WorldWideScience

Sample records for urban nonpoint source

  1. Nonpoint Source: Urban Areas

    Science.gov (United States)

    Urbanization increases the variety and amount of pollutants carried into our nation's waters. Pavement and compacted landscapes do not allow rain and snow melt to soak into the ground. List of typical pollutants from Urban runoff.

  2. [A landscape ecological approach for urban non-point source pollution control].

    Science.gov (United States)

    Guo, Qinghai; Ma, Keming; Zhao, Jingzhu; Yang, Liu; Yin, Chengqing

    2005-05-01

    Urban non-point source pollution is a new problem appeared with the speeding development of urbanization. The particularity of urban land use and the increase of impervious surface area make urban non-point source pollution differ from agricultural non-point source pollution, and more difficult to control. Best Management Practices (BMPs) are the effective practices commonly applied in controlling urban non-point source pollution, mainly adopting local repairing practices to control the pollutants in surface runoff. Because of the close relationship between urban land use patterns and non-point source pollution, it would be rational to combine the landscape ecological planning with local BMPs to control the urban non-point source pollution, which needs, firstly, analyzing and evaluating the influence of landscape structure on water-bodies, pollution sources and pollutant removal processes to define the relationships between landscape spatial pattern and non-point source pollution and to decide the key polluted fields, and secondly, adjusting inherent landscape structures or/and joining new landscape factors to form new landscape pattern, and combining landscape planning and management through applying BMPs into planning to improve urban landscape heterogeneity and to control urban non-point source pollution.

  3. Snowmelt runoff: a new focus of urban nonpoint source pollution.

    Science.gov (United States)

    Zhu, Hui; Xu, Yingying; Yan, Baixing; Guan, Jiunian

    2012-11-30

    Irregular precipitation associated with global climate change had been causing various problems in urban regions. Besides the runoff due to rainfall in summer, the snowmelt runoff in early spring could also play an important role in deteriorating the water quality of the receiving waters. Due to global climate change, the snowfall has increased gradually in individual regions, and snowstorms occur more frequently, which leads to an enhancement of snowmelt runoff flow during the melting seasons. What is more, rivers just awaking from freezing constitute a frail ecosystem, with poor self-purification capacity, however, the urban snowmelt runoff could carry diverse pollutants accumulated during the winter, such as coal and/or gas combustion products, snowmelting agents, automotive exhaust and so on, which seriously threaten the receiving water quality. Nevertheless, most of the research focused on the rainfall runoff in rainy seasons, and the study on snowmelt runoff is still a neglected field in many countries and regions. In conclusion, due to the considerable water quantity and the worrisome water quality, snowmelt runoff in urban regions with large impervious surface areas should be listed among the important targets in urban nonpoint source pollution management and control.

  4. Snowmelt Runoff: A New Focus of Urban Nonpoint Source Pollution

    Science.gov (United States)

    Zhu, Hui; Xu, Yingying; Yan, Baixing; Guan, Jiunian

    2012-01-01

    Irregular precipitation associated with global climate change had been causing various problems in urban regions. Besides the runoff due to rainfall in summer, the snowmelt runoff in early spring could also play an important role in deteriorating the water quality of the receiving waters. Due to global climate change, the snowfall has increased gradually in individual regions, and snowstorms occur more frequently, which leads to an enhancement of snowmelt runoff flow during the melting seasons. What is more, rivers just awaking from freezing cosntitute a frail ecosystem, with poor self-purification capacity, however, the urban snowmelt runoff could carry diverse pollutants accumulated during the winter, such as coal and/or gas combustion products, snowmelting agents, automotive exhaust and so on, which seriously threaten the receiving water quality. Nevertheless, most of the research focused on the rainfall runoff in rainy seasons, and the study on snowmelt runoff is still a neglected field in many countries and regions. In conclusion, due to the considerable water quantity and the worrisome water quality, snowmelt runoff in urban regions with large impervious surface areas should be listed among the important targets in urban nonpoint source pollution management and control. PMID:23202881

  5. Nonpoint source pollution of urban stormwater runoff: a methodology for source analysis.

    Science.gov (United States)

    Petrucci, Guido; Gromaire, Marie-Christine; Shorshani, Masoud Fallah; Chebbo, Ghassan

    2014-09-01

    The characterization and control of runoff pollution from nonpoint sources in urban areas are a major issue for the protection of aquatic environments. We propose a methodology to quantify the sources of pollutants in an urban catchment and to analyze the associated uncertainties. After describing the methodology, we illustrate it through an application to the sources of Cu, Pb, Zn, and polycyclic aromatic hydrocarbons (PAH) from a residential catchment (228 ha) in the Paris region. In this application, we suggest several procedures that can be applied for the analysis of other pollutants in different catchments, including an estimation of the total extent of roof accessories (gutters and downspouts, watertight joints and valleys) in a catchment. These accessories result as the major source of Pb and as an important source of Zn in the example catchment, while activity-related sources (traffic, heating) are dominant for Cu (brake pad wear) and PAH (tire wear, atmospheric deposition).

  6. Denitrification controls in urban riparian soils: implications for reducing urban nonpoint source nitrogen pollution.

    Science.gov (United States)

    Li, Yangjie; Chen, Zhenlou; Lou, Huanjie; Wang, Dongqi; Deng, Huanguang; Wang, Chu

    2014-09-01

    The purpose of this research was to thoroughly analyze the influences of environmental factors on denitrification processes in urban riparian soils. Besides, the study was also carried out to identify whether the denitrification processes in urban riparian soils could control nonpoint source nitrogen pollution in urban areas. The denitrification rates (DR) over 1 year were measured using an acetylene inhibition technique during the incubation of intact soil cores from six urban riparian sites, which could be divided into three types according to their vegetation. The soil samples were analyzed to determine the soil organic carbon (SOC), soil total nitrogen (STN), C/N ratio, extractable NO3 (-)-N and NH4 (+)-N, pH value, soil water content (SWC), and the soil nitrification potential to evaluate which of these factors determined the final outcome of denitrification. A nitrate amendment experiment further indicated that the riparian DR was responsive to added nitrate. Although the DRs were very low (0.099 ~ 33.23 ng N2O-N g(-1) h(-1)) due to the small amount of nitrogen moving into the urban riparian zone, the spatial and temporal patterns of denitrification differed significantly. The extractable NO3 (-)-N proved to be the dominant factor influencing the spatial distribution of denitrification, whereas the soil temperature was a determinant of the seasonal DR variation. The six riparian sites could also be divided into two types (a nitrate-abundant and a nitrate-stressed riparian system) according to the soil NO3 (-)-N concentration. The DR in nitrate-abundant riparian systems was significantly higher than that in the nitrate-stressed riparian systems. The DR in riparian zones that were covered with bushes and had adjacent cropland was higher than in grass-covered riparian sites. Furthermore, the riparian DR decreased with soil depth, which was mainly attributed to the concentrated nitrate in surface soils. The DR was not associated with the SOC, STN, C/N ratio, and

  7. Snowmelt Runoff: A New Focus of Urban Nonpoint Source Pollution

    OpenAIRE

    Jiunian Guan; Baixing Yan; Hui Zhu; Yingying Xu

    2012-01-01

    Irregular precipitation associated with global climate change had been causing various problems in urban regions. Besides the runoff due to rainfall in summer, the snowmelt runoff in early spring could also play an important role in deteriorating the water quality of the receiving waters. Due to global climate change, the snowfall has increased gradually in individual regions, and snowstorms occur more frequently, which leads to an enhancement of snowmelt runoff flow during the melting season...

  8. Urban nonpoint source pollution buildup and washoff models for simulating storm runoff quality in the Los Angeles County.

    Science.gov (United States)

    Wang, Long; Wei, Jiahua; Huang, Yuefei; Wang, Guangqian; Maqsood, Imran

    2011-07-01

    Many urban nonpoint source pollution models utilize pollutant buildup and washoff functions to simulate storm runoff quality of urban catchments. In this paper, two urban pollutant washoff load models are derived using pollutant buildup and washoff functions. The first model assumes that there is no residual pollutant after a storm event while the second one assumes that there is always residual pollutant after each storm event. The developed models are calibrated and verified with observed data from an urban catchment in the Los Angeles County. The application results show that the developed model with consideration of residual pollutant is more capable of simulating nonpoint source pollution from urban storm runoff than that without consideration of residual pollutant. For the study area, residual pollutant should be considered in pollutant buildup and washoff functions for simulating urban nonpoint source pollution when the total runoff volume is less than 30 mm. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Impacts of urbanization on regional nonpoint source pollution: case study for Beijing, China.

    Science.gov (United States)

    Zhi, Xiaosha; Chen, Lei; Shen, Zhenyao

    2018-04-01

    Due to limits on available data, the effects of urban sprawl on regional nonpoint source pollution (NPS) have not been investigated over long time periods. In this paper, the characteristics of urban sprawl from 1999 to 2014 in Beijing were explored by analyzing historical land-use data. The Event Mean Concentration data have been collected from all available references, which were used to estimate the variation in urban NPSs. Moreover, the impacts of variation in urban sprawl on regional NPSs were qualified. The results indicated that the urbanization process showed different influences on pollutants, while COD and TN were identified as key NPS pollutants. Residential areas contributed more NPS pollutants than did roads, which played a tremendous role in the control of urban NPS. The results also suggested in part that the impact of urban sprawl on the variation of COD decreased while TN increased in Beijing during the study period. These results would provide insight into the impacts of urban sprawl on NPS variation over a long period, as well as the reference for reasonable urban planning directives.

  10. Urban nonpoint source pollution buildup and washoff models for simulating storm runoff quality in the Los Angeles County

    International Nuclear Information System (INIS)

    Wang Long; Wei Jiahua; Huang Yuefei; Wang Guangqian; Maqsood, Imran

    2011-01-01

    Many urban nonpoint source pollution models utilize pollutant buildup and washoff functions to simulate storm runoff quality of urban catchments. In this paper, two urban pollutant washoff load models are derived using pollutant buildup and washoff functions. The first model assumes that there is no residual pollutant after a storm event while the second one assumes that there is always residual pollutant after each storm event. The developed models are calibrated and verified with observed data from an urban catchment in the Los Angeles County. The application results show that the developed model with consideration of residual pollutant is more capable of simulating nonpoint source pollution from urban storm runoff than that without consideration of residual pollutant. For the study area, residual pollutant should be considered in pollutant buildup and washoff functions for simulating urban nonpoint source pollution when the total runoff volume is less than 30 mm. - Highlights: → An improved urban NPS model was developed. → It performs well in areas where storm events have great temporal variation. → Threshold of total runoff volume for ignoring residual pollutant was determined. - An improved urban NPS model was developed. Threshold of total runoff volume for ignoring residual pollutant was determined.

  11. Effects of the spatial resolution of urban drainage data on nonpoint source pollution prediction.

    Science.gov (United States)

    Dai, Ying; Chen, Lei; Hou, Xiaoshu; Shen, Zhenyao

    2018-03-14

    Detailed urban drainage data are important for urban nonpoint source (NPS) pollution prediction. However, the difficulties in collecting complete pipeline data usually interfere with urban NPS pollution studies, especially in large-scale study areas. In this study, NPS pollution models were constructed for a typical urban catchment using the SWMM, based on five drainage datasets with different resolution levels. The influence of the data resolution on the simulation results was examined. The calibration and validation results of the higher-resolution (HR) model indicated a satisfactory model performance with relatively detailed drainage data. However, the performances of the parameter-regionalized lower-resolution (LR) models were still affected by the drainage data scale. This scale effect was due not only to the pipe routing process but also to changes in the effective impervious area, which could be limited by a scale threshold. The runoff flow and NPS pollution responded differently to changes in scale, primarily because of the difference between buildup and washoff and the more significant decrease in pollutant infiltration loss and the much greater increase of pollutant flooding loss while scaling up. Additionally, scale effects were also affected by the rainfall type. Sub-area routing between impervious and pervious areas could improve the LR model performances to an extent, and this approach is recommended to offset the influence of spatial resolution deterioration.

  12. GIS based optimal impervious surface map generation using various spatial data for urban nonpoint source management.

    Science.gov (United States)

    Lee, Cholyoung; Kim, Kyehyun; Lee, Hyuk

    2018-01-15

    Impervious surfaces are mainly artificial structures such as rooftops, roads, and parking lots that are covered by impenetrable materials. These surfaces are becoming the major causes of nonpoint source (NPS) pollution in urban areas. The rapid progress of urban development is increasing the total amount of impervious surfaces and NPS pollution. Therefore, many cities worldwide have adopted a stormwater utility fee (SUF) that generates funds needed to manage NPS pollution. The amount of SUF is estimated based on the impervious ratio, which is calculated by dividing the total impervious surface area by the net area of an individual land parcel. Hence, in order to identify the exact impervious ratio, large-scale impervious surface maps (ISMs) are necessary. This study proposes and assesses various methods for generating large-scale ISMs for urban areas by using existing GIS data. Bupyeong-gu, a district in the city of Incheon, South Korea, was selected as the study area. Spatial data that were freely offered by national/local governments in S. Korea were collected. First, three types of ISMs were generated by using the land-cover map, digital topographic map, and orthophotographs, to validate three methods that had been proposed conceptually by Korea Environment Corporation. Then, to generate an ISM of higher accuracy, an integration method using all data was proposed. Error matrices were made and Kappa statistics were calculated to evaluate the accuracy. Overlay analyses were performed to examine the distribution of misclassified areas. From the results, the integration method delivered the highest accuracy (Kappa statistic of 0.99) compared to the three methods that use a single type of spatial data. However, a longer production time and higher cost were limiting factors. Among the three methods using a single type of data, the land-cover map showed the highest accuracy with a Kappa statistic of 0.91. Thus, it was judged that the mapping method using the land

  13. Urban Runoff: Getting to the Nonpoint

    OpenAIRE

    Pendall, Rolf

    1994-01-01

    Mandates for water-quality improvement have forced regulators and planners to confront the problem of urban runoff, still an important source of water pollution. This ar­ticle discusses those mandates and how to meet them, and provides examples of ongoing nonpoint water pollution control programs in the San Francisco Bay Area. These examples suggest that cleanup of urban runoff may require more comprehensive regional planning to encourage a de­velopment pattern conducive to pollution control.

  14. Polluted Runoff: Nonpoint Source Pollution

    Science.gov (United States)

    Nonpoint Source (NPS) pollution is caused by rainfall or snowmelt moving over and through the ground, it picks up and carries natural and human-made pollutants, depositing them into lakes, rivers, wetlands, coastal waters and ground waters.

  15. [Urban non-point source pollution control by runoff retention and filtration pilot system].

    Science.gov (United States)

    Bai, Yao; Zuo, Jian-E; Gan, Li-Li; Low, Thong Soon; Miao, Heng-Feng; Ruan, Wen-Quan; Huang, Xia

    2011-09-01

    A runoff retention and filtration pilot system was designed and the long-term purification effect of the runoff was monitored. Runoff pollution characters in 2 typical events and treatment effect of the pilot system were analyzed. The results showed that the runoff was severely polluted. Event mean concentrations (EMCs) of SS, COD, TN and TP in the runoff were 361, 135, 7.88 and 0.62 mg/L respectively. The runoff formed by long rain presented an obvious first flush effect. The first 25% flow contributed more than 50% of the total pollutants loading of SS, TP, DTP and PO4(3-). The pilot system could reduce 100% of the non-point source pollution if the volume of the runoff was less than the retention tank. Otherwise the overflow will be purification by the filtration pilot system and the removal rates of SS, COD, TN, TP, DTP and PO4(3-) reached 97.4% , 61.8%, 22.6%, 85.1%, 72.1%, and 85.2% respectively. The system was stable and the removal rate of SS, COD, TN, and TP were 98.6%, 65.4%, 55.1% and 92.6%. The whole system could effectively remove the non-point source pollution caused by runoff.

  16. [Estimation of urban non-point source pollution loading and its factor analysis in the Pearl River Delta].

    Science.gov (United States)

    Liao, Yi-Shan; Zhuo, Mu-Ning; Li, Ding-Qiang; Guo, Tai-Long

    2013-08-01

    In the Pearl Delta region, urban rivers have been seriously polluted, and the input of non-point source pollution materials, such as chemical oxygen demand (COD), into rivers cannot be neglected. During 2009-2010, the water qualities at eight different catchments in the Fenjiang River of Foshan city were monitored, and the COD loads for eight rivulet sewages were calculated in respect of different rainfall conditions. Interesting results were concluded in our paper. The rainfall and landuse type played important roles in the COD loading, with greater influence of rainfall than landuse type. Consequently, a COD loading formula was constructed that was defined as a function of runoff and landuse type that were derived SCS model and land use map. Loading of COD could be evaluated and predicted with the constructed formula. The mean simulation accuracy for single rainfall event was 75.51%. Long-term simulation accuracy was better than that of single rainfall. In 2009, the estimated COD loading and its loading intensity were 8 053 t and 339 kg x (hm2 x a)(-1), and the industrial land was regarded as the main source of COD pollution area. The severe non-point source pollution such as COD in Fenjiang River must be paid more attention in the future.

  17. Comparison between snowmelt-runoff and rainfall-runoff nonpoint source pollution in a typical urban catchment in Beijing, China.

    Science.gov (United States)

    Chen, Lei; Zhi, Xiaosha; Shen, Zhenyao; Dai, Ying; Aini, Guzhanuer

    2018-01-01

    As a climate-driven event, nonpoint source (NPS) pollution is caused by rainfall- or snowmelt-runoff processes; however, few studies have compared the characteristics and mechanisms of these two kinds of NPS processes. In this study, three factors relating to urban NPS, including surface dust, snowmelt, and rainfall-runoff processes, were analyzed comprehensively by both field sampling and laboratory experiments. The seasonal variation and leaching characteristics of pollutants in surface dust were explored, and the runoff quality of snowmelt NPS and rainfall NPS were compared. The results indicated that dusts are the main sources of urban NPS and more pollutants are deposited in dust samples during winter and spring. However, pollutants in surface dust showed a low leaching ratio, which indicated most NPS pollutants would be carried as particulate forms. Compared to surface layer, underlying snow contained higher chemical oxygen demand, total suspended solids (TSS), Cu, Fe, Mn, and Pb concentrations, while the event mean concentration of most pollutants in snowmelt tended to be higher in roads. Moreover, the TSS and heavy metal content of snowmelt NPS was always higher than those of rainfall NPS, which indicated the importance of controlling snowmelt pollution for effective water quality management.

  18. NONPOINT SOURCES AND WATER QUALITY TRADING

    Science.gov (United States)

    Management of nonpoint sources (NPS) of nutrients may reduce discharge levels more cost effectively than can additional controls on point sources (PS); water quality trading (WQT), where a PS buys nutrient or sediment reductions from an NPS, may be an alternative means for the PS...

  19. Quantifying nonpoint source emissions and their water quality responses in a complex catchment: A case study of a typical urban-rural mixed catchment

    Science.gov (United States)

    Chen, Lei; Dai, Ying; Zhi, Xiaosha; Xie, Hui; Shen, Zhenyao

    2018-04-01

    As two key threats to receiving water bodies, the generation mechanisms and processes of urban and agricultural nonpoint sources (NPSs) show clear differences, which lead to distinct characteristics of water quality responses with mixed land-uses catchments compared to single land-use ones. However, few studies have provided such insights in these characteristic or quantified different water environment responses to NPS pollution. In this study, an integrated modelling approach was developed for those complex catchments by combining three commonly used models: SWMM (Storm Water Management Model), SWAT (Soil and Water Assessment Tool) and MIKE 11. A case study was performed in a typical urban-rural catchment of Chao Lake, China. The simulated results indicated that urban NPS pollution responded sensitively to rainfall events and was greatly affected by the antecedent dry days. Compare to urban NPS, agricultural NPS pollution was characterized with the time-lag to rainfall depended on soil moisture and the post-rain-season emissions carried by lateral flows, and were also affected by the local farm-practice schedule. With comprehensive impacts from urban-rural land-uses, the time-interleaved urban and agricultural NPS pollution emissions and more abundant pollution accumulation both led to a decrease in the responsive time and an increase in the frequency of peak pollution concentration values even during the dry season. These obtained characteristics can provide guidance for drafting watershed management plans in similar mixed land use catchments.

  20. A coupled model approach to reduce nonpoint-source pollution resulting from predicted urban growth: A case study in the Ambos Nogales watershed

    Science.gov (United States)

    Norman, L.M.; Guertin, D.P.; Feller, M.

    2008-01-01

    The development of new approaches for understanding processes of urban development and their environmental effects, as well as strategies for sustainable management, is essential in expanding metropolitan areas. This study illustrates the potential of linking urban growth and watershed models to identify problem areas and support long-term watershed planning. Sediment is a primary source of nonpoint-source pollution in surface waters. In urban areas, sediment is intermingled with other surface debris in transport. In an effort to forecast the effects of development on surface-water quality, changes predicted in urban areas by the SLEUTH urban growth model were applied in the context of erosion-sedimentation models (Universal Soil Loss Equation and Spatially Explicit Delivery Models). The models are used to simulate the effect of excluding hot-spot areas of erosion and sedimentation from future urban growth and to predict the impacts of alternative erosion-control scenarios. Ambos Nogales, meaning 'both Nogaleses,' is a name commonly used for the twin border cities of Nogales, Arizona and Nogales, Sonora, Mexico. The Ambos Nogales watershed has experienced a decrease in water quality as a result of urban development in the twin-city area. Population growth rates in Ambos Nogales are high and the resources set in place to accommodate the rapid population influx will soon become overburdened. Because of its remote location and binational governance, monitoring and planning across the border is compromised. One scenario described in this research portrays an improvement in water quality through the identification of high-risk areas using models that simulate their protection from development and replanting with native grasses, while permitting the predicted and inevitable growth elsewhere. This is meant to add to the body of knowledge about forecasting the impact potential of urbanization on sediment delivery to streams for sustainable development, which can be

  1. Evaluation of nonpoint-source contamination, Wisconsin: water year 1999

    Science.gov (United States)

    Walker, John F.; Graczyk, D.J.; Corsi, Steven R.; Wierl, J.A.; Owens, D.W.

    2001-01-01

    The objective of the watershed-management evaluation monitoring program in Wisconsin is to evaluate the effectiveness of best-management practices (BMPs) for controlling nonpoint-source pollution in rural and urban watersheds. This progress report provides a summary of the data collected by the U.S Geological Survey for the program and a discussion of the results from several different detailed analyses conducted within this program.

  2. Non-Point Source Pollutant Load Variation in Rapid Urbanization Areas by Remote Sensing, Gis and the L-THIA Model: A Case in Bao'an District, Shenzhen, China

    Science.gov (United States)

    Li, Tianhong; Bai, Fengjiao; Han, Peng; Zhang, Yuanyan

    2016-11-01

    Urban sprawl is a major driving force that alters local and regional hydrology and increases non-point source pollution. Using the Bao'an District in Shenzhen, China, a typical rapid urbanization area, as the study area and land-use change maps from 1988 to 2014 that were obtained by remote sensing, the contributions of different land-use types to NPS pollutant production were assessed with a localized long-term hydrologic impact assessment (L-THIA) model. The results show that the non-point source pollution load changed significantly both in terms of magnitude and spatial distribution. The loads of chemical oxygen demand, total suspended substances, total nitrogen and total phosphorus were affected by the interactions between event mean concentration and the magnitude of changes in land-use acreages and the spatial distribution. From 1988 to 2014, the loads of chemical oxygen demand, suspended substances and total phosphorus showed clearly increasing trends with rates of 132.48 %, 32.52 % and 38.76 %, respectively, while the load of total nitrogen decreased by 71.52 %. The immigrant population ratio was selected as an indicator to represent the level of rapid urbanization and industrialization in the study area, and a comparison analysis of the indicator with the four non-point source loads demonstrated that the chemical oxygen demand, total phosphorus and total nitrogen loads are linearly related to the immigrant population ratio. The results provide useful information for environmental improvement and city management in the study area.

  3. Nonpoint Source Pollution: Agriculture, Forestry, and Mining. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    Science.gov (United States)

    Buskirk, E. Drannon, Jr.

    Nonpoint sources of pollution have diffuse origins and are major contributors to water quality problems in both urban and rural areas. Addressed in this instructor's manual are the identification, assessment, and management of nonpoint source pollutants resulting from mining, agriculture, and forestry. The unit, part of the Working for Clean Water…

  4. Nationwide assessment of nonpoint source threats to water quality

    Science.gov (United States)

    Thomas C. Brown; Pamela Froemke

    2012-01-01

    Water quality is a continuing national concern, in part because the containment of pollution from nonpoint (diffuse) sources remains a challenge. We examine the spatial distribution of nonpoint-source threats to water quality. On the basis of comprehensive data sets for a series of watershed stressors, the relative risk of water-quality impairment was estimated for the...

  5. Loading functions for assessment of water pollution from nonpoint sources

    International Nuclear Information System (INIS)

    McElroy, A.D.; Chiu, S.Y.; Nebgen, J.W.; Aleti, A.; Bennett, F.W.

    1976-05-01

    Methods for evaluating the quantity of water pollutants generated from nonpoint sources including agriculture, silviculture, construction, mining, runoff from urban areas and rural roads, and terrestrial disposal are developed and compiled for use in water quality planning. The loading functions, plus in some instances emission values, permit calculation of nonpoint source pollutants from available data and information. Natural background was considered to be a source and loading functions were presented to estimate natural or background loads of pollutants. Loading functions/values are presented for average conditions, i.e., annual average loads expressed as metric tons/hectare/year (tons/acre/year). Procedures for estimating seasonal or 30-day maximum and minimum loads are also presented. In addition, a wide variety of required data inputs to loading functions, and delineation of sources of additional information are included in the report. The report also presents an evaluation of limitations and constraints of various methodologies which will enable the user to employ the functions realistically

  6. National Management Measures to Control Nonpoint Source Pollution from Forestry

    Science.gov (United States)

    This report helps forest owners protect lakes and streams from polluted runoff that can result from forestry activities. The report will also help states to implement their nonpoint source control programs.

  7. Clean Water Act Section 319 Nonpoint Source Pollution Control Projects Grants, US EPA Region 9, 2008, California Nonpoint Source Program

    Data.gov (United States)

    U.S. Environmental Protection Agency — The California Nonpoint Source (NPS) Program allocates about $4.5 million of CWA Section 319 funding from the U.S. Environmental Protection Agency annually to...

  8. Nonpoint source water pollution abatement and the feasibility of voluntary programs

    Science.gov (United States)

    Sawicki, David S.; Judd, Lynne B.

    1983-09-01

    This article details a case study of a voluntary, decentralized institutional arrangement for nonpint source water pollution control used in the Root River watershed in southeastern Wisconsin. This watershed was chosen because of its mix of urban, agricultural, and urbanizing land uses. The project objectives were to monitor and draw conclusions about the effectiveness of a voluntary, decentralized institutional system, to specify deficiencies of the approach and suggest means to correct them, and to use the conclusions to speculate about the need for regulations regarding nonpoint source pollution control or the appropriateness of financial incentives for nonpoint source control. Institutional factors considered include diversity of land uses in the watershed, educational needs, economic conditions, personality, water quality, number of agencies involved, definition of authority, and bureaucratic requirements

  9. Compliance Groundwater Monitoring of Nonpoint Sources - Emerging Approaches

    Science.gov (United States)

    Harter, T.

    2008-12-01

    Groundwater monitoring networks are typically designed for regulatory compliance of discharges from industrial sites. There, the quality of first encountered (shallow-most) groundwater is of key importance. Network design criteria have been developed for purposes of determining whether an actual or potential, permitted or incidental waste discharge has had or will have a degrading effect on groundwater quality. The fundamental underlying paradigm is that such discharge (if it occurs) will form a distinct contamination plume. Networks that guide (post-contamination) mitigation efforts are designed to capture the shape and dynamics of existing, finite-scale plumes. In general, these networks extend over areas less than one to ten hectare. In recent years, regulatory programs such as the EU Nitrate Directive and the U.S. Clean Water Act have forced regulatory agencies to also control groundwater contamination from non-incidental, recharging, non-point sources, particularly agricultural sources (fertilizer, pesticides, animal waste application, biosolids application). Sources and contamination from these sources can stretch over several tens, hundreds, or even thousands of square kilometers with no distinct plumes. A key question in implementing monitoring programs at the local, regional, and national level is, whether groundwater monitoring can be effectively used as a landowner compliance tool, as is currently done at point-source sites. We compare the efficiency of such traditional site-specific compliance networks in nonpoint source regulation with various designs of regional nonpoint source monitoring networks that could be used for compliance monitoring. We discuss advantages and disadvantages of the site vs. regional monitoring approaches with respect to effectively protecting groundwater resources impacted by nonpoint sources: Site-networks provide a tool to enforce compliance by an individual landowner. But the nonpoint source character of the contamination

  10. A novel modelling framework to prioritize estimation of non-point source pollution parameters for quantifying pollutant origin and discharge in urban catchments.

    Science.gov (United States)

    Fraga, I; Charters, F J; O'Sullivan, A D; Cochrane, T A

    2016-02-01

    Stormwater runoff in urban catchments contains heavy metals (zinc, copper, lead) and suspended solids (TSS) which can substantially degrade urban waterways. To identify these pollutant sources and quantify their loads the MEDUSA (Modelled Estimates of Discharges for Urban Stormwater Assessments) modelling framework was developed. The model quantifies pollutant build-up and wash-off from individual impervious roof, road and car park surfaces for individual rain events, incorporating differences in pollutant dynamics between surface types and rainfall characteristics. This requires delineating all impervious surfaces and their material types, the drainage network, rainfall characteristics and coefficients for the pollutant dynamics equations. An example application of the model to a small urban catchment demonstrates how the model can be used to identify the magnitude of pollutant loads, their spatial origin and the response of the catchment to changes in specific rainfall characteristics. A sensitivity analysis then identifies the key parameters influencing each pollutant load within the stormwater given the catchment characteristics, which allows development of a targeted calibration process that will enhance the certainty of the model outputs, while minimizing the data collection required for effective calibration. A detailed explanation of the modelling framework and pre-calibration sensitivity analysis is presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Reduction Assessment of Agricultural Non-Point Source Pollutant Loading

    OpenAIRE

    Fu, YiCheng; Zang, Wenbin; Zhang, Jian; Wang, Hongtao; Zhang, Chunling; Shi, Wanli

    2018-01-01

    NPS (Non-point source) pollution has become a key impact element to watershed environment at present. With the development of technology, application of models to control NPS pollution has become a very common practice for resource management and Pollutant reduction control in the watershed scale of China. The SWAT (Soil and Water Assessment Tool) model is a semi-conceptual model, which was put forward to estimate pollutant production & the influences on water quantity-quality under different...

  12. Rainfall Deduction Method for Estimating Non-Point Source Pollution Load for Watershed

    OpenAIRE

    Cai, Ming; Li, Huai-en; KAWAKAMI, Yoji

    2004-01-01

    The water pollution can be divided into point source pollution (PSP) and non-point source pollution (NSP). Since the point source pollution has been controlled, the non-point source pollution is becoming the main pollution source. The prediction of NSP load is being increasingly important in water pollution controlling and planning in watershed. Considering the monitoring data shortage of NPS in China, a practical estimation method of non-point source pollution load --- rainfall deduction met...

  13. Mining-related nonpoint-source pollution

    International Nuclear Information System (INIS)

    Cohen, R.H.; Gorman, J.

    1991-01-01

    This article describes the effects of increased mining activity on surface and groundwater. The topics covered include pollutant sources, contaminant transport and fate, trace element toxicity, pollution control and abatement, treating acid mine drainage, modern constructed wetlands and site reclamation including site stabilization, refuse burial and sludge application

  14. Economics of Water Quality Protection from Nonpoint Sources: Theory and Practice

    OpenAIRE

    Ribaudo, Marc; Horan, Richard D.; Smith, Mark E.

    1999-01-01

    Water quality is a major environmental issue. Pollution from nonpoint sources is the single largest remaining source of water quality impairments in the United States. Agriculture is a major source of several nonpoint-source pollutants, including nutrients, sediment, pesticides, and salts. Agricultural nonpoint pollution reduction policies can be designed to induce producers to change their production practices in ways that improve the environmental and related economic consequences of produc...

  15. Analysis of streamflow distribution of non-point source nitrogen export from long-term urban-rural catchments to guide watershed management in the Chesapeake Bay watershed

    Science.gov (United States)

    Duncan, J. M.; Band, L. E.; Groffman, P.

    2017-12-01

    Discharge, land use, and watershed management practices (stream restoration and stormwater control measures) have been found to be important determinants of nitrogen (N) export to receiving waters. We used long-term water quality stations from the Baltimore Ecosystem Study Long-Term Ecological Research (BES LTER) Site to quantify nitrogen export across streamflow conditions at the small watershed scale. We calculated nitrate and total nitrogen fluxes using methodology that allows for changes over time; weighted regressions on time, discharge, and seasonality. Here we tested the hypotheses that a) while the largest N stream fluxes occur during storm events, there is not a clear relationship between N flux and discharge and b) N export patterns are aseasonal in developed watersheds where sources are larger and retention capacity is lower. The goal is to scale understanding from small watersheds to larger ones. Developing a better understanding of hydrologic controls on nitrogen export is essential for successful adaptive watershed management at societally meaningful spatial scales.

  16. Tackling non-point source water pollution in British Columbia: An action plan

    Energy Technology Data Exchange (ETDEWEB)

    1998-01-01

    Efforts to protect British Columbia water quality by regulating point discharges from municipal and industrial sources have generally been successful, and it is recognized that the major remaining cause of water pollution in the province is from non-point sources. These sources are largely unregulated and associated with urbanization, agriculture, and other forms of land development. The first part of this report reviews the provincial commitment to clean water, the effects of non-point-source (NPS) pollution, and the management of NPS in the province. Part 2 describes the main causes of NPS in British Columbia: Land development, agriculture, stormwater runoff, on-site sewage systems, forestry and range activities, atmospheric deposition, and boating/marine activities. Finally, it presents key components of the province's NPS action plan: Education and training, prevention at site, land use planning and co-ordination, assessment and reporting, economic incentives, legislation and regulation, and implementation.

  17. Loading functions for assessment of water pollution from nonpoint sources. Final report

    International Nuclear Information System (INIS)

    McElroy, A.D.; Chiu, S.Y.; Nebgen, J.W.; Aleti, A.; Bennett, F.W.

    1976-05-01

    Methods for evaluating the quantity of water pollutants generated from nonpoint sources including agriculture, silviculture, construction, mining, runoff from urban areas and rural roads, and terrestrial disposal are developed and compiled for use in water quality planning. The loading functions, plus in some instances emission values, permit calculation of nonpoint source pollutants from available data and information. Natural background was considered to be a source and loading functions were presented to estimate natural or background loads of pollutants. Loading functions/values are presented for average conditions, i.e., annual average loads expressed as metric tons/hectare/year (tons/acre/year). Procedures for estimating seasonal or 30-day maximum and minimum loads are also presented. In addition, a wide variety of required data inputs to loading functions, and delineation of sources of additional information are included in the report. The report also presents an evaluation of limitations and constraints of various methodologies which will enable the user to employ the functions realistically

  18. Tackling non-point source water pollution in British Columbia : an action plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    British Columbia`s approach to water quality management is discussed. The BC efforts include regulating `end of pipe` point discharges from industrial and municipal outfalls. The major remaining cause of water pollution is from non-point sources (NPS). NPS water pollution is caused by the release of pollutants from different and diffuse sources, mostly unregulated and associated with urbanization, agriculture and other forms of land development. The importance of dealing with such problems on an immediate basis to avoid a decline in water quality in the province is emphasized. Major sources of water pollution in British Columbia include: land development, agriculture, storm water runoff, onsite sewage systems, forestry, atmospheric deposition, and marine activities. 3 tabs.

  19. Studies of the contributions of nonpoint terrestrial sources to mineral water quality

    International Nuclear Information System (INIS)

    Huff, D.D.

    1977-05-01

    The contributions of nonpoint sources of water quality constituents represent a background loading rate that will not be reduced easily. Consequently, those contributions may have a dominant effect on aquatic ecosystems once point sources have been controlled. Modeling studies conducted at the Tennessee Valley Authority and Oak Ridge National Laboratory represent contrasting approaches that highlight some of the possibilities for predicting nonpoint source inputs to aquatic systems

  20. EPA Office of Water (OW): Nonpoint Source Projects NHDPlus Indexed Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — GRTS locational data for nonpoint source projects. GRTS locations are coded onto NHDPlus v2.1 flowline features to create point and line events or coded onto NHDPlus...

  1. Evaluation of the Agricultural Non-point Source Pollution in Chongqing Based on PSR Model

    Institute of Scientific and Technical Information of China (English)

    Hanwen; ZHANG; Xinli; MOU; Hui; XIE; Hong; LU; Xingyun; YAN

    2014-01-01

    Through a series of exploration based on PSR framework model,for the purpose of building a suitable Chongqing agricultural nonpoint source pollution evaluation index system model framework,combined with the presence of Chongqing specific agro-environmental issues,we build a agricultural non-point source pollution assessment index system,and then study the agricultural system pressure,agro-environmental status and human response in total 3 major categories,develope an agricultural non-point source pollution evaluation index consisting of 3 criteria indicators and 19 indicators. As can be seen from the analysis,pressures and responses tend to increase and decrease linearly,state and complex have large fluctuations,and their fluctuations are similar mainly due to the elimination of pressures and impact,increasing the impact for agricultural non-point source pollution.

  2. Nonpoint Source Pollution Control Projects Grants (Section 319) - 2008 active projects

    Data.gov (United States)

    U.S. Environmental Protection Agency — The California Nonpoint Source (NPS) Program allocates about $4.5 million of CWA Section 319 funding from the U.S. Environmental Protection Agency annually to...

  3. Evaluation of Nonpoint-Source Contamination, Wisconsin: Selected Topics for Water Year 1995

    Science.gov (United States)

    Owens, D.W.; Corsi, Steven R.; Rappold, K.F.

    1997-01-01

    The objective of the watershed-management evaluation monitoring program in Wisconsin is to evaluate the effectiveness of best-management practices (BMP's) for controlling nonpoint-source contamination in eight rural and four urban watersheds. This report, the fourth in an annual series of reports, presents a summary of the data collected for the program by the U.S. Geological Survey and the results of several detailed analyses of the data. To complement assessments of water quality, a land-use and BMP inventory is ongoing for 12 evaluation monitoring projects to track nonpoint sources of contamination in each watershed and to document implementation of BMP's that were designed to cause changes in the water quality of streams. Each year, updated information is gathered, mapped, and stored in a geographic-information-system data base. Summaries of land-use, BMP implementation, and water-quality data collected during water years 1989-95 are presented. Storm loads, snowmelt-period loads, and annual loads of suspended sediment and total phosphorus are summarized for eight rural sites. Storm-load data for suspended solids, total phosphorus, total recoverable lead, copper, zinc, and cadmium are summarized for four urban sites. Quality-assurance and quality-control (QA/QC) samples were collected at the eight rural sites to evaluate inorganic sample contamination and at one urban site to evaluate sample-collection and filtration techniques for polycyclic aromatic hydrocarbons (PAR's). Some suspended solids and fecal coliform contamination was detected at the rural sites. Corrective actions will be taken to address this contamination. Evaluation of PAR sample-collection techniques did not uncover any deficiencies, but the small amount of data collected was not sufficient to draw any definite conclusions. Evaluation of PAR filtration techniques indicate that water-sample filtration with O.7-um glass-fiber filters in an aluminum filter unit does not result in significant loss

  4. Agroforestry buffers for nonpoint source pollution reductions from agricultural watersheds.

    Science.gov (United States)

    Udawatta, Ranjith P; Garrett, Harold E; Kallenbach, Robert

    2011-01-01

    Despite increased attention and demand for the adoption of agroforestry practices throughout the world, rigorous long-term scientific studies confirming environmental benefits from the use of agroforestry practices are limited. The objective was to examine nonpoint-source pollution (NPSP) reduction as influenced by agroforestry buffers in watersheds under grazing and row crop management. The grazing study consists of six watersheds in the Central Mississippi Valley wooded slopes and the row crop study site consists of three watersheds in a paired watershed design in Central Claypan areas. Runoff water samples were analyzed for sediment, total nitrogen (TN), and total phosphorus (TP) for the 2004 to 2008 period. Results indicate that agroforestry and grass buffers on grazed and row crop management sites significantly reduce runoff, sediment, TN, and TP losses to streams. Buffers in association with grazing and row crop management reduced runoff by 49 and 19%, respectively, during the study period as compared with respective control treatments. Average sediment loss for grazing and row crop management systems was 13.8 and 17.9 kg ha yr, respectively. On average, grass and agroforestry buffers reduced sediment, TN, and TP losses by 32, 42, and 46% compared with the control treatments. Buffers were more effective in the grazing management practice than row crop management practice. These differences could in part be attributed to the differences in soils, management, and landscape features. Results from this study strongly indicate that agroforestry and grass buffers can be designed to improve water quality while minimizing the amount of land taken out of production. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  5. Spatiotemporal patterns of non-point source nitrogen loss in an agricultural catchment

    Directory of Open Access Journals (Sweden)

    Jian-feng Xu

    2016-04-01

    Full Text Available Non-point source nitrogen loss poses a risk to sustainable aquatic ecosystems. However, non-point sources, as well as impaired river segments with high nitrogen concentrations, are difficult to monitor and regulate because of their diffusive nature, budget constraints, and resource deficiencies. For the purpose of catchment management, the Bayesian maximum entropy approach and spatial regression models have been used to explore the spatiotemporal patterns of non-point source nitrogen loss. In this study, a total of 18 sampling sites were selected along the river network in the Hujiashan Catchment. Over the time period of 2008–2012, water samples were collected 116 times at each site and analyzed for non-point source nitrogen loss. The morphometric variables and soil drainage of different land cover types were studied and considered potential factors affecting nitrogen loss. The results revealed that, compared with the approach using the Euclidean distance, the Bayesian maximum entropy approach using the river distance led to an appreciable 10.1% reduction in the estimation error, and more than 53.3% and 44.7% of the river network in the dry and wet seasons, respectively, had a probability of non-point source nitrogen impairment. The proportion of the impaired river segments exhibited an overall decreasing trend in the study catchment from 2008 to 2012, and the reduction in the wet seasons was greater than that in the dry seasons. High nitrogen concentrations were primarily found in the downstream reaches and river segments close to the residential lands. Croplands and residential lands were the dominant factors affecting non-point source nitrogen loss, and explained up to 70.7% of total nitrogen in the dry seasons and 54.7% in the wet seasons. A thorough understanding of the location of impaired river segments and the dominant factors affecting total nitrogen concentration would have considerable importance for catchment management.

  6. Evaluating sources and processing of nonpoint source nitrate in a small suburban watershed in China

    Science.gov (United States)

    Han, Li; Huang, Minsheng; Ma, Minghai; Wei, Jinbao; Hu, Wei; Chouhan, Seema

    2018-04-01

    Identifying nonpoint sources of nitrate has been a long-term challenge in mixed land-use watershed. In the present study, we combine dual nitrate isotope, runoff and stream water monitoring to elucidate the nonpoint nitrate sources across land use, and determine the relative importance of biogeochemical processes for nitrate export in a small suburban watershed, Longhongjian watershed, China. Our study suggested that NH4+ fertilizer, soil NH4+, litter fall and groundwater were the main nitrate sources in Longhongjian Stream. There were large changes in nitrate sources in response to season and land use. Runoff analysis illustrated that the tea plantation and forest areas contributed to a dominated proportion of the TN export. Spatial analysis illustrated that NO3- concentration was high in the tea plantation and forest areas, and δ15N-NO3 and δ18O-NO3 were enriched in the step ponds. Temporal analysis showed high NO3- level in spring, and nitrate isotopes were enriched in summer. Study as well showed that the step ponds played an important role in mitigating nitrate pollution. Nitrification and plant uptake were the significant biogeochemical processes contributing to the nitrogen transformation, and denitrification hardly occurred in the stream.

  7. Introducing nonpoint source transferable quotas in nitrogen trading: The effects of transaction costs and uncertainty.

    Science.gov (United States)

    Zhou, Xiuru; Ye, Weili; Zhang, Bing

    2016-03-01

    Transaction costs and uncertainty are considered to be significant obstacles in the emissions trading market, especially for including nonpoint source in water quality trading. This study develops a nonlinear programming model to simulate how uncertainty and transaction costs affect the performance of point/nonpoint source (PS/NPS) water quality trading in the Lake Tai watershed, China. The results demonstrate that PS/NPS water quality trading is a highly cost-effective instrument for emissions abatement in the Lake Tai watershed, which can save 89.33% on pollution abatement costs compared to trading only between nonpoint sources. However, uncertainty can significantly reduce the cost-effectiveness by reducing trading volume. In addition, transaction costs from bargaining and decision making raise total pollution abatement costs directly and cause the offset system to deviate from the optimal state. While proper investment in monitoring and measuring of nonpoint emissions can decrease uncertainty and save on the total abatement costs. Finally, we show that the dispersed ownership of China's farmland will bring high uncertainty and transaction costs into the PS/NPS offset system, even if the pollution abatement cost is lower than for point sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. HYDROLOGY AND SEDIMENT MODELING USING THE BASINS NON-POINT SOURCE MODEL

    Science.gov (United States)

    The Non-Point Source Model (Hydrologic Simulation Program-Fortran, or HSPF) within the EPA Office of Water's BASINS watershed modeling system was used to simulate streamflow and total suspended solids within Contentnea Creek, North Carolina, which is a tributary of the Neuse Rive...

  9. State survey of silviculture nonpoint source programs: a comparison of the 2000 northeastern and national results

    Science.gov (United States)

    Pamela J. Edwards; Gordon W. Stuart

    2002-01-01

    The National Association of State Foresters conducts surveys of silviculture nonpoint source (NPS) pollution control programs to measure progress and identify needs. The 2000 survey results are summarized here for the nation and for the 20-state northeastern region. Current emphasis of NPS pollution programs is on education, training, and monitoring. Educational...

  10. BOOK REVIEW OF "ASSESSMENT AND CONTROL OF NONPOINT SOURCE POLLUTION OF AQUATIC ECOSYSTEMS: A PRACTICAL APPROACH"

    Science.gov (United States)

    This book is geared to environmental specialists and planners, heavy on the technical side. It goes beyond tranditional nonpoint source (NPS) approaches which typically only look at stormwater as athe sole NPS pollution driver. There is some overreaching material beyond the conte...

  11. Modeling the contribution of point sources and non-point sources to Thachin River water pollution.

    Science.gov (United States)

    Schaffner, Monika; Bader, Hans-Peter; Scheidegger, Ruth

    2009-08-15

    Major rivers in developing and emerging countries suffer increasingly of severe degradation of water quality. The current study uses a mathematical Material Flow Analysis (MMFA) as a complementary approach to address the degradation of river water quality due to nutrient pollution in the Thachin River Basin in Central Thailand. This paper gives an overview of the origins and flow paths of the various point- and non-point pollution sources in the Thachin River Basin (in terms of nitrogen and phosphorus) and quantifies their relative importance within the system. The key parameters influencing the main nutrient flows are determined and possible mitigation measures discussed. The results show that aquaculture (as a point source) and rice farming (as a non-point source) are the key nutrient sources in the Thachin River Basin. Other point sources such as pig farms, households and industries, which were previously cited as the most relevant pollution sources in terms of organic pollution, play less significant roles in comparison. This order of importance shifts when considering the model results for the provincial level. Crosschecks with secondary data and field studies confirm the plausibility of our simulations. Specific nutrient loads for the pollution sources are derived; these can be used for a first broad quantification of nutrient pollution in comparable river basins. Based on an identification of the sensitive model parameters, possible mitigation scenarios are determined and their potential to reduce the nutrient load evaluated. A comparison of simulated nutrient loads with measured nutrient concentrations shows that nutrient retention in the river system may be significant. Sedimentation in the slow flowing surface water network as well as nitrogen emission to the air from the warm oxygen deficient waters are certainly partly responsible, but also wetlands along the river banks could play an important role as nutrient sinks.

  12. Sample intake position and loading rates from nonpoint source pollution

    Science.gov (United States)

    McGuire, P. E.; Daniel, T. C.; Stoffel, D.; Andraski, B.

    1980-01-01

    Paired water samples were simultaneously activated from two different vertical positions within the approach section of a flow-control structure to determine the effect of sample intake position on nonpoint runoff parameter concentrations and subsequent event loads. Suspended solids (SS), total phosphorus (TP) and organic plus exchangeable nitrogen [(Or+Ex)-N] were consistently higher throughout each runoff event when sampled from the floor of the approach section as opposed to those samples taken at midstage. Dissolved molybdate reactive phosphorus (DMRP) and ammonium (NH4-N) concentrations did not appear to be significantly affected by the vertical difference in intake position. However, the nitrate plus nitrite nitrogen [(NO3+NO2)-N] concentrations were much higher when sampled from the midstage position. Although the concentration differences between the two methods were not appreciable, when evaluated in terms of event loads, discrepancies were evident for all parameters. Midstage sampling produced event loads for SS, TP, (Or + Ex)-N, DMRP, NH4-N, and (NO3+NO2)-N that were 44,39,35,80,71, and 181%, respectively, of floor sampling loads. Differences in loads between the two methods are attributed to the midstage position, sampling less of the bed load. The correct position will depend on the objective; however, such differences should be recognized during the design phase of the monitoring program.

  13. Nonpoint and Point Sources of Nitrogen in Major Watersheds of the United States

    Science.gov (United States)

    Puckett, Larry J.

    1994-01-01

    Estimates of nonpoint and point sources of nitrogen were made for 107 watersheds located in the U.S. Geological Survey's National Water-Quality Assessment Program study units throughout the conterminous United States. The proportions of nitrogen originating from fertilizer, manure, atmospheric deposition, sewage, and industrial sources were found to vary with climate, hydrologic conditions, land use, population, and physiography. Fertilizer sources of nitrogen are proportionally greater in agricultural areas of the West and the Midwest than in other parts of the Nation. Animal manure contributes large proportions of nitrogen in the South and parts of the Northeast. Atmospheric deposition of nitrogen is generally greatest in areas of greatest precipitation, such as the Northeast. Point sources (sewage and industrial) generally are predominant in watersheds near cities, where they may account for large proportions of the nitrogen in streams. The transport of nitrogen in streams increases as amounts of precipitation and runoff increase and is greatest in the Northeastern United States. Because no single nonpoint nitrogen source is dominant everywhere, approaches to control nitrogen must vary throughout the Nation. Watershed-based approaches to understanding nonpoint and point sources of contamination, as used by the National Water-Quality Assessment Program, will aid water-quality and environmental managers to devise methods to reduce nitrogen pollution.

  14. Can We Manage Nonpoint-Source Pollution Using Nutrient Concentrations during Seasonal Baseflow?

    Directory of Open Access Journals (Sweden)

    James A. McCarty

    2016-05-01

    Full Text Available Nationwide, a substantial amount of resources has been targeted toward improving water quality, particularly focused on nonpoint-source pollution. This study was conducted to evaluate the relationship between nutrient concentrations observed during baseflow and runoff conditions from 56 sites across five watersheds in Arkansas. Baseflow and stormflow concentrations for each site were summarized using geometric mean and then evaluated for directional association. A significant, positive correlation was found for NO–N, total N, soluble reactive P, and total P, indicating that sites with high baseflow concentrations also had elevated runoff concentrations. Those landscape factors that influence nutrient concentrations in streams also likely result in increased runoff, suggesting that high baseflow concentrations may reflect elevated loads from the watershed. The results highlight that it may be possible to collect water-quality data during baseflow to help define where to target nonpoint-source pollution best management practices within a watershed.

  15. Prevention and Control of Agricultural Non-Point Source Pollutions in UK and Suggestions to China

    OpenAIRE

    Liu, Kun; Ren, Tianzhi; Wu, Wenliang; Meng, Fanquiao; Bellarby, Jessica; Smith, Laurence

    2016-01-01

    Currently, the world is facing challenges of maintaining food production growth while improving agricultural ecological environmental quality. The prevention and control of agricultural non-point source pollution, a key component of these challenges, is a systematic program which integrates many factors such as technology and its extension, relevant regulation and policies. In the project of UK-China Sustainable Agriculture Innovation Network, we undertook a comprehensive analysis of the prev...

  16. Non-point Source Pollutants Loss of Planting Industry in the Yunnan Plateau Lake Basin, China

    Directory of Open Access Journals (Sweden)

    ZHAO Zu-jun

    2017-12-01

    Full Text Available Non-point source pollution of planting has become a major factor affecting the quality and safety of water environment in our country. In recent years, some studies show that the loss of nitrogen and phosphorus in agricultural chemical fertilizers has led to more serious non-point source pollution. By means of the loss coefficient method and spatial overlay analysis, the loss amount, loss of strength and its spatial distribution characteristics of total nitrogen, total phosphorus, ammonium nitrogen and nitrate nitrogen were analyzed in the Fuxian Lake, Xingyun Lake and Qilu Lake Basin in 2015. The results showed that:The loss of total nitrogen was the highest in the three basins, following by ammonium nitrogen, nitrate nitrogen and total phosphorus, which the loss of intensity range were 2.73~22.07, 0.003~3.52, 0.01~2.25 kg·hm-2 and 0.05~1.36 kg·hm-2, respectively. Total nitrogen and total phosphorus loss were mainly concentrated in the southwest of Qilu Lake, west and south of Xingyun Lake. Ammonium nitrogen and nitrate nitrogen loss mainly concentrated in the south of Qilu Lake, south and north of Xingyun Lake. The loss of nitrogen and phosphorus was mainly derived from cash crops and rice. Therefore, zoning, grading and phased prevention and control schemes were proposed, in order to provide scientific basis for controlling non-point source pollution in the study area.

  17. Managing Nonpoint Source Pollution in Western Washington: Landowner Learning Methods and Motivations

    Science.gov (United States)

    Ryan, Clare M.

    2009-06-01

    States, territories, and tribes identify nonpoint source pollution as responsible for more than half of the Nation’s existing and threatened water quality impairments, making it the principal remaining cause of water quality problems across the United States. Combinations of education, technical and financial assistance, and regulatory measures are used to inform landowners about nonpoint source pollution issues, and to stimulate the use of best management practices. A mail survey of non-commercial riparian landowners investigated how they learn about best management practices, the efficacy of different educational techniques, and what motivates them to implement land management activities. Landowners experience a variety of educational techniques, and rank those that include direct personal contact as more effective than brochures, advertisements, radio, internet, or television. The most important motivations for implementing best management practices were linked with elements of a personal stewardship ethic, accountability, personal commitment, and feasibility. Nonpoint source education and social marketing campaigns should include direct interpersonal contacts, and appeal to landowner motivations of caring, responsibility, and personal commitment.

  18. Relationship Between Non-Point Source Pollution and Korean Green Factor

    Directory of Open Access Journals (Sweden)

    Seung Chul Lee

    2015-01-01

    Full Text Available In determining the relationship between the rational event mean concentration (REMC which is a volume-weighted mean of event mean concentrations (EMCs as a non-point source (NPS pollution indicator and the green factor (GF as a low impact development (LID land use planning indicator, we constructed at runoff database containing 1483 rainfall events collected from 107 different experimental catchments from 19 references in Korea. The collected data showed that EMCs were not correlated with storm factors whereas they showed significant differences according to the land use types. The calculated REMCs for BOD, COD, TSS, TN, and TP showed negative correlations with the GFs. However, even though the GFs of the agricultural area were concentrated in values of 80 like the green areas, the REMCs for TSS, TN, and TP were especially high. There were few differences in REMC runoff characteristics according to the GFs such as recreational facilities areas in suburbs and highways and trunk roads that connect to major roads between major cities. Except for those areas, the REMCs for BOD and COD were significantly related to the GFs. The REMCs for BOD and COD decreased when the rate of natural green area increased. On the other hand, some of the REMCs for TSS, TN, and TP were still high where the catchments encountered mixed land use patterns, especially public facility areas with bare ground and artificial grassland areas. The GF could therefore be used as a major planning indicator when establishing land use planning aimed at sustainable development with NPS management in urban areas if the weighted GF values will be improved.

  19. Evaluation of nonpoint-source contamination, Wisconsin: Land-use and Best-Management-Practices inventory, selected streamwater-quality data, urban-watershed quality assurance and quality control, constituent loads in rural streams, and snowmelt-runoff analysis, water year 1994

    Science.gov (United States)

    Walker, J.F.; Graczyk, D.J.; Corsi, S.R.; Owens, D.W.; Wierl, J.A.

    1995-01-01

    The objective of the watershed-management evaluation monitoring program in Wisconsin is to evaluate the effectiveness of best-management practices (BMP) for controlling nonpoint-source contamination in rural and urban watersheds. This report is an annual summary of the data collected for the program by the U.S Geological Survey and a report of the results of several different detailed analyses of the data. A land-use and BMP inventory is ongoing for 12 evaluation monitoring projects to track the sources of nonpoint-source pollution in each watershed and to document implementation of BMP's that may cause changes in the water quality of streams. Updated information is gathered each year, mapped, and stored in a geographic-information-system data base. Summaries of data collected during water years 1989-94 are presented. A water year is the period beginning October 1 and ending September 30; the water year is designated by the calendar year in which it ends. Suspended-sediment and total-phosphorus data (storm loads and annual loads) are summarized for eight rural sites. For all sites, the annual suspended-sediment or suspended-solids load for water year 1993 exceeded the average for the period of data collection; the minimum annual loads were transported in water year 1991 or 1992. Continuous dissolved-oxygen data were collected at seven rural sites during water year 1994. Data for water years 1990-93 are summarized and plotted in terms of percentage of time that a particular concentration is equaled or exceeded. Dissolved-oxygen concentrations in four streams were less than 9 mg/L at least 50 percent of the time, a condition that fails to meet suggested criterion for coldwater streams. The dissolved-oxygen probability curve for one of the coldwater streams is markedly different than the curves for the other streams, perhaps because of differences in aquatic biomass. Blank quality-assurance samples were collected at two of the urban evaluation monitoring sites to

  20. A Summary of Best Management Practices for Nonpoint Source Pollution

    Science.gov (United States)

    1992-08-01

    and concrete block material, and structures and systems for soil stabilization including erosion checks, revetments , retaining structures, and...industrial storage areas, and coal/ slag piles. Rural NPS pollution includes runoff from Some of the above sources plus runoff from agriculture...water quality. The effectiveness of detention ponds is reduced, however, when maintenance is neglected. Common problems include blocked outlets

  1. A method to analyze "source-sink" structure of non-point source pollution based on remote sensing technology.

    Science.gov (United States)

    Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui

    2013-11-01

    With the purpose of providing scientific basis for environmental planning about non-point source pollution prevention and control, and improving the pollution regulating efficiency, this paper established the Grid Landscape Contrast Index based on Location-weighted Landscape Contrast Index according to the "source-sink" theory. The spatial distribution of non-point source pollution caused by Jiulongjiang Estuary could be worked out by utilizing high resolution remote sensing images. The results showed that, the area of "source" of nitrogen and phosphorus in Jiulongjiang Estuary was 534.42 km(2) in 2008, and the "sink" was 172.06 km(2). The "source" of non-point source pollution was distributed mainly over Xiamen island, most of Haicang, east of Jiaomei and river bank of Gangwei and Shima; and the "sink" was distributed over southwest of Xiamen island and west of Shima. Generally speaking, the intensity of "source" gets weaker along with the distance from the seas boundary increase, while "sink" gets stronger. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Assessment of Groundwater Susceptibility to Non-Point Source Contaminants Using Three-Dimensional Transient Indexes.

    Science.gov (United States)

    Zhang, Yong; Weissmann, Gary S; Fogg, Graham E; Lu, Bingqing; Sun, HongGuang; Zheng, Chunmiao

    2018-06-05

    Groundwater susceptibility to non-point source contamination is typically quantified by stable indexes, while groundwater quality evolution (or deterioration globally) can be a long-term process that may last for decades and exhibit strong temporal variations. This study proposes a three-dimensional (3- d ), transient index map built upon physical models to characterize the complete temporal evolution of deep aquifer susceptibility. For illustration purposes, the previous travel time probability density (BTTPD) approach is extended to assess the 3- d deep groundwater susceptibility to non-point source contamination within a sequence stratigraphic framework observed in the Kings River fluvial fan (KRFF) aquifer. The BTTPD, which represents complete age distributions underlying a single groundwater sample in a regional-scale aquifer, is used as a quantitative, transient measure of aquifer susceptibility. The resultant 3- d imaging of susceptibility using the simulated BTTPDs in KRFF reveals the strong influence of regional-scale heterogeneity on susceptibility. The regional-scale incised-valley fill deposits increase the susceptibility of aquifers by enhancing rapid downward solute movement and displaying relatively narrow and young age distributions. In contrast, the regional-scale sequence-boundary paleosols within the open-fan deposits "protect" deep aquifers by slowing downward solute movement and displaying a relatively broad and old age distribution. Further comparison of the simulated susceptibility index maps to known contaminant distributions shows that these maps are generally consistent with the high concentration and quick evolution of 1,2-dibromo-3-chloropropane (DBCP) in groundwater around the incised-valley fill since the 1970s'. This application demonstrates that the BTTPDs can be used as quantitative and transient measures of deep aquifer susceptibility to non-point source contamination.

  3. Valuing the Potential Benefits of Water Quality Improvements in Watersheds Affected by Non-Point Source Pollution

    Directory of Open Access Journals (Sweden)

    Sergio Alvarez

    2016-03-01

    Full Text Available Nonpoint source (NPS pollution has been identified by the US Environmental Protection Agency (EPA as “the nation’s largest water quality problem”. Urban development, septic systems, and agricultural operations have been identified as the major sources of diffuse pollution in surface and ground water bodies. In recent decades, urban and agricultural Best Management Practices (BMP have been developed in several states to address agricultural water quality and water use impacts, including the reduction of nutrient loads to help meet water quality standards. Compliance with BMPs is associated with some costs to local governments, homeowners, and agricultural operations, but the improvements in water quality associated with BMP adoption are expected to yield significant benefits to society in the form of improved recreational opportunities, navigation, flood control, and ecosystem health. The development of sound policies and decision making processes require balancing the costs of BMP adoption to the agricultural operations with the social benefits to be derived from the improved water quality. In this paper we develop a benefits transfer model to provide estimates of the economic benefits of properly implemented and effective Best Management Practices (BMP throughout the state of Florida. These benefit estimates can be used in a cost-benefit framework to determine the optimal level of BMP adoption throughout the state of Florida and provide a framework for other regions to estimate the potential benefits of BMP-mediated water quality improvements.

  4. Current status of agricultural and rural non-point source Pollution assessment in China

    International Nuclear Information System (INIS)

    Ongley, Edwin D.; Zhang Xiaolan; Yu Tao

    2010-01-01

    Estimates of non-point source (NPS) contribution to total water pollution in China range up to 81% for nitrogen and to 93% for phosphorus. We believe these values are too high, reflecting (a) misuse of estimation techniques that were developed in America under very different conditions and (b) lack of specificity on what is included as NPS. We compare primary methods used for NPS estimation in China with their use in America. Two observations are especially notable: empirical research is limited and does not provide an adequate basis for calibrating models nor for deriving export coefficients; the Chinese agricultural situation is so different than that of the United States that empirical data produced in America, as a basis for applying estimation techniques to rural NPS in China, often do not apply. We propose a set of national research and policy initiatives for future NPS research in China. - Estimation techniques used in China for non-point source pollution are evaluated as a basis for recommending future policies and research in NPS studies in China.

  5. The simulation research of dissolved nitrogen and phosphorus non-point source pollution in Xiao-Jiang watershed of Three Gorges Reservoir area.

    Science.gov (United States)

    Wu, Lei; Long, Tian-Yu; Li, Chong-Ming

    2010-01-01

    Xiao-jiang, with a basin area of almost 5,276 km(2) and a length of 182.4 km, is located in the center of the Three Gorges Reservoir Area, and is the largest tributary of the central section in Three Gorges Reservoir Area, farmland accounts for a large proportion of Xiao-jiang watershed, and the hilly cropland of purple soil is much of the farmland of the watershed. After the second phase of water storage in the Three Gorges Reservoir, the majority of sub-rivers in the reservoir area experienced eutrophication phenomenon frequently, and non-point source (NPS) pollution has become an important source of pollution in Xiao-jiang Watershed. Because dissolved nitrogen and phosphorus non-point source pollution are related to surface runoff and interflow, using climatic, topographic and land cover data from the internet and research institutes, the Semi-Distributed Land-use Runoff Process (SLURP) hydrological model was introduced to simulate the complete hydrological cycle of the Xiao-jiang Watershed. Based on the SLURP distributed hydrological model, non-point source pollution annual output load models of land use and rural residents were respectively established. Therefore, using GIS technology, considering the losses of dissolved nitrogen and phosphorus in the course of transport, a dissolved non-point source pollution load dynamic model was established by the organic coupling of the SLURP hydrological model and land-use output model. Through the above dynamic model, the annual dissolved non-point source nitrogen and phosphorus pollution output as well as the load in different types were simulated and quantitatively estimated from 2001 to 2008, furthermore, the loads of Xiao-jiang Watershed were calculated and expressed by temporal and spatial distribution in the Three Gorges Reservoir Area. The simulation results show that: the temporal changes of dissolved nitrogen and phosphorus load in the watershed are close to the inter-annual changes of rainfall runoff, and the

  6. Simulation of agricultural non-point source pollution in Xichuan by using SWAT model

    Science.gov (United States)

    Xing, Linan; Zuo, Jiane; Liu, Fenglin; Zhang, Xiaohui; Cao, Qiguang

    2018-02-01

    This paper evaluated the applicability of using SWAT to access agricultural non-point source pollution in Xichuan area. In order to build the model, DEM, soil sort and land use map, climate monitoring data were collected as basic database. The SWAT model was calibrated and validated for the SWAT was carried out using streamflow, suspended solids, total phosphorus and total nitrogen records from 2009 to 2011. Errors, coefficient of determination and Nash-Sutcliffe coefficient were considered to evaluate the applicability. The coefficient of determination were 0.96, 0.66, 0.55 and 0.66 for streamflow, SS, TN, and TP, respectively. Nash-Sutcliffe coefficient were 0.93, 0.5, 0.52 and 0.63, respectively. The results all meet the requirements. It suggested that the SWAT model can simulate the study area.

  7. Use of multiple water surface flow constructed wetlands for non-point source water pollution control.

    Science.gov (United States)

    Li, Dan; Zheng, Binghui; Liu, Yan; Chu, Zhaosheng; He, Yan; Huang, Minsheng

    2018-05-02

    Multiple free water surface flow constructed wetlands (multi-FWS CWs) are a variety of conventional water treatment plants for the interception of pollutants. This review encapsulated the characteristics and applications in the field of ecological non-point source water pollution control technology. The roles of in-series design and operation parameters (hydraulic residence time, hydraulic load rate, water depth and aspect ratio, composition of influent, and plant species) for performance intensification were also analyzed, which were crucial to achieve sustainable and effective contaminants removal, especially the retention of nutrient. The mechanism study of design and operation parameters for the removal of nitrogen and phosphorus was also highlighted. Conducive perspectives for further research on optimizing its design/operation parameters and advanced technologies of ecological restoration were illustrated to possibly interpret the functions of multi-FWS CWs.

  8. A method to analyze “source–sink” structure of non-point source pollution based on remote sensing technology

    International Nuclear Information System (INIS)

    Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui

    2013-01-01

    With the purpose of providing scientific basis for environmental planning about non-point source pollution prevention and control, and improving the pollution regulating efficiency, this paper established the Grid Landscape Contrast Index based on Location-weighted Landscape Contrast Index according to the “source–sink” theory. The spatial distribution of non-point source pollution caused by Jiulongjiang Estuary could be worked out by utilizing high resolution remote sensing images. The results showed that, the area of “source” of nitrogen and phosphorus in Jiulongjiang Estuary was 534.42 km 2 in 2008, and the “sink” was 172.06 km 2 . The “source” of non-point source pollution was distributed mainly over Xiamen island, most of Haicang, east of Jiaomei and river bank of Gangwei and Shima; and the “sink” was distributed over southwest of Xiamen island and west of Shima. Generally speaking, the intensity of “source” gets weaker along with the distance from the seas boundary increase, while “sink” gets stronger. -- Highlights: •We built an index to study the “source–sink” structure of NSP in a space scale. •The Index was applied in Jiulongjiang estuary and got a well result. •The study is beneficial to discern the high load area of non-point source pollution. -- “Source–Sink” Structure of non-point source nitrogen and phosphorus pollution in Jiulongjiang estuary in China was worked out by the Grid Landscape Contrast Index

  9. [Nitrogen non-point source pollution identification based on ArcSWAT in Changle River].

    Science.gov (United States)

    Deng, Ou-Ping; Sun, Si-Yang; Lü, Jun

    2013-04-01

    The ArcSWAT (Soil and Water Assessment Tool) model was adopted for Non-point source (NPS) nitrogen pollution modeling and nitrogen source apportionment for the Changle River watershed, a typical agricultural watershed in Southeast China. Water quality and hydrological parameters were monitored, and the watershed natural conditions (including soil, climate, land use, etc) and pollution sources information were also investigated and collected for SWAT database. The ArcSWAT model was established in the Changle River after the calibrating and validating procedures of the model parameters. Based on the validated SWAT model, the contributions of different nitrogen sources to river TN loading were quantified, and spatial-temporal distributions of NPS nitrogen export to rivers were addressed. The results showed that in the Changle River watershed, Nitrogen fertilizer, nitrogen air deposition and nitrogen soil pool were the prominent pollution sources, which contributed 35%, 32% and 25% to the river TN loading, respectively. There were spatial-temporal variations in the critical sources for NPS TN export to the river. Natural sources, such as soil nitrogen pool and atmospheric nitrogen deposition, should be targeted as the critical sources for river TN pollution during the rainy seasons. Chemical nitrogen fertilizer application should be targeted as the critical sources for river TN pollution during the crop growing season. Chemical nitrogen fertilizer application, soil nitrogen pool and atmospheric nitrogen deposition were the main sources for TN exported from the garden plot, forest and residential land, respectively. However, they were the main sources for TN exported both from the upland and paddy field. These results revealed that NPS pollution controlling rules should focus on the spatio-temporal distribution of NPS pollution sources.

  10. Governing change: land-use change and the prevention of nonpoint source pollution in the north coastal basin of California.

    Science.gov (United States)

    Short, Anne G

    2013-01-01

    Many rural areas in the United States and throughout much of the postindustrial world are undergoing significant ecological, socioeconomic, and political transformations. The migration of urban and suburban dwellers into rural areas has led to the subdivision of large tracts of land into smaller parcels, which can complicate efforts to govern human-environmental problems. Non-point source (NPS) pollution from private rural lands is a particularly pressing human-environmental challenge that may be aggravated by changing land tenure. In this article, I report on a study of the governance and management of sediment (a common NPS pollutant) in the North Coastal basin of California, a region undergoing a transition from traditional extractive and agricultural land uses to rural residential and other alternative land uses. I focus on the differences in the governance and management across private timber, ranch, residential, vacation, and other lands in the region. I find that (1) the stringency and strength of sediment regulations differ by land use, (2) nonregulatory programs tend to target working landscapes, and (3) rural residential landowners have less knowledge of sediment control and report using fewer sediment-control techniques than landowners using their land for timber production or ranching. I conclude with an exploration of the consequences of these differences on an evolving rural landscape.

  11. Temporal-spatial distribution of non-point source pollution in a drinking water source reservoir watershed based on SWAT

    Directory of Open Access Journals (Sweden)

    M. Wang

    2015-05-01

    Full Text Available The conservation of drinking water source reservoirs has a close relationship between regional economic development and people’s livelihood. Research on the non-point pollution characteristics in its watershed is crucial for reservoir security. Tang Pu Reservoir watershed was selected as the study area. The non-point pollution model of Tang Pu Reservoir was established based on the SWAT (Soil and Water Assessment Tool model. The model was adjusted to analyse the temporal-spatial distribution patterns of total nitrogen (TN and total phosphorus (TP. The results showed that the loss of TN and TP in the reservoir watershed were related to precipitation in flood season. And the annual changes showed an "M" shape. It was found that the contribution of loss of TN and TP accounted for 84.5% and 85.3% in high flow years, and for 70.3% and 69.7% in low flow years, respectively. The contributions in normal flow years were 62.9% and 63.3%, respectively. The TN and TP mainly arise from Wangtan town, Gulai town, and Wangyuan town, etc. In addition, it was found that the source of TN and TP showed consistency in space.

  12. [Analysis on nitrogen and phosphorus loading of non-point sources in Shiqiao river watershed based on L-THIA model].

    Science.gov (United States)

    Li, Kai; Zeng, Fan-Tang; Fang, Huai-Yang; Lin, Shu

    2013-11-01

    Based on the Long-term Hydrological Impact Assessment (L-THIA) model, the effect of land use and rainfall change on nitrogen and phosphorus loading of non-point sources in Shiqiao river watershed was analyzed. The parameters in L-THIA model were revised according to the data recorded in the scene of runoff plots, which were set up in the watershed. The results showed that the distribution of areas with high pollution load was mainly concentrated in agricultural land and urban land. Agricultural land was the biggest contributor to nitrogen and phosphorus load. From 1995 to 2010, the load of major pollutants, namely TN and TP, showed an obviously increasing trend with increase rates of 17.91% and 25.30%, respectively. With the urbanization in the watershed, urban land increased rapidly and its area proportion reached 43.94%. The contribution of urban land to nitrogen and phosphorus load was over 40% in 2010. This was the main reason why pollution load still increased obviously while the agricultural land decreased greatly in the past 15 years. The rainfall occurred in the watershed was mainly concentrated in the flood season, so the nitrogen and phosphorus load of the flood season was far higher than that of the non-flood season and the proportion accounting for the whole year was over 85%. Pearson regression analysis between pollution load and the frequency of different patterns of rainfall demonstrated that rainfall exceeding 20 mm in a day was the main rainfall type causing non-point source pollution.

  13. [Multiple time scales analysis of spatial differentiation characteristics of non-point source nitrogen loss within watershed].

    Science.gov (United States)

    Liu, Mei-bing; Chen, Xing-wei; Chen, Ying

    2015-07-01

    Identification of the critical source areas of non-point source pollution is an important means to control the non-point source pollution within the watershed. In order to further reveal the impact of multiple time scales on the spatial differentiation characteristics of non-point source nitrogen loss, a SWAT model of Shanmei Reservoir watershed was developed. Based on the simulation of total nitrogen (TN) loss intensity of all 38 subbasins, spatial distribution characteristics of nitrogen loss and critical source areas were analyzed at three time scales of yearly average, monthly average and rainstorms flood process, respectively. Furthermore, multiple linear correlation analysis was conducted to analyze the contribution of natural environment and anthropogenic disturbance on nitrogen loss. The results showed that there were significant spatial differences of TN loss in Shanmei Reservoir watershed at different time scales, and the spatial differentiation degree of nitrogen loss was in the order of monthly average > yearly average > rainstorms flood process. TN loss load mainly came from upland Taoxi subbasin, which was identified as the critical source area. At different time scales, land use types (such as farmland and forest) were always the dominant factor affecting the spatial distribution of nitrogen loss, while the effect of precipitation and runoff on the nitrogen loss was only taken in no fertilization month and several processes of storm flood at no fertilization date. This was mainly due to the significant spatial variation of land use and fertilization, as well as the low spatial variability of precipitation and runoff.

  14. NATIONAL CONFERENCE ON RETROFIT OPPORTUNITIES FOR WATER RESOURCE PROTECTION IN URBAN ENVIRONMENTS: PROCEEDINGS, CHICAGO, IL, FEBRUARY 9-12, 1998

    Science.gov (United States)

    Water resource managers have been successful in developing approaches for reducing nonpoint source pollution in newly developing urban areas. Issues become increasingly complex, however, when managers are faced with the challenge of reducing nonpoint source impacts within previo...

  15. Nonpoint source solute transport normal to aquifer bedding in heterogeneous, Markov chain random fields

    Science.gov (United States)

    Zhang, Hua; Harter, Thomas; Sivakumar, Bellie

    2006-06-01

    Facies-based geostatistical models have become important tools for analyzing flow and mass transport processes in heterogeneous aquifers. Yet little is known about the relationship between these latter processes and the parameters of facies-based geostatistical models. In this study, we examine the transport of a nonpoint source solute normal (perpendicular) to the major bedding plane of an alluvial aquifer medium that contains multiple geologic facies, including interconnected, high-conductivity (coarse textured) facies. We also evaluate the dependence of the transport behavior on the parameters of the constitutive facies model. A facies-based Markov chain geostatistical model is used to quantify the spatial variability of the aquifer system's hydrostratigraphy. It is integrated with a groundwater flow model and a random walk particle transport model to estimate the solute traveltime probability density function (pdf) for solute flux from the water table to the bottom boundary (the production horizon) of the aquifer. The cases examined include two-, three-, and four-facies models, with mean length anisotropy ratios for horizontal to vertical facies, ek, from 25:1 to 300:1 and with a wide range of facies volume proportions (e.g., from 5 to 95% coarse-textured facies). Predictions of traveltime pdfs are found to be significantly affected by the number of hydrostratigraphic facies identified in the aquifer. Those predictions of traveltime pdfs also are affected by the proportions of coarse-textured sediments, the mean length of the facies (particularly the ratio of length to thickness of coarse materials), and, to a lesser degree, the juxtapositional preference among the hydrostratigraphic facies. In transport normal to the sedimentary bedding plane, traveltime is not lognormally distributed as is often assumed. Also, macrodispersive behavior (variance of the traveltime) is found not to be a unique function of the conductivity variance. For the parameter range

  16. Landscape planning for agricultural nonpoint source pollution reduction III: Assessing phosphorus and sediment reduction potential

    Science.gov (United States)

    Diebel, M.W.; Maxted, J.T.; Robertson, Dale M.; Han, S.; Vander Zanden, M. J.

    2009-01-01

    Riparian buffers have the potential to improve stream water quality in agricultural landscapes. This potential may vary in response to landscape characteristics such as soils, topography, land use, and human activities, including legacies of historical land management. We built a predictive model to estimate the sediment and phosphorus load reduction that should be achievable following the implementation of riparian buffers; then we estimated load reduction potential for a set of 1598 watersheds (average 54 km2) in Wisconsin. Our results indicate that land cover is generally the most important driver of constituent loads in Wisconsin streams, but its influence varies among pollutants and according to the scale at which it is measured. Physiographic (drainage density) variation also influenced sediment and phosphorus loads. The effect of historical land use on present-day channel erosion and variation in soil texture are the most important sources of phosphorus and sediment that riparian buffers cannot attenuate. However, in most watersheds, a large proportion (approximately 70%) of these pollutants can be eliminated from streams with buffers. Cumulative frequency distributions of load reduction potential indicate that targeting pollution reduction in the highest 10% of Wisconsin watersheds would reduce total phosphorus and sediment loads in the entire state by approximately 20%. These results support our approach of geographically targeting nonpoint source pollution reduction at multiple scales, including the watershed scale. ?? 2008 Springer Science+Business Media, LLC.

  17. United States‐Mexican border watershed assessment: Modeling nonpoint source pollution in Ambos Nogales

    Science.gov (United States)

    Norman, Laura M.

    2007-01-01

    Ecological considerations need to be interwoven with economic policy and planning along the United States‐Mexican border. Non‐point source pollution can have significant implications for the availability of potable water and the continued health of borderland ecosystems in arid lands. However, environmental assessments in this region present a host of unique issues and problems. A common obstacle to the solution of these problems is the integration of data with different resolutions, naming conventions, and quality to create a consistent database across the binational study area. This report presents a simple modeling approach to predict nonpoint source pollution that can be used for border watersheds. The modeling approach links a hillslopescale erosion‐prediction model and a spatially derived sediment‐delivery model within a geographic information system to estimate erosion, sediment yield, and sediment deposition across the Ambos Nogales watershed in Sonora, Mexico, and Arizona. This paper discusses the procedures used for creating a watershed database to apply the models and presents an example of the modeling approach applied to a conservation‐planning problem.

  18. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin

    Science.gov (United States)

    Wu, Yiping; Liu, Shu-Guang

    2012-01-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (~78%) and nutrients (~30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  19. Study of nonpoint source nutrient loading in the Patuxent River basin, Maryland

    Science.gov (United States)

    Preston, S.D.

    1997-01-01

    Study of nonpoint-source (NPS) nutrient loading in Maryland has focused on the Patuxent watershed because of its importance and representativeness of conditions in the State. Evaluation of NPS nutrient loading has been comprehensive and has included long-term monitoring, detailed watershed modeling, and synoptic sampling studies. A large amount of information has been compiled for the watershed and that information is being used to identify primary controls and efficient management strategies for NPS nutrient loading. Results of the Patuxent NPS study have identified spatial trends in water quality that appear to be related to basin charcteristics such as land use, physiography, andgeology. Evaluation of the data compiled by the study components is continuing and is expected to provide more detailed assessments of the reasons for spatial trends. In particular, ongoing evaluation of the watershed model output is expected to provide detailed information on the relative importance of nutrient sources and transport pathways across the entire watershed. Planned future directions of NPS evaluation in the State of Maryland include continued study of water quality in the Patuxent watershed and a shift in emphasis to a statewide approach. Eventually, the statewide approach will become the primary approach usedby the State to evaluate NPS loading. The information gained in the Patuxent study and the tools developed will represent valuable assets indeveloping the statewide NPS assessment program.

  20. Modelling nonpoint source pollution of MUDA river basin using GIS (Geographic Information System)

    International Nuclear Information System (INIS)

    Nyon Yong Chik; Taher Buyong

    2000-01-01

    The management of our rivers is under increasing pressure to conserve and sustain as it remains the focus of human civilization and subjected to increasing demand from man and its activities. Integrated river basin management represents comprehensive form of terrestrial water resources management while GIS is a promising tool to be used in the management strategy. In efforts to display the true capabilities of GIS in analysing nonpoint source pollution (NPS), an assessment of NPS was carried out at MUDA river basin using Arc View 3.0 Spatial Analyst. Expected Mean Concentration (EMC) which is associated with land use was used to predict the amount of pollutants constituents. A runoff grid was then processed to model the flow domain. Finally, the modelling of the pollutant loads downstreams towards the basin outlet is achieved by flow direction and accumulation analysis of the product of EMC and runoff grid. A user interface was programmed to display each application data theme via a pop-up window. In addition, users will be able to enter EMG values for the corresponding land use through an application dialog developed in Visual Basic. (Author)

  1. Event-based nonpoint source pollution prediction in a scarce data catchment

    Science.gov (United States)

    Chen, Lei; Sun, Cheng; Wang, Guobo; Xie, Hui; Shen, Zhenyao

    2017-09-01

    Quantifying the rainfall-runoff-pollutant (R-R-P) process is key to regulating non-point source (NPS) pollution; however, the impacts of scarce measured data on R-R-P simulations have not yet been reported. In this study, we conducted a comprehensive study of scarce data that addressed both rainfall-runoff and runoff-pollutant processes, whereby the impacts of data scarcity on two commonly used methods, including Unit Hydrograph (UH) and Loads Estimator (LOADEST), were quantified. A case study was performed in a typical small catchment of the Three Gorges Reservoir Region (TGRR) of China. Based on our results, the classification of rainfall patterns should be carried out first when analyzing modeling results. Compared to data based on a missing rate and a missing location, key information generates more impacts on the simulated flow and NPS loads. When the scarcity rate exceeds a certain threshold (20% in this study), measured data scarcity level has clear impacts on the model's accuracy. As the model of total nitrogen (TN) always performs better under different data scarcity conditions, researchers are encouraged to pay more attention to continuous the monitoring of total phosphorus (TP) for better NPS-TP predictions. The results of this study serve as baseline information for hydrologic forecasting and for the further control of NPS pollutants.

  2. Science, information, technology, and the changing character of public policy in non-point source pollution

    Science.gov (United States)

    King, John L.; Corwin, Dennis L.

    Information technologies are already delivering important new capabilities for scientists working on non-point source (NPS) pollution in the vadose zone, and more are expected. This paper focuses on the special contributions of modeling and network communications for enhancing the effectiveness of scientists in the realm of policy debates regarding NPS pollution mitigation and abatement. The discussion examines a fundamental shift from a strict regulatory strategy of pollution control characterized by a bureaucratic/technical alliance during the period through the 1970's and early 1980's, to a more recently evolving paradigm of pluralistic environmental management. The role of science and scientists in this shift is explored, with special attention to the challenges facing scientists working in NPS pollution in the vadose zone. These scientists labor under a special handicap in the evolving model because their scientific tools are often times incapable of linking NPS pollution with individuals responsible for causing it. Information can facilitate the effectiveness of these scientists in policy debates, but not under the usual assumptions in which scientific truth prevails. Instead, information technology's key role is in helping scientists shape the evolving discussion of trade-offs and in bringing citizens and policymakers closer to the routine work of scientists.

  3. Reducing nonpoint source pollution through collaboration: policies and programs across the U.S. States.

    Science.gov (United States)

    Hardy, Scott D; Koontz, Tomas M

    2008-03-01

    Nonpoint source (NPS) pollution has emerged as the largest threat to water quality in the United States, influencing policy makers and resource managers to direct more attention toward NPS prevention and remediation. In response, the United States Environmental Protection Agency (USEPA) spent more than $204 million in fiscal year (FY) 2006 on the Clean Water Act's Section 319 program to combat NPS pollution, much of it on the development and implementation of watershed-based plans. State governments have also increasingly allocated financial and technical resources to collaborative watershed efforts within their own borders to fight NPS pollution. With increased collaboration among the federal government, states, and citizens to combat NPS pollution, more information is needed to understand how public resources are being used, by whom, and for what, and what policy changes might improve effectiveness. Analysis from a 50-state study suggests that, in addition to the average 35% of all Section 319 funds per state that are passed on to collaborative watershed groups, 35 states have provided financial assistance beyond Section 319 funding to support collaborative watershed initiatives. State programs frequently provide technical assistance and training, in addition to financial resources, to encourage collaborative partnerships. Such assistance is typically granted in exchange for requirements to generate a watershed action plan and/or follow a mutually agreed upon work plan to address NPS pollution. Program managers indicated a need for greater fiscal resources and flexibility to achieve water quality goals.

  4. The Non-point Source Pollution Effects of Pesticides Based on the Survey of 340 Farmers in Chongqing City

    OpenAIRE

    YU, Lianchao; GU, Limeng; BI, Qian

    2015-01-01

    Using the survey data on 340 farmers in Chongqing City, this paper performs an empirical analysis of the factors influencing the non-point source pollution of pesticides. The results show that the older householders will apply more pesticides, which may be due to the weak physical strength and weak ability to accept the concept of advanced cultivation; the householders with high level of education will choose to use less pesticides; the pesticide application rate is negatively correlated with...

  5. Source water assessment and nonpoint sources of acutely toxic contaminants: A review of research related to survival and transport of Cryptosporidium parvum

    Science.gov (United States)

    Walker, Mark J.; Montemagno, Carlo D.; Jenkins, Michael B.

    1998-12-01

    Amendments to the Safe Drinking Water Act (PL-930123) in 1996 required that public water supply managers identify potential sources of contamination within contributing areas. Nonpoint sources of acutely toxic microbial contaminants, such as Cryptosporidium parvum, challenge current approaches to source identification and management as a first step toward developing management plans for public water supply protection. Little may be known about survival and transport in the field environment, prescribed practices may not be designed to manage such substances, and infective stages may be present in vast numbers and may resist water treatment and disinfection processes. This review summarizes research related to survival and transport of C. parvum oocysts, as an example of an acutely toxic contaminant with nonpoint sources in animal agriculture. It discusses ∥1) significance of infected domesticated animals as potential sources of C. parvum, (2) laboratory and field studies of survival and transport, and (3) approaches to source control in the context of public health protection.

  6. Reduction of non-point source contaminants associated with road-deposited sediments by sweeping.

    Science.gov (United States)

    Kim, Do-Gun; Kang, Hee-Man; Ko, Seok-Oh

    2017-09-19

    Road-deposited sediments (RDS) on an expressway, residual RDS collected after sweeping, and RDS removed by means of sweeping were analyzed to evaluate the degree to which sweeping removed various non-point source contaminants. The total RDS load was 393.1 ± 80.3 kg/km and the RDS, residual RDS, and swept RDS were all highly polluted with organics, nutrients, and metals. Among the metals studied, Cu, Zn, Pb, Ni, Ca, and Fe were significantly enriched, and most of the contaminants were associated with particles within the size range from 63 μm to 2 mm. Sweeping reduced RDS and its associated contaminants by 33.3-49.1% on average. We also measured the biological oxygen demand (BOD) of RDS in the present work, representing to our knowledge the first time that this has been done; we found that RDS contains a significant amount of biodegradable organics and that the reduction of BOD by sweeping was higher than that of other contaminants. Significant correlations were found between the contaminants measured, indicating that the organics and the metals originated from both exhaust and non-exhaust particles. Meanwhile, the concentrations of Cu and Ni were higher in 63 μm-2 mm particles than in smaller particles, suggesting that some metals in RDS likely exist intrinsically in particles, rather than only as adsorbates on particle surfaces. Overall, the results in this study showed that sweeping to collect RDS can be a good alternative for reduction of contaminants in runoff.

  7. Interpolating precipitation and its relation to runoff and non-point source pollution.

    Science.gov (United States)

    Chang, Chia-Ling; Lo, Shang-Lien; Yu, Shaw-L

    2005-01-01

    When rainfall spatially varies, complete rainfall data for each region with different rainfall characteristics are very important. Numerous interpolation methods have been developed for estimating unknown spatial characteristics. However, no interpolation method is suitable for all circumstances. In this study, several methods, including the arithmetic average method, the Thiessen Polygons method, the traditional inverse distance method, and the modified inverse distance method, were used to interpolate precipitation. The modified inverse distance method considers not only horizontal distances but also differences between the elevations of the region with no rainfall records and of its surrounding rainfall stations. The results show that when the spatial variation of rainfall is strong, choosing a suitable interpolation method is very important. If the rainfall is uniform, the precipitation estimated using any interpolation method would be quite close to the actual precipitation. When rainfall is heavy in locations with high elevation, the rainfall changes with the elevation. In this situation, the modified inverse distance method is much more effective than any other method discussed herein for estimating the rainfall input for WinVAST to estimate runoff and non-point source pollution (NPSP). When the spatial variation of rainfall is random, regardless of the interpolation method used to yield rainfall input, the estimation errors of runoff and NPSP are large. Moreover, the relationship between the relative error of the predicted runoff and predicted pollutant loading of SS is high. However, the pollutant concentration is affected by both runoff and pollutant export, so the relationship between the relative error of the predicted runoff and the predicted pollutant concentration of SS may be unstable.

  8. Stochastic Management of Non-Point Source Contamination: Joint Impact of Aquifer Heterogeneity and Well Characteristics

    Science.gov (United States)

    Henri, C. V.; Harter, T.

    2017-12-01

    Agricultural activities are recognized as the preeminent origin of non-point source (NPS) contamination of water bodies through the leakage of nitrate, salt and agrochemicals. A large fraction of world agricultural activities and therefore NPS contamination occurs over unconsolidated alluvial deposit basins offering soil composition and topography favorable to productive farming. These basins represent also important groundwater reservoirs. The over-exploitation of aquifers coupled with groundwater pollution by agriculture-related NPS contaminant has led to a rapid deterioration of the quality of these groundwater basins. The management of groundwater contamination from NPS is challenged by the inherent complexity of aquifers systems. Contaminant transport dynamics are highly uncertain due to the heterogeneity of hydraulic parameters controlling groundwater flow. Well characteristics are also key uncertain elements affecting pollutant transport and NPS management but quantifying uncertainty in NPS management under these conditions is not well documented. Our work focuses on better understanding the joint impact of aquifer heterogeneity and pumping well characteristics (extraction rate and depth) on (1) the transport of contaminants from NPS and (2) the spatio-temporal extension of the capture zone. To do so, we generate a series of geostatistically equivalent 3D heterogeneous aquifers and simulate the flow and non-reactive solute transport from NPS to extraction wells within a stochastic framework. The propagation of the uncertainty on the hydraulic conductivity field is systematically analyzed. A sensitivity analysis of the impact of extraction well characteristics (pumping rate and screen depth) is also conducted. Results highlight the significant role that heterogeneity and well characteristics plays on management metrics. We finally show that, in case of NPS contamination, the joint impact of regional longitudinal and transverse vertical hydraulic gradients and

  9. Emerging technologies to remove nonpoint phosphorus sources from surface water and groundwater

    NARCIS (Netherlands)

    Buda, A.R.; Koopmans, G.F.; Bryant, R.B.; Chardon, W.J.

    2012-01-01

    Coastal and freshwater eutrophication continues to accelerate at sites around the world despite intense efforts to control agricultural P loss using traditional conservation and nutrient management strategies. To achieve required reductions in nonpoint P over the next decade, new tools will be

  10. The Treatment Train approach to reducing non-point source pollution from agriculture

    Science.gov (United States)

    Barber, N.; Reaney, S. M.; Barker, P. A.; Benskin, C.; Burke, S.; Cleasby, W.; Haygarth, P.; Jonczyk, J. C.; Owen, G. J.; Snell, M. A.; Surridge, B.; Quinn, P. F.

    2016-12-01

    An experimental approach has been applied to an agricultural catchment in NW England, where non-point pollution adversely affects freshwater ecology. The aim of the work (as part of the River Eden Demonstration Test Catchment project) is to develop techniques to manage agricultural runoff whilst maintaining food production. The approach used is the Treatment Train (TT), which applies multiple connected mitigation options that control nutrient and fine sediment pollution at source, and address polluted runoff pathways at increasing spatial scale. The principal agricultural practices in the study sub-catchment (1.5 km2) are dairy and stock production. Farm yards can act as significant pollution sources by housing large numbers of animals; these areas are addressed initially with infrastructure improvements e.g. clean/dirty water separation and upgraded waste storage. In-stream high resolution monitoring of hydrology and water quality parameters showed high-discharge events to account for the majority of pollutant exports ( 80% total phosphorus; 95% fine sediment), and primary transfer routes to be surface and shallow sub-surface flow pathways, including drains. To manage these pathways and reduce hydrological connectivity, a series of mitigation features were constructed to intercept and temporarily store runoff. Farm tracks, field drains, first order ditches and overland flow pathways were all targeted. The efficacy of the mitigation features has been monitored at event and annual scale, using inflow-outflow sampling and sediment/nutrient accumulation measurements, respectively. Data presented here show varied but positive results in terms of reducing acute and chronic sediment and nutrient losses. An aerial fly-through of the catchment is used to demonstrate how the TT has been applied to a fully-functioning agricultural landscape. The elevated perspective provides a better understanding of the spatial arrangement of mitigation features, and how they can be

  11. Role of rural solid waste management in non-point source pollution control of Dianchi Lake catchments, China

    Institute of Scientific and Technical Information of China (English)

    Wenjing LU; Hongtao WANG

    2008-01-01

    In recent years, with control of the main municipal and industrial point pollution sources and implementation of cleaning for some inner pollution sources in the water body, the discharge of point source pollution decreased gradually, while non-point source pollution has become increasingly distressing in Dianchi Lake catchments. As one of the major targets in non-point source pollution control, an integrated solid waste controlling strategy combined with a technological solution and management system was proposed and implemented based on the waste disposal situation and characteristics of rural solid waste in the demonstration area. As the key technoogy in rural solid waste treatment, both centralized plantscale composting and a dispersed farmer-operated waste treating system showed promise in rendering timely benefits in efficiency, large handling capacity, high quality of the end product, as well as good economic return. Problems encountered during multi-substrates co-com-posting such as pathogens, high moisture content, asyn-chronism in the decomposition of different substrates, and low quality of the end product can all be tackled. 92.5% of solid waste was collected in the demonstration area, while the treating and recycling ratio reached 87.9%, which pre-vented 32.2 t nitrogen and 3.9 t phosphorus per year from entering the water body of Dianchi Lake after imple-mentation of the project.

  12. Source apportionment of nitrogen and phosphorus from non-point source pollution in Nansi Lake Basin, China.

    Science.gov (United States)

    Zhang, Bao-Lei; Cui, Bo-Hao; Zhang, Shu-Min; Wu, Quan-Yuan; Yao, Lei

    2018-05-03

    Nitrogen (N) and phosphorus (P) from non-point source (NPS) pollution in Nansi Lake Basin greatly influenced the water quality of Nansi Lake, which is the determinant factor for the success of East Route of South-North Water Transfer Project in China. This research improved Johnes export coefficient model (ECM) by developing a method to determine the export coefficients of different land use types based on the hydrological and water quality data. Taking NPS total nitrogen (TN) and total phosphorus (TP) as the study objects, this study estimated the contributions of different pollution sources and analyzed their spatial distributions based on the improved ECM. The results underlined that the method for obtaining output coefficients of land use types using hydrology and water quality data is feasible and accurate, and is suitable for the study of NPS pollution at large-scale basins. The average output structure of NPS TN from land use, rural breeding and rural life is 33.6, 25.9, and 40.5%, and the NPS TP is 31.6, 43.7, and 24.7%, respectively. Especially, dry land was the main land use source for both NPS TN and TP pollution, with the contributed proportions of 81.3 and 81.8% respectively. The counties of Zaozhuang, Tengzhou, Caoxian, Yuncheng, and Shanxian had higher contribution rates and the counties of Dingtao, Juancheng, and Caoxian had the higher load intensities for both NPS TN and TP pollution. The results of this study allowed for an improvement in the understanding of the pollution source contribution and enabled researchers and planners to focus on the most important sources and regions of NPS pollution.

  13. Calculation and analysis of the non-point source pollution in the upstream watershed of the Panjiakou Reservoir, People's Republic of China

    Science.gov (United States)

    Zhang, S.; Tang, L.

    2007-05-01

    Panjiakou Reservoir is an important drinking water resource in Haihe River Basin, Hebei Province, People's Republic of China. The upstream watershed area is about 35,000 square kilometers. Recently, the water pollution in the reservoir is becoming more serious owing to the non-point pollution as well as point source pollution on the upstream watershed. To effectively manage the reservoir and watershed and develop a plan to reduce pollutant loads, the loading of non-point and point pollution and their distribution on the upstream watershed must be understood fully. The SWAT model is used to simulate the production and transportation of the non-point source pollutants in the upstream watershed of the Panjiakou Reservoir. The loadings of non-point source pollutants are calculated for different hydrologic years and the spatial and temporal characteristics of non-point source pollution are studied. The stream network and topographic characteristics of the stream network and sub-basins are all derived from the DEM by ArcGIS software. The soil and land use data are reclassified and the soil physical properties database file is created for the model. The SWAT model was calibrated with observed data of several hydrologic monitoring stations in the study area. The results of the calibration show that the model performs fairly well. Then the calibrated model was used to calculate the loadings of non-point source pollutants for a wet year, a normal year and a dry year respectively. The time and space distribution of flow, sediment and non-point source pollution were analyzed depending on the simulated results. The comparison of different hydrologic years on calculation results is dramatic. The loading of non-point source pollution in the wet year is relatively larger but smaller in the dry year since the non-point source pollutants are mainly transported through the runoff. The pollution loading within a year is mainly produced in the flood season. Because SWAT is a

  14. Modeling non-point source pollutants in the vadose zone: Back to the basics

    Science.gov (United States)

    Corwin, Dennis L.; Letey, John, Jr.; Carrillo, Marcia L. K.

    More than ever before in the history of scientific investigation, modeling is viewed as a fundamental component of the scientific method because of the relatively recent development of the computer. No longer must the scientific investigator be confined to artificially isolated studies of individual processes that can lead to oversimplified and sometimes erroneous conceptions of larger phenomena. Computer models now enable scientists to attack problems related to open systems such as climatic change, and the assessment of environmental impacts, where the whole of the interactive processes are greater than the sum of their isolated components. Environmental assessment involves the determination of change of some constituent over time. This change can be measured in real time or predicted with a model. The advantage of prediction, like preventative medicine, is that it can be used to alter the occurrence of potentially detrimental conditions before they are manifest. The much greater efficiency of preventative, rather than remedial, efforts strongly justifies the need for an ability to accurately model environmental contaminants such as non-point source (NPS) pollutants. However, the environmental modeling advances that have accompanied computer technological development are a mixed blessing. Where once we had a plethora of discordant data without a holistic theory, now the pendulum has swung so that we suffer from a growing stockpile of models of which a significant number have never been confirmed or even attempts made to confirm them. Modeling has become an end in itself rather than a means because of limited research funding, the high cost of field studies, limitations in time and patience, difficulty in cooperative research and pressure to publish papers as quickly as possible. Modeling and experimentation should be ongoing processes that reciprocally enhance one another with sound, comprehensive experiments serving as the building blocks of models and models

  15. Long-Term Hydrologic Impact Assessment of Non-point Source Pollution Measured Through Land Use/Land Cover (LULC) Changes in a Tropical Complex Catchment

    Science.gov (United States)

    Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah

    2018-05-01

    The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant ( p changes on NPS pollution. The findings of this study may be useful to water resource planners in controlling water pollution

  16. Assessment of future climate change impacts on nonpoint source pollution in snowmelt period for a cold area using SWAT.

    Science.gov (United States)

    Wang, Yu; Bian, Jianmin; Zhao, Yongsheng; Tang, Jie; Jia, Zhuo

    2018-02-05

    The source area of Liao River is a typical cold region in northeastern China, which experiences serious problems with agricultural nonpoint source pollution (NPS), it is important to understand future climate change impacts on NPS in the watershed. This issue has been investigated by coupling semi distributed hydrological model (SWAT), statistical downscaling model (SDSM) and global circulation model (GCMs). The results show that annual average temperature would rise by 2.1 °C (1.3 °C) in the 2080 s under scenario RCP8.5 (RCP4.5), and annual precipitation would increase by 67 mm (33 mm). The change in winter temperature and precipitation is most significant with an increase by 0.23 °C/10a (0.17 °C/10a) and 1.94 mm/10a (2.78 mm/10a). The future streamflow, TN and TP loads would decrease by 19.05% (10.59%), 12.27% (8.81%) and 10.63% (6.11%), respectively. Monthly average streamflow, TN and TP loads would decrease from March to November, and increase from December to February. This is because the increased precipitation and temperature in winter, which made the spring snowpack melting earlier. These study indicate the trends of nonpoint source pollution during the snowmelt period under climate change conditions, accordingly adaptation measures will be necessary.

  17. [Empirical study on non-point sources pollution based on landscape pattern & ecological processes theory: a case of soil water loss on the Loess Plateau in China].

    Science.gov (United States)

    Suo, An-ning; Wang, Tian-ming; Wang, Hui; Yu, Bo; Ge, Jian-ping

    2006-12-01

    Non-point sources pollution is one of main pollution modes which pollutes the earth surface environment. Aimed at soil water loss (a typical non-point sources pollution problem) on the Losses Plateau in China, the paper applied a landscape patternevaluation method to twelve watersheds of Jinghe River Basin on the Loess Plateau by means of location-weighted landscape contrast index(LCI) and landscape slope index(LSI). The result showed that LSI of farm land, low density grass land, forest land and LCI responded significantly to soil erosion modulus and responded to depth of runoff, while the relationship between these landscape index and runoff variation index and erosion variation index were not statistically significant. This tell us LSI and LWLCI are good indicators of soil water loss and thus have big potential in non-point source pollution risk evaluation.

  18. Research and information needs related to nonpoint source pollution and wetlands in the watershed: An EPA perspective

    International Nuclear Information System (INIS)

    Ethridge, B.J.; Olson, R.K.

    1992-01-01

    Two related Environmental Protection Agency (EPA) efforts, wetlands protection and nonpoint source pollution control, fail to fully consider landscape factors when making site-specific decisions. The paper discusses the relationship of the two programs and the use of created and natural wetlands to treat nonpoint source (NPS) pollution. Recommendations to improve the programs include increased technical transfer of existing information, and more research on construction methods and siting of created wetlands to effectively manage NPS pollution. Additional research is also needed to determine (1) the maximum pollutant loading rates to assure the biological integrity of wetlands, (2) the effectiveness of current land-use practices in protecting habitat and water quality functions, (3) wetland functions as pollutant sinks, (4) NPS pollution threats to wildlife, (5) practical watershed models, and (6) indicators and reference sites for monitoring wetland condition. Model watershed demonstrations, jointly implemented by the research and conservation communities, are recommended as a means of integrating research results. (Copyright (c) 1992 - Elsevier Science Publishers B.V.)

  19. Agricultural non-point source pollution of glyphosate and AMPA at a catchment scale

    Science.gov (United States)

    Okada, Elena; Perez, Debora; De Geronimo, Eduardo; Aparicio, Virginia; Costa, Jose Luis

    2017-04-01

    Information on the actual input of pesticides into the environment is crucial for proper risk assessment and the design of risk reduction measures. The Crespo basin is found within the Balcarce County, located south-east of the Buenos Aires Province. The whole basin has an area of approximately 490 km2 and the river has a length of 65 km. This study focuses on the upper basin of the Crespo stream, covering an area of 226 km2 in which 94.7% of the land is under agricultural production representing a highly productive area, characteristic of the Austral Pampas region. In this study we evaluated the levels of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) in soils; and the non-point source pollution of surface waters, stream sediments and groundwater, over a period of one year. Stream water samples were taken monthly using propylene bottles, from the center of the bridge. If present, sediment samples from the first 5 cm were collected using cylinder samplers. Groundwater samples were taken from windmills or electric pumps from different farms every two months. At the same time, composite soil samples (at 5 cm depth) were taken from an agricultural plot of each farm. Samples were analyzed for detection and quantification of glyphosate and AMPA using ultra-performance liquid chromatography coupled to a mass spectrometer (UPLC-MS/MS). The limit of detection (LD) in the soil samples was 0.5 μg Kg-1 and the limit of quantification (LQ) was 3 μg Kg-1, both for glyphosate and AMPA. In water samples the LD was 0.1 μg L-1 and the LQ was 0.5 μg L-1. The results showed that the herbicide dispersed into all the studied environmental compartments. Glyphosate and AMPA residues were detected in 34 and 54% of the stream water samples, respectively. Sediment samples had a higher detection frequency (>96%) than water samples, and there was no relationship between the presence in surface water with the detection in sediment samples. The presence in sediment samples

  20. DISCRIMINATION OF NATURAL AND NON-POINT SOURCE EFFECTS FROM ANTHROGENIC EFFECTS AS REFLECTED IN BENTHIC STATE IN THREE ESTUARIES IN NEW ENGLAND

    Science.gov (United States)

    In order to protect estuarine resources, managers must be able to discern the effects of natural conditions and non-point source effects, and separate them from multiple anthropogenic point source effects. Our approach was to evaluate benthic community assemblages, riverine nitro...

  1. Controlling Nonpoint Pollution in Virginia’s Urbanizing Areas: An Institutional Perspective.

    Science.gov (United States)

    1986-01-20

    programs. As John Naisbitt has stated in his book, Megatrends , "The most reliable way to anticipate the future is by understanding the present.’" Therefore...Virginia’s cit- izenry must be considered. Naisbitt, John, Megatrends , Warner Books, New York, N.Y., 1984, p. xxiii. INTRODUCTION 3...available for the above biological and chemical processes to take place. Findings of the NURP (Nationwide Urban Runoff Program) studies show that

  2. Purification and reuse of non-point source wastewater via Myriophyllum-based integrative biotechnology: A review.

    Science.gov (United States)

    Liu, Feng; Zhang, Shunan; Luo, Pei; Zhuang, Xuliang; Chen, Xiang; Wu, Jinshui

    2018-01-01

    In this review, the applications of Myriophyllum-based integrative biotechnology to remove common non-point source (NPS) pollutants, such as nitrogen, phosphorus, heavy metals, and organic pollutants (e.g., pesticides and antibiotics) are summarized. The removal of these pollutants via various mechanisms, including uptake by plant and microbial communities in macrophyte-based treatment systems are discussed. This review highlights the potential use of Myriophyllum biomass to produce animal feed, fertilizer, and other valuable by-products, which can yield cost-effective returns and attract more attention to the regulation and recycling of NPS pollutants. In addition, it demonstrates that utilization of Myriophyllum species is a promising and reliable strategy for wastewater treatment. The future development of sustainable Myriophyllum-based treatment systems is discussed from various perspectives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Micro-simulation as a tool to assess policy concerning non-point source pollution: the case of ammonia in Dutch agriculture

    NARCIS (Netherlands)

    Kruseman, G.; Blokland, P.W.; Bouma, F.; Luesink, H.H.; Vrolijk, H.C.J.

    2008-01-01

    Non-point source pollution is notoriously difficult to asses. A relevant example is ammonia emissions in the Netherlands. Since the mid 1980s the Dutch government has sought to reduce emissions through a wide variety of measures, the effect of which in turn is monitored using modeling techniques.

  4. Agricultural non-point source pollution management in a reservoir watershed based on ecological network analysis of soil nitrogen cycling.

    Science.gov (United States)

    Xu, Wen; Cai, Yanpeng; Rong, Qiangqiang; Yang, Zhifeng; Li, Chunhui; Wang, Xuan

    2018-03-01

    The Miyun Reservoir plays a pivotal role in providing drinking water for the city of Beijing. In this research, ecological network analysis and scenario analysis were integrated to explore soil nitrogen cycling of chestnut and Chinese pine forests in the upper basin of the Miyun Reservoir, as well as to seek favorable fertilization modes to reduce agricultural non-point source pollution. Ecological network analysis results showed that (1) the turnover time was 0.04 to 0.37 year in the NH 4 + compartment and were 15.78 to 138.36 years in the organic N compartment; (2) the Finn cycling index and the ratio of indirect to direct flow were 0.73 and 11.92 for the chestnut forest model, respectively. Those of the Chinese pine forest model were 0.88 and 29.23, respectively; and (3) in the chestnut forest model, NO 3 - accounted for 96% of the total soil nitrogen loss, followed by plant N (2%), NH 4 + (1%), and organic N (1%). In the Chinese pine forest, NH 4 + accounted for 56% of the total soil nitrogen loss, followed by organic N (34%) and NO 3 - (10%). Fertilization mode was identified as the main factor affecting soil N export. To minimize NH 4 + and NO 3 - outputs while maintaining the current plant yield (i.e., 7.85e0 kg N/year), a fertilization mode of 162.50 kg N/year offered by manure should be adopted. Whereas, to achieve a maximum plant yield (i.e., 3.35e1 kg N/year) while reducing NH 4 + and NO 3 - outputs, a fertilization mode of 325.00 kg N/year offered by manure should be utilized. This research is of wide suitability to support agricultural non-point source pollution management at the watershed scale.

  5. NASA-Modified Precipitation Products to Improve EPA Nonpoint Source Water Quality Modeling for the Chesapeake Bay

    Science.gov (United States)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The Environmental Protection Agency (EPA) has estimated that over 20,000 water bodies within the United States do not meet water quality standards. Ninety percent of the impairments are typically caused by nonpoint sources. One of the regulations in the Clean Water Act of 1972 requires States to monitor the Total Maximum Daily Load (TMDL), or the amount of pollution that can be carried by a water body before it is determined to be "polluted", for any watershed in the U.S.. In response to this mandate, the EPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a Decision Support Tool (DST) for assessing pollution and to guide the decision making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program -- Fortran (HSPF), computes daily stream flow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA modified/NOAA precipitation data. Using these data within HSPF, stream flow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better stream flow statistics and, ultimately, in improved water quality assessment.

  6. Monitoring and Analysis of Nonpoint Source Pollution - Case study on terraced paddy fields in an agricultural watershed

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Yeh, Chun-Lin

    2013-04-01

    The intensive use of chemical fertilizer has negatively impacted environments in recent decades, mainly through water pollution by nitrogen (N) and phosphate (P) originating from agricultural activities. As a main crop with the largest cultivation area about 0.25 million ha per year in Taiwan, rice paddies account for a significant share of fertilizer consumption among agriculture crops. This study evaluated the fertilization of paddy fields impacting return flow water quality in an agricultural watershed located at Hsinchu County, northern Taiwan. Water quality monitoring continued for two crop-periods in 2012, around subject to different water bodies, including the irrigation water, drainage water, and shallow groundwater. The results indicated that obviously increasing of ammonium-N, nitrate-N and TP concentrations in the surface drainage water were observed immediately following three times of fertilizer applications (including basal, tillering, and panicle fertilizer application), but reduced to relatively low concentrations after 7-10 days after each fertilizer application. Groundwater quality monitoring showed that the observation wells with the more shallow water depth, the more significant variation of concentrations of ammonium-N, nitrate-N and TP could be observed, which means that the contamination potential of nutrient of groundwater is related not only to the impermeable plow sole layer but also to the length of percolation route in this area. The study also showed that the potential pollution load of nutrient could be further reduced by well drainage water control and rational fertilizer management, such as deep-water irrigation, reuse of return flow, the rational application of fertilizers, and the SRI (The System of Rice Intensification) method. The results of this study can provide as an evaluation basis to formulate effective measures for agricultural non-point source pollution control and the reuse of agricultural return flow. Keywords

  7. Long-Term Hydrologic Impact Assessment of Non-point Source Pollution Measured Through Land Use/Land Cover (LULC) Changes in a Tropical Complex Catchment

    Science.gov (United States)

    Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah

    2018-03-01

    The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant (p < 0.05) pollutant loads were obtained from 2013 LULC conditions, while statistically least significant (p < 0.05) pollutant

  8. Effects of nonpoint and selected point contaminant sources on stream-water quality and relation to land use in Johnson County, northeastern Kansas, October 2002 through June 2004

    Science.gov (United States)

    Lee, Casey J.; Mau, D.P.; Rasmussen, T.J.

    2005-01-01

    Water and sediment samples were collected by the U.S. Geological Survey in 12 watersheds in Johnson County, northeastern Kansas, to determine the effects of nonpoint and selected point contaminant sources on stream-water quality and their relation to varying land use. The streams studied were located in urban areas of the county (Brush, Dykes Branch, Indian, Tomahawk, and Turkey Creeks), developing areas of the county (Blue River and Mill Creek), and in more rural areas of the county (Big Bull, Captain, Cedar, Kill, and Little Bull Creeks). Two base-flow synoptic surveys (73 total samples) were conducted in 11 watersheds, a minimum of three stormflow samples were collected in each of six watersheds, and 15 streambed-sediment sites were sampled in nine watersheds from October 2002 through June 2004. Discharge from seven wastewater treatment facilities (WWTFs) were sampled during base-flow synoptic surveys. Discharge from these facilities comprised greater than 50 percent of streamflow at the farthest downstream sampling site in six of the seven watersheds during base-flow conditions. Nutrients, organic wastewater-indicator compounds, and prescription and nonprescription pharmaceutical compounds generally were found in the largest concentrations during base-flow conditions at sites at, or immediately downstream from, point-source discharges from WWTFs. Downstream from WWTF discharges streamflow conditions were generally stable, whereas nutrient and wastewater-indicator compound concentrations decreased in samples from sites farther downstream. During base-flow conditions, sites upstream from WWTF discharges had significantly larger fecal coliform and Escherichia coli densities than downstream sites. Stormflow samples had the largest suspended-sediment concentrations and indicator bacteria densities. Other than in samples from sites in proximity to WWTF discharges, stormflow samples generally had the largest nutrient concentrations in Johnson County streams. Discharge

  9. Study of landscape patterns of variation and optimization based on non-point source pollution control in an estuary.

    Science.gov (United States)

    Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui; Wu, Haiyan

    2014-10-15

    Appropriate increases in the "sink" of a landscape can reduce the risk of non-point source pollution (NPSP) to the sea at relatively lower costs and at a higher efficiency. Based on high-resolution remote sensing image data taken between 2003 and 2008, we analyzed the "source" and "sink" landscape pattern variations of nitrogen and phosphorus pollutants in the Jiulongjiang estuary region. The contribution to the sea and distribution of each pollutant in the region was calculated using the LCI and mGLCI models. The results indicated that an increased amount of pollutants was contributed to the sea, and the "source" area of the nitrogen NPSP in the study area increased by 32.75 km(2). We also propose a landscape pattern optimization to reduce pollution in the Jiulongjiang estuary in 2008 through the conversion of cultivated land with slopes greater than 15° and paddy fields near rivers, and an increase in mangrove areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Predicting nonpoint stormwater runoff quality from land use

    Science.gov (United States)

    2018-01-01

    Evaluating the impact of urban development on natural ecosystem processes has become an increasingly complex task for planners, environmental scientists, and engineers. As the built environment continues to grow, unregulated nonpoint pollutants from increased human activity and large-scale development severely stress urban streams and lakes resulting in their currently impaired or degraded state. In response, integrated water quality management programs have been adopted to address these unregulated nonpoint pollutants by utilizing best management practices (BMPs) that treat runoff as close to the source as possible. Knowing where to install effective BMPs is no trivial task, considering budget constraints and the spatially extensive nature of nonpoint stormwater runoff. Accordingly, this paper presents an initial, straightforward and cost-effective methodology to identify critical nonpoint pollutant source watersheds through correlation of water quality with land use. Through an illustrative application to metropolitan Denver, Colorado, it is shown how this method can be used to aid stormwater professionals to evaluate and specify retrofit locations in need of water quality treatment features reduce, capture and treat stormwater runoff prior to entering receiving waters. PMID:29742172

  11. Loads of suspended sediment and nutrients from local nonpoint sources to the tidal Potomac River and Estuary, Maryland and Virginia, 1979-81 water years

    Science.gov (United States)

    Hickman, R. Edward

    1987-01-01

    Loads of suspended sediment, phosphorus, nitrogen, biochemical oxygen demand, and dissolved silica discharged to the tidal Potomac River and Estuary during the !979-81 water years from three local nonpoint sources have been calculated. The loads in rain falling directly upon the tidal water surface and from overflows of the combined sewer system of the District of Columbia were determined from available information. Loads of materials in the streamflow from local watersheds draining directly to the tidal Potomac River and Estuary downstream from Chain Bridge in Washington, D.C., were calculated from samples of streamflow leaving five monitored watersheds. Average annual yields of substances leaving three urban watersheds (Rock Creek and the Northwest and Northeast Branches of the Anacostia River) and the rural Saint Clements Creek watershed were calculated either by developing relationships between concentration and streamflow or by using the mean of measured concentrations. Yields calculated for the 1979-81 water years are up to 2.3 times period-of-record yields because of greater than average streamflow and stormflow during this 3-year period. Period-of-record yields of suspended sediment from the three urban watersheds and the Saint Clements Creek watershed do not agree with yields reported by other studies. The yields from the urban watersheds are 17 to 51 percent of yields calculated using sediment-concentration data collected during the 1960-62 water years. Previous studies suggest that this decrease is at least partly due to the imposition of effective sediment controls at construction sites and to the construction of two multipurpose reservoirs. The yield calculated for the rural Saint Clements Creek watershed is at least twice the yields calculated for other rural watersheds, a result that may be due to most of the samples of this stream being taken during the summer of the 1981 water year, a very dry period. Loads discharged from all local tributary

  12. Study on the quantitative relationship between Agricultural water and fertilization process and non-point source pollution based on field experiments

    Science.gov (United States)

    Wang, H.; Chen, K.; Wu, Z.; Guan, X.

    2017-12-01

    In recent years, with the prominent of water environment problem and the relative increase of point source pollution governance, especially the agricultural non-point source pollution problem caused by the extensive use of fertilizers and pesticides has become increasingly aroused people's concern and attention. In order to reveal the quantitative relationship between agriculture water and fertilizer and non-point source pollution, on the basis of elm field experiment and combined with agricultural drainage irrigation model, the agricultural irrigation water and the relationship between fertilizer and fertilization scheme and non-point source pollution were analyzed and calculated by field emission intensity index. The results show that the variation of displacement varies greatly under different irrigation conditions. When the irrigation water increased from 22cm to 42cm, the irrigation water increased by 20 cm while the field displacement increased by 11.92 cm, about 66.22% of the added value of irrigation water. Then the irrigation water increased from 42 to 68, irrigation water increased 26 cm, and the field displacement increased by 22.48 cm, accounting for 86.46% of irrigation water. So there is an "inflection point" between the irrigation water amount and field displacement amount. The load intensity increases with the increase of irrigation water and shows a significant power correlation. Under the different irrigation condition, the increase amplitude of load intensity with the increase of irrigation water is different. When the irrigation water is smaller, the load intensity increase relatively less, and when the irrigation water increased to about 42 cm, the load intensity will increase considerably. In addition, there was a positive correlation between the fertilization and load intensity. The load intensity had obvious difference in different fertilization modes even with same fertilization level, in which the fertilizer field unit load intensity

  13. An improved export coefficient model to estimate non-point source phosphorus pollution risks under complex precipitation and terrain conditions.

    Science.gov (United States)

    Cheng, Xian; Chen, Liding; Sun, Ranhao; Jing, Yongcai

    2018-05-15

    To control non-point source (NPS) pollution, it is important to estimate NPS pollution exports and identify sources of pollution. Precipitation and terrain have large impacts on the export and transport of NPS pollutants. We established an improved export coefficient model (IECM) to estimate the amount of agricultural and rural NPS total phosphorus (TP) exported from the Luanhe River Basin (LRB) in northern China. The TP concentrations of rivers from 35 selected catchments in the LRB were used to test the model's explanation capacity and accuracy. The simulation results showed that, in 2013, the average TP export was 57.20 t at the catchment scale. The mean TP export intensity in the LRB was 289.40 kg/km 2 , which was much higher than those of other basins in China. In the LRB topographic regions, the TP export intensity was the highest in the south Yanshan Mountains and was followed by the plain area, the north Yanshan Mountains, and the Bashang Plateau. Among the three pollution categories, the contribution ratios to TP export were, from high to low, the rural population (59.44%), livestock husbandry (22.24%), and land-use types (18.32%). Among all ten pollution sources, the contribution ratios from the rural population (59.44%), pigs (14.40%), and arable land (10.52%) ranked as the top three sources. This study provides information that decision makers and planners can use to develop sustainable measures for the prevention and control of NPS pollution in semi-arid regions.

  14. Severe situation of rural nonpoint source pollution and efficient utilization of agricultural wastes in the Three Gorges Reservoir Area.

    Science.gov (United States)

    Zhang, Tong; Ni, Jiupai; Xie, Deti

    2015-11-01

    Rural nonpoint source (NPS) pollution caused by agricultural wastes has become increasingly serious in the Three Gorges Reservoir Area (TGRA), significantly affecting the reservoir water quality. The grim situation of rural NPS pollution in the TGRA indicated that agrochemicals (chemical fertilizer and pesticide) were currently the highest contributor of rural NPS pollution (50.38%). The harmless disposal rates of livestock excrement, crop straws, rural domestic refuse, and sewage also cause severe water pollution. More importantly, the backward agricultural economy and the poor environmental awareness of farmers in the hinterland of the TGRA contribute to high levels of rural NPS pollution. Over the past decade, researchers and the local people have carried out various successful studies and practices to realize the effective control of rural NPS pollution by efficiently utilizing agricultural wastes in the TGRA, including agricultural waste biogas-oriented utilization, crop straw gasification, decentralized land treatment of livestock excrement technology, and crop straw modification. These technologies have greatly increased the renewable resource utilization of agricultural wastes and improved water quality and ecological environment in the TGRA.

  15. Modeling Multi-Event Non-Point Source Pollution in a Data-Scarce Catchment Using ANN and Entropy Analysis

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2017-06-01

    Full Text Available Event-based runoff–pollutant relationships have been the key for water quality management, but the scarcity of measured data results in poor model performance, especially for multiple rainfall events. In this study, a new framework was proposed for event-based non-point source (NPS prediction and evaluation. The artificial neural network (ANN was used to extend the runoff–pollutant relationship from complete data events to other data-scarce events. The interpolation method was then used to solve the problem of tail deviation in the simulated pollutographs. In addition, the entropy method was utilized to train the ANN for comprehensive evaluations. A case study was performed in the Three Gorges Reservoir Region, China. Results showed that the ANN performed well in the NPS simulation, especially for light rainfall events, and the phosphorus predictions were always more accurate than the nitrogen predictions under scarce data conditions. In addition, peak pollutant data scarcity had a significant impact on the model performance. Furthermore, these traditional indicators would lead to certain information loss during the model evaluation, but the entropy weighting method could provide a more accurate model evaluation. These results would be valuable for monitoring schemes and the quantitation of event-based NPS pollution, especially in data-poor catchments.

  16. Assessment of the relationship between rural non-point source pollution and economic development in the Three Gorges Reservoir Area.

    Science.gov (United States)

    Zhang, Tong; Ni, Jiupai; Xie, Deti

    2016-04-01

    This study investigates the relationship between rural non-point source (NPS) pollution and economic development in the Three Gorges Reservoir Area (TGRA) by using the Environmental Kuznets Curve (EKC) hypothesis for the first time. Five types of pollution indicators, namely, fertilizer input density (FD), pesticide input density (PD), agricultural film input density (AD), grain residues impact (GI), and livestock manure impact (MI), were selected as rural NPS pollutant variables. Rural net income per capita was used as the indicator of economic development. Pollution load was generated by agricultural inputs (consumption of fertilizer, pesticide, and agricultural film) and economic growth with invert U-shaped features. The predicted turning points for FD, PD, and AD were at rural net income per capita levels of 6167.64, 6205.02, and 4955.29 CNY, respectively, which were all surpassed. However, the features between agricultural waste outputs (grain residues and livestock manure) and economic growth were inconsistent with the EKC hypothesis, which reflected the current trends of agricultural economic structure in the TGRA. Given that several other factors aside from economic development level could influence the pollutant generation in rural NPS, a further examination with long-run data support should be performed to understand the relationship between rural NPS pollution and income level.

  17. An inexact fuzzy two-stage stochastic model for quantifying the efficiency of nonpoint source effluent trading under uncertainty

    International Nuclear Information System (INIS)

    Luo, B.; Maqsood, I.; Huang, G.H.; Yin, Y.Y.; Han, D.J.

    2005-01-01

    Reduction of nonpoint source (NPS) pollution from agricultural lands is a major concern in most countries. One method to reduce NPS pollution is through land retirement programs. This method, however, may result in enormous economic costs especially when large sums of croplands need to be retired. To reduce the cost, effluent trading can be employed to couple with land retirement programs. However, the trading efforts can also become inefficient due to various uncertainties existing in stochastic, interval, and fuzzy formats in agricultural systems. Thus, it is desired to develop improved methods to effectively quantify the efficiency of potential trading efforts by considering those uncertainties. In this respect, this paper presents an inexact fuzzy two-stage stochastic programming model to tackle such problems. The proposed model can facilitate decision-making to implement trading efforts for agricultural NPS pollution reduction through land retirement programs. The applicability of the model is demonstrated through a hypothetical effluent trading program within a subcatchment of the Lake Tai Basin in China. The study results indicate that the efficiency of the trading program is significantly influenced by precipitation amount, agricultural activities, and level of discharge limits of pollutants. The results also show that the trading program will be more effective for low precipitation years and with stricter discharge limits

  18. A simulation-based interval two-stage stochastic model for agricultural nonpoint source pollution control through land retirement

    International Nuclear Information System (INIS)

    Luo, B.; Li, J.B.; Huang, G.H.; Li, H.L.

    2006-01-01

    This study presents a simulation-based interval two-stage stochastic programming (SITSP) model for agricultural nonpoint source (NPS) pollution control through land retirement under uncertain conditions. The modeling framework was established by the development of an interval two-stage stochastic program, with its random parameters being provided by the statistical analysis of the simulation outcomes of a distributed water quality approach. The developed model can deal with the tradeoff between agricultural revenue and 'off-site' water quality concern under random effluent discharge for a land retirement scheme through minimizing the expected value of long-term total economic and environmental cost. In addition, the uncertainties presented as interval numbers in the agriculture-water system can be effectively quantified with the interval programming. By subdividing the whole agricultural watershed into different zones, the most pollution-related sensitive cropland can be identified and an optimal land retirement scheme can be obtained through the modeling approach. The developed method was applied to the Swift Current Creek watershed in Canada for soil erosion control through land retirement. The Hydrological Simulation Program-FORTRAN (HSPF) was used to simulate the sediment information for this case study. Obtained results indicate that the total economic and environmental cost of the entire agriculture-water system can be limited within an interval value for the optimal land retirement schemes. Meanwhile, a best and worst land retirement scheme was obtained for the study watershed under various uncertainties

  19. NASA-modified precipitation products to improve USEPA nonpoint source water quality modeling for the Chesapeake Bay.

    Science.gov (United States)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The USEPA has estimated that over 20,000 water bodies within the United States do not meet water quality standards. One of the regulations in the Clean Water Act of 1972 requires states to monitor the total maximum daily load, or the amount of pollution that can be carried by a water body before it is determined to be "polluted," for any watershed in the United States (Copeland, 2005). In response to this mandate, the USEPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a decision support tool for assessing pollution and to guide the decision-making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program-Fortran (HSPF), computes continuous streamflow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events, especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA-modified/NOAA precipitation data. Using these data within HSPF, streamflow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better streamflow statistics and, potentially, in improved water quality assessment.

  20. A review of vegetated buffers and a meta-analysis of their mitigation efficacy in reducing nonpoint source pollution.

    Science.gov (United States)

    Zhang, Xuyang; Liu, Xingmei; Zhang, Minghua; Dahlgren, Randy A; Eitzel, Melissa

    2010-01-01

    Vegetated buffers are a well-studied and widely used agricultural management practice for reducing nonpoint-source pollution. A wealth of literature provides experimental data on their mitigation efficacy. This paper aggregated many of these results and performed a meta-analysis to quantify the relationships between pollutant removal efficacy and buffer width, buffer slope, soil type, and vegetation type. Theoretical models for removal efficacy (Y) vs. buffer width (w) were derived and tested against data from the surveyed literature using statistical analyses. A model of the form Y = K x (1-e(-bxw)), (0 pollutant removal, where K reflects the maximum removal efficacy of the buffer and b reflects its probability to remove any single particle of pollutant in a unit distance. Buffer width alone explains 37, 60, 44, and 35% of the total variance in removal efficacy for sediment, pesticides, N, and P, respectively. Buffer slope was linearly associated with sediment removal efficacy either positively (when slope 10%). Buffers composed of trees have higher N and P removal efficacy than buffers composed of grasses or mixtures of grasses and trees. Soil drainage type did not show a significant effect on pollutant removal efficacy. Based on our analysis, a 30-m buffer under favorable slope conditions (approximately 10%) removes more than 85% of all the studied pollutants. These models predicting optimal buffer width/slope can be instrumental in the design, implementation, and modeling of vegetated buffers for treating agricultural runoff.

  1. Non-point Source Pollution Modeling Using Geographic Information System (GIS for Representing Best Management Practices (BMP in the Gorganrood Watershed

    Directory of Open Access Journals (Sweden)

    Z. Pasandidehfard

    2014-09-01

    Full Text Available The most important pollutants that cause water pollution are nitrogen and phosphorus from agricultural runoff called Non-Point Source Pollution (NPS. To solve this problem, management practices known as BMPs or Best Management Practices are applied. One of the common methods for Non-Point Source Pollution prediction is modeling. By modeling, efficiency of many practices can be tested before application. In this study, land use changes were studied from the years 1984 till 2010 that showed an increase in agricultural lands from 516908.52 to 630737.19 ha and expansion of cities from 5237.87 to 15487.59 ha and roads from 9666.07 to 11430.24 ha. Using L-THIA model (from nonpoint source pollution models for both land use categories, the amount of pollutant and the volume of runoff were calculated that showed high growth. Then, the seventh sub-basin was recognized as a critical zone in terms of pollution among the sub-basins. In the end, land use change was considered as a BMP using Multi-Criteria Evaluation (MCE based on which a more suitable land use map was produced. After producing the new land use map, L-THIA model was run again and the result of the model was compared to the actual land use to show the effect of this BMP. Runoff volume decreased from 367.5 to 308.6 M3/ha and nitrogen in runoff was reduced from 3.26 to 1.58 mg/L and water BOD from 3.61 to 2.13 mg/L. Other pollutants also showed high reduction. In the end, land use change is confirmed as an effective BMP for Non-Point Source Pollution reduction.

  2. Impact of Point and Non-point Source Pollution on Coral Reef Ecosystems In Mamala Bay, Oahu, Hawaii based on Water Quality Measurements and Benthic Surveys in 1993-1994 (NODC Accession 0001172)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The effects of both point and non-point sources of pollution on coral reef ecosystems in Mamala Bay were studied at three levels of biological organization; the...

  3. Urban Runoff: National Management Measures

    Science.gov (United States)

    This helps citizens and municipalities in urban areas protect bodies of water from polluted runoff . These scientifically sound techniques are the best practices known today. The guidance helps states to implement their nonpoint source control program.

  4. Analysis of the environmental behavior of farmers for non-point source pollution control and management in a water source protection area in China.

    Science.gov (United States)

    Wang, Yandong; Yang, Jun; Liang, Jiping; Qiang, Yanfang; Fang, Shanqi; Gao, Minxue; Fan, Xiaoyu; Yang, Gaihe; Zhang, Baowen; Feng, Yongzhong

    2018-08-15

    The environmental behavior of farmers plays an important role in exploring the causes of non-point source pollution and taking scientific control and management measures. Based on the theory of planned behavior (TPB), the present study investigated the environmental behavior of farmers in the Water Source Area of the Middle Route of the South-to-North Water Diversion Project in China. Results showed that TPB could explain farmers' environmental behavior (SMC=0.26) and intention (SMC=0.36) well. Furthermore, the farmers' attitude towards behavior (AB), subjective norm (SN), and perceived behavioral control (PBC) positively and significantly influenced their environmental intention; their environmental intention further impacted their behavior. SN was proved to be the main key factor indirectly influencing the farmers' environmental behavior, while PBC had no significant and direct effect. Moreover, environmental knowledge following as a moderator, gender and age was used as control variables to conduct the environmental knowledge on TPB construct moderated mediation analysis. It demonstrated that gender had a significant controlling effect on environmental behavior; that is, males engage in more environmentally friendly behaviors. However, age showed a significant negative controlling effect on pro-environmental intention and an opposite effect on pro-environmental behavior. In addition, environmental knowledge could negatively moderate the relationship between PBC and environmental intention. PBC had a greater impact on the environmental intention of farmers with poor environmental knowledge, compared to those with plenty environmental knowledge. Altogether, the present study could provide a theoretical basis for non-point source pollution control and management. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. A CASE STUDY OF NONPOINT SOURCES BACTERIAL CONTRIBUTION TO RURAL SURFACE WATER

    Science.gov (United States)

    The presentation will address several bacterial issues affecting the Turkey Creek (TC) watershed, in north central Ok. Our results from seasonal stream Escherichia coli (E. coli) analysis, bacterial source tracking, and antibiotic resistance will be shared and discussed in relat...

  6. A Spatial and Temporal Assessment of Non-Point Groundwater Pollution Sources, Tutuila Island, American Samoa

    Science.gov (United States)

    Shuler, C. K.; El-Kadi, A. I.; Dulaiova, H.; Glenn, C. R.; Fackrell, J.

    2015-12-01

    The quality of municipal groundwater supplies on Tutuila, the main island in American Samoa, is currently in question. A high vulnerability for contamination from surface activities has been recognized, and there exists a strong need to clearly identify anthropogenic sources of pollution and quantify their influence on the aquifer. This study examines spatial relationships and time series measurements of nutrients and other tracers to identify predominant pollution sources and determine the water quality impacts of the island's diverse land uses. Elevated groundwater nitrate concentrations are correlated with areas of human development, however, the mixture of residential and agricultural land use in this unique village based agrarian setting makes specific source identification difficult using traditional geospatial analysis. Spatial variation in anthropogenic impact was assessed by linking NO3- concentrations and δ15N(NO3) from an extensive groundwater survey to land-use types within well capture zones and groundwater flow-paths developed with MODFLOW, a numerical groundwater model. Land use types were obtained from high-resolution GIS data and compared to water quality results with multiple-regression analysis to quantify the impact that different land uses have on water quality. In addition, historical water quality data and new analyses of δD and δ18O in precipitation, groundwater, and mountain-front recharge waters were used to constrain the sources and mechanisms of contamination. Our analyses indicate that groundwater nutrient levels on Tutuila are controlled primarily by residential, not agricultural activity. Also a lack of temporal variation suggests that episodic pollution events are limited to individual water sources as opposed to the entire aquifer. These results are not only valuable for water quality management on Tutuila, but also provide insight into the sustainability of groundwater supplies on other islands with similar hydrogeology and land

  7. Multiple sources of boron in urban surface waters and groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Hasenmueller, Elizabeth A., E-mail: eahasenm@wustl.edu; Criss, Robert E.

    2013-03-01

    Previous studies attribute abnormal boron (B) levels in streams and groundwaters to wastewater and fertilizer inputs. This study shows that municipal drinking water used for lawn irrigation contributes substantial non-point loads of B and other chemicals (S-species, Li, and Cu) to surface waters and shallow groundwaters in the St. Louis, Missouri, area. Background levels and potential B sources were characterized by analysis of lawn and street runoff, streams, rivers, springs, local rainfall, wastewater influent and effluent, and fertilizers. Urban surface waters and groundwaters are highly enriched in B (to 250 μg/L) compared to background levels found in rain and pristine, carbonate-hosted streams and springs (< 25 μg/L), but have similar concentrations (150 to 259 μg/L) compared to municipal drinking waters derived from the Missouri River. Other data including B/SO{sub 4}{sup 2-}−S and B/Li ratios confirm major contributions from this source. Moreover, sequential samples of runoff collected during storms show that B concentrations decrease with increased discharge, proving that elevated B levels are not primarily derived from combined sewer overflows (CSOs) during flooding. Instead, non-point source B exhibits complex behavior depending on land use. In urban settings B is rapidly mobilized from lawns during “first flush” events, likely representing surficial salt residues from drinking water used to irrigate lawns, and is also associated with the baseflow fraction, likely derived from the shallow groundwater reservoir that over time accumulates B from drinking water that percolates into the subsurface. The opposite occurs in small rural watersheds, where B is leached from soils by recent rainfall and covaries with the event water fraction. Highlights: ► Boron sources and loads differ between urban and rural watersheds. ► Wastewaters are not the major boron source in small St. Louis, MO watersheds. ► Municipal drinking water used for lawn

  8. Non-point source pollution of glyphosate and AMPA in a rural basin from the southeast Pampas, Argentina.

    Science.gov (United States)

    Okada, Elena; Pérez, Débora; De Gerónimo, Eduardo; Aparicio, Virginia; Massone, Héctor; Costa, José Luis

    2018-05-01

    We measured the occurrence and seasonal variations of glyphosate and its metabolite, aminomethylphosphonic acid (AMPA), in different environmental compartments within the limits of an agricultural basin. This topic is of high relevance since glyphosate is the most applied pesticide in agricultural systems worldwide. We were able to quantify the seasonal variations of glyphosate that result mainly from endo-drift inputs, that is, from direct spraying either onto genetically modified (GM) crops (i.e., soybean and maize) or onto weeds in no-till practices. We found that both glyphosate and AMPA accumulate in soil, but the metabolite accumulates to a greater extent due to its higher persistence. Knowing that glyphosate and AMPA were present in soils (> 93% of detection for both compounds), we aimed to study the dispersion to other environmental compartments (surface water, stream sediments, and groundwater), in order to establish the degree of non-point source pollution. Also, we assessed the relationship between the water-table depth and glyphosate and AMPA levels in groundwater. All of the studied compartments had variable levels of glyphosate and AMPA. The highest frequency of detections was found in the stream sediments samples (glyphosate 95%, AMPA 100%), followed by surface water (glyphosate 28%, AMPA 50%) and then groundwater (glyphosate 24%, AMPA 33%). Despite glyphosate being considered a molecule with low vertical mobility in soils, we found that its detection in groundwater was strongly associated with the month where glyphosate concentration in soil was the highest. However, we did not find a direct relation between groundwater table depth and glyphosate or AMPA detections. This is the first simultaneous study of glyphosate and AMPA seasonal variations in soil, groundwater, surface water, and sediments within a rural basin.

  9. Understanding enabling capacities for managing the 'wicked problem' of nonpoint source water pollution in catchments: a conceptual framework.

    Science.gov (United States)

    Patterson, James J; Smith, Carl; Bellamy, Jennifer

    2013-10-15

    Nonpoint source (NPS) water pollution in catchments is a 'wicked' problem that threatens water quality, water security, ecosystem health and biodiversity, and thus the provision of ecosystem services that support human livelihoods and wellbeing from local to global scales. However, it is a difficult problem to manage because water catchments are linked human and natural systems that are complex, dynamic, multi-actor, and multi-scalar in nature. This in turn raises questions about understanding and influencing change across multiple levels of planning, decision-making and action. A key challenge in practice is enabling implementation of local management action, which can be influenced by a range of factors across multiple levels. This paper reviews and synthesises important 'enabling' capacities that can influence implementation of local management action, and develops a conceptual framework for understanding and analysing these in practice. Important enabling capacities identified include: history and contingency; institutional arrangements; collaboration; engagement; vision and strategy; knowledge building and brokerage; resourcing; entrepreneurship and leadership; and reflection and adaptation. Furthermore, local action is embedded within multi-scalar contexts and therefore, is highly contextual. The findings highlight the need for: (1) a systemic and integrative perspective for understanding and influencing change for managing the wicked problem of NPS water pollution; and (2) 'enabling' social and institutional arenas that support emergent and adaptive management structures, processes and innovations for addressing NPS water pollution in practice. These findings also have wider relevance to other 'wicked' natural resource management issues facing similar implementation challenges. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Assessing the effects of rural livelihood transition on non-point source pollution: a coupled ABM-IECM model.

    Science.gov (United States)

    Yuan, Chengcheng; Liu, Liming; Ye, Jinwei; Ren, Guoping; Zhuo, Dong; Qi, Xiaoxing

    2017-05-01

    Water pollution caused by anthropogenic activities and driven by changes in rural livelihood strategies in an agricultural system has received increasing attention in recent decades. To simulate the effects of rural household livelihood transition on non-point source (NPS) pollution, a model combining an agent-based model (ABM) and an improved export coefficient model (IECM) was developed. The ABM was adopted to simulate the dynamic process of household livelihood transition, and the IECM was employed to estimate the effects of household livelihood transition on NPS pollution. The coupled model was tested in a small catchment in the Dongting Lake region, China. The simulated results reveal that the transition of household livelihood strategies occurred with the changes in the prices of rice, pig, and labor. Thus, the cropping system, land-use intensity, resident population, and number of pigs changed in the small catchment from 2000 to 2014. As a result of these changes, the total nitrogen load discharged into the river initially increased from 6841.0 kg in 2000 to 8446.3 kg in 2004 and then decreased to 6063.9 kg in 2014. Results also suggest that rural living, livestock, paddy field, and precipitation alternately became the main causes of NPS pollution in the small catchment, and the midstream region of the small catchment was the primary area for NPS pollution from 2000 to 2014. Despite some limitations, the coupled model provides an innovative way to simulate the effects of rural household livelihood transition on NPS pollution with the change of socioeconomic factors, and thereby identify the key factors influencing water pollution to provide valuable suggestions on how agricultural environmental risks can be reduced through the regulation of the behaviors of farming households in the future.

  11. Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in South China

    Science.gov (United States)

    Wu, Yiping; Chen, Ji

    2013-01-01

    Understanding the physical processes of point source (PS) and nonpoint source (NPS) pollution is critical to evaluate river water quality and identify major pollutant sources in a watershed. In this study, we used the physically-based hydrological/water quality model, Soil and Water Assessment Tool, to investigate the influence of PS and NPS pollution on the water quality of the East River (Dongjiang in Chinese) in southern China. Our results indicate that NPS pollution was the dominant contribution (>94%) to nutrient loads except for mineral phosphorus (50%). A comprehensive Water Quality Index (WQI) computed using eight key water quality variables demonstrates that water quality is better upstream than downstream despite the higher level of ammonium nitrogen found in upstream waters. Also, the temporal (seasonal) and spatial distributions of nutrient loads clearly indicate the critical time period (from late dry season to early wet season) and pollution source areas within the basin (middle and downstream agricultural lands), which resource managers can use to accomplish substantial reduction of NPS pollutant loadings. Overall, this study helps our understanding of the relationship between human activities and pollutant loads and further contributes to decision support for local watershed managers to protect water quality in this region. In particular, the methods presented such as integrating WQI with watershed modeling and identifying the critical time period and pollutions source areas can be valuable for other researchers worldwide.

  12. Identifying non-point sources of endocrine active compounds and their biological impacts in freshwater lakes

    Science.gov (United States)

    Baker, Beth H.; Martinovic-Weigelt, Dalma; Ferrey, Mark L.; Barber, Larry B.; Writer, Jeffrey H.; Rosenberry, Donald O.; Kiesling, Richard L.; Lundy, James R.; Schoenfuss, Heiko L.

    2014-01-01

    Contaminants of emerging concern, particularly endocrine active compounds (EACs), have been identified as a threat to aquatic wildlife. However, little is known about the impact of EACs on lakes through groundwater from onsite wastewater treatment systems (OWTS). This study aims to identify specific contributions of OWTS to Sullivan Lake, Minnesota, USA. Lake hydrology, water chemistry, caged bluegill sunfish (Lepomis macrochirus), and larval fathead minnow (Pimephales promelas) exposures were used to assess whether EACs entered the lake through OWTS inflow and the resultant biological impact on fish. Study areas included two OWTS-influenced near-shore sites with native bluegill spawning habitats and two in-lake control sites without nearby EAC sources. Caged bluegill sunfish were analyzed for plasma vitellogenin concentrations, organosomatic indices, and histological pathologies. Surface and porewater was collected from each site and analyzed for EACs. Porewater was also collected for laboratory exposure of larval fathead minnow, before analysis of predator escape performance and gene expression profiles. Chemical analysis showed EACs present at low concentrations at each study site, whereas discrete variations were reported between sites and between summer and fall samplings. Body condition index and liver vacuolization of sunfish were found to differ among study sites as did gene expression in exposed larval fathead minnows. Interestingly, biological exposure data and water chemistry did not match. Therefore, although results highlight the potential impacts of seepage from OWTS, further investigation of mixture effects and life history factor as well as chemical fate is warranted.

  13. Mitigation of non-point source of fluoride on groundwater by dug well recharge

    Science.gov (United States)

    Ganesan, G.; Lakshmanan, E.

    2017-12-01

    Groundwater used for drinking purpose is affected in many regions due to the presence of excess fluoride. The excess intake of fluoride through drinking water causes fluorosis to human in many states of India, including Tamil Nadu. The present study was carried out with the objective of assessing hydrogeochemistry of groundwater and the feasibility of dug well recharge to reduce the fluoride concentration in Vaniyar river basin, Tamil Nadu, India. The major source for fluoride in groundwater of this area is the epidote hornblende gneissic and charnockite which are the major rocks occurring in this region. As a pilot study a cost effective induced recharge structure was constructed at Papichettipatty village in the study region. The study shows that the groundwater level around the recharge site raised up to 2 m from 14.5 m (bgl) and fluoride concentration has decreased from 3.8 mg/l to 0.9 mg/l due to dilution. The advantage of this induced recharge structure is of its low cost, the ease of implementation, improved groundwater recharge and dilution of fluoride in groundwater. An area of about 1.5 km2 has benefited due to this dug well recharge system.

  14. Multi-angle Indicators System of Non-point Pollution Source Assessment in Rural Areas: A Case Study Near Taihu Lake

    Science.gov (United States)

    Huang, Lei; Ban, Jie; Han, Yu Ting; Yang, Jie; Bi, Jun

    2013-04-01

    This study aims to identify key environmental risk sources contributing to water eutrophication and to suggest certain risk management strategies for rural areas. The multi-angle indicators included in the risk source assessment system were non-point source pollution, deficient waste treatment, and public awareness of environmental risk, which combined psychometric paradigm methods, the contingent valuation method, and personal interviews to describe the environmental sensitivity of local residents. Total risk values of different villages near Taihu Lake were calculated in the case study, which resulted in a geographic risk map showing which village was the critical risk source of Taihu eutrophication. The increased application of phosphorus (P) and nitrogen (N), loss vulnerability of pollutant, and a lack of environmental risk awareness led to more serious non-point pollution, especially in rural China. Interesting results revealed by the quotient between the scores of objective risk sources and subjective risk sources showed what should be improved for each study village. More environmental investments, control of agricultural activities, and promotion of environmental education are critical considerations for rural environmental management. These findings are helpful for developing targeted and effective risk management strategies in rural areas.

  15. CADDIS Volume 2. Sources, Stressors and Responses: Urbanization - Energy Sources

    Science.gov (United States)

    Introduction to changes in basal energy sources with urbanization, overview of terrestrial leaf litter dynamics in urban streams, overview of how urbanization can affect primary production, respiration, and dissolved organic carbon quantity and quality.

  16. 18O isotopic characterisation of non-point source contributed heavy metals (Zn and Cu) contamination of groundwater

    International Nuclear Information System (INIS)

    Datta, P.S.; Manjaiah, K.M.; Tyagi, S.K.

    1999-01-01

    In many urbanised areas, fast depletion and severe degradation of the of groundwater resource with contaminants such as nitrate, fluoride, and heavy metals is a common phenomenon, resulting in zonal disparity in fresh water availability. Therefore, for protection of groundwater from pollution and depletion, it is a matter of concern for the planners and decision makers to clearly characterise the sources of contamination and to search for an alternative approach for groundwater development and management. In this context, a new approach is presented here, based on monitoring of 18 O stable isotopic and heavy metals composition of groundwater, to clearly characterise non-point source contributed heavy metals pollution of groundwater in northern parts of Delhi area. In the investigated area, the Cu content in the groundwater ranges from 3-41 μg/l and Zn content ranges from 5-182 μg/l, showing considerable variation from location to location as well as within the small parts of a location. Wide variation in the 18 O stable isotope content of groundwater (δ value of -5.7 per mille to -8.5 per mille) is due to significant variation in the δ 18 O-contents of rainfall with space and time, as well as intensity and distribution of rainfall. Enrichment in 18 O composition with increasing Cu and Zn levels in groundwater suggest that infiltration of rain water, irrigation water and surface run-off water from the surrounding farm lands, along with agrochemicals and other salts present in the soil, to be the main processes causing groundwater contamination. The concentration of Cu and Zn in groundwater vary spatially, due to different degrees of evaporation/recharge, amounts of fertiliser applied and wastes disposed, adsorption/dispersion of species in the soils and lateral mixing of groundwater. Two opposite mechanisms adsorption and redistribution of infiltrating water along with Zn and Cu species in the soil zone are likely to affect the movement of the Zn and Cu species

  17. Will urban expansion lead to an increase in future water pollution loads?--a preliminary investigation of the Haihe River Basin in northeastern China.

    Science.gov (United States)

    Dong, Yang; Liu, Yi; Chen, Jining

    2014-01-01

    Urban expansion is a major driving force changing regional hydrology and nonpoint source pollution. The Haihe River Basin, the political, economic, and cultural center of northeastern China, has undergone rapid urbanization in recent decades. To investigate the consequences of future urban sprawl on nonpoint source water pollutant emissions in the river basin, the urban sprawl in 2030 was estimated, and the annual runoff and nonpoint source pollution in the Haihe River basin were simulated. The Integrated Model of Non-Point Sources Pollution Processes (IMPULSE) was used to simulate the effects of urban sprawl on nonpoint source pollution emissions. The outcomes indicated that the urban expansion through 2030 increased the nonpoint source total nitrogen (TN), total phosphorous (TP), and chemical oxygen demand (COD) emissions by 8.08, 0.14, and 149.57 kg/km(2), respectively. Compared to 2008, the total nonpoint emissions rose by 15.33, 0.57, and 12.39 %, respectively. Twelve percent of the 25 cities in the basin would increase by more than 50 % in nonpoint source TN and COD emissions in 2030. In particular, the nonpoint source TN emissions in Xinxiang, Jiaozuo, and Puyang would rise by 73.31, 67.25, and 58.61 %, and the nonpoint source COD emissions in these cities would rise by 74.02, 51.99, and 53.27 %, respectively. The point source pollution emissions in 2008 and 2030 were also estimated to explore the effects of urban sprawl on total water pollution loads. Urban sprawl through 2030 would bring significant structural changes of total TN, TP, and COD emissions for each city in the area. The results of this study could provide insights into the effects of urbanization in the study area and the methods could help to recognize the role that future urban sprawl plays in the total water pollution loads in the water quality management process.

  18. Runoff characteristics and non-point source pollution analysis in the Taihu Lake Basin: a case study of the town of Xueyan, China.

    Science.gov (United States)

    Zhu, Q D; Sun, J H; Hua, G F; Wang, J H; Wang, H

    2015-10-01

    Non-point source pollution is a significant environmental issue in small watersheds in China. To study the effects of rainfall on pollutants transported by runoff, rainfall was monitored in Xueyan town in the Taihu Lake Basin (TLB) for over 12 consecutive months. The concentrations of different forms of nitrogen (N) and phosphorus (P), and chemical oxygen demand, were monitored in runoff and river water across different land use types. The results indicated that pollutant loads were highly variable. Most N losses due to runoff were found around industrial areas (printing factories), while residential areas exhibited the lowest nitrogen losses through runoff. Nitrate nitrogen (NO3-N) and ammonia nitrogen (NH4-N) were the dominant forms of soluble N around printing factories and hotels, respectively. The levels of N in river water were stable prior to the generation of runoff from a rainfall event, after which they were positively correlated to rainfall intensity. In addition, three sites with different areas were selected for a case study to analyze trends in pollutant levels during two rainfall events, using the AnnAGNPS model. The modeled results generally agreed with the observed data, which suggests that AnnAGNPS can be used successfully for modeling runoff nutrient loading in this region. The conclusions of this study provide important information on controlling non-point source pollution in TLB.

  19. Preliminary preview for a geographic and monitoring program project; a review of point source-nonpoint source effluent trading/offset systems in watersheds

    Science.gov (United States)

    Wood, Alexander Warren; Bernknopf, Richard L.

    2003-01-01

    Watershed-based trading and offset systems are being developed to improve policy-maker?s and regulator?s ability to assess nonpoint source impacts in watersheds and to evaluate the efficacy of using market-incentive programs for preserving environmental quality. An overview of the history of successful and failed trading programs throughout the United States suggests that certain political, economic, and scientific conditions within a temporal and spatial setting help meet water quality standards. The current lack of spontaneous trading among dischargers does not mean that a marketable permit trading system is an inherently inefficient regulatory approach. Rather, its infrequent use is the result of institutional and informational barriers. Improving and refining the earth science information and technologies may help determine whether trading is a suitable policy for improving water quality. However, it is debatable whether or not environmental information is the limiting factor. This paper reviews additional factors affecting the potential for instituting a trading policy. The motivation for investigating and reviewing the history of offsets and trading was inspired by a project in the preliminary stages being developed by U.S. Geological Survey Western Geographic Science Center and the Environmental Protection Agency Region IX. An offset feasibility study will be an integrated, map-based approach that incorporates environmental, economic, and statistical information to investigate the potential for using offsets to meet mercury Total Maximum Daily Loads in the Sacramento River watershed. A regional water-quality offset program is being studied that may help known point sources reduce mercury loading more cost effectively by the remediation of abandoned mines or other diffuse sources as opposed to more costly treatment at their own sites. An efficient offset program requires both a scientific basis and methods to translate that science into a regulatory decision

  20. Nutrient Losses from Non-Point Sources or from Unidentified Point Sources? Application Examples of the Smartphone Based Nitrate App.

    Science.gov (United States)

    Rozemeijer, J.; Ekkelenkamp, R.; van der Zaan, B.

    2017-12-01

    In 2016 Deltares launched the free to use Nitrate App which accurately reads and interprets nitrate test strips. The app directly displays the measured concentration and gives the option to share the result. Shared results are visualised in map functionality within the app and online. Since its introduction we've been seeing an increasing number of nitrate app applications. In this presentation we show some unanticipated types of application. The Nitrate App was originally intended to enable farmers to measure nitrate concentrations on their own farms. This may encourage farmers to talk to specialists about the right nutrient best management practices (BMP's) for their farm. Several groups of farmers have recently started to apply the Nitrate App and to discuss their results with each other and with the authorities. Nitrate concentration routings in catchments have proven to be another useful application. Within a day a person can generate a catchment scale nitrate concentration map identifying nitrate loss hotspots. In several routings in agricultural catchments clear point sources were found, for example at small scale manure processing plants. These routings proved that the Nitrate App can help water managers to target conservation practices more accurately to areas with the highest nitrate concentrations and loads. Other current applications are the screening of domestic water wells in California, the collection of extra measurements (also pH and NH4) in the National Monitoring Network for the Evaluation of the Manure Policy in the Netherlands, and several educational initiatives in cooperation with schools and universities.

  1. Assessment of Non-Point Source Total Phosphorus Pollution from Different Land Use and Soil Types in a Mid-High Latitude Region of China

    Directory of Open Access Journals (Sweden)

    Zhiwei Wang

    2016-11-01

    Full Text Available The transport characteristics of phosphorus in soil and the assessment of its environmental risk have become hot topics in the environmental and agricultural fields. The Sanjiang Plain is an important grain production base in China, and it is characterised by serious land use change caused by large-scale agricultural exploitation. Agricultural inputs and tillage management have destroyed the soil nutrient balance formed over long-term conditions. There are few studies on non-point source phosphorus pollution in the Sanjiang Plain, which is the largest swampy low plain in a mid-high-latitude region in China. Most studies have focused on the water quality of rivers in marsh areas, or the export mechanism of phosphorus from specific land uses. They were conducted using experimental methods or empirical models, and need further development towards mechanism models and the macro-scale. The question is how to find a way to couple processes in phosphorus cycling and a distributed hydrological model considering local hydrological features. In this study, we report an attempt to use a distributed phosphorus transport model to analyse non-point source total phosphorus pollution from different land uses and soil types on the Sanjiang Plain. The total phosphorus concentration generally shows an annually increasing trend in the study area. The total phosphorus load intensity is heterogeneous in different land use types and different soil types. The average total phosphorus load intensity of different land use types can be ranked in descending order from paddy field, dry land, wetlands, grassland, and forestland. The average total phosphorus load intensity of different soil types can be ranked in descending order: paddy soil, bog soil, planosol, meadow soil, black soil, and dark brown earth. The dry land and paddy fields account for the majority of total phosphorus load in the study area. This is mainly caused by extensive use of phosphate fertilizer on the

  2. The estimation of the load of non-point source nitrogen and phosphorus based on observation experiments and export coefficient method in Three Gorges Reservoir Area

    Science.gov (United States)

    Tong, X. X.; Hu, B.; Xu, W. S.; Liu, J. G.; Zhang, P. C.

    2017-12-01

    In this paper, Three Gorges Reservoir Area (TGRA) was chosen to be the study area, the export coefficients of different land-use type were calculated through the observation experiments and literature consultation, and then the load of non-point source (NPS) nitrogen and phosphorus of different pollution sources such as farmland pollution sources, decentralized livestock and poultry breeding pollution sources and domestic pollution sources were estimated. The results show as follows: the pollution load of dry land is the main source of farmland pollution. The order of total nitrogen load of different pollution sources from high to low is livestock breeding pollution, domestic pollution, land use pollution, while the order of phosphorus load of different pollution sources from high to low is land use pollution, livestock breeding pollution, domestic pollution, Therefore, reasonable farmland management, effective control methods of dry land fertilization and sewage discharge of livestock breeding are the keys to the prevention and control of NPS nitrogen and phosphorus in TGRA.

  3. Spatial and temporal variations in non-point source losses of nitrogen and phosphorus in a small agricultural catchment in the Three Gorges Region.

    Science.gov (United States)

    Chen, Chenglong; Gao, Ming; Xie, Deti; Ni, Jiupai

    2016-04-01

    Losses of agricultural pollutants from small catchments are a major issue for water quality in the Three Gorges Region. Solutions are urgently needed. However, before pollutant losses can be controlled, information about spatial and temporal variations in pollutant losses is needed. The study was carried out in the Wangjiagou catchment, a small agricultural catchment in Fuling District, Chongqing, and the data about non-point source losses of nitrogen and phosphorus was collected here. Water samples were collected daily by an automatic water sampler at the outlets of two subcatchments from 2012 to 2014. Also, samples of surface runoff from 28 sampling sites distributed through the subcatchments were collected during 12 rainfall events in 2014. A range of water quality variables were analyzed for all samples and were used to demonstrate the variation in non-point losses of nitrogen and phosphorus over a range of temporal and spatial scales and in different types of rainfall in the catchment. Results showed that there was a significant linear correlation between the mass concentrations of total nitrogen (TN) and nitrate (NO3-N) in surface runoff and that the relationship was maintained with changes in time. Concentrations of TN and NO3-N peaked after fertilizer was applied to crops in spring and autumn; concentrations decreased rapidly after the peak values in spring but declined slowly in autumn. N and P concentrations fluctuated more and showed a greater degree of dispersion during the spring crop cultivation period than those in autumn. Concentrations of TN and NO3-N in surface runoff were significantly and positively correlated with the proportion of the area that was planted with corn and mustard tubers, but were negatively correlated with the proportion of the area taken up with rice and mulberry plantations. The average concentrations of TN and NO3-N in surface runoff reached the highest level from the sampling points at the bottom of the land used for corn

  4. 四川省农村面源污染状况与治理对策研究%Environmental Protection Countermeasures Against Rural Non-point Pollution Sources in Sichuan Province

    Institute of Scientific and Technical Information of China (English)

    郭卫广; 雍毅; 陈杰; 吴怡; 薛嘉

    2016-01-01

    Rural non-point source pollution is mainly divided into agricultural non-point source, livestock excrement non-point source and rural life non-point source pollution. Based on the emission factor method, this study calculated the two main pollutants( COD and NH3 -N) emissions and researched on the environmental protection countermeasures against rural non-point source pollution. Agricultural non-point source pollution control measures include:promoting soil testing and fertilizer recommen-dation, scientific and safe use of pesticides, agricultural tail water collection and treatment, ecological interception technology, etc. Livestock and poultry non-point source pollution control measures include:strengthen the pollution control of small livestock and poultry farmers, integration of agriculture and husbandry for treating non -point source pollution, promoting dry cleaning process, fermentation bed treatment technology, etc. Rural life pollution control measures include:promoting the construction of rural sewage collection and treatment infrastructure, promoting the application of small sewage treatment facilities in rural areas, etc.%四川省农村面源主要分为农田面源、畜禽养殖粪便污染面源和农村生活污染面源,研究根据排放因子法计算了两种主要考核污染物化学需氧量和氨氮的排放量.根据四川省农村面源污染状况特征提出了面源治理对策措施,其中农田面源治理措施包括:推广测土配方施肥、农田面源生态拦截技术等;畜禽养殖污染治理措施包括:加强小型畜禽养殖污染治理,推广农牧结合、干清粪、发酵床处理工艺等;农村生活污染治理措施包括:推进农村生活污水收集及小型污水处理设施等.

  5. Environmental Kuznets Curve Analysis of the Economic Development and Nonpoint Source Pollution in the Ningxia Yellow River Irrigation Districts in China

    Directory of Open Access Journals (Sweden)

    Chunlan Mao

    2013-01-01

    Full Text Available This study applies the environmental Kuznets curve to test the relationship between the regional economic growth and the different types of agricultural nonpoint source pollution loads in the Ningxia Yellow River irrigation area by using the Johnes export coefficient method. Results show that the pollution load generated by crop cultivation and livestock-breeding industries in the Ningxia Yellow River irrigation area shows an inverted U-shaped feature; however, this feature is absent in living-sewage pollution load. Crop pollution has shown a decreasing trend since 1997 because of the increased per capita income of farmers. Livestock-breeding pollution load reached its turning point when the per capita income of farmers reached 8386.74 RMB. Therefore, an increase in the per capita income of farmers corresponds to an increase in the livestock-breeding pollution load in the Ningxia Yellow River irrigation area.

  6. Evaluation of non-point source pollution reduction by applying best management practices using a SWAT model and QuickBird high resolution satellite imagery.

    Science.gov (United States)

    Lee, MiSeon; Park, GeunAe; Park, MinJi; Park, JongYoon; Lee, JiWan; Kim, SeongJoon

    2010-01-01

    This study evaluated the reduction effect of non-point source pollution by applying best management practices (BMPs) to a 1.21 km2 small agricultural watershed using a SWAT (Soil and Water Assessment Tool) model. Two meter QuickBird land use data were prepared for the watershed. The SWAT was calibrated and validated using daily streamflow and monthly water quality (total phosphorus (TP), total nitrogen (TN), and suspended solids (SS)) records from 1999 to 2000 and from 2001 to 2002. The average Nash and Sutcliffe model efficiency was 0.63 for the streamflow and the coefficients of determination were 0.88, 0.72, and 0.68 for SS, TN, and TP, respectively. Four BMP scenarios viz. the application of vegetation filter strip and riparian buffer system, the regulation of Universal Soil Loss Equation P factor, and the fertilizing control amount for crops were applied and analyzed.

  7. Environmental Kuznets curve analysis of the economic development and nonpoint source pollution in the Ningxia Yellow River irrigation districts in China.

    Science.gov (United States)

    Mao, Chunlan; Zhai, Ningning; Yang, Jingchao; Feng, Yongzhong; Cao, Yanchun; Han, Xinhui; Ren, Guangxin; Yang, Gaihe; Meng, Qing-xiang

    2013-01-01

    This study applies the environmental Kuznets curve to test the relationship between the regional economic growth and the different types of agricultural nonpoint source pollution loads in the Ningxia Yellow River irrigation area by using the Johnes export coefficient method. Results show that the pollution load generated by crop cultivation and livestock-breeding industries in the Ningxia Yellow River irrigation area shows an inverted U-shaped feature; however, this feature is absent in living-sewage pollution load. Crop pollution has shown a decreasing trend since 1997 because of the increased per capita income of farmers. Livestock-breeding pollution load reached its turning point when the per capita income of farmers reached 8386.74 RMB. Therefore, an increase in the per capita income of farmers corresponds to an increase in the livestock-breeding pollution load in the Ningxia Yellow River irrigation area.

  8. Application of genetic algorithm to land use optimization for non-point source pollution control based on CLUE-S and SWAT

    Science.gov (United States)

    Wang, Qingrui; Liu, Ruimin; Men, Cong; Guo, Lijia

    2018-05-01

    The genetic algorithm (GA) was combined with the Conversion of Land Use and its Effect at Small regional extent (CLUE-S) model to obtain an optimized land use pattern for controlling non-point source (NPS) pollution. The performance of the combination was evaluated. The effect of the optimized land use pattern on the NPS pollution control was estimated by the Soil and Water Assessment Tool (SWAT) model and an assistant map was drawn to support the land use plan for the future. The Xiangxi River watershed was selected as the study area. Two scenarios were used to simulate the land use change. Under the historical trend scenario (Markov chain prediction), the forest area decreased by 2035.06 ha, and was mainly converted into paddy and dryland area. In contrast, under the optimized scenario (genetic algorithm (GA) prediction), up to 3370 ha of dryland area was converted into forest area. Spatially, the conversion of paddy and dryland into forest occurred mainly in the northwest and southeast of the watershed, where the slope land occupied a large proportion. The organic and inorganic phosphorus loads decreased by 3.6% and 3.7%, respectively, in the optimized scenario compared to those in the historical trend scenario. GA showed a better performance in optimized land use prediction. A comparison of the land use patterns in 2010 under the real situation and in 2020 under the optimized situation showed that Shennongjia and Shuiyuesi should convert 1201.76 ha and 1115.33 ha of dryland into forest areas, respectively, which represented the greatest changes in all regions in the watershed. The results of this study indicated that GA and the CLUE-S model can be used to optimize the land use patterns in the future and that SWAT can be used to evaluate the effect of land use optimization on non-point source pollution control. These methods may provide support for land use plan of an area.

  9. MARKET INCENTIVES AND NONPOINT SOURCES: AN APPLICATION OF TRADABLE CREDITS TO URBAN STORMWATER MANAGEMENT

    Science.gov (United States)

    Excess stormwater runoff can cause serious pollution, habitat degradation and flooding in cities where growth in impervious surface area (such as pavement, buildings, etc.) has created a situation where stormwater runoff routinely exceeds the normal capacity of natural and constr...

  10. Assessing the Hydrologic Performance of the EPA's Nonpoint Source Water Quality Assessment Decision Support Tool Using North American Land Data Assimilation System (Products)

    Science.gov (United States)

    Lee, S.; Ni-Meister, W.; Toll, D.; Nigro, J.; Guiterrez-Magness, A.; Engman, T.

    2010-01-01

    The accuracy of streamflow predictions in the EPA's BASINS (Better Assessment Science Integrating Point and Nonpoint Sources) decision support tool is affected by the sparse meteorological data contained in BASINS. The North American Land Data Assimilation System (NLDAS) data with high spatial and temporal resolutions provide an alternative to the NOAA National Climatic Data Center (NCDC)'s station data. This study assessed the improvement of streamflow prediction of the Hydrological Simulation Program-FORTRAN (HSPF) model contained within BASINS using the NLDAS 118 degree hourly precipitation and evapotranspiration estimates in seven watersheds of the Chesapeake Bay region. Our results demonstrated consistent improvements of daily streamflow predictions in five of the seven watersheds when NLDAS precipitation and evapotranspiration data was incorporated into BASINS. The improvement of using the NLDAS data is significant when watershed's meteorological station is either far away or not in a similar climatic region. When the station is nearby, using the NLDAS data produces similar results. The correlation coefficients of the analyses using the NLDAS data were greater than 0.8, the Nash-Sutcliffe (NS) model fit efficiency greater than 0.6, and the error in the water balance was less than 5%. Our analyses also showed that the streamflow improvements were mainly contributed by the NLDAS's precipitation data and that the improvement from using NLDAS's evapotranspiration data was not significant; partially due to the constraints of current BASINS-HSPF settings. However, NLDAS's evapotranspiration data did improve the baseflow prediction. This study demonstrates the NLDAS data has the potential to improve stream flow predictions, thus aid the water quality assessment in the EPA nonpoint water quality assessment decision tool.

  11. An economic optimal-control evaluation of achieving/maintaining ground-water quality contaminated from nonpoint agricultural sources

    International Nuclear Information System (INIS)

    Cole, G.V.

    1991-01-01

    This study developed a methodology that may be used to dynamically examine the producer/consumer conflict related to nonpoint agricultural chemical contamination of a regional ground-water resource. Available means of obtaining acceptable ground-water quality included pollution-prevention techniques (restricting agricultural-chemical inputs or changing crop-production practices) and end-of-pipe abatement methods. Objectives were to select an agricultural chemical contaminant, estimate the regional agricultural costs associated with restricting the use of the selected chemical, estimate the economic costs associated with point-of-use ground-water contaminant removal and determine the least-cost method for obtaining water quality. The nitrate chemical derived from nitrogen fertilizer was selected as the contaminate. A three-county study area was identified in the Northwest part of Tennessee. Results indicated that agriculture was financially responsible for obtaining clean point-of-use water only when the cost of filtering increased substantially or the population in the region was much larger than currently existed

  12. Water quality and non-point sources of risk: the Jiulong River Watershed, P. R. of China.

    Science.gov (United States)

    Zhang, Jingjing; Zhang, Luoping; Ricci, Paolo F

    2012-01-01

    Retrospective water quality assessment plays an essential role in identifying trends and causal associations between exposures and risks, thus it can be a guide for water resources management. We have developed empirical relationships between several time-varying social and economic factors of economic development, water quality variables such as nitrate-nitrogen, COD(Mn), BOD(5), and DO, in the Jiulong River Watershed and its main tributary, the West River. Our analyses used alternative statistical methods to reduce the dimensionality of the analysis first and then strengthen the study's causal associations. The statistical methods included: factor analysis (FA), trend analysis, Monte Carlo/bootstrap simulations, robust regressions and a coupled equations model, integrated into a framework that allows an investigation and resolution of the issues that may affect the estimated results. After resolving these, we found that the concentrations of nitrogen compounds increased over time in the West River region, and that fertilizer used in agricultural fruit crops was the main risk with regard to nitrogen pollution. The relationships we developed can identify hazards and explain the impact of sources of different types of pollution, such as urbanization, and agriculture.

  13. Major and Trace Element Fluxes to the Ganges River: Significance of Small Flood Plain Tributary as Non-Point Pollution Source

    Science.gov (United States)

    Lakshmi, V.; Sen, I. S.; Mishra, G.

    2017-12-01

    There has been much discussion amongst biologists, ecologists, chemists, geologists, environmental firms, and science policy makers about the impact of human activities on river health. As a result, multiple river restoration projects are on going on many large river basins around the world. In the Indian subcontinent, the Ganges River is the focal point of all restoration actions as it provides food and water security to half a billion people. Serious concerns have been raised about the quality of Ganga water as toxic chemicals and many more enters the river system through point-sources such as direct wastewater discharge to rivers, or non-point-sources. Point source pollution can be easily identified and remedial actions can be taken; however, non-point pollution sources are harder to quantify and mitigate. A large non-point pollution source in the Indo-Gangetic floodplain is the network of small floodplain rivers. However, these rivers are rarely studied since they are small in catchment area ( 1000-10,000 km2) and discharge (knowledge gap we have monitored the Pandu River for one year between February 2015 and April 2016. Pandu river is 242 km long and is a right bank tributary of Ganges with a total catchment area of 1495 km2. Water samples were collected every month for dissolved major and trace elements. Here we show that the concentration of heavy metals in river Pandu is in higher range as compared to the world river average, and all the dissolved elements shows a large spatial-temporal variation. We show that the Pandu river exports 192170, 168517, 57802, 32769, 29663, 1043, 279, 241, 225, 162, 97, 28, 25, 22, 20, 8, 4 Kg/yr of Ca, Na, Mg, K, Si, Sr, Zn, B, Ba, Mn, Al, Li, Rb, Mo, U, Cu, and Sb, respectively, to the Ganga river, and the exported chemical flux effects the water chemistry of the Ganga river downstream of its confluence point. We further speculate that small floodplain rivers is an important source that contributes to the dissolved chemical

  14. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying; Li, Tingqiang; Wu, Chengxian [Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); He, Zhenli [University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, FL 34945 (United States); Japenga, Jan; Deng, Meihua [Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Yang, Xiaoe, E-mail: xeyang@zju.edu.cn [Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2015-12-15

    Highlights: • Heavy metal source apportionment was conducted in peri-urban agricultural areas. • Precise and quantified results were obtained by using isotope ratio analysis. • The integration of IRA, GIS, PCA, and CA was proved to be more reliable. • Hg pollution was from the use of organic fertilizers in this area. - Abstract: Three techniques (Isotope Ratio Analysis, GIS mapping, and Multivariate Statistical Analysis) were integrated to assess heavy metal pollution and source apportionment in peri-urban agricultural soils. The soils in the study area were moderately polluted with cadmium (Cd) and mercury (Hg), lightly polluted with lead (Pb), and chromium (Cr). GIS Mapping suggested Cd pollution originates from point sources, whereas Hg, Pb, Cr could be traced back to both point and non-point sources. Principal component analysis (PCA) indicated aluminum (Al), manganese (Mn), nickel (Ni) were mainly inherited from natural sources, while Hg, Pb, and Cd were associated with two different kinds of anthropogenic sources. Cluster analysis (CA) further identified fertilizers, waste water, industrial solid wastes, road dust, and atmospheric deposition as potential sources. Based on isotope ratio analysis (IRA) organic fertilizers and road dusts accounted for 74–100% and 0–24% of the total Hg input, while road dusts and solid wastes contributed for 0–80% and 19–100% of the Pb input. This study provides a reliable approach for heavy metal source apportionment in this particular peri-urban area, with a clear potential for future application in other regions.

  15. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils

    International Nuclear Information System (INIS)

    Huang, Ying; Li, Tingqiang; Wu, Chengxian; He, Zhenli; Japenga, Jan; Deng, Meihua; Yang, Xiaoe

    2015-01-01

    Highlights: • Heavy metal source apportionment was conducted in peri-urban agricultural areas. • Precise and quantified results were obtained by using isotope ratio analysis. • The integration of IRA, GIS, PCA, and CA was proved to be more reliable. • Hg pollution was from the use of organic fertilizers in this area. - Abstract: Three techniques (Isotope Ratio Analysis, GIS mapping, and Multivariate Statistical Analysis) were integrated to assess heavy metal pollution and source apportionment in peri-urban agricultural soils. The soils in the study area were moderately polluted with cadmium (Cd) and mercury (Hg), lightly polluted with lead (Pb), and chromium (Cr). GIS Mapping suggested Cd pollution originates from point sources, whereas Hg, Pb, Cr could be traced back to both point and non-point sources. Principal component analysis (PCA) indicated aluminum (Al), manganese (Mn), nickel (Ni) were mainly inherited from natural sources, while Hg, Pb, and Cd were associated with two different kinds of anthropogenic sources. Cluster analysis (CA) further identified fertilizers, waste water, industrial solid wastes, road dust, and atmospheric deposition as potential sources. Based on isotope ratio analysis (IRA) organic fertilizers and road dusts accounted for 74–100% and 0–24% of the total Hg input, while road dusts and solid wastes contributed for 0–80% and 19–100% of the Pb input. This study provides a reliable approach for heavy metal source apportionment in this particular peri-urban area, with a clear potential for future application in other regions.

  16. Comparative study on nutrient removal of agricultural non-point source pollution for three filter media filling schemes in eco-soil reactors.

    Science.gov (United States)

    Du, Fuyi; Xie, Qingjie; Fang, Longxiang; Su, Hang

    2016-08-01

    Nutrients (nitrogen and phosphorus) from agricultural non-point source (NPS) pollution have been increasingly recognized as a major contributor to the deterioration of water quality in recent years. The purpose of this article is to investigate the discrepancies in interception of nutrients in agricultural NPS pollution for eco-soil reactors using different filling schemes. Parallel eco-soil reactors of laboratory scale were created and filled with filter media, such as grit, zeolite, limestone, and gravel. Three filling schemes were adopted: increasing-sized filling (I-filling), decreasing-sized filling (D-filling), and blend-sized filling (B-filling). The systems were intermittent operations via simulated rainstorm runoff. The nutrient removal efficiency, biomass accumulation and vertical dissolved oxygen (DO) distribution were defined to assess the performance of eco-soil. The results showed that B-filling reactor presented an ideal DO for partial nitrification-denitrification across the eco-soil, and B-filling was the most stable in the change of bio-film accumulation trends with depth in the three fillings. Simultaneous and highest removals of NH4(+)-N (57.74-70.52%), total nitrogen (43.69-54.50%), and total phosphorus (42.50-55.00%) were obtained in the B-filling, demonstrating the efficiency of the blend filling schemes of eco-soil for oxygen transfer and biomass accumulation to cope with agricultural NPS pollution.

  17. A paddy eco-ditch and wetland system to reduce non-point source pollution from rice-based production system while maintaining water use efficiency.

    Science.gov (United States)

    Xiong, Yujiang; Peng, Shizhang; Luo, Yufeng; Xu, Junzeng; Yang, Shihong

    2015-03-01

    Non-point source (NPS) pollution from agricultural drainage has aroused widespread concerns throughout the world due to its contribution to eutrophication of water bodies. To remove nitrogen (N) and phosphorus (P) from agricultural drainage in situ, a Paddy Eco-ditch and Wetland System (PEDWS) was designed and built based on the characteristics of the irrigated rice district. A 2-year (2012-2013) field experiment was conducted to evaluate the performance of this system in Gaoyou Irrigation District in Eastern China. The results showed that the reduction in water input in paddy field of the PEDWS enabled the maintenance of high rice yield; it significantly increased irrigation water productivity (WPI), gross water productivity (WPG), and evapotranspiration water productivity (WPET) by 109.2, 67.1, and 17.6%, respectively. The PEDWS dramatically decreased N and P losses from paddy field. Compared with conventional irrigation and drainage system (CIDS), the amount of drainage water from PEDWS was significantly reduced by 56.2%, the total nitrogen (TN) concentration in drainage was reduced by 42.6%, and thus the TN and total phosphorus (TP) losses were reduced by 87.8 and 70.4%. PEDWS is technologically feasible and applicable to treat nutrient losses from paddy fields in situ and can be used in similar areas.

  18. {sup 37}Cl, {sup 15}N, {sup 13}C isotopic analysis of common agro-chemicals for identifying non-point source agricultural contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Annable, W.K. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)]. E-mail: wkannabl@uwaterloo.ca; Frape, S.K. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Shouakar-Stash, O. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Shanoff, T. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Drimmie, R.J. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Harvey, F.E. [School of Natural Resources, University of Nebraska, Lincoln, NE 68588-0517 (United States)

    2007-07-15

    The isotopic compositions of commercially available herbicides were analyzed to determine their respective {sup 15}N, {sup 13}C and {sup 37}Cl signatures for the purposes of developing a discrete tool for tracing and identifying non-point source contaminants in agricultural watersheds. Findings demonstrate that of the agrochemicals evaluated, chlorine stable isotopes signatures range between {delta}{sup 37}Cl = -4.55 per mille and +3.40 per mille , whereas most naturally occurring chlorine stable isotopes signatures, including those of road salt, sewage sludge and fertilizers, vary in a narrow range about the Standard Mean Ocean Chloride (SMOC) between -2.00 per mille and +1.00 per mille . Nitrogen stable isotope values varied widely from {delta}{sup 15}N = -10.86 per mille to +1.44 per mille and carbon stable isotope analysis gave an observed range between {delta}{sup 13}C = -37.13 per mille and -21.35 per mille for the entire suite of agro-chemicals analyzed. When nitrogen, carbon and chlorine stable isotope analyses were compared in a cross-correlation analysis, statistically independent isotopic signatures exist suggesting a new potential tracer tool for identifying herbicides in the environment.

  19. Impact of changes in labor resources and transfers of land use rights on agricultural non-point source pollution in Jiangsu Province, China.

    Science.gov (United States)

    Lu, Hua; Xie, Hualin

    2018-02-01

    This study systematically explores the likely mechanisms driving the effect of the transfer of agricultural land use rights (ALURs) on agricultural non-point source pollution (ANSP) in the context of changing agricultural labor resources. It quantitatively estimates the direction and degree of this influence from a microeconomic perspective using data from rural households. The results reveal that economies of scale caused by ALURs transfers contribute to reducing both the ANSP and marginal costs of inputs. Changes in agricultural labor resources lead to reductions in agricultural labor supply and negatively impact on ANSP. Encouraging farmers to participate in ALURs transfers, therefore, helps to reduce ANSP. The government and related departments should implement policies that support farmers who decide to rent an entire village's land or the adjacent land to achieve economies of scale. Accelerating the development of small farm machinery that is suitable for smaller farm plots and the elderly can serve to reduce the use of chemical fertilizer and promote green production and sustainable agricultural development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. An export coefficient based inexact fuzzy bi-level multi-objective programming model for the management of agricultural nonpoint source pollution under uncertainty

    Science.gov (United States)

    Cai, Yanpeng; Rong, Qiangqiang; Yang, Zhifeng; Yue, Wencong; Tan, Qian

    2018-02-01

    In this research, an export coefficient based inexact fuzzy bi-level multi-objective programming (EC-IFBLMOP) model was developed through integrating export coefficient model (ECM), interval parameter programming (IPP) and fuzzy parameter programming (FPP) within a bi-level multi-objective programming framework. The proposed EC-IFBLMOP model can effectively deal with the multiple uncertainties expressed as discrete intervals and fuzzy membership functions. Also, the complexities in agricultural systems, such as the cooperation and gaming relationship between the decision makers at different levels, can be fully considered in the model. The developed model was then applied to identify the optimal land use patterns and BMP implementing levels for agricultural nonpoint source (NPS) pollution management in a subcatchment in the upper stream watershed of the Miyun Reservoir in north China. The results of the model showed that the desired optimal land use patterns and implementing levels of best management of practices (BMPs) would be obtained. It is the gaming result between the upper- and lower-level decision makers, when the allowable discharge amounts of NPS pollutants were limited. Moreover, results corresponding to different decision scenarios could provide a set of decision alternatives for the upper- and lower-level decision makers to identify the most appropriate management strategy. The model has a good applicability and can be effectively utilized for agricultural NPS pollution management.

  1. Atmospheric deposition of selected chemicals and their effect on nonpoint-source pollution in the Twin Cities Metropolitan Area, Minnesota

    Science.gov (United States)

    Brown, R.G.

    1984-01-01

    Atmospheric deposition and subsequent runoff concentrations of total Kjeldahl nitrogen, dissolved nitrite-plus-nitrate nitrogen, total phosphorus, total sulfate (only for atmospheric deposition), total chloride, and total lead were studied from April 1 to October 31, 1980, in one rural and three urban watersheds in the Twin Cities Metropolitan Area, Minnesota. Seasonal patterns of wetfall and dryfall generally were similar for all constituents except chloride in both rural and urban watersheds. Similarity between constituents and between rural and urban watersheds suggested that regional air masses transported from the Gulf of Mexico by frontal storm movements influence seasonal patterns of atmospheric deposition in the metropolitan area. Local influences such as industrial, agricultural, and vehicular air pollutants were found to influence the magnitude or rate of atmospheric deposition rather than the seasonal pattern. Chloride was primarily influenced by northwest frontal storms laden with coastal chloride. Local influences such as dust from road deicing salt dust are thought to have caused an increase in atmospheric chloride during June.

  2. Seasonal and spatial variation of diffuse (non-point) source zinc pollution in a historically metal mined river catchment, UK

    Energy Technology Data Exchange (ETDEWEB)

    Gozzard, E., E-mail: emgo@ceh.ac.uk [Hydrogeochemical Engineering Research and Outreach Group, School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Mayes, W.M., E-mail: W.Mayes@hull.ac.uk [Hydrogeochemical Engineering Research and Outreach Group, School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Potter, H.A.B., E-mail: hugh.potter@environment-agency.gov.uk [Environment Agency England and Wales, c/o Institute for Research on Environment and Sustainability, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Jarvis, A.P., E-mail: a.p.jarvis@ncl.ac.uk [Hydrogeochemical Engineering Research and Outreach Group, School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2011-10-15

    Quantifying diffuse sources of pollution is becoming increasingly important when characterising river catchments in entirety - a prerequisite for environmental management. This study examines both low and high flow events, as well as spatial variability, in order to assess point and diffuse components of zinc pollution within the River West Allen catchment, which lies within the northern England lead-zinc Orefield. Zinc levels in the river are elevated under all flow regimes, and are of environmental concern. Diffuse components are of little importance at low flow, with point source mine water discharges dominating instream zinc concentration and load. During higher river flows 90% of the instream zinc load is attributed to diffuse sources, where inputs from resuspension of metal-rich sediments, and groundwater influx are likely to be more dominant. Remediating point mine water discharges should significantly improve water quality at lower flows, but contribution from diffuse sources will continue to elevate zinc flux at higher flows. - Highlights: > Zinc concentrations breach EU quality thresholds under all river flow conditions. > Contributions from point sources dominate instream zinc dynamics in low flow. > Contributions from diffuse sources dominate instream zinc dynamics in high flow. > Important diffuse sources include river-bed sediment resuspension and groundwater influx. > Diffuse sources would still create significant instream pollution, even with point source treatment. - Diffuse zinc sources are an important source of instream contamination to mine-impacted rivers under varying flow conditions.

  3. Urban Sources of Air Pollution

    DEFF Research Database (Denmark)

    Sorenson, Spencer C.

    1998-01-01

    A discusion of the relative importance of different mobile sources, effects of driving on emissions, history of emissions standards, and technological methods to reduce emissions.......A discusion of the relative importance of different mobile sources, effects of driving on emissions, history of emissions standards, and technological methods to reduce emissions....

  4. Simulation on Change Law of Runoff, Sediment and Non-point Source Nitrogen and Phosphorus Discharge under Different Land uses Based on SWAT Model: A Case Study of Er hai Lake Small Watershed

    Science.gov (United States)

    Tong, Xiao Xia; Lai Cui, Yuan; Chen, Man Yu; Hu, Bo; Xu, Wen Sheng

    2018-05-01

    The Er yuan watershed of Er hai district is chosen as the research area, the law of runoff and sediment and non-point source nitrogen and phosphorus discharges under different land uses during 2001 to 2014 are simulated based on SWAT model. Results of simulation indicate that the order of total runoff yield of different land use type from high to low is grassland, paddy fields, dry land. Specifically, the order of surface runoff yield from high to low is paddy fields, dry land, grassland, the order of lateral runoff yield from high to low is paddy fields, dry land, grassland, the order of groundwater runoff yield from high to low is grassland, paddy fields, dry land. The orders of sediment and nitrogen and phosphorus yield per unit area of different land use type are the same, grassland> paddy fields> dry land. It can be seen, nitrogen and phosphorus discharges from paddy fields and dry land are the main sources of agricultural non-point pollution of the irrigated area. Therefore, reasonable field management measures which can decrease the discharge of nitrogen and phosphorus of paddy fields and dry land are the key to agricultural non-point source pollution prevention and control.

  5. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils.

    Science.gov (United States)

    Huang, Ying; Li, Tingqiang; Wu, Chengxian; He, Zhenli; Japenga, Jan; Deng, Meihua; Yang, Xiaoe

    2015-12-15

    Three techniques (Isotope Ratio Analysis, GIS mapping, and Multivariate Statistical Analysis) were integrated to assess heavy metal pollution and source apportionment in peri-urban agricultural soils. The soils in the study area were moderately polluted with cadmium (Cd) and mercury (Hg), lightly polluted with lead (Pb), and chromium (Cr). GIS Mapping suggested Cd pollution originates from point sources, whereas Hg, Pb, Cr could be traced back to both point and non-point sources. Principal component analysis (PCA) indicated aluminum (Al), manganese (Mn), nickel (Ni) were mainly inherited from natural sources, while Hg, Pb, and Cd were associated with two different kinds of anthropogenic sources. Cluster analysis (CA) further identified fertilizers, waste water, industrial solid wastes, road dust, and atmospheric deposition as potential sources. Based on isotope ratio analysis (IRA) organic fertilizers and road dusts accounted for 74-100% and 0-24% of the total Hg input, while road dusts and solid wastes contributed for 0-80% and 19-100% of the Pb input. This study provides a reliable approach for heavy metal source apportionment in this particular peri-urban area, with a clear potential for future application in other regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Estimating Discharge and Nonpoint Source Nitrate Loading to Streams From Three End-Member Pathways Using High-Frequency Water Quality Data

    Science.gov (United States)

    Miller, Matthew P.; Tesoriero, Anthony J.; Hood, Krista; Terziotti, Silvia; Wolock, David M.

    2017-12-01

    The myriad hydrologic and biogeochemical processes taking place in watersheds occurring across space and time are integrated and reflected in the quantity and quality of water in streams and rivers. Collection of high-frequency water quality data with sensors in surface waters provides new opportunities to disentangle these processes and quantify sources and transport of water and solutes in the coupled groundwater-surface water system. A new approach for separating the streamflow hydrograph into three components was developed and coupled with high-frequency nitrate data to estimate time-variable nitrate loads from chemically dilute quick flow, chemically concentrated quick flow, and slowflow groundwater end-member pathways for periods of up to 2 years in a groundwater-dominated and a quick-flow-dominated stream in central Wisconsin, using only streamflow and in-stream water quality data. The dilute and concentrated quick flow end-members were distinguished using high-frequency specific conductance data. Results indicate that dilute quick flow contributed less than 5% of the nitrate load at both sites, whereas 89 ± 8% of the nitrate load at the groundwater-dominated stream was from slowflow groundwater, and 84 ± 25% of the nitrate load at the quick-flow-dominated stream was from concentrated quick flow. Concentrated quick flow nitrate concentrations varied seasonally at both sites, with peak concentrations in the winter that were 2-3 times greater than minimum concentrations during the growing season. Application of this approach provides an opportunity to assess stream vulnerability to nonpoint source nitrate loading and expected stream responses to current or changing conditions and practices in watersheds.

  7. Estimating discharge and non-point source nitrate loading to streams from three end-member pathways using high-frequency water quality and streamflow data

    Science.gov (United States)

    Miller, M. P.; Tesoriero, A. J.; Hood, K.; Terziotti, S.; Wolock, D.

    2017-12-01

    The myriad hydrologic and biogeochemical processes taking place in watersheds occurring across space and time are integrated and reflected in the quantity and quality of water in streams and rivers. Collection of high-frequency water quality data with sensors in surface waters provides new opportunities to disentangle these processes and quantify sources and transport of water and solutes in the coupled groundwater-surface water system. A new approach for separating the streamflow hydrograph into three components was developed and coupled with high-frequency specific conductance and nitrate data to estimate time-variable watershed-scale nitrate loading from three end-member pathways - dilute quickflow, concentrated quickflow, and slowflow groundwater - to two streams in central Wisconsin. Time-variable nitrate loads from the three pathways were estimated for periods of up to two years in a groundwater-dominated and a quickflow-dominated stream, using only streamflow and in-stream water quality data. The dilute and concentrated quickflow end-members were distinguished using high-frequency specific conductance data. Results indicate that dilute quickflow contributed less than 5% of the nitrate load at both sites, whereas 89±5% of the nitrate load at the groundwater-dominated stream was from slowflow groundwater, and 84±13% of the nitrate load at the quickflow-dominated stream was from concentrated quickflow. Concentrated quickflow nitrate concentrations varied seasonally at both sites, with peak concentrations in the winter that were 2-3 times greater than minimum concentrations during the growing season. Application of this approach provides an opportunity to assess stream vulnerability to non-point source nitrate loading and expected stream responses to current or changing conditions and practices in watersheds.

  8. Characterization of occurrence, sources and sinks of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in a tropical urban catchment

    International Nuclear Information System (INIS)

    Chen, Huiting; Reinhard, Martin; Nguyen, Tung Viet; You, Luhua; He, Yiliang; Gin, Karina Yew-Hoong

    2017-01-01

    Understanding the sources, occurrence and sinks of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in the urban water cycle is important to protect and utilize local water resources. Concentrations of 22 target PFASs and general water quality parameters were determined monthly for a year in filtered water samples from five tributaries and three sampling stations of an urban water body. Of the 22 target PFASs, 17 PFASs were detected with a frequency >93% including PFCAs: C4-C12 perfluoroalkyl carboxylates, C4, C6, C8, and C10 perfluoroalkane sulfonates, perfluorooctane sulfonamides and perfluorooctane sulfonamide substances (FOSAMs), C10 perfluoroalkyl phosphonic acid (C10 PFPA), 6:2 fluorotelomer sulfonic acid (6:2 FTSA) and C8/C8 perfluoroalkyl phosphinic acid (C8/C8-PFPIA). The most abundant PFASs in water were PFBS (1.4–55 ng/L), PFBA (1.0–23 ng/L), PFOS (1.5–24 ng/L) and PFOA (2.0–21 ng/L). In the tributaries, PFNA concentrations ranged from 1.2 to 87.1 ng/L except in the May 2013 samples of two tributaries, which reached 520 and 260 ng/L. Total PFAS concentrations in the sediment samples ranged from 1.6 to 15 ng/g d.w. with EtFOSAA, PFDoA, PFOS and PFDA being the dominant species. Based on water and sediment data, two types of sources were inferred: one-time or intermittent point sources and continuous non-point sources. FOSAMs and PFOS released continually from non-point sources, C8/C8 PFPIA, PFDoA and PFUnA was released from point sources. The highly water soluble short-chain PFASs including PFBA, PFPeA and PFBS remained predominantly in the water column. The factors governing solution phase concentrations appear to be compound hydrophobicity and sorption to suspended particles. Correlation of the dissolved phase concentrations with precipitation data suggested stormwater was a significant source of PFBA, PFBS, PFUnA and PFDoA. Negative correlations with precipitation indicated sources feeding FOSAA and FOSA directly into the tributaries

  9. Application of modified export coefficient method on the load estimation of non-point source nitrogen and phosphorus pollution of soil and water loss in semiarid regions.

    Science.gov (United States)

    Wu, Lei; Gao, Jian-en; Ma, Xiao-yi; Li, Dan

    2015-07-01

    Chinese Loess Plateau is considered as one of the most serious soil loss regions in the world, its annual sediment output accounts for 90 % of the total sediment loads of the Yellow River, and most of the Loess Plateau has a very typical characteristic of "soil and water flow together", and water flow in this area performs with a high sand content. Serious soil loss results in nitrogen and phosphorus loss of soil. Special processes of water and soil in the Loess Plateau lead to the loss mechanisms of water, sediment, nitrogen, and phosphorus are different from each other, which are greatly different from other areas of China. In this study, the modified export coefficient method considering the rainfall erosivity factor was proposed to simulate and evaluate non-point source (NPS) nitrogen and phosphorus loss load caused by soil and water loss in the Yanhe River basin of the hilly and gully area, Loess Plateau. The results indicate that (1) compared with the traditional export coefficient method, annual differences of NPS total nitrogen (TN) and total phosphorus (TP) load after considering the rainfall erosivity factor are obvious; it is more in line with the general law of NPS pollution formation in a watershed, and it can reflect the annual variability of NPS pollution more accurately. (2) Under the traditional and modified conditions, annual changes of NPS TN and TP load in four counties (districts) took on the similar trends from 1999 to 2008; the load emission intensity not only is closely related to rainfall intensity but also to the regional distribution of land use and other pollution sources. (3) The output structure, source composition, and contribution rate of NPS pollution load under the modified method are basically the same with the traditional method. The average output structure of TN from land use and rural life is about 66.5 and 17.1 %, the TP is about 53.8 and 32.7 %; the maximum source composition of TN (59 %) is farmland; the maximum source

  10. Evaluation of conventional and alternative monitoring methods for a recreational marine beach with nonpoint source of fecal contamination.

    Science.gov (United States)

    Shibata, Tomoyuki; Solo-Gabriele, Helena M; Sinigalliano, Christopher D; Gidley, Maribeth L; Plano, Lisa R W; Fleisher, Jay M; Wang, John D; Elmir, Samir M; He, Guoqing; Wright, Mary E; Abdelzaher, Amir M; Ortega, Cristina; Wanless, David; Garza, Anna C; Kish, Jonathan; Scott, Troy; Hollenbeck, Julie; Backer, Lorraine C; Fleming, Lora E

    2010-11-01

    The objectives of this work were to compare enterococci (ENT) measurements based on the membrane filter, ENT(MF) with alternatives that can provide faster results including alternative enterococci methods (e.g., chromogenic substrate (CS), and quantitative polymerase chain reaction (qPCR)), and results from regression models based upon environmental parameters that can be measured in real-time. ENT(MF) were also compared to source tracking markers (Staphylococcus aureus, Bacteroidales human and dog markers, and Catellicoccus gull marker) in an effort to interpret the variability of the signal. Results showed that concentrations of enterococci based upon MF (turbidity and tidal height. Enterococci by MF and CS were also inversely correlated with solar radiation but enterococci by qPCR was not. The regression model based on environmental variables provided fair qualitative predictions of enterococci by MF in real-time, for daily geometric mean levels, but not for individual samples. Overall, ENT(MF) was not significantly correlated with source tracking markers with the exception of samples collected during one storm event. The inability of the regression model to predict ENT(MF) levels for individual samples is likely due to the different sources of ENT impacting the beach at any given time, making it particularly difficult to to predict short-term variability of ENT(MF) for environmental parameters.

  11. A conceptual study on the formulation of a permeable reactive pavement with activated carbon additives for controlling the fate of non-point source environmental organic contaminants.

    Science.gov (United States)

    Huang, Shengyi; Liang, Chenju

    2018-02-01

    To take advantage of the road pavement network where non-point source (NPS) pollution such as benzene, toluene, ethyl-benzene, and xylene (BTEX) from vehicle traffic exhaust via wet and dry atmospheric deposition occurs, the asphalt pavement may be used as a media to control the NPS pollution. An experiment to prepare an adsorptive porous reactive pavement (PRP) was initiated to explore the potential to reduce environmental NPS vehicle pollution. The PRP was prepared and studied as follows: various activated carbons (AC) were initially screened to determine if they were suitable as an additive in the porous asphalt mixture; various mixtures of a selected AC were incorporated with the design of porous asphalt concrete (PAC) to produce PRP, and the PRP formulations were tested to ensure that they comply with the required specifications; qualified specimens were subsequently tested to determine their adsorption capacity for BTEX in aqueous solution, as compared to conventional PAC. The PRP08 and PRP16 samples, named for the design formulations of 0.8% and 1.6% of AC (by wt. in the formulation), exhibited low asphalt drain-down and low abrasion loss and also met all regulated specifications. The BTEX adsorption capacity measurements of PRP08 and PRP16 were 33-46%, 36-51%, 20-22%, and 6-8% respectively, higher than those obtained from PACs. Based on the test results, PRPs showed good physical performance and adsorption and may be considered as a potential method for controlling the transport of NPS vehicle pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Assessment of nonpoint source chemical loading potential to watersheds containing uranium waste dumps associated with uranium exploration and mining, Browns Hole, Utah

    Science.gov (United States)

    Marston, Thomas M.; Beisner, Kimberly R.; Naftz, David L.; Snyder, Terry

    2012-01-01

    During August of 2008, 35 solid-phase samples were collected from abandoned uranium waste dumps, undisturbed geologic background sites, and adjacent streambeds in Browns Hole in southeastern Utah. The objectives of this sampling program were (1) to assess impacts on human health due to exposure to radium, uranium, and thorium during recreational activities on and around uranium waste dumps on Bureau of Land Management lands; (2) to compare concentrations of trace elements associated with mine waste dumps to natural background concentrations; (3) to assess the nonpoint source chemical loading potential to ephemeral and perennial watersheds from uranium waste dumps; and (4) to assess contamination from waste dumps to the local perennial stream water in Muleshoe Creek. Uranium waste dump samples were collected using solid-phase sampling protocols. Solid samples were digested and analyzed for major and trace elements. Analytical values for radium and uranium in digested samples were compared to multiple soil screening levels developed from annual dosage calculations in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act's minimum cleanup guidelines for uranium waste sites. Three occupancy durations for sites were considered: 4.6 days per year, 7.0 days per year, and 14.0 days per year. None of the sites exceeded the radium soil screening level of 96 picocuries per gram, corresponding to a 4.6 days per year exposure. Two sites exceeded the radium soil screening level of 66 picocuries per gram, corresponding to a 7.0 days per year exposure. Seven sites exceeded the radium soil screening level of 33 picocuries per gram, corresponding to a 14.0 days per year exposure. A perennial stream that flows next to the toe of a uranium waste dump was sampled, analyzed for major and trace elements, and compared with existing aquatic-life and drinking-water-quality standards. None of the water-quality standards were exceeded in the stream samples.

  13. Contingent Valuation of Residents' Attitudes and Willingness-to-Pay for Non-point Source Pollution Control: A Case Study in AL-Prespa, Southeastern Albania

    Science.gov (United States)

    Grazhdani, Dorina

    2015-07-01

    Recently, local governments in Albania have begun paying attention to management of small watershed, because there are specific boundaries and people living within a watershed basin tend to be more concerned about the basin's environmental, economic, and social development. But this natural resource management and non-point source (NPS) pollution control is still facing challenges. Albanian part of Prespa Park (AL-Prespa) is a good case study, as it is a protected wetland area of high biodiversity and long human history. In this framework, this study was undertaken, the main objectives of which were to explore: (1) the attitudes of the residents toward NPS pollution control, (2) their willingness-to-pay for improving water quality, and (3) factors affecting the residents' willingness-to-pay. Descriptive statistics, one-way ANOVA (analysis of variance), Chi-square analysis, and multivariate data analysis techniques were used. Findings strongly suggested that the residents' attitudes toward NPS pollution control in this area were positive. With the combination of two major contingent valuation methods—dichotomous choice and open-ended formats, the survey results indicated that the average yearly respondents' WTP was €6.4. The survey revealed that residents' yearly income and education level were the main factors affecting residents' willingness-to-pay for NPS pollution control in this area, and there was no significant correlation between residents' yearly income and their education level. The current study would lay a solid foundation on decision-making in further NPS pollution control and public participation through community-based watershed management policies in AL-Prespa watershed and similar areas.

  14. Yield calculation of agricultural non-point source pollutants in Huntai River Basin based on SWAT model%基于SWAT模型的浑太河流域农业面源污染物产生量估算

    Institute of Scientific and Technical Information of China (English)

    付意成; 臧文斌; 董飞; 付敏; 张剑

    2016-01-01

    The establishment of non-point source pollutants output load model under the mode of rainfall-runoff and land use, the analog calculation of agricultural non-point source pollutants in the process of migration and transformation, and the systematic analysis of non-point source pollutants discharge quantity, distribution and composition characteristics are based on actual monitoring data, calibration and validation model, in consideration of underlying surface, hydrology and meteorology, and physical features of Huntai River basin. The areas 1 km away from each side of master stream Huntai River, Taizihe River and Daliaohe River and 5 km away from reservoir were defined as buffer zone, where the mode of land use was transformed so as to restore the natural ecosystem. The process of pollutant migration and conversion was simulated based on the calibration of key hydrological parameters, and the causes as well as the migratory features of non-point source pollution were investigated. The primary area of water environment pollution was mainly distributed along both sides of the water channel of the mainstreams of Huntai River. The point-source pollutant was mainly related to the distribution of industry and the amount of discharged wastewater. The risk of non-point pollution was mainly related to the pattern of agricultural plantation and farmland utilization. The secondary area of water environment pollution was mainly distributed along both sides of the water channel of tributaries. Therefore, the situation of pollutant production corresponding to the intra-regional regulation of industrial structure, land utilization pattern surrounding the water channel should be highlighted. The non-point pollution in Huntai watershed was dominated by farmland pollution, and the main indices of pollutants were total nitrogen (N) and total phosphorus (P). The contribution rate of pollutants was farmland runoff > livestock and poultry breeding > urban runoff > water and soil erosion

  15. A national assessment of the effect of intensive agro-land use practices on nonpoint source pollution using emission scenarios and geo-spatial data.

    Science.gov (United States)

    Zhuo, Dong; Liu, Liming; Yu, Huirong; Yuan, Chengcheng

    2018-01-01

    China's intensive agriculture has led to a broad range of adverse impacts upon ecosystems and thereby caused environmental quality degradation. One of the fundamental problems that face land managers when dealing with agricultural nonpoint source (NPS) pollution is to quantitatively assess the NPS pollution loads from different sources at a national scale. In this study, export scenarios and geo-spatial data were used to calculate the agricultural NPS pollution loads of nutrient, pesticide, plastic film residue, and crop straw burning in China. The results provided the comprehensive and baseline knowledge of agricultural NPS pollution from China's arable farming system in 2014. First, the nitrogen (N) and phosphorus (P) emission loads to water environment were estimated to be 1.44 Tg N and 0.06 Tg P, respectively. East and south China showed the highest load intensities of nutrient release to aquatic system. Second, the amount of pesticide loss to water of seven pesticides that are widely used in China was estimated to be 30.04 tons (active ingredient (ai)). Acetochlor was the major source of pesticide loss to water, contributing 77.65% to the total loss. The environmental impacts of pesticide usage in east and south China were higher than other parts. Third, 19.75% of the plastic film application resided in arable soils. It contributed a lot to soil phthalate ester (PAE) contamination. Fourth, 14.11% of straw produce were burnt in situ, most occurring in May to July (post-winter wheat harvest) in North China Plain and October to November (post-rice harvest days) in southeast China. All the above agricultural NPS pollution loadings were unevenly distributed across China. The spatial correlations between pollution loads at land unit scale were also estimated. Rising labor cost in rural China might be a possible explanation for the general positive correlations of the NPS pollution loads. It also indicated a co-occurred higher NPS pollution loads and a higher

  16. Research on Nonpoint Source Pollution Assessment Method in Data Sparse Regions: A Case Study of Xichong River Basin, China

    Directory of Open Access Journals (Sweden)

    Xing Liu

    2015-01-01

    Full Text Available The NPS pollution is difficult to manage and control due to its complicated generation and formation mechanism, especially in the data sparse area. Thus the ECM and BTOPMC were, respectively, adopted to develop an easy and practical assessment method, and a comparison between the outputs of them is then conducted in this paper. The literature survey and field data were acquired to confirm the export coefficients of the ECM, and the loads of TN and TP were statistically analyzed in the study area. Based on hydrological similarity, runoff data from nearby gauged sites were pooled to compensate for the lack of at-site data and the water quality submodel of BTOPMC was then applied to simulate the monthly pollutant fluxes in the two sections from 2010 to 2012. The results showed agricultural fertilizer, rural sewage, and livestock and poultry sewage were the main pollution sources, and under the consideration of self-purification capacity of river, the outputs of the two models were almost identical. The proposed method with a main thought of combining and comparing an empirical model and a mechanistic model can assess the water quality conditions in the study area scientifically, which indicated it has a good potential for popularization in other regions.

  17. A systematic assessment of watershed-scale nonpoint source pollution during rainfall-runoff events in the Miyun Reservoir watershed.

    Science.gov (United States)

    Qiu, Jiali; Shen, Zhenyao; Wei, Guoyuan; Wang, Guobo; Xie, Hui; Lv, Guanping

    2018-03-01

    The assessment of peak flow rate, total runoff volume, and pollutant loads during rainfall process are very important for the watershed management and the ecological restoration of aquatic environment. Real-time measurements of rainfall-runoff and pollutant loads are always the most reliable approach but are difficult to carry out at all desired location in the watersheds considering the large consumption of material and financial resources. An integrated environmental modeling approach for the estimation of flash streamflow that combines the various hydrological and quality processes during rainstorms within the agricultural watersheds is essential to develop targeted management strategies for the endangered drinking water. This study applied the Hydrological Simulation Program-Fortran (HSPF) to simulate the spatial and temporal variation in hydrological processes and pollutant transport processes during rainstorm events in the Miyun Reservoir watershed, a drinking water resource area in Beijing. The model performance indicators ensured the acceptable applicability of the HSPF model to simulate flow and pollutant loads in the studied watershed and to establish a relationship between land use and the parameter values. The proportion of soil and land use was then identified as the influencing factors of the pollution intensities. The results indicated that the flush concentrations were much higher than those observed during normal flow periods and considerably exceeded the limits of Class III Environmental Quality Standards for Surface Water (GB3838-2002) for the secondary protection zones of the drinking water resource in China. Agricultural land and leached cinnamon soils were identified as the key sources of sediment, nutrients, and fecal coliforms. Precipitation volume was identified as a driving factor that determined the amount of runoff and pollutant loads during rainfall processes. These results are useful to improve the streamflow predictions, provide

  18. 靖江市农业面源污染现状及防治对策研究%Current Status and Countermeasures of Agriculture Non-point Source Pollution control in Xinhua City

    Institute of Scientific and Technical Information of China (English)

    张明; 曹学章

    2016-01-01

    农业面源污染治理情况是生态文明创建的重要指标之一。本文总结了江苏省靖江市在生态市创建过程中治理农业面源污染所采取的措施以及取得的成效,并提出了靖江市“十三五”期间创建生态文明示范市过程中推进农业面源污染治理工作的对策建议:一,推广种植业清洁生产,控制种植业化肥农药使用;第二,优化养殖业布局,加强畜禽粪污综合利用;第三,调整渔业产业结构,强化水产养殖业污染管控;第四,推进农村环境综合整治。%Agricultural non-point source pollution is one of the important indicators during the construction of ecological civilization. This paper summarizes the measures taken by the management of agricultural non-point source pollution in Jingjiang during the construction of National Eco-city, and the results obtained. Then, it puts forward countermeasures and suggestions for promoting the pollution control of agricultural non-point source in Jingjiang during the 13’ th Five Year. First, the promotion of planting industry clean production, control the farming fertilizer pesticide use; Second, optimize the breeding industry layout, strengthen the comprehensive utilization of livestock and poultry waste; Third, adjust the structure of fishery industry, strengthen the aquaculture pollution control; Fourth, to promote the comprehensive improvement of the rural environment.

  19. OPEN SOURCE APPROACH TO URBAN GROWTH SIMULATION

    Directory of Open Access Journals (Sweden)

    A. Petrasova

    2016-06-01

    Full Text Available Spatial patterns of land use change due to urbanization and its impact on the landscape are the subject of ongoing research. Urban growth scenario simulation is a powerful tool for exploring these impacts and empowering planners to make informed decisions. We present FUTURES (FUTure Urban – Regional Environment Simulation – a patch-based, stochastic, multi-level land change modeling framework as a case showing how what was once a closed and inaccessible model benefited from integration with open source GIS.We will describe our motivation for releasing this project as open source and the advantages of integrating it with GRASS GIS, a free, libre and open source GIS and research platform for the geospatial domain. GRASS GIS provides efficient libraries for FUTURES model development as well as standard GIS tools and graphical user interface for model users. Releasing FUTURES as a GRASS GIS add-on simplifies the distribution of FUTURES across all main operating systems and ensures the maintainability of our project in the future. We will describe FUTURES integration into GRASS GIS and demonstrate its usage on a case study in Asheville, North Carolina. The developed dataset and tutorial for this case study enable researchers to experiment with the model, explore its potential or even modify the model for their applications.

  20. Evaluating spatial interaction of soil property with non-point source pollution at watershed scale: The phosphorus indicator in Northeast China

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Wei, E-mail: wei@itc.nl; Huang, Haobo; Hao, Fanghua; Shan, Yushu; Guo, Bobo

    2012-08-15

    To better understand the spatial dynamics of non-point source (NPS) phosphorus loading with soil property at watershed scale, integrated modeling and soil chemistry is crucial to ensure that the indicator is functioning properly and expressing the spatial interaction at two depths. Developments in distributed modeling have greatly enriched the availability of geospatial data analysis and assess the NPS pollution loading response to soil property over larger area. The 1.5 km-grid soil sampling at two depths was analyzed with eight parameters, which provided detailed spatial and vertical soil data under four main types of landuses. The impacts of landuse conversion and agricultural practice on soil property were firstly identified. Except for the slightly bigger total of potassium (TK) and cadmium (Cr), the other six parameters had larger content in 20-40 cm surface than the top 20 cm surface. The Soil and Water Assessment Tool was employed to simulate the loading of NPS phosphorus. Overlaying with the landuse distribution, it was found that the NPS phosphorus mainly comes from the subbasins dominated with upland and paddy rice. The linear correlations of eight soil parameters at two depths with NPS phosphorus loading in the subbasins of upland and paddy rice were compared, respectively. The correlations of available phosphorus (AP), total phosphorus (TP), total nitrogen (TN) and TK varied in two depths, and also can assess the loading. The soil with lower soil organic carbon (SOC) presented a significant higher risk for NPS phosphorus loading, especially in agricultural area. The Principal Component Analysis showed that the TP and zinc (Zn) in top soil and copper (Cu) and Cr in subsurface can work as indicators. The analysis suggested that the application of soil property indicators is useful for assessing NPS phosphorus loss, which is promising for water safety in agricultural area. -- Highlights: Black-Right-Pointing-Pointer Spatial dynamics of NPS phosphorus

  1. Cost-effectiveness and cost-benefit analysis of BMPs in controlling agricultural nonpoint source pollution in China based on the SWAT model.

    Science.gov (United States)

    Liu, Ruimin; Zhang, Peipei; Wang, Xiujuan; Wang, Jiawei; Yu, Wenwen; Shen, Zhenyao

    2014-12-01

    Best management practices (BMPs) have been widely used in managing agricultural nonpoint source pollution (ANSP) at the watershed level. Most BMPs are related to land use, tillage management, and fertilizer levels. In total, seven BMP scenarios (Reforest1, Reforest2, No Tillage, Contour tillage, and fertilizer level 1-4) that are related to these three factors were estimated in this study. The objectives were to investigate the effectiveness and cost-benefit of these BMPs on ANSP reduction in a large tributary of the Three Gorges Reservoir (TGR) in China, which are based on the simulation results of the Soil and Water Assessment Tool (SWAT) model. The results indicated that reforestation was the most economically efficient of all BMPs, and its net benefits were up to CNY 4.36×10(7) years(-1) (about USD 7.08×10(6) years(-1)). Regarding tillage practices, no tillage practice was more environmentally friendly than other tillage practices, and contour tillage was more economically efficient. Reducing the local fertilizer level to 0.8-fold less than that of 2010 can yield a satisfactory environmental and economic efficiency. Reforestation and fertilizer management were more effective in reducing total phosphorus (TP), whereas tillage management was more effective in reducing total nitrogen (TN). When CNY 10,000 (about USD 162) was applied to reforestation, no tillage, contour tillage, and an 0.8-fold reduction in the fertilizer level, then annual TN load can be reduced by 0.08, 0.16, 0.11, and 0.04 t and annual TP load can be reduced by 0.04, 0.02, 0.01 and 0.03 t, respectively. The cost-benefit (CB) ratios of the BMPs were as follows: reforestation (207 %) > contour tillage (129 %) > no tillage (114 %) > fertilizer management (96 and 89 %). The most economical and effective BMPs can be designated as follows: BMP1 (returning arable land with slopes greater than 25° to forests and those lands with slopes of 15-25° to orchards), BMP2 (implementing no tillage

  2. Crowd Sourcing to Improve Urban Stormwater Management

    Science.gov (United States)

    Minsker, B. S.; Band, L. E.; Heidari Haratmeh, B.; Law, N. L.; Leonard, L. N.; Rai, A.

    2017-12-01

    Over half of the world's population currently lives in urban areas, a number predicted to grow to 60 percent by 2030. Urban areas face unprecedented and growing challenges that threaten society's long-term wellbeing, including poverty; chronic health problems; widespread pollution and resource degradation; and increased natural disasters. These are "wicked" problems involving "systems of systems" that require unprecedented information sharing and collaboration across disciplines and organizational boundaries. Cities are recognizing that the increasing stream of data and information ("Big Data"), informatics, and modeling can support rapid advances on these challenges. Nonetheless, information technology solutions can only be effective in addressing these challenges through deeply human and systems perspectives. A stakeholder-driven approach ("crowd sourcing") is needed to develop urban systems that address multiple needs, such as parks that capture and treat stormwater while improving human and ecosystem health and wellbeing. We have developed informatics- and Cloud-based collaborative methods that enable crowd sourcing of green stormwater infrastructure (GSI: rain gardens, bioswales, trees, etc.) design and management. The methods use machine learning, social media data, and interactive design tools (called IDEAS-GI) to identify locations and features of GSI that perform best on a suite of objectives, including life cycle cost, stormwater volume reduction, and air pollution reduction. Insights will be presented on GI features that best meet stakeholder needs and are therefore most likely to improve human wellbeing and be well maintained.

  3. Examining trends in general fecal indicator bacteria and microbial source tracking genetic markers at non-point source impacted Chicago beaches

    Science.gov (United States)

    In the Chicago area, treated wastewater and storm water flow through the engineered Chicago River system to the Mississippi River, with the goal to protect Lake Michigan from urban discharges. Therefore, under dry weather conditions, nearby Lake Michigan recreational beaches shou...

  4. Incorporation of Complex Hydrological and Socio-economic Factors for Non-point Source Pollution Control: A Case Study at the Yincungang Canal, the Lake Tai Basin of China

    Science.gov (United States)

    Yang, X.; Luo, X.; Zheng, Z.

    2012-04-01

    It is increasingly realized that non-point pollution sources contribute significantly to water environment deterioration in China. Compared to developed countries, non-point source pollution in China has the unique characteristics of strong intensity and composition complexity due to its special socioeconomic conditions. First, more than 50% of its 1.3 billion people are rural. Sewage from the majority of the rural households is discharged either without or only with minimal treatment. The large amount of erratic rural sewage discharge is a significant source of water pollution. Second, China is plagued with serious agricultural pollution due to widespread improper application of fertilizers and pesticides. Finally, there lack sufficient disposal and recycling of rural wastes such as livestock manure and crop straws. Pollutant loads from various sources have far exceeded environmental assimilation capacity in many parts of China. The Lake Tai basin is one typical example. Lake Tai is the third largest freshwater lake in China. The basin is located in the highly developed and densely populated Yangtze River Delta. While accounting for 0.4% of its land area and 2.9% of its population, the Lake Tai basin generates more than 14% of China's Gross Domestic Production (GDP), and the basin's GDP per capita is 3.5 times as much as the state average. Lake Tai is vital to the basin's socio-economic development, providing multiple services including water supply for municipal, industrial, and agricultural needs, navigation, flood control, fishery, and tourism. Unfortunately, accompanied with the fast economic development is serious water environment deterioration in the Lake Tai basin. The lake is becoming increasingly eutrophied and has frequently suffered from cyanobacterial blooms in recent decades. Chinese government has made tremendous investment in order to mitigate water pollution conditions in the basin. Nevertheless, the trend of deteriorating water quality has yet to

  5. Nitrogen sources, transport and processing in peri-urban floodplains

    OpenAIRE

    Gooddy, D.C.; Macdonald, D.M.J.; Lapworth, D.J.; Bennett, S.A.; Griffiths, K.J.

    2014-01-01

    Peri-urban floodplains are an important interface between developed land and the aquatic environment and may act as a source or sink for contaminants moving from urban areas towards surface water courses. With increasing pressure from urban development the functioning of floodplains is coming under greater scrutiny. A number of peri-urban sites have been found to be populated with legacy landfills which could potentially cause pollution of adjacent river bodies. Here, a peri-urban floodplain ...

  6. Occurrence and ecological risk assessment of emerging organic chemicals in urban rivers

    NARCIS (Netherlands)

    Peng, Feng Jiao; Pan, Chang Gui; Zhang, Min; Zhang, Nai Sheng; Windfeld, Ronja; Salvito, Daniel; Selck, Henriette; Brink, Van den Paul J.; Ying, Guang Guo

    2017-01-01

    Urban rivers may receive contamination from various sources including point sources like domestic sewage and nonpoint sources (e.g., runoff), resulting in contamination with various chemicals. This study investigated the occurrence of emerging organic contaminants (3 endocrine disrupting

  7. Effects of land-use changes and stormflow-detention basins on flooding and nonpoint-source pollution, in Irondequoit Creek basin, Monroe and Ontario counties, New York--application of a precipitation-runoff model

    Science.gov (United States)

    Coon, William F.; Johnson, Mark S.

    2005-01-01

    Urbanization of the 150-square-mile Irondequoit Creek basin in Monroe and Ontario Counties, N.Y., continues to spread southward and eastward from the City of Rochester, on the shore of Lake Ontario. Conversion of forested land to other uses over the past 40 years has increased to the extent that more than 50 percent of the basin is now developed. This expansion has increased flooding and impaired stream-water quality in the northern (downstream) half of the basin. A precipitation-runoff model of the Irondequoit Creek basin was developed with the model code HSPF (Hydrological Simulation Program--FORTRAN) to simulate the effects of land-use changes and stormflow-detention basins on flooding and nonpoint-source pollution on the basin. Model performance was evaluated through a combination of graphical comparisons and statistical tests, and indicated 'very good' agreement (mean error less than 10 percent) between observed and simulated daily and monthly streamflows, between observed and simulated monthly water temperatures, and between observed total suspended solids loads and simulated sediment loads. Agreement between monthly observed and simulated nutrient loads was 'very good' (mean error less than 15 percent) or 'good' (mean error between 15 and 25 percent). Results of model simulations indicated that peak flows and loads of sediment and total phosphorus would increase in a rural subbasin, where 10 percent of the basin was converted from forest and grassland to pervious and impervious developed areas. Subsequent simulation of a stormflow-detention basin at the mouth of this subbasin indicated that peak flows and constituent loads would decrease below those that were generated by the land-use-change scenario, and, in some cases, below those that were simulated by the original land-use scenario. Other results from model simulations of peak flows over a 30-year period (1970-2000), with and without simulation of 50-percent flow reductions at one existing and nine

  8. Point-Source Contributions to the Water Quality of an Urban Stream

    Science.gov (United States)

    Little, S. F. B.; Young, M.; Lowry, C.

    2014-12-01

    Scajaquada Creek, which runs through the heart of the city of Buffalo, is a prime example of the ways in which human intervention and local geomorphology can impact water quality and urban hydrology. Beginning in the 1920's, the Creek has been partially channelized and connected to Buffalo's combined sewer system (CSS). At Forest Lawn Cemetery, where this study takes place, Scajaquada Creek emerges from a 3.5-mile tunnel built to route stream flow under the city. Collocated with the tunnel outlet is a discharge point for Buffalo's CSS, combined sewer outlet (CSO) #53. It is at this point that runoff and sanitary sewage discharge regularly during rain events. Initially, this study endeavored to create a spatial and temporal picture for this portion of the Creek, monitoring such parameters as conductivity, dissolved oxygen, pH, temperature, and turbidity, in addition to measuring Escherichia coli (E. coli) concentrations. As expected, these factors responded directly to seasonality, local geomorphology, and distance from the point source (CSO #53), displaying a overall, linear response. However, the addition of nitrate and phosphate testing to the study revealed an entirely separate signal from that previously observed. Concentrations of these parameters did not respond to location in the same manner as E. coli. Instead of decreasing with distance from the CSO, a distinct periodicity was observed, correlating with a series of outflow pipes lining the stream banks. It is hypothesized that nitrate and phosphate occurring in this stretch of Scajaquada Creek originate not from the CSO, but from fertilizers used to maintain the lawns within the subwatershed. These results provide evidence of the complexity related to water quality issues in urban streams as a result of point- and nonpoint-source hydrologic inputs.

  9. Characterization of occurrence, sources and sinks of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in a tropical urban catchment.

    Science.gov (United States)

    Chen, Huiting; Reinhard, Martin; Nguyen, Tung Viet; You, Luhua; He, Yiliang; Gin, Karina Yew-Hoong

    2017-08-01

    Understanding the sources, occurrence and sinks of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in the urban water cycle is important to protect and utilize local water resources. Concentrations of 22 target PFASs and general water quality parameters were determined monthly for a year in filtered water samples from five tributaries and three sampling stations of an urban water body. Of the 22 target PFASs, 17 PFASs were detected with a frequency >93% including PFCAs: C4-C12 perfluoroalkyl carboxylates, C4, C6, C8, and C10 perfluoroalkane sulfonates, perfluorooctane sulfonamides and perfluorooctane sulfonamide substances (FOSAMs), C10 perfluoroalkyl phosphonic acid (C10 PFPA), 6:2 fluorotelomer sulfonic acid (6:2 FTSA) and C8/C8 perfluoroalkyl phosphinic acid (C8/C8-PFPIA). The most abundant PFASs in water were PFBS (1.4-55 ng/L), PFBA (1.0-23 ng/L), PFOS (1.5-24 ng/L) and PFOA (2.0-21 ng/L). In the tributaries, PFNA concentrations ranged from 1.2 to 87.1 ng/L except in the May 2013 samples of two tributaries, which reached 520 and 260 ng/L. Total PFAS concentrations in the sediment samples ranged from 1.6 to 15 ng/g d.w. with EtFOSAA, PFDoA, PFOS and PFDA being the dominant species. Based on water and sediment data, two types of sources were inferred: one-time or intermittent point sources and continuous non-point sources. FOSAMs and PFOS released continually from non-point sources, C8/C8 PFPIA, PFDoA and PFUnA was released from point sources. The highly water soluble short-chain PFASs including PFBA, PFPeA and PFBS remained predominantly in the water column. The factors governing solution phase concentrations appear to be compound hydrophobicity and sorption to suspended particles. Correlation of the dissolved phase concentrations with precipitation data suggested stormwater was a significant source of PFBA, PFBS, PFUnA and PFDoA. Negative correlations with precipitation indicated sources feeding FOSAA and FOSA directly into the tributaries

  10. Adsorption by and artificial release of zinc and lead from porous concrete for recycling of adsorbed zinc and lead and of porous concrete to reduce urban non-point heavy metal runoff.

    Science.gov (United States)

    Harada, Shigeki; Yanbe, Miyu

    2018-04-01

    This report describes the use of porous concrete at the bottom of a sewage trap to prevent runoff of non-point heavy metals into receiving waters, and, secondarily, to reduce total runoff volume during heavy rains in urbanized areas while simultaneously increasing the recharge volume of heavy-metal-free water into underground aquifers. This idea has the advantage of preventing clogging, which is fundamentally very important when using pervious materials. During actual field experiments, two important parameters were identified: maximum adsorption weight of lead and zinc by the volume of porous concrete, and heavy metal recovery rate by artificial acidification after adsorption. To understand the effect of ambient heavy metal concentration, a simple mixing system was used to adjust the concentrations of lead and zinc solutions. The concrete blocks used had been prepared for a previous study by Harada & Komuro (2010). The results showed that maximum adsorption depended on the ambient concentration, expressed as the linear isothermal theory, and that recovery depended on the final pH value (0.5 or 0.0). The dependence on pH is very important for recycling the porous concrete. A pH of 0.5 is important for recycling both heavy metals, especially zinc, (8.0-22.1% of lead and 42-74% of zinc) and porous concrete because porous concrete has not been heavily damaged by acid. However, at a pH of 0.0, the heavy metals could be recovered: 30-60% of the lead and 75-125% of the zinc. At a higher pH, such as 2.0, no release of heavy metals occurred, indicating the safety to the environment of using porous concrete, because the lowest recorded pH of rainfall in Japan is. 4.0. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Study on road surface source pollution controlled by permeable pavement

    Science.gov (United States)

    Zheng, Chaocheng

    2018-06-01

    The increase of impermeable pavement in urban construction not only increases the runoff of the pavement, but also produces a large number of Non-Point Source Pollution. In the process of controlling road surface runoff by permeable pavement, a large number of particulate matter will be withheld when rainwater is being infiltrated, so as to control the source pollution at the source. In this experiment, we determined the effect of permeable road surface to remove heavy pollutants in the laboratory and discussed the related factors that affect the non-point pollution of permeable pavement, so as to provide a theoretical basis for the application of permeable pavement.

  12. Urban stormwater source control policies: why and how?

    Directory of Open Access Journals (Sweden)

    G. Petrucci

    2014-09-01

    Full Text Available Stormwater source control is becoming a common strategy for urban stormwater management in many countries. It relies on regulations or other policy instruments compelling or inciting implementation, for each new urban development, of small-scale facilities to locally store and manage stormwater. Local authorities that pioneered source control since the 1980s have already observed that small-scale facilities systematically implemented over a catchment are able to influence its hydrological behaviour. This capability is the main strength of source control, as it allows compensation for the negative effects of urbanization. Yet, it also represents its main risk: if initial decision-making is not sufficiently accurate, source control can produce long-term negative effects. Because of its current spreading, source control will acquire an increasing role as a driver of hydrological changes in urban catchments, and the directions of these changes depend on current policy-making practices. This paper presents an analysis and a critical discussion of the main objectives that policy-makers attribute to stormwater source control. The investigation is based on a sample of French case studies, completed by a literature review for international comparison. It identifies four main objectives, some typical of urban stormwater management and some more innovative: flood reduction, receiving waters protection, sustainable development, costs reduction. The discussion focuses on how current policy-making practices are able to translate these objectives in concrete policy instruments, and on which knowledge and tools could improve this process. It is shown that for some objectives, basic knowledge is available, but the creation of policy instruments which are effective at the catchment scale and adapted to local conditions is still problematic. For other objectives, substantial lacks of knowledge exist, casting doubts on long-term effectiveness of current policy

  13. Numerical Simulation of Dispersion from Urban Greenhouse Gas Sources

    Science.gov (United States)

    Nottrott, Anders; Tan, Sze; He, Yonggang; Winkler, Renato

    2017-04-01

    Cities are characterized by complex topography, inhomogeneous turbulence, and variable pollutant source distributions. These features create a scale separation between local sources and urban scale emissions estimates known as the Grey-Zone. Modern computational fluid dynamics (CFD) techniques provide a quasi-deterministic, physically based toolset to bridge the scale separation gap between source level dynamics, local measurements, and urban scale emissions inventories. CFD has the capability to represent complex building topography and capture detailed 3D turbulence fields in the urban boundary layer. This presentation discusses the application of OpenFOAM to urban CFD simulations of natural gas leaks in cities. OpenFOAM is an open source software for advanced numerical simulation of engineering and environmental fluid flows. When combined with free or low cost computer aided drawing and GIS, OpenFOAM generates a detailed, 3D representation of urban wind fields. OpenFOAM was applied to model scalar emissions from various components of the natural gas distribution system, to study the impact of urban meteorology on mobile greenhouse gas measurements. The numerical experiments demonstrate that CH4 concentration profiles are highly sensitive to the relative location of emission sources and buildings. Sources separated by distances of 5-10 meters showed significant differences in vertical dispersion of plumes, due to building wake effects. The OpenFOAM flow fields were combined with an inverse, stochastic dispersion model to quantify and visualize the sensitivity of point sensors to upwind sources in various built environments. The Boussinesq approximation was applied to investigate the effects of canopy layer temperature gradients and convection on sensor footprints.

  14. Sources and composition of urban aerosol particles

    Science.gov (United States)

    Vogt, M.; Johansson, C.; Mårtensson, M.; Struthers, H.; Ahlm, L.; Nilsson, D.

    2011-09-01

    From May 2008 to March 2009 aerosol emissions were measured using the eddy covariance method covering the size range 0.25 to 2.5 μm diameter (Dp) from a 105 m tower, in central Stockholm, Sweden. Supporting chemical aerosol data were collected at roof and street level. Results show that the inorganic fraction of sulfate, nitrate, ammonium and sea salt accounts for approximately 15% of the total aerosol mass removed at 0.6 μm Dp. Further heating to 300 °C caused very little additional losses road traffic (as inferred from the ratio of the incremental concentrations of nitrogen oxides (NOx) and BC measured on a densely trafficked street) and the fluxes of non-volatile material at tower level are in close agreement, suggesting a traffic source of BC. We have estimated the emission factors (EFs) for non-volatile particles <0.6 μm Dp to be 2.4±1.4 mg veh-1 km-1 based on either CO2 fluxes or traffic activity data. Light (LDV) and heavy duty vehicle (HDV) EFs were estimated using multiple linear regression and reveal that for non-volatile particulate matter in the 0.25 to 0.6 μm Dp range, the EFHDV is approximately twice as high as the EFLDV, the difference not being statistically significant.

  15. Pollution loads in urban runoff and sanitary wastewater.

    Science.gov (United States)

    Taebi, Amir; Droste, Ronald L

    2004-07-05

    While more attention has been paid in recent years to urban point source pollution control through the establishment of wastewater treatment plants in many developing countries, no considerable planning nor any serious measures have been taken to control urban non-point source pollution (urban stormwater runoff). The present study is a screening analysis to investigate the pollution loads in urban runoff compared to point source loads as a first prerequisite for planning and management of receiving water quality. To compare pollutant loads from point and non-point urban sources, the pollutant load is expressed as the weight of pollutant per hectare area per year (kg/ha.year). Unit loads were estimated in stormwater runoff, raw sanitary wastewater and secondary treatment effluents in Isfahan, Iran. Results indicate that the annual pollution load in urban runoff is lower than the annual pollution load in sanitary wastewater in areas with low precipitation but it is higher in areas with high precipitation. Two options, namely, advanced treatment (in lieu of secondary treatment) of sanitary wastewater and urban runoff quality control systems (such as detention ponds) were investigated as controlling systems for pollution discharges into receiving waters. The results revealed that for Isfahan, as a low precipitation urban area, advanced treatment is a more suitable option, but for high precipitation urban areas, urban surface runoff quality control installations were more effective for suspended solids and oxygen-demanding matter controls, and that advanced treatment is the more effective option for nutrient control.

  16. Pollution loads in urban runoff and sanitary wastewater

    International Nuclear Information System (INIS)

    Taebi, Amir; Droste, Ronald L.

    2004-01-01

    While more attention has been paid in recent years to urban point source pollution control through the establishment of wastewater treatment plants in many developing countries, no considerable planning nor any serious measures have been taken to control urban non-point source pollution (urban stormwater runoff). The present study is a screening analysis to investigate the pollution loads in urban runoff compared to point source loads as a first prerequisite for planning and management of receiving water quality. To compare pollutant loads from point and non-point urban sources, the pollutant load is expressed as the weight of pollutant per hectare area per year (kg/ha·year). Unit loads were estimated in stormwater runoff, raw sanitary wastewater and secondary treatment effluents in Isfahan, Iran. Results indicate that the annual pollution load in urban runoff is lower than the annual pollution load in sanitary wastewater in areas with low precipitation but it is higher in areas with high precipitation. Two options, namely, advanced treatment (in lieu of secondary treatment) of sanitary wastewater and urban runoff quality control systems (such as detention ponds) were investigated as controlling systems for pollution discharges into receiving waters. The results revealed that for Isfahan, as a low precipitation urban area, advanced treatment is a more suitable option, but for high precipitation urban areas, urban surface runoff quality control installations were more effective for suspended solids and oxygen-demanding matter controls, and that advanced treatment is the more effective option for nutrient control

  17. Evaluation of Land Use, Land Management and Soil Conservation Strategies to Reduce Non-Point Source Pollution Loads in the Three Gorges Region, China.

    Science.gov (United States)

    Strehmel, Alexander; Schmalz, Britta; Fohrer, Nicola

    2016-11-01

    The construction of the Three Gorges Dam in China and the subsequent impoundment of the Yangtze River have induced a major land use change in the Three Gorges Reservoir Region, which fosters increased inputs of sediment and nutrients from diffuse sources into the water bodies. Several government programs have been implemented to mitigate high sediment and nutrient loads to the reservoir. However, institutional weaknesses and a focus on economic development have so far widely counteracted the effectiveness of these programs. In this study, the eco-hydrological model soil and water assessment tool is used to assess the effects of changes in fertilizer amounts and the conditions of bench terraces in the Xiangxi catchment in the Three Gorges Reservoir Region on diffuse matter releases. With this, the study aims at identifying efficient management measures, which should have priority. The results show that a reduction of fertilizer amounts cannot reduce phosphorus loads considerably without inhibiting crop productivity. The condition of terraces in the catchment has a strong impact on soil erosion and phosphorus releases from agricultural areas. Hence, if economically feasible, programmes focusing on the construction and maintenance of terraces in the region should be implemented. Additionally, intercropping on corn fields as well as more efficient fertilization schemes for agricultural land were identified as potential instruments to reduce diffuse matter loads further. While the study was carried out in the Three Gorges Region, its findings may also beneficial for the reduction of water pollution in other mountainous areas with strong agricultural use.

  18. Modeling effects of nitrate from non-point sources on groundwater quality in an agricultural watershed in Prince Edward Island, Canada

    Science.gov (United States)

    Jiang, Yefang; Somers, George

    2009-05-01

    Intensification of potato farming has contaminated groundwater with nitrate in many cases in Prince Edward Island, Canada, which raises concerns for drinking water quality and associated ecosystem protection. Numerical models were developed to simulate nitrate-N transport in groundwater and enhance understanding of the impacts of farming on water quality in the Wilmot River watershed. Nitrate is assumed non-reactive based on δ15N and δ18O in nitrate and geochemical information. The source functions were reconstructed from tile drain measurements, N budget and historical land-use information. The transport model was calibrated to long-term nitrate-N observations in the Wilmot River and verified against nitrate-N measurements in two rivers from watersheds with similar physical conditions. Simulations show groundwater flow is stratified and vertical flux decreases exponentially with depth. While it would take several years to reduce the nitrate-N in the shallow portion of the aquifer, it would take several decades or even longer to restore water quality in the deeper portions of the aquifer. Elevated nitrate-N concentrations in base flow are positively correlated with potato cropping intensity and significant reductions in nitrate-N loading are required if the nitrate level of surface water is to recover to the standard in the Canadian Water Quality Guidelines.

  19. Evaluation of Land Use, Land Management and Soil Conservation Strategies to Reduce Non-Point Source Pollution Loads in the Three Gorges Region, China

    Science.gov (United States)

    Strehmel, Alexander; Schmalz, Britta; Fohrer, Nicola

    2016-11-01

    The construction of the Three Gorges Dam in China and the subsequent impoundment of the Yangtze River have induced a major land use change in the Three Gorges Reservoir Region, which fosters increased inputs of sediment and nutrients from diffuse sources into the water bodies. Several government programs have been implemented to mitigate high sediment and nutrient loads to the reservoir. However, institutional weaknesses and a focus on economic development have so far widely counteracted the effectiveness of these programs. In this study, the eco-hydrological model soil and water assessment tool is used to assess the effects of changes in fertilizer amounts and the conditions of bench terraces in the Xiangxi catchment in the Three Gorges Reservoir Region on diffuse matter releases. With this, the study aims at identifying efficient management measures, which should have priority. The results show that a reduction of fertilizer amounts cannot reduce phosphorus loads considerably without inhibiting crop productivity. The condition of terraces in the catchment has a strong impact on soil erosion and phosphorus releases from agricultural areas. Hence, if economically feasible, programmes focusing on the construction and maintenance of terraces in the region should be implemented. Additionally, intercropping on corn fields as well as more efficient fertilization schemes for agricultural land were identified as potential instruments to reduce diffuse matter loads further. While the study was carried out in the Three Gorges Region, its findings may also beneficial for the reduction of water pollution in other mountainous areas with strong agricultural use.

  20. Agricultural nonpoint source pollution: prevention and estimate methods; L'inquinamento di origine agricola: quali strumenti di prevenzione e stima?

    Energy Technology Data Exchange (ETDEWEB)

    Caffarelli, V.; Rapagnani, M.R.; Triolo, L. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione

    1999-07-01

    Non point source pollutants, such as pesticides and fertilizers derived from agricultural activities, are recognized as an important threat to environment and human health. To prevent the adverse effects of these agrochemicals it is necessary to provide growers and decision makers with easy-to-use information. Attempts have been made to put information on pesticides environmental and health effects into a formula that could summarize, in a single number, these effects. However a single number could be misleading because of the lack of information on chemical-physical parameters and the difficulty to evaluate the relative importance of various environmental and health effects. As an alternative it is here proposed an approach based on schedule containing information, for each pesticides, such as short and long term effects on human health, environmental fate and degradation time, capacity to bio accumulate, toxicity of degradation products. Using information in the schedule, decision makers could make more circumstantiate choices and could program the best agricultural actions under particular environmental circumstances with less impact on man and environment. [Italian] L'inquinamento diffuso derivante dall'uso dei fertilizzanti e dei pesticidi in agricoltura, rappresenta un rischio rilevante per l'ambiente e la salute umana. Al fine di prevenire tale rischio e' necessario fornire a coloro che gestiscono e pianificano le attivita' agricole informazioni facilmente comprensibili, mirate a ridurre o eliminare gli effetti indesiderati derivanti dai prodotti agrochimici. Tentativi sono stati fatti per sviluppare metodologie che sintetizzino queste informazioni in un indice numerico in modo da stilare una graduatoria di pericolosita' dei singoli prodotti. Si propone, in questo lavoro, un approccio basato sulla elaborazione di schede, per ogni principio attivo, che contengono una serie di informazioni quali gli effetti a breve e lungo termine

  1. Carbon footprint of urban source separation for nutrient recovery.

    Science.gov (United States)

    Kjerstadius, H; Bernstad Saraiva, A; Spångberg, J; Davidsson, Å

    2017-07-15

    Source separation systems for the management of domestic wastewater and food waste has been suggested as more sustainable sanitation systems for urban areas. The present study used an attributional life cycle assessment to investigate the carbon footprint and potential for nutrient recovery of two sanitation systems for a hypothetical urban area in Southern Sweden. The systems represented a typical Swedish conventional system and a possible source separation system with increased nutrient recovery. The assessment included the management chain from household collection, transport, treatment and final return of nutrients to agriculture or disposal of the residuals. The results for carbon footprint and nutrient recovery (phosphorus and nitrogen) concluded that the source separation system could increase nutrient recovery (0.30-0.38 kg P capita -1 year -1 and 3.10-3.28 kg N capita -1 year -1 ), while decreasing the carbon footprint (-24 to -58 kg CO 2 -eq. capita -1 year -1 ), compared to the conventional system. The nutrient recovery was increased by the use of struvite precipitation and ammonium stripping at the wastewater treatment plant. The carbon footprint decreased, mainly due to the increased biogas production, increased replacement of mineral fertilizer in agriculture and less emissions of nitrous oxide from wastewater treatment. In conclusion, the study showed that source separation systems could potentially be used to increase nutrient recovery from urban areas, while decreasing the climate impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Sediment sources in an urbanizing, mixed land-use watershed

    Science.gov (United States)

    Nelson, Erin J.; Booth, Derek B.

    2002-07-01

    The Issaquah Creek watershed is a rapidly urbanizing watershed of 144 km 2 in western Washington, where sediment aggradation of the main channel and delivery of fine sediment into a large downstream lake have raised increasingly frequent concerns over flooding, loss of fish habitat, and degraded water quality. A watershed-scale sediment budget was evaluated to determine the relative effects of land-use practices, including urbanization, on sediment supply and delivery, and to guide management responses towards the most effective source-reduction strategies. Human activity in the watershed, particularly urban development, has caused an increase of nearly 50% in the annual sediment yield, now estimated to be 44 tonnes km -2 yr -1. The main sources of sediment in the watershed are landslides (50%), channel-bank erosion (20%), and road-surface erosion (15%). This assessment characterizes the role of human activity in mixed-use watersheds such as this, and it demonstrates some of the key processes, particularly enhanced stream-channel erosion, by which urban development alters sediment loads.

  3. Diffusion from a point source in an urban atmosphere

    International Nuclear Information System (INIS)

    Essa, K.S.M.; El-Otaify, M.S.

    2005-01-01

    In the present paper, a model for the diffusion of material from a point source in an urban atmosphere is incorporated. The plume is assumed to have a well-defined edge at which the concentration falls to zero. The vertical wind shear is estimated using logarithmic law, by employing most of the available techniques of stability categories. The concentrations estimated from the model were compared favorably with the field observations of other investigators

  4. Identifying the contribution of different urban highway air pollution sources

    International Nuclear Information System (INIS)

    Peace, H.; Owen, B.; Raper, D.W.

    2004-01-01

    This paper describes the methodology and results, and draws conclusions from a large-scale source apportionment study undertaken in a large urban conurbation in the northwest of England. Annual average oxides of nitrogen (NOx) emission and ambient air pollution contributions have been estimated for road traffic sources. Ground level air pollution concentrations were estimated over a 1552-km 2 area with a resolution of up to 20 m, using emissions estimates and the second generation ADMS-Urban Gaussian dispersion model. Road traffic emissions were split into car and motorcycles; heavy and light goods vehicles; and buses to represent domestic users; commercial users and bus companies. Car related emissions were split further in to journey lengths under 3 km; journeys between 3 and 8 km; and journeys over 8 km to represent journeys which could be either walked or cycled; journeys for which a bus can easily be used and other journeys. These source sections were chosen so that the relevant authorities could target key groups in terms of reducing air pollution. The results confirm that the areas most likely to exceed air quality objectives are typically close to main arterial routes and close to urban centres and that the major culprits of road traffic related air pollution are goods vehicles and car journeys over 8 km. The paper also discusses the implications of the results and suggests how these can be used in the assessment of actions to reduce air pollution concentrations

  5. Identifying the contribution of different urban highway air pollution sources.

    Science.gov (United States)

    Peace, H; Owen, B; Raper, D W

    2004-12-01

    This paper describes the methodology and results, and draws conclusions from a large-scale source apportionment study undertaken in a large urban conurbation in the northwest of England. Annual average oxides of nitrogen (NOx) emission and ambient air pollution contributions have been estimated for road traffic sources. Ground level air pollution concentrations were estimated over a 1552-km(2) area with a resolution of up to 20 m, using emissions estimates and the second generation ADMS-Urban Gaussian dispersion model. Road traffic emissions were split into car and motorcycles; heavy and light goods vehicles; and buses to represent domestic users; commercial users and bus companies. Car related emissions were split further in to journey lengths under 3 km; journeys between 3 and 8 km; and journeys over 8 km to represent journeys which could be either walked or cycled; journeys for which a bus can easily be used and other journeys. These source sections were chosen so that the relevant authorities could target key groups in terms of reducing air pollution. The results confirm that the areas most likely to exceed air quality objectives are typically close to main arterial routes and close to urban centres and that the major culprits of road traffic related air pollution are goods vehicles and car journeys over 8 km. The paper also discusses the implications of the results and suggests how these can be used in the assessment of actions to reduce air pollution concentrations.

  6. Environmental Education: Non-point Source Pollution

    Science.gov (United States)

    This activity is designed to demonstrate to students what an average storm drain collects during a rainfall event and how the water from storm drains can impact the water quality and aquatic environments of local streams, rivers, and bays.

  7. Nitrogen component in nonpoint source pollution models

    Science.gov (United States)

    Pollutants entering a water body can be very destructive to the health of that system. Best Management Practices (BMPs) and/or conservation practices are used to reduce these pollutants, but understanding the most effective practices is very difficult. Watershed models are an effective tool to aid...

  8. Assessment of nonpoint source chemical loading potential to watersheds containing uranium waste dumps and human health hazards associated with uranium exploration and mining, Red, White, and Fry Canyons, southeastern Utah, 2007

    Science.gov (United States)

    Beisner, Kimberly R.; Marston, Thomas M.; Naftz, David L.; Snyder, Terry; Freeman, Michael L.

    2010-01-01

    During May, June, and July 2007, 58 solid-phase samples were collected from abandoned uranium mine waste dumps, background sites, and adjacent streambeds in Red, White, and Fry Canyons in southeastern Utah. The objectives of this sampling program were to (1) assess the nonpoint-source chemical loading potential to ephemeral and perennial drainage basins from uranium waste dumps and (2) assess potential effects on human health due to recreational activities on and around uranium waste dumps on Bureau of Land Management property. Uranium waste-dump samples were collected using solid-phase sampling protocols. After collection, solid-phase samples were homogenized and extracted in the laboratory using a leaching procedure. Filtered (0.45 micron) water samples were obtained from the field leaching procedure and were analyzed for major and trace elements at the Inductively Coupled Plasma-Mass Spectrometry Metals Analysis Laboratory at the University of Utah. A subset of the solid-phase samples also were digested with strong acids and analyzed for major ions and trace elements at the U.S. Geological Survey Geologic Division Laboratory in Denver, Colorado. For the initial ranking of chemical loading potential for uranium waste dumps, results of leachate analyses were compared with existing aquatic-life and drinking-water-quality standards. To assess potential effects on human health, solid-phase digestion values for uranium were compared to soil screening levels (SSL) computed using the computer model RESRAD 6.5 for a probable concentration of radium. One or more chemical constituents exceeded aquatic life and drinking-water-quality standards in approximately 64 percent (29/45) of the leachate samples extracted from uranium waste dumps. Most of the uranium waste dump sites with elevated trace-element concentrations in leachates were located in Red Canyon. Approximately 69 percent (31/45) of the strong acid digestible soil concentration values were greater than a calculated

  9. Nitrogen sources, transport and processing in peri-urban floodplains.

    Science.gov (United States)

    Gooddy, D C; Macdonald, D M J; Lapworth, D J; Bennett, S A; Griffiths, K J

    2014-10-01

    Peri-urban floodplains are an important interface between developed land and the aquatic environment and may act as a source or sink for contaminants moving from urban areas towards surface water courses. With increasing pressure from urban development the functioning of floodplains is coming under greater scrutiny. A number of peri-urban sites have been found to be populated with legacy landfills which could potentially cause pollution of adjacent river bodies. Here, a peri-urban floodplain adjoining the city of Oxford, UK, with the River Thames has been investigated over a period of three years through repeated sampling of groundwaters from existing and specially constructed piezometers. A nearby landfill has been found to have imprinted a strong signal on the groundwater with particularly high concentrations of ammonium and generally low concentrations of nitrate and dissolved oxygen. An intensive study of nitrogen dynamics through the use of N-species chemistry, nitrogen isotopes and dissolved nitrous oxide reveals that there is little or no denitrification in the majority of the main landfill plume, and neither is the ammonium significantly retarded by sorption to the aquifer sediments. A simple model has determined the flux of total nitrogen and ammonium from the landfill, through the floodplain and into the river. Over an 8 km reach of the river, which has a number of other legacy landfills, it is estimated that 27.5 tonnes of ammonium may be delivered to the river annually. Although this is a relatively small contribution to the total river nitrogen, it may represent up to 15% of the ammonium loading at the study site and over the length of the reach could increase in-stream concentrations by nearly 40%. Catchment management plans that encompass floodplains in the peri-urban environment need to take into account the likely risk to groundwater and surface water quality that these environments pose. Crown Copyright © 2014. Published by Elsevier B.V. All

  10. Nitrogen sources, transport and processing in peri-urban floodplains

    International Nuclear Information System (INIS)

    Gooddy, D.C.; Macdonald, D.M.J.; Lapworth, D.J.; Bennett, S.A.; Griffiths, K.J.

    2014-01-01

    Peri-urban floodplains are an important interface between developed land and the aquatic environment and may act as a source or sink for contaminants moving from urban areas towards surface water courses. With increasing pressure from urban development the functioning of floodplains is coming under greater scrutiny. A number of peri-urban sites have been found to be populated with legacy landfills which could potentially cause pollution of adjacent river bodies. Here, a peri-urban floodplain adjoining the city of Oxford, UK, with the River Thames has been investigated over a period of three years through repeated sampling of groundwaters from existing and specially constructed piezometers. A nearby landfill has been found to have imprinted a strong signal on the groundwater with particularly high concentrations of ammonium and generally low concentrations of nitrate and dissolved oxygen. An intensive study of nitrogen dynamics through the use of N-species chemistry, nitrogen isotopes and dissolved nitrous oxide reveals that there is little or no denitrification in the majority of the main landfill plume, and neither is the ammonium significantly retarded by sorption to the aquifer sediments. A simple model has determined the flux of total nitrogen and ammonium from the landfill, through the floodplain and into the river. Over an 8 km reach of the river, which has a number of other legacy landfills, it is estimated that 27.5 tonnes of ammonium may be delivered to the river annually. Although this is a relatively small contribution to the total river nitrogen, it may represent up to 15% of the ammonium loading at the study site and over the length of the reach could increase in-stream concentrations by nearly 40%. Catchment management plans that encompass floodplains in the peri-urban environment need to take into account the likely risk to groundwater and surface water quality that these environments pose. - Highlights: • Peri-urban floodplains have been found to

  11. Nitrogen sources, transport and processing in peri-urban floodplains

    Energy Technology Data Exchange (ETDEWEB)

    Gooddy, D.C., E-mail: dcg@bgs.ac.uk [British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Macdonald, D.M.J.; Lapworth, D.J. [British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Bennett, S.A. [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Griffiths, K.J. [British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB (United Kingdom)

    2014-10-01

    Peri-urban floodplains are an important interface between developed land and the aquatic environment and may act as a source or sink for contaminants moving from urban areas towards surface water courses. With increasing pressure from urban development the functioning of floodplains is coming under greater scrutiny. A number of peri-urban sites have been found to be populated with legacy landfills which could potentially cause pollution of adjacent river bodies. Here, a peri-urban floodplain adjoining the city of Oxford, UK, with the River Thames has been investigated over a period of three years through repeated sampling of groundwaters from existing and specially constructed piezometers. A nearby landfill has been found to have imprinted a strong signal on the groundwater with particularly high concentrations of ammonium and generally low concentrations of nitrate and dissolved oxygen. An intensive study of nitrogen dynamics through the use of N-species chemistry, nitrogen isotopes and dissolved nitrous oxide reveals that there is little or no denitrification in the majority of the main landfill plume, and neither is the ammonium significantly retarded by sorption to the aquifer sediments. A simple model has determined the flux of total nitrogen and ammonium from the landfill, through the floodplain and into the river. Over an 8 km reach of the river, which has a number of other legacy landfills, it is estimated that 27.5 tonnes of ammonium may be delivered to the river annually. Although this is a relatively small contribution to the total river nitrogen, it may represent up to 15% of the ammonium loading at the study site and over the length of the reach could increase in-stream concentrations by nearly 40%. Catchment management plans that encompass floodplains in the peri-urban environment need to take into account the likely risk to groundwater and surface water quality that these environments pose. - Highlights: • Peri-urban floodplains have been found to

  12. Coastal nonpoint pollution control program: Program development and approval guidance

    International Nuclear Information System (INIS)

    1993-01-01

    The document, developed by NOAA and EPA, contains guidance for states in developing and implementing their coastal nonpoint pollutant source programs. It describes the requirements that must be met, including: the geographic scope of the program; the pollutant sources to be addressed; the types of management measures used; the establishment of critical areas; technical assistance, public participation, and administrative coordination; and, the process for program submission and Federal approval. The document also contains the criteria by which NOAA and EPA will review the states' submissions

  13. CADDIS Volume 2. Sources, Stressors and Responses: Urbanization - Hydrology

    Science.gov (United States)

    hydrologic (or flow) changes associated with urbanization, baseflow changes associated with urbanization, water withdrawals and interbasin transfers associated with urbanization, biotic responses to hydrologic (or flow) changes associated with urbanization

  14. Incineration of urban solid waste containing radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Ronchin, G.P., E-mail: giulio.ronchin@mail.polimi.i [Dipartimento di Energia (Sezione nucleare - Cesnef), Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy); Campi, F.; Porta, A.A. [Dipartimento di Energia (Sezione nucleare - Cesnef), Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy)

    2011-01-15

    Incineration of urban solid waste accidentally contaminated by orphan sources or radioactive material is a potential risk for environment and public health. Moreover, production and emission of radioactive fumes can cause a heavy contamination of the plant, leading to important economic detriment. In order to prevent such a hazard, in February 2004 a radiometric portal for detection of radioactive material in incoming waste has been installed at AMSA (Azienda Milanese per i Servizi Ambientali) 'Silla 2' urban solid waste incineration plant of Milan. Radioactive detections performed from installation time up to December 2006 consist entirely of low-activity material contaminated from radiopharmaceuticals (mainly {sup 131}I). In this work an estimate of the dose that would have been committed to population, due to incineration of the radioactive material detected by the radiometric portal, has been evaluated. Furthermore, public health and environmental effects due to incineration of a high-activity source have been estimated. Incineration of the contaminated material detected appears to have negligible effects at all; the evaluated annual collective dose, almost entirely conferred by {sup 131}I, is indeed 0.1 man mSv. Otherwise, incineration of a 3.7 x 10{sup 10} Bq (1 Ci) source of {sup 137}Cs, assumed as reference accident, could result in a light environmental contamination involving a large area. Although the maximum total dose, owing to inhalation and submersion, committed to a single individual appears to be negligible (less than 10{sup -8} Sv), the environmental contamination leads to a potential important exposure due to ingestion of contaminated foods. With respect to 'Silla 2' plant and to the worst meteorological conditions, the evaluated collective dose results in 0.34 man Sv. Performed analyses have confirmed that radiometric portals, which are today mainly used in foundries, represent a valid public health and environmental

  15. Distinguishing spatiotemporal variability of sediment sources in small urbanized catchment as a response to urban expansion

    Science.gov (United States)

    Belyaev, Vladimir; Feoktistov, Artem; Huygens, Dries; Shamshurina, Eugenia; Golosov, Valentin

    2014-05-01

    for distinguishing contributions of different sediment sources into catchment sediment budgets on a reliable quantitative basis. In combination with microstratigraphic differentiation and dating of sediment in continuous deposition zones by 137Cs depth distribution curves and available land use records, spatial and temporal variability of sediment sources and sinks can be reconstructed for the last several decades. That is especially important for catchments which experienced profound land use changes such as transition from pristine or agriculture-dominated to urbanized environment. The example presented here describes the results of reconstruction of changing sediment source types, contributions and spatial patterns for small reservoir catchment within the city of Kursk (Sredenerusskaya Upland, Central European Russia). Combination of compound specific stable isotopes, 137Cs, sediment grain size composition, land use information for several time intervals and daily rainfall record for the Kursk meteorological station (conveniently located within the study catchment) have been employed in order to evaluate major sediment sources within the catchment, their spatial pattern and temporal changes and compare those to history of reservoir sedimentation. The reservoir is situated on the Kur River - small river which gave its name to the city itself. The dam and reservoir were constructed and put into operation in 1969, thus the beginning of its infill is located stratigraphically later than the main peak of the global 137Cs fallout. It has been found that transition from dominantly agricultural land use to urbanized conditions caused decrease of contribution of soil erosion from cultivated land and increase of that of the active gullies into reservoir sedimentation. However, it is important to note that during extreme runoff events contribution of sediment originated from soil erosion on arable land still remains dominant, even though its area within the catchment recently

  16. Non-Point Source Nitrogen and Phosphorus Pollution Simulation and Irrigation Mode Optimization of the North Canal Basin%北运河流域非点源氮磷污染模拟分析及灌溉模式优化

    Institute of Scientific and Technical Information of China (English)

    刘银迪; 徐建新; 陆建红; 赵鹏

    2011-01-01

    In order to reduce the non-point source pollution caused by the farmland irrigation of the North Canal Basin and develop a sound farmland management model,the improved SWAT model is adopted to simulate the surface-runoff non-point source nitrogen and phosphorus pollution under different irrigation modes in the Wuqing area in the North Canal Basin.The simulation results indicate that under the same irrigation quota,with the increaseof the number of the sewage irrigation times,the total nitrogen and phosphorus load amount in the water body of the basin firstly reduces and then increases;in all the instituted irrigation modes,it could make the total non-point source pollution load minimum to irrigate sewage in the wintering period and the jointing stage of the winter wheat,and the tasseling stage of the summer maize.Besides,under water-saving irrigation,the irrigation quota change has little effect on the total nitrogen and phosphorus load amount in the water body.The results demonstrate that the characteristics of the non-point source nitrogen and phosphorus pollution under different irrigation modes are different,and it could control the transport of the non-point source nitrogen and phosphorus pollutants well to adopt small-quota rotation irrigation of clean and sewage water in growth periods of crops.%为了减轻北运河流域农田灌溉引起的非点源污染,探索良性农田管理模式,选取北运河流域武清区为研究对象,采用改进的SWAT模型模拟不同灌溉方案下武清区地表径流非点源氮磷污染。结果表明:同一灌溉定额下,随着污灌次数的增加,流域水体内氮磷负荷总量呈先降后升的趋势;在所制定的灌溉情景中,冬小麦越冬、拔节期和夏玉米抽雄期进行污灌,其余生育阶段进行清水灌溉时,非点源污染总负荷量最小;在节水灌溉时,灌溉定额的变化对水体内氮磷负荷总量影响不大。研究表明:不同灌溉方案下非点源氮磷污染特

  17. CADDIS Volume 2. Sources, Stressors and Responses: Urbanization - Temperature

    Science.gov (United States)

    water temperature changes associated with urbanization, heated surface runoff associated with urbanization, how temperature changes associated with urbanization can affect stream biota, interactive effects of urbanizaiton and climate change.

  18. 水源保护地农业面源污染防治对策探讨——以昆明松花坝水源保护区为例%Discus on the Prevention and Control Countermeasures of Agricultural Non-point Pollution in Water Source Protected Areas

    Institute of Scientific and Technical Information of China (English)

    罗婷; 王崇云; 彭明春; 李其阳; 孔维琳; 杨莎; 董磊

    2012-01-01

    This paper analyzed the contamination sources,pollutants migration processes and causes,which related to water source protection. Best management practices system (BMPs) and ecologic and clean-type small watersheds approaches were two commonly used methods for abating the non-point source (NPS) pollution. We detailedly reviewed the countermeasures in two methods. Then,we took Kunming Songhuaba water protected area as an example to oudine the framework to fight against the NPS pollution,based on the functional zones of water conservation areas,BMPs and ecologic and clean-type small watersheds approaches were specifically elaborated for water protection implements and for agricultural non-point pollution prevention and control. Finally,the paper probed into the NPS pollution control of the water protected areas in future.%分析了水源保护地的污染物来源和迁移过程、形成原因,对最佳管理措施( BMPs)和生态清洁型小流域建设2种水源保护地常用的污染防治对策进行了详细概述;并以昆明松花坝为例,在其水源地保护功能区划的基础上,具体阐述了BMPs与生态清洁小流域建设在水源保护地农业面源污染防治中的应用.最后,探讨了我国水源保护地污染控制的研究方向.

  19. Understanding sediment sources in a peri-urban Mediterranean catchment using geochemical tracers

    Science.gov (United States)

    Ferreira, Carla; Walsh, Rory; Kikuchi, Ryunosuke; Blake, Will

    2016-04-01

    One of the main physical environmental impacts of urbanization is an increase in suspended sediment concentrations and loads, particularly in the constructional phase. Impacts in peri-urban catchments characterized by a mosaic of urban and non-urban landscape elements with varying roles in acting as sources and sinks of overland flow and slope wash have received little attention, particularly in Mediterranean environments. The present study uses a sediment 'fingerprinting' approach to determine the main sediment sources in the peri-urban Ribeira dos Covões catchment (6.2km2) in Portugal and how they change during storm events following contrasting antecedent weather. The catchment, rural until 1972, underwent discontinuous urbanization in 1973-1993, followed by an urban consolidation phase. Currently, its land-use is a complex mosaic of woodland (56%), urban (40%) and agricultural (4%) land parcels. Distinct urban patterns include some well-defined urban residential centres, but also areas of discontinuous urban sprawl. Since 2010, a major road was built and an enterprise park has been under construction, covering 1% and 5% of the catchment, respectively. The catchment has a Mediterranean climate. The geology comprises sandstone (56%), limestone (41%) and alluvial deposits (3%). Soils are generally deep (>3.0m), but shallow (urbanized and partly urbanized catchments, and to supporting them in designing and implementing effective land-use mosaics and site-specific measures to mitigate erosion.

  20. Characterization of urban aerosol sources in Debrecen, Hungary

    International Nuclear Information System (INIS)

    Kertesz, Zs.; Szoboszlai, T.; Angyal, A.; Dobos, E.; Borbely-Kiss, I.

    2009-01-01

    Complete text of publication follows. Aerosol pollution represents significant health hazard in urban environments. Despite the fact that Debrecen has not a much stressed environment the city is highly exposed to aerosol pollution. In order to evaluate the impact of aerosol particles on health, the knowledge of the particle size distribution, chemical composition, sources, and their change in time and space is needed. This work presents a source apportionment study of fine (particles with aerodynamic diameter less than 2.5 μm) and coarse (particles with aerodynamic diameter between 2.5 and 10 μm) particulate matter in Debrecen by following the evolution of the elemental components with hourly time resolution. The variation of the elemental concentrations, their periodicity, correlation with other elements and meteorological parameters were studied on samples collected in different seasons. Aerosol sources were determined using the positive matrix factorization (PMF) method. Aerosol samples were collected in the garden of the ATOMKI with a 2-stage sequential streaker sampler manufactured by PIXE International, which collected the fine and coarse fraction separately with few hours' time resolution. Between October 2007 and January 2009 five 10-days long sampling campaigns were carried out. The elemental composition was determined by Particle Induced X-ray emission (PIXE) for Z ≥ 13, and the elemental carbon (BC) content was estimated with a smoke stain reflectometer. Source apportionment was carried out with the PMF receptor model developed for aerosol source characterization, provided by US EPA. Mass of species apportioned to factor, percentage of species apportioned to factors and average factor contributions of the campaigns, of working days and weekends and within the days were calculated. The PMF analysis resulted seven factors in the fine and seven factors in the coarse mode. The main sources of atmospheric aerosol in the city of Debrecen were traffic

  1. Canadian cities in transition: new sources of urban difference

    Directory of Open Access Journals (Sweden)

    Larry S. Bourne

    2004-01-01

    Full Text Available Cities, increasingly, are the principal arenas in which global, national and local forces intersect.Canadian cities are no exception. Those cities are currently undergoing a series ofprofound and irreversible transitions as a result of external forces originating from differentsources and operating at different spatial scales. Specifically, this paper argues that Canadiancities are being transformed in a markedly uneven fashion through the intersection ofchanges in national and regional economies, the continued demographic transition, andshifts in government policy on the one hand, and through increased levels and new sourcesof immigration, and the globalization of capital and trade flows, on the other hand. Theseshifts, in turn, are producing new patterns of external dependence, a more fragmented urbansystem, and continued metropolitan concentration. They are also leading to increased socioculturaldifferences, with intense cultural diversity in some cities juxtaposed with homogeneityin other cities, and to new sets of urban winners and losers. In effect, these transitionsare creating new sources of difference - new divides - among and within the country=surban centres, augmenting or replacing the traditional divides based on city-size, location inthe heartland or periphery, and local economic base.

  2. Emerging contaminants in urban groundwater sources in Africa.

    Science.gov (United States)

    Sorensen, J P R; Lapworth, D J; Nkhuwa, D C W; Stuart, M E; Gooddy, D C; Bell, R A; Chirwa, M; Kabika, J; Liemisa, M; Chibesa, M; Pedley, S

    2015-04-01

    The occurrence of emerging organic contaminants within the aquatic environment in Africa is currently unknown. This study provides early insights by characterising a broad range of emerging organic contaminants (n > 1000) in groundwater sources in Kabwe, Zambia. Groundwater samples were obtained during both the dry and wet seasons from a selection of deep boreholes and shallow wells completed within the bedrock and overlying superficial aquifers, respectively. Groundwater sources were distributed across the city to encompass peri-urban, lower cost housing, higher cost housing, and industrial land uses. The insect repellent DEET was ubiquitous within groundwater at concentrations up to 1.8 μg/L. Other compounds (n = 26) were detected in less than 15% of the sources and included the bactericide triclosan (up to 0.03 μg/L), chlorination by-products - trihalomethanes (up to 50 μg/L), and the surfactant 2,4,7,9-tetramethyl-5-decyne-4,7-diol (up to 0.6 μg/L). Emerging contaminants were most prevalent in shallow wells sited in low cost housing areas. This is attributed to localised vulnerability associated with inadequate well protection, sanitation, and household waste disposal. The five-fold increase in median DEET concentration following the onset of the seasonal rains highlights that more mobile compounds can rapidly migrate from the surface to the aquifer suggesting the aquifer is more vulnerable than previously considered. Furthermore it suggests DEET is potentially useful as a wastewater tracer in Africa. There was a general absence of personal care products, life-style compounds, and pharmaceuticals which are commonly detected in the aquatic environment in the developed world. This perhaps reflects some degree of attenuation within the subsurface, but could also be a result of the current limited use of products containing emerging contaminants by locals due to unaffordability and unavailability. As development and population increases in Africa, it is

  3. Evaluation of nonpoint-source contamination, Wisconsin; selected streamwater-quality data, land-use and best-management practices inventory, and quality assurance and quality control, water year 1993

    Science.gov (United States)

    Corsi, Steven R.; Walker, John F.; Graczyk, D.J.; Greb, S.R.; Owens, D.W.; Rappold, K.F.

    1995-01-01

    The objective of the watershed-management evaluation monitoring program in Wisconsin is to evaluate the effectiveness of the best-management practices (BMPs) for rural streams, urban streams, and urban storm sewers. This report is an annual summary of the data collected for the program and a report of the results from several different special studies conducted within this program.

  4. Sediment sources and storages in the urbanizing South Creek catchment, Lake Macquarie, NSW

    International Nuclear Information System (INIS)

    Curtis, S.J.

    1988-10-01

    An investigation of the sediment source areas and sediment storages has been undertaken in the South Creek catchment, Lake Macquarie, NSW. Source areas have been examined by analyzing suspended sediment concentrations, field measurements and observations, and caesium-137 values. The caesium-137 technique and field measurements were used to study the sediment storages on the South Creek flood plain. Particle size analysis of sediments on the slopes and flood plain were undertaken to provide information on the efficiency of the sediment transport system. The results of these investigations indicate that the developing urban areas are the main sources of poorest water quality (in terms of suspended sediment) in the South Creek catchment. The open woodland, rural and established urban areas were minor sediment source areas, although the open woodland had the potential to become a major sediment source if disturbed by human activities. The developing urban areas had efficient sediment transport systems, while the open woodland and rural areas tended to deposit sediment locally. The upstream section of the flood plain was found to be storing more sediment than the downstream section. The study revealed that when urban development occurs on the steeper gradients of the South Creek catchment erosion processes are greatly accelerated and thus the developing urban area becomes the major source of poorest water quality in the catchment. The importance of the developing urban area as a sediment source needs to be considered in any future land developments in urbanizing drainage basins

  5. CADDIS Volume 2. Sources, Stressors and Responses: Urbanization - Stormwater Runoff

    Science.gov (United States)

    Introduction to impervious surfaces associated with urbanization, overview of effects vs. total imperviousness, overview of how impervious surfaces affect biotic condition, summary of threshold values of impervious cover for stream biotic condition.

  6. Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon

    International Nuclear Information System (INIS)

    Mazurek, M.A.; Hildemann, L.M.; Simoneit, B.R.T.

    1990-10-01

    Organic aerosols comprise approximately 30% by mass of the total fine particulate matter present in urban atmospheres. The chemical composition of such aerosols is complex and reflects input from multiple sources of primary emissions to the atmosphere, as well as from secondary production of carbonaceous aerosol species via photochemical reactions. To identify discrete sources of fine carbonaceous particles in urban atmospheres, analytical methods must reconcile both bulk chemical and molecular properties of the total carbonaceous aerosol fraction. This paper presents an overview of the analytical protocol developed and used in a study of the major sources of fine carbon particles emitted to an urban atmosphere. 23 refs., 1 fig., 2 tabs

  7. Coal-tar-based sealcoated pavement: A major PAH source to urban stream sediments

    International Nuclear Information System (INIS)

    Witter, Amy E.; Nguyen, Minh H.; Baidar, Sunil; Sak, Peter B.

    2014-01-01

    We used land-use analysis, PAH concentrations and assemblages, and multivariate statistics to identify sediment PAH sources in a small (∼1303 km 2 ) urbanizing watershed located in South-Central, Pennsylvania, USA. A geographic information system (GIS) was employed to quantify land-use features that may serve as PAH sources. Urban PAH concentrations were three times higher than rural levels, and were significantly and highly correlated with combined residential/commercial/industrial land use. Principal components analysis (PCA) was used to group sediments with similar PAH assemblages, and correlation analysis compared PAH sediment assemblages to common PAH sources. The strongest correlations were observed between rural sediments (n = 7) and coke-oven emissions sources (r = 0.69–0.78, n = 5), and between urban sediments (n = 22) and coal-tar-based sealcoat dust (r = 0.94, n = 47) suggesting that coal-tar-based sealcoat is an important urban PAH source in this watershed linked to residential and commercial/industrial land use. -- Highlights: • Total PAH concentrations were measured at 35 sites along an urbanizing land-use gradient. • PAH concentrations increased with increasing urban land-use. • Urban land-use metrics were measured at three spatial scales using GIS. • PAH assemblages indicate coal-tar-based sealcoat is a major urban PAH source. • PAH assemblages indicate coke-oven emissions are an important rural PAH source. -- Coal-tar-based sealcoated pavement is a major PAH source to urban freshwater stream sediments in south-central Pennsylvania, USA

  8. Factors influencing buyers' willingness to offer price premiums for carbon credits sourced from urban forests

    Science.gov (United States)

    N.C. Poudyal; J.M. Bowker; J.P. Siry

    2015-01-01

    Marketing carbon offset credits generated by urban forest projects could help cities and local governments achieve their financial self-sufficiency and environmental sustainability goals. Understanding the value of carbon credits sourced from urban forests, and the factors that determine buyers’ willingness to pay a premium for such credits could benefit cities in...

  9. Incorporating Open Source Data for Bayesian Classification of Urban Land Use From VHR Stereo Images

    NARCIS (Netherlands)

    Li, Mengmeng; De Beurs, Kirsten M.; Stein, Alfred; Bijker, Wietske

    2017-01-01

    This study investigates the incorporation of open source data into a Bayesian classification of urban land use from very high resolution (VHR) stereo satellite images. The adopted classification framework starts from urban land cover classification, proceeds to building-type characterization, and

  10. Regulation and perceived compliance: Nonpoint pollution reduction programs in four states

    International Nuclear Information System (INIS)

    Floyd, D.W.; MacLeod, M.A.

    1993-01-01

    Examining nonpoint-source water pollution programs in foresty is one way of looking at the complicated policy questions of striking a balance between voluntary and regulatory approaches to forest management on private lands. States have developed a variety of approaches in this area from completely voluntary to highly regulatory to archeive compliance. This article looks at several aspects: federal requirements, program types, predictive behavior theories, and specific state programs (Ohio, West Virginia, Maryland, Massachusetts). The study results indicate a significant difference in preceived compliance based on program type: as stringency increases, perceived compliance increases. The authors suggest that successful forestry nonpoint source water pollution reduction plans should combine regulatory and educational elements. 16 refs., 3 tabs

  11. Isotopic Recorders of Pollution in Heterogeneous Urban Areas

    Science.gov (United States)

    Pataki, D. E.; Cobley, L.; Smith, R. M.; Ehleringer, J. R.; Chritz, K.

    2017-12-01

    A significant difficulty in quantifying urban pollution lies in the extreme spatial and temporal heterogeneity of cities. Dense sources of both point and non-point source pollution as well as the dynamic role of human activities, which vary over very short time scales and small spatial scales, complicate efforts to establish long-term urban monitoring networks that are relevant at neighborhood, municipal, and regional scales. Fortunately, the natural abundance of isotopes of carbon, nitrogen, and other elements provides a wealth of information about the sources and fate of urban atmospheric pollution. In particular, soils and plant material integrate pollution sources and cycling over space and time, and have the potential to provide long-term records of pollution dynamics that extend back before atmospheric monitoring data are available. Similarly, sampling organic material at high spatial resolution can provide "isoscapes" that shed light on the spatial heterogeneity of pollutants in different urban parcels and neighborhoods, along roads of varying traffic density, and across neighborhoods of varying affluence and sociodemographic composition. We have compiled numerous datasets of the isotopic composition of urban organic matter that illustrate the potential for isotopic monitoring of urban areas as a means of understanding hot spots and hot moments in urban atmospheric biogeochemistry. Findings to date already reveal the critical role of affluence, economic activity, demographic change, and land management practices in influencing urban pollution sources and sinks, and suggest an important role of stable isotope and radioisotope measurements in urban atmospheric and biogeochemical monitoring.

  12. Atmospheric polycyclic aromatic hydrocarbons in the urban environment: Occurrence, toxicity and source apportionment.

    Science.gov (United States)

    Mishra, Nitika; Ayoko, Godwin A; Morawska, Lidia

    2016-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) represent a major class of toxic pollutants because of their carcinogenic and mutagenic characteristics. People living in urban areas are regularly exposed to PAHs because of abundance of their emission sources. Within this context, this study aimed to: (i) identify and quantify the levels of ambient PAHs in an urban environment; (ii) evaluate their toxicity; and (iii) identify their sources as well as the contribution of specific sources to measured concentrations. Sixteen PAHs were identified and quantified in air samples collected from Brisbane. Principal Component Analysis - Absolute Principal Component Scores (PCA-APCS) was used in order to conduct source apportionment of the measured PAHs. Vehicular emissions, natural gas combustion, petrol emissions and evaporative/unburned fuel were the sources identified; contributing 56%, 21%, 15% and 8% of the total PAHs emissions, respectively, all of which need to be considered for any pollution control measures implemented in urban areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. 2011 NATA - Emissions Sources

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset includes all emissions sources that were modeled in the 2011 National Air Toxics Assessment (NATA), inlcluding point, nonpoint, and mobile sources, and...

  14. [Research on spatial differentiation of urban stormwater runoff quality by source area monitoring].

    Science.gov (United States)

    Li, Li-Qing; Zhu, Ren-Xiao; Guo, Shu-Gang; Yin, Cheng-Qing

    2010-12-01

    Runoff samples were collected from 14 source areas in Hanyang district during four rain events in an attempt to investigate the spatial differentiation and influencing factors of urban stormwater runoff quality. The outcomes are expected to offer practical guidance in sources control of urban runoff pollution. The results revealed that particle-bound proportion of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in stormwater runoff were 58% +/- 17%, 65% +/- 13% and 92% +/- 6%, respectively. The fractions of ammonia, nitrate and dissolved organic nitrogen were homogeneous in dissolved nitrogen composition. Urban surface function, traffic volume, land use, population density, and street sweeping practice are the main factors determining spatial differentiation of urban surface runoff quality. The highest magnitude of urban stormwater runoff pollution was expected in the old urban residential area, followed by general residential with restaurants, commercial and transport area, new developments and green land. In addition, the magnitude of road stormwater runoff pollution is positively correlated to traffic volume, in the following order: the first trunk road > the second trunk road > minor road. Street sweeping and critical source areas controls should be implemented to mitigate the adverse effects of urban stormwater runoff on receive waters.

  15. Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall.

    Science.gov (United States)

    Zhang, Wei; Zhang, Shucai; Wan, Chao; Yue, Dapan; Ye, Youbin; Wang, Xuejun

    2008-06-01

    Diagnostic ratios and multivariate analysis were utilized to apportion polycyclic aromatic hydrocarbon (PAH) sources for road runoff, road dust, rain and canopy throughfall based on samples collected in an urban area of Beijing, China. Three sampling sites representing vehicle lane, bicycle lane and branch road were selected. For road runoff and road dust, vehicular emission and coal combustion were identified as major sources, and the source contributions varied among the sampling sites. For rain, three principal components were apportioned representing coal/oil combustion (54%), vehicular emission (34%) and coking (12%). For canopy throughfall, vehicular emission (56%), coal combustion (30%) and oil combustion (14%) were identified as major sources. Overall, the PAH's source for road runoff mainly reflected that for road dust. Despite site-specific sources, the findings at the study area provided a general picture of PAHs sources for the road runoff system in urban area of Beijing.

  16. Influence of natural and novel organic carbon sources on denitrification in forest, degraded urban, and restored streams

    Science.gov (United States)

    Organic carbon is important in regulating ecosystem function, and its source and abundance may be altered by urbanization. We investigated shifts in organic carbon quantity and quality associated with urbanization and ecosystem restoration, and its potential effects on denitrific...

  17. Atmospheric polycyclic aromatic hydrocarbons in the urban environment: Occurrence, toxicity and source apportionment

    International Nuclear Information System (INIS)

    Mishra, Nitika; Ayoko, Godwin A.; Morawska, Lidia

    2016-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) represent a major class of toxic pollutants because of their carcinogenic and mutagenic characteristics. People living in urban areas are regularly exposed to PAHs because of abundance of their emission sources. Within this context, this study aimed to: (i) identify and quantify the levels of ambient PAHs in an urban environment; (ii) evaluate their toxicity; and (iii) identify their sources as well as the contribution of specific sources to measured concentrations. Sixteen PAHs were identified and quantified in air samples collected from Brisbane. Principal Component Analysis – Absolute Principal Component Scores (PCA-APCS) was used in order to conduct source apportionment of the measured PAHs. Vehicular emissions, natural gas combustion, petrol emissions and evaporative/unburned fuel were the sources identified; contributing 56%, 21%, 15% and 8% of the total PAHs emissions, respectively, all of which need to be considered for any pollution control measures implemented in urban areas. - Highlights: • PAHs represent a major group of outdoor air pollutants. • Concentration levels of PAHS in urban schools ranged from 1.2 to 38 ng/m"3. • PCA–APCS technique used to identify sources of PAHs and their contributions. • Vehicular emissions (56%) were found to be the prominent sources of PAHs.

  18. Source identification and apportionment of heavy metals in urban soil profiles.

    Science.gov (United States)

    Luo, Xiao-San; Xue, Yan; Wang, Yan-Ling; Cang, Long; Xu, Bo; Ding, Jing

    2015-05-01

    Because heavy metals (HMs) occurring naturally in soils accumulate continuously due to human activities, identifying and apportioning their sources becomes a challenging task for pollution prevention in urban environments. Besides the enrichment factors (EFs) and principal component analysis (PCA) for source classification, the receptor model (Absolute Principal Component Scores-Multiple Linear Regression, APCS-MLR) and Pb isotopic mixing model were also developed to quantify the source contribution for typical HMs (Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn) in urban park soils of Xiamen, a representative megacity in southeast China. Furthermore, distribution patterns of their concentrations and sources in 13 soil profiles (top 20 cm) were investigated by different depths (0-5, 5-10, 10-20 cm). Currently the principal anthropogenic source for HMs in urban soil of China is atmospheric deposition from coal combustion rather than vehicle exhaust. Specifically for Pb source by isotopic model ((206)Pb/(207)Pb and (208)Pb/(207)Pb), the average contributions were natural (49%)>coal combustion (45%)≫traffic emissions (6%). Although the urban surface soils are usually more contaminated owing to recent and current human sources, leaching effects and historic vehicle emissions can also make deep soil layer contaminated by HMs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Trends and sources for heavy metals in urban atmosphere

    International Nuclear Information System (INIS)

    Kemp, Kaare

    2002-01-01

    The concentrations of a number of heavy metals in the air in three Danish cities have been measured by means of PIXE for more than two decades. The well-known capability of PIXE for fast and efficient analysis of aerosol samples has been employed for analysis of daily samples from several sites during the whole period. The main sources are traffic, domestic heating and long-range transport. Source apportionment and trends for single metals are assessed by means of simple statistical methods. The most striking change has occurred for the Pb concentration, which is reduced by almost a factor of 100 following the reduction of the Pb content in petrol. The main source of Cu, Cr and Zn is the traffic. The concentrations of these elements have been slightly increasing. The concentrations for most of the other heavy metals, which originate mainly from sources outside the cities, have been decreasing

  20. Trends and sources for heavy metals in urban atmosphere

    Science.gov (United States)

    Kemp, Kåre

    2002-04-01

    The concentrations of a number of heavy metals in the air in three Danish cities have been measured by means of PIXE for more than two decades. The well-known capability of PIXE for fast and efficient analysis of aerosol samples has been employed for analysis of daily samples from several sites during the whole period. The main sources are traffic, domestic heating and long-range transport. Source apportionment and trends for single metals are assessed by means of simple statistical methods. The most striking change has occurred for the Pb concentration, which is reduced by almost a factor of 100 following the reduction of the Pb content in petrol. The main source of Cu, Cr and Zn is the traffic. The concentrations of these elements have been slightly increasing. The concentrations for most of the other heavy metals, which originate mainly from sources outside the cities, have been decreasing.

  1. Sources of mutagenic activity in urban fine particles

    International Nuclear Information System (INIS)

    Stevens, R.K.; Lewis, C.W.; Dzubay, T.G.; Cupitt, L.T.; Lewtas, J.

    1990-01-01

    Samples were collected during the winter of 1984-1985 in the cities of Albuquerque, NM and Raleigh NC as part of a US Environmental Protection Agency study to evaluate methods to determine the emission sources contributing to the mutagenic properties of extractable organic matter (EOM) present in fine particles. Data derived from the analysis of the composition of these fine particles served as input to a multi-linear regression (MLR) model used to calculate the relative contribution of wood burning and motor vehicle sources to mutagenic activity observed in the extractable organic matter. At both sites the mutagenic potency of EOM was found to be greater (3-5 times) for mobile sources when compared to wood smoke extractable organics. Carbon-14 measurements which give a direct determination of the amount of EOM that originated from wood burning were in close agreement with the source apportionment results derived from the MLR model

  2. Emo, love and god: making sense of Urban Dictionary, a crowd-sourced online dictionary.

    Science.gov (United States)

    Nguyen, Dong; McGillivray, Barbara; Yasseri, Taha

    2018-05-01

    The Internet facilitates large-scale collaborative projects and the emergence of Web 2.0 platforms, where producers and consumers of content unify, has drastically changed the information market. On the one hand, the promise of the 'wisdom of the crowd' has inspired successful projects such as Wikipedia, which has become the primary source of crowd-based information in many languages. On the other hand, the decentralized and often unmonitored environment of such projects may make them susceptible to low-quality content. In this work, we focus on Urban Dictionary, a crowd-sourced online dictionary. We combine computational methods with qualitative annotation and shed light on the overall features of Urban Dictionary in terms of growth, coverage and types of content. We measure a high presence of opinion-focused entries, as opposed to the meaning-focused entries that we expect from traditional dictionaries. Furthermore, Urban Dictionary covers many informal, unfamiliar words as well as proper nouns. Urban Dictionary also contains offensive content, but highly offensive content tends to receive lower scores through the dictionary's voting system. The low threshold to include new material in Urban Dictionary enables quick recording of new words and new meanings, but the resulting heterogeneous content can pose challenges in using Urban Dictionary as a source to study language innovation.

  3. Emo, love and god: making sense of Urban Dictionary, a crowd-sourced online dictionary

    Science.gov (United States)

    McGillivray, Barbara

    2018-01-01

    The Internet facilitates large-scale collaborative projects and the emergence of Web 2.0 platforms, where producers and consumers of content unify, has drastically changed the information market. On the one hand, the promise of the ‘wisdom of the crowd’ has inspired successful projects such as Wikipedia, which has become the primary source of crowd-based information in many languages. On the other hand, the decentralized and often unmonitored environment of such projects may make them susceptible to low-quality content. In this work, we focus on Urban Dictionary, a crowd-sourced online dictionary. We combine computational methods with qualitative annotation and shed light on the overall features of Urban Dictionary in terms of growth, coverage and types of content. We measure a high presence of opinion-focused entries, as opposed to the meaning-focused entries that we expect from traditional dictionaries. Furthermore, Urban Dictionary covers many informal, unfamiliar words as well as proper nouns. Urban Dictionary also contains offensive content, but highly offensive content tends to receive lower scores through the dictionary’s voting system. The low threshold to include new material in Urban Dictionary enables quick recording of new words and new meanings, but the resulting heterogeneous content can pose challenges in using Urban Dictionary as a source to study language innovation. PMID:29892417

  4. Volatile Organic Compounds: Characteristics, distribution and sources in urban schools

    Science.gov (United States)

    Mishra, Nitika; Bartsch, Jennifer; Ayoko, Godwin A.; Salthammer, Tunga; Morawska, Lidia

    2015-04-01

    Long term exposure to organic pollutants, both inside and outside school buildings may affect children's health and influence their learning performance. Since children spend significant amount of time in school, air quality, especially in classrooms plays a key role in determining the health risks associated with exposure at schools. Within this context, the present study investigated the ambient concentrations of Volatile Organic Compounds (VOCs) in 25 primary schools in Brisbane with the aim to quantify the indoor and outdoor VOCs concentrations, identify VOCs sources and their contribution, and based on these; propose mitigation measures to reduce VOCs exposure in schools. One of the most important findings is the occurrence of indoor sources, indicated by the I/O ratio >1 in 19 schools. Principal Component Analysis with Varimax rotation was used to identify common sources of VOCs and source contribution was calculated using an Absolute Principal Component Scores technique. The result showed that outdoor 47% of VOCs were contributed by petrol vehicle exhaust but the overall cleaning products had the highest contribution of 41% indoors followed by air fresheners and art and craft activities. These findings point to the need for a range of basic precautions during the selection, use and storage of cleaning products and materials to reduce the risk from these sources.

  5. Sources of hydrocarbons in urban road dust: Identification, quantification and prediction.

    Science.gov (United States)

    Mummullage, Sandya; Egodawatta, Prasanna; Ayoko, Godwin A; Goonetilleke, Ashantha

    2016-09-01

    Among urban stormwater pollutants, hydrocarbons are a significant environmental concern due to their toxicity and relatively stable chemical structure. This study focused on the identification of hydrocarbon contributing sources to urban road dust and approaches for the quantification of pollutant loads to enhance the design of source control measures. The study confirmed the validity of the use of mathematical techniques of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for source identification and principal component analysis/absolute principal component scores (PCA/APCS) receptor model for pollutant load quantification. Study outcomes identified non-combusted lubrication oils, non-combusted diesel fuels and tyre and asphalt wear as the three most critical urban hydrocarbon sources. The site specific variabilities of contributions from sources were replicated using three mathematical models. The models employed predictor variables of daily traffic volume (DTV), road surface texture depth (TD), slope of the road section (SLP), effective population (EPOP) and effective impervious fraction (EIF), which can be considered as the five governing parameters of pollutant generation, deposition and redistribution. Models were developed such that they can be applicable in determining hydrocarbon contributions from urban sites enabling effective design of source control measures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Identification of the sources of primary organic aerosols at urban schools: A molecular marker approach

    International Nuclear Information System (INIS)

    Crilley, Leigh R.; Qadir, Raeed M.; Ayoko, Godwin A.; Schnelle-Kreis, Jürgen; Abbaszade, Gülcin; Orasche, Jürgen; Zimmermann, Ralf; Morawska, Lidia

    2014-01-01

    Children are particularly susceptible to air pollution and schools are examples of urban microenvironments that can account for a large portion of children's exposure to airborne particles. Thus this paper aimed to determine the sources of primary airborne particles that children are exposed to at school by analyzing selected organic molecular markers at 11 urban schools in Brisbane, Australia. Positive matrix factorization analysis identified four sources at the schools: vehicle emissions, biomass burning, meat cooking and plant wax emissions accounting for 45%, 29%, 16% and 7%, of the organic carbon respectively. Biomass burning peaked in winter due to prescribed burning of bushland around Brisbane. Overall, the results indicated that both local (traffic) and regional (biomass burning) sources of primary organic aerosols influence the levels of ambient particles that children are exposed at the schools. These results have implications for potential control strategies for mitigating exposure at schools. - Highlights: • Selected organic molecular markers at 11 urban schools were analyzed. • Four sources of primary organic aerosols were identified by PMF at the schools. • Both local and regional sources were found to influence exposure at the schools. • The results have implications for mitigation of children's exposure at schools. - The identification of the most important sources of primary organic aerosols at urban schools has implications for control strategies for mitigating children's exposure at schools

  7. Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall

    International Nuclear Information System (INIS)

    Zhang Wei; Zhang Shucai; Wan Chao; Yue Dapan; Ye Youbin; Wang Xuejun

    2008-01-01

    Diagnostic ratios and multivariate analysis were utilized to apportion polycyclic aromatic hydrocarbon (PAH) sources for road runoff, road dust, rain and canopy throughfall based on samples collected in an urban area of Beijing, China. Three sampling sites representing vehicle lane, bicycle lane and branch road were selected. For road runoff and road dust, vehicular emission and coal combustion were identified as major sources, and the source contributions varied among the sampling sites. For rain, three principal components were apportioned representing coal/oil combustion (54%), vehicular emission (34%) and coking (12%). For canopy throughfall, vehicular emission (56%), coal combustion (30%) and oil combustion (14%) were identified as major sources. Overall, the PAH's source for road runoff mainly reflected that for road dust. Despite site-specific sources, the findings at the study area provided a general picture of PAHs sources for the road runoff system in urban area of Beijing. - Urban road runoff and road dust, canopy throughfall and rain were considered as a system for diagnostics of PAH sources

  8. Coal-tar-based sealcoated pavement: a major PAH source to urban stream sediments.

    Science.gov (United States)

    Witter, Amy E; Nguyen, Minh H; Baidar, Sunil; Sak, Peter B

    2014-02-01

    We used land-use analysis, PAH concentrations and assemblages, and multivariate statistics to identify sediment PAH sources in a small (~1303 km(2)) urbanizing watershed located in South-Central, Pennsylvania, USA. A geographic information system (GIS) was employed to quantify land-use features that may serve as PAH sources. Urban PAH concentrations were three times higher than rural levels, and were significantly and highly correlated with combined residential/commercial/industrial land use. Principal components analysis (PCA) was used to group sediments with similar PAH assemblages, and correlation analysis compared PAH sediment assemblages to common PAH sources. The strongest correlations were observed between rural sediments (n = 7) and coke-oven emissions sources (r = 0.69-0.78, n = 5), and between urban sediments (n = 22) and coal-tar-based sealcoat dust (r = 0.94, n = 47) suggesting that coal-tar-based sealcoat is an important urban PAH source in this watershed linked to residential and commercial/industrial land use. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. A source of energy : sustainable architecture and urbanism

    Energy Technology Data Exchange (ETDEWEB)

    Roestvik, Harald N.

    2011-07-01

    An update on the environmental challenges. Meant to inspire and be a source of energy.Tearing down myths and floodlighting paradoxes. Particularly relevant for students of architecture, architects and concerned citizens. Training tasks, recommendations for further source books and web sites, are included. From the content: Climate change and consensus, Population growth, Food production, The sustainable city, Transportation myths and facts, A mini history of environmental architecture, Architects' approach to sustainable design, The failure of western architects; a case study; China, The passive, zeb and plus energy building, Natural ventilation, Sustainable materials, Plastics in building, Nuclear energy, Solar energy, The grid of the future, Indoor climate and health. The sick building syndrome, Radon, Universal design, Paradoxes, Bullying techniques, Trust yourself, Timing, Which gateway will you choose?, On transience. (au)

  10. Perceptual assessment of quality of urban soundscapes with combined noise sources and water sounds.

    Science.gov (United States)

    Jeon, Jin Yong; Lee, Pyoung Jik; You, Jin; Kang, Jian

    2010-03-01

    In this study, urban soundscapes containing combined noise sources were evaluated through field surveys and laboratory experiments. The effect of water sounds on masking urban noises was then examined in order to enhance the soundscape perception. Field surveys in 16 urban spaces were conducted through soundwalking to evaluate the annoyance of combined noise sources. Synthesis curves were derived for the relationships between noise levels and the percentage of highly annoyed (%HA) and the percentage of annoyed (%A) for the combined noise sources. Qualitative analysis was also made using semantic scales for evaluating the quality of the soundscape, and it was shown that the perception of acoustic comfort and loudness was strongly related to the annoyance. A laboratory auditory experiment was then conducted in order to quantify the total annoyance caused by road traffic noise and four types of construction noise. It was shown that the annoyance ratings were related to the types of construction noise in combination with road traffic noise and the level of the road traffic noise. Finally, water sounds were determined to be the best sounds to use for enhancing the urban soundscape. The level of the water sounds should be similar to or not less than 3 dB below the level of the urban noises.

  11. Distribution and toxicity of current-use insecticides in sediment of a lake receiving waters from areas in transition to urbanization

    International Nuclear Information System (INIS)

    Wang Jizhong; Li Huizhen; You Jing

    2012-01-01

    Current-use insecticides including organophosphate (OPs) and synthetic pyrethroid (SPs) insecticides were analyzed in 35 sediment samples collected from Chaohu Lake in China, where a transition from a traditional agricultural to a modern urbanized society is ongoing. Total concentrations of five OPs and eight SPs ranged from 0.029 to 0.681 ng/g dry weight and 0.016–301 ng/g dry weight, respectively. Toxic unit analysis showed that 13% of the sediment samples likely produced over 50% of the mortality for benthic invertebrates. Analysis also showed that cypermethrin was the principal contributor to the toxicity. Spatial distribution evaluation implied that OPs were mainly from non-point sources associated with agricultural activities. Conversely, SPs may have been derived from runoff of inflowing rivers through urban regions, as their concentrations were well-correlated with concentrations of other urban-oriented contaminants. - Highlights: ► Though lower than urban sites, pyrethroid insecticides in Chaohu Lake, China may cause toxicity to benthic invertebrates. ► Concentrations of pyrethroids were well correlated with those of other urban-oriented contaminants, e.g. PAHs and LABs. ► Spatial distribution showed urban runoff was the major source of pyrethroids deposited in the lake sediment. ► Conversely, organophosphate insecticides were mainly associated with agricultural non-point sources. - Evaluation of the distribution, potential toxicity, and input sources of organophosphate and pyrethroid insecticides in sediment from Chaohu Lake, China.

  12. A simple laboratory project for introducing nonpoint source pollution concept to students of environmental and agricultural related courses Uma experiência laboratorial simples para introduzir o conceito de poluição disseminada a estudantes das áreas do ambiente e agricultura

    Directory of Open Access Journals (Sweden)

    M.M. Vidal

    2009-01-01

    Full Text Available This paper reports a simple laboratory project to introduce students to the nonpoint source pollution, which may be an issue of great interest to both undergraduate and graduate students of environmental or agricultural chemistry courses. The aim of this work is introduce to the students the concepts and techniques such as the polymericbased controlled release system of an agrochemical, theory of diffusion (first Fick law and spectrophotometric analysis. Thus, this laboratory project includes three experimental modules to be conducted during three weeks. Programmatic contents are described in this proceeding. Students must be aware that dissemination of nutrients and pesticides is prone to occur by both surface runoff and groundwater leaching, causing damages on all neighboring land. To demonstrate dissemination of such pollutants, we have chosen inorganic phosphorus as example of a common agrochemical. Students are invited to follow the eventual movement of the inorganic P into the groundwater. With this purpose, gelatin gels containing inorganic P were prepared to obtain a continuous release of inorganic P at a controlled rate. The slow release of P allows fewer applications and less active ingredient needed, helping to prevent leaching, with consequent reduction of groundwater contamination. At this point, students are able to compare the advantages of slow release inorganic P vs. its application by conventional methods.Este trabalho descreve uma experiência laboratorial simples para introduzir o conceito de poluição disseminada (nonpoint source pollution a estudantes do Ensino Secundário e Universitário das áreas de Ambiente e de Agricultura. O objectivo deste trabalho é introduzir aos estudantes conceitos e técnicas, tais como os sistemas de libertação controlada, a teoria da difusão (1ª lei de Fick e a análise espectrofotomética. Este projecto laboratorial inclui três módulos experimentais a serem efectuados durante 3

  13. Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of south China

    Science.gov (United States)

    Zhang, Qianqian; Sun, Jichao; Liu, Jingtao; Huang, Guanxing; Lu, Chuan; Zhang, Yuxi

    2015-11-01

    Nitrate contamination of groundwater has become an environmental problem of widespread concern in China. We collected 899 groundwater samples from a rapidly urbanized area, in order to identify the main sources and driving mechanisms of groundwater nitrate contamination. The results showed that the land use has a significant effect on groundwater nitrate concentration (P population growth. This study revealed that domestic wastewater and industrial wastewater were the main sources of groundwater nitrate pollution. Therefore, the priority method for relieving groundwater nitrate contamination is to control the random discharge of domestic and industrial wastewater in regions undergoing rapid urbanization. Capsule abstract. The main driving mechanism of groundwater nitrate contamination was determined to be urban construction and the secondary and tertiary industrial development, and population growth.

  14. Urban NH3 levels and sources in six major Spanish cities.

    Science.gov (United States)

    Reche, Cristina; Viana, Mar; Karanasiou, Angeliki; Cusack, Michael; Alastuey, Andrés; Artiñano, Begoña; Revuelta, M Aranzazu; López-Mahía, Purificación; Blanco-Heras, Gustavo; Rodríguez, Sergio; Sánchez de la Campa, Ana M; Fernández-Camacho, Rocío; González-Castanedo, Yolanda; Mantilla, Enrique; Tang, Y Sim; Querol, Xavier

    2015-01-01

    A detailed spatial and temporal assessment of urban NH3 levels and potential emission sources was made with passive samplers in six major Spanish cities (Barcelona, Madrid, A Coruña, Huelva, Santa Cruz de Tenerife and Valencia). Measurements were conducted during two different periods (winter-autumn and spring-summer) in each city. Barcelona showed the clearest spatial pattern, with the highest concentrations in the old city centre, an area characterised by a high population density and a dense urban architecture. The variability in NH3 concentrations did not follow a common seasonal pattern across the different cities. The relationship of urban NH3 with SO2 and NOX allowed concluding on the causes responsible for the variations in NH3 levels between measurement periods observed in Barcelona, Huelva and Madrid. However, the factors governing the variations in A Coruña, Valencia and Santa Cruz de Tenerife are still not fully understood. This study identified a broad variability in NH3 concentrations at the city-scale, and it confirms that NH3 sources in Spanish urban environments are vehicular traffic, biological sources (e.g. garbage containers), wastewater treatment plants, solid waste treatment plants and industry. The importance of NH3 monitoring in urban environments relies on its role as a precursor of secondary inorganic species and therefore PMX. Further research should be addressed in order to establish criteria to develop and implement mitigation strategies for cities, and to include urban NH3 sources in the emission inventories. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Urban sources and emissions of nitrous oxide and methane in southern California, USA

    Science.gov (United States)

    Townsend-Small, A.; Pataki, D.; Tyler, S. C.; Czimczik, C. I.; Xu, X.; Christensen, L. E.

    2012-12-01

    Anthropogenic activities have resulted in increasing levels of greenhouse gases, including carbon dioxide, methane, and nitrous oxide. While global and regional emissions sources of carbon dioxide are relatively well understood, methane and nitrous oxide are less constrained, particularly at regional scales. Here we present the results of an investigation of sources and emissions of methane and nitrous oxide in Los Angeles, California, USA, one of Earth's largest urban areas. The original goal of the project was to determine whether isotopes are useful tracers of agricultural versus urban nitrous oxide and methane sources. For methane, we found that stable isotopes (carbon-13 and deuterium) and radiocarbon are good tracers of biogenic versus fossil fuel sources. High altitude observations of methane concentration, measured continuously using tunable laser spectroscopy, and isotope ratios, measured on discrete flask samples using mass spectrometry, indicate that the predominant methane source in Los Angeles is from fossil fuels, likely from "fugitive" emissions from geologic formations, natural gas pipelines, oil refining, or power plants. We also measured nitrous oxide emissions and isotope ratios from urban (landscaping and wastewater treatment) and agricultural sources (corn and vegetable fields). There was no difference in nitrous oxide isotope ratios between the different types of sources, although stable isotopes did differ between nitrous oxide produced in oxic and anoxic wastewater treatment tanks. Our nitrous oxide flux data indicate that landscaped turfgrass emits nitrous oxide at rates equivalent to agricultural systems, indicating that ornamental soils should not be disregarded in regional nitrous oxide budgets. However, we also showed that wastewater treatment is a much greater source of nitrous oxide than soils regionally. This work shows that global nitrous oxide and methane budgets are not easily downscaled to regional, urban settings, which has

  16. Open Source Tools for Numerical Simulation of Urban Greenhouse Gas Emissions

    Science.gov (United States)

    Nottrott, A.; Tan, S. M.; He, Y.

    2016-12-01

    There is a global movement toward urbanization. Approximately 7% of the global population lives in just 28 megacities, occupying less than 0.1% of the total land area used by human activity worldwide. These cities contribute a significant fraction of the global budget of anthropogenic primary pollutants and greenhouse gasses. The 27 largest cities consume 9.9%, 9.3%, 6.7% and 3.0% of global gasoline, electricity, energy and water use, respectively. This impact motivates novel approaches to quantify and mitigate the growing contribution of megacity emissions to global climate change. Cities are characterized by complex topography, inhomogeneous turbulence, and variable pollutant source distributions. These features create a scale separation between local sources and urban scale emissions estimates known as the Grey-Zone. Modern computational fluid dynamics (CFD) techniques provide a quasi-deterministic, physically based toolset to bridge the scale separation gap between source level dynamics, local measurements, and urban scale emissions inventories. CFD has the capability to represent complex building topography and capture detailed 3D turbulence fields in the urban boundary layer. This presentation discusses the application of OpenFOAM to urban CFD simulations of natural gas leaks in cities. OpenFOAM is an open source software for advanced numerical simulation of engineering and environmental fluid flows. When combined with free or low cost computer aided drawing and GIS, OpenFOAM generates a detailed, 3D representation of urban wind fields. OpenFOAM was applied to model methane (CH4) emissions from various components of the natural gas distribution system, to investigate the impact of urban meteorology on mobile CH4 measurements. The numerical experiments demonstrate that CH4 concentration profiles are highly sensitive to the relative location of emission sources and buildings. Sources separated by distances of 5-10 meters showed significant differences in

  17. Forensic applications of nitrogen and oxygen isotopes in tracing nitrate sources in urban environments

    Science.gov (United States)

    Silva, S.R.; Ging, P.B.; Lee, R.W.; Ebbert, J.C.; Tesoriero, A.J.; Inkpen, E.L.

    2002-01-01

    Ground and surface waters in urban areas are susceptible to nitrate contamination from septic systems, leaking sewer lines, and fertilizer applications. Source identification is a primary step toward a successful remediation plan in affected areas. In this respect, nitrogen and oxygen isotope ratios of nitrate, in conjunction with hydrologic data and water chemistry, have proven valuable in urban studies from Austin, Texas, and Tacoma, Washington. In Austin, stream water was sampled during stremflow and baseflow conditions to assess surface and subsurface sources of nitrate, respectively. In Tacoma, well waters were sampled in adjacent sewered and un-sewered areas to determine if locally high nitrate concentrations were caused by septic systems in the un-sewered areas. In both studies, sewage was identified as a nitrate source and mixing between sewage and other sources of nitrate was apparent. In addition to source identification, combined nitrogen and oxygen isotopes were important in determining the significance of denitrification, which can complicate source assessment by reducing nitrate concentrations and increasing ??15N values. The two studies illustrate the value of nitrogen and oxygen isotopes of nitrate for forensic applications in urban areas. ?? Published by Elsevier Science Ltd. on behalf of AEHS.

  18. Stream Nitrate Concentrations Diverge at Baseflow and Converge During Storms in Watersheds with Contrasting Urbanization

    Science.gov (United States)

    Carey, R. O.; Wollheim, W. M.; Mulukutla, G. K.; Cook, C. S.

    2013-12-01

    Management of non-point sources is challenging because it requires adequate quantification of non-point fluxes that are highly dynamic over time. Most fluxes occur during storms and are difficult to characterize with grab samples alone in flashy, urban watersheds. Accurate and relatively precise measurements using in situ sensor technology can quantify fluxes continuously, avoiding the uncertainties in extrapolation of infrequently collected grab samples. In situ nitrate (NO3-N) sensors were deployed simultaneously from April to December 2013 in two streams with contrasting urban land uses in an urbanizing New Hampshire watershed (80 km2). Nitrogen non-point fluxes and temporal patterns were evaluated in Beards Creek (forested: 50%; residential: 24%; commercial/institutional/transportation: 7%; agricultural: 6%) and College Brook (forested: 35%; residential: 11%; commercial/institutional/transportation: 20%; agricultural: 17%). Preliminary data indicated NO3-N concentrations in Beards Creek (mean: 0.37 mg/L) were lower than College Brook (mean: 0.60 mg/L), but both streams exhibited rapid increases in NO3-N during the beginning of storms followed by overall dilution. While baseflow NO3-N was greater in College Brook than Beards Creek, NO3-N at the two sites consistently converged during storms. This suggests that standard grab sampling may overestimate fluxes in urban streams, since short-term dilution occurred during periods of highest flow. Analyzing NO3-N flux patterns in smaller urban streams that are directly impacted by watershed activities could help to inform management decisions regarding N source controls, ultimately allowing an assessment of the interactions of climate variability and management actions.

  19. Radio News Source Preference by Residents of UYO Urban, Nigeria

    Directory of Open Access Journals (Sweden)

    CHARLES OBOT

    2013-09-01

    Full Text Available Exposure to broadcast news by audience members is part of human information processing.  Radio is believed to be a major source of news on many local and national issues for many people in many countries. But it was uncertain whether the assumption was tenable in Nigeria. Selectivity plays significant role in audience members’ exposure to broadcast news.  The study set out to investigate which radio station(s residents of Uyo residents tune to for news on important local and national issues. It also studied what factors influence their choice of radio station for news on socio-political crises in Nigeria. The findings showed that majority of the respondents prefer foreign radio stations – Voice of America (VOA and British Broadcasting Corporation (BBC for news on socio-political crises in Nigeria. The survey also revealed that media credibility exerted great influence on audience exposure to broadcast news and choice of broadcast medium for news. It is the submission of this work that the continuous presentation of one-sided point of view, whether in government-controlled media or privately-owned ones not only makes the audience hold their news content suspect but also makes such mass medium to rank low in terms of perceived credibility. One of the implications of that situation is that mass mobilization through such media would be difficult to achieve.  Consequently, it is the submission of this research that if broadcast media in Nigeria are to be reckoned trustworthy and reliable, diverse and balanced views on all issues in the news should always be presented.

  20. Estimating sedimentation rates and sources in a partially urbanized catchment using caesium-137

    Science.gov (United States)

    Ormerod, L. M.

    1998-06-01

    While there has been increased interest in determining sedimentation rates and sources in agricultural and forested catchments in recent years, there have been few studies dealing with urbanized catchments. A study of sedimentation rates and sources within channel and floodplain deposits of a partially urbanized catchment has been undertaken using the 137Cs technique. Results for sedimentation rates showed no particular downstream pattern. This may be partially explained by underestimation of sedimentation rates at some sites by failure to sample the full 137Cs profile, floodplain erosion and deliberate removal of sediment. Evidence of lateral increases in net sedimentation rates with distance from the channel may be explained by increased floodplain erosion at sites closer to the channel and floodplain formation by lateral deposition. Potential sediment sources for the catchment were considered to be forest topsoil, subsurface material and sediments derived from urban areas, which were found to be predominantly subsurface material. Tracing techniques showed an increase in subsurface material for downstream sites, confirming expectations that subsurface material would increase in the downstream direction in response to the direct and indirect effects of urbanization.

  1. Using Social Media to Identify Sources of Healthy Food in Urban Neighborhoods.

    Science.gov (United States)

    Gomez-Lopez, Iris N; Clarke, Philippa; Hill, Alex B; Romero, Daniel M; Goodspeed, Robert; Berrocal, Veronica J; Vinod Vydiswaran, V G; Veinot, Tiffany C

    2017-06-01

    An established body of research has used secondary data sources (such as proprietary business databases) to demonstrate the importance of the neighborhood food environment for multiple health outcomes. However, documenting food availability using secondary sources in low-income urban neighborhoods can be particularly challenging since small businesses play a crucial role in food availability. These small businesses are typically underrepresented in national databases, which rely on secondary sources to develop data for marketing purposes. Using social media and other crowdsourced data to account for these smaller businesses holds promise, but the quality of these data remains unknown. This paper compares the quality of full-line grocery store information from Yelp, a crowdsourced content service, to a "ground truth" data set (Detroit Food Map) and a commercially-available dataset (Reference USA) for the greater Detroit area. Results suggest that Yelp is more accurate than Reference USA in identifying healthy food stores in urban areas. Researchers investigating the relationship between the nutrition environment and health may consider Yelp as a reliable and valid source for identifying sources of healthy food in urban environments.

  2. 78 FR 69664 - Proposed Information Collection Request; Comment Request; Approval of State Coastal Nonpoint...

    Science.gov (United States)

    2013-11-20

    ... Collection Request; Comment Request; Approval of State Coastal Nonpoint Pollution Control Programs AGENCY... to submit an information collection request (ICR), ``Approval of State Coastal Nonpoint Pollution... Watershed Protection Division, Office of Wetlands Oceans and Watersheds, Mail Code 4503-T, Environmental...

  3. Isotopic evidence for enhanced fossil fuel sources of aerosol ammonium in the urban atmosphere.

    Science.gov (United States)

    Pan, Yuepeng; Tian, Shili; Liu, Dongwei; Fang, Yunting; Zhu, Xiaying; Gao, Meng; Gao, Jian; Michalski, Greg; Wang, Yuesi

    2018-04-20

    The sources of aerosol ammonium (NH 4 + ) are of interest because of the potential of NH 4 + to impact the Earth's radiative balance, as well as human health and biological diversity. Isotopic source apportionment of aerosol NH 4 + is challenging in the urban atmosphere, which has excess ammonia (NH 3 ) and where nitrogen isotopic fractionation commonly occurs. Based on year-round isotopic measurements in urban Beijing, we show the source dependence of the isotopic abundance of aerosol NH 4 + , with isotopically light (-33.8‰) and heavy (0 to +12.0‰) NH 4 + associated with strong northerly winds and sustained southerly winds, respectively. On an annual basis, 37-52% of the initial NH 3 concentrations in urban Beijing arises from fossil fuel emissions, which are episodically enhanced by air mass stagnation preceding the passage of cold fronts. These results provide strong evidence for the contribution of non-agricultural sources to NH 3 in urban regions and suggest that priority should be given to controlling these emissions for haze regulation. This study presents a carefully executed application of existing stable nitrogen isotope measurement and mass-balance techniques to a very important problem: understanding source contributions to atmospheric NH 3 in Beijing. This question is crucial to informing environmental policy on reducing particulate matter concentrations, which are some of the highest in the world. However, the isotopic source attribution results presented here still involve a number of uncertain assumptions and they are limited by the incomplete set of chemical and isotopic measurements of gas NH 3 and aerosol NH 4 + . Further field work and lab experiments are required to adequately characterize endmember isotopic signatures and the subsequent isotopic fractionation process under different air pollution and meteorological conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. GIS-BASED ROUTE FINDING USING ANT COLONY OPTIMIZATION AND URBAN TRAFFIC DATA FROM DIFFERENT SOURCES

    Directory of Open Access Journals (Sweden)

    M. Davoodi

    2015-12-01

    Full Text Available Nowadays traffic data is obtained from multiple sources including GPS, Video Vehicle Detectors (VVD, Automatic Number Plate Recognition (ANPR, Floating Car Data (FCD, VANETs, etc. All such data can be used for route finding. This paper proposes a model for finding the optimum route based on the integration of traffic data from different sources. Ant Colony Optimization is applied in this paper because the concept of this method (movement of ants in a network is similar to urban road network and movements of cars. The results indicate that this model is capable of incorporating data from different sources, which may even be inconsistent.

  5. Gis-Based Route Finding Using ANT Colony Optimization and Urban Traffic Data from Different Sources

    Science.gov (United States)

    Davoodi, M.; Mesgari, M. S.

    2015-12-01

    Nowadays traffic data is obtained from multiple sources including GPS, Video Vehicle Detectors (VVD), Automatic Number Plate Recognition (ANPR), Floating Car Data (FCD), VANETs, etc. All such data can be used for route finding. This paper proposes a model for finding the optimum route based on the integration of traffic data from different sources. Ant Colony Optimization is applied in this paper because the concept of this method (movement of ants in a network) is similar to urban road network and movements of cars. The results indicate that this model is capable of incorporating data from different sources, which may even be inconsistent.

  6. A new framework for modeling urban land expansion in peri-urban area by combining multi-source datasets and data assimilation

    Science.gov (United States)

    Zhang, Z.; Xiao, R.; Li, X.

    2015-12-01

    Peri-urban area is a new type region under the impacts of both rural Industrialization and the radiation of metropolitan during rapid urbanization. Due to its complex natural and social characteristics and unique development patterns, many problems such as environmental pollution and land use waste emerged, which became an urgent issue to be addressed. Study area in this paper covers three typical peri-urban districts (Pudong, Fengxian and Jinshan), which around the Shanghai inner city. By coupling cellular automata and multi-agent system model as the basic tools, this research focus on modelling the urban land expansion and driving mechanism in peri-urban area. The big data is aslo combined with the Bayesian maximum entropy method (BME) for spatiotemporal prediction of multi-source data, which expand the dataset of urban expansion models. Data assimilation method is used to optimize the parameters of the coupling model and minimize the uncertainty of observations, improving the precision of future simulation in peri-urban area. By setting quantitative parameters, the coupling model can effectively improve the simulation of the process of urban land expansion under different policies and management schemes, in order to provide scientificimplications for new urbanization strategy. In this research, we precise the urban land expansion simulation and prediction for peri-urban area, expand the scopes and selections of data acquisition measurements and methods, develop the new applications of the data assimilation method in geographical science, provide a new idea for understanding the inherent rules of urban land expansion, and give theoretical and practical support for the peri-urban area in urban planning and decision making.

  7. PM10 concentration levels at an urban and background site in Cyprus: the impact of urban sources and dust storms.

    Science.gov (United States)

    Achilleos, Souzana; Evans, John S; Yiallouros, Panayiotis K; Kleanthous, Savvas; Schwartz, Joel; Koutrakis, Petros

    2014-12-01

    Air quality in Cyprus is influenced by both local and transported pollution, including desert dust storms. We examined PM10 concentration data collected in Nicosia (urban representative) from April 1, 1993, through December 11, 2008, and in Ayia Marina (rural background representative) from January 1, 1999, through December 31, 2008. Measurements were conducted using a Tapered Element Oscillating Micro-balance (TEOM). PM10 concentrations, meteorological records, and satellite data were used to identify dust storm days. We investigated long-term trends using a Generalized Additive Model (GAM) after controlling for day of week, month, temperature, wind speed, and relative humidity. In Nicosia, annual PM10 concentrations ranged from 50.4 to 63.8 μg/m3 and exceeded the EU annual standard limit enacted in 2005 of 40 μg/m3 every year A large, statistically significant impact of urban sources (defined as the difference between urban and background levels) was seen in Nicosia over the period 2000-2008, and was highest during traffic hours, weekdays, cold months, and low wind conditions. Our estimate of the mean (standard error) contribution of urban sources to the daily ambient PM10 was 24.0 (0.4) μg/m3. The study of yearly trends showed that PM10 levels in Nicosia decreased from 59.4 μg/m3 in 1993 to 49.0 μg/m3 in 2008, probably in part as a result of traffic emission control policies in Cyprus. In Ayia Marina, annual concentrations ranged from 27.3 to 35.6 μg/m3, and no obvious time trends were observed. The levels measured at the Cyprus background site are comparable to background concentrations reported in other Eastern Mediterranean countries. Average daily PM10 concentrations during desert dust storms were around 100 μg/m3 since 2000 and much higher in earlier years. Despite the large impact ofdust storms and their increasing frequency over time, dust storms were responsible for a small fraction of the exceedances of the daily PM10 limit. Implications: This

  8. Establishing a link between vehicular PM sources and PM measurements in urban street canyons.

    Science.gov (United States)

    Eisner, Alfred D; Richmond-Bryant, Jennifer; Wiener, Russell W; Hahn, Intaek; Drake-Richman, Zora E; Ellenson, William D

    2009-12-01

    The Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) study, conducted in Brooklyn, NY, USA, in 2005, was designed with multiple goals in mind, two of which were contaminant source characterization and street canyon transport and dispersion monitoring. In the portion of the study described here, synchronized wind velocity and azimuth as well as particulate matter (PM) concentrations at multiple locations along 33rd Street were used to determine the feasibility of using traffic emissions in a complex urban topography as a sole tracer for studying urban contaminant transport. We demonstrate in this paper that it is possible to link downwind concentrations of contaminants in an urban street canyon to the vehicular traffic cycle using Eigen-frequency analysis. In addition, multivariable circular histograms are used to establish directional frequency maxima for wind velocity and contaminant concentration.

  9. Export Mechanisms of Persistent Toxic Substances (PTSs) in Urban Land Uses during Rainfall-Runoff Events: Experimental and Modeling Studies

    Science.gov (United States)

    Zheng, Y.; Luo, X.; Lin, Z.

    2016-12-01

    The urban environment has a variety of Persistent Toxic Substances (PTS), such as Polycyclic Aromatic Hydrocarbons (PAHs) and mercury. Soil in pervious lands and dust deposited on impervious surfaces are two major sinks of PTSs in urbanized areas, which could contribute significant nonpoint source loadings of PTSs to adjacent waterbodies during rainfall-runoff events and therefore jeopardize aquatic ecosystems. However, PTSs have been much less understood regarding their export mechanisms in urban land uses, and efforts to model nonpoint source pollution processes of PTSs have been rare. We designed and performed in-lab rainfall-runoff simulation experiments to investigate transport of PAHs and mercury by runoff from urban soils. Organic petrology analysis (OPA) techniques were introduced to analyze the soil and sediment compositions. Our study revealed the limitation of the classic enrichment theory which attributes enrichment of pollutants in eroded sediment solely to the sediment's particle size distribution and adopts simple relationships between enrichment ratio and sediment flux. We found that carbonaceous materials (CMs) in soil are the direct and major sorbents for PAHs and mercury, and highly different in content, mobility and adsorption capacity for the PTSs. Anthropogenic CMs like black carbon components largely control the transport of soil PAHs, while humic substances have a dominant influence on the transport of soil mercury. A model was further developed to estimate the enrichment ratio of PAHs, which innovatively applies the fugacity concept.We also conducted field studies on export of PAHs by runoff from urban roads. A variable time-step model was developed to simulate the continuous cycles of PAH buildup and washoff on urban roads. The dependence of the pollution level on antecedent weather conditions was investigated and embodied in the model. The applicability of this approach and its value to environmental management was demonstrated by a case

  10. Apportionment of urban aerosol sources in Cork (Ireland) by synergistic measurement techniques.

    Science.gov (United States)

    Dall'Osto, Manuel; Hellebust, Stig; Healy, Robert M; O'Connor, Ian P; Kourtchev, Ivan; Sodeau, John R; Ovadnevaite, Jurgita; Ceburnis, Darius; O'Dowd, Colin D; Wenger, John C

    2014-09-15

    The sources of ambient fine particulate matter (PM2.5) during wintertime at a background urban location in Cork city (Ireland) have been determined. Aerosol chemical analyses were performed by multiple techniques including on-line high resolution aerosol time-of-flight mass spectrometry (Aerodyne HR-ToF-AMS), on-line single particle aerosol time-of-flight mass spectrometry (TSI ATOFMS), on-line elemental carbon-organic carbon analysis (Sunset_EC-OC), and off-line gas chromatography/mass spectrometry and ion chromatography analysis of filter samples collected at 6-h resolution. Positive matrix factorization (PMF) has been carried out to better elucidate aerosol sources not clearly identified when analyzing results from individual aerosol techniques on their own. Two datasets have been considered: on-line measurements averaged over 2-h periods, and both on-line and off-line measurements averaged over 6-h periods. Five aerosol sources were identified by PMF in both datasets, with excellent agreement between the two solutions: (1) regional domestic solid fuel burning--"DSF_Regional," 24-27%; (2) local urban domestic solid fuel burning--"DSF_Urban," 22-23%; (3) road vehicle emissions--"Traffic," 15-20%; (4) secondary aerosols from regional anthropogenic sources--"SA_Regional" 9-13%; and (5) secondary aged/processed aerosols related to urban anthropogenic sources--"SA_Urban," 21-26%. The results indicate that, despite regulations for restricting the use of smoky fuels, solid fuel burning is the major source (46-50%) of PM2.5 in wintertime in Cork, and also likely other areas of Ireland. Whilst wood combustion is strongly associated with OC and EC, it was found that peat and coal combustion is linked mainly with OC and the aerosol from these latter sources appears to be more volatile than that produced by wood combustion. Ship emissions from the nearby port were found to be mixed with the SA_Regional factor. The PMF analysis allowed us to link the AMS cooking organic

  11. Factors influencing mobile source particulate matter emissions-to-exposure relationships in the Boston urban area.

    Science.gov (United States)

    Greco, Susan L; Wilson, Andrew M; Hanna, Steven R; Levy, Jonathan I

    2007-11-15

    Benefit-cost and regulatory impact analyses often use atmospheric dispersion models with coarse resolution to estimate the benefits of proposed mobile source emission control regulations. This approach may bias health estimates or miss important intra-urban variability for primary air pollutants. In this study, we estimate primary fine particulate matter (PM2.5) intake fractions (iF; the fraction of a pollutant emitted from a source that is inhaled by the population) for each of 23 398 road segments in the Boston Metro Core area to evaluate the potential for intra-urban variability in the emissions-to-exposure relationship. We estimate iFs using the CAL3QHCR line source model combined with residential populations within 5000 m of each road segment. The annual average values for the road segments range from 0.8 to 53 per million, with a mean of 12 per million. On average, 46% of the total exposure is realized within 200 m of the road segment, though this varies from 0 to 93% largely due to variable population patterns. Our findings indicate the likelihood of substantial intra-urban variability in mobile source primary PM2.5 iF that accounting for population movement with time, localized meteorological conditions, and street-canyon configurations would likely increase.

  12. Thia-arenes as source apportionment tracers for urban air particulate

    International Nuclear Information System (INIS)

    McCarry, B.E.; Allan, L.M.; Mehta, S.; Marvin, C.H.

    1995-01-01

    Over sixty respirable air particulate samples were selected from a large number of filters collected in Hamilton, Ontario, Canada. Depending on the wind direction these sites were either predominantly upwind or predominantly downwind of the industrial sources. The sixty filters were extracted and analyzed using GC-MS for a range of PAH and sulfur-containing PAH (thia-arenes). Various reference standards (coal tar, diesel exhaust, urban air particulate) and source samples (coke oven condensate) were analyzed as well. A set of air particulate samples collected in another city alongside a highway provided an urban vehicular air sample. Unique thia-arene profiles were noted in the reference and source samples which provided the basis for this source apportionment work; two main approaches were used: (1) analysis of alkylated derivatives of thia-arenes with a molecular mass of 184 amu and (2) analysis of 234 amu isomers. The diesel exhaust and urban vehicular samples gave identical profiles while the coal tar and coke oven samples also had identical profiles but in different respects. The air samples collected at samplers located upwind of the coke ovens showed thia-arene profiles which were similar to the profile observed with a diesel exhaust reference material. However, air samples collected downwind of the coke ovens were heavily loaded samples and resembled the coal tar coke and oven condensate samples

  13. An inter-comparison of PM2.5 at urban and urban background sites: Chemical characterization and source apportionment

    Science.gov (United States)

    Cesari, D.; Donateo, A.; Conte, M.; Merico, E.; Giangreco, A.; Giangreco, F.; Contini, D.

    2016-06-01

    A measurement campaign was performed between 04/03/2013 and 17/07/2013 for simultaneous collection of PM2.5 samples in two nearby sites in southeastern Italy: an urban site and an urban background site. PM2.5 at the two sites were similar; however, the chemical composition and the contributions of the main sources were significantly different. The coefficients of divergence (CODs) showed spatial heterogeneity of EC (higher at the urban site because of traffic emissions) and of all metals. Major ions (NH4+, Na+, and SO42 -) and OC had low CODs, suggesting a homogeneous distribution of sea spray, secondary sulfate, and secondary organic matter (SOM = 1.6*OCsec, where OCsec is the secondary OC). The strong correlations between Na+ and Cl-, and the low Cl-/Na+ ratios, suggested the presence of aged sea spray with chloride depletion (about 79% of Cl-) and formation of sodium nitrate at both sites. In both sites, the non-sea-salt sulfate was about 97% of sulfate, and the strong correlation between SO42 - and NH4+ indicated that ammonium was present as ammonium sulfate. However, during advection of Saharan Dust, calcium sulfate was present rather than ammonium sulfate. The source apportionment was performed using the Positive Matrix Factorization comparing outputs of model EPA PMF 3.0 and 5.0 version. Six aerosol sources were identified at both sites: traffic, biomass burning, crustal-resuspended dust, secondary nitrate, marine aerosol, and secondary sulfate. The PMF3.0 model was not completely able, in these sites, to separate marine contribution from secondary nitrate and secondary sulfate from OC, underestimating the marine contribution and overestimating the secondary sulfate with respect to stoichiometric calculations. The application of specific constraints on PMF5.0 provided cleaner profiles, improving the comparison with stoichiometric calculations. The seasonal trends revealed larger biomass burning contributions during the cold period at both sites due to

  14. Novel human-associated Lachnospiraceae genetic markers improve detection of fecal pollution sources in urban waters.

    Science.gov (United States)

    Feng, Shuchen; Bootsma, Melinda; McLellan, Sandra L

    2018-05-04

    The human microbiome contains many organisms that could potentially be used as indicators of human fecal pollution. Here we report the development of two novel human-associated genetic marker assays that target organisms within the family Lachnospiraceae Next-generation sequencing of the V6 region of the 16S rRNA gene from sewage and animal stool samples identified 40 human-associated marker candidates with a robust signal in sewage and low or no occurrence in nonhuman hosts. Two were chosen for quantitative PCR (qPCR) assay development using longer sequences (V2 to V9 regions) generated from clone libraries. Validation of these assays, designated Lachno3 and Lachno12, was performed using fecal samples (n=55) from cat, dog, pig, cow, deer, and gull sources, and compared with established host-associated assays (Lachno2, and two Human Bacteroides assays; HB and HF183/BacR287). Each of the established assays cross-reacted with at least one other animal, including animals common in urban areas. Lachno3 and Lachno12 were primarily human-associated; however, Lachno12 demonstrated low levels of cross-reactivity with select cows, and non-specific amplification in pigs. This limitation may not be problematic when testing urban waters. These novel markers resolved ambiguous results from previous investigations in stormwater-impacted waters, demonstrating their utility. The complexity of the microbiome in humans and animals suggests no single organism is strictly specific to humans, and multiple complementary markers used in combination will provide the highest resolution and specificity for assessing fecal pollution sources. IMPORTANCE Traditional fecal indicator bacteria do not distinguish animal from human fecal pollution, which is necessary to evaluate health risks and mitigate pollution sources. Assessing urban areas is challenging since water can be impacted by sewage, which has a high likelihood of carrying human pathogens, as well as pet waste and urban wildlife. We

  15. Volatile chemical products emerging as largest petrochemical source of urban organic emissions

    Science.gov (United States)

    McDonald, Brian C.; de Gouw, Joost A.; Gilman, Jessica B.; Jathar, Shantanu H.; Akherati, Ali; Cappa, Christopher D.; Jimenez, Jose L.; Lee-Taylor, Julia; Hayes, Patrick L.; McKeen, Stuart A.; Cui, Yu Yan; Kim, Si-Wan; Gentner, Drew R.; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.; Harley, Robert A.; Frost, Gregory J.; Roberts, James M.; Ryerson, Thomas B.; Trainer, Michael

    2018-02-01

    A gap in emission inventories of urban volatile organic compound (VOC) sources, which contribute to regional ozone and aerosol burdens, has increased as transportation emissions in the United States and Europe have declined rapidly. A detailed mass balance demonstrates that the use of volatile chemical products (VCPs)—including pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products—now constitutes half of fossil fuel VOC emissions in industrialized cities. The high fraction of VCP emissions is consistent with observed urban outdoor and indoor air measurements. We show that human exposure to carbonaceous aerosols of fossil origin is transitioning away from transportation-related sources and toward VCPs. Existing U.S. regulations on VCPs emphasize mitigating ozone and air toxics, but they currently exempt many chemicals that lead to secondary organic aerosols.

  16. Can the watershed non-point phosphorus pollution be interpreted by critical soil properties? A new insight of different soil P states.

    Science.gov (United States)

    Lin, Chen; Ma, Ronghua; Xiong, Junfeng

    2018-07-01

    The physicochemical properties of surface soil play a key role in the fate of watershed non-point source pollution. Special emphasis is needed to identify soil properties that are sensitive to both particulate P (PP) pollution and dissolved P (DP) pollution, which is essential for watershed environmental management. The Chaohu Lake basin, a typical eutrophic lake in China, was selected as the study site. The spatial features of the Non-point Source (NPS) PP loads and DP loads were calculated simultaneously based on the integration of sediment delivery distributed model (SEDD) and pollution loads (PLOAD) model. Then several critical physicochemical soil properties, especially various soil P compositions, were innovatively introduced to determine the response of the critical soil properties to NPS P pollution. The findings can be summarized: i) the mean PP load value of the different sub-basins was 5.87 kg, and PP pollution is regarded to be the primary NPS P pollution state, while the DP loads increased rapidly under the rapid urbanization process. ii) iron-bound phosphorus (Fe-P) and aluminum-bound phosphorus (Al-P) are the main components of available P and showed the most sensitive responses to NPS PP pollution, and the correlation coefficients were approximately 0.9. Otherwise, the residual phosphorus (Res-P) was selected as a sensitive soil P state that was significantly negatively correlated with the DP loads. iii) The DP and PP concentrations were represented differently when they were correlated with various soil properties, and the clay proportion was strongly negatively related to the PP loads. Meanwhile, there is a non-linear relationship between the DP loads and the critical soil properties, such as Fe and Total Nitrogen (TN) concentrations. Specifically, a strong inhibitory effect of TN concentration on the DP load was apparent in the Nanfei river (NF) and Paihe (PH) river basins where the R 2 reached 0.67, which contrasts with the relatively poor

  17. Investigating Ammonia Emission Sources in a Coastal Urban Air Shed Using Stable Isotope Techniques

    Science.gov (United States)

    Berner, A.; Felix, J. D. D.

    2017-12-01

    For nearly 100 years, mankind has met the food demands of a growing population by commercially producing and consuming reactive nitrogen fertilizers. So much so, that now 40-60% of the population relies on them. This increase has drastically altered the global nitrogen (N) cycle. Specifically, ammonia (NH3) emissions to the atmosphere have increased, resulting in wet and dry NHx (NH3 + NH4+) deposition products that can be substantial sources of N to sensitive ecosystems. Excess N can wreak havoc on these environments, causing soil acidification, water body eutrophication, and decreases in biodiversity. Despite these effects, NH3 remains generally unregulated in the U.S. Should policymakers elect to regulate NH3, quantification of NH3 emission sources and transport is essential. This has proven to be particularly difficult in urban regions, where ambient NH3 may result from local urban sources and/or NH3 transport from rural agricultural sources. The presented work investigates potential NH3 emission sources within a South Texas coastal urban air shed, Corpus Christi, TX, U.S.A. Previous work has shown an increasing fine particulate matter (PM2.5) trend within the region, which may be attributable to NH3 emissions from a variety of local sources, including vehicle traffic, shipping traffic, the petrochemical industry, and/or surrounding agricultural cropland and livestock. NH3 was collected monthly at a set of 8 sites within the Corpus Christi air shed, analyzed for NH3 concentration and N isotopic composition (d15N-NH3), and compared to known isotopic compositions of NH3 sources. Low and seasonally variable d15N-NH3 values are associated with varying agricultural sources (fertilizer, livestock waste, etc.), while higher and more seasonally constant d15N-NH3 values are associated with non-agricultural sources (vehicles, industry, etc.). Several other physical and chemical atmospheric components (e.g. SO2, NO2, O3, PM2.5, temperature, relative humidity) were also

  18. Identification of pollutant sources in a rapidly developing urban river catchment in China

    Science.gov (United States)

    Huang, Jingshui; Yin, Hailong; Jomma, Seifeddine; Rode, Michael; Zhou, Qi

    2016-04-01

    Rapid economic development and urbanization worldwide cause serious ecological and environmental problems. A typical region that is in transition and requires systemic research for effective intervention is the rapidly developing city of Hefei in central P. R. China. In order to investigate the sources of pollutants over a one-year period in Nanfei River catchment that drains the city of Hefei, discharges were measured and water samples were taken and measured along the 14km river section at 10 sites for 4 times from 2013 to 2014. Overflow concentrations of combined sewer and separate storm drains were also measured by selecting 15 rain events in 4 typical drainage systems. Loads and budgets of water and different pollutant sources i.e., wastewater treatment plant (WWTP) effluent, urban drainage overflow, unknown wastewater were calculated. The water balance demonstrated that >70% of the discharge originated from WWTP effluent. Lack of clean upstream inflow thereby is threatening ecological safety and water quality. Furthermore, mass fluxes calculations revealed that >40% of the COD (Chemical Oxygen Demand) loads were from urban drainage overflow because of a large amount of discharge of untreated wastewater in pumping stations during rain events. WWTP effluent was the predominant source of the total nitrogen loads (>60%) and ammonia loads (>45%). However, the total phosphorous loads from three different sources are similar (˜1/3). Thus, our research provided a basis for appropriate and prior mitigation strategies (state-of-art of WWTP upgrade, sewer systems modification, storm water regulation and storage capacity improvement, etc.) for different precedence-controlled pollutants with the limited infrastructure investments in these rapidly developing urban regions.

  19. Investigating Diesel Engines as an Atmospheric Source of Isocyanic Acid in Urban Areas

    Science.gov (United States)

    Farmer, D.; Jathar, S.; Heppding, C.; Link, M.; Akherati, A.; Kleeman, M.; De Gouw, J. A.; Veres, P. R.; Roberts, J. M.

    2017-12-01

    Isocyanic acid (HNCO), an acidic gas found in tobacco smoke, urban environments and biomass burning-affected regions, has been linked to adverse health outcomes. Gasoline- and diesel-powered engines and biomass burning are known to emit HNCO and hypothesized to emit precursors such as amides that can photochemically react to produce HNCO in the atmosphere. Increasingly, diesel engines in developed countries like the United States are required to use Selective Catalytic Reduction (SCR) systems to reduce tailpipe emissions of oxides of nitrogen. SCR chemistry is known to produce HNCO as an intermediate product, and SCR systems have been implicated as an atmospheric source of HNCO. In this work, we measure HNCO emissions from an SCR system-equipped diesel engine and, in combination with earlier data, use a three-dimensional chemical transport model (CTM) to simulate the ambient concentrations and source/pathway contributions to HNCO in an urban environment. Engine tests were conducted at three different engine loads, using two different fuels and at multiple operating points. HNCO was measured using an acetate chemical ionization mass spectrometer. The diesel engine was found to emit primary HNCO (3-90 mg kg-fuel-1) but we did not find any evidence that the SCR system or other aftertreatment devices (i.e., oxidation catalyst and particle filter) produced or enhanced HNCO emissions. The CTM predictions compared well with the only available observational data sets for HNCO in urban areas but under-predicted the contribution from secondary processes. The comparison implied that diesel-powered engines were the largest source of HNCO in urban areas. The CTM also predicted that daily-averaged concentrations of HNCO reached a maximum of 110 pptv but were an order of magnitude lower than the 1 ppbv level that could be associated with physiological effects in humans. Precursor contributions from other combustion sources (gasoline and biomass burning) and wintertime conditions

  20. Pollution source localization in an urban water supply network based on dynamic water demand.

    Science.gov (United States)

    Yan, Xuesong; Zhu, Zhixin; Li, Tian

    2017-10-27

    Urban water supply networks are susceptible to intentional, accidental chemical, and biological pollution, which pose a threat to the health of consumers. In recent years, drinking-water pollution incidents have occurred frequently, seriously endangering social stability and security. The real-time monitoring for water quality can be effectively implemented by placing sensors in the water supply network. However, locating the source of pollution through the data detection obtained by water quality sensors is a challenging problem. The difficulty lies in the limited number of sensors, large number of water supply network nodes, and dynamic user demand for water, which leads the pollution source localization problem to an uncertainty, large-scale, and dynamic optimization problem. In this paper, we mainly study the dynamics of the pollution source localization problem. Previous studies of pollution source localization assume that hydraulic inputs (e.g., water demand of consumers) are known. However, because of the inherent variability of urban water demand, the problem is essentially a fluctuating dynamic problem of consumer's water demand. In this paper, the water demand is considered to be stochastic in nature and can be described using Gaussian model or autoregressive model. On this basis, an optimization algorithm is proposed based on these two dynamic water demand change models to locate the pollution source. The objective of the proposed algorithm is to find the locations and concentrations of pollution sources that meet the minimum between the analogue and detection values of the sensor. Simulation experiments were conducted using two different sizes of urban water supply network data, and the experimental results were compared with those of the standard genetic algorithm.

  1. Urban PM in Eastern Germany: Source apportionment and contributions from different spatial scales

    Science.gov (United States)

    van Pinxteren, D.; Fomba, K. W.; Mothes, F.; Spindler, G.; Herrmann, H.

    2017-12-01

    Understanding the contributions of particulate matter (PM) sources and the source areas impacting total PM levels in a city are important requirements for further developing clean air policies and efficient abatement strategies. This presentation reports on two studies in Eastern Germany providing a detailed picture of present-day urban PM sources and discriminating contributions of local, regional and long-range sources. The "Leipzig Aerosol 2013-15" study yielded contributions of 12 sources to coarse, fine, and ultrafine particles, resolved by Positive Matrix Factorization (PMF) from comprehensive chemical speciation of 5-stage Berner impactor samples at 4 different sites in the Leipzig area. Dominant winter-time sources were traffic exhaust and non-exhaust emissions, secondary aerosol formation, and combustion emissions from both biomass and coal burning with different relative importance in different particle size ranges. Local sources dominated PM levels in ultrafine and coarse particles (60% - 80%) while high mass concentrations in accumulation mode particles mainly resulted from regional import into the city (70%). The "PM-East" study compiled PM10 mass and constituents' concentrations at 10 urban and rural sites in Eastern Germany during winter 2016/17, which included a 3-week episode of frequent exceedances of the PM10 limit value. PMF source apportionment is performed for a subset of the sites, including the city of Berlin. Contributions from short-, mid-, and long-range sources, including trans-boundary pollution import from neighbouring countries, are quantitatively assessed by advanced back trajectory statistical methods. Data analysis in PM-East is ongoing and final results will be available by November. Funding is acknowledged from 4 federal states of Germany: Berlin Senate Department for Environment, Transport and Climate Protection; Saxon State Office for Environment, Agriculture and Geology; State Agency for Environment, Nature Conservation and

  2. Seasonal variation and source estimation of organic compounds in urban aerosol of Augsburg, Germany

    International Nuclear Information System (INIS)

    Pietrogrande, Maria Chiara; Abbaszade, Guelcin; Schnelle-Kreis, Juergen; Bacco, Dimitri; Mercuriali, Mattia; Zimmermann, Ralf

    2011-01-01

    This study reports a general assessment of the organic composition of the PM 2.5 samples collected in the city of Augsburg, Germany in a summer (August-September 2007) and a winter (February-March 2008) campaign of 36 and 30 days, respectively. The samples were directly submitted to in-situ derivatisation thermal desorption gas chromatography coupled with time of flight mass spectrometry (IDTD-GC-TOFMS) to simultaneously determine the concentrations of many classes of molecular markers, such as n-alkanes, iso- and anteiso-alkanes, polycyclic aromatic hydrocarbons (PAHs), oxidized PAHs, n-alkanoic acids, alcohols, saccharides and others. The PCA analysis of the data identified the contributions of three emission sources, i.e., combustion sources, including fossil fuel emissions and biomass burning, vegetative detritus, and oxidized PAHs. The PM chemical composition shows seasonal trend: winter is characterized by high contribution of petroleum/wood combustion while the vegetative component and atmospheric photochemical reactions are predominant in the hot season. - Highlights: → 59 molecular markers were simultaneously determined by thermal desorption GC-MS. → Organic composition of urban PM 2.5 in Augsburg, Germany, was characterized. → Fossil fuel, vegetative detritus, coal/wood burning are the main sources. → Seasonal trends winter vs. summer were identified. - Organic composition of the urban PM 2.5 identifies seasonal trend of the main sources: fossil fuel and biomass combustion sources, vegetative detritus, atmospheric photochemical reactions.

  3. Optimized spectroscopic scheme for enhanced precision CO measurements with applications to urban source attribution

    Science.gov (United States)

    Nottrott, A.; Hoffnagle, J.; Farinas, A.; Rella, C.

    2014-12-01

    Carbon monoxide (CO) is an urban pollutant generated by internal combustion engines which contributes to the formation of ground level ozone (smog). CO is also an excellent tracer for emissions from mobile combustion sources. In this work we present an optimized spectroscopic sampling scheme that enables enhanced precision CO measurements. The scheme was implemented on the Picarro G2401 Cavity Ring-Down Spectroscopy (CRDS) analyzer which measures CO2, CO, CH4 and H2O at 0.2 Hz. The optimized scheme improved the raw precision of CO measurements by 40% from 5 ppb to 3 ppb. Correlations of measured CO2, CO, CH4 and H2O from an urban tower were partitioned by wind direction and combined with a concentration footprint model for source attribution. The application of a concentration footprint for source attribution has several advantages. The upwind extent of the concentration footprint for a given sensor is much larger than the flux footprint. Measurements of mean concentration at the sensor location can be used to estimate source strength from a concentration footprint, while measurements of the vertical concentration flux are necessary to determine source strength from the flux footprint. Direct measurement of vertical concentration flux requires high frequency temporal sampling and increases the cost and complexity of the measurement system.

  4. Intra-urban biomonitoring: Source apportionment using tree barks to identify air pollution sources.

    Science.gov (United States)

    Moreira, Tiana Carla Lopes; de Oliveira, Regiani Carvalho; Amato, Luís Fernando Lourenço; Kang, Choong-Min; Saldiva, Paulo Hilário Nascimento; Saiki, Mitiko

    2016-05-01

    It is of great interest to evaluate if there is a relationship between possible sources and trace elements using biomonitoring techniques. In this study, tree bark samples of 171 trees were collected using a biomonitoring technique in the inner city of São Paulo. The trace elements (Al, Ba, Ca, Cl, Cu, Fe, K, Mg, Mn, Na, P, Rb, S, Sr and Zn) were determined by the energy dispersive X-ray fluorescence (EDXRF) spectrometry. The Principal Component Analysis (PCA) was applied to identify the plausible sources associated with tree bark measurements. The greatest source was vehicle-induced non-tailpipe emissions derived mainly from brakes and tires wear-out and road dust resuspension (characterized with Al, Ba, Cu, Fe, Mn and Zn), which was explained by 27.1% of the variance, followed by cement (14.8%), sea salt (11.6%) and biomass burning (10%), and fossil fuel combustion (9.8%). We also verified that the elements related to vehicular emission showed different concentrations at different sites of the same street, which might be helpful for a new street classification according to the emission source. The spatial distribution maps of element concentrations were obtained to evaluate the different levels of pollution in streets and avenues. Results indicated that biomonitoring techniques using tree bark can be applied to evaluate dispersion of air pollution and provide reliable data for the further epidemiological studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Receptor modeling for source apportionment of polycyclic aromatic hydrocarbons in urban atmosphere.

    Science.gov (United States)

    Singh, Kunwar P; Malik, Amrita; Kumar, Ranjan; Saxena, Puneet; Sinha, Sarita

    2008-01-01

    This study reports source apportionment of polycyclic aromatic hydrocarbons (PAHs) in particulate depositions on vegetation foliages near highway in the urban environment of Lucknow city (India) using the principal components analysis/absolute principal components scores (PCA/APCS) receptor modeling approach. The multivariate method enables identification of major PAHs sources along with their quantitative contributions with respect to individual PAH. The PCA identified three major sources of PAHs viz. combustion, vehicular emissions, and diesel based activities. The PCA/APCS receptor modeling approach revealed that the combustion sources (natural gas, wood, coal/coke, biomass) contributed 19-97% of various PAHs, vehicular emissions 0-70%, diesel based sources 0-81% and other miscellaneous sources 0-20% of different PAHs. The contributions of major pyrolytic and petrogenic sources to the total PAHs were 56 and 42%, respectively. Further, the combustion related sources contribute major fraction of the carcinogenic PAHs in the study area. High correlation coefficient (R2 > 0.75 for most PAHs) between the measured and predicted concentrations of PAHs suggests for the applicability of the PCA/APCS receptor modeling approach for estimation of source contribution to the PAHs in particulates.

  6. Source contributions to PM2.5 and PM10 at an urban background and a street location

    NARCIS (Netherlands)

    Keuken, M. P.; Moerman, M.; Voogt, M.; Blom, M.; Weijers, E. P.; Rockmann, T.; Dusek, U.

    The contribution of regional, urban and traffic sources to PM2.5 and PM10 in an urban area was investigated in this study. The chemical composition of PM2.5 and PM10 was measured over a year at a street location and up- and down-wind of the city of Rotterdam, the Netherlands. The C-14 content in EC

  7. Source contributions to PM2.5 and PM10 at an urban background and a street location

    NARCIS (Netherlands)

    Keuken, M.P.; Moerman, M.M.; Voogt, M.H.

    2013-01-01

    The contribution of regional, urban and traffic sources to PM2.5 and PM10 in an urban area was investigated in this study. The chemical composition of PM2.5 and PM10 was measured over a year at a street location and up- and down-wind of the city of Rotterdam, the Netherlands. The 14C content in EC

  8. Painted surfaces - Important sources of polychlorinated biphenyls (PCBs) contamination to the urban and marine environment

    International Nuclear Information System (INIS)

    Jartun, Morten; Ottesen, Rolf Tore; Steinnes, Eiliv; Volden, Tore

    2009-01-01

    A study of a large number of samples of flaking old paint from various buildings in Bergen, Norway (N = 68) suggests that paint may be the most important contemporary source of PCBs in this urban environment with concentrations of PCB 7 up to 3.39 g/kg. Twenty-three of the samples were collected from a single building, and the concentrations were found to vary over 3 orders of magnitude. In addition, 16 concrete samples from a large bridge previously coated with PCB-containing paint were collected and separated into outer- and inner samples indicating that PCBs are still present in high concentrations subsequent to renovation. PCBs were found in several categories of paint from wooden and concrete buildings, potentially introduced to the environment by natural weathering, renovation, and volatilization. Consequently, this dispersion may lead to increased levels of PCBs in urban atmospheres, soils, and harbor sediments where high concentrations have resulted in Governmental advice against consumption of certain seafood. - Paint from structures built during the period 1950-1970 may be the most important source of PCBs in an urban environment

  9. Residential runoff as a source of pyrethroid pesticides to urban creeks

    Energy Technology Data Exchange (ETDEWEB)

    Weston, D.P. [Department of Integrative Biology, University of California, 3060 Valley Life Sciences Building, Berkeley, CA 94720-3140 (United States)], E-mail: dweston@berkeley.edu; Holmes, R.W. [Water Branch, California Department of Fish and Game, 830 S Street, Sacramento, CA 95811 (United States)], E-mail: rholmes@dfg.ca.gov; Lydy, M.J. [Fisheries and Illinois Aquaculture Center, Department of Zoology, Southern Illinois University, 171 Life Sciences II, Carbondale, IL 62901 (United States)], E-mail: mlydy@siu.edu

    2009-01-15

    Pyrethroid pesticides occur in urban creek sediments at concentrations acutely toxic to sensitive aquatic life. To better understand the source of these residues, runoff from residential neighborhoods around Sacramento, California was monitored over the course of a year. Pyrethroids were present in every sample. Bifenthrin, found at up to 73 ng/L in the water and 1211 ng/g on suspended sediment, was the pyrethroid of greatest toxicological concern, with cypermethrin and cyfluthrin of secondary concern. The bifenthrin could have originated either from use by consumers or professional pest controllers, though the seasonal pattern of discharge from the drain was more consistent with professional use as the dominant source. Stormwater runoff was more important than dry season irrigation runoff in transporting pyrethroids to urban creeks. A single intense storm was capable of discharging as much bifenthrin to an urban creek in 3 h as that discharged over 6 months of irrigation runoff. - Pyrethroid insecticides regularly detected in residential runoff at toxicologically significant concentrations.

  10. Residential runoff as a source of pyrethroid pesticides to urban creeks

    International Nuclear Information System (INIS)

    Weston, D.P.; Holmes, R.W.; Lydy, M.J.

    2009-01-01

    Pyrethroid pesticides occur in urban creek sediments at concentrations acutely toxic to sensitive aquatic life. To better understand the source of these residues, runoff from residential neighborhoods around Sacramento, California was monitored over the course of a year. Pyrethroids were present in every sample. Bifenthrin, found at up to 73 ng/L in the water and 1211 ng/g on suspended sediment, was the pyrethroid of greatest toxicological concern, with cypermethrin and cyfluthrin of secondary concern. The bifenthrin could have originated either from use by consumers or professional pest controllers, though the seasonal pattern of discharge from the drain was more consistent with professional use as the dominant source. Stormwater runoff was more important than dry season irrigation runoff in transporting pyrethroids to urban creeks. A single intense storm was capable of discharging as much bifenthrin to an urban creek in 3 h as that discharged over 6 months of irrigation runoff. - Pyrethroid insecticides regularly detected in residential runoff at toxicologically significant concentrations

  11. Storm water runoff-a source of emerging contaminants in urban streams

    Science.gov (United States)

    Xia, K.; Chen, C.; FitzGerald, K.; Badgley, B.

    2016-12-01

    Emerging contaminants (ECs) that refers to prescription, over-the-counter, veterinary, and illicit drugs in addition to products intended to have primary effects on the human body, such as sunscreens and insect repellants. Historically municipal wastewater treatment effluent has been considered to be the main source of ECs in aquatic environment. However, recent investigations have suggested urban storm water runoff as an important source of ECs in the environment. The objective of this multi-year study was to investigate the occurrence of a wide range of ECs and the special and temporal change of 4-Nonlyphenol (4-NP), an endocrine disruptor, in a stream solely impacted by the storm water runoff from Blacksburg, VA. Urban land cover has doubled during the past 15 years surrounding this. Water and sediment samples were collected periodically along the stream during a 3-year period and analyzed for 4-NP using a gas chromatography/tandem mass spectrometry and for EC screening using an ultra- performance liquid chromatography/tandem mass spectrometry. In addition, human-associated Bacteroides sp. (HF183) was analyzed to explore possible cross contamination between the sewer system and storm water collection system of the city. Fifteen ECs were detected in water samples from various locations along the stream at estimated levels ranging from low ppt to low ppb. The levels of 4-NP in the storm water sediment samples, ranging from 30-1500 µg/kg (d.w.), positively correlated with the levels of Human-associated Bacteroides sp. (HF183) in the storm water. Our study suggested: 1) collective urban activity and leaky urban sewer systems are significant sources of ECs in storm water runoff that are often untreated or with minimum treatment before flowing into urban streams; and 2) sediment transport and re-suspension can further releases accumulated ECs back into stream water during rain events, resulting in occurrence of ECs downstream and possibly in the receiving river. This

  12. Large-Eddy Simulation of Chemically Reactive Pollutant Transport from a Point Source in Urban Area

    Science.gov (United States)

    Du, Tangzheng; Liu, Chun-Ho

    2013-04-01

    Most air pollutants are chemically reactive so using inert scalar as the tracer in pollutant dispersion modelling would often overlook their impact on urban inhabitants. In this study, large-eddy simulation (LES) is used to examine the plume dispersion of chemically reactive pollutants in a hypothetical atmospheric boundary layer (ABL) in neutral stratification. The irreversible chemistry mechanism of ozone (O3) titration is integrated into the LES model. Nitric oxide (NO) is emitted from an elevated point source in a rectangular spatial domain doped with O3. The LES results are compared well with the wind tunnel results available in literature. Afterwards, the LES model is applied to idealized two-dimensional (2D) street canyons of unity aspect ratio to study the behaviours of chemically reactive plume over idealized urban roughness. The relation among various time scales of reaction/turbulence and dimensionless number are analysed.

  13. RANS modeling of scalar dispersion from localized sources within a simplified urban-area model

    Science.gov (United States)

    Rossi, Riccardo; Capra, Stefano; Iaccarino, Gianluca

    2011-11-01

    The dispersion of a passive scalar downstream a localized source within a simplified urban-like geometry is examined by means of RANS scalar flux models. The computations are conducted under conditions of neutral stability and for three different incoming wind directions (0°, 45°, 90°) at a roughness Reynolds number of Ret = 391. A Reynolds stress transport model is used to close the flow governing equations whereas both the standard eddy-diffusivity closure and algebraic flux models are employed to close the transport equation for the passive scalar. The comparison with a DNS database shows improved reliability from algebraic scalar flux models towards predicting both the mean concentration and the plume structure. Since algebraic flux models do not increase substantially the computational effort, the results indicate that the use of tensorial-diffusivity can be promising tool for dispersion simulations for the urban environment.

  14. The sources and fate of (210)Po in the urban air: A review.

    Science.gov (United States)

    Długosz-Lisiecka, Magdalena

    2016-09-01

    The origin of (210)Po activity and its fluctuations in the air are discussed in this paper. In the case of atmospheric aerosol samples, a comparison of the (210)Po/(210)Pb and (210)Bi/(210)Pb activity ratios makes it possible not only to determine aerosol residence times but also to appraise the contribution of the unsupported (210)Po coming from other sources than (222)Rn decay, such as human industrial activities, especially coal combustion. A simple mathematical method makes it possible to observe the seasonal fluctuations of the anthropogenic excess of (210)Po in the urban air. The average doses of (210)Po intake with food (including drinking water) and inhalation of urban aerosols are usually lower than those from (210)Po intake by cigarette smokers and negligible in comparison to total natural radiation exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Human-Scale Sustainability Assessment of Urban Intersections Based upon Multi-Source Big Data

    Directory of Open Access Journals (Sweden)

    Yuhuan Zhang

    2017-07-01

    Full Text Available To evaluate the sustainability of an enormous number of urban intersections, a novel assessment model is proposed, along with an indicator system and corresponding methods to determine the indicators. Considering mainly the demands and feelings of the urban residents, the three aspects of safety, functionality, and image perception are taken into account in the indicator system. Based on technologies such as street view picture crawling, image segmentation, and edge detection, GIS spatial data analysis, a rapid automated assessment method, and a corresponding multi-source database are built up to determine the indicators. The improved information entropy method is applied to obtain the entropy weights of each indicator. A case study shows the efficiency and applicability of the proposed assessment model, indicator system and algorithm.

  16. [Transport and sources of runoff pollution from urban area with combined sewer system].

    Science.gov (United States)

    Li, Li-Qing; Yin, Cheng-Qing

    2009-02-15

    Sampling and monitoring of runoff and sewage water in Wuhan urban area with combined sewer system were carried out during the period from 2003 to 2006, to study the transport and sources of runoff pollution at the catchment scale coupled with environmental geochemistry method. The results showed a change in quality between the runoff entering the sewer network and the combined storm water flow at the sewer's outlet. A significant increase was observed in the concentrations of total suspended solids (TSS), volatile suspended solids (VSS), COD, TN, and TP, and in the proportion of COD linked to particles. During the runoff production and transport, the concentrations of TSS and COD increased from 18.7 mg/L and 37.0 mg/L in roof runoff, to 225.3 mg/L and 176.5 mg/L in street runoff, and to 449.7 mg/L and 359.9 mg/L in combined storm water flow, respectively. The proportion of COD linked to particles was increased by 18%. In addition, the total phosphorus (P) and iron (Fe) contents in urban ground dust, storm drain sediment, sewage sewer sediment and combined sewer sediment were measured to identify the potential sources of suspended solids in the combined flow. The urban ground dust andstorm drain sediment wererich in Fe, whereas the sewage sewer sediment was rich in P. The P/Fe ratios in these groups were significantly distinct and able to differentiate them. A calculation of the two storm events based on the P/Fe rations showed that 56% +/- 26% of suspended solids in combined flow came from urban ground and storm drain. The rest wer e originated from the sewage sewer sediments which deposited in combined sewer on the dry weather days and were eroded on the wet weather days. The combined sewer network not only acts as a transport system, but also constitutes a physicochemical reactor that degrades the quality of urban water. Reducing the in-sewer pollution stocks would effectively control urban runoff pollution.

  17. Quantitative characterization of urban sources of organic aerosol by high-resolution gas chromatography

    International Nuclear Information System (INIS)

    Hildemann, L.M.; Mazurek, M.A.; Cass, G.R.; Simoneit, B.R.T.

    1991-01-01

    Fine aerosol emissions have been collected from a variety of urban combustion sources, including an industrial boiler, a fireplace, automobiles, diesel trucks, gas-fired home appliances, and meat cooking operations, by use of a dilution sampling system. Other sampling techniques have been utilized to collect fine aerosol samples of paved road dust, brake wear, tire wear, cigarette smoke, tar pot emissions, and vegetative detritus. The organic matter contained in each of these samples has been analyzed via high-resolution gas chromatography. By use of a simple computational approach, a quantitative, 50-parameter characterization of the elutable fine organic aerosol emitted from each source type has been determined. The organic mass distribution fingerprints obtained by this approach are shown to differ significantly from each other for most of the source types tested, using hierarchical cluster analysis

  18. Atmospheric transport of urban-derived NHx: Evidence from nitrogen concentration and δ15N in epilithic mosses at Guiyang, SW China

    International Nuclear Information System (INIS)

    Liu Xueyan; Xiao Huayun; Liu Congqiang; Li Youyi; Xiao Hongwei

    2008-01-01

    Nitrogen concentration and δ 15 N in 175 epilithic moss samples were investigated along four directions from urban to rural sites in Guiyang, SW China. The spatial variations of moss N concentration and δ 15 N revealed that atmospheric N deposition is dominated by NH x -N from two major sources (urban sewage NH 3 and agricultural NH 3 ), the deposition of urban-derived NH x followed a point source pattern characterized by an exponential decline with distance from the urban center, while the agricultural-derived NH x was shown to be a non-point source. The relationship between moss N concentration and distance (y = 1.5e -0.13x + 1.26) indicated that the maximum transporting distance of urban-derived NH x averaged 41 km from the urban center, and it could be determined from the relationship between moss δ 15 N and distance [y = 2.54 ln(x) - 12.227] that urban-derived NH x was proportionally lower than agricultural-derived NH x in N deposition at sites beyond 17.2 km from the urban center. Consequently, the variation of urban-derived NH x with distance from the urban center could be modeled as y = 56.272e -0.116x - 0.481 in the Guiyang area. - Tissue N concentration and δ 15 N in epilithic mosses may be indicators for atmospheric transport of urban-derived NH x

  19. Grain size distribution of road-deposited sediment and its contribution to heavy metal pollution in urban runoff in Beijing, China.

    Science.gov (United States)

    Zhao, Hongtao; Li, Xuyong; Wang, Xiaomei; Tian, Di

    2010-11-15

    Pollutant washoff from road-deposited sediment (RDS) is an increasing problem associated with the rapid urbanization of China that results in urban non-point source pollution. Here, we analyzed the RDS grain size distribution and its potential impact on heavy metal pollution in urban runoff from impervious surfaces of urban villages, colleges and residences, and main traffic roads in the Haidian District, Beijing, China. RDS with smaller grain size had a higher metal concentration. Specifically, particles with the smallest grain size (runoff water accounted for greater than 70% of the metal mass in the total suspended solids (TSS). The heavy metal content in the TSS was 2.21-6.52% of that in the RDS. These findings will facilitate our understanding of the importance of RDS grain size distribution in heavy metal pollution caused by urban storm runoff. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Investigating diesel engines as an atmospheric source of isocyanic acid in urban areas

    Directory of Open Access Journals (Sweden)

    S. H. Jathar

    2017-07-01

    Full Text Available Isocyanic acid (HNCO, an acidic gas found in tobacco smoke, urban environments, and biomass-burning-affected regions, has been linked to adverse health outcomes. Gasoline- and diesel-powered engines and biomass burning are known to emit HNCO and hypothesized to emit precursors such as amides that can photochemically react to produce HNCO in the atmosphere. Increasingly, diesel engines in developed countries like the United States are required to use selective catalytic reduction (SCR systems to reduce tailpipe emissions of oxides of nitrogen. SCR chemistry is known to produce HNCO as an intermediate product, and SCR systems have been implicated as an atmospheric source of HNCO. In this work, we measure HNCO emissions from an SCR system-equipped diesel engine and, in combination with earlier data, use a three-dimensional chemical transport model (CTM to simulate the ambient concentrations and source/pathway contributions to HNCO in an urban environment. Engine tests were conducted at three different engine loads, using two different fuels and at multiple operating points. HNCO was measured using an acetate chemical ionization mass spectrometer. The diesel engine was found to emit primary HNCO (3–90 mg kg fuel−1 but we did not find any evidence that the SCR system or other aftertreatment devices (i.e., oxidation catalyst and particle filter produced or enhanced HNCO emissions. The CTM predictions compared well with the only available observational datasets for HNCO in urban areas but underpredicted the contribution from secondary processes. The comparison implied that diesel-powered engines were the largest source of HNCO in urban areas. The CTM also predicted that daily-averaged concentrations of HNCO reached a maximum of ∼ 110 pptv but were an order of magnitude lower than the 1 ppbv level that could be associated with physiological effects in humans. Precursor contributions from other combustion sources (gasoline and biomass

  1. Source apportionment of atmospheric bulk deposition in the Belgrade urban area using Positive Matrix factorization

    Science.gov (United States)

    Tasić, M.; Mijić, Z.; Rajšić, S.; Stojić, A.; Radenković, M.; Joksić, J.

    2009-04-01

    The primary objective of the present study was to assess anthropogenic impacts of heavy metals to the environment by determination of total atmospheric deposition of heavy metals. Atmospheric depositions (wet + dry) were collected monthly, from June 2002 to December 2006, at three urban locations in Belgrade, using bulk deposition samplers. Concentrations of Fe, Al, Pb, Zn, Cu, Ni, Mn, Cr, V, As and Cd were analyzed using atomic absorption spectrometry. Based upon these results, the study attempted to examine elemental associations in atmospheric deposition and to elucidate the potential sources of heavy metal contaminants in the region by the use of multivariate receptor model Positive Matrix Factorization (PMF).

  2. Source Apportionment of the Size-Fractionated Urban Aerosols in and around Kolkata, India

    Science.gov (United States)

    Sarkar, Ujjaini; Haque, Monirul; Roy, Rajdeep; Chakraborty, Sanjoy

    Our main objective was to estimate the heavy metals like the Lead, Mercury, Cadmium, Sodium, Potassium, Calcium, Aluminium, and Iron, in addition to ammonium, chloride, nitrate, and sulphate ions, by Atomic Absorption Spectrophotometry and Ion Chromatography and apportion the most probable sources using the Chemical Mass Balance Model. The three urban locations of Behala Chowrasta, Rabindra Sadan, and Shyam Bazaar Five Points were chosen within the city of Kolkata. One rural location was chosen at the Indian Institute of Technology campus, Kharagpur, a rural site in the Midnapur District of the state of West Bengal, India. The results look quite encouraging.

  3. Source apportionment of atmospheric bulk deposition in the Belgrade urban area using Positive Matrix factorization

    International Nuclear Information System (INIS)

    Tasic, M; Mijic, Z; Rajsic, S; Stojic, A; Radenkovic, M; Joksic, J

    2009-01-01

    The primary objective of the present study was to assess anthropogenic impacts of heavy metals to the environment by determination of total atmospheric deposition of heavy metals. Atmospheric depositions (wet + dry) were collected monthly, from June 2002 to December 2006, at three urban locations in Belgrade, using bulk deposition samplers. Concentrations of Fe, Al, Pb, Zn, Cu, Ni, Mn, Cr, V, As and Cd were analyzed using atomic absorption spectrometry. Based upon these results, the study attempted to examine elemental associations in atmospheric deposition and to elucidate the potential sources of heavy metal contaminants in the region by the use of multivariate receptor model Positive Matrix Factorization (PMF).

  4. Sources and characteristics of lead pollution in the urban environment of Guangzhou

    International Nuclear Information System (INIS)

    Duzgoren-Aydin, Nurdan S.

    2007-01-01

    Guangzhou, the capital of the southeastern province of Guangdong, is one of the largest and most rapidly developing industrial cities in China. In recent years its rapid economic development has brought great prosperity to the Pearl River Delta (PRD) region, but has also given rise to a wide variety of environmental problems. The current level of lead (Pb) contamination (75-926 mg/kg) in the surface environment of Guangzhou remains a major concern, even though the use of leaded petrol in the city was banned in 1997. The Pb isotope ratios ( 206 Pb/ 207 Pb min-max : 1.1612-1.1961 and 208 Pb/ 207 Pb min-max : 2.4495-2.4838) of the urban dusts from unconfined (road dusts and gully sediments) and relatively confined (vehicular tunnel) settings in Guangzhou remains in a relatively narrow range, comparable with those of the regional natural and anthropogenic sources. This study highlights the inherent shortcomings of the Pb isotope fingerprinting technique for provenancing Pb sources, as both the target media (urban dusts) and potential sources have similar and highly radiogenic Pb isotope values. This could not only lead to an overestimation of the effectiveness of phasing-out of leaded petrol, but also an underestimation of the ever-increasing relative contributions from other potential sources of pollution, including coal combustion, industrial emissions of local Pb-ores and non-additive Pb contents of crude oils. Re-suspended Pb-bearing particulates deposited from early vehicular exhaust emission of leaded petrol with distinctly low Pb isotope compositions are still an important source of Pb pollution in the region

  5. Source apportionment analysis of atmospheric particulates in an industrialised urban site in southwestern Spain

    International Nuclear Information System (INIS)

    Querol, X.; Alastuey, A.; Sanchez-de-la-Campa, A.; Plana, F.; Ruiz, C.R.; Rosa, J. de la

    2002-01-01

    A detailed physical and chemical characterisation of total suspended particles (TSP) in the highly industrialised city of Huelva (southwestern Spain) was carried out. The results evidenced a coarse grain-size prevalence (PM 10 accounting for only 40% of TSP mass, 37 and 91 μg/m 3 , respectively). PM 10 levels are in the usual range for urban background sites in Spain. The crustal, anthropogenic and marine components accounted for a mean of a 40%, 24% and 5% of bulk TSP, respectively. As expected from the industrial activities, relatively high PO 4 3- and As levels for an urban site were detected. In addition to the crustal and marine components, source apportionment analysis revealed three additional emission sources influencing the levels and composition of TSP: (a) a petrochemical source, (b) a mixed metallurgical-phosphate source, (c) and an unknown source (Sb and NO 3 - ). Due to the high local emissions, the mean TSP anthropogenic contribution (mostly PM 10 ) obtained for all possible air mass transport scenarios reached 18-29 μg/m 3 . The 2010 annual EU PM 10 limit value (20 μg/m 3 ) would be exceeded by the anthropogenic load recorded for all the air mass transport scenarios, with the exception of the North Atlantic transport (only 15% of the sampling days). Under African air mass transport scenarios (20% of sampling days), the TSP crustal contribution reached near three times the local crustal contribution. It must be pointed out that this crustal input should diminish when sampling PM 10 due to the dominant coarse size distribution of this type of particles. (author)

  6. Tracking Reactive Nitrogen Sources, Chemistry and Deposition in Urban Environments Using Stable Isotopes

    Science.gov (United States)

    Hastings, M. G.; Clark, S. C.; Chai, J.; Joyce, E.; Miller, D. J.; Schiebel, H.; Walters, W.

    2017-12-01

    Reactive nitrogen (Nr) includes compounds such as nitrogen oxides (NOx, HONO), ammonia (NH3), nitrate (NO3-), ammonium (NH4+), and organic nitrates. These compounds serve major roles in controlling the composition of our atmosphere, and have a direct impact on ecosystem health and water quality. Our research is focused on using stable isotopes of Nr to investigate variations in sources, chemistry, atmospheric transport, and deposition. Our aim is to fingerprint distinct emission sources - such as vehicles, power plants, aircraft, agriculature, wildfires, and lightning - and track their influence in the environment. We have recently characterized vehicle emission plumes, emissions from agricultural soils under different management practices, and (in the near future) wildfire plumes in the western U.S. Our approach targets characterizing the isotopic composition of NOx, HONO, and NH3 at both the emissions source and the plume scale. In contrast to large ranges found for individual tailpipe emissions of NOx, on-road plumes in the U.S. have a mean δ15N of -4.7 ± 1.7‰. The plume scale approach integrates across the typical U.S. fleet giving a representative value that can be used for tracking the impact of this emission source in the environment. NH3 also tends towards a narrow isotopic range when considered at the roadside scale compared to individual vehicles. In agricultural settings, the isotopes of NOx and HONO released from soils under different fertilizer practices is typically very negative in δ15N (-40 to -10‰) and appears to vary most with soil N properties rather than meteorology. Our work is now extending to discern sources influencing Nr deposition in an urban area at the head of New England's largest estuary. National monitoring of N deposition shows decreases in NO3- (but not NH4+) deposition over the last two decades, following better controls on NOx emissions. Wet deposition collected in an urban area exhibits N concentrations that are often 3

  7. Bacteriological assessment of urban water sources in Khamis Mushait Governorate, southwestern Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Sh AlOtaibi Eed L

    2009-03-01

    Full Text Available Abstract Background Urban water sources of Khamis Mushait Governorate, southwestern Saudi Arabia, were studied to assess their bacteriological characteristics and suitability for potable purposes. A cross-sectional epidemiological method was adopted to investigate the four main urban water sources (i.e. bottled, desalinated, surface, and well water. These were sampled and examined between February and June 2007. Results A total of 95 water samples from bottled, desalinated, surface, and well water were collected randomly from the study area using different gathering and analysing techniques. The bacteriological examination of water samples included the most probable number of presumptive coliforms, faecal coliforms, and faecal streptococci (MPN/100 ml. The results showed that the total coliform count (MPN/100 ml was not detected in any samples taken from bottled water, while it was detected in those taken from desalinated, surface, and well water: percentages were 12.9, 80.0, and 100.0, respectively. Faecal coliforms were detected in desalinated, surface, and well water, with percentages of 3.23, 60.0 and 87.88, respectively. About 6.45% of desalinated water, 53.33% of surface water, and 57.58% of well water was found positive for faecal streptococci. Colonies of coliforms were identified in different micro-organisms with various percentages. Conclusion Water derived from traditional sources (wells showed increases in most of the investigated bacteriological parameters, followed by surface water as compared to bottled or desalinated water. This may be attributed to the fact that well and surface water are at risk of contamination as indicated by the higher levels of most bacteriological parameters. Moreover, well water is exposed to point sources of pollution such as septic wells and domestic and farming effluents, as well as to soil with a high humus content. The lower bacteriological characteristics in samples from bottled water indicate that

  8. [Characterization and source apportionment of pollutants in urban roadway runoff in Chongqing].

    Science.gov (United States)

    Zhang, Qian-Qian; Wang, Xiao-Ke; Hao, Li-Ling; Hou, Pei-Qiang; Ouyang, Zhi-Yun

    2012-01-01

    By investigating surface runoff from urban roadway in Chongqing, we assessed the characteristics of surface runoff pollution and the effect of rainfall intensity and antecedent dry weather period on water quality. Using multivariate statistical analysis of data of runoff quality, potential pollutants discharged from urban roadway runoff were identified. The results show that the roadway runoff has high levels of COD, TP and TN, the EMC were 60.83-208.03 mg x L(-1), 0.47-1.01 mg x L(-1) and 2.07-5.00 mg x L(-1) respectively, being the main pollutants; The peaks of pollutant concentration are ahead of or synchronous with the peak of runoff volume; the peaks of pollutant concentrations are mostly occurred within 10 minutes of rainfall. The heavy metal concentrations fluctuate dentately during runoff proceeding. Two potential pollution sources to urban roadway runoff apportioned by using principal component analysis are: vehicle's traffic loss and atmospheric dry and wet deposition, and municipal wastes.

  9. Identification of Pollution Patterns and Sources in a Semi-Arid Urban Stream

    Directory of Open Access Journals (Sweden)

    Vassiliki Markogianni

    2018-03-01

    Full Text Available The impact and occurrence of human-induced pollution sources have been investigated in one of the few remaining urban streams located in Attica, Greece. Baseline information is provided on the presence and concentration of physicochemical parameters, nutrients, total coliforms, hydrocarbons and phenols in 12 key points along the Pikrodafni stream. The aim was to evaluate the relative importance of key water quality variables and their sources. Indicator substances (i.e. concentrations of nitrate, ammonium, phosphate and total coliforms in certain stations indicating wastewater exposure; PAHs indicating petroleum sources successfully related the water quality variables to pollution sources. Furthermore, a pollution pressure map has been developed with the activities identified from in-situ visits and Google Earth surveys, while the statistical analysis (CA and PCA has contributed to the further exploration of the relative magnitude of pollution sources effects. Our results underline initially the importance of diffuse pollution management accompanied by the necessity for continuous environmental monitoring and the application of legal and environmental restoration actions if water quality is to be improved according to WFD 2000/60/EC.

  10. Stable carbon isotopes to monitor the CO2 source mix in the urban environment

    Science.gov (United States)

    Vogel, F. R.; Wu, L.; Ramonet, M.; Broquet, G.; Worthy, D. E. J.

    2014-12-01

    Urban areas are said to be responsible for approximately 71% of fossil fuel CO2 emissions while comprising only two percent of the land area [IEA, 2008]. This limited spatial expansion could facility a monitoring of anthropogenic GHGs from atmospheric observations. As major sources of emissions, cities also have a huge potential to drive emissions reductions. To effectively manage emissions, cities must however, first establish techniques to validate their reported emission statistics. A pilot study which includes continues 13CO2 data from calibrated cavity ring-down spectrometers [Vogel et al. 2013] of two "sister sites" in the vicinity of Toronto, Canada is contrasted to recent observations of 13CO2 observations in Paris during significant pollution events. Using Miller-Tans plots [Miller and Tans, 2003] for our multi-season observations reveals significant changes of the source signatures of night time CO2 emissions which reflect the importance of natural gas burning in Megacities (up to 80% of fossil fuel sources) and show-case the potential of future isotope studies to determine source sectors. Especially the winter data this approach seems suitable to determine the source contribution of different fuel types (natural gas, liquid fuels and coal) which can inform the interpretation of other Greenhouse Gases and air pollution levels.

  11. Source apportionment of settleable particles in an impacted urban and industrialized region in Brazil.

    Science.gov (United States)

    Santos, Jane Meri; Reis, Neyval Costa; Galvão, Elson Silva; Silveira, Alexsander; Goulart, Elisa Valentim; Lima, Ana Teresa

    2017-09-01

    Settleable particulate matter (SPM), especially coarser particles with diameters greater than 10 μm, has been found culprit of high deposition rates in cities affected by hinterland industrial activities. This is the case of Metropolitan Region of Vitoria (MRV), Espirito Santo, Brazil where industrial facilities are located within the urban sprawl and building constructions are intense. Frequent population complaints to the environmental protection agency (IEMA) throughout the years have triggered monitoring campaigns to determine SPM deposition rates and source apportionment. Eight different locations were monitored throughout the MRV, and SPM was quantified and chemically characterized. Sources profiles were defined either by using US EPA SPECIATE data or by experimental analysis. Atmospheric fallout in the MRV ranged between 2 and 20g/(m 2 30-day), with only one monitoring station ranging from 6-10 g/(m 2 30-day). EC, OC, Fe, Al, and Si were found the main constituents of dry deposition in the region. Source apportionment by the chemical mass balance (CMB) model determined that steel and iron ore pelletizing industries were the main contributor to one of the eight locations whereas resuspension, civil construction, and vehicular sources were also very important contributors to the other stations. Quarries and soil were also considered expressive SPM sources, but at the city periphery. CMB model could differentiate contributions from six industrial source groups: thermoelectric; iron ore, pellet, and pellet furnaces; coal coke and coke oven; sintering, blast furnace, and basic oxygen furnace; and soil, resuspension, and vehicles. However, the CMB model was unable to differentiate between iron ore and pellet stockpiles which are present in both steel and iron ore pelletizing industries. Further characterization of source and SPM might be necessary to aid local authorities in decision-making regarding these two industrial sources.

  12. Saline sewage treatment and source separation of urine for more sustainable urban water management.

    Science.gov (United States)

    Ekama, G A; Wilsenach, J A; Chen, G H

    2011-01-01

    While energy consumption and its associated carbon emission should be minimized in wastewater treatment, it has a much lower priority than human and environmental health, which are both closely related to efficient water quality management. So conservation of surface water quality and quantity are more important for sustainable development than green house gas (GHG) emissions per se. In this paper, two urban water management strategies to conserve fresh water quality and quantity are considered: (1) source separation of urine for improved water quality and (2) saline (e.g. sea) water toilet flushing for reduced fresh water consumption in coastal and mining cities. The former holds promise for simpler and shorter sludge age activated sludge wastewater treatment plants (no nitrification and denitrification), nutrient (Mg, K, P) recovery and improved effluent quality (reduced endocrine disruptor and environmental oestrogen concentrations) and the latter for significantly reduced fresh water consumption, sludge production and oxygen demand (through using anaerobic bioprocesses) and hence energy consumption. Combining source separation of urine and saline water toilet flushing can reduce sewer crown corrosion and reduce effluent P concentrations. To realize the advantages of these two approaches will require significant urban water management changes in that both need dual (fresh and saline) water distribution and (yellow and grey/brown) wastewater collection systems. While considerable work is still required to evaluate these new approaches and quantify their advantages and disadvantages, it would appear that the investment for dual water distribution and wastewater collection systems may be worth making to unlock their benefits for more sustainable urban development.

  13. Characterization, source identification and apportionment of selected metals in TSP in an urban atmosphere.

    Science.gov (United States)

    Shah, Munir H; Shaheen, N; Jaffar, M

    2006-03-01

    To understand the metal distribution characteristics in the atmosphere of urban Islamabad, total suspended particulate (TSP) samples were collected on daily 12 h basis, at Quaid-i-Azam University campus, using high volume sampler. The TSP samples were treated with HNO(3)/HClO(4) based wet digestion method for the quantification of eight selected metals; Fe, Zn, Pb, Mn, Cr, Co, Ni and Cd by FAAS method. The monitoring period ran from June 2001 to January 2002, with a total of 194 samples collected on cellulose filters. Effects of different meteorological conditions such as temperature, relative humidity, wind speed and wind direction on selected metal levels were interpreted by means of multivariate statistical approach. Enhanced metal levels for Fe (930 ng/m(3)), Zn (542 ng/m(3)) and Pb (210 ng/m(3)) were found on the mean scale while Mn, Cr, Co and Ni emerged as minor contributors. Statistical correlation study was also conducted and a strong correlation was observed between Pb-Cr (r=0.611). The relative humidity showed some significant influence on atmospheric metal distribution while other meteorological parameters showed weak relationship with TSP metal levels. Regarding the origin of sources of heavy metals in TSP, the statistical procedure identified three source profiles; automobile emissions, industrial/metallurgical units, and natural soil dust. The metal levels were also compared with those reported for other parts of the world which showed that the metal levels in urban atmosphere of Islamabad are in exceedence than those of European industrial and urban sites while comparable with some Asian sites.

  14. Tracing of aerosol sources in an urban environment using chemical, Sr isotope, and mineralogical characterization.

    Science.gov (United States)

    Duarte, Regina M B O; Matos, João T V; Paula, Andreia S; Lopes, Sónia P; Ribeiro, Sara; Santos, José Francisco; Patinha, Carla; da Silva, Eduardo Ferreira; Soares, Rosário; Duarte, Armando C

    2017-04-01

    In the framework of two national research projects (ORGANOSOL and CN-linkAIR), fine particulate matter (PM 2.5 ) was sampled for 17 months at an urban location in the Western European Coast. The PM 2.5 samples were analyzed for organic carbon (OC), water-soluble organic carbon (WSOC), elemental carbon (EC), major water-soluble inorganic ions, mineralogical, and for the first time in this region, strontium isotope ( 87 Sr/ 86 Sr) composition. Organic matter dominates the identifiable urban PM 2.5 mass, followed by secondary inorganic aerosols. The acquired data resulted also in a seasonal overview of the carbonaceous and inorganic aerosol composition, with an important contribution from primary biomass burning and secondary formation processes in colder and warmer periods, respectively. The fossil-related primary EC seems to be continually present throughout the sampling period. The 87 Sr/ 86 Sr ratios were measured on both the labile and residual PM 2.5 fractions as well as on the bulk PM 2.5 samples. Regardless of the air mass origin, the residual fractions are more radiogenic (representative of a natural crustal dust source) than the labile fractions, whose 87 Sr/ 86 Sr ratios are comparable to that of seawater. The 87 Sr/ 86 Sr ratios and the mineralogical composition data further suggest that sea salt and mineral dust are important primary natural sources of fine aerosols throughout the sampling period.

  15. Sources and Potential Photochemical Roles of Formaldehyde in an Urban Atmosphere in South China

    Science.gov (United States)

    Wang, Chuan; Huang, Xiao-Feng; Han, Yu; Zhu, Bo; He, Ling-Yan

    2017-11-01

    Formaldehyde (HCHO) is an important intermediate in tropospheric photochemistry. However, study of its evolution characteristics under heavy pollution conditions in China is limited, especially for high temporal resolutions, making it difficult to analyze its sources and environmental impacts. In this study, ambient levels of HCHO were monitored using a proton-transfer reaction mass spectrometer at an urban site in the Pearl River Delta of China. Continuous monitoring campaigns were conducted in the spring, summer, fall, and winter in 2016. The highest averaged HCHO concentrations were observed in autumn (5.1 ± 3.1 ppbv) and summer (5.0 ± 4.4 ppbv), followed by winter (4.2 ± 2.2 ppbv) and spring (3.4 ± 1.6 ppbv). The daily maximum of HCHO occurs in the early afternoon and shows good correlations with O3 and the secondary organic aerosol tracer during the day, revealing close relationships between ambient HCHO and secondary formations in Shenzhen, especially in summer and autumn. The daytime HCHO is estimated to be the major contributor to O3 formation and OH radical production, indicating that HCHO plays a key role in the urban atmospheric photochemical reactions. Anthropogenic secondary formation was calculated to be the dominant source of HCHO using a photochemical age-based parameterization method, with an average proportion of 39%. The contributions of biogenic sources in summer (41%) and autumn (39%) are much higher than those in spring (26%) and winter (28%), while the contributions of anthropogenic primary sources in spring (20%) and winter (18%) are twice those in summer (9%) and autumn (9%).

  16. Evolution of air pollution source contributions over one decade, derived by PM10 and PM2.5 source apportionment in two metropolitan urban areas in Greece

    Science.gov (United States)

    Diapouli, E.; Manousakas, M.; Vratolis, S.; Vasilatou, V.; Maggos, Th; Saraga, D.; Grigoratos, Th; Argyropoulos, G.; Voutsa, D.; Samara, C.; Eleftheriadis, K.

    2017-09-01

    Metropolitan Urban areas in Greece have been known to suffer from poor air quality, due to variety of emission sources, topography and climatic conditions favouring the accumulation of pollution. While a number of control measures have been implemented since the 1990s, resulting in reductions of atmospheric pollution and changes in emission source contributions, the financial crisis which started in 2009 has significantly altered this picture. The present study is the first effort to assess the contribution of emission sources to PM10 and PM2.5 concentration levels and their long-term variability (over 5-10 years), in the two largest metropolitan urban areas in Greece (Athens and Thessaloniki). Intensive measurement campaigns were conducted during 2011-2012 at suburban, urban background and urban traffic sites in these two cities. In addition, available datasets from previous measurements in Athens and Thessaloniki were used in order to assess the long-term variability of concentrations and sources. Chemical composition analysis of the 2011-2012 samples showed that carbonaceous matter was the most abundant component for both PM size fractions. Significant increase of carbonaceous particle concentrations and of OC/EC ratio during the cold period, especially in the residential urban background sites, pointed towards domestic heating and more particularly wood (biomass) burning as a significant source. PMF analysis further supported this finding. Biomass burning was the largest contributing source at the two urban background sites (with mean contributions for the two size fractions in the range of 24-46%). Secondary aerosol formation (sulphate, nitrate & organics) was also a major contributing source for both size fractions at the suburban and urban background sites. At the urban traffic site, vehicular traffic (exhaust and non-exhaust emissions) was the source with the highest contributions, accounting for 44% of PM10 and 37% of PM2.5, respectively. The long

  17. Variational Iterative Refinement Source Term Estimation Algorithm Assessment for Rural and Urban Environments

    Science.gov (United States)

    Delle Monache, L.; Rodriguez, L. M.; Meech, S.; Hahn, D.; Betancourt, T.; Steinhoff, D.

    2016-12-01

    It is necessary to accurately estimate the initial source characteristics in the event of an accidental or intentional release of a Chemical, Biological, Radiological, or Nuclear (CBRN) agent into the atmosphere. The accurate estimation of the source characteristics are important because many times they are unknown and the Atmospheric Transport and Dispersion (AT&D) models rely heavily on these estimates to create hazard assessments. To correctly assess the source characteristics in an operational environment where time is critical, the National Center for Atmospheric Research (NCAR) has developed a Source Term Estimation (STE) method, known as the Variational Iterative Refinement STE algorithm (VIRSA). VIRSA consists of a combination of modeling systems. These systems include an AT&D model, its corresponding STE model, a Hybrid Lagrangian-Eulerian Plume Model (H-LEPM), and its mathematical adjoint model. In an operational scenario where we have information regarding the infrastructure of a city, the AT&D model used is the Urban Dispersion Model (UDM) and when using this model in VIRSA we refer to the system as uVIRSA. In all other scenarios where we do not have the city infrastructure information readily available, the AT&D model used is the Second-order Closure Integrated PUFF model (SCIPUFF) and the system is referred to as sVIRSA. VIRSA was originally developed using SCIPUFF 2.4 for the Defense Threat Reduction Agency and integrated into the Hazard Prediction and Assessment Capability and Joint Program for Information Systems Joint Effects Model. The results discussed here are the verification and validation of the upgraded system with SCIPUFF 3.0 and the newly implemented UDM capability. To verify uVIRSA and sVIRSA, synthetic concentration observation scenarios were created in urban and rural environments and the results of this verification are shown. Finally, we validate the STE performance of uVIRSA using scenarios from the Joint Urban 2003 (JU03

  18. Fine Particulate Pollution and Source Apportionment in the Urban Centers for Africa, Asia and Latin America

    Science.gov (United States)

    Guttikunda, S. K.; Johnson, T. M.; Procee, P.

    2004-12-01

    Fossil fuel combustion for domestic cooking and heating, power generation, industrial processes, and motor vehicles are the primary sources of air pollution in the developing country cities. Over the past twenty years, major advances have been made in understanding the social and economic consequences of air pollution. In both industrialized and developing countries, it has been shown that air pollution from energy combustion has detrimental impacts on human health and the environment. Lack of information on the sectoral contributions to air pollution - especially fine particulates, is one of the typical constraints for an effective integrated urban air quality management program. Without such information, it is difficult, if not impossible, for decision makers to provide policy advice and make informed investment decisions related to air quality improvements in developing countries. This also raises the need for low-cost ways of determining the principal sources of fine PM for a proper planning and decision making. The project objective is to develop and verify a methodology to assess and monitor the sources of PM, using a combination of ground-based monitoring and source apportionment techniques. This presentation will focus on four general tasks: (1) Review of the science and current activities in the combined use of monitoring data and modeling for better understanding of PM pollution. (2) Review of recent advances in atmospheric source apportionment techniques (e.g., principal component analysis, organic markers, source-receptor modeling techniques). (3) Develop a general methodology to use integrated top-down and bottom-up datasets. (4) Review of a series of current case studies from Africa, Asia and Latin America and the methodologies applied to assess the air pollution and its sources.

  19. Source Apportionment of Volatile Organic Compounds in an Urban Environment at the Yangtze River Delta, China.

    Science.gov (United States)

    An, Junlin; Wang, Junxiu; Zhang, Yuxin; Zhu, Bin

    2017-04-01

    Volatile organic compounds (VOCs) were collected continuously during June-August 2013 and December 2013-February 2014 at an urban site in Nanjing in the Yangtze River Delta. The positive matrix factorization receptor model was used to analyse the sources of VOCs in different seasons. Eight and seven sources were identified in summer and winter, respectively. In summer and winter, the dominant sources of VOCs were vehicular emissions, liquefied petroleum gas/natural gas (LPG/NG) usage, solvent usage, biomass/biofuel burning, and industrial production. In summer, vehicular emissions made the most significant contribution to ambient VOCs (38%), followed by LPG/NG usage (20%), solvent usage (19%), biomass/biofuel burning (13%), and industrial production (10%). In winter, LPG/NG usage accounted for 36% of ambient VOCs, whereas vehicular emissions, biomass/biofuel burning, industrial production and solvent usage contributed 30, 18, 9, and 6%, respectively. The contribution of LPG/NG usage in winter was approximately four times that in summer, whereas the contribution from biomass/biofuel burning in winter was more than twice that in summer. The sources related to vehicular emissions and LPG/NG usages were important. Using conditional probability function analysis, the VOC sources were mainly associated with easterly, northeasterly and southeasterly directions, pointing towards the major expressway and industrial area. Using the propylene-equivalent method, paint and varnish (23%) was the highest source of VOCs in summer and biomass/biofuel burning (36%) in winter. Using the ozone formation potential method, the most important source was biomass/biofuel burning (32% in summer and 47% in winter). The result suggests that the biomass/biofuel burning and paint and varnish play important roles in controlling ozone chemical formation in Nanjing.

  20. Source and chemical species characterization of PM10 and human health risk assessment of semi-urban, urban and industrial areas of West Bengal, India.

    Science.gov (United States)

    Ghosh, Suraj; Rabha, Rumi; Chowdhury, Mallika; Padhy, Pratap Kumar

    2018-09-01

    Levels of particulate matter of size ten micron (PM 10 ) in outdoor air, potential PM 10 -bound seven metals - manganese, zinc, cadmium, lead, copper, nickel and cobalt - and twelve water-soluble organic and inorganic ionic components - fluoride, acetate, chloride, nitrite, bromide, nitrate, phosphate, sulfate, oxalate, sodium, potassium and calcium - were investigated during two different season. Atmospheric PM 10 samples were collected concurrently from three different sites, i.e., Durgapur (Industrial), Berhampore (Urban) and Bolpur (Semi-urban), West Bengal, India, during summer (April-June 2014) and winter (December 2014-February 2015). Average PM 10 levels were found to be in the range of 189.58-219.96 μg/m 3 at the semi-urban site, 293.41-324.27 μg/m 3 at the urban site and 316.93-344.69 μg/m 3 at the industrial site during summer and winter season respectively. Data on metals and water soluble ions were analyzed statistically (Principal Component Analysis and Factor Analysis) for their source identification and apportionment in the study areas. Principle component analysis models, from three different sites, identified four different factors which share common sources, viz., soil & road re-suspension, motor vehicle and traffic, waste dumping, biomass aerosols, and construction. The pollution load and health risk assessments of selected metals were undertaken in three different sites, within children and adults of the study areas, and were found to be within the safe range. Furthermore, an attempt has also been made to provide basic information on pollution, their sources and exposure pathways for humans in the vicinity of semi-urban, urban and industrial regions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. A spatially distributed model for assessment of the effects of changing land use and climate on urban stream quality: Development of a Spatially Distributed Urban Water Quality Model

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ning [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA; Pacific Northwest National Laboratory, Richland WA USA; Yearsley, John [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA; Baptiste, Marisa [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA; Cao, Qian [Department of Geography, University of California Los Angeles, Los Angeles CA USA; Lettenmaier, Dennis P. [Department of Geography, University of California Los Angeles, Los Angeles CA USA; Nijssen, Bart [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA

    2016-08-22

    While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modeling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid-based spatially distributed model, DHSVM-WQ, is an outgrowth of the Distributed Hydrology-Soil-Vegetation Model (DHSVM) that incorporates modules for assessing hydrology and water quality in urbanized watersheds at a high spatial and temporal resolution. DHSVM-WQ simulates surface runoff quality and in-stream processes that control the transport of nonpoint-source (NPS) pollutants into urban streams. We configure DHSVM-WQ for three partially urbanized catchments in the Puget Sound region to evaluate the water quality responses to current conditions and projected changes in climate and/or land use over the next century. Here we focus on total suspended solids (TSS) and total phosphorus (TP) from nonpoint sources (runoff), as well as stream temperature. The projection of future land use is characterized by a combination of densification in existing urban or partially urban areas, and expansion of the urban footprint. The climate change scenarios consist of individual and concurrent changes in temperature and precipitation. Future precipitation is projected to increase in winter and decrease in summer, while future temperature is projected to increase throughout the year. Our results show that urbanization has a much greater effect than climate change on both the magnitude and seasonal variability of streamflow, TSS and TP loads largely due to substantially increased streamflow, and particularly winter flow peaks. Water temperature is more sensitive to climate warming scenarios than to urbanization and precipitation changes. Future urbanization and

  2. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain

    Science.gov (United States)

    Querol, X.; Viana, M.; Alastuey, A.; Amato, F.; Moreno, T.; Castillo, S.; Pey, J.; de la Rosa, J.; Sánchez de la Campa, A.; Artíñano, B.; Salvador, P.; García Dos Santos, S.; Fernández-Patier, R.; Moreno-Grau, S.; Negral, L.; Minguillón, M. C.; Monfort, E.; Gil, J. I.; Inza, A.; Ortega, L. A.; Santamaría, J. M.; Zabalza, J.

    Despite their significant role in source apportionment analysis, studies dedicated to the identification of tracer elements of emission sources of atmospheric particulate matter based on air quality data are relatively scarce. The studies describing tracer elements of specific sources currently available in the literature mostly focus on emissions from traffic or large-scale combustion processes (e.g. power plants), but not on specific industrial processes. Furthermore, marker elements are not usually determined at receptor sites, but during emission. In our study, trace element concentrations in PM 10 and PM 2.5 were determined at 33 monitoring stations in Spain throughout the period 1995-2006. Industrial emissions from different forms of metallurgy (steel, stainless steel, copper, zinc), ceramic and petrochemical industries were evaluated. Results obtained at sites with no significant industrial development allowed us to define usual concentration ranges for a number of trace elements in rural and urban background environments. At industrial and traffic hotspots, average trace metal concentrations were highest, exceeding rural background levels by even one order of magnitude in the cases of Cr, Mn, Cu, Zn, As, Sn, W, V, Ni, Cs and Pb. Steel production emissions were linked to high levels of Cr, Mn, Ni, Zn, Mo, Cd, Se and Sn (and probably Pb). Copper metallurgy areas showed high levels of As, Bi, Ga and Cu. Zinc metallurgy was characterised by high levels of Zn and Cd. Glazed ceramic production areas were linked to high levels of Zn, As, Se, Zr, Cs, Tl, Li, Co and Pb. High levels of Ni and V (in association) were tracers of petrochemical plants and/or fuel-oil combustion. At one site under the influence of heavy vessel traffic these elements could be considered tracers (although not exclusively) of shipping emissions. Levels of Zn-Ba and Cu-Sb were relatively high in urban areas when compared with industrialised regions due to tyre and brake abrasion, respectively.

  3. Contamination and source differentiation of Pb in park soils along an urban-rural gradient in Shanghai

    International Nuclear Information System (INIS)

    Li Hongbo; Yu Shen; Li Guilin; Deng Hong; Luo Xiaosan

    2011-01-01

    Urban soil Pb contamination is a great human health risk. Lead distribution and source in topsoils from 14 parks in Shanghai, China were investigated along an urban-rural gradient. Topsoils were contaminated averagely with 65 mg Pb kg -1 , 2.5 times higher than local soil background concentrations. HCl-extracts contained more anthropogenic Pb signatures than total sample digests as revealed by the higher 207/206 Pb and 208/206 Pb ratios in extracts (0.8613 ± 0.0094 and 2.1085 ± 0.0121 versus total digests 0.8575 ± 0.0098 and 2.0959 ± 0.0116). This suggests a higher sensitivity of HCl-extraction than total digestion in identifying anthropogenic Pb sources. Coal combustion emission was identified as the major anthropogenic Pb source (averagely 47%) while leaded gasoline emission contributed 12% overall. Urbanization effects were observed by total Pb content and anthropogenic Pb contribution. This study suggests that to reduce Pb contamination, Shanghai might have to change its energy composition to clean energy. - Highlights: → Coal combustion emission is identified as a main Pb source in Shanghai park soils. → HCl-extraction is sensitive in identifying anthropogenic isotope Pb sources. → Soil Pb contamination and its anthropogenic sources showed urbanization effects. - Coal combustion emission was identified as the main anthropogenic source of soil Pb contamination affecting Shanghai parks.

  4. Model of complex integrated use of alternative energy sources for highly urbanized areas

    Directory of Open Access Journals (Sweden)

    Ivanova Elena Ivanovna

    2014-04-01

    Full Text Available The increase of population and continuous development of highly urbanized territories poses new challenges to experts in the field of energy saving technologies. Only a multifunctional and autonomous system of building engineering equipment formed by the principles of energy efficiency and cost-effectiveness meets the needs of modern urban environment. Alternative energy sources, exploiting the principle of converting thermal energy into electrical power, show lack of efficiency, so it appears to be necessary for reaching a visible progress to skip this middle step. A fuel cell, converting chemical energy straight into electricity, and offering a vast diversity of both fuel types and oxidizing agents, gives a strong base for designing a complex integrated system. Regarding the results of analysis and comparison conducted among the most types of fuel cells proposed by contemporary scholars, a solid oxide fuel cell (SOFC is approved to be able to ensure the smooth operation of such a system. While the advantages of this device meet the requirements of engineering equipment for modern civil and, especially, dwelling architecture, its drawbacks do not contradict with the operating regime of the proposed system. The article introduces a model of a multifunctional system based on solid oxide fuel cell (SOFC and not only covering the energy demand of a particular building, but also providing the opportunity for proper and economical operation of several additional sub-systems. Air heating and water cooling equipment, ventilating and conditioning devices, the circle of water supply and preparation of water discharge for external use (e.g. agricultural needs included into a closed circuit of the integrated system allow evaluating it as a promising model of further implementation of energy saving technologies into architectural and building practice. This, consequently, will positively affect both ecological and economic development of urban environment.

  5. Validation of secondary commercial data sources for physical activity facilities in urban and nonurban settings.

    Science.gov (United States)

    Han, Euna; Powell, Lisa; Slater, Sandy; Quinn, Christopher

    2012-11-01

    Secondary data are often necessary to assess the availability of commercial physical activity (PA) facilities and examine its association with individual behaviors and outcomes, yet the validity of such sources has been explored only in a limited number of studies. Field data were collected on the presence and attributes of commercial PA facilities in a random sample of 30 urban, 15 suburban, and 15 rural Census tracts in the Chicago metropolitan statistical area and surrounding area. Approximately 40% of PA establishments in the field data were listed for both urban and nonurban tracts in both lists except for nonurban tracts in D&B (35%), which was significantly improved in the combined list of D&B and InfoUSA. Approximately one-quarter of the PA facilities listed in D&B were found on the ground, whereas 40% to 50% of PA facilities listed in InfoUSA were found on the ground. PA establishments that offered instruction programs or lessons or that had a court or pool were less likely to be listed, particularly in the nonurban tracts. Secondary commercial business lists on PA facilities should be used with caution in assessing the built environment.

  6. Source-receptor relationships for atmospheric mercury in urban Detroit, Michigan

    Science.gov (United States)

    Lynam, Mary M.; Keeler, Gerald J.

    Speciated hourly mercury measurements were made in Detroit, Michigan during four sampling campaigns from 2000 to 2002. In addition, other chemical and meteorological parameters were measured concurrently. These data were analyzed using principal components analysis (PCA) in order to develop source receptor relationships for mercury species in urban Detroit. Reactive gaseous mercury (RGM) was found to cluster on two main factors; photochemistry and a coal combustion factor. Particulate phase mercury, Hg p, tended to cluster with RGM on the same factor. The photochemistry factor corroborates previous observations of the presence of RGM in highly oxidizing atmospheres and does not point to a specific source emission type. Instead, it likely represents local emissions and regional transport of photochemically processed air masses. The coal combustion factor is indicative of emissions from coal-fired power plants near the receptor site. Elemental mercury was found on a factor for combustion from automobiles and points to the influence these emissions have on the receptor site, which was located proximate to two major interstate highways and the largest border crossing in the United States. This analysis reveals that the receptor site which is located in an industrialized sector of the city of Detroit experienced impacts from both stationary and point sources of mercury that are both local and regional in nature.

  7. Temporal variability and sources of VOCs in urban areas of the eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    C. Kaltsonoudis

    2016-11-01

    Full Text Available During the summer of 2012 volatile organic compounds (VOCs were monitored by proton transfer reaction mass spectrometry (PTR-MS in urban sites, in Athens and Patras, two of the largest cities in Greece. Also, during the winter of 2013, PTR-MS measurements were conducted in the center of the city of Athens. Positive matrix factorization (PMF was applied to the VOC measurements to gain insights about their sources. In summer most of the measured VOCs were due to biogenic and traffic emissions. Isoprene, monoterpenes, and several oxygenated VOCs (oVOCs originated mainly from vegetation either directly or as oxidation products. Isoprene average concentrations in Patras and Athens were 1 and 0.7 ppb respectively, while the monoterpene concentrations were 0.3 and 0.9 ppb respectively. Traffic was the main source of aromatic compounds during summer. For Patras and Athens the average concentrations of benzene were 0.1 and 0.2 ppb, of toluene 0.3 and 0.8 ppb, and of the xylenes 0.3 and 0.7 ppb respectively. Winter measurements in Athens revealed that biomass burning used for residential heating was a major VOC source contributing both aromatic VOCs and biogenic compounds such as monoterpenes. Several episodes related to biomass burning were identified and emission ratios (ERs and emission factors (EFs were estimated.

  8. Source identification of particulate matter in a semi-urban area of Malaysia using multivariate techniques.

    Science.gov (United States)

    Wahid, N B A; Latif, M T; Suan, L S; Dominick, D; Sahani, M; Jaafar, S A; Mohd Tahir, N

    2014-03-01

    This study aims to determine the composition and sources of particulate matter with an aerodynamic diameter of 10 μm or less (PM10) in a semi-urban area. PM10 samples were collected using a high volume sampler. Heavy metals (Fe, Zn, Pb, Mn, Cu, Cd and Ni) and cations (Na(+), K(+), Ca(2+) and Mg(2+)) were detected using inductively coupled plasma mass spectrometry, while anions (SO4 (2-), NO3 (-), Cl(-) and F(-)) were analysed using Ion Chromatography. Principle component analysis and multiple linear regressions were used to identify the source apportionment of PM10. Results showed the average concentration of PM10 was 29.5 ± 5.1 μg/m(3). The heavy metals found were dominated by Fe, followed by Zn, Pb, Cu, Mn, Cd and Ni. Na(+) was the dominant cation, followed by Ca(2+), K(+) and Mg(2+), whereas SO4 (2-) was the dominant anion, followed by NO3 (-), Cl(-) and F(-). The main sources of PM10 were the Earth's crust/road dust, followed by vehicle emissions, industrial emissions/road activity, and construction/biomass burning.

  9. Current research trend on urban sewerage system in China

    Science.gov (United States)

    Ning, Yun-Fang; Dong, Wen-Yi; Lin, Lu-Sheng; Zhang, Qian

    2017-03-01

    The research emphasis has always been on sewerage treatment technology in China, though urban drainage system has gained little attention. In the context of urban drainage system and the problem associated with rain, the focus is still mainly toward the simple “emissions”. While the relationship between conservation and utilization of rainwater resources and urban ecology are popular, the relationship between rainwater discharge and non-point source pollution are often neglected. The reasonable choice of sewerage system is dependent on the collection and discharge of urban sewerage, the applicability and economic benefits, along with the ability to meet the water quality requirements and environmental protection. This paper analyzes and summarizes the development of urban drainage system in china, and introduces different drainage forms. The choice of drainage system should be based on the overall planning of the city, environmental protection requirements, the local natural conditions and water conditions, urban sewerage and water quality, the original drainage facilities, and local climatic conditions. It must be comprehensive to meet the environmental protection requirements, through technical and economic comparison.

  10. Evaluation of Selected Ornamental Asteraceae as a Pollen Source for Urban Bees

    Directory of Open Access Journals (Sweden)

    Wróblewska Anna

    2016-12-01

    Full Text Available Offering more floral resources for urban bees can be achieved by growing ornamental bee plants. The aim of the present study was to evaluate selected Asteraceae (Calendula officinalis ‘Persimmon Beauty’ and ‘Santana’, Centaurea macrocephala, Cosmos sulphureus, Dahlia pinnata, Tagetes patula, Tithonia rotundifolia, and Zinnia elegans as pollen sources for pollinators. Under urban conditions in Lublin, SE Poland, the investigated plants flowered from late June to the end of October. The mass of pollen produced in florets and capitula was found to be species-related. The highest pollen amounts per 10 florets (10.1 mg as well as per capitulum (249.7 mg were found for C. macrocephala. The mass of pollen yielded by a single plant depended on both the pollen mass delivered per disk florets and the proportion of disk florets in capitulum, and the flowering abundance of the plants. A single plant of D. pinnata and a single plant of T. rotundifolia each produced the largest pollen mass. Mean pollen yield per 1m2 of a plot ranged from 6.2 g (Z. elegans to 60.7 g (D. pinnata. Pollen grains are tricolporate, with echinate exine, medium or small in size. They can be categorised as oblatespherical, spherical, and prolatespherical. The principal visitors to C. macrocephala, C. sulphureus, and C. officinalis were honey bees, whereas bumble bees dominated on T. rotundifolia and D. pinnata. A magnet plant for butterflies was Z. elegans. Among the investigated species, D. pinnata, C. macrocephala, and T. rotundifolia were found to be the most valuable sources of pollen flow for managed and wild bees.

  11. Urban airborne lead: X-ray absorption spectroscopy establishes soil as dominant source.

    Directory of Open Access Journals (Sweden)

    Nicholas E Pingitore

    Full Text Available BACKGROUND: Despite the dramatic decrease in airborne lead over the past three decades, there are calls for regulatory limits on this potent pediatric neurotoxin lower even than the new (2008 US Environmental Protection Agency standard. To achieve further decreases in airborne lead, what sources would need to be decreased and what costs would ensue? Our aim was to identify and, if possible, quantify the major species (compounds of lead in recent ambient airborne particulate matter collected in El Paso, TX, USA. METHODOLOGY/PRINCIPAL FINDINGS: We used synchrotron-based XAFS (x-ray absorption fine structure to identify and quantify the major Pb species. XAFS provides molecular-level structural information about a specific element in a bulk sample. Pb-humate is the dominant form of lead in contemporary El Paso air. Pb-humate is a stable, sorbed complex produced exclusively in the humus fraction of Pb-contaminated soils; it also is the major lead species in El Paso soils. Thus such soil must be the dominant source, and its resuspension into the air, the transfer process, providing lead particles to the local air. CONCLUSIONS/SIGNIFICANCE: Current industrial and commercial activity apparently is not a major source of airborne lead in El Paso, and presumably other locales that have eliminated such traditional sources as leaded gasoline. Instead, local contaminated soil, legacy of earlier anthropogenic Pb releases, serves as a long-term reservoir that gradually leaks particulate lead to the atmosphere. Given the difficulty and expense of large-scale soil remediation or removal, fugitive soil likely constrains a lower limit for airborne lead levels in many urban settings.

  12. Potential Sources and Formations of the PM2.5 Pollution in Urban Hangzhou

    Directory of Open Access Journals (Sweden)

    Jian Wu

    2016-07-01

    Full Text Available Continuous measurements of meteorological parameters, gaseous pollutants, particulate matters, and the major chemical species in PM2.5 were conducted in urban Hangzhou from 1 September to 30 November 2013 to study the potential sources and formations of PM2.5 pollution. The average PM2.5 concentration was 69 µg·m−3, ~97% higher than the annual concentration limit in the national ambient air quality standards (NAAQS of China. Relative humidity (RH and wind speed (WS were two important factors responsible for the increase of PM2.5 concentration, with the highest value observed under RH of 70%–90%. PM2.5 was in good correlation with both NO2 and CO, but not with SO2, and the potential source contribution function (PSCF results displayed that local emissions were important potential sources contributing to the elevated PM2.5 and NO2 in Hangzhou. Thus, local vehicle emission was suggested as a major contribution to the PM2.5 pollution. Concentrations of NO2 and CO significantly increased in pollution episodes, while the SO2 concentration even decreased, implying local emission rather than region transport was the major source contributing to the formation of pollution episodes. The sum of SO42−, NO3−, and NH4+ accounted for ~50% of PM2.5 in mass in pollution episodes and the NO3−/EC ratios were significantly elevated, revealing that the formation of secondary inorganic species, particularly NO3−, was an important contributor to the PM2.5 pollution in Hangzhou. This study highlights that controlling local pollution emissions was essential to reduce the PM2.5 pollution in Hangzhou, and the control of vehicle emission in particular should be further promoted in the future.

  13. Urban airborne lead: X-ray absorption spectroscopy establishes soil as dominant source.

    Science.gov (United States)

    Pingitore, Nicholas E; Clague, Juan W; Amaya, Maria A; Maciejewska, Beata; Reynoso, Jesús J

    2009-01-01

    Despite the dramatic decrease in airborne lead over the past three decades, there are calls for regulatory limits on this potent pediatric neurotoxin lower even than the new (2008) US Environmental Protection Agency standard. To achieve further decreases in airborne lead, what sources would need to be decreased and what costs would ensue? Our aim was to identify and, if possible, quantify the major species (compounds) of lead in recent ambient airborne particulate matter collected in El Paso, TX, USA. We used synchrotron-based XAFS (x-ray absorption fine structure) to identify and quantify the major Pb species. XAFS provides molecular-level structural information about a specific element in a bulk sample. Pb-humate is the dominant form of lead in contemporary El Paso air. Pb-humate is a stable, sorbed complex produced exclusively in the humus fraction of Pb-contaminated soils; it also is the major lead species in El Paso soils. Thus such soil must be the dominant source, and its resuspension into the air, the transfer process, providing lead particles to the local air. Current industrial and commercial activity apparently is not a major source of airborne lead in El Paso, and presumably other locales that have eliminated such traditional sources as leaded gasoline. Instead, local contaminated soil, legacy of earlier anthropogenic Pb releases, serves as a long-term reservoir that gradually leaks particulate lead to the atmosphere. Given the difficulty and expense of large-scale soil remediation or removal, fugitive soil likely constrains a lower limit for airborne lead levels in many urban settings.

  14. [Pollution characteristics and sources of polycyclic aromatic hydrocarbons in urban rivers of Wenzhou city].

    Science.gov (United States)

    Zhou, Jie-Cheng; Chen, Zhen-Lou; Bi, Chun-Juan; Lü, Jin-Gang; Xu, Shi-Yuan; Pan, Qi

    2012-12-01

    Concentrations of 18 polycyclic aromatic hydrocarbons (PAHs) in water and surface sediments collected from the urban rivers of Wenzhou city in spring and summer were measured by GC-MS. The results showed that the total PAHs concentrations in water and sediments of the studied rivers varied in ranges of 146.74-3 047.89 ng x L(-1) and 21.01-11 990.48 ng x g(-1), respectively. Higher concentrations occurred in spring. The low and middle rings of 2-4-ring were dominant in both water and sediments, but the concentrations of 5-ring and 6-ring PAHs in sediments were relatively higher than those in water. The EBaP values of PAHs in water of the studied rivers in spring and summer were 1.69-51.95 ng x L(-1) and 0-3.03 ng x L(-1), respectively. Eighty percent of water samples in spring surpassed the limits of BaP in surface water of China. The concentrations of sigma PAHs in the sediments both in spring and summer were lower than the ERM value, but part of the components of PAHs had values higher than the ERM, suggesting possible toxic effect on living organisms. Based on the PAHs molecule ratios and principal component analysis, a mixed PAHs source of petroleum and combustion in water and sediments was diagnosed, while sediments showed a greater proportion of combustion sources.

  15. Automobiles: Possible sources of metals other than lead in the urban atmosphere

    International Nuclear Information System (INIS)

    Xudong Huang; Keskin, S.S.; Olmez, I.; Gordon, G.E.

    1992-01-01

    At present, due to the lack of specific marker species and reliable source composition libraries for motor vehicle emissions, it is almost impossible to predict their impact on the urban atmosphere. During the last 2 yr, the authors have been performing an extensive program to identify specific inorganic tracers for recently manufactured automobiles to create a new source composition library. Initially, they speculated on the possibility of using rare earth element (REE) emissions from the modern catalytic converters. Their preliminary studies and Japanese studies indicated a substantial release of light REE from the exhausts of unleaded gasoline-powered autos. The present study, however, has shown that although REEs are emitted, their importance as a marker is minimal. Although they have analyzed numerous samples collected from test facilities, tunnels, and ambient aerosols, they present only the results of individual motor vehicle studies. Samples were collected from the exhaust of 52 passenger cars and minivans of domestic and foreign origin. All samples collected were analyzed by instrumental neutron activation analysis (INAA). The INAA results have shown that in addition to REEs, substantial amounts of other elements (sodium, magnesium, aluminum, potassium, manganese, iron, zinc, arsenic, bromine, antimony, etc.) were also emitted

  16. Transfer, sources and sinks for major and trace elements in urban and rural areas

    International Nuclear Information System (INIS)

    Schnetger, B.; Brumsack, H.J.; Heinrichs, H.

    1996-01-01

    Spider webs and air filter samples from 11 German cities were analyzed for major and trace elements to determine the composition of urban particulates. Model calculation was used for the estimation of the sources (fraction of components with decreasing importance): tire abrasion, diesel soot, tar, material from the earth crust and brick abrasion, concrete abrasion, sulfur, gasoline soot, cement production, hard coal ash, lignite fly ash, steel production, waste incineration, sea spray, oil combustion, brake abrasion. Heavy metals in city dust are mostly related to traffic and industrial high temperature processes. The most important sink for the metals and acids of polluted air masses was found to be the forested areas of mountains exposed to the main wind direction. High enrichment of heavy metals and low pH values in the top soils of such areas (Harz Mountain, Germany) were found. From previously (now damaged) forested areas an acid front moves downward. Metals from the top soils were dissolved by this process. In the investigated area precipitation of the released metals takes place in the lakes and a drinking water reservoir. These sinks again become a source when acidification increases. (author)

  17. Source apportionment of PM10 and PM2.5 in major urban Greek agglomerations using a hybrid source-receptor modeling process.

    Science.gov (United States)

    Argyropoulos, G; Samara, C; Diapouli, E; Eleftheriadis, K; Papaoikonomou, K; Kungolos, A

    2017-12-01

    A hybrid source-receptor modeling process was assembled, to apportion and infer source locations of PM 10 and PM 2.5 in three heavily-impacted urban areas of Greece, during the warm period of 2011, and the cold period of 2012. The assembled process involved application of an advanced computational procedure, the so-called Robotic Chemical Mass Balance (RCMB) model. Source locations were inferred using two well-established probability functions: (a) the Conditional Probability Function (CPF), to correlate the output of RCMB with local wind directional data, and (b) the Potential Source Contribution Function (PSCF), to correlate the output of RCMB with 72h air-mass back-trajectories, arriving at the receptor sites, during sampling. Regarding CPF, a higher-level conditional probability function was defined as well, from the common locus of CPF sectors derived for neighboring receptor sites. With respect to PSCF, a non-parametric bootstrapping method was applied to discriminate the statistically significant values. RCMB modeling showed that resuspended dust is actually one of the main barriers for attaining the European Union (EU) limit values in Mediterranean urban agglomerations, where the drier climate favors build-up. The shift in the energy mix of Greece (caused by the economic recession) was also evidenced, since biomass burning was found to contribute more significantly to the sampling sites belonging to the coldest climatic zone, particularly during the cold period. The CPF analysis showed that short-range transport of anthropogenic emissions from urban traffic to urban background sites was very likely to have occurred, within all the examined urban agglomerations. The PSCF analysis confirmed that long-range transport of primary and/or secondary aerosols may indeed be possible, even from distances over 1000km away from study areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Monuments in the Structure of an Urban Environment: The Source of Social Memory and the Marker of the Urban Space

    Science.gov (United States)

    Antonova, N.; Grunt, E.; Merenkov, A.

    2017-10-01

    The major research objective was to analyze the role of monuments in the formation of local residents’ and guests’ representations about the city, its history and traditions. The authors consider the system of monuments’ location in the urban space as a way of its social construction, as the system of influence on citizens’ aesthetic feelings, as the formation of their attitudes towards maintaining of continuity in the activities of different generations for the improvement of the territory of their permanent residence. Methodology. An urban monument is considered in two ways: as a transfer of historical memory and as a social memory transfer, which includes the experience of previous generations. One of the main provisions of the study is the idea that monuments can lose their former social value, transforming into “simple” objects of a public place. The study was conducted in the city of Yekaterinburg, one of the largest, cultural, scientific and industrial Russian megalopolises in 2015. The primary data was collected using standardized interviews. Four hundred and twenty respondents at the age of and above 18 were questioned on the basis of quota sampling. Interviews with respondents were conducted in order to identify key problems involved and reasons for shaping respondents’ representations of monuments in the urban environment typical for the population of Russian megalopolises. The standardized interview guide included 15 questions. Findings and discussion. Our investigation has revealed that different monuments fulfil various functions in an urban environment (ideological, aesthetic, transferring, valuable, etc.). The study has unequivocally confirmed that objects in the urban space have a different emotional colour background: people paint them in accordance with the feelings that arise in their perception. Hence, some monuments effectively fulfil the functions of social memory transfer: they are remembered, they tell us about the events to

  19. Techniques for detecting effects of urban and rural land-use practices on stream-water chemistry in selected watersheds in Texas, Minnesota,and Illinois

    Science.gov (United States)

    Walker, J.F.

    1993-01-01

    Although considerable effort has been expended during the past two decades to control nonpoint-source contamination of streams and lakes in urban and rural watersheds, little has been published on the effectiveness of various management practices at the watershed scale. This report presents a discussion of several parametric and nonparametric statistical techniques for detecting changes in water-chemistry data. The need for reducing the influence of natural variability was recognized and accomplished through the use of regression equations. Traditional analyses have focused on fixed-frequency instantaneous concentration data; this report describes the use of storm load data as an alternative.

  20. Components and Context: Exploring Sources of Reading Difficulties for Language Minority Learners and Native English Speakers in Urban Schools

    Science.gov (United States)

    Kieffer, Michael J.; Vukovic, Rose K.

    2012-01-01

    Drawing on the cognitive and ecological domains within the componential model of reading, this longitudinal study explores heterogeneity in the sources of reading difficulties for language minority learners and native English speakers in urban schools. Students (N = 150) were followed from first through third grade and assessed annually on…

  1. The near-source impacts of diesel backup generators in urban environments

    Science.gov (United States)

    Tong, Zheming; Zhang, K. Max

    2015-05-01

    Distributed power generation, located close to consumers, plays an important role in the current and future power systems. However, its near-source impacts in complex urban environments are not well understood. In this paper, we focused on diesel backup generators that participate in demand response (DR) programs. We first improved the micro-environmental air quality simulations by employing a meteorology processor, AERMET, to generate site-specific boundary layer parameters for the Large Eddy Simulation (LES) modeling. The modeling structure was then incorporated into the CTAG model to evaluate the environmental impacts of diesel backup generators in near-source microenvironments. We found that the presence of either tall upwind or downwind building can deteriorate the air quality in the near-stack street canyons, largely due to the recirculation zones generated by the tall buildings, reducing the near-stack dispersion. Decreasing exhaust momentum ratio (stack exit velocity/ambient wind velocity) draws more exhaust into the recirculation zone, and reduces the effective stack height, which results in elevated near-ground concentrations inside downwind street canyons. The near-ground PM2.5 concentration for the worst scenarios could well exceed 100 μg m-3, posing potential health risk to people living and working nearby. In general, older diesel backup generators (i.e., Tier 1, 2 or older) without the up-to-date emission control may significantly increase the pollutant concentration in the near-source street canyons if participating in DR programs. Even generators that comply with Tier-4 standards could lead to PM hotspots if their stacks are next to tall buildings. Our study implies that the siting of diesel backup generators stacks should consider not only the interactions of fresh air intake and exhaust outlet for the building housing the backup generators, but also the dispersion of exhaust plumes in the surrounding environment.

  2. Premature deaths attributed to source-specific BC emissions in six urban US regions

    International Nuclear Information System (INIS)

    Turner, Matthew D; Henze, Daven K; Capps, Shannon L; Hakami, Amir; Zhao, Shunliu; Resler, Jaroslav; Carmichael, Gregory R; Stanier, Charles O; Baek, Jaemeen; Sandu, Adrian; Russell, Armistead G; Nenes, Athanasios; Pinder, Rob W; Napelenok, Sergey L; Bash, Jesse O; Percell, Peter B; Chai, Tianfeng

    2015-01-01

    Recent studies have shown that exposure to particulate black carbon (BC) has significant adverse health effects and may be more detrimental to human health than exposure to PM 2.5 as a whole. Mobile source BC emission controls, mostly on diesel-burning vehicles, have successfully decreased mobile source BC emissions to less than half of what they were 30 years ago. Quantification of the benefits of previous emissions controls conveys the value of these regulatory actions and provides a method by which future control alternatives could be evaluated. In this study we use the adjoint of the Community Multiscale Air Quality (CMAQ) model to estimate highly-resolved spatial distributions of benefits related to emission reductions for six urban regions within the continental US. Emissions from outside each of the six chosen regions account for between 7% and 27% of the premature deaths attributed to exposure to BC within the region. While we estimate that nonroad mobile and onroad diesel emissions account for the largest number of premature deaths attributable to exposure to BC, onroad gasoline is shown to have more than double the benefit per unit emission relative to that of nonroad mobile and onroad diesel. Within the region encompassing New York City and Philadelphia, reductions in emissions from large industrial combustion sources that are not classified as EGUs (i.e., non-EGU) are estimated to have up to triple the benefits per unit emission relative to reductions to onroad diesel sectors, and provide similar benefits per unit emission to that of onroad gasoline emissions in the region. While onroad mobile emissions have been decreasing in the past 30 years and a majority of vehicle emission controls that regulate PM focus on diesel emissions, our analysis shows the most efficient target for stricter controls is actually onroad gasoline emissions. (letter)

  3. Source contributions to carbonaceous species in PM2.5 and their uncertainty analysis at typical urban, peri-urban and background sites in southeast China

    International Nuclear Information System (INIS)

    Niu, Zhenchuan; Wang, Sen; Chen, Jinsheng; Zhang, Fuwang; Chen, Xiaoqiu; He, Chi; Lin, Lifeng; Yin, Liqian; Xu, Lingling

    2013-01-01

    Determination of 14 C and levoglucosan can provide insights into the quantification of source contributions to carbonaceous aerosols, yet there is still uncertainty on the partitioning of organic carbon (OC) into biomass burning OC (OC bb ) and biogenic emission OC (OC bio ). Carbonaceous species, levoglucosan and 14 C in PM 2.5 were measured at three types of site in southeast China combined with Latin hypercube sampling, with the objectives to study source contributions to total carbon (TC) and their uncertainties, and to evaluate the influence of levoglucosan/OC bb ratios on OC bb and OC bio partitioning. It was found reliably that fossil fuel combustion is the main contributor (62.90–72.23%) to TC at urban and peri-urban sites. Biogenic emissions have important contribution (winter, 52.98%; summer, 45.71%) to TC at background site. With the increase in levoglucosan/OC bb ratios, the contribution of OC bio is increased while OC bb is decreased in a pattern of approximate natural logarithm at a given range. -- Highlights: •Source contributions to OC and EC were quantified by levoglucosan and 14 C. •Fossil fuel combustion is the main contributor to TC for urban and peri-urban sites. •Biogenic emissions have important contribution to TC for the background site. •Biomass burning is a minor contributor to TC and has high contribution in winter. •Ratios of OC bio and OC bb to TC have a natural logarithmic relation with lev/OC bb . -- The contributions of OC bio and OC bb to TC have a natural logarithmic relationship with the levoglucosan/OC bb ratios

  4. Source contributions to PM2.5 and PM10 at an urban background and a street location

    Science.gov (United States)

    Keuken, M. P.; Moerman, M.; Voogt, M.; Blom, M.; Weijers, E. P.; Röckmann, T.; Dusek, U.

    2013-06-01

    The contribution of regional, urban and traffic sources to PM2.5 and PM10 in an urban area was investigated in this study. The chemical composition of PM2.5 and PM10 was measured over a year at a street location and up- and down-wind of the city of Rotterdam, the Netherlands. The 14C content in EC and OC concentrations was also determined, to distinguish the contribution from "modern" carbon (e.g., biogenic emissions, biomass burning and wildfires) and fossil fuel combustion. It was concluded that the urban background of PM2.5 and PM10 is dominated by the regional background, and that primary and secondary PM emission by urban sources contribute less than 15%. The 14C analysis revealed that 70% of OC originates from modern carbon and 30% from fossil fuel combustion. The corresponding percentages for EC are, respectively 17% and 83%. It is concluded that in particular the urban population living in street canyons with intense road traffic has potential health risks. This is due to exposure to elevated concentrations of a factor two for EC from exhaust emissions in PM2.5 and a factor 2-3 for heavy metals from brake and tyre wear, and re-suspended road dust in PM10. It follows that local air quality management may focus on local measures to street canyons with intense road traffic.

  5. Occurrence and sources of natural and anthropogenic lipid tracers in surface soils from arid urban areas of Saudi Arabia

    International Nuclear Information System (INIS)

    Rushdi, Ahmed I.; Al-Mutlaq, Khalid F.; El-Mubarak, Aarif H.; Al-Saleh, Mohammed A.; El-Otaibi, Mubarak T.; Ibrahim, Sami M.M.; Simoneit, Bernd R.T.

    2016-01-01

    Soil particles contain a variety of natural and anthropogenic organic components, and in urban areas can be considered as local collectors of pollutants. Surface soil samples were taken from ten urban areas in Riyadh during early winter of 2007. They were extracted with dichloromethane-methanol mixture and the extracts were analyzed by gas chromatography-mass spectrometry. The major compounds were unresolved complex mixture (UCM), plasticizers, n-alkanes, carbohydrates, n-alkanoic acids, hopanes, n-alkanols, and sterols. Vegetation detritus was the major natural source of organic compounds (24.0 ± 15.7%) in samples from areas with less human activities and included n-alkanes, n-alkanoic acids, n-alkanols, sterols and carbohydrates. Vehicular emission products and discarded plastics were the major anthropogenic sources in the soil particles (53.3 ± 21.3% and 22.7 ± 10.7%, respectively). The anthropogenic tracers were UCM, plasticizers, n-alkanes, hopanes and traces of steranes. Vegetation and human activities control the occurrence and distribution of natural and anthropogenic extractable organic matter in this arid urban area. - Highlights: • Human activities influence the distribution of EOM in soils of urban arid regions. • Petroleum residues and plastics are the dominant anthropogenic input. • Low soil organic matter and moisture limit microbial/fungal alteration. - This work shows that human activities are critical factors that influence the characteristics and distribution of EOM in soils of arid urban regions.

  6. Sources of aminomethylphosphonic acid (AMPA) in urban and rural catchments in Ontario, Canada: Glyphosate or phosphonates in wastewater?

    International Nuclear Information System (INIS)

    Struger, J.; Van Stempvoort, D.R.; Brown, S.J.

    2015-01-01

    Correlation analysis suggests that occurrences of AMPA in streams of southern Ontario are linked mainly to glyphosate in both urban and rural settings, rather than to wastewater sources, as some previous studies have suggested. For this analysis the artificial sweetener acesulfame was analyzed as a wastewater indicator in surface water samples collected from urban and rural settings in southern Ontario, Canada. This interpretation is supported by the concurrence of seasonal fluctuations of glyphosate and AMPA concentrations. Herbicide applications in larger urban centres and along major transportation corridors appear to be important sources of glyphosate and AMPA in surface water, in addition to uses of this herbicide in rural and mixed use areas. Fluctuations in concentrations of acesulfame and glyphosate residues were found to be related to hydrologic events. - Highlights: • Widespread occurrence of glyphosate and AMPA in surface waters of southern Ontario. • Linked to applications of glyphosate in urban and rural settings. • Supported by lack of correlation between AMPA and the wastewater tracer acesulfame. • Contrasts with view that AMPA found in the environment is derived from wastewater. • AMPA more persistent than glyphosate and both fluctuated with hydrological cycles. - The occurrence of AMPA in streams in southern Ontario is linked mainly to glyphosate rather than wastewater sources

  7. Insects associated with the composting process of solid urban waste separated at the source

    Directory of Open Access Journals (Sweden)

    Gladis Estela Morales

    2010-01-01

    Full Text Available Sarcosaprophagous macroinvertebrates (earthworms, termites and a number of Diptera larvae enhance changes in the physical and chemical properties of organic matter during degradation and stabilization processes in composting, causing a decrease in the molecular weights of compounds. This activity makes these organisms excellent recyclers of organic matter. This article evaluates the succession of insects associated with the decomposition of solid urban waste separated at the source. The study was carried out in the city of Medellin, Colombia. A total of 11,732 individuals were determined, belonging to the classes Insecta and Arachnida. Species of three orders of Insecta were identified, Diptera, Coleoptera and Hymenoptera. Diptera corresponding to 98.5% of the total, was the most abundant and diverse group, with 16 families (Calliphoridae, Drosophilidae, Psychodidae, Fanniidae, Muscidae, Milichiidae, Ulidiidae, Scatopsidae, Sepsidae, Sphaeroceridae, Heleomyzidae, Stratiomyidae, Syrphidae, Phoridae, Tephritidae and Curtonotidae followed by Coleoptera with five families (Carabidae, Staphylinidae, Ptiliidae, Hydrophilidae and Phalacaridae. Three stages were observed during the composting process, allowing species associated with each stage to be identified. Other species were also present throughout the whole process. In terms of number of species, Diptera was the most important group observed, particularly Ornidia obesa, considered a highly invasive species, and Hermetia illuscens, both reported as beneficial for decomposition of organic matter.

  8. Relation Decomposing between Urbanization and Consumption of Water-Energy Sources

    Science.gov (United States)

    Wang, Y.; Xiao, W.; Wang, Y.; Zhao, Y.; Wang, J., , Dr; Jiang, D.; Wang, H.

    2017-12-01

    Abstract: Water resources and energy, important subsystems of city, are the basic guarantee for the normal operation of city, which play an important role to brace the urbanization. The interdependence between them are increasing along with the rapid development of China's economy. The relationship between urbanization and consumption of energy and water have become the focal point of the scholars, but the research have more attention to the impact of urbanization on two subsystems separately, and do not reveal the effects of urbanization on the water-energy nexus. Thus, there is little consideration upon the different characteristics of China's several regions in water and energy consumption in urbanization. In this paper, the STIRPAT model is built to reveal the relationship between urbanization and the consumption of water and energy. Also, the influence of urbanization on different main body of water and energy consumption are discussed. The different regional main factors of water and energy in the process of urbanization are identified through water and energy panel data of China's thirty provinces. Finally, through the regression analysis of total water consumption data of agriculture, industry, service industry with total energy consumption data, the relationship of water and energy in the process of urban development are analyzed.

  9. [Effect of antecedent dry period on water quality of urban storm runoff pollution].

    Science.gov (United States)

    Bian, Bo

    2009-12-01

    Identified the main factor influencing urban rainfall-runoff pollution provides a scientific basis for urban rainfall-runoff pollution control and management. Therefore, starting in May 2006, a study was conducted to characterize water quality from representative land uses types in Zhenjiang to analyse the effect of antecedent dry period on stormwater runoff quality. The results show that the beginning of rainfall, with the increase of antecedent dry periods, the percentages of less than 40 microm is increased, the correlation of the water quality parameters (TN, TP, Zn, Pb, Cu, TSS and COD) and antecedent dry period shows a significant positive correlation, dissolved pollutants in the initial period surface runoff is increased. These findings show that facilitating the recognition of antecedent dry periods is the main factor influencing the change in concentration and partitioning of pollutants to provide the scientific basis for non-point source pollution control and management.

  10. Trend analysis of a tropical urban river water quality in Malaysia.

    Science.gov (United States)

    Othman, Faridah; M E, Alaa Eldin; Mohamed, Ibrahim

    2012-12-01

    Rivers play a significant role in providing water resources for human and ecosystem survival and health. Hence, river water quality is an important parameter that must be preserved and monitored. As the state of Selangor and the city of Kuala Lumpur, Malaysia, are undergoing tremendous development, the river is subjected to pollution from point and non-point sources. The water quality of the Klang River basin, one of the most densely populated areas within the region, is significantly degraded due to human activities as well as urbanization. Evaluation of the overall river water quality status is normally represented by a water quality index (WQI), which consists of six parameters, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen and pH. The objectives of this study are to assess the water quality status for this tropical, urban river and to establish the WQI trend. Using monthly WQI data from 1997 to 2007, time series were plotted and trend analysis was performed by employing the first-order autocorrelated trend model on the moving average values for every station. The initial and final values of either the moving average or the trend model were used as the estimates of the initial and final WQI at the stations. It was found that Klang River water quality has shown some improvement between 1997 and 2007. Water quality remains good in the upper stream area, which provides vital water sources for water treatment plants in the Klang valley. Meanwhile, the water quality has also improved in other stations. Results of the current study suggest that the present policy on managing river quality in the Klang River has produced encouraging results; the policy should, however, be further improved alongside more vigorous monitoring of pollution discharge from various point sources such as industrial wastewater, municipal sewers, wet markets, sand mining and landfills, as well as non-point sources such as

  11. NORTH-EAST ROMANIA AS A FUTURE SOURCE OF TREES FOR URBAN PAVED ENVIRONMENTS IN NORTH-WEST EUROPE

    Directory of Open Access Journals (Sweden)

    SJÖMAN HENRIK

    2009-12-01

    Full Text Available Trees are an important feature of the urban environment. The problem today lies not in finding a wide range of well-adapted tree species for park environments, but in finding species suitable for urban paved sites. In terms of north-west Europe, it is unlikely that the limited native dendroflora will provide a large variety of tree species with high tolerance to the environmental stresses characterising urban paved sites in the region. However, other regions with a comparable climate but with a rich dendroflora can potentially provide new tree species and genera well-suited to the growing conditions at urban sites in north-west Europe. This paper examines the potential of a geographical area extending over north-east Romania and the Republic of Moldavia to supply suitable tree species for urban paved sites in Central and Northern Europe (CNE. The study involved comparing the temperature, precipitation, evapotranspiration and water runoff in the woodland area of Iasi, Romania, with those the current inner-city climate of Copenhagen, Denmark and those predicted for Copenhagen 2100. The latter included urban heat island effects and predicted global climate change. The results revealed similar pattern in summer water deficit and temperature between natural woodlands in Iasi and inner-city environment of Copenhagen today. On the other hand, there is a weak match between Iasi and the future Copenhagen. In order to match the future scenario of Copenhagen with the present situation in Iasi, a greater understanding in a early phase that the solution not only depends on suitable tree species, but also on technical solutions being developed in order to have trees in paved environments in the future. On the basis of precipitation and temperature data, natural woodlands in north-east Romania have the potential to be a source of suitable trees for urban paved environments in the CNE region, even for a future climate if other aspects in the planning of trees

  12. Preventive Dental Checkups and Their Association With Access to Usual Source of Care Among Rural and Urban Adult Residents.

    Science.gov (United States)

    Khan, Aishah; Thapa, Janani R; Zhang, Donglan

    2017-09-01

    This study aimed to assess the relationship between rural or urban residence and having a usual source of care (USC), and the utilization of preventive dental checkups among adults. Cross-sectional analysis was conducted using data from the Medical Expenditure Panel Survey 2012. We performed a logit regression on the relationship between rural and urban residence, having a USC, and having at least 1 dental checkup in the past year, adjusting for sociodemographic characteristics and health status. After controlling for covariates, rural adult residents had significantly lower odds of having at least 1 dental checkup per year compared to their urban counterparts (odds ratio [OR] = 0.73, 95% confidence interval [CI]: 0.62-0.86, P rural and urban residents, having a USC was significantly associated with an 11% (95% CI = 9%-13%) increase in the probability of having a preventive dental checkup within a year. Individuals with a USC were more likely to obtain a preventive dental visit, with similar effects in rural and urban settings. We attributed the lower odds of having a checkup in rural regions to the lower density of oral health care providers in these areas. Integration of rural oral health care into primary care may help mitigate the challenges due to a shortage of oral health care providers in rural areas. © 2017 National Rural Health Association.

  13. Urban farming as a possible source of trace metals in human diets

    Directory of Open Access Journals (Sweden)

    Joshua O. Olowoyo

    2016-02-01

    Full Text Available Rapid industrialisation and urbanisation have greatly increased the concentrations of trace metals as pollutants in the urban environment. These pollutants (trace metals are more likely to have an adverse effect on peri-urban agriculture which is now becoming a permanent feature of the landscape of many urban cities in the world. This review reports on the concentrations of trace metals in crops, including leafy vegetables harvested from different urban areas, thus highlighting the presence of trace metals in leafy vegetables. Various pathways of uptake of trace metals by leafy vegetables, such as the foliar and roots, and possible health risks associated with urban faming are discussed and various morphological and physiological impacts of trace metals in leafy vegetables are described. Defensive mechanisms and positive aspects of trace metals in plants are also highlighted.

  14. Distribution, source identification and health risk assessment of soil heavy metals in urban areas of Isfahan province, Iran

    Science.gov (United States)

    Rastegari Mehr, Meisam; Keshavarzi, Behnam; Moore, Farid; Sharifi, Reza; Lahijanzadeh, Ahmadreza; Kermani, Maryam

    2017-08-01

    The present study examines some heavy metals (As, Cd, Co, Cr, Cu, Ni, Pb and Zn) contents in urban soils of 23 cities in Isfahan province, central Iran. For this purpose, 83 topsoil samples were collected and analyzed by ICP-MS. Results showed that the concentrations of As, Cd, Cu, Pb and Zn are higher than background values, while Co, Cr and Ni concentrations are close to the background. Compared with heavy metal concentrations in selected cities around the world, As, Cd, Cu, Pb and Zn concentrations in urban soils of Isfahan are relatively enriched. Moreover, natural background concentrations of Co, Cr and Ni in Isfahan province soil are high and the apparent enrichment relative to other major cities of the world is due to this high background contents. Calculated contamination factor (CF) confirmed that As, Cd, Cu, Pb and Zn are extremely enriched in the urban soils. Furthermore, pollution load index (PLI) and Geoaccumulation index (Igeo) highlighted that highly contaminated cities are mostly affected by pollution from traffic, industries and Shahkuh Pb-Zn mine. Based on hazard quotients (HQ), hazard index (HI) and cancer risk (CR) calculated in this study, human health risk (particularly for Pb and Cd) have reached alarming scales. Results from principle component analysis (PCA) and positive matrix factorization (PMF) introduces three sources for soils heavy metals including mine and industries (mainly for Pb, Zn, Cd and As); urban activities (particularly for Cu, Pb and Zn); and geogenic source (Ni, Co and Cr).

  15. Linking potential heat source and sink to urban heat island: Heterogeneous effects of landscape pattern on land surface temperature.

    Science.gov (United States)

    Li, Weifeng; Cao, Qiwen; Lang, Kun; Wu, Jiansheng

    2017-05-15

    Rapid urbanization has significantly contributed to the development of urban heat island (UHI). Regulating landscape composition and configuration would help mitigate the UHI in megacities. Taking Shenzhen, China, as a case study area, we defined heat source and heat sink and identified strong and weak sources as well as strong and weak sinks according to the natural and socioeconomic factors influencing land surface temperature (LST). Thus, the potential thermal contributions of heat source and heat sink patches were differentiated. Then, the heterogeneous effects of landscape pattern on LST were examined by using semiparametric geographically weighted regression (SGWR) models. The results showed that landscape composition has more significant effects on thermal environment than configuration. For a strong source, the percentage of patches has a positive impact on LST. Additionally, when mosaicked with some heat sink, even a small improvement in the degree of dispersion of a strong source helps to alleviate UHI. For a weak source, the percentage and density of patches have positive impacts on LST. For a strong sink, the percentage, density, and degree of aggregation of patches have negative impacts on LST. The effects of edge density and patch shape complexity vary spatially with the fragmentation of a strong sink. Similarly, the impacts of a weak sink are mainly exerted via the characteristics of percent, density, and shape complexity of patches. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. δ(15)N and δ(18)O Reveal the Sources of Nitrate-Nitrogen in Urban Residential Stormwater Runoff.

    Science.gov (United States)

    Yang, Yun-Ya; Toor, Gurpal S

    2016-03-15

    Nitrogen (N) sources are widely distributed in the complex urban environment. High-resolution data elucidating N sources in the residential catchments are not available. We used stable isotopes of N and oxygen (O) of nitrate (δ(18)O-NO3(-) and δ(15)N-NO3(-)) along with δ(18)O and hydrogen (δD) of water (H2O) to understand the sources and transformations of N in residential stormwater runoff. Stormwater runoff samples were collected over 25 stormwater events at 5 min intervals using an autosampler installed at the residential catchment outlet pipe that drained 31 low-density homes with a total drainage area of 0.11 km(2). Bayesian mixing model results indicated that atmospheric deposition (range 43-71%) and chemical N fertilizers (range stormwater runoff and that there was a continuum of source changes during the stormwater events. Further, the NO3-N transport in the stormwater runoff from the residential catchment was driven by mixing of multiple sources and biotic (i.e., nitrification) processes. This work suggests that a better understanding of N transport and sources is needed to reduce N export and improve water quality in urban water systems.

  17. A multi-source dataset of urban life in the city of Milan and the Province of Trentino.

    Science.gov (United States)

    Barlacchi, Gianni; De Nadai, Marco; Larcher, Roberto; Casella, Antonio; Chitic, Cristiana; Torrisi, Giovanni; Antonelli, Fabrizio; Vespignani, Alessandro; Pentland, Alex; Lepri, Bruno

    2015-01-01

    The study of socio-technical systems has been revolutionized by the unprecedented amount of digital records that are constantly being produced by human activities such as accessing Internet services, using mobile devices, and consuming energy and knowledge. In this paper, we describe the richest open multi-source dataset ever released on two geographical areas. The dataset is composed of telecommunications, weather, news, social networks and electricity data from the city of Milan and the Province of Trentino. The unique multi-source composition of the dataset makes it an ideal testbed for methodologies and approaches aimed at tackling a wide range of problems including energy consumption, mobility planning, tourist and migrant flows, urban structures and interactions, event detection, urban well-being and many others.

  18. Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Bisht, D.S. [Indian Institute of Tropical Meteorology, New Delhi (India); Dumka, U.C., E-mail: dumka@aries.res.in [Aryabhatta Research Institute of Observational Sciences, Nainital (India); Kaskaoutis, D.G. [School of Natural Sciences, Shiv Nadar University, Tehsil Dadri (India); Pipal, A.S. [Department of Chemistry, Savitribai Phule Pune University, Pune (India); Srivastava, A.K. [Indian Institute of Tropical Meteorology, New Delhi (India); Soni, V.K.; Attri, S.D.; Sateesh, M. [India Meteorology Department, Lodhi Road, New Delhi (India); Tiwari, S. [Indian Institute of Tropical Meteorology, New Delhi (India)

    2015-07-15

    Particulate matter (PM{sub 2.5}) samples were collected over Delhi, India during January to December 2012 and analysed for carbonaceous aerosols and inorganic ions (SO{sub 4}{sup 2−} and NO{sub 3}{sup −}) in order to examine variations in atmospheric chemistry, combustion sources and influence of long-range transport. The PM{sub 2.5} samples are measured (offline) via medium volume air samplers and analysed gravimetrically for carbonaceous (organic carbon, OC; elemental carbon, EC) aerosols and inorganic ions (SO{sub 4}{sup 2−} and NO{sub 3}{sup −}). Furthermore, continuous (online) measurements of PM{sub 2.5} (via Beta-attenuation analyser), black carbon (BC) mass concentration (via Magee scientific Aethalometer) and carbon monoxide (via CO-analyser) are carried out. PM{sub 2.5} (online) range from 18.2 to 500.6 μg m{sup −3} (annual mean of 124.6 ± 87.9 μg m{sup −3}) exhibiting higher night-time (129.4 μg m{sup −3}) than daytime (103.8 μg m{sup −3}) concentrations. The online concentrations are 38% and 28% lower than the offline during night and day, respectively. In general, larger night-time concentrations are found for the BC, OC, NO{sub 3}{sup −}and SO{sub 4}{sup 2−}, which are seasonally dependent with larger differences during late post-monsoon and winter. The high correlation (R{sup 2} = 0.74) between OC and EC along with the OC/EC of 7.09 (day time) and 4.55 (night-time), suggest significant influence of biomass-burning emissions (burning of wood and agricultural waste) as well as secondary organic aerosol formation during daytime. Concentrated weighted trajectory (CWT) analysis reveals that the potential sources for the carbonaceous aerosols and pollutants are local emissions within the urban environment and transported smoke from agricultural burning in northwest India during post-monsoon. BC radiative forcing estimates result in very high atmospheric heating rates (~ 1.8–2.0 K day{sup −1}) due to agricultural burning effects

  19. Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing

    International Nuclear Information System (INIS)

    Bisht, D.S.; Dumka, U.C.; Kaskaoutis, D.G.; Pipal, A.S.; Srivastava, A.K.; Soni, V.K.; Attri, S.D.; Sateesh, M.; Tiwari, S.

    2015-01-01

    Particulate matter (PM 2.5 ) samples were collected over Delhi, India during January to December 2012 and analysed for carbonaceous aerosols and inorganic ions (SO 4 2− and NO 3 − ) in order to examine variations in atmospheric chemistry, combustion sources and influence of long-range transport. The PM 2.5 samples are measured (offline) via medium volume air samplers and analysed gravimetrically for carbonaceous (organic carbon, OC; elemental carbon, EC) aerosols and inorganic ions (SO 4 2− and NO 3 − ). Furthermore, continuous (online) measurements of PM 2.5 (via Beta-attenuation analyser), black carbon (BC) mass concentration (via Magee scientific Aethalometer) and carbon monoxide (via CO-analyser) are carried out. PM 2.5 (online) range from 18.2 to 500.6 μg m −3 (annual mean of 124.6 ± 87.9 μg m −3 ) exhibiting higher night-time (129.4 μg m −3 ) than daytime (103.8 μg m −3 ) concentrations. The online concentrations are 38% and 28% lower than the offline during night and day, respectively. In general, larger night-time concentrations are found for the BC, OC, NO 3 − and SO 4 2− , which are seasonally dependent with larger differences during late post-monsoon and winter. The high correlation (R 2 = 0.74) between OC and EC along with the OC/EC of 7.09 (day time) and 4.55 (night-time), suggest significant influence of biomass-burning emissions (burning of wood and agricultural waste) as well as secondary organic aerosol formation during daytime. Concentrated weighted trajectory (CWT) analysis reveals that the potential sources for the carbonaceous aerosols and pollutants are local emissions within the urban environment and transported smoke from agricultural burning in northwest India during post-monsoon. BC radiative forcing estimates result in very high atmospheric heating rates (~ 1.8–2.0 K day −1 ) due to agricultural burning effects during the 2012 post-monsoon season. - Highlights: • Very high PM 2.5 (> 200 µg m −3 ) levels

  20. Visualizing the data city social media as a source of knowledge for urban planning and management

    CERN Document Server

    Ciuccarelli, Paolo; Simeone, Luca

    2014-01-01

    This book investigates novel methods and technologies for the collection, analysis, and representation of real-time user-generated data at the urban scale in order to explore potential scenarios for more participatory design, planning, and management processes. For this purpose, the authors present a set of experiments conducted in collaboration with urban stakeholders at various levels (including citizens, city administrators, urban planners, local industries, and NGOs) in Milan and New York in 2012. It is examined whether geo-tagged and user-generated content can be of value in the creation

  1. Potential for nutrient recovery and biogas production from blackwater, food waste and greywater in urban source control systems.

    Science.gov (United States)

    Kjerstadius, H; Haghighatafshar, S; Davidsson, Å

    2015-01-01

    In the last decades, the focus on waste and wastewater treatment systems has shifted towards increased recovery of energy and nutrients. Separation of urban food waste (FW) and domestic wastewaters using source control systems could aid this increase; however, their effect on overall sustainability is unknown. To obtain indicators for sustainability assessments, five urban systems for collection, transport, treatment and nutrient recovery from blackwater, greywater and FW were investigated using data from implementations in Sweden or northern Europe. The systems were evaluated against their potential for biogas production and nutrient recovery by the use of mass balances for organic material, nutrients and metals over the system components. The resulting indicators are presented in units suitable for use in future sustainability studies or life-cycle assessment of urban waste and wastewater systems. The indicators show that source control systems have the potential to increase biogas production by more than 70% compared with a conventional system and give a high recovery of phosphorus and nitrogen as biofertilizer. The total potential increase in gross energy equivalence for source control systems was 20-100%; the greatest increase shown is for vacuum-based systems.

  2. Assessment of light extinction at a European polluted urban area during wintertime: Impact of PM1 composition and sources.

    Science.gov (United States)

    Vecchi, R; Bernardoni, V; Valentini, S; Piazzalunga, A; Fermo, P; Valli, G

    2018-02-01

    In this paper, results from receptor modelling performed on a well-characterised PM 1 dataset were combined to chemical light extinction data (b ext ) with the aim of assessing the impact of different PM 1 components and sources on light extinction and visibility at a European polluted urban area. It is noteworthy that, at the state of the art, there are still very few papers estimating the impact of different emission sources on light extinction as we present here, although being among the major environmental challenges at many polluted areas. Following the concept of the well-known IMPROVE algorithm, here a tailored site-specific approach (recently developed by our group) was applied to assess chemical light extinction due to PM 1 components and major sources. PM 1 samples collected separately during daytime and nighttime at the urban area of Milan (Italy) were chemically characterised for elements, major ions, elemental and organic carbon, and levoglucosan. Chemical light extinction was estimated and results showed that at the investigated urban site it is heavily impacted by ammonium nitrate and organic matter. Receptor modelling (i.e. Positive Matrix Factorization, EPA-PMF 5.0) was effective to obtain source apportionment; the most reliable solution was found with 7 factors which were tentatively assigned to nitrates, sulphates, wood burning, traffic, industry, fine dust, and a Pb-rich source. The apportionment of aerosol light extinction (b ext,aer ) according to resolved sources showed that considering all samples together nitrate contributed at most (on average 41.6%), followed by sulphate, traffic, and wood burning accounting for 18.3%, 17.8% and 12.4%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Identification of antibiotic resistant bacteria community and a GeoChip based study of resistome in urban watersheds.

    Science.gov (United States)

    Low, Adrian; Ng, Charmaine; He, Jianzhong

    2016-12-01

    Urban watersheds from point sources are potential reservoirs of antibiotic resistance genes (ARGs). However, few studies have investigated urban watersheds of non-point sources. To understand the type of ARGs and bacteria that might carry such genes, we investigated two non-point source urban watersheds with different land-use profiles. Antibiotic resistance levels of two watersheds (R1, R3) were examined using heterotrophic plate counts (HPC) as a culturing method to obtain counts of bacteria resistant to seven antibiotics belonging to different classes (erythromycin, kanamycin, lincomycin, norfloxacin, sulfanilamide, tetracycline and trimethoprim). From the HPC study, 239 antibiotic resistant bacteria were characterized for resistance to more antibiotics. Furthermore, ARGs and antimicrobial biosynthesis genes were identified using GeoChip version 5.0 to elucidate the resistomes of surface waters in watersheds R1 and R3. The HPC study showed that water samples from R1 had significantly higher counts of bacteria resistant to erythromycin, kanamycin, norfloxacin, sulfanilamide, tetracycline and trimethoprim than those from R3 (Analysis of Similarity (ANOSIM), R = 0.557, p antibiotics tested, lincomycin and trimethoprim resistant bacteria are greater in abundances. The 239 antibiotic resistant isolates represent a subset of resistant bacterial populations, including bacteria not previously known for resistance. Majority of the isolates had resistance to ampicillin, vancomycin, lincomycin and trimethoprim. GeoChip revealed similar ARGs in both watersheds, but with significantly higher intensities for tetX and β-lactamase B genes in R1 than R3. The genes with the highest average normalized intensities in R1 and R3 were tetracycline (tet) and fosfomycin (fosA) resistance genes, respectively. The higher abundance of tetX genes in R1 is congruent with the higher abundance of tetracycline resistant HPC observed in R1 samples. Strong correlations (r ≥ 0.8) of efflux

  4. Comparison of sources of urban ambient particle bound PAHs between non-heating seasons 2009 and 2012 in Belgrade, Serbia

    Directory of Open Access Journals (Sweden)

    Cvetković Anka

    2015-01-01

    Full Text Available Exposure to increased cconcentrations of polycyclic aromatic hydrocarbons (PAHs is associated with adverse health problems and specifically with carcinogenic and mutagenic effects. The major PAH sources outdoors are: stationary sources from industry (power plants, incineration, local industry and domestic sources as the residential heating, burning and pyrolysis of coal, oil, gas, garbage, wood, or other organic substances mobile emissions (diesel and petrol engines, biomass burning and agricultural activities (e.g., open burning of brushwood, straw, stubble. The aim of this study was to assess potential differences in particle-bound PAH levels and source contribution between summer 2009 and 2012 sampling campaigns done at same location in Belgrade urban area. The sampling location is considered representative for a mix of residential, business and industrial areas of New Belgrade, an urban area that has been under rapid development. The average concentrations of PM10 are slightly higher in summer 2012 than in 2009. PM-bound PAH follow the same trend as the PM indicating an increasing strength of PAH sources relative to all PM sources. Appling Positive Matrix Factorization, three potential sources of PAHs in the atmosphere were distinguished: (1 stationary sources, (2 traffic (diesel and gasoline vehicle exhaust and (3 local open burning sources (OBS. The analysis confirmed higher contribution of traffic and lower of OBS in summer 2012 than in 2009, reflecting higher traffic volumes and absence of or lower local OBS emissions due to burning wood, grass and domestic waste in 2012. [Projekat Ministarstva nauke Republike Srbije, br. III41028

  5. Modelling the ability of source control measures to reduce inundation risk in a community-scale urban drainage system

    Science.gov (United States)

    Mei, Chao; Liu, Jiahong; Wang, Hao; Shao, Weiwei; Xia, Lin; Xiang, Chenyao; Zhou, Jinjun

    2018-06-01

    Urban inundation is a serious challenge that increasingly confronts the residents of many cities, as well as policymakers, in the context of rapid urbanization and climate change worldwide. In recent years, source control measures (SCMs) such as green roofs, permeable pavements, rain gardens, and vegetative swales have been implemented to address flood inundation in urban settings, and proven to be cost-effective and sustainable. In order to investigate the ability of SCMs on reducing inundation in a community-scale urban drainage system, a dynamic rainfall-runoff model of a community-scale urban drainage system was developed based on SWMM. SCMs implementing scenarios were modelled under six design rainstorm events with return period ranging from 2 to 100 years, and inundation risks of the drainage system were evaluated before and after the proposed implementation of SCMs, with a risk-evaluation method based on SWMM and analytic hierarchy process (AHP). Results show that, SCMs implementation resulting in significantly reduction of hydrological indexes that related to inundation risks, range of reduction rates of average flow, peak flow, and total flooded volume of the drainage system were 28.1-72.1, 19.0-69.2, and 33.9-56.0 %, respectively, under six rainfall events with return periods ranging from 2 to 100 years. Corresponding, the inundation risks of the drainage system were significantly reduced after SCMs implementation, the risk values falling below 0.2 when the rainfall return period was less than 10 years. Simulation results confirm the effectiveness of SCMs on mitigating inundation, and quantified the potential of SCMs on reducing inundation risks in the urban drainage system, which provided scientific references for implementing SCMs for inundation control of the study area.

  6. Planning Green Infrastructure as a Source of Urban and Regional Resilience – Towards Institutional Challenges

    OpenAIRE

    Paulina SCHIAPPACASSE; Bernhard MÜLLER

    2015-01-01

    Green infrastructure programmes and strategies are regarded as planning opportunities to promote sustainable and resilient urban development. However, the discourse about green infrastructure policy and its effectiveness has pointed to the limited success in practical implementation. Since the green infrastructure has no planning status in its own right, it depends on being embedded in comprehensive urban and regional planning approaches if it is to have an impact on sustainable and resilient...

  7. Dynamic assessments of population exposure to urban greenspace using multi-source big data.

    Science.gov (United States)

    Song, Yimeng; Huang, Bo; Cai, Jixuan; Chen, Bin

    2018-09-01

    A growing body of evidence has proven that urban greenspace is beneficial to improve people's physical and mental health. However, knowledge of population exposure to urban greenspace across different spatiotemporal scales remains unclear. Moreover, the majority of existing environmental assessments are unable to quantify how residents enjoy their ambient greenspace during their daily life. To deal with this challenge, we proposed a dynamic method to assess urban greenspace exposure with the integration of mobile-phone locating-request (MPL) data and high-spatial-resolution remote sensing images. This method was further applied to 30 major cities in China by assessing cities' dynamic greenspace exposure levels based on residents' surrounding areas with different buffer scales (0.5km, 1km, and 1.5km). Results showed that regarding residents' 0.5-km surrounding environment, Wenzhou and Hangzhou were found to be with the greenest exposure experience, whereas Zhengzhou and Tangshan were the least ones. The obvious diurnal and daily variations of population exposure to their surrounding greenspace were also identified to be highly correlated with the distribution pattern of urban greenspace and the dynamics of human mobility. Compared with two common measurements of urban greenspace (green coverage rate and green area per capita), the developed method integrated the dynamics of population distribution and geographic locations of urban greenspace into the exposure assessment, thereby presenting a more reasonable way to assess population exposure to urban greenspace. Additionally, this dynamic framework could hold potential utilities in supporting urban planning studies and environmental health studies and advancing our understanding of the magnitude of population exposure to greenspace at different spatiotemporal scales. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Characterization of sources of lead in the urban air of Asia using ratios of stable lead isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, H.; Furuta, N.; Fujii, T.; Ambe, Y.; Sakamoto, K.; Hashimoto, Y. (National Institute of Environmental Studies, Tsukuba (Japan). Environmental Chemistry Division)

    1993-07-01

    Airborne particulate matter was collected at urban sites in six Asian countries (Japan, South Korea, China, Thailand, Sri Lanka, and Indonesia), and the stable lead isotope ratios were measured. Some source-related materials, such as coal and leaded gasoline, were also analyzed and compared to the ratios observed in airborne lead. Airborne lead isotope ratios differed considerably from each other, and these differences corresponded to differences in the regional source of lead. Leaded gasoline was still the primary source of lead in some cities in Asia, and the lead isotope ratios were strongly influenced by those of leaded gasoline. In Chinese and Korean cities, however, the considerable effect from coal combustion and industrial activity was also observed in their isotope ratios, despite leaded gasoline use. On the other hand, only refuse incineration was a possible single source of lead in Japanese air from the view of lead isotope ratios. 49 refs., 13 figs., 3 tabs.

  9. Lead isotopic characterization of respirable urban aerosols and related sources, Santiago-Chile

    International Nuclear Information System (INIS)

    Diaz, M; Kawashita, K; Antinao, J.L

    2001-01-01

    Santiago de Chile is located in a poorly ventilated valley at 33 o 30' latitude south at an altitude of 550m. Local climate is semi-arid with mean annual rainfall below 350mm. The atmospheric particles constitute one of the main factors of urban air pollution in the city. Morphological characterization of airborne particles of Santiago done by Scanning Electron Microscopy showed the presence of three groups of particles: crystalline. spherical and agglomerate particles. The crystalline shapes originated in geologic sources have perfectly defined crystallographic parameters. The agglomerated shapes are formed by organic material and submicrometrical mineral particles derived from combustion of fossil fuel and the spherical shapes are products of metallurgical activities. Some of them could been associated with the wear of motorcars. Samples of aerosols. sediments and leaded petrol of different distributors were collected. Aerosols were sampled in two sites of Santiago: the Movil monitoring station, at east of the city, and Parque O'Higgins monitoring station in downtown. These two monitoring stations belong to the MACAM network. Sediments of Mapocho, Maipo, San Francisco and Zanjon de la Aguada rivers and two samples from Disputada and Merceditas ores were studied. All the samples have been measured for their 206 Pb/ 204 Pb, 207 Pb/ 204 Pb and 208 Pb/ 204 Pb ratios. The experimental chemical procedures of sample dissolution and Pb separation by anion exchange chromatography were developed in the Sernageomin clean laboratory of Santiago de Chile. The isotopic measurements were made using a VG-Sector isotope ratio mass spectrometer fitted with a thermal ion source, multi Faraday collector and Daly collector of the Isotopic Geology Laboratory in the Universidade Federal de Rio Grande do Sul, Brazil. The measurements were corrected using NBS 981 and 982 standards. Isotopic results plotted in a 208 Pb/ 204 Pb versus 206 Pb/ 204 Pb diagram and in a 207 Pb/ 204 Pb versus

  10. Urban domestic dog populations as a source of canine distemper virus for wild carnivores in the Coquimbo region of Chile.

    Science.gov (United States)

    Acosta-Jamett, G; Chalmers, W S K; Cunningham, A A; Cleaveland, S; Handel, I G; Bronsvoort, B M deC

    2011-09-28

    Urban areas can support dog populations dense enough to maintain canine distemper virus (CDV) and can be a source of infection for rural dogs and free-ranging carnivores. The aim of this study was to investigate the relationships between urban and rural domestic dog and wild carnivore populations and their effects on the epidemiology of CDV to explain retrospectively a CD outbreak in wild foxes in 2003. From 2005 to 2007 a cross-sectional household questionnaire survey was conducted in Coquimbo and Ovalle cities, in three towns and in rural sites along two transects from these cities to the Fray Jorge National Park (FJNP) in the Coquimbo region, Chile. Blood samples were collected from unvaccinated dogs at surveyed households and from free-ranging foxes in rural areas along the transects. The seroprevalence of CDV in domestic dogs was higher in urban than in rural areas and in the later was highest in dogs born before 2001-2002. The seroprevalence of CDV in foxes was higher in areas closer to human settlements. A high seroprevalence in dogs born before 2001-2002 further supports a link between CDV patterns in rural dog and fox populations. In our study area, urban dogs are proposed to be the source of CDV infection to wild carnivores. The large dog population size and density detected in Coquimbo and Ovalle provides optimal conditions for maintaining a large and dense susceptible population of dogs, which can act as a reservoir for highly infectious diseases and could have been the source of infection in the CD outbreak in wild foxes. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Geochemistry and carbon isotopic ratio for assessment of PM10 composition, source and seasonal trends in urban environment.

    Science.gov (United States)

    Di Palma, A; Capozzi, F; Agrelli, D; Amalfitano, C; Giordano, S; Spagnuolo, V; Adamo, P

    2018-08-01

    Investigating the nature of PM 10 is crucial to differentiate sources and their relative contributions. In this study we compared the levels, and the chemical and mineralogical properties of PM 10 particles sampled in different seasons at monitoring stations representative of urban background, urban traffic and suburban traffic areas of Naples city. The aims were to relate the PM 10 load and characteristics to the location of the monitoring stations, to investigate the different sources contributing to PM 10 and to highlight PM 10 seasonal variability. Bulk analyses of chemical species in the PM 10 fraction included total carbon and nitrogen, δ 13 C and other 20 elements. Both natural and anthropogenic sources were found to contribute to the exceedances of the EU PM 10 limit values. The natural contribution was mainly related to marine aerosols and soil dust, as highlighted by X-ray diffractometry and SEM-EDS microscopy. The percentage of total carbon suggested a higher contribution of biogenic components to PM 10 in spring. However, this result was not supported by the δ 13 C values which were seasonally homogeneous and not sufficient to extract single emission sources. No significant differences, in terms of PM 10 load and chemistry, were observed between monitoring stations with different locations, suggesting a homogeneous distribution of PM 10 on the studied area in all seasons. The anthropogenic contribution to PM 10 seemed to dominate in all sites and seasons with vehicular traffic acting as a main source mostly by generation of non-exhaust emissions Our findings reinforce the need to focus more on the analysis of PM 10 in terms of quality than of load, to reconsider the criteria for the classification and the spatial distribution of the monitoring stations within urban and suburban areas, with a special attention to the background location, and to emphasize all the policies promoting sustainable mobility and reduction of both exhaust and not

  12. Evaluation of antibiotic resistance analysis and ribotyping for identification of faecal pollution sources in an urban watershed.

    Science.gov (United States)

    Moore, D F; Harwood, V J; Ferguson, D M; Lukasik, J; Hannah, P; Getrich, M; Brownell, M

    2005-01-01

    The accuracy of ribotyping and antibiotic resistance analysis (ARA) for prediction of sources of faecal bacterial pollution in an urban southern California watershed was determined using blinded proficiency samples. Antibiotic resistance patterns and HindIII ribotypes of Escherichia coli (n = 997), and antibiotic resistance patterns of Enterococcus spp. (n = 3657) were used to construct libraries from sewage samples and from faeces of seagulls, dogs, cats, horses and humans within the watershed. The three libraries were analysed to determine the accuracy of host source prediction. The internal accuracy of the libraries (average rate of correct classification, ARCC) with six source categories was 44% for E. coli ARA, 69% for E. coli ribotyping and 48% for Enterococcus ARA. Each library's predictive ability towards isolates that were not part of the library was determined using a blinded proficiency panel of 97 E. coli and 99 Enterococcus isolates. Twenty-eight per cent (by ARA) and 27% (by ribotyping) of the E. coli proficiency isolates were assigned to the correct source category. Sixteen per cent were assigned to the same source category by both methods, and 6% were assigned to the correct category. Addition of 2480 E. coli isolates to the ARA library did not improve the ARCC or proficiency accuracy. In contrast, 45% of Enterococcus proficiency isolates were correctly identified by ARA. None of the methods performed well enough on the proficiency panel to be judged ready for application to environmental samples. Most microbial source tracking (MST) studies published have demonstrated library accuracy solely by the internal ARCC measurement. Low rates of correct classification for E. coli proficiency isolates compared with the ARCCs of the libraries indicate that testing of bacteria from samples that are not represented in the library, such as blinded proficiency samples, is necessary to accurately measure predictive ability. The library-based MST methods used in

  13. Differentiating local and regional sources of Chinese urban air pollution based on the effect of the Spring Festival

    Science.gov (United States)

    Wang, Chuan; Huang, Xiao-Feng; Zhu, Qiao; Cao, Li-Ming; Zhang, Bin; He, Ling-Yan

    2017-07-01

    The emission of pollutants is extremely reduced during the annual Chinese Spring Festival (SF) in Shenzhen, China. During the SF, traffic flow drops by ˜ 50 % and the industrial plants are almost entirely shut down in Shenzhen. To characterize the variation in ambient air pollutants due to the Spring Festival effect, various gaseous and particulate pollutants were measured in real time in urban Shenzhen over three consecutive winters (2014-2016). The results indicate that the concentrations of NOx, volatile organic compounds (VOCs), black carbon (BC), primary organic aerosols, chloride, and nitrate in submicron aerosols decrease by 50-80 % during SF periods relative to non-Spring Festival periods, regardless of meteorological conditions. This decrease suggests that these pollutants are mostly emitted or secondarily formed from urban local emissions. The concentration variation in species mostly from regional or natural sources, however, is found to be much less, such as for bulk fine particulate matter (PM2. 5). More detailed analysis of the Spring Festival effect reveals an urgent need to reduce emissions of SO2 and VOCs on a regional scale rather than on an urban scale to reduce urban PM2. 5 in Shenzhen, which can also be useful as a reference for other megacities in China.

  14. Occurrence and sources of natural and anthropogenic lipid tracers in surface soils from arid urban areas of Saudi Arabia.

    Science.gov (United States)

    Rushdi, Ahmed I; Al-Mutlaq, Khalid F; El-Mubarak, Aarif H; Al-Saleh, Mohammed A; El-Otaibi, Mubarak T; Ibrahim, Sami M M; Simoneit, Bernd R T

    2016-01-01

    Soil particles contain a variety of natural and anthropogenic organic components, and in urban areas can be considered as local collectors of pollutants. Surface soil samples were taken from ten urban areas in Riyadh during early winter of 2007. They were extracted with dichloromethane-methanol mixture and the extracts were analyzed by gas chromatography-mass spectrometry. The major compounds were unresolved complex mixture (UCM), plasticizers, n-alkanes, carbohydrates, n-alkanoic acids, hopanes, n-alkanols, and sterols. Vegetation detritus was the major natural source of organic compounds (24.0 ± 15.7%) in samples from areas with less human activities and included n-alkanes, n-alkanoic acids, n-alkanols, sterols and carbohydrates. Vehicular emission products and discarded plastics were the major anthropogenic sources in the soil particles (53.3 ± 21.3% and 22.7 ± 10.7%, respectively). The anthropogenic tracers were UCM, plasticizers, n-alkanes, hopanes and traces of steranes. Vegetation and human activities control the occurrence and distribution of natural and anthropogenic extractable organic matter in this arid urban area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Total Nitrogen Sources of the Three Gorges Reservoir--A Spatio-Temporal Approach.

    Directory of Open Access Journals (Sweden)

    Chunping Ren

    Full Text Available Understanding the spatial and temporal variation of nutrient concentrations, loads, and their distribution from upstream tributaries is important for the management of large lakes and reservoirs. The Three Gorges Dam was built on the Yangtze River in China, the world's third longest river, and impounded the famous Three Gorges Reservoir (TGR. In this study, we analyzed total nitrogen (TN concentrations and inflow data from 2003 till 2010 for the main upstream tributaries of the TGR that contribute about 82% of the TGR's total inflow. We used time series analysis for seasonal decomposition of TN concentrations and used non-parametric statistical tests (Kruskal-Walli H, Mann-Whitney U as well as base flow segmentation to analyze significant spatial and temporal patterns of TN pollution input into the TGR. Our results show that TN concentrations had significant spatial heterogeneity across the study area (Tuo River> Yangtze River> Wu River> Min River> Jialing River>Jinsha River. Furthermore, we derived apparent seasonal changes in three out of five upstream tributaries of the TGR rivers (Kruskal-Walli H ρ = 0.009, 0.030 and 0.029 for Tuo River, Jinsha River and Min River in sequence. TN pollution from non-point sources in the upstream tributaries accounted for 68.9% of the total TN input into the TGR. Non-point source pollution of TN revealed increasing trends for 4 out of five upstream tributaries of the TGR. Land use/cover and soil type were identified as the dominant driving factors for the spatial distribution of TN. Intensifying agriculture and increasing urbanization in the upstream catchments of the TGR were the main driving factors for non-point source pollution of TN increase from 2003 till 2010. Land use and land cover management as well as chemical fertilizer use restriction were needed to overcome the threats of increasing TN pollution.

  16. Multi-Sensor Constrained Time Varying Emissions Estimation of Black Carbon: Attributing Urban and Fire Sources Globally

    Science.gov (United States)

    Cohen, J. B.

    2015-12-01

    The short lifetime and heterogeneous distribution of Black Carbon (BC) in the atmosphere leads to complex impacts on radiative forcing, climate, and health, and complicates analysis of its atmospheric processing and emissions. Two recent papers have estimated the global and regional emissions of BC using advanced statistical and computational methods. One used a Kalman Filter, including data from AERONET, NOAA, and other ground-based sources, to estimate global emissions of 17.8+/-5.6 Tg BC/year (with the increase attributable to East Asia, South Asia, Southeast Asia, and Eastern Europe - all regions which have had rapid urban, industrial, and economic expansion). The second additionally used remotely sensed measurements from MISR and a variance maximizing technique, uniquely quantifying fire and urban sources in Southeast Asia, as well as their large year-to-year variability over the past 12 years, leading to increases from 10% to 150%. These new emissions products, when run through our state-of-the art modelling system of chemistry, physics, transport, removal, radiation, and climate, match 140 ground stations and satellites better in both an absolute and a temporal sense. New work now further includes trace species measurements from OMI, which are used with the variance maximizing technique to constrain the types of emissions sources. Furthermore, land-use change and fire estimation products from MODIS are also included, which provide other constraints on the temporal and spatial nature of the variations of intermittent sources like fires or new permanent sources like expanded urbanization. This talk will introduce a new, top-down constrained, weekly varying BC emissions dataset, show that it produces a better fit with observations, and draw conclusions about the sources and impacts from urbanization one hand, and fires on another hand. Results specific to the Southeast and East Asia will demonstrate inter- and intra-annual variations, such as the function of

  17. A review on potential use of low-temperature water in the urban environment as a thermal-energy source

    Science.gov (United States)

    Laanearu, J.; Borodinecs, A.; Rimeika, M.; Palm, B.

    2017-10-01

    The thermal-energy potential of urban water sources is largely unused to accomplish the up-to-date requirements of the buildings energy demands in the cities of Baltic Sea Region. A reason is that the natural and excess-heat water sources have a low temperature and heat that should be upgraded before usage. The demand for space cooling should increase in near future with thermal insulation of buildings. There are a number of options to recover heat also from wastewater. It is proposed that a network of heat extraction and insertion including the thermal-energy recovery schemes has potential to be broadly implemented in the region with seasonally alternating temperature. The mapping of local conditions is essential in finding the suitable regions (hot spots) for future application of a heat recovery schemes by combining information about demands with information about available sources. The low-temperature water in the urban environment is viewed as a potential thermal-energy source. To recover thermal energy efficiently, it is also essential to ensure that it is used locally, and adverse effects on environment and industrial processes are avoided. Some characteristics reflecting the energy usage are discussed in respect of possible improvements of energy efficiency.

  18. Can weekly noise levels of urban road traffic, as predominant noise source, estimate annual ones?

    Science.gov (United States)

    Prieto Gajardo, Carlos; Barrigón Morillas, Juan Miguel; Rey Gozalo, Guillermo; Vílchez-Gómez, Rosendo

    2016-11-01

    The effects of noise pollution on human quality of life and health were recognised by the World Health Organisation a long time ago. There is a crucial dilemma for the study of urban noise when one is looking for proven methodologies that can allow, on the one hand, an increase in the quality of predictions, and on the other hand, saving resources in the spatial and temporal sampling. The temporal structure of urban noise is studied in this work from a different point of view. This methodology, based on Fourier analysis, is applied to several measurements of urban noise, mainly from road traffic and one-week long, carried out in two cities located on different continents and with different sociological life styles (Cáceres, Spain and Talca, Chile). Its capacity to predict annual noise levels from weekly measurements is studied. The relation between this methodology and the categorisation method is also analysed.

  19. A community survey of the pattern and determinants of household sources of energy for cooking in rural and urban south western, Nigeria.

    Science.gov (United States)

    Desalu, Olufemi Olumuyiwa; Ojo, Ololade Olusola; Ariyibi, Ebenezer Kayode; Kolawole, Tolutope Fasanmi; Ogunleye, Ayodele Idowu

    2012-01-01

    The use of solid fuels for cooking is associated with indoor pollution and lung diseases. The objective of the study was to determine the pattern and determinants of household sources of energy for cooking in rural and urban South Western, Nigeria. We conducted a cross sectional study of households in urban (Ado-Ekiti) and rural (Ido-Ekiti) local council areas from April to July 2010. Female respondents in the households were interviewed by trained interviewers using a semi-structured questionnaire. A total of 670 households participated in the study. Majority of rural dwellers used single source of energy for cooking (55.6%) and urban dwellers used multiple source of energy (57.8%). Solid fuel use (SFU) was higher in rural (29.6%) than in urban areas (21.7%). Kerosene was the most common primary source of energy for cooking in both urban and rural areas (59.0% vs.66.6%) followed by gas (17.8%) and charcoal (6.6%) in the urban areas, and firewood (21.6%) and charcoal (7.1%) in the rural areas. The use of solid fuel was strongly associated with lack of ownership of dwellings and larger household size in urban areas, and lower level of education and lower level of wealth in the rural areas. Kerosene was associated with higher level of husband education and modern housing in urban areas and younger age and indoor cooking in rural areas. Gas was associated with high income and modern housing in the urban areas and high level of wealth in rural areas. Electricity was associated with high level of education, availability of electricity and old age in urban and rural areas respectively. The use of solid fuel is high in rural areas, there is a need to reduce poverty and improve the use of cleaner source of cooking energy particularly in rural areas and improve lung health.

  20. Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach.

    Science.gov (United States)

    Hu, Wenyou; Wang, Huifeng; Dong, Lurui; Huang, Biao; Borggaard, Ole K; Bruun Hansen, Hans Christian; He, Yue; Holm, Peter E

    2018-06-01

    Intensive human activities, in particular agricultural and industrial production have led to heavy metal accumulation in the peri-urban agricultural soils of China threatening soil environmental quality and agricultural product security. A combination of spatial analysis (SA), Pb isotope ratio analysis (IRA), input fluxes analysis (IFA), and positive matrix factorization (PMF) model was successfully used to assess the status and sources of heavy metals in typical peri-urban agricultural soils from a rapidly developing region of China. Mean concentrations of Cd, As, Hg, Pb, Cu, Zn and Cr in surface soils (0-20 cm) were 0.31, 11.2, 0.08, 35.6, 44.8, 119.0 and 97.0 mg kg -1 , respectively, exceeding the local background levels except for Hg. Spatial distribution of heavy metals revealed that agricultural activities have significant influence on heavy metal accumulation in the surface soils. Isotope ratio analysis suggested that fertilization along with atmospheric deposition were the major sources of heavy metal accumulation in the soils. Based on the PMF model, the relative contribution rates of the heavy metals due to fertilizer application, atmospheric deposition, industrial emission, and soil parent materials were 30.8%, 33.0%, 25.4% and 10.8%, respectively, demonstrating that anthropogenic activities had significantly higher contribution than natural sources. This study provides a reliable and robust approach for heavy metals source apportionment in this particular peri-urban area with a clear potential for future application in other regions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Multi-scale trends analysis of landscape stressors in an urbanizing coastal watershed

    Science.gov (United States)

    Anthropogenic land based stressors within a watershed can deliver major impacts to downstream and adjacent coastal waterways affecting water quality and estuarine habitats. Our research focused on a subset of non-point sources of watershed stressors specifically, human population...

  2. Triple oxygen isotopes indicate urbanization affects sources of nitrate in wet and dry atmospheric deposition

    Science.gov (United States)

    Nelson, David M.; Tsunogai, Urumu; Ding, Dong; Ohyama, Takuya; Komatsu, Daisuke D.; Nakagawa, Fumiko; Noguchi, Izumi; Yamaguchi, Takashi

    2018-05-01

    Atmospheric nitrate deposition resulting from anthropogenic activities negatively affects human and environmental health. Identifying deposited nitrate that is produced locally vs. that originating from long-distance transport would help inform efforts to mitigate such impacts. However, distinguishing the relative transport distances of atmospheric nitrate in urban areas remains a major challenge since it may be produced locally and/or be transported from upwind regions. To address this uncertainty we assessed spatiotemporal variation in monthly weighted-average Δ17O and δ15N values of wet and dry nitrate deposition during one year at urban and rural sites along the western coast of the northern Japanese island of Hokkaido, downwind of the East Asian continent. Δ17O values of nitrate in wet deposition at the urban site mirrored those of wet and dry deposition at the rural site, ranging between ˜ +23 and +31 ‰ with higher values during winter and lower values in summer, which suggests the greater relative importance of oxidation of NO2 by O3 during winter and OH during summer. In contrast, Δ17O values of nitrate in dry deposition at the urban site were lower (+19 - +25 ‰) and displayed less distinct seasonal variation. Furthermore, the difference between δ15N values of nitrate in wet and dry nitrate deposition was, on average, 3 ‰ greater at the urban than rural site, and Δ17O and δ15N values were correlated for both forms of deposition at both sites with the exception of dry deposition at the urban site. These results suggest that, relative to nitrate in wet and dry deposition in rural environments and wet deposition in urban environments, nitrate in dry deposition in urban environments forms from relatively greater oxidation of NO by peroxy radicals and/or oxidation of NO2 by OH. Given greater concentrations of peroxy radicals and OH in cities, these results imply that dry nitrate deposition results from local NOx emissions more so than wet

  3. Fecal Contamination in the Surface Waters of a Rural- and an Urban-Source Watershed

    DEFF Research Database (Denmark)

    Stea, Emma C.; Hansen, Lisbeth Truelstrup; Jamieson, Rob C.

    2015-01-01

    Surface waters are commonly used as source water for drinking water and irrigation. Knowledge of sources of fecal pollution in source watersheds benefits the design of effective source water protection plans. This study analyzed the relationships between enteric pathogens (Escherichia coli O157:H...

  4. Guiding health promotion efforts with urban Inuit: a community-specific perspective on health information sources and dissemination strategies.

    Science.gov (United States)

    McShane, Kelly E; Smylie, Janet K; Hastings, Paul D; Martin, Carmel M

    2006-01-01

    To develop a community-specific perspective of health information sources and dissemination strategies of urban Inuit to better guide health promotion efforts. Through a collaborative partnership with the Tungasuvvingat Inuit Family Resource Centre, a series of key informant interviews and focus groups were conducted to gather information on specific sources of health information, strategies of health information dissemination, and overall themes in health information processes. Distinct patterns of health information sources and dissemination strategies emerged from the data. Major themes included: the importance of visual learning, community Elders, and cultural interpreters; community cohesion; and the Inuit and non-Inuit distinction. The core sources of health information are family members and sources from within the Inuit community. The principal dissemination strategy for health information was direct communication, either through one-on-one interactions or in groups. This community-specific perspective of health information sources and dissemination strategies shows substantial differences from current mainstream models of health promotion and knowledge translation. Health promotion efforts need to acknowledge the distinct health information processes of this community, and should strive to integrate existing health information sources and strategies of dissemination with those of the community.

  5. Prevalence and genotypes of Campylobacter jejuni from urban environmental sources in comparison with clinical isolates from children

    DEFF Research Database (Denmark)

    Ramonaite, Sigita; Kudirkiene, Egle; Tamuleviciene, Egle

    2014-01-01

    This study aimed to investigate the prevalence of Campylobacter jejuni in potential contamination sources that are not regularly monitored such as free-living urban pigeons and crows, dogs, cats and urban environmental water and to assess the possible impact on the epidemiology of campylobacterio......This study aimed to investigate the prevalence of Campylobacter jejuni in potential contamination sources that are not regularly monitored such as free-living urban pigeons and crows, dogs, cats and urban environmental water and to assess the possible impact on the epidemiology...... of campylobacteriosis in children using multilocus sequence typing (MLST). Campylobacter spp. were detected in 36.2 % of faecal samples of free-living urban birds and in 40.4 % of environmental water samples. A low prevalence of Campylobacter spp. was detected in dogs and cats, with 7.9 and 9.1 %, respectively. Further...

  6. Bacteria from contaminated urban and hilly areas as a source of ...

    African Journals Online (AJOL)

    Polyhydroxyalkanoates (PHA) production and extraction of different bacterial strains isolated from contaminated urban and hilly areas was conducted. The 30 bacterial isolates were Gram negative and belonged to Pseudomonas, Citrobacter, Klebsiella, Escherichia and Enterobacter genera. Bacterial level of resistance ...

  7. Identifying potential sources of variability between vegetation carbon storage estimates for urban areas

    DEFF Research Database (Denmark)

    Davies, Zoe G.; Dallimer, Martin; Edmondson, Jill L.

    2013-01-01

    Although urbanisation is a major cause of land-use change worldwide, towns and cities remain relatively understudied ecosystems. Research into urban ecosystem service provision is still an emerging field, yet evidence is accumulating rapidly to suggest that the biological carbon stores in cities ...

  8. Waste water as a source for secondary resources and linkage to other urban systems

    NARCIS (Netherlands)

    Agudelo Vera, C.M.; Mels, A.R.; Rijnaarts, H.H.M.

    2010-01-01

    Urban metabolism studies have shown that, in terms of sheer mass, water is the largest and the most vital component. Population growth and higher living standards will cause ever increasing demands for good quality municipal and industrial water, and ever increasing sewage flows within a limited

  9. Final Opportunity to Rehabilitate an Urban River as a Water Source for Mexico City

    Science.gov (United States)

    Mazari-Hiriart, Marisa; Pérez-Ortiz, Gustavo; Orta-Ledesma, María Teresa; Armas-Vargas, Felipe; Tapia, Marco A.; Solano-Ortiz, Rosa; Silva, Miguel A.; Yañez-Noguez, Isaura; López-Vidal, Yolanda; Díaz-Ávalos, Carlos

    2014-01-01

    The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973–2010), along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008–2012) in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City. PMID:25054805

  10. Final opportunity to rehabilitate an urban river as a water source for Mexico City.

    Directory of Open Access Journals (Sweden)

    Marisa Mazari-Hiriart

    Full Text Available The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973-2010, along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008-2012 in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City.

  11. Final opportunity to rehabilitate an urban river as a water source for Mexico City.

    Science.gov (United States)

    Mazari-Hiriart, Marisa; Pérez-Ortiz, Gustavo; Orta-Ledesma, María Teresa; Armas-Vargas, Felipe; Tapia, Marco A; Solano-Ortiz, Rosa; Silva, Miguel A; Yañez-Noguez, Isaura; López-Vidal, Yolanda; Díaz-Ávalos, Carlos

    2014-01-01

    The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973-2010), along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008-2012) in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City.

  12. Identification and characterization of fine and coarse particulate matter sources in a middle-European urban environment

    International Nuclear Information System (INIS)

    Kertesz, Zs.; Szoboszlai, Z.; Angyal, A.; Dobos, E.; Borbely-Kiss, I.

    2010-01-01

    In this work a source apportionment study is presented which aimed to characterize the PM 2.5 and PM 2.5-10 sources in the urban area of Debrecen, East-Hungary by using streaker samples, IBA methods and positive matrix factorization (PMF) analysis. Samples of fine (PM 2.5 ) and coarse (PM 2.5-10 ) urban particulate matter were collected with 2 h time resolution in the frame of five sampling campaigns during 2007-2009 in different seasons in the downtown of Debrecen. Elemental concentrations from Al to Pb of over 1000 samples were obtained by particle induced X-ray emission (PIXE); concentrations of black carbon (BC) were determined with a smoke stain reflectometer. On this data base source apportionment was carried out by using the PMF method. Seven factors were identified for both size fractions, including soil dust, traffic, secondary aerosol - sulphates, domestic heating, oil combustion, agriculture and an unknown factor enriched with chlorine. Seasonal and daily variation of the different factors was studied as well as their dependence on meteorological parameters. Besides determining the time patterns characteristic to the city, several emission episodes were identified including a Saharan dust intrusion on 21st-24th May, 2008.

  13. Ambient concentrations and personal exposure to polycyclic aromatic hydrocarbons (PAH) in an urban community with mixed sources of air pollution

    Science.gov (United States)

    ZHU, XIANLEI; FAN, ZHIHUA (TINA); WU, XIANGMEI; JUNG, KYUNG HWA; OHMAN-STRICKLAND, PAMELA; BONANNO, LINDA J.; LIOY, PAUL J.

    2014-01-01

    Assessment of the health risks resulting from exposure to ambient polycyclic aromatic hydrocarbons (PAH) is limited by a lack of environmental exposure data among the general population. This study characterized personal exposure and ambient concentrations of PAH in the Village of Waterfront South (WFS), an urban community with many mixed sources of air toxics in Camden, New Jersey, and CopeWood/Davis Streets (CDS), an urban reference area located ~1 mile east of WFS. A total of 54 and 53 participants were recruited from non-smoking households in WFS and CDS, respectively. In all, 24-h personal and ambient air samples were collected simultaneously in both areas on weekdays and weekends during summer and winter. The ambient PAH concentrations in WFS were either significantly higher than or comparable to those in CDS, indicating the significant impact of local sources on PAH pollution in WFS. Analysis of diagnostic ratios and correlation suggested that diesel truck traffic, municipal waste combustion and industrial combustion were the major sources in WFS. In such an area, ambient air pollution contributed significantly to personal PAH exposure, explaining 44–96% of variability in personal concentrations. This study provides valuable data for examining the impact of local ambient PAH pollution on personal exposure and therefore potential health risks associated with environmental PAH pollution. PMID:21364704

  14. Impact of Climate Variability and Landscape Patterns on Water Budget and Nutrient Loads in a Peri-urban Watershed: A Coupled Analysis Using Process-based Hydrological Model and Landscape Indices.

    Science.gov (United States)

    Li, Chongwei; Zhang, Yajuan; Kharel, Gehendra; Zou, Chris B

    2018-06-01

    Nutrient discharge into peri-urban streams and reservoirs constitutes a significant pressure on environmental management, but quantitative assessment of non-point source pollution under climate variability in fast changing peri-urban watersheds is challenging. Soil and Water Assessment Tool (SWAT) was used to simulate water budget and nutrient loads for landscape patterns representing a 30-year progression of urbanization in a peri-urban watershed near Tianjin metropolis, China. A suite of landscape pattern indices was related to nitrogen (N) and phosphorous (P) loads under dry and wet climate using CANOCO redundancy analysis. The calibrated SWAT model was adequate to simulate runoff and nutrient loads for this peri-urban watershed, with Nash-Sutcliffe coefficient (NSE) and coefficient of determination (R 2 ) > 0.70 and percentage bias (PBIAS) between -7 and +18 for calibration and validation periods. With the progression of urbanization, forest remained the main "sink" landscape while cultivated and urban lands remained the main "source" landscapes with the role of orchard and grassland being uncertain and changing with time. Compared to 1984, the landscape use pattern in 2013 increased nutrient discharge by 10%. Nutrient loads modelled under wet climate were 3-4 times higher than that under dry climate for the same landscape pattern. Results indicate that climate change could impose a far greater impact on runoff and nutrient discharge in a peri-urban watershed than landscape pattern change.

  15. Impact of Climate Variability and Landscape Patterns on Water Budget and Nutrient Loads in a Peri-urban Watershed: A Coupled Analysis Using Process-based Hydrological Model and Landscape Indices

    Science.gov (United States)

    Li, Chongwei; Zhang, Yajuan; Kharel, Gehendra; Zou, Chris B.

    2018-06-01

    Nutrient discharge into peri-urban streams and reservoirs constitutes a significant pressure on environmental management, but quantitative assessment of non-point source pollution under climate variability in fast changing peri-urban watersheds is challenging. Soil and Water Assessment Tool (SWAT) was used to simulate water budget and nutrient loads for landscape patterns representing a 30-year progression of urbanization in a peri-urban watershed near Tianjin metropolis, China. A suite of landscape pattern indices was related to nitrogen (N) and phosphorous (P) loads under dry and wet climate using CANOCO redundancy analysis. The calibrated SWAT model was adequate to simulate runoff and nutrient loads for this peri-urban watershed, with Nash-Sutcliffe coefficient (NSE) and coefficient of determination ( R 2) > 0.70 and percentage bias (PBIAS) between -7 and +18 for calibration and validation periods. With the progression of urbanization, forest remained the main "sink" landscape while cultivated and urban lands remained the main "source" landscapes with the role of orchard and grassland being uncertain and changing with time. Compared to 1984, the landscape use pattern in 2013 increased nutrient discharge by 10%. Nutrient loads modelled under wet climate were 3-4 times higher than that under dry climate for the same landscape pattern. Results indicate that climate change could impose a far greater impact on runoff and nutrient discharge in a peri-urban watershed than landscape pattern change.

  16. Magnetic properties, microstructure and mineralogical phases of technogenic magnetic particles (TMPs) in urban soils: Their source identification and environmental implications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shenggao, E-mail: lusg@zju.edu.cn [College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Yu, Xiuling [College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Chen, Yuyin [Institute of Biological Resources, Zhejiang University, Hangzhou 310058 (China)

    2016-02-01

    Magnetic measurement is an effective method to determine spatial distribution and the degree of heavy metal pollution and to identify various anthropogenic sources of heavy metals. The objectives of this investigation are to characterize the magnetic properties, microstructure and mineralogical phases of technogenic magnetic particles (TMPs) in urban soils and to discuss their potential environmental implications. The TMPs are separated from the urban topsoils of Luoyang city, China. The magnetic properties, morphology, and mineral phase of TMPs are studied using mineral magnetic measurement, scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM/EDS), X-ray diffraction, and synchrotron–radiation-based microprobe. The content of TMPs in urban topsoils ranges from 0.05 to 1.95% (on average 0.32%). The magnetic susceptibility of TMPs ranges from 4559 × 10{sup −8} to 23,661 × 10{sup −8} m{sup 3} kg{sup −1} (on average 13,637 × 10{sup −8} m{sup 3} kg{sup −1}). Thermomagnetic and bulk X-ray diffraction analyses indicate that main magnetic minerals of TMPs are magnetite (Fe{sub 3}O{sub 4}) and hematite (α-Fe{sub 2}O{sub 3}). The morphology of TMPs observed by SEM includes three shape types: spherule, irregular-shaped, and aggregate particles. The size of spherical TMPs ranges from 30 to about 200 μm, with the largest percentage of 30–50 μm. Synchrotron–radiation-based microprobe (μ-XRF and μ-XRD) indicates that TMPs are enriched with heavy metals Pb, Cd, Zn, Cu, and Cr, which are incorporated into lattice or adsorbed on the surface of magnetite/hematite. The content of TMPs significantly relates with the Tomlinson Pollution Load Index (PLI) (R{sup 2} = 0.467), suggesting that it can be used as proxy indicator of degree of heavy metal contamination in urban soils. The magnetic properties, microstructure and mineralogical phases of TMPs can serve as the identification of pollution sources in urban soils. - Graphical

  17. Modeling urban coastal flood severity from crowd-sourced flood reports using Poisson regression and Random Forest

    Science.gov (United States)

    Sadler, J. M.; Goodall, J. L.; Morsy, M. M.; Spencer, K.

    2018-04-01

    Sea level rise has already caused more frequent and severe coastal flooding and this trend will likely continue. Flood prediction is an essential part of a coastal city's capacity to adapt to and mitigate this growing problem. Complex coastal urban hydrological systems however, do not always lend themselves easily to physically-based flood prediction approaches. This paper presents a method for using a data-driven approach to estimate flood severity in an urban coastal setting using crowd-sourced data, a non-traditional but growing data source, along with environmental observation data. Two data-driven models, Poisson regression and Random Forest regression, are trained to predict the number of flood reports per storm event as a proxy for flood severity, given extensive environmental data (i.e., rainfall, tide, groundwater table level, and wind conditions) as input. The method is demonstrated using data from Norfolk, Virginia USA from September 2010 to October 2016. Quality-controlled, crowd-sourced street flooding reports ranging from 1 to 159 per storm event for 45 storm events are used to train and evaluate the models. Random Forest performed better than Poisson regression at predicting the number of flood reports and had a lower false negative rate. From the Random Forest model, total cumulative rainfall was by far the most dominant input variable in predicting flood severity, followed by low tide and lower low tide. These methods serve as a first step toward using data-driven methods for spatially and temporally detailed coastal urban flood prediction.

  18. A stable isotope approach for source apportionment of chlorinated ethene plumes at a complex multi-contamination events urban site

    Science.gov (United States)

    Nijenhuis, Ivonne; Schmidt, Marie; Pellegatti, Eleonora; Paramatti, Enrico; Richnow, Hans Hermann; Gargini, Alessandro

    2013-10-01

    The stable carbon isotope composition of chlorinated aliphatic compounds such as chlorinated methanes, ethanes and ethenes was examined as an intrinsic fingerprint for apportionment of sources. A complex field site located in Ferrara (Italy), with more than 50 years history of use of chlorinated aliphatic compounds, was investigated in order to assess contamination sources. Several contamination plumes were found in a complex alluvial sandy multi-aquifer system close to the river Po; sources are represented by uncontained former industrial and municipal dump sites as well as by spills at industrial areas. The carbon stable isotope signature allowed distinguishing 2 major sources of contaminants. One source of chlorinated aliphatic contaminants was strongly depleted in 13C (-40‰ which is commonly observed in recent production of chlorinated solvents. The degradation processes in the plumes could be traced interpreting the isotope enrichment and depletion of parent and daughter compounds, respectively. We demonstrate that, under specific production conditions, namely when highly chlorinated ethenes are produced as by-product during chloromethanes production, 13C depleted fingerprinting of contaminants can be obtained and this can be used to track sources and address the responsible party of the pollution in urban areas.

  19. Multiobjective optimization of cluster-scale urban water systems investigating alternative water sources and level of decentralization

    Science.gov (United States)

    Newman, J. P.; Dandy, G. C.; Maier, H. R.

    2014-10-01

    In many regions, conventional water supplies are unable to meet projected consumer demand. Consequently, interest has arisen in integrated urban water systems, which involve the reclamation or harvesting of alternative, localized water sources. However, this makes the planning and design of water infrastructure more difficult, as multiple objectives need to be considered, water sources need to be selected from a number of alternatives, and end uses of these sources need to be specified. In addition, the scale at which each treatment, collection, and distribution network should operate needs to be investigated. In order to deal with this complexity, a framework for planning and designing water infrastructure taking into account integrated urban water management principles is presented in this paper and applied to a rural greenfield development. Various options for water supply, and the scale at which they operate were investigated in order to determine the life-cycle trade-offs between water savings, cost, and GHG emissions as calculated from models calibrated using Australian data. The decision space includes the choice of water sources, storage tanks, treatment facilities, and pipes for water conveyance. For each water system analyzed, infrastructure components were sized using multiobjective genetic algorithms. The results indicate that local water sources are competitive in terms of cost and GHG emissions, and can reduce demand on the potable system by as much as 54%. Economies of scale in treatment dominated the diseconomies of scale in collection and distribution of water. Therefore, water systems that connect large clusters of households tend to be more cost efficient and have lower GHG emissions. In addition, water systems that recycle wastewater tended to perform better than systems that captured roof-runoff. Through these results, the framework was shown to be effective at identifying near optimal trade-offs between competing objectives, thereby enabling

  20. Crowd-sourcing the smart city: Using big geosocial media metrics in urban governance

    Directory of Open Access Journals (Sweden)

    Matthew Zook

    2017-05-01

    Full Text Available Using Big Data to better understand urban questions is an exciting field with challenging methodological and theoretical problems. It is also, however, potentially troubling when Big Data (particularly derived from social media is applied uncritically to urban governance via the ideas and practices of “smart cities”. This essay reviews both the historical depth of central ideas within smart city governance —particular the idea that enough data/information/knowledge can solve society problems—but also the ways that the most recent version differs. Namely, that the motivations and ideological underpinning behind the goal of urban betterment is largely driven by technology advocates and neoliberalism rather than the strong social justice themes associated with earlier applications of data to cities. Geosocial media data and metrics derived from them can provide useful insight and policy direction. But one must be ever mindful that metrics don’t simply measure; in the process of deciding what is important and possible to measure, these data are simultaneously defining what cities are.

  1. Atmospheric PAHs, NPAHs, and OPAHs at an urban, mountainous, and marine sites in Northern China: Molecular composition, sources, and ageing

    Science.gov (United States)

    Zhang, Junmei; Yang, Lingxiao; Mellouki, Abdelwahid; Chen, Jianmin; Chen, Xiangfeng; Gao, Ying; Jiang, Pan; Li, Yanyan; Yu, Hao; Wang, Wenxing

    2018-01-01

    18 gaseous and particulate polycyclic aromatic hydrocarbons (PAHs), 16 nitro-derivative (NPAHs), and 7 oxy-derivative (OPAHs) were analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) at three locations in Northern China, an urban site (Jinan), a marine site (Tuoji island), and a mountain site (Mt. Tai). The combined gas and particulate concentrations of 18 PAHs, 16 NPAHs, and 7 OPAHs were highest at the urban site (305.91, 2.80, and 9.05 ng/m3, respectively) and lowest at the mountain location (37.83, 0.27, and 1.59 ng/m3, respectively). A noticeable increase in the high molecular weight PAHs was observed during polluted conditions compared to clean conditions. Diagnostic ratios clearly demonstrated that coal/biomass combustion was the major PAH source in Northern China. The particulate PAHs were the most aged at the mountain site due to long-distance atmospheric transport. The formation rate of NPAHs was most efficient at the mountain location and during heavily polluted days at the urban and marine sites. In addition, the main formation pathway for NPAHs was through the OH initiated secondary reaction. NO3 radicals most significantly contributed to the NPAHs formation at night, during clear weather, and at the mountain site. The logKp value was lowest at the urban site for most individual compounds and highest at the mountain site. Higher logKp was found for NPAHs and OPAHs compared with their corresponding parent PAHs. The linear regression of logKp vs logPL0 at the three sites suggested that the gas-particle partitioning of PAHs might be in non-equilibrium.

  2. Quantification of human-associated fecal indicators reveal sewage from urban watersheds as a source of pollution to Lake Michigan

    Science.gov (United States)

    Olds, Hayley T.; Dila, Deborah K.; Bootsma, Melinda J.; Corsi, Steven; McLellan, Sandra L.

    2016-01-01

    Sewage contamination of urban waterways from sewer overflows and failing infrastructure is a major environmental and public health concern. Fecal coliforms (FC) are commonly employed as fecal indicator bacteria, but do not distinguish between human and non-human sources of fecal contamination. Human Bacteroides and humanLachnospiraceae, two genetic markers for human-associated indicator bacteria, were used to identify sewage signals in two urban rivers and the estuary that drains to Lake Michigan. Grab samples were collected from the rivers throughout 2012 and 2013 and hourly samples were collected in the estuary across the hydrograph during summer 2013. Human Bacteroides and human Lachnospiraceae were highly correlated with each other in river samples (Pearson’s r = 0.86), with average concentrations at most sites elevated during wet weather. These human indicators were found during baseflow, indicating that sewage contamination is chronic in these waterways. FC are used for determining total maximum daily loads (TMDLs) in management plans; however, FC concentrations alone failed to prioritize river reaches with potential health risks. While 84% of samples with >1000 CFU/100 ml FC had sewage contamination, 52% of samples with moderate (200–1000 CFU/100 ml) and 46% of samples with low (events and was highest during an event with a short duration of intense rain. This work demonstrates urban areas have unrecognized sewage inputs that may not be adequately prioritized for remediation by the TMDL process. Further analysis using these approaches could determine relationships between land use, storm characteristics, and other factors that drive sewage contamination in urban waterways.

  3. Sources and transformations of anthropogenic nitrogen along an urban river–estuarine continuum

    Directory of Open Access Journals (Sweden)

    M. J. Pennino

    2016-11-01

    Full Text Available Urbanization has altered the fate and transport of anthropogenic nitrogen (N in rivers and estuaries globally. This study evaluates the capacity of an urbanizing river–estuarine continuum to transform N inputs from the world's largest advanced (e.g., phosphorus and biological N removal wastewater treatment facility. Effluent samples and surface water were collected monthly along the Potomac River estuary from Washington D.C. to the Chesapeake Bay over a distance of 150 km. In conjunction with box model mass balances, nitrate stable isotopes and mixing models were used to trace the fate of urban wastewater nitrate. Nitrate concentrations and δ15N-NO3− values were higher down-estuary from the Blue Plains wastewater outfall in Washington D.C. (2.25 ± 0.62 mg L−1 and 25.7 ± 2.9 ‰, respectively compared to upper-estuary concentrations (1.0 ± 0.2 mg L−1 and 9.3 ± 1.4 ‰, respectively. Nitrate concentration then decreased rapidly within 30 km down-estuary (to 0.8 ± 0.2 mg L−1, corresponding to an increase in organic nitrogen and dissolved organic carbon, suggesting biotic uptake and organic transformation. TN loads declined down-estuary (from an annual average of 48 000 ± 5000 kg day−1 at the sewage treatment plant outfall to 23 000 ± 13 000 kg day−1 at the estuary mouth, with the greatest percentage decrease during summer and fall. Annually, there was a 70 ± 31 % loss in wastewater NO3− along the estuary, and 28 ± 6 % of urban wastewater TN inputs were exported to the Chesapeake Bay, with the greatest contribution of wastewater TN loads during the spring. Our results suggest that biological transformations along the urban river–estuary continuum can significantly transform wastewater N inputs from major cities globally, and more work is necessary to evaluate the potential of organic nitrogen and carbon to contribute to eutrophication and hypoxia.

  4. Characterization of domestic gray water from point source to determine the potential for urban residential reuse: a short review

    Science.gov (United States)

    Edwin, Golda A.; Gopalsamy, Poyyamoli; Muthu, Nandhivarman

    2014-03-01

    This study aims to discern the domestic gray water (GW) sources that is least polluting, at the urban households of India, by examining the GW characteristics, comparing with literature data, reuse standards and suitable treatment technologies. In view of this, the quantitative and qualitative characteristics of domestic GW originating from bath, wash basin, laundry and kitchen sources are determined and compared with established standards for reuse requirements. Quality of different gray water sources is characterized with respect to the physical, chemical, biological, nutrient, ground element and heavy metal properties. The pollutant loads indicate that the diversion techniques are not suitable for household application and, therefore, treatment is necessary prior to storage and reuse. It is observed that the total volume of GW generated exceeds the reuse requirement for suggested reuse such as for flushing and gardening/irrigation. In spite of generating less volume, the kitchen source is found to be the major contributor for most of the pollutant load and, therefore, not recommended to be considered for treatment. It is concluded that treatment of GW from bathroom source alone is sufficient to meet the onsite reuse requirements and thereby significantly reduce the potable water consumption by 28.5 %. Constructed wetland systems and constructed soil filters are suggested as suitable treatment alternatives owing to its ability to treat highly variable pollutant load with lower operational and maintenance cost, which is more practical for tropical and developing countries.

  5. Using trace element concentrations in Corbicula fluminea to identify potential sources of contamination in an urban river

    International Nuclear Information System (INIS)

    Loeffler Peltier, Gretchen; Meyer, Judith L.; Jagoe, Charles H.; Hopkins, William A.

    2008-01-01

    We used the biomonitor, Corbicula fluminea, to investigate the contributions of trace elements associated with different point sources and land uses in a large river. Trace elements were analyzed in tissues of clams collected from 15 tributary streams draining five land use or point source types: agriculture, forest, urban, coal-fired power plant (CFPP), and wastewater (WWTP). Clams from forested catchments had elevated Hg concentrations, and concentrations of arsenic and selenium were highest (5.0 ± 0.2 and 13.6 ± 0.9 μg g -1 dry mass (DM), respectively) in clams from CFPP sites. Cadmium concentrations were significantly higher in clams from urban and CFPP sites (4.1 ± 0.2 and 3.6 ± 0.9 μg g -1 DM, respectively). Non-metric multidimensional scaling (NMS) of tissue concentrations in clams clustered at CFPP and forest/agriculture sites at opposite ends of the ordination space, and the distribution of sites was driven by Cu, Zn, Cd, and Hg. - C. fluminea collected downstream of CFPPs had elevated tissue concentrations of trace elements

  6. Source-specific sewage pollution detection in urban river waters using pharmaceuticals and personal care products as molecular indicators.

    Science.gov (United States)

    Kiguchi, Osamu; Sato, Go; Kobayashi, Takashi

    2016-11-01

    Source-specific elucidation of domestic sewage pollution caused by various effluent sources in an urban river water, as conducted for this study, demands knowledge of the relation between concentrations of pharmaceuticals and personal care products (PPCPs) as molecular indicators (caffeine, carbamazepine, triclosan) and water quality concentrations of total nitrogen (T-N) and total phosphorous (T-P). River water and wastewater samples from the Asahikawa River Basin in northern Japan were analyzed using derivatization-gas chromatography/mass spectrometry. Caffeine, used as an indicator of domestic sewage in the Asahikawa River Basin, was more ubiquitous than either carbamazepine or triclosan (92-100 %). Its concentration was higher than any target compound used to assess the basin: caffeine, caffeine concentrations detected in wastewater effluents and the strongly positive mutual linear correlation between caffeine and T-N or T-P (R 2  > 0.759) reflect the contribution of septic tank system effluents to the lower Asahikawa River Basin. Results of relative molecular indicators in combination with different molecular indicators (caffeine/carbamazepine and triclosan/carbamazepine) and cluster analysis better reflect the contribution of sewage than results obtained using concentrations of respective molecular indicators and cluster analysis. Relative molecular indicators used with water quality parameters (e.g., caffeine/T-N ratio) in this study provide results more clearly, relatively, and quantitatively than results obtained using molecular indicators alone. Moreover, the caffeine/T-N ratio reflects variations of caffeine flux from effluent sources. These results suggest strongly relative molecular indicators are also useful indicators, reflecting differences in spatial contributions of domestic sources for PPCPs in urban areas.

  7. Sources of SOA gaseous precursors in contrasted urban environments: a focus on mono-aromatic compounds and intermediate volatility compounds

    Science.gov (United States)

    Salameh, Therese; Borbon, Agnès; Ait-Helal, Warda; Afif, Charbel; Sauvage, Stéphane; Locoge, Nadine; Bonneau, Stéphane; Sanchez, Olivier

    2016-04-01

    Among Volatile Organic Compounds (VOC), the mono-aromatic compounds so-called BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes) and the intermediate volatility organic compounds (IVOC) with C>12 are two remarkable chemical families having high impact on health, as well as on the production of secondary pollutants like secondary organic aerosols (SOA) and ozone. However, the nature and relative importance of their sources and, consequently, their impact on SOA formation at urban scale is still under debate. On the one hand, BTEX observations in urban areas of northern mid-latitudes do not reconcile with emission inventories; the latter pointing to solvent use as the dominant source compared to traffic. Moreover, a recent study by Borbon et al. (2013) has shown an enrichment in the C7-C9 aromatic fraction in Paris atmosphere by a factor of 3 compared to other cities. Causes would be: (i) differences in gasoline composition, (ii) differences in vehicle fleet composition, and (iii) differences in solvent use related sources. On the other hand, many smog chamber studies have highlighted IVOCs as important SOA precursors over the last decade but their origin and importance in urban areas relative to other precursors like BTEX is still poorly addressed. Here we combined large VOC datasets to investigate sources of BTEX and IVOC in contrasted urban areas by source-receptor approaches and laboratory experiments. Ambient data include multi-site speciated ambient measurements of C2 to C17 VOCs (traffic, urban background, and tunnel) from air quality networks (ie. AIRPARIF in Paris) and intensive field campaigns (MEGAPOLI-Paris, TRANSEMED in Beirut and Istanbul, PHOTOPAQ in Brussels). Preliminary results for Paris suggest that traffic dominates BTEX concentrations while traffic and domestic heating for IVOC (>70%). In parallel, the detailed composition of the fuel liquid phase was determined at the laboratory for typical fuels distributed in Ile de France region (diesel, SP95

  8. Lead concentration distribution and source tracing of urban/suburban aquatic sediments in two typical famous tourist cities: Haikou and Sanya, China.

    Science.gov (United States)

    Dong, Zhicheng; Bao, Zhengyu; Wu, Guoai; Fu, Yangrong; Yang, Yi

    2010-11-01

    The content and spatial distribution of lead in the aquatic systems in two Chinese tropical cities in Hainan province (Haikou and Sanyan) show an unequal distribution of lead between the urban and the suburban areas. The lead content is significantly higher (72.3 mg/kg) in the urban area than the suburbs (15.0 mg/kg) in Haikou, but quite equal in Sanya (41.6 and 43.9 mg/kg). The frequency distribution histograms suggest that the lead in Haikou and in Sanya derives from different natural and/or anthropogenic sources. The isotopic compositions indicate that urban sediment lead in Haikou originates mainly from anthropogenic sources (automobile exhaust, atmospheric deposition, etc.) which contribute much more than the natural sources, while natural lead (basalt and sea sands) is still dominant in the suburban areas in Haikou. In Sanya, the primary source is natural (soils and sea sands).

  9. Water-quality assessment of the largely urban blue river basin, Metropolitan Kansas City, USA, 1998 to 2007

    Science.gov (United States)

    Wilkison, D.H.; Armstrong, D.J.; Hampton, S.A.

    2009-01-01

    From 1998 through 2007, over 750 surface-water or bed-sediment samples in the Blue River Basin - a largely urban basin in metropolitan Kansas City - were analyzed for more than 100 anthropogenic compounds. Compounds analyzed included nutrients, fecal-indicator bacteria, suspended sediment, pharmaceuticals and personal care products. Non-point source runoff, hydrologic alterations, and numerous waste-water discharge points resulted in the routine detection of complex mixtures of anthropogenic compounds in samples from basin stream sites. Temporal and spatial variations in concentrations and loads of nutrients, pharmaceuticals, and organic wastewater compounds were observed, primarily related to a site's proximity to point-source discharges and stream-flow dynamics. ?? 2009 ASCE.

  10. Concentration and source identification of polycyclic aromatic hydrocarbons (PAHs) in PM10 of urban, industrial and semi-urban areas in Malaysia

    Science.gov (United States)

    Jamhari, Anas Ahmad; Sahani, Mazrura; Latif, Mohd Talib; Chan, Kok Meng; Tan, Hock Seng; Khan, Md Firoz; Mohd Tahir, Norhayati

    2014-04-01

    Particulate matter (PM10) associated with polycyclic aromatic hydrocarbons (PAHs) in ambient air were determined at two sites within the Klang Valley, Kuala Lumpur (urban, KL) and Petaling Jaya (industrial, PJ), and one site outside the Klang Valley, Bangi (semi-urban, BG). This study aimed to determine the concentration and distribution of PAHs in PM10 and the source of origin through principal component analysis (PCA) and diagnostic ratio analysis. This study also assessed the health risk from exposure to airborne BaPeq. PM10 samples were collected on glass fiber filter paper using a High Volume Sampler (HVS) for 24 h between September 2010 and April 2011. The filter papers with PM10 were extracted using dichloromethane-methanol (3:1), and analysis of 16 USEPA priority PAHs was determined using gas chromatography with mass spectra (GC-MS). Health risk assessment was estimated using toxic equivalency factors (TEFs) and incremental lifetime cancer risk (ILCR) which quantitatively estimate the exposure risk for age specific group. The results showed that the total PAHs concentrations throughout seasonal monsoons for KL, PJ and BG ranged from 1.33 ng m-3 to 2.97 ng m-3, 2.24 ng m-3 to 4.84 ng m-3 and 1.64 ng m-3 to 3.45 ng m-3 respectively. More than 80% of total PAHs consisted of 5-ring and 6-ring PAHs such as benzo[a]pyrene (BaP), indeno[1,2,3-cd]pyrene (IcP), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF) and benzo[g,h,i]perylene (BgP). The presence of benzo[g,h,i]perylene (BgP) with high concentration at all locations suggested a source indicator for traffic emission. PCA and diagnostic ratio analysis also suggested substantial contributions from traffic emission with minimal influence from coal combustion and natural gas emissions. The use of total BaPeq concentration provide a better estimation of carcinogenicity activities, where they contributed to more than 50% of the potential health risk. Health risk assessment showed that the estimated incremental

  11. Analysis of one dimension migration law from rainfall runoff on urban roof

    Science.gov (United States)

    Weiwei, Chen

    2017-08-01

    Research was taken on the hydrology and water quality process in the natural rain condition and water samples were collected and analyzed. The pollutant were included SS, COD and TN. Based on the mass balance principle, one dimension migration model was built for the rainfall runoff pollution in surface. The difference equation was developed according to the finite difference method, by applying the Newton iteration method for solving it. The simulated pollutant concentration process was in consistent with the measured value on model, and Nash-Sutcliffe coefficient was higher than 0.80. The model had better practicability, which provided evidence for effectively utilizing urban rainfall resource, non-point source pollution of making management technologies and measures, sponge city construction, and so on.

  12. Vulnerability analysis and passenger source prediction in urban rail transit networks.

    Directory of Open Access Journals (Sweden)

    Junjie Wang

    Full Text Available Based on large-scale human mobility data collected in San Francisco and Boston, the morning peak urban rail transit (URT ODs (origin-destination matrix were estimated and the most vulnerable URT segments, those capable of causing the largest service interruptions, were identified. In both URT networks, a few highly vulnerable segments were observed. For this small group of vital segments, the impact of failure must be carefully evaluated. A bipartite URT usage network was developed and used to determine the inherent connections between urban rail transits and their passengers' travel demands. Although passengers' origins and destinations were easy to locate for a large number of URT segments, a few show very complicated spatial distributions. Based on the bipartite URT usage network, a new layer of the understanding of a URT segment's vulnerability can be achieved by taking the difficulty of addressing the failure of a given segment into account. Two proof-of-concept cases are described here: Possible transfer of passenger flow to the road network is here predicted in the cases of failures of two representative URT segments in San Francisco.

  13. Occurrence and ecological risk assessment of emerging organic chemicals in urban rivers: Guangzhou as a case study in China.

    Science.gov (United States)

    Peng, Feng-Jiao; Pan, Chang-Gui; Zhang, Min; Zhang, Nai-Sheng; Windfeld, Ronja; Salvito, Daniel; Selck, Henriette; Van den Brink, Paul J; Ying, Guang-Guo

    2017-07-01

    Urban rivers may receive contamination from various sources including point sources like domestic sewage and nonpoint sources (e.g., runoff), resulting in contamination with various chemicals. This study investigated the occurrence of emerging organic contaminants (3 endocrine disrupting compounds (EDCs), and 17 pharmaceuticals and personal care products (PPCPs)) in six urban rivers of a representative subtropical city, Guangzhou (southern China). Our results showed that EDCs and personal care products were frequently detected in the water phase and sediment phase. 4-nonylphenol (4-NP) was the most predominant compound with the highest concentration of 5050ng/L in the water phase and 14,400ng/g dry weight (dw) in the sediment. Generally, higher total concentrations of EDCs and PPCPs were detected in the four urban streams compared to the main stream Zhujiang River and the Liuxi River at the suburb area. A screening-level risk assessment showed that 4-nonylphenol and triclosan (TCS) pose potential risks to aquatic organisms in most sampling sites. For individual taxa, 4-NP may pose risks to various groups of aquatic organisms, while TCS only might pose high risks to algae. Higher contamination of EDCs and PPCPs was observed in rivers in urban area; 4-nonylphenol and triclosan showed RQs>1 in >70% of the reported area. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Inverse identification of unknown finite-duration air pollutant release from a point source in urban environment

    Science.gov (United States)

    Kovalets, Ivan V.; Efthimiou, George C.; Andronopoulos, Spyros; Venetsanos, Alexander G.; Argyropoulos, Christos D.; Kakosimos, Konstantinos E.

    2018-05-01

    In this work, we present an inverse computational method for the identification of the location, start time, duration and quantity of emitted substance of an unknown air pollution source of finite time duration in an urban environment. We considered a problem of transient pollutant dispersion under stationary meteorological fields, which is a reasonable assumption for the assimilation of available concentration measurements within 1 h from the start of an incident. We optimized the calculation of the source-receptor function by developing a method which requires integrating as many backward adjoint equations as the available measurement stations. This resulted in high numerical efficiency of the method. The source parameters are computed by maximizing the correlation function of the simulated and observed concentrations. The method has been integrated into the CFD code ADREA-HF and it has been tested successfully by performing a series of source inversion runs using the data of 200 individual realizations of puff releases, previously generated in a wind tunnel experiment.

  15. Characteristics and sources of nitrous acid in an urban atmosphere of northern China: Results from 1-yr continuous observations

    Science.gov (United States)

    Li, Dandan; Xue, Likun; Wen, Liang; Wang, Xinfeng; Chen, Tianshu; Mellouki, Abdelwahid; Chen, Jianmin; Wang, Wenxing

    2018-06-01

    Nitrous acid (HONO) is a key reservoir of the hydroxyl radical (OH) and plays a central role in the atmospheric chemistry. To understand the sources and impact of HONO in the polluted atmosphere of northern China, continuous measurements of HONO and related parameters were conducted from September 2015 to August 2016 at an urban site in Ji'nan, the capital city of Shandong province. HONO showed well-defined seasonal and diurnal variation patterns with clear wintertime and nighttime concentration peaks. Elevated HONO concentrations (e.g., over 5 ppbv) were frequently observed with a maximum value of 8.36 ppbv. The HONO/NOX ratios of direct vehicle emissions varied in the range of 0.29%-0.87%, with a mean value of 0.53%. An average NO2-to-HONO nighttime conversion frequency (khet) was derived to be 0.0068 ± 0.0045 h-1 from 107 HONO formation cases. A detailed HONO budget analysis suggests an unexplained daytime missing source of 2.95 ppb h-1 in summer, which is about seven times larger than the homogeneous reaction of NO with OH. The effect of HONO on OH production was also quantified. HONO photolysis was the uppermost source of local OH radical throughout the daytime. This study provides the year-round continuous record of ambient HONO in the North China Plain, and offers some insights into the characteristics, sources and impacts of HONO in the polluted atmospheres of China.

  16. Source apportionment of heavy metals and ionic contaminants in rainwater tanks in a subtropical urban area in Australia.

    Science.gov (United States)

    Huston, R; Chan, Y C; Chapman, H; Gardner, T; Shaw, G

    2012-03-15

    Due to prolonged droughts in recent years, the use of rainwater tanks in urban areas has increased in Australia. In order to apportion sources of contribution to heavy metal and ionic contaminants in rainwater tanks in Brisbane, a subtropical urban area in Australia, monthly tank water samples (24 sites, 31 tanks) and concurrent bulk deposition samples (18 sites) were collected during mainly April 2007-March 2008. The samples were analysed for acid-soluble metals, soluble anions, total inorganic carbon and total organic carbon, and characteristics such as total solid and pH. The Positive Matrix Factorisation model, EPA PMF 3.0, was used to apportion sources of contribution to the contaminants. Four source factors were identified for the bulk deposition samples, including 'crustal matter/sea salt', 'car exhausts/road side dust', 'industrial dust' and 'aged sea salt/secondary aerosols'. For the tank water samples, apart from these atmospheric deposition related factors which contributed in total to 65% of the total contaminant concentration on average, another six rainwater collection system related factors were identified, including 'plumbing', 'building material', 'galvanizing', 'roofing', 'steel' and 'lead flashing/paint' (contributing in total to 35% of the total concentration on average). The Australian Drinking Water Guideline for lead was exceeded in 15% of the tank water samples. The collection system related factors, in particular the 'lead flashing/paint' factor, contributed to 79% of the lead in the tank water samples on average. The concentration of lead in tank water was found to vary with various environmental and collection system factors, in particular the presence of lead flashing on the roof. The results also indicated the important role of sludge dynamics inside the tank on the quality of tank water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. INAA in combination with other analytical techniques in the study of urban aerosol sources

    International Nuclear Information System (INIS)

    Binh, N.T.; Truong, Y.; Ngo, N.T.; Sieu, L.N.; Hien, P.D.

    2000-01-01

    Concentrations of elements in fine and coarse PM10 samples collected in Ho Chi Minh City were determined by INAA for the purpose of characterising air pollution sources using multivariate receptor modeling techniques. Seven sources common to coarse and fine samples were identified. Resuspended soil dust is dominant in the coarse samples accounting for 41% of the particulate mass. In the fine samples, vehicle emissions and coal burning are most important accounting for about 20% each. Although a great number of elements were included in the input data for receptor modeling, the interpretation of emission sources was not always straightforward. Information on other source markers were needed. Therefore, a polarography method was used for quantifying lead, and recently, ion chromatography method became available for quantifying secondary sulphates, nitrates and other water soluble ions. (author)

  18. Littered cigarette butts as a source of nicotine in urban waters

    Science.gov (United States)

    Roder Green, Amy L.; Putschew, Anke; Nehls, Thomas

    2014-11-01

    The effect of nicotine from littered cigarette butts on the quality of urban water resources has yet to be investigated. This two-part study addresses the spatial variation, seasonal dynamics and average residence time of littered cigarette butts in public space, as well as the release of nicotine from cigarette butts to run-off in urban areas during its residence time. Thereby, we tested two typical situations: release to standing water in a puddle and release during alternating rainfall and drying. The study took place in Berlin, Germany, a city which completely relies on its own water resources to meet its drinking water demand. Nine typical sites located in a central district, each divided into 20 plots were studied during five sampling periods between May 2012 and February 2013. The nicotine release from standardized cigarette butts prepared with a smoking machine was examined in batch and rainfall experiments. Littered cigarette butts are unevenly distributed among both sites and plots. The average butt concentration was 2.7 m-2 (SD = 0.6 m-2, N = 862); the maximum plot concentration was 48.8 butts m-2. This heterogeneity is caused by preferential littering (gastronomy, entrances, bus stops), redistribution processes such as litter removal (gastronomy, shop owners), and the increased accumulation in plots protected from mechanized street sweeping (tree pits, bicycle stands). No significant seasonal variation of cigarette butt accumulation was observed. On average, cigarette butt accumulation is characterized by a 6 days cadence due to the rhythm and effectiveness of street sweeping (mean weekly butt accumulation rate = 0.18 m-2 d-1; SD = 0.15 m-1). Once the butt is exposed to standing water, elution of nicotine occurs rapidly. Standardized butts released 7.3 mg g-1 nicotine in a batch experiment (equivalent to 2.5 mg L-1), 50% of which occurred within the first 27 min. In the rainfall experiment, the cumulative nicotine release from fifteen consecutive

  19. Sexual knowledge, attitude, behaviors and sources of influences in Urban college youth: A study from India

    Directory of Open Access Journals (Sweden)

    Siddharth Dutt

    2017-01-01

    Full Text Available Background: The study was undertaken as there is very less literature related to sources of influence for sexual knowledge and attitude toward sex and sexual behaviors of youth in India. Aim: The objectives of the study were to explore sexual knowledge, attitudes, behaviors and the sources of influence and also to examine the relationship between sexual knowledge, attitude and behaviors in the youth. Method: The sample was selected from colleges using purposive sampling method and from the community using snowball method (n = 300. The tools used were sociodemographic data sheet, Sexual Knowledge and Attitude Questionnaire (SKAQ-II and Sexual Behavior and Sources of Influence (SBSI scale. Results: Descriptive statistics and correlation was done to analyze the data. The youth had poor sexual knowledge; there was positive relationship between sexual knowledge and attitudes. Sexual behaviors through media and with self or others were found to be low. Internet was found to be the major source for gathering information and was considered the most reliable source. Conclusion: Indian college youth continue to have poor sexual knowledge. Internet is a major source of information and is considered as the most reliable one among youth. More knowledge about sex is associated with liberal attitude toward sex.

  20. Engineering hyporheic zones for the attenuation of urban pesticides and other stormwater trace organic contaminants

    Science.gov (United States)

    Portmann, A. C.; Halpin, B. N.; Herzog, S.; Higgins, C.; McCray, J. E.

    2017-12-01

    The hyporheic zone (HZ) is a natural bioreactor that can provide in-stream attenuation of various nonpoint source contaminants. Main contributions of nonpoint source pollution are coming from urban stormwater and agricultural runoff, which both adversely impact aquatic life. Stormwater pollutants of concern commonly include nutrients, metals, pathogens, and trace organic contaminants (TOrCs). Despite substantial water quality challenges, current stormwater management typically focuses on water quantity issues rather than pollutant removal. Furthermore, current HZ restoration best management practices do not explicitly control HZ residence times, and generally only induce localized effects. To increase hyporheic exchange and therefore improving water quality, we introduced engineered streambeds featuring modifications to subsurface hydraulic conductivity (K) and reactivity - termed Biohydrochemical Enhancements for Streamwater Treatment (BEST). BEST modifications comprise subsurface modules that employ 1) low-permeability sediments to drive hyporheic exchange and control subsurface residence times, and 2) permeable reactive geomedia to change reaction rates within the HZ. Here we present performance data collected in constructed stream experiments, comparing an all-sand control condition with a stream containing BEST modules and a mixture of 70/30 sand/woodchips (v/v). We evaluated the attenuation of a suite of TOrCs in the BEST versus the control system for two different streambed media: a coarse sand with K = 0.48 cm/s and a fine sand with K = 0.16 cm/s. The range of TOrCs investigated comprises urban pesticides and other stormwater relevant TOrCs. Benefits of applying BEST include increased exchange between streamwater and HZ water, leading to diverse redox conditions that are beneficial for aquatic organisms and will facilitate in-stream pollutant transformation. Future work will focus on tailoring the BEST design for specific pollutants, thereby controlling HZ

  1. Temporal characteristics of black carbon concentrations and its potential emission sources in a southern Taiwan industrial urban area.

    Science.gov (United States)

    Cheng, Yu-Hsiang; Lin, Chi-Chi; Liu, Jyh-Jian; Hsieh, Cheng-Ju

    2014-03-01

    This study investigates the temporal characteristics of black carbon and its potential emission sources, as well as the fractions of BC in PM2.5 levels in Kaohsiung urban area, which is an industrial city in southern Taiwan. Concentrations of BC and PM2.5 are monitored continuously from March 2006 to February 2010, using an aethalometer and a tapered element oscillating microbalance monitor. Additionally, the presence of organic compounds (or UV enhanced species) in particles at the sampling site is determined using the Delta-C (UVBC-BC) value. According to long-term measurement results, BC and PM2.5 concentrations are 3.33 and 34.0 μg m(-3), respectively, in the Kaohsiung urban area. The ratio of BC/PM2.5 is approximately 11 %. Low concentration of BC and PM2.5 in the summer of this study period is mostly likely owing to meteorological conditions that favored dispersion of local air pollutants. Nevertheless, BC concentrations peaked markedly during morning hours (7:00-11:00), likely owing to local traffic congestion. Measurement results suggest that BC is released from local traffic activities and emitted from industrial activities at this sampling site. Additionally, Delta-C values are significantly higher than zero during January-March and November-December periods in this industrial urban area, implying that UV enhanced species can be observed. At this sampling site, these UV enhanced species do not only originate from household activity and solid waste burning but also release from industrial activities. The elevated Delta-C values during nighttime (18:00-6:00) in the autumn and winter seasons are likely related to those UV enhanced species in the atmosphere, which can be condensed on particle surface under low temperature conditions. According to long-term measurement results, significantly positive Delta-C values can be observed under temperatures industrial parks and a coal-fired power plant.

  2. Impact of aerosol particle sources on optical properties in urban, regional and remote areas in the north-western Mediterranean

    Science.gov (United States)

    Ealo, Marina; Alastuey, Andrés; Pérez, Noemí; Ripoll, Anna; Querol, Xavier; Pandolfi, Marco

    2018-01-01

    Further research is needed to reduce the existing uncertainties on the effect that specific aerosol particle sources have on light extinction and consequently on climate. This study presents a new approach that aims to quantify the mass scattering and absorption efficiencies (MSEs and MAEs) of different aerosol sources at urban (Barcelona - BCN), regional (Montseny - MSY) and remote (Montsec - MSA) background sites in the north-western (NW) Mediterranean. An analysis of source apportionment to the measured multi-wavelength light scattering (σsp) and absorption (σap) coefficients was performed by means of a multilinear regression (MLR) model for the periods 2009-2014, 2010-2014 and 2011-2014 at BCN, MSY and MSA respectively. The source contributions to PM10 mass concentration, identified by means of the positive matrix factorization (PMF) model, were used as dependent variables in the MLR model. With this approach we addressed both the effect that aerosol sources have on air quality and their potential effect on light extinction through the determination of their MSEs and MAEs. An advantage of the presented approach is that the calculated MSEs and MAEs take into account the internal mixing of atmospheric particles. Seven aerosol sources were identified at MSA and MSY, and eight sources at BCN. Mineral, aged marine, secondary sulfate, secondary nitrate and V-Ni bearing sources were common at the three sites. Traffic, industrial/metallurgy and road dust resuspension sources were isolated at BCN, whereas mixed industrial/traffic and aged organics sources were identified at MSY and MSA. The highest MSEs were observed for secondary sulfate (4.5 and 10.7 m2 g-1, at MSY and MSA), secondary nitrate (8.8 and 7.8 m2 g-1) and V-Ni bearing source (8 and 3.5 m2 g-1). These sources dominated the scattering throughout the year with marked seasonal trends. The V-Ni bearing source, originating mainly from shipping in the area under study, simultaneously contributed to both

  3. Urban stormwater harvesting and reuse: a probe into the chemical, toxicology and microbiological contaminants in water quality.

    Science.gov (United States)

    Chong, Meng Nan; Sidhu, Jatinder; Aryal, Rupak; Tang, Janet; Gernjak, Wolfgang; Escher, Beate; Toze, Simon

    2013-08-01

    Stormwater is one of the last major untapped urban water resources that can be exploited as an alternative water source in Australia. The information in the current Australian Guidelines for Water Recycling relating to stormwater harvesting and reuse only emphasises on a limited number of stormwater quality parameters. In order to supply stormwater as a source for higher value end-uses, a more comprehensive assessment on the potential public health risks has to be undertaken. Owing to the stochastic variations in rainfall, catchment hydrology and also the types of non-point pollution sources that can provide contaminants relating to different anthropogenic activities and catchment land uses, the characterisation of public health risks in stormwater is complex, tedious and not always possible through the conventional detection and analytical methods. In this study, a holistic approach was undertaken to assess the potential public health risks in urban stormwater samples from a medium-density residential catchment. A combined chemical-toxicological assessment was used to characterise the potential health risks arising from chemical contaminants, while a combination of standard culture methods and quantitative polymerase chain reaction (qPCR) methods was used for detection and quantification of faecal indicator bacteria (FIB) and pathogens in urban stormwater. Results showed that the concentration of chemical contaminants and associated toxicity were relatively low when benchmarked against other alternative water sources such as recycled wastewater. However, the concentrations of heavy metals particularly cadmium and lead have exceeded the Australian guideline values, indicating potential public health risks. Also, high numbers of FIB were detected in urban stormwater samples obtained from wet weather events. In addition, qPCR detection of human-related pathogens suggested there are frequent sewage ingressions into the urban stormwater runoff during wet weather events

  4. Fine and coarse PM composition and sources in rural and urban sites in Switzerland: local or regional pollution?

    Science.gov (United States)

    Minguillón, M C; Querol, X; Baltensperger, U; Prévôt, A S H

    2012-06-15

    The chemical composition and sources of ambient particulate matter (PM) in Switzerland were studied. PM(1) and PM(10) samples were collected in winter and summer at an urban background site in Zurich and a rural background site in Payerne. Concentrations of major and trace elements, NO(3)(-), SO(4)(2-), NH(4)(+), organic and elemental carbon were determined. A subsequent Positive Matrix Factorization (PMF) analysis was performed. PM(10) and PM(1) concentrations varied similarly at both sites, with average PM(10) concentrations 24-25 μg/m(3) and 13-14 μg/m(3) in winter and summer, respectively, and average PM(1) concentrations 12-17 μg/m(3) and 6-7 μg/m(3). The influence of local sources was found to be higher in winter. PM was dominated by nitrate and organic matter in winter, and by mineral matter and organic matter in summer. Trace element concentrations related to road traffic (Zn, Cu, Sb, Sn) were higher at Zurich. Concentrations of Tl and Cs, attributed to the influence of a glass industry, were higher at Payerne. The elements mainly present in the coarse fraction were those related to mineral matter and brake and tyre abrasion (Cu, Mn, Ti, Sb, Sr, Bi, Li, La, Nd), and those in the fine fraction were related to high temperature anthropogenic processes (Pb, As, Cd, Tl, Cs). Common PM(1) and PM(1-10) sources identified by PMF were: ammonium nitrate, present in winter, negligible in summer; ammonium sulfate+K(biomass burning)+road traffic; and road traffic itself, related to exhaust emissions in PM(1) and to road dust resuspension in PM(1-10). Size-fraction specific sources were: a PM(1) glass industry source characterized by Cs, Tl, Rb, Li and Na, only present in Payerne; a PM(1) background source characterized by V, Ni, sulfate and Fe; two PM(1-10) mineral-related sources, with higher contribution in summer; a PM(1-10) salt source; and a PM(1-10) organic source, with higher contribution in summer, attributed to bioaerosols. Copyright © 2012 Elsevier B

  5. A source classification framework supporting pollutant source mapping, pollutant release prediction, transport and load forecasting, and source control planning for urban environments

    DEFF Research Database (Denmark)

    Lützhøft, Hans-Christian Holten; Donner, Erica; Wickman, Tonie

    2012-01-01

    for this purpose. Methods Existing source classification systems were examined by a multidisciplinary research team, and an optimised SCF was developed. The performance and usability of the SCF were tested using a selection of 25 chemicals listed as priority pollutants in Europe. Results The SCF is structured...... in the form of a relational database and incorporates both qualitative and quantitative source classification and release data. The system supports a wide range of pollution monitoring and management applications. The SCF functioned well in the performance test, which also revealed important gaps in priority...

  6. Identifying urban sources as cause of elevated grass pollen concentrations using GIS and remote sensing

    DEFF Research Database (Denmark)

    Skjøth, Carsten Ambelas; Ørby, Pia Viuf; Becker, Thomas

    2013-01-01

    available remote sensing data combined with management information for local grass areas. The inventory has identified a number of grass pollen source areas present within the city domain. The comparison of the measured pollen concentrations with the inventory shows that the atmospheric concentrations......We examine here the hypothesis that during flowering, the grass pollen concentrations at a specific site reflect the distribution of grass pollen sources within a few kilometres of this site. We perform this analysis on data from a measurement campaign in the city of Aarhus (Denmark) using three...

  7. A candidate framework for PM2.5 source identification in highly industrialized urban-coastal areas

    Science.gov (United States)

    Mateus, Vinícius Lionel; Gioda, Adriana

    2017-09-01

    The variability of PM sources and composition impose tremendous challenges for police makers in order to establish guidelines. In urban PM, sources associated with industrial processes are among the most important ones. In this study, a 5-year monitoring of PM2.5 samples was carried out in an industrial district. Their chemical composition was strategically determined in two campaigns in order to check the effectiveness of mitigation policies. Gaseous pollutants (NO2, SO2, and O3) were also monitored along with meteorological variables. The new method called Conditional Bivariate Probability Function (CBPF) was successfully applied to allocate the observed concentration of criteria pollutants (gaseous pollutants and PM2.5) in cells defined by wind direction-speed which provided insights about ground-level and elevated pollution plumes. CBPF findings were confirmed by the Theil-Sen long trend estimations for criteria pollutants. By means of CBPF, elevated pollution plumes were detected in the range of 0.54-5.8 μg m-3 coming from a direction associated to stacks. With high interpretability, the use of Conditional Inference Trees (CIT) provided both classification and regression of the speciated PM2.5 in the two campaigns. The combination of CIT and Random Forests (RF) point out NO3- and Ca+2 as important predictors for PM2.5. The latter predictor mostly associated to non-sea-salt sources, given a nss-Ca2+ contribution equal to 96%.

  8. Nature and sources of particle associated polycyclic aromatic hydrocarbons (PAH) in the atmospheric environment of an urban area

    International Nuclear Information System (INIS)

    Callén, M.S.; López, J.M.; Iturmendi, A.; Mastral, A.M.

    2013-01-01

    The total PAH associated to the airborne particulate matter (PM10) was apportioned by one receptor model based on positive matrix factorization (PMF) in an urban environment (Zaragoza city, Spain) during February 2010–January 2011. Four sources associated with coal combustion, gasoline, vehicular and stationary emissions were identified, allowing a good modelling of the total PAH (R 2 = 0.99). A seasonal behaviour of the four factors was obtained with higher concentrations in the cold season. The NE direction was one of the predominant directions showing the negative impact of industrial parks, a paper factory and a highway located in that direction. Samples were classified according to hierarchical cluster analysis obtaining that, episodes with the most negative impact on human health (the highest lifetime cancer risk concentrations), were produced by a higher contribution of stationary and vehicular emissions in winter season favoured by high relative humidity, low temperature and low wind speed. -- Highlights: ► PMF receptor model apportioned four sources associated to the total PAH in Zaragoza. ► The sources were: vehicular, coal combustion, gasoline and stationary emissions. ► Samples were additionally classified according to hierarchical cluster analysis. ► The stationary and vehicular emissions factors showed higher risk for human health. ► Low temperature, wind speed and high relative humidity favoured this negative impact. -- Episodes with the most negative impact on human health regarding PAH were produced by a higher contribution of stationary and vehicular emissions in winter season

  9. Chemical characterization and source apportionment of size-resolved particles in Hong Kong sub-urban area

    Science.gov (United States)

    Gao, Yuan; Lee, Shun-Cheng; Huang, Yu; Chow, Judith C.; Watson, John G.

    2016-03-01

    Size-resolved particulate matter (PM) samples were collected with a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI) at a sub-urban site (Tung Chung) in Hong Kong for four non-consecutive months representing four seasons from 2011 to 2012. Major chemical components were water-soluble anions (i.e., Cl-, NO3-, and SO42 -), cations (i.e., NH4+, Na+, K+, and Ca2 +), organic and elemental carbon and elements. Both chemical mass closure and positive matrix factorization (PMF) were employed to understand the chemical composition, resolve particle size modes, and evaluate the PM sources. Tri-modal size distributions were found for PM mass and major chemical components (e.g., SO42 -, NH4+, and OC). Mass median aerodynamic diameters (MMADs) with similar standard deviations (1.32 burning. Secondary SO42 - is also the most dominant component in the droplet mode, accounting for 23% of PM mass, followed by an industrial source (19%). Engine exhaust, secondary NO3-, and sea salt each accounted for 13-15% of PM mass. Sea salt and soil are the dominated sources in the coarse mode, accounting for 80% of coarse mass.

  10. Distribution and source analysis of heavy metal pollutants in sediments of a rapid developing urban river system.

    Science.gov (United States)

    Xia, Fang; Qu, Liyin; Wang, Ting; Luo, Lili; Chen, Han; Dahlgren, Randy A; Zhang, Minghua; Mei, Kun; Huang, Hong

    2018-09-01

    Heavy metal pollution of aquatic environments in rapidly developing industrial regions is of considerable global concern due to its potential to cause serious harm to aquatic ecosystems and human health. This study assessed heavy metal contamination of sediments in a highly industrialized urban watershed of eastern China containing several historically unregulated manufacturing enterprises. Total concentrations and solid-phase fractionation of Cu, Zn, Pb, Cr and Cd were investigated for 39 river sediments using multivariate statistical analysis and geographically weighted regression (GWR) methods to quantitatively examine the relationship between land use and heavy metal pollution at the watershed scale. Results showed distinct spatial patterns of heavy metal contamination within the watershed, such as higher concentrations of Zn, Pb and Cd in the southwest and higher Cu concentration in the east, indicating links to specific pollution sources within the watershed. Correlation and PCA analyses revealed that Zn, Pb and Cd were dominantly contributed by anthropogenic activities; Cu originated from both industrial and agricultural sources; and Cr has been altered by recent pollution control strategies. The GWR model indicated that several heavy metal fractions were strongly correlated with industrial land proportion and this correlation varied with the level of industrialization as demonstrated by variations in local GWR R 2 values. This study provides important information for assessing heavy metal contaminated areas, identifying heavy metal pollutant sources, and developing regional-scale remediation strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. From a water resource to a point pollution source: the daily journey of a coastal urban stream

    Directory of Open Access Journals (Sweden)

    LR. Rörig

    Full Text Available The aim of this study was to understand how a stream ecosystem that flows from its fountainhead to its mouth inside a city, changes from a water resource to a point pollution source. A multidisciplinary descriptive approach was adopted, including the short-term temporal and spatial determination of physical, chemical, biological and ecotoxicological variables. Results showed that water quality rapidly decreases with increasing urbanization, leading the system to acquire raw sewage attributes even in the first hundred meters after the fountainheads. Despite the tidal circulation near the stream mouth being restricted by shallowness, some improvement of the water quality was detected in this area. The multidisciplinary evaluation showed to be useful for obtaining a more realistic understanding of the stream degradation process, and to forecast restoration and mitigation measures.

  12. Components and context: exploring sources of reading difficulties for language minority learners and native English speakers in urban schools.

    Science.gov (United States)

    Kieffer, Michael J; Vukovic, Rose K

    2012-01-01

    Drawing on the cognitive and ecological domains within the componential model of reading, this longitudinal study explores heterogeneity in the sources of reading difficulties for language minority learners and native English speakers in urban schools. Students (N = 150) were followed from first through third grade and assessed annually on standardized English language and reading measures. Structural equation modeling was used to investigate the relative contributions of code-related and linguistic comprehension skills in first and second grade to third grade reading comprehension. Linguistic comprehension and the interaction between linguistic comprehension and code-related skills each explained substantial variation in reading comprehension. Among students with low reading comprehension, more than 80% demonstrated weaknesses in linguistic comprehension alone, whereas approximately 15% demonstrated weaknesses in both linguistic comprehension and code-related skills. Results were remarkably similar for the language minority learners and native English speakers, suggesting the importance of their shared socioeconomic backgrounds and schooling contexts.

  13. Spatial distribution and source apportionment of water pollution in different administrative zones of Wen-Rui-Tang (WRT) river watershed, China.

    Science.gov (United States)

    Yang, Liping; Mei, Kun; Liu, Xingmei; Wu, Laosheng; Zhang, Minghua; Xu, Jianming; Wang, Fan

    2013-08-01

    Water quality degradation in river systems has caused great concerns all over the world. Identifying the spatial distribution and sources of water pollutants is the very first step for efficient water quality management. A set of water samples collected bimonthly at 12 monitoring sites in 2009 and 2010 were analyzed to determine the spatial distribution of critical parameters and to apportion the sources of pollutants in Wen-Rui-Tang (WRT) river watershed, near the East China Sea. The 12 monitoring sites were divided into three administrative zones of urban, suburban, and rural zones considering differences in land use and population density. Multivariate statistical methods [one-way analysis of variance, principal component analysis (PCA), and absolute principal component score-multiple linear regression (APCS-MLR) methods] were used to investigate the spatial distribution of water quality and to apportion the pollution sources. Results showed that most water quality parameters had no significant difference between the urban and suburban zones, whereas these two zones showed worse water quality than the rural zone. Based on PCA and APCS-MLR analysis, urban domestic sewage and commercial/service pollution, suburban domestic sewage along with fluorine point source pollution, and agricultural nonpoint source pollution with rural domestic sewage pollution were identified to the main pollution sources in urban, suburban, and rural zones, respectively. Understanding the water pollution characteristics of different administrative zones could put insights into effective water management policy-making especially in the area across various administrative zones.

  14. Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland

    Directory of Open Access Journals (Sweden)

    A. Richard

    2011-09-01

    Full Text Available Time and size resolved data of trace elements were obtained from measurements with a rotating drum impactor (RDI and subsequent X-ray fluorescence spectrometry. Trace elements can act as indicators for the identification of sources of particulate matter <10 μm (PM10 in ambient air. Receptor modeling was performed with positive matrix factorization (PMF for trace element data from an urban background site in Zürich, Switzerland. Eight different sources were identified for the three examined size ranges (PM1−0.1, PM2.5−1 and PM10−2.5: secondary sulfate, wood combustion, fire works, road traffic, mineral dust, de-icing salt, industrial and local anthropogenic activities. The major component was secondary sulfate for the smallest size range; the road traffic factor was found in all three size ranges. This trace element analysis is complemented with data from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (AMS, assessing the PM1 fraction of organic aerosols. A separate PMF analysis revealed three factors related to three of the sources found with the RDI: oxygenated organic aerosol (OOA, related to inorganic secondary sulfate, hydrocarbon-like organic aerosol (HOA, related to road traffic and biomass burning organic aerosol (BBOA, explaining 60 %, 22 % and 17 % of total measured organics, respectively. Since different compounds are used for the source classification, a higher percentage of the ambient PM10 mass concentration can be apportioned to sources by the combination of both methods.

  15. Polycyclic aromatic hydrocarbons over a tropical urban and a high altitude Himalayan Station in India: Temporal variation and source apportionment

    Science.gov (United States)

    Ray, Debajyoti; Chatterjee, Abhijit; Majumdar, Dipanjali; Ghosh, Sanjay K.; Raha, Sibaji

    2017-11-01

    The temporal variations and major sources of polycyclic aromatic hydrocarbons (PAH) intrinsic to PM10 were investigated over a tropical urban atmosphere on the Indo-Gangetic Plain (IGP) and for the first time over a high altitude urban atmosphere at eastern Himalaya in India. Samples were collected over Kolkata, a megacity and Darjeeling, a high altitude (2200 m asl) hill station in eastern India during the dry season (October 2015-May 2016). Fourteen PAHs were detected and quantified over Kolkata and Darjeeling during three consecutive seasons, viz., post-monsoon, winter and pre-monsoon. The total-PAHs concentrations were in the order of winter (78.08-146.71 ngm- 3) > post-monsoon (83.42-113.52 ngm- 3) > pre-monsoon (37.65-109.27 ngm- 3) at Kolkata, whereas post-monsoon (22.72-36.60 ngm- 3) > winter (8.52-28.43 ngm- 3) > pre-monsoon (5.45-13.34 ngm- 3) at Darjeeling. The observed seasonality of PAHs at Kolkata vis-a-vis Darjeeling has been explored in the light of anthropogenic activities, boundary layer dynamics and meteorological parameters such as temperature, relative humidity, wind speed and solar radiation. Negative correlation was observed between total-PAHs and temperature, wind speed and solar radiation over Kolkata and Darjeeling. The positive matrix factorization (PMF) model calculations suggested that coal (26%), petrol (24%) and diesel (17%) combustion, commercial and household kitchens (18%) and municipal solid waste incineration (15%) are the possible contributors to the PM10 associated PAHs over Kolkata whereas diesel (37%), commercial and household kitchens (23%), coal (21%) and petrol (20%) are the possible PM10 associated PAH sources over Darjeeling.

  16. Sewage pollution in urban stormwater runoff as evident from the widespread presence of multiple microbial and chemical source tracking markers.

    Science.gov (United States)

    Sidhu, J P S; Ahmed, W; Gernjak, W; Aryal, R; McCarthy, D; Palmer, A; Kolotelo, P; Toze, S

    2013-10-01

    The concurrence of human sewage contamination in urban stormwater runoff (n=23) from six urban catchments across Australia was assessed by using both microbial source tracking (MST) and chemical source tracking (CST) markers. Out of 23 stormwater samples human adenovirus (HAv), human polyomavirus (HPv) and the sewage-associated markers; Methanobrevibacter smithii nifH and Bacteroides HF183 were detected in 91%, 56%, 43% and 96% of samples, respectively. Similarly, CST markers paracetamol (87%), salicylic acid (78%) acesulfame (96%) and caffeine (91%) were frequently detected. Twenty one samples (91%) were positive for six to eight sewage related MST and CST markers and remaining two samples were positive for five and four markers, respectively. A very good consensus (>91%) observed between the concurrence of the HF183, HAv, acesulfame and caffeine suggests good predictability of the presence of HAv in samples positive for one of the three markers. High prevalence of HAv (91%) also suggests that other enteric viruses may also be present in the stormwater samples which may pose significant health risks. This study underscores the benefits of employing a set of MST and CST markers which could include monitoring for HF183, adenovirus, caffeine and paracetamol to accurately detect human sewage contamination along with credible information on the presence of human enteric viruses, which could be used for more reliable public health risk assessments. Based on the results obtained in this study, it is recommended that some degree of treatment of captured stormwater would be required if it were to be used for non-potable purposes. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  17. Chemical composition, sources and evolution processes of aerosol at an urban site in Yangtze River Delta, China during wintertime

    Science.gov (United States)

    Zhang, Yunjiang; Tang, Lili; Yu, Hongxia; Wang, Zhuang; Sun, Yele; Qin, Wei; Chen, Wentai; Chen, Changhong; Ding, Aijun; Wu, Jing; Ge, Shun; Chen, Cheng; Zhou, Hong-cang

    2015-12-01

    To investigate the composition, sources and evolution processes of submicron aerosol during wintertime, a field experiment was conducted during December 1-31, 2013 in urban Nanjing, a megacity in Yangtze River Delta of China. Non-refractory submicron aerosol (NR-PM1) species were measured with an Aerodyne Aerosol Chemical Speciation Monitor. NR-PM1 is dominated by secondary inorganic aerosol (55%) and organic aerosol (OA, 42%) during haze periods. Six OA components were identified by positive matrix factorization of the OA mass spectra. The hydrocarbon-like OA and cooking-related OA represent the local traffic and cooking sources, respectively. A highly oxidized factor related to biomass burning OA accounted for 15% of the total OA mass during haze periods. Three types of oxygenated OA (OOA), i.e., a less-oxidized OOA (LO-OOA), a more-oxidized OOA (MO-OOA), and a low-volatility OOA (LV-OOA), were identified. LO-OOA is likely associated with fresh urban secondary OA. MO-OOA likely represents photochemical products showing a similar diurnal cycle to nitrate with a pronounced noon peak. LV-OOA appears to be a more oxidized factor with a pronounced noon peak. The OA composition is dominated by secondary species, especially during haze events. LO-OOA, MO-OOA and LV-OOA on average account for 11%, (18%), 24% (21%) and 23% (18%) of the total OA mass for the haze (clean) periods respectively. Analysis of meteorological influence suggested that regional transport from the northern and southeastern areas of the city is responsible for large secondary and low-volatility aerosol formation.

  18. Elucidating the urban levels, sources and health risks of polycyclic aromatic hydrocarbons (PAHs) in Pakistan: Implications for changing energy demand.

    Science.gov (United States)

    Hamid, Naima; Syed, Jabir Hussain; Junaid, Muhammad; Mahmood, Adeel; Li, Jun; Zhang, Gan; Malik, Riffat Naseem

    2018-04-01

    Due to the severe fuel crisis in terms of natural gas, a paradigm shift in fuel combustion (diesel, gasoline, and biomass) may increase the atmospheric emissions and associated health risks in Pakistan. Present study was aimed to investigate the concentration of fugitive PAHs in the environment (outdoor and indoor settings), associated probabilistic health risk assessment in the exposed population, and possible linkage between fuel consumption patterns and PAHs emissions in twin cities (Rawalpindi and Islamabad) of Pakistan. Results showed that the mean PAHs concentrations (air: 2390pgm -3 ; dust: 167ngg -1 ) in the indoor environment were higher than that of the outdoor environment (air: 2132pgm -3 ; dust: 90.0ngg -1 ). Further, the source apportionment PCA-MLR receptor model identified diesel and gasoline combustion as the primary PAHs sources in the urban and sub-urban settings. Estimated life cancer risk (LCR) potential via inhalation to indoor PAHs was higher with a probability of 2.0 cases per 10,000 inhabitants as compared to outdoor exposure. Incremental lifetime cancer risk (ILCR) model from exposure to dust bound PAHs showed risk in the order of ingestion>dermal>inhalation for various exposure pathways. Likewise, estimated daily intake (EDI) model reflects that PAHs in surface dust enter into the human body mainly through the respiratory system because EDI for breathing was reported higher than that of oral intake. Therefore, adoption of sustainable fuels is recommended to meet the energy requirements and to reduce PAHs emissions and related health risks in the twin cities of Pakistan. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Can non-point pollutions emissions from agriculture be regulated efficiently using input-output taxes?

    DEFF Research Database (Denmark)

    Hansen, Line Block; Gårn Hansen, Lars

    2014-01-01

    In many parts of Europe and North America, phosphorus loss from cultivated fields is threatening natural ecosystems. Though there are similarities to other non-point agricultural emissions like nitrogen that have been studied extensively, phosphorus is often characterized by the presence of large...

  20. Pollution Sources and Mortality Rates across Rural-Urban Areas in the United States

    Science.gov (United States)

    Hendryx, Michael; Fedorko, Evan; Halverson, Joel

    2010-01-01

    Purpose: To conduct an assessment of rural environmental pollution sources and associated population mortality rates. Methods: The design is a secondary analysis of county-level data from the Environmental Protection Agency (EPA), Department of Agriculture, National Land Cover Dataset, Energy Information Administration, Centers for Disease Control…

  1. Premature Deaths Attributed to Source-Specific BC Emissions in Six Urban US Regions

    Czech Academy of Sciences Publication Activity Database

    Turner, M.D.; Henze, D.K.; Capps, S.; Hakami, A.; Zhao, S.; Resler, Jaroslav; Carmichael, G.; Stanier, C.; Baek, J.; Sandu, A.; Russell, A.G.; Nenes, A.; Pinder, R.; Napelenok, S.; Bash, J.; Percell, P.; Chai, T.

    2015-01-01

    Roč. 10, č. 11 (2015), Article 114014 ISSN 1748-9326 Grant - others:NASA Applied Sciences Program(US) NNX09AN77G Institutional support: RVO:67985807 Keywords : air quality * health impact * source apportionment * adjoint * particulate matter * black car bon Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 4.134, year: 2015

  2. Sources of Information on Sex and Antecedents of Early Sexual Initiation among Urban Latino Youth

    Science.gov (United States)

    Fuxman, Shai; De Los Santos, Sabrina; Finkelstein, Daniel; Landon, Mary Kay; O'Donnell, Lydia

    2015-01-01

    The study examined the relationship between young adolescents' sources of information on sex and precursors to sexual activity. Surveys were conducted with 3,940 Latino sixth grade students. According to results, girls who received information from their parents were less likely to engage in sex precursors. For boys, getting information from other…

  3. Premature Deaths Attributed to Source-Specific BC Emissions in Six Urban US Regions

    Czech Academy of Sciences Publication Activity Database

    Turner, M.D.; Henze, D.K.; Capps, S.; Hakami, A.; Zhao, S.; Resler, Jaroslav; Carmichael, G.; Stanier, C.; Baek, J.; Sandu, A.; Russell, A.G.; Nenes, A.; Pinder, R.; Napelenok, S.; Bash, J.; Percell, P.; Chai, T.

    2015-01-01

    Roč. 10, č. 11 (2015), Article 114014 ISSN 1748-9326 Grant - others: NASA Applied Sciences Program(US) NNX09AN77G Institutional support: RVO:67985807 Keywords : air quality * health impact * source apportionment * adjoint * particulate matter * black carbon Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 4.134, year: 2015

  4. Non point source pollution modelling in the watershed managed by Integrated Conctructed Wetlands: A GIS approach.

    OpenAIRE

    Vyavahare, Nilesh

    2008-01-01

    The non-point source pollution has been recognised as main cause of eutrophication in Ireland (EPA Ireland, 2001). Integrated Constructed Wetland (ICW) is a management practice adopted in Annestown stream watershed, located in the south county of Waterford in Ireland, used to cleanse farmyard runoff. Present study forms the annual pollution budget for the Annestown stream watershed. The amount of pollution from non-point sources flowing into the stream was simulated by using GIS techniques; u...

  5. Estimate of main local sources to ambient ultrafine particle number concentrations in an urban area

    Science.gov (United States)

    Rahman, Md Mahmudur; Mazaheri, Mandana; Clifford, Sam; Morawska, Lidia

    2017-09-01

    Quantifying and apportioning the contribution of a range of sources to ultrafine particles (UFPs, D oil refineries, and seaport) sources to the total ambient particle number concentration (PNC) in a busy, inner-city area in Brisbane, Australia using Bayesian statistical modelling and other exploratory tools. The Bayesian model was trained on the PNC data on days where NP formations were known to have not occurred, hourly traffic counts, solar radiation data, and smooth daily trend. The model was applied to apportion and quantify the contribution of NP formations and local traffic and non-traffic sources to UFPs. The data analysis incorporated long-term measured time-series of total PNC (D ≥ 6 nm), particle number size distributions (PSD, D = 8 to 400 nm), PM2.5, PM10, NOx, CO, meteorological parameters and traffic counts at a stationary monitoring site. The developed Bayesian model showed reliable predictive performances in quantifying the contribution of NP formation events to UFPs (up to 4 × 104 particles cm- 3), with a significant day to day variability. The model identified potential NP formation and no-formations days based on PNC data and quantified the sources contribution to UFPs. Exploratory statistical analyses show that total mean PNC during the middle of the day was up to 32% higher than during peak morning and evening traffic periods, which were associated with NP formation events. The majority of UFPs measured during the peak traffic and NP formation periods were between 30-100 nm and smaller than 30 nm, respectively. To date, this is the first application of Bayesian model to apportion different sources contribution to UFPs, and therefore the importance of this study is not only in its modelling outcomes but in demonstrating the applicability and advantages of this statistical approach to air pollution studies.

  6. Distribution patterns and sources of metals and PAHs in an intensely urbanized area: The Acerra-Pomigliano-Marigliano conurbation (Italy)

    Science.gov (United States)

    Albanese, Stefano; Lima, Annamaria; Rezza, Carmela; Ferullo, Giampiero; De Vivo, Benedetto; Chen, Wei; Qi, Shihua

    2014-05-01

    The main objective of the URGE (URban GEochemistry) project is to define, map and interpretate the geochemical baseline patterns of potentially harmful elements and compounds in the soils of 12 european urban areas using shared procedures for both sampling and analytical techniques. In Italy, in the framework of the URGE project, the north-eastern sector of the Napoli metropolitan area, namely the Acerra-Pomigliano-Marigliano conurbation, has undergone a geochemical characterization based on 145 soil samples collected over an area of 90 sq km. This area has been selected on the basis of the results obtained from previous regional studies [1, 2, 3] and because of the presence on its territory of an historical industrial settlement (formerly devoted to plastic materials and synthetic fibres production) which was partly dismantled and party converted to a power plant fuelled by palm oil. Furthermore, in March 2009 also an incinerator came into operation in the northern sector of the study area. The main objective of the study carried out for the Acerra-Pomigliano-Marigliano conurbation was to define the local geochemical baselines for both 53 elements (among which the toxic ones) and some organic compounds, including PAHs and OCPs. The study also aimed at supporting epidemiological researches at local scale and at establishing a record of the actual environmental conditions to evaluate the future impact of the incinerator on both the territory and the public health. Results obtained showed that Pb, Zn and V exceed the trigger limits established by the Italian Environmental law (D.Lgs. 152/2006) especially in correspondence with the most densely populated areas of the conurbation and where the traffic load is higher (Road junctions and fast lanes). Furthermore, most of the soils collected in the surroundings of the urbanized areas resulted to be generally enriched in Cu, Co, Cd, Be, Ni and P suggesting the presence of a relevant influence on their chemistry of an

  7. Mass closure and source apportionment of PM2.5 by Positive Matrix Factorization analysis in urban Mediterranean environment

    Science.gov (United States)

    Mantas, E.; Remoundaki, E.; Halari, I.; Kassomenos, P.; Theodosi, C.; Hatzikioseyian, A.; Mihalopoulos, N.

    2014-09-01

    A systematic monitoring of PM2.5 was carried out during a period of three years (from February 2010 to April 2013) at an urban site, at the National Technical University of Athens campus. Two types of 24-h PM2.5 samples have been collected: 271 samples on PTFE and 116 samples on quartz filters. Daily PM2.5 concentrations were determined for both types of samples. Total sulfur, crustal origin elements and elements of a major crustal component (Al, Si, Fe, Ca, K, Mg, Ti) trace elements (Zn, Pb, Cu, Ni, P, V, Cr, Mn) and water soluble ions (Cl-, NO3-, SO42-, Na+, K+, NH4+, Ca2+, Mg2+) were determined on the PTFE samples. Organic carbon (OC), elemental carbon (EC) and water soluble ions were determined on the quartz samples. For the mass closure six components were considered: Secondary Inorganic Aerosol (SIA), Organic Matter (OM), Elemental Carbon (EC), Dust, Mineral anthropogenic component (MIN) and Sea Salt (SS). SIA and OM contributed in the mass of PM2.5 almost equally: 30-36% and 30% respectively. EC, SS and MIN accounted for 5, 4 and 3% respectively of the total PM2.5 mass. Dust accounted for about 3-5% in absence of dust transport event and reached a much higher percentage in case of dust transport event. These contributions justify at least 80% of the PM2.5 mass. Source apportionment analysis has been performed by Positive Matrix Factorization. The combination of the PMF results obtained by both data sets lead to the definition of six factors: 1. SO42-, NH4+, OC (industrial/regional sources, secondary aerosol) 2. EC, OC, K and trace metals (traffic and heating by biomass burning, locally emitted aerosol). 3. Ca, EC, OC and trace metals (urban-resuspended road dust reflecting exhaust emissions), 4. Secondary nitrates 5. Na, Cl (marine source) 6. Si, Al, Ti, Ca, Fe (Dust transported from Sahara). These factors reflect not only main sources contributions but also underline the key role of atmospheric dynamics and aerosol ageing processes in this Mediterranean

  8. Landscape ecotoxicology of coho salmon spawner mortality in urban streams.

    Directory of Open Access Journals (Sweden)

    Blake E Feist