature to limit the spread of airborne activity from a release. This study also provides some insight into an apparently anomalous behavior of airborne particulates, namely, their migration against the prevailing flow of ventilation air. 2 references, 12 figures, 4 tables

  16. Scattering Matrix for Typical Urban Anthropogenic Origin Cement Dust and Discrimination of Representative Atmospheric Particulates

    Science.gov (United States)

    Liu, Jia; Zhang, Yongming; Zhang, Qixing; Wang, Jinjun

    2018-03-01

    The complete scattering matrix for cement dust was measured as a function of scattering angle from 5° to 160° at a wavelength of 532 nm, as a representative of mineral dust of anthropogenic origin in urban areas. Other related characteristics of cement dust, such as particle size distribution, chemical composition, refractive index, and micromorphology, were also analyzed. For this objective, a newly improved apparatus was built and calibrated using water droplets. Measurements of water droplets were in good agreement with Lorenz-Mie calculations. To facilitate the direct applicability of measurements for cement dust in radiative transfer calculation, the synthetic scattering matrix was computed and defined over the full scattering angle range from 0° to 180°. The scattering matrices for cement dust and typical natural mineral dusts were found to be similar in trends and angular behaviors. Angular distributions of all matrix elements were confined to rather limited domains. To promote the application of light-scattering matrix in atmospheric observation and remote sensing, discrimination methods for various atmospheric particulates (cement dust, soot, smolder smoke, and water droplets) based on the angular distributions of their scattering matrix elements are discussed. The ratio -F12/F11 proved to be the most effective discrimination method when a single matrix element is employed; aerosol identification can be achieved based on -F12/F11 values at 90° and 160°. Meanwhile, the combinations of -F12/F11 with F22/F11 (or (F11 - F22)/(F11 + F22)) or -F12/F11 with F44/F11 at 160° can be used when multiple matrix elements at the same scattering angle are selected.

  17. First characterization of the endocrine-disrupting potential of indoor gaseous and particulate contamination: comparison with urban outdoor air (France).

    Science.gov (United States)

    Oziol, Lucie; Alliot, Fabrice; Botton, Jérémie; Bimbot, Maya; Huteau, Viviane; Levi, Yves; Chevreuil, Marc

    2017-01-01

    The composition of endocrine-disrupting compounds (EDCs) in the ambient air of indoor environments has already been described, but little is known about the inherent endocrine-disrupting potential of indoor air contamination. We therefore aimed to study the distribution of bioactive EDCs in the gaseous and particulate phases of indoor air using a cellular bioassay approach that integrates the interaction effects between chemicals. Organic air extracts, both gaseous and particulate, were taken from three indoor locations (office, apartment, and children's day care) in France and sampled in two different seasons in order to study their interference with the signaling of estrogen, androgen, and thyroid receptors. The experiments were also conducted on aerial extracts from an outdoor site (urban center). We found that gaseous and/or particulate extracts from all locations displayed estrogenicity, anti-androgenicity, and thyroidicity. Overall, indoor air extracts had a higher endocrine-disrupting potential compared to outdoor ones, especially during winter and in the day care. The biological activities were predominant for the gaseous extracts and tended to increase for the particulate extracts in cool conditions. In conclusion, our data confirmed the presence of bioactive EDCs in a gaseous state and highlighted their indoor origin and concentration, especially in the cold season.

  18. Biomonitoring of toxic compounds of airborne particulate matter in urban and industriel areas

    DEFF Research Database (Denmark)

    Klumpp, Andreas; Ro-Poulsen, Helge

    2010-01-01

    The toxicity and ecotoxicity of airborne particulate matter is determined by its physical features, but also by its chemical composition. The standardised exposure of accumulative bioindicator plants is suggested as an efficient and reliable tool to assess and monitor effects of particulate matter...

  19. A multi-approach monitoring of particulate matter, metals and PAHs in an urban street canyon.

    Science.gov (United States)

    De Nicola, Flavia; Murena, Fabio; Costagliola, M Antonietta; Alfani, Anna; Baldantoni, Daniela; Prati, M Vittoria; Sessa, Ludovica; Spagnuolo, Valeria; Giordano, Simonetta

    2013-07-01

    For the first time until now, the results from a prediction model (Atmospheric Dispersion Modelling System (ADMS)-Road) of pollutant dispersion in a street canyon were compared to the results obtained from biomonitors. In particular, the instrumental monitoring of particulate matter (PM10) and the biomonitoring of 14 polycyclic aromatic hydrocarbons (PAHs) and 11 metals by Quercus ilex leaves and Hypnum cupressiforme moss bags, acting as long- and short-term accumulators, respectively, were carried out. For both PAHs and metals, similar bioaccumulation trends were observed, with higher concentrations in biomonitors exposed at the leeward canyon side, affected by primary air vortex. The major pollutant accumulation at the leeward side was also predicted by the ADMS-Road model, on the basis of the prevailing wind direction that determines different exposure of the street canyon sides to pollutants emitted by vehicular traffic. A clear vertical (3, 6 and 9 m) distribution gradient of pollutants was not observed, so that both the model and biomonitoring results suggested that local air turbulences in the street canyon could contribute to uniform pollutant distribution at different heights.

  20. Understanding complex urban systems integrating multidisciplinary data in urban models

    CERN Document Server

    Gebetsroither-Geringer, Ernst; Atun, Funda; Werner, Liss

    2016-01-01

    This book is devoted to the modeling and understanding of complex urban systems. This second volume of Understanding Complex Urban Systems focuses on the challenges of the modeling tools, concerning, e.g., the quality and quantity of data and the selection of an appropriate modeling approach. It is meant to support urban decision-makers—including municipal politicians, spatial planners, and citizen groups—in choosing an appropriate modeling approach for their particular modeling requirements. The contributors to this volume are from different disciplines, but all share the same goal: optimizing the representation of complex urban systems. They present and discuss a variety of approaches for dealing with data-availability problems and finding appropriate modeling approaches—and not only in terms of computer modeling. The selection of articles featured in this volume reflect a broad variety of new and established modeling approaches such as: - An argument for using Big Data methods in conjunction with Age...

  1. Long-Term Fine Particulate Matter Exposure and Major Depressive Disorder in a Community-Based Urban Cohort

    Science.gov (United States)

    Kim, Kyoung-Nam; Lim, Youn-Hee; Bae, Hyun Joo; Kim, Myounghee; Jung, Kweon; Hong, Yun-Chul

    2016-01-01

    Background: Previous studies have associated short-term air pollution exposure with depression. Although an animal study showed an association between long-term exposure to particulate matter ≤ 2.5 μm (PM2.5) and depression, epidemiological studies assessing the long-term association are scarce. Objective: We aimed to determine the association between long-term PM2.5 exposure and major depressive disorder (MDD). Methods: A total of 27,270 participants 15–79 years of age who maintained an address within the same districts in Seoul, Republic of Korea, throughout the entire study period (between 2002 and 2010) and without a previous MDD diagnosis were analyzed. We used three district-specific exposure indices as measures of long-term PM2.5 exposure. Cox proportional hazards models adjusted for potential confounding factors and measured at district and individual levels were constructed. We further conducted stratified analyses according to underlying chronic diseases such as diabetes mellitus, cardiovascular disease, and chronic obstructive pulmonary disease. Results: The risk of MDD during the follow-up period (2008–2010) increased with an increase of 10 μg/m3 in PM2.5 in 2007 [hazard ratio (HR) = 1.44; 95% CI: 1.17, 1.78], PM2.5 between 2007 and 2010 (HR = 1.59; 95% CI: 1.02, 2.49), and 12-month moving average of PM2.5 until an event or censor (HR = 1.47; 95% CI: 1.14, 1.90). The association between long-term PM2.5 exposure and MDD was greater in participants with underlying chronic diseases than in participants without these diseases. Conclusion: Long-term PM2.5 exposure increased the risk of MDD among the general population. Individuals with underlying chronic diseases are more vulnerable to long-term PM2.5 exposure. Citation: Kim KN, Lim YH, Bae HJ, Kim M, Jung K, Hong YC. 2016. Long-term fine particulate matter exposure and major depressive disorder in a community-based urban cohort. Environ Health Perspect 124:1547–1553; http://dx.doi.org/10

  2. Sanitary impact of the particulate atmospheric urban pollution; Impact sanitaire de la pollution atmospherique urbaine particulaire

    Energy Technology Data Exchange (ETDEWEB)

    Sentissi, M.

    1999-03-22

    The pollution of particulates origin is one of the principle actual problem relative to air quality. In France, the fine particulates come from industry and automobile traffic, especially, the diesel vehicles. The most worrying characteristic is their fineness, that allow them to stay in suspension during a long time and penetrate into pulmonary alveoli, with toxic elements at their surface such metals, acids, polycyclic aromatic hydrocarbons. The objective of this work is to take stock of epidemiology and toxicology studies evaluating the sanitary impact of particulates in suspension. (N.C.)

  3. [Adsorption Capacity of the Air Particulate Matter in Urban Landscape Plants in Different Polluted Regions of Beijing].

    Science.gov (United States)

    Zhang, Wei-kang; Wang, Bing; Niu, Xiang

    2015-07-01

    Urban landscape plants, as one of the important factors of the urban ecosystem, play an important role in stagnating airborne particulates and purifying urban atmospheric environment. In this article, six kinds of common garden plants were studied, and aerosol generator (QRJZFSQ-I) was used to measure the ability of their leaves to stagnate atmospheric particulates (TSP and PM2.5) in different polluted regions. Meanwhile, environmental scanning electron microscope was used to observe changes in the leaf structure of the tested tree species. The results showed: (1)Among the tested tree species, the ability of coniferous species to stagnate atmospheric particulates was higher than that of broad-leaved species per unit leaf area. Pinus tabuliformis stagnated the highest volume of (3. 89± 0. 026) µg . m-2, followed by Pinus bungeana of (2. 82 ± 0. 392) µg . cm-2, and Populus tomentosa stagnated the minimum of (2. 00 ± 0. 118) µg . cm-2; (2) Through observing the leaf microstructure morphology, coniferous species were found to have tightly packed stomas, stoma density and surface roughness higher than those of broad-leaved species, and they could also secrete oil; (3) In different polluted regions, the leaves of the same tree species showed significant difference in stagnating TSP. Per unit leaf area, the tree species leaves situated around the 5th Ring Road had higher ability to absorb TSP than the tree species leaves at Botanical Garden, while their abilities to absorb PM2.5 showed no significant difference; (4) In different polluted regions, significantly adaptive changes were found in leaf structure. Comparing to the region with light pollution, the outer epidermal cells of the plant leaves in region with heavy pollution shrank, and the roughness of the leaf skin textures as well as the stomatal frequency and villous length increased. In spite of the significant changes in plant leaves exposed to the heavy pollution, these plants could still maintain normal

  4. Smart Mobility Stakeholders - Curating Urban Data & Models

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, Joshua [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    This presentation provides an overview of the curation of urban data and models through engaging SMART mobility stakeholders. SMART Mobility Urban Science Efforts are helping to expose key data sets, models, and roles for the U.S. Department of Energy in engaging across stakeholders to ensure useful insights. This will help to support other Urban Science and broader SMART initiatives.

  5. Characteristics of particulate matter collected at an urban background site and a roadside site in Birmingham, United Kingdom

    OpenAIRE

    Taiwo, Adewale M.

    2017-01-01

    ABSTRACT This study was conducted to investigate the compositional characteristics of particulate matter (PM) collected both at an urban background site (Elms Road observational site, EROS) and a roadside site (Bristol Road observational site, BROS). PM samples were collected at the receptor sites between March 28 and April 11, 2012. Observed parameters included water-soluble ions (Cl-, NO- 3, SO4 2-, Na+, NH4 +, K+, Mg2+, Ca2+) and trace metals (V, Al, Cr, Mn, Fe, Zn, Cu, Sb, Ba, Pb). Result...

  6. SEASONAL ABUNDANCE OF ORGANIC MOLECULAR MARKERS IN URBAN PARTICULATE MATTER FROM PHILADELPHIA, PA

    Science.gov (United States)

    Organic molecular markers were measured in airborne particulate matter (PM10) from the City of Philadelphia North Broad Street air quality monitoring site to identify the seasonal abundances of key tracer compounds together with their dominant sources. Daily PM10...

  7. Dispersion model for airborne particulates inside a building

    International Nuclear Information System (INIS)

    Perkins, W.C.; Stoddard, D.H.

    1985-01-01

    An empirical model has been developed for the spread of airborne radioactive particles after they are released inside a building. The model has been useful in performing safety analyses of actinide materials facilities at the Savannah River Plant (SRP). These facilities employ the multiple-air-zone concept; that is, ventilation air flows from rooms or areas of least radioactive material hazard, through zones of increasing hazard, to a treatment system. A composite of the data for dispersion of airborne activity during 12 actual case incidents at SRP forms the basis for this model. These incidents occurred during approximately 90 plant-years of experience at SRP with the chemical and metallurgical processing of purified neptunium and plutonium after their recovery from irradiated uranium. The model gives ratios of the airborne activity concentrations in rooms and corridors near the site of the release. The multiple-air-zone concept has been applied to many designs of nuclear facilities as a safety feature to limit the spread of airborne activity from a release. The model illustrates the limitations of this concept: it predicts an apparently anomalous behavior of airborne particulates; namely, a small migration against the flow of the ventilation air

  8. Urban contamination and dose model

    International Nuclear Information System (INIS)

    Robertson, E.; Barry, P.J.

    1995-10-01

    Nuclear power reactors and other nuclear facilities are being built near or even within urban centres. Accidental releases of radionuclides to the atmosphere in built-up areas result in radiological exposure pathways that differ from those caused by releases in rural environments. Other than inhalation, exposure pathways involve external radiation from the plume while it passes and from radioactivity deposited onto the many and varied surfaces after it has passed. Radiation fields inside buildings are attenuated but many people are potentially exposed so while individual doses may be relatively low, population integrated doses may be high enough to cause concern. It is important, therefore, to assess the potential exposures and to estimate the cost-effectiveness of dose reduction measures in urban environments. This report describes a model developed to carry out such assessments. The model draws heavily on experience gained in European cities after their contamination fallout from the Chernobyl accident. Input is time integrated concentrations of specific radionuclides in urban air, obtained either by direct measurement or by prediction using an atmospheric dispersion model. The code includes default values for site specific variables and transfer parameters but the user is invited if desired to enter other values from the keyboard. Output is the time integrated dose rates for individuals selected because of the characteristic living, working and recreational habits. An accompanying manual documents the technical background on which the model is based and leads a first-time suer through various steps and operations encountered while the model is running. (author). 60 refs., 10 tabs., 1 fig

  9. Fine Particulate Air Pollution and Hospital Emergency Room Visits for Respiratory Disease in Urban Areas in Beijing, China, in 2013.

    Directory of Open Access Journals (Sweden)

    Qin Xu

    Full Text Available Heavy fine particulate matter (PM2.5 air pollution occurs frequently in China. However, epidemiological research on the association between short-term exposure to PM2.5 pollution and respiratory disease morbidity is still limited. This study aimed to explore the association between PM2.5 pollution and hospital emergency room visits (ERV for total and cause-specific respiratory diseases in urban areas in Beijing.Daily counts of respiratory ERV from Jan 1 to Dec 31, 2013, were obtained from ten general hospitals located in urban areas in Beijing. Concurrently, data on PM2.5 were collected from the Beijing Environmental Protection Bureau, including 17 ambient air quality monitoring stations. A generalized-additive model was used to explore the respiratory effects of PM2.5, after controlling for confounding variables. Subgroup analyses were also conducted by age and gender.A total of 92,464 respiratory emergency visits were recorded during the study period. The mean daily PM2.5 concentration was 102.1±73.6 μg/m3. Every 10 μg/m3 increase in PM2.5 concentration at lag0 was associated with an increase in ERV, as follows: 0.23% for total respiratory disease (95% confidence interval [CI]: 0.11%-0.34%, 0.19% for upper respiratory tract infection (URTI (95%CI: 0.04%-0.35%, 0.34% for lower respiratory tract infection (LRTI (95%CI: 0.14%-0.53% and 1.46% for acute exacerbation of chronic obstructive pulmonary disease (AECOPD (95%CI: 0.13%-2.79%. The strongest association was identified between AECOPD and PM2.5 concentration at lag0-3 (3.15%, 95%CI: 1.39%-4.91%. The estimated effects were robust after adjusting for SO2, O3, CO and NO2. Females and people 60 years of age and older demonstrated a higher risk of respiratory disease after PM2.5 exposure.PM2.5 was significantly associated with respiratory ERV, particularly for URTI, LRTI and AECOPD in Beijing. The susceptibility to PM2.5 pollution varied by gender and age.

  10. Fine Particulate Air Pollution and Hospital Emergency Room Visits for Respiratory Disease in Urban Areas in Beijing, China, in 2013.

    Science.gov (United States)

    Xu, Qin; Li, Xia; Wang, Shuo; Wang, Chao; Huang, Fangfang; Gao, Qi; Wu, Lijuan; Tao, Lixin; Guo, Jin; Wang, Wei; Guo, Xiuhua

    2016-01-01

    Heavy fine particulate matter (PM2.5) air pollution occurs frequently in China. However, epidemiological research on the association between short-term exposure to PM2.5 pollution and respiratory disease morbidity is still limited. This study aimed to explore the association between PM2.5 pollution and hospital emergency room visits (ERV) for total and cause-specific respiratory diseases in urban areas in Beijing. Daily counts of respiratory ERV from Jan 1 to Dec 31, 2013, were obtained from ten general hospitals located in urban areas in Beijing. Concurrently, data on PM2.5 were collected from the Beijing Environmental Protection Bureau, including 17 ambient air quality monitoring stations. A generalized-additive model was used to explore the respiratory effects of PM2.5, after controlling for confounding variables. Subgroup analyses were also conducted by age and gender. A total of 92,464 respiratory emergency visits were recorded during the study period. The mean daily PM2.5 concentration was 102.1±73.6 μg/m3. Every 10 μg/m3 increase in PM2.5 concentration at lag0 was associated with an increase in ERV, as follows: 0.23% for total respiratory disease (95% confidence interval [CI]: 0.11%-0.34%), 0.19% for upper respiratory tract infection (URTI) (95%CI: 0.04%-0.35%), 0.34% for lower respiratory tract infection (LRTI) (95%CI: 0.14%-0.53%) and 1.46% for acute exacerbation of chronic obstructive pulmonary disease (AECOPD) (95%CI: 0.13%-2.79%). The strongest association was identified between AECOPD and PM2.5 concentration at lag0-3 (3.15%, 95%CI: 1.39%-4.91%). The estimated effects were robust after adjusting for SO2, O3, CO and NO2. Females and people 60 years of age and older demonstrated a higher risk of respiratory disease after PM2.5 exposure. PM2.5 was significantly associated with respiratory ERV, particularly for URTI, LRTI and AECOPD in Beijing. The susceptibility to PM2.5 pollution varied by gender and age.

  11. Spatial Temporal Modelling of Particulate Matter for Health Effects Studies

    Science.gov (United States)

    Hamm, N. A. S.

    2016-10-01

    Epidemiological studies of the health effects of air pollution require estimation of individual exposure. It is not possible to obtain measurements at all relevant locations so it is necessary to predict at these space-time locations, either on the basis of dispersion from emission sources or by interpolating observations. This study used data obtained from a low-cost sensor network of 32 air quality monitoring stations in the Dutch city of Eindhoven, which make up the ILM (innovative air (quality) measurement system). These stations currently provide PM10 and PM2.5 (particulate matter less than 10 and 2.5 m in diameter), aggregated to hourly means. The data provide an unprecedented level of spatial and temporal detail for a city of this size. Despite these benefits the time series of measurements is characterized by missing values and noisy values. In this paper a space-time analysis is presented that is based on a dynamic model for the temporal component and a Gaussian process geostatistical for the spatial component. Spatial-temporal variability was dominated by the temporal component, although the spatial variability was also substantial. The model delivered accurate predictions for both isolated missing values and 24-hour periods of missing values (RMSE = 1.4 μg m-3 and 1.8 μg m-3 respectively). Outliers could be detected by comparison to the 95% prediction interval. The model shows promise for predicting missing values, outlier detection and for mapping to support health impact studies.

  12. Experimental examination of effectiveness of vegetation as bio-filter of particulate matters in the urban environment

    International Nuclear Information System (INIS)

    Chen, Lixin; Liu, Chenming; Zou, Rui; Yang, Mao; Zhang, Zhiqiang

    2016-01-01

    Studies focused on pollutants deposition on vegetation surfaces or aerodynamics of vegetation space conflict in whether vegetation planting can effectively reduce airborne particulate matter (PM) pollution. To achieve a more comprehensive understanding of the conflict, we conducted experiments during 2013 and 2014 in Beijing, China to evaluate the importance of vegetation species, planting configurations and wind in influencing PM concentration at urban and street scales. Results showed that wind field prevailed over the purification function by vegetation at urban scale. All six examined planting configurations reduced total suspended particle along horizontal but not vertical direction. Shrubs and trees–grass configurations performed most effectively for horizontal PM2.5 reduction, but adversely for vertical attenuation. Trapping capacity of PMs was species-specific, but species selection criteria could hardly be generalized for practical use. Therefore, design of planting configuration is practically more effective than tree species selection in attenuating the ambient PM concentrations in urban settings. - Highlights: • Study of the relationship between vegetation and PM pollution is presented. • Type of vegetation is secondary to wind field effect in influencing urban-scale PM pollution. • Planting spaces aiding ventilation are crucial in roadside PM pollution control. • Species differences are obvious but difficult to apply in practice. - Wind field triumphs surface deposition by vegetation in attenuating PM pollution, indicating consideration of ventilation as the criteria for spatial planting configuration and species selection.

  13. High-Latitude Wintertime Urban Pollution: Particulate Matter Composition and Temporal Trends in Fairbanks, Alaska

    Science.gov (United States)

    Simpson, W. R.; Nattinger, K.; Hooper, M.

    2017-12-01

    High latitude cities often experience severe pollution episodes during wintertime exacerbated by thermal inversion trapping of pollutant emissions. Fairbanks, Alaska is an extreme example of this problem, currently being classified by the US Environmental Protection Agency (EPA) as a "serious" non-attainment area for fine particulate matter (PM2.5). For this reason, we have studied the chemical composition of PM2.5 at multiple EPA monitoring sites in the non-attainment area from 2006 to the present. The chemical composition is dominated by organic carbon with lesser amounts of black carbon and inorganic ionic species such as ammonium, sulfate, and nitrate. We find large spatial differences in composition and amount of PM2.5 that indicate a different mix of sources in residential areas as compared to the city center. Specifically, the difference in composition is consistent with increased wood smoke source in the residential areas. The extent to which organic matter could be secondary (formed through conversion of emitted gases) is also an area needing study. Ammonium sulfate is responsible for about a fifth to a quarter of the particles mass during the darkest months, possibly indicating a non-photochemical source of sulfate, but the chemical mechanism for this possible transformation is unclear. Therefore, we quantified the relationship between particulate sulfate concentrations and gas-phase sulfur dioxide concentrations along with particulate metals and inferred particulate acidity with the hopes that these data can assist in elucidation of the mechanism of particulate sulfate formation. We also analyze temporal trends in PM2.5 composition in an attempt to understand how the problem is changing over time and find most trends are small despite regulatory changes. Improving mechanistic understanding of particulate formation under cold and dark conditions could assist in reducing air-quality-related health effects.

  14. Determination of trace elements by INAA in urban air particulate matter and transplanted lichens

    International Nuclear Information System (INIS)

    Bergamaschi, L.; Rizzio, E.; Profumo, A.; Gallorini, M.

    2005-01-01

    Lichens as biomonitors and neutron activation analysis as analytical technique have been employed to evaluate the trace element atmospheric pollution in the metropolitan area of the city of Pavia (Northern Italy). Transplanted lichens (Parmelia sulcata and Usnea gr. hirta) and air particulate matter have been monthly collected and analyzed during the winter 2001-2002. INAA and ET-AAS have been used for the determination of 28 elements in air particulate matter and 25 elements in lichens. Trace metals concentrations as well as the corresponding enrichment factors were evaluated and compared. (author)

  15. Dynamics of Charged Particulate Systems Modeling, Theory and Computation

    CERN Document Server

    Zohdi, Tarek I

    2012-01-01

    The objective of this monograph is to provide a concise introduction to the dynamics of systems comprised of charged small-scale particles. Flowing, small-scale, particles ("particulates'') are ubiquitous in industrial processes and in the natural sciences. Applications include electrostatic copiers, inkjet printers, powder coating machines, etc., and a variety of manufacturing processes. Due to their small-scale size, external electromagnetic fields can be utilized to manipulate and control charged particulates in industrial processes in order to achieve results that are not possible by purely mechanical means alone. A unique feature of small-scale particulate flows is that they exhibit a strong sensitivity to interparticle near-field forces, leading to nonstandard particulate dynamics, agglomeration and cluster formation, which can strongly affect manufactured product quality. This monograph also provides an introduction to the mathematically-related topic of the dynamics of swarms of interacting objects, ...

  16. Transportation conformity particulate matter hot-spot air quality modeling.

    Science.gov (United States)

    2013-07-01

    In light of the new development in particulate matter (PM) hot-spot regulations and Illinois Department : of Transportation (IDOT)s National Environmental Policy Act (NEPA) documentation requirements, : this project is intended to (1) perform and ...

  17. Mutagenic activity of airborne particulate matter from the urban area of Porto Alegre, Brazil

    Directory of Open Access Journals (Sweden)

    Vera Maria Ferrão Vargas

    1998-06-01

    Full Text Available The mutagenic activity of airborne particulate matter collected from three different sites within the urban area of Porto Alegre, Brazil, was investigated using a Salmonella/microsome assay. Samples were extracted by sonication, sequentially, with cyclohexane (CX, and dichloromethane (DCM, for a rough fractionation by polarity. The different fractions were tested for mutagenicity using Salmonella typhimurium strains TA98, with and without metabolic activation (S9 mix fraction, and TA98NR and TA98/1,8-DNP6, without metabolic activation. Mutagenic response was observed for frameshift strain TA98 in assays with and without metabolization for two sites (sites 2 and 3, which had considerable risk of environmental contamination by nonpolar (CX and/or moderately polar (DCM compounds. However, the values of revertants/m3 (rev/m3 were highest on the site subject to automobile exhaust (site 3 in assays without (9.56 rev/m3 and with metabolization (5.08 rev/m3. Maximum mutagenic activity was detected in the moderately polar fraction, decreasing after metabolization. Nevertheless, the nonpolar fractions (CX gave higher mutagenic activity in the presence of metabolization than in the absence of the S9 mix fraction. The responses observed for TA98NR and TA98/1,8-DNP6 strains suggest the activity of nitrocompounds.Foi investigada a atividade mutagênica de material particulado de amostras de ar coletadas em três diferentes locais dentro da área urbana da cidade de Porto Alegre, Brasil, através do ensaio Salmonella/microssoma. As amostras foram extraídas, em ultra-som, por fracionamento seqüencial de acordo com a polaridade, utilizando os solventes ciclohexano (CX e diclorometano (DCM. As diferentes frações foram testadas para mutagenicidade com as linhagens de Salmonella typhimurium TA98, em presença e ausência de ativação metabólica, e TA98NR e TA98/1,8-DNP6 em ausência de metabolização. Observou-se resposta mutagênica positiva, do tipo erro

  18. EXPOSURE TO URBAN AIR PARTICULATES ALTERS THE MACROPHAGE- MEDIATED INFLAMMATORY RESPONSE TO RESPIRATORY VIRAL INFECTION

    Science.gov (United States)

    Epidemiology studies associate increased pulmonary morbidity with episodes of high particulate air pollution (size range 0.1-10 microm diameter, PM10). Pneumonia, often viral in origin, is increased following episodes of high PM10 pollution. Therefore, this study was undertaken t...

  19. Evaluation of traffic exhaust contributions to ambient carbonaceous submicron particulate matter in an urban roadside environment in Hong Kong

    Science.gov (United States)

    Lee, Berto Paul; Kwok Keung Louie, Peter; Luk, Connie; Keung Chan, Chak

    2017-12-01

    Road traffic has significant impacts on air quality particularly in densely urbanized and populated areas where vehicle emissions are a major local source of ambient particulate matter. Engine type (i.e., fuel use) significantly impacts the chemical characteristics of tailpipe emission, and thus the distribution of engine types in traffic impacts measured ambient concentrations. This study provides an estimation of the contribution of vehicles powered by different fuels (gasoline, diesel, LPG) to carbonaceous submicron aerosol mass (PM1) based on ambient aerosol mass spectrometer (AMS) and elemental carbon (EC) measurements and vehicle count data in an urban inner city environment in Hong Kong with the aim to gauge the importance of different engine types to particulate matter burdens in a typical urban street canyon. On an average per-vehicle basis, gasoline vehicles emitted 75 and 93 % more organics than diesel and LPG vehicles, respectively, while EC emissions from diesel vehicles were 45 % higher than those from gasoline vehicles. LPG vehicles showed no appreciable contributions to EC and thus overall represented a small contributor to traffic-related primary ambient PM1 despite their high abundance (˜ 30 %) in the traffic mix. Total carbonaceous particle mass contributions to ambient PM1 from diesel engines were only marginally higher (˜ 4 %) than those from gasoline engines, which is likely an effect of recently introduced control strategies targeted at commercial vehicles and buses. Overall, gasoline vehicles contributed 1.2 µg m-3 of EC and 1.1 µ m-3 of organics, LPG vehicles 0.6 µg m-3 of organics and diesel vehicles 2.0 µg m-3 of EC and 0.7 µg m-3 of organics to ambient carbonaceous PM1.

  20. Source identification and long-term monitoring of airborne particulate matter (PM2.5/PM10) in an urban region of Korea

    International Nuclear Information System (INIS)

    Yong-Sam Chung; Sun-Ha Kim; Jong-Hwa Moon; Young-Jin Kim; Jong-Myoung Lim; Jin-Hong Lee

    2006-01-01

    For the identification of air pollution sources, about 500 airborne particulate matter (PM 2.5 and PM 10 ) samples were collected by using a Gent air sampler and a polycarbonate filter in an urban region in the middle of Korea from 2000 to 2003. The concentrations of 25 elements in the samples were measured by using instrumental neutron activation analysis (INAA). Receptor modeling was performed on the air monitoring data by using the positive matrix factorization (PMF2) method. According to this analysis, the existence of 6 to 10 PMF factors, such as metal-alloy, oil combustion, diesel exhaust, coal combustion, gasoline exhaust, incinerator, Cu-smelter, biomass burning, sea-salt, and soil dust were identified. (author)

  1. Miniaturized inertial impactor for personal airborne particulate monitoring: Numerical model

    Science.gov (United States)

    Cortelezzi, Luca; Pasini, Silvia; Bianchi, Elena; Dubini, Gabriele

    2017-11-01

    The rising level of fine particle matter's (PM10, PM2.5 and PM1) pollution in the world has increased the interest in developing portable personal air-qualitity monitoring systems. To answer this need, we conceived a miniaturized inertial impactor. The development of such an impactor becomes more challenging as the diameter of the particles to be collected becomes smaller, since the velocities required to induce the impact of finer particulate matter become higher. To overcome these challenges, we modeled numerically the fluid dynamics and particles transport within the impactor. Our simulations show that the fluid flow within the impactor becomes unstable as the Reynolds number is increased to capture finer particles. Furthermore, the onset of these instabilities depends not only on the Reynolds number but also on the geometry of the impactor. The unsteady flow within the impactor influences the trajectories of the particles to be collected, especially the smaller particles. The particles trajectories shows that the impaction location varies substantially as the Reynolds number increases and, consequently, the efficiency of the impactor deteriorates. Finally, we optimize the design of our impactor to maximize its collection efficiency. CARIPLO Fundation - project MINUTE (Grant No. 2011-2118).

  2. Modelling of particulate matter pollution (PM10) over the Etang de Berre area Determination of areas of homogeneous pollution

    International Nuclear Information System (INIS)

    Brocheton, F.; Poulet, D.; Mesbah, B.; Hourdin, G.

    2010-01-01

    AIRFOBEP is the association in charge of the air quality monitoring in the Etang de Berre area. AIRFOBEP is managing a network of ten sensors to monitor the PMI (particulate matter index) particulate pollution. This network is updated once a year according to the Air Quality Monitoring Plan (PSQA). Optimizing this network needs to know how the particulate pollution is distributed in the area. In other words, to determine the limits of homogeneous zones of PM 10 pollution. The aim of the project presented in this article is to produce a map of homogeneous zones of PM 10 pollution in the Etang de Berre area. The project was carried out in two steps: - PM 10 atmospheric dispersion modeling, using a ADMS-URBAN software, - Statistic classification, based on the well known Hierarchical Ascending Classification (HAC) technique. Results of the atmospheric dispersion modeling was namely adjusted using an original technique for the 'background PM 10 pollution' computation. Good performances have been obtained when comparing modeling and measurements data. Finally, a set of five homogeneous zones was found to well describe the PM 10 pollution level distribution in the Etang de Berre area. (author)

  3. Wintertime particulate pollution episodes in an urban valley of the Western US: a case study

    Science.gov (United States)

    Chen, L.-W. A.; Watson, J. G.; Chow, J. C.; Green, M. C.; Inouye, D.; Dick, K.

    2012-11-01

    This study investigates the causes of elevated PM2.5 episodes and potential exceedences of the US National Ambient Air Quality Standards (NAAQS) in Truckee Meadows, Nevada, an urban valley of the Western US, during winter 2009/2010, an unusually cold and snowy winter. Continuous PM2.5 mass and time-integrated chemical speciation data were acquired from a central valley monitoring site, along with meteorological measurements from nearby sites. All nine days with PM2.5 > 35 μg m-3 showed 24-h average temperature inversion of 1.5-4.5 °C and snow cover of 8-18 cm. Stagnant atmospheric conditions limited wind ventilation while highly reflective snow cover reduced daytime surface heating creating persistent inversion. Elevated ammonium nitrate (NH4NO3) and water associated with it are found to be main reasons for the PM2.5 exceedances. An effective-variance chemical mass balance (EV-CMB) receptor model using locally-derived geological profiles and inorganic/organic markers confirmed secondary NH4NO3 (27-37%), residential wood combustion (RWC; 11-51%), and diesel engine exhaust (7-22%) as the dominant PM2.5 contributors. Paved road dust and de-icing materials were minor, but detectable contributors. RWC is a more important source than diesel for organic carbon (OC), but vice versa for elemental carbon (EC). A majority of secondary NH4NO3 is also attributed to RWC and diesel engines (including snow removal equipment) through oxides of nitrogen (NOx) emissions from these sources. Findings from this study may apply to similar situations experienced by other urban valleys.

  4. Wintertime particulate pollution episodes in an urban valley of the Western US: a case study

    Directory of Open Access Journals (Sweden)

    L.-W. A. Chen

    2012-11-01

    Full Text Available This study investigates the causes of elevated PM2.5 episodes and potential exceedences of the US National Ambient Air Quality Standards (NAAQS in Truckee Meadows, Nevada, an urban valley of the Western US, during winter 2009/2010, an unusually cold and snowy winter. Continuous PM2.5 mass and time-integrated chemical speciation data were acquired from a central valley monitoring site, along with meteorological measurements from nearby sites. All nine days with PM2.5 > 35 μg m−3 showed 24-h average temperature inversion of 1.5–4.5 °C and snow cover of 8–18 cm. Stagnant atmospheric conditions limited wind ventilation while highly reflective snow cover reduced daytime surface heating creating persistent inversion. Elevated ammonium nitrate (NH4NO3 and water associated with it are found to be main reasons for the PM2.5 exceedances. An effective-variance chemical mass balance (EV-CMB receptor model using locally-derived geological profiles and inorganic/organic markers confirmed secondary NH4NO3 (27–37%, residential wood combustion (RWC; 11–51%, and diesel engine exhaust (7–22% as the dominant PM2.5 contributors. Paved road dust and de-icing materials were minor, but detectable contributors. RWC is a more important source than diesel for organic carbon (OC, but vice versa for elemental carbon (EC. A majority of secondary NH4NO3 is also attributed to RWC and diesel engines (including snow removal equipment through oxides of nitrogen (NOx emissions from these sources. Findings from this study may apply to similar situations experienced by other urban valleys.

  5. Functional exploratory data analysis for high-resolution measurements of urban particulate matter.

    Science.gov (United States)

    Ranalli, M Giovanna; Rocco, Giorgia; Jona Lasinio, Giovanna; Moroni, Beatrice; Castellini, Silvia; Crocchianti, Stefano; Cappelletti, David

    2016-09-01

    In this work we propose the use of functional data analysis (FDA) to deal with a very large dataset of atmospheric aerosol size distribution resolved in both space and time. Data come from a mobile measurement platform in the town of Perugia (Central Italy). An OPC (Optical Particle Counter) is integrated on a cabin of the Minimetrò, an urban transportation system, that moves along a monorail on a line transect of the town. The OPC takes a sample of air every six seconds and counts the number of particles of urban aerosols with a diameter between 0.28 μm and 10 μm and classifies such particles into 21 size bins according to their diameter. Here, we adopt a 2D functional data representation for each of the 21 spatiotemporal series. In fact, space is unidimensional since it is measured as the distance on the monorail from the base station of the Minimetrò. FDA allows for a reduction of the dimensionality of each dataset and accounts for the high space-time resolution of the data. Functional cluster analysis is then performed to search for similarities among the 21 size channels in terms of their spatiotemporal pattern. Results provide a good classification of the 21 size bins into a relatively small number of groups (between three and four) according to the season of the year. Groups including coarser particles have more similar patterns, while those including finer particles show a more different behavior according to the period of the year. Such features are consistent with the physics of atmospheric aerosol and the highlighted patterns provide a very useful ground for prospective model-based studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Particulate matter over a seven year period in urban and rural areas within, proximal and far from mining and power station operations in Greece.

    Science.gov (United States)

    Triantafyllou, A G; Zoras, S; Evagelopoulos, V

    2006-11-01

    Lignite mining operations and lignite-fired power stations result in major particulate pollution (fly ash and fugitive dust) problems in the areas surrounding these activities. The problem is more complicated, especially, for urban areas located not far from these activities, due to additional contribution from the urban pollution sources. Knowledge of the distribution of airborne particulate matter into size fraction has become an increasing area of focus when examining the effects of particulate pollution. On the other hand, airborne particle concentration measurements are useful in order to assess the air pollution levels based on national and international air quality standards. These measurements are also necessary for developing air pollutants control strategies or for evaluating the effectiveness of these strategies, especially, for long periods. In this study an attempt is made in order to investigate the particle size distribution of fly ash and fugitive dust in a heavy industrialized (mining and power stations operations) area with complex terrain in the northwestern part of Greece. Parallel total suspended particulates (TSP) and particulate matter with an aerodynamic diameter less than 10 microm (PM10) concentrations are analyzed. These measurements gathered from thirteen monitoring stations located in the greater area of interest. Spatial, temporal variation and trend are analyzed over the last seven years. Furthermore, the geographical variation of PM10 - TSP correlation and PM10/TSP ratio are investigated and compared to those in the literature. The analysis has indicated that a complex system of sources and meteorological conditions modulate the particulate pollution of the examined area.

  7. Distribution and disinfection of bacterial loadings associated with particulate matter fractions transported in urban wet weather flows.

    Science.gov (United States)

    Dickenson, Joshua A; Sansalone, John J

    2012-12-15

    Urban runoff is a resource for reuse water. However, runoff transports indicator and pathogenic organisms which are mobilized from sources of fecal contamination. These organisms are entrained with particulate matter (PM) that can serve as a mobile substrate for these organisms. Within a framework of additional treatment for reuse of treated runoff which requires the management of PM inventories in unit operations and drainage systems there is a need to characterize organism distributions on PM and the disinfection potential thereof. This study quantifies total coliform, Escherichia coli, fecal streptococcus, and enterococcus generated from 25 runoff events. With the ubiquity and hetero-dispersivity of PM in urban runoff this study examines organism distributions for suspended, settleable and sediment PM fractions differentiated based on PM size and transport functionality. Hypochlorite is applied in batch to elaborate inactivation of PM-associated organisms for each PM fraction. Results indicate that urban runoff bacterial loadings of indicator organisms exceed U.S. wastewater reuse, recreational contact, and Australian runoff reuse criteria as comparative metrics. All monitored events exceeded the Australian runoff reuse criteria for E. coli in non-potable residential and unrestricted access systems. In PM-differentiated events, bacteriological mobilization primarily occurred in the suspended PM fraction. However, sediment PM shielded PM-associated coliforms at all hypochlorite doses, whereas suspended and settleable PM fractions provide less shielding resulting in higher inactivation by hypochlorite. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Impacts of roadway emissions on urban particulate matter concentrations in sub-Saharan Africa: new evidence from Nairobi, Kenya

    International Nuclear Information System (INIS)

    Vliet, E D S van; Kinney, P L

    2007-01-01

    Air quality is a serious and worsening problem in the rapidly growing cities of sub-Saharan Africa (SSA). However, the lack of ambient monitoring data, and particularly urban roadside concentrations for particulate matter in SSA cities severely hinders our ability to describe temporal and spatial patterns of concentrations, characterize exposure-response relationships for key health outcomes, estimate disease burdens, and promote policy initiatives to address air quality. As part of a collaborative transportation planning exercise between Columbia University and University of Nairobi, air monitoring was carried out in February 2006 in Nairobi, Kenya. The objective of the monitoring was to collect pilot data on air concentrations (PM 2.5 and black carbon) encountered while driving in the Nairobi metropolitan area, and to compare those data to simultaneous 'urban background' concentrations measured in Nairobi but away from roadways. For both the background and roadway monitoring, we used portable air sampling systems that collect integrated filter samples. Results from this pilot study found that roadway concentrations of PM 2.5 were approximately 20-fold higher than those from the urban background site, whereas black carbon concentrations differed by 10-fold. If confirmed by more extensive sampling, these data would underscore the need for air quality and transportation planning and management directed at mitigating roadway pollution

  9. Impacts of roadway emissions on urban particulate matter concentrations in sub-Saharan Africa: new evidence from Nairobi, Kenya

    Science.gov (United States)

    van Vliet, E. D. S.; Kinney, P. L.

    2007-10-01

    Air quality is a serious and worsening problem in the rapidly growing cities of sub-Saharan Africa (SSA). However, the lack of ambient monitoring data, and particularly urban roadside concentrations for particulate matter in SSA cities severely hinders our ability to describe temporal and spatial patterns of concentrations, characterize exposure response relationships for key health outcomes, estimate disease burdens, and promote policy initiatives to address air quality. As part of a collaborative transportation planning exercise between Columbia University and the University of Nairobi, air monitoring was carried out in February 2006 in Nairobi, Kenya. The objective of the monitoring was to collect pilot data on air concentrations (PM2.5 and black carbon) encountered while driving in the Nairobi metropolitan area, and to compare those data to simultaneous 'urban background' concentrations measured in Nairobi but away from roadways. For both the background and roadway monitoring, we used portable air sampling systems that collect integrated filter samples. Results from this pilot study found that roadway concentrations of PM2.5 were approximately 20-fold higher than those from the urban background site, whereas black carbon concentrations differed by 10-fold. If confirmed by more extensive sampling, these data would underscore the need for air quality and transportation planning and management directed at mitigating roadway pollution.

  10. Characterization of the source distribution of particulate matter and nitrogen oxides in rural and urban areas; Charakterisierung der Quellverteilung von Feinstaub und Stickoxiden in laendlichem und staedtischem Gebiet

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Susanna

    2010-07-01

    By the entry of anthropogenic emissions, the air quality is especially impacted in urban center. Thus, EU-wide limits of gas phase components, e.g. NO{sub 2} und O{sub 3}, and particulate matter concentration (PM10) exist to protect human health. Particularly, high particulate matter concentrations are more and more of interest because of their adverse health effect on the human respiratory system. Therefore a network of stationary measurements in different loaded and inhabited regions monitors the air quality in Germany. In contrast to these selective stationary facilities, this thesis presents mobile measurements to determine concentration fields of gases and particles. Therefore, a ''driving air-lab'' with a large set of temporally high resolved instruments to measure gas and particulate phase as well as geographical and meteorological parameters has been built up. The particulate measurement technique includes PM10- and PM2.5-collections and real-time ELPI measurements of time resolved particle size concentrations. Additionally, the installation of gas phase detection technique for NO{sub 2}, NO, O{sub 3}, CO as well as for volatile organic hydrocarbons completes the ''driving air-lab''. During the three measurement campaigns lasting several weeks the temporal and spatial distribution of particulate and gas phase concentrations in rural, suburban and urban area in the region of the Bodensee, in the city region of Duesseldorf and close to the highway in the area of Juelich could be determined and classified. During the measurement campaign ZEPTER-2 the ''driving air-lab'' formed the groundbase to the concurrent vertical profile measurements of the zeppelin. The comparison of the measuring systems of all parameters during the intermediate landing of the zeppelin showed a very good agreement. The use of adequate percentile filters allowed the separation of the local traffic peaks from the total background. It could be demonstrated that the total background is

  11. Characterization of the source distribution of particulate matter and nitrogen oxides in rural and urban areas; Charakterisierung der Quellverteilung von Feinstaub und Stickoxiden in laendlichem und staedtischem Gebiet

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Susanna

    2010-07-01

    By the entry of anthropogenic emissions, the air quality is especially impacted in urban center. Thus, EU-wide limits of gas phase components, e.g. NO{sub 2} und O{sub 3}, and particulate matter concentration (PM10) exist to protect human health. Particularly, high particulate matter concentrations are more and more of interest because of their adverse health effect on the human respiratory system. Therefore a network of stationary measurements in different loaded and inhabited regions monitors the air quality in Germany. In contrast to these selective stationary facilities, this thesis presents mobile measurements to determine concentration fields of gases and particles. Therefore, a ''driving air-lab'' with a large set of temporally high resolved instruments to measure gas and particulate phase as well as geographical and meteorological parameters has been built up. The particulate measurement technique includes PM10- and PM2.5-collections and real-time ELPI measurements of time resolved particle size concentrations. Additionally, the installation of gas phase detection technique for NO{sub 2}, NO, O{sub 3}, CO as well as for volatile organic hydrocarbons completes the ''driving air-lab''. During the three measurement campaigns lasting several weeks the temporal and spatial distribution of particulate and gas phase concentrations in rural, suburban and urban area in the region of the Bodensee, in the city region of Duesseldorf and close to the highway in the area of Juelich could be determined and classified. During the measurement campaign ZEPTER-2 the ''driving air-lab'' formed the groundbase to the concurrent vertical profile measurements of the zeppelin. The comparison of the measuring systems of all parameters during the intermediate landing of the zeppelin showed a very good agreement. The use of adequate percentile filters allowed the separation of the local traffic peaks from the total background

  12. Fitting the Probability Distribution Functions to Model Particulate Matter Concentrations

    International Nuclear Information System (INIS)

    El-Shanshoury, Gh.I.

    2017-01-01

    The main objective of this study is to identify the best probability distribution and the plotting position formula for modeling the concentrations of Total Suspended Particles (TSP) as well as the Particulate Matter with an aerodynamic diameter<10 μm (PM 10 ). The best distribution provides the estimated probabilities that exceed the threshold limit given by the Egyptian Air Quality Limit value (EAQLV) as well the number of exceedance days is estimated. The standard limits of the EAQLV for TSP and PM 10 concentrations are 24-h average of 230 μg/m 3 and 70 μg/m 3 , respectively. Five frequency distribution functions with seven formula of plotting positions (empirical cumulative distribution functions) are compared to fit the average of daily TSP and PM 10 concentrations in year 2014 for Ain Sokhna city. The Quantile-Quantile plot (Q-Q plot) is used as a method for assessing how closely a data set fits a particular distribution. A proper probability distribution that represents the TSP and PM 10 has been chosen based on the statistical performance indicator values. The results show that Hosking and Wallis plotting position combined with Frechet distribution gave the highest fit for TSP and PM 10 concentrations. Burr distribution with the same plotting position follows Frechet distribution. The exceedance probability and days over the EAQLV are predicted using Frechet distribution. In 2014, the exceedance probability and days for TSP concentrations are 0.052 and 19 days, respectively. Furthermore, the PM 10 concentration is found to exceed the threshold limit by 174 days

  13. Toxicologically important trace elements and organic compounds investigated in size-fractionated urban particulate matter collected near the Prague highway

    International Nuclear Information System (INIS)

    Sysalová, Jiřina; Sýkorová, Ivana; Havelcová, Martina; Száková, Jiřina; Trejtnarová, Hana; Kotlík, Bohumil

    2012-01-01

    Urban particulate matter was collected in the most exposed area of Prague, near a busy highway, in order to provide petrographic and chemical characterization useful for health impact assessment in that locality or other applications. Samples were collected from filters of the air conditioning system in two years, 2009 and 2010, and sieved into four grain-size fractions: 0.507–0.119 mm, 0.119–0.063 mm, 3 extracted solutions. A composition of inorganic and carbonaceous particles of natural and anthropogenic origin and their morphology were studied by optical and electron microscopy. Organic solvent extracts of the samples were analyzed using gas chromatography to compare the organic compound distribution in fractions. Only slight differences between 2009 and 2010 years are visible. The relatively high extractable part of most investigated elements confirms mobility and potential availability to organisms. The changes can be recognized in the petrographic and organic composition in samples from both years, which were likely the result of various inputs of source materials. Specific organic marker compounds indicate contribution from fossil fuels, plant materials and bacteria. -- Highlights: ► Uncommon urban particulate matter collected near the highway in years 2009 and 2010 was deeply characterized. ► Harmful organic compounds and toxic analytes were tested in grain-size fractions and completed with electron microscopy studies. ► Very similar concentration levels were found in elemental composition in samples from two years. ► Petrographic and organic compositions were different in both samples. ► Relatively high mobility of selected analytes was found in 2M HNO 3 extracted solutions.

  14. Modeling of facade leaching in urban catchments

    Science.gov (United States)

    Coutu, S.; Del Giudice, D.; Rossi, L.; Barry, D. A.

    2012-12-01

    Building facades are protected from microbial attack by incorporation of biocides within them. Flow over facades leaches these biocides and transports them to the urban environment. A parsimonious water quantity/quality model applicable for engineered urban watersheds was developed to compute biocide release from facades and their transport at the urban basin scale. The model couples two lumped submodels applicable at the basin scale, and a local model of biocide leaching at the facade scale. For the facade leaching, an existing model applicable at the individual wall scale was utilized. The two lumped models describe urban hydrodynamics and leachate transport. The integrated model allows prediction of biocide concentrations in urban rivers. It was applied to a 15 km2urban hydrosystem in western Switzerland, the Vuachère river basin, to study three facade biocides (terbutryn, carbendazim, diuron). The water quality simulated by the model matched well most of the pollutographs at the outlet of the Vuachère watershed. The model was then used to estimate possible ecotoxicological impacts of facade leachates. To this end, exceedance probabilities and cumulative pollutant loads from the catchment were estimated. Results showed that the considered biocides rarely exceeded the relevant predicted no-effect concentrations for the riverine system. Despite the heterogeneities and complexity of (engineered) urban catchments, the model application demonstrated that a computationally "light" model can be employed to simulate the hydrograph and pollutograph response within them. It thus allows catchment-scale assessment of the potential ecotoxicological impact of biocides on receiving waters.

  15. The Effect of Economic Growth, Urbanization, and Industrialization on Fine Particulate Matter (PM2.5) Concentrations in China.

    Science.gov (United States)

    Li, Guangdong; Fang, Chuanglin; Wang, Shaojian; Sun, Siao

    2016-11-01

    Rapid economic growth, industrialization, and urbanization in China have led to extremely severe air pollution that causes increasing negative effects on human health, visibility, and climate change. However, the influence mechanisms of these anthropogenic factors on fine particulate matter (PM 2.5 ) concentrations are poorly understood. In this study, we combined panel data and econometric methods to investigate the main anthropogenic factors that contribute to increasing PM 2.5 concentrations in China at the prefecture level from 1999 to 2011. The results showed that PM 2.5 concentrations and three anthropogenic factors were cointegrated. The panel Fully Modified Least Squares and panel Granger causality test results indicated that economic growth, industrialization, and urbanization increased PM 2.5 concentrations in the long run. The results implied that if China persists in its current development pattern, economic growth, industrialization and urbanization will inevitably lead to increased PM 2.5 emissions in the long term. Industrialization was the principal factor that affected PM 2.5 concentrations for the total panel, the industry-oriented panel and the service-oriented panel. PM 2.5 concentrations can be reduced at the cost of short-term economic growth and industrialization. However, reducing the urbanization level is not an efficient way to decrease PM 2.5 pollutions in the short term. The findings also suggest that a rapid reduction of PM 2.5 concentrations relying solely on adjusting these anthropogenic factors is difficult in a short-term for the heavily PM 2.5 -polluted panel. Moreover, the Chinese government will have to seek much broader policies that favor a decoupling of these coupling relationships.

  16. Monitoring diesel particulate matter and calculating diesel particulate densities using Grimm model 1.109 real-time aerosol monitors in underground mines.

    Science.gov (United States)

    Kimbal, Kyle C; Pahler, Leon; Larson, Rodney; VanDerslice, Jim

    2012-01-01

    Currently, there is no Mine Safety and Health Administration (MSHA)-approved sampling method that provides real-time results for ambient concentrations of diesel particulates. This study investigated whether a commercially available aerosol spectrometer, the Grimm Portable Aerosol Spectrometer Model 1.109, could be used during underground mine operations to provide accurate real-time diesel particulate data relative to MSHA-approved cassette-based sampling methods. A subset was to estimate size-specific diesel particle densities to potentially improve the diesel particulate concentration estimates using the aerosol monitor. Concurrent sampling was conducted during underground metal mine operations using six duplicate diesel particulate cassettes, according to the MSHA-approved method, and two identical Grimm Model 1.109 instruments. Linear regression was used to develop adjustment factors relating the Grimm results to the average of the cassette results. Statistical models using the Grimm data produced predicted diesel particulate concentrations that highly correlated with the time-weighted average cassette results (R(2) = 0.86, 0.88). Size-specific diesel particulate densities were not constant over the range of particle diameters observed. The variance of the calculated diesel particulate densities by particle diameter size supports the current understanding that diesel emissions are a mixture of particulate aerosols and a complex host of gases and vapors not limited to elemental and organic carbon. Finally, diesel particulate concentrations measured by the Grimm Model 1.109 can be adjusted to provide sufficiently accurate real-time air monitoring data for an underground mining environment.

  17. A study of urban heat island and its association with particulate matter during winter months over Delhi

    International Nuclear Information System (INIS)

    Pandey, Puneeta; Kumar, Dinesh; Prakash, Amit; Masih, Jamson; Singh, Manoj; Kumar, Surendra; Jain, Vinod Kumar; Kumar, Krishan

    2012-01-01

    Day and night time thermal mapping of Delhi has been done with MODIS satellite data for the months of November and December for years 2007, 2008, 2009 and 2010. The study reveals the formation of day time “cool island” over central parts of Delhi which are found to be cooler by a maximum of 4–6 °C than the surrounding rural areas. During the night time, however, the central parts of Delhi are found to be warmer by a maximum of 4–7 °C or even more than the surrounding rural areas thus confirming the formation of nocturnal urban heat island over Delhi. Measurements of solar spectral irradiance over Delhi reveal significantly lower values as compared to a rural site located south-west of Delhi, during the low wind conditions in the months of November and December. Analysis of average monthly temporal data of surface wind speed and particulate matter concentration over Delhi reveals a strong anti-correlation between wind speed and particulate matter concentration. High values of particulate matter during low wind conditions seem to favor the so called “cool island” over Delhi. Analysis of radiosonde data of 975 hPa and 850 hPa temperatures over Delhi during November and December from 1973 to 2010 reveals a warming trend at the 850 hPa level and an overall declining trend of ∆T between 975 hPa temperatures and 850 hPa temperatures, thus indicating a weakening of vertical thermal gradients over Delhi during these months. The study suggests that urban areas behave more like moderators of diurnal temperature variation in low wind conditions. - Highlights: ► Daytime cool island forms over central parts of Delhi in November and December. ► Central parts of Delhi are cooler by a maximum of 4–6 °C during daytime and warmer by a maximum of 4–7 °C during night. ► Significant negative correlations exist between daytime surface temperatures and AOD levels. ► Land use parameters have significant correlations with surface temperatures. ► The day time

  18. Identification and characterization of fine and coarse particulate matter sources in a middle-European urban environment

    International Nuclear Information System (INIS)

    Kertesz, Zs.; Szoboszlai, Z.; Angyal, A.; Dobos, E.; Borbely-Kiss, I.

    2010-01-01

    In this work a source apportionment study is presented which aimed to characterize the PM 2.5 and PM 2.5-10 sources in the urban area of Debrecen, East-Hungary by using streaker samples, IBA methods and positive matrix factorization (PMF) analysis. Samples of fine (PM 2.5 ) and coarse (PM 2.5-10 ) urban particulate matter were collected with 2 h time resolution in the frame of five sampling campaigns during 2007-2009 in different seasons in the downtown of Debrecen. Elemental concentrations from Al to Pb of over 1000 samples were obtained by particle induced X-ray emission (PIXE); concentrations of black carbon (BC) were determined with a smoke stain reflectometer. On this data base source apportionment was carried out by using the PMF method. Seven factors were identified for both size fractions, including soil dust, traffic, secondary aerosol - sulphates, domestic heating, oil combustion, agriculture and an unknown factor enriched with chlorine. Seasonal and daily variation of the different factors was studied as well as their dependence on meteorological parameters. Besides determining the time patterns characteristic to the city, several emission episodes were identified including a Saharan dust intrusion on 21st-24th May, 2008.

  19. Cocaine and other illicit drugs in airborne particulates in urban environments: A reflection of social conduct and population size

    International Nuclear Information System (INIS)

    Viana, M.; Postigo, C.; Querol, X.; Alastuey, A.; Lopez de Alda, M.J.; Barcelo, D.; Artinano, B.; Lopez-Mahia, P.; Garcia Gacio, D.; Cots, N.

    2011-01-01

    Levels of cocaine and other psychoactive substances in atmospheric particulate matter (PM) were determined in urban environments representing distinct social behaviours with regard to drug abuse: night-life, university and residential areas. Three cities (with population >1 million and 3 for cocaine, 23-34 pg/m 3 for cannabinoids, and 5-90 pg/m 3 for heroin. The highest levels were recorded on weekends, with factors with respect to weekdays of 1-3 for cocaine, 1-2 for cannabinoids and 1.1-1.7 for heroin. Higher levels were detected in the night-life areas, pointing towards consumption and trafficking as major emission sources, and possibly ruling out drug manufacture. The similarities in temporal trends at all sites suggested a city-scale transport of psychoactive substances. Correlations were detected between cocaine and amphetamine consumption (r 2 = 0.98), and between heroin and cannabinoids (r 2 >0.82). - Highlights: → Cocaine, heroin, cannabis and related illicit drugs are found in detectable amounts in urban air. → Illicit drug consumption and small-scale trafficking are the major emission sources. → Illicit drugs remain in atmospheric particles and are transported across cities during at least 5 days. → Levels of illicit drugs increase from residential to night-life areas, and maximise on weekends. → Correlations between illicit drugs were detected, suggesting differences in consumer groups. - The presence of illicit drugs in atmospheric particles can be used to track illicit drug abuse.

  20. Indoor Air Quality in Urban and Rural Preschools in Upper Silesia, Poland: Particulate Matter and Carbon Dioxide.

    Science.gov (United States)

    Mainka, Anna; Zajusz-Zubek, Elwira

    2015-07-08

    Indoor air quality (IAQ) in preschools is an important public health challenge. Particular attention should be paid to younger children, because they are more vulnerable to air pollution than higher grade children and because they spend more time indoors. Among air pollutants, particulate matter (PM) is of the greatest interest mainly due to its acute and chronic effects on children's health. In addition, carbon dioxide (CO2) levels indicate ventilation conditions. In this paper, we present the concentrations of PM (PM1, PM2.5, PM10 and total-TSP) and CO2 monitored in four naturally ventilated nursery schools located in the area of Gliwice, Poland. The nursery schools were selected to characterize areas with different degrees of urbanization and traffic densities during the winter season. The results indicate the problem of elevated concentrations of PM inside the examined classrooms, as well as that of high levels of CO2 exceeding 1000 ppm in relation to outdoor air. The characteristics of IAQ were significantly different, both in terms of classroom occupation (younger or older children) and of localization (urban or rural). To evaluate the children's exposure to poor IAQ, indicators based on air quality guidelines were proposed to rank classrooms according to their hazard on the health of children.

  1. Indoor Air Quality in Urban and Rural Preschools in Upper Silesia, Poland: Particulate Matter and Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Anna Mainka

    2015-07-01

    Full Text Available Indoor air quality (IAQ in preschools is an important public health challenge. Particular attention should be paid to younger children, because they are more vulnerable to air pollution than higher grade children and because they spend more time indoors. Among air pollutants, particulate matter (PM is of the greatest interest mainly due to its acute and chronic effects on children’s health. In addition, carbon dioxide (CO2 levels indicate ventilation conditions. In this paper, we present the concentrations of PM (PM1, PM2.5, PM10 and total—TSP and CO2 monitored in four naturally ventilated nursery schools located in the area of Gliwice, Poland. The nursery schools were selected to characterize areas with different degrees of urbanization and traffic densities during the winter season. The results indicate the problem of elevated concentrations of PM inside the examined classrooms, as well as that of high levels of CO2 exceeding 1000 ppm in relation to outdoor air. The characteristics of IAQ were significantly different, both in terms of classroom occupation (younger or older children and of localization (urban or rural. To evaluate the children’s exposure to poor IAQ, indicators based on air quality guidelines were proposed to rank classrooms according to their hazard on the health of children.

  2. Source apportionment of airborne particulates through receptor modeling: Indian scenario

    Science.gov (United States)

    Banerjee, Tirthankar; Murari, Vishnu; Kumar, Manish; Raju, M. P.

    2015-10-01

    Airborne particulate chemistry mostly governed by associated sources and apportionment of specific sources is extremely essential to delineate explicit control strategies. The present submission initially deals with the publications (1980s-2010s) of Indian origin which report regional heterogeneities of particulate concentrations with reference to associated species. Such meta-analyses clearly indicate the presence of reservoir of both primary and secondary aerosols in different geographical regions. Further, identification of specific signatory molecules for individual source category was also evaluated in terms of their scientific merit and repeatability. Source signatures mostly resemble international profile while, in selected cases lack appropriateness. In India, source apportionment (SA) of airborne particulates was initiated way back in 1985 through factor analysis, however, principal component analysis (PCA) shares a major proportion of applications (34%) followed by enrichment factor (EF, 27%), chemical mass balance (CMB, 15%) and positive matrix factorization (PMF, 9%). Mainstream SA analyses identify earth crust and road dust resuspensions (traced by Al, Ca, Fe, Na and Mg) as a principal source (6-73%) followed by vehicular emissions (traced by Fe, Cu, Pb, Cr, Ni, Mn, Ba and Zn; 5-65%), industrial emissions (traced by Co, Cr, Zn, V, Ni, Mn, Cd; 0-60%), fuel combustion (traced by K, NH4+, SO4-, As, Te, S, Mn; 4-42%), marine aerosols (traced by Na, Mg, K; 0-15%) and biomass/refuse burning (traced by Cd, V, K, Cr, As, TC, Na, K, NH4+, NO3-, OC; 1-42%). In most of the cases, temporal variations of individual source contribution for a specific geographic region exhibit radical heterogeneity possibly due to unscientific orientation of individual tracers for specific source and well exaggerated by methodological weakness, inappropriate sample size, implications of secondary aerosols and inadequate emission inventories. Conclusively, a number of challenging

  3. Distribution of atmospheric particulate matter (PM) in rural field, rural village and urban areas of northern China

    International Nuclear Information System (INIS)

    Li, Wei; Wang, Chen; Wang, Hongqijie; Chen, Jiwei; Yuan, Chenyi; Li, Tongchao; Wang, Wentao; Shen, Huizhong; Huang, Ye; Wang, Rong; Wang, Bin; Zhang, Yanyan; Chen, Han; Chen, Yuanchen; Tang, Jianhui; Wang, Xilong; Liu, Junfeng; Coveney, Raymond M.; Tao, Shu

    2014-01-01

    Atmospheric PM 10 were measured for 12 months at 18 sites along a 2500 km profile across northern China. Annual mean PM 10 concentrations in urban, rural village, and rural field sites were 180 ± 171, 182 ± 154, and 128 ± 89 μg/m 3 , respectively. The similarities in PM 10 concentrations between urban and rural village sites suggest that strong localized emissions and severe contamination in rural residential areas are derived from solid fuels combustion in households. High PM 10 concentrations in Wuwei and Taiyuan were caused by either sandstorms or industrial activities. Relatively low PM 10 concentrations were observed in coastal areas of Dalian and Yantai. Particulate air pollution was much higher in winter and spring than in summer and fall. Multiple regression analysis indicates that 35% of the total variance can be attributed to sandstorms, precipitation and residential energy consumption. Over 40% of the measurements in both urban and rural village areas exceeded the national ambient air quality standard. Highlights: • Spatial distribution of PM 10 concentrations in northern China was investigated. • High levels of PM 10 in rural villages were caused by solid fuel emission. • A strong seasonality with high levels of PM 10 in spring and winter was observed. • Influence of sandstorm, energy consumption, and precipitation were evaluated. • Over 40% of the measurements exceeded the national ambient air quality standard. -- PM 10 concentrations in rural villages of China were comparable with those in the cities, indicating severe air pollution in the rural villages caused by coal and biofuel combustion

  4. The potential of Sentinel 2 and PROBA-V images for supporting early warnings of particulate matter pollution episodes in Ploiesti urban area

    Science.gov (United States)

    Dunea, Daniel; Iordache, Stefania; Pohoata, Alin; Lungu, Emil; Ianache, Cornel; Ianache, Radu

    2016-04-01

    One of the major air quality stressors in the urban area is particulate matter (PM). PM includes dust, dirt, soot, smoke, and liquid droplets emitted into the air by various sources such as vehicles, factories, and construction activities. PM has been linked to asthma and other respiratory illnesses. Inner-city residents need timely access to air quality synthetic indicators for protecting their respiratory health. Access to air quality forecasts and real-time data can allow residents, especially children and elders, to reduce their exposure when PM levels in conjunction with other pollutants are of potential concern. Ploiesti city is an important industrial center, which experienced a rapid economic growth in the last decade. Its industrial activity is concentrated especially on the oil production and refining industry. Ploiesti is the only city in Europe surrounded by four oil refineries. Monitoring campaigns were carried out in 12 sampling points during the "rush" hours (7.00-12.00 a.m. and 3.00-7.00 p.m.) to assess the potential exposure to high PM levels using an optical portable monitoring system, which is measuring fine and submicrometric fractions with a laser beam (DusttrakTM DRX 8533EP with environmental enclosure). Inverse distance weighting algorithm was used to obtain potential isolines of concentrations at town's scale in GIS environment. NOAA Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT), respectively the backward trajectory type, was used to overview the contribution of long range transport from the most probable source region of the significant episodes characterized by PM rising of concentrations. Extraction of radiometric indicators from historical databases with multispectral images allowed the spatiotemporal characterization of land use and cloud distribution i.e. Sentinel 2 and PROBA-V (allowing specific characterization of NDVI, which provided canopy and surface reflectance in the pilot area). Resulted data were

  5. Fine particulates over South Asia: Review and meta-analysis of PM2.5 source apportionment through receptor model.

    Science.gov (United States)

    Singh, Nandita; Murari, Vishnu; Kumar, Manish; Barman, S C; Banerjee, Tirthankar

    2017-04-01

    Fine particulates (PM 2.5 ) constitute dominant proportion of airborne particulates and have been often associated with human health disorders, changes in regional climate, hydrological cycle and more recently to food security. Intrinsic properties of particulates are direct function of sources. This initiates the necessity of conducting a comprehensive review on PM 2.5 sources over South Asia which in turn may be valuable to develop strategies for emission control. Particulate source apportionment (SA) through receptor models is one of the existing tool to quantify contribution of particulate sources. Review of 51 SA studies were performed of which 48 (94%) were appeared within a span of 2007-2016. Almost half of SA studies (55%) were found concentrated over few typical urban stations (Delhi, Dhaka, Mumbai, Agra and Lahore). Due to lack of local particulate source profile and emission inventory, positive matrix factorization and principal component analysis (62% of studies) were the primary choices, followed by chemical mass balance (CMB, 18%). Metallic species were most regularly used as source tracers while use of organic molecular markers and gas-to-particle conversion were minimum. Among all the SA sites, vehicular emissions (mean ± sd: 37 ± 20%) emerged as most dominating PM 2.5 source followed by industrial emissions (23 ± 16%), secondary aerosols (22 ± 12%) and natural sources (20 ± 15%). Vehicular emissions (39 ± 24%) also identified as dominating source for highly polluted sites (PM 2.5 >100 μgm -3 , n = 15) while site specific influence of either or in combination of industrial, secondary aerosols and natural sources were recognized. Source specific trends were considerably varied in terms of region and seasonality. Both natural and industrial sources were most influential over Pakistan and Afghanistan while over Indo-Gangetic plain, vehicular, natural and industrial emissions appeared dominant. Influence of vehicular emission was

  6. Seasonal progression of atmospheric particulate matter over an urban coastal region in peninsular India: Role of local meteorology and long-range transport

    Science.gov (United States)

    Mahapatra, P. S.; Sinha, P. R.; Boopathy, R.; Das, T.; Mohanty, S.; Sahu, S. C.; Gurjar, B. R.

    2018-01-01

    Measurement of particulate matter (PM) over an urban site with relatively high concentration of aerosol particles is critically important owing to its adverse health, environmental and climate impact. Here we present a 3 years' worth of measurements (January 2012 to December 2014) of PM2.5 (aerodynamic diameter of less than 2.5 μm) and PM10 (aerodynamic diameter of less than 10 μm) along with meteorological parameters and seasonal variations at Bhubaneswar an urban-coastal site, in eastern India. The concentrations of PM were determined gravimetrically from the filter samples of PM2.5 and PM10. It revealed remarkable seasonal variations with winter values (55.0 ± 23.4 μg/m3; 147.3 ± 42.4 μg/m3 for PM2.5 and PM10, respectively) about 3.5 times higher than that in pre-monsoon (15.7 ± 6.2 μg/m3; 41.8 ± 15.3 μg/m3). PM2.5 and PM10 were well correlated while PM2.5/PM10 ratios were found to be 0.38 and 0.32 during winter and pre-monsoon, indicating the predominance of coarse particles, mainly originating from long range transport of pollutants from northern and western parts of India and parts of west Asia as well. Concentration weighted trajectory (CWT) analysis revealed the IGP and North Western Odisha as the most potential sources of PM2.5 and PM10 during winter. The PM concentrations at Bhubaneswar were comparable with those at other coastal sites of India reported in the literature, but were lower than few polluted urban sites in India and Asia. Empirical model reproduced the observed seasonal variation of PM2.5 and PM10 very well over Bhubaneswar.

  7. Triple co-culture cell model as an in vitro model for oral particulate vaccine systems

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; De Rossi, C.; Lehr, C.-M.

    the immunostimulatory ability of particulate vaccine formulations designed for oral delivery. Levels of cytokine production in response to vaccine administration were measured following particulate vaccine administration, as an indication of dendritic cell and macrophage activation. Precursors of cubosomes containing......; this was not observed with ovalbumin and blank solution. An example of the results is shown in Figure 2 for IL-17A. An established co-culture of Caco-2, THP-1 and MUTZ-3 cells showed promise as an in vitro model for testing of oral vaccine formulations. Mobility of co-culture immune cells as well as cytokine production...... with particle formulations. This was not the case when incubating with ovalbumin solution or blank. The ELISA screening assay showed production of a wide range of cytokines following culture incubation with cubosomes (with and without ovalbumin) and LPS solutions, indicative of a stimulatory effect...

  8. Size distribution and source identification of total suspended particulate matter and associated heavy metals in the urban atmosphere of Delhi.

    Science.gov (United States)

    Srivastava, Arun; Jain, V K

    2007-06-01

    A study of the atmospheric particulate size distribution of total suspended particulate matter (TSPM) and associated heavy metal concentrations has been carried out for the city of Delhi. Urban particles were collected using a five-stage impactor at six sites in three different seasons, viz. winter, summer and monsoon in the year 2001. Five samples from each site in each season were collected. Each sample (filter paper) was extracted with a mixture of nitric acid, hydrochloric acid and hydrofluoric acid. The acid solutions of the samples were analysed in five-particle fractions by atomic absorption spectrometry (AAS). The impactor stage fractionation of particles shows that a major portion of TSPM concentration is in the form of PM0.7 (i.e. metal mass viz. Mn, Cr, Cd, Pb, Ni, and Fe are also concentrated in the PM0.7 mode. The only exceptions are size distributions pertaining to Cu and Ca. Though, Cu is more in PM0.7 mode, its presence in size intervals 5.4-1.6microm and 1.6-0.7microm is also significant, whilst in case of Ca there is no definite pattern in its distribution with size of particles. The average PM10.9 (i.e. Source apportionment reveals that there are two sources of TSPM and PM10.9, while three and four sources were observed for PM1.6 (i.e. <1.6microm) and PM0.7, respectively. Results of regression analyses show definite correlations between PM10.9 and other fine size fractions, suggesting PM10.9 may adequately act as a surrogate for both PM1.6 and PM0.7, while PM1.6 may adequately act as a surrogate for PM0.7.

  9. Increased oxidative burden associated with traffic component of ambient particulate matter at roadside and urban background schools sites in London.

    Directory of Open Access Journals (Sweden)

    Krystal J Godri

    Full Text Available As the incidence of respiratory and allergic symptoms has been reported to be increased in children attending schools in close proximity to busy roads, it was hypothesised that PM from roadside schools would display enhanced oxidative potential (OP. Two consecutive one-week air quality monitoring campaigns were conducted at seven school sampling sites, reflecting roadside and urban background in London. Chemical characteristics of size fractionated particulate matter (PM samples were related to the capacity to drive biological oxidation reactions in a synthetic respiratory tract lining fluid. Contrary to hypothesised contrasts in particulate OP between school site types, no robust size-fractionated differences in OP were identified due high temporal variability in concentrations of PM components over the one-week sampling campaigns. For OP assessed both by ascorbate (OP(AA m(-3 and glutathione (OP(GSH m(-3 depletion, the highest OP per cubic metre of air was in the largest size fraction, PM(1.9-10.2. However, when expressed per unit mass of particles OP(AA µg(-1 showed no significant dependence upon particle size, while OP(GSH µg(-1 had a tendency to increase with increasing particle size, paralleling increased concentrations of Fe, Ba and Cu. The two OP metrics were not significantly correlated with one another, suggesting that the glutathione and ascorbate depletion assays respond to different components of the particles. Ascorbate depletion per unit mass did not show the same dependence as for GSH and it is possible that other trace metals (Zn, Ni, V or organic components which are enriched in the finer particle fractions, or the greater surface area of smaller particles, counter-balance the redox activity of Fe, Ba and Cu in the coarse particles. Further work with longer-term sampling and a larger suite of analytes is advised in order to better elucidate the determinants of oxidative potential, and to fuller explore the contrasts between

  10. Dynamic Heterogeneous Multiscale Filtration Model: Probing Micro- and Macroscopic Filtration Characteristics of Gasoline Particulate Filters.

    Science.gov (United States)

    Gong, Jian; Viswanathan, Sandeep; Rothamer, David A; Foster, David E; Rutland, Christopher J

    2017-10-03

    Motivated by high filtration efficiency (mass- and number-based) and low pressure drop requirements for gasoline particulate filters (GPFs), a previously developed heterogeneous multiscale filtration (HMF) model is extended to simulate dynamic filtration characteristics of GPFs. This dynamic HMF model is based on a probability density function (PDF) description of the pore size distribution and classical filtration theory. The microstructure of the porous substrate in a GPF is resolved and included in the model. Fundamental particulate filtration experiments were conducted using an exhaust filtration analysis (EFA) system for model validation. The particulate in the filtration experiments was sampled from a spark-ignition direct-injection (SIDI) gasoline engine. With the dynamic HMF model, evolution of the microscopic characteristics of the substrate (pore size distribution, porosity, permeability, and deposited particulate inside the porous substrate) during filtration can be probed. Also, predicted macroscopic filtration characteristics including particle number concentration and normalized pressure drop show good agreement with the experimental data. The resulting dynamic HMF model can be used to study the dynamic particulate filtration process in GPFs with distinct microstructures, serving as a powerful tool for GPF design and optimization.

  11. A New Era for Urban Modelling

    OpenAIRE

    Pumain , Denise

    1994-01-01

    International audience; In the last two decades, several interesting innovations have appeared in the field of urban research. New paradigms such as the dynamics of open systems, self-organization, synergetics, chaos, evolution, were recognized as conveying fruitful analogies for urban theory. New types of modeling were investigated, as sets of non-linear differential equations for spatial systems, cellular automata, multi-agents models, fractal growth, neural networks, evolutionary models… H...

  12. Concentrations and Size Distributions of Trace Metals in Particulate Matter in Urban New Jersey: Preliminary Results from the Newly Established Rutgers Newark Urban Air Quality Observatory.

    Science.gov (United States)

    Rabinovich, O.; Gao, Y.

    2017-12-01

    Particulate air pollution has been associated with health issues in general and respiratory diseases in particular. Some research has shown that higher concentration of fine particulate matter (PM) is found in lungs. However, why and what kind of PM plays the roles affecting the human health still need more investigations, and most of previous and current studies were limited to those focusing on PM2.5 or larger particles. The city of Newark in New Jersey is the largest metropolitan center in the state with dense population; it is a commerce and transportation hub surrounded by many highways and busy airports, in addition to numerous power plants, waste combustion treatment facilities, etc. in the area. Thus, the city is impacted by air pollution emissions In some areas of the city, the elevated records of respiratory illness were reported. Although some PM2.5 concentration studies were done in the past, the enrichment of toxic metals in PM with respect to their sizes have not been fully addressed. The Rutgers Newark Air Quality Observatory (RNAQO) was recently established to address urban air pollution and its impact on human health. During this study, both size-segregated PM and PM2.5 are collected in RNAQO, Newark, New Jersey. The samples are analyzed to evaluate the enrichment of trace metals focusing on Pb, Cd, Cu, and Zn in different sizes of PM that will be discussed in this presentation. Such data will be valuable to further investigations into the health effects of fine mode PM. Particularly, this data will be helpful in exploring the relationships between respiratory sickness and fine mode toxic metals' concentrations.

  13. DETERMINATION OF MOBILITY AND BIOAVAILABILITY OF HEAVY METALS IN THE URBAN AIR PARTICULATES MATTER OF ISFAHAN

    Directory of Open Access Journals (Sweden)

    A KALANTARI

    2001-06-01

    Full Text Available Introduction: In addition to, Carbohyrates, Lipids, Amino acids and vitamins, some of the trace metals are known vital for biological activity. But some of them not only are not necessary, but also they are very toxic and carcinogen. In this research the rate of Mobility and Bioavailability of heavy metals associated with airborne particulates matter such as Zn, Pb, Cd, Cu, Fe, Ni and Cr have been measured. Methods: The sequential extraction has been used for releasing of heavy metales from solid samples as airborne particulates matter on the paper filter samples. Five stages in the sequential extraction procedure developed by Tessier, et al, was first used for extraction and determination of the concentration and percentages of heavy metals which could be released in each stage. In the 1st stage, exchangable metals were released. The sample was extracted with 10 ml of ammonium acetat, pH=7 for 1h. Then the sample was centrifuged at 2000 rpm. The solution of extraction, was analysed for Zn, Pb, Cd, Cu, Fe, Ni and Cr. In the 2nd stage, heavy metals bound to carbonates which were sensitive to pH were extracted. The residue from stage 1, with 10 ml of sodium acetate 1 M the pH was adjusted to 5 with acetic acid. Then the sample was centrifuged as stage 1. In the third stage heavy metals bound to iron and manganese oxides were extracted. The residue from stage 2 was reacted with 10 ml hydroxyl amine hydrochloride at 25% v/v. In the 4th stage metals bound to sulfides and organic compounds were extracted. The residue from stage 3 with 5 ml nitric acid and 5 ml hydrogen peroxide 30% and heated at 85° C. Finally in the 5th stage residual heavy metals were extracted. the residue from fraction 4 with 10 ml nitric acid and 3 ml hydroflouric acid were extracted. The concentrations of Pb and Cd in some fractions of sequential extraction were too low, so, we carried out preconcentration method for these two elements. Results and Discussion: The results

  14. The Impact of Nonlocal Ammonia on Submicron Particulate Matter and Visibility Degradation in Urban Shanghai

    Directory of Open Access Journals (Sweden)

    Roeland Cornelis Jansen

    2014-01-01

    Full Text Available To study the role of submicron particulate matter on visibility degradation in Shanghai, mass concentrations of PM1, secondary inorganic aerosol (SIA in PM1, and SIA precursor gasses were on-line monitored during a 4-week intensive campaign in December 2012. During the campaign, 8 haze periods were identified when on average PM1 mass increased to 62.1 ± 25.6 μg/m3 compared to 30.7 ± 17.1 μg/m3 during clear weather periods. The sum of SIA in PM1 increased in mass concentration during the haze from 14.9 ± 7.4 μg/m3 during clear periods to 29.7 ± 10.7 μg/m3 during the haze periods. Correlation coefficients (R2 of the visibility as function of mass concentrations of SIA species in PM1 show negative exponential relations implying the importance of the SIA species in visibility reduction. The important role of ammonia in SIA formation is recognized and demonstrated. Generally, ammonium neutralizes sulfate and nitrate and the molar equivalent ratio of ammonium versus the sum of sulfate and nitrate increases during the haze episodes. Air mass backward trajectories introducing the haze periods show the impact of nonlocal ammonia on visibility degradation in Shanghai.

  15. Levels of particulate matter in rural, urban and industrial sites in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Querol, X.; Alastuey, A.; Rodriguez, S.; Viana, M.M. [Instituto de Ciencias de la Tierra del CSIC, C/Luis Sole y Sabaris s/n, 08028 Barcelona (Spain); Artinano, B.; Salvador, P. [Centro de Investigaciones Energeticas, Mediambientales y Tecnologicas, CIEMAT Avda. Complutense 22, 28040 Madrid (Spain); Mantilla, E. [Centro de Estudios Ambientales del Mediterraneo, CEAM. Parque tecnologico, C-4, sector oeste, 46980 Paterna, Valencia (Spain); Santos, S. Garcia do; Patier, R. Fernandez [Area de Contaminacion Atmosferica, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, km n. 2, 28220 Majadahonda, Madrid (Spain); De La Rosa, J.; De la Campa, A. Sanchez [Departamento de Geologia, Universidad de Huelva, Campus Universitario de la Rabida, La Rabida, 21819 Huelva (Spain); Menendez, M.; Gil, J.J. [Departamento Mineralogia y Petrologia. Universidad del Pais Vasco, Aptdo. 644, 48080 Bilbao (Spain)

    2004-12-01

    This paper summarises the results of a series of studies on the interpretation of time series of levels of total suspended particles (TSP) and particulate matter (PM, <10 {mu}m) in six regions of Spain in the period 1996-2000. In addition to the local pollution events, high PM10 episodes are recorded during African dust outbreaks, regional atmospheric recirculation events (mainly in spring to autumn), and to a lesser extent, under the influence of European and Mediterranean long range transported air masses. The lowest PM10 levels are usually recorded under Atlantic air mass advective conditions. All these regional and large-scale processes account for the relatively high PM10 levels recorded in regional background stations in Spain. Thus, the PM10 levels recorded at EMEP (Cooperative Program for Monitoring and Evaluation of the Long Range Transmission of Air Pollutants in Europe) regional background stations between March 2001 and March 2002 are very close to the annual limit value proposed for 2010 by the EU Air Quality Directive 1999/30/CE. Chemical data obtained for the different monitoring stations during 2001 show a high mineral load in PM10 for most of the study sites in Spain. Furthermore, a high marine aerosol load is evidenced in the Canary Islands. These mineral and marine loads are lower when considering PM2.5, but a relatively high proportion (8-21%) of mineral dust is still present.

  16. Ambient urban Baltimore particulate-induced airway hyperresponsiveness and inflammation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Walters, D.M.; Breysse, P.N.; Wills-Karp, M. [Childrens Hospital, Cincinnati, OH (United States). Medical Centre, Division of Immunobiology

    2001-10-15

    Airborne particulate matter (PM) is hypothesized to play a role in increases in asthma prevalence, although a causal relationship has yet to be established. To investigate the effects of real-world PM exposure on airway reactivity (AHR) and bronchoalveolar lavage (BAL) cellularity, mice were exposed to a single dose (0.5 mg/ mouse) of ambient PM, coal fly ash, or diesel PM. It was found that ambient PM exposure induced increases in AHR and BAL cellularity, whereas diesel PM induced significant increases in BAL cellularity, but not AHR. On the other hand, coal fly ash exposure did not elicit significant changes in either of these parameters. Ambient PM-induced temporal changes in AHR, BAL cells, and lung cytakine levels over a 2-wk period were then examined. Ambient PM-induced AHR was sustained over 7 d. The increase in AHR was preceded by dramatic increases in BAL eosinophils, whereas a decline in AHR was associated with increases in macrophages. It is concluded that ambient PM can induce asthmalike parameters in mice, suggesting that PM exposure may be an important factor in increases in asthma prevalence.

  17. Cocaine and other illicit drugs in airborne particulates in urban environments: A reflection of social conduct and population size

    Energy Technology Data Exchange (ETDEWEB)

    Viana, M [Institute for Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona (Spain); Postigo, C [Institute for Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona (Spain); Querol, X [Institute for Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona (Spain); Alastuey, A [Institute for Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona (Spain); Lopez de Alda, M.J., E-mail: mlaqam@cid.csic.es [Institute for Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona (Spain); Barcelo, D [Institute for Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona (Spain); King Saud University, Box 2454, Riyadh 11451 (Saudi Arabia); Artinano, B [Centre for Energy, Environment and Technology Research (CIEMAT), Av. Complutense 22, 28040 Madrid (Spain); Lopez-Mahia, P [Department of Analytical Chemistry, University of A Coruna, Campus A Zapateira, 15071 A Coruna (Spain); Garcia Gacio, D., E-mail: dgarcia@udc.es [Department of Analytical Chemistry, University of A Coruna, Campus A Zapateira, 15071 A Coruna (Spain); Cots, N [Department of the Environment, Catalonia Regional Government, Av. Diagonal 525, 08193 Barcelona (Spain)

    2011-05-15

    Levels of cocaine and other psychoactive substances in atmospheric particulate matter (PM) were determined in urban environments representing distinct social behaviours with regard to drug abuse: night-life, university and residential areas. Three cities (with population >1 million and <0.3 million inhabitants) were selected. Mean daily levels of drugs in PM were 11-336 pg/m{sup 3} for cocaine, 23-34 pg/m{sup 3} for cannabinoids, and 5-90 pg/m{sup 3} for heroin. The highest levels were recorded on weekends, with factors with respect to weekdays of 1-3 for cocaine, 1-2 for cannabinoids and 1.1-1.7 for heroin. Higher levels were detected in the night-life areas, pointing towards consumption and trafficking as major emission sources, and possibly ruling out drug manufacture. The similarities in temporal trends at all sites suggested a city-scale transport of psychoactive substances. Correlations were detected between cocaine and amphetamine consumption (r{sup 2} = 0.98), and between heroin and cannabinoids (r{sup 2}>0.82). - Highlights: > Cocaine, heroin, cannabis and related illicit drugs are found in detectable amounts in urban air. > Illicit drug consumption and small-scale trafficking are the major emission sources. > Illicit drugs remain in atmospheric particles and are transported across cities during at least 5 days. > Levels of illicit drugs increase from residential to night-life areas, and maximise on weekends. > Correlations between illicit drugs were detected, suggesting differences in consumer groups. - The presence of illicit drugs in atmospheric particles can be used to track illicit drug abuse.

  18. Measurement and modeling of diameter distributions of particulate matter in terrestrial solutions

    Science.gov (United States)

    Levia, Delphis F.; Michalzik, Beate; Bischoff, Sebastian; NäThe, Kerstin; Legates, David R.; Gruselle, Marie-Cecile; Richter, Susanne

    2013-04-01

    Particulate matter (PM) plays an important role in biogeosciences, affecting biosphere-atmosphere interactions and ecosystem health. This is the first known study to quantify and model PM diameter distributions of bulk precipitation, throughfall, stemflow, and organic layer (Oa) solution. Solutions were collected from a European beech (Fagus sylvatica L.) forest during leafed and leafless periods. Following scanning electron microscopy and image analysis, PM distributions were quantified and then modeled with the Box-Cox transformation. Based on an analysis of 43,278 individual particulates, median PM diameter of all solutions was around 3.0 µm. All PM diameter frequency distributions were skewed significantly to the right. Optimal power transformations of PM diameter distributions were between -1.00 and -1.56. The utility of this model reconstruction would be that large samples having a similar probability density function can be developed for similar forests. Further work on the shape and chemical composition of particulates is warranted.

  19. Suspended Particulates Concentration (PM10 under Unstable Atmospheric Conditions over Subtropical Urban Area (Qena, Egypt

    Directory of Open Access Journals (Sweden)

    M. El-Nouby Adam

    2013-01-01

    Full Text Available The main purpose of this study is to evaluate the suspended particulates (PM10 in the atmosphere under unstable atmospheric conditions. The variation of PM10 was investigated and primary statistics were employed. The results show that, the PM10 concentrations values ranged from 6.00 to 646.74 μg m−3. The average value of PM10 is equal to 114.32 μg m−3. The high values were recorded in April and May (155.17 μg m−3 and 171.82 μg m−3, respectively and the low values were noted in February and December (73.86 μg m−3 and 74.05 μg m−3, respectively. The average value of PM10 of the hot season (125.35 × 10−6 g m−3 was higher than its value for the cold season (89.27 μg m−3. In addition, the effect of weather elements (air temperature, humidity and wind on the concentration of PM10 was determined. The multiple R between PM10 and these elements ranged from 0.05 to 0.47 and its value increased to reach 0.73 for the monthly average of the database used. Finally, the PM10 concentrations were grouped depending on their associated atmospheric stability class. These average values were equal to 122.80 ± 9 μg m−3 (highly unstable or convective, 109.37 ± 12 μg m−3 (moderately unstable and 104.42 ± 15 μg m−3 (slightly unstable.

  20. Fine Particulate Matter in Urban Environments: A Trigger of Respiratory Symptoms in Sensitive Children

    Directory of Open Access Journals (Sweden)

    Daniel Dunea

    2016-12-01

    Full Text Available The overall objective of this research was to study children’s respiratory illness levels in Targoviste (Romania in relationship to the outdoor concentrations of airborne particulate matter with an aerodynamic diameter below 2.5 µm (PM2.5. We monitored and analysed the PM2.5 concentrations according to a complex experimental protocol. The health trial was conducted over three months (October–December 2015 and required the active cooperation of the children’s parents to monitor carefully the respiratory symptoms of the child, i.e., coughing, rhinorrhoea, wheezing, and fever, as well as their outdoor program. We selected the most sensitive children (n = 25; age: 2–10 years with perturbed respiratory health, i.e., wheezing, asthma, and associated symptoms. The estimated average PM2.5 doses were 0.8–14.5 µg·day−1 for weekdays, and 0.4–6.6 µg·day−1 for the weekend. The frequency and duration of the symptoms decreased with increasing age. The 4- to 5-year old children recorded the longest duration of symptoms, except for rhinorrhoea, which suggested that this age interval is the most vulnerable to exogenous trigger agents (p < 0.01 compared to the other age groups. PM2.5 air pollution was found to have a direct positive correlation with the number of wheezing episodes (r = 0.87; p < 0.01 in November 2015. Monitoring of wheezing occurrences in the absence of fever can provide a reliable assessment of the air pollution effect on the exacerbation of asthma and respiratory disorders in sensitive children.

  1. Toxic potential of organic constituents of submicron particulate matter (PM1) in an urban road site (Barcelona).

    Science.gov (United States)

    Mesquita, Sofia R; van Drooge, Barend L; Dall'Osto, Manuel; Grimalt, Joan O; Barata, Carlos; Vieira, Natividade; Guimarães, Laura; Piña, Benjamin

    2017-06-01

    Atmospheric particulate matter (PM) is a recognized risk factor contributing to a number of diseases in human populations and wildlife globally. Organic matter is a major component of PM, but its contribution to overall toxicity of PM has not been thoroughly evaluated yet. In the present work, the biological activity of organic extracts from PM1 (particles with less than 1 μm of aerodynamic diameter) collected from an urban road site in the centre of Barcelona (NE Spain) was evaluated using a yeast-based assay (AhR-RYA) and different gene expression markers in zebrafish embryos. Dioxin-like activity of the extracts correlated to primary emissions from local traffic exhausts, reflecting weekday/weekend alternance. Expression levels of cyp1a and of gene markers for key cellular processes and development (ier2, fos) also correlated to vehicle emissions, whereas expression of gene markers related to antioxidant defence and endocrine effects (gstal, hao1, ttr) was strongly reduced in samples with strong contribution from regional air masses with aged secondary organic species or with strong influence of biomass burning emissions. Our data suggest that the toxic potential of PM1 organic chemical constituents strongly depends on the emission sources and on the process of ageing from primary to secondary organic aerosols.

  2. Toxicologically important trace elements and organic compounds investigated in size-fractionated urban particulate matter collected near the Prague highway.

    Science.gov (United States)

    Sysalová, Jiřina; Sýkorová, Ivana; Havelcová, Martina; Száková, Jiřina; Trejtnarová, Hana; Kotlík, Bohumil

    2012-10-15

    Urban particulate matter was collected in the most exposed area of Prague, near a busy highway, in order to provide petrographic and chemical characterization useful for health impact assessment in that locality or other applications. Samples were collected from filters of the air conditioning system in two years, 2009 and 2010, and sieved into four grain-size fractions: 0.507-0.119 mm, 0.119-0.063 mm, origin and their morphology were studied by optical and electron microscopy. Organic solvent extracts of the samples were analyzed using gas chromatography to compare the organic compound distribution in fractions. Only slight differences between 2009 and 2010 years are visible. The relatively high extractable part of most investigated elements confirms mobility and potential availability to organisms. The changes can be recognized in the petrographic and organic composition in samples from both years, which were likely the result of various inputs of source materials. Specific organic marker compounds indicate contribution from fossil fuels, plant materials and bacteria. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Source apportionment analysis of atmospheric particulates in an industrialised urban site in southwestern Spain

    International Nuclear Information System (INIS)

    Querol, X.; Alastuey, A.; Sanchez-de-la-Campa, A.; Plana, F.; Ruiz, C.R.; Rosa, J. de la

    2002-01-01

    A detailed physical and chemical characterisation of total suspended particles (TSP) in the highly industrialised city of Huelva (southwestern Spain) was carried out. The results evidenced a coarse grain-size prevalence (PM 10 accounting for only 40% of TSP mass, 37 and 91 μg/m 3 , respectively). PM 10 levels are in the usual range for urban background sites in Spain. The crustal, anthropogenic and marine components accounted for a mean of a 40%, 24% and 5% of bulk TSP, respectively. As expected from the industrial activities, relatively high PO 4 3- and As levels for an urban site were detected. In addition to the crustal and marine components, source apportionment analysis revealed three additional emission sources influencing the levels and composition of TSP: (a) a petrochemical source, (b) a mixed metallurgical-phosphate source, (c) and an unknown source (Sb and NO 3 - ). Due to the high local emissions, the mean TSP anthropogenic contribution (mostly PM 10 ) obtained for all possible air mass transport scenarios reached 18-29 μg/m 3 . The 2010 annual EU PM 10 limit value (20 μg/m 3 ) would be exceeded by the anthropogenic load recorded for all the air mass transport scenarios, with the exception of the North Atlantic transport (only 15% of the sampling days). Under African air mass transport scenarios (20% of sampling days), the TSP crustal contribution reached near three times the local crustal contribution. It must be pointed out that this crustal input should diminish when sampling PM 10 due to the dominant coarse size distribution of this type of particles. (author)

  4. Gas-phase ammonia and water-soluble ions in particulate matter analysis in an urban vehicular tunnel.

    Science.gov (United States)

    Vieira-Filho, Marcelo S; Ito, Debora T; Pedrotti, Jairo J; Coelho, Lúcia H G; Fornaro, Adalgiza

    2016-10-01

    Ammonia is a key alkaline species, playing an important role by neutralizing atmospheric acidity and inorganic secondary aerosol production. On the other hand, the NH3/NH4 (+) increases the acidity and eutrophication in natural ecosystems, being NH3 classified as toxic atmospheric pollutant. The present study aims to give a better comprehension of the nitrogen content species distribution in fine and coarse particulate matter (PM2.5 and PM2.5-10) and to quantify ammonia vehicular emissions from an urban vehicular tunnel experiment in the metropolitan area of São Paulo (MASP). MASP is the largest megacity in South America, with over 20 million inhabitants spread over 2000 km(2) of urbanized area, which faces serious environmental problems. The PM2.5 and PM2.5-10 median mass concentrations were 44.5 and 66.6 μg m(-3), respectively, during weekdays. In the PM2.5, sulfate showed the highest concentration, 3.27 ± 1.76 μg m(-3), followed by ammonium, 1.14 ± 0.71 μg m(-3), and nitrate, 0.80 ± 0.52 μg m(-3). Likewise, the dominance (30 % of total PM2.5) of solid species, mainly the ammonium salts, NH4HSO4, (NH4)2SO4, and NH4NO3, resulted from simulation of inorganic species. The ISORROPIA simulation was relevant to show the importance of environment conditions for the ammonium phase distribution (solid/aqueous), which was solely aqueous at outside and almost entirely solid at inside tunnel. Regarding gaseous ammonia concentrations, the value measured inside the tunnel (46.5 ± 17.5 μg m(-3)) was 3-fold higher than that outside (15.2 ± 11.3 μg m(-3)). The NH3 vehicular emission factor (EF) estimated by carbon balance for urban tunnel was 44 ± 22 mg km(-1). From this EF value and considering the MASP traffic characteristics, it was possible to estimate more than 7 Gg NH3 year(-1) emissions that along with NOx are likely to cause rather serious problems to natural ecosystems in the region.

  5. Divergent effects of urban particulate air pollution on allergic airway responses in experimental asthma: a comparison of field exposure studies

    Directory of Open Access Journals (Sweden)

    Wagner James G

    2012-07-01

    Full Text Available Abstract Background Increases in ambient particulate matter of aerodynamic diameter of 2.5 μm (PM2.5 are associated with asthma morbidity and mortality. The overall objective of this study was to test the hypothesis that PM2.5 derived from two distinct urban U.S. communities would induce variable responses to aggravate airway symptoms during experimental asthma. Methods We used a mobile laboratory to conduct community-based inhalation exposures to laboratory rats with ovalbumin-induced allergic airways disease. In Grand Rapids exposures were conducted within 60 m of a major roadway, whereas the Detroit was located in an industrial area more than 400 m from roadways. Immediately after nasal allergen challenge, Brown Norway rats were exposed by whole body inhalation to either concentrated air particles (CAPs or filtered air for 8 h (7:00 AM - 3:00 PM. Both ambient and concentrated PM2.5 was assessed for mass, size fractionation, and major component analyses, and trace element content. Sixteen hours after exposures, bronchoalveolar lavage fluid (BALF and lung lobes were collected and evaluated for airway inflammatory and mucus responses. Results Similar CAPs mass concentrations were generated in Detroit (542 μg/m3 and Grand Rapids (519 μg/m3. Exposure to CAPs at either site had no effects in lungs of non-allergic rats. In contrast, asthmatic rats had 200% increases in airway mucus and had more BALF neutrophils (250% increase, eosinophils (90%, and total protein (300% compared to controls. Exposure to Detroit CAPs enhanced all allergic inflammatory endpoints by 30-100%, whereas inhalation of Grand Rapids CAPs suppressed all allergic responses by 50%. Detroit CAPs were characterized by high sulfate, smaller sized particles and were derived from local combustion sources. Conversely Grand Rapids CAPs were derived primarily from motor vehicle sources. Conclusions Despite inhalation exposure to the same mass concentration of urban PM2

  6. Regional evaluation of particulate matter composition in an Atlantic coastal area (Cantabria region, northern Spain): Spatial variations in different urban and rural environments

    Science.gov (United States)

    Arruti, A.; Fernández-Olmo, I.; Irabien, A.

    2011-07-01

    The aim of this study was to determine the major components (Na, Ca, K, Mg, Fe, Al, NH 4+, SO 42-, NO 3-, Cl - and TC) and trace-metal levels (As, Ni, Cd, Pb, Ti, V, Cr, Mn, Cu, Mo, Rh and Hg) in PM 10 and PM 2.5 at an Atlantic coastal city (Santander, Cantabria region, Northern Spain). Additional samples were collected in other urban sites of the Cantabria region to assess the metal content found in different urban environments within the region. To control for the mass attributed to inland regional background particulate matter, samples were also collected in Los Tojos village. The spatial variability of the major PM components shows that PM origins are different at inland and coastal sites. In the coastal city of Santander, the most important contributors are (i) the marine aerosol and (ii) the secondary inorganic aerosol (SIA) and the total carbon (TC) in PM 10 and PM 2.5, respectively. Additionally, the influence of the coastal location on the ionic balance of PM is also studied. The trace metal spatial variability is studied using the coefficient of divergence (COD), which shows that the levels of trace metals at the three studied urban sites are mainly influenced by local emission sources. The main local tracers are identified as follows: Mn in the Santander area; Mo, Cr and Pb at Reinosa; and Ni and V at Castro Urdiales. A more detailed source apportionment study of the local trace metals at Santander is conducted by Principal Component Analysis (PCA) and Positive Matrix Factorisation (PMF); these two receptor models report complementary information. From these statistical analyses, the identified sources of trace metals in PM 10 are urban background sources, industrial sources and traffic. The industrial factor was dominated by Mn, Cu and Pb, which are trace metals used in steel production and manganese-ferroalloy production plant. With respect to PM 2.5, the identified emission sources of trace metals are combustion processes as well as traffic and

  7. Gaseous and particulate urban air pollution in the region of Vojvodina (Serbia

    Directory of Open Access Journals (Sweden)

    Malinović-Milićević Slavica B.

    2015-01-01

    Full Text Available The present study focuses on interpretations of the temporal variations and variations between urban locations of sulfur dioxide (SO2, nitrogen dioxide (NO2 and black smoke (BS during the period 2001-2008 in the Vojvodina Region of Serbia (VR_S. In this study we examined variations of pollutants concentrations during household heating and non-heating seasons and the effect of household heating, traffic, rainfall and wind speed on the air pollution levels of SO2, NO2 and BS in eight locations. The analyses showed that the annual limit values of these pollutants as recommended by the Serbian regulations and recommendations were not exceeded, unlike the daily limits. Higher SO2 concentrations during household heating season in four locations indicate the substantial impact of house­hold heating on air quality. Positive effects of the use of environmentally cleaner fuels were observed in only two locations. The growing impact of traffic on air pollution is shown by the increasing trend of NO2 during both seasons. Calm wind conditions and an absence of rainfall were found to have incremental effects on pollution levels in most locations. [Projekat Ministarstva nauke Republike Srbije, br. III 43007: Studying climate change and its influence on the environment: impacts, adaptation and mitigation i br. III 43002: Biosensing Technolo­gies and Global System for Continuous Research and Integrated Management

  8. A persisting secondhand smoke hazard in urban public places: results from fine particulate (PM2.5) air sampling.

    Science.gov (United States)

    Wilson, Nick; Edwards, Richard; Parry, Rhys

    2011-03-04

    To assess the need for additional smokefree settings, by measuring secondhand smoke (SHS) in a range of public places in an urban setting. Measurements were made in Wellington City during the 6-year period after the implementation of legislation that made indoor areas of restaurants and bars/pubs smokefree in December 2004, and up to 20 years after the 1990 legislation making most indoor workplaces smokefree. Fine particulate levels (PM2.5) were measured with a portable real-time airborne particle monitor. We collated data from our previously published work involving random sampling, purposeful sampling and convenience sampling of a wide range of settings (in 2006) and from additional sampling of selected indoor and outdoor areas (in 2007-2008 and 2010). The "outdoor" smoking areas of hospitality venues had the highest particulate levels, with a mean value of 72 mcg/m3 (range of maximum values 51-284 mcg/m3) (n=20 sampling periods). These levels are likely to create health hazards for some workers and patrons (i.e., when considered in relation to the WHO air quality guidelines). National survey data also indicate that these venues are the ones where SHS exposure is most frequently reported by non-smokers. Areas inside bars that were adjacent to "outdoor" smoking areas also had high levels, with a mean of 54 mcg/m3 (range of maximum values: 18-239 mcg/m3, for n=13 measurements). In all other settings mean levels were lower (means: 2-22 mcg/m3). These other settings included inside traditional style pubs/sports bars (n=10), bars (n=18), restaurants (n=9), cafes (n=5), inside public buildings (n=15), inside transportation settings (n=15), and various outdoor street/park settings (n=22). During the data collection in all settings made smokefree by law, there was only one occasion of a person observed smoking. The results suggest that compliance in pubs/bars and restaurants has remained extremely high in this city in the nearly six years since implementation of the

  9. Particulate Matter 2.5 Exposure and Self-Reported Use of Wood Stoves and Other Indoor Combustion Sources in Urban Nonsmoking Homes in Norway.

    Directory of Open Access Journals (Sweden)

    Annah B Wyss

    Full Text Available Few studies have examined particulate matter (PM exposure from self-reported use of wood stoves and other indoor combustion sources in urban settings in developed countries. We measured concentrations of indoor PM < 2.5 microns (PM2.5 for one week with the MicroPEM™ nephelometer in 36 households in the greater Oslo, Norway metropolitan area. We examined indoor PM2.5 levels in relation to use of wood stoves and other combustion sources during a 7 day monitoring period using mixed effects linear models with adjustment for ambient PM2.5 levels. Mean hourly indoor PM2.5 concentrations were higher (p = 0.04 for the 14 homes with wood stove use (15.6 μg/m3 than for the 22 homes without (12.6 μg/m3. Moreover, mean hourly PM2.5 was higher (p = 0.001 for use of wood stoves made before 1997 (6 homes, 20.2 μg/m3, when wood stove emission limits were instituted in Norway, compared to newer wood stoves (8 homes, 11.9 μg/m3 which had mean hourly values similar to control homes. Increased PM2.5 levels during diary-reported burning of candles was detected independently of concomitant wood stove use. These results suggest that self-reported use of wood stoves, particularly older stoves, and other combustion sources, such as candles, are associated with indoor PM2.5 measurements in an urban population from a high income country.

  10. Estimation of the local and long-range contributions to particulate matter levels using continuous measurements in a single urban background site

    Science.gov (United States)

    Diamantopoulou, Marianna; Skyllakou, Ksakousti; Pandis, Spyros N.

    2016-06-01

    The Particulate Matter Source Apportionment Technology (PSAT) algorithm is used together with PMCAMx, a regional chemical transport model, to develop a simple observation-based method (OBM) for the estimation of local and regional contributions of sources of primary and secondary pollutants in urban areas. We test the hypothesis that the minimum of the diurnal average concentration profile of the pollutant is a good estimate of the average contribution of long range transport levels. We use PMCAMx to generate "pseudo-observations" for four different European cities (Paris, London, Milan, and Dusseldorf) and PSAT to estimate the corresponding "true" local and regional contributions. The predictions of the proposed OBM are compared to the "true" values for different definitions of the source area. During winter, the estimates by the OBM for the local contributions to the concentrations of total PM2.5, primary pollutants, and sulfate are within 25% of the "true" contributions of the urban area sources. For secondary organic aerosol the OBM overestimates the importance of the local sources and it actually estimates the contributions of sources within 200 km from the receptor. During summer for primary pollutants and cities with low nearby emissions (ratio of emissions in an area extending 100 km from the city over local emissions lower than 10) the OBM estimates correspond to the city emissions within 25% or so. For cities with relatively high nearby emissions the OBM estimates correspond to emissions within 100 km from the receptor. For secondary PM2.5 components like sulfate and secondary organic aerosol the OBM's estimates correspond to sources within 200 km from the receptor. Finally, for total PM2.5 the OBM provides approximately the contribution of city emissions during the winter and the contribution of sources within 100 km from the receptor during the summer.

  11. Characteristics of particulate matter and heterogeneous traffic in the urban area of India

    Science.gov (United States)

    Srimuruganandam, B.; Shiva Nagendra, S. M.

    2011-06-01

    This paper presents the characteristics of particulate matter (PM) mass concentrations (PM 10, PM 2.5 and PM 1) emitted from heterogeneous traffic in Chennai city during monsoon, winter and summer seasons of the year 2007-2009. The heterogeneous traffic characteristics at the study region indicated dominance of 2-wheelers (58%) followed by the 4-wheelers (29%), 3-wheelers (7%), light commercial vehicle (LCV = 2%) and heavy commercial vehicle (HCV = 4%). The vintage analysis of vehicles showed that 11, 24, 35 and 30% of the total vehicles were 15, 10, 5 and travel demand on weekdays at the study site revealed that 60% of the traffic in the morning peak hours was due to school and office trips and 40% was due to the business trips. During the weekends the peak rush hours traffic was dominated by travel demand (90%) due to tourists and pleasure trips. At study region, the PM 10 comprised a large fraction of PM 2.5 (56% of PM 2.5 and 44% of PM 1), while PM 2.5 comprised a large proportion of PM 1 (81%). The estimated PM 2.5/PM 10 ratios for monsoon, winter and summer seasons were ranged between 0.44-0.62, 0.66-0.76 and 0.62-0.73, respectively. The high PM 2.5/PM 10 ratios ( R2 = 0.92-0.98) during peak hour indicated significant contribution from the vehicular emissions. Further, it was found that the PM 10, PM 2.5 and PM 1 concentrations at the study site followed similar trend of 2W, 3W, 4W and HCV during morning peak hour traffic. The analysis of 24-hr average PM 10, PM 2.5 and PM 1 concentrations showed maximum during monsoon (188.75 ± 71.75, 83.91 ± 33.18, 65.81 ± 28.47 μg/m 3) and winter (134.58 ± 64.55, 72.95 ± 39.27, 59.00 ± 31.15 μg/m 3) and minimum during summer (75.96 ± 43.15, 42.16 ± 19.76, 31.40 ± 16.05 μg/m 3) seasons. The 24-hr average PM 10 and PM 2.5 indicated maximum violations of Indian national ambient air quality standards (NAAQS for PM 10 = 100 μg/m 3 and PM 2.5 = 60 μg/m 3) during winter and monsoon seasons and minimum during summer

  12. The Spatio-Temporal Distribution of Particulate Matter during Natural Dust Episodes at an Urban Scale.

    Directory of Open Access Journals (Sweden)

    Helena Krasnov

    Full Text Available Dust storms are a common phenomenon in arid and semi-arid areas, and their impacts on both physical and human environments are of great interest. Number of studies have associated atmospheric PM pollution in urban environments with origin in natural soil/dust, but less evaluated the dust spatial patterns over a city. We aimed to analyze the spatial-temporal behavior of PM concentrations over the city of Beer Sheva, in southern Israel, where dust storms are quite frequent. PM data were recorded during the peak of each dust episode simultaneously in 23 predetermined fixed points around the city. Data were analyzed for both dust days and non-dust days (background. The database was constructed using Geographic Information System and includes distributions of PM that were derived using inverse distance weighted (IDW interpolation. The results show that the daily averages of atmospheric PM10 concentrations during the background period are within a narrow range of 31 to 48 μg m-3 with low variations. During dust days however, the temporal variations are significant and can range from an hourly PM10 concentration of 100 μg m-3 to more than 1280 μg m-3 during strong storms. IDW analysis demonstrates that during the peak time of the storm the spatial variations in PM between locations in the city can reach 400 μg m-3. An analysis of site and storm contribution to total PM concentration revealed that higher concentrations are found in parts of the city that are proximal to dust sources. The results improve the understanding of the dynamics of natural PM and the dependence on wind direction. This may have implications for environmental and health outcomes.

  13. Urban drainage models - making uncertainty analysis simple

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Mikkelsen, Peter Steen; Deletic, Ana

    2012-01-01

    in each measured/observed datapoint; an issue which is commonly overlook in the uncertainty analysis of urban drainage models. This comparison allows the user to intuitively estimate the optimum number of simulations required to conduct uncertainty analyses. The output of the method includes parameter......There is increasing awareness about uncertainties in modelling of urban drainage systems and, as such, many new methods for uncertainty analyses have been developed. Despite this, all available methods have limitations which restrict their widespread application among practitioners. Here...

  14. Swarm Intelligence for Urban Dynamics Modelling

    International Nuclear Information System (INIS)

    Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gerard H. E.

    2009-01-01

    In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.

  15. Swarm Intelligence for Urban Dynamics Modelling

    Science.gov (United States)

    Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gérard H. E.

    2009-04-01

    In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.

  16. Application and evaluation of two air quality models for particulate matter for a southeastern U.S. episode.

    Science.gov (United States)

    Zhang, Yang; Pun, Betty; Wu, Shiang-Yuh; Vijayaraghavan, Krish; Seigneur, Christian

    2004-12-01

    The Models-3 Community Multiscale Air Quality (CMAQ) Modeling System and the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAMx) were applied to simulate the period June 29-July 10, 1999, of the Southern Oxidants Study episode with two nested horizontal grid sizes: a coarse resolution of 32 km and a fine resolution of 8 km. The predicted spatial variations of ozone (O3), particulate matter with an aerodynamic diameter less than or equal to 2.5 microm (PM2.5), and particulate matter with an aerodynamic diameter less than or equal to 10 microm (PM10) by both models are similar in rural areas but differ from one another significantly over some urban/suburban areas in the eastern and southern United States, where PMCAMx tends to predict higher values of O3 and PM than CMAQ. Both models tend to predict O3 values that are higher than those observed. For observed O3 values above 60 ppb, O3 performance meets the U.S. Environmental Protection Agency's criteria for CMAQ with both grids and for PMCAMx with the fine grid only. It becomes unsatisfactory for PMCAMx and marginally satisfactory for CMAQ for observed O3 values above 40 ppb. Both models predict similar amounts of sulfate (SO4(2-)) and organic matter, and both predict SO4(2-) to be the largest contributor to PM2.5. PMCAMx generally predicts higher amounts of ammonium (NH4+), nitrate (NO3-), and black carbon (BC) than does CMAQ. PM performance for CMAQ is generally consistent with that of other PM models, whereas PMCAMx predicts higher concentrations of NO3-, NH4+, and BC than observed, which degrades its performance. For PM10 and PM2.5 predictions over the southeastern U.S. domain, the ranges of mean normalized gross errors (MNGEs) and mean normalized bias are 37-43% and -33-4% for CMAQ and 50-59% and 7-30% for PMCAMx. Both models predict the largest MNGEs for NO3- (98-104% for CMAQ 138-338% for PMCAMx). The inaccurate NO3- predictions by both models may be caused by the inaccuracies in the

  17. Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas.

    Science.gov (United States)

    Gandolfi, I; Bertolini, V; Bestetti, G; Ambrosini, R; Innocente, E; Rampazzo, G; Papacchini, M; Franzetti, A

    2015-06-01

    The study of spatio-temporal variability of airborne bacterial communities has recently gained importance due to the evidence that airborne bacteria are involved in atmospheric processes and can affect human health. In this work, we described the structure of airborne microbial communities in two urban areas (Milan and Venice, Northern Italy) through the sequencing, by the Illumina platform, of libraries containing the V5-V6 hypervariable regions of the 16S rRNA gene and estimated the abundance of airborne bacteria with quantitative PCR (qPCR). Airborne microbial communities were dominated by few taxa, particularly Burkholderiales and Actinomycetales, more abundant in colder seasons, and Chloroplasts, more abundant in warmer seasons. By partitioning the variation in bacterial community structure, we could assess that environmental and meteorological conditions, including variability between cities and seasons, were the major determinants of the observed variation in bacterial community structure, while chemical composition of atmospheric particulate matter (PM) had a minor contribution. Particularly, Ba, SO4 (2-) and Mg(2+) concentrations were significantly correlated with microbial community structure, but it was not possible to assess whether they simply co-varied with seasonal shifts of bacterial inputs to the atmosphere, or their variation favoured specific taxa. Both local sources of bacteria and atmospheric dispersal were involved in the assembling of airborne microbial communities, as suggested, to the one side by the large abundance of bacteria typical of lagoon environments (Rhodobacterales) observed in spring air samples from Venice and to the other by the significant effect of wind speed in shaping airborne bacterial communities at all sites.

  18. Variability of intra-urban exposure to particulate matter and CO from Asian-type community pollution sources

    Science.gov (United States)

    Lung, Shih-Chun Candice; Hsiao, Pao-Kuei; Wen, Tzu-Yao; Liu, Chun-Hu; Fu, Chi Betsy; Cheng, Yu-Ting

    2014-02-01

    Asian residential communities are usually dotted with various spot pollution sources (SPS), such as restaurants, temples, and home factories, with traffic arteries passing through, resulting in higher intra-urban pollution variability compared with their western counterparts. Thus, it is important to characterize spatial variability of pollutant levels in order to assess accurately residents' exposures in their communities. The objectives of this study are to assess the actual pollutant levels and variability within an Asian urban area and to evaluate the influence of vehicle emission and various SPS on the exposure levels within communities. Real-time monitoring was conducted for a total of 123 locations for particulate matter (PM) and CO in Taipei metropolitan, Taiwan. The mean concentrations for PM1, PM2.5, PM10, and CO are 29.8 ± 22.7, 36.0 ± 25.5, 61.9 ± 35.0 μg m-3 and 4.0 ± 2.5 ppm, respectively. The mean values of PM1/PM2.5 and PM2.5/PM10 are 0.80 ± 0.10 and 0.57 ± 0.15, respectively. PM and CO levels at locations near SPS could be increased by 3.5-4.9 times compared with those at background locations. Regression results show that restaurants contribute significantly 6.18, 6.33, 7.27 μg m-3, and 1.64 ppm to community PM1, PM2.5, PM10, and CO levels, respectively; while the contribution from temples are 13.2, 15.1, and 17.2 μg m-3 for PM1, PM2.5 and PM10, respectively. Additionally, construction sites elevate nearby PM10 levels by 14.2 μg m-3. At bus stops and intersections, vehicle emissions increased PM1 and PM2.5 levels by 5 μg m-3. These results demonstrate significant contribution of community sources to air pollution, and thus the importance of assessing intra-community variability in Asian cities for air pollution and health studies. The methodology used is applicable to other Asian countries with similar features.

  19. Phenomenology and modeling of particulate corrosion product behavior in Hanford N Reactor primary coolant

    International Nuclear Information System (INIS)

    Bechtold, D.B.

    1983-01-01

    The levels and composition of filterable corrosion products in the Hanford N Reactor Primary Loop are measurable by filtration. The suspended crud level has ranged from 0.0005 ppM to 6.482 ppM with a median 0.050 ppM. The composition approximates magnetite. The particle size distribution has been found in 31 cases to be uniformly a log normal distribution with a count median ranging from 1.10 to 2.31 microns with a median of 1.81 microns, and the geometric standard deviation ranging from 1.60 to 2.34 with a median of 1.84. An auto-correcting inline turbidimeter was found to respond to linearly to suspended crud levels over a range 0.05 to at least 6.5 ppM by direct comparison with filter sample weights. Cause of crud bursts in the primary loop were found to be power decreases. The crud transients associated with a reactor power drop, several reactor shutdowns, and several reactor startups could be modeled consistently with each other using a simple stirred-tank, first order exchange model of particulate between makeup, coolant, letdown, and loosely adherent crud on pipe walls. Over 3/10 of the average steady running particulate crud level could be accounted for by magnetically filterable particulate in the makeup feed. A simulation model of particulate transport has been coded in FORTRAN

  20. Spatially explicit modeling of particulate nutrient flux in Large global rivers

    Science.gov (United States)

    Cohen, S.; Kettner, A.; Mayorga, E.; Harrison, J. A.

    2017-12-01

    Water, sediment, nutrient and carbon fluxes along river networks have undergone considerable alterations in response to anthropogenic and climatic changes, with significant consequences to infrastructure, agriculture, water security, ecology and geomorphology worldwide. However, in a global setting, these changes in fluvial fluxes and their spatial and temporal characteristics are poorly constrained, due to the limited availability of continuous and long-term observations. We present results from a new global-scale particulate modeling framework (WBMsedNEWS) that combines the Global NEWS watershed nutrient export model with the spatially distributed WBMsed water and sediment model. We compare the model predictions against multiple observational datasets. The results indicate that the model is able to accurately predict particulate nutrient (Nitrogen, Phosphorus and Organic Carbon) fluxes on an annual time scale. Analysis of intra-basin nutrient dynamics and fluxes to global oceans is presented.

  1. Application of GIS and modelling in health risk assessment for urban road mobility.

    Science.gov (United States)

    Vu, Van-Hieu; Le, Xuan-Quynh; Pham, Ngoc-Ho; Hens, Luc

    2013-08-01

    Transport is an essential sector in modern societies. It connects economic sectors and industries. Next to its contribution to economic development and social interconnection, it also causes adverse impacts on the environment and results in health hazards. Transport is a major source of ground air pollution, especially in urban areas, and therefore contributes to the health problems, such as cardiovascular and respiratory diseases, cancer and physical injuries. This paper presents the results of a health risk assessment that quantifies the mortality and the diseases associated with particulate matter pollution resulting from urban road transport in Haiphong City, Vietnam. The focus is on the integration of modelling and geographic information system approaches in the exposure analysis to increase the accuracy of the assessment and to produce timely and consistent assessment results. The modelling was done to estimate traffic conditions and concentrations of particulate matters based on geo-referenced data. The study shows that health burdens due to particulate matter in Haiphong include 1,200 extra deaths for the situation in 2007. This figure can double by 2020 as the result of the fast economic development the city pursues. In addition, 51,000 extra hospital admissions and more than 850,000 restricted activity days are expected by 2020.

  2. Urban meteorological modelling for nuclear emergency preparedness

    International Nuclear Information System (INIS)

    Baklanov, Alexander; Sorensen, Jens Havskov; Hoe, Steen Cordt; Amstrup, Bjarne

    2006-01-01

    The main objectives of the current EU project 'Integrated Systems for Forecasting Urban Meteorology, Air Pollution and Population Exposure' (FUMAPEX) are the improvement of meteorological forecasts for urban areas, the connection of numerical weather prediction (NWP) models to urban air pollution and population dose models, the building of improved urban air quality information and forecasting systems, and their application in cities in various European climates. In addition to the forecast of the worst air-pollution episodes in large cities, the potential use of improved weather forecasts for nuclear emergency management in urban areas, in case of hazardous releases from nuclear accidents or terror acts, is considered. Such use of NWP data is tested for the Copenhagen metropolitan area and the Oresund region. The Danish Meteorological Institute (DMI) is running an experimental version of the HIRLAM NWP model over Zealand including the Copenhagen metropolitan area with a horizontal resolution of 1.4 km, thus approaching the city-scale. This involves 1-km resolution physiographic data with implications for the urban surface parameters, e.g. surface fluxes, roughness length and albedo. For the city of Copenhagen, the enhanced high-resolution NWP forecasting will be provided to demonstrate the improved dispersion forecasting capabilities of the Danish nuclear emergency preparedness decision-support system, the Accident Reporting and Guidance Operational System (ARGOS), used by the Danish Emergency Management Agency (DEMA). Recently, ARGOS has been extended with a capability of real-time calculation of regional-scale atmospheric dispersion of radioactive material from accidental releases. This is effectuated through on-line interfacing with the Danish Emergency Response Model of the Atmosphere (DERMA), which is run at DMI. For local-scale modelling of atmospheric dispersion, ARGOS utilises the Local-Scale Model Chain (LSMC), which makes use of high-resolution DMI

  3. Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference urban dust particulate matter mixture: The role of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Andrysik, Zdenek; Vondracek, Jan; Marvanova, Sona; Ciganek, Miroslav; Neca, Jiri; Pencikova, Katerina; Mahadevan, Brinda; Topinka, Jan; Baird, William M.; Kozubik, Alois; Machala, Miroslav

    2011-01-01

    Highlights: → SRM1649a extract and its fractions are potent activators of AhR in a model of epithelial cells. → AhR-dependent effects include both induction of CYP1 enzymes and disruption of cell proliferation control. → Polycyclic aromatic hydrocarbons present in the neutral SRM1649a fraction are major contributors to the AhR-mediated toxic effects. → Activation of AhR and related nongenotoxic effects occur at significantly lower doses than the formation of DNA adducts and activation of DNA damage response. → More attention should be paid to the AhR-dependent nongenotoxic events elicited by urban particulate matter constituents. - Abstract: Many of the toxic and carcinogenic effects of urban air pollution have been linked to polycyclic aromatic hydrocarbons (PAHs) adsorbed to airborne particulate matter (PM). The carcinogenic properties of PAHs in complex organic mixtures derived from PM have been chiefly attributed to their mutagenicity. Nevertheless, PAHs are also potent activators of the aryl hydrocarbon receptor (AhR), which may contribute to their nongenotoxic effects, including tumor promotion. As the genotoxicity of carcinogenic PAHs in complex mixtures derived from urban PM is often inhibited by other mixture constituents, the AhR-mediated activity of urban PM extracts might significantly contribute to the carcinogenic activity of such mixtures. In the present study, we used an organic extract of the urban dust standard reference material, SRM1649a, as a model mixture to study a range of toxic effects related to DNA damage and AhR activation. Both the organic extract and its neutral aromatic fraction formed a low number of DNA adducts per nucleotide in the liver epithelial WB-F344 cells model, without inducing DNA damage response, such as tumor suppressor p53 activation and apoptosis. In contrast, we found that this extract, as well as its neutral and polar fractions, were potent inducers of a range of AhR-mediated responses, including induction

  4. Lantana camara invasion in urban forests of an Indo–Burma hotspot region and its ecosustainable management implication through biomonitoring of particulate matter

    Directory of Open Access Journals (Sweden)

    Prabhat Kumar Rai

    2015-12-01

    Full Text Available The present study was performed in urban forests of Aizawl, Mizoram, north east India falling under an Indo–Burma hot spot region of existing ecological relevance and pristine environment. The phytosociolology of invasive weeds has been studied, showing that Lantana camara was the most dominant invasive weed. Further, the air quality studies revealed high suspended particulate matter as well as respirable suspended particulate matter in the ambient air of Aizawl. Biomonitoring through plant leaves has been recognized as a recent thrust area in the field of particulate matter science. We aimed to investigate whether L. camara leaves may act as a biomonitoring tool hence allowing its sustainable management. The quantity of respirable suspended particulate matter and suspended particulate matter at four different sites were much higher than the prescribed limits of Central Pollution Control Board of India during the summer and winter seasons. The dust deposition of L. camara leaves was 1.01 mg/cm2 and, pertaining to the biochemical parameters: pH was 7.49; relative water content 73.74%; total chlorophyll 1.91 mg/g; ascorbic acid 7.06 mg/g; sugar 0.16 mg/g; protein 0.67 mg/g; catalase 30.76 U/mg protein; peroxidase 0.16 U/mg protein; and air pollution tolerance index was 12.91. L. camara was observed in the good category in anticipated performance index, which shows the tolerant and conditioning capacity of air pollution. Therefore, the present study recommends the use of L. camara as biomonitor that may further have sustainable management implications for an invasive plant.

  5. The Urban Food-Water Nexus: Modeling Water Footprints of Urban Agriculture using CityCrop

    Science.gov (United States)

    Tooke, T. R.; Lathuilliere, M. J.; Coops, N. C.; Johnson, M. S.

    2014-12-01

    Urban agriculture provides a potential contribution towards more sustainable food production and mitigating some of the human impacts that accompany volatility in regional and global food supply. When considering the capacity of urban landscapes to produce food products, the impact of urban water demand required for food production in cities is often neglected. Urban agricultural studies also tend to be undertaken at broad spatial scales, overlooking the heterogeneity of urban form that exerts an extreme influence on the urban energy balance. As a result, urban planning and management practitioners require, but often do not have, spatially explicit and detailed information to support informed urban agricultural policy, especially as it relates to potential conflicts with sustainability goals targeting water-use. In this research we introduce a new model, CityCrop, a hybrid evapotranspiration-plant growth model that incorporates detailed digital representations of the urban surface and biophysical impacts of the built environment and urban trees to account for the daily variations in net surface radiation. The model enables very fine-scale (sub-meter) estimates of water footprints of potential urban agricultural production. Results of the model are demonstrated for an area in the City of Vancouver, Canada and compared to aspatial model estimates, demonstrating the unique considerations and sensitivities for current and future water footprints of urban agriculture and the implications for urban water planning and policy.

  6. Characterization and source identification of fine particulate matter in urban Beijing during the 2015 Spring Festival.

    Science.gov (United States)

    Ji, Dongsheng; Cui, Yang; Li, Liang; He, Jun; Wang, Lili; Zhang, Hongliang; Wang, Wan; Zhou, Luxi; Maenhaut, Willy; Wen, Tianxue; Wang, Yuesi

    2018-07-01

    The Spring Festival (SF) is the most important holiday in China for family reunion and tourism. During the 2015 SF an intensive observation campaign of air quality was conducted to study the impact of the anthropogenic activities and the dynamic characteristics of the sources. During the study period, pollution episodes frequently occurred with 12days exceeding the Chinese Ambient Air Quality Standards for 24-h average PM 2.5 (75μg/m 3 ), even 8days with exceeding 150μg/m 3 . The daily maximum PM 2.5 concentration reached 350μg/m 3 while the hourly minimum visibility was <0.8km. Three pollution episodes were selected for detailed analysis including chemical characterization and diurnal variation of the PM 2.5 and its chemical composition, and sources were identified using the Positive Matrix Factorization model. The first episode occurring before the SF was characterized by more formation of SO 4 2- and NO 3 - and high crustal enrichment factors for Ag, As, Cd, Cu, Hg, Pb, Se and Zn and seven categories of pollution sources were identified, whereby vehicle emission contributed 38% to the PM 2.5 . The second episode occurring during the SF was affected heavily by large-scale firework emissions, which led to a significant increase in SO 4 2- , Cl - , OC, K and Ba; these emissions were the largest contributor to the PM 2.5 accounting for 36%. During the third episode occurring after the SF, SO 4 2- , NO 3 - , NH 4 + and OC were the major constituents of the PM 2.5 and the secondary source was the dominant source with a contribution of 46%. The results provide a detailed understanding on the variation in occurrence, chemical composition and sources of the PM 2.5 as well as of the gaseous pollutants affected by the change in anthropogenic activities in Beijing throughout the SF. They highlight the need for limiting the firework emissions during China's most important traditional festival. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Triple co-culture cell model as an in vitro model for oral particulate vaccine systems

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; De Rossi, C.; Lehr, C-M.

    ; this was not observed with ovalbumin and blank solution. An example of the results is shown in Figure 2 for IL-17A. An established co-culture of Caco-2, THP-1 and MUTZ-3 cells showed promise as an in vitro model for testing of oral vaccine formulations. Mobility of co-culture immune cells as well as cytokine production......A triple co-culture cell model of Caco-2 cells, dendritic cells and macrophages (Figure 1) has previously been developed for studying intestinal permeability in a state of inflammation [1],[2]. The aim of this study was to investigate the applicability of this cell model for testing...... the model antigen ovalbumin was spray dried to obtain a particulate vaccine model system for testing in the cell model. The precursors were shown to form cubosomes when dispersed in aqueous medium, and was therefore used as the vaccine formulation for testing on the co-cultures. After 11 days, the TEER...

  8. Heat transfer through particulated media in stagnant gases model and laboratory measurements: Application to Mars

    Science.gov (United States)

    Piqueux, Sylvain Loic Lucien

    The physical characterization of the upper few centimeters to meters of the Martian surface has greatly benefited from remote temperature measurements. Typical grain sizes, rock abundances, subsurface layering, soil cementation, bedrock exposures, and ice compositions have been derived and mapped using temperature data in conjunction with subsurface models of heat conduction. Yet, these models of heat conduction are simplistic, precluding significant advances in the characterization of the physical nature of the Martian surface. A new model of heat conduction for homogeneous particulated media accounting for the grain size, porosity, gas pressure and composition, temperature, and the effect of any cementing phase is presented. The incorporation of the temperature effect on the bulk conductivity results in a distortion of the predicted diurnal and seasonal temperatures when compared to temperatures predicted with a temperature-independent conductivity model. Such distortions have been observed and interpreted to result from subsurface heterogeneities, but they may simply be explained by a temperature-dependency of the thermal inertia, with additional implications on the derived grain sizes. Cements are shown to significantly increase the bulk conductivity of a particulated medium and bond fractions duricrust. A laboratory setup has been designed, built, calibrated and used to measure the thermal conductivity of particulated samples in order to test and refine the models mentioned above. Preliminary results confirm the influence of the temperature on the bulk conductivity, as well as the effect of changing the gas composition. Cemented samples are shown to conduct heat more efficiently than their uncemented counterparts.

  9. Influence of urban pollution on the production of organic particulate matter from isoprene epoxydiols in central Amazonia

    Directory of Open Access Journals (Sweden)

    S. S. de Sá

    2017-06-01

    Full Text Available The atmospheric chemistry of isoprene contributes to the production of a substantial mass fraction of the particulate matter (PM over tropical forests. Isoprene epoxydiols (IEPOX produced in the gas phase by the oxidation of isoprene under HO2-dominant conditions are subsequently taken up by particles, thereby leading to production of secondary organic PM. The present study investigates possible perturbations to this pathway by urban pollution. The measurement site in central Amazonia was located 4 to 6 h downwind of Manaus, Brazil. Measurements took place from February through March 2014 of the wet season, as part of the GoAmazon2014/5 experiment. Mass spectra of organic PM collected with an Aerodyne Aerosol Mass Spectrometer were analyzed by positive-matrix factorization. One resolved statistical factor (IEPOX-SOA factor was associated with PM production by the IEPOX pathway. The IEPOX-SOA factor loadings correlated with independently measured mass concentrations of tracers of IEPOX-derived PM, namely C5-alkene triols and 2-methyltetrols (R = 0. 96 and 0.78, respectively. The factor loading, as well as the ratio f of the loading to organic PM mass concentration, decreased under polluted compared to background conditions. For an increase in NOy concentration from 0.5 to 2 ppb, the factor loading and f decreased by two to three fold. Overall, sulfate concentration explained 37 % of the variability in the factor loading. After segregation of factor loading into subsets based on NOy concentration, the sulfate concentration explained up to 75 % of the variability. Considering both factors, the data sets show that the suppressing effects of increased NO concentrations dominated over the enhancing effects of higher sulfate concentrations. The pollution from Manaus elevated NOy concentrations more significantly than sulfate concentrations relative to background conditions. In this light, increased emissions of nitrogen oxides, as

  10. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes

    Directory of Open Access Journals (Sweden)

    S. L. Tian

    2016-01-01

    % for coarse particles, coal combustion (17.7 % vs. 7.8 %, biomass burning (11.1 % vs. 11.8 %, industrial pollution (12.1 % vs. 5.1 %, road dust (8.4 % vs. 10.9 %, vehicle emissions (19.6 % for fine particles, mineral dust (22.6 % for coarse particles and organic aerosol (23.6 % for coarse particles. The contributions of the first four factors and vehicle emissions were higher on haze days than non-haze days, while the reverse is true for road dust and mineral dust. The sources' contribution generally increased as the size decreased, with the exception of mineral dust. However, two peaks were consistently found in the fine and coarse particles. In addition, the sources' contribution varied with the wind direction, with coal and oil combustion products increasing during southern flows. This result suggests that future air pollution control strategies should consider wind patterns, especially during episodes of haze. Furthermore, the findings of this study indicated that the PM2.5-based data set is insufficient for determining source control policies for haze in China and that detailed size-resolved information is needed to characterize the important sources of particulate matter in urban regions and better understand severe haze pollution.

  11. Urban Noise Modelling in Boka Kotorska Bay

    Directory of Open Access Journals (Sweden)

    Aleksandar Nikolić

    2014-04-01

    Full Text Available Traffic is the most significant noise source in urban areas. The village of Kamenari in Boka Kotorska Bay is a site where, in a relatively small area, road traffic and sea (ferry traffic take place at the same time. Due to the specificity of the location, i.e. very rare synergy of sound effects of road and sea traffic in the urban area, as well as the expressed need for assessment of noise level in a simple and quick way, a research was conducted, using empirical methods and statistical analysis methods, which led to the creation of acoustic model for the assessment of equivalent noise level (Leq. The developed model for noise assessment in the Village of Kamenari in Boka Kotorska Bay quite realistically provides data on possible noise levels at the observed site, with very little deviations in relation to empirically obtained values.

  12. A robust sebum, oil, and particulate pollution model for assessing cleansing efficacy of human skin.

    Science.gov (United States)

    Peterson, G; Rapaka, S; Koski, N; Kearney, M; Ortblad, K; Tadlock, L

    2017-06-01

    With increasing concerns over the rise of atmospheric particulate pollution globally and its impact on systemic health and skin ageing, we have developed a pollution model to mimic particulate matter trapped in sebum and oils creating a robust (difficult to remove) surrogate for dirty, polluted skin. To evaluate the cleansing efficacy/protective effect of a sonic brush vs. manual cleansing against particulate pollution (trapped in grease/oil typical of human sebum). The pollution model (Sebollution; sebum pollution model; SPM) consists of atmospheric particulate matter/pollution combined with grease/oils typical of human sebum. Twenty subjects between the ages of 18-65 were enrolled in a single-centre, cleansing study comparisons between the sonic cleansing brush (normal speed) compared to manual cleansing. Equal amount of SPM was applied to the centre of each cheek (left and right). Method of cleansing (sonic vs. manual) was randomized to the side of the face (left or right) for each subject. Each side was cleansed for five-seconds using the sonic cleansing device with sensitive brush head or manually, using equal amounts of water and a gel cleanser. Photographs (VISIA-CR, Canfield Imaging, NJ, USA) were taken at baseline (before application of the SPM), after application of SPM (pre-cleansing), and following cleansing. Image analysis (ImageJ, NIH, Bethesda, MD, USA) was used to quantify colour intensity (amount of particulate pollutants on the skin) using a scale of 0 to 255 (0 = all black pixels; 255 = all white pixels). Differences between the baseline and post-cleansing values (pixels) are reported as the amount of SPM remaining following each method of cleansing. Using a robust cleansing protocol to assess removal of pollutants (SPM; atmospheric particulate matter trapped in grease/oil), the sonic brush removed significantly more SPM than manual cleansing (P pollution method easily allows assessment of efficacy through image analysis. © 2016 The Authors

  13. Modelling Particulate Removal in Tubular Wet Electrostatic Precipitators Using a Modified Drift Flux Model

    Directory of Open Access Journals (Sweden)

    S Ramechecandane

    2016-09-01

    Full Text Available Tubular electrostatic precipitators (ESP have been used in a number of chemical processing industries. The tubular ESPs have many advantages over conventional plate-plate and wire-plate ESPs. The present study is concerned with the numerical modeling of particulate removal in a tubular wet single-stage electrostatic precipitator (wESP. The geometric parameters of a model wESP and the corresponding inlet gas velocities for the wESP are chosen from available experimental data. In addition to the RNG k - ε model for the mean turbulent flow field inside the wESP, the Poisson equation for the electric field, the charge continuity equation and the concentration equation are solved sequentially to obtain a full-fledged solution to the problem under investigation. The proposed drift flux model is implemented in the opensource CFD code OpenFOAM®. The paper discusses the influence of the number of charges acquired by the particles and the corresponding inlet gas velocities on particle concentration distribution within the wESP. Two representative cases with monodispersed particles of 1 μm and 10 μm diameter are considered for the numerical analysis. It is seen from the present analysis that the number of units of charge on particles, the particle size and the inlet gas velocities play a vital role in determining the efficiency of electrostatic precipitation.

  14. Urban ecosystem modeling and global change: Potential for rational urban management and emissions mitigation

    International Nuclear Information System (INIS)

    Chen, Shaoqing; Chen, Bin; Fath, Brian D.

    2014-01-01

    Urbanization is a strong and extensive driver that causes environmental pollution and climate change from local to global scale. Modeling cities as ecosystems has been initiated by a wide range of scientists as a key to addressing challenging problems concomitant with urbanization. In this paper, ‘urban ecosystem modeling (UEM)’ is defined in an inter-disciplinary context to acquire a broad perception of urban ecological properties and their interactions with global change. Furthermore, state-of-the-art models of urban ecosystems are reviewed, categorized as top-down models (including materials/energy-oriented models and structure-oriented models), bottom-up models (including land use-oriented models and infrastructure-oriented models), or hybrid models thereof. Based on the review of UEM studies, a future framework for explicit UEM is proposed based the integration of UEM approaches of different scales, guiding more rational urban management and efficient emissions mitigation. - Highlights: • Urban ecosystems modeling (UEM) is defined in an interdisciplinary context. • State-of-the-art models for UEM are critically reviewed and compared. • An integrated framework for explicit UEM is proposed under global change. - State-of-the-art models of urban ecosystem modeling (UEM) are reviewed for rational urban management and emissions mitigation

  15. Modeling urbanization patterns with generative adversarial networks

    OpenAIRE

    Albert, Adrian; Strano, Emanuele; Kaur, Jasleen; Gonzalez, Marta

    2018-01-01

    In this study we propose a new method to simulate hyper-realistic urban patterns using Generative Adversarial Networks trained with a global urban land-use inventory. We generated a synthetic urban "universe" that qualitatively reproduces the complex spatial organization observed in global urban patterns, while being able to quantitatively recover certain key high-level urban spatial metrics.

  16. Submicron particulate organic matter in the urban atmosphere: a new method for real-time measurement, molecular-level characterization and source apportionment

    Science.gov (United States)

    Müller, Markus; Eichler, Philipp; D'Anna, Barbara; Tan, Wen; Wisthaler, Armin

    2017-04-01

    We used a novel chemical analytical method for measuring submicron particulate organic matter in the atmosphere of three European cities (Innsbruck, Lyon, Valencia). Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) was used in combination with the "chemical analysis of aerosol online" (CHARON) inlet for detecting particulate organic compounds on-line (i.e. without filter pre-collection), in real-time (1-min time resolution), at ng m-3 concentrations, with molecular-level resolution (i.e. obtaining molecular weight and elemental composition information). The CHARON-PTR-ToF-MS system monitored molecular tracers associated with different particle sources including levoglucosan from biomass combustion, PAHs from vehicular traffic, nicotine from cigarette smoking, and monoterpene oxidation products secondarily formed from biogenic emissions. The tracer information was used for interpreting positive matrix factorization (PMF) data which allowed us to apportion the sources of submicron particulate organic matter in the different urban environments. This work was funded through the PIMMS ITN, which was supported by the European Commission's 7th Framework Programme under grant agreement number 287382.

  17. Distributed models coupling soakaways, urban drainage and groundwater

    DEFF Research Database (Denmark)

    Roldin, Maria Kerstin

    in receiving waters, urban flooding etc. WSUD structures are generally small, decentralized systems intended to manage stormwater near the source. Many of these alternative techniques are based on infiltration which can affect both the urban sewer system and urban groundwater levels if widely implemented......Alternative methods for stormwater management in urban areas, also called Water Sensitive Urban Design (WSUD) methods, have become increasingly important for the mitigation of urban stormwater management problems such as high runoff volumes, combined sewage overflows, poor water quality......, and how these can be modeled in an integrated environment with distributed urban drainage and groundwater flow models. The thesis: 1. Identifies appropriate models of soakaways for use in an integrated and distributed urban water and groundwater modeling system 2. Develops a modeling concept that is able...

  18. Land-Use Regression Modelling of Intra-Urban Air Pollution Variation in China: Current Status and Future Needs

    Directory of Open Access Journals (Sweden)

    Baihuiqian He

    2018-04-01

    Full Text Available Rapid urbanization in China is leading to substantial adverse air quality issues, particularly for NO2 and particulate matter (PM. Land-use regression (LUR models are now being applied to simulate pollutant concentrations with high spatial resolution in Chinese urban areas. However, Chinese urban areas differ from those in Europe and North America, for example in respect of population density, urban morphology and pollutant emissions densities, so it is timely to assess current LUR studies in China to highlight current challenges and identify future needs. Details of twenty-four recent LUR models for NO2 and PM2.5/PM10 (particles with aerodynamic diameters <2.5 µm and <10 µm are tabulated and reviewed as the basis for discussion in this paper. We highlight that LUR modelling in China is currently constrained by a scarcity of input data, especially air pollution monitoring data. There is an urgent need for accessible archives of quality-assured measurement data and for higher spatial resolution proxy data for urban emissions, particularly in respect of traffic-related variables. The rapidly evolving nature of the Chinese urban landscape makes maintaining up-to-date land-use and urban morphology datasets a challenge. We also highlight the importance for Chinese LUR models to be subject to appropriate validation statistics. Integration of LUR with portable monitor data, remote sensing, and dispersion modelling has the potential to enhance derivation of urban pollution maps.

  19. A critical review of integrated urban water modellingUrban drainage and beyond

    DEFF Research Database (Denmark)

    Bach, Peter M.; Rauch, Wolfgang; Mikkelsen, Peter Steen

    2014-01-01

    considerations (e.g. data issues, model structure, computational and integration-related aspects), common methodology for model development (through a systems approach), calibration/optimisation and uncertainty are discussed, placing importance on pragmatism and parsimony. Integrated urban water models should......Modelling interactions in urban drainage, water supply and broader integrated urban water systems has been conceptually and logistically challenging as evidenced in a diverse body of literature, found to be confusing and intimidating to new researchers. This review consolidates thirty years...... of research (initially driven by interest in urban drainage modelling) and critically reflects upon integrated modelling in the scope of urban water systems. We propose a typology to classify integrated urban water system models at one of four ‘degrees of integration’ (followed by its exemplification). Key...

  20. Understanding complex urban systems multidisciplinary approaches to modeling

    CERN Document Server

    Gurr, Jens; Schmidt, J

    2014-01-01

    Understanding Complex Urban Systems takes as its point of departure the insight that the challenges of global urbanization and the complexity of urban systems cannot be understood – let alone ‘managed’ – by sectoral and disciplinary approaches alone. But while there has recently been significant progress in broadening and refining the methodologies for the quantitative modeling of complex urban systems, in deepening the theoretical understanding of cities as complex systems, or in illuminating the implications for urban planning, there is still a lack of well-founded conceptual thinking on the methodological foundations and the strategies of modeling urban complexity across the disciplines. Bringing together experts from the fields of urban and spatial planning, ecology, urban geography, real estate analysis, organizational cybernetics, stochastic optimization, and literary studies, as well as specialists in various systems approaches and in transdisciplinary methodologies of urban analysis, the volum...

  1. MODEL OF BRAZILIAN URBANIZATION: GENERAL NOTES

    Directory of Open Access Journals (Sweden)

    Leandro da Silva Guimarães

    2016-07-01

    Full Text Available The full text format seeks to analyze the social inequality in Brazil through the spatial process of that inequality in this sense it analyzes, scratching the edges of what is known of the Brazilian urbanization model and how this same model produced gentrification cities and exclusive. So search the text discuss the country’s urban exclusion through consolidation of what is conventionally called peripheral areas, or more generally, of peripheries. The text on screen is the result of research carried out at the Federal Fluminense University in Masters level. In this study, we tried to understand the genesis of an urban housing development located in São Gonçalo, Rio de Janeiro called Jardim Catarina. Understand what the problem space partner who originated it. In this sense, his analysis becomes consubstantial to understand the social and spatial inequalities in Brazil, as well as the role of the state as planning manager socio-spatial planning and principal agent in the solution of such problems. It is expected that with the realization of a study of greater amounts, from which this article is just a micro work can contribute subsidies that contribute to the arrangement and crystallization of public policies that give account of social inequalities and serve to leverage a country more fair and equitable cities.

  2. Impact of the global economic crisis on metal levels in particulate matter (PM) at an urban area in the Cantabria Region (Northern Spain)

    International Nuclear Information System (INIS)

    Arruti, A.; Fernandez-Olmo, I.; Irabien, A.

    2011-01-01

    Air pollution by particulate matter is well linked with anthropogenic activities; the global economic crisis that broke out in the last year may be a proper indicator of this close relationship. Some economic indicators show the regional effects of the crisis on the Cantabria Region. The present work aims to evaluate the impact of the economic crisis on PM10 levels and composition at the major city of the region, Santander. Some metals linked to anthropogenic activities were measured at Santander and studied by Positive Matrix Factorization; this statistical analysis allowed to identify three main factors: urban background, industrial and molybdenum-related factor. The main results show that the temporal trend of the levels of the industrial tracers found in the present study are well agree with the evolution of the studied economic indicators; nevertheless, the urban background tracers and PM10 concentration levels are not well correlated with the studied economic indicators. - Highlights: → The impact of the crisis is higher on the PM-bound metal levels than on the PM levels. → The crisis effects on the trace metal associated to the urban background are negligible. → The temporal trend of the industrial trace metals levels and the studied economic indicators is similar. → The crisis effects on the main industrial tracer levels in PM2.5 and PM10 are similar. - The study presents an evaluation of the economic crisis impact on PM levels and composition at a coastal urban area in the Region of Cantabria (Northern Spain).

  3. Urban airborne matter in central and southern Chile: Effects of meteorological conditions on fine and coarse particulate matter

    Science.gov (United States)

    Yáñez, Marco A.; Baettig, Ricardo; Cornejo, Jorge; Zamudio, Francisco; Guajardo, Jorge; Fica, Rodrigo

    2017-07-01

    Air pollution is one of the major global environmental problems affecting human health and life quality. Many cities of Chile are heavily polluted with PM2.5 and PM10, mainly in the cold season, and there is little understanding of how the variation in particle matter differs between cities and how this is affected by the meteorological conditions. The objective of this study was to assess the effect of meteorological variables on respirable particulate matter (PM) of the main cities in the central-south valley of Chile during the cold season (May to August) between 2014 and 2016. We used hourly PM2.5 and PMcoarse (PM10- PM2.5) information along with wind speed, temperature and relative humidity, and other variables derived from meteorological parameters. Generalized additive models (GAMs) were fitted for each of the eight cities selected, covering a latitudinal range of 929 km, from Santiago to Osorno. Great variation in PM was found between cities during the cold months, and that variation exhibited a marked latitudinal pattern. Overall, the more northerly cities tended to be less polluted in PM2.5 and more polluted in PMcoarse than the more southerly cities, and vice versa. The results show that other derived variables from meteorology were better related with PM than the use of traditional daily means. The main variables selected with regard to PM2.5 content were mean wind speed and minimum temperature (negative relationship). Otherwise, the main variables selected with regard to PMcoarse content were mean wind speed (negative), and the daily range in temperature (positive). Variables derived from relative humidity contributed differently to the models, having a higher effect on PMcoarse than PM2.5, and exhibiting both negative and positive effects. For the different cities the deviance explained by the GAMs ranged from 37.6 to 79.1% for PM2.5 and from 18.5 to 63.7% for PMcoarse. The percentage of deviance explained by the models for PM2.5 exhibited a

  4. Size distribution and sources of humic-like substances in particulate matter at an urban site during winter.

    Science.gov (United States)

    Park, Seungshik; Son, Se-Chang

    2016-01-01

    This study investigates the size distribution and possible sources of humic-like substances (HULIS) in ambient aerosol particles collected at an urban site in Gwangju, Korea during the winter of 2015. A total of 10 sets of size-segregated aerosol samples were collected using a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI), and the samples were analyzed to determine the mass as well as the presence of ionic species (Na(+), NH4(+), K(+), Ca(2+), Mg(2+), Cl(-), NO3(-), and SO4(2-)), water-soluble organic carbon (WSOC) and HULIS. The separation and quantification of the size-resolved HULIS components from the MOUDI samples was accomplished using a Hydrophilic-Lipophilic Balanced (HLB) solid phase extraction method and a total organic carbon analyzer, respectively. The entire sampling period was divided into two periods: non-Asian dust (NAD) and Asian dust (AD) periods. The contributions of water-soluble organic mass (WSOM = 1.9 × WSOC) and HULIS (=1.9 × HULIS-C) to fine particles (PM1.8) were approximately two times higher in the NAD samples (23.2 and 8.0%) than in the AD samples (12.8 and 4.2%). However, the HULIS-C/WSOC ratio in PM1.8 showed little difference between the NAD (0.35 ± 0.07) and AD (0.35 ± 0.05) samples. The HULIS exhibited a uni-modal size distribution (@0.55 μm) during NAD and a bimodal distribution (@0.32 and 1.8 μm) during AD, which was quite similar to the mass size distributions of particulate matter, WSOC, NO3(-), SO4(2-), and NH4(+) in both the NAD and AD samples. The size distribution characteristics and the results of the correlation analyses indicate that the sources of HULIS varied according to the particle size. In the fine mode (≤1.8 μm), the HULIS composition during the NAD period was strongly associated with secondary organic aerosol (SOA) formation processes similar to those of secondary ionic species (cloud processing and/or heterogeneous reactions) and primary emissions during the biomass burning period, and during

  5. An analytical model for particulate deposition on vertical heat transfer surfaces in a boiling environment

    International Nuclear Information System (INIS)

    Keefer, R.H.; Rider, J.L.; Waldman, L.A.

    1993-01-01

    A frequent problem in heat exchange equipment is the deposition of particulates entrained in the working fluid onto heat transfer surfaces. These deposits increase the overall heat transfer resistance and can significantly degrade the performance of the heat exchanger. Accurate prediction of the deposition rate is necessary to ensure that the design and specified operating conditions of the heat exchanger adequately address the effects of this deposit layer. Although the deposition process has been studied in considerable detail, much of the work has focused on investigating individual aspects of the deposition process. This paper consolidates this previous research into a mechanistically based analytical prediction model for particulate deposition from a boiling liquid onto vertical heat transfer surfaces. Consistent with the well known Kern-Seaton approach, the model postulates net particulate accumulation to depend on the relative contributions of deposition and reentrainment processes. Mechanisms for deposition include boiling, momentum, and diffusion effects. Reentrainment is presumed to occur via an intermittent erosion process, with the energy for particle removal being supplied by turbulent flow instabilities. The contributions of these individual mechanisms are integrated to obtain a single equation for the deposit thickness versus time. The validity of the resulting model is demonstrated by comparison with data published in the open literature. Model estimates show good agreement with data obtained over a range of thermal-hydraulic conditions in both flow and pool boiling environments. The utility of the model in performing parametric studies (e.g. to determine the effect of flow velocity on net deposition) is also demonstrated. The initial success of the model suggests that it could prove useful in establishing a range of heat exchanger. operating conditions to minimize deposition

  6. Urban farming model in South Jakarta

    Science.gov (United States)

    Indrawati, E.

    2018-01-01

    The development of infrastructure rapidly, large of population and large of urbanization. Meanwhile, agricultural land is decreasing and agricultural production continues to decline. The productive crops is needed for consumption and it is also to improve the environment from oxygen provisioning, antidote to air pollution and to improve soil conditions. The use of yard land for horticultural crops (vegetables, fruits and ornamental plants), spices, medicines, herbs etc. can benefit for the owners of the yard particularly and the general public. The purpose of this research is to identify the model of home yard utilization, mosque yard, office, school, urban park and main road and sub main road, which can improve environmental quality in Pesanggrahan district. The method of analysis used descriptive analysis method by observation. Then analyzed the percentage of the use of yard with productive crops as urban farming. The results showed that the most productive crops were planted in Kelurahan Pesanggrahan 67% which compared with in Kelurahan Ulujami 47%, and in Kelurahan Petukangan Utara 27%. The most types of productive crops were grown as fruit trees and vegetable crops.

  7. Unstructured mesh adaptivity for urban flooding modelling

    Science.gov (United States)

    Hu, R.; Fang, F.; Salinas, P.; Pain, C. C.

    2018-05-01

    Over the past few decades, urban floods have been gaining more attention due to their increase in frequency. To provide reliable flooding predictions in urban areas, various numerical models have been developed to perform high-resolution flood simulations. However, the use of high-resolution meshes across the whole computational domain causes a high computational burden. In this paper, a 2D control-volume and finite-element flood model using adaptive unstructured mesh technology has been developed. This adaptive unstructured mesh technique enables meshes to be adapted optimally in time and space in response to the evolving flow features, thus providing sufficient mesh resolution where and when it is required. It has the advantage of capturing the details of local flows and wetting and drying front while reducing the computational cost. Complex topographic features are represented accurately during the flooding process. For example, the high-resolution meshes around the buildings and steep regions are placed when the flooding water reaches these regions. In this work a flooding event that happened in 2002 in Glasgow, Scotland, United Kingdom has been simulated to demonstrate the capability of the adaptive unstructured mesh flooding model. The simulations have been performed using both fixed and adaptive unstructured meshes, and then results have been compared with those published 2D and 3D results. The presented method shows that the 2D adaptive mesh model provides accurate results while having a low computational cost.

  8. A health-based assessment of particulate air pollution in urban areas of Beijing in 2000-2004

    International Nuclear Information System (INIS)

    Zhang Minsi; Song Yu; Cai Xuhui

    2007-01-01

    Particulate air pollution is a serious problem in Beijing. The annual concentration of particulate matter with aerodynamic diameter less than 10 μm (PM 10 ), ranging from 141 to 166 μg m -3 in 2000-2004, could be very harmful to human health. In this paper, we presented the mortality and morbidity effects of PM 10 pollution based on statistical data and the epidemiological exposure-response function. The economic costs to health during the 5 years were estimated to lie between US$1670 and $3655 million annually, accounting for about 6.55% of Beijing's gross domestic product each year. The total costs were apportioned into two parts caused by: the local emissions and long-range transported pollution. The contribution from local emissions dominated the total costs, accounting on average for 3.60% of GDP. However, the contributions from transported pollution cannot be neglected, and the relative percentage to the total costs from the other regions could account for about 45%. An energy policy and effective measures should be proposed to reduce particulate matter, especially PM 2.5 pollution in Beijing to protect public health. The Beijing government also needs to cooperate with the other local governments to reduce high background level of particulate air pollution

  9. Assessing atmospheric particulate matter distribution based on Saturation Isothermal Remanent Magnetization of herbaceous and tree leaves in a tropical urban environment.

    Science.gov (United States)

    Barima, Yao Sadaiou Sabas; Angaman, Djédoux Maxime; N'gouran, Kobenan Pierre; Koffi, N'guessan Achille; Kardel, Fatemeh; De Cannière, Charles; Samson, Roeland

    2014-02-01

    Particulate matter (PM) emissions, and the associated human health risks, are likely to continue increasing in urban environments of developing countries like Abidjan (Ivory Cost). This study evaluated the potential of leaves of several herbaceous and tree species as bioindicators of urban particulate matter pollution, and its variation over different land use classes, in a tropical area. Four species well distributed (presence frequencies >90%) over all land use classes, easy to harvest and whose leaves are wide enough to be easily scanned were selected, i.e.: Amaranthus spinosus (Amaranthaceae), Eleusine indica (Poaceae), Panicum maximum (Poaceae) and Ficus benjamina (Moraceae). Leaf sampling of these species was carried out at 3 distances from the road and at 3 height levels. Traffic density was also noted and finally biomagnetic parameters of these leaves were determined. Results showed that Saturation Isothermal Remanent Magnetization (SIRM) of leaves was at least 4 times higher (27.5×10(-6)A) in the vicinity of main roads and industrial areas than in parks and residential areas. The main potential sources of PM pollution were motor vehicles and industries. The slightly hairy leaves of the herbaceous plant A. spinosus and the waxy leaves of the tree F. benjamina showed the highest SIRM (25×10(-6)A). Leaf SIRM increased with distance to road (R(2)>0.40) and declined with sampling height (R(2)=0.17). The distance between 0 and 5m from the road seemed to be the most vulnerable in terms of PM pollution. This study has showed that leaf SIRM of herbaceous and tree species can be used to assess PM exposure in tropical urban environments. © 2013.

  10. Radiative-Transfer Modeling of Spectra of Densely Packed Particulate Media

    Science.gov (United States)

    Ito, G.; Mishchenko, M. I.; Glotch, T. D.

    2017-12-01

    Remote sensing measurements over a wide range of wavelengths from both ground- and space-based platforms have provided a wealth of data regarding the surfaces and atmospheres of various solar system bodies. With proper interpretations, important properties, such as composition and particle size, can be inferred. However, proper interpretation of such datasets can often be difficult, especially for densely packed particulate media with particle sizes on the order of wavelength of light being used for remote sensing. Radiative transfer theory has often been applied to the study of densely packed particulate media like planetary regoliths and snow, but with difficulty, and here we continue to investigate radiative transfer modeling of spectra of densely packed media. We use the superposition T-matrix method to compute scattering properties of clusters of particles and capture the near-field effects important for dense packing. Then, the scattering parameters from the T-matrix computations are modified with the static structure factor correction, accounting for the dense packing of the clusters themselves. Using these corrected scattering parameters, reflectance (or emissivity via Kirchhoff's Law) is computed with the method of invariance imbedding solution to the radiative transfer equation. For this work we modeled the emissivity spectrum of the 3.3 µm particle size fraction of enstatite, representing some common mineralogical and particle size components of regoliths, in the mid-infrared wavelengths (5 - 50 µm). The modeled spectrum from the T-matrix method with static structure factor correction using moderate packing densities (filling factors of 0.1 - 0.2) produced better fits to the laboratory measurement of corresponding spectrum than the spectrum modeled by the equivalent method without static structure factor correction. Future work will test the method of the superposition T-matrix and static structure factor correction combination for larger particles

  11. Bayesian spatio-temporal modeling of particulate matter concentrations in Peninsular Malaysia

    Science.gov (United States)

    Manga, Edna; Awang, Norhashidah

    2016-06-01

    This article presents an application of a Bayesian spatio-temporal Gaussian process (GP) model on particulate matter concentrations from Peninsular Malaysia. We analyze daily PM10 concentration levels from 35 monitoring sites in June and July 2011. The spatiotemporal model set in a Bayesian hierarchical framework allows for inclusion of informative covariates, meteorological variables and spatiotemporal interactions. Posterior density estimates of the model parameters are obtained by Markov chain Monte Carlo methods. Preliminary data analysis indicate information on PM10 levels at sites classified as industrial locations could explain part of the space time variations. We include the site-type indicator in our modeling efforts. Results of the parameter estimates for the fitted GP model show significant spatio-temporal structure and positive effect of the location-type explanatory variable. We also compute some validation criteria for the out of sample sites that show the adequacy of the model for predicting PM10 at unmonitored sites.

  12. Particulate Matter Resuspension in Mississippi Bight Evaluated with CONCORDE's Synthesis Model

    Science.gov (United States)

    O'Brien, S. J.; Quas, L. M.; Miles, T. N.; Pan, C.; Cambazoglu, M. K.; Soto Ramos, I. M.; Greer, A. T.; Church, I.; Wiggert, J. D.

    2017-12-01

    The CONsortium for oil spill exposure pathways in COastal River-Dominated Ecosystems (CONCORDE) was established to investigate the complex fine-scale biological, chemical and physical interactions in a marine system controlled by pulsed-river plume dynamics. During CONCORDE's spring 2016 field campaign, the In Situ Ichthyoplankton Imaging System (ISIIS) on the R/V Point Sur and the Scanfish on the R/V Pelican comprehensively characterized the physical and biological structure in the region. Increased suspended particulate matter was observed by the ISIIS, with concentrations at depth sufficient to completely occlude the in situ images of planktonic organisms. Data was also collected on the continental shelf during the spring cruise by the RU31 glider in the proximity of the Mississippi River Delta, east of the ISIIS / Scanfish transects. Backscatter and salinity observed by the Scanfish and glider showed elevated suspended particulate matter and increased salinity, suggesting a linkage to shoreward advection from the continental shelf of oceanic waters that are sufficiently energetic to drive sediment resuspension. As part of the CONCORDE research effort, a four-dimensional biogeochemical/lower trophic level synthesis model for Mississippi Sound and Bight has been developed, based on the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System. This study utilizes CONCORDE's synthesis model to investigate the physical forcing mechanisms affecting the increased suspended particulate matter concentration observed in the Mississippi Bight during spring 2016, and advection pathways between estuarine and shelf waters in the northern Gulf of Mexico. The results show that episodic, advection-driven resuspension is a critical aspect controlling suspended sediment distributions in Mississippi Bight, which has implications for observed spatio-temporal patterns of planktonic species.

  13. The Urban Forest Effects (UFORE) model: quantifying urban forest structure and functions

    Science.gov (United States)

    David J. Nowak; Daniel E. Crane

    2000-01-01

    The Urban Forest Effects (UFORE) computer model was developed to help managers and researchers quantify urban forest structure and functions. The model quantifies species composition and diversity, diameter distribution, tree density and health, leaf area, leaf biomass, and other structural characteristics; hourly volatile organic compound emissions (emissions that...

  14. Evaluation of models of particulate suspension for a thorium ore stockpile

    International Nuclear Information System (INIS)

    Smith, W.J.

    1983-01-01

    Fifteen mathematical models of particle saltation, suspension, and resuspension were reviewed and categorized. Appropriate models were applied to the estimation of particulate releases from a hypothetical thorium ore storage pile. An assumed location (near Lemhi Pass, Montana) was used to permit the development of site specific information on ore characteristics and environmental influences. The available models were characterized in terms of suitability for representing aspects of the ore pile, such as rough surface features, wide particle size range, and site specific climate. Five models were selected for detailed study. A computer code for each of these is given. Site specific data for the assumed ore stockpile location were prepared. These data were manipulated to provide the input values required for each of the five models. Representative values and ranges for model variables are tabulated. The response of each model to input data for selected variables was determined. Each model was evaluated in terms of the physical realism of its response of each model to input data for selected variables was determined. Each model was evaluated in terms of the physical realism of its responses and its overall ability to represent the features of an ore stockpile. The two models providing the best representation were a modified version of the dust suspension subroutine TAILPS from the computer code MILDOS, and the dust suspension formulation from the computer code REDIST. Their responses are physically reasonable, although different from each other for two parameters: ore moisture and surface roughness. With the input values judged most representative of an ore pile near Lemhi Pass, the estimate of the release of suspended particulates is on the order of 1 g/m 2 -yr

  15. Modeling Urban Spatial Growth in Mountainous Regions of Western China

    Directory of Open Access Journals (Sweden)

    Guoping Huang

    2017-08-01

    Full Text Available The scale and speed of urbanization in the mountainous regions of western China have received little attention from researchers. These cities are facing rapid population growth and severe environmental degradation. This study analyzed historical urban growth trends in this mountainous region to better understand the interaction between the spatial growth pattern and the mountainous topography. Three major factors—slope, accessibility, and land use type—were studied in light of their relationships with urban spatial growth. With the analysis of historical data as the basis, a conceptual urban spatial growth model was devised. In this model, slope, accessibility, and land use type together create resistance to urban growth, while accessibility controls the sequence of urban development. The model was tested and evaluated using historical data. It serves as a potential tool for planners to envision and assess future urban growth scenarios and their potential environmental impacts to make informed decisions.

  16. Characterization of the particulate air pollution in contrasted mega cities

    International Nuclear Information System (INIS)

    Favez, O.

    2008-02-01

    This work aims at characterizing the physics and the chemistry that govern particulate air pollution in two mega cities (Paris and Cairo) for which the size distribution and the chemical composition of airborne particles were poorly documented. Seasonal variations of the main aerosol sources and transformation processes are investigated in these two urban centres, with a particular attention to semi-volatile material and secondary organic aerosols. Short-term health effects of Paris size-segregated aerosols, as well as particulate pollution during the Cairo 'Black Cloud' season, are also emphasized here. Finally, the comparison of results obtained for the two mega cities and for another one (Beijing) allows investigating main factors responsible for particulate air pollution in urban centres with contrasted climatic conditions and development levels. Notably, this work also allows the build-up of an experimental dataset which is now available for the modelling of urban air quality and of environmental impacts of mega city air pollution. (author)

  17. Global Particulate Matter Source Apportionment

    Science.gov (United States)

    Lamancusa, C.; Wagstrom, K.

    2017-12-01

    As our global society develops and grows it is necessary to better understand the impacts and nuances of atmospheric chemistry, in particular those associated with atmospheric particulate matter. We have developed a source apportionment scheme for the GEOS-Chem global atmospheric chemical transport model. While these approaches have existed for several years in regional chemical transport models, the Global Particulate Matter Source Apportionment Technology (GPSAT) represents the first incorporation into a global chemical transport model. GPSAT runs in parallel to a standard GEOS-Chem run. GPSAT uses the fact that all molecules of a given species have the same probability of undergoing any given process as a core principle. This allows GPSAT to track many different species using only the flux information provided by GEOS-Chem's many processes. GPSAT accounts for the change in source specific concentrations as a result of aqueous and gas-phase chemistry, horizontal and vertical transport, condensation and evaporation on particulate matter, emissions, and wet and dry deposition. By using fluxes, GPSAT minimizes computational cost by circumventing the computationally costly chemistry and transport solvers. GPSAT will allow researchers to address many pertinent research questions about global particulate matter including the global impact of emissions from different source regions and the climate impacts from different source types and regions. For this first application of GPSAT, we investigate the contribution of the twenty largest urban areas worldwide to global particulate matter concentrations. The species investigated include: ammonium, nitrates, sulfates, and the secondary organic aerosols formed by the oxidation of benzene, isoprene, and terpenes. While GPSAT is not yet publically available, we will incorporate it into a future standard release of GEOS-Chem so that all GEOS-Chem users will have access to this new tool.

  18. Modeling Global Urbanization Supported by Nighttime Light Remote Sensing

    Science.gov (United States)

    Zhou, Y.

    2015-12-01

    Urbanization, a major driver of global change, profoundly impacts our physical and social world, for example, altering carbon cycling and climate. Understanding these consequences for better scientific insights and effective decision-making unarguably requires accurate information on urban extent and its spatial distributions. In this study, we developed a cluster-based method to estimate the optimal thresholds and map urban extents from the nighttime light remote sensing data, extended this method to the global domain by developing a computational method (parameterization) to estimate the key parameters in the cluster-based method, and built a consistent 20-year global urban map series to evaluate the time-reactive nature of global urbanization (e.g. 2000 in Fig. 1). Supported by urban maps derived from nightlights remote sensing data and socio-economic drivers, we developed an integrated modeling framework to project future urban expansion by integrating a top-down macro-scale statistical model with a bottom-up urban growth model. With the models calibrated and validated using historical data, we explored urban growth at the grid level (1-km) over the next two decades under a number of socio-economic scenarios. The derived spatiotemporal information of historical and potential future urbanization will be of great value with practical implications for developing adaptation and risk management measures for urban infrastructure, transportation, energy, and water systems when considered together with other factors such as climate variability and change, and high impact weather events.

  19. An optimum city size? The scaling relationship for urban population and fine particulate (PM_2_._5) concentration

    International Nuclear Information System (INIS)

    Han, Lijian; Zhou, Weiqi; Pickett, Steward T.A.; Li, Weifeng; Li, Li

    2016-01-01

    We utilize the distribution of PM_2_._5 concentration and population in large cities at the global scale to illustrate the relationship between urbanization and urban air quality. We found: 1) The relationship varies greatly among continents and countries. Large cities in North America, Europe, and Latin America have better air quality than those in other continents, while those in China and India have the worst air quality. 2) The relationships between urban population size and PM_2_._5 concentration in large cities of different continents or countries were different. PM_2_._5 concentration in large cities in North America, Europe, and Latin America showed little fluctuation or a small increasing trend, but those in Africa and India represent a “U” type relationship and in China represent an inverse “U” type relationship. 3) The potential contribution of population to PM_2_._5 concentration was higher in the large cities in China and India, but lower in other large cities. - Highlights: • Urban population and PM_2_._5 concentration varies greatly among regions. • Urban population size increase does not always enhances PM_2_._5 concentration. • Population's potential contribution to PM_2_._5 concentration higher in China. - We utilize the distribution of PM_2_._5 concentration and population in large cities at the global scale to illustrate the relationship between urbanization and urban air quality.

  20. Urban Land Allocation Model of Territorial Expansion by Urban Planners and Housing Developers

    Directory of Open Access Journals (Sweden)

    Carolina Cantergiani

    2017-12-01

    Full Text Available Agent-based models have recently been proposed as potential tools to support urban planning due to their capacity to simulate complex behaviors. The complexity of the urban development process arises from strong interactions between various components driven by different agents. AMEBA (agent-based model for the evolution of urban areas is a prototype of an exploratory, spatial, agent-based model that considers the main agents involved in the urban development process (urban planners, developers, and the population. The prototype consists of three submodels (one for each agent that have been developed independently and present the same structure. However, the first two are based on a land use allocation technique, and the last one, as well as their integration, on an agent-based model approach. This paper describes the conceptualization and performance of the submodels that represent urban planners and developers, who are the agents responsible for officially launching expansion and defining the spatial allocation of urban land. The prototype was tested in the Corredor del Henares (an urban–industrial area in the Region of Madrid, Spain, but is sufficiently flexible to be adapted to other study areas and generate different future urban growth contexts. The results demonstrate that this combination of agents can be used to explore various policy-relevant research questions, including urban system interactions in adverse political and socioeconomic scenarios.

  1. Modeling urban growth in Kigali city Rwanda

    African Journals Online (AJOL)

    kagoyire

    industrialization, land consumption and infrastructural development, have impacted ..... urban growth (reference image) and urban development predicted to the ..... neighboring characteristics (regular water and electricity provision) were not ...

  2. Approximation auto-coherente a deux particules, pseudogap et supraconductivite dans le modele de Hubbard attractif

    Science.gov (United States)

    Allen, Steve

    2000-10-01

    Dans cette these nous presentons une nouvelle methode non perturbative pour le calcul des proprietes d'un systeme de fermions. Notre methode generalise l'approximation auto-coherente a deux particules proposee par Vilk et Tremblay pour le modele de Hubbard repulsif. Notre methode peut s'appliquer a l'etude du comportement pre-critique lorsque la symetrie du parametre d'ordre est suffisamment elevee. Nous appliquons la methode au probleme du pseudogap dans le modele de Hubbard attractif. Nos resultats montrent un excellent accord avec les donnees Monte Carlo pour de petits systemes. Nous observons que le regime ou apparait le pseudogap dans le poids spectral a une particule est un regime classique renormalise caracterise par une frequence caracteristique des fluctuations supraconductrices inferieure a la temperature. Une autre caracteristique est la faible densite de superfluide de cette phase demontrant que nous ne sommes pas en presence de paires preformees. Les resultats obtenus semblent montrer que la haute symetrie du parametre d'ordre et la bidimensionalite du systeme etudie elargissent le domaine de temperature pour lequel le regime pseudogap est observe. Nous argumentons que ce resultat est transposable aux supraconducteurs a haute temperature critique ou le pseudogap apparait a des' temperatures beaucoup plus grandes que la temperature critique. La forte symetrie dans ces systemes pourraient etre reliee a la theorie SO(5) de Zhang. En annexe, nous demontrons un resultat tout recent qui permettrait d'assurer l'auto-coherence entre les proprietes a une et a deux particules par l'ajout d'une dynamique au vertex irreductible. Cet ajout laisse entrevoir la possibilite d'etendre la methode au cas d'une forte interaction.

  3. The use of neutron activation analysis for particle size fractionation and chemical characterization of trace elements in urban air particulate matter

    International Nuclear Information System (INIS)

    Rizzio, E.; Bergamaschi, G.; Profumo, A.; Gallorini, M.

    2001-01-01

    The concentration of more than 25 trace elements have been determined in total air particulate matter and in the size segregated fractions from the urban area of Pavia (North Italy). The PM10 fraction was also collected and analyzed. A study of the solubility in water and in physiological solution of the trace elements contained in the PM10 was also carried out. The resulting solutions were further submitted to column chromatography using Chelex 100 to perform a preliminary chemical characterization. INAA was used as the main analytical technique. ET-AAS was used for all Pb and Cd measurements and, in some cases, for the analysis of V, Mn, Cu and Ni. (author)

  4. Urban eco-efficiency and system dynamics modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hradil, P., Email: petr.hradil@vtt.fi

    2012-06-15

    Assessment of urban development is generally based on static models of economic, social or environmental impacts. More advanced dynamic models have been used mostly for prediction of population and employment changes as well as for other macro-economic issues. This feasibility study was arranged to test the potential of system dynamic modelling in assessing eco-efficiency changes during urban development. (orig.)

  5. Modeling Urban Collaborative Growth Dynamics Using a Multiscale Simulation Model for the Wuhan Urban Agglomeration Area, China

    Directory of Open Access Journals (Sweden)

    Yan Yu

    2018-05-01

    Full Text Available Urban agglomeration has become the predominant form of urbanization in China. In this process, spatial interaction evidently played a significant role in promoting the collaborative development of these correlated cities. The traditional urban model’s focus on individual cities should be transformed to an urban system model. In this study, a multi-scale simulation model has been proposed to simulate the agglomeration development process of the Wuhan urban agglomeration area by embedding the multi-scale spatial interaction into the transition rule system of cellular automata (CA. A system dynamic model was used to predict the demand for new urban land at an aggregated urban agglomeration area scale. A data field approach was adopted to measuring the interaction of intercity at city scale. Neighborhood interaction was interpreted with a logistic regression method at the land parcel scale. Land use data from 1995, 2005, and 2015 were used to calibrate and evaluate the model. The simulation results show that there has been continuing urban growth in the Wuhan urban agglomeration area from 1995 to 2020. Although extension-sprawl was the predominant pattern of urban spatial expansion, the trend of extensive growth to intensive growth is clear during the entire period. The spatial interaction among these cities has been reinforced, which guided the collaborative development and formed the regional urban system network.

  6. Considerations for modeling small-particulate impacts from surface coal-mining operations based on wind-tunnel simulations

    Energy Technology Data Exchange (ETDEWEB)

    Perry, S.G.; Petersen, W.B. [Air Resources Lab., Research Triangle Park, NC (United States); Thompson, R.S. [Atmospheric Research and Exposure Assessment Lab., Research Triangle Park, NC (United States)

    1994-12-31

    The Clean Air Act Amendments of 1990 provide for a reexamination of the current Environmental Protection Agency`s (USEPA) methods for modeling fugitive particulate (PM10) from open-pit, surface coal mines. The Industrial Source Complex Model (ISCST2) is specifically named as the method that needs further study. Title II, Part B, Section 234 of the Amendments states that {open_quotes}...the Administrator shall analyze the accuracy of such model and emission factors and make revisions as may be necessary to eliminate any significant over-predictions of air quality effect of fugitive particulate emissions from such sources.{close_quotes}

  7. Modelling of particulate matter concentrations and source contributions in the Helsinki Metropolitan Area in 2008 and 2010

    NARCIS (Netherlands)

    Aarnio, M.A.; Kukkonen, J.; Kangas, L.; Kauhaniemi, M.; Kousa, A.; Hendriks, C.; Yli-Tuomi, T.; Lanki, T.; Hoek, G.; Brunekreef, B.; Elolähde, T.; Karppinen, A.

    2016-01-01

    We refined an urban-scale dispersion modelling system by adding a road dust suspension model, FORE. The deterministic modelling includes both vehicular exhaust emissions (including cold start and cold driving) and suspended road dust. The urban scale modelling system was used in combination with the

  8. Modelling of particulate matter concentrations and source contributions in the Helsinki Metropolitan Area in 2008 and 2010.

    NARCIS (Netherlands)

    Aarnio, M.A.; Kukkonen, J.; Kangas, L.; Kauhaniemi, M.; Kousa, A.; Hendriks, C.; Yli-Tuomi, T.; Lanki, T.; Hoek, G.; Brunekreef, B.; Elolähde, T.; Karppinen, A.

    2016-01-01

    We refined an urban-scale dispersion modelling system by adding a road dust suspension model, FORE. The deterministic modelling includes both vehicular exhaust emissions (including cold start and cold driving) and suspended road dust. The urban scale modelling system was used in combination with the

  9. Incorporating wind availability into land use regression modelling of air quality in mountainous high-density urban environment.

    Science.gov (United States)

    Shi, Yuan; Lau, Kevin Ka-Lun; Ng, Edward

    2017-08-01

    Urban air quality serves as an important function of the quality of urban life. Land use regression (LUR) modelling of air quality is essential for conducting health impacts assessment but more challenging in mountainous high-density urban scenario due to the complexities of the urban environment. In this study, a total of 21 LUR models are developed for seven kinds of air pollutants (gaseous air pollutants CO, NO 2 , NO x , O 3 , SO 2 and particulate air pollutants PM 2.5 , PM 10 ) with reference to three different time periods (summertime, wintertime and annual average of 5-year long-term hourly monitoring data from local air quality monitoring network) in Hong Kong. Under the mountainous high-density urban scenario, we improved the traditional LUR modelling method by incorporating wind availability information into LUR modelling based on surface geomorphometrical analysis. As a result, 269 independent variables were examined to develop the LUR models by using the "ADDRESS" independent variable selection method and stepwise multiple linear regression (MLR). Cross validation has been performed for each resultant model. The results show that wind-related variables are included in most of the resultant models as statistically significant independent variables. Compared with the traditional method, a maximum increase of 20% was achieved in the prediction performance of annual averaged NO 2 concentration level by incorporating wind-related variables into LUR model development. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Modelling the impact of Water Sensitive Urban Design technologies on the urban water cycle

    DEFF Research Database (Denmark)

    Locatelli, Luca

    Alternative stormwater management approaches for urban developments, also called Water Sensitive Urban Design (WSUD), are increasingly being adopted with the aims of providing flood control, flow management, water quality improvements and opportunities to harvest stormwater for non-potable uses....... To model the interaction of infiltration based WSUDs with groundwater. 4. To assess a new combination of different WSUD techniques for improved stormwater management. 5. To model the impact of a widespread implementation of multiple soakaway systems at the catchment scale. 6. Test the models by simulating...... the hydrological performance of single devices relevant for urban drainage applications. Moreover, the coupling of soakaway and detention storages is also modeled to analyze the benefits of combining different local stormwater management systems. These models are then integrated into urban drainage network models...

  11. Modeling Exposure to Heat Stress with a Simple Urban Model

    Directory of Open Access Journals (Sweden)

    Peter Hoffmann

    2018-01-01

    Full Text Available As a first step in modeling health-related urban well-being (UrbWellth, a mathematical model is constructed that dynamically simulates heat stress exposure of commuters in an idealized city. This is done by coupling the Simple Urban Radiation Model (SURM, which computes the mean radiant temperature ( T m r t , with a newly developed multi-class multi-mode traffic model. Simulation results with parameters chosen for the city of Hamburg for a hot summer day show that commuters are potentially most exposed to heat stress in the early afternoon when T m r t has its maximum. Varying the morphology with respect to street width and building height shows that a more compact city configuration reduces T m r t and therefore the exposure to heat stress. The impact resulting from changes in the city structure on traffic is simulated to determine the time spent outside during the commute. While the time in traffic jams increases for compact cities, the total commuting time decreases due to shorter distances between home and work place. Concerning adaptation measures, it is shown that increases in the albedo of the urban surfaces lead to an increase in daytime heat stress. Dramatic increases in heat stress exposure are found when both, wall and street albedo, are increased.

  12. Correlation analysis of the urban heat island effect and the spatial and temporal distribution of atmospheric particulates using TM images in Beijing

    International Nuclear Information System (INIS)

    Xu, L.Y.; Xie, X.D.; Li, S.

    2013-01-01

    This study combines the methods of observation statistics and remote sensing retrieval, using remote sensing information including the urban heat island (UHI) intensity index, the normalized difference vegetation index (NDVI), the normalized difference water index (NDWI), and the difference vegetation index (DVI) to analyze the correlation between the urban heat island effect and the spatial and temporal concentration distributions of atmospheric particulates in Beijing. The analysis establishes (1) a direct correlation between UHI and DVI; (2) an indirect correlation among UHI, NDWI and DVI; and (3) an indirect correlation among UHI, NDVI, and DVI. The results proved the existence of three correlation types with regional and seasonal effects and revealed an interesting correlation between UHI and DVI, that is, if UHI is below 0.1, then DVI increases with the increase in UHI, and vice versa. Also, DVI changes more with UHI in the two middle zones of Beijing. -- Highlights: •We analyze the correlation from the spatial and temporal views. •We present correlation analyses among UHI, NDWI, NDVI, and DVI from three perspectives. •Three correlations are proven to exist with regional and seasonal effects. •If UHI is below 0.1, then DVI increases with the increase in UHI, and vice versa. •The DVI changes more with UHI in the two middle zones of Beijing. -- Generally, if UHI is below 0.1 in the weak heat island or green island range, then DVI increases with the increase in UHI, and vice versa

  13. [Hazard evaluation modeling of particulate matters emitted by coal-fired boilers and case analysis].

    Science.gov (United States)

    Shi, Yan-Ting; Du, Qian; Gao, Jian-Min; Bian, Xin; Wang, Zhi-Pu; Dong, He-Ming; Han, Qiang; Cao, Yang

    2014-02-01

    In order to evaluate the hazard of PM2.5 emitted by various boilers, in this paper, segmentation of particulate matters with sizes of below 2. 5 microm was performed based on their formation mechanisms and hazard level to human beings and environment. Meanwhile, taking into account the mass concentration, number concentration, enrichment factor of Hg, and content of Hg element in different coal ashes, a comprehensive model aimed at evaluating hazard of PM2.5 emitted by coal-fired boilers was established in this paper. Finally, through utilizing filed experimental data of previous literatures, a case analysis of the evaluation model was conducted, and the concept of hazard reduction coefficient was proposed, which can be used to evaluate the performance of dust removers.

  14. Prenatal particulate air pollution exposure and body composition in urban preschool children: Examining sensitive windows and sex-specific associations.

    Science.gov (United States)

    Chiu, Yueh-Hsiu Mathilda; Hsu, Hsiao-Hsien Leon; Wilson, Ander; Coull, Brent A; Pendo, Mathew P; Baccarelli, Andrea; Kloog, Itai; Schwartz, Joel; Wright, Robert O; Taveras, Elsie M; Wright, Rosalind J

    2017-10-01

    Evolving animal studies and limited epidemiological data show that prenatal air pollution exposure is associated with childhood obesity. Timing of exposure and child sex may play an important role in these associations. We applied an innovative method to examine sex-specific sensitive prenatal windows of exposure to PM 2.5 on anthropometric measures in preschool-aged children. Analyses included 239 children born ≥ 37 weeks gestation in an ethnically-mixed lower-income urban birth cohort. Prenatal daily PM 2.5 exposure was estimated using a validated satellite-based spatio-temporal model. Body mass index z-score (BMI-z), fat mass, % body fat, subscapular and triceps skinfold thickness, waist and hip circumferences and waist-to-hip ratio (WHR) were assessed at age 4.0 ± 0.7 years. Using Bayesian distributed lag interaction models (BDLIMs), we examined sex differences in sensitive windows of weekly averaged PM 2.5 levels on these measures, adjusting for child age, maternal age, education, race/ethnicity, and pre-pregnancy BMI. Mothers were primarily Hispanic (55%) or Black (26%), had ≤ 12 years of education (66%) and never smoked (80%). Increased PM 2.5 exposure 8-17 and 15-22 weeks gestation was significantly associated with increased BMI z-scores and fat mass in boys, but not in girls. Higher PM 2.5 exposure 10-29 weeks gestation was significantly associated with increased WHR in girls, but not in boys. Prenatal PM 2.5 was not significantly associated with other measures of body composition. Estimated cumulative effects across pregnancy, accounting for sensitive windows and within-window effects, were 0.21 (95%CI = 0.01-0.37) for BMI-z and 0.36 (95%CI = 0.12-0.68) for fat mass (kg) in boys, and 0.02 (95%CI = 0.01-0.03) for WHR in girls, all per µg/m 3 increase in PM 2.5 . Increased prenatal PM 2.5 exposure was more strongly associated with indices of increased whole body size in boys and with an indicator of body shape in girls. Methods to better characterize

  15. Large urban fire environment: trends and model city predictions

    International Nuclear Information System (INIS)

    Larson, D.A.; Small, R.D.

    1983-01-01

    The urban fire environment that would result from a megaton-yield nuclear weapon burst is considered. The dependence of temperatures and velocities on fire size, burning intensity, turbulence, and radiation is explored, and specific calculations for three model urban areas are presented. In all cases, high velocity fire winds are predicted. The model-city results show the influence of building density and urban sprawl on the fire environment. Additional calculations consider large-area fires with the burning intensity reduced in a blast-damaged urban center

  16. 3D Urban Virtual Models generation methodology for smart cities

    Directory of Open Access Journals (Sweden)

    M. Álvarez

    2018-04-01

    Full Text Available Currently the use of Urban 3D Models goes beyond the mere support of three-dimensional image for the visualization of our urban surroundings. The three-dimensional Urban Models are in themselves fundamental tools to manage the different phenomena that occur in smart cities. It is therefore necessary to generate realistic models, in which BIM building design information can be integrated with GIS and other space technologies. The generation of 3D Urban Models benefit from the amount of data from sensors with the latest technologies such as airborne sensors and of the existence of international standards such as CityGML. This paper presents a methodology for the development of a three - dimensional Urban Model, based on LiDAR data and the CityGML standard, applied to the city of Lorca.

  17. Assessment of Urban Ecosystem Health Based on Entropy Weight Extension Decision Model in Urban Agglomeration

    Directory of Open Access Journals (Sweden)

    Qian Yang

    2016-08-01

    Full Text Available Urban ecosystem health evaluation can assist in sustainable ecological management at a regional level. This study examined urban agglomeration ecosystem health in the middle reaches of the Yangtze River with entropy weight and extension theories. The model overcomes information omissions and subjectivity problems in the evaluation process of urban ecosystem health. Results showed that human capital and education, economic development level as well as urban infrastructure have a significant effect on the health states of urban agglomerations. The health status of the urban agglomeration’s ecosystem was not optimistic in 2013. The majority of the cities were unhealthy or verging on unhealthy, accounting for 64.52% of the total number of cities in the urban agglomeration. The regional differences of the 31 cities’ ecosystem health are significant. The cause originated from an imbalance in economic development and the policy guidance of city development. It is necessary to speed up the integration process to promote coordinated regional development. The present study will aid us in understanding and advancing the health situation of the urban ecosystem in the middle reaches of the Yangtze River and will provide an efficient urban ecosystem health evaluation method that can be used in other areas.

  18. EPA Supersites Program-related emissions-based particulate matter modeling: initial applications and advances.

    Science.gov (United States)

    Russell, Armistead G

    2008-02-01

    One objective of the U.S. Environmental Protection Agency's (EPA's) Supersite Program was to provide data that could be used to more thoroughly evaluate and improve air quality models, and then have those models used to address both scientific and policy-related issues dealing with air quality management. In this direction, modeling studies have used Supersites-related data and are reviewed here. Fine temporal resolution data have been used both to test model components (e.g., the inorganic thermodynamic routines) and air quality modeling systems (in particular, Community Multiscale Air Quality [CMAQ] and Comprehensive Air Quality Model with extensions [CAMx] applications). Such evaluations suggest that the inorganic thermodynamic approaches being used are accurate, as well as the description of sulfate production, although there are significant uncertainties in production of nitric acid, biogenic and ammonia emissions, secondary organic aerosol formation, and the ability to follow the formation and evolution of ultrafine particles. Model applications have investigated how PM levels will respond to various emissions controls, suggesting that nitrate will replace some of the reductions in sulfate particulate matter (PM), although the replacement is small in the summer. Although not part of the Supersite program, modeling being conducted by EPA, regional planning organizations, and states for policy purposes has benefited from the detailed data collected, and the PM models have advanced by their more widespread use.

  19. Assessing ecological sustainability in urban planning - EcoBalance model

    Energy Technology Data Exchange (ETDEWEB)

    Wahlgren, I., Email: irmeli.wahlgren@vtt.fi

    2012-06-15

    Urban planning solutions and decisions have large-scale significance for ecological sustainability (eco-efficiency) the consumption of energy and other natural resources, the production of greenhouse gas and other emissions and the costs caused by urban form. Climate change brings new and growing challenges for urban planning. The EcoBalance model was developed to assess the sustainability of urban form and has been applied at various planning levels: regional plans, local master plans and detailed plans. The EcoBalance model estimates the total consumption of energy and other natural resources, the production of emissions and wastes and the costs caused directly and indirectly by urban form on a life cycle basis. The results of the case studies provide information about the ecological impacts of various solutions in urban development. (orig.)

  20. Modeling urban growth in Kigali city Rwanda

    NARCIS (Netherlands)

    Nduwayezu, G.; Sliuzas, R.V.; Kuffer, M.

    2017-01-01

    The uncontrolled urban growth is the key characteristics in most cities in less developed countries. However, having a good understanding of the key drivers of the city's growth dynamism has proven to be a key instrument to manage urban growth. This paper investigates the main determinants of Kigali

  1. Expert workshop traffic-caused airborne particles in urban areas; Experten-Workshop 'Verkehrsbedingte Feinstaeube in der Stadt'

    Energy Technology Data Exchange (ETDEWEB)

    Lanzendorf, Martin; Birmili, Wolfram; Franke, Patrick

    2006-07-15

    The proceedings of the expert workshop on traffic-caused airborne particulates in urban regions include the following contributions: epidemiology of ultra-fine particulates, ultra-fine particulates and their impacts in human health, environmental particulates in the urban atmosphere: properties and future requirement of measuring methods; ultra-fine particulates from traffic emissions - problems of measuring site selection for the evaluation of human exposure, modeling of PMx emissions in the context of environmental compatibility assessments and mitigation planning, traffic-caused particulates - need for action and remedial actions from the sight of the Federal environment Agency, traffic-related measures for the reduction of urban particulate exposure and their impact on the planning of air pollution prevention, strategic environmental assessment as an instrument for the airborne particulate consideration within the traffic and regional planning.

  2. Concentration levels and temporal variations of heavy elements in the urban particulate matter of Navi Mumbai, India

    International Nuclear Information System (INIS)

    Kothai, P.; Saradhi, I.V.; Prathibha, P.; Pandit, G.G.; Puranik, V.D.

    2012-01-01

    Coarse and fine fractions of particulate matter (PM) were collected and analysed for trace elements using Instrumental Neutron Activation Analysis and Energy Dispersive X-ray Fluorescence techniques. The result showed high concentrations of Fe, S, Zn and Pb in both the size fractions. The elemental data obtained is used to analyze the temporal and seasonal variations. The trend showed maximum concentrations of PM and metals during winter and minimum during the monsoon season. Enrichment Factor (EF) and source analysis was performed for the same data set to identify the strength of contribution of anthropogenic sources and the possible contributing sources in the study area. EF studies showed high enrichments of Zn, Pb and As in the fine fraction particles. Crustal, vehicular and industrial emissions are identified as the major contributing sources of PM in the study area. (author)

  3. Urban Sprawl Analysis and Modeling in Asmara, Eritrea

    Directory of Open Access Journals (Sweden)

    Mussie G. Tewolde

    2011-09-01

    Full Text Available The extension of urban perimeter markedly cuts available productive land. Hence, studies in urban sprawl analysis and modeling play an important role to ensure sustainable urban development. The urbanization pattern of the Greater Asmara Area (GAA, the capital of Eritrea, was studied. Satellite images and geospatial tools were employed to analyze the spatiotemporal urban landuse changes. Object-Based Image Analysis (OBIA, Landuse Cover Change (LUCC analysis and urban sprawl analysis using Shannon Entropy were carried out. The Land Change Modeler (LCM was used to develop a model of urban growth. The Multi-layer Perceptron Neural Network was employed to model the transition potential maps with an accuracy of 85.9% and these were used as an input for the ‘actual’ urban modeling with Markov chains. Model validation was assessed and a scenario of urban land use change of the GAA up to year 2020 was presented. The result of the study indicated that the built-up area has tripled in size (increased by 4,441 ha between 1989 and 2009. Specially, after year 2000 urban sprawl in GAA caused large scale encroachment on high potential agricultural lands and plantation cover. The scenario for year 2020 shows an increase of the built-up areas by 1,484 ha (25% which may cause further loss. The study indicated that the land allocation system in the GAA overrode the landuse plan, which caused the loss of agricultural land and plantation cover. The recommended policy options might support decision makers to resolve further loss of agricultural land and plantation cover and to achieve sustainable urban development planning in the GAA.

  4. Spatial stochastic regression modelling of urban land use

    International Nuclear Information System (INIS)

    Arshad, S H M; Jaafar, J; Abiden, M Z Z; Latif, Z A; Rasam, A R A

    2014-01-01

    Urbanization is very closely linked to industrialization, commercialization or overall economic growth and development. This results in innumerable benefits of the quantity and quality of the urban environment and lifestyle but on the other hand contributes to unbounded development, urban sprawl, overcrowding and decreasing standard of living. Regulation and observation of urban development activities is crucial. The understanding of urban systems that promotes urban growth are also essential for the purpose of policy making, formulating development strategies as well as development plan preparation. This study aims to compare two different stochastic regression modeling techniques for spatial structure models of urban growth in the same specific study area. Both techniques will utilize the same datasets and their results will be analyzed. The work starts by producing an urban growth model by using stochastic regression modeling techniques namely the Ordinary Least Square (OLS) and Geographically Weighted Regression (GWR). The two techniques are compared to and it is found that, GWR seems to be a more significant stochastic regression model compared to OLS, it gives a smaller AICc (Akaike's Information Corrected Criterion) value and its output is more spatially explainable

  5. Fine particulate matter estimated by mathematical model and hospitalizations for pneumonia and asthma in children

    Directory of Open Access Journals (Sweden)

    Ana Cristina Gobbo César

    2016-03-01

    Full Text Available Abstract Objective: To estimate the association between exposure to fine particulate matter with an aerodynamic diameter <2.5 microns (PM2.5 and hospitalizations for pneumonia and asthma in children. Methods: An ecological study of time series was performed, with daily indicators of hospitalization for pneumonia and asthma in children up to 10 years of age, living in Taubaté (SP and estimated concentrations of PM2.5, between August 2011 and July 2012. A generalized additive model of Poisson regression was used to estimate the relative risk, with lag zero up to five days after exposure; the single pollutant model was adjusted by the apparent temperature, as defined from the temperature and relative air humidity, seasonality and weekday. Results: The values of the relative risks for hospitalization for pneumonia and asthma were significant for lag 0 (RR=1.051, 95%CI; 1.016 to 1.088; lag 2 (RR=1.066, 95%CI: 1.023 to 1.113; lag 3 (RR=1.053, 95%CI: 1.015 to 1.092; lag 4 (RR=1.043, 95%CI: 1.004 to 1.088 and lag 5 (RR=1.061, 95%CI: 1.018 to 1.106. The increase of 5mcg/m3 in PM2.5 contributes to increase the relative risk for hospitalization from 20.3 to 38.4 percentage points; however, the reduction of 5µg/m3 in PM2.5 concentration results in 38 fewer hospital admissions. Conclusions: Exposure to PM2.5 was associated with hospitalizations for pneumonia and asthma in children younger than 10 years of age, showing the role of fine particulate matter in child health and providing subsidies for the implementation of preventive measures to decrease these outcomes.

  6. Using urban forest assessment tools to model bird habitat potential

    Science.gov (United States)

    Lerman, Susannah B.; Nislow, Keith H.; Nowak, David J.; DeStefano, Stephen; King, David I.; Jones-Farrand, D. Todd

    2014-01-01

    The alteration of forest cover and the replacement of native vegetation with buildings, roads, exotic vegetation, and other urban features pose one of the greatest threats to global biodiversity. As more land becomes slated for urban development, identifying effective urban forest wildlife management tools becomes paramount to ensure the urban forest provides habitat to sustain bird and other wildlife populations. The primary goal of this study was to integrate wildlife suitability indices to an existing national urban forest assessment tool, i-Tree. We quantified available habitat characteristics of urban forests for ten northeastern U.S. cities, and summarized bird habitat relationships from the literature in terms of variables that were represented in the i-Tree datasets. With these data, we generated habitat suitability equations for nine bird species representing a range of life history traits and conservation status that predicts the habitat suitability based on i-Tree data. We applied these equations to the urban forest datasets to calculate the overall habitat suitability for each city and the habitat suitability for different types of land-use (e.g., residential, commercial, parkland) for each bird species. The proposed habitat models will help guide wildlife managers, urban planners, and landscape designers who require specific information such as desirable habitat conditions within an urban management project to help improve the suitability of urban forests for birds.

  7. A Global Data Analysis for Representing Sediment and Particulate Organic Carbon Yield in Earth System Models

    Science.gov (United States)

    Tan, Zeli; Leung, L. Ruby; Li, Hongyi; Tesfa, Teklu; Vanmaercke, Matthias; Poesen, Jean; Zhang, Xuesong; Lu, Hui; Hartmann, Jens

    2017-12-01

    Although sediment yield (SY) from water erosion is ubiquitous and its environmental consequences are well recognized, its impacts on the global carbon cycle remain largely uncertain. This knowledge gap is partly due to the lack of soil erosion modeling in Earth System Models (ESMs), which are important tools used to understand the global carbon cycle and explore its changes. This study analyzed sediment and particulate organic carbon yield (CY) data from 1,081 and 38 small catchments (0.1-200 km2), respectively, in different environments across the globe. Using multiple statistical analysis techniques, we explored environmental factors and hydrological processes important for SY and CY modeling in ESMs. Our results show clear correlations of high SY with traditional agriculture, seismicity and heavy storms, as well as strong correlations between SY and annual peak runoff. These highlight the potential limitation of SY models that represent only interrill and rill erosion because shallow overland flow and rill flow have limited transport capacity due to their hydraulic geometry to produce high SY. Further, our results suggest that SY modeling in ESMs should be implemented at the event scale to produce the catastrophic mass transport during episodic events. Several environmental factors such as seismicity and land management that are often not considered in current catchment-scale SY models can be important in controlling global SY. Our analyses show that SY is likely the primary control on CY in small catchments and a statistically significant empirical relationship is established to calculate SY and CY jointly in ESMs.

  8. Modeling Of In-Vehicle Human Exposure to Ambient Fine Particulate Matter

    Science.gov (United States)

    Liu, Xiaozhen; Frey, H. Christopher

    2012-01-01

    A method for estimating in-vehicle PM2.5 exposure as part of a scenario-based population simulation model is developed and assessed. In existing models, such as the Stochastic Exposure and Dose Simulation model for Particulate Matter (SHEDS-PM), in-vehicle exposure is estimated using linear regression based on area-wide ambient PM2.5 concentration. An alternative modeling approach is explored based on estimation of near-road PM2.5 concentration and an in-vehicle mass balance. Near-road PM2.5 concentration is estimated using a dispersion model and fixed site monitor (FSM) data. In-vehicle concentration is estimated based on air exchange rate and filter efficiency. In-vehicle concentration varies with road type, traffic flow, windspeed, stability class, and ventilation. Average in-vehicle exposure is estimated to contribute 10 to 20 percent of average daily exposure. The contribution of in-vehicle exposure to total daily exposure can be higher for some individuals. Recommendations are made for updating exposure models and implementation of the alternative approach. PMID:23101000

  9. A Global Data Analysis for Representing Sediment and Particulate Organic Carbon Yield in Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Zeli [Pacific Northwest National Laboratory, Richland WA USA; Leung, L. Ruby [Pacific Northwest National Laboratory, Richland WA USA; Li, Hongyi [Montana State University, Bozeman MT USA; Tesfa, Teklu [Pacific Northwest National Laboratory, Richland WA USA; Vanmaercke, Matthias [Département de Géographie, Université de Liège, Liege Belgium; Poesen, Jean [Department of Earth and Environmental Sciences, Division of Geography, KU Leuven, Leuven Belgium; Zhang, Xuesong [Pacific Northwest National Laboratory, Richland WA USA; Lu, Hui [Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing China; Hartmann, Jens [Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg Germany

    2017-12-01

    Although sediment yield (SY) from water erosion is ubiquitous and its environmental consequences are well recognized, its impacts on the global carbon cycle remain largely uncertain. This knowledge gap is partly due to the lack of soil erosion modeling in Earth System Models (ESMs), which are important tools used to understand the global carbon cycle and explore its changes. This study analyzed sediment and particulate organic carbon yield (CY) data from 1081 and 38 small catchments (0.1-200 km27 ), respectively, in different environments across the globe. Using multiple statistical analysis techniques, we explored environmental factors and hydrological processes important for SY and CY modeling in ESMs. Our results show clear correlations of high SY with traditional agriculture, seismicity and heavy storms, as well as strong correlations between SY and annual peak runoff. These highlight the potential limitation of SY models that represent only interrill and rill erosion because shallow overland flow and rill flow have limited transport capacity due to their hydraulic geometry to produce high SY. Further, our results suggest that SY modeling in ESMs should be implemented at the event scale to produce the catastrophic mass transport during episodic events. Several environmental factors such as seismicity and land management that are often not considered in current catchment-scale SY models can be important in controlling global SY. Our analyses show that SY is likely the primary control on CY in small catchments and a statistically significant empirical relationship is established to calculate SY and CY jointly in ESMs.

  10. Bioavailability of particulate metal to zebra mussels: Biodynamic modelling shows that assimilation efficiencies are site-specific

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeault, Adeline, E-mail: bourgeault@ensil.unilim.fr [Cemagref, Unite de Recherche Hydrosystemes et Bioprocedes, 1 rue Pierre-Gilles de Gennes, 92761 Antony (France); FIRE, FR-3020, 4 place Jussieu, 75005 Paris (France); Gourlay-France, Catherine, E-mail: catherine.gourlay@cemagref.fr [Cemagref, Unite de Recherche Hydrosystemes et Bioprocedes, 1 rue Pierre-Gilles de Gennes, 92761 Antony (France); FIRE, FR-3020, 4 place Jussieu, 75005 Paris (France); Priadi, Cindy, E-mail: cindy.priadi@eng.ui.ac.id [LSCE/IPSL CEA-CNRS-UVSQ, Avenue de la Terrasse, 91198 Gif-sur-Yvette (France); Ayrault, Sophie, E-mail: Sophie.Ayrault@lsce.ipsl.fr [LSCE/IPSL CEA-CNRS-UVSQ, Avenue de la Terrasse, 91198 Gif-sur-Yvette (France); Tusseau-Vuillemin, Marie-Helene, E-mail: Marie-helene.tusseau@ifremer.fr [IFREMER Technopolis 40, 155 rue Jean-Jacques Rousseau, 92138 Issy-Les-Moulineaux (France)

    2011-12-15

    This study investigates the ability of the biodynamic model to predict the trophic bioaccumulation of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni) and zinc (Zn) in a freshwater bivalve. Zebra mussels were transplanted to three sites along the Seine River (France) and collected monthly for 11 months. Measurements of the metal body burdens in mussels were compared with the predictions from the biodynamic model. The exchangeable fraction of metal particles did not account for the bioavailability of particulate metals, since it did not capture the differences between sites. The assimilation efficiency (AE) parameter is necessary to take into account biotic factors influencing particulate metal bioavailability. The biodynamic model, applied with AEs from the literature, overestimated the measured concentrations in zebra mussels, the extent of overestimation being site-specific. Therefore, an original methodology was proposed for in situ AE measurements for each site and metal. - Highlights: > Exchangeable fraction of metal particles did not account for the bioavailability of particulate metals. > Need for site-specific biodynamic parameters. > Field-determined AE provide a good fit between the biodynamic model predictions and bioaccumulation measurements. - The interpretation of metal bioaccumulation in transplanted zebra mussels with biodynamic modelling highlights the need for site-specific assimilation efficiencies of particulate metals.

  11. Urbanization impacts on mammals across urban-forest edges and a predictive model of edge effects.

    Science.gov (United States)

    Villaseñor, Nélida R; Driscoll, Don A; Escobar, Martín A H; Gibbons, Philip; Lindenmayer, David B

    2014-01-01

    With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula). We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis) had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1) habitat quality/preference, (2) species response with the proximity to the adjacent habitat, and (3) spillover extent/sensitivity to adjacent habitat boundaries. This framework will

  12. Urbanization impacts on mammals across urban-forest edges and a predictive model of edge effects.

    Directory of Open Access Journals (Sweden)

    Nélida R Villaseñor

    Full Text Available With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula. We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1 habitat quality/preference, (2 species response with the proximity to the adjacent habitat, and (3 spillover extent/sensitivity to adjacent habitat boundaries. This

  13. Procedural Content Graphs for Urban Modeling

    Directory of Open Access Journals (Sweden)

    Pedro Brandão Silva

    2015-01-01

    Full Text Available Massive procedural content creation, for example, for virtual urban environments, is a difficult, yet important challenge. While shape grammars are a popular example of effectiveness in architectural modeling, they have clear limitations regarding readability, manageability, and expressive power when addressing a variety of complex structural designs. Moreover, shape grammars aim at geometry specification and do not facilitate integration with other types of content, such as textures or light sources, which could rather accompany the generation process. We present procedural content graphs, a graph-based solution for procedural generation that addresses all these issues in a visual, flexible, and more expressive manner. Besides integrating handling of diverse types of content, this approach introduces collective entity manipulation as lists, seamlessly providing features such as advanced filtering, grouping, merging, ordering, and aggregation, essentially unavailable in shape grammars. Hereby, separated entities can be easily merged or just analyzed together in order to perform a variety of context-based decisions and operations. The advantages of this approach are illustrated via examples of tasks that are either very cumbersome or simply impossible to express with previous grammar approaches.

  14. Modelling and observing urban climate in the Netherlands

    International Nuclear Information System (INIS)

    Van Hove, B.; Steeneveld, G.J.; Heusinkveld, B.; Holtslag, B.; Jacobs, C.; Ter Maat, H.; Elbers, J.; Moors, E.

    2011-06-01

    The main aims of the present study are: (1) to evaluate the performance of two well-known mesoscale NWP (numerical weather prediction) models coupled to a UCM (Urban Canopy Models), and (2) to develop a proper measurement strategy for obtaining meteorological data that can be used in model evaluation studies. We choose the mesoscale models WRF (Weather Research and Forecasting Model) and RAMS (Regional Atmospheric Modeling System), respectively, because the partners in the present project have a large expertise with respect to these models. In addition WRF and RAMS have been successfully used in the meteorology and climate research communities for various purposes, including weather prediction and land-atmosphere interaction research. Recently, state-of-the-art UCM's were embedded within the land surface scheme of the respective models, in order to better represent the exchange of heat, momentum, and water vapour in the urban environment. Key questions addressed here are: What is the general model performance with respect to the urban environment?; How can useful and observational data be obtained that allow sensible validation and further parameterization of the models?; and Can the models be easily modified to simulate the urban climate under Dutch climatic conditions, urban configuration and morphology? Chapter 2 reviews the available Urban Canopy Models; we discuss their theoretical basis, the different representations of the urban environment, the required input and the output. Much of the information was obtained from the Urban Surface Energy Balance: Land Surface Scheme Comparison project (PILPS URBAN, PILPS stands for Project for Inter-comparison of Land-Surface Parameterization Schemes). This project started in March 2008 and was coordinated by the Department of Geography, King's College London. In order to test the performance of our models we participated in this project. Chapter 3 discusses the main results of the first phase of PILPS URBAN. A first

  15. Uncertainty propagation in urban hydrology water quality modelling

    NARCIS (Netherlands)

    Torres Matallana, Arturo; Leopold, U.; Heuvelink, G.B.M.

    2016-01-01

    Uncertainty is often ignored in urban hydrology modelling. Engineering practice typically ignores uncertainties and uncertainty propagation. This can have large impacts, such as the wrong dimensioning of urban drainage systems and the inaccurate estimation of pollution in the environment caused

  16. Model architecture of intelligent data mining oriented urban transportation information

    Science.gov (United States)

    Yang, Bogang; Tao, Yingchun; Sui, Jianbo; Zhang, Feizhou

    2007-06-01

    Aiming at solving practical problems in urban traffic, the paper presents model architecture of intelligent data mining from hierarchical view. With artificial intelligent technologies used in the framework, the intelligent data mining technology improves, which is more suitable for the change of real-time road condition. It also provides efficient technology support for the urban transport information distribution, transmission and display.

  17. Receptor modeling for source apportionment of polycyclic aromatic hydrocarbons in urban atmosphere.

    Science.gov (United States)

    Singh, Kunwar P; Malik, Amrita; Kumar, Ranjan; Saxena, Puneet; Sinha, Sarita

    2008-01-01

    This study reports source apportionment of polycyclic aromatic hydrocarbons (PAHs) in particulate depositions on vegetation foliages near highway in the urban environment of Lucknow city (India) using the principal components analysis/absolute principal components scores (PCA/APCS) receptor modeling approach. The multivariate method enables identification of major PAHs sources along with their quantitative contributions with respect to individual PAH. The PCA identified three major sources of PAHs viz. combustion, vehicular emissions, and diesel based activities. The PCA/APCS receptor modeling approach revealed that the combustion sources (natural gas, wood, coal/coke, biomass) contributed 19-97% of various PAHs, vehicular emissions 0-70%, diesel based sources 0-81% and other miscellaneous sources 0-20% of different PAHs. The contributions of major pyrolytic and petrogenic sources to the total PAHs were 56 and 42%, respectively. Further, the combustion related sources contribute major fraction of the carcinogenic PAHs in the study area. High correlation coefficient (R2 > 0.75 for most PAHs) between the measured and predicted concentrations of PAHs suggests for the applicability of the PCA/APCS receptor modeling approach for estimation of source contribution to the PAHs in particulates.

  18. Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters

    Directory of Open Access Journals (Sweden)

    Jan Kleine Deters

    2017-01-01

    Full Text Available Outdoor air pollution costs millions of premature deaths annually, mostly due to anthropogenic fine particulate matter (or PM2.5. Quito, the capital city of Ecuador, is no exception in exceeding the healthy levels of pollution. In addition to the impact of urbanization, motorization, and rapid population growth, particulate pollution is modulated by meteorological factors and geophysical characteristics, which complicate the implementation of the most advanced models of weather forecast. Thus, this paper proposes a machine learning approach based on six years of meteorological and pollution data analyses to predict the concentrations of PM2.5 from wind (speed and direction and precipitation levels. The results of the classification model show a high reliability in the classification of low (25 µg/m3 and low (<10 µg/m3 versus moderate (10–25 µg/m3 concentrations of PM2.5. A regression analysis suggests a better prediction of PM2.5 when the climatic conditions are getting more extreme (strong winds or high levels of precipitation. The high correlation between estimated and real data for a time series analysis during the wet season confirms this finding. The study demonstrates that the use of statistical models based on machine learning is relevant to predict PM2.5 concentrations from meteorological data.

  19. Particulate matter emission modelling based on soot and SOF from direct injection diesel engines

    International Nuclear Information System (INIS)

    Tan, P.Q.; Hu, Z.Y.; Deng, K.Y.; Lu, J.X.; Lou, D.M.; Wan, G.

    2007-01-01

    Particulate matter (PM) emission is one of the major pollutants from diesel engines, and it is harmful for human health and influences the atmospheric visibility. In investigations for reducing PM emission, a simulation model for PM emission is a useful tool. In this paper, a phenomenological, composition based PM model of direct injection (DI) diesel engines has been proposed and formulated to simulate PM emission. The PM emission model is based on a quasi-dimensional multi-zone combustion model using the formation mechanisms of the two main compositions of PM: soot and soluble organic fraction (SOF). First, the quasi-dimensional multi-zone combustion model is given. Then, two models for soot and SOF emissions are established, respectively, and after that, the two models are integrated into a single PM emission model. The soot emission model is given by the difference between a primary formation model and an oxidation model of soot. The soot primary formation model is the Hiroyasu soot formation model, and the Nagle and Strickland-Constable model is adopted for soot oxidation. The SOF emission model is based on an unburned hydrocarbons (HC) emission model, and the HC emission model is given by the difference between a HC primary formation model and a HC oxidation model. The HC primary formation model considers fuel injected and mixed beyond the lean combustion limit during ignition delay and fuel effusing from the nozzle sac volume at low pressure and low velocity. In order to validate the PM emission model, experiments were performed on a six cylinder, turbocharged and intercooled DI diesel engine. The simulation results show good agreement with the experimental data, which indicates the validity of the PM emission model. The calculation results show that the distinctions between PM and soot formation rates are mainly in the early combustion stage. The SOF formation has an important influence on the PM formation at lower loads, and soot formation dominates the

  20. Statins attenuate the development of atherosclerosis and endothelial dysfunction induced by exposure to urban particulate matter (PM{sub 10})

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Ryohei; Hiraiwa, Kunihiko; Cheng, Jui Chih [UBC James Hogg Research Centre, St. Paul' s Hospital, University of British Columbia, Vancouver (Canada); Bai, Ni [UBC James Hogg Research Centre, St. Paul' s Hospital, University of British Columbia, Vancouver (Canada); Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver (Canada); Vincent, Renaud [Environmental Health Sciences and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa (Canada); Francis, Gordon A.; Sin, Don D. [UBC James Hogg Research Centre, St. Paul' s Hospital, University of British Columbia, Vancouver (Canada); Van Eeden, Stephan F., E-mail: Stephan.vanEeden@hli.ubc.ca [UBC James Hogg Research Centre, St. Paul' s Hospital, University of British Columbia, Vancouver (Canada)

    2013-10-01

    Exposure to ambient air particulate matter (particles less than 10 μm or PM{sub 10}) has been shown to be an independent risk factor for the development and progression of atherosclerosis. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have well-established anti-inflammatory properties. The aim of this study was to determine the impact of statins on the adverse functional and morphological changes in blood vessels induced by PM{sub 10}. New Zealand White rabbits fed with a high fat diet were subjected to balloon injury to their abdominal aorta followed by PM{sub 10}/saline exposure for 4 weeks ± lovastatin (5 mg/kg/day) treatment. PM{sub 10} exposure accelerated balloon catheter induced plaque formation and increased intimal macrophages and lipid accumulation while lovastatin attenuated these changes and promoted smooth muscle cell recruitment into plaques. PM{sub 10} impaired vascular acetylcholine (Ach) responses and increased vasoconstriction induced by phenylephrine as assessed by wire myograph. Supplementation of nitric oxide improved the impaired Ach responses. PM{sub 10} increased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in blood vessels and increased the plasma levels of endothelin-1 (ET-1). Incubation with specific inhibitors for iNOS, COX-2 or ET-1 in the myograph chambers significantly improved the impaired vascular function. Lovastatin decreased the expression of these mediators in atherosclerotic lesions and improved endothelial dysfunction. However, lovastatin was unable to reduce blood lipid levels to the baseline level in rabbits exposed to PM{sub 10}. Taken together, statins protect against PM{sub 10}-induced cardiovascular disease by reducing atherosclerosis and improving endothelial function via their anti-inflammatory properties. - Highlights: • Coarse particulate matter (PM{sub 10}) accelerated balloon injury-induced plaque formation. • Lovastatin decreased intimal

  1. Statins attenuate the development of atherosclerosis and endothelial dysfunction induced by exposure to urban particulate matter (PM10)

    International Nuclear Information System (INIS)

    Miyata, Ryohei; Hiraiwa, Kunihiko; Cheng, Jui Chih; Bai, Ni; Vincent, Renaud; Francis, Gordon A.; Sin, Don D.; Van Eeden, Stephan F.

    2013-01-01

    Exposure to ambient air particulate matter (particles less than 10 μm or PM 10 ) has been shown to be an independent risk factor for the development and progression of atherosclerosis. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have well-established anti-inflammatory properties. The aim of this study was to determine the impact of statins on the adverse functional and morphological changes in blood vessels induced by PM 10 . New Zealand White rabbits fed with a high fat diet were subjected to balloon injury to their abdominal aorta followed by PM 10 /saline exposure for 4 weeks ± lovastatin (5 mg/kg/day) treatment. PM 10 exposure accelerated balloon catheter induced plaque formation and increased intimal macrophages and lipid accumulation while lovastatin attenuated these changes and promoted smooth muscle cell recruitment into plaques. PM 10 impaired vascular acetylcholine (Ach) responses and increased vasoconstriction induced by phenylephrine as assessed by wire myograph. Supplementation of nitric oxide improved the impaired Ach responses. PM 10 increased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in blood vessels and increased the plasma levels of endothelin-1 (ET-1). Incubation with specific inhibitors for iNOS, COX-2 or ET-1 in the myograph chambers significantly improved the impaired vascular function. Lovastatin decreased the expression of these mediators in atherosclerotic lesions and improved endothelial dysfunction. However, lovastatin was unable to reduce blood lipid levels to the baseline level in rabbits exposed to PM 10 . Taken together, statins protect against PM 10 -induced cardiovascular disease by reducing atherosclerosis and improving endothelial function via their anti-inflammatory properties. - Highlights: • Coarse particulate matter (PM 10 ) accelerated balloon injury-induced plaque formation. • Lovastatin decreased intimal macrophages, lipid accumulation, and

  2. Multi-scale dynamic modeling of atmospheric pollution in urban environment

    International Nuclear Information System (INIS)

    Thouron, Laetitia

    2017-01-01

    Urban air pollution has been identified as an important cause of health impacts, including premature deaths. In particular, ambient concentrations of gaseous pollutants such as nitrogen dioxide (NO 2 ) and particulate matter (PM10 and PM2.5) are regulated, which means that emission reduction strategies must be put in place to reduce these concentrations in places where the corresponding regulations are not respected. Besides, air pollution can contribute to the contamination of other media, for example through the contribution of atmospheric deposition to runoff contamination. The multifactorial and multi-scale aspects of urban make the pollution sources difficult to identify. Indeed, the urban environment is a heterogeneous space characterized by complex architectural structures (old buildings alongside a more modern building, residential, commercial, industrial zones, roads, etc.), non-uniform atmospheric pollutant emissions and therefore the population exposure to pollution is variable in space and time. The modeling of urban air pollution aims to understand the origin of pollutants, their spatial extent and their concentration/deposition levels. Some pollutants have long residence times and can stay several weeks in the atmosphere (PM2.5) and therefore be transported over long distances, while others are more local (NO x in the vicinity of traffic). The spatial distribution of a pollutant will therefore depend on several factors, and in particular on the surfaces encountered. Air quality depends strongly on weather, buildings (canyon-street) and emissions. The aim of this thesis is to address some of these aspects by modeling: (1) urban background pollution with a transport-chemical model (Polyphemus / POLAIR3D), which makes it possible to estimate atmospheric pollutants by type of urban surfaces (roofs, walls and roadways), (2) street-level pollution by explicitly integrating the effects of the building in a three-dimensional way with a multi-scale model of

  3. Testing the near field/far field model performance for prediction of particulate matter emissions in a paint factory

    DEFF Research Database (Denmark)

    Koivisto, A.J.; Jensen, A.C.Ø.; Levin, Marcus

    2015-01-01

    A Near Field/Far Field (NF/FF) model is a well-accepted tool for precautionary exposure assessment but its capability to estimate particulate matter (PM) concentrations is not well studied. The main concern is related to emission source characterization which is not as well defined for PM emitters...

  4. Megacities and the Proposed Urban Intervention Model

    Science.gov (United States)

    2016-06-01

    population.90 Therefore, Hills asserts that fighting in an urban environment requires highly trained forces with strong morals and ethics , not greater...Disruptive Technologies Have Made Civilization a Global Ecological Force.” American Scientist 62, no. 3 (1974): 282–92. May-June 1974 Howcroft...Small Wars Journal November (2013). Marzluff, John M. Urban Ecology : An International Perspective on the Interaction between Humans and Nature. New

  5. Urban flood simulation based on the SWMM model

    Directory of Open Access Journals (Sweden)

    L. Jiang

    2015-05-01

    Full Text Available China is the nation with the fastest urbanization in the past decades which has caused serious urban flooding. Flood forecasting is regarded as one of the important flood mitigation methods, and is widely used in catchment flood mitigation, but is not widely used in urban flooding mitigation. This paper, employing the SWMM model, one of the widely used urban flood planning and management models, simulates the urban flooding of Dongguan City in the rapidly urbanized southern China. SWMM is first set up based on the DEM, digital map and underground pipeline network, then parameters are derived based on the properties of the subcatchment and the storm sewer conduits; the parameter sensitivity analysis shows the parameter robustness. The simulated results show that with the 1-year return period precipitation, the studied area will have no flooding, but for the 2-, 5-, 10- and 20-year return period precipitation, the studied area will be inundated. The results show the SWMM model is promising for urban flood forecasting, but as it has no surface runoff routing, the urban flooding could not be forecast precisely.

  6. In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity

    NARCIS (Netherlands)

    Beekmann, M.; Prévôt, A.S.H.; Drewnick, F.; Sciare, J.; Pandis, S.N.; Denier van der Gon, H.A.C.; Crippa, M.; Freutel, F.; Poulain, L.; Ghersi, V.; Rodriguez, E.; Beirle, S.; Zotter, P.; Weiden-Reinmüller, S.L. von der; Bressi, M.; Fountoukis, C.; Petetin, H.; Szidat, S.; Schneider, J.; Rosso, A.; El Haddad, I.; Megaritis, A.; Zhang, Q.J.; Michoud, V.; Slowik, J.G.; Moukhtar, S.; Kolmonen, P.; Stohl, A.; Eckhardt, S.; Borbon, A.; Gros, V.; Marchand, N.; Jaffrezo, J.L.; Schwarzenboeck, A.; Colomb, A.; Wiedensohler, A.; Borrmann, S.; Lawrence, M.; Baklanov, A.; Baltensperger, U.

    2015-01-01

    A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70 % of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions.

  7. Applicability of models to estimate traffic noise for urban roads.

    Science.gov (United States)

    Melo, Ricardo A; Pimentel, Roberto L; Lacerda, Diego M; Silva, Wekisley M

    2015-01-01

    Traffic noise is a highly relevant environmental impact in cities. Models to estimate traffic noise, in turn, can be useful tools to guide mitigation measures. In this paper, the applicability of models to estimate noise levels produced by a continuous flow of vehicles on urban roads is investigated. The aim is to identify which models are more appropriate to estimate traffic noise in urban areas since several models available were conceived to estimate noise from highway traffic. First, measurements of traffic noise, vehicle count and speed were carried out in five arterial urban roads of a brazilian city. Together with geometric measurements of width of lanes and distance from noise meter to lanes, these data were input in several models to estimate traffic noise. The predicted noise levels were then compared to the respective measured counterparts for each road investigated. In addition, a chart showing mean differences in noise between estimations and measurements is presented, to evaluate the overall performance of the models. Measured Leq values varied from 69 to 79 dB(A) for traffic flows varying from 1618 to 5220 vehicles/h. Mean noise level differences between estimations and measurements for all urban roads investigated ranged from -3.5 to 5.5 dB(A). According to the results, deficiencies of some models are discussed while other models are identified as applicable to noise estimations on urban roads in a condition of continuous flow. Key issues to apply such models to urban roads are highlighted.

  8. Spatiotemporal Association of Real-Time Concentrations of Black Carbon (BC with Fine Particulate Matters (PM2.5 in Urban Hotspots of South Korea

    Directory of Open Access Journals (Sweden)

    Sungroul Kim

    2017-11-01

    Full Text Available We evaluated the spatiotemporal distributions of black carbon (BC and particulate matters with aerodynamic diameters of less than 2.5 m (PM2.5 concentrations at urban diesel engine emission (DEE hotspots of South Korea. Concentrations of BC and PM2.5 were measured at the entrance gate of two diesel bus terminals and a train station, in 2014. Measurements were conducted simultaneously at the hotspot (Site 1 and at its adjacent, randomly selected, residential areas, apartment complex near major roadways, located with the same direction of 300 m (Site 2 and 500 m (Site 3 away from Site 1 on 4 different days over the season, thrice per day; morning (n = 120 measurements for each day and site, evening (n = 120, and noon (n = 120. The median (interquartile range PM2.5 ranged from 12.6 (11.3–14.3 to 60.1 (47.0–76.0 μg/m3 while those of BC concentrations ranged from 2.6 (1.9–3.7 to 6.3 (4.2–10.3 μg/m3. We observed a strong relationship of PM2.5 concentrations between sites (slopes 0.89–0.9, the coefficient of determination 0.89–0.96 while the relationship for BC concentrations between sites was relatively weak (slopes 0.76–0.85, the coefficient of determination 0.54–0.72. PM2.5 concentrations were changed from 4% to 140% by unit increase of BC concentration, depending on site and time while likely supporting the necessity of monitoring of BC as well as PM2.5, especially at urban DEE related hotspot areas.

  9. Evaluating Nitrogen Oxides and Ultrafine Particulate Matter Emission Features of Urban Bus Based on Real-World Driving Conditions in the Yangtze River Delta Area, China

    Directory of Open Access Journals (Sweden)

    Dengguo Liu

    2018-06-01

    Full Text Available A Portable Emission Measurement System was used in this study to evaluate the exhaust emission characteristics of nitrogen oxides (NOx, ultrafine particulate matter (PM, and ultrafine particulate number (PN from buses in the Yangtze River Delta, China. Results showed that NOx emission factor (unit: g·km−1 increased from 5.0 to 19.1, and PM emission factor (unit: g·km−1 increased from 0.001 to 0.189. A nonlinear model was established based on scientific statistical method, which showed that NOx and PM emission factors significantly decreased with speed increasing. The model also showed a “long tail effect” of NOx and PM emission factors beyond 30 km·h−1. Furthermore, hybrid bus exhausted less NOx, PM, and PN emissions compared to conventional bus in the acceleration condition. Exhaust rates of NOx, PM and PN emissions (unit: g·s−1 increased with speed increasing under steady state driving condition, while PN emissions commonly showed a unimodal distribution at the speed of 20 km·h−1.

  10. Metro Commuter Exposures to Particulate Air Pollution and PM2.5-Associated Elements in Three Canadian Cities: The Urban Transportation Exposure Study.

    Science.gov (United States)

    Van Ryswyk, Keith; Anastasopolos, Angelos T; Evans, Greg; Sun, Liu; Sabaliauskas, Kelly; Kulka, Ryan; Wallace, Lance; Weichenthal, Scott

    2017-05-16

    System-representative commuter air pollution exposure data were collected for the metro systems of Toronto, Montreal, and Vancouver, Canada. Pollutants measured included PM 2.5 (PM = particulate matter), PM 10 , ultrafine particles, black carbon, and the elemental composition of PM 2.5 . Sampling over three weeks was conducted in summer and winter for each city and covered each system on a daily basis. Mixed-effect linear regression models were used to identify system features related to particulate exposures. Ambient levels of PM 2.5 and its elemental components were compared to those of the metro in each city. A microenvironmental exposure model was used to estimate the contribution of a 70 min metro commute to daily mean exposure to PM 2.5 elemental and mass concentrations. Time spent in the metro was estimated to contribute the majority of daily exposure to several metallic elements of PM 2.5 and 21.2%, 11.3% and 11.5% of daily PM 2.5 exposure in Toronto, Montreal, and Vancouver, respectively. Findings suggest that particle air pollutant levels in Canadian metros are substantially impacted by the systems themselves, are highly enriched in steel-based elements, and can contribute a large portion of PM 2.5 and its elemental components to a metro commuter's daily exposure.

  11. Investigation on the presence of aromatic hydrocarbons, polycyclic aromatic hydrocarbons, persistent organo chloride compounds, phthalates and the breathable fraction of atmospheric particulate in the air of Rieti (Italy) urban area

    International Nuclear Information System (INIS)

    Guidotti, M.; Colasanti, G.; Chinzari, M.; Ravaioli, G.; Vitali, M.

    1998-01-01

    Purpose of this work is to present the results of the investigation on the presence of aromatic hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), phthalates, polychlorobiphenyls (PCBs), pesticides and the breathable fraction of atmospheric particulate, in the samples of air collected from 2 different urban areas of Rieti city (Italy). Different values, for the above mentioned analytes, are compared in relation to seasonal factors and the analytical methods used in this research are also presented [it

  12. The backbone of a City Information Model (CIM) : Implementing a spatial data model for urban design

    NARCIS (Netherlands)

    Gil, J.A.; Almeida, J.; Duarte, J.P.

    2011-01-01

    We have been witnessing an increased interest in a more holistic approach to urban design practice and education. In this paper we present a spatial data model for urban design that proposes the combination of urban environment feature classes with design process feature classes. This data model is

  13. Exposure level of carbon monoxide and respirable suspended particulate in public transportation modes while commuting in urban area of Guangzhou, China

    Science.gov (United States)

    Chan, L. Y.; Lau, W. L.; Zou, S. C.; Cao, Z. X.; Lai, S. C.

    This study examined commuter exposure to respirable suspended particulate (PM 10 and PM 2.5) and carbon monoxide (CO) in public transportation modes in Guangzhou, China. During the sampling period, a total of 80 CO, 80 PM 10 and 56 PM 2.5 samples were conducted in four popular commuting modes (subway, air-conditioned bus, non-air-conditioned bus and taxi) while running in typical urban routes. The results show that the PM 10 as well as CO level is greatly influenced by the mode of transport. The highest mean PM 10 and CO level was obtained in a non-air-conditioned bus (203 μg m -3) and in an air-conditioned taxi (28.7 ppm) , respectively. Noticeably, the exposure levels in subway are lower than those in the roadway transports. The ventilation condition of the transport is also a crucial factor affecting the in-vehicle level. There was statistically significant difference of PM10 (ptransports, which provide service at regular intervals regardless of the time of day. The PM 2.5 inter-microenvironment variation is similar to the pattern of PM 10. The PM 2.5 to PM 10 ratio in the transports was high, ranging from 76% to 83%. The poor vehicle emission controls, poor vehicle maintenance, plus the slow moving traffic condition with frequent stops are believed to be the major causes of high in-vehicle levels in some public commuting trips.

  14. The distribution characteristics of trace elements in airborne particulates from an urban industrial complex area of Korea using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Lim, Jong Myoung; Lee, Jin Hong; Chung, Yong Sam

    2005-01-01

    An instrumental neutron activation analysis was used to measure the concentrations of about 24 elements associated with airborne particulates (PM10) that were collected in the most polluted urban region of Daejeon city, Korea from 2000 to 2002. Using the measurement data for various elements, both the extent of elemental pollution in the study area and the seasonality in their distribution characteristics were examined. Examinations of their distribution patterns indicated that most elements with crustal origin tend to exhibit seasonal peaks during spring, while most elements with anthropogenic origin tend to exhibit seasonal peaks during fall or winter. In order to explain the factors regulating their mobilization properties, the data were processed by a factor analysis. Results of the factor analysis suggested competing roles of both industrial and natural source processes, despite that the study site is located at a downwind position of the industrial complex. Based on the overall results of this study, it is concluded that the site may be strongly impacted by man-made sources but the general patterns of elemental distributions in the study area inspected over a seasonal scale are quite consistent with those typically observed from natural environment

  15. Indoor and Outdoor Exposure to Ultrafine, Fine and Microbiologically Derived Particulate Matter Related to Cardiovascular and Respiratory Effects in a Panel of Elderly Urban Citizens

    Directory of Open Access Journals (Sweden)

    Dorina Gabriela Karottki

    2015-02-01

    Full Text Available To explore associations of exposure to ambient and indoor air particulate and bio-aerosol pollutants with cardiovascular and respiratory disease markers, we utilized seven repeated measurements from 48 elderly subjects participating in a 4-week home air filtration study. Microvascular function (MVF, lung function, blood leukocyte counts, monocyte adhesion molecule expression, C-reactive protein, Clara cell protein (CC16 and surfactant protein-D (SPD were examined in relation to exposure preceding each measurement. Exposure assessment included 48-h urban background monitoring of PM10, PM2.5 and particle number concentration (PNC, weekly measurements of PM2.5 in living- and bedroom, 24-h measurements of indoor PNC three times, and bio-aerosol components in settled dust on a 2-week basis. Statistically significant inverse associations included: MVF with outdoor PNC; granulocyte counts with PM2.5; CD31 expression with dust fungi; SPD with dust endotoxin. Significant positive associations included: MVF with dust bacteria; monocyte expression of CD11 with PM2.5 in the bedroom and dust bacteria and endotoxin, CD31 expression with dust serine protease; serum CC16 with dust NAGase. Multiple comparisons demand cautious interpretation of results, which suggest that outdoor PNC have adverse effects on MVF, and outdoor and indoor PM2.5 and bio-aerosols are associated with markers of inflammation and lung cell integrity.

  16. Characterization Urban Heat Island Effect and Modelling of Secondary Pollutant Formations at Urban Hotspots

    Science.gov (United States)

    Undi, G. S. N. V. K. S. N. S.

    2017-12-01

    More than 60 percent of the world population is living the urban zones by 2020. This socio of economic transformations will bring considerable changes to the ambient atmosphere. More than 70 percent of the air pollutants in the urban hotspots are from vehicular emissions. in the urban hotspots. In the urban hotspots, the meteorological and dispersion conditions will have different characteristics than in surrounding rural areas. Reactive pollutants transformations are drastically influenced by the local meteorological conditions. The complexity of urban structure alters the pollutants dispersion in the hotspots. This relationship between urban meteorology and air pollution is an important aspect of consideration. In the atmosphere, drastic changes have been noticed from micro to regional and global scales. However, the characteristics of air pollutant emissions vary with time and space, favorable dispersion conditions transport them from local to regional scale. In the present study, the impact of land cover change on Urban Heat Island effect (UHI) has been characterized by considering the three different zones with varying land use patterns. An attempt has been made to estimate the impact of UHI on secondary pollutants (O3) transformations. Envi-Met model has been used to characterize the UHI intensity for the selected zones. Meteorological and air quality measurements were carried out at the selected locations. The diurnal variations of Ozone (O3) concentration for three zones are correlated with the UHI intensity. And the monitoring and model results of O3 concentrations are in good agreement. It is observed from the obtained model results that the metrological parameters influence on local air quality is significant in urban zones.

  17. Modeling Methodologies for Representing Urban Cultural Geographies in Stability Operations

    National Research Council Canada - National Science Library

    Ferris, Todd P

    2008-01-01

    ... 2.0.0, in an effort to provide modeling methodologies for a single simulation tool capable of exploring the complex world of urban cultural geographies undergoing Stability Operations in an irregular warfare (IW) environment...

  18. Exposure to particulate hexavalent chromium exacerbates allergic asthma pathology

    International Nuclear Information System (INIS)

    Schneider, Brent C.; Constant, Stephanie L.; Patierno, Steven R.; Jurjus, Rosalyn A.; Ceryak, Susan M.

    2012-01-01

    Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory response in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. -- Highlights: ► Allergic asthma correlated with exposure to certain inhaled particulate chromates. ► Direct causal association between Cr(VI) and allergic asthma not established. ► Cr exacerbated pathology and airway hyperresponsiveness in an OVA-challenged mouse. ► Particulate Cr

  19. Exposure to particulate hexavalent chromium exacerbates allergic asthma pathology

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Brent C. [Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037 (United States); Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States); Constant, Stephanie L. [Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037 (United States); Patierno, Steven R. [Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States); GW Cancer Institute, The George Washington University, Washington, DC 20037 (United States); Jurjus, Rosalyn A. [Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037 (United States); Ceryak, Susan M., E-mail: phmsmc@gwumc.edu [Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States)

    2012-02-15

    Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory response in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. -- Highlights: ► Allergic asthma correlated with exposure to certain inhaled particulate chromates. ► Direct causal association between Cr(VI) and allergic asthma not established. ► Cr exacerbated pathology and airway hyperresponsiveness in an OVA-challenged mouse. ► Particulate Cr

  20. Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide

    Directory of Open Access Journals (Sweden)

    J.-P. Jalkanen

    2012-03-01

    Full Text Available A method is presented for the evaluation of the exhaust emissions of marine traffic, based on the messages provided by the Automatic Identification System (AIS, which enable the positioning of ship emissions with a high spatial resolution (typically a few tens of metres. The model also takes into account the detailed technical data of each individual vessel. The previously developed model was applicable for evaluating the emissions of NOx, SOx and CO2. This paper addresses a substantial extension of the modelling system, to allow also for the mass-based emissions of particulate matter (PM and carbon monoxide (CO. The presented Ship Traffic Emissions Assessment Model (STEAM2 allows for the influences of accurate travel routes and ship speed, engine load, fuel sulphur content, multiengine setups, abatement methods and waves. We address in particular the modeling of the influence on the emissions of both engine load and the sulphur content of the fuel. The presented methodology can be used to evaluate the total PM emissions, and those of organic carbon, elemental carbon, ash and hydrated sulphate. We have evaluated the performance of the extended model against available experimental data on engine power, fuel consumption and the composition-resolved emissions of PM. We have also compared the annually averaged emission values with those of the corresponding EMEP inventory, As example results, the geographical distributions of the emissions of PM and CO are presented for the marine regions of the Baltic Sea surrounding the Danish Straits.

  1. Modeling the Current and Future Roles of Particulate Organic Nitrates in the Southeastern United States.

    Science.gov (United States)

    Pye, Havala O T; Luecken, Deborah J; Xu, Lu; Boyd, Christopher M; Ng, Nga L; Baker, Kirk R; Ayres, Benjamin R; Bash, Jesse O; Baumann, Karsten; Carter, William P L; Edgerton, Eric; Fry, Juliane L; Hutzell, William T; Schwede, Donna B; Shepson, Paul B

    2015-12-15

    Organic nitrates are an important aerosol constituent in locations where biogenic hydrocarbon emissions mix with anthropogenic NOx sources. While regional and global chemical transport models may include a representation of organic aerosol from monoterpene reactions with nitrate radicals (the primary source of particle-phase organic nitrates in the Southeast United States), secondary organic aerosol (SOA) models can underestimate yields. Furthermore, SOA parametrizations do not explicitly take into account organic nitrate compounds produced in the gas phase. In this work, we developed a coupled gas and aerosol system to describe the formation and subsequent aerosol-phase partitioning of organic nitrates from isoprene and monoterpenes with a focus on the Southeast United States. The concentrations of organic aerosol and gas-phase organic nitrates were improved when particulate organic nitrates were assumed to undergo rapid (τ = 3 h) pseudohydrolysis resulting in nitric acid and nonvolatile secondary organic aerosol. In addition, up to 60% of less oxidized-oxygenated organic aerosol (LO-OOA) could be accounted for via organic nitrate mediated chemistry during the Southern Oxidants and Aerosol Study (SOAS). A 25% reduction in nitrogen oxide (NO + NO2) emissions was predicted to cause a 9% reduction in organic aerosol for June 2013 SOAS conditions at Centreville, Alabama.

  2. Modelling of the urban wind profile

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekaterina

    2008-01-01

    Analysis of meteorological measurements from tall masts in rural and urban areas show that the height of the boundary layer influences the wind profile even in the lowest hundreds of meters. A parameterization of the wind profile for the entire boundary layer is formulated with emphasis on the lo...

  3. Diagnostic Air Quality Model Evaluation of Source-Specific Primary and Secondary Fine Particulate Carbon

    Science.gov (United States)

    Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004–February 2005) provided an unprecedented opportunity to diagnostically evaluate...

  4. ACUTE EXPOSURE TO PARTICULATE MATTER IN A RAT MODEL OF HEART FAILURE

    Science.gov (United States)

    Human exposure to ambient particulate matter (PM) has been linked to cardiovascular morbidity and mortality. This association strengthens in people with preexisting cardiopulmonary diseases—especially heart failure (HF). To better characterize the cardiovascular effects of PM, we...

  5. Understanding Spatiotemporal Variability of Fine Particulate Matter in an Urban Environment Using Combined Fixed and Mobile Measurements

    Science.gov (United States)

    Sullivan, R.; Pryor, S. C.; Barthelmie, R. J.; Filippelli, G. M.

    2013-12-01

    Acute and chronic exposure to elevated levels of aerosol particles represents a well-documented threat to public health. This is especially true in urban areas where in situ emissions elevate concentrations above regional background levels and population density is high, exposing a greater number of people to unhealthy air. The EPA's evaluation of compliance with National Ambient Air Quality Standards (NAAQS) for ambient fine particle (PM 2.5) concentrations in a city is frequently based on a limited number of observing stations and daily average concentrations. For example, data from only three locations indicates that Indianapolis (a city of nearly 1 million people) fails the NAAQS for PM2.5. However, the true population exposure exhibits spatial and temporal variability and thus is not adequately represented by long-term measurements. Thus, since 2011 we have conducted additional highly time-resolved PM2.5 measurements at four additional stations within Indianapolis. Analyses of these data indicate: ● PM2.5 concentrations in the city are an average of over 4 micrograms per cubic meter above a non-urban regionally representative site. ● A distinct diurnal cycle of PM2.5 concentrations in the city with a daily maximum in concentrations and higher outliers typically occurring during the morning hours (approx. 0700-0900 LST) and a daily minimum in concentrations and fewer outliers occurring in the afternoon (approx. 1400-1800 LST). ● Highest concentrations typically occur during weekdays. This hebdomadal pattern was amplified in proximity to the main interstate junction through the center of the city. ● PM2.5 concentrations thus exhibit similar timescales of variability to carbon monoxide, of which over 90% derives from the mobile sector, indicating a strong signature from motor vehicles. An additional mode of variability in PM2.5 as observed in power spectra equates to synoptic time scales (four days up to two weeks). ● On average wind speeds during

  6. Designing and implementing a regional urban modeling system using the SLEUTH cellular urban model

    Science.gov (United States)

    Jantz, Claire A.; Goetz, Scott J.; Donato, David I.; Claggett, Peter

    2010-01-01

    This paper presents a fine-scale (30 meter resolution) regional land cover modeling system, based on the SLEUTH cellular automata model, that was developed for a 257000 km2 area comprising the Chesapeake Bay drainage basin in the eastern United States. As part of this effort, we developed a new version of the SLEUTH model (SLEUTH-3r), which introduces new functionality and fit metrics that substantially increase the performance and applicability of the model. In addition, we developed methods that expand the capability of SLEUTH to incorporate economic, cultural and policy information, opening up new avenues for the integration of SLEUTH with other land-change models. SLEUTH-3r is also more computationally efficient (by a factor of 5) and uses less memory (reduced 65%) than the original software. With the new version of SLEUTH, we were able to achieve high accuracies at both the aggregate level of 15 sub-regional modeling units and at finer scales. We present forecasts to 2030 of urban development under a current trends scenario across the entire Chesapeake Bay drainage basin, and three alternative scenarios for a sub-region within the Chesapeake Bay watershed to illustrate the new ability of SLEUTH-3r to generate forecasts across a broad range of conditions.

  7. Personal exposure to fine particulate air pollution while commuting: An examination of six transport modes on an urban arterial roadway.

    Science.gov (United States)

    Chaney, Robert A; Sloan, Chantel D; Cooper, Victoria C; Robinson, Daniel R; Hendrickson, Nathan R; McCord, Tyler A; Johnston, James D

    2017-01-01

    Traffic-related air pollution in urban areas contributes significantly to commuters' daily PM2.5 exposures, but varies widely depending on mode of commuting. To date, studies show conflicting results for PM2.5 exposures based on mode of commuting, and few studies compare multiple modes of transportation simultaneously along a common route, making inter-modal comparisons difficult. In this study, we examined breathing zone PM2.5 exposures for six different modes of commuting (bicycle, walking, driving with windows open and closed, bus, and light-rail train) simultaneously on a single 2.7 km (1.68 mile) arterial urban route in Salt Lake City, Utah (USA) during peak "rush hour" times. Using previously published minute ventilation rates, we estimated the inhaled dose and exposure rate for each mode of commuting. Mean PM2.5 concentrations ranged from 5.20 μg/m3 for driving with windows closed to 15.21 μg/m3 for driving with windows open. The estimated inhaled doses over the 2.7 km route were 6.83 μg for walking, 2.78 μg for cycling, 1.28 μg for light-rail train, 1.24 μg for driving with windows open, 1.23 μg for bus, and 0.32 μg for driving with windows closed. Similarly, the exposure rates were highest for cycling (18.0 μg/hr) and walking (16.8 μg/hr), and lowest for driving with windows closed (3.7 μg/hr). Our findings support previous studies showing that active commuters receive a greater PM2.5 dose and have higher rates of exposure than commuters using automobiles or public transportation. Our findings also support previous studies showing that driving with windows closed is protective against traffic-related PM2.5 exposure.

  8. Personal exposure to fine particulate air pollution while commuting: An examination of six transport modes on an urban arterial roadway

    Science.gov (United States)

    Sloan, Chantel D.; Cooper, Victoria C.; Robinson, Daniel R.; Hendrickson, Nathan R.; McCord, Tyler A.; Johnston, James D.

    2017-01-01

    Traffic-related air pollution in urban areas contributes significantly to commuters’ daily PM2.5 exposures, but varies widely depending on mode of commuting. To date, studies show conflicting results for PM2.5 exposures based on mode of commuting, and few studies compare multiple modes of transportation simultaneously along a common route, making inter-modal comparisons difficult. In this study, we examined breathing zone PM2.5 exposures for six different modes of commuting (bicycle, walking, driving with windows open and closed, bus, and light-rail train) simultaneously on a single 2.7 km (1.68 mile) arterial urban route in Salt Lake City, Utah (USA) during peak “rush hour” times. Using previously published minute ventilation rates, we estimated the inhaled dose and exposure rate for each mode of commuting. Mean PM2.5 concentrations ranged from 5.20 μg/m3 for driving with windows closed to 15.21 μg/m3 for driving with windows open. The estimated inhaled doses over the 2.7 km route were 6.83 μg for walking, 2.78 μg for cycling, 1.28 μg for light-rail train, 1.24 μg for driving with windows open, 1.23 μg for bus, and 0.32 μg for driving with windows closed. Similarly, the exposure rates were highest for cycling (18.0 μg/hr) and walking (16.8 μg/hr), and lowest for driving with windows closed (3.7 μg/hr). Our findings support previous studies showing that active commuters receive a greater PM2.5 dose and have higher rates of exposure than commuters using automobiles or public transportation. Our findings also support previous studies showing that driving with windows closed is protective against traffic-related PM2.5 exposure. PMID:29121096

  9. Personal exposure to fine particulate air pollution while commuting: An examination of six transport modes on an urban arterial roadway.

    Directory of Open Access Journals (Sweden)

    Robert A Chaney

    Full Text Available Traffic-related air pollution in urban areas contributes significantly to commuters' daily PM2.5 exposures, but varies widely depending on mode of commuting. To date, studies show conflicting results for PM2.5 exposures based on mode of commuting, and few studies compare multiple modes of transportation simultaneously along a common route, making inter-modal comparisons difficult. In this study, we examined breathing zone PM2.5 exposures for six different modes of commuting (bicycle, walking, driving with windows open and closed, bus, and light-rail train simultaneously on a single 2.7 km (1.68 mile arterial urban route in Salt Lake City, Utah (USA during peak "rush hour" times. Using previously published minute ventilation rates, we estimated the inhaled dose and exposure rate for each mode of commuting. Mean PM2.5 concentrations ranged from 5.20 μg/m3 for driving with windows closed to 15.21 μg/m3 for driving with windows open. The estimated inhaled doses over the 2.7 km route were 6.83 μg for walking, 2.78 μg for cycling, 1.28 μg for light-rail train, 1.24 μg for driving with windows open, 1.23 μg for bus, and 0.32 μg for driving with windows closed. Similarly, the exposure rates were highest for cycling (18.0 μg/hr and walking (16.8 μg/hr, and lowest for driving with windows closed (3.7 μg/hr. Our findings support previous studies showing that active commuters receive a greater PM2.5 dose and have higher rates of exposure than commuters using automobiles or public transportation. Our findings also support previous studies showing that driving with windows closed is protective against traffic-related PM2.5 exposure.

  10. Integration of LUTI models into sustainable urban mobility plans (SUMPs

    Directory of Open Access Journals (Sweden)

    Nikolaos Gavanas

    2016-06-01

    Full Text Available A literature review indicates that there is an increasing number of Land Use/Transport Interaction (LUTI models being used in policy analysis and support of urban land use, transport and environmental planning. In this context, LUTI models are considered to be useful for the development of scenarios during the preparatory stage of Sustainable Urban Mobility Plans (SUMPs. A SUMP can be defined as a strategic planning framework, proposed by the European Commission, for planning and design of an urban multimodal transport system, which combines multi-disciplinary policy analysis and decision making. The objective of a SUMP is to achieve sustainable urban mobility, i.e. accessibility for all, safety and security, reduction in emissions and energy consumption, efficient and cost-effective transport and an improvement in the urban environment. Based on the overall conceptual and methodological framework of LUTI models (Geurs and van Wee 2004, the scope of the proposed research is to fully integrate a LUTI model into a contemporary transport planning framework and, more specifically, into the SUMP structure. This paper focuses on the configuration of the integration pattern, according to which a LUTI model may evolve and interact with the planning process throughout the eleven elements of the SUMP, as well as the evaluation of the benefits and drawbacks from the implementation of the proposed pattern for the enhancement of SUMP and overall promotion of sustainable urban planning.

  11. Influence of ozone precursors and particulate matter on the variation of surface ozone at an urban site of Delhi, India

    Directory of Open Access Journals (Sweden)

    Ashima Sharma

    2016-03-01

    Full Text Available Continuous measurements of surface O3 and its precursors (NO, NO2, CO, CH4 and NMHCs at an urban site of Delhi, India during January 2012 to December 2013 are presented. In the present study, the annual average mixing ratios of surface O3, NO, NO2, CO, CH4 and NMHC were 30 ± 6 ppb, 24 ± 6 ppb, 15 ± 4 ppb, 1.5 ± 0.4 ppm, 2.4 ± 0.4 ppm and 0.4 ± 0.1 ppm, respectively. The maximum average mixing ratios of surface O3, NO and NO2 were observed during the summer, whereas, the minimum average mixing ratios of ambient NO and NO2 were during monsoon seasons. The surface O3, NO and NO2 have shown the prominent diurnal variations during all the seasons at the observational site of Delhi. The result reveals that the surface O3 was negatively correlated with NOx and CO during the study. The linear scatter plot analysis shows that the PM2.5 and PM10 present in the ambient air of Delhi influence the production of surface O3 at observational site.

  12. Bioavailability of particulate metal to zebra mussels: biodynamic modelling shows that assimilation efficiencies are site-specific.

    Science.gov (United States)

    Bourgeault, Adeline; Gourlay-Francé, Catherine; Priadi, Cindy; Ayrault, Sophie; Tusseau-Vuillemin, Marie-Hélène

    2011-12-01

    This study investigates the ability of the biodynamic model to predict the trophic bioaccumulation of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni) and zinc (Zn) in a freshwater bivalve. Zebra mussels were transplanted to three sites along the Seine River (France) and collected monthly for 11 months. Measurements of the metal body burdens in mussels were compared with the predictions from the biodynamic model. The exchangeable fraction of metal particles did not account for the bioavailability of particulate metals, since it did not capture the differences between sites. The assimilation efficiency (AE) parameter is necessary to take into account biotic factors influencing particulate metal bioavailability. The biodynamic model, applied with AEs from the literature, overestimated the measured concentrations in zebra mussels, the extent of overestimation being site-specific. Therefore, an original methodology was proposed for in situ AE measurements for each site and metal. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Toxicological Impact of Air Pollution Particulate Matter PM 2.5 Collected under Urban Industrial or Rural Influence Occurrence of Oxidative Stress and Inflammatory Reaction in BEAS 2B Human Bronchial Epithelial Cells Corrected Version

    International Nuclear Information System (INIS)

    Dergham, M.; Billet, S; Verdin, A.; Courcot, D.; Cazier, F.; Pirouz, Sh.; Garcon, G.

    2011-01-01

    Exposure to air pollution Particulate Matter (PM) is one of the risk factors involved in the high incidence of respiratory and cardio-vascular diseases. In this work, to integrate inter-seasonal and inter-site variations, fine particle (PM2.5) samples have been collected in spring-summer 2008) and autumn 2008-winter 2009, in Dunkerque (France) under urban or industrial influence, and in Rubrouck (France), under rural influence. Attention was paid to characterize their physico-chemical characteristics, and to determine their ability to induce oxidative stress and inflammatory response in a human bronchial epithelial cell model (BEAS-2B cell line). Physico-chemical characterization of the six PM samples showed their heterogeneities and complexities depending upon their respective natural and/or anthropogenic emission sources. Lung cytotoxicity of these air pollution PM2.5 samples, as shown in BEAS-2B cells, might rely on the induction of oxidative stress conditions and particularly on the excessive inflammatory response. (author)

  14. Estimation of the Diesel Particulate Filter Soot Load Based on an Equivalent Circuit Model

    Directory of Open Access Journals (Sweden)

    Yanting Du

    2018-02-01

    Full Text Available In order to estimate the diesel particulate filter (DPF soot load and improve the accuracy of regeneration timing, a novel method based on an equivalent circuit model is proposed based on the electric-fluid analogy. This proposed method can reduce the impact of the engine transient operation on the soot load, accurately calculate the flow resistance, and improve the estimation accuracy of the soot load. Firstly, the least square method is used to identify the flow resistance based on the World Harmonized Transient Cycle (WHTC test data, and the relationship between flow resistance, exhaust temperature and soot load is established. Secondly, the online estimation of the soot load is achieved by using the dual extended Kalman filter (DEKF. The results show that this method has good convergence and robustness with the maximal absolute error of 0.2 g/L at regeneration timing, which can meet engineering requirements. Additionally, this method can estimate the soot load under engine transient operating conditions and avoids a large number of experimental tests, extensive calibration and the analysis of complex chemical reactions required in traditional methods.

  15. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes

    Science.gov (United States)

    Tian, S. L.; Pan, Y. P.; Wang, Y. S.

    2015-03-01

    More size-resolved chemical information is needed before the physicochemical characteristics and sources of airborne particles can be understood, but this information remains unavailable in most regions of China due to a paucity of measurement data. In this study, we report a one-year observation of various chemical species in size-segregated particle samples collected in urban Beijing, a mega city that experiences severe haze episodes. In addition to fine particles, the measured particle size distributions showed high concentrations of coarse particles during the haze periods. The abundance and chemical compositions of the particles in this study were temporally and spatially variable, with major contributions from organic matter and secondary inorganic aerosols. The contribution of the organic matter to the mass decreased from 37.9 to 33.1%, whereas the total contribution of SO42-, NO3- and NH4+ increased from 19.1 to 32.3% on non-haze and haze days, respectively. Due to heterogeneous reactions and hygroscopic growth, the peaks in the size distributions of organic carbon, SO42-, NO3-, NH4+, Cl-, K+ and Cu shifted from 0.43-0.65 μm on non-haze days to 0.65-1.1 μm on haze days. Although the size distributions are similar for the heavy metals Pb, Cd and Tl during the observation period, their concentrations increased by a factor of more than 1.5 on haze days compared with non-haze days. We found that NH4+ with a size range of 0.43-0.65 μm, SO42- and NO3- with a size range of 0.65-1.1 μm and Ca2+ with a size range of 5.8-9 μm as well as the meteorological factors of relative humidity and wind speed were responsible for the haze pollution when the visibility was less than 15 km. Source apportionment using positive matrix factorization identified six common sources: secondary inorganic aerosols (26.1% for fine particles vs. 9.5% for coarse particles), coal combustion (19 vs. 23.6%), primary emissions from vehicles (5.9 vs. 8.0%), biomass burning (8.5 vs. 2

  16. MODELLING CHALLENGES TO FORECAST URBAN GOODS DEMAND FOR RAIL

    Directory of Open Access Journals (Sweden)

    Antonio COMI

    2015-12-01

    Full Text Available This paper explores the new research challenges for forecasting urban goods demand by rail. In fact, the growing interest to find urban logistics solutions for improving city sustainability and liveability, mainly due to the reduction of urban road accessibility and environmental constraints, has pushed to explore solutions alternative to the road. Multimodal urban logistics, based on the use of railway, seem an interesting alternative solution, but it remained mainly at conceptual level. Few studies have explored the factors, that push actors to find competitive such a system with respect to the road, and modelling framework for forecasting the relative demand. Therefore, paper reviews the current literature, investigates the factors involved in choosing such a mode, and finally, recalls a recent modelling framework and hence proposes some advancements that allow to point out the rail transport alternative.

  17. Models of household location and urban amenities

    DEFF Research Database (Denmark)

    van Duijn, Mark; Möhlmann, Jan; Mulalic, Ismir

    the drivers of economic prosperity and growth in cities. In this introductory section we discuss some evidence that motivates this idea. In ‘The Economy of Cities’ Jane Jacobs (1970) puts forward the thesis that human interaction is a crucial aspect of urban economies. Economists such as Lucas (1988) picked...... and although local labor markets may differ in many respects, it is generally the case that higher wages lower the demand for workers.1 However, if a city has good amenities it may continue to attract highly educated workers even when wages are not that high. This reasoning thus suggests an important......1.1 Skilled workers and regional development The research carried out in the HELP project concerns the importance of urban amenities for the location choices of highly educated workers. Why is this important? A general answer to this question is that such workers are generally regarded as being...

  18. Uncertainty Assessment in Urban Storm Water Drainage Modelling

    DEFF Research Database (Denmark)

    Thorndahl, Søren

    The object of this paper is to make an overall description of the author's PhD study, concerning uncertainties in numerical urban storm water drainage models. Initially an uncertainty localization and assessment of model inputs and parameters as well as uncertainties caused by different model...

  19. Charge-Spot Model for Electrostatic Forces in Simulation of Fine Particulates

    Science.gov (United States)

    Walton, Otis R.; Johnson, Scott M.

    2010-01-01

    . Adhesive image-charge forces acting on charged particles touching conducting surfaces can be up to 50 times stronger if the charge is located in discrete spots on the particle surface instead of being distributed uniformly over the surface of the particle, as is assumed by most other models. Besides being useful in modeling particulates in space and distant objects, this modeling technique is useful for electrophotography (used in copiers) and in simulating the effects of static charge in the pulmonary delivery of fine dry powders.

  20. Deleterious Effects of Intra-arterial Administration of Particulate Steroids on Microvascular Perfusion in a Mouse Model.

    Science.gov (United States)

    Laemmel, Elisabeth; Segal, Nicolas; Mirshahi, Massoud; Azzazene, Dalel; Le Marchand, Sylvie; Wybier, Marc; Vicaut, Eric; Laredo, Jean-Denis

    2016-06-01

    Purpose To determine the in vivo effects of several particulate steroids on microvascular perfusion by using intravital microscopy in a mice model and to investigate the in vitro interactions between these particulate steroids and red blood cells (RBCs). Materials and Methods The study was conducted in agreement with the guidelines of the National Committee of Ethic Reflection on Animal Experimentation. By using intravital microscopy of mouse cremaster muscle, the in vivo effects of several particulate steroids on microvascular perfusion were assessed. Four to five mice were allocated to each of the following treatment groups: saline solution, dexamethasone sodium phosphate, a nonparticulate steroid, and the particulate steroids cortivazol, methylprednisolone, triamcinolone, and prednisolone. By using in vitro blood microcinematography and electron microscopy, the interactions between these steroids and human RBCs were studied. All results were analyzed by using nonparametric tests. Results With prednisolone, methylprednisolone, or triamcinolone, blood flow was rapidly and completely stopped in all the arterioles and venules (median RBC velocity in first-order arterioles, 5 minutes after administration was zero for these three groups) compared with a limited effect in mice treated with saline, dexamethasone, and cortivazol (20.3, 21.3, and 27.5 mm/sec, respectively; P effect was associated with a large decrease in the functional capillary density (4.21, 0, and 0 capillaries per millimeter for methylprednisolone, triamcinolone, or prednisolone, respectively, vs 21.0, 21.4, and 19.1 capillaries per millimeter in mice treated with saline, dexamethasone, and cortivazol, respectively; P steroids. Conclusion Several particulate steroids have an immediate and massive effect on microvascular perfusion because of formation of RBC aggregates associated with the transformation of RBCs into spiculated RBCs. (©) RSNA, 2016 Online supplemental material is available for this

  1. Feasibility of using low-cost portable particle monitors for measurement of fine and coarse particulate matter in urban ambient air.

    Science.gov (United States)

    Han, Inkyu; Symanski, Elaine; Stock, Thomas H

    2017-03-01

    Exposure to ambient particulate matter (PM) is known as a significant risk factor for mortality and morbidity due to cardiorespiratory causes. Owing to increased interest in assessing personal and community exposures to PM, we evaluated the feasibility of employing a low-cost portable direct-reading instrument for measurement of ambient air PM exposure. A Dylos DC 1700 PM sensor was collocated with a Grimm 11-R in an urban residential area of Houston Texas. The 1-min averages of particle number concentrations for sizes between 0.5 and 2.5 µm (small size) and sizes larger than 2.5 µm (large size) from a DC 1700 were compared with the 1-min averages of PM 2.5 (aerodynamic size less than 2.5 µm) and coarse PM (aerodynamic size between 2.5 and 10 µm) concentrations from a Grimm 11-R. We used a linear regression equation to convert DC 1700 number concentrations to mass concentrations, utilizing measurements from the Grimm 11-R. The estimated average DC 1700 PM 2.5 concentration (13.2 ± 13.7 µg/m 3 ) was similar to the average measured Grimm 11-R PM 2.5 concentration (11.3 ± 15.1 µg/m 3 ). The overall correlation (r 2 ) for PM 2.5 between the DC 1700 and Grimm 11-R was 0.778. The estimated average coarse PM concentration from the DC 1700 (5.6 ± 12.1 µg/m 3 ) was also similar to that measured with the Grimm 11-R (4.8 ± 16.5 µg/m 3 ) with an r 2 of 0.481. The effects of relative humidity and particle size on the association between the DC 1700 and the Grimm 11-R results were also examined. The calculated PM mass concentrations from the DC 1700 were close to those measured with the Grimm 11-R when relative humidity was less than 60% for both PM 2.5 and coarse PM. Particle size distribution was more important for the association of coarse PM between the DC 1700 and Grimm 11-R than it was for PM 2.5 . The performance of a low-cost particulate matter (PM) sensor was evaluated in an urban residential area. Both PM 2.5 and coarse PM (PM 10-2.5 ) mass concentrations

  2. Exposure assessment and modeling of particulate matter for asthmatic children using personal nephelometers

    Science.gov (United States)

    Wu, Chang-Fu; Delfino, Ralph J.; Floro, Joshua N.; Quintana, Penelope J. E.; Samimi, Behzad S.; Kleinman, Michael T.; Allen, Ryan W.; Sally Liu, L.-J.

    It has been shown that acute exposures to particulate matter (PM) may exacerbate asthma in children. However, most epidemiological studies have relied on time-integrated PM measurements taken at a centrally located stationary monitoring sites. In this article, we characterized children's short-term personal exposures to PM 2.5 (PM with aerodynamic diameters size-selective inlet was used to estimate real-time PM 2.5 concentrations on 20 asthmatic children, inside and outside of their residences, and at a central site. The personal and indoor pDRs were operated passively, while the home outdoor and central site instruments were operated actively. The subjects received 29.2% of their exposures at school, even though they only spent 16.4% of their time there. More precise personal clouds were estimated for the home-indoor and home-outdoor microenvironments where PM concentrations were measured. The personal cloud increased with increasing activity levels and was higher during outdoor activities than during indoor activities. We built models to predict personal PM exposures based on either microenvironmental or central-site PM 2.5 measurements, and evaluated the modeled exposures against the actual personal measurements. A multiple regression model with central site PM concentration as the main predictor had a better prediction power ( R2=0.41) than a three-microenvironmental model ( R2=0.11). We further constructed a source-specific exposure model utilizing the time-space-activity information and the particle infiltration efficiencies (mean=0.72±0.15) calculated from a recursive mass balance model. It was estimated that the mean hourly personal exposures resulting from ambient, indoor-generated, and personal activity PM 2.5 were 11.1, 5.5, and 10.0 μg/m 3, respectively, when the modeling error was minimized. The high PM 2.5 exposure to personal activities reported in our study is likely due to children's more active lifestyle as compared with older adult subjects in

  3. Measured and modelled concentrations and vertical profiles of airborne particulate matter within the boundary layer of a street canyon

    International Nuclear Information System (INIS)

    Colls, J.J.; Micallef, A.

    1999-01-01

    Concentrations and vertical profiles of various fractions of airborne particulate matter (suspended particulate matter (SPM), PM 10 and PM 2.5 ) have been measured over the first three metres from ground in a street canyon. Measurements were carried out using automated near real-time apparatus called the Kinetic Sequential Sampling (KSS) system. KSS system is essentially an electronically-controlled lift carrying a real-time particle monitor for sampling air sequentially, at different heights within the breathing zone, which includes all heights within the surface layer of a street canyon at which people may breathe. Data is automatically logged at the different receptor levels, for the determination of the average vertical concentration profile of airborne particulate matter. For measuring the airborne particle concentration, a Grimm Dust Monitor 1.104/5 was used. The recorded data also allows for time series analysis of airborne particulate matter concentration at different heights. Time series data and hourly-average vertical concentration profiles in the boundary layer of the confines of a street are thought to be mainly determined by traffic emissions and traffic associated processes. Hence the measured data were compared with results of a street canyon emission-dispersion model in time and space. This Street Level Air Quality (SLAQ) model employs the plume-box technique and includes modules for simulating vehicle-generated effects such as thermally- and mechanically-generated turbulence and resuspension of road dust. Environmental processes, such as turbulence resulting from surface sensible heat and the formation of sulphate aerosol from sulphur dioxide exhaust emissions, are taken into account. The paper presents an outline description of the measuring technique and model used, and a comparison of the measured and modelled data

  4. [Grain Size Distribution Characteristics of Suspended Particulate Matter as Influenced by the Apparent Pollution in the Eutrophic Urban Landscape Water Body].

    Science.gov (United States)

    Gong, Dan-yan; Pan, Yang; Huang, Yong; Bao, Wei; Li, Qian-qian

    2016-03-15

    Grain size distribution characteristics of suspended particulate matter (SPM) reflects the apparent polluted condition of the urban landscape water. In order to explore the internal relationship between the eutrophication of urban landscape water's apparent pollution and grain size distribution of SPM, and its influencing factors, this paper selected five representative sampling sites in Feng Jin River which is a typical eutrophication river in Suzhou City, measured the grain size distribution of SPM, sensation pollution index (SPI) and water quality index, and analyzed their correlation. The results showed that: The rich nutrient water possessed a similar characteristics in grain size distribution. The grain size distribution of SPM in water was multimodal, and the the peak position was roughly the same; the grain size distribution of SPM was composed by multiple components. It could be roughly divided into six parts with the particle size range of every group being 516 µm. The component III was superior (with an average volume fraction of 38.3%-43.2%), and its volume fraction had a significant positive relation with the SPI value and the Chl-a content. The increase of component III volume fraction was the reflection of particle size's result of increasing SPI value. The increase of component III volume fraction was mainly derived from the increasing algal content. The volume fraction of group IV + group VI + group V was significantly higher under the condition of exogenous enter. When there was no exogenous component, the volume fraction of group IV + group VI + group V had a significant negative correlation with SPI value; when there were exogenous components, the volume fraction of group IV + group VI + group V had a weak positive correlation with SPI value, but the correlation did not reach a significant level. Environmental factors (Fv/Fm and DO) and exogenous factors had an influence by functioning on the algal content which signified the polluted material

  5. Receptor model-based source apportionment of particulate pollution in Hyderabad, India.

    Science.gov (United States)

    Guttikunda, Sarath K; Kopakka, Ramani V; Dasari, Prasad; Gertler, Alan W

    2013-07-01

    Air quality in Hyderabad, India, often exceeds the national ambient air quality standards, especially for particulate matter (PM), which, in 2010, averaged 82.2 ± 24.6, 96.2 ± 12.1, and 64.3 ± 21.2 μg/m(3) of PM10, at commercial, industrial, and residential monitoring stations, respectively, exceeding the national ambient standard of 60 μg/m(3). In 2005, following an ordinance passed by the Supreme Court of India, a source apportionment study was conducted to quantify source contributions to PM pollution in Hyderabad, using the chemical mass balance (version 8.2) receptor model for 180 ambient samples collected at three stations for PM10 and PM2.5 size fractions for three seasons. The receptor modeling results indicated that the PM10 pollution is dominated by the direct vehicular exhaust and road dust (more than 60%). PM2.5 with higher propensity to enter the human respiratory tracks, has mixed sources of vehicle exhaust, industrial coal combustion, garbage burning, and secondary PM. In order to improve the air quality in the city, these findings demonstrate the need to control emissions from all known sources and particularly focus on the low-hanging fruits like road dust and waste burning, while the technological and institutional advancements in the transport and industrial sectors are bound to enhance efficiencies. Andhra Pradesh Pollution Control Board utilized these results to prepare an air pollution control action plan for the city.

  6. A mouse dry eye model induced by topical administration of the air pollutant particulate matter 10.

    Science.gov (United States)

    Li, Juan; Tan, Gang; Ding, Xiaoyan; Wang, Yahong; Wu, Anhua; Yang, Qichen; Ye, Lei; Shao, Yi

    2017-12-01

    To introduce a novel dry eye mouse model induced by topical administration of the air pollutant particulate matter 10 (PM 10 ). A total of 60 male BALB/c mice were used in this study and divided into two groups: group A (PBS eye drops, n=30) and group B (PM 10 eye drop group, n=30). Each treatment was dosed four times a day, every time 50ul with the concentration of 5mg/ml PM10, for 14 consecutive days in the right eye. The clinical manifestations of dry eye were measured before therapy and 4, 7 and 14days post-treatment respectively, which included the tear volume, tear break-up (BUT) time, corneal fluorescein staining, rose bengal staining, Lissamine Green staining and inflammatory index. Eye samples were collected on D14 and examined by histologic light microscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM), corneal cytokeration 10 (K10) immunnostaining, and tumor necrosis factor-α (TNF-α), NF-κB-p65 and NF-κB Western Blot analysis. At 0d, 7d and 14d, there were no statistical changes in tear volume, BUT after treatment (P>0.05) with PBS in group A. In group B, all items showed statistical differences at each time point (Plevels of K10 and reduced number of goblet cells in the conjunctival fornix in group B. PM 10 significantly increased the levels of TNF-α, NF-κB-p65 and NF-κB in the cornea. PM 10 can damage the tear film function and cause the destruction of the structural organization of ocular surface in mice. Topical administration of PM 10 in mice induces ocular surface changes that are similar to those of dry eye in humans, representing a novel model of DES. Copyright © 2017. Published by Elsevier Masson SAS.

  7. Mass balance-based regression modeling of PAHs accumulation in urban soils, role of urban development

    International Nuclear Information System (INIS)

    Peng, Chi; Wang, Meie; Chen, Weiping; Chang, Andrew C.

    2015-01-01

    We investigated the polycyclic aromatic hydrocarbons (PAHs) contents in 68 soils samples collected at housing developments that represent different length of development periods across Beijing. Based on the data, we derived a mass balanced mathematical model to simulate the dynamics of PAH accumulations in urban soils as affected by the urban developments. The key parameters were estimated by fitting the modified mass balance model to the data of PAH concentrations vs. building age of the sampling green area. The total PAH concentrations would increase from the baseline of 267 ng g −1 to 3631 ng g −1 during the period of 1978–2048. It showed that the dynamic changes in the rates of accumulations of light and heavy PAH species were related to the shifting of sources of fuels, combustion efficiencies, and amounts of energy consumed during the course of development. - Highlights: • Introduced a mass balance model for soil PAHs accumulation with urbanization. • Reconstructed the historical data of PAH accumulation in soil of Beijing, China. • The soil PAH concentrations would be doubled in the following 40 years. • The composition of PAH emissions were shifting to light PAH species. - Introduced a regression modeling approach to predict the changes of PAH concentrations in urban soil

  8. ANALYTICAL AND SIMULATION PLANNING MODEL OF URBAN PASSENGER TRANSPORT

    Directory of Open Access Journals (Sweden)

    Andrey Borisovich Nikolaev

    2017-09-01

    Full Text Available The article described the structure of the analytical and simulation models to make informed decisions in the planning of urban passenger transport. Designed UML diagram that describes the relationship of classes of the proposed model. A description of the main agents of the model developed in the simulation AnyLogic. Designed user interface integration with GIS map. Also provides simulation results that allow concluding about her health and the possibility of its use in solving planning problems of urban passenger transport.

  9. Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 1: Simple VOCs and model PM

    Science.gov (United States)

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.

    2012-12-01

    This is the first of a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOC), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of biological effects, using cultured human lung cells as model indicators. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. The exposure systems permit virtually gas-only- or PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure. Our simple experiments in this part of the study were designed to eliminate many competing atmospheric processes to reduce ambiguity in our results. Simple volatile and semi-volatile organic gases that have inherent cellular toxic properties were tested individually for biological effect in the dark (at constant humidity). Airborne mixtures were then created with each compound to which we added PM that has no inherent cellular toxic properties for another cellular exposure. Acrolein and p-tolualdehyde were used as model VOCs and mineral oil aerosol (MOA) was selected as a surrogate for organic-containing PM. MOA is appropriately complex in composition to represent ambient PM, and exhibits no inherent cellular toxic effects and thus did not contribute any biological detrimental effects on its own. Chemical measurements, combined with the responses of our biological exposures, clearly demonstrate that gas-phase pollutants can modify the composition of PM (and its resulting detrimental effects on lung cells). We observed that, even if the gas-phase pollutants are not

  10. Urban Hydrology and Water Quality Modeling - Resolution Modeling Comparison for Water Quantity and Quality

    Science.gov (United States)

    Fry, T. J.; Maxwell, R. M.

    2014-12-01

    Urbanization presents challenging water resource problems for communities worldwide. The hydromodifications associated with urbanization results in increased runoff rates and volumes and increased peak flows. These hydrologic changes can lead to increased erosion and stream destabilization, decreased evapotranspiration, decreased ground water recharge, increases in pollutant loading, and localized anthropogenic climate change or Urban Heat Islands. Stormwater represents a complex and dynamic component of the urban water cycle that requires careful mitigation. With the implementation of Phase II rules under the CWA, stormwater management is shifting from a drainage-efficiency focus to a natural systems focus. The natural system focus, referred to as Low Impact Development (LID), or Green Infrastructure, uses best management practices (BMPs) to reduce the impacts caused by urbanization hydromodification. Large-scale patterns of stormwater runoff from urban environments are complex and it is unclear what the large-scale impacts of green infrastructure are on the water cycle. High resolution physically based hydrologic models can be used to more accurately simulate the urban hydrologic cycle. These types of models tend to be more dynamic and allow for greater flexibility in evaluating and accounting for various hydrologic processes in the urban environment that may be lost with lower resolution conceptual models. We propose to evaluate the effectiveness of high resolution models to accurately represent and determine the urban hydrologic cycle with the overall goal of being able to accurately assess the impacts of LID BMPs in urban environments. We propose to complete a rigorous model intercomparison between ParFlow and FLO-2D. Both of these models can be scaled to higher resolutions, allow for rainfall to be spatially and temporally input, and solve the shallow water equations. Each model is different in the way it accounts for infiltration, initial abstraction losses

  11. Observation- and model-based estimates of particulate dry nitrogen deposition to the oceans

    Directory of Open Access Journals (Sweden)

    A. R. Baker

    2017-07-01

    Full Text Available Anthropogenic nitrogen (N emissions to the atmosphere have increased significantly the deposition of nitrate (NO3− and ammonium (NH4+ to the surface waters of the open ocean, with potential impacts on marine productivity and the global carbon cycle. Global-scale understanding of the impacts of N deposition to the oceans is reliant on our ability to produce and validate models of nitrogen emission, atmospheric chemistry, transport and deposition. In this work,  ∼  2900 observations of aerosol NO3− and NH4+ concentrations, acquired from sampling aboard ships in the period 1995–2012, are used to assess the performance of modelled N concentration and deposition fields over the remote ocean. Three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific were selected, in which the density and distribution of observational data were considered sufficient to provide effective comparison to model products. All of these study regions are affected by transport and deposition of mineral dust, which alters the deposition of N, due to uptake of nitrogen oxides (NOx on mineral surfaces. Assessment of the impacts of atmospheric N deposition on the ocean requires atmospheric chemical transport models to report deposition fluxes; however, these fluxes cannot be measured over the ocean. Modelling studies such as the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP, which only report deposition flux, are therefore very difficult to validate for dry deposition. Here, the available observational data were averaged over a 5° × 5° grid and compared to ACCMIP dry deposition fluxes (ModDep of oxidised N (NOy and reduced N (NHx and to the following parameters from the Tracer Model 4 of the Environmental Chemical Processes Laboratory (TM4: ModDep for NOy, NHx and particulate NO3− and NH4+, and surface-level particulate NO3− and NH4+ concentrations. As a model ensemble, ACCMIP can be

  12. Nested High Resolution Modeling of the Impact of Urbanization on Regional Climate in Three Vast Urban Agglomerations in China

    Science.gov (United States)

    Wang, Jun; Feng, Jinming; Yan, Zhongwei; Hu, Yonghong; Jia, Gensuo

    2013-04-01

    In this paper, the Weather Research and Forecasting (WRF) model coupled to the Urban Canopy Model (UCM) is employed to simulate the impact of urbanization on the regional climate over three vast city agglomerations in China. Based on high resolution land use and land cover data, two scenarios are designed to represent the non-urban and current urban land use distributions. By comparing the results of two nested, high resolution numerical experiments, the spatial and temporal changes on surface air temperature, heat stress index, surface energy budget and precipitation due to urbanization are analyzed and quantified. Urban expansion increases the surface air temperature in urban areas by about 1? and this climatic forcing of urbanization on temperature is more pronounced in summer and nighttime than other seasons and daytime. The heat stress intensity, which reflects the combined effects of temperature and humidity, is enhanced by about 0.5 units in urban areas. The regional incoming solar radiation increases after urban expansion, which may be caused by the reduction of cloud fraction. The increased temperature and roughness of the urban surface lead to enhanced convergence. Meanwhile, the planetary boundary layer is deepened and water vapor is mixed more evenly in the lower atmosphere. The deficit of water vapor leads to less convective available potential energy and more convective inhibition energy. Finally, these combined effects may reduce the rainfall amount over urban area mainly in summer and change the regional precipitation pattern to a certain extent.

  13. In-vehicle exposures to particulate air pollution in Canadian metropolitan areas: the urban transportation exposure study.

    Science.gov (United States)

    Weichenthal, Scott; Van Ryswyk, Keith; Kulka, Ryan; Sun, Liu; Wallace, Lance; Joseph, Lawrence

    2015-01-06

    Commuters may be exposed to increased levels of traffic-related air pollution owing to close proximity to traffic-emissions. We collected in-vehicle and roof-top air pollution measurements over 238 commutes in Montreal, Toronto, and Vancouver, Canada between 2010 and 2013. Voice recordings were used to collect real-time information on traffic density and the presence of diesel vehicles and multivariable linear regression models were used to estimate the impact of these factors on in-vehicle pollutant concentrations (and indoor/outdoor ratios) along with parameters for road type, land use, and meteorology. In-vehicle PM2.5 and NO2 concentrations consistently exceeded regional outdoor levels and each unit increase in the rate of encountering diesel vehicles (count/min) was associated with substantial increases (>100%) in in-vehicle concentrations of ultrafine particles (UFPs), black carbon, and PM2.5 as well as strong increases (>15%) in indoor/outdoor ratios. A model based on meteorology and the length of highway roads within a 500 m buffer explained 53% of the variation in in-vehicle UFPs; however, models for PM2.5 (R(2) = 0.24) and black carbon (R(2) = 0.30) did not perform as well. Our findings suggest that vehicle commuters experience increased exposure to air pollutants and that traffic characteristics, land use, road types, and meteorology are important determinants of these exposures.

  14. A discrete-space urban model with environmental amenities

    Science.gov (United States)

    Liaila Tajibaeva; Robert G. Haight; Stephen Polasky

    2008-01-01

    This paper analyzes the effects of providing environmental amenities associated with open space in a discrete-space urban model and characterizes optimal provision of open space across a metropolitan area. The discrete-space model assumes distinct neighborhoods in which developable land is homogeneous within a neighborhood but heterogeneous across neighborhoods. Open...

  15. Urban traffic noise assessment by combining measurement and model results

    NARCIS (Netherlands)

    Eerden, F.J.M. van der; Graafland, F.; Wessels, P.W.; Basten, T.G.H.

    2013-01-01

    A model based monitoring system is applied on a local scale in an urban area to obtain a better understanding of the traffic noise situation. The system consists of a scalable sensor network and an engineering model. A better understanding is needed to take appropriate and cost efficient measures,

  16. Receptor for advanced glycation end-products and World Trade Center particulate induced lung function loss: A case-cohort study and murine model of acute particulate exposure.

    Science.gov (United States)

    Caraher, Erin J; Kwon, Sophia; Haider, Syed H; Crowley, George; Lee, Audrey; Ebrahim, Minah; Zhang, Liqun; Chen, Lung-Chi; Gordon, Terry; Liu, Mengling; Prezant, David J; Schmidt, Ann Marie; Nolan, Anna

    2017-01-01

    World Trade Center-particulate matter(WTC-PM) exposure and metabolic-risk are associated with WTC-Lung Injury(WTC-LI). The receptor for advanced glycation end-products (RAGE) is most highly expressed in the lung, mediates metabolic risk, and single-nucleotide polymorphisms at the AGER-locus predict forced expiratory volume(FEV). Our objectives were to test the hypotheses that RAGE is a biomarker of WTC-LI in the FDNY-cohort and that loss of RAGE in a murine model would protect against acute PM-induced lung disease. We know from previous work that early intense exposure at the time of the WTC collapse was most predictive of WTC-LI therefore we utilized a murine model of intense acute PM-exposure to determine if loss of RAGE is protective and to identify signaling/cytokine intermediates. This study builds on a continuing effort to identify serum biomarkers that predict the development of WTC-LI. A case-cohort design was used to analyze a focused cohort of male never-smokers with normal pre-9/11 lung function. Odds of developing WTC-LI increased by 1.2, 1.8 and 1.0 in firefighters with soluble RAGE (sRAGE)≥97pg/mL, CRP≥2.4mg/L, and MMP-9≤397ng/mL, respectively, assessed in a multivariate logistic regression model (ROCAUC of 0.72). Wild type(WT) and RAGE-deficient(Ager-/-) mice were exposed to PM or PBS-control by oropharyngeal aspiration. Lung function, airway hyperreactivity, bronchoalveolar lavage, histology, transcription factors and plasma/BAL cytokines were quantified. WT-PM mice had decreased FEV and compliance, and increased airway resistance and methacholine reactivity after 24-hours. Decreased IFN-γ and increased LPA were observed in WT-PM mice; similar findings have been reported for firefighters who eventually develop WTC-LI. In the murine model, lack of RAGE was protective from loss of lung function and airway hyperreactivity and was associated with modulation of MAP kinases. We conclude that in a multivariate adjusted model increased sRAGE is

  17. Receptor for advanced glycation end-products and World Trade Center particulate induced lung function loss: A case-cohort study and murine model of acute particulate exposure.

    Directory of Open Access Journals (Sweden)

    Erin J Caraher

    Full Text Available World Trade Center-particulate matter(WTC-PM exposure and metabolic-risk are associated with WTC-Lung Injury(WTC-LI. The receptor for advanced glycation end-products (RAGE is most highly expressed in the lung, mediates metabolic risk, and single-nucleotide polymorphisms at the AGER-locus predict forced expiratory volume(FEV. Our objectives were to test the hypotheses that RAGE is a biomarker of WTC-LI in the FDNY-cohort and that loss of RAGE in a murine model would protect against acute PM-induced lung disease. We know from previous work that early intense exposure at the time of the WTC collapse was most predictive of WTC-LI therefore we utilized a murine model of intense acute PM-exposure to determine if loss of RAGE is protective and to identify signaling/cytokine intermediates. This study builds on a continuing effort to identify serum biomarkers that predict the development of WTC-LI. A case-cohort design was used to analyze a focused cohort of male never-smokers with normal pre-9/11 lung function. Odds of developing WTC-LI increased by 1.2, 1.8 and 1.0 in firefighters with soluble RAGE (sRAGE≥97pg/mL, CRP≥2.4mg/L, and MMP-9≤397ng/mL, respectively, assessed in a multivariate logistic regression model (ROCAUC of 0.72. Wild type(WT and RAGE-deficient(Ager-/- mice were exposed to PM or PBS-control by oropharyngeal aspiration. Lung function, airway hyperreactivity, bronchoalveolar lavage, histology, transcription factors and plasma/BAL cytokines were quantified. WT-PM mice had decreased FEV and compliance, and increased airway resistance and methacholine reactivity after 24-hours. Decreased IFN-γ and increased LPA were observed in WT-PM mice; similar findings have been reported for firefighters who eventually develop WTC-LI. In the murine model, lack of RAGE was protective from loss of lung function and airway hyperreactivity and was associated with modulation of MAP kinases. We conclude that in a multivariate adjusted model increased s

  18. Experimental and numerical analysis of traffic emitted nanoparticle and particulate matter dispersion at urban pollution hot-spots

    Science.gov (United States)

    Goel, Anju

    Road vehicles are a major source of airborne nanoparticles (traffic hot-spots such as traffic intersections (TIs), where pollution pockets are created due to frequently changing driving conditions. Recent trends suggest an exponential increase in travel demand and travelling time in the UK and elsewhere over the years, which indicate a growing need for the accurate characterisation of exposure at TIs since exposure at these hot-spots can contribute disproportionately high to overall commuting exposure. Based on field observations, this thesis aims (i) to investigate the traffic driving conditions in which TIs become a hotspot for nanoparticles and PM, (ii) to estimate the extent of road that is affected by high particle number concentrations (PNCs) and PM due to presence of a signal, (iii) to assess the vertical and horizontal variations in PNC and PMC at different TIs, (iv) to estimate the associated in-cabin and pedestrian exposure at TIs, and finally (v) to predict PNCs by using freely available models of air pollution at TIs. For this thesis, two sets of experiments (i.e. mobile- and fixed-sites) were carried out to measure airborne nanoparticles and PM in the size range of (0.005-10 ?m) using a fast response differential mobility spectrometer (DMS50) and a GRIMM particle spectrometer (1.107 E). Mobile measurements were made on a circle passing through 10 TIs and fixed-site measurements were carried out at two different types of TIs (i.e. 3- and 4-way). Dispersion modelling was then performed by using California Line Source (CALINE4) and California Line Source for Queueing and Hotspot Calculations (CAL3QHC) at TIs. Several important findings were then extrapolated during the analysis. These findings indicated that congested TIs were found to become hot-spots when vehicle accelerate from idling conditions. The average length of road in longitudinal direction that is affected by high PNCs and PM was found to be highest (148 m; 89 to -59 m from the center of a TI

  19. Urban weather data and building models for the inclusion of the urban heat island effect in building performance simulation.

    Science.gov (United States)

    Palme, M; Inostroza, L; Villacreses, G; Lobato, A; Carrasco, C

    2017-10-01

    This data article presents files supporting calculation for urban heat island (UHI) inclusion in building performance simulation (BPS). Methodology is used in the research article "From urban climate to energy consumption. Enhancing building performance simulation by including the urban heat island effect" (Palme et al., 2017) [1]. In this research, a Geographical Information System (GIS) study is done in order to statistically represent the most important urban scenarios of four South-American cities (Guayaquil, Lima, Antofagasta and Valparaíso). Then, a Principal Component Analysis (PCA) is done to obtain reference Urban Tissues Categories (UTC) to be used in urban weather simulation. The urban weather files are generated by using the Urban Weather Generator (UWG) software (version 4.1 beta). Finally, BPS is run out with the Transient System Simulation (TRNSYS) software (version 17). In this data paper, four sets of data are presented: 1) PCA data (excel) to explain how to group different urban samples in representative UTC; 2) UWG data (text) to reproduce the Urban Weather Generation for the UTC used in the four cities (4 UTC in Lima, Guayaquil, Antofagasta and 5 UTC in Valparaíso); 3) weather data (text) with the resulting rural and urban weather; 4) BPS models (text) data containing the TRNSYS models (four building models).

  20. Urban weather data and building models for the inclusion of the urban heat island effect in building performance simulation

    Directory of Open Access Journals (Sweden)

    M. Palme

    2017-10-01

    Full Text Available This data article presents files supporting calculation for urban heat island (UHI inclusion in building performance simulation (BPS. Methodology is used in the research article “From urban climate to energy consumption. Enhancing building performance simulation by including the urban heat island effect” (Palme et al., 2017 [1]. In this research, a Geographical Information System (GIS study is done in order to statistically represent the most important urban scenarios of four South-American cities (Guayaquil, Lima, Antofagasta and Valparaíso. Then, a Principal Component Analysis (PCA is done to obtain reference Urban Tissues Categories (UTC to be used in urban weather simulation. The urban weather files are generated by using the Urban Weather Generator (UWG software (version 4.1 beta. Finally, BPS is run out with the Transient System Simulation (TRNSYS software (version 17. In this data paper, four sets of data are presented: 1 PCA data (excel to explain how to group different urban samples in representative UTC; 2 UWG data (text to reproduce the Urban Weather Generation for the UTC used in the four cities (4 UTC in Lima, Guayaquil, Antofagasta and 5 UTC in Valparaíso; 3 weather data (text with the resulting rural and urban weather; 4 BPS models (text data containing the TRNSYS models (four building models.

  1. Predictive Modelling of Heavy Metals in Urban Lakes

    OpenAIRE

    Lindström, Martin

    2000-01-01

    Heavy metals are well-known environmental pollutants. In this thesis predictive models for heavy metals in urban lakes are discussed and new models presented. The base of predictive modelling is empirical data from field investigations of many ecosystems covering a wide range of ecosystem characteristics. Predictive models focus on the variabilities among lakes and processes controlling the major metal fluxes. Sediment and water data for this study were collected from ten small lakes in the ...

  2. High resolution modelling of extreme precipitation events in urban areas

    Science.gov (United States)

    Siemerink, Martijn; Volp, Nicolette; Schuurmans, Wytze; Deckers, Dave

    2015-04-01

    The present day society needs to adjust to the effects of climate change. More extreme weather conditions are expected, which can lead to longer periods of drought, but also to more extreme precipitation events. Urban water systems are not designed for such extreme events. Most sewer systems are not able to drain the excessive storm water, causing urban flooding. This leads to high economic damage. In order to take appropriate measures against extreme urban storms, detailed knowledge about the behaviour of the urban water system above and below the streets is required. To investigate the behaviour of urban water systems during extreme precipitation events new assessment tools are necessary. These tools should provide a detailed and integral description of the flow in the full domain of overland runoff, sewer flow, surface water flow and groundwater flow. We developed a new assessment tool, called 3Di, which provides detailed insight in the urban water system. This tool is based on a new numerical methodology that can accurately deal with the interaction between overland runoff, sewer flow and surface water flow. A one-dimensional model for the sewer system and open channel flow is fully coupled to a two-dimensional depth-averaged model that simulates the overland flow. The tool uses a subgrid-based approach in order to take high resolution information of the sewer system and of the terrain into account [1, 2]. The combination of using the high resolution information and the subgrid based approach results in an accurate and efficient modelling tool. It is now possible to simulate entire urban water systems using extreme high resolution (0.5m x 0.5m) terrain data in combination with a detailed sewer and surface water network representation. The new tool has been tested in several Dutch cities, such as Rotterdam, Amsterdam and The Hague. We will present the results of an extreme precipitation event in the city of Schiedam (The Netherlands). This city deals with

  3. Urban drainage models simplifying uncertainty analysis for practitioners

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Mikkelsen, Peter Steen; Deletic, Ana

    2013-01-01

    in each measured/observed datapoint; an issue that is commonly overlooked in the uncertainty analysis of urban drainage models. This comparison allows the user to intuitively estimate the optimum number of simulations required to conduct uncertainty analyses. The output of the method includes parameter......There is increasing awareness about uncertainties in the modelling of urban drainage systems and, as such, many new methods for uncertainty analyses have been developed. Despite this, all available methods have limitations which restrict their widespread application among practitioners. Here...

  4. Processes and modeling of hydrolysis of particulate organic matter in aerobic wastewater tratment - A review

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Kommedal, Roald; Harremoës, Poul

    2002-01-01

    Carbon cycling and the availability of organic carbon for nutrient removal processes are in most wastewater treatment systems restricted by the rate of hydrolysis of slowly biodegradable (particulate) organic matter. To date, the mechanisms of hydrolysis are not well understood for complex...

  5. Modelling the transport of suspended particulate matter by the Rhone River plume (France). Implications for pollutant dispersion

    International Nuclear Information System (INIS)

    Perianez, R.

    2005-01-01

    A model to simulate the transport of suspended particulate matter by the Rhone River plume has been developed. The model solves the 3D hydrodynamic equations, including baroclinic terms and a 1-equation turbulence model, and the suspended matter equations including advection/diffusion of particles, settling and deposition. Four particle classes are considered simultaneously according to observations in the Rhone. Computed currents, salinity and particle distributions are, in general, in good agreement with observations or previous calculations. The model also provides sedimentation rates and the distribution of different particle classes over the sea bed. It has been found that high sedimentation rates close to the river mouth are due to coarse particles that sink rapidly. Computed sedimentation rates are also similar to those derived from observations. The model has been applied to simulate the transport of radionuclides by the plume, since suspended matter is the main vector for them. The radionuclide transport model, previously described and validated, includes exchanges of radionuclides between water, suspended matter and bottom sediment described in terms of kinetic rates. A new feature is the explicit inclusion of the dependence of kinetic rates upon salinity. The model has been applied to 137 Cs and 239,240 Pu. Results are, in general, in good agreement with observations. - A model has been developed to simulate transport of suspended particulate matter in the Rhone River plume

  6. Nested high-resolution modeling of the impact of urbanization on regional climate in three vast urban agglomerations in China

    Science.gov (United States)

    Wang, Jun; Feng, Jinming; Yan, Zhongwei; Hu, Yonghong; Jia, Gensuo

    2012-11-01

    In this paper, the Weather Research and Forecasting Model, coupled to the Urban Canopy Model, is employed to simulate the impact of urbanization on the regional climate over three vast city agglomerations in China. Based on high-resolution land use and land cover data, two scenarios are designed to represent the nonurban and current urban land use distributions. By comparing the results of two nested, high-resolution numerical experiments, the spatial and temporal changes on surface air temperature, heat stress index, surface energy budget, and precipitation due to urbanization are analyzed and quantified. Urban expansion increases the surface air temperature in urban areas by about 1°C, and this climatic forcing of urbanization on temperature is more pronounced in summer and nighttime than other seasons and daytime. The heat stress intensity, which reflects the combined effects of temperature and humidity, is enhanced by about 0.5 units in urban areas. The regional incoming solar radiation increases after urban expansion, which may be caused by the reduction of cloud fraction. The increased temperature and roughness of the urban surface lead to enhanced convergence. Meanwhile, the planetary boundary layer is deepened, and water vapor is mixed more evenly in the lower atmosphere. The deficit of water vapor leads to less convective available potential energy and more convective inhibition energy. Finally, these combined effects may reduce the rainfall amount over urban areas, mainly in summer, and change the regional precipitation pattern to a certain extent.

  7. Can green roofs reduce urban heat stress in vulnerable urban communities: A coupled atmospheric and social modeling approach

    Science.gov (United States)

    Sharma, A.; Woodruff, S.; Budhathoki, M.; Hamlet, A. F.; Fernando, H. J. S.; Chen, F.

    2017-12-01

    Urban areas provide organized, engineered, sociological and economical infrastructure designed to provide a high quality of life, but the implementation and management of urban infrastructure has been a continued challenge. Increasing urbanization, warming climate, as well as anthropogenic heat emissions that accompany urban development generates "stress". This rapidly increasing `urban stress' affects the sustainability of cities, making populations more vulnerable to extreme hazards, such as heat. Cities are beginning to extensively use green roofs as a potential urban heat mitigation strategy. This study explores the potential of green roofs to reduce summertime temperatures in the most vulnerable neighborhoods of the Chicago metropolitan area by combining social vulnerability indices (a function of exposure, sensitivity and adaptive capacity), and temperatures from mesoscale model. Numerical simulations using urbanized version the Advanced Research Weather Research and Forecasting (WRF) model were performed to measure rooftop temperatures, a representative variable for exposure in this study. The WRF simulations were dynamically coupled with a green roof algorithm as a part of urban parameterization within WRF. Specifically, the study examines roof surface temperature with changing green roof fractions and how would they help reduce exposure to heat stress for vulnerable urban communities. This study shows an example of applied research that can directly benefit urban communities and be used by urban planners to evaluate mitigation strategies.

  8. Numerical models for the analysis of thermal behavior and coolability of a particulate debris bed in reactor lower head

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Kwang Il; Kim, Sang Baik; Kim, Byung Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    This report provides three distinctive, but closely related numerical models developed for the analysis of thermal behavior and coolability of a particulate debris bed that is may be formed inside the reactor lower head during severe accident late phases. The first numerical module presented in the report, MELTPRO-DRY, is used to analyze numerically heat-up and melting process of the dry particle bed, downward- and sideward-relocation of the liquid melt under gravity force and capillary force acting among porous particles, and solidification of the liquid melt relocated into colder region. The second module, MELTPROG-WET, is used to simulate numerically the cooling process of the particulate debris bed under the existence of water, which is subjected to two types of numerical models. The first type of WET module utilizes distinctive models that parametrically simulate the water cooling process, that is, quenching region, dryout region, and transition region. The choice of each parametric model depends on temperature gradient between the cooling water and the debris particles. The second type of WET module utilizes two-phase flow model that mechanically simulates the cooling process of the debris bed. For a consistent simulation from the water cooling to the dryout debris bed, on the other hand, the aforementioned two modules, MELTPROG-DRY and MELTPROG-WET, were integrated into a single computer program DBCOOL. Each of computational models was verified through limited applications to a heat-generating particulate bed contained in the rectangular cavity. 22 refs., 5 figs., 2 tabs. (Author)

  9. URBAN MODELLING PERFORMANCE OF NEXT GENERATION SAR MISSIONS

    Directory of Open Access Journals (Sweden)

    U. G. Sefercik

    2017-09-01

    Full Text Available In synthetic aperture radar (SAR technology, urban mapping and modelling have become possible with revolutionary missions TerraSAR-X (TSX and Cosmo-SkyMed (CSK since 2007. These satellites offer 1m spatial resolution in high-resolution spotlight imaging mode and capable for high quality digital surface model (DSM acquisition for urban areas utilizing interferometric SAR (InSAR technology. With the advantage of independent generation from seasonal weather conditions, TSX and CSK DSMs are much in demand by scientific users. The performance of SAR DSMs is influenced by the distortions such as layover, foreshortening, shadow and double-bounce depend up on imaging geometry. In this study, the potential of DSMs derived from convenient 1m high-resolution spotlight (HS InSAR pairs of CSK and TSX is validated by model-to-model absolute and relative accuracy estimations in an urban area. For the verification, an airborne laser scanning (ALS DSM of the study area was used as the reference model. Results demonstrated that TSX and CSK urban DSMs are compatible in open, built-up and forest land forms with the absolute accuracy of 8–10 m. The relative accuracies based on the coherence of neighbouring pixels are superior to absolute accuracies both for CSK and TSX.

  10. A model for radiological dose assessment in an urban environment

    International Nuclear Information System (INIS)

    Hwang, Won Tae; Kim, Eun Han; Jeong, Hyo Joon; Suh, Kyung Suk; Han, Moon Hee

    2007-01-01

    A model for radiological dose assessment in an urban environment, METRO-K has been developed. Characteristics of the model are as follows ; 1) mathematical structures are simple (i.e. simplified input parameters) and easy to understand due to get the results by analytical methods using experimental and empirical data, 2) complex urban environment can easily be made up using only 5 types of basic surfaces, 3) various remediation measures can be applied to different surfaces by evaluating the exposure doses contributing from each contamination surface. Exposure doses contributing from each contamination surface at a particular location of a receptor were evaluated using the data library of kerma values as a function of gamma energy and contamination surface. A kerma data library was prepared for 7 representative types of Korean urban building by extending those data given for 4 representative types of European urban buildings. Initial input data are daily radionuclide concentration in air and precipitation, and fraction of chemical type. Final outputs are absorbed dose rate in air contributing from the basic surfaces as a function of time following a radionuclide deposition, and exposure dose rate contributing from various surfaces constituting the urban environment at a particular location of a receptor. As the result of a contaminative scenario for an apartment built-up area, exposure dose rates show a distinct difference for surrounding environment as well as locations of a receptor

  11. Modelling remediation options for urban contamination situations

    DEFF Research Database (Denmark)

    Thiessen, K.M.; Andersson, Kasper Grann; Charnock, T.W.

    2009-01-01

    and remedial options enables the evaluation of a variety of situations or alternative recovery strategies in contexts of preparedness or decision-making. At present a number of models and modelling approaches are available for different purposes. This paper summarizes the available modelling approaches...

  12. A QUADTREE ORGANIZATION CONSTRUCTION AND SCHEDULING METHOD FOR URBAN 3D MODEL BASED ON WEIGHT

    OpenAIRE

    C. Yao; G. Peng; Y. Song; M. Duan

    2017-01-01

    The increasement of Urban 3D model precision and data quantity puts forward higher requirements for real-time rendering of digital city model. Improving the organization, management and scheduling of 3D model data in 3D digital city can improve the rendering effect and efficiency. This paper takes the complexity of urban models into account, proposes a Quadtree construction and scheduling rendering method for Urban 3D model based on weight. Divide Urban 3D model into different rendering weigh...

  13. Analysis of aliphatic and aromatic hydrocarbons in particulate matter in Madrid urban area. Analisis de hidrocarburos aromaticos policiclicos e hidrocarburos alifaticos en aerosoles de la zona urbana de Madrid

    Energy Technology Data Exchange (ETDEWEB)

    Perez, M.; Mendez, J.; Bomboi, M.T.

    1988-02-01

    Levels of n-alkanes and polycyclic aromatic hydrocarbons have been measured in the air particulate matter during six months, from January to June of 1987, in an urban area of Madrid. The hydrocarbons were collected on glass fiber filter by high volume sampling. The extraction was varried out by sohxlet and ultrasonic techniques. The extracts were clean-up on silica gel fractionation and the chromatographic analysis was performed by capillary coluymn gas chromatographic. Final results are discussed as well as the inmission values related to the possible emission sources.

  14. Ground-level airborne particulate matter near important Portuguese Cultural Heritage sites in high polluted (Lisbon) and low polluted (Evora) urban environments

    Science.gov (United States)

    Schiavon, N.; Wagner, F.; Candeias, A.; Kandler, K.; Tobias, L.; Mirao, J.

    2012-04-01

    As part of a wider project on aerosol composition in the Southwestern part of the Iberian peninsula, an intensive field monitoring/sampling/analytical campaign has been conducted in August and December 2011 to assess indoor and outdoor atmospheric aerosol optical and microphysical parameters (Nephelometry), number/mass/size distribution (TEOM, MAAP, OPS) and single particle minero-chemical composition on filter collected samples (VP-SEM+EDS, XRD) at several sheltered and unsheltered locations close to important Cultural Heritage monuments in Evora and Lisbon, Portugal. Sites investigated included the Igreja do S. Francisco in Evora, the Cristo Rei sanctuary, Jeronimos Monastery, and Lisbon Castle in Lisbon. At Cristo Rei measurements at sea level, around 100m and around 180m were carried out in order to determine the vertical profile of the particle size distribution. Measurements were taken at different times of day reflecting changes in atmospheric mixing and air pollution levels. Measurements were also performed near an air quality monitoring station at Avenida de Libertade (the busiest traffic artery in Lisbon city center) during traffic peak hour. One of the aims of the campaign was to determine differences in airborne particulate matter compositions and concentrations between an urban coastal high pollution (Lisbon) and a low pollution (Evora) environments and how these could affect the nature of decay patterns and processes in the building materials of the monuments under investigation. Preliminary results indicate significant differences in particle properties between the 2 cities as well as between indoor and outdoor locations. One interesting result was the detection of considerable amounts of particle of oceanic origin (such as sodium chloride) in the Evora site even at 130 km away from the coast. Despite its relatively unpolluted location, single particle analysis by SEM+EDS at the Evora site reveals the presence of significant numbers of particle of

  15. PM10 modeling in the Oviedo urban area (Northern Spain) by using multivariate adaptive regression splines

    Science.gov (United States)

    Nieto, Paulino José García; Antón, Juan Carlos Álvarez; Vilán, José Antonio Vilán; García-Gonzalo, Esperanza

    2014-10-01

    The aim of this research work is to build a regression model of the particulate matter up to 10 micrometers in size (PM10) by using the multivariate adaptive regression splines (MARS) technique in the Oviedo urban area (Northern Spain) at local scale. This research work explores the use of a nonparametric regression algorithm known as multivariate adaptive regression splines (MARS) which has the ability to approximate the relationship between the inputs and outputs, and express the relationship mathematically. In this sense, hazardous air pollutants or toxic air contaminants refer to any substance that may cause or contribute to an increase in mortality or serious illness, or that may pose a present or potential hazard to human health. To accomplish the objective of this study, the experimental dataset of nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3) and dust (PM10) were collected over 3 years (2006-2008) and they are used to create a highly nonlinear model of the PM10 in the Oviedo urban nucleus (Northern Spain) based on the MARS technique. One main objective of this model is to obtain a preliminary estimate of the dependence between PM10 pollutant in the Oviedo urban area at local scale. A second aim is to determine the factors with the greatest bearing on air quality with a view to proposing health and lifestyle improvements. The United States National Ambient Air Quality Standards (NAAQS) establishes the limit values of the main pollutants in the atmosphere in order to ensure the health of healthy people. Firstly, this MARS regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the main pollutants in the Oviedo urban area. Secondly, the main advantages of MARS are its capacity to produce simple, easy-to-interpret models, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, on the basis of

  16. Automatic 3D modeling of the urban landscape

    NARCIS (Netherlands)

    Esteban, I.; Dijk, J.; Groen, F.

    2010-01-01

    In this paper we present a fully automatic system for building 3D models of urban areas at the street level. We propose a novel approach for the accurate estimation of the scale consistent camera pose given two previous images. We employ a new method for global optimization and use a novel sampling

  17. Eco-Anthropic Compatibility - a Multidisciplinary Model in Urban Ecology

    Directory of Open Access Journals (Sweden)

    MARIANO L. BIANCA

    2010-01-01

    Full Text Available In this paper I propose a multidisciplinary model of urban development which goes beyond the notion of ecological sustainability, by building on the concept of eco-anthropic compatibility. First of all I will sketch the historical development of human aggregations and I will underline the difference between ancient and modern aggregations. On the basis of this analysis, I will take into consideration the notion of sustainability and its possible application to present conurbations. I will underline several limits of the notion of sustainable development and I will propose a multidisciplinary model grounded on a broader and new notion: the eco-anthropic compatibility. Using this notion, which includes the idea of sustainability, it is possible to handle, within the model, the human factors and human living conditions inside an urban aggregation. Finally, I will state that the actual urban model is decaying and therefore, sooner or later, we will have to face the end of urban civilization; for this reason we can start imagining new future ways for human aggregations on the planet based on the notion of eco-anthropic compatibility.

  18. An analysis of urban collisions using an artificial intelligence model.

    Science.gov (United States)

    Mussone, L; Ferrari, A; Oneta, M

    1999-11-01

    Traditional studies on road accidents estimate the effect of variables (such as vehicular flows, road geometry, vehicular characteristics), and the calculation of the number of accidents. A descriptive statistical analysis of the accidents (those used in the model) over the period 1992-1995 is proposed. The paper describes an alternative method based on the use of artificial neural networks (ANN) in order to work out a model that relates to the analysis of vehicular accidents in Milan. The degree of danger of urban intersections using different scenarios is quantified by the ANN model. Methodology is the first result, which allows us to tackle the modelling of urban vehicular accidents by the innovative use of ANN. Other results deal with model outputs: intersection complexity may determine a higher accident index depending on the regulation of intersection. The highest index for running over of pedestrian occurs at non-signalised intersections at night-time.

  19. Urbancontext: A Management Model For Pervasive Environments In User-Oriented Urban Computing

    Directory of Open Access Journals (Sweden)

    Claudia L. Zuniga-Canon

    2014-01-01

    Full Text Available Nowadays, urban computing has gained a lot of interest for guiding the evolution of citiesinto intelligent environments. These environments are appropriated for individuals’ inter-actions changing in their behaviors. These changes require new approaches that allow theunderstanding of how urban computing systems should be modeled.In this work we present UrbanContext, a new model for designing of urban computingplatforms that applies the theory of roles to manage the individual’s context in urban envi-ronments. The theory of roles helps to understand the individual’s behavior within a socialenvironment, allowing to model urban computing systems able to adapt to individuals statesand their needs.UrbanContext collects data in urban atmospheres and classifies individuals’ behaviorsaccording to their change of roles, to optimize social interaction and offer secure services.Likewise, UrbanContext serves as a generic model to provide interoperability, and to facilitatethe design, implementation and expansion of urban computing systems.

  20. Exposure to Particulate Hexavalent Chromium Exacerbates Allergic Asthma Pathology

    Science.gov (United States)

    Schneider, Brent C.; Constant, Stephanie L.; Patierno, Steven R.; Jurjus, Rosalyn A.; Ceryak, Susan M.

    2011-01-01

    Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory response in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. PMID:22178736

  1. Data-driven modeling of solar-powered urban microgrids.

    Science.gov (United States)

    Halu, Arda; Scala, Antonio; Khiyami, Abdulaziz; González, Marta C

    2016-01-01

    Distributed generation takes center stage in today's rapidly changing energy landscape. Particularly, locally matching demand and generation in the form of microgrids is becoming a promising alternative to the central distribution paradigm. Infrastructure networks have long been a major focus of complex networks research with their spatial considerations. We present a systemic study of solar-powered microgrids in the urban context, obeying real hourly consumption patterns and spatial constraints of the city. We propose a microgrid model and study its citywide implementation, identifying the self-sufficiency and temporal properties of microgrids. Using a simple optimization scheme, we find microgrid configurations that result in increased resilience under cost constraints. We characterize load-related failures solving power flows in the networks, and we show the robustness behavior of urban microgrids with respect to optimization using percolation methods. Our findings hint at the existence of an optimal balance between cost and robustness in urban microgrids.

  2. Integrating retention soil filters into urban hydrologic models - Relevant processes and important parameters

    Science.gov (United States)

    Bachmann-Machnik, Anna; Meyer, Daniel; Waldhoff, Axel; Fuchs, Stephan; Dittmer, Ulrich

    2018-04-01

    Retention Soil Filters (RSFs), a form of vertical flow constructed wetlands specifically designed for combined sewer overflow (CSO) treatment, have proven to be an effective tool to mitigate negative impacts of CSOs on receiving water bodies. Long-term hydrologic simulations are used to predict the emissions from urban drainage systems during planning of stormwater management measures. So far no universally accepted model for RSF simulation exists. When simulating hydraulics and water quality in RSFs, an appropriate level of detail must be chosen for reasonable balancing between model complexity and model handling, considering the model input's level of uncertainty. The most crucial parameters determining the resultant uncertainties of the integrated sewer system and filter bed model were identified by evaluating a virtual drainage system with a Retention Soil Filter for CSO treatment. To determine reasonable parameter ranges for RSF simulations, data of 207 events from six full-scale RSF plants in Germany were analyzed. Data evaluation shows that even though different plants with varying loading and operation modes were examined, a simple model is sufficient to assess relevant suspended solids (SS), chemical oxygen demand (COD) and NH4 emissions from RSFs. Two conceptual RSF models with different degrees of complexity were assessed. These models were developed based on evaluation of data from full scale RSF plants and column experiments. Incorporated model processes are ammonium adsorption in the filter layer and degradation during subsequent dry weather period, filtration of SS and particulate COD (XCOD) to a constant background concentration and removal of solute COD (SCOD) by a constant removal rate during filter passage as well as sedimentation of SS and XCOD in the filter overflow. XCOD, SS and ammonium loads as well as ammonium concentration peaks are discharged primarily via RSF overflow not passing through the filter bed. Uncertainties of the integrated

  3. Strategic management in urban environment using SWOT and QSPM model

    Directory of Open Access Journals (Sweden)

    M. Pazouki

    2017-04-01

    Full Text Available Sustainable urban development is a new concept of fundamental environmental metropolitan management that not only creates the demand for changing the concepts of economic development, but also affects social development. The current study  provides  a conceptual model of a sustainable environment pattern In District 22 of Tehran that depends on the relationship between environment and economy, and a network of urban function, which  Included transport infrastructure and community centers and economic and regional level in support of the ecological services in Tehran. This landscape often  had discrepancies  with the development of the city between the layers and the creation of ecological fragile areas. The main objective of the study was to determine the sustainability indicators and create a future development  model  for District 22 of Tehran. The data was collected by having a review of similar studies and field research on the subject and therefore the effective factors were identified. After accomplished proceedings, the questionnaire was prepared and the results were used in SWOT charts' grading after analyzing at interior and exterior matrix. Ultimately, quantitative strategic planning matrix (QSPM was performed based on the results and analysis. This process provided a comprehensive model for sustainable urban development as sustainable development urban landscape pattern.

  4. Socio-Environmental Resilience and Complex Urban Systems Modeling

    Science.gov (United States)

    Deal, Brian; Petri, Aaron; Pan, Haozhi; Goldenberg, Romain; Kalantari, Zahra; Cvetkovic, Vladimir

    2017-04-01

    The increasing pressure of climate change has inspired two normative agendas; socio-technical transitions and socio-ecological resilience, both sharing a complex-systems epistemology (Gillard et al. 2016). Socio-technical solutions include a continuous, massive data gathering exercise now underway in urban places under the guise of developing a 'smart'(er) city. This has led to the creation of data-rich environments where large data sets have become central to monitoring and forming a response to anomalies. Some have argued that these kinds of data sets can help in planning for resilient cities (Norberg and Cumming 2008; Batty 2013). In this paper, we focus on a more nuanced, ecologically based, socio-environmental perspective of resilience planning that is often given less consideration. Here, we broadly discuss (and model) the tightly linked, mutually influenced, social and biophysical subsystems that are critical for understanding urban resilience. We argue for the need to incorporate these sub system linkages into the resilience planning lexicon through the integration of systems models and planning support systems. We make our case by first providing a context for urban resilience from a socio-ecological and planning perspective. We highlight the data needs for this type of resilient planning and compare it to currently collected data streams in various smart city efforts. This helps to define an approach for operationalizing socio-environmental resilience planning using robust systems models and planning support systems. For this, we draw from our experiences in coupling a spatio-temporal land use model (the Landuse Evolution and impact Assessment Model (LEAM)) with water quality and quantity models in Stockholm Sweden. We describe the coupling of these systems models using a robust Planning Support System (PSS) structural framework. We use the coupled model simulations and PSS to analyze the connection between urban land use transformation (social) and water

  5. Urban Runoff: Model Ordinances for Aquatic Buffers

    Science.gov (United States)

    Aquatic Buffers serve as natural boundaries between local waterways and existing development. The model and example ordinaces below provide suggested language or technical guidance designed to create the most effective stream buffer zones possible.

  6. A constitutive model for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures

    Directory of Open Access Journals (Sweden)

    Song Wei-Dong

    2013-01-01

    Full Text Available Quasi-static and dynamic tension tests were conducted to study the mechanical properties of particulate-reinforced titanium matrix composites at strain rates ranging from 0.0001/s to 1000/s and at temperatures ranging from 20 °C to 650 °C Based on the experimental results, a constitutive model, which considers the effects of strain rate and temperature on hot deformation behavior, was proposed for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures by using Zener-Hollomon equations including Arrhenius terms. All the material constants used in the model were identified by fitting Zener-Hollomon equations against the experimental results. By comparison of theoretical predictions presented by the model with experimental results, a good agreement was achieved, which indicates that this constitutive model can give an accurate and precise estimate for high temperature flow stress for the studied titanium matrix composites and can be used for numerical simulations of hot deformation behavior of the composites.

  7. Long-term particulate matter modeling for health effect studies in California - Part 2: Concentrations and sources of ultrafine organic aerosols

    Science.gov (United States)

    Hu, Jianlin; Jathar, Shantanu; Zhang, Hongliang; Ying, Qi; Chen, Shu-Hua; Cappa, Christopher D.; Kleeman, Michael J.

    2017-04-01

    Organic aerosol (OA) is a major constituent of ultrafine particulate matter (PM0. 1). Recent epidemiological studies have identified associations between PM0. 1 OA and premature mortality and low birth weight. In this study, the source-oriented UCD/CIT model was used to simulate the concentrations and sources of primary organic aerosols (POA) and secondary organic aerosols (SOA) in PM0. 1 in California for a 9-year (2000-2008) modeling period with 4 km horizontal resolution to provide more insights about PM0. 1 OA for health effect studies. As a related quality control, predicted monthly average concentrations of fine particulate matter (PM2. 5) total organic carbon at six major urban sites had mean fractional bias of -0.31 to 0.19 and mean fractional errors of 0.4 to 0.59. The predicted ratio of PM2. 5 SOA / OA was lower than estimates derived from chemical mass balance (CMB) calculations by a factor of 2-3, which suggests the potential effects of processes such as POA volatility, additional SOA formation mechanism, and missing sources. OA in PM0. 1, the focus size fraction of this study, is dominated by POA. Wood smoke is found to be the single biggest source of PM0. 1 OA in winter in California, while meat cooking, mobile emissions (gasoline and diesel engines), and other anthropogenic sources (mainly solvent usage and waste disposal) are the most important sources in summer. Biogenic emissions are predicted to be the largest PM0. 1 SOA source, followed by mobile sources and other anthropogenic sources, but these rankings are sensitive to the SOA model used in the calculation. Air pollution control programs aiming to reduce the PM0. 1 OA concentrations should consider controlling solvent usage, waste disposal, and mobile emissions in California, but these findings should be revisited after the latest science is incorporated into the SOA exposure calculations. The spatial distributions of SOA associated with different sources are not sensitive to the choice of

  8. ACCIDENT PREDICTION MODELS FOR UNSIGNALISED URBAN JUNCTIONS IN GHANA

    OpenAIRE

    Mohammed SALIFU, MSc., PhD, MIHT, MGhIE

    2004-01-01

    The main objective of this study was to provide an improved method for safety appraisal in Ghana through the development and application of suitable accident prediction models for unsignalised urban junctions. A case study was designed comprising 91 junctions selected from the two most cosmopolitan cities in Ghana. A wide range of traffic and road data together with the corresponding accident data for each junction for the three-year period 1996-1998 was utilized in the model development p...

  9. Urban Morphology Influence on Urban Albedo: A Revisit with the S olene Model

    Science.gov (United States)

    Groleau, Dominique; Mestayer, Patrice G.

    2013-05-01

    This heuristic study of the urban morphology influence on urban albedo is based on some 3,500 simulations with the S olene model. The studied configurations include square blocks in regular and staggered rows, rectangular blocks with different street widths, cross-shaped blocks, infinite street canyons and several actual districts in Marseilles, Toulouse and Nantes, France. The scanned variables are plan density, facade density, building height, layout orientation, latitude, date and time of the day. The sky-view factors of the ground and canopy surfaces are also considered. This study demonstrates the significance of the facade density, in addition to the built plan density, as the explanatory geometrical factor to characterize the urban morphology, rather than building height. On the basis of these albedo calculations the puzzling results of Kondo et al. (Boundary-Layer Meteorol 100:225-242, 2001) for the influence of building height are explained, and the plan density influence is quantitatively assessed. It is shown that the albedo relationship with plan and facade densities obtained with the regular square plot configuration may be considered as a reference for all other configurations, with the exception of the infinite street canyon that shows systematic differences for the lower plan densities. The curves representing this empirical relationship may be used as a sort of abacus for all other geometries while an approximate simple mathematical model is proposed, as well as relationships between the albedo and sky-view factors.

  10. A model for evaluating the radioactive contamination in the urban environment

    International Nuclear Information System (INIS)

    Hwang, Won Tae; Kim, Eun Han; Jeong, Hyo Joon; Suh, Kyung Suk; Han, Moon Hee

    2005-01-01

    A model for evaluating radioactive contamination in the urban environment, named METRO-K, was developed as a basic step for accident consequence analysis in case of an accidental release. The three kind of radionuclides ( 137 Cs, 106 Ru, 131 I) and the different chemical forms of iodine (particulate, organic and elemental forms) are considered in the model. The radioactive concentrations are evaluated for the five types of surface (roof, paved road, wall, lawn/soil, tree) as a function of time. Using the model, the contaminative impacts of the surfaces were intensively investigated with respect to with and without precipitation during the measurement periods of radionuclides in air. In addition, a practical application study was conducted using 137 Cs concentration in air and precipitation measured in an European country at the Chernobyl accident. As a result, precipitation was an influential factor in surface contamination. The degree of contamination was strongly dependent on the types of radionuclide and surface. Precipitation was more influential in contamination of 137 Cs than that of 131 I (elemental form)

  11. Models in Planning Urban Public Passenger Transport

    Directory of Open Access Journals (Sweden)

    Gordana Štefančić

    2007-07-01

    Full Text Available The solving of complex problems in public transport requiresthe usage of models that are based on the estimate of demandin planning the transport routes. The intention is to predictwhat is going to happen in the future, if the proposed solutionsare implemented. In the majority of cases, the publictransport system is formed as a network and stored in the computermemory in order to start the evaluation process by specifYingthe number of trip origins and destinations in each zone.The trip distribution model which is used to calculate the numberof trips between each pair in the zone is based on the overalltravel frictions from zone to zone.

  12. A dispersion modelling system for urban air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Karppinen, A.; Kukkonen, J.; Nordlund, G.; Rantakrans, E.; Valkama, I.

    1998-10-01

    An Urban Dispersion Modelling system UDM-FMI, developed at the Finnish Meteorological Institute is described in the report. The modelling system includes a multiple source Gaussian plume model and a meteorological pre-processing model. The dispersion model is an integrated urban scale model, taking into account of all source categories (point, line, area and volume sources). It includes a treatment of chemical transformation (for NO{sub 2}) wet and dry deposition (for SO{sub 2}) plume rise, downwash phenomena and dispersion of inert particles. The model allows also for the influence of a finite mixing height. The model structure is mainly based on the state-of-the-art methodology. The system also computes statistical parameters from the time series, which can be compared to air quality guidelines. The relevant meteorological parameters for the dispersion model are evaluated using data produced by a meteorological pre-processor. The model is based mainly on the energy budget method. Results of national investigations have been used for evaluating climate-dependent parameters. The model utilises the synoptic meteorological observations, radiation records and aerological sounding observations. The model results include the hourly time series of the relevant atmospheric turbulence 51 refs.

  13. The implementation of biofiltration systems, rainwater tanks and urban irrigation in a single-layer urban canopy model

    Science.gov (United States)

    Demuzere, Matthias; Coutts, Andrew; Goehler, Maren; Broadbent, Ashley; Wouters, Hendrik; van Lipzig, Nicole; Gebert, Luke

    2015-04-01

    Urban vegetation is generally considered as a key tool to modify the urban energy balance through enhanced evapotranspiration (ET). Given that vegetation is most effective when it is healthy, stormwater harvesting and retention strategies (such as water sensitive urban design) could be used to support vegetation and promote ET. This study presents the implementation of a vegetated lined bio-filtration system (BFS) combined with a rainwater tank (RWT) and urban irrigation system in the single-layer urban canopy model Community Land Model-Urban. Runoff from roof and impervious road surface fractions is harvested and used to support an adequate soil moisture level for vegetation in the BFS. In a first stage, modelled soil moisture dynamics are evaluated and found reliable compared to observed soil moisture levels from biofiltration pits in Smith Street, Melbourne (Australia). Secondly, the impact of BFS, RWT and urban irrigation on ET is illustrated for a two-month period in 2012 using varying characteristics for all components. Results indicate that (i) a large amount of stormwater is potentially available for indoor and outdoor water demands, including irrigation of urban vegetation, (ii) ET from the BFS is an order of magnitude larger compared to the contributions from the impervious surfaces, even though the former only covers 10% of the surface fraction and (iii) attention should be paid to the cover fraction and soil texture of the BFS, size of the RWT and the surface fractions contributing to the collection of water in the RWT. Overall, this study reveals that this model development can effectuate future research with state-of-the-art urban climate models to further explore the benefits of vegetated biofiltration systems as a water sensitive urban design tool optimised with an urban irrigation system to maintain healthy vegetation.

  14. Note on the sanitary impact of diesel particulates; Note sur l'impact sanitaire des particules diesel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-10-15

    In the actual situation of scientific works, the epidemiology studies on environment do not allow to say the carcinogen contribution of diesel particulates at the concentration levels measured in the urban air. But according to the experimental data for the rat and the data observed for the personnel exposed to diesel particulates these particulates are classified as probably carcinogen. (N.C.)

  15. Biomagnetic monitoring as a validation tool for local air quality models: a case study for an urban street canyon.

    Science.gov (United States)

    Hofman, Jelle; Samson, Roeland

    2014-09-01

    Biomagnetic monitoring of tree leaf deposited particles has proven to be a good indicator of the ambient particulate concentration. The objective of this study is to apply this method to validate a local-scale air quality model (ENVI-met), using 96 tree crown sampling locations in a typical urban street canyon. To the best of our knowledge, the application of biomagnetic monitoring for the validation of pollutant dispersion modeling is hereby presented for the first time. Quantitative ENVI-met validation showed significant correlations between modeled and measured results throughout the entire in-leaf period. ENVI-met performed much better at the first half of the street canyon close to the ring road (r=0.58-0.79, RMSE=44-49%), compared to second part (r=0.58-0.64, RMSE=74-102%). The spatial model behavior was evaluated by testing effects of height, azimuthal position, tree position and distance from the main pollution source on the obtained model results and magnetic measurements. Our results demonstrate that biomagnetic monitoring seems to be a valuable method to evaluate the performance of air quality models. Due to the high spatial and temporal resolution of this technique, biomagnetic monitoring can be applied anywhere in the city (where urban green is present) to evaluate model performance at different spatial scales. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. URBAN EFFICIENT ENERGY EVALUATION IN HIGH RESOLUTION URBAN AREAS BY USING ADAPTED WRF-UCM AND MICROSYS CFD MODELS

    Science.gov (United States)

    San Jose, R.; Perez, J. L.; Gonzalez, R. M.

    2009-12-01

    Urban metabolism modeling has advanced substantially during the last years due to the increased detail in mesoscale urban parameterization in meteorological mesoscale models and CFD numerical tools. Recently the implementation of the “urban canopy model” (UCM) into the WRF mesoscale meteorological model has produced a substantial advance on the understanding of the urban atmospheric heat flux exchanges in the urban canopy. The need to optimize the use of heat energy in urban environment has produced a substantial increase in the detailed investigation of the urban heat flux exchanges. In this contribution we will show the performance of using a tool called MICROSYS (MICRO scale CFD modelling SYStem) which is an adaptation of the classical urban canopy model but on a high resolution environment by using a classical CFD approach. The energy balance in the urban system can be determined in a micrometeorologicl sense by considering the energy flows in and out of a control volume. For such a control volume reaching from ground to a certain height above buildings, the energy balance equation includes the net radiation, the anthropogenic heat flux, the turbulent sensible heat flux, the turbulent latent heat flux, the net storage change within the control volume, the net advected flux and other sources and sinks. We have applied the MICROSYS model to an area of 5 km x 5 km with 200 m spatial resolution by using the WRF-UCM (adapted and the MICROSYS CFD model. The anthropogenic heat flux has been estimated by using the Flanner M.G. (2009) database and detailed GIS information (50 m resolution) of Madrid city. The Storage energy has been estimated by calculating the energy balance according to the UCM procedure and implementing it into the MICROSYS tool. Results show that MICROSYS can be used as an energy efficient tool to estimate the energy balance of different urban areas and buildings.

  17. Understanding Resilient Urban Futures: A Systemic Modelling Approach

    Directory of Open Access Journals (Sweden)

    Ralph Chapman

    2013-07-01

    Full Text Available The resilience of cities in response to natural disasters and long-term climate change has emerged as a focus of academic and policy attention. In particular, how to understand the interconnectedness of urban and natural systems is a key issue. This paper introduces an urban model that can be used to evaluate city resilience outcomes under different policy scenarios. The model is the Wellington Integrated Land Use-Transport-Environment Model (WILUTE. It considers the city (i.e., Wellington as a complex system characterized by interactions between a variety of internal urban processes (social, economic and physical and the natural environment. It is focused on exploring the dynamic relations between human activities (the geographic distribution of housing and employment, infrastructure layout, traffic flows and energy consumption, environmental effects (carbon emissions, influences on local natural and ecological systems and potential natural disasters (e.g., inundation due to sea level rise and storm events faced under different policy scenarios. The model gives insights that are potentially useful for policy to enhance the city’s resilience, by modelling outcomes, such as the potential for reduction in transportation energy use, and changes in the vulnerability of the city’s housing stock and transport system to sea level rise.

  18. An integrated urban drainage system model for assessing renovation scheme.

    Science.gov (United States)

    Dong, X; Zeng, S; Chen, J; Zhao, D

    2012-01-01

    Due to sustained economic growth in China over the last three decades, urbanization has been on a rapidly expanding track. In recent years, regional industrial relocations were also accelerated across the country from the east coast to the west inland. These changes have led to a large-scale redesign of urban infrastructures, including the drainage system. To help the reconstructed infrastructures towards a better sustainability, a tool is required for assessing the efficiency and environmental performance of different renovation schemes. This paper developed an integrated dynamic modeling tool, which consisted of three models for describing the sewer, the wastewater treatment plant (WWTP) and the receiving water body respectively. Three auxiliary modules were also incorporated to conceptualize the model, calibrate the simulations, and analyze the results. The developed integrated modeling tool was applied to a case study in Shenzhen City, which is one of the most dynamic cities and facing considerable challenges for environmental degradation. The renovation scheme proposed to improve the environmental performance of Shenzhen City's urban drainage system was modeled and evaluated. The simulation results supplied some suggestions for the further improvement of the renovation scheme.

  19. An urban runoff model designed to inform stormwater management decisions.

    Science.gov (United States)

    Beck, Nicole G; Conley, Gary; Kanner, Lisa; Mathias, Margaret

    2017-05-15

    We present an urban runoff model designed for stormwater managers to quantify runoff reduction benefits of mitigation actions that has lower input data and user expertise requirements than most commonly used models. The stormwater tool to estimate load reductions (TELR) employs a semi-distributed approach, where landscape characteristics and process representation are spatially-lumped within urban catchments on the order of 100 acres (40 ha). Hydrologic computations use a set of metrics that describe a 30-year rainfall distribution, combined with well-tested algorithms for rainfall-runoff transformation and routing to generate average annual runoff estimates for each catchment. User inputs include the locations and specifications for a range of structural best management practice (BMP) types. The model was tested in a set of urban catchments within the Lake Tahoe Basin of California, USA, where modeled annual flows matched that of the observed flows within 18% relative error for 5 of the 6 catchments and had good regional performance for a suite of performance metrics. Comparisons with continuous simulation models showed an average of 3% difference from TELR predicted runoff for a range of hypothetical urban catchments. The model usually identified the dominant BMP outflow components within 5% relative error of event-based measured flow data and simulated the correct proportionality between outflow components. TELR has been implemented as a web-based platform for use by municipal stormwater managers to inform prioritization, report program benefits and meet regulatory reporting requirements (www.swtelr.com). Copyright © 2017. Published by Elsevier Ltd.

  20. Kinetic Model Development for the Combustion of Particulate Matter from Conventional and Soy Methyl Ester Diesel Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Strzelec, Andrea [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2009-12-01

    The primary objective of this research has been to investigate how the oxidation characteristics of diesel particulate matter (PM) are affected by blending soy-based biodiesel fuel with conventional ultra low sulfur diesel (ULSD) fuel. PM produced in a light duty engine from different biodiesel-conventional fuel blends was subjected to a range of physical and chemical measurements in order to better understand the mechanisms by which fuel-related changes to oxidation reactivity are brought about. These observations were then incorporated into a kinetic model to predict PM oxidation. Nanostructure of the fixed carbon was investigated by HR-TEM and showed that particulates from biodiesel had a more open structure than particulates generated from conventional diesel fuel, which was confirmed by BET surface area measurements. Surface area evolution with extent of oxidation reaction was measured for PM from ULSD and biodiesel. Biodiesel particulate has a significantly larger surface area for the first 40% of conversion, at which point the samples become quite similar. Oxidation characteristics of nascent PM and the fixed carbon portion were measured by temperature programmed oxidation (TPO) and it was noted that increased biodiesel blending lowered the light-off temperature as well as the temperature where the peak rate of oxidation occurred. A shift in the oxidation profiles of all fuels was seen when the mobile carbon fraction was removed, leaving only the fixed carbon, however the trend in temperature advantage of the biofuel blending remained. The mobile carbon fraction was measured by temperature programmed desorption found to generally increase with increasing biodiesel blend level. The relative change in the light-off temperatures for the nascent and fixed carbon samples was found to be related to the fraction of mobile carbon. Effective Arrhenius parameters for fixed carbon oxidation were directly measured with isothermal, differential oxidation experiments

  1. Referential calculation of particulate matter in the air as a factor of environmental pollution in the urban area of the city of Pujilí

    Directory of Open Access Journals (Sweden)

    Paola Vallejo Choez

    2016-06-01

    Full Text Available This is a preliminary investigation on the environmental quality of the city of Pujilí, made from the collection of samples of particulate matter and vehicular traffic counts on six points of the city. The methodology is based on the provisions of the Unified Text of Secondary Environmental Legislation for measuring atmospheric particulate matter, and the use of count tables for vehicle registration. The results reflect the impact of vehicular traffic, the characteristics of the rolling road layer, soil erosion, and climate on air pollution and its impact on the health of the population.

  2. A data model for simulation models relying on spatio-temporal urban data

    OpenAIRE

    Langlois , G ,; Tourre , Vincent; Servières , Myriam; Gervais , G ,; Gesquière , Gilles

    2016-01-01

    International audience; To understand the complexity of modern cities and anticipate their expansion, experts from various fields conceive simulation models that can be very different. Those simulation models work with a variety of data with their own organization. Furthermore, because the urban objects are studied in the context of the evolution of a city or urban area, they carry temporal and spatial information. In this paper, we present the base classes of a common data model robust and f...

  3. Comprehensive Regional Modeling for Long-Range Planning: Linking Integrated Urban Models and Geographic Information Systems

    OpenAIRE

    Johnston, Robert; de la Barra, Thomas

    2000-01-01

    This study demonstrates the sequential linking of two types of models to permit the comprehensive evaluation of regional transportation and land use policies. First, we operate an integrated urban model (TRANUS), which represents both land and travel markets with zones and networks. The travel and land use projections from TRANUS are outlined, to demonstrate the general reasonableness of the results, as this is the first application of a market-based urban model in the US. Second, the land us...

  4. Integrated city as a model for a new wave urban tourism

    Science.gov (United States)

    Ariani, V.

    2018-03-01

    Cities are a major player for an urban tourism destination. Massive tourism movement for urban tourism gains competitiveness to the city with similar characteristic. The new framework model for new wave urban tourism is crucial to give more experience to the tourist and valuing for the city itself. The integrated city is the answer for creating a new model for an urban tourism destination. The purpose of this preliminary research is to define integrated city framework for urban tourism development. It provides a rationale for tourism planner pursuing an innovative approach, competitive advantages, and general urban tourism destination model. The methodology applies to this research includes desk survey, literature review and focus group discussion. A conceptual framework is proposed, discussed and exemplified. The framework model adopts a place-based approach to tourism destination and suggests an integrated city model for urban tourism development. This model is a tool for strategy making in re-invention integrated city as an urban tourism destination.

  5. Modeling carbon emissions from urban traffic system using mobile monitoring.

    Science.gov (United States)

    Sun, Daniel Jian; Zhang, Ying; Xue, Rui; Zhang, Yi

    2017-12-01

    Comprehensive analyses of urban traffic carbon emissions are critical in achieving low-carbon transportation. This paper started from the architecture design of a carbon emission mobile monitoring system using multiple sets of equipment and collected the corresponding data about traffic flow, meteorological conditions, vehicular carbon emissions and driving characteristics on typical roads in Shanghai and Wuxi, Jiangsu province. Based on these data, the emission model MOVES was calibrated and used with various sensitivity and correlation evaluation indices to analyze the traffic carbon emissions at microscopic, mesoscopic and macroscopic levels, respectively. The major factors that influence urban traffic carbon emissions were investigated, so that emission factors of CO, CO 2 and HC were calculated by taking representative passenger cars as a case study. As a result, the urban traffic carbon emissions were assessed quantitatively, and the total amounts of CO, CO 2 and HC emission from passenger cars in Shanghai were estimated as 76.95kt, 8271.91kt, and 2.13kt, respectively. Arterial roads were found as the primary line source, accounting for 50.49% carbon emissions. In additional to the overall major factors identified, the mobile monitoring system and carbon emission quantification method proposed in this study are of rather guiding significance for the further urban low-carbon transportation development. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Urban sewage lipids in the suspended particulate matter of a coral reef under river influence in the South West Gulf of Mexico.

    Science.gov (United States)

    Carreón-Palau, Laura; Parrish, Christopher C; Pérez-España, Horacio

    2017-10-15

    Nutritional quality of suspended particulate matter (SPM) and the degree of human fecal pollution in the largest coral reef system in the southwest Gulf of Mexico were evaluated using lipid classes, fatty acids (FA) and sterols in the dry and rainy seasons. High proportions of triacylglycerols and saturated and monounsaturated FA were detected in the SPM however it was considered poor quality because it had low proportions of highly unsaturated FA which can be used to determine production of marine biogenic material of dietary value to pelagic and benthic organisms. Urban sewage organic carbon was traced with coprostanol. The reference value of coprostanol from the point source of pollution was set using two samples from a sewage treatment plant processing waste from >140,000 people near the coral reef system, and it was contrasted with one river station and nine marine stations including six coral reefs. The concentration of coprostanol in the SPM was 3621 ± 98 ng L -1 comprising 26% of total sterols. During the dry season, the river was contaminated upstream with human feces as evidenced by coprostanol at 1823 ng L -1 , the 5β-coprostanol: cholesterol ratio at 0.5, and 5β-coprostanol: [5α-cholestanol+5β-coprostanol] at 0.7. In contrast, marine stations had concentrations of coprostanol lower than a suggested regulation limit for tropical marine coastal waters (30 ng L -1 ), ranging between 6 and 28 ng L -1 . During the rainy season a dilution effect was detected in the river, however significantly higher concentrations of coprostanol in the marine stations were detected ranging between 15 and 215 ng L -1 , higher than the tentative tropical regulation range (30-100 ng L -1 ). Among the reefs, the nearshore one, 14.3 km from the treatment plant, was more exposed to human-fecal pollution, and offshore reefs, >17.3 km from the plant, had a lower degree of contamination. Finally, only three stations were clearly uncontaminated during both seasons

  7. Map-Based Channel Model for Urban Macrocell Propagation Scenarios

    Directory of Open Access Journals (Sweden)

    Jose F. Monserrat

    2015-01-01

    Full Text Available The evolution of LTE towards 5G has started and different research projects and institutions are in the process of verifying new technology components through simulations. Coordination between groups is strongly recommended and, in this sense, a common definition of test cases and simulation models is needed. The scope of this paper is to present a realistic channel model for urban macrocell scenarios. This model is map-based and takes into account the layout of buildings situated in the area under study. A detailed description of the model is given together with a comparison with other widely used channel models. The benchmark includes a measurement campaign in which the proposed model is shown to be much closer to the actual behavior of a cellular system. Particular attention is given to the outdoor component of the model, since it is here where the proposed approach is showing main difference with other previous models.

  8. Montepulciano 3D virtual models for urban planning and development of the urban environment

    Directory of Open Access Journals (Sweden)

    Stefano Bertocci

    2014-05-01

    Full Text Available The research work carried out by the Department of Architecture of Florence and the Department of Civil Engineering and Architecture of Pavia for the administration of Montepulciano (SI was aimed to study new methods of analysis and promotion of the city. The representation of the street fronts of the historic center, realized in a decade of analysis in which it is carried out the study for the planning, has formed a corpus of documents useful for the realization of a three-dimensional model of the city itself. The model, which allows a dynamic interaction with the urban structure, has been designed to develop tools for valuation of the activities and the historical and cultural heritage. It is possible through the determination of a structure of a visual interface and interactive multimedia which would transform the model in a real emotional space.

  9. A modeling study of the impact of urban trees on ozone

    Science.gov (United States)

    David J. Nowak; Kevin L. Civerolo; S. Trivikrama Rao; Gopal Sistla; Christopher J. Luley; Daniel E. Crane

    2000-01-01

    Modeling the effects of increased urban tree cover on ozone concentrations (July 13-15, 1995) from Washington, DC, to central Massachusetts reveals that urban trees generally reduce ozone concentrations in cities, but tend to increase average ozone concentrations in the overall modeling domain. During the daytime, average ozone reductions in urban areas (1 ppb) were...

  10. Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model

    Science.gov (United States)

    Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran

    2014-09-01

    Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.

  11. Enhancing photogrammetric 3d city models with procedural modeling techniques for urban planning support

    International Nuclear Information System (INIS)

    Schubiger-Banz, S; Arisona, S M; Zhong, C

    2014-01-01

    This paper presents a workflow to increase the level of detail of reality-based 3D urban models. It combines the established workflows from photogrammetry and procedural modeling in order to exploit distinct advantages of both approaches. The combination has advantages over purely automatic acquisition in terms of visual quality, accuracy and model semantics. Compared to manual modeling, procedural techniques can be much more time effective while maintaining the qualitative properties of the modeled environment. In addition, our method includes processes for procedurally adding additional features such as road and rail networks. The resulting models meet the increasing needs in urban environments for planning, inventory, and analysis

  12. Influence of an urban canopy model and PBL schemes on vertical mixing for air quality modeling over Greater Paris

    Science.gov (United States)

    Kim, Youngseob; Sartelet, Karine; Raut, Jean-Christophe; Chazette, Patrick

    2015-04-01

    Impacts of meteorological modeling in the planetary boundary layer (PBL) and urban canopy model (UCM) on the vertical mixing of pollutants are studied. Concentrations of gaseous chemical species, including ozone (O3) and nitrogen dioxide (NO2), and particulate matter over Paris and the near suburbs are simulated using the 3-dimensional chemistry-transport model Polair3D of the Polyphemus platform. Simulated concentrations of O3, NO2 and PM10/PM2.5 (particulate matter of aerodynamic diameter lower than 10 μm/2.5 μm, respectively) are first evaluated using ground measurements. Higher surface concentrations are obtained for PM10, PM2.5 and NO2 with the MYNN PBL scheme than the YSU PBL scheme because of lower PBL heights in the MYNN scheme. Differences between simulations using different PBL schemes are lower than differences between simulations with and without the UCM and the Corine land-use over urban areas. Regarding the root mean square error, the simulations using the UCM and the Corine land-use tend to perform better than the simulations without it. At urban stations, the PM10 and PM2.5 concentrations are over-estimated and the over-estimation is reduced using the UCM and the Corine land-use. The ability of the model to reproduce vertical mixing is evaluated using NO2 measurement data at the upper air observation station of the Eiffel Tower, and measurement data at a ground station near the Eiffel Tower. Although NO2 is under-estimated in all simulations, vertical mixing is greatly improved when using the UCM and the Corine land-use. Comparisons of the modeled PM10 vertical distributions to distributions deduced from surface and mobile lidar measurements are performed. The use of the UCM and the Corine land-use is crucial to accurately model PM10 concentrations during nighttime in the center of Paris. In the nocturnal stable boundary layer, PM10 is relatively well modeled, although it is over-estimated on 24 May and under-estimated on 25 May. However, PM10 is

  13. LUR models for particulate matters in the Taipei metropolis with high densities of roads and strong activities of industry, commerce and construction

    NARCIS (Netherlands)

    Lee, Jui-Huna; Wu, Chang-Fu; Hoek, Gerard; de Hoogh, Kees; Beelen, Rob; Brunekreef, Bert; Chan, Chang-Chuan

    2015-01-01

    Traffic intensity, length of road, and proximity to roads are the most common traffic indicators in the land use regression (LUR) models for particulate matter in ESCAPE study areas in Europe. This study explored what local variables can improve the performance of LUR models in an Asian metropolis

  14. Restoring our urban communities: A model for an empowered America

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This booklet tells the story of how two very different types of organizations - Bethel New Life and Argonne National Laboratory - have forged a partnership to rebuild West Garfield Park. This unique Partnership blends Bethel`s theological and sociological roots with Argonne`s scientific and technological expertise. Together they hope to offer the community fresh, transferable approaches to solving urban socio-economic and environmental problems. The Partnership hopes to address and solve the inner city`s technological problems through community participation and collaborative demonstrations - without losing sight of the community`s social needs. The key themes throughout this booklet - jobs, sustainable community development, energy efficiency, and environment - highlight challenges the partners face. By bringing people and technologies together, this Partnership will give West Garfield Park residents a better life -- and, perhaps, offer other communities a successful model for urban renewal.

  15. Complexity and agent-based modelling in urban research

    DEFF Research Database (Denmark)

    Fertner, Christian

    influence on the bigger system. Traditional scientific methods or theories often tried to simplify, not accounting complex relations of actors and decision-making. The introduction of computers in simulation made new approaches in modelling, as for example agent-based modelling (ABM), possible, dealing......Urbanisation processes are results of a broad variety of actors or actor groups and their behaviour and decisions based on different experiences, knowledge, resources, values etc. The decisions done are often on a micro/individual level but resulting in macro/collective behaviour. In urban research...

  16. Urban search mobile platform modeling in hindered access conditions

    Science.gov (United States)

    Barankova, I. I.; Mikhailova, U. V.; Kalugina, O. B.; Barankov, V. V.

    2018-05-01

    The article explores the control system simulation and the design of the experimental model of the rescue robot mobile platform. The functional interface, a structural functional diagram of the mobile platform control unit, and a functional control scheme for the mobile platform of secure robot were modeled. The task of design a mobile platform for urban searching in hindered access conditions is realized through the use of a mechanical basis with a chassis and crawler drive, a warning device, human heat sensors and a microcontroller based on Arduino platforms.

  17. Real Time Updating in Distributed Urban Rainfall Runoff Modelling

    DEFF Research Database (Denmark)

    Borup, Morten; Madsen, Henrik

    that are being updated from system measurements was studied. The results showed that the fact alone that it takes time for rainfall data to travel the distance between gauges and catchments has such a big negative effect on the forecast skill of updated models, that it can justify the choice of even very...... as in a real data case study. The results confirmed that the method is indeed suitable for DUDMs and that it can be used to utilise upstream as well as downstream water level and flow observations to improve model estimates and forecasts. Due to upper and lower sensor limits many sensors in urban drainage...

  18. In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity

    Science.gov (United States)

    Beekmann, M.; Prévôt, A. S. H.; Drewnick, F.; Sciare, J.; Pandis, S. N.; Denier van der Gon, H. A. C.; Crippa, M.; Freutel, F.; Poulain, L.; Ghersi, V.; Rodriguez, E.; Beirle, S.; Zotter, P.; von der Weiden-Reinmüller, S.-L.; Bressi, M.; Fountoukis, C.; Petetin, H.; Szidat, S.; Schneider, J.; Rosso, A.; El Haddad, I.; Megaritis, A.; Zhang, Q. J.; Michoud, V.; Slowik, J. G.; Moukhtar, S.; Kolmonen, P.; Stohl, A.; Eckhardt, S.; Borbon, A.; Gros, V.; Marchand, N.; Jaffrezo, J. L.; Schwarzenboeck, A.; Colomb, A.; Wiedensohler, A.; Borrmann, S.; Lawrence, M.; Baklanov, A.; Baltensperger, U.

    2015-08-01

    A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70 % of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in situ measurements during short intensive and longer-term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE chemistry transport models. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by comprehensive analysis of aerosol mass spectrometer (AMS), radiocarbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions constituted less than 20 % in winter and 40 % in summer of carbonaceous fine PM, unexpectedly small for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin, i.e., from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant, flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only being partially responsible for its own average and peak PM levels has important implications for air pollution regulation policies.

  19. A Two-Stage Queue Model to Optimize Layout of Urban Drainage System considering Extreme Rainstorms

    OpenAIRE

    He, Xinhua; Hu, Wenfa

    2017-01-01

    Extreme rainstorm is a main factor to cause urban floods when urban drainage system cannot discharge stormwater successfully. This paper investigates distribution feature of rainstorms and draining process of urban drainage systems and uses a two-stage single-counter queue method M/M/1→M/D/1 to model urban drainage system. The model emphasizes randomness of extreme rainstorms, fuzziness of draining process, and construction and operation cost of drainage system. Its two objectives are total c...

  20. Procedural modeling of urban layout: population, land use, and road network

    OpenAIRE

    Lyu, X.; Han, Q.; de Vries, B.

    2017-01-01

    This paper introduces an urban simulation system generating urban layouts with population, road network and land use layers. The desired urban spatial structure is obtained by generating a population map based on population density models. The road network is generated at two spatial levels corresponding to the road hierarchy. The land use allocation is based on the What If? allocation model. The expected results are urban layouts suitable for academic scenario analysis.

  1. Key Parameters for Urban Heat Island Assessment in A Mediterranean Context: A Sensitivity Analysis Using the Urban Weather Generator Model

    Science.gov (United States)

    Salvati, Agnese; Palme, Massimo; Inostroza, Luis

    2017-10-01

    Although Urban Heat Island (UHI) is a fundamental effect modifying the urban climate, being widely studied, the relative weight of the parameters involved in its generation is still not clear. This paper investigates the hierarchy of importance of eight parameters responsible for UHI intensity in the Mediterranean context. Sensitivity analyses have been carried out using the Urban Weather Generator model, considering the range of variability of: 1) city radius, 2) urban morphology, 3) tree coverage, 4) anthropogenic heat from vehicles, 5) building’s cooling set point, 6) heat released to canyon from HVAC systems, 7) wall construction properties and 8) albedo of vertical and horizontal surfaces. Results show a clear hierarchy of significance among the considered parameters; the urban morphology is the most important variable, causing a relative change up to 120% of the annual average UHI intensity in the Mediterranean context. The impact of anthropogenic sources of heat such as cooling systems and vehicles is also significant. These results suggest that urban morphology parameters can be used as descriptors of the climatic performance of different urban areas, easing the work of urban planners and designers in understanding a complex physical phenomenon, such as the UHI.

  2. METRIC EVALUATION PIPELINE FOR 3D MODELING OF URBAN SCENES

    Directory of Open Access Journals (Sweden)

    M. Bosch

    2017-05-01

    Full Text Available Publicly available benchmark data and metric evaluation approaches have been instrumental in enabling research to advance state of the art methods for remote sensing applications in urban 3D modeling. Most publicly available benchmark datasets have consisted of high resolution airborne imagery and lidar suitable for 3D modeling on a relatively modest scale. To enable research in larger scale 3D mapping, we have recently released a public benchmark dataset with multi-view commercial satellite imagery and metrics to compare 3D point clouds with lidar ground truth. We now define a more complete metric evaluation pipeline developed as publicly available open source software to assess semantically labeled 3D models of complex urban scenes derived from multi-view commercial satellite imagery. Evaluation metrics in our pipeline include horizontal and vertical accuracy and completeness, volumetric completeness and correctness, perceptual quality, and model simplicity. Sources of ground truth include airborne lidar and overhead imagery, and we demonstrate a semi-automated process for producing accurate ground truth shape files to characterize building footprints. We validate our current metric evaluation pipeline using 3D models produced using open source multi-view stereo methods. Data and software is made publicly available to enable further research and planned benchmarking activities.

  3. Metric Evaluation Pipeline for 3d Modeling of Urban Scenes

    Science.gov (United States)

    Bosch, M.; Leichtman, A.; Chilcott, D.; Goldberg, H.; Brown, M.

    2017-05-01

    Publicly available benchmark data and metric evaluation approaches have been instrumental in enabling research to advance state of the art methods for remote sensing applications in urban 3D modeling. Most publicly available benchmark datasets have consisted of high resolution airborne imagery and lidar suitable for 3D modeling on a relatively modest scale. To enable research in larger scale 3D mapping, we have recently released a public benchmark dataset with multi-view commercial satellite imagery and metrics to compare 3D point clouds with lidar ground truth. We now define a more complete metric evaluation pipeline developed as publicly available open source software to assess semantically labeled 3D models of complex urban scenes derived from multi-view commercial satellite imagery. Evaluation metrics in our pipeline include horizontal and vertical accuracy and completeness, volumetric completeness and correctness, perceptual quality, and model simplicity. Sources of ground truth include airborne lidar and overhead imagery, and we demonstrate a semi-automated process for producing accurate ground truth shape files to characterize building footprints. We validate our current metric evaluation pipeline using 3D models produced using open source multi-view stereo methods. Data and software is made publicly available to enable further research and planned benchmarking activities.

  4. Source apportionment of PM10 mass and particulate carbon in the Kathmandu Valley, Nepal

    Science.gov (United States)

    Kim, Bong Mann; Park, Jin-Soo; Kim, Sang-Woo; Kim, Hyunjae; Jeon, Haeun; Cho, Chaeyoon; Kim, Ji-Hyoung; Hong, Seungkyu; Rupakheti, Maheswar; Panday, Arnico K.; Park, Rokjin J.; Hong, Jihyung; Yoon, Soon-Chang

    2015-12-01

    The Kathmandu Valley in Nepal is a bowl-shaped urban basin in the Himalayan foothills with a serious problem of fine particulate air pollution that impacts local health and impairs visibility. Particulate carbon concentrations have reached severe levels that threaten the health of 3.5 million local residents. Moreover, snow and ice on the Himalayan mountains are melting as a result of additional warming due to particulate carbon, especially high black carbon concentrations. To date, the sources of the Valley's particulate carbon and the impacts of different sources on particulate carbon concentrations are not well understood. Thus, before an effective control strategy can be developed, these particulate carbon sources must be identified and quantified. Our study has found that the four primary sources of particulate carbon in the Kathmandu Valley during winter are brick kilns, motor vehicles, fugitive soil dust, and biomass/garbage burning. Their source contributions are quantified using a recently developed new multivariate receptor model SMP. In contrast to other highly polluted areas such as China, secondary contribution is almost negligible in Kathmandu Valley. Brick kilns (40%), motor vehicles (37%) and biomass/garbage burning (22%) have been identified as the major sources of elemental carbon (black carbon) in the Kathmandu Valley during winter, while motor vehicles (47%), biomass/garbage burning (32%), and soil dust (13%) have been identified as the most important sources of organic carbon. Our research indicates that controlling emissions from motor vehicles, brick kilns, biomass/garbage burning, and soil dust is essential for the mitigation of the particulate carbon that threatens public health, impairs visibility, and influences climate warming within and downwind from the Kathmandu Valley. In addition, this paper suggests several useful particulate carbon mitigation methods that can be applied to Kathmandu Valley and other areas in South Asia with

  5. Particulate monitoring, modeling, and management: natural sources, long-range transport, and emission control options: a case study of Cyprus

    Science.gov (United States)

    Kleanthous, Savvas; Savvides, Chrysanthos; Christofides, Ioannis; Hadjimitsis, Diofantos G.; Themistocleous, Kyriacos; Achilleos, Constantia; Akylas, Evangelos; Demetriadou, Chrystalla; Christodoulides, Pavlos; Douros, Ioannis; Moussiopoulos, Nicolas; Panayiotou, Charalambos; Gregoris, Charalambous; Fedra, Kurt; Kubat, Milan; Mihalopoulos, Nicolaos

    2013-08-01

    The LIFE+ Project PM3: Particulate Monitoring, Modeling, Management is coordinated by the Department of Labour Inspection in Cyprus and funded in part by LIFE+ Environment Policy & Governance. The project aims at the analysis of dust emissions, transport, and control options for Cyprus, as well as at the identification of "natural" contributions (Directive 2008/50/EC). The ultimate objective is to provide inputs for the design of a dust management plan to improve compliance to EC Directives and minimise impacts to human health and environment. This paper presents a short analysis of historical monitoring data and their patterns as well as a description of a dynamic dust entrainment model. The pyrogenic PM10 emissions combined with the wind driven emissions, are subject to a two phase non-linear multi-criteria emission control optimization procedure. The resulting emission scenarios with an hourly resolution provide input to the Comprehensive Air quality Model with extensions (CAMx) 3D fate and transport model, implemented for the 4,800 km master domain and embedded subdomains (270 km around the island of Cyprus and embedded smaller city domains of up to 30 km down to street canyon modeling). The models test the feasibility of candidate emission control solutions over a range of weather conditions. Model generated patterns of local emissions and long-range transport are discussed compared with the monitoring data, remote sensing (MODIS derived AOT), and the chemical analysis of dust samples.

  6. Particulate carbon in the atmosphere

    International Nuclear Information System (INIS)

    Surakka, J.

    1992-01-01

    Carbonaceous aerosols are emitted to the atmosphere in combustion processes. Carbon particles are very small and have a long residence time in the air. Black Carbon, a type of carbon aerosol, is a good label when transport of combustion emissions in the atmosphere is studied. It is also useful tool in air quality studies. Carbon particles absorb light 6.5 to 8 times stronger than any other particulate matter in the air. Their effect on decreasing visibility is about 50 %. Weather disturbances are also caused by carbon emissions e.g. in Kuwait. Carbon particles have big absorption surface and capacity to catalyze different heterogenous reactions in air. Due to their special chemical and physical properties particulate carbon is a significant air pollution specie, especially in urban air. Average particulate carbon concentration of 5.7 μg/m 2 have been measured in winter months in Helsinki

  7. Ambient air particulate matter in Lagos, Nigeria: a study using receptor modeling with x-ray flourescence analysis

    Directory of Open Access Journals (Sweden)

    E.A. Oluyemi

    2001-12-01

    Full Text Available The need for comprehensive air pollution studies in Lagos cannot be overemphasized in view of the level of industrialization of the city and its nearness to the ocean. Air particulate samples collected with a high-volume air sampler at three locations in Lagos, Nigeria were analyzed by the combination of wavelength-dispersive X-ray fluorescence and atomic absorption spectroscopy methods. Elemental concentrations were subjected to factor analysis for source identification and chemical mass balance model was used for source apportionment. Prominent among sources identified with the ranges of their contributions at the sites are: soil 35-54%, marine 26-34%, automobile exhaust 0.3-3.5%, refuse incineration 2-3%, and regional sulphate 2-12%.

  8. Using urban forest assessment tools to model bird habitat potential

    Science.gov (United States)

    Susannah B. Lerman; Keith H. Nislow; David J. Nowak; Stephen DeStefano; David I. King; D. Todd. Jones-Farrand

    2014-01-01

    The alteration of forest cover and the replacement of native vegetation with buildings, roads, exotic vegetation, and other urban features pose one of the greatest threats to global biodiversity. As more land becomes slated for urban development, identifying effective urban forest wildlife management tools becomes paramount to ensure the urban forest provides habitat...

  9. A hybrid multiview stereo algorithm for modeling urban scenes.

    Science.gov (United States)

    Lafarge, Florent; Keriven, Renaud; Brédif, Mathieu; Vu, Hoang-Hiep

    2013-01-01

    We present an original multiview stereo reconstruction algorithm which allows the 3D-modeling of urban scenes as a combination of meshes and geometric primitives. The method provides a compact model while preserving details: Irregular elements such as statues and ornaments are described by meshes, whereas regular structures such as columns and walls are described by primitives (planes, spheres, cylinders, cones, and tori). We adopt a two-step strategy consisting first in segmenting the initial meshbased surface using a multilabel Markov Random Field-based model and second in sampling primitive and mesh components simultaneously on the obtained partition by a Jump-Diffusion process. The quality of a reconstruction is measured by a multi-object energy model which takes into account both photo-consistency and semantic considerations (i.e., geometry and shape layout). The segmentation and sampling steps are embedded into an iterative refinement procedure which provides an increasingly accurate hybrid representation. Experimental results on complex urban structures and large scenes are presented and compared to state-of-the-art multiview stereo meshing algorithms.

  10. Urban scale air quality modelling using detailed traffic emissions estimates

    Science.gov (United States)

    Borrego, C.; Amorim, J. H.; Tchepel, O.; Dias, D.; Rafael, S.; Sá, E.; Pimentel, C.; Fontes, T.; Fernandes, P.; Pereira, S. R.; Bandeira, J. M.; Coelho, M. C.

    2016-04-01

    The atmospheric dispersion of NOx and PM10 was simulated with a second generation Gaussian model over a medium-size south-European city. Microscopic traffic models calibrated with GPS data were used to derive typical driving cycles for each road link, while instantaneous emissions were estimated applying a combined Vehicle Specific Power/Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (VSP/EMEP) methodology. Site-specific background concentrations were estimated using time series analysis and a low-pass filter applied to local observations. Air quality modelling results are compared against measurements at two locations for a 1 week period. 78% of the results are within a factor of two of the observations for 1-h average concentrations, increasing to 94% for daily averages. Correlation significantly improves when background is added, with an average of 0.89 for the 24 h record. The results highlight the potential of detailed traffic and instantaneous exhaust emissions estimates, together with filtered urban background, to provide accurate input data to Gaussian models applied at the urban scale.

  11. Urban air quality, meteorology and traffic linkages: Evidence from a sixteen-day particulate matter pollution event in December 2015, Beijing.

    Science.gov (United States)

    Hu, Dongmei; Wu, Jianping; Tian, Kun; Liao, Lyuchao; Xu, Ming; Du, Yiman

    2017-09-01

    A heavy 16-day pollution episode occurred in Beijing from December 19, 2015 to January 3, 2016. The mean daily AQI and PM 2.5 were 240.44 and 203.6μg/m 3 . We analyzed the spatiotemporal characteristics of air pollutants, meteorology and road space speed during this period, then extended to reveal the combined effects of traffic restrictions and meteorology on urban air quality with observational data and a multivariate mutual information model. Results of spatiotemporal analysis showed that five pollution stages were identified with remarkable variation patterns based on evolution of PM 2.5 concentration and weather conditions. Southern sites (DX, YDM and DS) experienced heavier pollution than northern ones (DL, CP and WL). Stage P2 exhibited combined functions of meteorology and traffic restrictions which were delayed peak-clipping effects on PM 2.5 . Mutual information values of Air quality-Traffic-Meteorology (ATM-MI) revealed that additive functions of traffic restrictions, suitable relative humidity and temperature were more effective on the removal of fine particles and CO than NO 2 . Copyright © 2017. Published by Elsevier B.V.

  12. A New Model for Simulating TSS Washoff in Urban Areas

    Directory of Open Access Journals (Sweden)

    E. Crobeddu

    2011-01-01

    Full Text Available This paper presents the formulation and validation of the conceptual Runoff Quality Simulation Model (RQSM that was developed to simulate the erosion and transport of solid particles in urban areas. The RQSM assumes that solid particle accumulation on pervious and impervious areas is infinite. The RQSM simulates soil erosion using rainfall kinetic energy and solid particle transport with linear system theory. A sensitivity analysis was conducted on the RQSM to show the influence of each parameter on the simulated load. Total suspended solid (TSS loads monitored at the outlet of the borough of Verdun in Canada and at three catchment outlets of the City of Champaign in the United States were used to validate the RQSM. TSS loads simulated by the RQSM were compared to measured loads and to loads simulated by the Rating Curve model and the Exponential model of the SWMM software. The simulation performance of the RQSM was comparable to the Exponential and Rating Curve models.

  13. Observations and Modeling of the Green Ocean Amazon (GOAMAZON). Particulate Matter and Gases Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Godoi, R. H.M. [Atmospheric Radiation Measurement (ARM), Climate Research Facility , Washington, DC (United States); Federal Univ. of Parana (Brazil); Barbosa, C. G.G. [Atmospheric Radiation Measurement (ARM), Climate Research Facility , Washington, DC (United States); Federal Univ. of Parana (Brazil); Kurzlop, P. [Atmospheric Radiation Measurement (ARM), Climate Research Facility , Washington, DC (United States); Souza, R. A.F. [Atmospheric Radiation Measurement (ARM), Climate Research Facility , Washington, DC (United States); Amazonas State Univ. (Brazil); Paralovo, S. L. [Atmospheric Radiation Measurement (ARM), Climate Research Facility , Washington, DC (United States); Federal Univ. of Parana (Brazil); Carneiro, I. P. S. [Atmospheric Radiation Measurement (ARM), Climate Research Facility , Washington, DC (United States)

    2016-03-01

    Because of their proven adverse effects on human health and vegetation, and also considering their influence over the local and regional climate, inhalable fine particles (PM2.5) and NO2, SO2, and O3 have been collected at the ARM site located in Manacapuru, Amazon, Brazil, as a part of the GoAmazon 2014/5 project. PM2.5 samples were analyzed through gravimetry, black carbon transmittance, elemental composition by energy dispersive x-ray fluorescence, and ionic concentration (cations) by ion chromatography. NO2 and SO2 samples were analyzed by ion chromatography, whereas O3 samples were analyzed through ultraviolet-vis spectrophotometry. Sampling of both particulate and gaseous pollutants took place during the two intensive operation periods (IOP1 from February to March 2014, and IOP2 from August to October 2014). Results are interpreted both separately and as a whole with the specific goal of identifying compounds that could affect the population’s health and/or could act as cloud condensation nuclei. Chemical analysis supports the elucidation of the possible origins, transport mechanisms, health effects, and main effects of the assessed pollutants in those environments

  14. High-resolution urban flood modelling - a joint probability approach

    Science.gov (United States)

    Hartnett, Michael; Olbert, Agnieszka; Nash, Stephen

    2017-04-01

    The hydrodynamic modelling of rapid flood events due to extreme climatic events in urban environment is both a complex and challenging task. The horizontal resolution necessary to resolve complexity of urban flood dynamics is a critical issue; the presence of obstacles of varying shapes and length scales, gaps between buildings and the complex geometry of the city such as slopes affect flow paths and flood levels magnitudes. These small scale processes require a high resolution grid to be modelled accurately (2m or less, Olbert et al., 2015; Hunter et al., 2008; Brown et al., 2007) and, therefore, altimetry data of at least the same resolution. Along with availability of high-resolution LiDAR data and computational capabilities, as well as state of the art nested modelling approaches, these problems can now be overcome. Flooding and drying, domain definition, frictional resistance and boundary descriptions are all important issues to be addressed when modelling urban flooding. In recent years, the number of urban flood models dramatically increased giving a good insight into various modelling problems and solutions (Mark et al., 2004; Mason et al., 2007; Fewtrell et al., 2008; Shubert et al., 2008). Despite extensive modelling work conducted for fluvial (e.g. Mignot et al., 2006; Hunter et al., 2008; Yu and Lane, 2006) and coastal mechanisms of flooding (e.g. Gallien et al., 2011; Yang et al., 2012), the amount of investigations into combined coastal-fluvial flooding is still very limited (e.g. Orton et al., 2012; Lian et al., 2013). This is surprising giving the extent of flood consequences when both mechanisms occur simultaneously, which usually happens when they are driven by one process such as a storm. The reason for that could be the fact that the likelihood of joint event is much smaller than those of any of the two contributors occurring individually, because for fast moving storms the rainfall-driven fluvial flood arrives usually later than the storm surge

  15. In-situ, satellite measurement and model evidence for a~dominant regional contribution to fine particulate matter levels in the Paris Megacity

    Science.gov (United States)

    Beekmann, M.; Prévôt, A. S. H.; Drewnick, F.; Sciare, J.; Pandis, S. N.; Denier van der Gon, H. A. C.; Crippa, M.; Freutel, F.; Poulain, L.; Ghersi, V.; Rodriguez, E.; Beirle, S.; Zotter, P.; von der Weiden-Reinmüller, S.-L.; Bressi, M.; Fountoukis, C.; Petetin, H.; Szidat, S.; Schneider, J.; Rosso, A.; El Haddad, I.; Megaritis, A.; Zhang, Q. J.; Michoud, V.; Slowik, J. G.; Moukhtar, S.; Kolmonen, P.; Stohl, A.; Eckhardt, S.; Borbon, A.; Gros, V.; Marchand, N.; Jaffrezo, J. L.; Schwarzenboeck, A.; Colomb, A.; Wiedensohler, A.; Borrmann, S.; Lawrence, M.; Baklanov, A.; Baltensperger, U.

    2015-03-01

    A detailed characterization of air quality in Paris (France), a megacity of more than 10 million inhabitants, during two one month intensive campaigns and from additional one year observations, revealed that about 70% of the fine particulate matter (PM) at urban background is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in-situ measurements during short intensive and longer term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by a comprehensive analysis of aerosol mass spectrometer (AMS), radiocarbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions contributed less than 20% in winter and 40% in summer to carbonaceous fine PM, unexpectedly little for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin, i.e. from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant, flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only controlling part of its own average and peak PM levels has important implications for air pollution regulation policies.

  16. Dispersion model computations of urban air pollution in Espoo, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Valkonen, E.; Haerkoenen, J.; Kukkonen, J.; Rantakrans, E.; Jalkanen, L.

    1997-12-31

    This report presents the numerical results of air quality studies of the city of Espoo in southern Finland. This city is one of the four cities in the Helsinki metropolitan area, having a total population of 850 000. A thorough emission inventory was made of both mobile and stationary sources in the Helsinki metropolitan area. The atmospheric dispersion was evaluated using an urban dispersion modelling system, including a Gaussian multiple-source plume model and a meteorological pre-processing model. The hourly time series of CO, NO{sub 2} and SO{sub 2} concentrations were predicted, using the emissions and meteorological data for the year 1990. The predicted results show a clear decrease in the yearly mean concentrations from southeast to northwest. This is due in part to the denser traffic in the southern parts of Espoo, and in part to pollution from the neighbouring cities of Helsinki and Vantaa, located east of Espoo. The statistical concentration parameters found for Espoo were lower than the old national air quality guidelines (1984); however, some occurrences of above-threshold values were found for NO{sub 2} in terms of the new guidelines (1996). The contribution of traffic to the total concentrations varies spatially from 30 to 90 % for NO{sub 2} from 1 to 65 % for SO{sub 2} while for CO it is nearly 100 %. The concentrations database will be further utilised to analyse the influence of urban air pollution on the health of children attending selected day nurseries in Espoo. The results of this study can also be applied in traffic and city planning. In future work the results will also be compared with data from the urban measurement network of the Helsinki Metropolitan Area Council. (orig.) 19 refs.

  17. Combining multimedia models with integrated urban water system models for micropollutants

    DEFF Research Database (Denmark)

    De Keyser, W.; Gevaert, V.; Verdonck, F.

    2009-01-01

    Integrated urban water system (IUWS) modelling aims at assessing the quality of the surface water receiving the urban emissions through sewage treatment plants, combined sewer overflows (CSOs) and stormwater drainage systems. However, some micropollutants have the tendency to occur in more than one...... environmental medium. In this work, a multimedia fate and transport model (MFTM) is “wrapped around” a dynamic IUWS model for organic micropollutants to enable integrated environmental assessment. The combined model was tested on a hypothetical catchment using two scenarios: a reference scenario...... and a stormwater infiltration pond scenario, as an example of a sustainable urban drainage system (SUDS). A case for Bis(2-ethylhexyl) phthalate (DEHP) was simulated and resulted in a reduced surface water concentration for the latter scenario. However, the model also showed that this was at the expense...

  18. Racial isolation and exposure to airborne particulate matter and ozone in understudied US populations: Environmental justice applications of downscaled numerical model output.

    Science.gov (United States)

    Bravo, Mercedes A; Anthopolos, Rebecca; Bell, Michelle L; Miranda, Marie Lynn

    2016-01-01

    Researchers and policymakers are increasingly focused on combined exposures to social and environmental stressors, especially given how often these stressors tend to co-locate. Such exposures are equally relevant in urban and rural areas and may accrue disproportionately to particular communities or specific subpopulations. To estimate relationships between racial isolation (RI), a measure of the extent to which minority racial/ethnic group members are exposed to only one another, and long-term particulate matter with an aerodynamic diameter of poverty. RI is associated with higher 5year estimated PM2.5 concentrations in urban, suburban, and rural census tracts, adding to evidence that segregation is broadly associated with disparate air pollution exposures. Disproportionate burdens to adverse exposures such as air pollution may be a pathway to racial/ethnic disparities in health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Procedural modeling of urban layout: population, land use, and road network

    NARCIS (Netherlands)

    Lyu, X.; Han, Q.; de Vries, B.

    2017-01-01

    This paper introduces an urban simulation system generating urban layouts with population, road network and land use layers. The desired urban spatial structure is obtained by generating a population map based on population density models. The road network is generated at two spatial levels

  20. An Integrated Modelling Framework to Assess Flood Risk under Urban Development and Changing Climate

    DEFF Research Database (Denmark)

    that combines a model for the socio-economic development of cities (DANCE4WATER) with an urban flood model. The urban flood model is a 1D-2D spatially distributed hydrologic and hydraulic model that, for a given urban layout, simulates flow in the sewer system and the surface flow in the catchment (MIKE FLOOD......). The socio-economic model computes urban layouts that are transferred to the hydraulic model in the form of changes of impervious area and potential flow paths on the surface. Estimates of flood prone areas, as well as the expected annual damage due to flooding, are returned to the socio-economic model...... as an input for further refinement of the scenarios for the urban development. Our results in an Australian case study suggest that urban development is a major driver for flood risk and vice versa that flood risk can be significantly reduced if it is accounted for in the development of the cities...

  1. Micro-meteorological modelling in urban areas: pollutant dispersion and radiative effects modelling

    International Nuclear Information System (INIS)

    Milliez, Maya

    2006-01-01

    Atmospheric pollution and urban climate studies require to take into account the complex processes due to heterogeneity of urban areas and the interaction with the buildings. In order to estimate the impact of buildings on flow and pollutant dispersion, detailed numerical simulations were performed over an idealized urban area, with the three-dimensional model Mercure-Saturne, modelling both concentration means and their fluctuations. To take into account atmospheric radiation in built up areas and the thermal effects of the buildings, we implemented a three-dimensional radiative model adapted to complex geometry. This model, adapted from a scheme used for thermal radiation, solves the radiative transfer equation in a semi-transparent media, using the discrete ordinate method. The new scheme was validated with idealized cases and compared to a complete case. (author) [fr

  2. Combining multimedia models with integrated urban water system models for micropollutants

    DEFF Research Database (Denmark)

    De Keyser, W.; Gevaert, V.; Verdonck, F.

    2010-01-01

    Integrated urban water system (IUWS) modeling aims at assessing the quality of the surface water receiving the urban emissions through sewage treatment plants, combined sewer overflows (CSOS) and stormwater drainage systems However, some micropollutants tend to appear in more than one environmental...... medium (air, water, sediment, soil, groundwater, etc) In this work, a multimedia fate and transport model (MFTM) is "wrapped around" a dynamic IUWS model for organic micropollutants to enable integrated environmental assessment The combined model was tested on a hypothetical catchment using two scenarios...... on the one hand a reference scenario with a combined sewerage system and on the other hand a stormwater infiltration pond scenario, as an example of a sustainable urban drainage system (SUDS) A case for Bis(2-ethylhexyl) phthalate (DEHP) was simulated and resulted in reduced surface water concentrations...

  3. An Integrated Model Based on a Hierarchical Indices System for Monitoring and Evaluating Urban Sustainability

    Directory of Open Access Journals (Sweden)

    Xulin Guo

    2013-02-01

    Full Text Available Over 50% of world’s population presently resides in cities, and this number is expected to rise to ~70% by 2050. Increasing urbanization problems including population growth, urban sprawl, land use change, unemployment, and environmental degradation, have markedly impacted urban residents’ Quality of Life (QOL. Therefore, urban sustainability and its measurement have gained increasing attention from administrators, urban planners, and scientific communities throughout the world with respect to improving urban development and human well-being. The widely accepted definition of urban sustainability emphasizes the balancing development of three primary domains (urban economy, society, and environment. This article attempts to improve the aforementioned definition of urban sustainability by incorporating a human well-being dimension. Major problems identified in existing urban sustainability indicator (USI models include a weak integration of potential indicators, poor measurement and quantification, and insufficient spatial-temporal analysis. To tackle these challenges an integrated USI model based on a hierarchical indices system was established for monitoring and evaluating urban sustainability. This model can be performed by quantifying indicators using both traditional statistical approaches and advanced geomatic techniques based on satellite imagery and census data, which aims to provide a theoretical basis for a comprehensive assessment of urban sustainability from a spatial-temporal perspective.

  4. Numerical investigation on soot particles emission in compression ignition diesel engine by using particulate mimic soot model

    Directory of Open Access Journals (Sweden)

    Ibrahim Fadzli

    2017-01-01

    Full Text Available Research via computational method, specifically by detailed-kinetic soot model offers much more advantages than the simple model as more detailed formation/oxidation process is taken into consideration, thus providing better soot mass concentration, soot size, soot number density as well as information regarding other related species. In the present computational study, investigation of in-cylinder soot concentration as well as other emissions in a single cylinder diesel engine has been conducted, using a commercial multidimensional CFD software, CONVERGE CFD. The simulation was carried out for a close-cycle combustion environment from inlet valve closing (IVC to exhaust valve opening (EVO. In this case, detailed-kinetic Particulate Mimic (PM soot model was implemented as to take benefit of the method of moment, instead of commonly implemented simple soot model. Analyses of the results are successfully plotted to demonstrate that the soot size and soot mass concentration are strongly dependent on the detailed soot formation and oxidation process rates. The calculated of soot mass concentration and average soot size at EVO provide the end value of 29.2 mg/m3 and 2.04 × 10−8 m, respectively. Besides, post-processing using EnSight shows the qualitative results of soot concentration along simulation period in the combustion chamber.

  5. Toward Distinguishing Woodsmoke and Diesel Exhaust in Ambient Particulate Matter

    International Nuclear Information System (INIS)

    Braun, A.; Huggins, F.; Kubatova, A.; Wirick, S.; Maricq, M.; Mun, B.; McDonald, J.; Kelly, K.; Shah, N.; Huffman, G.

    2008-01-01

    Particulate matter (PM) from biomass burning and diesel exhaust has distinct X-ray spectroscopic, carbon specific signatures, which can be employed for source apportionment. Characterization of the functional groups of a wide selection of PM samples (woodsmoke, diesel soot, urban air PM) was carried out using the soft X-ray spectroscopy capabilities at the synchrotron radiation sources in Berkeley (ALS) and Brookhaven (NSLS). The spectra reveal that diesel exhaust particulate (DEP) matter is made up from a semigraphitic solid core and soluble organic matter, predominantly with carboxylic functional groups. Woodsmoke PM has no or a less prevalent, graphitic signature, instead it contains carbon-hydroxyl groups. Using these features to apportion the carbonaceous PM in ambient samples we estimate that the relative contribution of DEP to ambient PM in an urban area such as Lexington, KY and St. Louis, MO is 7% and 13.5%, respectively. These values are comparable to dispersion modeling data from nonurban and urban areas in California, and with elemental carbon measurements in urban locations such as Boston, MA, Rochester, NY, and Washington, DC.

  6. Evaluating procedural modelling for 3D models of informal settlements in urban design activities

    Directory of Open Access Journals (Sweden)

    Victoria Rautenbach

    2015-11-01

    Full Text Available Three-dimensional (3D modelling and visualisation is one of the fastest growing application fields in geographic information science. 3D city models are being researched extensively for a variety of purposes and in various domains, including urban design, disaster management, education and computer gaming. These models typically depict urban business districts (downtown or suburban residential areas. Despite informal settlements being a prevailing feature of many cities in developing countries, 3D models of informal settlements are virtually non-existent. 3D models of informal settlements could be useful in various ways, e.g. to gather information about the current environment in the informal settlements, to design upgrades, to communicate these and to educate inhabitants about environmental challenges. In this article, we described the development of a 3D model of the Slovo Park informal settlement in the City of Johannesburg Metropolitan Municipality, South Africa. Instead of using time-consuming traditional manual methods, we followed the procedural modelling technique. Visualisation characteristics of 3D models of informal settlements were described and the importance of each characteristic in urban design activities for informal settlement upgrades was assessed. Next, the visualisation characteristics of the Slovo Park model were evaluated. The results of the evaluation showed that the 3D model produced by the procedural modelling technique is suitable for urban design activities in informal settlements. The visualisation characteristics and their assessment are also useful as guidelines for developing 3D models of informal settlements. In future, we plan to empirically test the use of such 3D models in urban design projects in informal settlements.

  7. Urbanization Impacts on Mammals across Urban-Forest Edges and a Predictive Model of Edge Effects

    OpenAIRE

    Villaseñor, Nélida R.; Driscoll, Don A.; Escobar, Martín A. H.; Gibbons, Philip; Lindenmayer, David B.

    2014-01-01

    With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing den...

  8. Modeling Impact of Urbanization in US Cities Using Simple Biosphere Model SiB2

    Science.gov (United States)

    Zhang, Ping; Bounoua, Lahouari; Thome, Kurtis; Wolfe, Robert

    2016-01-01

    We combine Landsat- and the Moderate Resolution Imaging Spectroradiometer (MODIS)-based products, as well as climate drivers from Phase 2 of the North American Land Data Assimilation System (NLDAS-2) in a Simple Biosphere land surface model (SiB2) to assess the impact of urbanization in continental USA (excluding Alaska and Hawaii). More than 300 cities and their surrounding suburban and rural areas are defined in this study to characterize the impact of urbanization on surface climate including surface energy, carbon budget, and water balance. These analyses reveal an uneven impact of urbanization across the continent that should inform upon policy options for improving urban growth including heat mitigation and energy use, carbon sequestration and flood prevention.

  9. Evaluation of multisectional and two-section particulate matter photochemical grid models in the Western United States.

    Science.gov (United States)

    Morris, Ralph; Koo, Bonyoung; Yarwood, Greg

    2005-11-01

    Version 4.10s of the comprehensive air-quality model with extensions (CAMx) photochemical grid model has been developed, which includes two options for representing particulate matter (PM) size distribution: (1) a two-section representation that consists of fine (PM2.5) and coarse (PM2.5-10) modes that has no interactions between the sections and assumes all of the secondary PM is fine; and (2) a multisectional representation that divides the PM size distribution into N sections (e.g., N = 10) and simulates the mass transfer between sections because of coagulation, accumulation, evaporation, and other processes. The model was applied to Southern California using the two-section and multisection representation of PM size distribution, and we found that allowing secondary PM to grow into the coarse mode had a substantial effect on PM concentration estimates. CAMx was then applied to the Western United States for the 1996 annual period with a 36-km grid resolution using both the two-section and multisection PM representation. The Community Multiscale Air Quality (CMAQ) and Regional Modeling for Aerosol and Deposition (REMSAD) models were also applied to the 1996 annual period. Similar model performance was exhibited by the four models across the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Clean Air Status and Trends Network monitoring networks. All four of the models exhibited fairly low annual bias for secondary PM sulfate and nitrate but with a winter overestimation and summer underestimation bias. The CAMx multisectional model estimated that coarse mode secondary sulfate and nitrate typically contribute nitrate when averaged across the more rural IMPROVE monitoring network.

  10. RESPONSIVE URBAN MODELS BY PROCESSING SETS OF HETEROGENEOUS DATA

    Directory of Open Access Journals (Sweden)

    M. Calvano

    2018-05-01

    Full Text Available This paper presents some steps in experimentation aimed at describing urban spaces made following the series of earthquakes that affected a vast area of central Italy starting on 24 August 2016. More specifically, these spaces pertain to historical centres of limited size and case studies that can be called “problematic” (due to complex morphological and settlement conditions, because they are difficult to access, or because they have been affected by calamitous events, etc.. The main objectives were to verify the use of sets of heterogeneous data that are already largely available to define a workflow and develop procedures that would allow some of the steps to be automated as much as possible. The most general goal was to use the experimentation to define a methodology to approach the problem aimed at developing descriptive responsive models of the urban space, that is, morphological and computer-based models capable of being modified in relation to the constantly updated flow of input data.

  11. Observations of fine particulate nitrated phenols in four sites in northern China: concentrations, source apportionment, and secondary formation

    Science.gov (United States)

    Wang, Liwei; Wang, Xinfeng; Gu, Rongrong; Wang, Hao; Yao, Lan; Wen, Liang; Zhu, Fanping; Wang, Weihao; Xue, Likun; Yang, Lingxiao; Lu, Keding; Chen, Jianmin; Wang, Tao; Zhang, Yuanghang; Wang, Wenxing

    2018-03-01

    Filter samples of fine particulate matters were collected at four sites in northern China (urban, rural, and mountain) in summer and winter, and the contents of nine nitrated phenols were quantified in the laboratory with the use of ultra-high-performance liquid chromatography coupled with mass spectrometry. During the sampling periods, the concentrations of particulate nitrated phenols exhibited distinct temporal and spatial variation. On average, the total concentration of particulate nitrated phenols in urban Jinan in the wintertime reached 48.4 ng m-3, and those in the summertime were 9.8, 5.7, 5.9, and 2.5 ng m-3 in urban Jinan, rural Yucheng and Wangdu, and Mt. Tai, respectively. The elevated concentrations of nitrated phenols in wintertime and in urban areas demonstrate the apparent influences of anthropogenic sources. The positive matrix factorization receptor model was then applied to determine the origins of particulate nitrated phenols in northern China. The five major source factors were traffic, coal combustion, biomass burning, secondary formation, and aged coal combustion plume. Among them, coal combustion played a vital role, especially at the urban site in the wintertime, with a contribution of around 55 %. In the summertime, the observed nitrated phenols were highly influenced by aged coal combustion plumes at all of the sampling sites. Meanwhile, in remote areas, contributions from secondary formation were significant. Further correlation analysis indicates that nitrosalicylic acids were produced mostly from secondary formation that was dominated by NO2 nitration.

  12. Environmental Modelling of Remediation of Urban Contaminated Areas. Report of the Urban Remediation Working Group of EMRAS Theme 2

    International Nuclear Information System (INIS)

    2012-01-01

    The Urban Remediation Working Group of the International Atomic Energy Agency's EMRAS (Environmental Modelling for RAdiation Safety) programme was concerned with remediation assessment for urban areas contaminated with dispersed radionuclides. Types of events that could result in dispersal or deposition of radionuclides in an urban situation include both intentional and unintentional events, and releases could range from major events involving a nuclear facility to small events such as a transportation accident. The primary objective of the Urban Remediation Working Group was (1) to test and improve the prediction of dose rates and cumulative doses to humans for urban areas contaminated with dispersed radionuclides, including prediction of changes in radionuclide concentrations or dose rates as a function of location and time; (2) to identify the most important pathways for human exposure; and (3) to predict the reduction in radionuclide concentrations, dose rates, or doses expected to result from various countermeasures or remediation efforts. Specific objectives of the Working Group have included (1) the identification of realistic scenarios for a wide variety of situations, (2) comparison and testing of approaches and models for assessing the significance of a given contamination event and for guiding decisions about countermeasures or remediation measures implemented to reduce doses to humans or to clean up the contaminated area, and (3) improving the understanding of processes and situations that affect the spread of contamination to aid in the development of appropriate models and parameter values for use in assessment of these situations. The major activities of the Working Group have included three areas. The first of these was a review of the available modelling approaches and computer models for use in assessing urban contamination and potential countermeasures or remediation activities. The second area of work was a modelling exercise based on data

  13. Modeling urbanized watershed flood response changes with distributed hydrological model: key hydrological processes, parameterization and case studies

    Science.gov (United States)

    Chen, Y.

    2017-12-01

    Urbanization is the world development trend for the past century, and the developing countries have been experiencing much rapider urbanization in the past decades. Urbanization brings many benefits to human beings, but also causes negative impacts, such as increasing flood risk. Impact of urbanization on flood response has long been observed, but quantitatively studying this effect still faces great challenges. For example, setting up an appropriate hydrological model representing the changed flood responses and determining accurate model parameters are very difficult in the urbanized or urbanizing watershed. In the Pearl River Delta area, rapidest urbanization has been observed in China for the past decades, and dozens of highly urbanized watersheds have been appeared. In this study, a physically based distributed watershed hydrological model, the Liuxihe model is employed and revised to simulate the hydrological processes of the highly urbanized watershed flood in the Pearl River Delta area. A virtual soil type is then defined in the terrain properties dataset, and its runoff production and routing algorithms are added to the Liuxihe model. Based on a parameter sensitive analysis, the key hydrological processes of a highly urbanized watershed is proposed, that provides insight into the hydrological processes and for parameter optimization. Based on the above analysis, the model is set up in the Songmushan watershed where there is hydrological data observation. A model parameter optimization and updating strategy is proposed based on the remotely sensed LUC types, which optimizes model parameters with PSO algorithm and updates them based on the changed LUC types. The model parameters in Songmushan watershed are regionalized at the Pearl River Delta area watersheds based on the LUC types of the other watersheds. A dozen watersheds in the highly urbanized area of Dongguan City in the Pearl River Delta area were studied for the flood response changes due to

  14. Evaluation of the WRF-Urban Modeling System Coupled to Noah and Noah-MP Land Surface Models Over a Semiarid Urban Environment

    Science.gov (United States)

    Salamanca, Francisco; Zhang, Yizhou; Barlage, Michael; Chen, Fei; Mahalov, Alex; Miao, Shiguang

    2018-03-01

    We have augmented the existing capabilities of the integrated Weather Research and Forecasting (WRF)-urban modeling system by coupling three urban canopy models (UCMs) available in the WRF model with the new community Noah with multiparameterization options (Noah-MP) land surface model (LSM). The WRF-urban modeling system's performance has been evaluated by conducting six numerical experiments at high spatial resolution (1 km horizontal grid spacing) during a 15 day clear-sky summertime period for a semiarid urban environment. To assess the relative importance of representing urban surfaces, three different urban parameterizations are used with the Noah and Noah-MP LSMs, respectively, over the two major cities of Arizona: Phoenix and Tucson metropolitan areas. Our results demonstrate that Noah-MP reproduces somewhat better than Noah the daily evolution of surface skin temperature and near-surface air temperature (especially nighttime temperature) and wind speed. Concerning the urban areas, bulk urban parameterization overestimates nighttime 2 m air temperature compared to the single-layer and multilayer UCMs that reproduce more accurately the daily evolution of near-surface air temperature. Regarding near-surface wind speed, only the multilayer UCM was able to reproduce realistically the daily evolution of wind speed, although maximum winds were slightly overestimated, while both the single-layer and bulk urban parameterizations overestimated wind speed considerably. Based on these results, this paper demonstrates that the new community Noah-MP LSM coupled to an UCM is a promising physics-based predictive modeling tool for urban applications.

  15. MODELING URBAN DYNAMICS USING RANDOM FOREST: IMPLEMENTING ROC AND TOC FOR MODEL EVALUATION

    Directory of Open Access Journals (Sweden)

    M. Ahmadlou

    2016-06-01

    Full Text Available The importance of spatial accuracy of land use/cover change maps necessitates the use of high performance models. To reach this goal, calibrating machine learning (ML approaches to model land use/cover conversions have received increasing interest among the scholars. This originates from the strength of these techniques as they powerfully account for the complex relationships underlying urban dynamics. Compared to other ML techniques, random forest has rarely been used for modeling urban growth. This paper, drawing on information from the multi-temporal Landsat satellite images of 1985, 2000 and 2015, calibrates a random forest regression (RFR model to quantify the variable importance and simulation of urban change spatial patterns. The results and performance of RFR model were evaluated using two complementary tools, relative operating characteristics (ROC and total operating characteristics (TOC, by overlaying the map of observed change and the modeled suitability map for land use change (error map. The suitability map produced by RFR model showed 82.48% area under curve for the ROC model which indicates a very good performance and highlights its appropriateness for simulating urban growth.

  16. Modelling the impact of implementing Water Sensitive Urban Design on at a catchment scale

    DEFF Research Database (Denmark)

    Locatelli, Luca; Gabriel, S.; Bockhorn, Britta

    Stormwater management using Water Sensitive Urban Design (WSUD) is expected to be part of future drainage systems. This project aimed to develop a set of hydraulic models of the Harrestrup Å catchment (close to Copenhagen) in order to demonstrate the importance of modeling WSUDs at different scales......, ranging from models of an individual soakaway up to models of a large urban catchment. The models were developed in Mike Urban with a new integrated soakaway model. A small-scale individual soakaway model was used to determine appropriate initial conditions for soakway models. This model was applied...

  17. Influence of Biomass Burning on Temporal and Diurnal Variations of Acidic Gases, Particulate Nitrate, and Sulfate in a Tropical Urban Atmosphere

    Directory of Open Access Journals (Sweden)

    Sailesh N. Behera

    2014-01-01

    Full Text Available The present study investigated the temporal and diurnal distributions of atmospheric acidic gases (sulphur dioxide (SO2, nitrous acid (HONO, and nitric acid (HNO3 and those of particulate nitrate (NO3- and sulfate (SO42- through a comprehensive field campaign during the largest smoke haze episode in Singapore, a representative country in Southeast Asia (SEA. To identify the atmospheric behavior of these pollutants during the smoke haze period, the data generated from the measurement campaign were divided into three distinct periods: prehaze, during haze, and posthaze periods. The 24 hr average data indicated that ambient SO2, HONO, and HNO3 during the smoke haze episodes increased by a factor ranging from 1.2 to 2.6 compared to those during the prehaze and posthaze periods. Similarly, in the case of particulates SO42- and NO3-, the factor ranged from 2.3 to 4.2. Backward air trajectories were constructed and used to find the sources of biomass burning to the recurring smoke haze in this region. The air trajectory analysis showed that the smoke haze episodes experienced in Singapore were influenced by transboundary air pollution, caused by severe biomass burning events in the islands of Indonesia.

  18. Random-growth urban model with geographical fitness

    Science.gov (United States)

    Kii, Masanobu; Akimoto, Keigo; Doi, Kenji

    2012-12-01

    This paper formulates a random-growth urban model with a notion of geographical fitness. Using techniques of complex-network theory, we study our system as a type of preferential-attachment model with fitness, and we analyze its macro behavior to clarify the properties of the city-size distributions it predicts. First, restricting the geographical fitness to take positive values and using a continuum approach, we show that the city-size distributions predicted by our model asymptotically approach Pareto distributions with coefficients greater than unity. Then, allowing the geographical fitness to take negative values, we perform local coefficient analysis to show that the predicted city-size distributions can deviate from Pareto distributions, as is often observed in actual city-size distributions. As a result, the model we propose can generate a generic class of city-size distributions, including but not limited to Pareto distributions. For applications to city-population projections, our simple model requires randomness only when new cities are created, not during their subsequent growth. This property leads to smooth trajectories of city population growth, in contrast to other models using Gibrat’s law. In addition, a discrete form of our dynamical equations can be used to estimate past city populations based on present-day data; this fact allows quantitative assessment of the performance of our model. Further study is needed to determine appropriate formulas for the geographical fitness.

  19. Fuzzy pricing for urban water resources: model construction and application.

    Science.gov (United States)

    Zhao, Ranhang; Chen, Shouyu

    2008-08-01

    A rational water price system plays a crucial role in the optimal allocation of water resources. In this paper, a fuzzy pricing model for urban water resources is presented, which consists of a multi-criteria fuzzy evaluation model and a water resources price (WRP) computation model. Various factors affecting WRP are comprehensively evaluated with multiple levels and objectives in the multi-criteria fuzzy evaluation model, while the price vectors of water resources are constructed in the WRP computation model according to the definition of the bearing water price index, and then WRP is calculated. With the incorporation of an operator's knowledge, it considers iterative weights and subjective preference of operators for weight-assessment. The weights determined are more rational and the evaluation results are more realistic. Particularly, dual water supply is considered in the study. Different prices being fixed for water resources with different qualities conforms to the law of water resources value (WRV) itself. A high-quality groundwater price computation model is also proposed to provide optimal water allocation and to meet higher living standards. The developed model is applied in Jinan for evaluating its validity. The method presented in this paper offers some new directions in the research of WRP.

  20. Channel Measurement and Modeling for 5G Urban Microcellular Scenarios

    Directory of Open Access Journals (Sweden)

    Michael Peter

    2016-08-01

    Full Text Available In order to support the development of channel models for higher frequency bands, multiple urban microcellular measurement campaigns have been carried out in Berlin, Germany, at 60 and 10 GHz. In this paper, the collected data is uniformly analyzed with focus on the path loss (PL and the delay spread (DS. It reveals that the ground reflection has a dominant impact on the fading behavior. For line-of-sight conditions, the PL exponents are close to free space propagation at 60 GHz, but slightly smaller (1.62 for the street canyon at 10 GHz. The DS shows a clear dependence on the scenario (median values between 16 and 38 ns and a strong distance dependence for the open square and the wide street canyon. The dependence is less distinct for the narrow street canyon with residential buildings. This behavior is consistent with complementary ray tracing simulations, though the simplified model tends to overestimate the DS.

  1. Educational complex of light-colored modeling of urban environment

    Directory of Open Access Journals (Sweden)

    Karpenko Vladimir E.

    2018-01-01

    Full Text Available Mechanisms, methodological tools and structure of a training complex of light-colored modeling of the urban environment are developed in this paper. The following results of the practical work of students are presented: light composition and installation, media facades, lighting of building facades, city streets and embankment. As a result of modeling, the structure of the light form is determined. Light-transmitting materials and causing characteristic optical illusions, light-visual and light-dynamic effects (video-dynamics and photostatics, basic compositional techniques of light form are revealed. The main elements of the light installation are studied, including a light projection, an electronic device, interactivity and relationality of the installation, and the mechanical device which becomes a part of the installation composition. The meaning of modern media facade technology is the transformation of external building structures and their facades into a changing information cover, into a media content translator using LED technology. Light tectonics and the light rhythm of the plastics of the architectural object are built up through point and local illumination, modeling of the urban ensemble assumes the structural interaction of several light building models with special light-composition techniques. When modeling the social and pedestrian environment, the lighting parameters depend on the scale of the chosen space and are adapted taking into account the visual perception of the pedestrian, and the atmospheric effects of comfort and safety of the environment are achieved with the help of special light compositional techniques. With the aim of realizing the tasks of light modeling, a methodology has been created, including the mechanisms of models, variability and complementarity. The perspectives of light modeling in the context of structural elements of the city, neuropsychology, wireless and bioluminescence technologies are proposed

  2. Scale Modelling of Nocturnal Cooling in Urban Parks

    Science.gov (United States)

    Spronken-Smith, R. A.; Oke, T. R.

    Scale modelling is used to determine the relative contribution of heat transfer processes to the nocturnal cooling of urban parks and the characteristic temporal and spatial variation of surface temperature. Validation is achieved using a hardware model-to-numerical model-to-field observation chain of comparisons. For the calm case, modelling shows that urban-park differences of sky view factor (s) and thermal admittance () are the relevant properties governing the park cool island (PCI) effect. Reduction in sky view factor by buildings and trees decreases the drain of longwave radiation from the surface to the sky. Thus park areas near the perimeter where there may be a line of buildings or trees, or even sites within a park containing tree clumps or individual trees, generally cool less than open areas. The edge effect applies within distances of about 2.2 to 3.5 times the height of the border obstruction, i.e., to have any part of the park cooling at the maximum rate a square park must be at least twice these dimensions in width. Although the central areas of parks larger than this will experience greater cooling they will accumulate a larger volume of cold air that may make it possible for them to initiate a thermal circulation and extend the influence of the park into the surrounding city. Given real world values of s and it seems likely that radiation and conduction play almost equal roles in nocturnal PCI development. Evaporation is not a significant cooling mechanism in the nocturnal calm case but by day it is probably critical in establishing a PCI by sunset. It is likely that conditions that favour PCI by day (tree shade, soil wetness) retard PCI growth at night. The present work, which only deals with PCI growth, cannot predict which type of park will be coolest at night. Complete specification of nocturnal PCI magnitude requires knowledge of the PCI at sunset, and this depends on daytime energetics.

  3. Implementing a Generative Urban Design Model : Grammar-based design patterns for urban design

    NARCIS (Netherlands)

    Beirao, J.N.; Mendes, G.; Duarte, J.; Stouffs, R.M.F.

    2010-01-01

    This paper shows the first results of a prototype implementation of a generative urban design tool. This implementation will form part of a design support tool for a GIS based platform defined to formulate, generate and evaluate urban designs. These three goals, formulation, generation and

  4. Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations

    KAUST Repository

    Bisetti, Fabrizio; Attili, Antonio; Pitsch, Heinz G.

    2014-01-01

    , internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model

  5. [Location selection for Shenyang urban parks based on GIS and multi-objective location allocation model].

    Science.gov (United States)

    Zhou, Yuan; Shi, Tie-Mao; Hu, Yuan-Man; Gao, Chang; Liu, Miao; Song, Lin-Qi

    2011-12-01

    Based on geographic information system (GIS) technology and multi-objective location-allocation (LA) model, and in considering of four relatively independent objective factors (population density level, air pollution level, urban heat island effect level, and urban land use pattern), an optimized location selection for the urban parks within the Third Ring of Shenyang was conducted, and the selection results were compared with the spatial distribution of existing parks, aimed to evaluate the rationality of the spatial distribution of urban green spaces. In the location selection of urban green spaces in the study area, the factor air pollution was most important, and, compared with single objective factor, the weighted analysis results of multi-objective factors could provide optimized spatial location selection of new urban green spaces. The combination of GIS technology with LA model would be a new approach for the spatial optimizing of urban green spaces.

  6. Study of thermal environment in Jingjintang urban agglomeration based on WRF model and Landsat data

    International Nuclear Information System (INIS)

    Huang, Q N; Cao, Z Q; Guo, H D; Xi, X H; Li, X W

    2014-01-01

    In recent decades, unprecedented urban expansion has taken place in developing countries resulting in the emergence of megacities or urban agglomeration. It has been highly concerned by many countries about a variety of urban environmental issues such as greenhouse gas emissions and urban heat island phenomenon associated with urbanization. Generally, thermal environment is monitored by remote sensing satellite data. This method is usually limited by weather and repeated cycle. Another approach is relied on numerical simulation based on models. In the study, these two means are combined to study the thermal environment of Jingjintang urban agglomeration. The high temperature processes of the study area in 2009 and 1990s are simulated by using WRF (the Weather Research and Forecasting Model) coupled with UCM (Urban Canopy Model) and the urban impervious surface estimated from Landsat-5 TM data using support vector machine. Results show that the trend of simulated air temperature (2 meter) is in accord with observed air temperature. Moreover, it indicates the differences of air temperature and Land Surface Temperature caused by the urbanization efficiently. The UHI effect at night is stronger than that in the day. The maximum difference of LST reaches to 8–10°C for new build-up area at night. The method provided in this research can be used to analyze impacts on urban thermal environment caused by urbanization and it also provides means on thermal environment monitoring and prediction which will benefit the coping capacity of extreme event

  7. a Quadtree Organization Construction and Scheduling Method for Urban 3d Model Based on Weight

    Science.gov (United States)

    Yao, C.; Peng, G.; Song, Y.; Duan, M.

    2017-09-01

    The increasement of Urban 3D model precision and data quantity puts forward higher requirements for real-time rendering of digital city model. Improving the organization, management and scheduling of 3D model data in 3D digital city can improve the rendering effect and efficiency. This paper takes the complexity of urban models into account, proposes a Quadtree construction and scheduling rendering method for Urban 3D model based on weight. Divide Urban 3D model into different rendering weights according to certain rules, perform Quadtree construction and schedule rendering according to different rendering weights. Also proposed an algorithm for extracting bounding box extraction based on model drawing primitives to generate LOD model automatically. Using the algorithm proposed in this paper, developed a 3D urban planning&management software, the practice has showed the algorithm is efficient and feasible, the render frame rate of big scene and small scene are both stable at around 25 frames.

  8. A QUADTREE ORGANIZATION CONSTRUCTION AND SCHEDULING METHOD FOR URBAN 3D MODEL BASED ON WEIGHT

    Directory of Open Access Journals (Sweden)

    C. Yao

    2017-09-01

    Full Text Available The increasement of Urban 3D model precision and data quantity puts forward higher requirements for real-time rendering of digital city model. Improving the organization, management and scheduling of 3D model data in 3D digital city can improve the rendering effect and efficiency. This paper takes the complexity of urban models into account, proposes a Quadtree construction and scheduling rendering method for Urban 3D model based on weight. Divide Urban 3D model into different rendering weights according to certain rules, perform Quadtree construction and schedule rendering according to different rendering weights. Also proposed an algorithm for extracting bounding box extraction based on model drawing primitives to generate LOD model automatically. Using the algorithm proposed in this paper, developed a 3D urban planning&management software, the practice has showed the algorithm is efficient and feasible, the render frame rate of big scene and small scene are both stable at around 25 frames.

  9. Stable carbon isotope signals in particulate organic and inorganic carbon of coccolithophores - A numerical model study for Emiliania huxleyi.

    Science.gov (United States)

    Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke

    2017-05-07

    A recent numerical cell model, which explains observed light and carbonate system effects on particulate organic and inorganic carbon (POC and PIC) production rates under the assumption of internal pH homeostasis, is extended for stable carbon isotopes ( 12 C, 13 C). Aim of the present study is to mechanistically understand the stable carbon isotopic fractionation signal (ε) in POC and PIC and furthermore the vital effect(s) included in measured ε PIC values. The virtual cell is divided into four compartments, for each of which the 12 C as well as the 13 C carbonate system kinetics are implemented. The compartments are connected to each other via trans-membrane fluxes. In contrast to existing carbon fractionation models, the presented model calculates the disequilibrium state for both carbonate systems and for each compartment. It furthermore calculates POC and PIC production rates as well as ε POC and ε PIC as a function of given light conditions and the compositions of the external carbonate system. Measured POC and PIC production rates as well as ε PIC values are reproduced well by the model (comparison with literature data). The observed light effect on ε POC (increase of ε POC with increasing light intensities), however, is not reproduced by the basic model set-up, which is solely based on RubisCO fractionation. When extending the latter set-up by assuming that biological fractionation includes further carbon fractionation steps besides the one of RubisCO, the observed light effect on ε POC is also reproduced. By means of the extended model version, four different vital effects that superimpose each other in a real cell can be detected. Finally, we discuss potential limitations of the ε PIC proxy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Receptor modelling of atmospheric aerosols in the urban area of Sao Paulo. Appendix 5

    International Nuclear Information System (INIS)

    Artaxo, P.; Castro, W.E. Jr. de; Freitas, M. de; Longo, K.M.

    1995-01-01

    The urban area of Sao Paulo has shown high concentrations of inhalable particulate matter, indicating air pollution problems. Back carbon concentration represents 26.1±9.7% of the fine mode aerosol mass, indicating the importance of diesel emission. Factor analysis was able to separate four factors, with a transportation-related component, a resuspended soil dust and an oil combustion component. A fourth factor mainly with Br was also observed. An independent multivariate analysis technique using Cluster analysis showed very similar elemental relationships. The results indicate that the transportation sector gives an important contribution to fine mode aerosol concentration

  11. Receptor modelling of atmospheric aerosols in the urban area of Sao Paulo. Appendix 5

    Energy Technology Data Exchange (ETDEWEB)

    Artaxo, P; Castro, W.E. Jr. de; Freitas, M de; Longo, K M [Grupo de Estudos de Poluicao do Ar, Departamento de Fisica Aplicada, Instituto de Fisica, Universidade de Sao Paulo, USP, Sao Paulo, SP (Brazil)

    1995-07-01

    The urban area of Sao Paulo has shown high concentrations of inhalable particulate matter, indicating air pollution problems. Back carbon concentration represents 26.1{+-}9.7% of the fine mode aerosol mass, indicating the importance of diesel emission. Factor analysis was able to separate four factors, with a transportation-related component, a resuspended soil dust and an oil combustion component. A fourth factor mainly with Br was also observed. An independent multivariate analysis technique using Cluster analysis showed very similar elemental relationships. The results indicate that the transportation sector gives an important contribution to fine mode aerosol concentration.

  12. Modeling urban flood risk territories for Riga city

    Science.gov (United States)

    Piliksere, A.; Sennikovs, J.; Virbulis, J.; Bethers, U.; Bethers, P.; Valainis, A.

    2012-04-01

    Riga, the capital of Latvia, is located on River Daugava at the Gulf of Riga. The main flooding risks of Riga city are: (1) storm caused water setup in South part of Gulf of Riga (storm event), (2) water level increase caused by Daugava River discharge maximums (spring snow melting event) and (3) strong rainfall or rapid snow melting in densely populated urban areas. The first two flooding factors were discussed previously (Piliksere et al, 2011). The aims of the study were (1) the identification of the flood risk situations in densely populated areas, (2) the quantification of the flooding scenarios caused by rain and snow melting events of different return periods nowadays, in the near future (2021-2050), far future (2071-2100) taking into account the projections of climate change, (3) estimation of groundwater level for Riga city, (4) the building and calibration of the hydrological mathematical model based on SWMM (EPA, 2004) for the domain potentially vulnerable for rain and snow melt flooding events, (5) the calculation of rain and snow melting flood events with different return periods, (6) mapping the potentially flooded areas on a fine grid. The time series of short term precipitation events during warm time period of year (id est. rain events) were analyzed for 35 year long time period. Annual maxima of precipitation intensity for events with different duration (5 min; 15 min; 1h; 3h; 6h; 12h; 1 day; 2 days; 4 days; 10 days) were calculated. The time series of long term simultaneous precipitation data and observations of the reduction of thickness of snow cover were analyzed for 27 year long time period. Snow thawing periods were detected and maximum of snow melting intensity for events with different intensity (1day; 2 days; 4 days; 7 days; 10 days) were calculated. According to the occurrence probability six scenarios for each event for nowadays, near and far future with return period once in 5, 10, 20, 50, 100 and 200 years were constructed based on

  13. Modeling urban landscape: New paradigms and challenges in territorial representation

    Directory of Open Access Journals (Sweden)

    Sheyla Aguilar de Santana

    2013-05-01

    Full Text Available This paper aims to give a brief background on the production of urban space considering the social functions of the city, the needs of contemporary urban reforms and the need for tools that assist in decision making. This state of the art about the production space justifies the current studies on the development of geoprocessing tools, techniques and methodologies that attempt the needs of creating interpretive portraits of urban landscapes to facilitate dialogue between urban technical, administrators and community. In this sense, it is presented how GIS has been working within the context of urban planning and appointed the new challenges and paradigms of territorial representation.

  14. Accuracy of some simple models for predicting particulate interception and retention in agricultural systems

    International Nuclear Information System (INIS)

    Pinder, J.E. III; McLeod, K.W.; Adriano, D.C.

    1989-01-01

    The accuracy of three radionuclide transfer models for predicting the interception and retention of airborne particles by agricultural crops was tested using Pu-bearing aerosols released to the atmosphere from nuclear fuel facilities on the U.S. Department of Energy's Savannah River Plant, near Aiken, SC. The models evaluated were: (1) NRC, the model defined in U.S. Nuclear Regulatory Guide 1.109; (2) FOOD, a model similar to the NRC model that also predicts concentrations in grains; and (3) AGNS, a model developed from the NRC model for the southeastern United States. Plutonium concentrations in vegetation and grain were predicted from measured deposition rates and compared to concentrations observed in the field. Crops included wheat, soybeans, corn and cabbage. Although predictions of the three models differed by less than a factor of 4, they showed different abilities to predict concentrations observed in the field. The NRC and FOOD models consistently underpredicted the observed Pu concentrations for vegetation. The AGNS model was a more accurate predictor of Pu concentrations for vegetation. Both the FOOD and AGNS models accurately predicted the Pu concentrations for grains

  15. Modeling urban building energy use: A review of modeling approaches and procedures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenliang; Zhou, Yuyu; Cetin, Kristen; Eom, Jiyong; Wang, Yu; Chen, Gang; Zhang, Xuesong

    2017-12-01

    With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. This paper aims to provide an up-to-date review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. This is followed by a discussion of challenging issues associated with model preparation and calibration.

  16. Induction of IL-6 and inhibition of IL-8 secretion in the human airway cell line Calu-3 by urban particulate matter collected with a modified method of PM sampling

    International Nuclear Information System (INIS)

    Alfaro-Moreno, Ernesto; Torres, Victor; Miranda, Javier; Martinez, Leticia; Garcia-Cuellar, Claudia; Nawrot, Tim S.; Vanaudenaerde, Bart; Hoet, Peter; Ramirez-Lopez, Pavel; Rosas, Irma; Nemery, Benoit; Osornio-Vargas, Alvaro Roman

    2009-01-01

    Exposure to particulate matter (PM) induces inflammatory cytokines. In the present study, we evaluated the secretion of IL-6 and IL-8 by an airway cell line exposed to PM with a mean aerodynamic size equal to or less than 10 or 2.5 μm (PM 10 and PM 2.5 , respectively) collected in Mexico City, using a modified high-volume sampling method avoiding the use of solvents or introducing membrane components into the samples. PM was collected on cellulose-nitrate (CN) membranes modified for collection on high-volume samplers. Composition of the particles was evaluated by particle-induced X-ray emission (PIXE) and scanning electron microscopy. The particles (10-160 μg/cm 2 ) were tested on Calu-3 cells. Control cultures were exposed to LPS (10 ng/mL to 100 μg/mL) or silica (10-160 μg/cm 2 ). IL-6 and IL-8 secretions were evaluated by ELISA. An average of 10 mg of PM was recovered form each cellulose-nitrate filter. No evidence of contamination from the filter was found. Cells exposed to PM 10 presented an increase in the secretion of IL-6 (up to 400%), while IL-8 decreased (from 40% to levels below the detection limit). A similar but weaker effect was observed with PM 2.5 . In conclusion, our modified sampling method provides a large amount of urban PM free of membrane contamination. The urban particles induce a decrease in IL-8 secretion that contrasts with the LPS and silica effects. These results suggest that the regulation of IL-8 expression is different for urban particles (complex mixture containing combustion-related particles, soil and biologic components) than for biogenic compounds or pure mineral particles.

  17. Induction of IL-6 and inhibition of IL-8 secretion in the human airway cell line Calu-3 by urban particulate matter collected with a modified method of PM sampling

    Energy Technology Data Exchange (ETDEWEB)

    Alfaro-Moreno, Ernesto, E-mail: ealfaro.incan@gmail.com [Lung Toxicology Unit, Pneumology Section, K.U. Leuven (Belgium); Subdireccion de Investigacion Basica, Instituto Nacional de Cancerologia, Avenida San Fernando 22, C.P. 14080, Mexico D.F. (Mexico); Torres, Victor [Departamento Farmacologia, Facultad de Medicina, U.N.A.M. (Mexico); Miranda, Javier [Departamento de Fisica Experimental, Instituto de Fisca, U.N.A.M. (Mexico); Martinez, Leticia [Deparatmento de Aerobiologia, Centro de Ciencias de la Atmosfera - Facultad de Medicina, U.N.A.M. (Mexico); Garcia-Cuellar, Claudia [Subdireccion de Investigacion Basica, Instituto Nacional de Cancerologia, Avenida San Fernando 22, C.P. 14080, Mexico D.F. (Mexico); Nawrot, Tim S.; Vanaudenaerde, Bart; Hoet, Peter [Lung Toxicology Unit, Pneumology Section, K.U. Leuven (Belgium); Ramirez-Lopez, Pavel [Escuela Superior de Ingenieria Quimica e Industrias Extractivas, I.P.N. (Mexico); Rosas, Irma [Deparatmento de Aerobiologia, Centro de Ciencias de la Atmosfera - Facultad de Medicina, U.N.A.M. (Mexico); Nemery, Benoit [Lung Toxicology Unit, Pneumology Section, K.U. Leuven (Belgium); Osornio-Vargas, Alvaro Roman [Subdireccion de Investigacion Basica, Instituto Nacional de Cancerologia, Avenida San Fernando 22, C.P. 14080, Mexico D.F. (Mexico)

    2009-07-15

    Exposure to particulate matter (PM) induces inflammatory cytokines. In the present study, we evaluated the secretion of IL-6 and IL-8 by an airway cell line exposed to PM with a mean aerodynamic size equal to or less than 10 or 2.5 {mu}m (PM{sub 10} and PM{sub 2.5}, respectively) collected in Mexico City, using a modified high-volume sampling method avoiding the use of solvents or introducing membrane components into the samples. PM was collected on cellulose-nitrate (CN) membranes modified for collection on high-volume samplers. Composition of the particles was evaluated by particle-induced X-ray emission (PIXE) and scanning electron microscopy. The particles (10-160 {mu}g/cm{sup 2}) were tested on Calu-3 cells. Control cultures were exposed to LPS (10 ng/mL to 100 {mu}g/mL) or silica (10-160 {mu}g/cm{sup 2}). IL-6 and IL-8 secretions were evaluated by ELISA. An average of 10 mg of PM was recovered form each cellulose-nitrate filter. No evidence of contamination from the filter was found. Cells exposed to PM{sub 10} presented an increase in the secretion of IL-6 (up to 400%), while IL-8 decreased (from 40% to levels below the detection limit). A similar but weaker effect was observed with PM{sub 2.5}. In conclusion, our modified sampling method provides a large amount of urban PM free of membrane contamination. The urban particles induce a decrease in IL-8 secretion that contrasts with the LPS and silica effects. These results suggest that the regulation of IL-8 expression is different for urban particles (complex mixture containing combustion-related particles, soil and biologic components) than for biogenic compounds or pure mineral particles.

  18. On the autarchic use of solely PIXE data in particulate matter source apportionment studies by receptor modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lucarelli, F. [Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); National Institute of Nuclear Physics (INFN)-Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Nava, S., E-mail: nava@fi.infn.it [National Institute of Nuclear Physics (INFN)-Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Calzolai, G. [Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Chiari, M. [National Institute of Nuclear Physics (INFN)-Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Giannoni, M.; Traversi, R.; Udisti, R. [Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy)

    2015-11-15

    Particle Induced X-ray Emission (PIXE) analysis of aerosol samples allows simultaneous detection of several elements, including important tracers of many particulate matter sources. This capability, together with the possibility of analyzing a high number of samples in very short times, makes PIXE a very effective tool for source apportionment studies by receptor modeling. However, important aerosol components, like nitrates, OC and EC, cannot be assessed by PIXE: this limitation may strongly compromise the results of a source apportionment study if based on PIXE data alone. In this work, an experimental dataset characterised by an extended chemical speciation (elements, EC–OC, ions) is used to test the effect of reducing input species in the application of one of the most widely used receptor model, namely Positive Matrix Factorization (PMF). The main effect of using only PIXE data is that the secondary nitrate source is not identified and the contribution of biomass burning is overestimated, probably due to the similar seasonal pattern of these two sources.

  19. Particulate matters modelling: Participation to Eurodelta and application at a refinery

    International Nuclear Information System (INIS)

    Raffort, Valentin

    2017-01-01

    Eulerian Chemical-Transport Models (CTM) simulate the formation of atmospheric pollutants in gridded domain with horizontal resolutions that are usually of the order of several kilometers. Industrial plumes emitted from elevated stacks with initial dimensions of a few meters are, therefore, artificially diluted in those grid cells, thereby deteriorating the representation of their potential impact on local air quality. A Plume-in-Grid modeling approach may be used to improve the representation of industrial plumes. The Polyphemus Plume-in-Grid model treats point source emissions with a Gaussian puff model, dynamically interacting with an Eulerian model. This approach allows one to model air quality at several scales (regional to continental) while ensuring a good representation of industrial plumes from local to continental scales. In this thesis, the Polyphemus Plume-in-Grid model has been improved by integrating a finer representation of the particle size distribution. Several studies were also conducted in order to further the model performance evaluation at various scales. This thesis consists of two main parts. The first part covers the evaluation of the Polyphemus Eulerian model at the continental scale, in the context of the Eurodelta model inter-comparison project. The current phase of Eurodelta consists in studying pollution trends at the European scale over the past two decades and the sensitivity of those trends to meteorology, European emissions, and extra-European emissions (represented in the models by the boundary conditions). In this context, the performance statistics of the Polyphemus Eulerian model are evaluated in comparison to seven other CTM. This thesis focuses principally on secondary organic aerosol (SOA) modeling, and their sensitivity to various parameterizations used in the participating CTM. The second part presents applications of the Polyphemus Plume-in-Grid model to different field measurement campaigns. The first campaign focuses on

  20. Dissolved oxygen analysis, TMDL model comparison, and particulate matter shunting—Preliminary results from three model scenarios for the Klamath River upstream of Keno Dam, Oregon

    Science.gov (United States)

    Sullivan, Annett B.; Rounds, Stewart A.; Deas, Michael L.; Sogutlugil, I. Ertugrul

    2012-01-01

    Efforts are underway to identify actions that would improve water quality in the Link River to Keno Dam reach of the Upper Klamath River in south-central Oregon. To provide further insight into water-quality improvement options, three scenarios were developed, run, and analyzed using previously calibrated CE-QUAL-W2 hydrodynamic and water-quality models. Additional scenarios are under development as part of this ongoing study. Most of these scenarios evaluate changes relative to a "current conditions" model, but in some cases a "natural conditions" model was used that simulated the reach without the effect of point and nonpoint sources and set Upper Klamath Lake at its Total Maximum Daily Load (TMDL) targets. These scenarios were simulated using a model developed by the U.S. Geological Survey (USGS) and Watercourse Engineering, Inc. for the years 2006–09, referred to here as the "USGS model." Another model of the reach was developed by Tetra Tech, Inc. for years 2000 and 2002 to support the Klamath River TMDL process; that model is referred to here as the "TMDL model." The three scenarios described in this report included (1) an analysis of whether this reach of the Upper Klamath River would be in compliance with dissolved oxygen standards if sources met TMDL allocations, (2) an application of more recent datasets to the TMDL model with comparison to results from the USGS model, and (3) an examination of the effect on dissolved oxygen in the Klamath River if particulate material were stopped from entering Klamath Project diversion canals. Updates and modifications to the USGS model are in progress, so in the future these scenarios will be reanalyzed with the updated model and the interim results presented here will be superseded. Significant findings from this phase of the investigation include: * The TMDL analysis used depth-averaged dissolved oxygen concentrations from model output for comparison with dissolved oxygen standards. The Oregon dissolved oxygen

  1. [Employment and urban growth; an application of Czamanski's model to the Mexican case].

    Science.gov (United States)

    Verduzco Chavez, B

    1991-01-01

    The author applies the 1964 model developed by Stanislaw Czamanski, based on theories of urban growth and industrial localization, to the analysis of urban growth in Mexico. "The advantages of this model in its application as a support instrument in the process of urban planning when the information available is incomplete are...discussed...." Census data for 44 cities in Mexico are used. (SUMMARY IN ENG) excerpt

  2. A Unified Building Model for 3D Urban GIS

    Directory of Open Access Journals (Sweden)

    Ihab Hijazi

    2012-07-01

    Full Text Available Several tasks in urban and architectural design are today undertaken in a geospatial context. Building Information Models (BIM and geospatial technologies offer 3D data models that provide information about buildings and the surrounding environment. The Industry Foundation Classes (IFC and CityGML are today the two most prominent semantic models for representation of BIM and geospatial models respectively. CityGML has emerged as a standard for modeling city models while IFC has been developed as a reference model for building objects and sites. Current CAD and geospatial software provide tools that allow the conversion of information from one format to the other. These tools are however fairly limited in their capabilities, often resulting in data and information losses in the transformations. This paper describes a new approach for data integration based on a unified building model (UBM which encapsulates both the CityGML and IFC models, thus avoiding translations between the models and loss of information. To build the UBM, all classes and related concepts were initially collected from both models, overlapping concepts were merged, new objects were created to ensure the capturing of both indoor and outdoor objects, and finally, spatial relationships between the objects were redefined. Unified Modeling Language (UML notations were used for representing its objects and relationships between them. There are two use-case scenarios, both set in a hospital: “evacuation” and “allocating spaces for patient wards” were developed to validate and test the proposed UBM data model. Based on these two scenarios, four validation queries were defined in order to validate the appropriateness of the proposed unified building model. It has been validated, through the case scenarios and four queries, that the UBM being developed is able to integrate CityGML data as well as IFC data in an apparently seamless way. Constraints and enrichment functions are

  3. Integrated urban water management for residential areas: a reuse model.

    Science.gov (United States)

    Barton, A B; Argue, J R

    2009-01-01

    Global concern over growing urban water demand in the face of limited water resources has focussed attention on the need for better management of available water resources. This paper takes the "fit for purpose" concept and applies it in the development of a model aimed at changing current practices with respect to residential planning by integrating reuse systems into the design layout. This residential reuse model provides an approach to the design of residential developments seeking to maximise water reuse. Water balance modelling is used to assess the extent to which local water resources can satisfy residential demands with conditions based on the city of Adelaide, Australia. Physical conditions include a relatively flat topography and a temperate climate, with annual rainfall being around 500 mm. The level of water-self-sufficiency that may be achieved within a reuse development in this environment is estimated at around 60%. A case study is also presented in which a conventional development is re-designed on the basis of the reuse model. Costing of the two developments indicates the reuse scenario is only marginally more expensive. Such costings however do not include the benefit to upstream and downstream environments resulting from reduced demand and discharges. As governments look to developers to recover system augmentation and environmental costs the economics of such approaches will increase.

  4. Modeling particulate removal in plate-plate and wire-plate electrostatic precipitators

    Directory of Open Access Journals (Sweden)

    S Ramechecandane

    2016-09-01

    Full Text Available The present study is concerned with the modeling of electrically charged particles in a model plate-plate and a single wire-plate electrostatic precipitator (ESP. The particle concentration distributions for both a plate-plate and a wire-plate ESP are calculated using a modified drift flux model. Numerical investigations are performed using the modified drift flux model for particle number concentration, in addition to the RNG k - ε model for the mean turbulent flow field and the Poisson equation for the electric field. The proposed model and the outlined methodology for coupling the flow field, electric field, charging kinetics and particle concentration is applied to two model precipitators that are truly representative of a wide class of commercialized ESPs. The present investigation is quite different from the earlier studies as it does not make assumptions like a homogeneous electric field or an infinite turbulent diffusivity. The electric field calculated is a strong function of position and controls the migration velocity of particles. Hence, the proposed model can be implemented in a flow solver to obtain a full-fledged solution for any kind of ESP with no limitations on the particle number concentration, as encountered in a Lagrangian approach. The effect of turbulent diffusivity on particle number concentration in a plate-plate ESP is investigated in detail and the results obtained are compared with available experimental data. Similarly, the effect of particle size/diameter and applied electric potential on the accumulative collection performance in the case of a wire-plate ESP is studied and the results obtained are compared with available numerical data. The numerical results obtained using the modified drift flux model for both the plate-plate and wire-plate ESP are in close agreement with available experimental and numerical data.

  5. Spatio-temporal landscape modeling of urban growth patterns in Dhanbad Urban Agglomeration, India using geoinformatics techniques

    Directory of Open Access Journals (Sweden)

    Kanhaiya Lal

    2017-06-01

    Full Text Available The study deals with the quantification of urban sprawl and land transformation of Dhanbad Urban Agglomeration (DUA using geoinformatics and gradient modeling during last four decades (1972–2011. Various multi-temporal satellite images viz., MSS (1972, ETM+ (1999, 2011 and digital elevation model (CARTOSAT I, 2006 were used to analyse the urban expansion, land transformation, growth directions, and spatial segregations within the urban landscape to develop an understanding the nature of built-up growth in DUA. The urban area increased from 10.33 km2 to 46.70 km2 (352.08% along with high rate of population growth (160.07% during 1972–2011 exhibiting population densification in DUA. The study reveals that coal mining based city faced significant land use transformation converting vegetation (−41.33% into built-up land (352.08% exhibiting loss of productive lands for the expansion of impervious surface. The per year urban growth exhibited increasing urban growth from 0.4 km2/year to 1.51 km2/year during 1972–1999 and 1999–2011 periods with overall growth of 332.73%. The built-up growth on varied elevation zones exhibits that the elevation zones 150–200 m is the most preferred (79.01% for urban development with high growth (541.74%. The gradient modeling represents that the percentage of land (built-up gradually increased from 3.48% to 15.74% during 1972–2011. The result exhibited that the major growth took place in south-west direction followed by south direction in haphazard manner during 1971–99 period, whereas predominant built-up development was observed in north, south and south-west direction during 1999–2011 period, majorly within the municipal limits. The study provides an analytical method to evaluate the built-up growth patterns of an urban milieu combining geoinformatics and landscape matrix. The built-up growth in DUA indicates urgent imposition of building bylaws along with zoning (land use, height and density

  6. Life cycle impact assessment modeling for particulate matter: A new approach based on physico-chemical particle properties.

    Science.gov (United States)

    Notter, Dominic A

    2015-09-01

    Particulate matter (PM) causes severe damage to human health globally. Airborne PM is a mixture of solid and liquid droplets suspended in air. It consists of organic and inorganic components, and the particles of concern range in size from a few nanometers to approximately 10μm. The complexity of PM is considered to be the reason for the poor understanding of PM and may also be the reason why PM in environmental impact assessment is poorly defined. Currently, life cycle impact assessment is unable to differentiate highly toxic soot particles from relatively harmless sea salt. The aim of this article is to present a new impact assessment for PM where the impact of PM is modeled based on particle physico-chemical properties. With the new method, 2781 characterization factors that account for particle mass, particle number concentration, particle size, chemical composition and solubility were calculated. Because particle sizes vary over four orders of magnitudes, a sound assessment of PM requires that the exposure model includes deposition of particles in the lungs and that the fate model includes coagulation as a removal mechanism for ultrafine particles. The effects model combines effects from particle size, solubility and chemical composition. The first results from case studies suggest that PM that stems from emissions generally assumed to be highly toxic (e.g. biomass combustion and fossil fuel combustion) might lead to results that are similar compared with an assessment of PM using established methods. However, if harmless PM emissions are emitted, established methods enormously overestimate the damage. The new impact assessment allows a high resolution of the damage allocatable to different size fractions or chemical components. This feature supports a more efficient optimization of processes and products when combating air pollution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Forecasting of particulate matter time series using wavelet analysis and wavelet-ARMA/ARIMA model in Taiyuan, China.

    Science.gov (United States)

    Zhang, Hong; Zhang, Sheng; Wang, Ping; Qin, Yuzhe; Wang, Huifeng

    2017-07-01

    Particulate matter with aerodynamic diameter below 10 μm (PM 10 ) forecasting is difficult because of the uncertainties in describing the emission and meteorological fields. This paper proposed a wavelet-ARMA/ARIMA model to forecast the short-term series of the PM 10 concentrations. It was evaluated by experiments using a 10-year data set of daily PM 10 concentrations from 4 stations located in Taiyuan, China. The results indicated the following: (1) PM 10 concentrations of Taiyuan had a decreasing trend during 2005 to 2012 but increased in 2013. PM 10 concentrations had an obvious seasonal fluctuation related to coal-fired heating in winter and early spring. (2) Spatial differences among the four stations showed that the PM 10 concentrations in industrial and heavily trafficked areas were higher than those in residential and suburb areas. (3) Wavelet analysis revealed that the trend variation and the changes of the PM 10 concentration of Taiyuan were complicated. (4) The proposed wavelet-ARIMA model could be efficiently and successfully applied to the PM 10 forecasting field. Compared with the traditional ARMA/ARIMA methods, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. Wavelet analysis can filter noisy signals and identify the variation trend and the fluctuation of the PM 10 time-series data. Wavelet decomposition and reconstruction reduce the nonstationarity of the PM 10 time-series data, and thus improve the accuracy of the prediction. This paper proposed a wavelet-ARMA/ARIMA model to forecast the PM 10 time series. Compared with the traditional ARMA/ARIMA method, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. The proposed model could be efficiently and successfully applied to the PM 10 forecasting field.

  8. A spatial multi-objective optimization model for sustainable urban wastewater system layout planning.

    Science.gov (United States)

    Dong, X; Zeng, S; Chen, J

    2012-01-01

    Design of a sustainable city has changed the traditional centralized urban wastewater system towards a decentralized or clustering one. Note that there is considerable spatial variability of the factors that affect urban drainage performance including urban catchment characteristics. The potential options are numerous for planning the layout of an urban wastewater system, which are associated with different costs and local environmental impacts. There is thus a need to develop an approach to find the optimal spatial layout for collecting, treating, reusing and discharging the municipal wastewater of a city. In this study, a spatial multi-objective optimization model, called Urban wastewateR system Layout model (URL), was developed. It is solved by a genetic algorithm embedding Monte Carlo sampling and a series of graph algorithms. This model was illustrated by a case study in a newly developing urban area in Beijing, China. Five optimized system layouts were recommended to the local municipality for further detailed design.

  9. Source apportionment of fine particulate matter in China in 2013 using a source-oriented chemical transport model.

    Science.gov (United States)

    Shi, Zhihao; Li, Jingyi; Huang, Lin; Wang, Peng; Wu, Li; Ying, Qi; Zhang, Hongliang; Lu, Li; Liu, Xuejun; Liao, Hong; Hu, Jianlin

    2017-12-01

    China has been suffering high levels of fine particulate matter (PM 2.5 ). Designing effective PM 2.5 control strategies requires information about the contributions of different sources. In this study, a source-oriented Community Multiscale Air Quality (CMAQ) model was applied to quantitatively estimate the contributions of different source sectors to PM 2.5 in China. Emissions of primary PM 2.5 and gas pollutants of SO 2 , NO x , and NH 3 , which are precursors of particulate sulfate, nitrate, and ammonium (SNA, major PM 2.5 components in China), from eight source categories (power plants, residential sources, industries, transportation, open burning, sea salt, windblown dust and agriculture) were separately tracked to determine their contributions to PM 2.5 in 2013. Industrial sector is the largest source of SNA in Beijing, Xi'an and Chongqing, followed by agriculture and power plants. Residential emissions are also important sources of SNA, especially in winter when severe pollution events often occur. Nationally, the contributions of different source sectors to annual total PM 2.5 from high to low are industries, residential sources, agriculture, power plants, transportation, windblown dust, open burning and sea salt. Provincially, residential sources and industries are the major anthropogenic sources of primary PM 2.5 , while industries, agriculture, power plants and transportation are important for SNA in most provinces. For total PM 2.5 , residential and industrial emissions are the top two sources, with a combined contribution of 40-50% in most provinces. The contributions of power plants and agriculture to total PM 2.5 are about 10%, respectively. Secondary organic aerosol accounts for about 10% of annual PM 2.5 in most provinces, with higher contributions in southern provinces such as Yunnan (26%), Hainan (25%) and Taiwan (21%). Windblown dust is an important source in western provinces such as Xizang (55% of total PM 2.5 ), Qinghai (74%), Xinjiang (59

  10. Modeling the current and future roles of particulate organic nitrates in the southeastern US

    Data.gov (United States)

    U.S. Environmental Protection Agency — Links point to the NOAA data archive of observational data and the supplement of the article which this data supports. No model data was uploaded due to its size....

  11. Modeling the current and future role of particulate organic nitrates in the southeastern United States

    Science.gov (United States)

    Organic nitrates are an important aerosol constituent in locations where biogenic hydrocarbon emissions mix with anthropogenic NOx sources. While regional and global chemical transport models may include a representation of organic aerosol from monoterpene reactions with nitrate ...

  12. On-road heavy-duty diesel particulate matter emissions modeled using chassis dynamometer data.

    Science.gov (United States)

    Kear, Tom; Niemeier, D A

    2006-12-15

    This study presents a model, derived from chassis dynamometer test data, for factors (operational correction factors, or OCFs) that correct (g/mi) heavy-duty diesel particle emission rates measured on standard test cycles for real-world conditions. Using a random effects mixed regression model with data from 531 tests of 34 heavy-duty vehicles from the Coordinating Research Council's E55/E59 research project, we specify a model with covariates that characterize high power transient driving, time spent idling, and average speed. Gram per mile particle emissions rates were negatively correlated with high power transient driving, average speed, and time idling. The new model is capable of predicting relative changes in g/mi on-road heavy-duty diesel particle emission rates for real-world driving conditions that are not reflected in the driving cycles used to test heavy-duty vehicles.

  13. Experimental and modeling study of hydrogen/syngas production and particulate emissions from a natural gas-fueled partial oxidation engine

    International Nuclear Information System (INIS)

    McMillian, Michael H.; Lawson, Seth A.

    2006-01-01

    In this study, a combustion model was first applied to conditions representing varying compression ratios and equivalence ratios to investigate engine exhaust composition from partial oxidation (POX) of natural gas in reciprocating engines. The model was experimentally validated over a range of equivalence ratios from 1.3 to 1.6 with a spark-ignited single cylinder engine fueled by natural gas. The modeling results matched well with engine gaseous emission data over the experimental range. The model was also extended to higher equivalence ratios to predict H 2 and CO production at engine conditions and stoichiometries representative of homogeneous charge compression ignition (HCCI) engine operation. Secondly, over the same experimental range of equivalence ratios, particulate samples were taken to determine both total particulate mass production (g/hph) via gravimetric measurement as well as particle size distribution and loading via a scanning mobility particle sizer (SMPS). While experiments indicate hydrogen yields up to 11% using spark ignition (SI), modeling results indicate that greater than 20% H 2 yield may be possible in HCCI operation. Over the experimental range, rich-burn particulate matter (PM) production is no greater than that from typical lean-burn operation. Finally, an energy balance was performed over the range of engine experimental operation. (author)

  14. Computational modeling of electrically-driven deposition of ionized polydisperse particulate powder mixtures in advanced manufacturing processes

    Science.gov (United States)

    Zohdi, T. I.

    2017-07-01

    A key part of emerging advanced additive manufacturing methods is the deposition of specialized particulate mixtures of materials on substrates. For example, in many cases these materials are polydisperse powder mixtures whereby one set of particles is chosen with the objective to electrically, thermally or mechanically functionalize the overall mixture material and another set of finer-scale particles serves as an interstitial filler/binder. Often, achieving controllable, precise, deposition is difficult or impossible using mechanical means alone. It is for this reason that electromagnetically-driven methods are being pursued in industry, whereby the particles are ionized and an electromagnetic field is used to guide them into place. The goal of this work is to develop a model and simulation framework to investigate the behavior of a deposition as a function of an applied electric field. The approach develops a modular discrete-element type method for the simulation of the particle dynamics, which provides researchers with a framework to construct computational tools for this growing industry.

  15. RANS modeling of scalar dispersion from localized sources within a simplified urban-area model

    Science.gov (United States)

    Rossi, Riccardo; Capra, Stefano; Iaccarino, Gianluca

    2011-11-01

    The dispersion of a passive scalar downstream a localized source within a simplified urban-like geometry is examined by means of RANS scalar flux models. The computations are conducted under conditions of neutral stability and for three different incoming wind directions (0°, 45°, 90°) at a roughness Reynolds number of Ret = 391. A Reynolds stress transport model is used to close the flow governing equations whereas both the standard eddy-diffusivity closure and algebraic flux models are employed to close the transport equation for the passive scalar. The comparison with a DNS database shows improved reliability from algebraic scalar flux models towards predicting both the mean concentration and the plume structure. Since algebraic flux models do not increase substantially the computational effort, the results indicate that the use of tensorial-diffusivity can be promising tool for dispersion simulations for the urban environment.

  16. EMMA model: an advanced operational mesoscale air quality model for urban and regional environments

    International Nuclear Information System (INIS)

    Jose, R.S.; Rodriguez, M.A.; Cortes, E.; Gonzalez, R.M.

    1999-01-01

    Mesoscale air quality models are an important tool to forecast and analyse the air quality in regional and urban areas. In recent years an increased interest has been shown by decision makers in these types of software tools. The complexity of such a model has grown exponentially with the increase of computer power. Nowadays, medium workstations can run operational versions of these modelling systems successfully. Presents a complex mesoscale air quality model which has been installed in the Environmental Office of the Madrid community (Spain) in order to forecast accurately the ozone, nitrogen dioxide and sulphur dioxide air concentrations in a 3D domain centred on Madrid city. Describes the challenging scientific matters to be solved in order to develop an operational version of the atmospheric mesoscale numerical pollution model for urban and regional areas (ANA). Some encouraging results have been achieved in the attempts to improve the accuracy of the predictions made by the version already installed. (Author)

  17. First results from the International Urban Energy Balance Model Comparison: Model Complexity

    Science.gov (United States)

    Blackett, M.; Grimmond, S.; Best, M.

    2009-04-01

    A great variety of urban energy balance models has been developed. These vary in complexity from simple schemes that represent the city as a slab, through those which model various facets (i.e. road, walls and roof) to more complex urban forms (including street canyons with intersections) and features (such as vegetation cover and anthropogenic heat fluxes). Some schemes also incorporate detailed representations of momentum and energy fluxes distributed throughout various layers of the urban canopy layer. The models each differ in the parameters they require to describe the site and the in demands they make on computational processing power. Many of these models have been evaluated using observational datasets but to date, no controlled comparisons have been conducted. Urban surface energy balance models provide a means to predict the energy exchange processes which influence factors such as urban temperature, humidity, atmospheric stability and winds. These all need to be modelled accurately to capture features such as the urban heat island effect and to provide key information for dispersion and air quality modelling. A comparison of the various models available will assist in improving current and future models and will assist in formulating research priorities for future observational campaigns within urban areas. In this presentation we will summarise the initial results of this international urban energy balance model comparison. In particular, the relative performance of the models involved will be compared based on their degree of complexity. These results will inform us on ways in which we can improve the modelling of air quality within, and climate impacts of, global megacities. The methodology employed in conducting this comparison followed that used in PILPS (the Project for Intercomparison of Land-Surface Parameterization Schemes) which is also endorsed by the GEWEX Global Land Atmosphere System Study (GLASS) panel. In all cases, models were run

  18. Modelling atmospheric deposition flux of Cadmium and Lead in urban areas

    International Nuclear Information System (INIS)

    Cherin, Nicolas

    2017-01-01

    According to WHO, air pollution is responsible for more than 3.7 million premature deaths each year (OMS, 2014). Moreover, among these deaths, more than 70 within urban areas. Consequently, the health and environmental impacts of pollutants within these urban areas are of great concern in air quality studies. The deposition fluxes of air pollutants, which can be significant near sources of pollution, have rarely been modeled within urban areas. Historically, atmospheric deposition studies have focused mostly on remote areas to assess the potential impacts on ecosystems of acid deposition and nitrogen loading. Therefore, current atmospheric deposition models may not be suitable to simulate deposition fluxes in urban areas, which include complex surface geometries and diverse land use types. Atmospheric dry deposition is typically modeled using an average roughness length, which depends on land use. This classical roughness-length approach cannot account for the spatial variability of dry deposition in complex settings such as urban areas. Urban canopy models have been developed to parameterize momentum and heat transfer. We extend this approach here to mass transfer, and a new dry deposition model based on the urban canyon concept is presented. It uses a local mixing-length parameterization of turbulence within the canopy, and a description of the urban canopy via key parameters to provide spatially distributed dry deposition fluxes. This approach provides spatially distributed dry deposition fluxes depending on surfaces (streets, walls, roofs) and flow regimes (recirculation and ventilation) within the urban area. (author) [fr

  19. Traffic noise in shielded urban areas: comparison of experimental data with model results

    NARCIS (Netherlands)

    Randrianoelina, A.; Salomons, E.M.

    2008-01-01

    Noise maps of cities are commonly produced with rather simple engineering models for sound propagation. These models may be inaccurate in complex urban situations, in particular in situations with street canyons. Street canyons are urban areas that are partly or completely enclosed by buildings, for

  20. Model to predict the radiological consequences of transportation of radioactive material through an urban environment

    International Nuclear Information System (INIS)

    Taylor, J.M.; Daniel, S.L.; DuCharme, A.R.; Finley, N.N.

    1977-01-01

    A model has been developed which predicts the radiological consequences of the transportation of radioactive material in and around urban environments. This discussion of the model includes discussion of the following general topics: health effects from radiation exposure, urban area characterization, computation of dose resulting from normal transportation, computation of dose resulting from vehicular accidents or sabotage, and preliminary results and conclusions

  1. Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations

    KAUST Repository

    Bisetti, Fabrizio

    2014-07-14

    Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. © 2014 The Author(s) Published by the Royal Society.

  2. Towards a 3d Spatial Urban Energy Modelling Approach

    Science.gov (United States)

    Bahu, J.-M.; Koch, A.; Kremers, E.; Murshed, S. M.

    2013-09-01

    conceptually and practically integrate urban spatial and energy planning approaches. The combined modelling approach that will be developed based on the described sectorial models holds the potential to represent hybrid energy systems coupling distributed generation of electricity with thermal conversion systems.

  3. Modelling of recharge and pollutant fluxes to urban groundwaters

    International Nuclear Information System (INIS)

    Thomas, Abraham; Tellam, John

    2006-01-01

    Urban groundwater resources are of considerable importance to the long-term viability of many cities world-wide, yet prediction of the quantity and quality of recharge is only rarely attempted at anything other than a very basic level. This paper describes the development of UGIf, a simple model written within a GIS, designed to provide estimates of spatially distributed recharge and recharge water quality in unconfined but covered aquifers. The following processes (with their calculation method indicated) are included: runoff and interception (curve number method); evapotranspiration (Penman-Grindley); interflow (empirical index approach); volatilization (Henry's law); sorption (distribution coefficient); and degradation (first order decay). The input data required are: meteorological data, landuse/cover map with event mean concentration attributes, geological maps with hydraulic and geochemical attributes, and topographic and water table elevation data in grid form. Standard outputs include distributions of: surface runoff, infiltration, potential recharge, ground level slope, interflow, actual recharge, pollutant fluxes in surface runoff, travel times of each pollutant through the unsaturated zone, and the pollutant fluxes and concentrations at the water table. The process of validation has commenced with a study of the Triassic Sandstone aquifer underlying Birmingham, UK. UGIf predicts a similar average recharge rate for the aquifer as previous groundwater flow modelling studies, but with significantly more spatial detail: in particular the results indicate that recharge through paved areas may be more important than previously thought. The results also highlight the need for more knowledge/data on the following: runoff estimation; interflow (including the effects of lateral flow and channelling on flow times and therefore chemistry); evapotranspiration in paved areas; the nature of unsaturated zone flow below paved areas; and the role of the pipe network

  4. Coupling Modelling of Urban Development and Flood Risk – An Attempt for a Combined Software Framework

    DEFF Research Database (Denmark)

    Löwe, Roland; Sto Domingo, Nina; Urich, Christian

    2015-01-01

    to use the results of the hydraulic simulation to condition DANCE4WATER and to account for flood risk in the simulated urban development. In an Australian case study, we demonstrate that future flood risk can be significantly reduced while maintaining the overall speed of urban development.......We have developed a setup that couples the urban development model DANCE4WATER with the 1D-2D hydraulic model MIKE FLOOD. The setup makes it possible to assess the impact of urban development and infrastructural change scenarios on flood risk in an automated manner. In addition, it permits us...

  5. CityZoom UP (Urban Pollution): a computational tool for the fast generation and setup of urban scenarios for CFD and dispersion modelling simulation

    OpenAIRE

    Grazziotin, Pablo Colossi

    2016-01-01

    This research presents the development of CityZoom UP, the first attempt to extend existing urban planning software in order to assist in modelling urban scenarios and setting up simulation parameters for Gaussian dispersion and CFD models. Based on the previous capabilities and graphic user interfaces of CityZoom to model and validate urban scenarios based on Master Plan regulations, new graphic user interfaces, automatic mesh generation and data conversion algorithms have been created to se...

  6. Investigation of a coupling model of coordination between urbanization and the environment.

    Science.gov (United States)

    Li, Yangfan; Li, Yi; Zhou, Yan; Shi, Yalou; Zhu, Xiaodong

    2012-05-15

    China's coastal cities are experiencing rapid urbanization, which has resulted in many challenges. This paper presents a comprehensive index system for assessment of the level of urbanization based on four aspects: demographic urbanization, economic urbanization, social urbanization and spatial urbanization. The developed index system also characterizes the environment based on three factors: environmental pressure, environmental level and environmental control. Furthermore, a coupling coordination degree model (CCDM) focusing on the degree of coordination between urbanization and the environment was established using panel data collected from 2000 to 2008 for Lianyungang, China. The results showed that: (1) the dynamic of coordination between urbanization and the environment showed a U-shaped curve, and both sub-systems evolved into a superior balance during rapid urbanization; (2) social urbanization and environmental control make the greatest contribution to the coupling system, indicating that they are the critical factors to consider when adjusting coordination development during decision-making; and (3) the two parameters (α-urbanization, β-environment) that have been widely used in previous studies had less of an effect on the coupling coordinated system than the other factors considered herein. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Spatio-temporal modelling of residential exposure to particulate matter and gaseous pollutants for the Heinz Nixdorf Recall Cohort

    Science.gov (United States)

    Nonnemacher, Michael; Jakobs, Hermann; Viehmann, Anja; Vanberg, Irene; Kessler, Christoph; Moebus, Susanne; Möhlenkamp, Stefan; Erbel, Raimund; Hoffmann, Barbara; Memmesheimer, Michael

    2014-07-01

    For the simultaneous analysis of short- and long-term effects of air pollution in the Heinz Nixdorf Recall Cohort a sophisticated exposure modelling was performed. The dispersion and chemistry transport model EURAD (European Air Pollution Dispersion) was used for the estimation of hourly concentrations of a number of pollutants for a horizontal grid with a cell size of 1 km² covering the whole study area (three large adjacent cities in a highly urbanized region in Western Germany) for the years 2000-2003 and 2006-2008. For each 1 km² cell we estimated the mean concentration by calculating daily means from the hourly concentrations modelled by the EURAD process. The modelled concentrations showed an overall tendency to decrease from 2001 to 2008 whereas the trend in the single grid cells and study period was inhomogeneous. Participant-related exposure slightly increased from 2001 to 2003 followed by a decrease from 2006 to 2008. The exposure modelling enables a very flexible exposure assessment compared to conventional modelling approaches which either use central monitoring or temporally static spatial contrasts. The modelling allows the calculation of an average exposure concentration for any place and time within the study region and study period with a high spatial and temporal resolution. This is important for the assessment of short-, medium and long-term effects of air pollution on human health in epidemiological studies.

  8. Biomonitoring of airborne particulate matter emitted from a cement plant and comparison with dispersion modelling results

    Science.gov (United States)

    Abril, Gabriela A.; Wannaz, Eduardo D.; Mateos, Ana C.; Pignata, María L.

    2014-01-01

    The influence of a cement plant that incinerates industrial waste on the air quality of a region in the province of Córdoba, Argentina, was assessed by means of biomonitoring studies (effects of immission) and atmospheric dispersion (effects of emission) of PM10 with the application of the ISC3 model (Industrial Source Complex) developed by the USEPA (Environmental Protection Agency). For the biomonitoring studies, samples from the epiphyte plant Tillandsia capillaris Ruíz & Pav. f. capillaris were transplanted to the vicinities of the cement plant in order to determine the physiological damage and heavy metal accumulation (Ca, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb). For the application of the ISC3 model, point and area sources from the cement plant were considered to obtain average PM10 concentration results from the biomonitoring exposure period. This model permitted it to be determined that the emissions from the cement plant (point and area sources) were confined to the vicinities, without significant dispersion in the study area. This was also observed in the biomonitoring study, which identified Ca, Cd and Pb, pH and electric conductivity (EC) as biomarkers of this cement plant. Vehicular traffic emissions and soil re-suspension could be observed in the biomonitors, giving a more complete scenario. In this study, biomonitoring studies along with the application of atmospheric dispersion models, allowed the atmospheric pollution to be assessed in more detail.

  9. Two Model-Based Methods for Policy Analyses of Fine Particulate Matter Control in China: Source Apportionment and Source Sensitivity

    Science.gov (United States)

    Li, X.; Zhang, Y.; Zheng, B.; Zhang, Q.; He, K.

    2013-12-01

    Anthropogenic emissions have been controlled in recent years in China to mitigate fine particulate matter (PM2.5) pollution. Recent studies show that sulfate dioxide (SO2)-only control cannot reduce total PM2.5 levels efficiently. Other species such as nitrogen oxide, ammonia, black carbon, and organic carbon may be equally important during particular seasons. Furthermore, each species is emitted from several anthropogenic sectors (e.g., industry, power plant, transportation, residential and agriculture). On the other hand, contribution of one emission sector to PM2.5 represents contributions of all species in this sector. In this work, two model-based methods are used to identify the most influential emission sectors and areas to PM2.5. The first method is the source apportionment (SA) based on the Particulate Source Apportionment Technology (PSAT) available in the Comprehensive Air Quality Model with extensions (CAMx) driven by meteorological predictions of the Weather Research and Forecast (WRF) model. The second method is the source sensitivity (SS) based on an adjoint integration technique (AIT) available in the GEOS-Chem model. The SA method attributes simulated PM2.5 concentrations to each emission group, while the SS method calculates their sensitivity to each emission group, accounting for the non-linear relationship between PM2.5 and its precursors. Despite their differences, the complementary nature of the two methods enables a complete analysis of source-receptor relationships to support emission control policies. Our objectives are to quantify the contributions of each emission group/area to PM2.5 in the receptor areas and to intercompare results from the two methods to gain a comprehensive understanding of the role of emission sources in PM2.5 formation. The results will be compared in terms of the magnitudes and rankings of SS or SA of emitted species and emission groups/areas. GEOS-Chem with AIT is applied over East Asia at a horizontal grid

  10. A spatially distributed model for assessment of the effects of changing land use and climate on urban stream quality: Development of a Spatially Distributed Urban Water Quality Model

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ning [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA; Pacific Northwest National Laboratory, Richland WA USA; Yearsley, John [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA; Baptiste, Marisa [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA; Cao, Qian [Department of Geography, University of California Los Angeles, Los Angeles CA USA; Lettenmaier, Dennis P. [Department of Geography, University of California Los Angeles, Los Angeles CA USA; Nijssen, Bart [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA

    2016-08-22

    While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modeling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid-based spatially distributed model, DHSVM-WQ, is an outgrowth of the Distributed Hydrology-Soil-Vegetation Model (DHSVM) that incorporates modules for assessing hydrology and water quality in urbanized watersheds at a high spatial and temporal resolution. DHSVM-WQ simulates surface runoff quality and in-stream processes that control the transport of nonpoint-source (NPS) pollutants into urban streams. We configure DHSVM-WQ for three partially urbanized catchments in the Puget Sound region to evaluate the water quality responses to current conditions and projected changes in climate and/or land use over the next century. Here we focus on total suspended solids (TSS) and total phosphorus (TP) from nonpoint sources (runoff), as well as stream temperature. The projection of future land use is characterized by a combination of densification in existing urban or partially urban areas, and expansion of the urban footprint. The climate change scenarios consist of individual and concurrent changes in temperature and precipitation. Future precipitation is projected to increase in winter and decrease in summer, while future temperature is projected to increase throughout the year. Our results show that urbanization has a much greater effect than climate change on both the magnitude and seasonal variability of streamflow, TSS and TP loads largely due to substantially increased streamflow, and particularly winter flow peaks. Water temperature is more sensitive to climate warming scenarios than to urbanization and precipitation changes. Future urbanization and

  11. Development of river flood model in lower reach of urbanized river basin

    Science.gov (United States)

    Yoshimura, Kouhei; Tajima, Yoshimitsu; Sanuki, Hiroshi; Shibuo, Yoshihiro; Sato, Shinji; Lee, SungAe; Furumai, Hiroaki; Koike, Toshio

    2014-05-01

    Japan, with its natural mountainous landscape, has demographic feature that population is concentrated in lower reach of elevation close to the coast, and therefore flood damage with large socio-economic value tends to occur in low-lying region. Modeling of river flood in such low-lying urbanized river basin is complex due to the following reasons. In upstream it has been experienced urbanization, which changed land covers from natural forest or agricultural fields to residential or industrial area. Hence rate of infiltration and runoff are quite different from natural hydrological settings. In downstream, paved covers and construct of sewerage system in urbanized areas affect direct discharges and it enhances higher and faster flood peak arrival. Also tidal effect from river mouth strongly affects water levels in rivers, which must be taken into account. We develop an integrated river flood model in lower reach of urbanized areas to be able to address above described complex feature, by integrating model components: LSM coupled distributed hydrological model that models anthropogenic influence on river discharges to downstream; urban hydrological model that simulates run off response in urbanized areas; Saint Venant's equation approximated river model that integrates upstream and urban hydrological models with considering tidal effect from downstream. These features are integrated in a common modeling framework so that model interaction can be directly performed. The model is applied to the Tsurumi river basin, urbanized low-lying river basin in Yokohama and model results show that it can simulate water levels in rivers with acceptable model errors. Furthermore the model is able to install miscellaneous water planning constructs, such as runoff reduction pond in urbanized area, flood control field along the river channel, levee, etc. This can be a useful tool to investigate cost performance of hypothetical water management plan against impact of climate change in

  12. A stochastic model for filtration of particulate suspensions with incomplete pore plugging

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Santos, A; Bedrikovetsky, P. G.

    2007-01-01

    . A closed system of governing stochastic equations determines the evolution of size distributions for suspended particles and pores. Its averaging results in the closed system of hydrodynamic equations accounting for permeability and porosity reduction due to plugging. The problem of deep bed filtration...... of a single particle size suspension through a single pore size medium where a pore can be completely plugged by two particles allows for an exact analytical solution. The phenomenological deep bed filtration model follows from the analytical solution....

  13. Hourly Water Quality Dynamics in Rivers Downstream of Urban Areas: Quantifying Seasonal Variation and Modelling Impacts of Urban Growth

    Science.gov (United States)

    Hutchins, M.; McGrane, S. J.; Miller, J. D.; Hitt, O.; Bowes, M.

    2016-12-01

    Continuous monitoring of water flows and quality is invaluable in improving understanding of the influence of urban areas on river health. When used to inform predictive modelling, insights can be gained as to how urban growth may affect the chemical and biological quality of rivers as they flow downstream into larger waterbodies. Water flow and quality monitoring in two urbanising sub-catchments (long term flow records are available, but particular focus is given to monitoring of an extended set of sites during prolonged winter rainfall. In the Ray sub-catchment streams were monitored in which urban cover varied across a range of 7-78%. A rural-urban gradient in DO was apparent in the low flow period prior to the storms. Transient low DO (works (STW). In this respect temperature- and respiration-driven DO sags in summer were at least if not more severe than those driven by the winter storms. Likewise, although winter storm NH4 concentrations violated EU legislation downstream of the STW, they were lower than summer concentrations in pollutant flushes following dry spells. In contrast the predominant phenomenon affecting water quality in the Cut during the storms was dilution. Here, a river water quality model was calibrated and applied over the course of a year to capture the importance of periphyton photosynthesis and respiration cycles in determining water quality and to predict the influence of hypothetical urban growth on downstream river health. The periods monitored intensively, dry spells followed by prolonged rainfall, represent: (i) marked changes in conditions likely to become more prevalent in future, (ii) situations under which water quality in urban areas is likely to be particularly vulnerable, being influenced for example by first flush effects followed by capacity exceedance at STW. Despite this, whilst being somewhat long lasting in places, impacts on DO were not severe.

  14. Modelling biogeochemical processes in sediments from the north-western Adriatic Sea: response to enhanced particulate organic carbon fluxes

    Science.gov (United States)

    Brigolin, Daniele; Rabouille, Christophe; Bombled, Bruno; Colla, Silvia; Vizzini, Salvatrice; Pastres, Roberto; Pranovi, Fabio

    2018-03-01

    This work presents the result of a study carried out in the north-western Adriatic Sea, by combining two different types of biogeochemical models with field sampling efforts. A longline mussel farm was taken as a local source of perturbation to the natural particulate organic carbon (POC) downward flux. This flux was first quantified by means of a pelagic model of POC deposition coupled to sediment trap data, and its effects on sediment bioirrigation capacity and organic matter (OM) degradation pathways were investigated constraining an early diagenesis model by using original data collected in sediment porewater. The measurements were performed at stations located inside and outside the area affected by mussel farm deposition. Model-predicted POC fluxes showed marked spatial and temporal variability, which was mostly associated with the dynamics of the farming cycle. Sediment trap data at the two sampled stations (inside and outside of the mussel farm) showed average POC background flux of 20.0-24.2 mmol C m-2 d-1. The difference of organic carbon (OC) fluxes between the two stations was in agreement with model results, ranging between 3.3 and 14.2 mmol C m-2 d-1, and was primarily associated with mussel physiological conditions. Although restricted, these changes in POC fluxes induced visible effects on sediment biogeochemistry. Observed oxygen microprofiles presented a 50 % decrease in oxygen penetration depth (from 2.3 to 1.4 mm), accompanied by an increase in the O2 influx at the station below the mussel farm (19-31 versus 10-12 mmol O2 m-2 d-1) characterised by higher POC flux. Dissolved inorganic carbon (DIC) and NH4+ concentrations showed similar behaviour, with a more evident effect of bioirrigation underneath the farm. This was confirmed through constraining the early diagenesis model, of which calibration leads to an estimation of enhanced and shallower bioirrigation underneath the farm: bioirrigation rates of 40 yr-1 and irrigation depth of 15 cm were

  15. A New Framework to Evaluate Urban Design Using Urban Microclimatic Modeling in Future Climatic Conditions

    Directory of Open Access Journals (Sweden)

    Dasaraden Mauree

    2018-04-01

    Full Text Available Building more energy-efficient and sustainable urban areas that will both mitigate the effects of climate change and anticipate living conditions in future climate scenarios requires the development of new tools and methods that can help urban planners, architects and communities achieve this goal. In the current study, we designed a workflow that links different methodologies developed separately, to derive the energy consumption of a university school campus for the future. Three different scenarios for typical future years (2039, 2069, 2099 were run, as well as a renovation scenario (Minergie-P. We analyzed the impact of climate change on the heating and cooling demand of buildings and determined the relevance of taking into account the local climate in this particular context. The results from the simulations confirmed that in the future, there will be a constant decrease in the heating demand, while the cooling demand will substantially increase. Significantly, it was further demonstrated that when the local urban climate was taken into account, there was an even higher rise in the cooling demand, but also that a set of proposed Minergie-P renovations were not sufficient to achieve resilient buildings. We discuss the implication of this work for the simulation of building energy consumption at the neighborhood scale and the impact of future local climate on energy system design. We finally give a few perspectives regarding improved urban design and possible pathways for future urban areas.

  16. A new framework for modeling urban land expansion in peri-urban area by combining multi-source datasets and data assimilation

    Science.gov (United States)

    Zhang, Z.; Xiao, R.; Li, X.

    2015-12-01

    Peri-urban area is a new type region under the impacts of both rural Industrialization and the radiation of metropolitan during rapid urbanization. Due to its complex natural and social characteristics and unique development patterns, many problems such as environmental pollution and land use waste emerged, which became an urgent issue to be addressed. Study area in this paper covers three typical peri-urban districts (Pudong, Fengxian and Jinshan), which around the Shanghai inner city. By coupling cellular automata and multi-agent system model as the basic tools, this research focus on modelling the urban land expansion and driving mechanism in peri-urban area. The big data is aslo combined with the Bayesian maximum entropy method (BME) for spatiotemporal prediction of multi-source data, which expand the dataset of urban expansion models. Data assimilation method is used to optimize the parameters of the coupling model and minimize the uncertainty of observations, improving the precision of future simulation in peri-urban area. By setting quantitative parameters, the coupling model can effectively improve the simulation of the process of urban land expansion under different policies and management schemes, in order to provide scientificimplications for new urbanization strategy. In this research, we precise the urban land expansion simulation and prediction for peri-urban area, expand the scopes and selections of data acquisition measurements and methods, develop the new applications of the data assimilation method in geographical science, provide a new idea for understanding the inherent rules of urban land expansion, and give theoretical and practical support for the peri-urban area in urban planning and decision making.

  17. Modeling e-logistics for urban B2C in Europe

    OpenAIRE

    Galván, Dante; Robusté Antón, Francesc; Estrada Romeu, Miguel Ángel; Campos Cacheda, Jose Magin

    2005-01-01

    Major cities need to carry out good delivery operations that coexist with the rest of urban functions. The efficiency in city organisation depends directly on the proper management of logistic networks. In this context, Urban Logistics is born to improve the efficiency in public facilities dealing with the organisation of supply networks, especially in urban freight transport networks. This paper quantitatively models supply chains in the vehicle routing problem with time windows, especially ...

  18. Final Report: Model interacting particle systems for simulation and macroscopic description of particulate suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Mucha

    2007-08-30

    Suspensions of solid particles in liquids appear in numerous applications, from environmental settings like river silt, to industrial systems of solids transport and water treatment, and biological flows such as blood flow. Despite their importance, much remains unexplained about these complicated systems. Mucha's research aims to improve understanding of basic properties of suspensions through a program of simulating model interacting particle systems with critical evaluation of proposed continuum equations, in close collaboration with experimentalists. Natural to this approach, the original proposal centered around collaboration with studies already conducted in various experimental groups. However, as was detailed in the 2004 progress report, following the first year of this award, a number of the questions from the original proposal were necessarily redirected towards other specific goals because of changes in the research programs of the proposed experimental collaborators. Nevertheless, the modified project goals and the results that followed from those goals maintain close alignment with the main themes of the original proposal, improving efficient simulation and macroscopic modeling of sedimenting and colloidal suspensions. In particular, the main investigations covered under this award have included: (1) Sedimentation instabilities, including the sedimentation analogue of the Rayleigh-Taylor instability (for heavy, particle-laden fluid over lighter, clear fluid). (2) Ageing dynamics of colloidal suspensions at concentrations above the glass transition, using simplified interactions. (3) Stochastic reconstruction of velocity-field dependence for particle image velocimetry (PIV). (4) Stochastic modeling of the near-wall bias in 'nano-PIV'. (5) Distributed Lagrange multiplier simulation of the 'internal splash' of a particle falling through a stable stratified interface. (6) Fundamental study of velocity fluctuations in sedimentation

  19. Smartness and Urban Resilience. A Model of Energy Saving

    Directory of Open Access Journals (Sweden)

    Carmela Gargiulo

    2015-10-01

    The results have shown that the possibility of identifying an "ideal" sustainable urban form, able to maximize energy efficiency, still remains theoretical, opening up the possibility that there are different consumption patterns due to the different physical, environmental and building characteristics of urban areas.

  20. Characterization and Low-Dimensional Modeling of Urban Fluid Flow

    Science.gov (United States)

    2014-10-06

    pollutant dispersion characteristics in urban street canyons . Journal of Applied... pollutant dispersion in an urban street canyon . Journal of Wind Engineering and Industrial Aerodynamics, 91:309–329, 2003. J. Kim and J. Baik. A numerical...J. Wang, and Z. Xie. The impact of solar radiation and street layout on pollutant dispersion in street canyon . Building and environment,