WorldWideScience

Sample records for uranium-plutonium oxide fuel

  1. Process for recovery of plutonium from fabrication residues of mixed fuels consisting of uranium oxide and plutonium oxide

    International Nuclear Information System (INIS)

    Heremanns, R.H.; Vandersteene, J.J.

    1983-01-01

    The invention concerns a process for recovery of plutonium from fabrication residues of mixed fuels consisting of uranium oxide and plutonium oxide in the form of PuO 2 . Mixed fuels consisting of uranium oxide and plutonium oxide are being used more and more. The plants which prepare these mixed fuels have around 5% of the total mass of fuels as fabrication residue, either as waste or scrap. In view of the high cost of plutonium, it has been attempted to recover this plutonium from the fabrication residues by a process having a purchase price lower than the price of plutonium. The problem is essentially to separate the plutonium, the uranium and the impurities. The residues are fluorinated, the UF 6 and PuF 6 obtained are separated by selective absorption of the PuF 6 on NaF at a temperature of at least 400 0 C, the complex obtained by this absorption is dissolved in nitric acid solution, the plutonium is precipitated in the form of plutonium oxalate by adding oxalic acid, and the precipitated plutonium oxalate is calcined

  2. Uranium plutonium oxide fuels

    International Nuclear Information System (INIS)

    Cox, C.M.; Leggett, R.D.; Weber, E.T.

    1981-01-01

    Uranium plutonium oxide is the principal fuel material for liquid metal fast breeder reactors (LMFBR's) throughout the world. Development of this material has been a reasonably straightforward evolution from the UO 2 used routinely in the light water reactor (LWR's); but, because of the lower neutron capture cross sections and much lower coolant pressures in the sodium cooled LMFBR's, the fuel is operated to much higher discharge exposures than that of a LWR. A typical LMFBR fuel assembly is shown. Depending on the required power output and the configuration of the reactor, some 70 to 400 such fuel assemblies are clustered to form the core. There is a wide variation in cross section and length of the assemblies where the increasing size reflects a chronological increase in plant size and power output as well as considerations of decreasing the net fuel cycle cost. Design and performance characteristics are described

  3. Uranium and plutonium distribution in unirradiated mixed oxide fuel from industrial fabrication

    International Nuclear Information System (INIS)

    Hanus, D.; Kleykamp, H.

    1982-01-01

    Different process variants developed in the last few years by the firm ALKEM to manufacture FBR and LWR mixed oxide fuel are given. The uranium and plutonium distribution is determined on the pellets manufactured with the help of the electron beam microprobe. The stepwise improvement of the uranium-plutonium homogeneity in the short-term developed granulate variants and in the long-term developed new processes are illustrated starting with early standard processes for FBR fuel. An almost uniform uranium-plutonium distribution could be achieved for the long-term developed new processes (OKOM, AuPuC). The uranium-plutonium homogeneity are quantified in the pellets manufactured according to the considered process variants with a newly defined quality number. (orig.)

  4. The spectrographic analysis of plutonium oxide or mixed plutonium oxide/uranium oxide fuel pellets by the dried residue technique

    International Nuclear Information System (INIS)

    Jarbo, G.J.; Faught, P.; Hildebrandt, B.

    1980-05-01

    An emission spectrographic method for the quantitative determination of metallic impurities in plutonium oxide and mixed plutonium oxide/uranium oxide is described. The fuel is dissolved in nitric acid and the plutonium and/or uranium extracted with tributyl phosphate. A small aliquot of the aqueous residue is dried on a 'mini' pyrolitic graphite plate and excited by high voltage AC spark in an oxygen atmosphere. Spectra are recorded in a region which has been specially selected to record simultaneously lines of boron and cadmium in the 2nd order and all the other elements of interest in the 1st order. Indium is used as an internal standard. The excitation of very small quantities of the uraniumm/plutonium free residue by high voltage spark, together with three separate levels of containment reduce the hazards to personnel and the environment to a minimum with limited effect on sensitivity and accuracy of the results. (auth)

  5. Studies on O/M ratio determination in uranium oxide, plutonium oxide and uranium-plutonium mixed oxide

    International Nuclear Information System (INIS)

    Sampath, S.; Chawla, K.L.

    1975-01-01

    Thermogravimetric studies were carried out in unsintered and sintered samples of uranium oxide, plutonium oxide and uranium-plutonium mixed oxide under different atmospheric conditions (air, argon and moist argon/hydrogen). Moisture loss was found to occur below 200 0 C for uranium dioxide samples, upto 700 0 C for sintered plutonium dioxide and negligible for sintered samples. The O/M ratios for non-stoichiometric uranium dioxide (sintered and unsintered), plutonium dioxide and mixed uranium and plutonium oxides (sintered) could be obtained with a precision of +- 0.002. Two reference states UOsub(2.000) and UOsub(2.656) were obtained for uranium dioxide and the reference state MOsub(2.000) was used for other cases. For unsintered plutonium dioxide samples, accurate O/M ratios could not be obtained of overlap of moisture loss with oxygen loss/gain. (author)

  6. Phenomenology of uranium-plutonium homogenization in nuclear fuels

    International Nuclear Information System (INIS)

    Marin, J.M.

    1988-01-01

    The uranium and plutonium cations distribution in mixed oxide fuels (U 1-y Pu y )O 2 with y ≤ 0.1 has been studied in laboratory with industrial fabrication methods. Our experiences has showed a slow cations migration. In the substoichiometry (UPu)O 2-x the diffusion is in connection with the plutonium valence which is an indicator of the oxidoreduction state of the crystal lattice. The plutonium valence is in connection with the oxygen ion deficit in order to compensate the electrical charge. The oxygen ratio of the solid depends of the oxygen partial pressure prevailing at the time of product elaboration but it can be modified by impurities. These impurities permit to increase or decrease the fuel characteristics and performances. An homogeneity analysis methodology is proposed, its objective is to classify the mixed oxide fuels according to the uranium and plutonium ions distribution [fr

  7. Melting temperature of uranium - plutonium mixed oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Tetsuya; Hirosawa, Takashi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-08-01

    Fuel melting temperature is one of the major thermodynamical properties that is used for determining the design criteria on fuel temperature during irradiation in FBR. In general, it is necessary to evaluate the correlation of fuel melting temperature to confirm that the fuel temperature must be kept below the fuel melting temperature during irradiation at any conditions. The correlations of the melting temperature of uranium-plutonium mixed oxide (MOX) fuel, typical FBR fuel, used to be estimated and formulized based on the measured values reported in 1960`s and has been applied to the design. At present, some experiments have been accumulated with improved experimental techniques. And it reveals that the recent measured melting temperatures does not agree well to the data reported in 1960`s and that some of the 1960`s data should be modified by taking into account of the recent measurements. In this study, the experience of melting temperature up to now are summarized and evaluated in order to make the fuel pin design more reliable. The effect of plutonium content, oxygen to metal ratio and burnup on MOX fuel melting was examined based on the recent data under the UO{sub 2} - PuO{sub 2} - PuO{sub 1.61} ideal solution model, and then formulized. (J.P.N.)

  8. Melting temperature of uranium - plutonium mixed oxide fuel

    International Nuclear Information System (INIS)

    Ishii, Tetsuya; Hirosawa, Takashi

    1997-08-01

    Fuel melting temperature is one of the major thermodynamical properties that is used for determining the design criteria on fuel temperature during irradiation in FBR. In general, it is necessary to evaluate the correlation of fuel melting temperature to confirm that the fuel temperature must be kept below the fuel melting temperature during irradiation at any conditions. The correlations of the melting temperature of uranium-plutonium mixed oxide (MOX) fuel, typical FBR fuel, used to be estimated and formulized based on the measured values reported in 1960's and has been applied to the design. At present, some experiments have been accumulated with improved experimental techniques. And it reveals that the recent measured melting temperatures does not agree well to the data reported in 1960's and that some of the 1960's data should be modified by taking into account of the recent measurements. In this study, the experience of melting temperature up to now are summarized and evaluated in order to make the fuel pin design more reliable. The effect of plutonium content, oxygen to metal ratio and burnup on MOX fuel melting was examined based on the recent data under the UO 2 - PuO 2 - PuO 1.61 ideal solution model, and then formulized. (J.P.N.)

  9. Oxygen potential of uranium--plutonium oxide as determined by controlled-atmosphere thermogravimetry

    International Nuclear Information System (INIS)

    Swanson, G.C.

    1975-10-01

    The oxygen-to-metal atom ratio, or O/M, of solid solution uranium-plutonium oxide reactor fuel is a measure of the concentration of crystal defects in the oxide which affect many fuel properties, particularly, fuel oxygen potential. Fabrication of a high-temperature oxygen electrode, employing an electro-active tip of oxygen-deficient solid-state electrolyte, intended to confirm gaseous oxygen potentials is described. Uranium oxide and plutonium oxide O/M reference materials were prepared by in situ oxidation of high purity metals in the thermobalance. A solid solution uranium-plutonium oxide O/M reference material was prepared by alloying the uranium and plutonium metals in a yttrium oxide crucible at 1200 0 C and oxidizing with moist He at 250 0 C. The individual and solid solution oxides were isothermally equilibrated with controlled oxygen potentials between 800 and 1300 0 C and the equilibrated O/M ratios calculated with corrections for impurities and buoyancy effects. Use of a reference oxygen potential of -100 kcal/mol to produce an O/M of 2.000 is confirmed by these results. However, because of the lengthy equilibration times required for all oxides, use of the O/M reference materials rather than a reference oxygen potential is recommended for O/M analysis methods calibrations. (auth)

  10. The uranium-plutonium breeder reactor fuel cycle

    International Nuclear Information System (INIS)

    Salmon, A.; Allardice, R.H.

    1979-01-01

    All power-producing systems have an associated fuel cycle covering the history of the fuel from its source to its eventual sink. Most, if not all, of the processes of extraction, preparation, generation, reprocessing, waste treatment and transportation are involved. With thermal nuclear reactors more than one fuel cycle is possible, however it is probable that the uranium-plutonium fuel cycle will become predominant; in this cycle the fuel is mined, usually enriched, fabricated, used and then reprocessed. The useful components of the fuel, the uranium and the plutonium, are then available for further use, the waste products are treated and disposed of safely. This particular thermal reactor fuel cycle is essential if the fast breeder reactor (FBR) using plutonium as its major fuel is to be used in a power-producing system, because it provides the necessary initial plutonium to get the system started. In this paper the authors only consider the FBR using plutonium as its major fuel, at present it is the type envisaged in all, current national plans for FBR power systems. The corresponding fuel cycle, the uranium-plutonium breeder reactor fuel cycle, is basically the same as the thermal reactor fuel cycle - the fuel is used and then reprocessed to separate the useful components from the waste products, the useful uranium and plutonium are used again and the waste disposed of safely. However the details of the cycle are significantly different from those of the thermal reactor cycle. (Auth.)

  11. Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, B.S.; Fisher, S.E.

    1999-02-01

    The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

  12. Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel

    International Nuclear Information System (INIS)

    Cowell, B.S.; Fisher, S.E.

    1999-01-01

    The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option

  13. Method to manufacture a nuclear fuel from uranium-plutonium monocarbide or uranium-plutonium mononitride

    International Nuclear Information System (INIS)

    Krauth, A.; Mueller, N.

    1977-01-01

    Pure uranium carbide or nitride is converted with plutonium oxide and carbon (all in powder form) to uranium-plutonium monocarbide or mononitride by cold pressing and sintering at about 1600 0 C. Pure uranium carbide or uranium nitride powder is firstly prepared without extensive safety measures. The pure uranium carbide or nitride powder can also be inactivated by using chemical substances (e.g. stearic acid) and be handled in air. The sinterable uranium carbide or nitride powder (or also granulate) is then introduced into the plutonium line and mixed with a nonstoichiometrically adjusted, prereacted mixture of plutonium oxide and carbon, pressed to pellets and reaction sintered. The surface of the uranium-plutonium carbide (higher metal content) can be nitrated towards the end of the sinter process in a stream of nitrogen. The protective layer stabilizes the carbide against the water and oxygen content in air. (IHOE) [de

  14. Swiss R and D on uranium-free LWR fuels for plutonium incineration

    International Nuclear Information System (INIS)

    Stanculescu, A.; Chawla, R.; Degueldre, C.; Kasemeyer, U.; Ledergerber, G.; Paratte, J.M.

    1999-01-01

    The most efficient way to enhance the plutonium consumption in LWRs is to eliminate plutonium production altogether. This requirement leads to fuel concepts in which the uranium is replaced by an inert matrix. The inert matrix material studied at PSI is zirconium oxide. For reactivity control reasons, adding a burnable poison to this fuel proves to be necessary. The studies performed at PSI have identified erbium oxide as the most suitable candidate for this purpose. With regard to material technology aspects, efforts have concentrated on the evaluation of fabrication feasibility and on the determination of the physicochemical properties of the chosen single phase zirconium/ erbium/plutonium oxide material stabilised as a cubic solution by yttrium. The results to-date, obtained for inert matrix samples containing thorium or cerium as plutonium substitute, confirm the robustness and stability of this material. With regard to reactor physics aspects, our studies indicate the feasibility of uranium-free, plutonium-fuelled cores having operational characteristics quite similar to those of conventional UO 2 -fuelled ones, and much higher plutonium consumption rates, as compared to 100% MOX loadings. The safety features of such cores, based on results obtained from static neutronics calculations, show no cliff edges. However, the need for further detailed transient analyses is clearly recognised. Summarising, PSI's studies indicate the feasibility of a uranium-free plutonium fuel to be considered in 'maximum plutonium consumption LWRs' operating in a 'once-through' mode. With regard to reactor physics, future efforts will concentrate on strengthening the safety case of uranium-free cores, as well as on improving the integral data base for validation of the neutronics calculations. Material technology studies will be continued to investigate the physico-chemical properties of the inert matrix fuel containing plutonium and will focus on the planning and evaluation of

  15. Simulation of uranium and plutonium oxides compounds obtained in plasma

    Science.gov (United States)

    Novoselov, Ivan Yu.; Karengin, Alexander G.; Babaev, Renat G.

    2018-03-01

    The aim of this paper is to carry out thermodynamic simulation of mixed plutonium and uranium oxides compounds obtained after plasma treatment of plutonium and uranium nitrates and to determine optimal water-salt-organic mixture composition as well as conditions for their plasma treatment (temperature, air mass fraction). Authors conclude that it needs to complete the treatment of nitric solutions in form of water-salt-organic mixtures to guarantee energy saving obtainment of oxide compounds for mixed-oxide fuel and explain the choice of chemical composition of water-salt-organic mixture. It has been confirmed that temperature of 1200 °C is optimal to practice the process. Authors have demonstrated that condensed products after plasma treatment of water-salt-organic mixture contains targeted products (uranium and plutonium oxides) and gaseous products are environmental friendly. In conclusion basic operational modes for practicing the process are showed.

  16. Calculation of oxygen distribution in uranium-plutonium oxide fuels during irradiation (programme CODIF)

    International Nuclear Information System (INIS)

    Moreno, A.; Sari, C.

    1978-01-01

    Radial gradients of oxygen to metal ratio, O/M, in uranium-plutonium oxide fuel pins, during irradiation and at the end of life, have been calculated on the basis of solid-state thermal diffusion using measured values of the heat of transport. A detailed computer model which includes the calculation of temperature profiles and the variation of the average O/M ratio as a function of burn-up is given. Calculations show that oxygen profiles are affected by the isotopic composition of the fuel, by the temperature profiles and by fuel-cladding interactions

  17. Plutonium oxides and uranium and plutonium mixed oxides. Carbon determination

    International Nuclear Information System (INIS)

    Anon.

    Determination of carbon in plutonium oxides and uranium plutonium mixed oxides, suitable for a carbon content between 20 to 3000 ppm. The sample is roasted in oxygen at 1200 0 C, the carbon dioxide produced by combustion is neutralized by barium hydroxide generated automatically by coulometry [fr

  18. Chemical states of fission products in irradiated uranium-plutonium mixed oxide fuel

    International Nuclear Information System (INIS)

    Kurosaki, Ken; Uno, Masayoshi; Yamanaka, Shinsuke

    1999-01-01

    The chemical states of fission products (FPs) in irradiated uranium-plutonium mixed oxide (MOX) fuel for the light water reactor (LWR) were estimated by thermodynamic equilibrium calculations on system of fuel and FPs by using ChemSage program. A stoichiometric MOX containing 6.1 wt. percent PuO 2 was taken as a loading fuel. The variation of chemical states of FPs was calculated as a function of oxygen potential. Some pieces of information obtained by the calculation were compared with the results of the post-irradiation examination (PIE) of UO 2 fuel. It was confirmed that the multicomponent and multiphase thermodynamic equilibrium calculation between fuel and FPs system was an effective tool for understanding the behavior of FPs in fuel. (author)

  19. Fluorine and chlorine determination in mixed uranium-plutonium oxide fuel and plutonium dioxide

    International Nuclear Information System (INIS)

    Elinson, S.V.; Zemlyanukhina, N.A.; Pavlova, I.V.; Filatkina, V.P.; Tsvetkova, V.T.

    1981-01-01

    A technique of fluorine and chlorine determination in the mixed uranium-plutonium oxide fuel and plutonium dioxide, based on their simultaneous separation by means of pyrohydrolysis, is developed. Subsequently, fluorine is determined by photometry with alizarincomplexonate of lanthanum or according to the weakening of zirconium colouring with zylenol orange. Chlorine is determined using the photonephelometric method according to the reaction of chloride-ion interaction with silver nitrate or by spectrophotometric method according to the reaction with mercury rhodanide. The lower limit of fluorine determination is -6x10 -5 %, of chlorine- 1x10 -4 % in the sample of 1g. The relative mean quadratic deviation of the determination result (Ssub(r)), depends on the character of the material analyzed and at the content of nx10 -4 - nx10 -3 mass % is equal to from 0.05 to 0.32 for fluorine and from 0.11 to 0.35 for chlorine [ru

  20. Late-occurring pulmonary pathologies following inhalation of mixed oxide (uranium + plutonium oxide) aerosol in the rat.

    Science.gov (United States)

    Griffiths, N M; Van der Meeren, A; Fritsch, P; Abram, M-C; Bernaudin, J-F; Poncy, J L

    2010-09-01

    Accidental exposure by inhalation to alpha-emitting particles from mixed oxide (MOX: uranium and plutonium oxide) fuels is a potential long-term health risk to workers in nuclear fuel fabrication plants. For MOX fuels, the risk of lung cancer development may be different from that assigned to individual components (plutonium, uranium) given different physico-chemical characteristics. The objective of this study was to investigate late effects in rat lungs following inhalation of MOX aerosols of similar particle size containing 2.5 or 7.1% plutonium. Conscious rats were exposed to MOX aerosols and kept for their entire lifespan. Different initial lung burdens (ILBs) were obtained using different amounts of MOX. Lung total alpha activity was determined by external counting and at autopsy for total lung dose calculation. Fixed lung tissue was used for anatomopathological, autoradiographical, and immunohistochemical analyses. Inhalation of MOX at ILBs ranging from 1-20 kBq resulted in lung pathologies (90% of rats) including fibrosis (70%) and malignant lung tumors (45%). High ILBs (4-20 kBq) resulted in reduced survival time (N = 102; p inhalation result in similar risk for development of lung tumors as compared with industrial plutonium oxide.

  1. Evaluation of plutonium, uranium, and thorium use in power reactor fuel cycles

    International Nuclear Information System (INIS)

    Kasten, P.R.; Homan, F.J.

    1977-01-01

    The increased cost of uranium and separative work has increased the attractiveness of plutonium use in both uranium and thorium fuel cycles in thermal reactors. A technology, fuel utilization, and economic evaluation is given for uranium and thorium fuel cycles in various reactor types, along with the use of plutonium and 238 U. Reactors considered are LWRs, HWRs, LWBRs, HTGRs, and FBRs. Key technology factors are fuel irradiation performance and associated physical property values. Key economic factors are unit costs for fuel fabrication and reprocessing, and for refabrication of recycle fuels; consistent cost estimates are utilized. In thermal reactors, the irradiation performance of ceramic fuels appears to be satisfactory. At present costs for uranium ore and separative work, recycle of plutonium with thorium rather than uranium is preferable from fuel utilization and economic viewpoints. Further, the unit recovery cost of plutonium is lower from LWR fuels than from natural-uranium HWR fuels; use of LWR product permits plutonium/thorium fueling to compete with uranium cycles. Converting uranium cycles to thorium cycles increases the energy which can be extracted from a given uranium resource. Thus, additional fuel utilization improvement can be obtained by fueling all thermal reactors with thorium, but this requires use of highly enriched uranium; use of 235 U with thorium is most economic in HTGRs followed by HWRs and then LWRs. Marked improvement in long-term fuel utilization can be obtained through high thorium loadings and short fuel cycle irradiations as in the LWBR, but this imposes significant economic penalties. Similar operating modes are possible in HWRs and HTGRs. In fast reactors, use of the plutonium-uranium cycle gives advantageous fuel resource utilization in both LMFBRs and GCFRs; use of the thorium cycle provides more negative core reactivity coefficients and more flexibility relative to use of recycle fuels containing uranium of less than 20

  2. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    International Nuclear Information System (INIS)

    Chodak, P. III

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO 2 assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the 239 Pu and ≥90% total Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products

  3. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Chodak, III, Paul [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO2 assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the 239Pu and ≥90% {sub total}Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products.

  4. Inhalation toxicology of industrial plutonium and uranium oxide aerosols I. Physical chemical characterization

    International Nuclear Information System (INIS)

    Eidson, A.F.; Mewhinney, J.A.

    1978-01-01

    In the fabrication of mixed plutonium and uranium oxide fuel, large quantities of dry powders are processed, causing dusty conditions in glove box enclosures. Inadvertent loss of glove box integrity or failure of air filter systems can lead to human inhalation exposure. Powdered samples and aerosol samples of these materials obtained during two fuel fabrication process steps have been obtained. A regimen of physical chemical tests of properties of these materials has been employed to identify physical chemical properties which may influence their biological behavior and dosimetry. Materials to be discussed are 750 deg. C heat-treated, mixed uranium and plutonium oxides obtained from the ball milling operation and 1750 deg. C heat-treated, mixed uranium and plutonium oxides obtained from the centerless grinding of fuel pellets. Results of x-ray diffraction studies have shown that the powder generated by the centerless grinding of fuel pellets is best described as a solid solution of UO x and PuO x consistent with its temperature history. In vitro dissolution studies of both mixed oxide materials indicate a generally similar dissolution rate for both materials. In one solvent, the material with the higher temperature history dissolves more rapidly. The x-ray diffraction and in vitro dissolution results as well as preliminary results of x-ray photoelectron spectroscopic analyses will be compared and the implications for the associated biological studies will be discussed. (author)

  5. Experience with thermal recycle of plutonium and uranium

    International Nuclear Information System (INIS)

    Beer, O.; Schlosser, G.; Spielvogel, F.

    1985-01-01

    The Federal Republic of Germany (FRG) decided to close the fuel cycle by erecting the reprocessing plant WA350 at Wackersdorf. As long as the plutonium supply from reprocessing plants exceeds the plutonium demand of fast breeder reactors, recycling of plutonium in LWR's is a convenient solution by which a significant advanced uranium utilization is achieved. The demonstration of plutonium recycling performed to date in the FRG in BWR's and PWR's shows that thermal plutonium recycling on an industrial scale is feasible and that the usual levels of reliability and safety can be achieved in reactor operation. The recycling of reprocessed uranium is presently demonstrated in the FRG, too. As regards fuel cycle economy thermal recycling allows savings in natural uranium and separative work. Already under present cost conditions the fuel cycle costs for mixed oxide or enriched reprocessed uranium fuel assemblies are equal or even lower than for usual uranium fuel assemblies

  6. Fuel Cycle Impacts of Uranium-Plutonium Co-extraction

    International Nuclear Information System (INIS)

    Taiwo, Temitope; Szakaly, Frank; Kim, Taek-Kyum; Hill, Robert

    2008-01-01

    A systematic investigation of the impacts of uranium and plutonium co-extraction during fuel separations on reactor performance and fuel cycle has been performed. Proliferation indicators, critical mass and radiation source levels of the separation products or fabricated fuel, were also evaluated. Using LWR-spent-uranium-based MOX fuel instead of natural-uranium-based fuel in a PWR MOX core requires a higher initial plutonium content (∼1%), and results in higher Np-237 content (factor of 5) in the spent fuel, and less consumption of Pu-238 (20%) and Am-241 (14%), indicating a reduction in the effective repository space utilization. Additionally, minor actinides continue to accumulate in the fuel cycle, and thus a separate solution is required for them. Differences were found to be quite smaller (∼0.4% in initial transuranics) between the equilibrium cycles of advanced fast reactor cores using spent and depleted uranium for make-up, in additional to transuranics. The critical masses of the co-extraction products were found to be higher than for weapons-grade plutonium (WG-Pu) and the decay heat and radiation sources of the materials (products) were also found to be generally higher than for WG-Pu in the transuranics content range of 10% to 100% in the heavy-metal. (authors)

  7. Resuspension of uranium-plutonium oxide particles from burning Plexiglas

    International Nuclear Information System (INIS)

    Pickering, S.

    1987-01-01

    Nuclear fuel materials such as Uranium-Plutonium oxide must be handled remotely in gloveboxes because of their radiotoxicity. These gloveboxes are frequently constructed largely of combustible Plexiglas sheet. To estimate the potential airborne spread of radioactive contamination in the event of a glovebox fire, the resuspension of particles from burning Plexiglas was investigated. (author)

  8. Validation of KENO, ANISN and Hansen-Roach cross-section set on plutonium oxide and metal fuel system

    International Nuclear Information System (INIS)

    Matsumoto, Tadakuni; Yumoto, Ryozo; Nakano, Koh.

    1980-01-01

    In the previous report, the authors discussed the validity of KENO, ANISN and Hansen-Roach 16 group cross-section set on the critical plutonium nitrate solution systems with various geometries, absorbers and neutron interactions. The purpose of the present report is to examine the validity of the same calculation systems on the homogeneous plutonium oxide and plutonium-uranium mixed oxide fuels with various density values. Eleven experiments adopted for validation are summarized. First six experiments were performed at Pacific Northwest Laboratory of Battelle Memorial Institute, and the remaining five at Los Alamos Scientific Laboratory. The characteristics of core fuel are given, and the isotopic composition of plutonium, the relation between H/(Pu + U) atomic ratio and fuel density as compared with the atomic ratios of PuO 2 and mixed oxides in powder storage and pellet fabrication processes, and critical core dimensions and reflector conditions are shown. The effective multiplication factors were calculated with the KENO code. In case of the metal fuels with simple sphere geometry, additional calculations with the ANISN code were performed. The criticality calculation system composed of KENO, ANISN and Hansen-Roach cross-section set was found to be valid for calculating the criticality on plutonium oxide, plutonium-uranium mixed oxide, plutonium metal and uranium metal fuel systems as well as on plutonium solution systems with various geometries, absorbers and neutron interactions. There seems to remain some problems in the method for evaluating experimental correction. Some discussions foloow. (Wakatsuki, Y.)

  9. Recent irradiation tests of uranium-plutonium-zirconium metal fuel elements

    International Nuclear Information System (INIS)

    Pahl, R.G.; Lahm, C.E.; Villarreal, R.; Hofman, G.L.; Beck, W.N.

    1986-09-01

    Uranium-Plutonium-Zirconium metal fuel irradiation tests to support the ANL Integral Fast Reactor concept are discussed. Satisfactory performance has been demonstrated to 2.9 at.% peak burnup in three alloys having 0, 8, and 19 wt % plutonium. Fuel swelling measurements at low burnup in alloys to 26 wt % plutonium show that fuel deformation is primarily radial in direction. Increasing the plutonium content in the fuel diminishes the rate of fuel-cladding gap closure and axial fuel column growth. Chemical redistribution occurs by 2.1 at.% peak burnup and generally involves the inward migration of zirconium and outward migration of uranium. Fission gas release to the plenum ranges from 46% to 56% in the alloys irradiated to 2.9 at.% peak burnup. No evidence of deleterious fuel-cladding chemical or mechanical interaction was observed

  10. Nonproliferation and safeguards aspects of fuel cycle programs in reduction of excess separated plutonium and high-enriched uranium

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1995-01-01

    The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. Reference annual mass flows and inventories for a representative 1,400 Mwe Pressurized Water Reactor (PWR) fuel cycle have been investigated for three cases: the 100 percent uranium oxide UO 2 fuel loading once through cycle, and the 33 percent mixed oxide MOX loading configuration for a first and second plutonium recycle. The analysis addresses fuel cycle developments; plutonium and uranium inventory and flow balances; nuclear fuel processing operations; UO 2 once-through and MOX first and second recycles; and the economic incentives to draw-down the excess separated plutonium stores. The preliminary analysis explores several options in reducing the excess separated plutonium arisings and HEU, and the consequences of the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials on nonproliferation and safeguards policy assessments

  11. Thermal conductivity of beginning-of-life uranium-plutonium mixed oxide fuel for fast reactor (Interim report)

    International Nuclear Information System (INIS)

    Inoue, Masaki; Mizuno, Tomoyasu; Asaga, Takeo

    1997-11-01

    Thermal conductivity of uranium-plutonium mixed oxide fuel for fast reactor at beginning-of-life was correlated based on the recent results in order to apply to the fuel design and the fuel performance analysis. A number of experimental results of unirradiated fuel specimens were corrected from open literatures and PNC internal reports and examined for the database. In this work two porosity correction factors were needed for high density fuel and low density fuel (around the current Monju specification). The universal porosity correction factor was not determined in this work. In the next step, theoretical and analytical considerations should be taken into account. (J.P.N.)

  12. The plutonium fuel cycles

    International Nuclear Information System (INIS)

    Pigford, T.H.; Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000-MW water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium and recycled uranium. The radioactivity quantities of plutonium, americium and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the U.S. nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing ad fuel fabrication to eliminate the off-site transport of separated plutonium. (author)

  13. Uranium-plutonium fuel for fast reactors

    International Nuclear Information System (INIS)

    Antipov, S.A.; Astafiev, V.A.; Clouchenkov, A.E.; Gustchin, K.I.; Menshikova, T.S.

    1996-01-01

    Technology was established for fabrication of MOX fuel pellets from co-precipitated and mechanically blended mixed oxides. Both processes ensure the homogeneous structure of pellets readily dissolvable in nitric acid upon reprocessing. In order to increase the plutonium charge in a reactor-burner a process was tested for producing MOX fuel with higher content of plutonium and an inert diluent. It was shown that it is feasible to produce fuel having homogeneous structure and the content of plutonium up to 45% mass

  14. Plutonium-uranium mixed oxide characterization by coupling micro-X-ray diffraction and absorption investigations

    Science.gov (United States)

    Degueldre, C.; Martin, M.; Kuri, G.; Grolimund, D.; Borca, C.

    2011-09-01

    Plutonium-uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The potential differences of metal redox state and microstructural developments of the matrix before and after irradiation are commonly analysed by electron probe microanalysis. In this work the structure and next-neighbor atomic environments of Pu and U oxide features within unirradiated homogeneous MOX and irradiated (60 MW d kg -1) MOX samples was analysed by micro-X-ray fluorescence (μ-XRF), micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption fine structure (μ-XAFS) spectroscopy. The grain properties, chemical bonding, valences and stoichiometry of Pu and U are determined from the experimental data gained for the unirradiated as well as for irradiated fuel material examined in the center of the fuel as well as in its peripheral zone (rim). The formation of sub-grains is observed as well as their development from the center to the rim (polygonization). In the irradiated sample Pu remains tetravalent (>95%) and no (oxidation in the rim zone. Any slight potential plutonium oxidation is buffered by the uranium dioxide matrix while locally fuel cladding interaction could also affect the redox of the fuel.

  15. The use of the average plutonium-content for criticality evaluation of boiling water reactor mixed oxide-fuel transport and storage packages

    International Nuclear Information System (INIS)

    Mattera, C.

    2003-01-01

    Currently in France, criticality studies in transport configurations for Boiling Water Reactor Mixed Oxide fuel assemblies are based on conservative hypothesis assuming that all rods (Mixed Oxide (Uranium and Plutonium), Uranium Oxide, Uranium and (Gadolinium Oxide rods) are Mixed Oxide rods with the same Plutonium-content, corresponding to the maximum value. In that way, the real heterogeneous mapping of the assembly is masked and covered by an homogenous Plutonium-content assembly, enriched at the maximum value. As this calculation hypothesis is extremely conservative, Cogema Logistics (formerly Transnucleaire) has studied a new calculation method based on the use of the average Plutonium-content in the criticality studies. The use of the average Plutonium-content instead of the real Plutonium-content profiles provides a highest reactivity value that makes it globally conservative. This method can be applied for all Boiling Water Reactor Mixed Oxide complete fuel assemblies of type 8 x 8, 9 x 9 and 10 x 10 which Plutonium-content in mass weight does not exceed 15%; it provides advantages which are discussed in the paper. (author)

  16. Final generic environmental statement on the use of recycle plutonium in mixed oxide fuel in light water cooled reactors. Volume 3

    International Nuclear Information System (INIS)

    1976-08-01

    An assessment is presented of the health, safety and environmental effects of the entire light water reactor fuel cycle, considering the comparative effects of three major alternatives: no recycle, recycle of uranium only, and recycle of both uranium and plutonium. The assessment covers the period from 1975 through the year 2000 and includes the cumulative effects for the entire period as well as projections for specific years. Topics discussed include: the light water reactor with plutonium recycle; mixed oxide fuel fabrication; reprocessing plant operations; supporting uranium fuel cycle; transportation of radioactive materials; radioactive waste management; storage of plutonium; radiological health assessment; extended spent fuel storage; and blending of plutonium and uranium at reprocessing plants

  17. Studies involving direct heating of uranium and plutonium oxides by microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, G K; Malav, R K; Karande, A P; Bhargava, V K; Kamath, H S [Bhabha Atomic Research Centre, Tarapur (India). Advanced Fuel Fabrication Facility

    1997-08-01

    Nuclear fuel fabrication and recovery of nuclear materials from scraps generated during fabrication involve heating steps like dewaxing, sintering, roasting of scraps, calcination, etc. The dielectric properties of uranium and plutonium oxides place them in the category of materials which are susceptible to absorption of microwaves. The studies were carried out to explore the microwave heating technique for these steps required in nuclear fuel fabrication and scrap recovery laboratories. (author). 1 ref.

  18. Research of natural resources saving by design studies of Pressurized Light Water Reactors and High Conversion PWR cores with mixed oxide fuels composed of thorium/uranium/plutonium

    International Nuclear Information System (INIS)

    Vallet, V.

    2012-01-01

    Within the framework of innovative neutronic conception of Pressurized Light Water Reactors (PWR) of 3. generation, saving of natural resources is of paramount importance for sustainable nuclear energy production. This study consists in the one hand to design high Conversion Reactors exploiting mixed oxide fuels composed of thorium/uranium/plutonium, and in the other hand, to elaborate multi-recycling strategies of both plutonium and 233 U, in order to maximize natural resources economy. This study has two main objectives: first the design of High Conversion PWR (HCPWR) with mixed oxide fuels composed of thorium/uranium/plutonium, and secondly the setting up of multi-recycling strategies of both plutonium and 233 U, to better natural resources economy. The approach took place in four stages. Two ways of introducing thorium into PWR have been identified: the first is with low moderator to fuel volume ratios (MR) and ThPuO 2 fuel, and the second is with standard or high MR and ThUO 2 fuel. The first way led to the design of under-moderated HCPWR following the criteria of high 233 U production and low plutonium consumption. This second step came up with two specific concepts, from which multi-recycling strategies have been elaborated. The exclusive production and recycling of 233 U inside HCPWR limits the annual economy of natural uranium to approximately 30%. It was brought to light that the strong need in plutonium in the HCPWR dedicated to 233 U production is the limiting factor. That is why it was eventually proposed to study how the production of 233 U within PWR (with standard MR), from 2020. It was shown that the anticipated production of 233 U in dedicated PWR relaxes the constraint on plutonium inventories and favours the transition toward a symbiotic reactor fleet composed of both PWR and HCPWR loaded with thorium fuel. This strategy is more adapted and leads to an annual economy of natural uranium of about 65%. (author) [fr

  19. Profileration-proof uranium/plutonium and thorium/uranium fuel cycles. Safeguards and non-profileration. 2. rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, G.

    2017-07-01

    A brief outline of the historical development of the proliferation problem is followed by a description of the uranium-plutonium nuclear fuel cycle with uranium enrichment, fuel fabrication, the light-water reactors mainly in operation, and the breeder reactors still under development. The next item discussed is reprocessing of spent fuel with plutonium recycling and the future possibility to incinerate plutonium and the minor actinides: neptunium, americium, and curium. Much attention is devoted to the technical and scientific treatment of the IAEA surveillance concept of the uranium-plutonium fuel cycle. In this context, especially the physically possible accuracy of measuring U/Pu flow in the fuel cycle, and the criticism expressed of the accuracy in measuring the plutonium balance in large reprocessing plants of non-nuclear weapon states are analyzed. The second part of the book initially examines the assertion that reactor-grade plutonium could be used to build nuclear weapons whose explosive yield cannot be predicted accurately, but whose minimum explosive yield is still far above that of chemical explosive charges. Methods employed in reactor physics are used to show that such hypothetical nuclear explosive devices (HNEDs) would attain too high temperatures in the required implosion lenses as a result of the heat generated by the Pu-238 isotope always present in reactor plutonium of current light-water reactors. These lenses would either melt or tend to undergo chemical auto-explosion. Limits to the content of the Pu-238 isotope are determined above which such hypothetical nuclear weapons are not feasible on technical grounds. This situation is analyzed for various possibilities of the technical state of the art of making implosion lenses and various ways of cooling up to the use of liquid helium. The outcome is that, depending on the existing state of the art, reactor-grade plutonium from spent fuel elements of light-water reactors with a burnup of 35 to 58

  20. Study of reactions between uranium-plutonium mixed oxide and uranium nitride and between uranium oxide and uranium nitride; Etude des reactions entre l`oxyde mixte d`uranium-plutonium et le nitrure d`uranium et entre l`oxyde d`uranium et le nitrure d`uranium

    Energy Technology Data Exchange (ETDEWEB)

    Lecraz, C

    1993-06-11

    A new type of combustible elements which is a mixture of uranium nitride and uranium-plutonium oxide could be used for Quick Neutrons Reactors. Three different studies have been made on the one hand on the reactions between uranium nitride (UN) and uranium-plutonium mixed oxide (U,Pu)O{sub 2}, on the other hand on these between UN and uranium oxide UO{sub 2}. They show a sizeable reaction between nitride and oxide for the studied temperatures range (1573 K to 1973 K). This reaction forms a oxynitride compound, MO{sub x} N{sub y} with M=U or M=(U,Pu), whose crystalline structure is similar to oxide`s. Solubility of nitride in both oxides is studied, as the reaction kinetics. (TEC). 32 refs., 48 figs., 22 tabs.

  1. Determination of uranium and plutonium by sequential potentiometric titration

    International Nuclear Information System (INIS)

    Kato, Yoshiharu; Takahashi, Masao

    1976-01-01

    The determination of uranium and plutonium in mixed oxide fuels has been developed by sequential potentiometric titration. A weighed sample of uranium and plutonium oxides is dissolved in a mixture of nitric and hydrofluoric acids and the solution is fumed with sulfuric acid. After the reduction of uranium and plutonium to uranium(IV) and plutonium(III) by chromium(II) sulfate, 5 ml of buffer solution (KCl-HCl, pH 1.0) is added to the solution. Then the solution is diluted to 30 ml with water and the pH of the solution is adjusted to 1.0 -- 1.5 with 1 M sodium hydroxide. The solution is stirred until the oxidation of the excess of chromium(II) by air is completed. After the removal of dissolved oxygen by bubbling nitrogen through the solution for 10 minutes, uranium (IV) is titrated with 0.1 N cerium(IV) sulfate. Then, plutonium is titrated by 0.02 N cerium(IV) sulfate. When a mixture of uranium and plutonium is titrated with 0.1 N potassium dichromate potentiometrically, the potential change at the end point of plutonium is very small and the end point of uranium is also unclear when 0.1 N potassium permanganate is used as a titrant. In the present method, nitrate, fluoride and copper(II) interfere with the determination of plutonium and uranium. Iron interferes quantitatively with the determination of plutonium but not of uranium. Results obtained in applying the proposed method to 50 mg of mixtures of plutonium and uranium ((7.5 -- 50))% Pu were accurate to within 0.15 mg of each element. (auth.)

  2. Plutonium spot of mixed oxide fuel, 2

    International Nuclear Information System (INIS)

    Suzuki, Yukio; Maruishi, Yoshihiro; Satoh, Masaichi; Aoki, Toshimasa; Muto, Tadashi

    1974-01-01

    In a fast reactor, the specification for the homogeneity of plutonium in plutonium-uranium mixed-oxide fuel is mainly dependent on the nuclear characteristics, whereas in a thermal reactor, on thermal characteristics. This homogeneity is measured by autoradiography as the plutonium spot size of the specimens which are arbitrarily chosen fuel pellets from a lot. Although this is a kind of random sampling, it is difficult to apply this method to conventional digital standards including JIS standards. So a special sampling inspection method was studied. First, it is assumed that the shape of plutonium spots is spherical, the size distribution is logarithmic normal, and the standard deviation is constant. Then, if standard deviation and mean spot size are given, the logarithmic normal distribution is decided unitarily, and further if the total weight of plutonium spots for a lot of pellets is known, the number of the spots (No) which does not conform to the specification can be obtained. Then, the fraction defective is defined as No devided by the number of pellets per lot. As to the lot with such fraction defective, the acceptance coefficient of the lot was obtained through calculation, in which the number of sampling, acceptable diameter limit observed and acceptable conditions were used as parameters. (Tai, I.)

  3. Radionuclide compositions of spent fuel and high level waste for the uranium and plutonium fuelled PWR

    International Nuclear Information System (INIS)

    Fairclough, M.P.; Tymons, B.J.

    1985-06-01

    The activities of a selection of radionuclides are presented for three types of reactor fuel of interest in radioactive waste management. The fuel types are for a uranium 'burning' PWR, a plutonium 'burning' PWR using plutonium recycled from spent uranium fuel and a plutonium 'burning' PWR using plutonium which has undergone multiple recycle. (author)

  4. Studies and manufacture of plutonium fuel

    International Nuclear Information System (INIS)

    Bussy, P.; Mustelier, J.P.; Pascard, R.

    1964-01-01

    The studies carried out at the C.E.A. on the properties of fast neutron reactor fuels, the manufacture of fuel elements and their behaviour under irradiation are broadly outlined. The metal fuels studied are the ternary alloys U Pu Mo, U Pu Nb, U Pa Ti, U Pa Zr, the ceramic fuels being mixed uranium and plutonium oxides, carbides and nitrides obtained by sintering. Results are given on the manufacture of uranium fuel elements containing a small proportion of plutonium, used in a critical experiment, and on the first experiments in the manufacture of fuel elements for the reactor Rapsodie. Finally the results of irradiation tests carried out on the prototype fuel pins for Rapsodie are described. (authors) [fr

  5. Fabrication of mixed oxide fuel using plutonium from dismantled weapons

    International Nuclear Information System (INIS)

    Blair, H.T.; Chidester, K.; Ramsey, K.B.

    1996-01-01

    A very brief summary is presented of experimental studies performed to support the use of plutonium from dismantled weapons in fabricating mixed oxide (MOX) fuel for commercial power reactors. Thermal treatment tests were performed on plutonium dioxide powder to determine if an effective dry gallium removal process could be devised. Fabrication tests were performed to determine the effects of various processing parameters on pellet quality. Thermal tests results showed that the final gallium content is highly dependent on the treatment temperature. Fabrication tests showed that the milling process, sintering parameters, and uranium feed did effect pellet properties. 1 ref., 1 tab

  6. Metallographic preparation of sintered oxides, carbides and nitrides of uranium and plutonium

    International Nuclear Information System (INIS)

    Martin, A.; Arles, L.

    1967-12-01

    We describe the methods of polishing, attack and coloring used at the section of plutonium base ceramics studies. These methods have stood the test of experience on the uranium and plutonium carbides, nitrides and carbonitrides as well on the mixed uranium and plutonium oxides. These methods have been particularly adapted to fit to the low dense and sintered samples [fr

  7. Development of advanced mixed oxide fuels for plutonium management

    International Nuclear Information System (INIS)

    Eaton, S.; Beard, C.; Buksa, J.; Butt, D.; Chidester, K.; Havrilla, G.; Ramsey, K.

    1997-01-01

    A number of advanced Mixed Oxide (MOX) fuel forms are currently being investigated at Los Alamos National Laboratory that have the potential to be effective plutonium management tools. Evolutionary Mixed Oxide (EMOX) fuel is a slight perturbation on standard MOX fuel, but achieves greater plutonium destruction rates by employing a fractional nonfertile component. A pure nonfertile fuel is also being studied. Initial calculations show that the fuel can be utilized in existing light water reactors and tailored to address different plutonium management goals (i.e., stabilization or reduction of plutonium inventories residing in spent nuclear fuel). In parallel, experiments are being performed to determine the feasibility of fabrication of such fuels. Initial EMOX pellets have successfully been fabricated using weapons-grade plutonium. (author)

  8. Development of advanced mixed oxide fuels for plutonium management

    International Nuclear Information System (INIS)

    Eaton, S.; Beard, C.; Buksa, J.; Butt, D.; Chidester, K.; Havrilla, G.; Ramsey, K.

    1997-06-01

    A number of advanced Mixed Oxide (MOX) fuel forms are currently being investigated at Los Alamos National Laboratory that have the potential to be effective plutonium management tools. Evolutionary Mixed Oxide (EMOX) fuel is a slight perturbation on standard MOX fuel, but achieves greater plutonium destruction rates by employing a fractional nonfertile component. A pure nonfertile fuel is also being studied. Initial calculations show that the fuel can be utilized in existing light water reactors and tailored to address different plutonium management goals (i.e., stabilization or reduction of plutonium inventories residing in spent nuclear fuel). In parallel, experiments are being performed to determine the feasibility of fabrication of such fuels. Initial EMOX pellets have successfully been fabricated using weapons-grade plutonium

  9. An oxyde mixture fuel containing uranium and plutonium dioxides and process to obtain this oxyde mixture

    International Nuclear Information System (INIS)

    Hannerz, K.

    1976-01-01

    An oxide-mixture fuel containing uranium and plutonium dioxides having the slage of spherical, or nearly spherical, oxide-mixture particles with a diameter within the range of from 0.2 to 2 mn charactarized in that each oxide-mixture particles is provided with an outer layer comprising mainly UO2, the thickness of which is at least 0.05; whereas the inner portion of the oxide-mixture particles comprises mainly PUO 2

  10. Plutonium separation by reduction stripping. Application to processing of mixed oxide (U,Pu)O2 fuel fabrication wastes

    International Nuclear Information System (INIS)

    Arnal, Thierry; Cousinou, Gerard; Ganivet, Michel.

    1978-11-01

    A procedure is described for separating plutonium from a uranium VI and plutonium IV mixture contained in an organic phase (tributyl phosphate diluted in dodecane). This separation is obtained by extracting the plutonium III using two organic reducers: hydrazine and paraminophenol. Paraminophenol has excellent reducing qualities, similar to those of ferrous sulphamate, but has the added advantage of not contaminating extracted plutonium. This procedure is currently used in processing production wastes from mixed oxide (U,Pu)O 2 fuels; the installation using this procedure is described in detail in this paper. Operating results show the remarkable efficiency of this procedure: the separated plutonium and uranium mass flows have been increased to 185 and 350 g.h -1 respectively; the uranium contains less than 0.1 ppm of plutonium on completion of the purification cycle [fr

  11. A method for determining an effective porosity correction factor for thermal conductivity in fast reactor uranium-plutonium oxide fuel pellets

    International Nuclear Information System (INIS)

    Inoue, Masaki; Abe, Kazuyuki; Sato, Isamu

    2000-01-01

    A reliable method has been developed for determining an effective porosity correction factor for calculating a realistic thermal conductivity for fast reactor uranium-plutonium (mixed) oxide fuel pellets. By using image analysis of the ceramographs of transverse sections of mixed-oxide fuel pellets, the fuel morphology could be classified into two basic types. One is a 'two-phase' type that consists of small pores dispersed in the fuel matrix. The other is a 'three-phase' type that has large pores in addition to the small pores dispersed in the fuel matrix. The pore sizes are divided into two categories, large and small, at the 30 μm area equivalent diameter. These classifications lead to an equation for calculating an effective porosity correction factor by accounting for the small and large pore volume fractions and coefficients. This new analytical method for determining the effective porosity correction factor for calculating the realistic thermal conductivity of mixed-oxide fuel was also experimentally confirmed for high-, medium- and low-density fuel pellets

  12. Plutonium bearing oxide fuels for recycling in thermal reactors and fast breeder reactors

    International Nuclear Information System (INIS)

    Cunningham, G.W.

    1977-01-01

    Programs carried out in the past two decades have established the technical feasibility of using plutonium as a fuel material in both water-cooled power reactors and sodium-cooled fast breeder reactors. The problem facing the technical community is basically one of demonstrating plutonium fuel recycle under strict conditions of public safety, accountability, personnel exposure, waste management, transportation and diversion or theft which are still evolving. In this paper only technical and economic aspects of high volume production and the demonstration program required are discussed. This paper discusses the role of mixed oxide fuels in light water reactors and the objectives of the LMFBR required for continual growth of nuclear power during the next century. The results of studies showing the impact of using plutonium on uranium requirements, power costs, and the market share of nuclear power are presented. The influence of doubling time and the introduction date of LMFBRs on the benefits to be derived by its commercial use are discussed. Advanced fuel development programs scoped to meet future commerical LMFBR fuel requirements are described. Programs designed to provide the basic technology required for using plutonium fuels in a manner which will satisfy all requirements for public acceptance are described. Included are the high exposure plutonium fabrication development program centered around the High Performance Fuels Laboratory being built at the Hanford Engineering Development Laboratory and the program to confirm the technology required for the production of mixed oxide fuels for light water reactors which is being coordinated by Savannah River Laboratories

  13. Neutronic and Logistic Proposal for Transmutation of Plutonium from Spent Nuclear Fuel as Mixed-Oxide Fuel in Existing Light Water Reactors

    International Nuclear Information System (INIS)

    Trellue, Holly R.

    2004-01-01

    The use of light water reactors (LWRs) for the destruction of plutonium and other actinides [especially those in spent nuclear fuel (SNF)] is being examined worldwide. One possibility for transmutation of this material is the use of mixed-oxide (MOX) fuel, which is a combination of uranium and plutonium oxides. MOX fuel is used in nuclear reactors worldwide, so a large experience base for its use already exists. However, to limit implementation of SNF transmutation to only a fraction of the LWRs in the United States with a reasonable number of license extensions, full cores of MOX fuel probably are required. This paper addresses the logistics associated with using LWRs for this mission and the design issues required for full cores of MOX fuel. Given limited design modifications, this paper shows that neutronic safety conditions can be met for full cores of MOX fuel with up to 8.3 wt% of plutonium

  14. Plutonium recovery from spent reactor fuel by uranium displacement

    Science.gov (United States)

    Ackerman, J.P.

    1992-03-17

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  15. Plutonium recovery from spent reactor fuel by uranium displacement

    International Nuclear Information System (INIS)

    Ackerman, J.P.

    1992-01-01

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished

  16. Actinide Oxidation State and O/M Ratio in Hypostoichiometric Uranium-Plutonium-Americium U0.750Pu0.246Am0.004O2-x Mixed Oxides.

    Science.gov (United States)

    Vauchy, Romain; Belin, Renaud C; Robisson, Anne-Charlotte; Lebreton, Florent; Aufore, Laurence; Scheinost, Andreas C; Martin, Philippe M

    2016-03-07

    Innovative americium-bearing uranium-plutonium mixed oxides U1-yPuyO2-x are envisioned as nuclear fuel for sodium-cooled fast neutron reactors (SFRs). The oxygen-to-metal (O/M) ratio, directly related to the oxidation state of cations, affects many of the fuel properties. Thus, a thorough knowledge of its variation with the sintering conditions is essential. The aim of this work is to follow the oxidation state of uranium, plutonium, and americium, and so the O/M ratio, in U0.750Pu0.246Am0.004O2-x samples sintered for 4 h at 2023 K in various Ar + 5% H2 + z vpm H2O (z = ∼ 15, ∼ 90, and ∼ 200) gas mixtures. The O/M ratios were determined by gravimetry, XAS, and XRD and evidenced a partial oxidation of the samples at room temperature. Finally, by comparing XANES and EXAFS results to that of a previous study, we demonstrate that the presence of uranium does not influence the interactions between americium and plutonium and that the differences in the O/M ratio between the investigated conditions is controlled by the reduction of plutonium. We also discuss the role of the homogeneity of cation distribution, as determined by EPMA, on the mechanisms involved in the reduction process.

  17. Study of interaction of uranium, plutonium and rare earth fluorides with some metal oxides in fluoric salt melts

    International Nuclear Information System (INIS)

    Gorbunov, V.F.; Novoselov, G.P.; Ulanov, S.A.

    1976-01-01

    Interaction of plutonium, uranium, and rare-earth elements (REE) fluorides with aluminium and calcium oxides in melts of eutectic mixture LiF-NaF has been studied at 800 deg C by X-ray diffraction method. It has been shown that tetravalent uranium and plutonium are coprecipitated by oxides as a solid solution UO 2 -PuO 2 . Trivalent plutonium in fluorides melts in not precipitated in the presence of tetravalent uranium which can be used for their separation. REE are precipitated from a salt melt by calcium oxide and are not precipitated by aluminium oxide. Thus, aluminium oxide in a selective precipitator for uranium and plutonium in presence of REE. Addition of aluminium fluoride retains trivalent plutonium and REE in a salt melt in presence of Ca and Al oxides. The mechanism of interacting plutonium and REE trifluorides with metal oxides in fluoride melts has been considered

  18. Some Thermodynamic Features of Uranium-Plutonium Nitride Fuel in the Course of Burnup

    Science.gov (United States)

    Rusinkevich, A. A.; Ivanov, A. S.; Belov, G. V.; Skupov, M. V.

    2017-12-01

    Calculation studies on the effect of carbon and oxygen impurities on the chemical and phase compositions of nitride uranium-plutonium fuel in the course of burnup are performed using the IVTANTHERMO code. It is shown that the number of moles of UN decreases with increasing burnup level, whereas UN1.466, UN1.54, and UN1.73 exhibit a considerable increase. The presence of oxygen and carbon impurities causes an increase in the content of the UN1.466, UN1.54 and UN1.73 phases in the initial fuel by several orders of magnitude, in particular, at a relatively low temperature. At the same time, the presence of impurities abruptly reduces the content of free uranium in unburned fuel. Plutonium in the considered system is contained in form of Pu, PuC, PuC2, Pu2C3, and PuN. Plutonium carbides, as well as uranium carbides, are formed in small amounts. Most of the plutonium remains in the form of nitride PuN, whereas unbound Pu is present only in the areas with a low burnup level and high temperatures.

  19. Irradiation performance of helium-bonded uranium--plutonium carbide fuel elements

    International Nuclear Information System (INIS)

    Latimer, T.W.; Petty, R.L.; Kerrisk, J.F.; DeMuth, N.S.; Levine, P.J.; Boltax, A.

    1979-01-01

    The current irradiation program of helium-bonded uranium--plutonium carbide elements is achieving its original goals. By August 1978, 15 of the original 171 helium-bonded elements had reached their goal burnups including one that had reached the highest burnup of any uranium--plutonium carbide element in the U.S.--12.4 at.%. A total of 66 elements had attained burnups over 8 at.%. Only one cladding breach had been identified at that time. In addition, the systematic and coordinated approach to the current steady-state irradiation tests is yielding much needed information on the behavior of helium-bonded carbide fuel elements that was not available from the screening tests (1965 to 1974). The use of hyperstoichiometric (U,Pu)C containing approx. 10 vol% (U,Pu) 2 C 3 appears to combine lower swelling with only a slightly greater tendency to carburize the cladding than single-phase (U,Pu)C. The selected designs are providing data on the relationship between the experimental parameters of fuel density, fuel-cladding gap size, and cladding type and various fuel-cladding mechanical interaction mechanisms

  20. Grain growth kinetics in uranium-plutonium mixed oxides

    International Nuclear Information System (INIS)

    Sari, C.

    1986-01-01

    Grain growth rates were investigated in uranium-plutonium mixed oxide specimens with oxygen-to-metal ratios 1.97 and 2.0. The specimens in the form of cylindrical pellets were heated in a temperature gradient similar to that existing in a fast reactor. The results are in agreement with the cubic rate law. The mean grain size D(μm) after annealing for time t (min) is represented by D 3 -D 0 3 =1.11x10 12 . exp(-445870/RT).t and D 3 -D 0 3 =2.55x10 9 .exp(-319240/RT).t for specimens with overall oxygen-to-metal ratios 1.97 and 2.0, respectively (activation energies expressed in J/mol). An example for the influence of the oxygen-to-metal ratio on the grain growth in mixed oxide fuel during operation in a fast reactor is also given. (orig.)

  1. Weapons-grade plutonium dispositioning. Volume 4

    International Nuclear Information System (INIS)

    Sterbentz, J.W.; Olsen, C.S.; Sinha, U.P.

    1993-06-01

    This study is in response to a request by the Reactor Panel Subcommittee of the National Academy of Sciences (NAS) Committee on International Security and Arms Control (CISAC) to evaluate the feasibility of using plutonium fuels (without uranium) for disposal in existing conventional or advanced light water reactor (LWR) designs and in low temperature/pressure LWR designs that might be developed for plutonium disposal. Three plutonium-based fuel forms (oxides, aluminum metallics, and carbides) are evaluated for neutronic performance, fabrication technology, and material and compatibility issues. For the carbides, only the fabrication technologies are addressed. Viable plutonium oxide fuels for conventional or advanced LWRs include plutonium-zirconium-calcium oxide (PuO 2 -ZrO 2 -CaO) with the addition of thorium oxide (ThO 2 ) or a burnable poison such as erbium oxide (Er 2 O 3 ) or europium oxide (Eu 2 O 3 ) to achieve acceptable neutronic performance. Thorium will breed fissile uranium that may be unacceptable from a proliferation standpoint. Fabrication of uranium and mixed uranium-plutonium oxide fuels is well established; however, fabrication of plutonium-based oxide fuels will require further development. Viable aluminum-plutonium metallic fuels for a low temperature/pressure LWR include plutonium aluminide in an aluminum matrix (PuAl 4 -Al) with the addition of a burnable poison such as erbium (Er) or europium (Eu). Fabrication of low-enriched plutonium in aluminum-plutonium metallic fuel rods was initially established 30 years ago and will require development to recapture and adapt the technology to meet current environmental and safety regulations. Fabrication of high-enriched uranium plate fuel by the picture-frame process is a well established process, but the use of plutonium would require the process to be upgraded in the United States to conform with current regulations and minimize the waste streams

  2. Optimisation of parameters for co-precipitation of uranium and plutonium - results of simulation studies

    International Nuclear Information System (INIS)

    Pandey, N.K.; Velvandan, P.V.; Murugesan, S.; Ahmed, M.K.; Koganti, S.B.

    1999-01-01

    Preparation of plutonium oxide from plutonium nitrate solution generally proceeds via oxalate precipitation route. In a nuclear fuel reprocessing scheme this step succeeds the partitioning step (separation of uranium and plutonium). Results of present studies confirm that it is possible to avoid partitioning step and recover plutonium and uranium as co-precipitated product. This also helps in minimising the risk of proliferation of fissile material. In this procedure, the solubility of uranium oxalate in nitric acid is effectively used. Co-precipitation parameters are optimised with simulated solutions of uranium nitrate and thorium nitrate (in place of plutonium). On the basis of obtained results a reconversion flow-sheet is designed and reported here. (author)

  3. Behavior of molybdenum in mixed-oxide fuel

    International Nuclear Information System (INIS)

    Giacchetti, G.; Sari, C.

    1976-01-01

    Metallic molybdenum, Mo--Ru--Rh--Pd alloys, barium, zirconium, and tungsten were added to uranium and uranium--plutonium oxides by coprecipitation and mechanical mixture techniques. This material was treated in a thermal gradient similar to that existing in fuel during irradiation to study the behavior of molybdenum in an oxide matrix as a function of the O/(U + Pu) ratio and some added elements. Result of ceramographic and microprobe analysis shows that when the overall O/(U + Pu) ratio is less than 2, molybdenum and Mo--Ru--Rh--Pd alloy inclusions are present in the uranium--plutonium oxide matrix. If the O/(U + Pu) ratio is greater than 2, molybdenum oxidizes to MoO 2 , which is gaseous at a temperature approximately 1000 0 C. Molybdenum oxide vapor reacts with barium oxide and forms a compound that exists as a liquid phase in the columnar grain region. Molybdenum oxide also reacts with tungsten oxide (tungsten is often present as an impurity in the fuel) and forms a compound that contains approximately 40 wt percent of actinide metals. The apparent solubility of molybdenum in uranium and uranium--plutonium oxides, determined by electron microprobe, was found to be less than 250 ppM both for hypo- and hyperstoichiometric fuels

  4. Light water breeder reactor using a uranium-plutonium cycle

    International Nuclear Information System (INIS)

    Radkowsky, A.; Chen, R.

    1990-01-01

    This patent describes a light water receptor (LWR) for breeding fissile material using a uranium-plutonium cycle. It comprises: a prebreeder section having plutonium fuel containing a Pu-241 component, the prebreeder section being operable to produce enriched plutonium having an increased Pu-241 component; and a breeder section for receiving the enriched plutonium from the prebreeder section, the breeder section being operable for breeding fissile material from the enriched plutonium fuel. This patent describes a method of operating a light water nuclear reactor (LWR) for breeding fissile material using a uranium-plutonium cycle. It comprises: operating the prebreeder to produce enriched plutonium fuel having an increased Pu-241 component; fueling a breeder section with the enriched plutonium fuel to breed the fissile material

  5. Plutonium-enriched thermal fuel production experience in Belgium

    International Nuclear Information System (INIS)

    LeBlanc, J.M.

    1983-01-01

    Taking into account the strategic aspects of nuclear energy such as availability and sufficiency of resources and independence of energy supply, most countries planning to use plutonium look mainly to its use in fast reactors. However, by recycling the recovered uranium and plutonium in light water reactors, the saving of the uranium that would otherwise be required could already be higher than 35%. Therefore, until fast reactors are introduced, for macro- or microeconomic reasons, the plutonium recycle option seems to be quite valuable for countries having the plutonium technology. In Belgium, Belgonucleaire has been developing the plutonium technology for more than 20 yr and has operated a mixed oxide fuel fabrication plant since 1973. The past ten years of plant operation have provided for many improvements and relevant new documented experiences establishing a basis for new modifications that will be beneficial to the intrinsic quality, overall safety, and economy of the fuel

  6. Reduction of uranium and plutonium oxides by aluminum. Application to the recycling of plutonium

    International Nuclear Information System (INIS)

    Gallay, J.

    1968-01-01

    A process for treating plutonium oxide calcined at high temperatures (1000 to 2000 deg. C) with a view to recovering the metal consists in the reduction of this oxide dissolved in a mixture of aluminium, sodium and calcium fluorides by aluminium at about 1180 deg. C. The first part of the report presents the results of reduction tests carried out on the uranium oxides UO 2 and U 3 O 8 ; these are in agreement with the thermodynamic calculations of the exchange reaction at equilibrium. The second part describes the application of this method to plutonium oxides. The Pu-Al alloy obtained (60 per cent Pu) is then recycled in an aqueous medium. (author) [fr

  7. Ammonium uranyl carbonate (AUC) based process of simultaneous partitioning and reconversion for uranium and plutonium in fast breeder reactors (FBRs) fuel reprocessing

    International Nuclear Information System (INIS)

    Govindan, P.; Palamalai, A.; Vijayan, K.S.; Subba Rao, R.V.; Venkataraman, M.; Natarajan, R.

    2013-01-01

    Ammonium uranyl carbonate (AUC) based process of simultaneous partitioning and reconversion for uranium and plutonium is developed for the recovery of uranium and plutonium present in spent fuel of fast breeder reactors (FBRs). Effect of pH on the solubility of carbonates of uranium and plutonium in ammonium carbonate medium is studied. Effect of mole ratios of uranium and plutonium as a function of uranium and plutonium concentration at pH 8.0-8.5 for effective separation of uranium and plutonium to each other is studied. Feasibility of reconversion of plutonium in carbonate medium is also studied. The studies indicate that uranium is selectively precipitated as AUC at pH 8.0-8.5 by adding ammonium carbonate solution leaving plutonium in the filtrate. Plutonium in the filtrate after acidified with concentrated nitric acid could also be precipitated as carbonate at pH 6.5-7.0 by adding ammonium carbonate solution. A flow sheet is proposed and evaluated for partitioning and reconversion of uranium and plutonium simultaneously in the FBR fuel reprocessing. (author)

  8. Natural Transmutation of Actinides via the Fission Reaction in the Closed Thorium-Uranium-Plutonium Fuel Cycle

    Science.gov (United States)

    Marshalkin, V. Ye.; Povyshev, V. M.

    2017-12-01

    It is shown for a closed thorium-uranium-plutonium fuel cycle that, upon processing of one metric ton of irradiated fuel after each four-year campaign, the radioactive wastes contain 54 kg of fission products, 0.8 kg of thorium, 0.10 kg of uranium isotopes, 0.005 kg of plutonium isotopes, 0.002 kg of neptunium, and "trace" amounts of americium and curium isotopes. This qualitatively simplifies the handling of high-level wastes in nuclear power engineering.

  9. The use of plutonium in Swedish reactors

    International Nuclear Information System (INIS)

    Forsstroem, H.

    1982-09-01

    The report deals with the utilization of plutonium in Swedish nuclear power plants. The plutonium content of the mixed oxide fuel will normally be 3-7 per cent. The processing of spent nuclear fuel will produce about 6 ton plutonium. The use of mixed oxide fuel in Forsmark 3 and Oskarshamn 3 is discussed. The fuel cycle will start with the manufacturing of the fuel elements abroad and proceeds with transport and utilization, storing of spent fuel about 40 years in Sweden followed by direct disposal. The manufacture and use of mixed oxide (MOX) fuel is based on well-known techniques. Approximately 20 000 MOX fuel rods have been irradiated and the fuel is essentially equivalent to uranium oxide fuel. 30-50 per cent of the core may be composed of MOX-fuel without any effect on the operation and safety of the reactor which has been originally designed for uranium fuel. The evaluation of international fuel cycle (INFCE) states that the proliferation risks are very small. The recycling of plutonium will reduce demand for enriched uranium and the calculations show that 6.3 ton plutonium will replace the enrichment of 600 ton natural uranium. (G.B.)

  10. The Plutonium Fuel Laboratory at Studsvik and Its Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hultgren, A.; Berggren, G.; Brown, A.; Eng, H. U.; Forsyth, R. S. [AB Atomenergi, Studsvik (Sweden)

    1967-09-15

    The plutonium fuel laboratory at Studsvik is engaged in development work on plutonium-enriched fuel. At present, low enriched fuel for thermal reactors is being studied: work on fuel with a higher plutonium content for fast reactors is foreseen at a later date. So far only the pellet technique is under consideration, and a number of pellet rod specimens will be produced and irradiated in the reactor R2. These specimens include pellets from both co-precipitated uranium-plutonium salts and from physically mixed oxides. Comparison of these two materials will be extended to different density levels and different heat ratings. The methods and techniques used and studied include wet chemical work for powder preparation (continuous precipitation of Pu(IV)-oxalate with oxalic acid, continuous co-precipitation of plutonium and uranium with ammonia, optimization of.precipitation conditions using U(IV) and U(VI) respectively) ; powder preparation (drying, calcination, reduction, mixing, milling, binder addition, granulation); pellet preparation (pressing, debonding, sintering, inspection): encapsulation (charging, welding of end plug, helium filling, end sealing by welding, leak detection, decontamination); metallography (specimen preparation (moulding, polishing), etching, microscopy); structure investigations (thermal analysis (TG, DTA), X-ray diffraction, neutron diffraction, data handling by computer analysis); radiometric methods (direct plutonium determination by gamma spectrometry, non-destructive burn-up analysis by high resolution gamma spectrometry, using a Ge(Li) detector) ; rework of waste (recovery of plutonium from fuel waste by extraction with trilauryl amine and anion exchange). The plutonium fuel laboratory forms part of the Active Central Laboratory. The equipment is contained in four adjacent 10 x 15 m rooms; .for diffraction work and inactive uranium work additional space is available. All the forty glove boxes in operation except two are of AB Atomenergi

  11. SEPARATION OF URANIUM, PLUTONIUM, AND FISSION PRODUCTS

    Science.gov (United States)

    Spence, R.; Lister, M.W.

    1958-12-16

    Uranium and plutonium can be separated from neutron-lrradiated uranium by a process consisting of dissolvlng the lrradiated material in nitric acid, saturating the solution with a nitrate salt such as ammonium nitrate, rendering the solution substantially neutral with a base such as ammonia, adding a reducing agent such as hydroxylamine to change plutonium to the trivalent state, treating the solution with a substantially water immiscible organic solvent such as dibutoxy diethylether to selectively extract the uranium, maklng the residual aqueous solutlon acid with nitric acid, adding an oxidizing agent such as ammonlum bromate to oxidize the plutonium to the hexavalent state, and selectlvely extracting the plutonium by means of an immlscible solvent, such as dibutoxy dlethyletber.

  12. Conversion of highly enriched uranium in thorium-232 based oxide fuel for light water reactors: MOX-T fuel

    Energy Technology Data Exchange (ETDEWEB)

    Vapirev, E I; Jordanov, T; Christoskov, I [Sofia Univ. (Bulgaria). Fizicheski Fakultet

    1994-12-31

    The idea of conversion of highly enriched uranium (HEU) from warheads without mixing it with natural uranium as well as the utilization of plutonium as fuel component is discussed. A nuclear fuel which is a mixture of 4% {sup 235}U (HEU) as a fissile isotope and 96 % {sup 232}Th (ThO{sub 2}) as a non-fissile isotope in a mixed oxide with thorium fuel is proposed. It is assumed that plutonium can also be used in the proposed fuel in a mixture with {sup 235}U. The following advantages of the use of HEU in LWRs in mixed {sup 235}U - Th fuel are pointed out: (1) No generation of long-living plutonium and americium isotopes (in case of reprocessing the high level radioactive wastes will contain only fission fragments and uranium); (2) The high conversion ratio of Th extends the expected burnup by approximately 1/3 without higher initial enrichment (the same initial enrichment simplifies the problem for compensation of the excess reactivity in the beginning with burnable poison and boric acid); (3) The high conversion ratio of Th allows the fuel utilization with less initial enrichment (by approx. 1/3) for the same burnup; thus less excess reactivity has to be compensated after reloading; in case of fuel reprocessing all fissile materials ({sup 235}U + {sup 233}U) could be chemically extracted. Irrespectively to the optimistic expectations outlined, further work including data on optimal loading and reloading schemes, theoretical calculations of thermal properties of {sup 235}U + Th fuel rods, manufacturing of several test fuel assemblies and investigations of their operational behaviour in a reactor core is still needed. 1 fig., 7 refs.

  13. Comparison of physical chemical properties of powders and respirable aerosols of industrial mixed uranium and plutonium oxide fuels

    International Nuclear Information System (INIS)

    Eidson, A.F.

    1982-01-01

    Studies were performed to characterize physical and chemical properties which may be important in determining the metabolism of accidentally released, inhaled aerosols of industrial mixed uranium and plutonium oxide fuels and to compare the properties of bulk powders and the respirable fraction they include. X-ray diffraction measurements showed that analysis of mixed-oxide powders from four process steps served to characterize their respirable fractions. IR spectroscopy was useful as a method to detect organic binders that were not observed by X-ray diffraction methods. Both X-ray diffraction and IR spectroscopy methods can be used in combination to identify the sources of a complex aerosol that might be released from more than one fabrication step. Isotopic distributions in powders and aerosols showed that information important for radiation dose to tissue calculations or Pu lung burden estimates can be obtained by analysis of powders. (U.K.)

  14. Off gas processing device for degreasing furnace for uranium/plutonium mixed oxide fuel

    International Nuclear Information System (INIS)

    Ueda, Masaya; Akasaka, Takayuki; Noura, Takeshi.

    1996-01-01

    A low melting ingredient capturing-cooling trap connected to a degreasing sintering furnace by way of sealed pipelines, a burning/decomposing device for decomposing high melting ingredient gases discharged from the cooling trap by burning them and a gas sucking means for forming the flow of off gases are contained in a glovebox, the inside pressure of which is kept negative. Since the degreasing sintering furnace for uranium/plutonium mixed oxide fuels is disposed outside of the glovebox, operation can be performed safely without greatly increasing the scale of the device, and the back flow of gases is prevented easily by keeping the pressure in the inside of the glovebox negative. Further, a heater is disposed at the midway of the sealed pipelines from the degreasing sintering furnace to the cooling trap, the temperature is kept high to prevent deposition of low melting ingredients to prevent clogging of the sealed pipelines. Further, a portion of the pipelines is made extensible in the axial direction to eliminate thermal stresses caused by temperature change thereby enabling to extend the life of the sealed pipelines. (N.H.)

  15. Simultaneous determination of uranium and plutonium in dissolver solution of irradiated fuel, using ID-TIMS. IRP-11

    International Nuclear Information System (INIS)

    Shah, Raju; Sasi Bhushan, K.; Govindan, R.; Alamelu, D.; Khodade, P.S.; Aggarwal, S.K.

    2007-01-01

    A simple sample preparation and simultaneous analysis method to determine uranium and plutonium from dissolver solution, employing the technique of Isotope Dilution Mass spectrometry has been demonstrated. The method used, co-elusion of Uranium and Plutonium from anion exchanger column after initial elution of major part of uranium in 1:5 HNO 3 in order to reduce the initial U/Pu ratio from 1000 to about 100-200 in the co-eluted fraction. Due to the availability of variable multi-collector system, different Faraday cups were adjusted to collect the different ion intensities corresponding to the different masses, during the simultaneous analysis of Uranium and Plutonium, loaded on Re double filament assembly. 233 U and PR grade Plutonium were used as spikes to determine Uranium and Plutonium from dissolver solution of irradiated fuel from research reactor. The possibility of getting the isotopic composition of uranium from the simultaneous analysis of co-eluted purified fraction of U and Pu from spiked aliquots is also explained. (author)

  16. Reduction of uranium and plutonium oxides by aluminum. Application to the recycling of plutonium; Reduction des oxydes d'uranium et de plutonium par l'aluminium application au recyclage du plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Gallay, J [Commissariat a l' Energie Atomique, Valduc (France). Centre d' Etudes

    1968-07-01

    A process for treating plutonium oxide calcined at high temperatures (1000 to 2000 deg. C) with a view to recovering the metal consists in the reduction of this oxide dissolved in a mixture of aluminium, sodium and calcium fluorides by aluminium at about 1180 deg. C. The first part of the report presents the results of reduction tests carried out on the uranium oxides UO{sub 2} and U{sub 3}O{sub 8}; these are in agreement with the thermodynamic calculations of the exchange reaction at equilibrium. The second part describes the application of this method to plutonium oxides. The Pu-Al alloy obtained (60 per cent Pu) is then recycled in an aqueous medium. (author) [French] Un procede de traitement de l'oxyde de plutonium calcine a haute temperature (1000 deg. C a 2000 deg. C), en vue de la recuperation du metal, consiste a reduire cet oxyde dissous dans un melange de fluorures d'aluminium, de sodium et de calcium, par l'aluminium vers 1180 deg. C. Une premiere partie du rapport presente les resultats des essais de reduction des oxydes d'uranium UO{sub 2} et U{sub 3}O{sub 8}, en accord avec les resultats du calcul thermodynamique de la reaction d'echange a l'equilibre. Une seconde partie rend compte de l'application de cette methode a l'oxyde de plutonium. L'alliage Pu-Al obtenu (60 pour cent Pu) est ensuite recycle par voie aqueuse. (auteur)

  17. Setting for technological control of vibropacked uranium-plutonium fuel pins

    International Nuclear Information System (INIS)

    Golushko, V.V.; Semenov, A.L.; Chukhlova, O.P.; Kuznetsov, A.M.; Korchkov, Yu.N.; Kandrashina, T.A.

    1991-01-01

    Scanning set-up providing for control of fuel pins by quality of fuel distribution in them is described. The gamma absorption method of fuel density measurement and the method of its own radiation registration are applied. Scintillation detection blocks are used in the measuring equipment mainly consisting of standard CAMAC blocks. Automation of measurements is performed on the basis of the computer complex MERA-60. A complex of programs for automation of the procedures under way is developed, when the facility operates within the test production line of vibroracked uranium-plutonium fuel pins. 6 refs.; 4 figs.; 1 tabs

  18. Comparison of the Environment, Health, And Safety Characteristics of Advanced Thorium- Uranium and Uranium-Plutonium Fuel Cycles

    Science.gov (United States)

    Ault, Timothy M.

    The environment, health, and safety properties of thorium-uranium-based (''thorium'') fuel cycles are estimated and compared to those of analogous uranium-plutonium-based (''uranium'') fuel cycle options. A structured assessment methodology for assessing and comparing fuel cycle is refined and applied to several reference fuel cycle options. Resource recovery as a measure of environmental sustainability for thorium is explored in depth in terms of resource availability, chemical processing requirements, and radiological impacts. A review of available experience and recent practices indicates that near-term thorium recovery will occur as a by-product of mining for other commodities, particularly titanium. The characterization of actively-mined global titanium, uranium, rare earth element, and iron deposits reveals that by-product thorium recovery would be sufficient to satisfy even the most intensive nuclear demand for thorium at least six times over. Chemical flowsheet analysis indicates that the consumption of strong acids and bases associated with thorium resource recovery is 3-4 times larger than for uranium recovery, with the comparison of other chemical types being less distinct. Radiologically, thorium recovery imparts about one order of magnitude larger of a collective occupational dose than uranium recovery. Moving to the entire fuel cycle, four fuel cycle options are compared: a limited-recycle (''modified-open'') uranium fuel cycle, a modified-open thorium fuel cycle, a full-recycle (''closed'') uranium fuel cycle, and a closed thorium fuel cycle. A combination of existing data and calculations using SCALE are used to develop material balances for the four fuel cycle options. The fuel cycle options are compared on the bases of resource sustainability, waste management (both low- and high-level waste, including used nuclear fuel), and occupational radiological impacts. At steady-state, occupational doses somewhat favor the closed thorium option while low

  19. White paper on possible inclusion of mixed plutonium-uranium oxides in DOE-STD-3013-96

    International Nuclear Information System (INIS)

    Haschke, J.M.; Venetz, T.; Szempruch, R.; McClard, J.W.

    1997-11-01

    This report assesses stabilization issues concerning mixed plutonium-uranium oxides containing 50 mass % Pu. Possible consequences of uranium substitution on thermal stabilization, specific surface areas, moisture readsorption behavior, loss-on-ignition analysis, and criticality safety of the oxide are examined and discussed

  20. The economics of plutonium recycle

    International Nuclear Information System (INIS)

    James, R.A.

    1977-11-01

    The individual cost components and the total fuel cycle costs for natural uranium and uranium-plutonium mixed oxide fuel cycles for CANDU-PHW reactors are discussed. A calculation is performed to establish the economic conditions under which plutonium recycle would be economically attractive. (auth)

  1. LLNL Site plan for a MOX fuel lead assembly mission in support of surplus plutonium disposition

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, M.C.

    1997-10-01

    The principal facilities that LLNL would use to support a MOX Fuel Lead Assembly Mission are Building 332 and Building 334. Both of these buildings are within the security boundary known as the LLNL Superblock. Building 332 is the LLNL Plutonium Facility. As an operational plutonium facility, it has all the infrastructure and support services required for plutonium operations. The LLNL Plutonium Facility routinely handles kilogram quantities of plutonium and uranium. Currently, the building is limited to a plutonium inventory of 700 kilograms and a uranium inventory of 300 kilograms. Process rooms (excluding the vaults) are limited to an inventory of 20 kilograms per room. Ongoing operations include: receiving SSTS, material receipt, storage, metal machining and casting, welding, metal-to-oxide conversion, purification, molten salt operations, chlorination, oxide calcination, cold pressing and sintering, vitrification, encapsulation, chemical analysis, metallography and microprobe analysis, waste material processing, material accountability measurements, packaging, and material shipping. Building 334 is the Hardened Engineering Test Building. This building supports environmental and radiation measurements on encapsulated plutonium and uranium components. Other existing facilities that would be used to support a MOX Fuel Lead Assembly Mission include Building 335 for hardware receiving and storage and TRU and LLW waste storage and shipping facilities, and Building 331 or Building 241 for storage of depleted uranium.

  2. LLNL Site plan for a MOX fuel lead assembly mission in support of surplus plutonium disposition

    International Nuclear Information System (INIS)

    Bronson, M.C.

    1997-01-01

    The principal facilities that LLNL would use to support a MOX Fuel Lead Assembly Mission are Building 332 and Building 334. Both of these buildings are within the security boundary known as the LLNL Superblock. Building 332 is the LLNL Plutonium Facility. As an operational plutonium facility, it has all the infrastructure and support services required for plutonium operations. The LLNL Plutonium Facility routinely handles kilogram quantities of plutonium and uranium. Currently, the building is limited to a plutonium inventory of 700 kilograms and a uranium inventory of 300 kilograms. Process rooms (excluding the vaults) are limited to an inventory of 20 kilograms per room. Ongoing operations include: receiving SSTS, material receipt, storage, metal machining and casting, welding, metal-to-oxide conversion, purification, molten salt operations, chlorination, oxide calcination, cold pressing and sintering, vitrification, encapsulation, chemical analysis, metallography and microprobe analysis, waste material processing, material accountability measurements, packaging, and material shipping. Building 334 is the Hardened Engineering Test Building. This building supports environmental and radiation measurements on encapsulated plutonium and uranium components. Other existing facilities that would be used to support a MOX Fuel Lead Assembly Mission include Building 335 for hardware receiving and storage and TRU and LLW waste storage and shipping facilities, and Building 331 or Building 241 for storage of depleted uranium

  3. Determination of plutonium and uranium in mixed nuclear fuel by means of potentiostatic and amperostatic coulometry

    International Nuclear Information System (INIS)

    Kuperman, A.Ya.; Moiseev, I.V.; Galkina, V.N.; Yakushina, G.S.; Nikitskaya, V.N.

    1977-01-01

    Product solution occurs in HClO 4 + HNO 3 mixing. In prepared plutonium (6) and uranium (6) perchloric acid solution Cl and Cr (6), Mn (7,6,3) foreign oxidizers are selectively reduced with formic and malonic acids. Potentiostatic variant of method is based on successive reduction of Pu(6) to Pu(3) and U(6) to U(4) in 4.5M HCl, containing 5x10 -4 M bismuth (3). In using amperostatic variant of method plutonium and uranium are determined separately. In sulfur-phosphoric acid media plutonium (6) is titrated to Pu(4) with continuously generated iron (2) ions. Uranium (6) in phosphoric acid media is initially reduced to U(4) with Fe(2), and then after Fe(2) excess reduction with nitric acid it is titrated to uranium (6) with continuously electrogenerated manganese (3) ions or vanadium (5). To obtain equivalent point in plutonium (6) and uranium (4) titration amperometric method is used. Coefficient of variation is 0.2-0.3 % rel

  4. Characterization of aerosols from industrial fabrication of mixed-oxide nuclear reactor fuels

    International Nuclear Information System (INIS)

    Hoover, M.D.; Newton, G.J.

    1997-01-01

    Recycling plutonium into mixed-oxide (MOX) fuel for nuclear reactors is being given serious consideration as a safe and environmentally sound method of managing plutonium from weapons programs. Planning for the proper design and safe operation of the MOX fuel fabrication facilities can take advantage of studies done in the 1970s, when recycling of plutonium from nuclear fuel was under serious consideration. At that time, it was recognized that the recycle of plutonium and uranium in irradiated fuel could provide a significant energy source and that the use of 239 Pu in light water reactor fuel would reduce the requirements for enriched 235 U as a reactor fuel. It was also recognized that the fabrication of uranium and plutonium reactor fuels would not be risk-free. Despite engineered safety precautions such as the handling of uranium and plutonium in glove-box enclosures, accidental releases of radioactive aerosols from normal containment might occur. Workers might then be exposed to the released materials by inhalation

  5. Accountability methods for plutonium and uranium: the NRC manuals

    Energy Technology Data Exchange (ETDEWEB)

    Gutmacher, R.G.; Stephens, F.B.

    1977-09-28

    Four manuals containing methods for the accountability of plutonium nitrate solutions, plutonium dioxide, uranium dioxide and mixed uranium-plutonium oxide have been prepared by us and issued by the U.S. Nuclear Regulatory Commission. A similar manual on methods for the accountability of uranium and plutonium in reprocessing plant dissolver solutions is now in preparation. In the present paper, we discuss the contents of the previously issued manuals and give a preview of the manual now being prepared.

  6. Accountability methods for plutonium and uranium: the NRC manuals

    International Nuclear Information System (INIS)

    Gutmacher, R.G.; Stephens, F.B.

    1977-01-01

    Four manuals containing methods for the accountability of plutonium nitrate solutions, plutonium dioxide, uranium dioxide and mixed uranium-plutonium oxide have been prepared by us and issued by the U.S. Nuclear Regulatory Commission. A similar manual on methods for the accountability of uranium and plutonium in reprocessing plant dissolver solutions is now in preparation. In the present paper, we discuss the contents of the previously issued manuals and give a preview of the manual now being prepared

  7. Criticality of mixtures of plutonium and high enriched uranium

    International Nuclear Information System (INIS)

    Grolleau, E.; Lein, M.; Leka, G.; Maidou, B.; Klenov, P.

    2003-01-01

    This paper presents a criticality evaluation of moderated homogeneous plutonium-uranium mixtures. The fissile media studied are homogeneous mixtures of plutonium and high enriched uranium in two chemical forms: aqueous mixtures of metal and mixtures of nitrate solutions. The enrichment of uranium considered are 93.2wt.% 235 U and 100wt.% 235 U. The 240 Pu content in plutonium varies from 0wt.% 240 Pu to 12wt.% 240 Pu. The critical parameters (radii and masses of a 20 cm water reflected sphere) are calculated with the French criticality safety package CRISTAL V0. The comparison of the calculated critical parameters as a function of the moderator-to-fuel atomic ratio shows significant ranges in which high enriched uranium systems, as well as plutonium-uranium mixtures, are more reactive than plutonium systems. (author)

  8. Effect of cooling rate on achieving thermodynamic equilibrium in uranium-plutonium mixed oxides

    Science.gov (United States)

    Vauchy, Romain; Belin, Renaud C.; Robisson, Anne-Charlotte; Hodaj, Fiqiri

    2016-02-01

    In situ X-ray diffraction was used to study the structural changes occurring in uranium-plutonium mixed oxides U1-yPuyO2-x with y = 0.15; 0.28 and 0.45 during cooling from 1773 K to room-temperature under He + 5% H2 atmosphere. We compare the fastest and slowest cooling rates allowed by our apparatus i.e. 2 K s-1 and 0.005 K s-1, respectively. The promptly cooled samples evidenced a phase separation whereas samples cooled slowly did not due to their complete oxidation in contact with the atmosphere during cooling. Besides the composition of the annealing gas mixture, the cooling rate plays a major role on the control of the Oxygen/Metal ratio (O/M) and then on the crystallographic properties of the U1-yPuyO2-x uranium-plutonium mixed oxides.

  9. Plutonium in depleted uranium penetrators

    International Nuclear Information System (INIS)

    McLaughlin, J.P.; Leon-Vintro, L.; Smith, K.; Mitchell, P.I.; Zunic, Z.S.

    2002-01-01

    Depleted Uranium (DU) penetrators used in the recent Balkan conflicts have been found to be contaminated with trace amounts of transuranic materials such as plutonium. This contamination is usually a consequence of DU fabrication being carried out in facilities also using uranium recycled from spent military and civilian nuclear reactor fuel. Specific activities of 239+240 Plutonium generally in the range 1 to 12 Bq/kg have been found to be present in DU penetrators recovered from the attack sites of the 1999 NATO bombardment of Kosovo. A DU penetrator recovered from a May 1999 attack site at Bratoselce in southern Serbia and analysed by University College Dublin was found to contain 43.7 +/- 1.9 Bq/kg of 239+240 Plutonium. This analysis is described. An account is also given of the general population radiation dose implications arising from both the DU itself and from the presence of plutonium in the penetrators. According to current dosimetric models, in all scenarios considered likely ,the dose from the plutonium is estimated to be much smaller than that due to the uranium isotopes present in the penetrators. (author)

  10. Present status of uranium-plutonium mixed carbide fuel development for LMFBRs

    International Nuclear Information System (INIS)

    Handa, Muneo; Suzuki, Yasufumi

    1984-01-01

    The feature of carbide fuel is that it has the doubling time as short as about 13 years, that is, close to one half as compared with oxide fuel. The development of the carbide fuel in the past 10 years has been started in amazement. Especially in the program of new fuel development in USA started in 1974, He and Na bond fuel attained the burnup of 16 a/o without causing the breaking of cladding tubes. In 1984, the irradiation of the assembly composed of 91 fuel pins in the FFTF is expected. On the other hand in Japan, the fuel research laboratory was constructed in 1974 in the Oarai Laboratory, Japan Atomic Energy Research Institute, to carry out the studies on carbide fuel. In the autumn of 1982, two carbide fuel pins with different chemical composition have been successfully made. Accordingly, the recent status of the development is explained. The uranium-plutonium mixed carbide fuel is suitable to liquid metal-cooled fast breeder reactors because of large heat conductivity and the high density of nuclear fission substances. The thermal and nuclear characteristics of carbide fuel, the features of the reactor core using carbide fuel, the chemical and mechanical interaction of fuel and cladding tubes, the selection of bond materials, the manufacturing techniques for the fuel, the development of the analysis code for fuel behavior, and the research and development of carbide fuel in Japan are described. (Kako, I.)

  11. Chemical aspects of the precise and accurate determination of uranium and plutonium from nuclear fuel solutions

    International Nuclear Information System (INIS)

    Heinonen, O.J.

    1981-01-01

    A method for the simultaneous or separate determination of uranium and plutonium has been developed. The method is based on the sorption of uranium and plutonium as their chloro complexes on Dowex 1x10 column. When separate uranium and plutonium fractions are desired, plutonium ions are reduced to Pu (III) and eluted, after which the uranium ions are eluted with dilute HCl. Simultaneous stripping of a mass ratio U/Pu approximately 1 fraction for mass spectrometric measurements is achieved by proper choice of eluant HC1 concentration. Special attention was paid to the obtaining of americium free plutonium fractions. The distribution coefficient measurements showed that at 12.5-M HCl at least 30 % of americium ions formed anionic chloro complexes. The chemical aspects of isotopic fractionation in a multiple filament thermal ionization source were also investigated. Samples of uranium were loaded as nitrates, chlorides, and sulphates and the dependence of the measured uranium isotopic ratios on the chemical form of the loading solution as well as on the filament material was studied. Likewise the dependence of the formation of uranium and its oxide ions on various chemical and instrumental conditions was investigated using tungsten and rhenium filaments. Systematic errors arising from the chemical conditions are compared with errors arising from the automatic evaluation of of spectra. (author)

  12. Recycling of plutonium and uranium in water reactor fuel. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-05-01

    The Technical Committee Meeting on Recycling of Plutonium and Uranium in Water Reactor Fuel was recommended by the International Working Group on Fuel Performance and Technology (IWGFPT). Its aim was to obtain an overall picture of MOX fabrication capacity and technology, actual performance of this kind of fuel, and ways explored to dispose of the weapons grade plutonium. The subject of this meeting had been reviewed by the International Atomic Energy Agency every 5 to 6 years and for the first time the problem of weapons grade plutonium disposal was included. The papers presented provide a summary of experience on MOX fuel and ongoing research in this field in the participating countries. The meeting was hosted by British Nuclear Fuels plc, at Newby Bridge, United Kingdom, from 3 to 7 July 1995. Fifty-six participants from twelve countries or international organizations took part. Refs, figs, tabs

  13. Boiling water reactors with uranium-plutonium mixed oxide fuel. Report 2: A survey of the accuracy of the Studsvik of America CMS codes

    International Nuclear Information System (INIS)

    Demaziere, C.

    1999-02-01

    This report is a part of the project titled 'Boiling Water Reactors With Uranium-Plutonium Mixed Oxide (MOx) Fuel'. The aim of this study is to model the impact of a core loading pattern containing MOx bundles upon the main characteristics of a BWR (reactivity coefficients, stability, etc.). The tools that are available to perform a modeling in the Department of Reactor Physics in Chalmers are CASMO-4/TABLES-3/SIMULATE-3 from Studsvik of America. Thus, before performing any kind of calculation with MOx fuels, it is necessary to be able to establish the reliability and the accuracy of these Core Management System (CMS) codes. This report presents a quantitative analysis of the models used in the package. A qualitative presentation is realized in a coming report

  14. Computation Results from a Parametric Study to Determine Bounding Critical Systems of Homogeneously Water-Moderated Mixed Plutonium--Uranium Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Y.

    2001-01-11

    This report provides computational results of an extensive study to examine the following: (1) infinite media neutron-multiplication factors; (2) material bucklings; (3) bounding infinite media critical concentrations; (4) bounding finite critical dimensions of water-reflected and homogeneously water-moderated one-dimensional systems (i.e., spheres, cylinders of infinite length, and slabs that are infinite in two dimensions) that were comprised of various proportions and densities of plutonium oxides and uranium oxides, each having various isotopic compositions; and (5) sensitivity coefficients of delta k-eff with respect to critical geometry delta dimensions were determined for each of the three geometries that were studied. The study was undertaken to support the development of a standard that is sponsored by the International Standards Organization (ISO) under Technical Committee 85, Nuclear Energy (TC 85)--Subcommittee 5, Nuclear Fuel Technology (SC 5)--Working Group 8, Standardization of Calculations, Procedures and Practices Related to Criticality Safety (WG 8). The designation and title of the ISO TC 85/SC 5/WG 8 standard working draft is WD 14941, ''Nuclear energy--Fissile materials--Nuclear criticality control and safety of plutonium-uranium oxide fuel mixtures outside of reactors.'' Various ISO member participants performed similar computational studies using their indigenous computational codes to provide comparative results for analysis in the development of the standard.

  15. Recycling of nuclear matters. Myths and realities. Calculation of recycling rate of the plutonium and uranium produced by the French channel of spent fuel reprocessing

    International Nuclear Information System (INIS)

    Coeytaux, X.; Schneider, M.

    2000-05-01

    The recycling rate of plutonium and uranium are: from the whole of the plutonium separated from the spent fuel ( inferior to 1% of the nuclear matter content) attributed to France is under 50% (under 42 tons on 84 tons); from the whole of plutonium produced in the French reactors is less than 20% (42 tons on 224 tons); from the whole of the uranium separated from spent fuels attributed to France is about 10 % (1600 tons on 16000 tons); from the whole of the uranium contained in the spent fuel is slightly over 5%. (N.C.)

  16. Characterization of uranium- and plutonium-contaminated soils by electron microscopy

    International Nuclear Information System (INIS)

    Buck, E.C.; Dietz, N.L.; Fortner, J.A.; Bates, J.K.; Brown, N.R.

    1995-01-01

    Electron beam techniques have been used to characterize uranium-contaminated soils from the Fernald Site in Ohio, and also plutonium-bearing 'hot particles, from Johnston Island in the Pacific Ocean. By examining Fernald samples that had undergone chemical leaching it was possible to observe the effect the treatment had on specific uranium-bearing phases. The technique of Heap leaching, using carbonate solution, was found to be the most successful in removing uranium from Fernald soils, the Heap process allows aeration, which facilitates the oxidation of uraninite. However, another refractory uranium(IV) phase, uranium metaphosphate, was not removed or affected by any soil-washing process. Examination of ''hot particles'' from Johnston Island revealed that plutonium and uranium were present in 50--200 nm particles, both amorphous and crystalline, within a partially amorphous aluminum oxide matrix. The aluminum oxide is believed to have undergone a crystalline-to-amorphous transition caused by alpha-particle bombardment during the decay of the plutonium

  17. Determination of uranium and plutonium in high active solutions by extractive spectrophotometry

    International Nuclear Information System (INIS)

    Subba Rao, R.V.; Damodaran, K.; Santosh Kumar, G.; Ravi, T.N.

    2000-01-01

    Plutonium and uranium was extracted from nitric acid into trioctyl phosphine oxide in xylene. The TOPO layer was analysed by spectrophotometry. Thoron was used as the chromogenic agent for plutonium. Pyridyl azoresorcinol was used as chromogenic agent for uranium. The molar absorption coefficient for uranium and plutonium was found to be 19000 and 19264 liter/mole-cm, respectively. The correlation coefficient for plutonium and uranium was found to be 0.9994. The relative standard deviation for the determination of plutonium and uranium was found to be 0.96% and 1.4%, respectively. (author)

  18. Measurement of plutonium in spent nuclear fuel by self-induced x-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Andrew S [Los Alamos National Laboratory; Rudy, Cliff R [Los Alamos National Laboratory; Tobin, Steve J [Los Alamos National Laboratory; Charlton, William S [Los Alamos National Laboratory; Stafford, A [TEXAS A& M; Strohmeyer, D [TEXAS A& M; Saavadra, S [ORNL

    2009-01-01

    Direct measurement of the plutonium content in spent nuclear fuel is a challenging problem in non-destructive assay. The very high gamma-ray flux from fission product isotopes overwhelms the weaker gamma-ray emissions from plutonium and uranium, making passive gamma-ray measurements impossible. However, the intense fission product radiation is effective at exciting plutonium and uranium atoms, resulting in subsequent fluorescence X-ray emission. K-shell X-rays in the 100 keV energy range can escape the fuel and cladding, providing a direct signal from uranium and plutonium that can be measured with a standard germanium detector. The measured plutonium to uranium elemental ratio can be used to compute the plutonium content of the fuel. The technique can potentially provide a passive, non-destructive assay tool for determining plutonium content in spent fuel. In this paper, we discuss recent non-destructive measurements of plutonium X-ray fluorescence (XRF) signatures from pressurized water reactor spent fuel rods. We also discuss how emerging new technologies, like very high energy resolution microcalorimeter detectors, might be applied to XRF measurements.

  19. Radiological considerations in the design of Reprocessing Uranium Plant (RUP) of Fast Reactor Fuel Cycle Facility (FRFCF), Kalpakkam

    International Nuclear Information System (INIS)

    Chandrasekaran, S.; Rajagopal, V.; Jose, M.T.; Venkatraman, B.

    2012-01-01

    A Fast Reactor Fuel Cycle Facility (FRFCF) being planned at Indira Gandhi Centre for Atomic Research, Kalpakkam is an integrated facility with head end and back end of fuel cycle plants co-located in a single place, to meet the refuelling needs of the prototype fast breeder reactor (PFBR). Reprocessed uranium oxide plant (RUP) is one such plant in FRFCF to built to meet annual requirements of UO 2 for fabrication of fuel sub-assemblies (FSAs) and radial blanket sub-assemblies (RSAs) for PFBR. RUP receives reprocessed uranium oxide powder (U 3 O 8 ) from fast reactor fuel reprocessing plant (FRP) of FRFCF. Unlike natural uranium oxide plant, RUP has to handle reprocessed uranium oxide which is likely to have residual fission products activity in addition to traces of plutonium. As the fuel used for PFBR is recycled within these plants, formation of higher actinides in the case of plutonium and formation of higher levels of 232 U in the uranium product would be a radiological problem to be reckoned with. The paper discussed the impact of handling of multi-recycled reprocessed uranium in RUP and the radiological considerations

  20. Radiological implications of plutonium recycle and the use of thorium fuels in power reactor operations

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, H. F.

    1976-01-15

    As economically attractive sources of natural uranium are gradually depleted attention will turn to recycling plutonium or to the use of thorium fuels. The radiological implications of these fuel cycles in terms of fuel handling and radioactive waste disposal are investigated in relation to a conventional /sup 235/U enriched oxide fuel. It is suggested that a comparative study of this nature may be an important aspect of the overall optimization of future fuel cycle strategies. It is shown that the use of thorium based fuels has distinct advantages in terms of neutron dose rates from irradiated fuels and long term proportional to decay heating commitment compared with conventional uranium/plutonium fuels. However, this introduces a ..gamma.. dose rate problem in the fabrication and handling of unirradiated /sup 233/U fuels. For both plutonium and thorium fuels these radiological problems increase during storage of the fuel prior to reactor irradiation. The novel health physics problems which arise in the handling and processing of thorium fuels are reviewed in an appendix.

  1. Simulation and control synthesis for a pulse column separation system for plutonium--uranium recovery

    International Nuclear Information System (INIS)

    McCutcheon, E.B.

    1975-05-01

    Control of a plutonium-uranium partitioning column was studied using a mathematical model developed to simulate the dynamic response and to test postulated separation mechanisms. The column is part of a plutonium recycle flowsheet developed for the recovery of plutonium and uranium from metallurgical scrap. In the first step of the process, decontamination from impurities is achieved by coextracting plutonium and uranium in their higher oxidation states. In the second step, reduction of the plutonium to a lower oxidation state allows partitioning of the plutonium and uranium. The use of hydroxylamine for the plutonium reduction in this partitioning column is a unique feature of the process. The extraction operations are carried out in pulse columns. (U.S.)

  2. One year of operation of the Belgonucleaire (Dessel) plutonium fuel fabrication plant

    International Nuclear Information System (INIS)

    Leblanc, J.M.

    1975-01-01

    Based on experience with plutonium since 1958, Belgonucleaire has successively launched a pilot plant and then a fuel fabrication plant for mixed uranium and plutonium oxides in 1968 and 1973 respectively. After describing briefly the plants and the most important stages in the planning, construction and operation of the Dessel plant, the present document describes the principal problems which were met during the course of operation of the plant and their direct incidence on the capacity and quality of the production of fuel elements

  3. Metallography of plutonium, uranium and thorium fuels: two decades of experience in Radiometallurgy Division

    International Nuclear Information System (INIS)

    Ghosh, J.K.; Pandey, V.D.; Rao, T.S.; Kutty, T.R.G.; Kurup, P.K.D.; Joseph, J.K.; Ganguly, C.

    1993-01-01

    Ever since the inception of Radiometallurgy Laboratory (RML) in its early seventies optical metallography has played a key role in development and fabrication of plutonium, uranium and thorium bearing nuclear fuels. In this report, an album of photomicrographs depicts the different types of metallic, ceramic and dispersion fuels and welded section that have been evaluated in RML during the last two decades. (author). 14 refs., 1 tab

  4. Fuel assemblies for use in nuclear reactors

    International Nuclear Information System (INIS)

    Mochida, Takaaki.

    1987-01-01

    Purpose: To increase the plutonium utilization amount and improve the uranium-saving effect in the fuel assemblies of PWR type reactor using mixed uranium-plutonium oxides. Constitution: MOX fuel rods comprising mixed plutonium-uranium oxides are disposed to the outer circumference of a fuel assembly and uranium fuel rods only composed of uranium oxides are disposed to the central portion thereof. In such a fuel assembly, since the uranium fuel rods are present at the periphery of the control rod, the control rod worth is the same as that of the uranium fuel assembly in the prior art. Further, since about 25 % of the entire fuel rods is composed of the MOX fuel rods, the plutonium utilization amount is increased. Further, since the MOX fuel rods at low enrichment degree are present at the outer circumferential portion, mismatching at the boundary to the adjacent MOX fuel assembly is reduced and the problem of local power peaking increase in the MOX fuel assembly is neither present. (Kamimura, M.)

  5. METHOD OF SEPARATING URANIUM VALUES, PLUTONIUM VALUES AND FISSION PRODUCTS BY CHLORINATION

    Science.gov (United States)

    Brown, H.S.; Seaborg, G.T.

    1959-02-24

    The separation of plutonium and uranium from each other and from other substances is described. In general, the method comprises the steps of contacting the uranium with chlorine in the presence of a holdback material selected from the group consisting of lanthanum oxide and thorium oxide to form a uranium chloride higher than uranium tetrachloride, and thereafter heating the uranium chloride thus formed to a temperature at which the uranium chloride is volatilized off but below the volatilizalion temperature of plutonium chloride.

  6. Chemical and Radiochemical Composition of Thermally Stabilized Plutonium Oxide from the Plutonium Finishing Plant Considered as Alternate Feedstock for the Mixed Oxide Fuel Fabrication Facility

    International Nuclear Information System (INIS)

    Tingey, Joel M.; Jones, Susan A.

    2005-01-01

    Eighteen plutonium oxide samples originating from the Plutonium Finishing Plant (PFP) on the Hanford Site were analyzed to provide additional data on the suitability of PFP thermally stabilized plutonium oxides and Rocky Flats oxides as alternate feedstock to the Mixed Oxide Fuel Fabrication Facility (MFFF). Radiochemical and chemical analyses were performed on fusions, acid leaches, and water leaches of these 18 samples. The results from these destructive analyses were compared with nondestructive analyses (NDA) performed at PFP and the acceptance criteria for the alternate feedstock. The plutonium oxide materials considered as alternate feedstock at Hanford originated from several different sources including Rocky Flats oxide, scrap from the Remote Mechanical C-Line (RMC) and the Plutonium Reclamation Facility (PRF), and materials from other plutonium conversion processes at Hanford. These materials were received at PFP as metals, oxides, and solutions. All of the material considered as alternate feedstock was converted to PuO2 and thermally stabilized by heating the PuO2 powder at 950 C in an oxidizing environment. The two samples from solutions were converted to PuO2 by precipitation with Mg(OH)2. The 18 plutonium oxide samples were grouped into four categories based on their origin. The Rocky Flats oxide was divided into two categories, low- and high-chloride Rocky Flats oxides. The other two categories were PRF/RMC scrap oxides, which included scrap from both process lines and oxides produced from solutions. The two solution samples came from samples that were being tested at Pacific Northwest National Laboratory because all of the plutonium oxide from solutions at PFP had already been processed and placed in 3013 containers. These samples originated at the PFP and are from plutonium nitrate product and double-pass filtrate solutions after they had been thermally stabilized. The other 16 samples originated from thermal stabilization batches before canning at

  7. Improved locations of reactivity devices in future CANDU reactors fuelled with natural uranium or enriched fuels

    International Nuclear Information System (INIS)

    Boczar, P.G.; Van Dyk, M.T.

    1987-02-01

    A new configuration of reactivity devices is proposed for future CANDU reactors which improves the core characteristics with enriched fuels, while still allowing the use of natural uranium fuel. Physics calculations for this new configuration are presented for four fuel types: natural uranium, mixed plutonium - uranium oxide (MOX) having a burnup of 21 MWd/kg, and slightly enriched uranium (SEU) having burnups of either 21 or 31 MWd/kg

  8. Plans and equipment for criticality measurements on plutonium-uranium nitrate solutions

    International Nuclear Information System (INIS)

    Lloyd, R.C.; Clayton, E.D.; Durst, B.M.

    1982-01-01

    Data from critical experiments are required on the criticality of plutonium-uranium nitrate solutions to accurately establish criticality control limits for use in processing and handling of breeder type fuels. Since the fuel must be processed both safely and economically, it is necessary that criticality considerations be based on accurate experimental data. Previous experiments have been reported on plutonium-uranium solutions with Pu weight ratios extending up to some 38 wt %. No data have been presented, however, for plutonium-uranium nitrate solutions beyond this Pu weight ratio. The current research emphasis is on the procurement of criticality data for plutonium-uranium mixtures up to 60 wt % Pu that will serve as the basis for handling criticality problems subsequently encountered in the development of technology for the breeder community. Such data also will provide necessary benchmarks for data testing and analysis on integral criticality experiments for verification of the analytical techniques used in support of criticality control. Experiments are currently being performed with plutonium-uranium nitrate solutions in stainless steel cylindrical vessels and an expandable slab tank system. A schematic of the experimental systems is presented

  9. Fabrication of Cerium Oxide and Uranium Oxide Microspheres for Space Nuclear Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey A. Katalenich; Michael R. Hartman; Robert C. O' Brien

    2013-02-01

    Cerium oxide and uranium oxide microspheres are being produced via an internal gelation sol-gel method to investigate alternative fabrication routes for space nuclear fuels. Depleted uranium and non-radioactive cerium are being utilized as surrogates for plutonium-238 (Pu-238) used in radioisotope thermoelectric generators and for enriched uranium required by nuclear thermal rockets. While current methods used to produce Pu-238 fuels at Los Alamos National Laboratory (LANL) involve the generation of fine powders that pose a respiratory hazard and have a propensity to contaminate glove boxes, the sol-gel route allows for the generation of oxide microsphere fuels through an aqueous route. The sol-gel method does not generate fine powders and may require fewer processing steps than the LANL method with less operator handling. High-quality cerium dioxide microspheres have been fabricated in the desired size range and equipment is being prepared to establish a uranium dioxide microsphere production capability.

  10. Critical experiments in AQUILON with fuels slightly enriched in uranium 235 or in plutonium; Experiences critiques dans aquilon portant sur des combustibles legerement enrichis en uranium 235 et en plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Chabrillac, M; Ledanois, G; Lourme, P; Naudet, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    Reactivity comparisons have been, made in Aquilon II between geometrically identical lattices differing only by the composition of the fuel. The fuel elements consist in metallic uranium single rods with either slight differences of the isotopic composition (0.69 - 0.71 - 0.83 - 0.86 per cent of uranium 235) or slight additions of plutonium (0.043 per cent). Five lattices pitches have bean used, in order to produce a large variation of spectrum. Two additional sets of plutonium fuels are prepared to be used in the same conditions. The double comparisons: natural enriched 235 versus natural-enriched plutonium are made in such a way that a very precise interpretation is permitted. The results are perfectly consistent which seems to prove that the calculation methods are convenient. Further it can been inferred that the usual data, namely for the ratio of the {eta} of {sup 235}U and {sup 239}Pu seem reliable. (authors) [French] On a compare neutroniquement dans Aquilon II des reseaux geometriquement identiques mais comportant de petites differences de composition du combustible. EL s'agit de barres d'uranium metallique, les unes avec des teneurs differentes en isotopes 235 (0,69 - 0,71 - 0,83 - 0,86 pour cent) les autres comportant une legere addition de plutonium (0,043 pour cent). Les comparaisons ont ete faites a cinq pas differents, de maniere a mettre en jeu une assez large variation de spectre. Deux autres jeux de combustible au plutonium seront utilises ulterieurement dans les memes conditions. Les resultats des mesures se presentent sous forme de doubles comparaisons: naturel-enrichi 235/naturel-enrichi plutonium. On s'est place dans des conditions qui permettent des interpretations tres precises. Les resultats sont remarquablement coherents, ce qui semble montrer que les methodes de calcul sont bien adaptees, Ils tendent d'autre part a prouver que les valeurs numeriques admises dans la litterature, notamment pour le rapport des {eta} de l'U 235 et de Pu 239

  11. Studies relating to construction materials to be used in different options for head end treatment in reprocessing of mixed carbide fuel of plutonium and uranium

    International Nuclear Information System (INIS)

    Rajan, S.K.; Palamalai, A.; Ravi, T.N.; Sampath, M.; Raman, V.R.; Balasubramanian, G.R.

    1993-01-01

    Mixed carbide of uranium and plutonium has been chosen as the fuel for the first core of Fast Breeder Test Reactor, installed in the Indira Gandhi Centre for Atomic Research. Reprocessing of this fuel is one of the vital steps to prove the viability of the fuel cycle. The head end treatment process introduces constraints in the reprocessing of carbide fuel when compared to the commonly used mixed oxide fuel. Three head end processes, namely direct oxidation, pyrohydrolysis and direct dissolution in nitric acid with oxidation of organic acids were considered for study for exercising the choice. The paper briefly describes the three processes. In each process probable material of construction and related problems are discussed. (author). 3 refs, 5 figs, 7 tabs

  12. Reactivity change measurements on plutonium-uranium fuel elements in hector experimental techniques and results

    International Nuclear Information System (INIS)

    Tattersall, R.B.; Small, V.G.; MacBean, I.J.; Howe, W.D.

    1964-08-01

    The techniques used in making reactivity change measurements on HECTOR are described and discussed. Pile period measurements were used in the majority of oases, though the pile oscillator technique was used occasionally. These two methods are compared. Flux determinations were made in the vicinity of the fuel element samples using manganese foils, and the techniques used are described and an error assessment made. Results of both reactivity change and flux measurements on 1.2 in. diameter uranium and plutonium-uranium alloy fuel elements are presented, these measurements being carried out in a variety of graphite moderated lattices at temperatures up to 450 deg. C. (author)

  13. The plutonium-oxygen and uranium-plutonium-oxygen systems: A thermochemical assessment

    International Nuclear Information System (INIS)

    1967-01-01

    The report of a panel of experts convened by the IAEA in Vienna in March 1964. It reviews the structural and thermodynamic data for the Pu-O and U-Pu-O systems and presents the conclusions of the panel. The report gives information on preparation, phase diagrams, thermodynamic and vaporization behaviour of plutonium oxides, uranium-plutonium oxides and PuO 2 -MeO x (Me=Be, Mg, Al, Si, W, Th, Eu, Zr, Ce) systems. 167 refs, 27 figs, 17 tabs

  14. Light water reactor mixed-oxide fuel irradiation experiment

    International Nuclear Information System (INIS)

    Hodge, S.A.; Cowell, B.S.; Chang, G.S.; Ryskamp, J.M.

    1998-01-01

    The United States Department of Energy Office of Fissile Materials Disposition is sponsoring and Oak Ridge National Laboratory (ORNL) is leading an irradiation experiment to test mixed uranium-plutonium oxide (MOX) fuel made from weapons-grade (WG) plutonium. In this multiyear program, sealed capsules containing MOX fuel pellets fabricated at Los Alamos National Laboratory (LANL) are being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). The planned experiments will investigate the utilization of dry-processed plutonium, the effects of WG plutonium isotopics on MOX performance, and any material interactions of gallium with Zircaloy cladding

  15. Advanced PWR Core Design with Siemens High-Plutonium-Content MOX Fuel Assemblies

    International Nuclear Information System (INIS)

    Dieter Porsch; Gerhard Schlosser; Hans-Dieter Berger

    2000-01-01

    The Siemens experience with plutonium recycling dates back to the late 1960s. Over the years, extensive research and development programs were performed for the qualification of mixed-oxide (MOX) technology and design methods. Today's typical reload enrichments for uranium and MOX fuel assemblies and modern core designs have become more demanding with respect to accuracy and reliability of design codes. This paper presents the status of plutonium recycling in operating high-burnup pressurized water reactor (PWR) cores. Based on actual examples, it describes the validation status of the design methods and stresses current and future needs for fuel assembly and core design including those related to the disposition of weapons-grade plutonium

  16. Stability with temperature of mixed uranium plutonium monocarbides

    International Nuclear Information System (INIS)

    Riglet-Martial, Ch.; Dumas, J.C.; Piron, J.P.; Gueneau, Ch.

    2008-01-01

    Full text: Among the different advanced fuel materials of concern for Generation IV systems, the mixed carbide of uranium and plutonium fuel is considered as one of the key materials for Gas Fast Reactors (GFR) systems. For purposes of optimising its fabrication process as well as its performances in various operating conditions, the losses of gaseous plutonium specially at elevated temperatures have to be controlled and minimized. The paper is therefore concerned with a parametric analysis of the stability with temperature of mixed carbides of uranium and plutonium. Previous published experimental studies have shown that mixed (U ,Pu) carbides undergo a highly incongruent sublimation at high temperatures: the vapour phase in equilibrium with the solid is mainly composed of gaseous plutonium (P Pu /P total > 99 % ) while the contribution of gaseous U and C remains very low. The composition of the system U 1-z Pu z C 1+x ' (z =Pu/(U+Pu) and x C/(U+Pu)), the temperature (T) and the expansion volume (V) of the gas are the main parameters in the loss of gaseous Pu. The calculations are carried out using the SAGE (Solgasmix Advanced Gibbs Energy) software, by assuming ideal solid solutions between UC and PuC, as well as between U 2 C 3 and Pu 2 C 3 . The validity of the model is previously tested using published equilibrium vapour pressure data. This work gives rise to a large description of the variations of Pu losses from mixed uranium plutonium carbides and leads to some basic recommendations in connection with the use of this advanced fuel materials

  17. Proserpine - plutonium 239 - Proserpine - uranium 235 - comparison of experimental results; Proserpine - plutonium 239 - proserpine - uranium 235 - comparaison de resultats experimentaux

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, J P; Caizergues, R; Clouet D' Orval, Ch; Kremser, J; Moret-Bailly, J; Verriere, Ph [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The Proserpine homogeneous reactor is constituted by a tank, 25 cm dia, 30 cm high, surrounded by a composite reflector made of beryllium oxide and graphite. In this tank can be made critical plutonium or 90 per cent enriched uranium solutions, the fissile substances being in the form of a dissolved salt. In varying the concentration of the solution, critical masses were studied as a function of the level of the liquid in the tank. The minimum critical mass is 256 {+-} 2 grs for plutonium and 409 {+-} 3 grs for uranium 235. In the range of the critical concentrations which were studied, the neutronic properties of fissionable solutions of plutonium and enriched uranium were compared for identical geometries. (authors) [French] Proserpine est un reacteur homogene comportant une cuve de diametre 25 cm, de hauteur 30 cm, entouree d'un reflecteur composite d'oxyde de beryllium et de graphite. On y a rendu critiques des solutions de plutonium ou d'uranium enrichi a 90 pour cent, le produit fissile se trouvant sous la forme d'un sel dissous. En faisant varier la concentration de la solution, on a etudie les masses critiques en fonction de la hauteur du liquide dans la cuve. La masse- critique minimum est, pour le plutonium de 256 {+-} 2 g, pour l'uranium 235 de 409 {+-} 3 g. Dans la gamme des concentrations critiques etudiees, on a compare, dans des conditions de geometrie identique, les proprietes neutroniques des solutions fissiles de plutonium et d'uranium enrichi. (auteurs)

  18. Impact of receipt of coprocessed uranium/plutonium on advanced accountability concepts and fabrication facilities. Addendum 1 to application of advanced accountability concepts in mixed oxide fabrication

    International Nuclear Information System (INIS)

    Bastin, J.J.; Jump, M.J.; Lange, R.A.; Randall, C.C.

    1977-11-01

    The Phase I study of the application of advanced accountability methods (DYMAC) in a uranium/plutonium mixed oxide facility was extended to assess the effect of coprocessed UO 2 --PuO 2 feed on the observations made in the original Phase I effort and on the proposed Phase II program. The retention of plutonium mixed with uranium throughout the process was also considered. This addendum reports that coprocessed feed would have minimal effect on the DYMAC program, except in the areas of material specifications, starting material delivery schedule, and labor requirements. Each of these areas is addressed, as are the impact of coprocessed feed at a large fuel fabrication facility and the changes needed in the dirty scrap recovery process to maintain the lower plutonium levels which may be required by future nonproliferation philosophy. An amended schedule for Phase II is included

  19. Sequential potentiometric determination of uranium and plutonium in a single aliquot

    International Nuclear Information System (INIS)

    Rao, V.K.; Charyulu, M.M.; Natarajan, P.R.

    1983-01-01

    A method is reported for sequential potentiometric determination of uranium and plutonium present is an aliquot. Plutonium is first determined by oxidizing it to the hexavalent state with perchloric acid followed by iron(II) reduction and titration of excess ferrous iron with chromium(VI). Uranium is subsequently determined by reduction to the quadrivalent state using titanium(III) and titration with vanadium(V). The interference of plutonium and iron(II) is eliminated by the addition of a mixture containing sulfamic acid, nitric acid, and molybdenum(VI). The results of the analysis of mixture containing 3-5 mg quantities of uranium and plutonium are reliable with errors less than 0.3% and 0.2%, respectively. The application of the method for the analysis of mixtures containing various amounts of uranium and plutonium has been examined. (author)

  20. 75 FR 41850 - Amended Notice of Intent to Modify the Scope of the Surplus Plutonium Disposition Supplemental...

    Science.gov (United States)

    2010-07-19

    ... and packaging capabilities, including direct metal oxidation, to fulfill plutonium storage..., disassemble nuclear weapons pits (a weapons component) and convert the plutonium metal to an oxide form for fabrication into mixed uranium-plutonium oxide (MOX) reactor fuel in the Mixed Oxide Fuel Fabrication Facility...

  1. Uranium and plutonium determinations for evaluation of high burnup fuel performance

    International Nuclear Information System (INIS)

    Heinrich, R.R.; Popek, R.J.; Bowers, D.L.; Essling, A.M.; Callis, E.L.; Persiani, P.J.

    1985-01-01

    Purpose of this work is to experimentally test computational methods being developed for reactor fuel operation. Described are the analytical techniques used in the determination of uranium and plutonium compositions on PWR fuel that has spanned five power cycles, culminating in 55,000 to 57,000 MWd/T burnup. Analyses have been performed on ten samples excised from selected sections of the fuel rods. Hot cell operations required the separation of fuel from cladding and the comminution of the fuel. These tasks were successfully accomplished using a SpectroMil, a ball pestle impact grinding and blending instrument manufactured by Chemplex Industries, Inc., Eastchester, New York. The fuel was dissolved using strong mineral acids and bomb dissolution techniques. Separation of the fuel from fission products was done by solvent (hexone) extraction. Fuel isotopic compositions and assays were determined by the mass spectrometric isotope dilution (MSID) method using NBS standards SRM-993 and SRM-996. Alpha spectrometry was used to determine the 238 Pu composition. Relative correlations of composition with burnup were obtained by gamma-ray spectrometry of selected fission products in the dissolved fuel

  2. Analysis of refabricated fuel: determination of carbon in uranium plutonium mixed carbide

    International Nuclear Information System (INIS)

    Huwyler, S.

    1977-09-01

    In developing uranium plutonium mixed carbide which represents an advanced fuel for breeder reactors carbon analysis is an important means of determining the stoichiometry. Methods of carbon determination are briefly reviewed. The carbon determination using a LECO WR-12 Carbon Determinator is treated in detail and experience of three years operation communicated. Problems arising from operating the LECO-apparatus in a glove box are discussed. It is pointed out that carbon determination with the LECO-apparatus is a very fast method with good precision and well suited for the routine analysis of mixed carbide fuel. The accuracy of the method is checked by means of a standard. (Auth.)

  3. Automatic chemical determination facility for plutonium and uranium

    International Nuclear Information System (INIS)

    Benhamou, A.

    1980-01-01

    A proposal for a fully automated chemical determination system for uranium and plutonium in (U, Pu)O 2 mixed oxide fuel, from the solid sample weighing operation to the final result is described. The steps completed to data are described. These include: test sample preparation by weighing, potentiometer titration system, cleaning and drying of glassware after titration. The process uses a Mettler SR 10 Titrator System in conjunction with others automatized equipment in corse of realization. Precision may reach 0.02% and is generally better than 0.1%. Accuracy in within +-0.1% of manual determination results or titration standards [fr

  4. Comparison of neutron dose measured by Albedo TLD and etched tracks detector at PNC plutonium fuel facilities

    International Nuclear Information System (INIS)

    Tsujimura, N.; Momose, T.; Shinohara, K.; Ishiguro, H.

    1996-01-01

    Power Reactor and Nuclear Fuel Development Corporation (PNC) has fabricated Plutonium and Uranium Mixed OXide (MOX) fuel for FBR MONJU at Tokai works. In this site, PNC/Panasonic albedo TLDs/1/ are used for personnel neutron monitoring. And a part of workers wore Etched Tracks Detector (ETD) combined with TLD in order to check the accuracy of the neutron dose estimated by albedo TLD. In this paper, the neutron dose measured by TLD and ETD in the routine monitoring is compared at PNC plutonium fuel facilities. (author)

  5. Separation of Plutonium from Irradiated Fuels and Targets

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Leonard W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Holliday, Kiel S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murray, Alice [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Thompson, Major [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Thorp, Donald T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yarbro, Stephen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Venetz, Theodore J. [Hanford Site, Benton County, WA (United States)

    2015-09-30

    Spent nuclear fuel from power production reactors contains moderate amounts of transuranium (TRU) actinides and fission products in addition to the still slightly enriched uranium. Originally, nuclear technology was developed to chemically separate and recover fissionable plutonium from irradiated nuclear fuel for military purposes. Military plutonium separations had essentially ceased by the mid-1990s. Reprocessing, however, can serve multiple purposes, and the relative importance has changed over time. In the 1960’s the vision of the introduction of plutonium-fueled fast-neutron breeder reactors drove the civilian separation of plutonium. More recently, reprocessing has been regarded as a means to facilitate the disposal of high-level nuclear waste, and thus requires development of radically different technical approaches. In the last decade or so, the principal reason for reprocessing has shifted to spent power reactor fuel being reprocessed (1) so that unused uranium and plutonium being recycled reduce the volume, gaining some 25% to 30% more energy from the original uranium in the process and thus contributing to energy security and (2) to reduce the volume and radioactivity of the waste by recovering all long-lived actinides and fission products followed by recycling them in fast reactors where they are transmuted to short-lived fission products; this reduces the volume to about 20%, reduces the long-term radioactivity level in the high-level waste, and complicates the possibility of the plutonium being diverted from civil use – thereby increasing the proliferation resistance of the fuel cycle. In general, reprocessing schemes can be divided into two large categories: aqueous/hydrometallurgical systems, and pyrochemical/pyrometallurgical systems. Worldwide processing schemes are dominated by the aqueous (hydrometallurgical) systems. This document provides a historical review of both categories of reprocessing.

  6. Disposition of Uranium -233 (sup 233U) in Plutonium Metal and Oxide at the Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Freiboth, Cameron J.; Gibbs, Frank E.

    2000-01-01

    This report documents the position that the concentration of Uranium-233 ( 233 U) in plutonium metal and oxide currently stored at the DOE Rocky Flats Environmental Technology Site (RFETS) is well below the maximum permissible stabilization, packaging, shipping and storage limits. The 233 U stabilization, packaging and storage limit is 0.5 weight percent (wt%), which is also the shipping limit maximum. These two plutonium products (metal and oxide) are scheduled for processing through the Building 371 Plutonium Stabilization and Packaging System (PuSPS). This justification is supported by written technical reports, personnel interviews, and nuclear material inventories, as compiled in the ''History of Uranium-233 ( 233 U) Processing at the Rocky Flats Plant In Support of the RFETS Acceptable Knowledge Program'' RS-090-056, April 1, 1999. Relevant data from this report is summarized for application to the PuSPS metal and oxide processing campaigns

  7. Boiling water reactors with Uranium-Plutonium mixed oxide fuel. Report 1: Accuracy of the nuclide concentrations calculated by CASMO-4

    International Nuclear Information System (INIS)

    Demaziere, C.

    1999-01-01

    This report is a part of the project titled 'Boiling Water Reactors With Uranium-Plutonium Mixed Oxide (MOx) Fuel'. The aim of this study is to model the impact of a core loading pattern containing MOx bundles upon the main characteristics of a BWR (reactivity coefficients, stability, etc.). The tools that are available to perform a modeling in the Department of Reactor Physics in Chalmers are CASMO-4/TABLES-3/SIMULATE-3 from Studsvik of America. These CMS (Core Management System) programs have been extensively compared with both measurements and reference codes. Nevertheless some data are proprietary in particular the comparison of the calculated nuclide concentrations versus experiments (because of the cost of this kind of experimental study). This is why this report describes such a comparative investigation carried out with a General Electric 7x7 BWR bundle. Unfortunately, since some core history parameters were unknown, a lot of hypotheses have been adopted. This invokes sometimes a significant discrepancy in the results without being able to determine the origin of the differences between calculations and experiments. Yet one can assess that, except for four nuclides - Plutonium-238, Curium-243, Curium-244 and Cesium-135 - for which the approximate power history (history effect) can be invoked, the accuracy of the calculated nuclide concentrations is rather good if one takes the numerous approximations into account

  8. Nuclear fuel rods

    International Nuclear Information System (INIS)

    Wada, Toyoji.

    1979-01-01

    Purpose: To remove failures caused from combination of fuel-cladding interactions, hydrogen absorptions, stress corrosions or the likes by setting the quantity ratio of uranium or uranium and plutonium relative to oxygen to a specific range in fuel pellets and forming a specific size of a through hole at the center of the pellets. Constitution: In a fuel rods of a structure wherein fuel pellets prepared by compacting and sintering uranium dioxide, or oxide mixture consisting of oxides of plutonium and uranium are sealed with a zirconium metal can, the ratio of uranium or uranium and plutonium to oxygen is specified as 1 : 2.01 - 1 : 2.05 in the can and a passing hole of a size in the range of 15 - 30% of the outer diameter of the fuel pellet is formed at the center of the pellet. This increases the oxygen partial pressure in the fuel rod, oxidizes and forms a protection layer on the inner surface of the can to control the hydrogen absorption and stress corrosion. Locallized stress due to fuel cladding interaction (PCMI) can also be moderated. (Horiuchi, T.)

  9. Boiling water reactors with uranium-plutonium mixed oxide fuel. Report 5: Analysis of the reactivity coefficients and the stability of a BWR loaded with MOx fuel

    Energy Technology Data Exchange (ETDEWEB)

    Demaziere, C. [CEA Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Reacteurs Nucleaires

    2000-01-01

    This report is a part of the project titled 'Boiling Water Reactors With Uranium-Plutonium Mixed Oxide (MOx) Fuel'. The aim of this study is to model the impact of a core loading pattern containing MOx bundles upon the main characteristics of a BWR (reactivity coefficients, stability, etc.). For this purpose, the Core Management System (CMS) codes of Studsvik Scandpower are used. This package is constituted by CASMO-4/TABLES-3/SIMULATE-3. It has been shown in previous reports that these codes are able to accurately represent and model MOx bundles. This report is thus devoted to the study of BWR cores loaded (partially or totally) with MOx bundles. The plutonium quality used is the Pu type 2016 (mostly Pu-239, 56 %, and Pu-240, 26 %), but a variation of the plutonium isotopic vector was also investigated, in case of a partial MOx loading. One notices that the reactivity coefficients do not present significant changes in comparison with a full UOx loading. Nevertheless, two main problems arise: the shutdown margin at BOC is lower than 1 % and the stability to in-phase oscillations is slightly decreased. (The SIMULATE-3 version used for this study does not contain the latest MOx enhancements described in literature, since these code developments have not been provided to the department. Nevertheless, as the nominal average enrichment of the MOx bundles is 5.41 % (total amount of plutonium), which can still be considered as a relatively low enrichment, the accuracy of the CMS codes is acceptable without the use of the MOx improvements for this level of Pu enrichment.

  10. CANDU reactors with reactor grade plutonium/thorium carbide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Suemer [Atilim Univ., Ankara (Turkey). Faculty of Engineering; Khan, Mohammed Javed; Ahmed, Rizwan [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan); Gazi Univ., Ankara (Turkey). Faculty of Technology

    2011-08-15

    Reactor grade (RG) plutonium, accumulated as nuclear waste of commercial reactors can be re-utilized in CANDU reactors. TRISO type fuel can withstand very high fuel burn ups. On the other hand, carbide fuel would have higher neutronic and thermal performance than oxide fuel. In the present work, RG-PuC/ThC TRISO fuels particles are imbedded body-centered cubic (BCC) in a graphite matrix with a volume fraction of 60%. The fuel compacts conform to the dimensions of sintered CANDU fuel compacts are inserted in 37 zircolay rods to build the fuel zone of a bundle. Investigations have been conducted on a conventional CANDU reactor based on GENTILLYII design with 380 fuel bundles in the core. Three mixed fuel composition have been selected for numerical calculation; (1) 10% RG-PuC + 90% ThC; (2) 30% RG-PuC + 70% ThC; (3) 50% RG-PuC + 50% ThC. Initial reactor criticality values for the modes (1), (2) and (3) are calculated as k{sub {infinity}}{sub ,0} = 1.4848, 1.5756 and 1.627, respectively. Corresponding operation lifetimes are {proportional_to} 2.7, 8.4, and 15 years and with burn ups of {proportional_to} 72 000, 222 000 and 366 000 MW.d/tonne, respectively. Higher initial plutonium charge leads to higher burn ups and longer operation periods. In the course of reactor operation, most of the plutonium will be incinerated. At the end of life, remnants of plutonium isotopes would survive; and few amounts of uranium, americium and curium isotopes would be produced. (orig.)

  11. Methods for analysis of uranium-plutonium mixed fuel and transplutonium elements at RIAR (Preprint no. IT-25)

    International Nuclear Information System (INIS)

    Timofeev, G.A.

    1991-02-01

    Different methods for analysis of the uranium-plutonium mixed nuclear fuel and transplutonium elements are briefly discussed in this paper: coulometry, radiometric techniques, emission spectrography, mass-spectrometry, chromatography, spectrophotometry. The main analytical characteristics of the methods developed are given. (author). 30 refs., 2 tabs

  12. Uranium Oxide Rate Summary for the Spent Nuclear Fuel (SNF) Project (OCRWM)

    Energy Technology Data Exchange (ETDEWEB)

    PAJUNEN, A.L.

    2000-09-20

    The purpose of this document is to summarize the uranium oxidation reaction rate information developed by the Hanford Spent Nuclear Fuel (SNF) Project and describe the basis for selecting reaction rate correlations used in system design. The selection basis considers the conditions of practical interest to the fuel removal processes and the reaction rate application during design studies. Since the reaction rate correlations are potentially used over a range of conditions, depending of the type of evaluation being performed, a method for transitioning between oxidation reactions is also documented. The document scope is limited to uranium oxidation reactions of primary interest to the SNF Project processes. The reactions influencing fuel removal processes, and supporting accident analyses, are: uranium-water vapor, uranium-liquid water, uranium-moist air, and uranium-dry air. The correlation selection basis will consider input from all available sources that indicate the oxidation rate of uranium fuel, including the literature data, confirmatory experimental studies, and fuel element observations. Trimble (2000) summarizes literature data and the results of laboratory scale experimental studies. This document combines the information in Trimble (2000) with larger scale reaction observations to describe uranium oxidation rate correlations applicable to conditions of interest to the SNF Project.

  13. Uranium Oxide Rate Summary for the Spent Nuclear Fuel (SNF) Project (OCRWM)

    International Nuclear Information System (INIS)

    PAJUNEN, A.L.

    2000-01-01

    The purpose of this document is to summarize the uranium oxidation reaction rate information developed by the Hanford Spent Nuclear Fuel (SNF) Project and describe the basis for selecting reaction rate correlations used in system design. The selection basis considers the conditions of practical interest to the fuel removal processes and the reaction rate application during design studies. Since the reaction rate correlations are potentially used over a range of conditions, depending of the type of evaluation being performed, a method for transitioning between oxidation reactions is also documented. The document scope is limited to uranium oxidation reactions of primary interest to the SNF Project processes. The reactions influencing fuel removal processes, and supporting accident analyses, are: uranium-water vapor, uranium-liquid water, uranium-moist air, and uranium-dry air. The correlation selection basis will consider input from all available sources that indicate the oxidation rate of uranium fuel, including the literature data, confirmatory experimental studies, and fuel element observations. Trimble (2000) summarizes literature data and the results of laboratory scale experimental studies. This document combines the information in Trimble (2000) with larger scale reaction observations to describe uranium oxidation rate correlations applicable to conditions of interest to the SNF Project

  14. Electroanalytical studies of uranium, neptunium, and plutonium ions in solutions

    International Nuclear Information System (INIS)

    Yoshida, Zenko; Aoyagi, Hisao; Kihara, Sorin

    1989-01-01

    Redox behavior of uranium, neptunium, and plutonium ions, whose oxidation states in acid solutions are between (VI) and (III), were investigated by flow-coulometry with a column electrode of glassy carbon fibers as well as ordinary voltammetry with a rotating disc electrode. Based on current-potential curves the electrode processes were elucidated taking their disproportionation and/or complexation reactions into account. The flow-coulometry, which provides rapid and quantitative electrolysis, was applied to such analytical purposes as follows; the determination of uranium and plutonium in the solution or the solid with discerning their oxidation states, the preparation of species in a desired oxidation state, even in an unstable state which cannot be prepared by ordinary procedure, and the separation of trace amount of uranium in solutions by the electrodeposition of its hydroxide

  15. Phase equilibrium study on system uranium-plutonium-tungsten-carbon

    International Nuclear Information System (INIS)

    Ugajin, Mitsuhiro

    1976-11-01

    Metallurgical properties of the U-Pu-W-C system have been studied with emphasis on phases and reactions. Free energy of compound formation, carbon activity and U/Pu segregation in the W-doped carbide fuel are estimated using phase diagram data. The results indicate that tungsten metal is useful as a thermochemical stabilizer of the carbide fuel. Tungsten has high temperature stability in contact with uranium carbide and mixed uranium-plutonium carbide. (auth.)

  16. Determination of uranium in plutonium--238 metal and oxide by differential pulse polarography

    International Nuclear Information System (INIS)

    Fawcett, N.C.

    1976-01-01

    A differential pulse polarographic method was developed for the determination of total uranium in 238 Pu metal and oxides. A supporting electrolyte of 0.5 M ascorbic acid in 0.15 N H 2 SO 4 was found satisfactory for the determination of 500 ppM or more of uranium in 10 mg or less of plutonium. A relative standard deviation of 0.27 to 4.3 percent was obtained in the analysis of samples ranging in uranium content from 0.65 to 2.79 percent. The limit of detection was 0.18 μg ml -1 . Peak current was a linear function of uranium concentration up to at least 100 μg ml -1 . Amounts of neptunium equal to the uranium content were tolerated. The possible interference of a number of other cations and anions were investigated

  17. Thermodynamic functions and vapor pressures of uranium and plutonium oxides at high temperatures

    International Nuclear Information System (INIS)

    Green, D.W.; Reedy, G.T.; Leibowitz, L.

    1977-01-01

    The total energy release in a hypothetical reactor accident is sensitive to the total vapor pressure of the fuel. Thermodynamic functions which are accurate at high temperature can be calculated with the methods of statistical mechanics provided that needed spectroscopic data are available. This method of obtaining high-temperature vapor pressures should be greatly superior to the extrapolation of experimental vapor pressure measurements beyond the temperature range studied. Spectroscopic data needed for these calculations are obtained from infrared spectroscopy of matrix-isolated uranium and plutonium oxides. These data allow the assignments of the observed spectra to specific molecular species as well as the calculation of anharmonicities for monoxides, bond angles for dioxides, and molecular geometries for trioxides. These data are then employed, in combination with data on rotational and electronic molecular energy levels, to determine thermodynamic functions that are suitable for the calculation of high-temperature vapor pressures

  18. Exploiting the plutonium stockpiles in PWRs by using inert matrix fuel

    International Nuclear Information System (INIS)

    Lombardi, C.; Mazzola, A.

    1996-01-01

    The plutonium coming from dismantled warheads and that already stockpiled coming from spent fuel reprocessing have raised many concerns related to proliferation resistance, environmental safety and economy. The option of disposing of plutonium by fission is one of the most widely discussed and many proposals for plutonium burning in a safe and economical manner have been put forward. Due to their diffusion, PWRs appear to be the main candidates for the reduction of the plutonium stockpiles. In order to achieve a high plutonium consumption rate, a uranium-free fuel may be conceived, based on the dilution of PuO 2 within a carrier matrix made of inert oxide. In this paper, a partial loading of inert matrix fuel in a current technology PWR was investigated with 3-D calculations. The results indicated that this solution has good plutonium elimination capabilities: commercial PWRs operating in a once-through cycle scheme can transmute more than 98% of the loaded Pu-239 and 73 or 81% of the overall initially loaded reactor grade or weapons grade plutonium, respectively. The plutonium still let in the spent fuel was of poor quality and then offered a better proliferation resistance. Power peaking problems could be faced with the adoption of burnable absorbers: IFBA seemed to be particularly suitable. In spite of a reduction of the overall plutonium loaded mass by a factor 3.7 or 5.4 depending on its quality, there was no evidence of an increase of the minor actinides radiotoxicity after a time period of about 25 years. (author)

  19. Fabrication of inert matrix fuel for the incineration of plutonium - a feasibility study

    International Nuclear Information System (INIS)

    Burghartz, M.; Ledergerber, G.; Ingold, F.; Xie, T.; Botta, F.; Idemitsu, K.

    1998-01-01

    The internal gelation process has been applied to fabricate classical fuel based on uranium like UO 2 and MOX. For recent aims to destroy plutonium in the most effective way, a uranium free fuel was evaluated. The fuel development at PSI has been redirected to a fuel based on zirconium oxide or a mixture of zirconia and a conducting material leading to ceramic/metal (CERMET) or ceramic/ceramic (CERCER) combinations. A feasibility study was carried out to demonstrate that microspheres based on zirconia and spinel can be fabricated. The gelation parameters were investigated leading to optimised compositions for the starting solutions. Studies to fabricate a composite material (from zirconia and spinel) are ongoing. If the zirconia/spinel ratio is chosen appropriately, the low thermal conductivity of pure zirconia could be compensated by the higher thermal conductivity of spinel. Another solution to improve the low thermal conductivity of zirconia is the development of a CERMET, which consists of fine particles bearing plutonium in a cubic zirconia dispersed in a metallic matrix. The fabrication of such a CERMET is also being studied. (author)

  20. Fuel cycles using adulterated plutonium

    International Nuclear Information System (INIS)

    Brooksbank, R.E.; Bigelow, J.E.; Campbell, D.O.; Kitts, F.G.; Lindauer, R.B.

    1978-01-01

    Adjustments in the U-Pu fuel cycle necessitated by decisions made to improve the nonproliferation objectives of the US are examined. The uranium-based fuel cycle, using bred plutonium to provide the fissile enrichment, is the fuel system with the highest degree of commercial development at the present time. However, because purified plutonium can be used in weapons, this fuel cycle is potentially vulnerable to diversion of that plutonium. It does appear that there are technologically sound ways in which the plutonium might be adulterated by admixture with 238 U and/or radioisotopes, and maintained in that state throughout the fuel cycle, so that the likelihood of a successful diversion is small. Adulteration of the plutonium in this manner would have relatively little effect on the operations of existing or planned reactors. Studies now in progress should show within a year or two whether the less expensive coprocessing scheme would provide adequate protection (coupled perhaps with elaborate conventional safeguards procedures) or if the more expensive spiked fuel cycle is needed as in the proposed civex pocess. If the latter is the case, it will be further necessary to determine the optimum spiking level, which could vary as much as a factor of a billion. A very basic question hangs on these determinations: What is to be the nature of the recycle fuel fabrication facilities. If the hot, fully remote fuel fabrication is required, then a great deal of further development work will be required to make the full cycle fully commercial

  1. Plutonium Consumption Program, CANDU Reactor Project final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-31

    DOE is investigating methods for long term dispositioning of weapons grade plutonium. One such method would be to utilize the plutonium in Mixed OXide (MOX) fuel assemblies in existing CANDU reactors. CANDU (Canadian Deuterium Uranium) reactors are designed, licensed, built, and supported by Atomic Energy of Canada Limited (AECL), and currently use natural uranium oxide as fuel. The MOX spent fuel assemblies removed from the reactor would be similar to the spent fuel currently produced using natural uranium fuel, thus rendering the plutonium as unattractive as that in the stockpiles of commercial spent fuel. This report presents the results of a study sponsored by the DOE for dispositioning the plutonium using CANDU technology. Ontario Hydro`s Bruce A was used as reference. The fuel design study defined the optimum parameters to disposition 50 tons of Pu in 25 years (or 100 tons). Two alternate fuel designs were studied. Safeguards, security, environment, safety, health, economics, etc. were considered. Options for complete destruction of the Pu were also studied briefly; CANDU has a superior ability for this. Alternative deployment options were explored and the potential impact on Pu dispositioning in the former Soviet Union was studied. An integrated system can be ready to begin Pu consumption in 4 years, with no changes required to the reactors other than for safe, secure storage of new fuel.

  2. Plutonium Consumption Program, CANDU Reactor Project final report

    International Nuclear Information System (INIS)

    1994-01-01

    DOE is investigating methods for long term dispositioning of weapons grade plutonium. One such method would be to utilize the plutonium in Mixed OXide (MOX) fuel assemblies in existing CANDU reactors. CANDU (Canadian Deuterium Uranium) reactors are designed, licensed, built, and supported by Atomic Energy of Canada Limited (AECL), and currently use natural uranium oxide as fuel. The MOX spent fuel assemblies removed from the reactor would be similar to the spent fuel currently produced using natural uranium fuel, thus rendering the plutonium as unattractive as that in the stockpiles of commercial spent fuel. This report presents the results of a study sponsored by the DOE for dispositioning the plutonium using CANDU technology. Ontario Hydro's Bruce A was used as reference. The fuel design study defined the optimum parameters to disposition 50 tons of Pu in 25 years (or 100 tons). Two alternate fuel designs were studied. Safeguards, security, environment, safety, health, economics, etc. were considered. Options for complete destruction of the Pu were also studied briefly; CANDU has a superior ability for this. Alternative deployment options were explored and the potential impact on Pu dispositioning in the former Soviet Union was studied. An integrated system can be ready to begin Pu consumption in 4 years, with no changes required to the reactors other than for safe, secure storage of new fuel

  3. Fuel component of electricity generation cost for the BN-800 reactor with MOX fuel and uranium oxide fuel with increasing of fuel burnup and removing of radial breeding blanket

    International Nuclear Information System (INIS)

    Raskach, A.

    2001-01-01

    Nowadays there are two completed design concepts of Nuclear Power Plants (NPPs) with the BN-800 type reactors developed with due regard for advanced safety requirements. One of them is the design of the fourth unit of the Beloyarsk Nuclear Power Plant; the other one is the design of three units of the South Ural Nuclear Power Plant. The both concepts are to use mixed oxide fuel (MOX fuel) based on civil plutonium. Studies on any project include economical analyses and cost of fuel is an essential parameter. In the course of the design works on the both projects such evaluations were done. For BN-800 on the Beloyarsk site nuclear fuel costs were taken from actual expenses of the BN-600 reactor and converted to rated thermal power and design capacity factor of the BN-800 and then increased by 20% in connection with turning to MOX fuel. Then this methodology was rewarding, but the ratio of uranium fuel and MOX fuel costs might change for the last years. For the project of three units of the South Ural Nuclear Power Plant nuclear fuel expenses were calculated from the data on a MOX fuel fabrication production facility (Complex-300). However, investigations performed recently shown that the methodology of economical assessments should be revised, as well as design and technology of MOX fuel fabrication at Complex-300 should be revised to meet all the existing safety requirements. Excepting there is a great bulk of civil plutonium to be reproduced, now we came up against the problem to utilize the exceeding ex-weapons plutonium that obviously can be used for MOX fuel fabrication as well. Construction of the MOX fuel fabrication facility - Complex-300 - was started in 1983. Its design output was planned to provide simultaneously 4 fast reactors of the BN-800 type with MOX fuel. By now about 50% of construction works (taking into account auxiliary buildings and arrangements) and 20% of installation works have been done at Complex-300. Along this, first works to construct

  4. Plutonium and minor actinides recycle in equilibrium fuel cycles of pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Waris, A.; Sekimoto, H. [Research Lab. for Nuclear Reactors, Tokyo Institute of Technology, Tokyo (Japan)

    2001-07-01

    A study on plutonium and minor actinides (MA) recycle in equilibrium fuel cycles of pressurized water reactors (PWR) has been performed. The calculation results showed that the enrichment and the required amount of natural uranium decrease significantly with increasing number of confined plutonium and MA when uranium is discharged from the reactor. However, when uranium is totally confined, the enrichment becomes extremely high. The recycle of plutonium and MA together with discharging uranium can reduce the radio-toxicity of discharged heavy metal (HM) waste to become less than that of loaded uranium. (author)

  5. Proserpine - plutonium 239 - Proserpine - uranium 235 - comparison of experimental results

    International Nuclear Information System (INIS)

    Brunet, J.P.; Caizergues, R.; Clouet D'Orval, Ch.; Kremser, J.; Moret-Bailly, J.; Verriere, Ph.

    1964-01-01

    The Proserpine homogeneous reactor is constituted by a tank, 25 cm dia, 30 cm high, surrounded by a composite reflector made of beryllium oxide and graphite. In this tank can be made critical plutonium or 90 per cent enriched uranium solutions, the fissile substances being in the form of a dissolved salt. In varying the concentration of the solution, critical masses were studied as a function of the level of the liquid in the tank. The minimum critical mass is 256 ± 2 grs for plutonium and 409 ± 3 grs for uranium 235. In the range of the critical concentrations which were studied, the neutronic properties of fissionable solutions of plutonium and enriched uranium were compared for identical geometries. (authors) [fr

  6. Nuclear fuel cycle, nuclear fuel makes the rounds: choosing a closed fuel cycle, nuclear fuel cycle processes, front-end of the fuel cycle: from crude ore to enriched uranium, back-end of the fuel cycle: the second life of nuclear fuel, and tomorrow: multiple recycling while generating increasingly less waste

    International Nuclear Information System (INIS)

    Philippon, Patrick

    2016-01-01

    France has opted for a policy of processing and recycling spent fuel. This option has already been deployed commercially since the 1990's, but will reach its full potential with the fourth generation. The CEA developed the processes in use today, and is pursuing research to improve, extend, and adapt these technologies to tomorrow's challenges. France has opted for a 'closed cycle' to recycle the reusable materials in spent fuel (uranium and plutonium) and optimise ultimate waste management. France has opted for a 'closed' nuclear fuel cycle. Spent fuel is processed to recover the reusable materials: uranium and plutonium. The remaining components (fission products and minor actinides) are the ultimate waste. This info-graphic shows the main steps in the fuel cycle currently implemented commercially in France. From the mine to the reactor, a vast industrial system ensures the conversion of uranium contained in the ore to obtain uranium oxide (UOX) fuel pellets. Selective extraction, purification, enrichment - key scientific and technical challenges for the teams in the Nuclear Energy Division (DEN). The back-end stages of the fuel cycle for recycling the reusable materials in spent fuel and conditioning the final waste-forms have reached maturity. CEA teams are pursuing their research in support of industry to optimise these processes. Multi-recycle plutonium, make even better use of uranium resources and, over the longer term, explore the possibility of transmuting the most highly radioactive waste: these are the challenges facing future nuclear systems. (authors)

  7. Determination of plutonium and uranium in the same aliquot by potentiometric titration

    International Nuclear Information System (INIS)

    Karekar, C.V.; Chander, Keshav; Nair, G.M.; Natarajan, P.R.

    1986-01-01

    A potentiometric titration method was developed for the determination of plutonium and uranium in the same aliquot in nitric acid medium. Plutonium was first determined by oxidation to Pu(VI) by fuming with HClO 4 . Pu(VI) was reduced to Pu(IV) with known excess of Fe(II). Uranium in the same solution was determined by reduction to U(IV) with Fe(II) in H 3 PO 4 medium. For the quantity of plutonium and uranium in the range of 3-5 mg per aliquot a precision of +-0.2% and +-0.4%, respectively, was obtained. (author)

  8. Postirradiation results and evaluation of helium-bonded uranium--plutonium carbide fuel elements irradiated in EBR-II. Interim report

    International Nuclear Information System (INIS)

    Latimer, T.W.; Barner, J.O.; Kerrisk, J.F.; Green, J.L.

    1976-02-01

    An evaluation was made of the performance of 74 helium-bonded uranium-plutonium carbide fuel elements that were irradiated in EBR-II at 38-96 kW/m to 2-12 at. percent burnup. Only 38 of these elements have completed postirradiation examination. The higher failure rate found in fuel elements which contained high-density (greater than 95 percent theoretical density) fuel than those which contained low-density (77-91 percent theoretical density) fuel was attributed to the limited ability of the high-density fuel to swell into the void space provided in the fuel element. Increasing cladding thickness and original fuel-cladding gap size were both found to influence the failure rates for elements containing low-density fuel. Lower cladding strain and higher fission-gas release were found in high-burnup fuel elements having smear densities of less than 81 percent. Fission-gas release was usually less than 5 percent for high-density fuel, but increased with burnup to a maximum of 37 percent in low-density fuel. Maximum carburization in elements attaining 5-10 at. percent burnup and clad in Types 304 or 316 stainless steel and Incoloy 800 ranged from 36-80 μm and 38-52 μm, respectively. Strontium and barium were the fission products most frequently found in contact with the cladding but no penetration of the cladding by uranium, plutonium, or fission products was observed

  9. Fabrication of uranium-plutonium mixed nitride fuel pins (88F-5A) for first irradiation test at JMTR

    International Nuclear Information System (INIS)

    Suzuki, Yasufumi; Iwai, Takashi; Arai, Yasuo; Sasayama, Tatsuo; Shiozawa, Ken-ichi; Ohmichi, Toshihiko; Handa, Muneo

    1990-07-01

    A couple of uranium-plutonium mixed nitride fuel pins was fabricated for the first irradiation tests at JMTR for the purpose of understanding the irradiation behavior and establishing the feasibility of nitride fuels as advanced FBR fuels. The one of the pins was fitted with thermocouples in order to observe the central fuel temperature. In this report, the fabrication procedure of the pins such as pin design, fuel pellet fabrication and characterizations, welding of fuel pins, and inspection of pins are described, together with the outline of the new TIG welder installed recently. (author)

  10. ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    International Nuclear Information System (INIS)

    O'Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1997-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program's preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO 2 and UO 2 ), typically containing 95% or more UO 2 . DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement

  11. ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1997-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement.

  12. Separation of uranium and common impurities from solid analytical waste containing plutonium

    International Nuclear Information System (INIS)

    Pathak, Nimai; Kumar, Mithlesh; Thulasidas, S.K.; Hon, N.S.; Kulkarni, M.J.; Mhatre, Amol; Natarajan, V.

    2014-07-01

    The report describes separation of uranium (U) and common impurities from solid analytical waste containing plutonium (Pu). This will be useful in recovery of Pu from nuclear waste. This is an important activity of any nuclear program in view of the strategic importance of Pu. In Radiochemistry Division, the trace metal analysis of Pu bearing fuel materials such as PuO 2 , (U,Pu)O 2 and (U,Pu)C are being carried out using the DC arc-Carrier Distillation technique. During these analyses, solid analytical waste containing Pu and 241 Am is generated. This comprises of left-over of samples and prepared charges. The main constituents of this waste are uranium oxide, plutonium oxide and silver chloride used as carrier. This report describes the entire work carried out to separate gram quantities of Pu from large amounts of U and mg quantities of 241 Am and the effect of leaching of the waste with nitric acid as a function of batch size. The effect of leaching the solid analytical waste of (U,Pu)O 2 and AgCl with concentrated nitric acid for different time intervals was also studied. Later keeping the time constant, the effect of nitric acid molarity on the leaching of U and Pu was investigated. Four different lots of the waste having different amounts were subjected to multiple leaching with 8 M nitric acid, each for 15 minutes duration. In all the experiments the amount of Uranium, Plutonium and other impurities leached were determined using ICP as an excitation source. The results are discussed in this report. (author)

  13. Review of Sodium and Plutonium related Technical Standards in Trans-Uranium Fuel Fabrication Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Misuk; Jeon, Jong Seon; Kang, Hyun Sik; Kim, Seoung Rae [NESS, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, we would introduce and review technical standards related to sodium fire and plutonium criticality safety. This paper may be helpful to identify considerations in the development of equipment, standards, and etc., to meet the safety requirements in the design, construction and operating of TFFF, KAPF and SFR. The feasibility and conceptual designs are being examined on related facilities, for example, TRU Fuel Fabrication Facilities (TFFF), Korea Advanced Pyro-process Facility (KAPF), and Sodium Cooled Fast Reactor (SFR), in Korea. However, the safety concerns of these facilities have been controversial in part because of the Sodium fire accident and Plutonium related radiation safety caused by transport and handling accident. Thus, many researches have been performed to ensure safety and various documents including safety requirements have been developed. In separating and reducing the long-lived radioactive transuranic(TRU) in the spent nuclear fuel, reusing as the potential energy of uranium fuel resources and reducing the high level wastes, TFFF would be receiving the attention of many people. Thus, people would wonder whether compliance with technical standards that ensures safety. For new facility design, one of the important tasks is to review of technical standards, especially for sodium and Plutonium because of water related highly reactive characteristics and criticality hazard respectively. We have introduced and reviewed two important technical standards for TFFF, which are sodium fire and plutonium criticality safety, in this paper. This paper would provide a brief guidance, about how to start and what is important, to people who are responsible for the initial design to operation of TFFF.

  14. Review of Sodium and Plutonium related Technical Standards in Trans-Uranium Fuel Fabrication Facilities

    International Nuclear Information System (INIS)

    Jang, Misuk; Jeon, Jong Seon; Kang, Hyun Sik; Kim, Seoung Rae

    2016-01-01

    In this paper, we would introduce and review technical standards related to sodium fire and plutonium criticality safety. This paper may be helpful to identify considerations in the development of equipment, standards, and etc., to meet the safety requirements in the design, construction and operating of TFFF, KAPF and SFR. The feasibility and conceptual designs are being examined on related facilities, for example, TRU Fuel Fabrication Facilities (TFFF), Korea Advanced Pyro-process Facility (KAPF), and Sodium Cooled Fast Reactor (SFR), in Korea. However, the safety concerns of these facilities have been controversial in part because of the Sodium fire accident and Plutonium related radiation safety caused by transport and handling accident. Thus, many researches have been performed to ensure safety and various documents including safety requirements have been developed. In separating and reducing the long-lived radioactive transuranic(TRU) in the spent nuclear fuel, reusing as the potential energy of uranium fuel resources and reducing the high level wastes, TFFF would be receiving the attention of many people. Thus, people would wonder whether compliance with technical standards that ensures safety. For new facility design, one of the important tasks is to review of technical standards, especially for sodium and Plutonium because of water related highly reactive characteristics and criticality hazard respectively. We have introduced and reviewed two important technical standards for TFFF, which are sodium fire and plutonium criticality safety, in this paper. This paper would provide a brief guidance, about how to start and what is important, to people who are responsible for the initial design to operation of TFFF

  15. Reactions of plutonium dioxide with water and oxygen-hydrogen mixtures: Mechanisms for corrosion of uranium and plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Haschke, John M.; Allen, Thomas H.; Morales, Luis A.

    1999-06-18

    Investigation of the interactions of plutonium dioxide with water vapor and with an oxygen-hydrogen mixture show that the oxide is both chemically reactive and catalytically active. Correspondence of the chemical behavior with that for oxidation of uranium in moist air suggests that similar catalytic processes participate in the mechanism of moisture-enhanced corrosion of uranium and plutonium. Evaluation of chemical and kinetic data for corrosion of the metals leads to a comprehensive mechanism for corrosion in dry air, water vapor, and moist air. Results are applied in confirming that the corrosion rate of Pu in water vapor decreases sharply between 100 and 200 degrees C.

  16. Treatment of Uranium and Plutonium solutions generated in Atalante by R and D activities

    International Nuclear Information System (INIS)

    Lagrave, H.; Beretti, C.; Bros, P.

    2008-01-01

    The Atalante complex operated by the 'Commissariat a l'Energie Atomique' (Cea) consolidates research programs on actinide chemistry, processing for recycling spent fuel, and fabrication of actinide targets for innovative concepts in future nuclear systems. In order to produce mixed oxide powder containing uranium, plutonium and minor actinides and to deal with increasing flows in the facility, a new shielded line will be built and is expected to be operational by 2012. Its main functions will be to receive, concentrate and store solutions, purify them, ensure co-conversion of actinides and conversion of excess uranium. (authors)

  17. Treatment of Uranium and Plutonium solutions generated in Atalante by R and D activities

    Energy Technology Data Exchange (ETDEWEB)

    Lagrave, H.; Beretti, C.; Bros, P. [CEA Rhone Valley Research Center, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France)

    2008-07-01

    The Atalante complex operated by the 'Commissariat a l'Energie Atomique' (Cea) consolidates research programs on actinide chemistry, processing for recycling spent fuel, and fabrication of actinide targets for innovative concepts in future nuclear systems. In order to produce mixed oxide powder containing uranium, plutonium and minor actinides and to deal with increasing flows in the facility, a new shielded line will be built and is expected to be operational by 2012. Its main functions will be to receive, concentrate and store solutions, purify them, ensure co-conversion of actinides and conversion of excess uranium. (authors)

  18. Prospects for the establishment of plutonium recycle in thermal reactors in the Foratom countries. Status and assessment

    International Nuclear Information System (INIS)

    Chamberlain, A.; Melches, C.

    1977-01-01

    The paper reviews the technical status of plutonium recycle in thermal reactors in the Foratom countries and assesses the prospect for it becoming established in the future with the implicit assumptions that uranium oxide reprocessing capacity will be installed commensurate with the projected programmes for thermal reactor installation and that there will be no insuperable environmental, security or safeguards obstacles to the use of plutonium as a fuel. It is argued that the feasibility of using plutonium as an alternative to 235 U as the fuel for thermal reactors, particularly LWRs, has been extensively demonstrated by a number of Foratom countries and the main problem areas are fuel fabrication and fuel reprocessing. Mixed-oxide fuel fabrication has been well established on the prototype plant scale using low-irradiation plutonium, but it is recognized that the future design of production-scale plants will need to cater for the significantly higher radiation levels from high burnup plutonium and meet stricter environmental requirements on operator dosage and waste arisings. The main constraint on the establishment of recycle up to now has been the lack of available plutonium owing to the absence of significant uranium-oxide fuel reprocessing capacity. An assessment of the plutonium arisings in Europe, based on the projected uranium-oxide reprocessing capacity, shows that by 1990 plutonium, surplus to FBR requirements, should be accumulating by about 10t/a, sufficient to fuel about 8000MW(e) of LWRs. A further constraint would then be the availability and technical problems of mixed-oxide reprocessing, which is one of the areas identified for international collaboration. It is concluded that whilst there is unlikely to be substantial recycle of plutonium in thermal reactors in the Foratom countries before the early 1990s, an incentive could possibly arise about that time. The strength of this incentive will depend on a number of factors including the status of

  19. Diffusion in the uranium - plutonium system and self-diffusion of plutonium in epsilon phase; Diffusion dans le systeme uranium-plutonium et autodiffusion du plutonium epsilon

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, M [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-01

    A survey of uranium-plutonium phase diagram leads to confirm anglo-saxon results about the plutonium solubility in {alpha} uranium (15 per cent at 565 C) and the uranium one in {zeta} phase (74 per cent at 565 C). Interdiffusion coefficients, for concentration lower than 15 per cent had been determined in a temperature range from 410 C to 640 C. They vary between 0.2 and 6 10{sup 12} cm{sup 2} s{sup -1}, and the activation energy between 13 and 20 kcal/mole. Grain boundary, diffusion of plutonium in a uranium had been pointed out by micrography, X-ray microanalysis and {alpha} autoradiography. Self-diffusion of plutonium in {epsilon} phase (bcc) obeys Arrhenius law: D = 2. 10{sup -2} exp -(18500)/RT. But this activation energy does not follow empirical laws generally accepted for other metals. It has analogies with 'anomalous' bcc metals ({beta}Zr, {beta}Ti, {beta}Hf, U{sub {gamma}}). (author) [French] Une etude du diagramme d'equilibre uranium-plutonium conduit a confirmer les resultats anglo-saxons relatifs a la solubilite du plutonium dans l'uranium {alpha} (15 pour cent a 565 C) et de l'uranium dans la phase {zeta} (74 pour cent a 565 C). Les coefficients de diffusion chimique, pour des concentrations inferieures a 15 pour cent ont ete determines a des temperatures comprises entre 410 et 640 C. Ils se situent entre 0.2 et 6. 10{sup 12} cm{sup 2} s{sup -1}. L'energie d'activation varie entre 13 et 20 kcal/mole. La diffusion intergranulaire du plutonium dans l'uranium a a ete mise en evidence par micrographie, microanalyse X et autoradiographie {alpha}. L' autodiffusion du plutonium {beta} cubique centree obeit a la loi d'Arrhenius D = 2. 10{sup -2} exp - (18500)/RT. Son energie d'activation n'obeit pas aux lois empiriques generalement admises pour les autres metaux. Elle possede des analogies avec les cubiques centres ''anormaux'' (Zr{beta}, Ti{beta}, Hf{beta}, U{gamma}). (auteur)

  20. Kinetic study of the fluorination by fluorine of some uranium and plutonium compounds; Etude cinetique de la fluoration par le fluor de quelques composes de l'uranium et du plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Vandenbussche, G [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-12-15

    The study of fluorination reactions of uranium and plutonium compounds with elementary fluorine, has been carried out using a thermogravimetric method. These reactions are heterogeneous ones, and of the following type: S(solid) + G{sub 1}(gas) - G{sub 2}(gas). The kinetics of these reactions correspond to a uniform attack of the entire surface of the sample. {alpha}: being the degree of completion of the reaction, k(rel): being the relative rate of penetration of the reaction interface, t: being the time, one have the relation: (1-{alpha}){sup 1/3} = 1 - k(rel)*t. The mechanism of the reaction varies according to the nature of the compound: 1) with uranium tetrafluoride and plutonium tetrafluoride, the reaction proceeds in a single step; 2) with uranium oxides, the reaction proceeds in two steps, uranium oxyfluoride being the intermediate compound; 3) with plutonium oxide, the reaction proceeds in two steps, plutonium tetrafluoride being the intermediate compound; and 4) with uranium trichloride, the mechanism is complex: chlorine trifluoride is formed. (author) [French] L'etude des reactions de fluoration par le fluor, de composes de l'uranium et du plutonium a ete faite par thermogravimetrie. Ce sont des reactions heterogenes du type: S(solide) + G{sub 1}(gaz) - G{sub 2}(gaz). La cinetique de ces reactions est celle correspondant a une attaque uniforme de toute la surface de l'echantillon. Si {alpha}: est le degre d'avancement de la reaction, k(rel): est la vitesse relative d'avancement d'un interface reactionnel, t: le temps. On a la relation: (1-{alpha}){sup 1/3} = 1-k(rel)*t. Le mecanisme de la reaction varie selon la nature du compose: 1) tetrafluorure d'uranium et tetrafluorure de plutonium, la reaction s'effectue en un seul stade; 2) Oxydes d'uranium: la reaction s'effectue en deux stades, l'oxyfluorure d'uranium est le compose intermediaire; 3) oxyde de plutonium, la reaction s'effectue en deux stades, la tetrafluorure de plutonium est le compose

  1. Overview of chemical characterization of FBTR fuel

    International Nuclear Information System (INIS)

    Venkatesan, V.; Nandi, C.; Patil, A.B.; Prakash, Amrit; Khan, K.B.; Arun Kumar

    2015-01-01

    Uranium Plutonium mixed carbide fuel is the driver fuel for Fast Breeder Test Reactor (FBTR) at IGCAR. The fuel is being fabricated at Radiometallurgy Division, BARC by conventional powder metallurgy route. During the fabrication of fuel, chemical quality control of process intermediates is very important to reach stringent specification of the final fuel product. Different steps are involved in the fabrication of uranium-plutonium carbide (MC) for FBTR. The main steps in the fabrication of MC fuel pellets are carbothermic reduction (CR) of mixture of uranium oxide, plutonium oxide and graphite powder to prepare MC clinkers, crushing and milling of MC clinkers and consolidation of MC powders into fuel pellets and sintering. As a part of process control, analysis of uranium (U), plutonium (Pu), carbon in oxide graphite mixture and U, Pu, carbon, oxygen, nitrogen, MC, M 2 C 3 contents in mixed carbide powder (MC clinkers) are carried out at our laboratory. Analysis of U, Pu, carbon, oxygen, nitrogen, MC and M 2 C 3 contents in mixed carbide sintered pellets are carried out as a part of quality control. This paper describes an overview of analytical instruments used during chemical quality control of mixed carbide fuel

  2. On the use of thermal NF3 as the fluorination and oxidation agent in treatment of used nuclear fuels

    Science.gov (United States)

    Scheele, Randall; McNamara, Bruce; Casella, Andrew M.; Kozelisky, Anne

    2012-05-01

    This paper presents results of our investigation on the use of nitrogen trifluoride as a fluorination or fluorination/oxidation agent for separating valuable constituents from used nuclear fuels by exploiting the different volatilities of the constituent fission product and actinide fluorides. Our thermodynamic calculations show that nitrogen trifluoride has the potential to produce volatile fission product and actinide fluorides from oxides and metals that can form volatile fluorides. Simultaneous thermogravimetric and differential thermal analyses show that the oxides of lanthanum, cerium, rhodium, and plutonium are fluorinated but do not form volatile fluorides when treated with nitrogen trifluoride at temperatures up to 550 °C. However, depending on temperature, volatile fluorides or oxyfluorides can form from nitrogen trifluoride treatment of the oxides of niobium, molybdenum, ruthenium, tellurium, uranium, and neptunium. Thermoanalytical studies demonstrate near-quantitative separation of uranium from plutonium in a mixed 80% uranium and 20% plutonium oxide. Our studies of neat oxides and metals suggest that the reactivity of nitrogen trifluoride may be adjusted by temperature to selectively separate the major volatile fuel constituent uranium from minor volatile constituents, such as Mo, Tc, Ru and from the non-volatile fuel constituents based on differences in their reaction temperatures and kinetic behaviors. This reactivity is novel with respect to that reported for other fluorinating reagents F2, BrF5, ClF3.

  3. Processing of irradiated, enriched uranium fuels at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hyder, M L; Perkins, W C; Thompson, M C; Burney, G A; Russell, E R; Holcomb, H P; Landon, L F

    1979-04-01

    Uranium fuels containing /sup 235/U at enrichments from 1.1% to 94% are processed and recovered, along with neptunium and plutonium byproducts. The fuels to be processed are dissolved in nitric acid. Aluminum-clad fuels are disssolved using a mercury catalyst to give a solution rich in aluminum. Fuels clad in more resistant materials are dissolved in an electrolytic dissolver. The resulting solutions are subjected to head-end treatment, including clarification and adjustment of acid and uranium concentration before being fed to solvent extraction. Uranium, neptunium, and plutonium are separated from fission products and from one another by multistage countercurrent solvent extraction with dilute tri-n-butyl phosphate in kerosene. Nitric acid is used as the salting agent in addition to aluminum or other metal nitrates present in the feed solution. Nuclear safety is maintained through conservative process design and the use of monitoring devices as secondary controls. The enriched uranium is recovered as a dilute solution and shipped off-site for further processing. Neptunium is concentrated and sent to HB-Line for recovery from solution. The relatively small quantities of plutonium present are normally discarded in aqueous waste, unless the content of /sup 238/Pu is high enough to make its recovery desirable. Most of the /sup 238/Pu can be recovered by batch extraction of the waste solution, purified by counter-current solvent extraction, and converted to oxide in HB-Line. By modifying the flowsheet, /sup 239/Pu can be recovered from low-enriched uranium in the extraction cycle; neptunium is then not recovered. The solvent is subjected to an alkaline wash before reuse to remove degraded solvent and fission products. The aqueous waste is concentrated and partially deacidified by evaporation before being neutralized and sent to the waste tanks; nitric acid from the overheads is recovered for reuse.

  4. Processing of irradiated, enriched uranium fuels at the Savannah River Plant

    International Nuclear Information System (INIS)

    Hyder, M.L.; Perkins, W.C.; Thompson, M.C.; Burney, G.A.; Russell, E.R.; Holcomb, H.P.; Landon, L.F.

    1979-04-01

    Uranium fuels containing 235 U at enrichments from 1.1% to 94% are processed and recovered, along with neptunium and plutonium byproducts. The fuels to be processed are dissolved in nitric acid. Aluminum-clad fuels are disssolved using a mercury catalyst to give a solution rich in aluminum. Fuels clad in more resistant materials are dissolved in an electrolytic dissolver. The resulting solutions are subjected to head-end treatment, including clarification and adjustment of acid and uranium concentration before being fed to solvent extraction. Uranium, neptunium, and plutonium are separated from fission products and from one another by multistage countercurrent solvent extraction with dilute tri-n-butyl phosphate in kerosene. Nitric acid is used as the salting agent in addition to aluminum or other metal nitrates present in the feed solution. Nuclear safety is maintained through conservative process design and the use of monitoring devices as secondary controls. The enriched uranium is recovered as a dilute solution and shipped off-site for further processing. Neptunium is concentrated and sent to HB-Line for recovery from solution. The relatively small quantities of plutonium present are normally discarded in aqueous waste, unless the content of 238 Pu is high enough to make its recovery desirable. Most of the 238 Pu can be recovered by batch extraction of the waste solution, purified by counter-current solvent extraction, and converted to oxide in HB-Line. By modifying the flowsheet, 239 Pu can be recovered from low-enriched uranium in the extraction cycle; neptunium is then not recovered. The solvent is subjected to an alkaline wash before reuse to remove degraded solvent and fission products. The aqueous waste is concentrated and partially deacidified by evaporation before being neutralized and sent to the waste tanks; nitric acid from the overheads is recovered for reuse

  5. Innovative inert matrix-thoria fuels for in-reactor plutonium disposition

    International Nuclear Information System (INIS)

    Vettraino, F.; Padovani, E.; Luzzi, L.; Lombardi, C.; Thoresen, H.; Oberlander, B.; Iversen, G.; Espeland, M.

    1999-01-01

    The present leading option for plutonium disposition, either civilian or weapons Pu, is to burn it in LWRs after having converted it to MOX fuel. However, among the possible types of fuel which can be envisaged to burn plutonium in LWRs, innovative U-free fuels such as inert matrix and thoria fuel are novel concept in view of a more effective and ultimate solution from both security and safety standpoint. Inert matrix fuel is an non-fertile oxide fuel consisting of PuO 2 , either weapon-grade or reactor-grade, diluted in inert oxides such as for ex. stabilized ZrO 2 or MgAl 2 O 4 , its primary advantage consisting in no-production of new plutonium during irradiation, because it does not contain uranium (U-free fuel) whose U-238 isotope is the departure nuclide for breeding Pu-239. Some thoria addition in the matrix (thoria-doped fuel) may be required for coping with reactivity feedback needs. The full thoria-plutonia fuel though still a U-free variant cannot be defined non-fertile any more because the U-233 generation. The advantage of such a fuel option consisting basically on a remarkable already existing technological background and a potential acceleration in getting rid of the Pu stocks. All U-free fuels are envisaged to be operated under a once-through cycle scheme being the spent fuel outlooked to be sent directly to the final disposal in deep geological formations without requiring any further reprocessing treatment, thanks to the quality-poor residual Pu and a very high chemical stability under the current fuel reprocessing techniques. Besides, inert matrix-thoria fuel technology is suitable for in-reactor MAs transmutation. An additional interest in Th containing fuel refers to applicability in ADS, the innovative accelerated driven subcritical systems, specifically aimed at plutonium, minor actnides and long lived fission products transmutation in a Th-fuel cycle scheme which enables to avoid generations of new TRUs. A first common irradiation experiment

  6. Accountability control system in plutonium fuel facility

    International Nuclear Information System (INIS)

    Naruki, Kaoru; Aoki, Minoru; Mizuno, Ohichi; Mishima, Tsuyoshi

    1979-01-01

    More than 30 tons of plutonium-uranium mixed-oxide fuel have been manufactured at the Plutonium Facility in PNC for JOYO, FUGEN and DCA (Deuterium Critical Assembly) and for the purpose of irradiation tests. This report reviews the nuclear material accountability control system adopted in the Plutonium Facility. Initially, the main objective of the system was the criticality control of fissible materials at various stages of fuel manufacturing. The first part of this report describes the functions and the structure of the control system. A flow chart is provided to show the various stages of material flow and their associated computer files. The system is composed of the following three sub-systems: procedures of nuclear material transfer; PIT (Physical Inventory Taking); data retrieval, report preparation and file maintenance. OMR (Optical Mark Reader) sheets are used to record the nuclear material transfer. The MUF (Materials Unaccounted For) are evaluated by PIT every three months through computer processing based on the OMR sheets. The MUF ratio of Pu handled in the facility every year from 1966 to 1977 are presented by a curve, indicating that the MUF ratio was kept well under 0.5% for every project (JOYO, FUGEN, and DCA). As for the Pu safeguards, the MBA (Material Balance Area) and the KMP (Key Measurement Point) in the facility of PNC are illustrated. The general idea of the projected PINC (Plutonium Inventory Control) system in PNC is also shortly explained. (Aoki, K.)

  7. Hot pressing of uranium nitride and mixed uranium plutonium nitride

    International Nuclear Information System (INIS)

    Chang, J.Y.

    1975-01-01

    The hot pressing characteristics of uranium nitride and mixed uranium plutonium nitride were studied. The utilization of computer programs together with the experimental technique developed in the present study may serve as a useful purpose of prediction and fabrication of advanced reactor fuel and other high temperature ceramic materials for the future. The densification of nitrides follow closely with a plastic flow theory expressed as: d rho/ dt = A/T(t) (1-rho) [1/1-(1-rho)/sup 2/3/ + B1n (1-rho)] The coefficients, A and B, were obtained from experiment and computer curve fitting. (8 figures) (U.S.)

  8. Plutonium oxide dissolution

    International Nuclear Information System (INIS)

    Gray, J.H.

    1992-01-01

    Several processing options for dissolving plutonium oxide (PuO 2 ) from high-fired materials have been studied. The scoping studies performed on these options were focused on PuO 2 typically generated by burning plutonium metal and PuO 2 produced during incineration of alpha contaminated waste. At least two processing options remain applicable for dissolving high-fired PuO 2 in canyon dissolvers. The options involve solid solution formation of PuO 2 With uranium oxide (UO 2 ) and alloying incinerator ash with aluminum. An oxidative dissolution process involving nitric acid solutions containing a strong oxidizing agent, such as cerium (IV), was neither proven nor rejected. This uncertainty was due to difficulty in regenerating cerium (IV) ions during dissolution. However, recent work on silver-catalyzed dissolution of PuO 2 with persulfate has demonstrated that persulfate ions regenerate silver (II). Use of persulfate to regenerate cerium (IV) or bismuth (V) ions during dissolution of PuO 2 materials may warrant further study

  9. Evaluation of the characteristics of uranium and plutonium Mixed Oxide (MOX) fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    MOX fuel irradiation test up to high burnup has been performed for five years. Irradiation test of MOX fuel having high plutonium content has also been performed from JFY 2007 and it still continues. A lot of irradiation data have been obtained through these tests. The activities done in JFY 2012 are mainly focused on Post Irradiation Examination (PIE) data analysis concerning thermal property change and fission gas release. In the former work thermal conductivity degradation due to burnup is examined and in the latter work the dependence of fission gas release mechanism on fuel pellet microstructure is examined. This report mainly covers the result of analysis. It is found that thermal conductivity degradation of MOX fuel due to burnup is less than that of UO{sub 2} fuel and that fission gas release mechanism of high enriched fissile zone (so called Pu spot) is much different from that of low enriched fissile zone (so called Matrix). (author)

  10. Weapons-grade plutonium dispositioning. Volume 1: Executive summary

    International Nuclear Information System (INIS)

    Parks, D.L.; Sauerbrun, T.J.

    1993-06-01

    The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate dispositioning options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) assisted NAS in this evaluation by investigating the technical aspects of the dispositioning options and their capability for achieving plutonium annihilation levels greater than 90%. Additionally, the INEL investigated the feasibility of using plutonium fuels (without uranium) for disposal in existing light water reactors and provided a preconceptual analysis for a reactor specifically designed for destruction of weapons-grade plutonium. This four-volume report was prepared for NAS to document the findings of these studies. Volume 2 evaluates 12 plutonium dispositioning options. Volume 3 considers a concept for a low-temperature, low-pressure, low-power-density, low-coolant-flow-rate light water reactor that quickly destroys plutonium without using uranium or thorium. This reactor concept does not produce electricity and has no other mission than the destruction of plutonium. Volume 4 addresses neutronic performance, fabrication technology, and fuel performance and compatibility issues for zirconium-plutonium oxide fuels and aluminum-plutonium metallic fuels. This volumes gives summaries of Volumes 2--4

  11. Dissolution of nuclear fuel samples for analytical purposes. I

    International Nuclear Information System (INIS)

    Krtil, J.

    1983-01-01

    Main attention is devoted to procedures for dissolving fuels based on uranium metal and its alloys, uranium oxides and carbides, plutonium metal, plutonium dioxide, plutonium carbides, mixed PuC-UC carbides and mixed oxides (PuU)O 2 . Data from the literature and experience gained with the dissolution of nuclear fuel samples at the Central Control Laboratory of the Nuclear Research Institute at Rez are given. (B.S.)

  12. Separation of trace uranium from plutonium for subsequent analysis

    International Nuclear Information System (INIS)

    Marsh, S.F.

    1980-08-01

    Trace uranium quantities are separated from plutonium metal and plutonium oxide for subsequent analysis. Samples are dissolved in hydrobromic acid or a hydrobromic acid-hydrofluoric acid mixture. The U(VI)-halide complex is separated from nonsorbed Pu(III) on an anion exchange column using sequential washes of 9M HBr, a 0.1M HI-12M HCl mixture and 0.1M HCl

  13. Comparison of the radiological impacts of thorium and uranium nuclear fuel cycles

    International Nuclear Information System (INIS)

    Meyer, H.R.; Witherspoon, J.P.; McBride, J.P.; Frederick, E.J.

    1982-03-01

    This report compares the radiological impacts of a fuel cycle in which only uranium is recycled, as presented in the Final Generic Environmental Statement on the Use of Recycle Plutonium in Mixed Oxide Fuel in Light Water Cooled Reactors (GESMO), with those of the light-water breeder reactor (LWBR) thorium/uranium fuel cycle in the Final Environmental Statement, Light Water Breeder Reactor Program. The significant offsite radiological impacts from routine operation of the fuel cycles result from the mining and milling of thorium and uranium ores, reprocessing spent fuel, and reactor operations. The major difference between the impacts from the two fuel cycles is the larger dose commitments associated with current uranium mining and milling operations as compared to thorium mining and milling. Estimated dose commitments from the reprocessing of either fuel type are small and show only moderate variations for specific doses. No significant differences in environmental radiological impact are anticipated for reactors using either of the fuel cycles. Radiological impacts associated with routine releases from the operation of either the thorium or uranium fuel cycles can be held to acceptably low levels by existing regulations

  14. Recovery of fissile materials from plutonium residues, miscellaneous spent nuclear fuel, and uranium fissile wastes

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1997-01-01

    A new process is proposed that converts complex feeds containing fissile materials into a chemical form that allows the use of existing technologies (such as PUREX and ion exchange) to recover the fissile materials and convert the resultant wastes to glass. Potential feed materials include (1) plutonium scrap and residue, (2) miscellaneous spent nuclear fuel, and (3) uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, and organics. 14 refs., 4 figs

  15. Expected behavior of plutonium in the IFR fuel cycle

    International Nuclear Information System (INIS)

    Steunenberg, R.K.; Johnson, I.

    1985-01-01

    The Integral Fast Reactor (IFR) is a metal-fueled, sodium-cooled reactor that will consist initially of a U-Zr alloy core in which the enriched uranium will be replaced gradually by plutonium bred in a uranium blanket. The plutonium is concentrated to the required level by extraction from the molten blanket material with a CaCl 2 -BaCl 2 salt containing MgCl 2 as an oxidant (halide slagging). The CaCl 2 -BaCl 2 salt containing dissolved PuCl 3 and UCl 3 is added to the core process where fission products are removed by electrorefining, using a liquid cadmium anode, a metal cathode, and a LiCl-NaCl-CaCl 2 -BaCl 2 molten salt electrolyte. The product is recovered as a metallic deposit on the cathode. The halide slagging step is operated at about 1250 0 and the electrorefining step at about 450 0 C. These processes are expected to give low fission-product decontamination factors of the order of 100

  16. Advanced fuels for plutonium management in pressurized water reactors

    International Nuclear Information System (INIS)

    Vasile, A.; Dufour, Ph.; Golfier, H.; Grouiller, J.P.; Guillet, J.L.; Poinot, Ch.; Youinou, G.; Zaetta, A.

    2003-01-01

    Several fuel concepts are under investigation at CEA with the aim of manage plutonium inventories in pressurized water reactors. This options range from the use of mature technologies like MOX adapted in the case of MOX-EUS (enriched uranium support) and COmbustible Recyclage A ILot (CORAIL) assemblies to more innovative technologies using IMF like DUPLEX and advanced plutonium assembly (APA). The plutonium burning performances reported to the electrical production go from 7 to 60 kg (TW h) -1 . More detailed analysis covering economic, sustainability, reliability and safety aspects and their integration in the whole fuel cycle would allow identifying the best candidate

  17. General consideration of effective plutonium utilization in future LWRs

    International Nuclear Information System (INIS)

    Ishikawa, Nobuyuki; Okubo, Tsutomu

    2009-01-01

    In this study, the potential of mixed oxide fueled light water reactors (MOX-LWRs), especially focusing on the high conversion type LWRs (HC-LWRs) such as FLWR are evaluated in terms of both economic aspect and effective use of plutonium. For economics consideration, relative economics positions of MOX-LWRs are clarified comparing the cost of electricity for uranium fueled LWRs (U-LWRs), MOX-LWRs and fast breeder reactors (FBRs) assuming future natural uranium price raise and variation of parameters such as construction cost and capacity factor. Also the economic superiority of MOX utilization against the uranium use is mentioned from the view point of plutonium credit concerning to the front-end fuel cycle cost. In terms of effective use of plutonium, comparative evaluations on plutonium mass balance in the cases of HC-LWR and high moderation type LWRs (HM-LWRs) taking into account plutonium quality (ratio of fissile to total plutonium) constraint in multiple recycling are performed as representative MOX utilization cases. Through this evaluation, the advantageous features of plutonium multiple recycling by HC-LWR are clarified. From all these results, merits of the introduction of HC-LWRs are discussed. (author)

  18. Analysis of fuel cycles with natural uranium; Analiza gorivnih ciklusa sa prirodnim uranom

    Energy Technology Data Exchange (ETDEWEB)

    Stojanovic, A [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-05-15

    A method was developed and a computer code was written for analysis of fuel cycles and it was applied for heavy water and graphite moderated power reactors. Among a variety of possibilities, three methods which enable best utilization of natural uranium and plutonium production were analyzed. Analysis has shown that reprocessing of irradiated uranium and plutonium utilization in the same or similar type of reactor could increase significantly utilization of natural uranium. Increase of burnup is limited exclusively by costs of reprocessing, plutonium extraction and fabrication of new fuel elements.

  19. Neutronic analysis of the PBMR-400 full core using thorium fuel mixed with plutonium or minor actinides

    International Nuclear Information System (INIS)

    Acır, Adem; Coşkun, Hasan

    2012-01-01

    Highlights: ► Neutronic calculations for PBMR 400 were conducted with the computer codes MCNP and MONTEBURNS 2.0. ► The criticality and burnup were investigated for reactor grade plutonium and minor actinides. ► We found that the use of these new fuels in PBMRs would reduce the nuclear waste repository significantly. -- Abstract: Time evolution of criticality and burnup grades of the PBMR were investigated for reactor grade plutonium and minor actinides in the spent fuel of light water reactors (LWRs) mixed with thoria. The calculations were performed by employing the computer codes MCNP and MONTEBURNS 2.0 and using the ENDF/B-V nuclear data library. Firstly, the plutonium–thorium and minor actinides–thorium ratio was determined by using the initial k eff value of the original uranium fuel design. After the selection of the plutonium/minor actinides–thorium mixture ratio, the time-dependent neutronic behavior of the reactor grade plutonium and minor actinides and original fuels in a PBMR-400 reactor was calculated by using the MCNP code. Finally, k eff , burnup and operation time values of the fuels were compared. The core effective multiplication factor (k eff ) for the original fuel which has 9.6 wt.% enriched uranium was computed as 1.2395. Corresponding to this k eff value the reactor grade plutonium/thorium and minor actinide/thorium oxide mixtures were found to be 30%/70% and 50%/50%, respectively. The core lives for the original, the reactor grade plutonium/thorium and the minor actinide/thorium fuels were calculated as ∼3.2, ∼6.5 and ∼5.5 years, whereas, the corresponding burnups came out to be 99,000, ∼190,000 and ∼166,000 MWD/T, respectively, for an end of life k eff set equal to 1.02.

  20. The underwater coincidence counter for plutonium measurements in mixed-oxide fuel assemblies manual

    International Nuclear Information System (INIS)

    Eccleston, G.W.; Menlove, H.O.; Abhold, M.; Baker, M.; Pecos, J.

    1999-01-01

    This manual describes the Underwater Coincidence Counter (UWCC) that has been designed for the measurement of plutonium in mixed-oxide (MOX) fuel assemblies prior to irradiation. The UWCC uses high-efficiency 3 He neutron detectors to measure the spontaneous-fission and induced-fission rates in the fuel assembly. Measurements can be made on MOX fuel assemblies in air or underwater. The neutron counting rate is analyzed for singles, doubles, and triples time correlations to determine the 240 Pu effective mass per unit length of the fuel assembly. The system can verify the plutonium loading per unit length to a precision of less than 1% in a measurement time of 2 to 3 minutes. System design, components, performance tests, and operational characteristics are described in this manual

  1. Decommissioning of a mixed oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Buck, S.; Colquhoun, A.

    1990-01-01

    Decommissioning of the coprecipitation plant, which made plutonium/uranium oxide fuel, is a lead project in the BNFL Sellafield decommissioning programme. The overall programme has the objectives of gaining data and experience in a wide range of decommissioning operations and hence in this specific project to pilot the decommissioning of plant heavily contaminated with plutonium and other actinides. Consequently the operations have been used to test improvements in temporary containment, contamination control and decontamination methods and also to develop in situ plutonium assay, plutonium recovery and size-reduction methods. Finally the project is also yielding data on manpower requirements, personnel radiation uptake and waste arisings to help in the planning of future decommissioning projects

  2. Uranium/plutonium and uranium/neptunium separation by the Purex process using hydroxyurea

    International Nuclear Information System (INIS)

    Zhu Zhaowu; He Jianyu; Zhang Zefu; Zhang Yu; Zhu Jianmin; Zhen Weifang

    2004-01-01

    Hydroxyurea dissolved in nitric acid can strip plutonium and neptunium from tri-butyl phosphate efficiently and has little influence on the uranium distribution between the two phases. Simulating the 1B contactor of the Purex process by hydroxyurea with nitric acid solution as a stripping agent, the separation factors of uranium/plutonium and uranium/neptunium can reach values as high as 4.7 x 10 4 and 260, respectively. This indicates that hydroxyurea is a promising salt free agent for uranium/plutonium and uranium/neptunium separations. (author)

  3. Prospective studies of HTR fuel cycles involving plutonium

    International Nuclear Information System (INIS)

    Bonin, B.; Greneche, D.; Carre, F.; Damian, F.; Doriath, J.Y.

    2002-01-01

    High Temperature Gas Cooled reactors (HTRs) are able to accommodate a wide variety of mixtures of fissile and fertile materials without any significant modification of the core design. This flexibility is due to an uncoupling between the parameters of cooling geometry, and the parameters which characterize neutronic optimisation (moderation ratio or heavy nuclide concentration and distribution). Among other advantageous features, an HTR core has a better neutron economy than a LWR because there is much less parasitic capture in the moderator (capture cross section of graphite is 100 times less than the one of water) and in internal structures. Moreover, thanks to the high resistance of the coated particles, HTR fuels are able to reach very high burn-ups, far beyond the possibilities offered by other fuels (except the special case of molten salt reactors). These features make HTRs especially interesting for closing the nuclear fuel cycle and stabilizing the plutonium inventory. A large number of fuel cycle studies are already available today, on 3 main categories of fuel cycles involving HTRs : i) High enriched uranium cycle, based on thorium utilization as a fertile material and HEU as a fissile material; ii) Low enriched uranium cycle, where only LEU is used (from 5% to 12%); iii) Plutonium cycle based on the utilization of plutonium only as a fissile material, with (or without) fertile materials. Plutonium consumption at high burnups in HTRs has already been tested with encouraging results under the DRAGON project and at Peach Bottom. To maximize plutonium consumption, recent core studies have also been performed on plutonium HTR cores, with special emphasis on weapon-grade plutonium consumption. In the following, we complete the picture by a core study for a HTR burning reactor-grade plutonium. Limits in burnup due to core neutronics are investigated for this type of fuel. With these limits in mind, we study in some detail the Pu cycle in the special case of a

  4. Study of the reaction of uranium and plutonium with bone char

    International Nuclear Information System (INIS)

    Silver, G.L.; Koenst, J.W.

    1977-01-01

    A study of the reaction of plutonium with a commercial bone char indicates that this bone char has a high capacity for removing plutonium from aqueous wastes. The adsorption of plutonium by bone char is pH dependent, and for plutonium(IV) polymer appears to be maximized near pH 7.3 for plutonium concentrations typical of some waste streams. Adsorption is affected by dissolved salts, especially calcium and phosphate salts. Freundlich isotherms representing the adsorption of uranium and plutonium have been prepared. The low potential imposed upon aqueous solutions by commercial bone char is adequate for reduction of hexavalent plutonium to a lower plutonium oxidation state

  5. Automated spectrophotometer for plutonium and uranium determination

    International Nuclear Information System (INIS)

    Jackson, D.D.; Hodgkins, D.J.; Hollen, R.M.; Rein, J.E.

    1975-09-01

    The automated spectrophotometer described is the first in a planned series of automated instruments for determining plutonium and uranium in nuclear fuel cycle materials. It has a throughput rate of 5 min per sample and uses a highly specific method of analysis for these elements. The range of plutonium and uranium measured is 0.5 to 14 mg and 1 to 14 mg, respectively, in 0.5 ml or less of solution with an option to pre-evaporate larger volumes. The precision of the measurements is about 0.02 mg standard deviation over the range corresponding to about 2 rel percent at the 1-mg level and 0.2 rel percent at the 10-mg level. The method of analysis involves the extraction of tetrapropylammonium plutonyl and uranyl trinitrate complexes into 2-nitropropane and the measurement of the optical absorbances in the organic phase at unique peak wavelengths. Various aspects of the chemistry associated with the method are presented. The automated spectrophotometer features a turntable that rotates as many as 24 samples in tubes to a series of stations for the sequential chemical operations of reagent addition and phase mixing to effect extraction, and then to a station for the absorbance measurement. With this system, the complications of sample transfers and flow-through cells are avoided. The absorbance measurement system features highly stable interference filters and a microcomputer that controls the timing sequence and operation of the system components. Output is a paper tape printout of three numbers: a four-digit number proportional to the quantity of plutonium or uranium, a two-digit number that designates the position of the tube in the turntable, and a one-digit number that designates whether plutonium or uranium was determined. Details of the mechanical and electrical components of the instrument and of the hardware and software aspects of the computerized control system are provided

  6. Build-up and decay of fuel actinides in the fuel cycle of nuclear reactors

    International Nuclear Information System (INIS)

    Tasaka, Kanji; Kikuchi, Yasuyuki; Shindo, Ryuichi; Yoshida, Hiroyuki; Yasukawa, Shigeru

    1976-05-01

    For boiling water reactors, pressurized light-water reactors, pressure-tube-type heavy water reactors, high-temperature gas-cooled reactors, and sodium-cooled fast breeder reactors, uranium fueled and mixed-oxide fueled, each of 1000 MWe, the following have been studied: (1) quantities of plutonium and other fuel actinides built up in the reactor, (2) cooling behaviors of activities of plutonium and other fuel actinides in the spent fuels, and (3) activities of plutonium and other fuel actinides in the high-level reprocessing wastes as a function of storage time. The neutron cross section and decay data of respective actinide nuclides are presented, with their evaluations. For effective utilization of the uranium resources and easy reprocessing and high-level waste management, a thermal reactor must be fueled with uranium; the plutonium produced in a thermal reactor should be used in a fast reactor; and the plutonium produced in the blanket of a fast reactor is more appropriate for a fast reactor than that from a thermal reactor. (auth.)

  7. Measurement and instrumentation techniques for monitoring plutonium and uranium particulates released from nuclear facilities

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1976-08-01

    The purpose of this work has been an analysis and evaluation of the state-of-the-art of measurement and instrumentation techniques for monitoring plutonium and uranium particulates released from nuclear facilities. The occurrence of plutonium and uranium in the nuclear fuel cycle, the corresponding potential for releases, associated radiological protection standards and monitoring objectives are discussed. Techniques for monitoring via decay radiation from plutonium and uranium isotopes are presented in detail, emphasizing air monitoring, but also including soil sampling and survey methods. Additionally, activation and mass measurement techniques are discussed. The availability and prevalence of these various techniques are summarized. Finally, possible improvements in monitoring capabilities due to alterations in instrumentation, data analysis, or programs are presented

  8. Oxidizing dissolution of spent MOX47 fuel subjected to water radiolysis: Solution chemistry and surface characterization by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jegou, C., E-mail: christophe.jegou@cea.f [Commissariat a l' Energie Atomique (CEA), Marcoule Reasearch Center, B.P. 17171, F-30207 Bagnols-sur-Ceze Cedex (France); Caraballo, R.; De Bonfils, J.; Broudic, V.; Peuget, S. [Commissariat a l' Energie Atomique (CEA), Marcoule Reasearch Center, B.P. 17171, F-30207 Bagnols-sur-Ceze Cedex (France); Vercouter, T. [Commissariat a l' Energie Atomique (CEA), Saclay Reasearch Center, B.P. 11, F-91191 Gif-sur-Yvette Cedex (France); Roudil, D. [Commissariat a l' Energie Atomique (CEA), Marcoule Reasearch Center, B.P. 17171, F-30207 Bagnols-sur-Ceze Cedex (France)

    2010-04-01

    The mechanisms of oxidizing dissolution of spent MOX fuel (MIMAS TU2 (registered) ) subjected to water radiolysis were investigated experimentally by leaching spent MOX47 fuel samples in pure water at 25 deg. C under different oxidizing conditions (with and without external gamma irradiation); the leached surfaces were characterized by Raman spectroscopy. The highly oxidizing conditions resulting from external gamma irradiation significantly increased the concentration of plutonium (Pu(V)) and uranium (U(VI)) compared with a benchmark experiment (without external irradiation). The oxidation behavior of the plutonium-enriched aggregates differed significantly from that of the UO{sub 2} matrix after several months of leaching in water under gamma irradiation. The plutonium in the aggregates appears to limit fuel oxidation. The only secondary phases formed and identified to date by Raman spectroscopy are uranium peroxides that generally precipitate on the surface of the UO{sub 2} grains. Concerning the behavior of plutonium, solution analysis results appear to be compatible with a conventional explanation based on an equilibrium with a Pu(OH){sub 4(am)} phase. The fission product release - considered as a general indicator of matrix alteration - from MOX47 fuel also increases under external gamma irradiation and a change in the leaching mode is observed. Diffusive leaching was clearly identified, coinciding with the rapid onset of steady-state actinide concentrations in the bulk solution.

  9. LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    International Nuclear Information System (INIS)

    O'Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program's preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO 2 and UO 2 ), typically containing 95% or more UO 2 . DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO 2 powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO 2 powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required

  10. Purification process of uranium hexafluoride containing traces of plutonium fluoride and/or neptunium fluoride

    International Nuclear Information System (INIS)

    Aubert, J.; Bethuel, L.; Carles, M.

    1983-01-01

    In this process impure uranium hexafluoride is contacted with a metallic fluoride chosen in the group containing lead fluoride PbF 2 , uranium fluorides UFsub(4+x) (0 3 at a temperature such as plutonium and/or neptunium are reduced and pure uranium hexafluoride is recovered. Application is made to uranium hexafluoride purification in spent fuel reprocessing [fr

  11. Redox Bias in Loss on Ignition Moisture Measurement for Relatively Pure Plutonium-Bearing Oxide Materials

    International Nuclear Information System (INIS)

    Eller, P. G.; Stakebake, J. L.; Cooper, T. D.

    2002-01-01

    difficult for lower purity materials and for fuel-type uranium-plutonium oxides. However, even in these cases testing may show that bias effects are manageable

  12. Results of oscillation experiments on the Cesar and Marius piles - Uranium-Plutonium fuels

    International Nuclear Information System (INIS)

    Laponche, Bernard; Brunet, Max; Menessier, Denise; Morier, Francis; Basiuk, Marie-Jose; Tonolli, Jacky; Vanuxeem, Jacqueline

    1969-05-01

    The authors present, comment and discuss results obtained during three measurement campaigns performed on the Cesar and Marius atomic piles between 1965 and 1967 for the determination of some physical quantities (like the Plutonium η or its cross sections) from measurements of two signals which characterize the pile response to a central disturbance caused by the fuel to be studied. They more particularly address mass-corrected signals, the Uranium-235 and Boron calibration of the reactor, the local signal of the equivalent sample to a measured UPu sample. They indicate the different steps of interpretation of these results, present and discuss the measured results

  13. Partitioning of plutonium and uranium in aqueous medium using hydroxyurea as reducing agent

    International Nuclear Information System (INIS)

    Sivakumar, P.; Subba Rao, R.V.; Meenakshi, S.

    2012-01-01

    A new process for the partitioning of plutonium and uranium during the reprocessing of spent fuel discharged from fast reactor was optimised using hydroxyurea (HU) as a reductant. Stoichiometric ratio of HU required for the reduction of Pu(IV) was studied. The effect of concentration of uranium, plutonium and acidity on the distribution ratio (Kd) of Pu in the presence of HU was studied. The effect of HU in further purification of Pu such as solvent extraction and precipitation of plutonium as oxalate was also studied. The results of the study indicate that Pu and U can be separated from each other using HU as reductant. (author)

  14. Power from plutonium: fast reactor fuel

    International Nuclear Information System (INIS)

    Bishop, J.F.W.

    1981-01-01

    Points of similarity and of difference between fast reactor fuel and fuels for AGR and PWR plants are established. The flow of uranium and plutonium in fast and thermal systems is also mentioned, establishing the role of the fast reactor as a plutonium burner. A historical perspective of fast reactors is given in which the substantial experience accumulated in test and prototype is indicated and it is noted that fast reactors have now entered the commercial phase. The relevance of the data obtained in the test and prototype reactors to the behaviour of commercial fast reactor fuel is considered. The design concepts employed in fuel are reviewed, including sections on core support styles, pin support and pin detail. This is followed by a discussion of current issues under the headings of manufacture, performance and reprocessing. This section includes a consideration of gel fuel, achievable burn-up, irradiation induced distortions and material choices, fuel form, and fuel failure mechanisms. Future development possibilities are also discussed and the Paper concludes with a view on the logic of a UK fast reactor strategy. (U.K.)

  15. Plutonium fuel an assessment. Report by an expert group

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Since the 1950s, plutonium used in fast reactors has been seen as the key to unlocking the vast energy resources contained in the world's uranium reserves. However, the slowing down in projected installation rates of nuclear reactors, combined with discovery of additional uranium, have led to a postponement of the point in time when fast reactors will make large demands on plutonium supplies. There are several options concerning its use or storage in the meantime. This report sets out the facts and current views about plutonium and its civil use, both at present and in the medium term. It explains the factors influencing the choice of fuel options and illustrates how economic and logistic assessments of the alternatives can be undertaken

  16. Fuel balance in nuclear power with fast reactors without a uranium blanket

    International Nuclear Information System (INIS)

    Naumov, V.V.; Orlov, V.V.; Smirnov, V.S.

    1994-01-01

    General aspects related to replacing the uranium blanket of a lead-cooled fast reactor burning uranium-plutonium nitride fuel with a more efficient lead reflector are briefly discussed in the article. A study is very briefly summarized, which showed that a breeding ratio of about 1 and electric power of about 300 MW were achievable. A nuclear fuel balance is performed to estimate the increased consumption of uranium to produce power and the gains achievable by eliminating the uranium blanket. Elimination of the uranium blanket has the advantages of simplifying and improving the fast reactor and eliminating the production of weapons quality plutonium. 3 figs

  17. Post-irradiation examinations of uranium-plutonium mixed nitride fuel irradiated in JMTR (89F-3A capsule)

    International Nuclear Information System (INIS)

    Iwai, Takashi; Nakajima, Kunihisa; Kikuchi, Hironobu; Arai, Yasuo; Kimura, Yasuhiko; Nagashima, Hisao; Sekita, Noriaki

    2000-03-01

    Two helium-bonded fuel pins filled with uranium-plutonium mixed nitride pellets were encapsulated in 89F-3A and irradiated in JMTR up to 5.5% FIMA at a maximum linear power of 73 kW/m. The capsule cooled for ∼5 months was transported to Reactor Fuel Examination Facility and subjected to non-destructive and destructive post irradiation examinations. Any failure was not observed in the irradiated fuel pins. Very low fission gas release rate of about 2 ∼ 3% was observed, while the diametric increase of fuel pin was limited to ∼0.4% at the position of maximum reading. The inner surface of cladding tube did not show any signs of chemical interaction with fuel pellet. (author)

  18. Improved plutonium consumption in a pressurised water reactor

    International Nuclear Information System (INIS)

    Puill, A.; Bergeron, J.

    1995-01-01

    Our goal is to improve plutonium consumption in a dedicated PWR while limiting the production of minor actinides. For lack of proving the system's reliability, we stay in reasonable configurations in which power capacity is maintained. Three ways are investigated in determining the fuel assembly: (a) standard geometry with mixed oxide in enriched uranium base; (b) standard geometry with plutonium oxide included in an inert matrix; (c) new geometry with special all-plutonium consumption varies from 50 kg/TWeh (a) up to 140 kg/TWeh (b) (upper point). The new geometry with special all plutonium rods mixed with standard uranium rods appears promising with a burning rate of 92 kg/TWeh for a production of minor actinides of 10 kg/TWeh. (authors). 3 refs., 3 figs., 4 tabs

  19. On line spectrophotometry with optical fibers. Application to uranium-plutonium separation in a spent fuel reprocessing plant

    International Nuclear Information System (INIS)

    Boisde, G.; Mus, G.; Tachon, M.

    1985-06-01

    Optimization of mixer-settler operation for uranium-plutonium separation in the Purex process can be obtained by remote spectrophotometry with optical fibers. Data acquisition on uranium VI, uranium IV and plutonium III is examined in function of acidity and nitrate content of the solution. Principles for on line multicomponent monitoring and mathematical modelization of the measurements are described [fr

  20. Use of plutonium and minor actinides as fuel in high temperature pebble bed reactors for waste minimization

    International Nuclear Information System (INIS)

    Meier, Astrid; Bernnat, Wolfgang; Lohnert, Guenther

    2009-01-01

    Energy production by nuclear fission gives rise to longlived radionuclides, such as plutonium and americium. The ''PuMA'' (Plutonium and Minor Actinides Waste Management) research project within the 6th Framework Program of the European Union serves to minimize waste arisings and transmute plutonium and minor actinides from spent LWR fuel elements by means of modular high-temperature reactors (HTR). Coating the fuel, which consists of kernels approx. 250 μm in radius and surrounded by graphite as the moderator material, allows very high operating and accident temperatures and very high burnups. One point examined is whether the inherent safety characteristics known for uranium oxide also exist for (PuO 2 + MAO 2 ) fuel. On the basis of a reference reactor similar to the South African PBMR-400, various loading strategies at maximum burnup are considered with a view to the inherent safety of the HTR. (orig.)

  1. X-ray photoemission spectroscopy (XPS) study of uranium, neptunium and plutonium oxides in silicate-based glasses

    International Nuclear Information System (INIS)

    Lam, D.J.; Veal, B.W.; Paulikas, A.P.

    1982-11-01

    Using XPS as the principal investigative tool, we are in the process of examining the bonding properties of selected metal oxides added to silicate glass. In this paper, we present results of XPS studies of uranium, neptunium, and plutonium in binary and multicomponent silicate-based glasses. Models are proposed to account for the very diverse bonding properties of 6+ and 4+ actinide ions in the glasses

  2. Uranium dioxide and beryllium oxide enhanced thermal conductivity nuclear fuel development

    International Nuclear Information System (INIS)

    Andrade, Antonio Santos; Ferreira, Ricardo Alberto Neto

    2007-01-01

    The uranium dioxide is the most used substance as nuclear reactor fuel for presenting many advantages such as: high stability even when it is in contact with water in high temperatures, high fusion point, and high capacity to retain fission products. The conventional fuel is made with ceramic sintered pellets of uranium dioxide stacked inside fuel rods, and presents disadvantages because its low thermal conductivity causes large and dangerous temperature gradients. Besides, the thermal conductivity decreases further as the fuel burns, what limits a pellet operational lifetime. This research developed a new kind of fuel pellets fabricated with uranium dioxide kernels and beryllium oxide filling the empty spaces between them. This fuel has a great advantage because of its higher thermal conductivity in relation to the conventional fuel. Pellets of this kind were produced, and had their thermophysical properties measured by the flash laser method, to compare with the thermal conductivity of the conventional uranium dioxide nuclear fuel. (author) (author)

  3. On chlorization of uranium and plutonium oxides in NaCl-KCl-MgCl2 molten eutectic

    International Nuclear Information System (INIS)

    Vorobej, M.P.; Desyatnik, V.N.; Pirogov, S.M.

    1978-01-01

    The chlorination process of U 3 O 8 , UO 2 , and PuO 2 in a melt of anhydrous NaCl-KCl-MgCl 2 with gaseous chlorine and carbon tetrachloride has been studied. The chlorination rate of uranium oxides has been studied within a temperature range 500-800 deg C at a chlorine feeding rate of 10 ml/min. Thermoqravimetric and X-ray analyses have shown that K 2 UO 2 Cl 4 compound is the final product of chlorination of uranium oxides. The mechanism of chlorination has been proposed. THe rate of PuO 2 chlorination has been studied within the same temperature range. It has been established that PuO 2 is readily chlorinated with CCl 4 vapours at a feeding rate of 10 ml/min. In contrast to uranium, chloride forms of plutonium in a highest oxidized state are unstable and are reduced in the melt to Pu(3) and Pu(4). The oxygen being released is retained by CCl 4 and by the products of CCl 4 pyrolysis

  4. Radiological protection when handling plutonium in a laboratory for experimental fuels

    International Nuclear Information System (INIS)

    Fraser, D.C.

    1978-01-01

    The laboratory for experimental fuels at AEE Winfrith is a small but adaptable workshop capable of fabricating uranium and plutonium as metal or oxide into a variety of fuel elements including pins, plates and coated particle compacts for reactor physics experiments. Experience gained over fifteen years operation has shown that the external radiation dose received by operators, which arises mainly from low energy gamma and X radiation, can be controlled by the widespread use of simple shielding. The radiation from higher energy neutrons cannot be effectively shielded in simple non-automated plant and it becomes more important if large batches of fuel are handled. Inhalation of plutonium oxide is the potentially most important radiological problem. Normally airborne levels of PuO 2 are insignificant; occasionally very high but localised concentrations of airborne material have arisen in working areas, chiefly from minor damage to the flexible part of the containment system, i.e. the gloves and posting bags in glove boxes. Methods employed to measure radiation and inhalation exposure are described and the implications discussed. A fully integrated biological monitoring, in vivo counting and record system is used to ensure that the best estimate of intake is computed for each individual who may be exposed. (author)

  5. Pyrochemical reduction of uranium dioxide and plutonium dioxide by lithium metal

    International Nuclear Information System (INIS)

    Usami, T.; Kurata, M.; Inoue, T.; Sims, H.E.; Beetham, S.A.; Jenkins, J.A.

    2002-01-01

    The lithium reduction process has been developed to apply a pyrochemical recycle process for oxide fuels. This process uses lithium metal as a reductant to convert oxides of actinide elements to metal. Lithium oxide generated in the reduction would be dissolved in a molten lithium chloride bath to enhance reduction. In this work, the solubility of Li 2 O in LiCl was measured to be 8.8 wt% at 650 deg. C. Uranium dioxide was reduced by Li with no intermediate products and formed porous metal. Plutonium dioxide including 3% of americium dioxide was also reduced and formed molten metal. Reduction of PuO 2 to metal also occurred even when the concentration of lithium oxide was just under saturation. This result indicates that the reduction proceeds more easily than the prediction based on the Gibbs free energy of formation. Americium dioxide was also reduced at 1.8 wt% lithium oxide, but was hardly reduced at 8.8 wt%

  6. Imperatives for using plutonium in commercial power reactors

    International Nuclear Information System (INIS)

    Sandquist, G.M.; Kunze, J.F.

    1995-01-01

    The use of reprocessed or newly produced plutonium as a fissile fuel in commercial nuclear reactors in the US has been actively suppressed by the current US Administration. Yet, many other advanced nations have already adopted mixed oxide fuels which are manufactured from a mixture of plutonium and natural uranium compounds. These nations have successfully proven the use of such nuclear fuel in their commercial power reactors for many years. The full consequence of the restrictive nuclear policy in the US will greatly limit the lifetime of the nuclear fuel resources in the US from a nominal potential of 100 centuries or more of potential energy supply to about 50 years or less at economical prices for uranium. This paper addresses both the imperatives and the potential and the perceived hazards of plutonium utilization and examines the consequences of government policy regarding utilization of nuclear power

  7. Pyrochemical head-end treatment for spent nuclear fuels

    International Nuclear Information System (INIS)

    Bowersox, D.F.

    1977-01-01

    A program based upon thermodynamic values and scouting experiments at Argonne National Laboratory is proposed for development of a pyrochemical head-end treatment of spent nuclear fuels to replace the proposed chopping and leaching operation in the Purex process. The treatment consists of separation of the cladding from the oxide fuel by dissolution into liquid zinc; oxide reduction of uranium and plutonium and dissolution into a zinc--magnesium alloy; separation of alkali, alkaline earth, and rare earth fission products into a molten salt; and, finally, separation and recovery of the plutonium and uranium in the alloy. Uranium and plutonium would be separated from the fuel cladding and selected fission products in a form readily dissolvable in nitric acid. The head-end process could be developed eventually into an optimum method for recovering uranium, plutonium, and selected fission products and for minimizing wastes as compact, stable solids. Developmental expenses are not known clearly, but the potential advantages of the process are impressive

  8. LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

  9. Fuel Cycle of Reactor SVBR-100

    Energy Technology Data Exchange (ETDEWEB)

    Zrodnikov, A.V.; Toshinsky, G.I.; Komlev, O.G. [FSUE State Scientific Center Institute for Physics and Power Engineering, 1, Bondarenko sq., Obninsk, Kaluga rg., 249033 (Russian Federation)

    2009-06-15

    Modular fast reactor with lead-bismuth heavy liquid-metal coolant in 100 MWe class (SVBR 100) is referred to the IV Generation reactors and shall operate in a closed nuclear fuel cycle (NFC) without consumption of natural uranium. Usually it is considered that launch of fast reactors (FR) is realized using mixed uranium-plutonium fuel. However, such launch of FRs is not economically effective because of the current costs of natural uranium and uranium enrichment servicing. This is conditioned by the fact that the quantity of reprocessing the spent nuclear fuel (SNF) of thermal reactors (TR) calculated for a ton of plutonium that determines the expenditures for construction and operation of the corresponding enterprise is very large due to low content of plutonium in the TR SNF. The economical effectiveness of FRs will be reduced as the enterprises on reprocessing the TR SNF have to be built prior to FRs have been implemented in the nuclear power (NP). Moreover, the pace of putting the FRs in the NP will be constrained by the quantity of the TR SNF. The report grounds an alternative strategy of FRs implementation into the NP, which is considered to be more economically effective. That is conditioned by the fact that in the nearest future use of the mastered uranium oxide fuel for FRs and operation in the open fuel cycle with postponed reprocessing will be most economically expedient. Changeover to the mixed uranium-plutonium fuel and closed NFC will be economically effective when the cost of natural uranium is increased and the expenditures for construction of enterprises on SNF reprocessing, re-fabrication of new fuel with plutonium and their operating becomes lower than the corresponding costs of natural uranium, uranium enrichment servicing, expenditures for fabrication of fresh uranium fuel and long temporary storage of the SNF. As when operating in the open NFC, FRs use much more natural uranium as compared with TRs, and at a planned high pace of NP development

  10. Individual economical value of plutonium isotopes and analysis of the reprocessing of irradiated fuel

    International Nuclear Information System (INIS)

    Gomes, I.C.; Rubini, L.A.; Barroso, D.E.G.

    1983-01-01

    An economical analysis of plutonium recycle in a PWR reactor, without any modification, is done, supposing an open market for the plutonium. The individual value of the plutonium isotopes is determined solving a system with four equations, which the unknow factors are the Pu-239, Pu-240, pu-241 and Pu-242 values. The equations are obtained equalizing the cost of plutonium fuel cycle of four different isotope mixture to the cost of the uranium fuel cycle. (E.G.) [pt

  11. Fuel assembly

    International Nuclear Information System (INIS)

    Yamazaki, Hajime.

    1995-01-01

    In a fuel assembly having fuel rods of different length, fuel pellets of mixed oxides of uranium and plutonium are loaded to a short fuel rod. The volume ratio of a pellet-loaded portion to a plenum portion of the short fuel rod is made greater than the volume ratio of a fuel rod to which uranium fuel pellets are loaded. In addition, the volume of the plenum portion of the short fuel rod is set greater depending on the plutonium content in the loaded fuel pellets. MOX fuel pellets are loaded on the short fuel rods having a greater degree of freedom relevant to the setting for the volume of the plenum portion compared with that of a long rod fuel, and the volume of the plenum portion is ensured greater depending on the plutonium content. Even if a large amount of FP gas and He gas are discharged from the MOX fuels compared with that from the uranium fuels, the internal pressure of the MOX fuel rod during operation is maintained substantially identical with that of the uranium fuel rod, so that a risk of generating excess stresses applied to the fuel cladding tubes and rupture of fuels are greatly reduced. (N.H.)

  12. Analytical methods for fissionable materials in the nuclear fuel cycle. Covering June 1974--June 1975

    International Nuclear Information System (INIS)

    Waterbury, G.R.

    1975-10-01

    Research progress is reported on method development for the dissolution of difficult-to-dissolve materials, the automated analysis of plutonium and uranium, the preparation of plutonium materials for the Safeguard Analytical Laboratory Evaluation (SALE) Program, and the analysis of HTGR fuel and SALE uranium materials. The previously developed Teflon-container, metal-shell apparatus was applied to the dissolution of various nuclear materials. Gas--solid reactions, mainly using chlorine at elevated temperatures, are promising for separating uranium from refractory compounds. An automated spectrophotometer designed for determining plutonium and uranium was tested successfully. Procedures were developed for this instrument to analyze uranium--plutonium mixtures and the effects of diverse ions upon the analysis of plutonium and uranium were further established. A versatile apparatus was assembled to develop electrotitrimetric methods that will serve as the basis for precise automated determinations of plutonium. Plutonium materials prepared for the Safeguard Analytical Laboratory Evaluation (SALE) Program were plutonium oxide, uranium--plutonium mixed oxide, and plutonium metal. Improvements were made in the methods used for determining uranium in HTGR fuel materials and SALE uranium materials. Plutonium metal samples were prepared, characterized, and distributed, and half-life measurements were in progress as part of an inter-ERDA-laboratory program to measure accurately the half-lives of long-lived plutonium isotopes

  13. Disposal of Surplus Weapons Grade Plutonium

    International Nuclear Information System (INIS)

    Alsaed, H.; Gottlieb, P.

    2000-01-01

    The Office of Fissile Materials Disposition is responsible for disposing of inventories of surplus US weapons-usable plutonium and highly enriched uranium as well as providing, technical support for, and ultimate implementation of, efforts to obtain reciprocal disposition of surplus Russian plutonium. On January 4, 2000, the Department of Energy issued a Record of Decision to dispose of up to 50 metric tons of surplus weapons-grade plutonium using two methods. Up to 17 metric tons of surplus plutonium will be immobilized in a ceramic form, placed in cans and embedded in large canisters containing high-level vitrified waste for ultimate disposal in a geologic repository. Approximately 33 metric tons of surplus plutonium will be used to fabricate MOX fuel (mixed oxide fuel, having less than 5% plutonium-239 as the primary fissile material in a uranium-235 carrier matrix). The MOX fuel will be used to produce electricity in existing domestic commercial nuclear reactors. This paper reports the major waste-package-related, long-term disposal impacts of the two waste forms that would be used to accomplish this mission. Particular emphasis is placed on the possibility of criticality. These results are taken from a summary report published earlier this year

  14. Experiments of progressive replacement in Cesar at operation temperature. Uranium-plutonium fuels. Study performed within the frame of the CEA-EURATOM - No. 002 64 9 TRUF contract - 'Plutonium recycling'

    International Nuclear Information System (INIS)

    Bosser, Roland; Cuny, Gerard; Hoffmann, Alain; Langlet, Gerard; Laponche, Bernard; Morier, Francis; Penet, Francois; Charbonneau, Serge

    1969-08-01

    Experiments of progressive replacement (or substitution) of uranium-plutonium alloy fuels are part of a general program of experimental studies which are aimed at testing the methods used by the CEA to calculate the evolution of nuclear power reactors (calculation of spectrum in plutonium-containing fuels and validity of data used in these calculations, calculation of cross sections). Such progressive replacements have been performed in Aquilon (with heavy water as moderator) and measurements have been performed by oscillation in Marius and Cesar (graphite moderator). Herein reported experiments have been performed at 20, 100 and 200 C during a first campaign in 1966, and at 300, 400 and 450 C during a second campaign in 1968. Measurements are interpreted by means of the Coregraf 2 code. The report presents experimental conditions in Cesar, the measurement principle and the interpretation method (substitution experiments, enriched uranium calibration, interpretation steps, and temperature coefficient measurement), the obtained results and their discussion [fr

  15. 1981 Annual Status Report. Plutonium fuels and actinide programme

    International Nuclear Information System (INIS)

    1981-01-01

    In this 1981 report the work carried out by the European Institute for Transuranium elements is reviewed. Main topics are: operation limits of plutonium fuels: swelling of advanced fuels, oxide fuel transients, equation of state of nuclear materials; actinide cycle safety: formation of actinides (FACT), safe handling of plutonium fuel (SHAPE), aspects of the head-end processing of carbide fuel (RECARB); actinide research: crystal chemistry, solid state studies, applied actinide research

  16. Tables of thermodynamic functions for gaseous thorium, uranium, and plutonium oxides

    International Nuclear Information System (INIS)

    Green, D.W.

    1980-03-01

    Measured and estimated spectroscopic data for thorium, uranium, and plutonium oxide vapor species have been used with the methods of statistical mechanics to calculate thermodynamic functions. Some inconsistencies between spectroscopic data and some thermodynamic data have been resolved by recalculating ΔH 0 /sub f/ (298.15 0 K) values for the vapor species of these oxides. Evaluation of the uncertainties in data, methods of estimating molecular parameters, and effects of assumptions have been discussed elsewhere. The tables of thermodynamic functions that were reported earlier have been revised principally because the low-frequency vibrational modes of UO 2 and UO 3 have now been measured. These new empirical data resulted in changes in the electronic contributions to the calculated thermodynamic functions of UO 2 and the estimated vibrational contributions for PuO 2 . In addition, some minor changes have been made in the methods of calculation of the electronic contributions for all molecules

  17. The separation of plutonium from uranium and fission products on zirconium phosphate columns

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I; Ruvarac, A [Institute of Nuclear Sciences Boris Kidric, Laboratorija za visoku aktivnost, Vinca, Beograd (Serbia and Montenegro)

    1963-12-15

    In recent years special attention has been given to the ion-exchange properties of zirconium phosphate and similar compounds in aqueous solutions. These inorganic cation exchangers are stable in oxidizing media and at elevated temperatures. Their resistance to ionizing radiation makes them particularly suitable for work with radioactive solutions. On account of this we considered ir worthwhile to investigate the separation of plutonium from uranium and fission products on zirconium phosphate columns. We were interested in nitric and solutions containing macro-amounts of uranium (a few grams per litre), and micro-amounts of plutonium and long-lived fission products. To obtain a better insight into the ion-exchange behaviour of the different ionic species towards zirconium phosphate, we first determined the dependence of the distribution coefficients of uranium, plutonium and fission product cations on the aqueous nitric acid concentration. Then, taking the distribution data as a guide, we separated plutonium on small glass columns filled with zirconium phosphate and calculated the decontamination factors (author)

  18. Simulation study for purification, recovery of plutonium and uranium from plant streams of Fast Reactor Fuel Reprocessing Plant

    International Nuclear Information System (INIS)

    Sukumar, S.; Siva Kumar, P.; Radhika, R.; Subbuthai, S.; Mohan, S.V.; Subha Rao, R.V.

    2005-01-01

    A method for removal of plutonium from the lean organic streams obtained after co-stripping of uranium -plutonium was developed. Plutonium from lean organic phase was stripped using U 4+ /hydrazine as the stripping agent. The effect of concentrations of stripping agent U 4+ and feed Pu concentration in the lean organic phase was studied. Lean organic phases having higher plutonium concentration require three stages of stripping to bring plutonium concentration 4+ stabilized by hydrazine reduces Pu (IV) to Pu (III) thereby stripping plutonium from the organic phase. The non-extractability of Pu (III) by TBP was utilized for development of flow sheet for obtaining a uranium product lean of plutonium for ease of handling. (author)

  19. Plutonium in uranium deposits

    International Nuclear Information System (INIS)

    Curtis, D.; Fabryka-Martin, J.; Aguilar, R.; Attrep, M. Jr.; Roensch, F.

    1992-01-01

    Plutonium-239 (t 1/2 , 24,100 yr) is one of the most persistent radioactive constituents of high-level wastes from nuclear fission power reactors. Effective containment of such a long-lived constituent will rely heavily upon its containment by the geologic environment of a repository. Uranium ore deposits offer a means to evaluate the geochemical properties of plutonium under natural conditions. In this paper, analyses of natural plutonium in several ores are compared to calculated plutonium production rates in order to evaluate the degree of retention of plutonium by the ore. The authors find that current methods for estimating production rates are neither sufficiently accurate nor precise to provide unambiguous measures of plutonium retention. However, alternative methods for evaluating plutonium mobility are being investigated, including its measurement in natural ground waters. Preliminary results are reported and establish the foundation for a comprehensive characterization of plutonium geochemistry in other natural environments

  20. Method of determining the composition of fuels for FBR type reactors

    International Nuclear Information System (INIS)

    Tsutsumi, Kiyoshi.

    1981-01-01

    Purpose: To improve the core safety of FBR type reactors by determining the composition of fuels composed of oxide mixture of plutonium and uranium, using a relation between specific plutonium seed and plutonium enrichment degree. Method: Relation is determined between the ratio of a specific plutonium seed for constituting plutonium oxide, for example 239 U ratio and a plutonium enrichment degree required for setting the assembly power to a constant level. The ratio of 239 U is plutonium having a given isotopic ratio is also determined. The accuracy of the 239 U ratio can be improved by the correction using the density coefficient. Then, the plutonium enrichment degree is determined using the relation determined as above based on the thus determined 239 U ratio. The composition of the fuel using oxide mixture of plutonium and uranium is determined by utilizing the thus obtained plutonium enrichment degree. (Moriyama, K.)

  1. Plutonium Chemistry in the UREX Separation Processes

    International Nuclear Information System (INIS)

    Paulenova, Alena; Vandegrift, George F. III; Czerwinski, Kenneth R.

    2009-01-01

    The objective of the project is to examine the chemical speciation of plutonium in UREX+ (uranium/tributylphosphate) extraction processes for advanced fuel technology. Researchers will analyze the change in speciation using existing thermodynamics and kinetic computer codes to examine the speciation of plutonium in aqueous and organic phases. They will examine the different oxidation states of plutonium to find the relative distribution between the aqueous and organic phases under various conditions such as different concentrations of nitric acid, total nitrates, or actinide ions. They will also utilize techniques such as X-ray absorbance spectroscopy and small-angle neutron scattering for determining plutonium and uranium speciation in all separation stages. The project started in April 2005 and is scheduled for completion in March 2008.

  2. Research on using depleted uranium as nuclear fuel for HWR

    International Nuclear Information System (INIS)

    Zhang Jiahua; Chen Zhicheng; Bao Borong

    1999-01-01

    The purpose of our work is to find a way for application of depleted uranium in CANDU reactor by using MOX nuclear fuel of depleted U and Pu instead of natural uranium. From preliminary evaluation and calculation, it was shown that MOX nuclear fuel consisting of depleted uranium enrichment tailings (0.25% 235 U) and plutonium (their ratio 99.5%:0.5%) could replace natural uranium in CANDU reactor to sustain chain reaction. The prospects of application of depleted uranium in nuclear energy field are also discussed

  3. Analysis of fuel cycles with natural uranium, Phase I; Analiza gorivnih ciklusa sa prirodnim uranom, I faza

    Energy Technology Data Exchange (ETDEWEB)

    Stojadinovic, A; Zivkovic, Z; Raisic, N [Institute of Nuclear Sciences Boris Kidric, Laboratorija za fiziku i dinamiku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1964-12-15

    This paper contains analyses of fuel cycles with natural uranium for the following cases: plutonium recycling is not done; recycling of plutonium and irradiated uranium with the condition of equal multiplication factor at the beginning of each cycle; and recycling of plutonium only.

  4. Safety analysis of MOX fuels by fuel performance code

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    Performance of plutonium rick mixed oxide fuels specified for the Reduced-Moderation Water Reactor (RMWR) has been analysed by modified fuel performance code. Thermodynamic properties of these fuels up to 120 GWd/t burnup have not been measured and estimated using existing uranium fuel models. Fission product release, pressure rise inside fuel rods and mechanical loads of fuel cans due to internal pressure have been preliminarily assessed based on assumed axial power distribution history, which show the integrity of fuel performance. Detailed evaluation of fuel-cladding interactions due to thermal expansion or swelling of fuel pellets due to high burnup will be required for safety analysis of mixed oxide fuels. Thermal conductivity and swelling of plutonium rich mixed oxide fuels shall be taken into consideration. (T. Tanaka)

  5. Physics of Plutonium Recycling in Thermal Reactors

    International Nuclear Information System (INIS)

    Kinchin, G.H.

    1967-01-01

    A substantial programme of experimental reactor physics work with plutonium fuels has been carried out in the UK; the purpose of this paper is to review the experimental and theoretical work, with emphasis on plutonium recycling in thermal reactors. Although the main incentive for some of the work may have been to study plutonium build-up in uranium-fuelled reactors, it is nevertheless relevant to plutonium recycling and no distinction is drawn between build-up and enrichment studies. A variety of techniques have been for determining reactivity, neutron spectrum and reaction rates in simple assemblies of plutonium-aluminium fuel with water, graphite and beryllia moderators. These experiments give confidence in the basic data and methods of calculation for near-homogeneous mixtures of plutonium and moderator. In the practical case of plutonium recycling it is necessary to confirm that satisfactory predictions can be made for heterogeneous lattices enriched with plutonium. In this field, experiments have been carried out with plutonium-uranium metal and oxide-cluster fuels in graphite-moderated lattices and in SGHW lattices, and the effects of 240 Pu have been studied by perturbation measurements with single fuel elements. The exponential and critical experiments have used tonne quantities of fuel with plutonium contents ranging from 0.25 to 1.2% and the perturbation experiments have extended both the range of plutonium contents and the range of isotopic compositions of plutonium. In addition to reactivity and reactivity coefficients, such as the temperature coefficients, attention has been concentrated on relative reaction rate distributions which provide evidence for variations of neutron spectrum. .Theoretical comparisons, together with similar comparisons for non-uniform lattices, establish the validity of methods of calculation which have been used to study the feasibility of plutonium recycling in thermal reactors. (author)

  6. Physics of Plutonium Recycling in Thermal Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kinchin, G. H. [Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1967-09-15

    A substantial programme of experimental reactor physics work with plutonium fuels has been carried out in the UK; the purpose of this paper is to review the experimental and theoretical work, with emphasis on plutonium recycling in thermal reactors. Although the main incentive for some of the work may have been to study plutonium build-up in uranium-fuelled reactors, it is nevertheless relevant to plutonium recycling and no distinction is drawn between build-up and enrichment studies. A variety of techniques have been for determining reactivity, neutron spectrum and reaction rates in simple assemblies of plutonium-aluminium fuel with water, graphite and beryllia moderators. These experiments give confidence in the basic data and methods of calculation for near-homogeneous mixtures of plutonium and moderator. In the practical case of plutonium recycling it is necessary to confirm that satisfactory predictions can be made for heterogeneous lattices enriched with plutonium. In this field, experiments have been carried out with plutonium-uranium metal and oxide-cluster fuels in graphite-moderated lattices and in SGHW lattices, and the effects of {sup 240}Pu have been studied by perturbation measurements with single fuel elements. The exponential and critical experiments have used tonne quantities of fuel with plutonium contents ranging from 0.25 to 1.2% and the perturbation experiments have extended both the range of plutonium contents and the range of isotopic compositions of plutonium. In addition to reactivity and reactivity coefficients, such as the temperature coefficients, attention has been concentrated on relative reaction rate distributions which provide evidence for variations of neutron spectrum. .Theoretical comparisons, together with similar comparisons for non-uniform lattices, establish the validity of methods of calculation which have been used to study the feasibility of plutonium recycling in thermal reactors. (author)

  7. Characterization of past and present solid waste streams from the Plutonium-Uranium Extraction Plant

    International Nuclear Information System (INIS)

    Pottmeyer, J.A.; Weyns, M.I.; Lorenzo, D.S.; Vejvoda, E.J.; Duncan, D.R.

    1993-04-01

    During the next two decades the transuranic wastes, now stored in the burial trenches and storage facilities at the Hanford Site, are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 7% of the transuranic waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this report is to characterize the radioactive solid wastes generated by PUREX using process knowledge, existing records, and oral history interviews. The PUREX Plant is currently operated by the Westinghouse Hanford Company for the US Department of Energy and is now in standby status while being prepared for permanent shutdown. The PUREX Plant is a collection of facilities that has been used primarily to separate plutonium for nuclear weapons from spent fuel that had been irradiated in the Hanford Site's defense reactors. Originally designed to reprocess aluminum-clad uranium fuel, the plant was modified to reprocess zirconium alloy clad fuel elements from the Hanford Site's N Reactor. PUREX has provided plutonium for research reactor development, safety programs, and defense. In addition, the PUREX was used to recover slightly enriched uranium for recycling into fuel for use in reactors that generate electricity and plutonium. Section 2.0 provides further details of the PUREX's physical plant and its operations. The PUREX Plant functions that generate solid waste are as follows: processing operations, laboratory analyses and supporting activities. The types and estimated quantities of waste resulting from these activities are discussed in detail

  8. Estimates of relative areas for the disposal in bedded salt of LWR wastes from alternative fuel cycles

    International Nuclear Information System (INIS)

    Lincoln, R.C.; Larson, D.W.; Sisson, C.E.

    1978-01-01

    The relative mine-level areas (land use requirements) which would be required for the disposal of light-water reactor (LWR) radioactive wastes in a hypothetical bedded-salt formation have been estimated. Five waste types from alternative fuel cycles have been considered. The relative thermal response of each of five different site conditions to each waste type has been determined. The fuel cycles considered are the once-through (no recycle), the uranium-only recycle, and the uranium and plutonium recycle. The waste types which were considered include (1) unreprocessed spent reactor fuel, (2) solidified waste derived from reprocessing uranium oxide fuel, (3) plutonium recovered from reprocessing spent reactor fuel and doped with 1.5% of the accompanying waste from reprocessing uranium oxide fuel, (4) waste derived from reprocessing mixed uranium/plutonium oxide fuel in the third recycle, and (5) unreprocessed spent fuel after three recycles of mixed uranium/plutonium oxide fuels. The relative waste-disposal areas were determined from a calculated value of maximum thermal energy (MTE) content of the geologic formations. Results are presented for each geologic site condition in terms of area ratios. Disposal area requirements for each waste type are expressed as ratios relative to the smallest area requirement (for waste type No. 2 above). For the reference geologic site condition, the estimated mine-level disposal area ratios are 4.9 for waste type No. 1, 4.3 for No. 3, 2.6 for No. 4, and 11 for No. 5

  9. Analysis of fuel cycles with natural uranium, Phase I, Economic analysis of plutonium recycling in BHWR; Analiza gorivnih ciklusa sa prirodnim uranom, II faza - Ekonomska analiza recikliranja plutonijuma u BHWR reaktorima

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N; Bosevski, T [Institute of Nuclear Sciences Boris Kidric, Laboratorija za fiziku i dinamiku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1965-11-15

    The objective of this analysis was establishing a method for determination of the fuel price fraction in the total cost of nuclear power production. Special attention was devoted to recycling of plutonium in natural uranium reactors, plutonium to be used in the same reactor type. The adopted method would enable economic comparison of different types of fuel cycles for different reactors.

  10. Precipitation of plutonium (III) oxalate and calcination to plutonium oxide

    International Nuclear Information System (INIS)

    Esteban, A.; Orosco, E.H.; Cassaniti, P.; Greco, L.; Adelfang, P.

    1989-01-01

    The plutonium based fuel fabrication requires the conversion of the plutonium nitrate solution from nuclear fuel reprocessing into pure PuO2. The conversion method based on the precipitation of plutonium (III) oxalate and subsequent calcination has been studied in detail. In this procedure, plutonium (III) oxalate is precipitated, at room temperature, by the slow addition of 1M oxalic acid to the feed solution, containing from 5-100 g/l of plutonium in 1M nitric acid. Before precipitation, the plutonium is adjusted to trivalent state by addition of 1M ascorbic acid in the presence of an oxidation inhibitor such as hydrazine. Finally, the precipitate is calcinated at 700 deg C to obtain PuO2. A flowsheet is proposed in this paper including: a) A study about the conditions to adjust the plutonium valence. b) Solubility data of plutonium (III) oxalate and measurements of plutonium losses to the filtrate and wash solution. c) Characterization of the obtained products. Plutonium (III) oxalate has several potential advantages over similar conversion processes. These include: 1) Formation of small particle sizes powder with good pellets fabrication characteristics. 2) The process is rather insensitive to most process variables, except nitric acid concentration. 3) Ambient temperature operations. 4) The losses of plutonium to the filtrate are less than in other conversion processes. (Author) [es

  11. Radioactive decay properties of CANDU fuel. Volume 1: the natural uranium fuel cycle

    International Nuclear Information System (INIS)

    Clegg, L.J.; Coady, J.R.

    1977-01-01

    The two books of Volume 1 comprise the first in a three-volume series of compilations on the radioactive decay propertis of CANDU fuel and deal with the natural uranium fuel cycle. Succeeding volumes will deal with fuel cycles based on plutonium recycle and thorium. In Volume 1 which is divided into three parts, the computer code CANIGEN was used to obtain the mass, activity, decay heat and toxicity of CANDU fuel and its component isotopes. Data are also presented on gamma spectra and neutron emissions. Part 3 contains the data relating to the plutonium product and the high level wastes produced during fuel reprocessing. (author)

  12. Determination of uranium and plutonium in metal conversion products from electrolytic reduction process

    International Nuclear Information System (INIS)

    Lee, Chang Heon; Suh, Moo Yul; Joe, Kih Soo; Sohn, Se Chul; Jee, Kwang Young; Kim, Won Ho

    2005-01-01

    Chemical characterization of process materials is required for the optimization of an electrolytic reduction process in which uranium dioxide, a matrix of spent PWR fuels, is electrolytically reduced to uranium metal in a medium of LiCl-Li 2 O molten at 650 .deg. C. A study on the determination of fissile materials in the uranium metal products containing corrosion products, fission products and residual process materials has been performed by controlled-potential coulometric titration which is well known in the field of nuclear science and technology. Interference of Fe, Ni, Cr and Mg (corrosion products), Nd (fission product) and LiCl molten salt (residual process material) on the determination of uranium and plutonium, and the necessity of plutonium separation prior to the titration are discussed in detail. Under the analytical condition established already, their recovery yields are evaluated along with analytical reliability

  13. The generation of denatured reactor plutonium by different options of the fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Broeders, C.H.M.; Kessler, G. [Inst. for Neutron Physics and Reactor Technology, Research Center Karlsruhe (Germany)

    2006-11-15

    Denatured (proliferation resistant) reactor plutonium can be generated in a number of different fuel cycle options. First denatured reactor plutonium can be obtained if, instead of low enriched U-235 PWR fuel, re-enriched U-235/U-236 from reprocessed uranium is used (fuel type A). Also the envisaged existing 2,500 t of reactor plutonium (being generated world wide up to the year 2010), mostly stored in intermediate fuel storage facilities at present, could be converted during a transition phase into denatured reactor plutonium by the options fuel type B and D. Denatured reactor plutonium could have the same safeguards standard as present low enriched (<20% U-235) LWR fuel. It could be incinerated by recycling once or twice in PWRs and subsequently by multi-recycling in FRs (CAPRA type or IFRs). Once denatured, such reactor plutonium could remain denatured during multiple recycling. In a PWR, e.g., denatured reactor plutonium could be destroyed at a rate of about 250 kg/GWey. While denatured reactor plutonium could be recycled and incinerated under relieved IAEA safeguards, neptunium would still have to be monitored by the IAEA in future for all cases in which considerable amounts of neptunium are produced. (orig.)

  14. Fuel cycle parameters for strategy studies

    International Nuclear Information System (INIS)

    Archinoff, G.H.

    1979-05-01

    This report summarizes seven fuel cycle parameters (efficiency, specific power, burnup, equilibrium net fissile feed, equilibrium net fissile surplus, first charge fissile content, and whether or not fuel reprocessing is required) to be used in long-term strategy analyses of fuel cycles based on natural UO 2 , low enriched uranium, mixed oxides, plutonium topped thorium, uranium topped thorium, and the fast breeder oxide cycle. (LL)

  15. Radial plutonium redistribution in mixed-oxide fuel

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Schwinkendorf, K.N.; Karnesky, R.A.

    1981-10-01

    Alpha autoradiographs from all HEDL fuel pin metallography samples are evaluated and catalogued according to different plutonium distribution patterns. The data base is analyzed for effects of fabrication and operating parameters on redistribution

  16. Wrapping up the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rueth, N.

    1976-01-01

    Reprocessing basically entails recovering uranium and plutonium from spent fuel for reuse in light water reactors (LWRs). The wastes resulting from this process are transformed to products suitable for disposal. These endeavors extend uranium supplies and also reduce the size and amount of nuclear waste that must be stored. Reprocessing, however, also ''unlocks'' the fuel rods that currently imprison radioactive substances. If great care is not taken, it could rip open a Pandora's box, exposing reprocessing plant workers, the general public, and the environment to deadly radioactive substances. While no commercial reprocessing plants are currently operating in the U.S., a scenario for such efforts has been mapped out. The first step is to chop the fuel elements into small pieces so that the fuel is no longer protected by its corrosion-resistant cladding. The fuel is then dissolved away from the cladding with nitric acid. An organic solvent extracts plutonium and uranium, and additional solvent extraction or ion exchange operations separate the two substances. Plutonium is converted to plutonium oxide; uranium 235 is converted to uranium oxide. They can then be combined to a make mixed oxide fuel, and formed into fuel elements for use in nuclear reactors. Various wastes with varied levels of radioactivity are generated during these operations. All demand attention. Radioactive gaseous waste most often is filtered before release through tall stacks. Metal solid waste--debris, fuel claddings, and hulls--may be compacted or cryogenically crushed and stored at specially designed storage sites. Contaminated combustibles, such as paper and resins, are incinerated and the ash is fixed and packaged for storage. The plans of Allied-General Nuclear Services (AGNS), which claims to have the closest thing in the United States to a ready reprocessor are described

  17. Status of plutonium recycle from mixed oxide fuel fabrication wastes (U,Pu)O2 facility activities

    International Nuclear Information System (INIS)

    Quesada, Calixto A.; Adelfang, Pablo; Greiner, G.; Orlando, Oscar S.; Mathot, Sergio R.

    1999-01-01

    Within the specific subject of mixed oxides corresponding to the Fuel Cycle activities performed at CNEA, the recovery of plutonium from wastes originated during tests and pre-fabrication stages is performed. (author)

  18. Recent IAEA activities on CANDU-PHWR fuels and fuel cycles

    International Nuclear Information System (INIS)

    Inozemtsev, V.; Ganguly, C.

    2005-01-01

    Pressurized Heavy Water Reactors (PHWR), widely known as CANDU, are in operation in Argentina, Canada, China, India, Pakistan, Republic of Korea and Romania and account for about 6% of the world's nuclear electricity production. The CANDU reactor and its fuel have several unique features, like horizontal calandria and coolant tubes, on-power fuel loading, thin-walled collapsible clad coated with graphite on the inner surface, very high density (>96%TD) natural uranium oxide fuel and amenability to slightly enriched uranium oxide, mixed uranium plutonium oxide (MOX), mixed thorium plutonium oxide, mixed thorium uranium (U-233) oxide and inert matrix fuels. Several Technical Working Groups (TWG) of IAEA periodically discuss and review CANDU reactors, its fuel and fuel cycle options. These include TWGs on water-cooled nuclear power reactor Fuel Performance and Technology (TWGFPT), on Nuclear Fuel Cycle Options and spent fuel management (TWGNFCO) and on Heavy Water Reactors (TWGHWR). In addition, IAEA-INPRO project also covers Advanced CANDU Reactors (ACR) and DUPIC fuel cycles. The present paper summarises the Agency's activities in CANDU fuel and fuel cycle, highlighting the progress during the last two years. In the past we saw HWR and LWR technologies and fuel cycles separate, but nowadays their interaction is obviously growing, and their mutual influence may have a synergetic character if we look at the world nuclear fuel cycle as at an integrated system where the both are important elements in line with fast neutron, gas cooled and other advanced reactors. As an international organization the IAEA considers this challenge and makes concrete steps to tackle it for the benefit of all Member States. (author)

  19. Determination of low level of plutonium and uranium isotopes in safeguard swipe sample

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Ho; Park, Jong Ho; Oh, Seong Yong; Lee, Chang Heon; Ahn, Hong Ju; Song, Kyu Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    For the determination of radionuclides, the separation techniques based on the principles of anion exchange, liquid-liquid extraction or column extraction chromatography are frequently used in nuclear analytical applications. Recently, a novel extraction chromatographic resin has been developed by Horwitz and co-workers, which are capable of selective extraction of the actinides. General separation of plutonium and uranium with extraction chromatographic techniques are focused on the environmental or radioactive waste samples. Also, the chemical yields for Pu and U isotopes with extraction chromatographic method sometimes are variable. For effective extraction of Pu isotopes in the very level of plutonium sample with UTEVA resin, the valence adjustment of Pu isotopes in the sample solution requires due to unstability in the oxidation state of Pu isotopes during separation step. Therefore, it is necessary to develop a simple and robust radiochemical separation method for nano- or pico gram amounts of uranium and plutonium in safeguard swipe samples. Chemical yields of plutonium and uranium with extraction chromatographic method of Pu and U upgrades in this study were compared with several separation methods for Pu and U generally used in the radiochemistry field. Also, the redox reactions of hydrogen peroxide with plutonium in the nitric acid media were investigated by UV-Vis-NIR absorption spectroscopy. Based on general extraction chromatography method with UTEVA resin, the separation method of nano- and picogram amounts of uranium and plutonium in safeguard swipe samples was developed in this study

  20. Colloids from the aqueous corrosion of uranium nuclear fuel

    Science.gov (United States)

    Kaminski, M. D.; Dimitrijevic, N. M.; Mertz, C. J.; Goldberg, M. M.

    2005-12-01

    Colloids may enhance the subsurface transport of radionuclides and potentially compromise the long-term safe operation of the proposed radioactive waste repository at Yucca Mountain. Little data is available on colloid formation for the many different waste forms expected to be buried in the repository. This work expands the sparse database on colloids formed during the corrosion of metallic uranium nuclear fuel. We characterized spherical UO 2 and nickel-rich montmorilonite smectite-clay colloids formed during the corrosion of uranium metal fuel under bathtub conditions at 90 °C. Iron and chromium oxides and calcium carbonate colloids were present but were a minor population. The estimated upper concentration of the UO 2 and clays was 4 × 10 11 and 7 × 10 11-3 × 10 12 particles/L, respectively. However, oxygen eventually oxidized the UO 2 colloids, forming long filaments of weeksite K 2(UO 2) 2Si 6O 15 · 4H 2O that settled from solution, reducing the UO 2 colloid population and leaving predominantly clay colloids. The smectite colloids were not affected by oxygen. Plutonium was not directly observed within the UO 2 colloids but partitioned completely to the colloid size fraction. The plutonium concentration in the colloidal fraction was slightly higher than the value used in the viability assessment model, and does not change in concentration with exposure to oxygen. This paper provides conclusive evidence for single-phase radioactive colloids composed of UO 2. However, its impact on repository safety is probably small since oxygen and silica availability will oxidize and effectively precipitate the UO 2 colloids from concentrated solutions.

  1. Potentiometric determination of uranium in the presence of plutonium in Hsub(2)SOsub(4) medium

    International Nuclear Information System (INIS)

    Gopinath, N.; Rama Rao, G.A.; Manchanda, V.K.; Natarajan, P.R.

    1985-01-01

    The potentiometric determination of uranium is widely carried out in phosphoric acid medium to suppress the interferences of plutonium by complexation. Owing to the complexity of the recycling plutonium from the phosphate based waste involving manifold stages of separation, a method is proposed which does not use phosphoric acid. Uranium and plutonium are reduced to U(IV) and Pu(III) in IM Hsub(2)SOsub(4) by Ti(III), and NaNOsub(2) is chosen to selectively oxidize Pu(III) and the excess of Ti(III). The unreacted NaNOsub(2) is destroyed by sulphamic acid and excess Fe(III) is added following dilution. The euqivalent amount of Fe(II) thus liberated is titrated against standard Ksub(2)Crsub(2)Osub(7). RSD obtained for the determination of uranium (1-2 mg) is 0.3% with plutonium present up to 4.0 mg. (author)

  2. Calibration Tools for Measurement of Highly Enriched Uranium in Oxide and Mixed Uranium-Plutonium Oxide with a Passive-Active Neutron Drum Shuffler

    International Nuclear Information System (INIS)

    Mount, M; O'Connell, W; Cochran, C; Rinard, P

    2003-01-01

    Lawrence Livermore National Laboratory (LLNL) has completed an extensive effort to calibrate the LLNL passive-active neutron drum (PAN) shuffler (Canberra Model JCC-92) for accountability measurement of highly enriched uranium (HEU) oxide and HEU in mixed uranium-plutonium (U-Pu) oxide. Earlier papers described the PAN shuffler calibration over a range of item properties by standards measurements and an extensive series of detailed simulation calculations. With a single normalization factor, the simulations agree with the HEU oxide standards measurements to within ±1.2% at one standard deviation. Measurement errors on mixed U-Pu oxide samples are in the ±2% to ±10% range, or ±20 g for the smaller items. The purpose of this paper is to facilitate transfer of the LLNL procedure and calibration algorithms to external users who possess an identical, or equivalent, PAN shuffler. Steps include (1) measurement of HEU standards or working reference materials (WRMs); (2) MCNP simulation calculations for the standards or WRMs and a range of possible masses in the same containers; (3) a normalization of the calibration algorithms using the standard or WRM measurements to account for differences in the 252 Cf source strength, the delayed-neutron nuclear data, effects of the irradiation protocol, and detector efficiency; and (4) a verification of the simulation series trends against like LLNL results. Tools include EXCEL/Visual Basic programs which pre- and post-process the simulations, control the normalization, and embody the calibration algorithms

  3. Radiological impact of plutonium recycle in the fuel cycle of LWR type reactors: professional exposure during mormal operation

    International Nuclear Information System (INIS)

    White, I.F.; Kelly, G.N.

    1983-01-01

    The radiological impact of the fuel cycle of light water type reactors using enriched uranium may be changed by plutonium recycle. The impact on human population and on the persons professionally exposed may be different according to the different steps of the fuel cycle. This report analyses the differential radiological impact on the different types of personnel involed in the fuel cycle. Each step of the fuel cycle is separately studied (fuel fabrication, reactor operation, fuel reprocessing), as also the transport of the radioactive materials between the different steps. For the whole fuel cycle, one estimates that, with regard to the fuel cycle using enriched uranium, the plutonium recycle involves a small increase of the professional exposure

  4. The economics of plutonium-uranium recycling to the nuclear program in the country of Spain

    International Nuclear Information System (INIS)

    Witzig, W.F.; Serradell, V.

    1982-01-01

    The increasing uncertainty of oil supplies and the rapid price changes associated with this uncertainty have encouraged some nations to turn increasingly to nuclear energy to produce electricity. The economic penalty associated with no spent fuel reprocessing for the country of Spain is determined, and this serves as an example of one of the consequences of a nonproliferation policy of a ''throw-away'' fuel cycle. The growth rate of electricity is forecast, and the Spanish plan for the addition of nuclear plants is examined. The neutronics of the ''throw-away'', the uranium recycle, and the uranium and plutonium cycle systems are reviewed and the economics of each system compared. There is a definite economic advantage to the uranium and plutonium recycle system being employed as early as possible. Such employment will have favorable foreign trade imbalance implications and foster national independence of imported oil

  5. Some alternatives to the mixed oxide fuel cycle

    International Nuclear Information System (INIS)

    Deonigi, D.E.; Eschbach, E.A.; Goldsmith, S.; Pankaskie, P.J.; Rohrmann, C.A.; Widrig, R.D.

    1977-02-01

    While on initial examination each of the six fuel cycle concepts (tandem cycle, extended burnup, fuel rejuvenation, coprocessing, partial reprocessing, and thorium) described in the report may have some potential for improving safeguards, none of the six appears to have any other major or compelling advantages over the mixed oxide (MOX) fuel cycle. Compared to the MOX cycle, all but coprocessing appear to have major disadvantages, including severe cost penalties. Three of the concepts-tandem, extended burnup, and rejuvenation--share the basic problems of the throwaway cycle (GESMO Alternative 6): without reprocessing, high-level waste volumes and costs are substantially increased, and overall uranium utilization decreases for three reasons. First, the parasitic fission products left in the fuel absorb neutrons in later irradiation steps reducing the overall neutronic efficiencies of these cycles. Second, discarded fuel still has sufficient fissile values to warrant recycle. Third, perhaps most important, the plutonium needed for breeder start-up will not be available; without the breeder, uranium utilization would drop by about a factor of sixty. Two of the concepts--coprocessing and partial reprocessing--involve variations of the basic MOX fuel cycle's chemical reprocessing step to make plutonium diversion potentially more difficult. These concepts could be used with the MOX fuel cycle or in conjunction with the tandem, extended burnup and rejuvenation concepts to eliminate some of the problems with those cycles. But in so doing, the basic impetus for those cycles--elimination of reprocessing for safeguards purposes--no longer exists. Of all the concepts considered, only coprocessing--and particularly the ''master blend'' version--appears to have sufficient promise to warrant a more detailed study. The master blend concept could possibly make plutonium diversion more difficult with minimal impact on the reprocessing and MOX fuel fabrication operations

  6. Evaluation of fuel cycle options for plutonium utilization: 1977 study. Final report

    International Nuclear Information System (INIS)

    Pardue, W.M.; Madia, W.J.; Pobereskin, M.; Tripplett, M.B.; Waddell, J.D.

    1977-05-01

    This is the third in a series of three reports on the analysis of plutonium recycle. Analyses are based upon an October, 1976, middle case ERDA forecast of nuclear growth which predicts 510 GWe of nuclear capacity in the year 2000. Four fuel cycle options were reviewed, ranging from no LWR recycle of uranium of plutonium to recycle options both with and without breeder reactors. A special effort was devoted to the review of various estimates of the costs of reprocessing nuclear fuels, with a resulting value of $190/kg of heavy metal (deflated 1975 dollars). The associated range is estimated to $125/kg to $250/kg. Sensitivity analysis of reprocessing costs, uranium consumption, average generation costs, and total discounted costs of electricity indicate that the long-term economic advantages of plutonium recycle are quite conclusive. Nuclear scenarios which project low growth rates and which delay the start of recycle and introduction of a breeder reactor postpone the apparent economic advantages

  7. Nuclear-fuel-cycle education: Module 10. Environmental consideration

    International Nuclear Information System (INIS)

    Wethington, J.A.; Razvi, J.; Grier, C.; Myrick, T.

    1981-12-01

    This educational module is devoted to the environmental considerations of the nuclear fuel cycle. Eight chapters cover: National Environmental Policy Act; environmental impact statements; environmental survey of the uranium fuel cycle; the Barnwell Nuclear Fuel Reprocessing Plant; transport mechanisms; radiological hazards in uranium mining and milling operations; radiological hazards of uranium mill tailings; and the use of recycle plutonium in mixed oxide fuel

  8. Preparation of uranium-plutonium mixed nitride pellets with high purity

    International Nuclear Information System (INIS)

    Arai, Yasuo; Shiozawa, Ken-ichi; Ohmichi, Toshihiko

    1992-01-01

    Uranium-plutonium mixed nitride pellets have been prepared in the gloveboxes with high purity Ar gas atmosphere. Carbothermic reduction of the oxides in N 2 -H 2 mixed gas stream was adopted for synthesizing mixed nitride. Sintering was carried out in various conditions and the effect on the pellet characteristics was investigated. (author)

  9. Preliminary concepts: coordinated safeguards for materials management in a thorium--uranium fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Barnes, J.W.; Dayem, H.A.; Dietz, R.J.; Shipley, J.P.

    1978-10-01

    This report addresses preliminary concepts for coordinated safeguards materials management in a typical generic thorium--uranium-fueled light-water reactor (LWR) fuels reprocessing plant. The reference facility is designed to recover thorium and uranium from first-generation (denatured 235 U) startup fuels, first-recycle and equilibrium (denatured 233 U) thorium--uranium LWR fuels, and to recover the plutonium generated in the 238 U denaturant as well. 12 figures, 3 tables

  10. Feasibility study of plutonium recycling in light water reactors

    International Nuclear Information System (INIS)

    Tabuchi, Hideoto

    1979-01-01

    The feasibility of plutonium recycling in light water reactors has been studied by the Agency of Natural Resources and Energy, MITI. As the first step of the feasibility study, it was planned to charge two fuel assemblies, containing uranium-plutonium mixed oxide (MO 2 ), in the core of the Tsuruga nuclear power plant (BWR) for testing. The design of fuel the safety of these fuel and the operating characteristics of these special fuel assemblies were evaluated. The specifications of MO 2 fuel pin and fuel assembly are compared to those of present uranium oxide (UO 2 ) fuel. The weight of fissile plutonium in one MO 2 fuel assembly is 2.22 kg. The characteristics of MO 2 fuel assemblies, such as reactivity, control rod worth and power distribution can be kept similar to UO 2 fuel. The plutonium isotope ratio of the MO 2 fuel is assumed as that obtained in the fuel taken out of the Tokai No. 1 gas cooled reactor. The temperature distribution in the fuel pellets is shown, compared to that of UO 2 fuel. The linear power density is 440 w/cm at the beginning of the fuel life and 360 w/cm after the burn-up of 44,000 Mwd/t. The stress in the cladding tubes of MO 2 fuel is not different from that of UO 2 fuel. The pellet-cladding interaction (PCM1) was analyzed, utilizing the FEM code, FEAST. Concerning the calculation of resonance absorption, the space dependence of thermal neutron spectra and the nuclear behavior of hollow pellets the methods of design calculation were checked up. It was recognized that regarding the nuclear characteristics of MO 2 fuel, no special technical question remains. (Nakai, Y.)

  11. Diffusion in the uranium - plutonium system and self-diffusion of plutonium in epsilon phase

    International Nuclear Information System (INIS)

    Dupuy, M.

    1967-07-01

    A survey of uranium-plutonium phase diagram leads to confirm anglo-saxon results about the plutonium solubility in α uranium (15 per cent at 565 C) and the uranium one in ζ phase (74 per cent at 565 C). Interdiffusion coefficients, for concentration lower than 15 per cent had been determined in a temperature range from 410 C to 640 C. They vary between 0.2 and 6 10 12 cm 2 s -1 , and the activation energy between 13 and 20 kcal/mole. Grain boundary, diffusion of plutonium in a uranium had been pointed out by micrography, X-ray microanalysis and α autoradiography. Self-diffusion of plutonium in ε phase (bcc) obeys Arrhenius law: D = 2. 10 -2 exp -(18500)/RT. But this activation energy does not follow empirical laws generally accepted for other metals. It has analogies with 'anomalous' bcc metals (βZr, βTi, βHf, U γ ). (author) [fr

  12. Ultratrace analysis of uranium and plutonium by mass spectrometry

    International Nuclear Information System (INIS)

    Wogman, N.A.; Wacker, J.F.; Olsen, K.B.; Petersen, S.L.; Farmer, O.T.; Kelley, J.M.; Eiden, G.C.; Maiti, T.C.

    2002-01-01

    Full text: Uranium and plutonium have traditionally been analyzed using alpha energy spectrometry. Both isotopic compositions and elemental abundances can be characterized on samples containing microgram to milligram quantities of uranium and nanogram to microgram quantities of plutonium. In the past ten years or so, considerable interest has developed in measuring nanograms quantities of uranium and sub-picogram quantities of plutonium in environmental samples. Such measurements require high sensitivity and as a consequence, sensitive mass spectrometric-based methods have been developed. Thus, the analysis of uranium and plutonium have gone from counting decays to counting atoms, with considerable increases in both sensitivity and precision for isotopic measurements. At the Pacific Northwest National Laboratory (PNNL), we have developed highly sensitive methods to analyze uranium and plutonium in environmental samples. The development of an ultratrace analysis capability for measuring uranium and plutonium has arisen from a need to detect and characterize environmental samples for signatures associated with nuclear industry processes. Our most sensitive well-developed methodologies employ thermal ionization mass spectrometry (TIMS), however, recent advances in inductively coupled plasma mass spectrometry (ICP-MS) have shown considerable promise for use in detecting uranium and plutonium at ultratrace levels. The work at PNNL has included the development of both chemical separation and purification techniques, as well as the development of mass spectrometric instrumentation and techniques. At the heart of our methodology for TIMS analysis is a procedure that utilizes 100-microliter-volumes of analyte for chemical processing to purify, separate, and load actinide elements into resin beads for subsequent mass spectrometric analysis. The resin bead technique has been combined with a thorough knowledge of the physicochemistry of thermal ion emission to achieve

  13. Studies of the conversion-chemistry of plutonium and uranium in the nitrate- and carbonate-systems

    International Nuclear Information System (INIS)

    Hoffmann, G.; Steinhauser, M.; Boehm, M.

    1988-01-01

    A novel type construction of an autoclave for dissolving of plutonium dioxide in concentrated nitric acid (without any admixtures) has been developed. This process allows the dissolving of batches with high oxide/acid ratio and yields plutonium-solutions of high concentration. The tests for separation of plutonium- and, respectively, uranium-process-solutions from Am-241 and other interfering impurities are described. The time-factor for the oxidation-reaction of plutonium in nitric acid with ozone has been optimized. Important data on the solubility-behavior of plutonyl(VI)- and of pure Pu(IV)-nitrates have been gained. The majority of the precipitates, occuring in theses reactions, were characterized. (orig.) [de

  14. Non-fertile fuels for burning weapons plutonium in thermal fission reactors

    International Nuclear Information System (INIS)

    Lombardi, C.; Mazzola, A.; Vettraino, F.

    1996-01-01

    In the last few years, the excess plutonium disposition has become ever more a topical and critical issue. As a matter of fact, more than 200 MT of plutonium coming from spent fuel reprocessing have been already stockpiled and over the next decade, under the already ratified agreements, another about 200 MT of weapon-grade plutonium are expected to be available from nuclear weapons dismantlement. On this basis, an ever growing plutonium production is no longer the goal and the already stored quantities should be burnt in power reactors by taking care that no new plutonium is generated under irradiation. This new outlook in considering plutonium has led many designers to reassess the Fast Breeder Reactors (FBR) role and shifting from breeder to burner machines perspective. Several solutions for burning plutonium have been so far proposed and discussed from the safeguards, proliferation resistance, environmental safety, technological background, economy and time schedule standpoint. A proposal for plutonium burning in commercial Pressurized Water Reactors (PWR) by using a non-fertile oxide-type fuel consisting of PuO 2 diluted in an inert matrix is reported hereafter. This solution appears to receive an ever growing interest in the nuclear community. In order not to produce new plutonium during irradiation an innovative U-free fuel is being researched, based on an inert matrix which will consist in a mixed compound of inert oxides, such as ZrO 2 , Al2O 3 , MgO, CeO 2 where the plutonium oxide is dispersed in. The matrix will fulfill the following requirements: good chemical compatibility, acceptable thermal conductivity, good nuclear properties, good stability under irradiation, good dissolution resistance. The plutonium relative content will be comparable to that used in MOX fuel. The fuel is expected to be characterized by a high chemical stability (rock-like fuel), so that after discharge from reactor and adequate cooling time, it can be considered a High Level

  15. The relationship between natural uranium and advanced fuel cycles in CANDU reactors

    International Nuclear Information System (INIS)

    Lane, A.D.; McDonnell, F.N.; Griffiths, J.

    1988-11-01

    CANDU is the most uranium-economic type of thermal power reactor, and is the only type used in Canada. CANDU reactors consume approximately 15% of Canadian uranium production and support a fuel service industry valued at ∼$250 M/a. In addition to their once-through, natural-uranium fuel cycle, CANDU reactors are capable of operating with slightly-enriched uranium (SEU), uranium-plutonium and thorium cycles, more efficiently than other reactors. Only SEU is economically attractive in Canada now, but the other cycles are of interest to countries without indigenous fuel resources. A program is underway to establish the fuel technologies necessary for the use of SEU and the other fuel cycles in CANDU reactors. 22 refs

  16. Reoxidation of uranium in electrolytically reduced simulated oxide fuel during residual salt distillation

    International Nuclear Information System (INIS)

    Eun-Young Choi; Jin-Mok Hur; Min Ku Jeon; University of Science and Technology, Yuseong-gu, Daejeon

    2017-01-01

    We report that residual salt removal by high-temperature distillation causes partial reoxidation of uranium metal to uranium oxide in electrolytically reduced simulated oxide fuel. Specifically, the content of uranium metal in the above product decreases with increasing distillation temperatures, which can be attributed to reoxidation by Li 2 O contained in residual salt (LiCl). Additionally, we estimate the fractions of Li 2 O reacted with uranium metal under these conditions, showing that they decrease with decreasing temperature, and calculate some thermodynamic parameters of the above reoxidation. (author)

  17. Overview of the fast reactors fuels program

    International Nuclear Information System (INIS)

    Evans, E.A.; Cox, C.M.; Hayward, B.R.; Rice, L.H.; Yoshikawa, H.H.

    1980-04-01

    Each nation involved in LMFBR development has its unique energy strategies which consider energy growth projections, uranium resources, capital costs, and plant operational requirements. Common to all of these strategies is a history of fast reactor experience which dates back to the days of the Manhatten Project and includes the CLEMENTINE Reactor, which generated a few watts, LAMPRE, EBR-I, EBR-II, FERMI, SEFOR, FFTF, BR-1, -2, -5, -10, BOR-60, BN-350, BN-600, JOYO, RAPSODIE, Phenix, KNK-II, DFR, and PFR. Fast reactors under design or construction include PEC, CRBR, SuperPhenix, SNR-300, MONJU, and Madras (India). The parallel fuels and materials evolution has fully supported this reactor development. It has involved cermets, molten plutonium alloy, plutonium oxide, uranium metal or alloy, uranium oxide, and mixed uranium-plutonium oxides and carbides

  18. Economic analysis of self-generated plutonium recycling in light water reactor

    International Nuclear Information System (INIS)

    Deguchi, Morimoto; Hirabayashi, Fumio; Yumoto, Ryozo

    1978-01-01

    This paper describes on the economics of plutonium recycle to light water reactors (LWRs). In the situation that plutonium market does not exist, it is realistic for utilities to recycle the self-generated plutonium to their own reactors. The economic incentive to recycle self-generated plutonium, plutonium fuel fabrication penalty, and the dependence of fuel cycle cost on fuel cycle cost parameters are considered. In recycling self-generated plutonium, two alternatives for fuel element design are feasible. Those are the all-plutonium design and the island design. In the present analysis, the all-plutonium design was chosen for PWRs. The calculation of reactivity variation along with burnup for both uranium fuel and plutonium fuel was done with LASER-PNC code. Plutonium inventory and other nuclear data were calculated with CHAIN code. It is expected that equilibrium composition is reached after 5 or 6 times of recycling. For the calculation of fuel cycle cost, MITCOST code was used. The recent increase in the prices of uranium ore, enrichment and reprocessing services was taken into account. The fuel cycle cost of plutonium recycle is lower than that of uranium fuel cycle within a certain limit of plutonium fabrication penalty. It is shown that the fabrication penalty of about 1250 dollar/kgHM for each plutonium successive recycle reduces the cost difference to zero. The change in other cost components affects break-even fabrication penalty, in which the fuel cycle cost of plutonium recycle is equal to that of uranium cycle. (Kato, T.)

  19. Chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade mixed oxides [(U,Pu)O2

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Mixed oxide, a mixture of uranium and plutonium oxides, is used as a nuclear-reactor fuel in the form of pellets. The plutonium content may be up to 10 wt %, and the diluent uranium may be of any U-235 enrichment. In order to be suitable for use as a nuclear fuel, the material must meet certain criteria for combined uranium and plutonium content, effective fissile content, and impurity content. Analytical procedures used to determine if mixed oxides comply with specifications are: uranium by controlled-potential coulometry; plutonium by controlled-potential coulometry; plutonium by amperometric titration with iron (II); nitrogen by distillation spectrophotometry using Nessler reagent; carbon (total) by direct combustion-thermal-conductivity; total chlorine and fluorine by pyrohydrolysis; sulfur by distillation-spectrophotometry; moisture by the coulometric, electrolytic moisture analyzer; isotopic composition by mass spectrometry; rare earths by copper spark spectroscopy; trace impurities by carrier distillation spectroscopy; impurities by spark-source mass spectrography; total gas in reactor-grade mixed dioxide pellets; tungsten by dithiol-spectrophotometry; rare earth elements by spectroscopy; plutonium-238 isotopic abundance by alpha spectrometry; uranium and plutonium isotopic analysis by mass spectrometry; oxygen-to-metal atom ratio by gravimetry

  20. Inherent protection of plutonium by doping minor actinide in thermal neutron spectra

    International Nuclear Information System (INIS)

    Peryoga, Yoga; Sagara, Hiroshi; Saito, Masaki; Ezoubtchenko, Alexey

    2005-01-01

    The present study focuses on the exploration of the effect of minor actinide (MA) addition into uranium oxide fuels of different enrichment (5% 235 U and 20% 235 U) as ways of increasing fraction of even-mass-number plutonium isotopes. Among plutonium isotopes, 238 Pu, 240 Pu and 242 Pu have the characteristics of relatively high decay heat and spontaneous fission neutron rate that can improve proliferation-resistant properties of a plutonium composition. Two doping options were proposed, i.e. doping of all MA elements (Np, Am and Cm) and doping of only Np to observe their effect on plutonium proliferation-resistant properties. Pressurized water reactor geometry has been chosen for fuels irradiation environment where irradiation has been extended beyond critical to explore the subcritical system potential. Results indicate that a large amount of MA doping within subcritical operation highly improves the proliferation-resistant properties of the plutonium with high total plutonium production. Doping of 1% MA or Np into 5% 235 U enriched uranium fuel appears possible for critical operation of the current commercial light water reactor with reasonable improvement in the plutonium proliferation-resistant properties. (author)

  1. Determination of uranium and plutonium in PFBR MOX fuel using automatic potentiometric titrator

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Meena, D.L.; Singh, Mamta; Kapoor, Y.S.; Pabale, Sagar; Fulzele, Ajit; Das, D.K.; Behere, P.G.; Afzal, Mohd

    2014-01-01

    Present paper describes the automatic potentiometric method for the determination of uranium and plutonium in less complexing H 2 SO 4 with scaling down the reagent volumes 15-20 ml in order to minimize the waste generation

  2. Plutonium

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Plutonium, which was obtained and identified for the first time in 1941 by chemist Glenn Seaborg - through neutron irradiation of uranium 238 - is closely related to the history of nuclear energy. From the very beginning, because of the high radiotoxicity of plutonium, a tremendous amount of research work has been devoted to the study of the biological effects and the consequences on the environment. It can be said that plutonium is presently one of the elements, whose nuclear and physico-chemical characteristics are the best known. The first part of this issue is a survey of the knowledge acquired on the subject, which emphasizes the sanitary effects and transfer into the environment. Then the properties of plutonium related to energy generation are dealt with. Fissionable, like uranium 235, plutonium has proved a high-performance nuclear fuel. Originally used in breeder reactors, it is now being more and more widely recycled in light water reactors, in MOX fuel. Reprocessing, recycling and manufacturing of these new types of fuel, bound of become more and more widespread, are now part of a self-consistent series of operations, whose technical, economical, industrial and strategical aspects are reviewed. (author)

  3. Burnup simulations of different fuel grades using the MCNPX Monte Carlo code

    Directory of Open Access Journals (Sweden)

    Asah-Opoku Fiifi

    2014-01-01

    Full Text Available Global energy problems range from the increasing cost of fuel to the unequal distribution of energy resources and the potential climate change resulting from the burning of fossil fuels. A sustainable nuclear energy would augment the current world energy supply and serve as a reliable future energy source. This research focuses on Monte Carlo simulations of pressurized water reactor systems. Three different fuel grades - mixed oxide fuel (MOX, uranium oxide fuel (UOX, and commercially enriched uranium or uranium metal (CEU - are used in this simulation and their impact on the effective multiplication factor (Keff and, hence, criticality and total radioactivity of the reactor core after fuel burnup analyzed. The effect of different clad materials on Keff is also studied. Burnup calculation results indicate a buildup of plutonium isotopes in UOX and CEU, as opposed to a decline in plutonium radioisotopes for MOX fuel burnup time. For MOX fuel, a decrease of 31.9% of the fissile plutonium isotope is observed, while for UOX and CEU, fissile plutonium isotopes increased by 82.3% and 83.8%, respectively. Keff results show zircaloy as a much more effective clad material in comparison to zirconium and stainless steel.

  4. Advanced plutonium management in PWR - complementarity of thorium and uranium cycles

    International Nuclear Information System (INIS)

    Ernoult, Marc

    2014-01-01

    In order to study the possibility of advanced management of plutonium in existing reactors, 8 strategies for plutonium multi-recycling in PWRs are studied. Following equilibrium studies, it was shown that, by using homogeneous assemblies, the use of thorium cannot reduce the plutonium inventory of equilibrium cycle or production of americium. By distributing the different fuel types within the same assembly, some thoriated strategies allow however lower inventories and lower production americium best strategies using only the uranium cycle. However, in all cases, low fuel conversion theories in PWRs makes it impossible to lower resource consumption more than a few percent compared to strategies without thorium. To study the transition, active participation in development of the scenario code CLASS has been taken. It led to the two simulation scenarios among those studied in equilibrium with CLASS. These simulations have shown discrepancies with previously simulated scenarios. The major causes of these differences were identified and quantified. (author)

  5. Managing plutonium in Britain. Current options[Mixed oxide nuclear fuels; Nuclear weapons

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This is the report of a two day meeting to discuss issues arising from the reprocessing of plutonium and production of mixed oxide nuclear fuels in Britain. It was held at Charney Manor, near Oxford, on June 25 and 26, 1998, and was attended by 35 participants, including government officials, scientists, policy analysts, representatives of interested NGO's, journalists, a Member of Parliament, and visiting representatives from the US and Irish governments. The topic of managing plutonium has been a consistent thread within ORG's work, and was the subject of one of our previous reports, CDR 12. This particular seminar arose out of discussions earlier in the year between Dr. Frank Barnaby and the Rt. Hon. Michael Meacher MP, Minister for the Environment. With important decisions about the management of plutonium in Britain pending, ORG undertook to hold a seminar at which all aspects of the subject could be aired. A number of on-going events formed the background to this initiative. The first was British Nuclear Fuels' [BNFL] application to the Environment Agency to commission a mixed oxide fuel [MOX] plant at Sellafield. The second was BNFL's application to vary radioactive discharge limits at Sellafield. Thirdly, a House of Lords Select Committee was in process of taking evidence, on the disposal of radioactive waste. Fourthly, the Royal Society, in a recent report entitled Management of Separated Plutonium, recommended that 'the Government should commission a comprehensive review... of the options for the management of plutonium'. Four formal presentations were made to the meeting, on the subjects of Britain's plutonium policy, commercial prospects for plutonium use, problems of plutonium accountancy, and the danger of nuclear terrorism, by experts from outside the nuclear industry. It was hoped that the industry's viewpoint would also be heard, and BNFL were invited to present a paper, but declined on the grounds that they

  6. Failure mechanisms for compacted uranium oxide fuel cores

    International Nuclear Information System (INIS)

    Berghaus, D.G.; Peacock, H.B.

    1980-01-01

    Tension, compression, and shear tests were performed on test specimens of aluminum-clad, compacted powder fuel cores to determine failure mechanisms of the core material. The core, which consists of 70% uranium oxide in an aluminum matrix, frequently fails during post-extrusion drawing. Tests were conducted to various strain levels up to failure of the core. Sections were made of tested specimens to microscopically study initiation of failure. Two failure modes wee observed. Tensile failure mode is initiated by prior tensile failure of uranium oxide particles with the separation path strongly influenced by the arrangement of particles. Delamination mode consists of the separation of laminae formed during extrusion of tubes. Separation proceeds from fine cracks formed parallel to the laminae. Tensile failure mode was experienced in tension and shear tests. Delamination mode was produced in compression tests

  7. The differential radiological impact of plutonium recycle in the light-water reactor fuel cycle: effluent discharges during normal operation

    International Nuclear Information System (INIS)

    Bouville, A.; Guetat, P.; Jones, J.A.; Kelly, G.N.; Legrand, J.; White, I.F.

    1980-01-01

    The radiological impact of a light-water reactor fuel cycle utilizing enriched uranium fuel may be altered by the recycle of plutonium. Differences in impact may arise during various operations in the fuel cycle: those which arise from effluents discharged during normal operation of the various installations comprising the fuel cycle are evaluated in this study. The differential radiological impact on the population of the European Communities (EC) of effluents discharged during the recycling of 10 tonnes of fissile plutonium metal is evaluated. The contributions from each stage of the fuel cycle, i.e. fuel fabrication, reactor operation and fuel reprocessing and conversion, are identified. Separate consideration is given to airborne and liquid effluents and account is taken of a wide range of environmental conditions, representative of the EC, in estimating the radiological impact. The recycle of plutonium is estimated to result in a reduction in the radiological impact from effluents of about 30% of that when using enriched uranium fuel

  8. Overview of the fast reactors fuels program. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Evans, E.A.; Cox, C.M.; Hayward, B.R.; Rice, L.H.; Yoshikawa, H.H.

    1980-04-01

    Each nation involved in LMFBR development has its unique energy strategies which consider energy growth projections, uranium resources, capital costs, and plant operational requirements. Common to all of these strategies is a history of fast reactor experience which dates back to the days of the Manhatten Project and includes the CLEMENTINE Reactor, which generated a few watts, LAMPRE, EBR-I, EBR-II, FERMI, SEFOR, FFTF, BR-1, -2, -5, -10, BOR-60, BN-350, BN-600, JOYO, RAPSODIE, Phenix, KNK-II, DFR, and PFR. Fast reactors under design or construction include PEC, CRBR, SuperPhenix, SNR-300, MONJU, and Madras (India). The parallel fuels and materials evolution has fully supported this reactor development. It has involved cermets, molten plutonium alloy, plutonium oxide, uranium metal or alloy, uranium oxide, and mixed uranium-plutonium oxides and carbides.

  9. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P. N.; Bobrov, E. A., E-mail: evgeniybobrov89@rambler.ru; Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A. [National Research Center Kurchatov Institute (Russian Federation)

    2015-12-15

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U–Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium–plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: {sup 235}U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or {sup 233}U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.

  10. Recent developments in the dissolution and automated analysis of plutonium and uranium for safeguards measurements

    International Nuclear Information System (INIS)

    Jackson, D.D.; Marsh, S.F.; Rein, J.E.; Waterbury, G.R.

    1975-01-01

    The status of a program to develop assay methods for plutonium and uranium for safeguards purposes is presented. The current effort is directed more toward analyses of scrap-type material with an end goal of precise automated methods that also will be applicable to product materials. A guiding philosophy for the analysis of scrap-type materials, characterized by heterogeneity and difficult dissolution, is relatively fast dissolution treatment to effect 90 percent or more solubilization of the uranium and plutonium, analysis of the soluble fraction by precise automated methods, and gamma-counting assay of any residue fraction using simple techniques. A Teflon-container metal-shell apparatus provides acid dissolutions of typical fuel cycle materials at temperatures to 275 0 C and pressures to 340 atm. Gas--solid reactions at elevated temperatures separate uranium from refractory materials by the formation of volatile uranium compounds. The condensed compounds then are dissolved in acid for subsequent analysis. An automated spectrophotometer is used for the determination of uranium and plutonium. The measurement range is 1 to 14 mg of either element with a relative standard deviation of 0.5 percent over most of the range. The throughput rate is 5 min per sample. A second-generation automated instrument is being developed for the determination of plutonium. A precise and specific electroanalytical method is used as its operational basis. (auth)

  11. Universal high-temperature heat treatment furnace for FBR mixed uranium and plutonium carbide fuel

    International Nuclear Information System (INIS)

    Handa, Muneo; Takahashi, Ichiro; Watanabe, Hitoshi

    1978-10-01

    A universal high-temperature heat treatment furnace for LMFBR advanced fuels was installed in Plutonium Fuel Laboratory, Oarai Research Establishment. Design, construction and performance of the apparatus are described. With the apparatus, heat treatment of the fuel under a controlled gas atmosphere and quenching of the fuel with blowing helium gas are possible. Equipment to measure impurity gas release of the fuel is also provided. Various plutonium enclosure techniques, e.g., a gas line filter with new exchange mechanics, have been developed. In performance test, results of the enclosure techniques are described. (author)

  12. Preconceptual design for separation of plutonium and gallium by ion exchange

    International Nuclear Information System (INIS)

    DeMuth, S.F.

    1997-01-01

    The disposition of plutonium from decommissioned nuclear weapons, by incorporation into commercial UO 2 -based nuclear reactor fuel, is a viable means to reduce the potential for theft of excess plutonium. This fuel, which would be a combination of plutonium oxide and uranium oxide, is referred to as a mixed oxide (MOX). Following power generation in commercial reactors with this fuel, the remaining plutonium would become mixed with highly radioactive fission products in a spent fuel assembly. The radioactivity, complex chemical composition, and large size of this spent fuel assembly, would make theft difficult with elaborate chemical processing required for plutonium recovery. In fabricating the MOX fuel, it is important to maintain current commercial fuel purity specifications. While impurities from the weapons plutonium may or may not have a detrimental affect on the fuel fabrication or fuel/cladding performance, certifying the effect as insignificant could be more costly than purification. Two primary concerns have been raised with regard to the gallium impurity: (1) gallium vaporization during fuel sintering may adversely affect the MOX fuel fabrication process, and (2) gallium vaporization during reactor operation may adversely affect the fuel cladding performance. Consequently, processes for the separation of plutonium from gallium are currently being developed and/or designed. In particular, two separation processes are being considered: (1) a developmental, potentially lower cost and lower waste, thermal vaporization process following PuO 2 powder preparation, and (2) an off-the-shelf, potentially higher cost and higher waste, aqueous-based ion exchange (IX) process. While it is planned to use the thermal vaporization process should its development prove successful, IX has been recommended as a backup process. This report presents a preconceptual design with material balances for separation of plutonium from gallium by IX

  13. Plutonium Chemistry in the UREX+ Separation Processes

    Energy Technology Data Exchange (ETDEWEB)

    ALena Paulenova; George F. Vandegrift, III; Kenneth R. Czerwinski

    2009-10-01

    The project "Plutonium Chemistry in the UREX+ Separation Processes” is led by Dr. Alena Paulenova of Oregon State University under collaboration with Dr. George Vandegrift of ANL and Dr. Ken Czerwinski of the University of Nevada at Las Vegas. The objective of the project is to examine the chemical speciation of plutonium in UREX+ (uranium/tributylphosphate) extraction processes for advanced fuel technology. Researchers will analyze the change in speciation using existing thermodynamics and kinetic computer codes to examine the speciation of plutonium in aqueous and organic phases. They will examine the different oxidation states of plutonium to find the relative distribution between the aqueous and organic phases under various conditions such as different concentrations of nitric acid, total nitrates, or actinide ions. They will also utilize techniques such as X-ray absorbance spectroscopy and small-angle neutron scattering for determining plutonium and uranium speciation in all separation stages. The project started in April 2005 and is scheduled for completion in March 2008.

  14. Fuel qualification issues and strategies for reactor-based surplus plutonium disposition

    International Nuclear Information System (INIS)

    Cowell, B.S.; Copeland, G.L.; Moses, D.L.

    1997-08-01

    The Department of Energy (DOE) has proposed irradiation of mixed-oxide (MOX) fuel in existing commercial reactors as a disposition method for surplus plutonium from the weapons program. The burning of MOX fuel in reactors is supported by an extensive technology base; however, the infrastructure required to implement reactor-based plutonium disposition does not exist domestically. This report identifies and examines the actions required to qualify and license weapons-grade (WG) plutonium-based MOX fuels for use in domestic commercial light-water reactors (LWRs)

  15. In situ studies of uranium-plutonium mixed oxides. Influence of composition on phase equilibria and thermodynamic properties

    International Nuclear Information System (INIS)

    Strach, Michal

    2015-01-01

    Due to their physical and chemical properties, mixed uranium-plutonium oxides are considered for fuel in 4. generation nuclear reactors. In this frame, complementary experimental studies are necessary to develop a better understanding of the phenomena that take place during fabrication and operation in the reactor. The focus of this work was to study the U-Pu-O phase diagram in a wide range of compositions and temperatures to ameliorate our knowledge of the phase equilibria in this system. Most of experiments were done using in situ X-ray diffraction at elevated temperatures. The control of the oxygen partial pressure during the treatments made it possible to change the oxygen stoichiometry of the sample, which gave us an opportunity to study rapidly different compositions and the processes involved. The experimental approach was coupled with thermodynamic modeling using the CALPHAD method, to precisely plan the experiments and interpret the obtained results. This approach enabled us to enhance the knowledge of phase equilibria in the U-Pu-O system. (author) [fr

  16. Criticality evaluation of BWR MOX fuel transport packages using average Pu content

    International Nuclear Information System (INIS)

    Mattera, C.; Martinotti, B.

    2004-01-01

    Currently in France, criticality studies in transport configurations for Boiling Water Reactor Mixed Oxide fuel assemblies are based on conservative hypothesis assuming that all rods (Mixed Oxide (Uranium and Plutonium), Uranium Oxide, Uranium and Gadolinium Oxide rods) are Mixed Oxide rods with the same Plutonium-content, corresponding to the maximum value. In that way, the real heterogeneous mapping of the assembly is masked and covered by a homogeneous Plutonium-content assembly, enriched at the maximum value. As this calculation hypothesis is extremely conservative, COGEMA LOGISTICS has studied a new calculation method based on the average Plutonium-content in the criticality studies. The use of the average Plutonium-content instead of the real Plutonium-content profiles provides a highest reactivity value that makes it globally conservative. This method can be applied for all Boiling Water Reactor Mixed Oxide complete fuel assemblies of type 8 x 8, 9 x 9 and 10 x 10 which Plutonium-content in mass weight does not exceed 15%; it provides advantages which are discussed in our approach. With this new method, for the same package reactivity, the Pu-content allowed in the package design approval can be higher. The COGEMA LOGISTICS' new method allows, at the design stage, to optimise the basket, materials or geometry for higher payload, keeping the same reactivity

  17. Review of thermal expansion and density of uranium and plutonium carbides

    International Nuclear Information System (INIS)

    Andrew, J.F.; Latimer, T.W.

    1975-07-01

    The published literature on linear thermal expansion and density of uranium and plutonium carbide nuclear fuels, including UC, PuC, (U,Pu)C, U 2 C 3 , Pu 2 C 3 , and (U,Pu) 2 C 3 , is critically reviewed. Recommended values are given in tabular form and additional experimental studies needed for completeness are outlined. 16 tables, 52 references

  18. Standard practice for preparation and dissolution of plutonium materials for analysis

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice is a compilation of dissolution techniques for plutonium materials that are applicable to the test methods used for characterizing these materials. Dissolution treatments for the major plutonium materials assayed for plutonium or analyzed for other components are listed. Aliquants of the dissolved samples are dispensed on a weight basis when one of the analyses must be highly reliable, such as plutonium assay; otherwise they are dispensed on a volume basis. 1.2 The treatments, in order of presentation, are as follows: Procedure Title Section Dissolution of Plutonium Metal with Hydrochloric Acid 9.1 Dissolution of Plutonium Metal with Sulfuric Acid 9.2 Dissolution of Plutonium Oxide and Uranium-Plutonium Mixed Oxide by the Sealed-Reflux Technique 9.3 Dissolution of Plutonium Oxide and Uranium-Plutonium Mixed Oxides by Sodium Bisulfate Fusion 9.4 Dissolution of Uranium-Plutonium Mixed Oxides and Low-Fired Plutonium Oxide in Beakers 9.5 1.3 The values stated in SI units are to be re...

  19. A simplified method for preparing micro-samples for the simultaneous isotopic analysis of uranium and plutonium

    International Nuclear Information System (INIS)

    Carter, J.A.; Walker, R.L.; Eby, R.E.; Pritchard, C.A.

    1976-01-01

    In this simplified technique a basic anion resin is employed to selectively adsorb plutonium and uranium from 8M HNO 3 solutions containing dissolved spent reactor fuels. After a few beads of the resin are equilibrated with solution, a single bead is used for establishing the isotopic composition of plutonium and uranium. The resin-bead separation essentially removes all possible isobaric interference from such elements as americium and curium and at the same time eliminates most fission-product contamination in the mass spectrometer. Small aliquots of dissolver solution that contain 10 -6 g U and 10 -8 g Pu are adequate for preparing about ten resin beads. By employing a single focusing tandem magnet-type mass spectrometer, equipped with pulse counting for ion detection, simultaneous plutonium and uranium assays are obtained. The quantity of each element per bead may be as low as 10 -9 to 10 -10 g. The carburized bead, which forms as the filament is heated, acts as a reducing point source and emits a predominance of metallic ions as compared with oxide ion emission from direct solution loadings. In addition to isotopic abundance, the technique of isotope dilution can ve coupled with the ion-exchange bead separation and used effectively for measuring the total quantity of U and Pu. The technique possesses many advantages such as reduced radiation hazards from the infinitely smaller samples, thus less shielding and transport cost for sample handling; greatly simplified chemical preparations that eliminate fission products and actinide isobaric interferences; and the minor isotopes are more precisely established. (author)

  20. Immobilization of uranium and plutonium into boro-basalt, pyroxene and andradite mineral-like compositions

    International Nuclear Information System (INIS)

    Matyunin, Y.I.; Smelova, T.V.

    2000-01-01

    The immobilization of plutonium-containing wastes with the manufacturing of stable solid compositions is one of the problems that should be solved in the disposal of radioactive wastes. The works on the choice, preparation with the use of the cold crucible induction melter (CCIM) technology, and investigation of materials that are most suitable for immobilizing plutonium-containing wastes of different origin have been carried out at the All-Russian Scientific Research Institute of Inorganic Materials (VNIINM) and the Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Sciences in the framework of the agreements with Lawrence Livermore National Laboratory (LLNL, USA) on the material and technical support. This paper presents the data on the synthesis of cerium-, uranium-, and plutonium-containing materials based on boro-basalt, pyroxene, and andradite compositions in the muffle furnace and by using the CCIM method. The compositions containing up to 15 - 18 wt % cerium oxide, 8 - 11 wt % uranium oxide, and 4.6 - 5.7 wt % plutonium oxide were obtained in laboratory facilities installed in glove boxes. Comparison studies of the materials synthesized in the muffle furnace and CCIM demonstrate the advantages of using the CCIM method. The distribution of components in the materials synthesized are investigated, and their certain physicochemical properties are determined. (authors)

  1. Determination of plutonium in nuclear fuel materials by controlled potential coulometry

    International Nuclear Information System (INIS)

    Ambolikar, A.S.; Pillai, Jisha S.; Sharma, M.K.; Kamat, J.V.; Aggarwal, S.K.

    2011-01-01

    Accurate knowledge of Pu content in nuclear fuel materials is an important requirement for the purpose of chemical quality control, nuclear material accounting and process control. Biamperometry and potentiometry techniques are widely employed for the determination of Pu. These redox electroanalytical based methods are capable of meeting the requirements of high accuracy and precision using milligram amounts of the analyte. However, use of chemical reagents to carry out redox reactions in these methodologies generates radioactive liquid waste which needs to be processed to recover plutonium. In coulometric technique, change in the oxidation state of an electro active species is carried out by charge transfer on an electrode surface, hence chemical reagents as well as chemical standards required for the redox titration based methods are eliminated and analytical waste generated is free from metallic impurities. Therefore the determination of Pu in nuclear fuel materials by coulometry is an attractive option. In view of this, controlled potential coulometric methods have been developed in our laboratory for variety of applications at different stages of nuclear fuel cycle. In the early stage of coulometry developments in our laboratory, coulometers procured from EG and G Princeton Applied Research Corporation were employed. After prolong use, these instruments were showing ageing and hence indigenously built controlled potential coulometer was procured. Performance evaluation studies of these coulometers were reported from our laboratory for the determination of uranium and plutonium in working chemical assay standards. In this paper, we present studies carried out on the determination of plutonium in Pu-alloy and (U, Pu) C samples employing the same indigenous coulometer

  2. Economic Effect on the Plutonium Cycle of Employing {sup 235}U in Fast Reactor Start-Up; Incidence Economique du Demarrage des Reacteurs Rapides a l'Aide d'Uranium-235 sur le Cycle du Plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Van Dievoet, J.; Egleme, M.; Hermans, L. [BELGONUCLEAIRE, Bruxelles (Belgium)

    1967-09-15

    Preliminary results are presented of a study carried out under an agreement concluded between Euratom and the Belgian Government to evaluate the advantages of loading fast reactors with {sup 235}U. There are several ways of starting up a fast reactor with {sup 235}U: (1) the reactor can be operated entirely with enriched uranium, the plutonium produced being used to start up and operate other reactors; in this case the uranium is recycled within the reactor and more enriched uranium is added; (2) the plutonium produced can be partly recycled within the reactor together with the uranium; in this case the reactor is transformed gradually into a plutonium reactor. These two procedures can be combined and applied simultaneously in different enrichment zones of the same reactor, enriched uranium being added, for example, to the internal zone and plutonium recycled in the external zone. The method of reprocessing the fuel is also a complicating factor, depending on whether the core and the axial breeding blankets are reprocessed together or separately. Similarly, where a reactor has several enrichment zones, these can likewise be reprocessed either together or separately. The calculations are performed with the help of a code that uses the equivalence coefficients defined by Baker and Ross for the part relating to the characteristics of successive reactors, and the discounted fuel cycle cost method for the economic part. In the first stage of this work a rough analysis was made. The reloading of each zone was assumed to be carried out in a single operation, and the time spent by the fuel elements out of pile was ignored. In a later stage, progressive reloading by batches will be considered, with allowance for fabrication and reprocessing times, etc. The most interesting results relate to variations in fuel composition (plutonium content, isotopic composition) from one cycle to another, variations in the fuel cycle characteristics (doubling time, loading and unloading

  3. Quantities of actinides in nuclear reactor fuel cycles

    International Nuclear Information System (INIS)

    Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000 MW reactors of the following types: water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breeder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium, and recycled uranium. The radioactivity levels of plutonium, americium, and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the United States nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium processed in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing and fuel fabrication to eliminate the off-site transport of separated plutonium. (U.S.)

  4. U.S. weapons-usable plutonium disposition policy: Implementation of the MOX fuel option

    Energy Technology Data Exchange (ETDEWEB)

    Woods, A.L. [ed.] [Amarillo National Resource Center for Plutonium, TX (United States); Gonzalez, V.L. [Texas A and M Univ., College Station, TX (United States). Dept. of Political Science

    1998-10-01

    A comprehensive case study was conducted on the policy problem of disposing of US weapons-grade plutonium, which has been declared surplus to strategic defense needs. Specifically, implementation of the mixed-oxide fuel disposition option was examined in the context of national and international nonproliferation policy, and in contrast to US plutonium policy. The study reveals numerous difficulties in achieving effective implementation of the mixed-oxide fuel option including unresolved licensing and regulatory issues, technological uncertainties, public opposition, potentially conflicting federal policies, and the need for international assurances of reciprocal plutonium disposition activities. It is believed that these difficulties can be resolved in time so that the implementation of the mixed-oxide fuel option can eventually be effective in accomplishing its policy objective.

  5. U.S. weapons-useable plutonium disposition policy: Implementation of the MOX fuel option

    International Nuclear Information System (INIS)

    Woods, A.L.; Gonzalez, V.L.

    1998-10-01

    A comprehensive case study was conducted on the policy problem of disposing of US weapons-grade plutonium, which has been declared surplus to strategic defense needs. Specifically, implementation of the mixed-oxide fuel disposition option was examined in the context of national and international nonproliferation policy, and in contrast to US plutonium policy. The study reveals numerous difficulties in achieving effective implementation of the mixed-oxide fuel option including unresolved licensing and regulatory issues, technological uncertainties, public opposition, potentially conflicting federal policies, and the need for international assurances of reciprocal plutonium disposition activities. It is believed that these difficulties can be resolved in time so that the implementation of the mixed-oxide fuel option can eventually be effective in accomplishing its policy objective

  6. The problem of utilization of the military uranium and plutonium

    International Nuclear Information System (INIS)

    Feoktistov, L.P.

    1995-01-01

    The problem on military uranium and plutonium is considered from the viewpoint of their utilization as a source of fissionable materials for NPPs. The solution consists in combining spherical geometry of critical mass with enriched center and the uranium burnup expansion recess. It is necessary thereby to obtain the minimum plutonium consumption in order to draw in unlimited quaintness of uranium-238 in the burnup process. It is estimated that hundred reactors with the total capacity of several hundred gigawatt may be involved into operation with the help of military plutonium. Refs. 2

  7. Irradiation Experiments on Plutonium Fuels for Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Frost, B. R.T.; Wait, E. [Atomic Energy Research Establishment Harwell, Berks. (United Kingdom)

    1967-09-15

    experiment was conducted in a thermal neutron flux to a mean burn-up in excess of 10% burn-up but with a low fuel centre temperature (< 900 Degree-Sign C). Under these conditions gas release was low and fuel swelling was sufficiently low to avoid can failure, in contrast with other results at the same burn-up but at higher fuel centre temperatures ({approx} 1300 Degree-Sign C) where gas release and swelling were both considerably higher. Further experiments are in progress to determine more accurately the rate of swelling of (U, Pu)C in a fast neutron flux and to study possible methods of prolonging the life of carbide fuel elements. These studies are supported by basic investigations of swelling and fission gas release mechanisms. An assessment of the chemical state of the fuel fission products and cladding after irradiation to high burn-up is presented. The analysis is based on the thermodynamics of the system and experimental observations on irradiated fuel material. The systems considered are uranium/plutonium oxide and uranium/plutonium carbides. The principal conclusions of the analysis are that, in oxides, the oxygen potential of the system increases with increasing burn-up and, in carbides, the carbon activity of die irradiated system is maintained at some value between that of the monocarbide and sesquicarbide. (author)

  8. Plutonium re-cycle in HTR

    Energy Technology Data Exchange (ETDEWEB)

    Desoisa, J. A.

    1974-03-15

    The study of plutonium cycles in HTRs using reprocessed plutonium from Magnox and AGR fuel cycles has shown that full core plutonium/uranium loadings are in general not feasible, burn-up is limited due the need for lower loadings of plutonium to meet reload core reactivity limits, on-line refueling is not practicable due to the need for higher burnable poison loadings, and low conversion rates in the plutonium-uranium cycles cannot be mitigated by axial loading schemes so that fissile make-up is needed if HTR plutonium recycle is desired.

  9. International collaborations about fuel studies for reactor recycling of military quality plutonium

    International Nuclear Information System (INIS)

    Bernard, H.; Chaudat, J.P.

    1997-01-01

    In November 1992, an agreement was signed between the French and Russian governments to use in Russia and for pacific purposes the plutonium recovered from the Russian nuclear weapons dismantling. This plutonium will be transformed into mixed oxide fuels (MOX) for nuclear power production. The French Direction of Military Applications (DAM) of the CEA is the operator of the French-Russian AIDA program. The CEA Direction of Fuel Cycle (DCC) and Direction of Nuclear Reactors (DRN) are involved in the transformation of metallic plutonium into sinterable oxide powder for MOX fuel manufacturing. The Russian TOMOX (Treatment of MOX powder Metallic Objects) and DEMOX (MOX Demonstration) plants will produce the MOX fuel assemblies for the 4 VVER 1000 reactors of Balakovo and the fast BN 600 reactor. The second part of the program will involve the German Siemens and GRS companies for the safety studies of the reactors and fuel cycle plants. The paper gives also a brief analysis of the US policy concerning the military plutonium recycling. (J.S.)

  10. The Dissolution of Uranium Oxides in HB-Line Phase 1 Dissolvers

    International Nuclear Information System (INIS)

    Gray, J.H.

    2003-01-01

    A series of characterization and dissolution studies has been performed to define flowsheet conditions for the dissolution of uranium oxide materials in dissolvers. The samples selected for analysis were uranium oxide materials. The selection of these uranium oxide materials for characterization and dissolution studies was based on high enriched uranium content and trace levels of plutonium. Test results from the characterization study identified ferric oxide (Fe2O3) and iron/chromium/nickel (Fe/Cr/Ni) particles as impurities along with the tri-uranium oxide (U3O8) and uranium trioxide (UO3). The weight percent uranium in this material was found to vary depending on the impurity content. The trace impurity plutonium appears to be associated with the Fe/Cr/Ni particles. A small amount of absorbed moisture and waters of hydration is present. Most of the uranium oxides easily dissolved in low-molar nitric acid solutions without fluoride within one to two hours at solution temperature s between 60-80 degrees C. A small amount of residue remained following this dissolution step. To assure complete dissolution of uranium from these oxide materials, an additional dissolution step at 90 degrees C to boiling for at least one to two hours has been suggested. Only trace amounts of iron associated with Fe2O3 and Fe/Cr/Ni particles will dissolve during the dissolution steps. Neither hydrogen nor heat will be generated during the dissolution of these uranium oxide materials in nitric acid solutions. Some brown nitrogen dioxide (NO2) fumes will be generated during the dissolution of U3O8

  11. Reprocessing fuel from the Southwest Experimental Fast Oxide Reactor at the Savannah River Plant

    International Nuclear Information System (INIS)

    Gray, L.W.; Campbell, T.G.

    1985-11-01

    The irradiated fuel, reject fuel tubes, and fuel fabrication scrap from the Southwest Experimental Fast Oxide Reactor (SEFOR) were transferred to the Savannah River Plant (SRP) for uranium and plutonium recovery. The unirradiated material was declad and dissolved at SRP; dissolution was accomplished in concentrated nitric acid without the addition of fluoride. The irradiated fuel was declad at Atomics International and repacked in aluminum. The fuel and aluminum cans were dissolved at SRP using nitric acid catalyzed by mercuric nitrate. As this fuel was dissolved in nongeometrically favorable tanks, boron was used as a soluble neutron poison

  12. Analysis of the reactivity coefficients of the advanced high-temperature reactor for plutonium and uranium fuels

    Energy Technology Data Exchange (ETDEWEB)

    Zakova, Jitka [Department of Nuclear and Reactor Physics, Royal Institute of Technology, KTH, Roslagstullsbacken 21, S-10691, Stockholm (Sweden)], E-mail: jitka.zakova@neutron.kth.se; Talamo, Alberto [Nuclear Engineering Division, Argonne National Laboratory, ANL, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: alby@anl.gov

    2008-05-15

    The conceptual design of the advanced high-temperature reactor (AHTR) has recently been proposed by the Oak Ridge National Laboratory, with the intention to provide and alternative energy source for very high temperature applications. In the present study, we focused on the analyses of the reactivity coefficients of the AHTR core fueled with two types of fuel: enriched uranium and plutonium from the reprocessing of light water reactors irradiated fuel. More precisely, we investigated the influence of the outer graphite reflectors on the multiplication factor of the core, the fuel and moderator temperature reactivity coefficients and the void reactivity coefficient for five different molten salts: NaF, BeF{sub 2}, LiF, ZrF{sub 4} and Li{sub 2}BeF{sub 4} eutectic. In order to better illustrate the behavior of the previous parameters for different core configurations, we evaluated the moderating ratio of the molten salts and the absorption rate of the key fuel nuclides, which, of course, are driven by the neutron spectrum. The results show that the fuel and moderator temperature reactivity coefficients are always negative, whereas the void reactivity coefficient can be set negative provided that the fuel to moderator ratio is optimized (the core is undermoderated) and the moderating ratio of the coolant is large.

  13. Analysis of the reactivity coefficients of the advanced high-temperature reactor for plutonium and uranium fuels

    International Nuclear Information System (INIS)

    Zakova, Jitka; Talamo, Alberto

    2008-01-01

    The conceptual design of the advanced high-temperature reactor (AHTR) has recently been proposed by the Oak Ridge National Laboratory, with the intention to provide and alternative energy source for very high temperature applications. In the present study, we focused on the analyses of the reactivity coefficients of the AHTR core fueled with two types of fuel: enriched uranium and plutonium from the reprocessing of light water reactors irradiated fuel. More precisely, we investigated the influence of the outer graphite reflectors on the multiplication factor of the core, the fuel and moderator temperature reactivity coefficients and the void reactivity coefficient for five different molten salts: NaF, BeF 2 , LiF, ZrF 4 and Li 2 BeF 4 eutectic. In order to better illustrate the behavior of the previous parameters for different core configurations, we evaluated the moderating ratio of the molten salts and the absorption rate of the key fuel nuclides, which, of course, are driven by the neutron spectrum. The results show that the fuel and moderator temperature reactivity coefficients are always negative, whereas the void reactivity coefficient can be set negative provided that the fuel to moderator ratio is optimized (the core is undermoderated) and the moderating ratio of the coolant is large

  14. Plutonium determination by spectrophotometry of plutonium (VI): control of the nuclear fuel reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Grison, J [Compagnie Generale des Matieres Nucleaires (COGEMA), Centre de la Hague, 50 - Cherbourg (France)

    1980-10-01

    The plutonium (VI) spectrophotometric determination, after AgO oxidation in 3 M nitric acid medium, is used for the running-control of the nuclear fuel reprocessing plant at La Hague. Analytical device used in glove-box or shielded-cell is briefly described. This method is fast, sensitive, unfailing and gives simple effluents. It is applied by day and night shifts, during Light Water Reactor fuel reprocessing campaign, for 0.5 mg/l up to 20 g/l plutonium solutions. Reference solution measurements have a 0.8 to 1.4 % relative standard deviation; duplicate plutonium determinations give a 0.3% relative standard deviation for sample analysis. There is a discrepancy (- 0.3% to - 0.9%) between the spectrophotometric method results and the isotopic dilution analysis.

  15. Plutonium determination by spectrophotometry of plutonium (VI): control of the nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Grison, J.

    1980-01-01

    The plutonium (VI) spectrophotometric determination, after AgO oxidation in 3 M nitric acid medium, is used for the running-control of the nuclear fuel reprocessing plant at La Hague. Analytical device used in glove-box or shielded-cell is briefly described. This method is fast, sensitive, unfailing and gives simple effluents. It is applied by day and night shifts, during Light Water Reactor fuel reprocessing campaign, for 0.5 mg/l up to 20 g/l plutonium solutions. Reference solution measurements have a 0.8 to 1.4 % relative standard deviation; duplicate plutonium determinations give a 0.3% relative standard deviation for sample analysis. There is a discrepancy (- 0.3% to - 0.9%) between the spectrophotometric method results and the isotopic dilution analysis [fr

  16. Microscopic Examination of a Corrosion Front in Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    J.A. Fortner; A.J. Kropf; R.J. Finch; J.C. Cunnane

    2006-01-01

    Spent uranium oxide nuclear fuel hosts a variety of trace chemical constituents, many of which must be sequestered from the biosphere during fuel storage and disposal. In this paper we present synchrotron x-ray absorption spectroscopy and microscopy findings that illuminate the resultant local chemistry of neptunium and plutonium within spent uranium oxide nuclear fuel before and after corrosive alteration in an air-saturated aqueous environment. We find the plutonium and neptunium in unaltered spent fuel to have a +4 oxidation state and an environment consistent with solid-solution in the UO 2 matrix. During corrosion in an air-saturated aqueous environment, the uranium matrix is converted to uranyl U(VI)O 2 2+ mineral assemblage that is depleted in plutonium and neptunium relative to the parent fuel. At the corrosion front interface between intact fuel and the uranyl-mineral corrosion layer, we find evidence of a thin (∼20 micrometer) layer that is enriched in plutonium and neptunium within a predominantly U 4+ environment. Available data for the standard reduction potentials for NpO 2+ /Np 4+ and UO 2 2+ /U 4+ couples indicate that Np(IV) may not be effectively oxidized to Np(V) at the corrosion potentials of uranium dioxide spent nuclear fuel in air-saturated aqueous solutions. Neptunium is an important radionuclide in dose contribution according to performance assessment models of the proposed U. S. repository at Yucca Mountain, Nevada. A scientific understanding of how the UO 2 matrix of spent nuclear fuel impacts the oxidative dissolution and reductive precipitation of neptunium is needed to predict its behavior at the fuel surface during aqueous corrosion. Neptunium would most likely be transported as aqueous Np(V) species, but for this to occur it must first be oxidized from the Np(IV) state found within the parent spent nuclear fuel [1]. In the immediate vicinity of the spent fuel's surface the redox and nucleation behavior is likely to promote

  17. Technical considerations in decisions on plutonium use

    International Nuclear Information System (INIS)

    Till, C.E.

    1980-01-01

    Present-day reactors use uranium inefficiently. Really substantial increases in efficiency of uranium utilization require reprocessing. Reprocessing activities give rise to concern about their possible use in fission weapons acquisition. The basic properties of nuclides severely limit both the number of alternative ways that fuel utilization can be improved and the amount of the improvement that is possible from any of the alternatives. By far the greatest improvement comes from plutonium use in a fast reactor. The properties that allow this are peculiar to plutonium. There are basically only two fuel cycles that can be considered as alternatives to the plutonium-238/uranium fuel cycle. One is a uranium-233/thorium fuel cycle, a cycle that is very similar in requirements, including reprocessing, to the plutonium-238/uranium cycle. The other is continuation and refinement of the current once-through cycle. A small number of technical measures to increase proliferation-resistance have been proposed. Improvements of an institutional nature are of two types. The first are improvements in international safeguards - most importantly, nuclear materials accountancy - essentially strengthening or augmenting current IAEA procedures. The second involves agreements between nations to limit distribution of sensitive technologies and to multinationalize or internationalize sensitive elements of the fuel cycle

  18. A Mixed-Oxide Assembly Design for Rapid Disposition of Weapons Plutonium in Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Adams, Marvin L.

    2002-01-01

    We have created a new mixed-oxide (MOX) fuel assembly design for standard pressurized water reactors (PWRs). Design goals were to maximize the plutonium throughput while introducing the lowest perturbation possible to the control and safety systems of the reactor. Our assembly design, which we call MIX-33, offers some advantages for the disposition of weapons-grade plutonium; it increases the disposition rate by 8% while increasing the worth of control material, compared to a previous Westinghouse design. The MIX-33 design is based upon two ideas: the use of both uranium and plutonium fuel pins in the same assembly, and the addition of water holes in the assembly. The main result of this paper is that both of these ideas are effective at increasing Pu throughput and increasing the worth of control material. With this new design, according to our analyses, we can transition smoothly from a full low-enriched-uranium (LEU) core to a full MIX-33 core while meeting the operational and safety requirements of a standard PWR. Given an interruption of the MOX supply, we can transition smoothly back to full LEU while meeting safety margins and using standard LEU assemblies with uniform pinwise enrichment distribution. If the MOX supply is interrupted for only one cycle, the transition back to a full MIX-33 core is not as smooth; high peaking could cause power to be derated by a few percent for a few weeks at the beginning of one transition cycle

  19. Nuclear fuel technology - Determination of milligram amounts of plutonium in nitric acid solutions - Potentiometric titration with potassium dichromate after oxidation by Ce(IV) and reduction by Fe(II)

    International Nuclear Information System (INIS)

    2000-01-01

    This International Standard describes a precise and accurate analytical method for determining 1 mg to 5 mg of plutonium per millilitre in nitric acid solutions. The method is very selective for plutonium. It is suitable for the direct determination of plutonium in materials ranging from pure product solutions, to solutions of mixed nuclear materials with a uranium/plutonium ratio up to 20:1. However, potential application to the assay of plutonium in solutions of irradiated nuclear fuels and solutions of mixed nuclear materials with uranium/plutonium ratios of 20:1 to 33:1 has not yet been documented. The method recommends that the aliquot be weighed and that the titration burettes be calibrated gravimetrically in order to obtain adequate precision and accuracy. This does not preclude using any alternative technique which can be shown to give an equivalent accuracy. As the reproducibility of the reaction conditions is important to maintain good performance, extensive automatization of the procedure is beneficial

  20. Reduction of worldwide plutonium inventories using conventional reactors and advanced fuels: A systems study

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Bathke, C.G.; Chodak, P. III

    1997-01-01

    The potential for reducing plutonium inventories in the civilian nuclear fuel cycle through recycle in LWRs of a variety of mixed-oxide forms is examined by means of a cost-based plutonium-flow systems model that includes an approximate measure of proliferation risk. The impact of plutonium recycle in a number of forms is examined, including the introduction of nonfertile fuels into conventional (LWR) reactors to reduce net plutonium generation, to increase plutonium burnup, and to reduce exo-reactor plutonium inventories

  1. UK experience on fuel and cladding interaction in oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Batey, W [Dounreay Experimental Reactor Establishment, Thurso, Caithness (United Kingdom); Findlay, J R [AERE, Harwell, Didcot, Oxon (United Kingdom)

    1977-04-01

    The occurrence of fuel cladding interactions in fast reactor fuels has been observed in UK irradiations over a period of years. Chemical incompatibility between fuel and clad represents a potential source of failure and has, on this account, been studied using a variety of techniques. The principal fuel of interest to the UK for fast reactor application is mixed uranium plutonium oxide clad in stainless steel and it is in this field that the majority of work has been concentrated. Some consideration has been given to carbide fuels, because of their application as an advanced fuel. This experience is described in the accompanying paper. Several complementary initiatives have been followed to investigate the interactions in oxide fuel. The principal source of experimental information is from the experimental fuel irradiation programme in the Dounreay Fast Reactor (DFR). Supporting information has been obtained from irradiation programmes in Materials Testing Reactors (MTR). Conditions approaching those in a fast reactor are obtained and the effects of specific variables have been examined in specifically designed experiments. Out-of-reactor experiments have been used to determine the limits of fuel and cladding compatibility and also to give indications of corrosion The observations from all experiments have been examined in the light of thermo-dynamic predictions of fuel behaviour to assess the relative significance of various observations and operating conditions. An experimental programme to control and limit the interactions in oxide fuel is being followed.

  2. UK experience on fuel and cladding interaction in oxide fuels

    International Nuclear Information System (INIS)

    Batey, W.; Findlay, J.R.

    1977-01-01

    The occurrence of fuel cladding interactions in fast reactor fuels has been observed in UK irradiations over a period of years. Chemical incompatibility between fuel and clad represents a potential source of failure and has, on this account, been studied using a variety of techniques. The principal fuel of interest to the UK for fast reactor application is mixed uranium plutonium oxide clad in stainless steel and it is in this field that the majority of work has been concentrated. Some consideration has been given to carbide fuels, because of their application as an advanced fuel. This experience is described in the accompanying paper. Several complementary initiatives have been followed to investigate the interactions in oxide fuel. The principal source of experimental information is from the experimental fuel irradiation programme in the Dounreay Fast Reactor (DFR). Supporting information has been obtained from irradiation programmes in Materials Testing Reactors (MTR). Conditions approaching those in a fast reactor are obtained and the effects of specific variables have been examined in specifically designed experiments. Out-of-reactor experiments have been used to determine the limits of fuel and cladding compatibility and also to give indications of corrosion The observations from all experiments have been examined in the light of thermo-dynamic predictions of fuel behaviour to assess the relative significance of various observations and operating conditions. An experimental programme to control and limit the interactions in oxide fuel is being followed

  3. Advances on reverse strike co-precipitation method of uranium-plutonium mixed solutions

    International Nuclear Information System (INIS)

    Menghini, Jorge E.; Marchi, Daniel E.; Orosco, Edgardo H.; Greco, Luis

    2000-01-01

    The reverse strike coprecipitation of uranium-plutonium mixed solutions, is an alternative way to obtain MOX fuel pellets. Previous tests, carried out in the Alpha Laboratory, included a stabilization step for transforming 100 % of plutonium into Pu +4 . Therefore, the plutonium precipitated as Pu(OH) 4 . In this second step, the stabilization process was suppressed. In this way, besides Pu(OH) 4 , a part of the precipitated is composed of a mixed salt: AD(U,Pu). Then, a homogeneous solid solution is formed in the early steps of the process. The powders showed higher tap density, better performance during the pressing and lower sinterability than the powders obtained in previous tests. The advantageous and disadvantageous effects of the stabilization step are analyzed in this paper. (author)

  4. Appraisal of BWR plutonium burners for energy centers

    International Nuclear Information System (INIS)

    Williamson, H.E.

    1976-01-01

    The design of BWR cores with plutonium loadings beyond the self-generation recycle (SGR) level is investigated with regard to their possible role as plutonium burners in a nuclear energy center. Alternative plutonium burner approaches are also examined including the substitution of thorium for uranium as fertile material in the BWR and the use of a high-temperature gas reactor (HTGR) as a plutonium burner. Effects on core design, fuel cycle facility requirements, economics, and actinide residues are considered. Differences in net fissile material consumption among the various plutonium-burning systems examined were small in comparison to uncertainties in HTGR, thorium cycle, and high plutonium-loaded LWR technology. Variation in the actinide content of high-level wastes is not likely to be a significant factor in determining the feasibility of alternate systems of plutonium utilization. It was found that after 10,000 years the toxicity of actinide high-level wastes from the plutonium-burning fuel cycles was less than would have existed if the processed natural ores had not been used for nuclear fuel. The implications of plutonium burning and possible future fuel cycle options on uranium resource conservation are examined in the framework of current ERDA estimates of minable uranium resources

  5. A solvent proceed for the extraction of the irradiate uranium and plutonium in the reactor core; Un procede par solvant pour l'extraction du plutonium de l'uranium irradie dans les piles

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, B; Regnaut, P; Prevot, I [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    Description of the conditions of plutonium, fission products and of uranium separation by selective extraction of the nitrates by organic solvent, containing a simultaneous extraction of plutonium and uranium, followed by a plutonium re-extraction after reduction, and an uranium re-extraction. The rates of decontamination being insufficient in this first stage, we also describes the processes of decontamination permitting separately to get the rates wanted for uranium and plutonium. Finally, we describes the beginning of the operation that consists in a nitric dissolution of the active uranium while capturing the products of gaseous fission, as well as the final concentration of the products of fission in a concentrated solution. (authors) [French] Description des conditions de separation du plutonium, des produits de fission et de l'uranium au moyen d'une extraction selective des nitrates par solvant organique, comprenant une extraction simultanee du plutonium et de l'uranium, suivie d'une reextraction du plutonium apres reduction, et d'une reextraction de l'uranium. Les taux de decontamination etant insuffisants dans ce premier stade, on decrit egalement les processus de decontamination permettant separement d'obtenir les taux desires pour l'uranium et le plutonium. Enfin, on decrit aussi le debut de l'operation qui consiste en une dissolution nitrique de l'uranium actif en captant les produits de fission gazeux, ainsi que la concentration finale des produits de fission sous forme de solution concentree. (auteurs)

  6. On detection of the possible use of VVERs for unreported production of plutonium. Final report for the period July 1988 - December 1989

    International Nuclear Information System (INIS)

    Simov, R.; Nelov, N.; Stoyanova, I.; Kovachev, N.; Yonchev, P.

    1989-01-01

    The study includes an analysis of the feasibility of unreported production of plutonium-239 in VVER-440 reactors. It is shown that for VVER-440 reactors 36 natural uranium oxide fuel assemblies in the peripheral region of the core need to be loaded to produce 8 kg of extra plutonium in one cycle. Substituting the peripheral fuel assemblies with natural uranium oxide fuel assemblies, the changes in the power peaking are negligible and do not affect reactor safety. Unreported production outside the core is not practical due to physical and mechanical constraints, low flux level, etc. The feasibility of unreported removal of irradiated material in spent fuel cask has been also assessed. After about a month cooling time, still within the refueling period, the irradiated natural uranium fuel assemblies could be removed off-site without significant health hazard to the workers. To improve the effectiveness of the safeguards objectives, additional inspection activities are suggested. 10 figs

  7. Dissolution of mixed oxide fuel as a function of fabrication variables

    International Nuclear Information System (INIS)

    Lerch, R.E.

    1979-08-01

    Dissolution properties of mechanically blended mixed oxide fuel were very dependent on the six fuel fabrication variables studied. Fuel sintering temperature, source of PuO 2 and PuO 2 content of the fuel had major effects: (1) as the sintering temperature was increased from 1400 to 1700 0 C, pellet dissolution was more complete; (2) pellets made from burned metal derived PuO 2 were more completely dissolved than pellets made from calcined nitrate derived PuO 2 which in turn were more completely dissolved than pellets made from calcined nitrate derived PuO 2 ; (3) as the PuO 2 content decreased from 25 to 15 wt % PuO 2 , pellet dissolution was more complete. Preferential dissolution of uranium occurred in all the mechanically blended mixed oxide. Unirradiated mixed oxide fuel pellets made by the Sol Gel process were generally quite soluble in nitric acid. Unirradiated mixed oxide fuel pellets made by the coprecipitation process dissolved completely and rapidly in nitric acid. Fuel made by the coprecipitation process was more completely dissolved than fuel made by the Sol Gel process which, in turn, was more completely dissolved than fuel made by mechanically blending UO 2 and PuO 2 as shown below. Addition of uncomplexed fluoride to nitric acid during fuel dissolution generally rendered all fuel samples completely dissolvable. In boiling 12M nitric acid, 95 to 99% of the plutonium which was going to dissolve did so in the first hour. Irradiated mechanically blended mixed oxide fuel with known fuel fabrication conditions was also subjected to fuel dissolution tests. While irradiation was shown to increase completeness of plutonium dissolution, poor dissolubility due to adverse fabrication conditions (e.g., low sintering temperature) remained after irradiation

  8. Laboratory directed research and development on disposal of plutonium recovered from weapons. FY1994 final report

    International Nuclear Information System (INIS)

    Pitts, J.H.; Choi, J.S.

    1994-01-01

    This research project was conceived as a multi-year plan to study the use of mixed plutonium oxide-uranium oxide (MOX) fuel in existing nuclear reactors. Four areas of investigation were originally proposed: (1) study reactor physics including evaluation of control rod worth and power distribution during normal operation and transients; (2) evaluate accidents focusing upon the reduced control rod worth and reduced physical properties of PuO 2 ; (3) assess the safeguards required during fabrication and use of plutonium bearing fuel assemblies; and (4) study public acceptance issues associated with using material recovered from weapons to fuel a nuclear reactor. First year accomplishments are described. Appendices contain 2 reports entitled: development and validation of advanced computational capability for MOX fueled ALWR assembly designs; and long-term criticality safety concerns associated with weapons plutonium disposition

  9. PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle

    International Nuclear Information System (INIS)

    Bi, G.; Liu, C.; Si, S.

    2012-01-01

    This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade 233 U-Thorium (U 3 ThOX) FAs on the basis of reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade 233 U extracted from burnt PuThOX fuel was used to fabrication of U 3 ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U 3 ThOX mixed core, the well designed U 3 ThOX FAs with 1.94 w/o fissile uranium (mainly 233 U) were located on the periphery of core as a blanket region. U 3 ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U 3 ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U 3 ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U 3 ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U 3 ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared

  10. Pyro-electrochemical reprocessing of irradiated MOX fast reactor fuel, testing of the reprocessing process with direct MOX fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Kormilitzyn, M.V.; Vavilov, S.K.; Bychkov, A.V.; Skiba, O.V.; Chistyakov, V.M.; Tselichshev, I.V

    2000-07-01

    One of the advanced technologies for fast reactor fuel recycle is pyro-electrochemical molten salt technology. In 1998 we began to study the next phase of the irradiated oxide fuel reprocessing new process MOX {yields} MOX. This process involves the following steps: - Dissolution of irradiated fuel in molten alkaline metal chlorides, - Purification of melt from fission products that are co-deposited with uranium and plutonium oxides, - Electrochemical co-deposition of uranium and plutonium oxides under the controlled cathode potential, - Production of granulated MOX (crushing,salt separation and sizing), and - Purification of melt from fission products by phosphate precipitation. In 1998 a series of experiments were prepared and carried out in order to validate this process. It was shown that the proposed reprocessing flowsheet of irradiated MOX fuel verified the feasibility of its decontamination from most of its fission products (rare earths, cesium) and minor-actinides (americium, curium)

  11. Pyro-electrochemical reprocessing of irradiated MOX fast reactor fuel, testing of the reprocessing process with direct MOX fuel production

    International Nuclear Information System (INIS)

    Kormilitzyn, M.V.; Vavilov, S.K.; Bychkov, A.V.; Skiba, O.V.; Chistyakov, V.M.; Tselichshev, I.V.

    2000-01-01

    One of the advanced technologies for fast reactor fuel recycle is pyro-electrochemical molten salt technology. In 1998 we began to study the next phase of the irradiated oxide fuel reprocessing new process MOX → MOX. This process involves the following steps: - Dissolution of irradiated fuel in molten alkaline metal chlorides, - Purification of melt from fission products that are co-deposited with uranium and plutonium oxides, - Electrochemical co-deposition of uranium and plutonium oxides under the controlled cathode potential, - Production of granulated MOX (crushing,salt separation and sizing), and - Purification of melt from fission products by phosphate precipitation. In 1998 a series of experiments were prepared and carried out in order to validate this process. It was shown that the proposed reprocessing flowsheet of irradiated MOX fuel verified the feasibility of its decontamination from most of its fission products (rare earths, cesium) and minor-actinides (americium, curium)

  12. Manufacturing method for fuel assembly

    International Nuclear Information System (INIS)

    Yamaguchi, Takashi.

    1997-01-01

    In an FBR type reactor, uranium/plutonium mixed oxide fuels (MOX fuels) are used. Nuclear fuel materials containing uranium and plutonium are filled to a portion or all of a plurality of fuel rods. In this case, an equivalent fissile coefficient (B) based on a combustion guarantee method defined by the formula: (B) = (M) · (F) is determined. (M) is a combustion matrix constituted based on the solution of equation of combustion which is a differential equation representing change with time of each of nuclear fuel materials during combustion. (F) is an equivalent fissile coefficient based on a reactivity keeping method which is a coefficient representing a reactivity worth equivalent with plutonium-239. The content of each of the nuclear fuel materials is determined so that the effective multiplication factor at the final stage of the operation cycle is substantially constant by using the equivalent fissile coefficient (B) based on the combustion guarantee method. (I.N.)

  13. Advances in nuclear fuel technology. 3. Development of advanced nuclear fuel recycle systems

    International Nuclear Information System (INIS)

    Arie, Kazuo; Abe, Tomoyuki; Arai, Yasuo

    2002-01-01

    Fast breeder reactor (FBR) cycle technology has a technical characteristics flexibly easy to apply to diverse fuel compositions such as plutonium, minor actinides, and so on and fuel configurations. By using this characteristics, various feasibilities on effective application of uranium resources based on breeding of uranium of plutonium for original mission of FBR, contribution to radioactive wastes problems based on amounts reduction of transuranium elements (TRU) in high level radioactive wastes, upgrading of nuclear diffusion resistance, extremely upgrading of economical efficiency, and so on. In this paper, were introduced from these viewpoints, on practice strategy survey study on FBR cycle performed by cooperation of the Japan Nuclear Cycle Development Institute (JNC) with electric business companies and so on, and on technical development on advanced nuclear fuel recycle systems carried out at the Central Research Institute of Electric Power Industry, Japan Atomic Energy Research Institute, and so on. Here were explained under a vision on new type of fuels such as nitride fuels, metal fuels, and so on as well as oxide fuels, a new recycle system making possible to use actinides except uranium and plutonium, an 'advanced nuclear fuel cycle technology', containing improvement of conventional wet Purex method reprocessing technology, fuel manufacturing technology, and so on. (G.K.)

  14. Plutonium and U-233 mines

    International Nuclear Information System (INIS)

    Milgram, M.S.

    1983-08-01

    A comparison is made among second generation reactor systems fuelled primarily with fissile plutonium and/or U-233 in uranium or thorium. This material is obtained from irradiated fuel from first generation CANDU reactors fuelled by natural or enriched uranium and thorium. Except for plutonium-thorium reactors, second generation reactors demand similar amounts of reprocessing throughput, but the most efficient plutonium burning systems require a large prior allocation of uranium. Second generation reactors fuelled by U-233 make more efficient use of resources and lead to more flexible fuelling strategies, but require development of first generation once-through thorium cycles and early demonstration of the commercial viability of thorium fuel reprocessing. No early implementation of reprocessing technology is required for these cycles

  15. Initiation of depleted uranium oxide and spent fuel testing for the spent fuel sabotage aerosol ratio program

    Energy Technology Data Exchange (ETDEWEB)

    Molecke, M.A.; Gregson, M.W.; Sorenson, K.B. [Sandia National Labs. (United States); Billone, M.C.; Tsai, H. [Argonne National Lab. (United States); Koch, W.; Nolte, O. [Fraunhofer Inst. fuer Toxikologie und Experimentelle Medizin (Germany); Pretzsch, G.; Lange, F. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (Germany); Autrusson, B.; Loiseau, O. [Inst. de Radioprotection et de Surete Nucleaire (France); Thompson, N.S.; Hibbs, R.S. [U.S. Dept. of Energy (United States); Young, F.I.; Mo, T. [U.S. Nuclear Regulatory Commission (United States)

    2004-07-01

    We provide a detailed overview of an ongoing, multinational test program that is developing aerosol data for some spent fuel sabotage scenarios on spent fuel transport and storage casks. Experiments are being performed to quantify the aerosolized materials plus volatilized fission products generated from actual spent fuel and surrogate material test rods, due to impact by a high energy density device, HEDD. The program participants in the U.S. plus Germany, France, and the U.K., part of the international Working Group for Sabotage Concerns of Transport and Storage Casks, WGSTSC have strongly supported and coordinated this research program. Sandia National Laboratories, SNL, has the lead role for conducting this research program; test program support is provided by both the U.S. Department of Energy and Nuclear Regulatory Commission. WGSTSC partners need this research to better understand potential radiological impacts from sabotage of nuclear material shipments and storage casks, and to support subsequent risk assessments, modeling, and preventative measures. We provide a summary of the overall, multi-phase test design and a description of all explosive containment and aerosol collection test components used. We focus on the recently initiated tests on ''surrogate'' spent fuel, unirradiated depleted uranium oxide, and forthcoming actual spent fuel tests. The depleted uranium oxide test rodlets were prepared by the Institut de Radioprotection et de Surete Nucleaire, in France. These surrogate test rodlets closely match the diameter of the test rodlets of actual spent fuel from the H.B. Robinson reactor (high burnup PWR fuel) and the Surry reactor (lower, medium burnup PWR fuel), generated from U.S. reactors. The characterization of the spent fuels and fabrication into short, pressurized rodlets has been performed by Argonne National Laboratory, for testing at SNL. The ratio of the aerosol and respirable particles released from HEDD-impacted spent

  16. Evaluation of a gamma-spectroscopy gauge for uranium-plutonium assay

    International Nuclear Information System (INIS)

    Notea, A.; Segal, Y.

    1976-01-01

    A procedure is presented for the characterization of a gamma passive method for non-destructive analysis of nuclear fuel. The approachh provides an organized and systematic way for optimizing the assay system. The key function is the relative resolving power defined as the smallest relative change in the quantity of radionuclide measured that may be detected within a certain confidence level. This function is derived for nuclear fuel employing a model based on empirical parameters. The ability to detect changes in fuels of binary and trinary compositions with a 50-cm 3 Ge(Li) at a 1-min counting period is discussed. As an example to a binary composition, an enriched uranium fuel was considered. The 185-keV and 1001-keV gamma lines are used for the assay of 235 U and 238 U, respectively. As a trinary composition a plutonium-containing fuel was examined. The plutonium was identified by the 414-keV gamma line. The interference of the high-energy lines is carefully analysed, and numerical results are presented. For both cases the range of measurement under specific accuracy demands is determined. The approac described is suitable also for evaluation of other passive as well as active assay methods. (author)

  17. Fuel component of electricity generation cost for the BN-800 reactor with 800 MOX fuel and uranium oxide fuel, increased fuel burnup, and removal of radial breeding blanket

    International Nuclear Information System (INIS)

    Raskach, A.

    2000-01-01

    There are two completed design concepts of NPP with BN-800 type reactors developed with due regard for enhanced safety requirements. They have been created for the 3 rd unit of Beloyarsk NPP and for three units of South Ural NPP. Both concepts are proposed to use mixed oxide fuel (MOX) based on civil plutonium. At this moment economical estimations carried out for these projects need to be revised in connection with the changes of economical situation in Russia and the world nuclear market structure. It is also essential to take into account the existing problem of the excess ex-weapons plutonium utilization and the possibility of using this plutonium to fabricate MOX fuel for the BN-800 reactors. (authors)

  18. Spent nuclear fuel recycling with plasma reduction and etching

    Science.gov (United States)

    Kim, Yong Ho

    2012-06-05

    A method of extracting uranium from spent nuclear fuel (SNF) particles is disclosed. Spent nuclear fuel (SNF) (containing oxides of uranium, oxides of fission products (FP) and oxides of transuranic (TRU) elements (including plutonium)) are subjected to a hydrogen plasma and a fluorine plasma. The hydrogen plasma reduces the uranium and plutonium oxides from their oxide state. The fluorine plasma etches the SNF metals to form UF6 and PuF4. During subjection of the SNF particles to the fluorine plasma, the temperature is maintained in the range of 1200-2000 deg K to: a) allow any PuF6 (gas) that is formed to decompose back to PuF4 (solid), and b) to maintain stability of the UF6. Uranium (in the form of gaseous UF6) is easily extracted and separated from the plutonium (in the form of solid PuF4). The use of plasmas instead of high temperature reactors or flames mitigates the high temperature corrosive atmosphere and the production of PuF6 (as a final product). Use of plasmas provide faster reaction rates, greater control over the individual electron and ion temperatures, and allow the use of CF4 or NF3 as the fluorine sources instead of F2 or HF.

  19. Influence of uranium hydride oxidation on uranium metal behaviour

    International Nuclear Information System (INIS)

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-01-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  20. Influence of uranium hydride oxidation on uranium metal behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  1. Coordinated safeguards for materials management in a uranium--plutonium nitrate-to-oxide coconversion facility: Coprecal

    International Nuclear Information System (INIS)

    Dayem, H.A.; Cobb, D.D.; Dietz, R.J.; Hakkila, E.A.; Kern, E.A.; Schelonka, E.P.; Shipley, J.P.; Smith, D.B.

    1979-02-01

    This report describes the conceptual design of an advanced materials-management system for safeguarding special nuclear materials in a uranium--plutonium nitrate-to-oxide coconversion facility based on the Coprecal process. Design concepts are presented for near real-time (dynamic) accountability by forming dynamic materials balances from information provided by chemical and nondestructive analyses and from process-control instrumentation. Modeling and simulation techniques are used to compare the sensitivities of proposed dynamic materials accounting strategies to both abrupt and protracted diversion. The safeguards implications of coconversion as well as some unique features of the reference process are discussed and design criteria are identified to improve the safeguardability of the Coprecal coconversion process

  2. World nuclear fuel market. Seventeenth annual meeting

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The papers presented at the seventeenth World Nuclear Fuels Market meeting are cataloged individually. This volume includes information on the following areas of interest: historical and current aspects of the uranium and plutonium market with respect to supply and demand, pricing, spot market purchasing, and other market phenomena; impact of reprocessing and recycling uranium, plutonium, and mixed oxide fuels; role of individual countries in the market: Hungary, Germany, the Soviet Union, Czechoslovakia, France, and the US; the impact of public opinion and radioactive waste management on the nuclear industry, and a debate regarding long term versus short term contracting by electric utilities for uranium and enrichment services

  3. Radiological safety aspects in the fabrication of mixed oxide fuel elements. [Derived working limits in air and water for plutonium, enriched uranium and their mixture

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamurthi, T.N.; Janardhanan, S.; Soman, S.D. (Bhabha Atomic Research Centre, Bombay (India). Health Physics Div.)

    The problems of radiological safety in the fabrication of (U, Pu)O/sub 2/ fuel assemblies for fast reactors utilising high exposure plutonium are discussed. Derived working limits for plutonium as a function of the burn-up of RAPS (Rajasthan Atomic Power Station) fuel, external gamma and neutron exposures from feed product batches, finished fuel pins and assemblies are presented. Shielding requirements for the various glove box operations are also indicated. In general, high exposure plutonium handling calls for remote fabrication and automation at various stages would play a key role in minimising exposures to personnel in a large production plant.

  4. Analysis of high burnup pressurized water reactor fuel using uranium, plutonium, neodymium, and cesium isotope correlations with burnup

    International Nuclear Information System (INIS)

    Kim, Jung Suk; Jeon, Young Shin; Park, Soon Dal; Ha, Yeong Keong; Song, Kyu Seok

    2015-01-01

    The correlation of the isotopic composition of uranium, plutonium, neodymium, and cesium with the burnup for high burnup pressurized water reactor fuels irradiated in nuclear power reactors has been experimentally investigated. The total burnup was determined by Nd-148 and the fractional 235 U burnup was determined by U and Pu mass spectrometric methods. The isotopic compositions of U, Pu, Nd, and Cs after their separation from the irradiated fuel samples were measured using thermal ionization mass spectrometry. The contents of these elements in the irradiated fuel were determined through an isotope dilution mass spectrometric method using 233 U, 242 Pu, 150 Nd, and 133 Cs as spikes. The activity ratios of Cs isotopes in the fuel samples were determined using gamma-ray spectrometry. The content of each element and its isotopic compositions in the irradiated fuel were expressed by their correlation with the total and fractional burnup, burnup parameters, and the isotopic compositions of different elements. The results obtained from the experimental methods were compared with those calculated using the ORIGEN-S code

  5. Development of DIPRES feed for the fabrication of mixed-oxide fuels for fast breeder reactors

    International Nuclear Information System (INIS)

    Griffin, C.W.; Rasmussen, D.E.; Lloyd, M.H.

    1983-01-01

    The DIrect PREss Spheroidized feed process combines the conversion of uranium-plutonium solutions into spheres by internal gelation with conventional pellet fabrication techniques. In this manner, gel spheres could replace conventional powders as the feed material for pellet fabrication of nuclear fuels. Objective of the DIPRES feed program is to develop and qualify a process to produce mixed-oxide fuel pellets from gel spheres for fast breeder reactors. This process development includes both conversion and fabrication activities

  6. Minimization of actinide waste by multi-recycling of thoriated fuels in the EPR reactor

    Directory of Open Access Journals (Sweden)

    Nuttin A.

    2012-02-01

    Full Text Available The multi-recycling of innovative uranium/thorium oxide fuels for use in the European Pressurized water Reactor (EPR has been investigated. If increasing quantities of 238U, the fertile isotope in standard UO2 fuel, are replaced by 232Th, then a greater yield of new fissile material (233U is produced during the cycle than would otherwise be the case. This leads to economies of natural uranium of around 45% if the uranium in the spent fuel is multi-recycled. In addition we show that minor actinide and plutonium waste inventories are reduced and hence waste radio-toxicities and decay heats are up to a factor of 20 lower after 103 years. Two innovative fuel types named S90 and S20, ThO2 mixed with 90% and 20% enriched UO2 respectively, are compared as an alternative to standard uranium oxide (UOX and uranium/plutonium mixed oxide (MOX fuels at the longest EPR fuel discharge burn-ups of 65 GWd/t. Fissile and waste inventories are examined, waste radio-toxicities and decay heats are extracted and safety feedback coefficients are calculated.

  7. Nuclear fuels and development of nuclear fuel elements

    International Nuclear Information System (INIS)

    Sundaram, C.V.; Mannan, S.L.

    1989-01-01

    Safe, reliable and economic operation of nuclear fission reactors, the source of nuclear power at present, requires judicious choice, careful preparation and specialised fabrication procedures for fuels and fuel element structural materials. These aspects of nuclear fuels (uranium, plutonium and their oxides and carbides), fuel element technology and structural materials (aluminium, zircaloy, stainless steel etc.) are discussed with particular reference to research and power reactors in India, e.g. the DHRUVA research reactor at BARC, Trombay, the pressurised heavy water reactors (PHWR) at Rajasthan and Kalpakkam, and the Fast Breeder Test Reactor (FBTR) at Kalpakkam. Other reactors like the gas-cooled reactors operating in UK are also mentioned. Because of the limited uranium resources, India has opted for a three-stage nuclear power programme aimed at the ultimate utilization of her abundant thorium resources. The first phase consists of natural uranium dioxide-fuelled, heavy water-moderated and cooled PHWR. The second phase was initiated with the attainment of criticality in the FBTR at Kalpakkam. Fast Breeder Reactors (FBR) utilize the plutonium and uranium by-products of phase 1. Moreover, FBR can convert thorium into fissile 233 U. They produce more fuel than is consumed - hence, the name breeders. The fuel parameters of some of the operating or proposed fast reactors in the world are compared. FBTR is unique in the choice of mixed carbides of plutonium and uranium as fuel. Factors affecting the fuel element performance and life in various reactors e.g. hydriding of zircaloys, fuel pellet-cladding interaction etc. in PHWR and void swelling; irradiation creep and helium embrittlement of fuel element structural materials in FBR are discussed along with measures to overcome some of these problems. (author). 15 refs., 9 tabs., 23 figs

  8. Towards proliferation-resistant thorium fuels

    International Nuclear Information System (INIS)

    Alhaj, M. Yousif; Mohamed, Nader M.A.; Badawi, Alya; Abou-Gabal, Hanaa H.

    2017-01-01

    Thorium-plutonium mixture is proposed as alternative nuclear reactor fuel to incinerate the increasing stockpile plutonium. However, this fuel will produce an amount of uranium with about 90% 233U at applicable discharge burnups (60GWD/MTU). This research focuses on proposing an optimum non proliferative thorium fuel, by adding a small amount of 238U to reduce the attractiveness of the resultant uranium. Three types of additive which contain 238U were used: 4.98% enriched, natural and depleted uranium. We found that introducing uranium to the fresh thorium-plutonium fuel reduces its performance even if the uranium was enriched up to 5%. While uranium admixtures reduce the quality of the reprocessed uranium, it also increases the quality of the plutonium. However, this increase is very low compared to the reduced quality of uranium. We also found that using uranium as admixture for thorium-plutonium mixed fuel increases the critical mass of the extracted uranium by a factor of two when using only 1% admixture of uranium. The higher the percentage of uranium admixture the higher the critical mass of the reprocessed one.

  9. Gastrointestinal absorption and retention of plutonium and uranium in the baboon

    International Nuclear Information System (INIS)

    Larsen, R.P.; Bhattacharyya, M.H.; Oldham, R.D.; Moretti, E.S.; Cohen, N.

    1984-01-01

    Individual isotopes of plutonium and uranium were administered both intragastrically and intravenously to a baboon. Samples of urine, faces, blood, and tissues were taken and are now being analyzed. Preliminary results indicate that the fractional absorptions of plutonium and uranium were 1 x 10 -3 and 1 x 10 -2 , respectively, and their retentions about one month later were about 20% and 10%, respectively, of the amounts absorbed. The fractional retentions of the intravenously injected plutonium and uranium at that time were 0.90 and 0.07. 13 references, 1 figure, 3 tables

  10. Specification analysis of plutonium fuels : a potentiometric method for the determination of plutonium

    International Nuclear Information System (INIS)

    Vaidyanathan, S.; Natarajan, P.R.

    1977-01-01

    A potentiometric method for the routine determination of plutonium in the specification analysis of plutonium fuels is described. Plutonium is oxidized to Pu(VI) with AgO and Pu(VI) is reduced with Fe(II) after the destruction of excess AgO with sulphamic acid. The excess Fe(II) is titrated potentiometrically against K 2 Cr 2 O 7 , the titration being carried out by adding a concentrated titrant solution from a weight burette and a suitably diluted solution from another weight burette near the end. The overall relative standard deviation obtained in 326 analyses of a working standard solution by eight experimenters is 0.14 percent. (author)

  11. Study of a plutonium oxide fuel inhalation case

    International Nuclear Information System (INIS)

    Foster, P.P.

    1991-01-01

    Lung retention, urine excretion and faecal excretion levels of plutonium fuel have been measured for an employee following a known inhalation. The employee has had no subsequent contact with the fuel material. The retention and excretion patterns are, however, complicated by a long previous history of suspected small exposures. The monitoring data are presented together with an interpretation of the data which can be compared directly with single intake retention and excretion function as given in ICRP 54. (author)

  12. Oxidative dissolution of unirradiated Mimas MOX fuel (U/Pu oxides) in carbonated water under oxic and anoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Odorowski, Mélina [CEA/DEN/DTCD/SECM/LMPA, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); MINES ParisTech, PSL Research University, Centre de Géosciences, 35 rue St Honoré, 77305 Fontainebleau (France); Jégou, Christophe, E-mail: christophe.jegou@cea.fr [CEA/DEN/DTCD/SECM/LMPA, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); De Windt, Laurent [MINES ParisTech, PSL Research University, Centre de Géosciences, 35 rue St Honoré, 77305 Fontainebleau (France); Broudic, Véronique; Peuget, Sylvain; Magnin, Magali; Tribet, Magaly [CEA/DEN/DTCD/SECM/LMPA, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); Martin, Christelle [Agence nationale pour la gestion des déchets radioactifs (Andra), DRD/CM, 1-7 rue Jean-Monnet, 92298 Châtenay-Malabry Cedex (France)

    2016-01-15

    Few studies exist concerning the alteration of Mimas Mixed-OXide (MOX) fuel, a mixed plutonium and uranium oxide, and data is needed to better understand its behavior under leaching, especially for radioactive waste disposal. In this study, two leaching experiments were conducted on unirradiated MOX fuel with a strong alpha activity (1.3 × 10{sup 9} Bq.g{sub MOX}{sup −1} reproducing the alpha activity of spent MOX fuel with a burnup of 47 GWd·t{sub HM}{sup −1} after 60 years of decay), one under air (oxic conditions) for 5 months and the other under argon (anoxic conditions with [O{sub 2}] < 1 ppm) for one year in carbonated water (10{sup −2} mol L{sup −1}). For each experiment, solution samples were taken over time and Eh and pH were monitored. The uranium in solution was assayed using a kinetic phosphorescence analyzer (KPA), plutonium and americium were analyzed by a radiochemical route, and H{sub 2}O{sub 2} generated by the water radiolysis was quantified by chemiluminescence. Surface characterizations were performed before and after leaching using Scanning Electron Microscopy (SEM), Electron Probe Microanalyzer (EPMA) and Raman spectroscopy. Solubility diagrams were calculated to support data discussion. The uranium releases from MOX pellets under both oxic and anoxic conditions were similar, demonstrating the predominant effect of alpha radiolysis on the oxidative dissolution of the pellets. The uranium released was found to be mostly in solution as carbonate species according to modeling, whereas the Am and Pu released were significantly sorbed or precipitated onto the TiO{sub 2} reactor. An intermediate fraction of Am (12%) was also present as colloids. SEM and EPMA results indicated a preferential dissolution of the UO{sub 2} matrix compared to the Pu-enriched agglomerates, and Raman spectroscopy showed the Pu-enriched agglomerates were slightly oxidized during leaching. Unlike Pu-enriched zones, the UO{sub 2} grains were much more

  13. Neutronics Benchmarks for the Utilization of Mixed-Oxide Fuel: Joint U.S./Russian Progress Report for Fiscal Year 1997 Volume 2-Calculations Performed in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Primm III, RT

    2002-05-29

    This volume of the progress report provides documentation of reactor physics and criticality safety studies conducted in the US during fiscal year 1997 and sponsored by the Fissile Materials Disposition Program of the US Department of Energy. Descriptions of computational and experimental benchmarks for the verification and validation of computer programs for neutron physics analyses are included. All benchmarks include either plutonium, uranium, or mixed uranium and plutonium fuels. Calculated physics parameters are reported for all of the computational benchmarks and for those experimental benchmarks that the US and Russia mutually agreed in November 1996 were applicable to mixed-oxide fuel cycles for light-water reactors.

  14. Neutronics Benchmarks for the Utilization of Mixed-Oxide Fuel: Joint U.S./Russian Progress Report for Fiscal Year 1997 Volume 2-Calculations Performed in the United States

    International Nuclear Information System (INIS)

    Primm III, RT

    2002-01-01

    This volume of the progress report provides documentation of reactor physics and criticality safety studies conducted in the US during fiscal year 1997 and sponsored by the Fissile Materials Disposition Program of the US Department of Energy. Descriptions of computational and experimental benchmarks for the verification and validation of computer programs for neutron physics analyses are included. All benchmarks include either plutonium, uranium, or mixed uranium and plutonium fuels. Calculated physics parameters are reported for all of the computational benchmarks and for those experimental benchmarks that the US and Russia mutually agreed in November 1996 were applicable to mixed-oxide fuel cycles for light-water reactors

  15. An autoradiographical method using an imaging plate for the analyses of plutonium contamination in a plutonium handling facility

    International Nuclear Information System (INIS)

    Takasaki, Koji; Sagawa, Naoki; Kurosawa, Shigeyuki; Mizuniwa, Harumi

    2011-01-01

    An autoradiographical method using an imaging plate (IP) was developed to analyze plutonium contamination in a plutonium handling facility. The IPs were exposed to ten specimens having a single plutonium particle. Photostimulated luminescence (PSL) images of the specimens were taken using a laser scanning machine. One relatively large spot induced by α-radioactivity from plutonium was observed in each PSL image. The plutonium-induced spots were discriminated by a threshold derived from background and the size of the spot. A good relationship between the PSL intensities of the spots and α-radioactivities measured using a radiation counter was obtained by least-square fitting, taking the fading effect into consideration. This method was applied to workplace monitoring in an actual uranium-plutonium mixed oxide (MOX) fuel fabrication facility. Plutonium contaminations were analyzed in ten other specimens having more than two plutonium spots. The α-radioactivities of plutonium contamination were derived from the PSL images and their relative errors were evaluated from exposure time. (author)

  16. Design safety features of containments used for handling plutonium in Reprocessing Plants

    International Nuclear Information System (INIS)

    Aherwal, P.; Achuthan, P.V.

    2016-01-01

    The plutonium present in spent fuel is separated from the associated uranium and fission products using solvent extraction cycles in process cells. Product plutonium nitrate solution containing trace concentrations of uranium and fission products is treated in the reconversion facility through a precipitation-calcination route and converted to sinterable grade plutonium oxide (PuO 2 ). All chemical operations involving materials with high plutonium content, both in solid and solution forms are carried out in glove boxes. Glove box provides an effective isolation from radioactive materials handled and acts as a barrier between the operator and the source of radiation. These glove boxes are interconnected for sequential operations and the interconnected glove box trains are installed within secondary enclosures called double skin which provides double barrier protection to operators

  17. Design and fabrication of fuel for the prototype heavy water reactor Fugen

    International Nuclear Information System (INIS)

    Hasumi, Takashi; Yamanaka, Ryozi; Osawa, Masahide; Asami, Tomohiro; Kaziyama, Takashi

    1983-01-01

    For the advanced thermal reactor Fugen, 224 fuel assemblies were charged as the initial charge fuel, of which 96 were uranium-plutonium mixed oxide fuel, and 128 were uranium dioxide fuel. Since the full scale operation was started in March, 1979, fuel exchange was carried out five times, and 240 fuel assemblies were taken out, but fuel breaking was never found, and the fuel for Fugen has shown good result. For 16 mixed oxide fuel assemblies for the third exchange and thereafter, the domestically produced plutonium extracted in the Tokai reprocessing plant has been used, and for 15 UO 2 fuel assemblies for the fifth exchange, the enriched uranium produced in the Ningyo Pass plant was used. These fuels are burning in the core without causing trouble. The course of the development of the fuel is described as follows: trial manufacture, evaluation test outside the core, heat transferring flow characteristic test, irradiation test, design of fuel elements and fuel assemblies, production of fuel and quality assurance, and results of production and use. (Kako, I.)

  18. Irradiated uranium reprocessing, Final report I-VI, IV Deo IV - Separation of uranium, plutonium and fission products from the irradiated fuel of the reactor in Vinca; Prerada ozracenog urana. Zavrsni izvestaj - I-VI, IV Deo - Odvajanje urana, plutonijuma i fisionih produkata iz isluzenog goriva reaktora u Vinci

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I [Institute of Nuclear Sciences Boris Kidric, Laboratorija za visoku aktivnost, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    This study describes the technology for separation of uranium, plutonium and fission products from the radioactive water solution which is obtained by dissolving the spent uranium fuel from the reactor in Vinca. The procedure should be completed in a hot cell, with the maximum permitted activity of 10 Ci.

  19. Determination of uranium and plutonium in urine of people working with regenerated uranium

    International Nuclear Information System (INIS)

    Golutvina, M.M.; Ryzhova, E.A.

    1987-01-01

    Method of determining uranium and plutonium content in urine with their combined presence up to α-activity ratio Pu:U=1:100 is developed. The method is based on extraction chromatographic separation of nuclides using trimethyloctylammonium nitrate and their subsequent α-spectrometric determination. The coefficient of plutonium purification from uranium makes up 750. Chemical yield of Pu is 72±6%, U-76±8%. The method sensitivity is 0.2 decompositions per minute for a sample

  20. Cyclopentadienyl uranium, neptunium and plutonium chemistry

    International Nuclear Information System (INIS)

    Plews, M.J.

    1985-01-01

    The thesis presents the preparation and characterisation of a number of mono, bis and tris(cyclopentadienyl) complexes of uranium(IV), neptunium(IV) and plutonium(IV). The work of previous studies on mono(cyclopentadienyl) thorium and uranium complexes has been extended, and a range of isostructural neptunium species isolated. Their mode of formation and stability in tetrahydrofuran and acetonitrile solutions was investigated. (author)

  1. Nonproliferation analysis of the reduction of excess separated plutonium and high-enriched uranium

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1995-01-01

    The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. The analysis addresses several options in reducing the excess separated plutonium and HEU, and the consequences on nonproliferation and safeguards policy assessments resulting from the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials

  2. Impact of uranium-233/thorium cycle on advanced accountability concepts and fabrication facilities. Addendum 2 to application of advanced accountability concepts in mixed oxide fabrication

    International Nuclear Information System (INIS)

    Bastin, J.J.; Jump, M.J.; Lange, R.A.; Crandall, C.C.

    1977-11-01

    The Phase I study of the application of advanced accountability methods (DYMAC) in a uranium/plutonium mixed oxide facility was extended to cover the possible fabrication of uranium-233/thorium fuels. Revisions to Phase II of the DYMAC plan which would be necessitated by such a process are specified. These revisions include shielding requirements, measurement systems, licensing conditions, and safeguards considerations. The impact of the uranium/thorium cycle on a large-scale fuel fabrication facility was also reviewed; it was concluded that the essentially higher radioactivity of uranium/thorium feeds would lead to increased difficulties which tend to preclude early commercial application of the process. An amended schedule for Phase II is included

  3. The 'equivalent plutonium' concept and its application to synergetic fuel cycles calculation

    International Nuclear Information System (INIS)

    Perez Tumini, L.L.; Sbaffoni, M.M.; Abbate, M.J.

    1995-01-01

    The advanced fuel cycles are seen as very interesting alternatives to improve the utilization of uranium resources in the middle term. Among them, the synergetic cycles between different type of reactors, particularly PWR and CANDU are seen as very promising. In the frame of the Argentinean-Brazilian cooperation agreement, a neutronic and economical study was done on a Tandem cycle between the Brazilian Pressurized Water Reactor Angra-I, and the Argentinean CANDU reactor Embalse. The first calculations showed very interesting results regarding the obtainable savings in natural resources, the cost of the fuel cycle, and the lower quantity of wastes to be disposed. To perform the initial calculations, two methods were mainly used: standard calculation codes, which use discrete ordinates or collision probabilities method to solve the neutronics of the cell, or an algorithm that from now on we will call EQUIVALENT PLUTONIUM. The present work describes the concept in which the algorithm is based, the obtention of the coefficients needed for its determination, and, as an example, the results obtained applying the algorithm to two particular cases of Tandem cycles: CANDU MOX fuel fabricated from PWR fuel, diluted with natural uranium, and with depleted uranium. The obtained results are compared with calculations performed with WIMS code. It was verified that the methodology which makes use of the concepts of equivalent plutonium simplifies a lot burn-up and blending radio calculations for preliminary fuel cycle analysis, giving results with very good approximation (approximately 5%) and in a very simple way. (author)

  4. Criticality calculations for homogeneous mixtures of uranium and plutonium

    International Nuclear Information System (INIS)

    Spiegelberg, R. de S.H.

    1981-05-01

    Critical parameters were calculated using the one-dimensional multigroup transport theory. Calculations have been performed for water mixture of uranium metal and uranium oxides and plutonium nitrates to determine the dimensions of simple critical geometries (sphere and cylinder). The results of the calculations were plotted showing critical parameters (volume, radius or critical mass). The critical values obtained in Handbuch zur Kritikalitat were used to compare with critical parameters. A sensitivity study for the influences of mesh space size, multigroup structure and order of the S sub(n) approximation on the critical radius was carried out. The GAMTEC-II code was used to generate multigroup cross sections data. Critical radius were calculated using the one-dimensional multigroup transport code DTF-IV. (Author) [pt

  5. The integral fast reactor fuels reprocessing laboratory at Argonne National Laboratory, Illinois

    International Nuclear Information System (INIS)

    Wolson, R.D.; Tomczuk, Z.; Fischer, D.F.; Slawecki, M.A.; Miller, W.E.

    1986-09-01

    The processing of Integral Fast Reactor (IFR) metal fuel utilizes pyrochemical fuel reprocessing steps. These steps include separation of the fission products from uranium and plutonium by electrorefining in a fused salt, subsequent concentration of uranium and plutonium for reuse, removal, concentration, and packaging of the waste material. Approximately two years ago a facility became operational at Argonne National Laboratory-Illinois to establish the chemical feasibility of proposed reprocessing and consolidation processes. Sensitivity of the pyroprocessing melts to air oxidation necessitated operation in atmosphere-controlled enclosures. The Integral Fast Reactor Fuels Reprocessing Laboratory is described

  6. Standard specification for sintered gadolinium oxide-uranium dioxide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification is for finished sintered gadolinium oxide-uranium dioxide pellets for use in light-water reactors. It applies to gadolinium oxide-uranium dioxide pellets containing uranium of any 235U concentration and any concentration of gadolinium oxide. 1.2 This specification recognizes the presence of reprocessed uranium in the fuel cycle and consequently defines isotopic limits for gadolinium oxide-uranium dioxide pellets made from commercial grade UO2. Such commercial grade UO2 is defined so that, regarding fuel design and manufacture, the product is essentially equivalent to that made from unirradiated uranium. UO2 falling outside these limits cannot necessarily be regarded as equivalent and may thus need special provisions at the fuel fabrication plant or in the fuel design. 1.3 This specification does not include (1) provisions for preventing criticality accidents or (2) requirements for health and safety. Observance of this specification does not relieve the user of the obligation to be aw...

  7. URANIUM OXIDE-CONTAINING FUEL ELEMENT COMPOSITION AND METHOD OF MAKING SAME

    Science.gov (United States)

    Handwerk, J.H.; Noland, R.A.; Walker, D.E.

    1957-09-10

    In the past, bodies formed of a mixture of uranium dioxide and aluminum powder have been used in fuel elements; however, these mixtures were found not to be suitable when exposed to temperatures of about 600 deg C, because at such high temperatures the fuel elements were distorted. If uranosic oxide, U/sub 3/O/sub 8/, is substituted for UO/sub 2/, the mechanical properties are not impaired when these materials are used at about 600 deg C and no distortion takes place. The uranosic oxide and aluminum, both in powder form, are first mixed, and after a homogeneous mixture has been obtained, are shaped into fuel elements by extrusion at elevated temperature. Magnesium powder may be used in place of the aluminum.

  8. Buckling and reaction rate measurements in graphite moderated lattices fuelled with plutonium-uranium oxide clusters at temperatures up to 400 deg. C

    International Nuclear Information System (INIS)

    Carter, D.H.; Gibson, M.; King, D.C.; Marshall, J.; Puckett, B.J.; Richards, A.E.; Wass, T.; Wilson, D.J.

    1965-07-01

    The Report describes a series of experiments carried out in SCORPIO I and II on sub-critical graphite moderated lattices fuelled with 21-rod clusters of PuO 2 /UO 2 fuel. Three fuel batches with nominal plutonium: uranium ratios of 0.25%, 0.8% and 1.2% were investigated at temperatures between 20 deg. C and 400 deg. C. Because of the limited amounts of the three fuels, exponential measurements were made in 2-zone stacks, the outer regions of which were loaded with suitably matched 'reference fuel'. Fine structure distributions in the lattice cell were obtained with manganese and indium foils. Pu239/U235 fission ratios were determined both by fission chambers and by fission-product counting techniques. (author)

  9. Economical aspects of multiple plutonium and uranium recycling in VVER reactors

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P.N.; Bobrov, E.A.; Dudnikov, A.A.; Teplov, P.S. [National Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2016-09-15

    The basic strategy of Russian Nuclear Energy development is the formation of the closed fuel cycle based on fast breeder and thermal reactors, as well as the solution of problems of spent nuclear fuel accumulation and availability of resources. Three options of multiple Pu and U recycling in VVER reactors are considered in this work. Comparison of MOX and REMIX fuel recycling approaches for the closed fuel cycle involving thermal reactors is presented. REMIX fuel is supposed to be fabricated from non-separated mixture of uranium and plutonium obtained in spent fuel reprocessing with further makeup by enriched U. These options make it possible to recycle several times the total amount of Pu and U obtained from spent fuel. The main difference is the full or partial fuel loading of the core by assemblies with recycled Pu. The third option presents the concept of heterogeneous arrangement of fuel pins made of enriched uranium and MOX in one fuel assembly. It should be noted that fabrication of all fuel assemblies with Pu requires the use of expensive manufacturing technology. These three options of core loading can be balanced with respect to maximum Pu and U involvement in the fuel cycle. Various physical and economical aspects of Pu and U multiple recycling for selected options are considered in this work.

  10. Influence of plutonium contents in MOX fuel on destructive forces at fuel failure in the NSRR experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Jinichi; Sugiyama, Tomoyuki; Nakamura, Takehiko; Kanazawa, Toru; Sasajima, Hideo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    In order to confirm safety margins of the Mixed Oxide (MOX) fuel use in LWRs, pulse irradiation tests are planned in the Nuclear Safety Research Reactor (NSRR) with the MOX fuel with plutonium content up to 12.8%. Impacts of the higher plutonium contents on safety of the reactivity-initiated-accident (RIA) tests are examined in terms of generation of destructive forces to threat the integrity of test capsules. Pressure pulses would be generated at fuel rod failure by releases of high pressure gases. The strength of the pressure pulses, therefore, depends on rod internal - external pressure difference, which is independent to plutonium content of the fuel. The other destructive forces, water hammer, would be generated by thermal interaction between fuel fragments and coolant water. Heat flux from the fragments to the water was calculated taking account of changes in thermal properties of MOX fuels at higher plutonium contents. The results showed that the heat transfer from the MOX fuel would be slightly smaller than that from UO{sub 2} fuel fragments at similar size in a short period to cause the water hammer. Therefore, the destructive forces were not expected to increase in the new tests with higher plutonium content MOX fuels. (author)

  11. Plutonium-containing aerosols found within containment enclosures in industrial mixed-oxide reactor fuel fabrication

    International Nuclear Information System (INIS)

    Newton, G.J.; Yeh, H.C.; Stanley, J.A.

    1977-01-01

    Mixed oxide (PuO 2 and UO 2 ) nuclear reactor fuel pellets are fabricated within safety enclosures at Babcock and Wilcox's Park Township site near Apollo, PA. Forty-two sample runs of plutonium-containing aerosols were taken from within glove boxes during routine industrial operations. A small, seven-stage cascade impactor and the Lovelace Aerosol Particle Separator (LAPS) were used to determine aerodynamic size distribution and gross alpha aerosol concentration. Powder comminution and blending produced aerosols with lognormal size distributions characterized by activity median aerodynamic diameters (AMAD) of 1.89 +- 0.33 μm, sigma/sub g/ = 1.62 +- 0.09 and a gross alpha aerosol concentration range of 0.1 to 150 nCi/l. Slug pressing and grinding produced aerosols of AMAD = 3.08 +- 0.1 μm, sigma/sub g/ = 1.53 +- 0.01 and AMAD = 2.26 +- 0.16 μm, sigma/sub g/ = 1.68 +- 0.20, respectively. Gross alpha aerosol concentrations ranged from 3.4 to 450 nCi/l. Centerless grinding produced similar-sized aerosols but the gross alpha concentration ranged from 220 to 1690 nCi/l. In vitro solubility studies on selected LAPS samples in a lung fluid simulant indicate that plutonium mixed-oxide aerosols are more soluble than laboratory-produced plutonium aerosols

  12. US and Russia face urgent decisions on weapons plutonium

    International Nuclear Information System (INIS)

    Hileman, B.

    1994-01-01

    Surplus plutonium poses a ''clear and present danger to national and international security,'' warns a National Academy of Sciences (NAS) study released in January, titled ''The Management and Disposition of Excess Weapons Plutonium.'' Over the past few years, many different methods of disposing of plutonium have been proposed. They range from shooting it into the Sun with missiles, to deep-seabed disposal, to fissioning it within a new generation of nuclear reactors. The NAS report rejects most of the methods suggested so far, but does recommend pursuing two of the options. One is to incorporate the plutonium in mixed-oxide fuel, a mixture of plutonium and uranium oxides, and use it to fuel commercial nuclear reactors. The other is to mix the plutonium with high-level waste and molten glass and mold the resulting material into large glass logs for eventual geologic disposal. Both are discussed here. The panel that wrote the NAS study is a standing committee called the Committee on International Security ampersand Arms Control. It suggests steps that should be taken now to guard supplies of plutonium removed from weapons. One step is bilateral US-Russian monitoring of warhead dismantlement. Others include setting up secure interim storage for the fissile materials and establishing an international monitoring system to verify the stockpiles and ensure that materials are not withdrawn for use in new weapons. The panel also urges Russia to stop producing fissile weapons materials and both countries to commit a very large fraction of their plutonium and highly enriched uranium from dismantled weapons to nonaggressive uses. The US and Russia have already made initial moves to accomplish these goals but have not fully implemented any of them

  13. Nuclear-fuel-cycle education: Module 2. Exploration, reserve estimation, mining, milling, conversion, and properties of uranium

    International Nuclear Information System (INIS)

    Brookins, D.G.

    1981-12-01

    In this module geological and geochemical data pertinent to locating, mining, and milling of uranium are examined. Chapters are devoted to: uranium source characteristics; uranium ore exploration methods; uranium reserve estimation for sandstone deposits; mining; milling; conversion processes for uranium; and properties of uranium, thorium, plutonium and their oxides and carbides

  14. Stabilization and immobilization of military plutonium: A non-proliferation perspective

    Energy Technology Data Exchange (ETDEWEB)

    Leventhal, P. [Nuclear Control Institute, Washington, DC (United States)

    1996-05-01

    The Nuclear Control Institute welcomes this DOE-sponsored technical workshop on stabilization and immobilization of weapons plutonium (W Pu) because of the significant contribution it can make toward the ultimate non-proliferation objective of eliminating weapons-usable nuclear material, plutonium and highly enriched uranium (HEU), from world commerce. The risk of theft or diversion of these materials warrants concern, as only a few kilograms in the hands of terrorists or threshold states would give them the capability to build nuclear weapons. Military plutonium disposition questions cannot be addressed in isolation from civilian plutonium issues. The National Academy of Sciences has urged that {open_quotes}further steps should be taken to reduce the proliferation risks posed by all of the world`s plutonium stocks, military and civilian, separated and unseparated...{close_quotes}. This report discusses vitrification and a mixed oxide fuels option, and the effects of disposition choices on civilian plutonium fuel cycles.

  15. Method of stripping plutonium from tributyl phosphate solution which contains dibutyl phosphate-plutonium stable complexes

    International Nuclear Information System (INIS)

    Ochsenfeld, W.; Schmieder, H.

    1976-01-01

    Fast breeder fuel elements which have been highly burnt-up are reprocessed by extracting uranium and plutonium into an organic solution containing tributyl phosphate. The tributyl phosphate degenerates at least partially into dibutyl phosphate and monobutyl phosphate, which form stable complexes with tetravalent plutonium in the organic solution. This tetravalent plutonium is released from its complexed state and stripped into aqueous phase by contacting the organic solution with an aqueous phase containing tetravalent uranium. 6 claims, 1 drawing figure

  16. Charge distribution on plutonium-containing aerosols produced in mixed-oxide reactor fuel fabrication and the laboratory

    International Nuclear Information System (INIS)

    Yeh, H.C.; Newton, G.J.; Teague, S.V.

    1976-01-01

    The inhalation toxicity of potentially toxic aerosols may be affected by the electrostatic charge on the particles. Charge may influence the deposition site during inhalation and therefore its subsequent clearance and dose patterns. The electrostatic charge distributions on plutonium-containing aerosols were measured with a miniature, parallel plate, aerosol electrical mobility spectrometer. Two aerosols were studied: a laboratory-produced 238 PuO 2 aerosol (15.8 Ci/g) and a plutonium mixed-oxide aerosol (PU-MOX, natural UO 2 plus PuO 2 , 0.02 Ci/g) formed during industrial centerless grinding of mixed-oxide reactor fuel pellets. Plutonium-238 dioxide particles produced in the laboratory exhibited a small net positive charge within a few minutes after passing through a 85 Kr discharger due to alpha particle emission removal of valence electrons. PU-MOX aerosols produced during centerless grinding showed a charge distribution essentially in Boltzmann equilibrium. The gross alpha aerosol concentrations (960-1200 nCi/l) within the glove box were sufficient to provide high ion concentrations capable of discharging the charge induced by mechanical and/or nuclear decay processes

  17. Transmutation of minor actinide using BWR fueled mixed oxide

    International Nuclear Information System (INIS)

    Susilo, Jati

    2000-01-01

    Nuclear spent fuel recycle has a strategic importance in the aspect of nuclear fuel economy and prevention of its spread-out. One among other application of recycle is to produce mixed oxide fuel (Mo) namely mixed Plutonium and uranium oxide. As for decreasing the burden of nuclear high level waste (HLW) treatment, transmutation of minor actinide (MA) that has very long half life will be carried out by conversion technique in nuclear reactor. The purpose of this study was to know influence of transition fuel cell regarding the percent weight of transmutation MA in the BWR fueled MOX. Calculation of cell BWR was used SRAC computer code, with assume that the reactor in equilibrium. The percent weight of transmutation MA to be optimum by increasing the discharge burn-up of nuclear fuel, raising ratio of moderator to fuel volume (Vm/Vf), and loading MA with percent weight about 3%-6% and also reducing amount of percent weight Pu in MOX fuel. For mixed fuel standard reactor, reactivity value were obtained between about -50pcm ∼ -230pcm for void coefficient and -1.8pcm ∼ -2.6pcm for fuel temperature coefficient

  18. Speciation of uranium in UxTh1-xO2 by time resolved emission spectroscopy

    International Nuclear Information System (INIS)

    Pathak, N.; Gupta, Santosh K.; Thulasidas, S.K.; Natarajan, V.

    2014-01-01

    The utilization of thorium based fuel leads to stable energy supply, higher resistance to nuclear proliferation and lesser long lived minor actinides in the spent fuel. Enriched uranium or plutonium added thorium oxide (ThO 2 ) has been considered as a nuclear fuel for various reactors such as light water reactors, heavy water reactors, high-temperature gas-cooled reactors and accelerator-driven systems. Moreover, ThO 2 is a matrix candidate for plutonium incineration

  19. Water Solubility of Plutonium and Uranium Compounds and Residues at TA-55

    International Nuclear Information System (INIS)

    Reilly, Sean Douglas; Smith, Paul Herrick; Jarvinen, Gordon D.; Prochnow, David Adrian; Schulte, Louis D.; DeBurgomaster, Paul Christopher; Fife, Keith William; Rubin, Jim; Worl, Laura Ann

    2016-01-01

    Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that the following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U 3 O 8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl 3 , and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a commercially-available phosphate

  20. Water Solubility of Plutonium and Uranium Compounds and Residues at TA-55

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Sean Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Smith, Paul Herrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Jarvinen, Gordon D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Prochnow, David Adrian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Schulte, Louis D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; DeBurgomaster, Paul Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Fife, Keith William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Rubin, Jim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Worl, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States

    2016-06-13

    Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that the following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U3O8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl3, and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a

  1. Uranium/fuel cycle 74, New Orleans, Louisiana, 17--20 March 1974. Program report

    International Nuclear Information System (INIS)

    1974-01-01

    The highlight of papers presented at the conference are summarized. The sessions covered uranium raw material, transportation of spent fuel and radioactive waste, plutonium recycle, waste management, and safeguards. (U.S.)

  2. Control rod effects with plutonium recycle in a PWR

    International Nuclear Information System (INIS)

    Nash, G.; Muehl, G.J.; Gibson, I.H.

    1979-03-01

    A study has been made on a PWR loaded partly and wholly with plutonium to determine the changes in shutdown margin compared with an enriched uranium core. Lattice calculations are used to generate cell constants for core calculations. Three fuel loadings were considered, all uranium, 30% (approximately) of the assemblies plutonium in natural uranium, and all plutonium. The equilibrium fuel management schemes adopted in each case are based on the standard three cycle equal size batch scheme. Detailed calculations of power and irradiation distributions through the cycles have been carried out to provide a starting point for the control rod worth and requirement calculations. Control rod worths are reduced in a plutonium core because of the harder spectrum and higher fuel absorption cross sections. Furthermore, the control rod requirements for shutdown increase because of the increase in fuel and moderator temperature coefficients. This results in a reduction in shutdown margin. The magnitude of these changes is fully analysed in the report. The significance of these reductions depends on the detail of the safety argument but reductions of these sizes are unlikely to be acceptable. The data provided in this report could be used to give a first estimate of the plutonium loading acceptable given the safety assessment of the normal uranium core. (U.K.)

  3. Isotopic composition and radiological properties of uranium in selected fuel cycles

    International Nuclear Information System (INIS)

    Fleischman, R.M.; Liikala, R.C.

    1975-04-01

    Three major topic areas are discussed: First, the properties of the uranium isotopes are defined relative to their respective roles in the nuclear fuel cycle. Secondly, the most predominant fuel cycles expected in the U. S. are described. These are the Light Water Reactor (LWR), High Temperature Gas Cooled Reactor (HTGR), and Liquid Metal Fast Breeder Reactor (LMFBR) fuel cycles. The isotopic compositions of uranium and plutonium fuels expected for these fuel cycles are given in some detail. Finally the various waste streams from these fuel cycles are discussed in terms of their relative toxicity. Emphasis is given to the high level waste streams from reprocessing of spent fuel. Wastes from the various fuel cycles are compared based on projected growth patterns for nuclear power and its various components. (U.S.)

  4. Validation of the TUBRNP model with the radial distribution of plutonium in MOX fuel measured by SIMS and EPMA

    Energy Technology Data Exchange (ETDEWEB)

    O` Carroll, C; Laar, J Van De; Walker, C T [CEC Joint Research Centre, Karlsruhe (Germany)

    1997-08-01

    The new model TUBRNP (TRANSURANUS burnup) predicts the radial power density distribution as a function of burnup (and hence the radial burnup profile as a function of time) together with the radial profile of plutonium. Comparisons between measurements and the prediction of the TUBRNP model have been made for UO{sub 2} LWR fuels: they were found to be in excellent agreement and it is seen that TUBRNP is a marked improved on previous models. A powerful techniques for the characterization of irradiation fuel is Electron Probe Microanalysis (EPMA). Uranium, plutonium and fission product distributions can be analysed quantitatively. A complement, providing isotopic information with a lateral resolution comparable to EPMA, is secondary ion mass spectrometry (SIMS). Recently, the technique has been successfully applied for the measurement of the radial distribution of plutonium isotopes in irradiated nuclear fuel pins. The extension of the TUBRNP model to mixed oxide fuels seems to be the natural step to take. In MOX fuels the picture is greatly complicated by the presence of the (U, Pu)O{sub 2} agglomerates. The rim effect referred to above may be masked by the high concentrations of plutonium in the bulk of the fuel. A detailed investigation of a number of MOX fuel samples has been made using the TUBRNP model. Results are presented for a range of fuels with different enrichment and burnup. Through its participation in the PRIMO and DOMO programmes, PSI in conjunction with the Institute for Transuranium Elements had the opportunity to validate the new theoretical model TUBRNP. The authors with therefore to express their thanks to the organizers and to the numerous European and Japanese organizations which have supported these two international programmes on MOX fuel behavior. 7 refs, 9 figs, 3 tabs.

  5. Trans-Uranium Doping Utilization for Increasing Protected Plutonium Proliferation of Small Long Life Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Permana, Sidik [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology 2-12-1-N1-17, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Nuclear and Biophysics Research Group, Department of Physics, Bandung Institute of Technology, Gedung Fisika, Jl. Ganesha 10, Bandung 40132 (Indonesia); Suud, Zaki [Nuclear and Biophysics Research Group, Department of Physics, Bandung Institute of Technology, Gedung Fisika, Jl. Ganesha 10, Bandung 40132 (Indonesia); Suzuki, Mitsutoshi [Japan Atomic Energy Agency, Nuclear Non-proliferation Science and Technology Center, 2-4 Shirane Shirakata, Tokai-mura, Ibaraki, 319-1195 (Japan)

    2009-06-15

    Scientific approaches are performed by adopting some methodologies in order to increase a material 'barrier' in plutonium isotope composition by increasing the even mass number of plutonium isotope such as Pu-238, Pu-240 and Pu-242. Higher difficulties (barrier) or more complex requirement for peaceful use of nuclear materials, material fabrication and handling and isotopic enrichment can be achieved by a higher isotopic barrier. Higher barrier which related to intrinsic properties of plutonium isotopes with even mass number (Pu-238, Pu-240 and Pu-242), in regard to their intense decay heat (DH) and high spontaneous fission neutron (SFN) rates were used as a parameter for improving the proliferation resistance of plutonium itself. Pu-238 has relatively high intrinsic characteristics of DH (567 W/kg) and SFN rate of 2660 n/g/s can be used for making a plutonium characteristics analysis. Similar characteristics with Pu-238, other even mass number of plutonium isotopes such as Pu-240 and Pu-242 have been shown in regard to SFN values. Those even number mass of plutonium isotope contribute to some criteria of plutonium characterization which will be adopted for present study such as IAEA, Pellaud and Kessler criteria (IAEA, 1972; Pellaud, 2002; and Kessler, 2004). The study intends to evaluate the trans-uranium doping effect for increasing protected plutonium proliferation in long-life small reactors. The development of small and medium reactor (SMR) is one of the options which have been adopted by IAEA as future utilization of nuclear energy especially for less developed countries (Kuznetsov, 2008). The preferable feature for small reactors (SMR) is long life operation time without on-site refueling and in the same time, it includes high proliferation resistance feature. The reactor uses MOX fuel as driver fuel for two different core types (inner and outer core) with blanket fuel arrangement. Several trans-uranium doping and some doping rates are evaluated

  6. Weapons-grade plutonium dispositioning. Volume 3: A new reactor concept without uranium or thorium for burning weapons-grade plutonium

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Schnitzler, B.G.; Fletcher, C.D.

    1993-06-01

    The National Academy of Sciences (NAS) requested that the Idaho National Engineering Laboratory (INEL) examine concepts that focus only on the destruction of 50,000 kg of weapons-grade plutonium. A concept has been developed by the INEL for a low-temperature, low-pressure, low-power density, low-coolant-flow-rate light water reactor that destroys plutonium quickly without using uranium or thorium. This concept is very safe and could be designed, constructed, and operated in a reasonable time frame. This concept does not produce electricity. Not considering other missions frees the design from the paradigms and constraints used by proponents of other dispositioning concepts. The plutonium destruction design goal is most easily achievable with a large, moderate power reactor that operates at a significantly lower thermal power density than is appropriate for reactors with multiple design goals. This volume presents the assumptions and requirements, a reactor concept overview, and a list of recommendations. The appendices contain detailed discussions on plutonium dispositioning, self-protection, fuel types, neutronics, thermal hydraulics, off-site radiation releases, and economics

  7. Strategies for denaturing the weapons-grade plutonium stockpile

    International Nuclear Information System (INIS)

    Buckner, M.R.; Parks, P.B.

    1992-10-01

    In the next few years, approximately 50 metric tons of weapons-grade plutonium and 150 metric tons of highly-enriched uranium (HEU) may be removed from nuclear weapons in the US and declared excess. These materials represent a significant energy resource that could substantially contribute to our national energy requirements. HEU can be used as fuel in naval reactors, or diluted with depleted uranium for use as fuel in commercial reactors. This paper proposes to use the weapons-grade plutonium as fuel in light water reactors. The first such reactor would demonstrate the dual objectives of producing electrical power and denaturing the plutonium to prevent use in nuclear weapons

  8. Discrimination of source reactor type by multivariate statistical analysis of uranium and plutonium isotopic concentrations in unknown irradiated nuclear fuel material.

    Science.gov (United States)

    Robel, Martin; Kristo, Michael J

    2008-11-01

    The problem of identifying the provenance of unknown nuclear material in the environment by multivariate statistical analysis of its uranium and/or plutonium isotopic composition is considered. Such material can be introduced into the environment as a result of nuclear accidents, inadvertent processing losses, illegal dumping of waste, or deliberate trafficking in nuclear materials. Various combinations of reactor type and fuel composition were analyzed using Principal Components Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLSDA) of the concentrations of nine U and Pu isotopes in fuel as a function of burnup. Real-world variation in the concentrations of (234)U and (236)U in the fresh (unirradiated) fuel was incorporated. The U and Pu were also analyzed separately, with results that suggest that, even after reprocessing or environmental fractionation, Pu isotopes can be used to determine both the source reactor type and the initial fuel composition with good discrimination.

  9. Improving the neutronic characteristics of a boiling water reactor by using uranium zirconium hydride fuel instead of uranium dioxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Galahom, Ahmed Abdelghafar [Higher Technological Institute, Ramadan (Egypt)

    2016-06-15

    The present work discusses two different models of boiling water reactor (BWR) bundle to compare the neutronic characteristics of uranium dioxide (UO{sub 2}) and uranium zirconium hydride (UZrH{sub 1.6}) fuel. Each bundle consists of four assemblies. The BWR assembly fueled with UO{sub 2} contains 8 × 8 fuel rods while that fueled with UZrH{sub 1.6} contains 9 × 9 fuel rods. The Monte Carlo N-Particle Transport code, based on the Mont Carlo method, is used to design three dimensional models for BWR fuel bundles at typical operating temperatures and pressure conditions. These models are used to determine the multiplication factor, pin-by-pin power distribution, axial power distribution, thermal neutron flux distribution, and axial thermal neutron flux. The moderator and coolant (water) are permitted to boil within the BWR core forming steam bubbles, so it is important to calculate the reactivity effect of voiding at different values. It is found that the hydride fuel bundle design can be simplified by eliminating water rods and replacing the control blade with control rods. UZrH{sub 1.6} fuel improves the performance of the BWR in different ways such as increasing the energy extracted per fuel assembly, reducing the uranium ore, and reducing the plutonium accumulated in the BWR through burnup.

  10. Buckling and reaction rate measurements in graphite moderated lattices fuelled with plutonium-uranium oxide clusters at temperatures up to 400 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Carter, D H; Gibson, M; King, D C; Marshall, J; Puckett, B J; Richards, A E; Wass, T; Wilson, D J [General Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1965-07-15

    The Report describes a series of experiments carried out in SCORPIO I and II on sub-critical graphite moderated lattices fuelled with 21-rod clusters of PuO{sub 2}/UO{sub 2} fuel. Three fuel batches with nominal plutonium: uranium ratios of 0.25%, 0.8% and 1.2% were investigated at temperatures between 20 deg. C and 400 deg. C. Because of the limited amounts of the three fuels, exponential measurements were made in 2-zone stacks, the outer regions of which were loaded with suitably matched 'reference fuel'. Fine structure distributions in the lattice cell were obtained with manganese and indium foils. Pu239/U235 fission ratios were determined both by fission chambers and by fission-product counting techniques. (author) 14 refs, 30 figs, 18 tabs

  11. Simultaneous determination of plutonium and uranium in environmental samples

    International Nuclear Information System (INIS)

    Jiao Shufen

    1993-01-01

    Plutonium and uranium in a plant sample ash was simultaneously determined by using anion exchange resin columns, and concentrated hydrochloric acid and nitric acid. At the final stage of the determination of the nuclides, each of them was electrodeposited together with a little amount of molybdenum carrier onto a stainless steel plate and measured by α-ray spectrometer. The recoveries of uranium and plutonium from the plant samples determined by adding internal standard 236 Pu which was 100% and 63%, respectively

  12. Spectrophotometric determination of uranium and plutonium in nitric acid solutions at their co-presence

    International Nuclear Information System (INIS)

    Levakov, B.I.; Mishenev, V.B.; Nezgovorov, N.Yu.; Ryazanova, G.K.; Timofeev, G.A.

    1986-01-01

    The method of spectrophotometric determination of uranium (6) and plutonium (4) in nitric acid solutions is described. Uranium is determined by light absorption of the complex with arsenazo 3 in 0.05 mol/l nitric acid at λ=654 nm, plutonium - by light absorption of the complex with xylenol orange in 0.1 mol/l nitric acid at λ=540 nm. To disguise plutonium, tetravalent and certain trivalent elements DTPA is introduced into photometered solution for uranium determination. The relative root-mean square deviation of determination results does not exceed 0.03 in uranium concenration ranges 0.5-5 μg/ml, of plutonium -1-3 μg/ml

  13. Assessment of uranium dioxide fuel performance with the addition of beryllium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Muniz, Rafael O.R.; Abe, Alfredo; Gomes, Daniel S.; Silva, Antonio T., E-mail: romuniz@usp.br, E-mail: ayabe@ipen.br, E-mail: danieldesouza@gmail.com, E-mail: teixeira@ipen.br [Instituto de Pesquisas Energética s e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (LabRisco/USP), Sao Paulo, SP (Brazil). Lab. de Análise, Avaliação e Gerenciamento de Risco; Aguiar, Amanda A., E-mail: amanda.abati.aguiar@gmail.com [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil)

    2017-07-01

    The Fukushima Daiichi accident in 2011 pointed the problem related to the hydrogen generation under accident scenarios due to the oxidation of zirconium-based alloys widely used as fuel rod cladding in water-cooled reactors. This problem promoted research programs aiming the development of accident tolerant fuels (ATF) which are fuels that under accident conditions could keep longer its integrity enabling the mitigation of the accident effects. In the framework of the ATF program, different materials have been studied to be applied as cladding to replace zirconium-based alloy; also efforts have been made to improve the uranium dioxide thermal conductivity doping the fuel pellet. This paper evaluates the addition of beryllium oxide (BeO) to the uranium dioxide in order to enhance the thermal conductivity of the fuel pellet. Investigations performed in this area considering the addition of 10% in volume of BeO, resulting in the UO{sub 2}-BeO fuel, have shown good results with the improvement of the fuel thermal conductivity and the consequent reduction of the fuel temperatures under irradiation. In this paper, two models obtained from open literature for the thermal conductivity of UO{sub 2}- BeO fuel were implemented in the FRAPCON 3.5 code and the results obtained using the modified code versions were compared. The simulations were carried out using a case available in the code documentation related to a typical pressurized water reactor (PWR) fuel rod irradiated under steady state condition. The results show that the fuel centerline temperatures decrease with the addition of BeO, when compared to the conventional UO{sub 2} pellet, independent of the model applied. (author)

  14. Plutonium recycle. In-core fuel management

    International Nuclear Information System (INIS)

    Vincent, F.; Berthet, A.; Le Bars, M.

    1985-01-01

    Plutonium recycle in France will concern a dozen of PWR 900 MWe controlled in gray mode till 1995. This paper presents the main characteristics of fuel management with plutonium recycle. The organization of management studies will be copied from this developed for classical management studies. Up these studies, a ''feasibility report'' aims at establishing at each stage of the fuel cycle, the impact of the utilization of fuel containing plutonium [fr

  15. Thorium, uranium and plutonium in human tissues of world-wide general population

    International Nuclear Information System (INIS)

    Singh, N.P.

    1990-01-01

    The results on the concentrations of thorium, uranium and plutonium in human tissues of world-wide general populations are summarized. The majority of thorium and uranium are accumulated in the skeleton, whereas, plutonium is divided between two major organs: the liver and skeleton. However, there is a wide variation in the fractions of plutonium in the liver and the skeleton of the different populations. (author) 44 refs.; 15 figs

  16. Dosage of plutonium by isotopic dilution in irradiated fuels; Dosage du plutonium par dilution isotopique dans les combustibles irradies

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    Plutonium determination in irradiated fuels has been carried out for several years by isotopic dilution by Sebaci and SSM in collaboration. SECACI has made available to the SSM the necessary space and equipment in its Fontenay laboratories. This work has shown the importance of the valency cycle which should make it possible to obtain a uniform isotopic distribution in sample tracer mixtures, and also a satisfactory U/Pu separation. Now it has been noticed that the presence of an excess of uranium considerably modifies the oxidation-reduction reaction kinetics of the plutonium. We have therefore been led to change certain parts of the operational technique so as to have an efficient cycle and to thereby improve the U/Pu separation; the stability of the thermionic emission of the plutonium, connected to the quantity of residual uranium, has at the same time been improved and we can now carry out more precise isotopic analyses. We have also tried to eliminate as far as possible the isotopic contaminations by:using a more rational operational method; the equipment used has been the object of a special study. The evaporations are carried out so as to prevent the formation of saturated vapours inside the glove box. The material which cannot be changed after each operation is carefully cleaned every time a new sample is treated. With this technique, a second calibration of the tracer T{sub 2} has been undertaken using a new standard solution. This solution has been prepared very carefully by weighing uranium and plutonium of known chemical purity, and we believe that it can be guaranteed to be a good reference solution. The value of the {sup 233}U/{sup 242}Pu ratio of the tracer has been obtained with a relative accuracy of 0,5 per cent. This modified method is now being applied to the analysis of rods irradiated in G-3. (author) [French] La determination du plutonium par dilution isotopique dans les combustibles irradies est pratiquee depuis plusieurs annees en

  17. Studies on the absorption of uranium and plutonium on macroporous anion-exchange resins from mixed solvent media

    International Nuclear Information System (INIS)

    Chetty, K.V.; Mapara, P.M.; Godbole, A.G.; Swarup, Rajendra

    1995-01-01

    The ion-exchange studies on uranium and plutonium using macroporous anion-exchange resins from an aqueous-organic solvent mixed media were carried out to develop a method for their separation. Out of the several water miscible organic solvents tried, methanol and acetone were found to be best suited. Distribution data for U(VI) and Pu(IV) for three macroporous resins Tulsion A-27(MP) (strong base), Amberlyst A-26(MP) (strong base) and Amberlite XE-270(MP) (weak base) as a function of (i) nitric acid concentration (ii) organic solvent concentration were obtained. Based on the data separation factors for Pu/U were calculated. Column experiments using Tulsion A-27(MP) from a synthetic feed (HNO 3 - methanol and HNO 3 - acetone) containing Pu and U in different ratios were carried out. Plutonium was recovered from the bulk of the actual solution generated during the dissolution of plutonium bearing fuels. The method has the advantage of loading plutonium from as low as 1M nitric acid in presence of methanol or acetone and could be used satisfactorily for its recovery from solutions containing plutonium and uranium. (author). 11 refs., 4 figs., 16 tabs

  18. Long-term logistic analysis of FBR introduction strategy: avoiding both uranium and plutonium shortage

    International Nuclear Information System (INIS)

    Suzuki, T.

    1995-01-01

    Despite comfortable predictions on short to mid-term uranium resources, there is still a concern about long-term availability of competitive uranium resources. In order to achieve substantial uranium saving, early introduction of Fast Breeder Reactor (FBR) is desirable. But it is also known that rapid introduction of FBR could result in plutonium storage. Will there be enough plutonium on a global scale to sustain fast FBR growth? is there any other way to save uranium resource? This paper concludes that multi-option strategies to achieve flexible long-term strategy to avoid both uranium and plutonium storage are desirable. (authors)

  19. Behavior of metallic uranium-fissium fuel in TREAT transient overpower tests

    International Nuclear Information System (INIS)

    Bauer, T.H.; Klickman, A.E.; Lo, R.K.; Rhodes, E.A.; Robinson, W.R.; Stanford, G.S.; Wright, A.E.

    1986-01-01

    TREAT tests M2, M3, and M4 were performed to obtain information on two key behavior characteristics of fuel under transient overpower accident conditions in metal-fueled fast reactors: the prefailure axial self-extrusion (elongation beyond thermal expansion) of fuel within intact cladding and the margin to cladding breach. Uranium-5 wt% fissium Experimental Breeder Reactor-II driver fuel pins were used for the tests since they were available as suitable stand-ins for the uranium-plutonium-zirconium ternary fuel, which is the reference fuel of the integral fast reactor (IFR) concept. The ternary fuel will be used in subsequent TREAT tests. Preliminary results from tests M2 and M3 were presented earlier. The present report includes significant advances in analysis as well as additional data from test M4. Test results and analysis have led to the development and validation of pin cladding failure and fuel extrusion models for metallic fuel, within reasonable uncertainties for the uranium-fissium alloy. Concepts involved are straightforward and readily extendable to ternary alloys and behavior in full-size reactors

  20. Determination of plutonium in nitric acid solutions - Method by oxidation by cerium(IV), reduction by iron(II) ammonium sulfate and amperometric back-titration with potassium dichromate

    International Nuclear Information System (INIS)

    1987-01-01

    This International Standard specifies a precise and accurate analytical method for determining plutonium in nitric acid solutions. Plutonium is oxidized to plutonium(VI) in a 1 mol/l nitric acid solution with cerium(IV). Addition of sulfamic acid prevents nitrite-induced side reactions. The excess of cerium(IV) is reduced by adding a sodium arsenite solution, catalysed by osmium tetroxide. A slight excess of arsenite is oxidized by adding a 0.2 mol/l potassium permanganate solution. The excess of permanganate is reduced by adding a 0.1 mol/l oxalic acid solution. Iron(III) is used to catalyse the reduction. A small excess of oxalic acid does not interfere in the subsequent plutonium determination. These reduction and oxidation stages can be followed amperometrically and the plutonium is left in the hexavalent state. The sulfuric acid followed by a measured amount of standardized iron(II) ammonium sulfate solution in excess of that required to reduce the plutonium(VI) to plutonium(IV) is added. The excess iron(II) and any plutonium(III) formed to produce iron(III) and plutonium(IV) is amperometrically back-titrated using a standard potassium dichromate solution. The method is almost specifically for plutonium. It is suitable for the direct determination of plutonium in materials ranging from pure product solutions, to fast reactor fuel solutions with a uranium/plutonium ratio of up to 10:1, either before or after irradiation

  1. Irradiation behaviour of mixed uranium-plutonium carbides, nitrides and carbonitrides; Comportement a l'irradiation de carbures, nitrures et carbonitrures mixtes d'uranium et de plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Mikailoff, H; Mustelier, J P; Bloch, J; Leclere, J; Hayet, L [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-01

    In the framework of the research program of fast reactor fuels two irradiation experiments have been carried out on mixed uranium-plutonium carbides, nitrides and carbo-nitrides. In the first experiment carried out with thermal neutrons, the fuel consisted of sintered pellets sheathed in a stainless steel can with a small gap filled with helium. There were three mixed mono-carbide samples and the maximum linear power was 715 W/cm. After a burn-up slightly lower than 20000 MW day/tonne, a swelling of the fuel which had ruptured the cans was observed. In the second experiment carried out in the BR2 reactor with epithermal neutrons, the samples consisted of sintered pellets sodium bonded in a stainless steel tube. There were three samples containing different fuels and the linear power varies between 1130 and 1820 W/cm. Post-irradiation examination after a maximal burn-up of 1550 MW day/tonne showed that the behaviour of the three fuel elements was satisfactory. (authors) [French] Dans le cadre du programme d'etude des conibustiles pour reacteurs rapides, on a realise deux experiences d'irradiation de carbures, nitrures et carbonitrures mixtes d'uranium et de plutonium. Dans la premiere experience, faite en neutrons thermiques, le combustible etait constitue de,pastilles frittees gainees dans un tube d'acier inoxydable avec un faible jeu rempli d'helium. Il y avait trois echantillons de monocarbures mixtes, et la puissance lineaire maximale etait de 715 W/cm. Apres un taux de combustion legerement inferieur a 20 000 MWj/t, on a observe un gonflement des combustible qui a provoque, la rupture des gaines. Pans la seconde experience, realisee dans le reacteur BR2 en neutrons epithermiques, les echantillons etaient constitues de pastilles frittees gainees dans un tube d'acier avec un joint sodium. Il y avait trois echantillons contenant des combustibles differents, et la puissance lineaire variait de 1130 a 1820 W/cm. Les examens apres irradiation a un taux maximal de

  2. HB-Line Plutonium Oxide Data Collection Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, R. [Savannah River Nuclear Solutions; Varble, J. [Savannah River Nuclear Solutions; Jordan, J. [Savannah River Nuclear Solutions

    2015-05-26

    HB-Line and H-Canyon will handle and process plutonium material to produce plutonium oxide for feed to the Mixed Oxide Fuel Fabrication Facility (MFFF). However, the plutonium oxide product will not be transferred to the MFFF directly from HB-Line until it is packaged into a qualified DOE-STD-3013-2012 container. In the interim, HB-Line will load plutonium oxide into an inner, filtered can. The inner can will be placed in a filtered bag, which will be loaded into a filtered outer can. The outer can will be loaded into a certified 9975 with getter assembly in compliance with onsite transportation requirement, for subsequent storage and transfer to the K-Area Complex (KAC). After DOE-STD-3013-2012 container packaging capabilities are established, the product will be returned to HB-Line to be packaged into a qualified DOE-STD-3013-2012 container. To support the transfer of plutonium oxide to KAC and then eventually to MFFF, various material and packaging data will have to be collected and retained. In addition, data from initial HB-Line processing operations will be needed to support future DOE-STD-3013-2012 qualification as amended by the HB-Line DOE Standard equivalency. As production increases, the volume of data to collect will increase. The HB-Line data collected will be in the form of paper copies and electronic media. Paper copy data will, at a minimum, consist of facility procedures, nonconformance reports (NCRs), and DCS print outs. Electronic data will be in the form of Adobe portable document formats (PDFs). Collecting all the required data for each plutonium oxide can will be no small effort for HB-Line, and will become more challenging once the maximum annual oxide production throughput is achieved due to the sheer volume of data to be collected. The majority of the data collected will be in the form of facility procedures, DCS print outs, and laboratory results. To facilitate complete collection of this data, a traveler form will be developed which

  3. Some aspects of a technology of processing weapons grade plutonium to nuclear fuel

    International Nuclear Information System (INIS)

    Bibilashvili, Y.; Glagovsky, E.M.; Zakharkin, B.S.; Orlov, V.K.; Reshetnikov, F.G.; Rogozkin, B.G.; Soloni-N, M.I.

    2000-01-01

    The concept by Russia to use fissile weapons-grade materials, which are being recovered from nuclear pits in the process of disarmament, is based on an assessment of weapons-grade plutonium as an important energy source intended for use in nuclear power plants. However, in the path of involving plutonium excessive from the purposes of national safety into industrial power engineering there are a lot of problems, from which effectiveness and terms of its disposition are being dependent upon. Those problems have political, economical, financial and environmental character. This report outlines several technology problems of processing weapons-grade metallic plutonium into MOX-fuel for reactors based on thermal and fast neutrons, in particular, the issue of conversion of the metal into dioxide from the viewpoint of fabrication of pelletized MOX-fuel. The processing of metallic weapons-grade plutonium into nuclear fuel is a rather complicated and multi-stage process, every stage of which is its own production. Some of the stages are absent in production of MOX-fuel, for instance the stage of the conversion, i.e. transferring of metallic plutonium into dioxide of the ceramic quality. At this stage of plutonium utilization some tasks must be resolved as follows: I. As a result of the conversion, a material purified from ballast and radiogenic admixtures has to be obtained. This one will be applied to fabricate pelletized MOX-fuel going from morphological, physico-mechanical and technological properties. II. It is well known that metallic gallium, which is used as an alloying addition in weapons-grade plutonium, actively reacts with multiple metals. Therefore, an important issue is to study the effect of gallium on the technology of MOX-fuel production, quality of the pellets, as well as the interaction of gallium oxide with zirconium and steel shells of fuel elements depending upon the content of gallium in the fuel. The rate of the interaction of gallium oxide

  4. Plutonium Plant, Trombay

    International Nuclear Information System (INIS)

    Yadav, J.S.; Agarwal, K.

    2017-01-01

    The journey of Indian nuclear fuel reprocessing started with the commissioning of Plutonium Plant (PP) at Trombay on 22"n"d January, 1965 with an aim to reprocess the spent fuel from research reactor CIRUS. The basic process chosen for the plant was Plutonium Uranium Reduction EXtraction (PUREX) process. In seventies, the plant was subjected to major design modifications and replacement of hardware, which later met the additional demand from research reactor DHRUVA. The augmented plutonium plant has been operating since 1983. Experience gained from this plant was very much helpful to design future reprocessing plant in the country

  5. Closing the fuel cycle: A superior option for India

    International Nuclear Information System (INIS)

    Balu, K.; Purushotham, D.S.C.; Kakodkar, A.

    1999-01-01

    The closed fuel cycle option with reprocessing and recycle of uranium and plutonium (U and Pu) for power generation allows better utilization of the uranium resources. On its part, plutonium is a unique energy source. During the initial years of nuclear fuel cycle activities, reprocessing and recycle of uranium and plutonium for power generation was perceived by many countries to be among the best of long term strategies for the management of spent fuel. But, over the years, some of the countries have taken a position that once-through fuel cycle is both economical and proliferation-resistant. However, such perceptions do vary as a function of economic growth and energy security of a given country. This paper deals with techno-economic perspectives of reprocessing and recycling in the Indian nuclear power programme. Experience of developing Mixed Oxide UO 2 -PuO 2 (MOX) fuel and its actual use in a power reactor (BWR) is presented. The paper further deals with the use of MOX in PHWRs in the future and current thinking, in the Indian context, in respect of advanced fuel cycles for the future. From environmental safety considerations, the separation of long-lived isotopes and minor actinides from high level waste (HLW) would enhance the acceptability of reprocessing and recycle option. The separated actinides are suitable for recycling with MOX fuel. However, the advanced fuel cycles with such recycling of Uranium and transuranium elements call for additional sophisticated fuel cycle activities which are yet to be mastered. India is interested in both uranium and thorium fuel cycles. This paper describes the current status of the Indian nuclear power scenario with reference to the program on reactors, reprocessing and radioactive waste management, plutonium recycle options, thorium-U233 fuel cycle studies and investigations on partitioning of actinides from Purex HLW as relevant to PHWR spent fuels. (author)

  6. HPAT: A nondestructive analysis technique for plutonium and uranium solutions

    International Nuclear Information System (INIS)

    Aparo, M.; Mattia, B.; Zeppa, P.; Pagliai, V.; Frazzoli, F.V.

    1989-03-01

    Two experimental approaches for the nondestructive characterization of mixed solutions of plutonium and uranium, developed at BNEA - C.R.E. Casaccia, with the goal of measuring low plutonium concentration (<50 g/l) even in presence of high uranium content, are described in the following. Both methods are referred to as HPAT (Hybrid Passive-Active Technique) since they rely on the measurement of plutonium spontaneous emission in the LX-rays energy region as well as the transmission of KX photons from the fluorescence induced by a radioisotopic source on a suitable target. Experimental campaigns for the characterization of both techniques have been carried out at EUREX Plant Laboratories (C.R.E. Saluggia) and at Plutonium Plant Laboratories (C.R.E. Casaccia). Experimental results and theoretical value of the errors are reported. (author)

  7. Post irradiation examinations of uranium-plutonium mixed carbide fuels irradiated at low linear power rate

    International Nuclear Information System (INIS)

    Maeda, Atsushi; Sasayama, Tatsuo; Iwai, Takashi; Aizawa, Sakuei; Ohwada, Isao; Aizawa, Masao; Ohmichi, Toshihiko; Handa, Muneo

    1988-11-01

    Two pins containing uranium-plutonium carbide fuels which are different in stoichiometry, i.e. (U,Pu)C 1.0 and (U,Pu)C 1.1 , were constructed into a capsule, ICF-37H, and were irradiated in JRR-2 up to 1.0 at % burnup at the linear heat rate of 420 W/cm. After being cooled for about one year, the irradiated capsule was transferred to the Reactor Fuel Examination Facility where the non-destructive examinations of the fuel pins in the β-γ cells and the destructive ones in two α-γ inert gas atmosphere cells were carried out. The release rates of fission gas were low enough, 0.44 % from (U,Pu)C 1.0 fuel pin and 0.09% from (U,Pu)C 1.1 fuel pin, which is reasonable because of the low central temperature of fuel pellets, about 1000 deg C and is estimated that the release is mainly governed by recoil and knock-out mechanisms. Volume swelling of the fuels was observed to be in the range of 1.3 ∼ 1.6 % for carbide fuels below 1000 deg C. Respective open porosities of (U,Pu)C 1.0 and (U,Pu)C 1.1 fuel were 1.3 % and 0.45 %, being in accordance with the release behavior of fission gas. Metallographic observation of the radial sections of pellets showed the increase of pore size and crystal grain size in the center and middle region of (U,Pu)C 1.0 pellets. The chemical interaction between fuel pellets and claddings in the carbide fuels is the penetration of carbon in the fuels to stainless steel tubes. The depth of corrosion layer in inner sides of cladding tubes ranged 10 ∼ 15 μm in the (U,Pu)C 1.0 fuel and 15 #approx #25 μm in the (U,Pu)C 1.1 fuel, which is correlative with the carbon potential of fuels posibly affecting the amount of carbon penetration. (author)

  8. Influence of oxygen-metal ratio on mixed-oxide fuel performance

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Leggett, R.D.

    1979-04-01

    The fuel oxygen-to-metal ratio (O/M) is recognized as an important consideration for performance of uranium--plutonium oxide fuels. An overview of the effects of differing O/M's on the irradiation performance of reference design mixed-oxide fuel in the areas of chemical and mechanical behavior, thermal performance, and fission gas behavior is presented. The pellet fuel has a nominal composition of 75 wt% UO 2 + 25 wt% PuO 2 at a pellet density of approx. 90% TD. for nominal conditions this results in a smeared density of approx. 85%. The cladding in all cases is 20% CW type 316 stainless steel with an outer diameter of 5.84 to 6.35 mm. O/M has been found to significantly influence fuel pin chemistry, mainly FCCI and fission product and fuel migration. It has little effect on thermal performance and overall mechanical behavior or fission gas release. The effects of O/M (ranging from 1.938 to 1.984) in the areas of fuel pin chemistry, to date, have not resulted in any reduction in fuel pin performance capability to goal burnups of approx. 8 atom% or more

  9. Minimization of the fission product waste by using thorium based fuel instead of uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Galahom, A. Abdelghafar, E-mail: Agalahom@yahoo.com

    2017-04-01

    This research discusses the neutronic characteristics of VVER-1200 assembly fueled with five different fuel types based on thorium. These types of fuel based on mixing thorium as a fertile material with different fissile materials. The neutronic characteristics of these fuels are investigated by comparing their neutronic characteristics with the conventional uranium dioxide fuel using the MCNPX code. The objective of this study is to reduce the production of long-lived actinides, get rid of plutonium component and to improve the fuel cycle economy while maintaining acceptable values of the neutronic safety parameters such as moderator temperature coefficient, Doppler coefficient and effective delayed neutrons (β). The thorium based fuel has a more negative Doppler coefficient than uranium dioxide fuel. The moderator temperature coefficient (MTC) has been calculated for the different proposed fuels. Also, the fissile inventory ratio has been calculated at different burnup step. The use of Th-232 as a fertile material instead of U-238 in a nuclear fuel is the most promising fuel in VVER-1200 as it is the ideal solution to avoid the production of more plutonium components and long-lived minor actinides. The reactor grade plutonium accumulated in light water reactor with burnup can be recycled by mixing it with Th-232 to fuel the VVER-1200 assembly. The concentrations of Xe-135 and Sm-151 have been investigated, due to their high thermal neutron absorption cross section.

  10. Analysis of civilian processing programs in reduction of excess separated plutonium and high-enriched uranium

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1995-01-01

    The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. The analysis addresses several options in reducing the excess separated plutonium and HEU, and the consequences on nonproliferation and safeguards policy assessments resulting from the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials

  11. Comparison of open cycles of uranium and mixed oxides of thorium-uranium using advanced reactors

    International Nuclear Information System (INIS)

    Gonçalves, Letícia C.; Maiorino, José R.

    2017-01-01

    A comparative study of the mass balance and production costs of uranium oxide fuels was carried out for an AP1000 reactor and thorium-uranium mixed oxide in a reactor proposal using thorium called AP-Th1000. Assuming the input mass values for a fuel load the average enrichment for both reactors as well as their feed mass was determined. With these parameters, the costs were calculated in each fuel preparation process, assuming the prices provided by the World Nuclear Association. The total fuel costs for the two reactors were quantitatively compared with 18-month open cycle. Considering enrichment of 20% for the open cycle of mixed U-Th oxide fuel, the total uranium consumption of this option was 50% higher and the cost due to the enrichment was 70% higher. The results show that the use of U-Th mixed oxide fuels can be advantageous considering sustainability issues. In this case other parameters and conditions should be investigated, especially those related to fuel recycling, spent fuel storage and reduction of the amount of transuranic radioactive waste

  12. Japan's fuel recycling policy

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The Atomic Energy Commission (AEC) has formulated Japanese nuclear fuel recycling plan for the next 20 years, based on the idea that the supply and demand of plutonium should be balanced mainly through the utilization of plutonium for LWRs. The plan was approved by AEC, and is to be incorporated in the 'Long term program for development and utilization of nuclear energy' up for revision next year. The report on 'Nuclear fuel recycling in Japan' by the committee is characterized by Japanese nuclear fuel recycling plan and the supply-demand situation for plutonium, the principle of the possession of plutonium not more than the demand in conformity with nuclear nonproliferation attitude, and the establishment of a domestic fabrication system of uranium-plutonium mixed oxide fuel. The total plutonium supply up to 2010 is estimated to be about 85 t, on the other hand, the demand will be 80-90 t. The treatment of plutonium is the key to the recycling and utilization of nuclear fuel. By around 2000, the private sector will commercialize the fabrication of the MOX fuel for LWRs at the annual rate of about 100 t. Commitment to nuclear nonproliferation, future nuclear fuel recycling program in Japan, MOX fuel fabrication system in Japan and so on are reported. (K.I.)

  13. Uranium Fuel Plant. Applicants environmental report

    International Nuclear Information System (INIS)

    1975-05-01

    The Uranium Fuel Plant, located at the Cimarron Facility, was constructed in 1964 with operations commencing in 1965 in accordance with License No. SNM-928, Docket No. 70-925. The plant has been in continuous operation since the issuance of the initial license and currently possesses contracts extending through 1978, for the production of nuclear fuels. The Uranium Plant is operated in conjunction with the Plutonium Facility, each sharing common utilities and sanitary wastes disposal systems. The operation has had little or no detrimental ecological impact on the area. For the operation of the Uranium Fuel Fabrication Plant, initial equipment provided for the production of UO 2 , UF 4 , uranium metal and recovery of scrap materials. In 1968, the plant was expanded by increasing the UO 2 and pellet facilities by the installation of another complete production line for the production of fuel pellets. In 1969, fabrication facilities were added for the production of fuel elements. Equipment initially installed for the recovery of fully enriched scrap has not been used since the last work was done in 1970. Economically, the plant has benefited the Logan County area, with approximately 104 new jobs with an annual payroll of approximately $1.3 million. In addition, $142,000 is annually paid in taxes to state, local and federal governments, and local purchases amount to approximately $1.3 million. This was all in land that was previously used for pasture land, with a maximum value of approximately 37,000 dollars. Environmental effects of plant operation have been minimal. A monitoring and measurement program is maintained in order to ensure that the ecology of the immediate area is not affected by plant operations

  14. Caramel, uranium oxide fuel plates for water cooled reactors

    International Nuclear Information System (INIS)

    Bussy, Pierre; Delafosse, Jacques; Lestiboudois, Guy; Cerles, J.-M.; Schwartz, J.-P.

    1979-01-01

    The fuel is composed of thin plates assembled parallel to each other to form bundles or assemblies. Each plate is composed of a pavement of uranium oxide pellets, insulated from each other by a zircaloy cladding. The 235 U enrichment does not exceed 8%. The range of uses for this fuel extends from electric power generating reactors to irradiation reactors for research work. A parametric study in test loops has made it possible to determine the operating limits of this thick fuel, without bursting. The resulting diagram gives the permissible power densities, with and without cycling for specific burn-ups beyond 50,000 MWd/t. The thinnest plates were also irradiated in total in the form of advance assemblies irradiated in the core of the OSIRIS pile prior to its transformation. This transformation and the operation of this reactor with a core of 'Caramel' elements is the main trial experiment of this fuel [fr

  15. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2009-01-01

    The Director General has received a letter dated 16 July 2009 from the Permanent Mission of the Federal Republic of Germany to the IAEA in enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2008. 2. The Government of the Federal Republic of Germany has also made available a statement of its annual figures for holdings of civil high enriched uranium (HEU) as of 31 December 2008 [es

  16. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2012-01-01

    The Director General has received a note verbale dated 14 October 2010 from the Permanent Mission of the Federal Republic of Germany to the IAEA in enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2009. The Government of the Federal Republic of Germany has also made available a statement of its annual figures for holdings of civil high enriched uranium (HEU) as of 31 December 2009 [es

  17. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2012-01-01

    The Secretariat has received a note verbale dated 20 September 2012 from the Permanent Mission of the Federal Republic of Germany to the IAEA in the enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2011. The Government of the Federal Republic of Germany has also made available a statement of the estimated amounts of highly enriched uranium (HEU) as of 31 December 2011 [es

  18. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of Highly Enriched Uranium

    International Nuclear Information System (INIS)

    2007-01-01

    The Director General has received a Note Verbale dated 3 July 2007 from the Permanent Mission of the Federal Republic of Germany to the IAEA in the enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/549 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2006. The Government of the Federal Republic of Germany has also made available a statement of its annual figures for holdings of civil highly enriched uranium (HEU) as of 31 December 2006 [es

  19. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2013-01-01

    The Secretariat has received a note verbale dated 2 July 2013 from the Permanent Mission of the Federal Republic of Germany to the IAEA in the enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2012. The Government of the Federal Republic of Germany has also made available a statement of the estimated amounts of highly enriched uranium (HEU) as of 31 December 2012 [es

  20. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2011-01-01

    The Director General has received a note verbale dated 29 April 2011 from the Permanent Mission of the Federal Republic of Germany to the IAEA in enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2010. The Government of the Federal Republic of Germany has also made available a statement of its annual figures for holdings of civil high enriched uranium (HEU) as of 31 December 2010 [es

  1. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2012-01-01

    The Secretariat has received a note verbale dated 20 September 2012 from the Permanent Mission of the Federal Republic of Germany to the IAEA in the enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2011. The Government of the Federal Republic of Germany has also made available a statement of the estimated amounts of highly enriched uranium (HEU) as of 31 December 2011

  2. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2011-01-01

    The Director General has received a note verbale dated 14 October 2010 from the Permanent Mission of the Federal Republic of Germany to the IAEA in enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2009. The Government of the Federal Republic of Germany has also made available a statement of its annual figures for holdings of civil high enriched uranium (HEU) as of 31 December 2009

  3. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2011-01-01

    The Director General has received a note verbale dated 29 April 2011 from the Permanent Mission of the Federal Republic of Germany to the IAEA in enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2010. The Government of the Federal Republic of Germany has also made available a statement of its annual figures for holdings of civil high enriched uranium (HEU) as of 31 December 2010

  4. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2009-01-01

    The Director General has received a letter dated 16 July 2009 from the Permanent Mission of the Federal Republic of Germany to the IAEA in enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2008. 2. The Government of the Federal Republic of Germany has also made available a statement of its annual figures for holdings of civil high enriched uranium (HEU) as of 31 December 2008

  5. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2013-01-01

    The Secretariat has received a note verbale dated 2 July 2013 from the Permanent Mission of the Federal Republic of Germany to the IAEA in the enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2012. The Government of the Federal Republic of Germany has also made available a statement of the estimated amounts of highly enriched uranium (HEU) as of 31 December 2012

  6. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of Highly Enriched Uranium

    International Nuclear Information System (INIS)

    2007-01-01

    The Director General has received a Note Verbale dated 3 July 2007 from the Permanent Mission of the Federal Republic of Germany to the IAEA in the enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/549 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2006. The Government of the Federal Republic of Germany has also made available a statement of its annual figures for holdings of civil highly enriched uranium (HEU) as of 31 December 2006

  7. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2011-01-01

    The Director General has received a note verbale dated 29 April 2011 from the Permanent Mission of the Federal Republic of Germany to the IAEA in enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2010. The Government of the Federal Republic of Germany has also made available a statement of its annual figures for holdings of civil high enriched uranium (HEU) as of 31 December 2010 [fr

  8. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2010-01-01

    The Director General has received a note verbale dated 14 October 2010 from the Permanent Mission of the Federal Republic of Germany to the IAEA in enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2009. The Government of the Federal Republic of Germany has also made available a statement of its annual figures for holdings of civil high enriched uranium (HEU) as of 31 December 2009

  9. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2013-01-01

    The Secretariat has received a note verbale dated 2 July 2013 from the Permanent Mission of the Federal Republic of Germany to the IAEA in the enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2012. The Government of the Federal Republic of Germany has also made available a statement of the estimated amounts of highly enriched uranium (HEU) as of 31 December 2012 [fr

  10. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of Highly Enriched Uranium

    International Nuclear Information System (INIS)

    2007-01-01

    The Director General has received a Note Verbale dated 3 July 2007 from the Permanent Mission of the Federal Republic of Germany to the IAEA in the enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/549 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2006. The Government of the Federal Republic of Germany has also made available a statement of its annual figures for holdings of civil highly enriched uranium (HEU) as of 31 December 2006 [fr

  11. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2010-01-01

    The Director General has received a note verbale dated 14 October 2010 from the Permanent Mission of the Federal Republic of Germany to the IAEA in enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2009. The Government of the Federal Republic of Germany has also made available a statement of its annual figures for holdings of civil high enriched uranium (HEU) as of 31 December 2009 [fr

  12. Communication Received from Germany Concerning its Policies regarding the Management of Plutonium. Statements on the Management of Plutonium and of High Enriched Uranium

    International Nuclear Information System (INIS)

    2012-01-01

    The Secretariat has received a note verbale dated 20 September 2012 from the Permanent Mission of the Federal Republic of Germany to the IAEA in the enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/5491 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2011. The Government of the Federal Republic of Germany has also made available a statement of the estimated amounts of highly enriched uranium (HEU) as of 31 December 2011 [fr

  13. Aqueous dissolution rates of uranium oxides

    International Nuclear Information System (INIS)

    Steward, S.A.; Mones, E.T.

    1994-10-01

    An understanding of the long-term dissolution of waste forms in groundwater is required for the safe disposal of high level nuclear waste in an underground repository. The main routes by which radionuclides could be released from a geological repository are the dissolution and transport processes in groundwater flow. Because uranium dioxide is the primary constituent of spent nuclear fuel, the dissolution of its matrix in spent fuel is considered the rate-limiting step for release of radioactive fission products. The purpose of our work has been to measure the intrinsic dissolution rates of uranium oxides under a variety of well-controlled conditions that are relevant to a repository and allow for modeling. The intermediate oxide phase U 3 O 8 , triuranium octaoxide, is quite stable and known to be present in oxidized spent fuel. The trioxide, UO 3 , has been shown to exist in drip tests on spent fuel. Here we compare the results of essentially identical dissolution experiments performed on depleted U 3 O 8 and dehyrated schoepite or uranium trioxide monohydrate (UO 3 ·H 2 O). These are compared with earlier work on spent fuel and UO 2 under similar conditions

  14. Radiation effects in fuel materials for fission reactors

    International Nuclear Information System (INIS)

    Matzke, H.

    1983-01-01

    Physical and chemical changes that occur in fuel materials during fission are described. Emphasis is placed on the fuels used today, or those foreseen for the future, hence oxides and carbides of uranium and plutonium. Examples are given to illustrate the most interesting neutron effects. (author)

  15. Image analysis: a tool characterising and modelling the microstructure of the MOX fuel

    International Nuclear Information System (INIS)

    Charollais, F.

    1997-01-01

    The MOX nuclear fuel, made up of about 3 to 10 % of plutonium oxide mixed with uranium oxide, is elaborated by an original manufacturing method (MIMAS process). The MOX pellets feature a singular and complex microstructure, including enriched plutonium zones dispersed in a low plutonium content matrix. Their properties as well as their performances levels are strongly linked with this microstructure. Tools, found in the literature, allowing to quantify with relevant parameters the microstructural images from different analytical equipment (optical microscopy, electron probe micro-analyser and autoradiography) have been adapted and used in order to characterize these nuclear fuels. Taking into account the heterogeneity of the MOX microstructure, we turn our's attention, at the beginning of this study, to the analysis conditions: choice of the magnification, sampling and statistical analysis of the measurements. An improvement of the ceramographic preparation of the samples, required for an automatic image analysis (of the granular structure), has been realised by thermal etching under oxidizing gas. This method enables the strong content plutonium zones to be revealed distinctly. The first part of the study concerns the characterization of the three-dimensional structure of uranium oxide and MOX fuels by average variables using the principles of mathematical morphology and stereology. The second part introduces probabilistic models, in particular the Boolean scheme, in order to improve and complete the three-dimensional characterization of the MOX fuel and more specifically the enriched plutonium islands dispersion in the pellet. [fr

  16. Physics characteristics of CANDU cores with advanced fuel cycles

    International Nuclear Information System (INIS)

    Garvey, P.M.

    1985-01-01

    The current generation of CANDU reactors, of which some 20 GWE are either in operations or under construction worldwide, have been designed specifically for the natural uranium fuel cycle. The CANDU concept, due to its D 2 O coolant and moderator, on-power refuelling and low absorption structural materials, makes the most effective utilization of mined uranium of all currently commercialized reactors. An economic fuel cycle cost is also achieved through the use of natural uranium and a simple fuel bundle design. Total unit energy costs are achieved that allow this reactor concept to effectively compete with other reactor types and other forms of energy production. There are, however, other fuel cycles that could be introduced into this reactor type. These include the slightly enriched uranium fuel cycle, fuel cycles in which plutonium is recycled with uranium, and the thorium cycle in which U-233 is recycled. There is also a special range of fuel cycles that could utilize the spent fuel from LWR's. Two specific variants are a fuel cycle that only utilizes the spent uranium, and a fuel cycle in which both the uranium and plutonium are recycled into a CANDU. For the main part these fuel cycles are characterized by a higher initial enrichment, and hence discharge burnup, than the natural uranium cycle. For these fuel cycles the main design features of both the reactor and fuel bundle would be retained. Recently a detailed study of the use in a CANDU of mixed plutonium and uranium oxide fuel from an LWR has been undertaken by AECL. This study illustrates many of the generic technical issues associated with the use of Advanced Fuel Cycles. This paper will report the main findings of this evaluation, including the power distribution in the reactor and fuel bundle, the choice of fuel management scheme, and the impact on the control and safety characteristics of the reactor. These studies have not identified any aspects that significantly impact upon the introduction of

  17. Stop plutonium; Stop plutonium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-02-01

    This press document aims to inform the public on the hazards bound to the plutonium exploitation in France and especially the plutonium transport. The first part is a technical presentation of the plutonium and the MOX (Mixed Oxide Fuel). The second part presents the installation of the plutonium industry in France. The third part is devoted to the plutonium convoys safety. The highlight is done on the problem of the leak of ''secret'' of such transports. (A.L.B.)

  18. In-line analytical methods for fuel reprocessing streams : Part IV -Neutron monitoring for plutonium

    International Nuclear Information System (INIS)

    Rao, V.K.; Bhargava, V.K.; Marathe, S.G.; Iyer, R.H.; Ramaniah, M.V.; Srinivasan, N.

    1975-01-01

    A neutron monitoring assembly consisting of a stainless steel housing packed with beryllium oxide chips, a paraffin moderator, a ring of fifteen BF 3 counters and an all stainless steel continuous flow system for circulating plutonium solutions has been fabricated and tested for monitoring plutonium concentrations in flow solutions. The method is based on the detection and measurement of neutron flux produced when alpha particles from plutonium interact with beryllium by the nuclear reactoon 9 4 Be(α,n) 12 6 C. The unit was successfully tested for the estimation of plutonium concentrations upto 10 g/1 in solutions of plutonium and plutonium solutions mixed with uranium and fission products. The unit gave an accuracy of 10-15%. Details of the construction and working of the system are discussed. (author)

  19. Used mixed oxide fuel reprocessing at RT-1 plant

    Energy Technology Data Exchange (ETDEWEB)

    Kolupaev, D.; Logunov, M.; Mashkin, A.; Bugrov, K.; Korchenkin, K. [FSUE PA ' Mayak' , 30, Lenins str, Ozersk, 460065 (Russian Federation); Shadrin, A.; Dvoeglazov, K. [ITCP ' PRORYV' , 2/8 Malaya Krasmoselskay str, Moscow, 107140 (Russian Federation)

    2016-07-01

    Reprocessing of the mixed uranium-plutonium spent nuclear fuel of the BN-600 reactor was performed at the RT-1 plant twice, in 2012 and 2014. In total, 8 fuel assemblies with a burn-up from 73 to 89 GW day/t and the cooling time from 17 to 21 years were reprocessed. The reprocessing included the stages of dissolution, clarification, extraction separation of U and Pu with purification from the fission products, refining of uranium and plutonium at the relevant refining cycles. Dissolution of the fuel composition of MOX used nuclear fuel (UNF) in nitric acid solutions in the presence of fluoride ion has occurred with the full transfer of actinides into solution. Due to the high content of Pu extraction separation of U and Pu was carried out on a nuclear-safe equipment designed for the reprocessing of highly enriched U spent nuclear fuel and Pu refining. Technological processes of extraction, separation and refining of actinides proceeded without deviations from the normal mode. The output flow of the extraction outlets in their compositions corresponded to the regulatory norms and remained at the level of the compositions of the streams resulting from the reprocessing of fuel types typical for the RT-1 plant. No increased losses of Pu into waste have been registered during the reprocessing of BN-600 MOX UNF an compare with VVER-440 uranium UNF reprocessing. (authors)

  20. Enriched uranium cycles in pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Mazzola, A.

    1994-01-01

    A study was made on the substitution of natural uranium with enriched and on plutonium recycle in unmodified PHWRs (pressure vessel reactor). Results clearly show the usefulness of enriched fuel utilisation for both uranium ore consumption (savings of 30% around 1.3% enrichment) and decreasing fuel cycle coasts. This is also due to a better plutonium exploitation during the cycle. On the other hand plutonium recycle in these reactors via MOX-type fuel appears economically unfavourable under any condition

  1. Idaho Chemical Processing Plant and Plutonium-Uranium Extraction Plant phaseout/deactivation study

    International Nuclear Information System (INIS)

    Patterson, M.W.; Thompson, R.J.

    1994-01-01

    The decision to cease all US Department of Energy (DOE) reprocessing of nuclear fuels was made on April 28, 1992. This study provides insight into and a comparison of the management, technical, compliance, and safety strategies for deactivating the Idaho Chemical Processing Plant (ICPP) at Westinghouse Idaho Nuclear Company (WINCO) and the Westinghouse Hanford Company (WHC) Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this study is to ensure that lessons-learned and future plans are coordinated between the two facilities

  2. Uranium oxide fuel cycle analysis in VVER-1000 with VISTA simulation code

    Science.gov (United States)

    Mirekhtiary, Seyedeh Fatemeh; Abbasi, Akbar

    2018-02-01

    The VVER-1000 Nuclear power plant generates about 20-25 tons of spent fuel per year. In this research, the fuel transmutation of Uranium Oxide (UOX) fuel was calculated by using of nuclear fuel cycle simulation system (VISTA) code. In this simulation, we evaluated the back end components fuel cycle. The back end component calculations are Spent Fuel (SF), Actinide Inventory (AI) and Fission Product (FP) radioisotopes. The SF, AI and FP values were obtained 23.792178 ton/y, 22.811139 ton/y, 0.981039 ton/y, respectively. The obtained value of spent fuel, major actinide, and minor actinide and fission products were 23.8 ton/year, 22.795 ton/year, 0.024 ton/year and 0.981 ton/year, respectively.

  3. An evaluation of the dissolution process of natural uranium ore as an analogue of nuclear fuel

    International Nuclear Information System (INIS)

    Stern, V.H.

    1991-08-01

    The assumption of congruent dissolution of uraninite as a mechanism for the dissolution behaviour of spent fuel was critically examined with regard to the fate of toxic radionuclides. The fission and daughter products of uranium are typically present in spent unreprocessed fuel rods in trace abundances. The principles of trace element geochemistry were applied in assessing the behaviour of these radionuclides during fluid/solid interactions. It is shown that the behaviour of radionuclides in trace abundances that reside in the crystal structure can be better predicted from the ionic properties of these nuclides rather than from assuming that they are controlled by the dissolution of uraninite. Geochemical evidence from natural uranium ore deposits (Athabasca Basin, Northern Territories of Australia, Oklo) suggests that in most cases the toxic radionuclides are released from uraninite in amounts that are independent of the solution behaviour of uranium oxide. Only those elements that have ionic and thus chemical properties similar to U 4+ , such as plutonium, americium, cadmium, neptunium and thorium can be satisfactorily modelled by the solution properties of uranium dioxide and then only if the environment is reducing. (84 refs., 7 tabs.)

  4. Plutonium, nuclear fuel; Le plutonium, combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Grison, E [Commissariat a l' Energie Atomique, Fontenay aux Roses (France). Centre d' Etudes Nucleaires, Saclay

    1960-07-01

    A review of the physical properties of metallic plutonium, its preparation, and the alloys which it forms with the main nuclear metals. Appreciation of its future as a nuclear fuel. (author) [French] Apercu sur les proprietes physiques du plutonium metallique, sa preparation, ses alliages avec les principaux metaux nucleaires. Consideration sur son avenir en tant que combustible nucleaire. (auteur)

  5. Application of robotics in remote fuel fabrication operations

    International Nuclear Information System (INIS)

    Nyman, D.H.; Nagamoto, T.T.

    1984-01-01

    The Secure Automated Fabrication (SAF) line, an automated and remotely controlled manufacturing process, is scheduled for startup in 1987 and will produce mixed uranium/plutonium oxide fuel pins for the Fast Flux Test Facility (FFTF). The application of robotics in the fuel fabrication and supporting operations is described

  6. Fuel powder production from ductile uranium alloys

    International Nuclear Information System (INIS)

    Clark, C.R.; Meyer, M.K.

    1998-01-01

    Metallic uranium alloys are candidate materials for use as the fuel phase in very-high-density LEU dispersion fuels. These ductile alloys cannot be converted to powder form by the processes routinely used for oxides or intermetallics. Three methods of powder production from uranium alloys have been investigated within the US-RERTR program. These processes are grinding, cryogenic milling, and hydride-dehydride. In addition, a gas atomization process was investigated using gold as a surrogate for uranium. (author)

  7. Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids - Part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method

    International Nuclear Information System (INIS)

    2004-01-01

    This first edition of ISO 7097-1 together with ISO 7097-2:2004 cancels and replaces ISO 7097:1983, which has been technically revised, and ISO 9989:1996. ISO 7097 consists of the following parts, under the general title Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids: Part 1: Iron(II) reduction/potassium dichromate oxidation titrimetric method; Part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method. This part 2. of ISO 7097 describes procedures for determination of uranium in solutions, uranium hexafluoride and solids. The procedures described in the two independent parts of this International Standard are similar: this part uses a titration with cerium(IV) and ISO 7097-1 uses a titration with potassium dichromate

  8. Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids - Part 1: Iron(II) reduction/potassium dichromate oxidation titrimetric method

    International Nuclear Information System (INIS)

    2004-01-01

    This first edition of ISO 7097-1 together with ISO 7097-2:2004 cancels and replaces ISO 7097:1983, which has been technically revised, and ISO 9989:1996. ISO 7097 consists of the following parts, under the general title Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids: Part 1: Iron(II) reduction/potassium dichromate oxidation titrimetric method; Part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method. This part 1. of ISO 7097 describes procedures for the determination of uranium in solutions, uranium hexafluoride and solids. The procedures described in the two independent parts of this International Standard are similar: this part uses a titration with potassium dichromate and ISO 7097-2 uses a titration with cerium(IV)

  9. Glutarimidedioxime. A complexing and reducing reagent for plutonium recovery from spent nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Xian, Liang [China Institute of Atomic Energy, Beijing (China). Radiochemistry Dept.; Tian, Guoxin [China Institute of Atomic Energy, Beijing (China). Radiochemistry Dept.; Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Chemical Sciences Div.; Beavers, Christine M.; Teat, Simon J. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Advanced Light Source; Shuh, David K. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Chemical Sciences Div.

    2016-04-04

    Efficient separation processes for recovering uranium and plutonium from spent nuclear fuel are essential to the development of advanced nuclear fuel cycles. The performance characteristics of a new salt-free complexing and reducing reagent, glutarimidedioxime (H{sub 2}A), are reported for recovering plutonium in a PUREX process. With a phase ratio of organic to aqueous of up to 10:1, plutonium can be effectively stripped from 30 % tributyl phosphate (TBP) in kerosene into 1M HNO{sub 3} with H{sub 2}A. The complexation-reduction mechanism is illustrated with the combination of UV/Vis absorption spectra and the crystal structure of a Pu{sup IV} complex with the reagent. The fast stripping rate and the high efficiency for stripping Pu{sup IV}, through the complexation-reduction mechanism, is suitable for use in centrifugal contactors with very short contact/resident times, thereby offering significant advantages over conventional processes.

  10. Evaluation of decontamination during dismantling of plutonium-contaminated glove boxes

    International Nuclear Information System (INIS)

    Kinugasa, Manabu; Taguchi, Seigi; Ohzeki, Satoru; Inoue, Yoshiaki; Kashima, Sadamitsu

    1981-01-01

    The dismantling work of plutonium-contaminated glove boxes was carried out. These glove boxes had been used for the R and D of plutonium-uranium mixed oxide fuel for 15 years. The work was carried out in a pressure-controlled greenhouse, and the contamination of air in the greenhouse was monitored continuously. In order to reduce the contamination of air during dismantling, the decontamination and fixation of loose contaminants on the surfaces of glove boxes were very important. The correlation between decontamination and the contamination of air regarding dismantling is reported in this paper. The surface contamination density of the glove boxes was measured utilizing the smear method before and after the decontamination, and the decontamination effects were estimated. The contamination of air during dismantling was continuously measured with a plutonium dust monitor. It was found that loose contamination exponentially decreased by the decontamination process. When the so-called wet glove boxes, which contained wet recovery and waste disposal apparatus, were dismantled, the contamination of air did not exceed 500 (MPC) a. However, the contamination of air exceeded 500 (MPC) a several times in the present work of dismantling the so-called dry glove boxes which had been used for the fabrication of plutonium-uranium mixed oxide pellets. (Kato, T.)

  11. Recycling of MOX fuel for LWRs

    International Nuclear Information System (INIS)

    Joo, Hyung Kook; Oh, Soo Youl

    1992-01-01

    The status and issues related to the thermal recycling of reprocessed nuclear fuels have been reviewed. It is focused on the use of reprecessed plutonium in the form of mixed oxide (MOX) for a light water reactor and the review on reprocessing and fabrication processes is beyond the scope. In spite of the difference in the nuclear characteristics between plutonium and uranium isotopes, the neutronics behavior in a core with MOX fuels is similar to that with normal uranium fuels. However, since the neutron spectrum is hardened in a core with MOX, the Doppler, viod, and moderator temperature coefficients become more negative and the control rod and boron worths are slightly reduced. Therefore, the safety will be evaluated carefully in addition to the core neutronics analysis. The MOX fuel rod behavior related to the rod performance such as the pellet to clad interaction and fission gas release is also similar to that of uranium rods, and no specific problem arises. Substituting MOX fuels for a portion of uranium fuels, it is estimated that the savings be about 25% in uranium ore and 10% in uranium enrichment service requirements. The use of MOX fuel in LWRs has been commercialized in European countries including Germany, France, Belgium, etc., and a demonstration program has been pursued in Japan for the commercial utilization in the late 1990s. Such a worldwide trend indicates that the utilization of MOX fuel in LWRs is a proven technology and meets economics criteria. (Author)

  12. Target fuels for plutonium and minor actinide transmutation in pressurized water reactors

    International Nuclear Information System (INIS)

    Washington, J.; King, J.; Shayer, Z.

    2017-01-01

    Highlights: • We evaluate transmutation fuels for plutonium and minor actinide destruction in LWRs. • We model a modified AP1000 fuel assembly in SCALE6.1. • We evaluate spectral shift absorber coatings to improve transmutation performance. - Abstract: The average nuclear power plant produces twenty metric tons of used nuclear fuel per year, containing approximately 95 wt% uranium, 1 wt% plutonium, and 4 wt% fission products and transuranic elements. Fast reactors are a preferred option for the transmutation of plutonium and minor actinides; however, an optimistic deployment time of at least 20 years indicates a need for a nearer-term solution. This study considers a method for plutonium and minor actinide transmutation in existing light water reactors and evaluates a variety of transmutation fuels to provide a common basis for comparison and to determine if any single target fuel provides superior transmutation properties. A model developed using the NEWT module in the SCALE 6.1 code package provided performance data for the burnup of the target fuel rods in the present study. The target fuels (MOX, PuO_2, Pu_3Si_2, PuN, PuUZrH, PuZrH, PuZrHTh, and PuZrO_2) are evaluated over a 1400 Effective Full Power Days (EFPD) interval to ensure each assembly remained critical over the entire burnup period. The MOX (5 wt% PuO_2), Pu_0_._3_1ZrH_1_._6Th_1_._0_8, and PuZrO_2MgO (8 wt% Pu) fuels result in the highest rate of plutonium transmutation with the lowest rate of curium-244 production. This study selected eleven different burnable absorbers (B_4C, CdO, Dy_2O_3, Er_2O_3, Eu_2O_3, Gd_2O_3, HfO_2, In_2O_3, Lu_2O_3, Sm_2O_3, and TaC) for evaluation as spectral shift absorber coatings on the outside of the fuel pellets to determine if an absorber coating can improve the transmutation properties of the target fuels. The PuZrO_2MgO (8 wt% Pu) target fuel with a coating of Lu_2O_3 resulted in the highest rate of plutonium transmutation with the greatest reduction in curium

  13. Target fuels for plutonium and minor actinide transmutation in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Washington, J., E-mail: jwashing@gmail.com [Nuclear Science and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); King, J., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Shayer, Z., E-mail: zshayer@mines.edu [Department of Physics, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States)

    2017-03-15

    Highlights: • We evaluate transmutation fuels for plutonium and minor actinide destruction in LWRs. • We model a modified AP1000 fuel assembly in SCALE6.1. • We evaluate spectral shift absorber coatings to improve transmutation performance. - Abstract: The average nuclear power plant produces twenty metric tons of used nuclear fuel per year, containing approximately 95 wt% uranium, 1 wt% plutonium, and 4 wt% fission products and transuranic elements. Fast reactors are a preferred option for the transmutation of plutonium and minor actinides; however, an optimistic deployment time of at least 20 years indicates a need for a nearer-term solution. This study considers a method for plutonium and minor actinide transmutation in existing light water reactors and evaluates a variety of transmutation fuels to provide a common basis for comparison and to determine if any single target fuel provides superior transmutation properties. A model developed using the NEWT module in the SCALE 6.1 code package provided performance data for the burnup of the target fuel rods in the present study. The target fuels (MOX, PuO{sub 2}, Pu{sub 3}Si{sub 2}, PuN, PuUZrH, PuZrH, PuZrHTh, and PuZrO{sub 2}) are evaluated over a 1400 Effective Full Power Days (EFPD) interval to ensure each assembly remained critical over the entire burnup period. The MOX (5 wt% PuO{sub 2}), Pu{sub 0.31}ZrH{sub 1.6}Th{sub 1.08}, and PuZrO{sub 2}MgO (8 wt% Pu) fuels result in the highest rate of plutonium transmutation with the lowest rate of curium-244 production. This study selected eleven different burnable absorbers (B{sub 4}C, CdO, Dy{sub 2}O{sub 3}, Er{sub 2}O{sub 3}, Eu{sub 2}O{sub 3}, Gd{sub 2}O{sub 3}, HfO{sub 2}, In{sub 2}O{sub 3}, Lu{sub 2}O{sub 3}, Sm{sub 2}O{sub 3}, and TaC) for evaluation as spectral shift absorber coatings on the outside of the fuel pellets to determine if an absorber coating can improve the transmutation properties of the target fuels. The PuZrO{sub 2}MgO (8 wt% Pu) target

  14. Plutonium fuel cycles in the spectral shift controlled reactor

    International Nuclear Information System (INIS)

    Sider, F.M.; Matzie, R.A.

    1980-01-01

    The spectral shift controlled reactor (SSCR) controls excess core reactivity during an operating cycle through the use of variable heavy water concentrations in the moderator. With heavy water in the coolant, the neutron spectrum is shifted to higher energy levels, thus increasing fertile conversion. In addition, since heavy water obviates the need for soluble boron, neutron losses to control poison are eliminated. As a result, better resource utilization is obtained in the SSCR employing plutonium fuel cycles compared to similarly fueled pressurized water reactors (PWRs). The SSCR, however, is not competitive with the PWR due to higher capital costs, operation and maintenance costs, and the heavy water costs, which outweigh the fuel cycle cost savings. The SSCR may become an attractive alternative to the PWR if uranium prices increase substantially

  15. Review of oxidation rates of DOE spent nuclear fuel : Part 1 : nuclear fuel

    International Nuclear Information System (INIS)

    Hilton, B.A.

    2000-01-01

    The long-term performance of Department of Energy (DOE) spent nuclear fuel (SNF) in a mined geologic disposal system depends highly on fuel oxidation and subsequent radionuclide release. The oxidation rates of nuclear fuels are reviewed in this two-volume report to provide a baseline for comparison with release rate data and technical rationale for predicting general corrosion behavior of DOE SNF. The oxidation rates of nuclear fuels in the DOE SNF inventory were organized according to metallic, Part 1, and non-metallic, Part 2, spent nuclear fuels. This Part 1 of the report reviews the oxidation behavior of three fuel types prototypic of metallic fuel in the DOE SNF inventory: uranium metal, uranium alloys and aluminum-based dispersion fuels. The oxidation rates of these fuels were evaluated in oxygen, water vapor, and water. The water data were limited to pure water corrosion as this represents baseline corrosion kinetics. Since the oxidation processes and kinetics discussed in this report are limited to pure water, they are not directly applicable to corrosion rates of SNF in water chemistry that is significantly different (such as may occur in the repository). Linear kinetics adequately described the oxidation rates of metallic fuels in long-term corrosion. Temperature dependent oxidation rates were determined by linear regression analysis of the literature data. As expected the reaction rates of metallic fuels dramatically increase with temperature. The uranium metal and metal alloys have stronger temperature dependence than the aluminum dispersion fuels. The uranium metal/water reaction exhibited the highest oxidation rate of the metallic fuel types and environments that were reviewed. Consequently, the corrosion properties of all DOE SNF may be conservatively modeled as uranium metal, which is representative of spent N-Reactor fuel. The reaction rate in anoxic, saturated water vapor was essentially the same as the water reaction rate. The long-term intrinsic

  16. Plutonium Proliferation: The Achilles Heel of Disarmament

    International Nuclear Information System (INIS)

    Leventhal, Paul

    2001-01-01

    Plutonium is a byproduct of nuclear fission, and it is produced at the rate of about 70 metric tons a year in the world's nuclear power reactors. Concerns about civilian plutonium ran high in the 1970s and prompted enactment of the Nuclear Non-Proliferation Act of 1978 to give the United States a veto over separating plutonium from U.S.-supplied uranium fuel. Over the years, however, so-called reactor-grade plutonium has become the orphan issue of nuclear non-proliferation, largely as a consequence of pressures from plutonium-separating countries. The demise of the fast breeder reactor and the reluctance of utilities to introduce plutonium fuel in light-water reactors have resulted in large surpluses of civilian, weapons-usable plutonium, which now approach in size the 250 tons of military plutonium in the world. Yet reprocessing of spent fuel for recovery and use of plutonium proceeds apace outside the United States and threatens to overwhelm safeguards and security measures for keeping this material out of the hands of nations and terrorists for weapons. A number of historical and current developments are reviewed to demonstrate that plutonium commerce is undercutting efforts both to stop the spread of nuclear weapons and to work toward eliminating existing nuclear arsenals. These developments include the breakdown of U.S. anti-plutonium policy, the production of nuclear weapons by India with Atoms-for-Peace plutonium, the U.S.-Russian plan to introduce excess military plutonium as fuel in civilian power reactors, the failure to include civilian plutonium and bomb-grade uranium in the proposed Fissile Material Cutoff Treaty, and the perception of emerging proliferation threats as the rationale for development of a ballistic missile defense system. Finally, immobilization of separated plutonium in high-level waste is explored as a proliferation-resistant and disarmament-friendly solution for eliminating excess stocks of civilian and military plutonium.

  17. Critical experiments with mixed oxide fuel

    International Nuclear Information System (INIS)

    Harris, D.R.

    1997-01-01

    This paper very briefly outlines technical considerations in performing critical experiments on weapons-grade plutonium mixed oxide fuel assemblies. The experiments proposed would use weapons-grade plutonium and Er 2 O 3 at various dissolved boron levels, and for specific fuel assemblies such as the ABBCE fuel assembly with five large water holes. Technical considerations described include the core, the measurements, safety, security, radiological matters, and licensing. It is concluded that the experiments are feasible at the Rensselaer Polytechnic Institute Reactor Critical Facility. 9 refs

  18. Reactions of plutonium and uranium with water: Kinetics and potential hazards

    International Nuclear Information System (INIS)

    Haschke, J.M.

    1995-12-01

    The chemistry and kinetics of reactions between water and the metals and hydrides of plutonium and uranium are described in an effort to consolidate information for assessing potential hazards associated with handling and storage. New experimental results and data from literature sources are presented. Kinetic dependencies on pH, salt concentration, temperature and other parameters are reviewed. Corrosion reactions of the metals in near-neutral solutions produce a fine hydridic powder plus hydrogen. The corrosion rate for plutonium in sea water is a thousand-fold faster than for the metal in distilled water and more than a thousand-fold faster than for uranium in sea water. Reaction rates for immersed hydrides of plutonium and uranium are comparable and slower than the corrosion rates for the respective metals. However, uranium trihydride is reported to react violently if a quantity greater than twenty-five grams is rapidly immersed in water. The possibility of a similar autothermic reaction for large quantities of plutonium hydride cannot be excluded. In addition to producing hydrogen, corrosion reactions convert the massive metals into material forms that are readily suspended in water and that are aerosolizable and potentially pyrophoric when dry. Potential hazards associated with criticality, environmental dispersal, spontaneous ignition and explosive gas mixtures are outlined

  19. Distribution of uranium, americium and plutonium in the biomass of freshwater macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Zotina, T.A.; Kalacheva, G.S.; Bolsunovsky, A.YA. [Institute of Biophysics SB RAS, Akademgorodok, Krasnoyarsk (Russian Federation)

    2010-07-01

    Accumulation of uranium ({sup 238}U), americium ({sup 241}Am) and plutonium ({sup 242}Pu) and their distribution in cell compartments and biochemical components of the biomass of aquatic plants Elodea canadensis, Ceratophyllum demersum, Myrioplyllum spicatum and aquatic moss Fontinalis antipyretica have been investigated in laboratory batch experiments. Isotopes of uranium, americium and plutonium taken up from the water by Elodea canadensis apical shoots were mainly absorbed by cell walls, plasmalemma and organelles. A small portion of isotopes (about 6-13 %) could be dissolved in cytoplasm. The major portion (76-92 %) of americium was bound to cell wall cellulose-like polysaccharides of Elodea canadensis, Myriophyllum spicatum, Ceratophyllum demersum and Fontinalis antipyretica, 8-23 % of americium activity was registered in the fraction of proteins and carbohydrates, and just a small portion (< 1%) in lipid fraction. The distribution of plutonium in the biomass fraction of Elodea was similar to that of americium. Hence, americium and plutonium had the highest affinity to cellulose-like polysaccharides in Elodea biomass. Distribution of uranium in the biomass of Elodea differed essentially from that of transuranium elements: a considerable portion of uranium was recorded in the fraction of protein and carbohydrates (51 %). From our data we can assume that uranium has higher affinity to carbohydrates than proteins. (authors)

  20. Distribution of uranium, americium and plutonium in the biomass of freshwater macrophytes

    International Nuclear Information System (INIS)

    Zotina, T.A.; Kalacheva, G.S.; Bolsunovsky, A.YA.

    2010-01-01

    Accumulation of uranium ( 238 U), americium ( 241 Am) and plutonium ( 242 Pu) and their distribution in cell compartments and biochemical components of the biomass of aquatic plants Elodea canadensis, Ceratophyllum demersum, Myrioplyllum spicatum and aquatic moss Fontinalis antipyretica have been investigated in laboratory batch experiments. Isotopes of uranium, americium and plutonium taken up from the water by Elodea canadensis apical shoots were mainly absorbed by cell walls, plasmalemma and organelles. A small portion of isotopes (about 6-13 %) could be dissolved in cytoplasm. The major portion (76-92 %) of americium was bound to cell wall cellulose-like polysaccharides of Elodea canadensis, Myriophyllum spicatum, Ceratophyllum demersum and Fontinalis antipyretica, 8-23 % of americium activity was registered in the fraction of proteins and carbohydrates, and just a small portion (< 1%) in lipid fraction. The distribution of plutonium in the biomass fraction of Elodea was similar to that of americium. Hence, americium and plutonium had the highest affinity to cellulose-like polysaccharides in Elodea biomass. Distribution of uranium in the biomass of Elodea differed essentially from that of transuranium elements: a considerable portion of uranium was recorded in the fraction of protein and carbohydrates (51 %). From our data we can assume that uranium has higher affinity to carbohydrates than proteins. (authors)

  1. Analytical calculation of the fuel temperature reactivity coefficient for pebble bed and prismatic high temperature reactors for plutonium and uranium-thorium fuels

    International Nuclear Information System (INIS)

    Talamo, Alberto

    2007-01-01

    We analytically evaluated the fuel coefficient of temperature both for pebble bed and prismatic high temperature reactors when they utilize as fuel plutonium and minor actinides from light water reactors spent fuel or a mixture of 50% uranium, enriched 20% in 235 U, and 50% thorium. In both cores the calculation involves the evaluation of the resonances integrals of the high absorbers fuel nuclides 240 Pu, 238 U and 232 Th and it requires the esteem of the Dancoff-Ginsburg factor for a pebble bed or prismatic core. The Dancoff-Ginsburg factor represents the only discriminating parameter in the results for the two different reactors types; in fact, both the pebble bed and the prismatic reactors share the same the pseudo-cross-section describing an infinite medium made of graphite filled by TRISO particles. We considered only the resolved resonances with a statistical spin factor equal to one and we took into account 267, 72, 212 resonances in the range 1.057-5692, 6.674-14485, 21.78-3472 eV for 240 Pu, 238 U and 232 Th, respectively, for investigating the influence on the fuel temperature reactivity coefficient of the variation of the TRISO kernel radius and TRISO particles packing fraction from 100, 200 to 300 μm and from 10% to 50%, respectively. Finally, in the pebble bed core, we varied the radius of the pebble for setting a fuel temperature reactivity coefficient similar to the one of a prismatic core

  2. Economic analyses of LWR fuel cycles

    International Nuclear Information System (INIS)

    Field, F.R.

    1977-05-01

    An economic comparison was made of three options for handling irradiated light-water reactor (LWR) fuel. These options are reprocessing of spent reactor fuel and subsequent recycle of both uranium and plutonium, reprocessing and recycle of uranium only, and direct terminal storage of spent fuel not reprocessed. The comparison was based on a peak-installed nuclear capacity of 507 GWe by CY 2000 and retirement of reactors after 30 years of service. Results of the study indicate that: Through the year 2000, recycle of uranium and plutonium in LWRs saves about $12 billion (FY 1977 dollars) compared with the throwaway cycle, but this amounts to only about 1.3% of the total cost of generating electricity by nuclear power. If deferred costs are included for fuel that has been discharged from reactors but not reprocessed, the economic advantage increases to $17.7 billion. Recycle of uranium only (storage of plutonium) is approximately $7 billion more expensive than the throwaway fuel cycle and is, therefore, not considered an economically viable option. The throwaway fuel cycle ultimately requires >40% more uranium resources (U 3 O 8 ) than does reprocessing spent fuel where both uranium and plutonium are recycled

  3. EDF research scenarios for closing the Plutonium cycle

    International Nuclear Information System (INIS)

    Le Mer, Joël; Garzenne, Claude; Lemasson, David

    2013-01-01

    Conclusion: → There are various solutions to plutonium fuel closure; → Natural uranium consumption is reduced: • Full generation IV fleet is obviously the most efficient; • Symbiotic fleet makes a better use of its advanced reactors. → Plutonium inventory reaches an equilibrium between 700 tons and 1150 tons. • The multi-recycling of spent MOX fuel must be a long term solution in order to reduce significantly the plutonium inventory. → Spent fuel storage is reduced when MOX spent fuel are reprocessed but sodium pools are challenging. → Fast reactors are not the only solution to use MOX spent fuel: • HCPWR is a roundabout solution: – the reduction of natural uranium is limited; – the high level waste production is high. – The reprocessing plant capacity must be increased during deployment phase → R&D must be continued to improve HCPWR design

  4. Flexible plutonium management with IFR technology

    International Nuclear Information System (INIS)

    Hannum, W.H.; Lineberry, M.J.

    1993-01-01

    From the earliest days of the development of peaceful nuclear power, it has been recognized that efficient utilization of nuclear fuel resources requires a closed fuel cycle (recycle). With a closed cycle, essentially all the energy content of mined uranium can be used, whereas a once-through light water reactor (LWR) cycle uses only ∼0.5%. Since weapons programs have used the PUREX process to extract plutonium, it has further been assumed that this is the appropriate technology for closing the uranium fuel cycle. In the United States, these assumptions were put into question by concerns over commerce in separated plutonium and the threat of diversion of this material for weapons use

  5. Inert matrix fuel in dispersion type fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Savchenko, A.M. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation)]. E-mail: sav@bochvar.ru; Vatulin, A.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Morozov, A.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Sirotin, V.L. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Dobrikova, I.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Kulakov, G.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Ershov, S.A. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Kostomarov, V.P. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Stelyuk, Y.I. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation)

    2006-06-30

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg{sup -1} (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.

  6. Inert matrix fuel in dispersion type fuel elements

    Science.gov (United States)

    Savchenko, A. M.; Vatulin, A. V.; Morozov, A. V.; Sirotin, V. L.; Dobrikova, I. V.; Kulakov, G. V.; Ershov, S. A.; Kostomarov, V. P.; Stelyuk, Y. I.

    2006-06-01

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg-1 (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.

  7. Life cycle costs for the domestic reactor-based plutonium disposition option

    International Nuclear Information System (INIS)

    Williams, K.A.

    1999-01-01

    Projected constant dollar life cycle cost (LCC) estimates are presented for the domestic reactor-based plutonium disposition program being managed by the US Department of Energy Office of Fissile Materials Disposition (DOE/MD). The scope of the LCC estimate includes: design, construction, licensing, operation, and deactivation of a mixed-oxide (MOX) fuel fabrication facility (FFF) that will be used to purify and convert weapons-derived plutonium oxides to MOX fuel pellets and fabricate MOX fuel bundles for use in commercial pressurized-water reactors (PWRs); fuel qualification activities and modification of facilities required for manufacture of lead assemblies that will be used to qualify and license this MOX fuel; and modification, licensing, and operation of commercial PWRs to allow irradiation of a partial core of MOX fuel in combination with low-enriched uranium fuel. The baseline cost elements used for this document are the same as those used for examination of the preferred sites described in the site-specific final environmental impact statement and in the DOE Record of Decision that will follow in late 1999. Cost data are separated by facilities, government accounting categories, contract phases, and expenditures anticipated by the various organizations who will participate in the program over a 20-year period. Total LCCs to DOE/MD are projected at approximately $1.4 billion for a 33-MT plutonium disposition mission

  8. Plutonium use - Present status and prospects

    International Nuclear Information System (INIS)

    Dievoet, J. van; Fossoul, E.; Jonckheere, E.; Bemden, E. van den

    1977-01-01

    The use of plutonium in thermal and fast reactors is a demonstrated, if not proven, technology. Moreover, plutonium is being produced in increasing quantities. Evaluation of this production on a world scale shows that it would be theoretically possible to construct numerous breeders and thus to make the best use of plutonium, while considerably reducing uranium consumption. This source of plutonium is nevertheless dependent on the reprocessing of irradiated fuel. Long delays in installing and adequate world reprocessing capacity are weakening the prospects for introducing breeders. Furthermore, the critical situation regarding reprocessing may delay the development of complementary reprocessing methods for fuels with a high plutonium content and high burnup. The recycling of plutonium is now a well-known technique and any objections to it hardly bear analysis. Utilization of plutonium offers an appreciable saving in terms of uranium and separative work units; and it can also be shown that immediate reprocessing of the recycling fuel is not essential for the economics of the concept. Temporary storage of recycled fuel is a particularly safe form of concentrating plutonium, namely in irradiated plutonium-bearing fuel assemblies. Finally, recycling offers such flexibility that it represents no obstacle to fuel management at power plants with light-water reactors. These strategic considerations imply that the technology of using plutonium for fabricating thermal or fast reactor fuels is both technically reliable and economically viable. The methods used in industrial facilities are fully reassuring in this respect. Although various unsolved problems exist, none seems likely to impede current developments, while the industrial experience gained has enabled the economics and reliability of the methods to be improved appreciably. Apart from the techno-economic aspects, the plutonium industry must face extremely important problems in connection with the safety of personnel

  9. Analysis of Uranium and Plutonium by MC-ICPMS

    International Nuclear Information System (INIS)

    Williams, R W

    2005-01-01

    This procedure is written as general guidance for the measurement of elemental isotopic composition by plasma-source inorganic mass spectrometry. Analytical methods for uranium and plutonium are given as examples

  10. Composition and Distribution of Tramp Uranium Contamination on BWR and PWR Fuel Rods

    International Nuclear Information System (INIS)

    Schienbein, Marcel; Zeh, Peter; Hurtado, Antonio; Rosskamp, Matthias; Mailand, Irene; Bolz, Michael

    2012-09-01

    with rising operation time and burnup. Furthermore the interpretation of alpha nuclide specific analyses in CRUD have shown that the plutonium build up in tramp uranium contaminations on PWR fuel rods is higher compared to contaminations on BWR fuel rods. This is matching the empirical result that in PWRs tramp fuel calculations based on a Pu-model give consistent estimations for different fission products, whereas for BWRs the influence of uranium has to be considered also. However, in PWR as well as in BWR plants the plutonium buildup within tramp uranium contaminations is higher than inside the fuel pellets due to a not existing self-shielding. The identified effects seem to be comparable to the RIM area of irradiated fuel pellets (outer range of fuel pellets) and lead to the conclusion that Pu-239 concentrations up to 4 % are possible in tramp fuel contaminations. With these knowledge further optimizations of the tramp fuel estimation methodology was performed. (authors)

  11. Introducing advanced nuclear fuel cycles in Canada

    International Nuclear Information System (INIS)

    Duret, M.F.

    1978-05-01

    The ability of several different advanced fuel cycles to provide energy for a range of energy growth scenarios has been examined for a few special situations of interest in Canada. Plutonium generated from the CANDU-PHW operating on natural uranium is used to initiate advanced fuel cycles in the year 2000. The four fuel cycles compared are: 1) natural uranium in the CANDU-PHW; 2) high burnup thorium cycle in the CANDU-PHW; 3) self-sufficient thorium cycle in the CANDU-PHW; 4) plutonium-uranium cycle in a fast breeder reactor. The general features of the results are quite clear. While any plutonium generated prior to the introduction of the advanced fuel cycle remains, system requirements for natural uranium for each of the advanced fuel cycles are the same and are governed by the rate at which plants operating on natural uranium can be retired. When the accumulated plutonium inventory has been entirely used, natural uranium is again required to provide inventory for the advanced fuel cycle reactors. The time interval during which no uranium is required varies only from about 25 to 40 years for both thorium cycles, depending primarily on the energy growth rate. The breeder does not require the entire plutonium inventory produced and so would call for less processing of fuel from the PHW reactors. (author)

  12. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    International Nuclear Information System (INIS)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-01-01

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: (1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs; (2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs; (3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs; and (4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs

  13. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  14. Civil plutonium held in France in December 31, 2000

    International Nuclear Information System (INIS)

    2002-02-01

    Spent fuels comprise about 1% of plutonium which is separated during the reprocessing and recycled to prepare the mixed uranium-plutonium fuel (MOX), which in turn is burnt in PWRs. Plutonium can be in a non-irradiated or separated form, or in an irradiated form when contained in the spent fuel. Each year, in accordance with the 1997 directives relative to the management of plutonium, France has to make a status of its civil plutonium stock and communicate it to the IAEA using a standard model form. This short document summarizes the French plutonium stocks at the end of 1999 and 2000. (J.S.)

  15. Burning weapons-grade plutonium in reactors

    International Nuclear Information System (INIS)

    Newman, D.F.

    1993-06-01

    As a result of massive reductions in deployed nuclear warheads, and their subsequent dismantlement, large quantities of surplus weapons- grade plutonium will be stored until its ultimate disposition is achieved in both the US and Russia. Ultimate disposition has the following minimum requirements: (1) preclude return of plutonium to the US and Russian stockpiles, (2) prevent environmental damage by precluding release of plutonium contamination, and (3) prevent proliferation by precluding plutonium diversion to sub-national groups or nonweapons states. The most efficient and effective way to dispose of surplus weapons-grade plutonium is to fabricate it into fuel and use it for generation of electrical energy in commercial nuclear power plants. Weapons-grade plutonium can be used as fuel in existing commercial nuclear power plants, such as those in the US and Russia. This recovers energy and economic value from weapons-grade plutonium, which otherwise represents a large cost liability to maintain in safeguarded and secure storage. The plutonium remaining in spent MOX fuel is reactor-grade, essentially the same as that being discharged in spent UO 2 fuels. MOX fuels are well developed and are currently used in a number of LWRs in Europe. Plutonium-bearing fuels without uranium (non-fertile fuels) would require some development. However, such non-fertile fuels are attractive from a nonproliferation perspective because they avoid the insitu production of additional plutonium and enhance the annihilation of the plutonium inventory on a once-through fuel cycle

  16. Modern new nuclear fuel characteristics and radiation protection aspects.

    Science.gov (United States)

    Terry, Ian R

    2005-01-01

    The glut of fissile material from reprocessing plants and from the conclusion of the cold war has provided the opportunity to design new fuel types to beneficially dispose of such stocks by generating useful power. Thus, in addition to the normal reactor core complement of enriched uranium fuel assemblies, two other types are available on the world market. These are the ERU (enriched recycled uranium) and the MOX (mixed oxide) fuel assemblies. Framatome ANP produces ERU fuel assemblies by taking feed material from reprocessing facilities and blending this with highly enriched uranium from other sources. MOX fuel assemblies contain plutonium isotopes, thus exploiting the higher neutron yield of the plutonium fission process. This paper describes and evaluates the gamma, spontaneous and alpha reaction neutron source terms of these non-irradiated fuel assembly types by defining their nuclear characteristics. The dose rates which arise from these terms are provided along with an overview of radiation protection aspects for consideration in transporting and delivering such fuel assemblies to power generating utilities.

  17. Mixed Uranium/Refractory Metal Carbide Fuels for High Performance Nuclear Reactors

    International Nuclear Information System (INIS)

    Knight, Travis; Anghaie, Samim

    2002-01-01

    Single phase, solid-solution mixed uranium/refractory metal carbides have been proposed as an advanced nuclear fuel for advanced, high-performance reactors. Earlier studies of mixed carbides focused on uranium and either thorium or plutonium as a fuel for fast breeder reactors enabling shorter doubling owing to the greater fissile atom density. However, the mixed uranium/refractory carbides such as (U, Zr, Nb)C have a lower uranium densities but hold significant promise because of their ultra-high melting points (typically greater than 3700 K), improved material compatibility, and high thermal conductivity approaching that of the metal. Various compositions of (U, Zr, Nb)C were processed with 5% and 10% metal mole fraction of uranium. Stoichiometric samples were processed from the constituent carbide powders, while hypo-stoichiometric samples with carbon-to-metal (C/M) ratios of 0.92 were processed from uranium hydride, graphite, and constituent refractory carbide powders. Processing techniques of cold uniaxial pressing, dynamic magnetic compaction, sintering, and hot pressing were investigated to optimize the processing parameters necessary to produce high density (low porosity), single phase, solid-solution mixed carbide nuclear fuels for testing. This investigation was undertaken to evaluate and characterize the performance of these mixed uranium/refractory metal carbides for high performance, ultra-safe nuclear reactor applications. (authors)

  18. The flashcal process for the fabrication of fuel-metal oxides using the whiteshell roto-spray calciner

    International Nuclear Information System (INIS)

    Sridhar, T.S.

    1988-01-01

    A one-step, continuous, thermochemical calcination process, called the FLASHCAL (Flash Calcination) process has been developed for the production of single- and mixed-oxide powders of fuel metals (uranium, thorium and plutonium) from the respective nitrate solutions using the Whiteshell Roto-Spray Calciner (RSC). The metal-nitrate feed solution, either by itself or mixed with a suitable chemical reactant or additive, is converted to its oxide powder in the RSC at temperatures between 300 and 600 0 C. Rapid denitration takes place in the calciner, yielding the metal-oxide powders while simultaneously destroying any excess chemical additive and reaction by-products. In the production of precursor oxide powders suitable for fuel fabrication, the FLASHCAL process has advantages over batch calcination and other processes that involve precipitation and filtration steps because fewer processing and handling operations are needed. Results obtained with thorium nitrate and uranium nitrate-thorium nitrate mixtures indicate that some measure of control over the size distribution and morphology of the oxide product powders is possible in this process with the proper selection of chemical additive, as well as the operating parameters of the calciner

  19. Communication received from the United Kingdom of Great Britain and Northern Ireland concerning its policies regarding the management of plutonium. Statements on the management of plutonium and of highly enriched uranium

    International Nuclear Information System (INIS)

    2003-01-01

    The Director General has received a Note Verbale, dated 17 July 2003, from the Permanent Mission of the United Kingdom of Great Britain and Northern Ireland to the IAEA in the enclosures of which the Government of the United Kingdom, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/549 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for its national holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2002. The Government of the United Kingdom has also made available a statement of its annual figures for holdings of civil high enriched uranium (HEU), and of civil depleted, natural and low enriched uranium (DNLEU) in the civil nuclear fuel cycle, as of 31 December 2002. 3. In the light of the requests expressed by the Government of the United Kingdom in its Note Verbale of 1 December 1997 concerning its policies regarding the management of plutonium (INFCIRC/549 of 16 March 1998) and in its Note Verbale of 17 July 2003, the Note Verbale of 17 July 2003 and the enclosures thereto are attached for the information of all Member States

  20. Performance evaluation of WDXRF as a process control technique for MOX fuel fabrication

    International Nuclear Information System (INIS)

    Pandey, A.; Khan, F.A.; Das, D.K.; Behere, P.G.; Afzal, Mohd

    2015-01-01

    This paper presents studies on Wavelength Dispersive X-Ray Fluorescence (WDXRF), as a powerful non destructive technique (NDT) for the compositional analysis of various types of MOX fuels. The sample has come after mixing and milling of UO 2 and PuO 2 powder for the estimation of plutonium, as a process control step of fabrication of (U, Pu)O 2 mixed oxide (MOX) fuel. For the characterization for heavy metal in various MOX fuel, a WDXRF method was established as a process control technique. The attractiveness of our system is that it can analyze the samples in solid form as well as in liquid form. The system is adapted in a glove box for handling of plutonium based fuels. The glove box adapted system was optimized with Uranium and Thorium based MOX sample before introduction of Pu. Uranium oxide and thorium oxide have been estimated in uranium thorium MOX samples. Standard deviation for the analysis of U 3 O 8 and ThO 2 were found to be 0.14 and 0.15 respectively. The results are validated against the conventional wet chemical methods of analysis. (author)

  1. Plutonium rock-like fuel LWR nuclear characteristics and transient behavior in accidents

    Energy Technology Data Exchange (ETDEWEB)

    Akie, Hiroshi; Anoda, Yoshinari; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yamaguchi, Chouichi; Sugo, Yukihiro

    1998-03-01

    For the disposition of excess plutonium, rock-like oxide (ROX) fuel systems based on zirconia (ZrO{sub 2}) or thoria (ThO{sub 2}) have been studied. Safety analysis of ROX fueled PWR showed it is necessary to increase Doppler reactivity coefficient and to reduce power peaking factor of zirconia type ROX (Zr-ROX) fueled core. For these improvements, Zr-ROX fuel composition was modified by considering additives of ThO{sub 2}, UO{sub 2} or Er{sub 2}O{sub 3}, and reducing Gd{sub 2}O{sub 3} content. As a result of the modification, comparable, transient behavior to UO{sub 2} fuel PWR was obtained with UO{sub 2}-Er{sub 2}O{sub 3} added Zr-ROX fuel, while the plutonium transmutation capability is slightly reduced. (author)

  2. Recycling of reprocessed uranium

    International Nuclear Information System (INIS)

    Randl, R.P.

    1987-01-01

    Since nuclear power was first exploited in the Federal Republic of Germany, the philosophy underlying the strategy of the nuclear fuel cycle has been to make optimum use of the resource potential of recovered uranium and plutonium within a closed fuel cycle. Apart from the weighty argument of reprocessing being an important step in the treatment and disposal of radioactive wastes, permitting their optimum ecological conditioning after the reprocessing step and subsequent storage underground, another argument that, no doubt, carried weight was the possibility of reducing the demand of power plants for natural uranium. In recent years, strategies of recycling have emerged for reprocessed uranium. If that energy potential, too, is to be exploited by thermal recycling, it is appropriate to choose a slightly different method of recycling from the one for plutonium. While the first generation of reprocessed uranium fuel recycled in the reactor cuts down natural uranium requirement by some 15%, the recycling of a second generation of reprocessed, once more enriched uranium fuel helps only to save a further three per cent of natural uranium. Uranium of the second generation already carries uranium-232 isotope, causing production disturbances, and uranium-236 isotope, causing disturbances of the neutron balance in the reactor, in such amounts as to make further fabrication of uranium fuel elements inexpedient, even after mixing with natural uranium feed. (orig./UA) [de

  3. Glutarimidedioxime: a complexing and reducing reagent for plutonium recovery from spent nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Xian, Liang [Radiochemistry Department, China Institute of Atomic Energy, Beijing (China); Tian, Guoxin [Radiochemistry Department, China Institute of Atomic Energy, Beijing (China); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Beavers, Christine M.; Teat, Simon J. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Shuh, David K. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2016-04-04

    Efficient separation processes for recovering uranium and plutonium from spent nuclear fuel are essential to the development of advanced nuclear fuel cycles. The performance characteristics of a new salt-free complexing and reducing reagent, glutarimidedioxime (H{sub 2}A), are reported for recovering plutonium in a PUREX process. With a phase ratio of organic to aqueous of up to 10:1, plutonium can be effectively stripped from 30 % tributyl phosphate (TBP) in kerosene into 1 m HNO{sub 3} with H{sub 2}A. The complexation-reduction mechanism is illustrated with the combination of UV/Vis absorption spectra and the crystal structure of a Pu{sup IV} complex with the reagent. The fast stripping rate and the high efficiency for stripping Pu{sup IV}, through the complexation-reduction mechanism, is suitable for use in centrifugal contactors with very short contact/resident times, thereby offering significant advantages over conventional processes. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Plutonium determination by isotope dilution

    International Nuclear Information System (INIS)

    Lucas, M.

    1980-01-01

    The principle is to add to a known amount of the analysed solution a known amount of a spike solution consisting of plutonium 242. The isotopic composition of the resulting mixture is then determined by surface ionization mass spectrometry, and the plutonium concentration in the solution is deduced, from this measurement. For irradiated fuels neutronic studies or for fissile materials balance measurements, requiring the knowledge of the ratio U/Pu or of concentration both uranium and plutonium, it is better to use the double spike isotope dilution method, with a spike solution of known 233 U- 242 Pu ratio. Using this method, the ratio of uranium to plutonium concentration in the irradiated fuel solution can be determined without any accurate measurement of the mixed amounts of sample and spike solutions. For fissile material balance measurements, the uranium concentration is determined by using single isotope dilution, and the plutonium concentration is deduced from the ratio Pu/U and U concentration. The main advantages of isotope dilution are its selectivity, accuracy and very high sensitivity. The recent improvements made to surface ionization mass spectrometers have considerably increased the precision of the measurements; a relative precision of about 0.2% to 0.3% is obtained currently, but it could be reduced to 0.1%, in the future, with a careful control of the experimental procedures. The detection limite is around 0.1 ppb [fr

  5. Study of physico-chemical release of uranium and plutonium oxides during the combustion of polycarbonate and of ruthenium during the combustion of solvents used in the reprocessing of nuclear fuel

    International Nuclear Information System (INIS)

    Bouilloux, L.

    1998-01-01

    The level of consequences concerning a fire in a nuclear facility is in part estimated by the quantities and the physico-chemical forms of radioactive compounds that may be emitted out of the facility. It is therefore necessary to study the contaminant release from the fire. Because of the multiplicity of the scenarios, two research subjects were retained. The first one concerns the study of the uranium or plutonium oxides chemical release during the combustion of the polycarbonate glove box sides. The second one is about the physico chemical characterisation of the ruthenium release during the combustion of an organic solvent mixture (tributyl phosphate-dodecane) used for the nuclear fuel reprocessing. Concerning the two research subjects, the chemical release, i.e. means the generation of contaminant compounds gaseous in the fire, was modelled using thermodynamical simulations. Experiments were done in order to determine the ruthenium release factor during solvent combustion. A cone calorimeter was used for small scale experiments. These results were then validated by large scale tests under conditions close to the industrial process. Thermodynamical simulations, for the two scenarios studied. Furthermore, the experiments on solvent combustion allowed the determination of a suitable ruthenium release factor. Finally, the mechanism responsible of the ruthenium release has been found. (author)

  6. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    STAN, MARIUS [Los Alamos National Laboratory; HECKER, SIEGFRIED S. [Los Alamos National Laboratory

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  7. Nuclear weapon relevant materials and preventive arms control. Uranium-free fuels for plutonium elimination and spallation neutron sources

    International Nuclear Information System (INIS)

    Liebert, Wolfgang; Englert, Matthias; Pistner, Christoph

    2009-01-01

    technological challenges of nuclear non-proliferation, which are directly connected with the central role of weapon-relevant materials, and it is trying to present practical solutions on a technical basis: - Discover paths for the disposal of existing amounts of nuclear weapon-relevant materials elaborating on the example of technically-based plutonium disposal options: central technical questions of the possible use of uranium-free inert matrix fuel (IMF) in currently used light water reactors will be addressed in order to clarify which advantages or disadvantages do exist in comparison to other disposal options. The investigation is limited on the comparison with one other reactor-based option, the use of uranium-plutonium mixed-oxide (MOX) fuels. - Analysis of proliferation relevant potentials of new nuclear technologies (accessibility of weapon materials): Exemplary investigation of spallation neutron sources in order to improve this technology by a more proliferation resistant shaping. Although they are obviously capable to breed nuclear weapon-relevant materials like plutonium, uranium-233 or tritium, there is no comprehensive analysis of nonproliferation aspects of spallation neutron sources up to now. Both project parts provide not only contributions to the concept of preventive arms control but also to the shaping of technologies, which is oriented towards the criteria of proliferation resistance.

  8. Method of chemical reprocessing of irradiated nuclear fuels (especially fuels containing uranium)

    International Nuclear Information System (INIS)

    Koch, G.

    1975-01-01

    The invention deals with a method for the extraction especially of fast breeder fuels of high burn-up. A quaternary ammonium nitrate of high molecular weight is put into an organic diluting medium as extraction agent, corresponding to the general formula NRR'R''R'''NO 3 where R,R' and R'' are aliphatic radicals, R''' a methyl radical and the sum of the C atoms is greater than 16. After the extraction of the aqueous nitric acid containing nuclear fuel solution with this extracting agent, uranium, plutonium (or also thorium) can be found to a very high percentage in the organic phase and can be practically quantitatively back-extracted by means of diluted nitric acid, sulphuric acid or acetic acid. By using 30 volume percent tricapryl methyl ammonium nitrate in diethyl benzene for example, a distribution coefficient of 10.3 is obtained for uranium. (RB/LH) [de

  9. Performance evaluation of indigenous controlled potential coulometer for the determination of uranium and plutonium

    International Nuclear Information System (INIS)

    Sharma, H.S.; Jisha, V.; Noronha, D.M.; Sharma, M.K.; Aggarwal, S.K.

    2007-09-01

    We have carried out performance evaluation of indigenously manufactured controlled potential coulometer for the determination of uranium and plutonium respectively in Rb 2 U(SO 4 ) 3 and K 4 Pu(SO 4 ) 4 chemical assay standards. The coulometric results obtained on uranium determination showed an insignificant difference as compared with the biamperometric results at 95% and 99.9% confidence levels while for plutonium determination showed a difference of -0.4% at 95% with respect to expected value. The results obtained show that indigenous coulometer is suitable for uranium and plutonium determination in chemical assay standards. (author)

  10. Development of metallic uranium recovery technology from uranium oxide by Li reduction and electrorefining

    International Nuclear Information System (INIS)

    Tokiwai, Moriyasu; Kawabe, Akihiro; Yuda, Ryouichi; Usami, Tsuyoshi; Fujita, Reiko; Nakamura, Hitoshi; Yahata, Hidetsugu

    2002-01-01

    The purpose of the study is to develop technology for pre-treatment of oxide fuel reprocessing through pyroprocess. In the pre-treatment process, it is necessary to reduce actinide oxide to metallic form. This paper outlines some experimental results of uranium oxide reduction and recovery of refined metallic uranium in electrorefining. Both uranium oxide granules and pellets were used for the experiments. Uranium oxide granules was completely reduced by lithium in several hours at 650degC. Reduced uranium pellets by about 70% provided a simulation of partial reduction for the process flow design. Almost all adherent residues of Li and Li 2 O were successfully washed out with fresh LiCl salt. During electrorefining, metallic uranium deposited on the iron cathode as expected. The recovery efficiencies of metallic uranium from reduced uranium oxide granules and from pellets were about 90% and 50%, respectively. The mass balance data provided the technical bases of Li reduction and refining process flow for design. (author)

  11. Survey of plutonium and uranium atom ratios and activity levels in Mortandad Canyon

    Energy Technology Data Exchange (ETDEWEB)

    Gallaher, B.M.; Benjamin, T.M.; Rokop, D.J.; Stoker, A.K.

    1997-09-22

    For more than three decades Mortandad Canyon has been the primary release area of treated liquid radioactive waste from the Los Alamos National Laboratory (Laboratory). In this survey, six water samples and seven stream sediment samples collected in Mortandad Canyon were analyzed by thermal ionization mass spectrometry (TIMS) to determine the plutonium and uranium activity levels and atom ratios. Be measuring the {sup 240}Pu/{sup 239}Pu atom ratios, the Laboratory plutonium component was evaluated relative to that from global fallout. Measurements of the relative abundance of {sup 235}U and {sup 236}U were also used to identify non-natural components. The survey results indicate the Laboratory plutonium and uranium concentrations in waters and sediments decrease relatively rapidly with distance downstream from the major industrial sources. Plutonium concentrations in shallow alluvial groundwater decrease by approximately 1000 fold along a 3000 ft distance. At the Laboratory downstream boundary, total plutonium and uranium concentrations were generally within regional background ranges previously reported. Laboratory derived plutonium is readily distinguished from global fallout in on-site waters and sediments. The isotopic ratio data indicates off-site migration of trace levels of Laboratory plutonium in stream sediments to distances approximately two miles downstream of the Laboratory boundary.

  12. Survey of plutonium and uranium atom ratios and activity levels in Mortandad Canyon

    Energy Technology Data Exchange (ETDEWEB)

    Gallaher, B.M.; Efurd, D.W.; Rokop, D.J.; Benjamin, T.M. [Los Alamos National Lab., NM (United States); Stoker, A.K. [Science Applications, Inc., White Rock, NM (United States)

    1997-10-01

    For more than three decades, Mortandad Canyon has been the primary release area of treated liquid radioactive waste from the Los Alamos National Laboratory (Laboratory). In this survey, six water samples and seven stream sediment samples collected in Mortandad Canyon were analyzed by thermal ionization mass spectrometry to determine the plutonium and uranium activity levels and atom ratios. By measuring the {sup 240}Pu/{sup 239}Pu atom ratios, the Laboratory plutonium component was evaluated relative to that from global fallout. Measurements of the relative abundance of {sup 235}U and {sup 236}U were also used to identify non-natural components. The survey results indicate that the Laboratory plutonium and uranium concentrations in waters and sediments decrease relatively rapidly with distance downstream from the major industrial sources. Plutonium concentrations in shallow alluvial groundwater decrease by approximately 1,000-fold along a 3,000-ft distance. At the Laboratory downstream boundary, total plutonium and uranium concentrations were generally within regional background ranges previously reported. Laboratory-derived plutonium is readily distinguished from global fallout in on-site waters and sediments. The isotopic ratio data indicate off-site migration of trace levels of Laboratory plutonium in stream sediments to distances approximately two miles downstream of the Laboratory boundary.

  13. Survey of plutonium and uranium atom ratios and activity levels in Mortandad Canyon

    International Nuclear Information System (INIS)

    Gallaher, B.M.; Efurd, D.W.; Rokop, D.J.; Benjamin, T.M.; Stoker, A.K.

    1997-10-01

    For more than three decades, Mortandad Canyon has been the primary release area of treated liquid radioactive waste from the Los Alamos National Laboratory (Laboratory). In this survey, six water samples and seven stream sediment samples collected in Mortandad Canyon were analyzed by thermal ionization mass spectrometry to determine the plutonium and uranium activity levels and atom ratios. By measuring the 240 Pu/ 239 Pu atom ratios, the Laboratory plutonium component was evaluated relative to that from global fallout. Measurements of the relative abundance of 235 U and 236 U were also used to identify non-natural components. The survey results indicate that the Laboratory plutonium and uranium concentrations in waters and sediments decrease relatively rapidly with distance downstream from the major industrial sources. Plutonium concentrations in shallow alluvial groundwater decrease by approximately 1,000-fold along a 3,000-ft distance. At the Laboratory downstream boundary, total plutonium and uranium concentrations were generally within regional background ranges previously reported. Laboratory-derived plutonium is readily distinguished from global fallout in on-site waters and sediments. The isotopic ratio data indicate off-site migration of trace levels of Laboratory plutonium in stream sediments to distances approximately two miles downstream of the Laboratory boundary

  14. Survey of plutonium and uranium atom ratios and activity levels in Mortandad Canyon

    International Nuclear Information System (INIS)

    Gallaher, B.M.; Benjamin, T.M.; Rokop, D.J.; Stoker, A.K.

    1997-01-01

    For more than three decades Mortandad Canyon has been the primary release area of treated liquid radioactive waste from the Los Alamos National Laboratory (Laboratory). In this survey, six water samples and seven stream sediment samples collected in Mortandad Canyon were analyzed by thermal ionization mass spectrometry (TIMS) to determine the plutonium and uranium activity levels and atom ratios. Be measuring the 240 Pu/ 239 Pu atom ratios, the Laboratory plutonium component was evaluated relative to that from global fallout. Measurements of the relative abundance of 235 U and 236 U were also used to identify non-natural components. The survey results indicate the Laboratory plutonium and uranium concentrations in waters and sediments decrease relatively rapidly with distance downstream from the major industrial sources. Plutonium concentrations in shallow alluvial groundwater decrease by approximately 1000 fold along a 3000 ft distance. At the Laboratory downstream boundary, total plutonium and uranium concentrations were generally within regional background ranges previously reported. Laboratory derived plutonium is readily distinguished from global fallout in on-site waters and sediments. The isotopic ratio data indicates off-site migration of trace levels of Laboratory plutonium in stream sediments to distances approximately two miles downstream of the Laboratory boundary

  15. Evaluation of gamma spectroscopy gauge for uranium-plutonium assay

    International Nuclear Information System (INIS)

    Notea, A.; Segal, Y.

    1975-01-01

    A procedure is presented for the characterization of a gamma passive method for nondestructive analysis of nuclear fuel. The approach provides an organized and systematic way for optimizing the assay system. The key function is the relative resolving power defined as the smallest relative change in the Quantity of radionuclide measured, that may be detected within a certain confidence level. This function is derived for nuclear fuel employing a model based on empirical parameters. The ability to detect changes in fuels of binary and trinary compositions with a 50 cc Ge(Li) at a 1 min counting period is discussed. As an example to a binary composition, an enriched uranium fuel was considered. The 185 keV and 1001 keV gamma lines are used for the assay of 235 U and 238 U respectively. As a trinary composition a plutonium-containing gamma line. The interference of the high energy lines is carefully analyzed, and numerical results are presented. For both cases the range of measurement under specific accuracy demands is determined. The approach described is suitable also for evaluation of other passive as well as active assay methods. (author)

  16. Review of experience with plutonium exposure assessment methodologies at the nuclear fuel reprocessing site of British Nuclear Fuels plc

    International Nuclear Information System (INIS)

    Strong, R.

    1988-01-01

    British Nuclear Fuels plc and its predecessors have provided a complete range of nuclear fuel services to utilities in the UK and elsewhere for more than 30 years. Over 30,000 ton of Magnox and Oxide fuel have been reprocessed at Sellafield. During this time substantial experience has accumulated of methodologies for the assessment of exposure to actinides, mainly isotopes of plutonium. For most of the period monitoring of personnel included assessment of systemic uptake deduced from plutonium-in-urine results. The purpose of the paper is to present some conclusions of contemporary work in this area

  17. Uranium and plutonium extraction from fluoride melts by lithium-tin alloys

    International Nuclear Information System (INIS)

    Kashcheev, I.N.; Novoselov, G.P.; Zolotarev, A.B.

    1975-01-01

    Extraction of small amounts of uranium (12 wt. % concentration) and plutonium (less than 1.10sup(-10) % concentration) from lithium fluoride melts into the lithium-tin melts is studied. At an increase of temperature from 850 to 1150 deg the rate of process increases 2.5 times. At an increase of melting time the extraction rapidly enhances at the starting moment and than its rate reduces. Plutonium is extracted into the metallic phase for 120 min. (87-96%). It behaves analogously to uranium

  18. Study on material attractiveness aspect of spent nuclear fuel of LWR and FBR cycles based on isotopic plutonium production

    International Nuclear Information System (INIS)

    Permana, Sidik; Suzuki, Mitsutoshi; Saito, Masaki; Novitrian,; Waris, Abdul; Suud, Zaki

    2013-01-01

    Highlights: • The paper analyzes the plutonium production of recycling nuclear fuel option. • To evaluate material attractiveness based on intrinsic feature of material barrier. • Evaluation based on isotopic plutonium composition of spent fuel LWR and FBR. • Even mass number of plutonium gives a significant contribution to material barrier, in particular Pu-238 and Pu-240. • Doping MA in FBR blanket is effective to increase material barrier from weapon grade plutonium to more than MOX fuel grade. - Abstract: Recycling minor actinide (MA) as well as used uranium and plutonium can be considered to reduce nuclear waste production as well as to increase the intrinsic aspect of nuclear nonproliferation as doping material. Plutonium production as a significant aspect of recycling nuclear fuel option, gives some advantages and challenges, such as fissile material utilization of plutonium as well as production of some even mass number plutonium. The study intends to evaluate the material attractiveness based on the intrinsic feature of material barrier such as plutonium composition, decay heat and spontaneous fission neutron components from spent fuel (SF) light water reactor (LWR) and fast breeder reactor (FBR) cycles. A significant contribution has been shown by decay heat (DH) and spontaneous fission neutron (SFN) of even mass number of plutonium isotopes to the total DH and SFN of plutonium element, in particular from isotopic plutonium Pu-238 and Pu-240 contributions. Longer decay cooling time and higher burnup are effective to increase the material barrier (DH and SFN) level from reactor grade plutonium level to MOX grade plutonium level. Material barrier of plutonium element from spent fuel (SF) FBR in the core regions has similarity to the material barrier profile of SF LWR which can be categorized as MOX fuel grade plutonium. Plutonium compositions, DH and SFN components are categorized as weapon grade plutonium level for FBR blanket regions with no

  19. Investigations on the oxidation of nitric acid plutonium solutions with ozone

    International Nuclear Information System (INIS)

    Boehm, M.

    1983-01-01

    The reaction of ozone with nitric acid Pu solutions was studied as a function of reaction time, acid concentration and Pu concentration. Strong nitric acid Pu solutions are important in nuclear fuel element production and reprocessing. The Pu must be converted into hexavalent Pu before precipitation from the homogeneous solution together with uranium-IV, ammonia and CO 2 in the form of ammonium uranyl/plutonyl carbonate (AUPuC). Formation of a solid phase during ozonation was observed for the first time. The proneness to solidification increases with incrasing plutonium concentrations and with decreasing acid concentrations. If the formation of a solid phase during ozonation of nitric acid Pu solutions cannot be prevented, the PU-IV oxidation process described is unsuitable for industrial purposes as Pu solutions in industrial processes have much higher concentrations than the solutions used in the present investigation. (orig./EF) [de

  20. Plutonium Focus Area research and development plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The Department of Energy (DOE) committed to a research and development program to support the technology needs for converting and stabilizing its nuclear materials for safe storage. The R and D Plan addresses five of the six material categories from the 94-1 Implementation Plan: plutonium (Pu) solutions, plutonium metals and oxides, plutonium residues, highly enriched uranium, and special isotopes. R and D efforts related to spent nuclear fuel (SNF) stabilization were specifically excluded from this plan. This updated plan has narrowed the focus to more effectively target specific problem areas by incorporating results form trade studies. Specifically, the trade studies involved salt; ash; sand, slag, and crucible (SS and C); combustibles; and scrub alloy. The plan anticipates possible disposition paths for nuclear materials and identifies resulting research requirements. These requirements may change as disposition paths become more certain. Thus, this plan represents a snapshot of the current progress and will continue to be updated on a regular basis. The paper discusses progress in safeguards and security, plutonium stabilization, special isotopes stabilization, highly-enriched uranium stabilization--MSRE remediation project, storage technologies, engineered systems, core technology, and proposed DOE/Russian technology exchange projects.

  1. Plutonium Focus Area research and development plan. Revision 1

    International Nuclear Information System (INIS)

    1996-11-01

    The Department of Energy (DOE) committed to a research and development program to support the technology needs for converting and stabilizing its nuclear materials for safe storage. The R and D Plan addresses five of the six material categories from the 94-1 Implementation Plan: plutonium (Pu) solutions, plutonium metals and oxides, plutonium residues, highly enriched uranium, and special isotopes. R and D efforts related to spent nuclear fuel (SNF) stabilization were specifically excluded from this plan. This updated plan has narrowed the focus to more effectively target specific problem areas by incorporating results form trade studies. Specifically, the trade studies involved salt; ash; sand, slag, and crucible (SS and C); combustibles; and scrub alloy. The plan anticipates possible disposition paths for nuclear materials and identifies resulting research requirements. These requirements may change as disposition paths become more certain. Thus, this plan represents a snapshot of the current progress and will continue to be updated on a regular basis. The paper discusses progress in safeguards and security, plutonium stabilization, special isotopes stabilization, highly-enriched uranium stabilization--MSRE remediation project, storage technologies, engineered systems, core technology, and proposed DOE/Russian technology exchange projects

  2. Simulation of facility operations and materials accounting for a combined reprocessing/MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Coulter, C.A.; Whiteson, R.; Zardecki, A.

    1991-01-01

    We are developing a computer model of facility operations and nuclear materials accounting for a facility that reprocesses spent fuel and fabricates mixed oxide (MOX) fuel rods and assemblies from the recovered uranium and plutonium. The model will be used to determine the effectiveness of various materials measurement strategies for the facility and, ultimately, of other facility safeguards functions as well. This portion of the facility consists of a spent fuel storage pond, fuel shear, dissolver, clarifier, three solvent-extraction stages with uranium-plutonium separation after the first stage, and product concentrators. In this facility area mixed oxide is formed into pellets, the pellets are loaded into fuel rods, and the fuel rods are fabricated into fuel assemblies. These two facility sections are connected by a MOX conversion line in which the uranium and plutonium solutions from reprocessing are converted to mixed oxide. The model of the intermediate MOX conversion line used in the model is based on a design provided by Mike Ehinger of Oak Ridge National Laboratory (private communication). An initial version of the simulation model has been developed for the entire MOX conversion and fuel fabrication sections of the reprocessing/MOX fuel fabrication facility, and this model has been used to obtain inventory difference variance estimates for those sections of the facility. A significant fraction of the data files for the fuel reprocessing section have been developed, but these data files are not yet complete enough to permit simulation of reprocessing operations in the facility. Accordingly, the discussion in the following sections is restricted to the MOX conversion and fuel fabrication lines. 3 tabs

  3. Uranium Oxide Aerosol Transport in Porous Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

    2012-01-23

    The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

  4. Choice and utilization of slightly enriched uranium fuel for high performance research reactors

    International Nuclear Information System (INIS)

    Cerles, J.M.; Schwartz, J.P.

    1978-01-01

    Problems relating to the replacement of highly enriched (90% or 93% U 235 ) uranium fuel: by moderately enriched (20% or 40% in U 235 ) metallic uranium fuel and slightly enriched (3% or 8% in U 235 ) uranium oxide fuel are discussed

  5. Reactors as a Source of Antineutrinos: Effects of Fuel Loading and Burnup for Mixed-Oxide Fuels

    Science.gov (United States)

    Bernstein, Adam; Bowden, Nathaniel S.; Erickson, Anna S.

    2018-01-01

    In a conventional light-water reactor loaded with a range of uranium and plutonium-based fuel mixtures, the variation in antineutrino production over the cycle reflects both the initial core fissile inventory and its evolution. Under an assumption of constant thermal power, we calculate the rate at which antineutrinos are emitted from variously fueled cores, and the evolution of that rate as measured by a representative ton-scale antineutrino detector. We find that antineutrino flux decreases with burnup for low-enriched uranium cores, increases for full mixed-oxide (MOX) cores, and does not appreciably change for cores with a MOX fraction of approximately 75%. Accounting for uncertainties in the fission yields in the emitted antineutrino spectra and the detector response function, we show that the difference in corewide MOX fractions at least as small as 8% can be distinguished using a hypothesis test. The test compares the evolution of the antineutrino rate relative to an initial value over part or all of the cycle. The use of relative rates reduces the sensitivity of the test to an independent thermal power measurement, making the result more robust against possible countermeasures. This rate-only approach also offers the potential advantage of reducing the cost and complexity of the antineutrino detectors used to verify the diversion, compared to methods that depend on the use of the antineutrino spectrum. A possible application is the verification of the disposition of surplus plutonium in nuclear reactors.

  6. The economics of thorium fuel cycles

    International Nuclear Information System (INIS)

    James, R.A.

    1978-01-01

    The individual cost components and the total fuel cycle costs for natural uranium and thorium fuel cycles are discussed. The thorium cycles are initiated by using either enriched uranium or plutonium. Subsequent thorium cycles utilize recycled uranium-233 and, where necessary, either uranium-235 or plutonium as topping. A calculation is performed to establish the economic conditions under which thorium cycles are economically attractive. (auth)

  7. Study of uranium-plutonium alloys containing from 0 to 20 peri cent of plutonium (1963); Etude des alliages uranium-plutonium aux concentrations comprises entre 0 et 20 pour cent de plutonium (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Paruz, H [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1963-05-15

    The work is carried out on U-Pu alloys in the region of the solid solution uranium alpha and in the two-phase region uranium alpha + the zeta phase. The results obtained concern mainly the influence of the addition of plutonium on the physical properties of the uranium (changes in the crystalline parameters, the density, the hardness) in the region of solid solution uranium alpha. In view of the discrepancies between various published results as far as the equilibrium diagram for the system U-Pu is concerned, an attempt was made to verify the extent of the different regions of the phase diagram, in particular the two phased-region. Examinations carried out on samples after various thermal treatments (in particular quenching from the epsilon phase and prolonged annealings, as well as a slow cooling from the epsilon phase) confirm the results obtained at Los Alamos and Harwell. (author) [French] L'etude porte sur des alliages U-Pu du domaine de la solution solide uranium alpha et du domaine biphase uranium + phase zeta. Les resultats obtenus concernent en premier lieu l'influence de l'addition de plutonium sur les proprietes physiques de l'uranium (changement des parametres cristallins, densite, durete) dans le domaine de la solution solide uranium alpha. Compte tenu des divergences entre les differents resultats publies en ce qui concerne le diagramme d'equilibre du systeme U-Pu, on a essaye ensuite de verifier l'etendue des differents domaines du diagramme des phases, en particulier du domaine biphase zeta + uranium alpha. Les examens par micrographie et par diffraction des rayons X des echantillons apres differents traitements thermiques (notamment trempe a partir de la phase epsilon et recuits prolonges, ainsi qu'un refroidissement lent etage a partir de la phase epsilon) confirment les resultats obtenus a Los Alamos et a Harwell. (auteur)

  8. Communication received from France concerning its policies regarding the management of plutonium. Statements on the management of plutonium and of highly enriched uranium

    International Nuclear Information System (INIS)

    2004-01-01

    The Director General has received a Note Verbale, dated 12 October 2004, from the Permanent Mission of France to the IAEA in the enclosures of which the Government of France, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/549 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2003. The Government of France has also made available a statement of its annual figures for holdings of civil high enriched uranium (HEU) as of 31 December 2003. In light of the request expressed by the Government of France in its Note Verbale of 28 November 1997 concerning its policies regarding the management of plutonium (INFCIRC/549 of 16 March 1998), the enclosures of the Note Verbale of 12 October 2004 are attached for the information of all Member States

  9. Communication received from Germany concerning its policies regarding the management of plutonium. Statements on the management of plutonium and of high enriched uranium

    International Nuclear Information System (INIS)

    2005-01-01

    The Director General has received a letter dated 18 April 2005 from the Permanent Mission of the Federal Republic of Germany to the IAEA in the enclosures of which the Government of Germany, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/549 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2004. The Government of the Federal Republic of Germany has also made available a statement of the estimated amounts of high enriched uranium (HEU) as of 31 December 2004. In light of the request expressed by the Federal Republic of Germany in its Note Verbale of 1 December 1997 concerning its policies regarding the management of plutonium (INFCIRC/549 of 16 March 1998), the enclosures of the letter of 18 April 2005 are attached for the information of all Member States

  10. Communication received from France concerning its policies regarding the management of plutonium. Statements on the management of plutonium and of highly enriched uranium

    International Nuclear Information System (INIS)

    2003-01-01

    The Director General has received a Note Verbale, dated 2 September 2003, from the Permanent Mission of France to the IAEA in the enclosures of which the Government of France, in keeping with its commitment under the Guidelines for the Management of Plutonium (contained in INFCIRC/549 of 16 March 1998 and hereinafter referred to as the 'Guidelines'), and in accordance with Annexes B and C of the Guidelines, has made available annual figures for holdings of civil unirradiated plutonium and the estimated amounts of plutonium contained in spent civil reactor fuel as of 31 December 2002. The Government of France has also made available a statement of its annual figures for holdings of civil high-enriched uranium (HEU) as of 31 December 2002. In light of the request expressed by the Government of France in its Note Verbale of 28 November 1997 concerning its policies regarding the management of plutonium (INFCIRC/549 of 16 March 1998), the enclosures of the Note Verbale of 2 September 2003 are attached for the information of all Member States

  11. Analytical calculation of the fuel temperature reactivity coefficient for pebble bed and prismatic high temperature reactors for plutonium and uranium-thorium fuels

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Department of Nuclear and Reactor Physics, Royal Institute of Technology - KTH, Roslagstullsbacken 21, S-10691 Stockholm (Sweden)]. E-mail: alby@anl.gov

    2007-01-15

    We analytically evaluated the fuel coefficient of temperature both for pebble bed and prismatic high temperature reactors when they utilize as fuel plutonium and minor actinides from light water reactors spent fuel or a mixture of 50% uranium, enriched 20% in {sup 235}U, and 50% thorium. In both cores the calculation involves the evaluation of the resonances integrals of the high absorbers fuel nuclides {sup 240}Pu, {sup 238}U and {sup 232}Th and it requires the esteem of the Dancoff-Ginsburg factor for a pebble bed or prismatic core. The Dancoff-Ginsburg factor represents the only discriminating parameter in the results for the two different reactors types; in fact, both the pebble bed and the prismatic reactors share the same the pseudo-cross-section describing an infinite medium made of graphite filled by TRISO particles. We considered only the resolved resonances with a statistical spin factor equal to one and we took into account 267, 72, 212 resonances in the range 1.057-5692, 6.674-14485, 21.78-3472 eV for {sup 240}Pu, {sup 238}U and {sup 232}Th, respectively, for investigating the influence on the fuel temperature reactivity coefficient of the variation of the TRISO kernel radius and TRISO particles packing fraction from 100, 200 to 300 {mu}m and from 10% to 50%, respectively. Finally, in the pebble bed core, we varied the radius of the pebble for setting a fuel temperature reactivity coefficient similar to the one of a prismatic core.

  12. Critical review of analytical techniques for safeguarding the thorium-uranium fuel cycle

    International Nuclear Information System (INIS)

    Hakkila, E.A.

    1978-10-01

    Conventional analytical methods applicable to the determination of thorium, uranium, and plutonium in feed, product, and waste streams from reprocessing thorium-based nuclear reactor fuels are reviewed. Separations methods of interest for these analyses are discussed. Recommendations concerning the applicability of various techniques to reprocessing samples are included. 15 tables, 218 references

  13. Fluid bed direct denitration process for plutonium nitrate to oxide conversion

    International Nuclear Information System (INIS)

    Souply, K.R.; Neal, D.H.

    1977-01-01

    The fluid bed direct-denitration process appears feasible for reprocessing Light Water Reactor fuel. Considerable experience with the fluid bed process exists in the denitration of uranyl nitrate and it shows promise for use in the denitration of plutonium nitrate. The process will require some development work before it can be used in a production-size facility. This report describes a fluid bed direct-denitration process for converting plutonium nitrate to plutonium oxide, and the information should be used when making comparisons of alternative processes or as a basis for further detailed studies

  14. Recovery of uranium and plutonium from Redox off-standard aqueous waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Holm, C.H.; Matheson, A.R.

    1949-12-31

    In the operation of countercurrent extraction columns as in the Redox process, it is possible, and probable, that from unexpected behaviour of a column, operator error, colloid formation, etc., there will result from time to time excessive losses of uranium and plutonium in the overall process. These losses will naturally accumulate in the waste streams, particularly in the aqueous waste streams. If the loss is excessively high, and such lost material can be recovered by some additional method, then if economical and within reason, the recovered materials ran be returned to a ISF column for further processing. The objective of this work has been to develop such a method to recover uranium and plutonium from such off-standard waste streams in a form whereby the uranium send plutonium can be returned to the process line and subsequently purified and separated.

  15. Process for producing uranium oxide rich compositions from uranium hexafluoride

    International Nuclear Information System (INIS)

    DeHollander, W.R.; Fenimore, C.P.

    1978-01-01

    Conversion of gaseous uranium hexafluoride to a uranium dioxide rich composition in the presence of an active flame in a reactor defining a reaction zone is achieved by separately introducing a first gaseous reactant comprising a mixture of uranium hexafluoride and a reducing carrier gas, and a second gaseous reactant comprising an oxygen-containing gas. The reactants are separated by a shielding gas as they are introduced to the reaction zone. The shielding gas temporarily separates the gaseous reactants and temporarily prevents substantial mixing and reacting of the gaseous reactants. The flame occurring in the reaction zone is maintained away from contact with the inlet introducing the mixture to the reaction zone. After suitable treatment, the uranium dioxide rich composition is capable of being fabricated into bodies of desired configuration for loading into nuclear fuel rods. Alternatively, an oxygen-containing gas as a third gaseous reactant is introduced when the uranium hexafluoride conversion to the uranium dioxide rich composition is substantially complete. This results in oxidizing the uranium dioxide rich composition to a higher oxide of uranium with conversion of any residual reducing gas to its oxidized form

  16. Simultaneous determinations of uranium, thorium, and plutonium in soft tissues by solvent extraction and alpha-spectrometry

    International Nuclear Information System (INIS)

    Singh, N.P.; Zimmerman, C.J.; Lewis, L.L.; Wrenn, M.E.

    1984-01-01

    A radiochemical procedure for the simultaneous determination of uranium, thorium, and plutonium, in soft tissues has been developed. The weighed amounts of tissues, spiked with 232 U, 242 Pu, and 229 th tracers, are wet ashed. Uranium, thorium, and plutonium are coprecipitated with iron as hydroxides, dissolved in concentrated HCl and the acidity adjusted to 10 M. Uranium and plutonium are extracted into 20% TLA solution in xylene, leaving thorium in the aqueous phase. Plutonium is back-extracted by reducing to the trivalent state with 0.05 M NH 4 I solution in 8 M HCl, and uranium is back-extracted with 0.1 M HCl. Thorium is extracted into 20% TLA solution from 4 M HNO 3 and back-extracted with 10 M HCl. Uranium, thorium and plutonium are electrodeposited separately onto platinum discs and counted alpha-spectrometrically using surface barrier silicon diodes and a multichannel analyzer. The method was developed using bovine liver and applied to dog and human tissues. The mean radiochemical recoveries of these actinides in different organs were better than 70%. 6 references, 2 tables

  17. Recovery and purification of uranium-234 from aged plutonium-238

    International Nuclear Information System (INIS)

    Keister, P.L.; Figgins, P.W.; Watrous, R.M.

    1978-01-01

    The current production methods used to recover and purify uranium-234 from aged plutonium-238 at Mound Laboratory are presented. The three chemical separation steps are described in detail. In the initial separation step, the bulk of the plutonium is precipitated as the oxalate. Successively lower levels of plutonium are achieved by anion exchange in nitrate media and by anion exchange in chloride media. The procedures used to characterize and analyze the final U 3 O 8 are given

  18. Fuel utilization in a progressive conversion reactor (PCR)

    International Nuclear Information System (INIS)

    Leyse, C.F.; Judd, J.L.

    1981-05-01

    Preliminary studies indicate that for once-through fuel cycles, the PCR offers potential improvements over current LWRs in the following major areas: improved uranium utilization (reduced uranium demand), degraded plutonium product in spent fuel, reduced plutonium content of spent fuel, reduced amount of spent fuel, reduced fissile content of spent fuel, and reduced separative work

  19. Initial data report in response to the surplus plutonium disposition environmental impact statement data call for the UO2 supply. Revision 1

    International Nuclear Information System (INIS)

    White, V.S.; Cash, J.M.; Michelhaugh, R.D.

    1997-11-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program's preparation of the draft Surplus Plutonium Disposition Environmental Impact Statement. This is one of several responses to data calls generated to provide background information on activities associated with the operation of the Mixed-Oxide (MOX) Fuel Fabrication Facility. Urania feed for the MOX Fuel Fabrication Facility may be either natural or depleted. Natural uranium typically contains 0.0057 wt% 234 U, 0.711 wt% 235 U, and the majority as 238 U. The fissile isotope is 235 U, and uranium is considered depleted if the total 235 U content is less than 0.711 wt% as found in nature. The average composition of 235 U in DOE's total depleted urania inventory is 0.20 wt%. The depleted uranium assay range proposed for use in this program is 0.2500--0.2509 wt%. Approximately 30% more natural uranium would be required than depleted uranium based on the importance of maintaining a specific fissile portion in the MOX fuel blend. If the uranium component constitutes a larger quantity of fissile material, less plutonium can be dispositioned on an annual basis. The percentage composition, referred to as assay, of low-enriched uranium necessary for controlled fission in commercial light-water nuclear power reactors is 1.8--5.0 wt% 235 U. This data report provides information on the schedule, acquisition, impacts, and conversion process for using uranium, derived from depleted uranium hexafluoride (UF 6 ), as the diluent for the weapons-grade plutonium declared as surplus. The case analyzed is use of depleted UF 6 in storage at the Portsmouth Gaseous Diffusion Plant in Piketon, Ohio, being transported to a representative UF 6 to uranium dioxide conversion facility (GE Nuclear Energy) for processing, and subsequently transported to the MOX Fuel Fabrication Facility

  20. Study of reactions between fuel (mixed oxide (UPu)Osub(2-x)) and cladding (stainless-steel) in reactors: influence of iodine compounds

    International Nuclear Information System (INIS)

    Aubert, Michel.

    1976-03-01

    The influence of iodine compounds on the development of the oxide-cladding reaction was examined. The action of iodine, cesium and cesium iodide on type 316 stainless was determined in the presence or absence of uranium oxide or mixed uranium-plutonium oxide type fuel in a closed system, isothermal or with a temperature gradient. The study of the stainless steel iodine reactions was developed in particular. These experiments showed that cesium combines with uranium oxide to give cesium uranate Cs 2 U 2 O 7 ; it is not unreasonable to suppose that cesium urano-plutonate Cs 2 (U,Pu) 2 O 7 could be formed inside the pile. It was then shown that cesium iodide in the presence of sufficiently non-stoichiometric mixed oxide could contribute towards the degradation of the stainless steel cladding. Under these conditions the reaction is accompained by a transport of manganese, chromium and iron into the hot parts of the fuel by a Van-Arkel type mechanism. This might explain the presence of metallic precipitates in the fuel, but the role assigned to molybdenum iodide in the same phenomenon is considered unlikely. Finally it is proposed to deposit a thin layer of manganese metal on the inner surface of the cladding in order to minimize the action of fission products (CsI, Te) [fr