WorldWideScience

Sample records for uranium concentrated unit

  1. Uranium concentration in fossils

    International Nuclear Information System (INIS)

    Okano, J.; Uyeda, C.

    1988-01-01

    Recently it is known that fossil bones tend to accumulate uranium. The uranium concentration, C u in fossils has been measured so far by γ ray spectroscopy or by fission track method. The authors applied secondary ion mass spectrometry, SIMS, to detect the uranium in fossil samples. The purpose of this work is to investigate the possibility of semi-quantitative analyses of uranium in fossils, and to study the correlation between C u and the age of fossil bones. The further purpose of this work is to apply SIMS to measure the distribution of C u in fossil teeth

  2. Uranium chemistry research unit

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The initial field of research of this Unit, established in 1973, was the basic co-ordination chemistry of uranium, thorium, copper, cobalt and nickel. Subsequently the interest of the Unit extended to extractive metallurgy relating to these metals. Under the term 'co-ordination chemistry' is understood the interaction of the central transition metal ion with surrounding atoms in its immediate vicinity (within bonding distance) and the influence they have on each other - for example, structural studies for determining the number and arrangement of co-ordinated atoms and spectrophotometric studies to establish how the f electron energy levels of uranium are influenced by the environment. New types of uranium compounds have been synthesized and studied, and the behaviour of uranium ions in non-aqueous systems has also received attention. This work can be applied to the development and study of extractants and new extractive processes for uranium

  3. Environmental performance evaluation of waste management system of Uranium Concentrated Unit in Caetite city, Bahia State - Brazil

    International Nuclear Information System (INIS)

    Araujo, Valeska P.; Fernandes, Horst M.; Gomiero, Luis Alberto

    2005-01-01

    The mining/milling activities have the potential to cause risks to the human health and to the environment. In uranium mining, besides inherent damages due to any mining activities there are radiological risks, that may be incurred even in short as in long terms. The large volumes of low activity mining/milling residues produced, are the great challenge in the waste management. Nowadays, the whole Brazilian uranium production come from Uranium Concentrated Unit (URA), a facility operated by Brazilian Nuclear Industry and located at a semi-arid region, in the Caetite city, Bahia state. This Unit is composed by a open pit mine and a milling facility. The present work assess the URA waste management system, the procedures adopted, focused on its environmental performance. It was observed that the waste management system is efficient in the control of the environmental impacts, however improvement chances are detected and a better performance may be reached. Concerning the liquids wastes, it was observed that the storage systems were not projected adequately. The storage capacity was not enough to support a intense rainfall period causing a overflow to the environment. In URA activities there is no radiological risk to the public, but its necessary to improve long term actions, constraints for the post-closure phase, e.g., appropriate institutional controls, restrictions on land use. Finally, it is advisable to introduce a Environmental Management System (EMS) for the whole facility. (author)

  4. Critical analysis of the management of waste system originated at the uranium mining and processing. A case study of the Concentrated Unit of Uranium - INB

    International Nuclear Information System (INIS)

    Araujo, Valeska Peres de

    2005-01-01

    The uranium world market faced a depreciation of this commodity during the last decades. Recently, decreases in the secondary supply (represented by highly enriched uranium - HEU - stocks detained by the former Soviet Union) turned out the market dependent upon primary supply again. In order to cope with this changing demands and market conditions, new uranium mining/milling projects must start operation, or at least, former uranium production plants must be improved. Environmental questions have been and certainly will continue to be a determinant factor concerning the operational feasibility of these facilities. Mining/milling activities have the potential to cause risks to the human health and to the environment. In case of uranium projects, radiological impacts shall also be taken into consideration. Amongst the most relevant environmental aspects associated with the operation of a uranium project, generated wastes are usually of major concern and deserve appropriate management strategies. As a result the objective of the present work was to examine the waste management system of the Brazilian uranium production unity located at the municipality of Caetite, northeast region of the country. An open pit mine and a milling facility compose this unit. The extraction method employed is acid heap leach (using H 2 SO 4 ). It could be assessed that the overall conceptual management strategy is in agreement with the practices adopted worldwide. Atmospheric impacts, caused by the emissions of radon and aerosols must be investigated in more details. Mathematical simulation revealed that no significant impact in groundwater is expected due to mobilization and transport of radionuclides from the milling wastes. However, the impacts of drainage water, accumulated in the open pit, into groundwater cannot be discarded yet. Screening techniques were applied to assess the potential contribution of the leached ore piles as a 226 Ra source of pollution. Our results did not allow

  5. Uranium concentrations in human bone

    International Nuclear Information System (INIS)

    Schlenker, R.A.; Oltman, B.G.

    1981-01-01

    The uranium concentration in bone from an individual injected with 239 Pu has been determined, using the fission-track method. The data are consistent with those reported about 10 years ago by Welford and Baird for New York City area residents and by Hamilton in England. They are at variance with the more recent data of Welford et al

  6. The Uranium Chemistry Research Unit

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The article discusses the research work done at the Uranium Chemistry Research Unit of the University of Port Elizabeth. The initial research programme dealt with fundamental aspects of uranium chemistry. New uranium compounds were synthesized and their chemical properties were studied. Research was also done to assist the mining industry, as well as on nuclear medicine. Special mentioning is made of the use of technetium for medical diagnosis and therapy

  7. Uranium concentrations in fossils measured by SIMS

    International Nuclear Information System (INIS)

    Uyeda, Chiaki; Okano, Jun

    1988-01-01

    Semiquantitative analyses of uranium in fossil bones and teeth were carried out by SIMS. The results show a tendency that uranium concentrations in the fossils increase with the ages of the fossils. It is noticed that fossil bones and teeth having uranium concentration of more than several hundred ppm are not rare. (author)

  8. United States uranium enrichment policies

    International Nuclear Information System (INIS)

    Roberts, R.W.

    1977-01-01

    ERDA's uranium enrichment program policies governing the manner in which ERDA's enrichment complex is being operated and expanded to meet customer requirements for separative work, research and development activities directed at providing technology alternatives for future enrichment capacity, and establishing the framework for additional domestic uranium enrichment capacity to meet the domestic and foreign nuclear industry's growing demand for enrichment services are considered. The ERDA enrichment complex consists of three gaseous diffusion plants located in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. Today, these plants provide uranium enrichment services for commercial nuclear power generation. These enrichment services are provided under contracts between the Government and the utility customers. ERDA's program involves a major pilot plant cascade, and pursues an advanced isotope separation technique for the late 1980's. That the United States must develop additional domestic uranium enrichment capacity is discussed

  9. Uranium concentrations in groundwater, northeastern Washington

    Science.gov (United States)

    Kahle, Sue C.; Welch, Wendy B.; Tecca, Alison E.; Eliason, Devin M.

    2018-04-18

    A study of uranium in groundwater in northeastern Washington was conducted to make a preliminary assessment of naturally occurring uranium in groundwater relying on existing information and limited reconnaissance sampling. Naturally occurring uranium is associated with granitic and metasedimentary rocks, as well as younger sedimentary deposits, that occur in this region. The occurrence and distribution of uranium in groundwater is poorly understood. U.S. Environmental Protection Agency (EPA) regulates uranium in Group A community water systems at a maximum contaminant level (MCL) of 30 μg/L in order to reduce uranium exposure, protect from toxic kidney effects of uranium, and reduce the risk of cancer. However, most existing private wells in the study area, generally for single family use, have not been sampled for uranium. This document presents available uranium concentration data from throughout a multi-county region, identifies data gaps, and suggests further study aimed at understanding the occurrence of uranium in groundwater.The study encompasses about 13,000 square miles (mi2) in the northeastern part of Washington with a 2010 population of about 563,000. Other than the City of Spokane, most of the study area is rural with small towns interspersed throughout the region. The study area also includes three Indian Reservations with small towns and scattered population. The area has a history of uranium exploration and mining, with two inactive uranium mines on the Spokane Indian Reservation and one smaller inactive mine on the outskirts of Spokane. Historical (1977–2016) uranium in groundwater concentration data were used to describe and illustrate the general occurrence and distribution of uranium in groundwater, as well as to identify data deficiencies. Uranium concentrations were detected at greater than 1 microgram per liter (μg/L) in 60 percent of the 2,382 historical samples (from wells and springs). Uranium concentrations ranged from less than 1 to

  10. The concentrations of uranium in marine organisms

    Energy Technology Data Exchange (ETDEWEB)

    Matsuba, Mitsue; Ishii, Toshiaki; Nakahara, Motokazu; Nakamura, Ryoichi; Watabe, Teruhisa; Hirano, Shigeki [National Inst. of Radiological Sciences, Hitachinaka, Ibaraki (Japan). Laboratory for Radioecology

    2000-07-01

    Determination of uranium in sixty-one species of marine organisms was carried out by inductively coupled plasma mass spectrometry to obtain concentration factors and to estimate the internal radiation dose. The concentrations of uranium in soft tissues of marine animals were ranged from 0.077 to 5040 ng/g wet wt. Especially, the branchial heart of cephalopod molluscs showed the specific accumulation of uranium. The concentration factor of the branchial heart of Octopus vulgaris, which indicated the highest value, was calculated to be about 1.6 x 10{sup 3}, comparing with that (3.1 ng/ml) in coastal seawaters of Japan. The concentrations of uranium in hard tissues of marine invertebrates such as clam and sea urchin were similar to those in soft tissues. In contrast, hard tissues like bone, scale, fin, etc. of fishes showed much higher concentrations of uranium than soft tissues like muscle. The concentrations of uranium of twenty-two species of algae were ranged from 2 to 310 ng/g wet wt. Particularly, the brown alga Undaria pinnatifida showed the highest value of the uranium content in the algae and its concentration factor was calculated to be 10{sup 2}. (author)

  11. The concentrations of uranium in marine organisms

    International Nuclear Information System (INIS)

    Matsuba, Mitsue; Ishii, Toshiaki; Nakahara, Motokazu; Nakamura, Ryoichi; Watabe, Teruhisa; Hirano, Shigeki

    2000-01-01

    Determination of uranium in sixty-one species of marine organisms was carried out by inductively coupled plasma mass spectrometry to obtain concentration factors and to estimate the internal radiation dose. The concentrations of uranium in soft tissues of marine animals were ranged from 0.077 to 5040 ng/g wet wt. Especially, the branchial heart of cephalopod molluscs showed the specific accumulation of uranium. The concentration factor of the branchial heart of Octopus vulgaris, which indicated the highest value, was calculated to be about 1.6 x 10 3 , comparing with that (3.1 ng/ml) in coastal seawaters of Japan. The concentrations of uranium in hard tissues of marine invertebrates such as clam and sea urchin were similar to those in soft tissues. In contrast, hard tissues like bone, scale, fin, etc. of fishes showed much higher concentrations of uranium than soft tissues like muscle. The concentrations of uranium of twenty-two species of algae were ranged from 2 to 310 ng/g wet wt. Particularly, the brown alga Undaria pinnatifida showed the highest value of the uranium content in the algae and its concentration factor was calculated to be 10 2 . (author)

  12. Uranium isotopic composition and uranium concentration in special reference material SRM A (uranium in KCl/LiCl salt matrix)

    International Nuclear Information System (INIS)

    Graczyk, D.G.; Essling, A.M.; Sabau, C.S.; Smith, F.P.; Bowers, D.L.; Ackerman, J.P.

    1997-07-01

    To help assure that analysis data of known quality will be produced in support of demonstration programs at the Fuel Conditioning Facility at Argonne National Laboratory-West (Idaho Falls, ID), a special reference material has been prepared and characterized. Designated SRM A, the material consists of individual units of LiCl/KCl eutectic salt containing a nominal concentration of 2.5 wt. % enriched uranium. Analyses were performed at Argonne National Laboratory-East (Argonne, IL) to determine the uniformity of the material and to establish reference values for the uranium concentration and uranium isotopic composition. Ten units from a batch of approximately 190 units were analyzed by the mass spectrometric isotope dilution technique to determine their uranium concentration. These measurements provided a mean value of 2.5058 ± 0.0052 wt. % U, where the uncertainty includes estimated limits to both random and systematic errors that might have affected the measurements. Evidence was found of a small, apparently random, non-uniformity in uranium content of the individual SRM A units, which exhibits a standard deviation of 0.078% of the mean uranium concentration. Isotopic analysis of the uranium from three units, by means of thermal ionization mass spectrometry with a special, internal-standard procedure, indicated that the uranium isotopy is uniform among the pellets with a composition corresponding to 0.1115 ± 0.0006 wt. % 234 U, 19.8336 ± 0.0059 wt. % 235 U, 0.1337 ± 0.0006 wt. % 236 U, and 79.9171 ± 0.0057 wt. % 238 U

  13. Uranium recovery from phosphate rocks concentrated

    International Nuclear Information System (INIS)

    Azevedo, M.F. de.

    1986-01-01

    The reserves, geological data, chemical data and technical flowsheet from COPEBRAS and Goiasfertil ores are described, including the process of mining ore concentration. Samples of Goiasfertil ores are analysed by gravimetric analysis, for phosphate, and spectrofluorimetry for uranium. (author)

  14. A method of uranium isotopes concentration analysis

    International Nuclear Information System (INIS)

    Lin Yuangen; Jiang Meng; Wu Changli; Duan Zhanyuan; Guo Chunying

    2010-01-01

    A basic method of uranium isotopes concentration is described in this paper. The iteration method is used to calculate the relative efficiency curve, by analyzing the characteristic γ energy spectrum of 235 U, 232 U and the daughter nuclide of 238 U, then the relative activity can be calculated, at last the uranium isotopes concentration can be worked out, and the result is validated by the experimentation. (authors)

  15. Activity concentration of uranium in groundwater from uranium mineralized areas and its neighborhood

    International Nuclear Information System (INIS)

    Arabi, S.A.; Funtua, I.I.; Dewu, B.B.M.; Alagbe, S.A.; Garba, M.L.; Kwaya, M.Y.; Baloga, A.D.

    2013-01-01

    Uranium mineralization in parts of northeastern Nigeria necessitated its exploration during early eighties by the Nigeria Uranium Mining Company (NUMCO) which was later abandoned. During their course of decay, uranium isotopes pass through radioactive decay stage and eventually into stable isotope of lead. The course of concern for soluble uranium in groundwater especially from the mineralized areas include ionizing radiation, chemical toxicity and reproductive defects for which ingested uranium has been implicated to have caused. This study is aimed at assessing the levels of concentration of uranium in groundwater to ascertain its compliance with the World Health Organization's (WHO) and the United State Environmental Protection Agency's (EPA) guideline for uranium in drinking water. Thirty five groundwater samples were collected using EPA's groundwater sampling protocol and analyzed at the Department of Geology, University of Cape Town using an Inductively Coupled Plasma Mass Spectrometric (ICP-MS) technique. Significant finding of this work was that there is radiological contamination of groundwater in the area. There is also an indication that the extent of radiological contamination is not much within the mineralized zones, therefore, there is likelihood that groundwater has acted as a medium of transporting and enhancing uranium in groundwater in an environment away from that of origin. About 5.7 % of the samples studied had uranium concentration above WHO and EPA's maximum contaminant level of 30 μg/L which is a major concern for inhabitants of the area. It was also apparent that radiological contamination at the southwestern part of the study area extends into the adjacent sheet (sheet 152). Uranium concentration above set standards in those areas might have originated from rocks around established mineralized zones but was transported to those contaminated areas by groundwater that leaches across the host rock and subsequently mobilizing soluble uranium

  16. Airborne uranium, its concentration and toxicity in uranium enrichment facilities

    International Nuclear Information System (INIS)

    Thomas, J.; Mauro, J.; Ryniker, J.; Fellman, R.

    1979-02-01

    The release of uranium hexafluoride and its hydrolysis products into the work environment of a plant for enriching uranium by means of gas centrifuges is discussed. The maximum permissible mass and curie concentration of airborne uranium (U) is identified as a function of the enrichment level (i.e., U-235/total U), and chemical and physical form. A discussion of the chemical and radiological toxicity of uranium as a function of enrichment and chemical form is included. The toxicity of products of UF 6 hydrolysis in the atmosphere, namely, UO 2 F 2 and HF, the particle size of toxic particulate material produced from this hydrolysis, and the toxic effects of HF and other potential fluoride compounds are also discussed. Results of an investigation of known effects of humidity and temperature on particle size of UO 2 F 2 produced by the reaction of UF 6 with water vapor in the air are reported. The relationship of the solubility of uranium compounds to their toxic effects was studied. Identification and discussion of the standards potentially applicable to airborne uranium compounds in the working environment are presented. The effectiveness of High Efficiency Particulate (HEPA) filters subjected to the corrosive environment imposed by the presence of hydrogen fluoride is discussed

  17. Obtain of uranium concentrates from fertil liquids

    International Nuclear Information System (INIS)

    Narvaez Castillo, W.A.

    1992-01-01

    This research tried to encounter the form to remove uranium from the rock in the best way, for that it was used different process like leaching, extraction, concentration and precipitation. To leach the mineral was chosen basic leaching, using a mixture of carbonate-sodium bicarbonate, this method is more adequated for the basic nature of the mineral. In extraction was used specific uranium ionic interchanges, so was chosen a tertiary amine like Alamina 336. The concentration phase is intimately binding with the extraction by ionic interchange, for the capability of resine's extraction to obtain concentrated liquids. When the liquids were obtained with high concentration of uranium in the same time were purified and then were precipitated, for that we employed a precipitant agent like: Sodium hydroxide, Amonium hydroxide, Magnesium hydroxide, Hydrogen peroxide and phosphates. With all concentrates we obtain the YELLOW CAKE

  18. Early uranium mining in the United States

    International Nuclear Information System (INIS)

    Hahne, F.J.

    1990-01-01

    Uranium mining in the United States is closer to 100 years old than to the 200 years since the discovery of the element. Even then, for much of this time the rock was brought out of the ground for reasons other than its uranium content. The history of the US uranium industry is divided into five periods which follow roughly chronologically upon one another, although there is some overlap. The periods cover: uranium use in glass and ceramics; radium extraction; vanadium extraction; government uranium extraction and commercial extraction. (author)

  19. Uranium concentration monitor manual, secondary intermediate evaporator

    International Nuclear Information System (INIS)

    Russo, P.A.; Sprinkle, J.K. Jr.; Slice, R.W.; Strittmatter, R.B.

    1985-08-01

    This manual describes the design, operation, and measurement control procedures for the automated uranium concentration monitor on the secondary intermediate evaporator at the Oak Ridge Y-12 Plant. The nonintrusive monitor provides a near-real time readout of uranium concentration in the return loop of time recirculating evaporator for purposes of process monitoring and control. A detector installed near the bottom of the return loop is used to acquire spectra of gamma rays from the evaporator solutions during operation. Pulse height analysis of each spectrum gives the information required to deduce the concentration of uranium in the evaporator solution in near-real time. The visual readout of concentration is updated at the end of every assay cycle. The readout includes an alphanumeric display of uranium concentration and an illuminated, colored LED (in an array of colored LEDs) indicating whether the measured concentration is within (or above or below) the desired range. An alphanumeric display of evaporator solution acid molarity is also available to the operator. 9 refs., 16 figs., 4 tabs

  20. Uranium concentration monitor manual: 2300 system

    International Nuclear Information System (INIS)

    Russo, P.A.; Sprinkle, J.K. Jr.; Stephens, M.M.

    1985-04-01

    This manual describes the design, operation, and procedures for measurement control for the automated uranium concentration monitor on the 2300 solvent extraction system at the Oak Ridge Y-12 Plant. The nonintrusive monitor provides a near-real time readout of uranium concentration at two locations simultaneously in the solvent extraction system for process monitoring and control. Detectors installed at the top of the extraction column and at the bottom of the backwash column acquire spectra of gamma rays from the solvent extraction solutions in the columns. Pulse-height analysis of these spectra gives the concentration of uranium in the organic product of the extraction column and in the aqueous product of the solvent extraction system. The visual readouts of concentrations for process monitoring are updated every 2 min for both detection systems. Simultaneously, the concentration results are shipped to a remote computer that has been installed by Y-12 to demonstrate automatic control of the solvent extraction system based on input of near-real time process operation information. 8 refs., 13 figs., 4 tabs

  1. Lime, agent to uranium concentration; La chaux comme agent de concentration de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Mouret, P; Le Bris, J; Kremer, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Gautier, R [Etablissement Kuhlmann, Service d' Etudes et de Pilotages Industriels (France)

    1958-07-01

    Choice of the process according to health requirements. Description of the process: dissolution of uranium by sulfuric leaching of ores, precipitation of uranium by lime, re-dissolution of the concentrate with nitric ions, purification by T.B.P. finally resulting in pure uranyl nitrate solution containing 400 g/litre. (author)Fren. [French] Les raisons du choix du procede en fonction des imperatifs d'hygiene, sont exposees ainsi que le procede qui consiste en une dissolution de l'uranium des minerais par lixiviation sulfurique, precipitation de l'uranium par la chaux et redissolution du concentre en presence d'ions nitriques, purification par le T.B.P. et obtention d'un concentre final de nitrate d'uranyle pur a 400 g/litre. (auteur)

  2. Concentration of uranium in seawater by flotation

    International Nuclear Information System (INIS)

    Nozaki, Toru; Yamashita, Hiroshi

    1986-01-01

    A method has been developed for the concentration of uranium in seawater by precipitation flotation-carbonate extraction-ion flotation. Uranium in seawater was coprecipitated with hydrated iron (III) oxide by adjusting the pH to 5.5 after addition of 1.0 x 10 -3 mol/l of iron (III) and agitating for 1 hr, and the precipitate was floated with 1.0 x 10 -5 mol/l of sodium oleate and 5.0 x 10 -5 mol/l of sodium lauryl sulfate by bubbling nitrogen through the seawater for 15 min. Uranium was extracted from the precipitate scum at the yield of 89 % with 100 ml of 1.8 % of ammonium carbonate solution by agitating for 2 hr, and floated with 1.2 x 10 -3 mol/l of cetylpyridinium chloride by bubbling nitrogen through the extract diluted 5-fold for 30 min in the recovery of about 100 %. The fairly selective recovery of uranium was obtained from 4 l of seawater at the yield of 87 % throughout the entire process. (author)

  3. Uranium enrichment services in the United States

    International Nuclear Information System (INIS)

    Jelinek, P.; Lenders, M.

    1994-01-01

    The United States of America is the world's largest market for uranium enrichment services. After the disintegration of the Soviet Union, Russian uranium is entering the world market on an increasing scale. The U.S. tries to protect its market and, in this connection, also the European market from excessive price drops by taking anti-dumping measures. In order to become more competitive, American companies have adapted modern enrichment techniques from Europe. European - U.S. joint ventures are to help, also technically and economically, to integrate military uranium, accumulating as a consequence of worldwide disarmament, into the commercial fuel cycle for the peaceful use of nuclear power. (orig.) [de

  4. Modeled atmospheric radon concentrations from uranium mines

    Energy Technology Data Exchange (ETDEWEB)

    Droppo, J.G.

    1985-04-01

    Uranium mining and milling operations result in the release of radon from numerous sources of various types and strengths. The US Environmental Protection Agency (EPA) under the Clean Air Act, is assessing the health impact of air emissions of radon from underground uranium mines. In this case, the radon emissions may impact workers and residents in the mine vicinity. To aid in this assessment, the EPA needs to know how mine releases can affect the radon concentrations at populated locations. To obtain this type of information, Pacific Northwest Laboratory used the radon emissions, release characteristics and local meterological conditions for a number of mines to model incremental radon concentrations. Long-term, average, incremental radon concentrations were computed based on the best available information on release rates, plume rise parameters, number and locations of vents, and local dispersion climatology. Calculations are made for a model mine, individual mines, and multiple mines. Our approach was to start with a general case and then consider specific cases for comparison. A model underground uranium mine was used to provide definition of the order of magnitude of typical impacts. Then computations were made for specific mines using the best mine-specific information available for each mine. These case study results are expressed as predicted incremental radon concentration contours plotted on maps with local population data from a previous study. Finally, the effect of possible overlap of radon releases from nearby mines was studied by calculating cumulative radon concentrations for multiple mines in a region with many mines. The dispersion model, modeling assumptions, data sources, computational procedures, and results are documented in this report. 7 refs., 27 figs., 18 tabs.

  5. Modeled atmospheric radon concentrations from uranium mines

    International Nuclear Information System (INIS)

    Droppo, J.G.

    1985-04-01

    Uranium mining and milling operations result in the release of radon from numerous sources of various types and strengths. The US Environmental Protection Agency (EPA) under the Clean Air Act, is assessing the health impact of air emissions of radon from underground uranium mines. In this case, the radon emissions may impact workers and residents in the mine vicinity. To aid in this assessment, the EPA needs to know how mine releases can affect the radon concentrations at populated locations. To obtain this type of information, Pacific Northwest Laboratory used the radon emissions, release characteristics and local meterological conditions for a number of mines to model incremental radon concentrations. Long-term, average, incremental radon concentrations were computed based on the best available information on release rates, plume rise parameters, number and locations of vents, and local dispersion climatology. Calculations are made for a model mine, individual mines, and multiple mines. Our approach was to start with a general case and then consider specific cases for comparison. A model underground uranium mine was used to provide definition of the order of magnitude of typical impacts. Then computations were made for specific mines using the best mine-specific information available for each mine. These case study results are expressed as predicted incremental radon concentration contours plotted on maps with local population data from a previous study. Finally, the effect of possible overlap of radon releases from nearby mines was studied by calculating cumulative radon concentrations for multiple mines in a region with many mines. The dispersion model, modeling assumptions, data sources, computational procedures, and results are documented in this report. 7 refs., 27 figs., 18 tabs

  6. The significance of zircon characteristic and its uranium concentration in evaluation of uranium metallogenetic prospect

    International Nuclear Information System (INIS)

    Li Yaosong; Zhu Jiechen; Xia Yuliang

    1992-02-01

    Zircon characteristic and its relation to uranium metallogenetic process have been studied on the basis of physics properties and chemical compositions. It is indicated that the colour of zircon crystal is related to uranium concentration; on the basis of method of zircon population type of Pupin J.P., the sectional plan of zircon population type has been designed, from which result that zircon population type of uranium-producing rock body is distributed mainly in second section, secondly in fourth section; U in zircon presents synchronous increase trend with Th, Hf and Ta; the uranium concentration in zircon from uranium-producing geologic body increases obviously and its rate of increase is more than that of the uranium concentration in rock; the period, in which uranium concentration in zircon is increased, is often related to better uranium-producing condition in that period of this area. 1785 data of the average uranium concentration in zircon have been counted and clear regularity has been obtained, namely the average uranium concentrations in zircon in rich uranium-producing area, rock, geologic body and metallogenetic zone are all higher than that in poor or no uranium-producing area, rock, geologic body and metallogenetic zone. This shows that the average uranium concentration in zircon within the region in fact reflects the primary uranium-bearing background in region and restricts directly follow-up possibility of uranium mineralization. On the basis of this, the uranium source conditions of known uranium metallogenetic zones and prospective provinces have been discussed, and the average uranium concentrations in zircon from magmatic rocks for 81 districts have been contrasted and graded, and some districts in which exploration will be worth doing further are put forward

  7. Uranium resources in the United States

    International Nuclear Information System (INIS)

    Grenon, Michel.

    1975-01-01

    The United States are certainly the country which is the most concerned by a better evaluation of uranium resources. This is so because of the importance of the American nuclear program and because of a certain number of doubts in their uranium supply. This is probably why studies concerning American uranium resources have been very frequent in recent months. Although, most of these studies are not yet finished it is perhaps possible to draw a few conclusions in order to better see the framework of this important uranium resources problem. This is what this article attempts, using among other studies, the one carried-out for the National Science Foundation which is among the most complete, especially concerning the complete range of resources [fr

  8. Fungi outcompete bacteria under increased uranium concentration in culture media

    International Nuclear Information System (INIS)

    Mumtaz, Saqib; Streten-Joyce, Claire; Parry, David L.; McGuinness, Keith A.; Lu, Ping; Gibb, Karen S.

    2013-01-01

    As a key part of water management at the Ranger Uranium Mine (Northern Territory, Australia), stockpile (ore and waste) runoff water was applied to natural woodland on the mine lease in accordance with regulatory requirements. Consequently, the soil in these Land Application Areas (LAAs) presents a range of uranium concentrations. Soil samples were collected from LAAs with different concentrations of uranium and extracts were plated onto LB media containing no (0 ppm), low (3 ppm), medium (250 ppm), high (600 ppm) and very high (1500 ppm) uranium concentrations. These concentrations were similar to the range of measured uranium concentrations in the LAAs soils. Bacteria grew on all plates except for the very high uranium concentrations, where only fungi were recovered. Identifications based on bacterial 16S rRNA sequence analysis showed that the dominant cultivable bacteria belonged to the genus Bacillus. Members of the genera Paenibacillus, Lysinibacillus, Klebsiella, Microbacterium and Chryseobacterium were also isolated from the LAAs soil samples. Fungi were identified by sequence analysis of the intergenic spacer region, and members of the genera Aspergillus, Cryptococcus, Penicillium and Curvularia were dominant on plates with very high uranium concentrations. Members of the Paecilomyces and Alternaria were also present but in lower numbers. These findings indicate that fungi can tolerate very high concentrations of uranium and are more resistant than bacteria. Bacteria and fungi isolated at the Ranger LAAs from soils with high concentrations of uranium may have uranium binding capability and hence the potential for uranium bioremediation. -- Highlights: ► Fungi outcompete bacteria under increased uranium concentration in culture media. ► Soil microorganisms isolated from the Ranger Land Application Areas (LAAs) were resistant to uranium. ► Bacillus was the most abundant cultivable genus retrieved from the Ranger LAAs soils. ► Uranium in LAAs soils is

  9. Uranium from phosphates in the United Arab Republic

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-04-15

    In response to a request from the UAR Government, the IAEA sent a Soviet expert, to make an on-the-spot study of data on the mining and processing of phosphates in the UAR and to examine the possibility of recovering uranium from the phosphate ores. In his report to the IAEA Director General, he has listed the following conclusions: 1.The uranium content of run-of-the-mine phosphoric ores in the United Arab Republic is very low and the recovery of uranium from them is therefore hardly likely to be an economic proposition. 2. It is essential to press on with prospecting work in order to discover richer uranium deposits and regions of phosphoritic ores. 3. It is essential to organize scientific research work on the recovery of uranium from the various types of uranium-bearing phosphoritic ores in the United Arab Republic, using mechanical concentrating methods and chemical processing methods. 4. The Agency could assist in carrying out this work either by sending as many technicians as a required to help in planning and undertaking the research work in the UAR or by getting appropriate Member States to carry out this work on preliminary samples of ore with the participation of representatives of the UAR

  10. Innovative developments in uranium separation and concentration technology abroad

    International Nuclear Information System (INIS)

    Liang Jinlong; Zhou Mingsheng; Fang Wei; Sun Yuxiang

    2014-01-01

    Significance of deeply study the innovative developments in Uranium separation and concentration technology abroad was discussed. Development history and innovativeness of eight species of key equipments for separation and concentration were summarized for the first time. Principle and application of seven Uranium separation and concentration technology were analyzed systematically. It is expounded in the paper that high parameter, intelligent and low carbon were three development trends of Uranium separation and concentration technology. (authors)

  11. RECALIBRATION OF H CANYON ONLINE SPECTROPHOTOMETER AT EXTENDED URANIUM CONCENTRATION

    International Nuclear Information System (INIS)

    Lascola, R

    2008-01-01

    The H Canyon online spectrophotometers are calibrated for measurement of the uranium and nitric acid concentrations of several tanks in the 2nd Uranium Cycle.[1] The spectrometers, flow cells, and prediction models are currently optimized for a process in which uranium concentrations are expected to range from 0-15 g/L and nitric acid concentrations from 0.05-6 M. However, an upcoming processing campaign will involve 'Super Kukla' material, which has a lower than usual enrichment of fissionable uranium. Total uranium concentrations will be higher, spanning approximately 0-30 g/L U, with no change in the nitric acid concentrations. The new processing conditions require the installation of new flow cells with shorter path lengths. As the process solutions have a higher uranium concentration, the shorter path length is required to decrease the absorptivity to values closer to the optimal range for the instrument. Also, new uranium and nitric acid prediction models are required to span the extended uranium concentration range. The models will be developed for the 17.5 and 15.4 tanks, for which nitric acid concentrations will not exceed 1 M. The restricted acid range compared to the original models is anticipated to reduce the measurement uncertainty for both uranium and nitric acid. The online spectrophotometers in H Canyon Second Uranium Cycle were modified to allow measurement of uranium and nitric acid for the Super Kukla processing campaign. The expected uranium concentrations, which are higher than those that have been recently processed, required new flow cells with one-third the optical path length of the existing cells. Also, new uranium and nitric acid calibrations were made. The estimated reading uncertainties (2σ) for Tanks 15.4 and 17.5 are ∼5% for uranium and ∼25% for nitric acid

  12. Varieties of granitic uranium deposits and favorable exploration areas in the eastern United States

    International Nuclear Information System (INIS)

    Rogers, J.J.W.; Ragland, P.C.; Nishimori, R.K.; Greenberg, J.K.; Hauck, S.A.

    1978-01-01

    This paper is divided into three parts. First is an overview of the basic igneous processes that cause concentration of uranium and the types of rocks in which these deposits are most likely to occur. Second is a discussion of the source of uranium and the tectonic environments in which uranium-rich igneouos rocks are likely to form. Third is an application of these principles to the delineation of favorable belts for uranium exploration in crystalline rocks in the eastern United States. The paper is restricted to a discussion of those deposits in which high-uranium concentrations are caused by magmatic processes. 114 refs

  13. A discussion about maximum uranium concentration in digestion solution of U3O8 type uranium ore concentrate

    International Nuclear Information System (INIS)

    Xia Dechang; Liu Chao

    2012-01-01

    On the basis of discussing the influence of single factor on maximum uranium concentration in digestion solution,the influence degree of some factors such as U content, H 2 O content, mass ratio of P and U was compared and analyzed. The results indicate that the relationship between U content and maximum uranium concentration in digestion solution was direct ratio, while the U content increases by 1%, the maximum uranium concentration in digestion solution increases by 4.8%-5.7%. The relationship between H 2 O content and maximum uranium concentration in digestion solution was inverse ratio, the maximum uranium concentration in digestion solution decreases by 46.1-55.2 g/L while H 2 O content increases by 1%. The relationship between mass ratio of P and U and maximum uranium concentration in digestion solution was inverse ratio, the maximum uranium concentration in digestion solution decreases by 116.0-181.0 g/L while the mass ratio of P and U increase 0.1%. When U content equals 62.5% and the influence of mass ratio of P and U is no considered, the maximum uranium concentration in digestion solution equals 1 578 g/L; while mass ratio of P and U equals 0.35%, the maximum uranium concentration decreases to 716 g/L, the decreased rate is 54.6%, so the mass ratio of P and U in U 3 O 8 type uranium ore concentrate is the main controlling factor. (authors)

  14. Separation unit for uranium isotopes etc

    International Nuclear Information System (INIS)

    1975-01-01

    The task of the invention - improving the efficiency of a uranium isotope separation unit with a rotor as separation chamber by improving its flow characteristics - is solved by a central-axial gas conduction system with radial branches which leads the media into the separation chambers or out of these. (UWI) [de

  15. Uranium hydrogeochemical and stream sediment reconnaissance of the Newcastle NTMS Quadrangle, Wyoming, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Goff, S.J.; Sandoval, W.F.; Gallimore, D.L.; Talcott, C.L.; Martinez, R.G.; Minor, M.E.; Mills, C.F.

    1980-06-01

    Water and sediment samples were collected and each water sample was analyzed for U, and each sediment sample was analyzed for 43 elements, including U and Th. Uranium concentrations in water samples range from below the detection limit of 0.02 ppB to 702.26 ppB and have a median of 1.73 ppB and a mean of 11.76 ppB. Water samples containing high uranium concentrations generally are associated with known uranium mining activity or units known to be uranium bearing. About one-third of the water samples containing high uranium concentrations were collected from locations within the Pumpkin Buttes and Turnercrest-Ross Districts. Nearly half of the water samples containing high uranium concentrations were collected from locations just west of the Monument Hill and Highland Flats-Box Creek Districts. Similar anomalous uranium concentrations in this region have been reported updip from Exxon's Highland uranium deposits. High uranium concentrations were also found associated with the Lance Creek-Old Woman Anticline District. Uranium concentrations in sediment samples range from 1.14 to 220.70 ppM and have a median of 3.37 ppM and a mean of 4.03 ppM. Throughout the major uranium mining districts of the Powder River Basin, sediment samples with high uranium concentrations were collected from dry streams located near wells producing water samples with high uranium concentrations. High uranium concentrations were also found associated with the Lance Creek oil field where uranium mineralization is known in the White River formation. High uranium concentrations were also found in sediment samples in areas where uranium mineralization is not known. These samples are from dry streams in areas underlain by the White River formation, the Niobrara formation, and the Pierre, Carlisle, Belle Fourche, and Mowry shales

  16. Uranium

    International Nuclear Information System (INIS)

    Hamdoun, N.A.

    2007-01-01

    The article includes a historical preface about uranium, discovery of portability of sequential fission of uranium, uranium existence, basic raw materials, secondary raw materials, uranium's physical and chemical properties, uranium extraction, nuclear fuel cycle, logistics and estimation of the amount of uranium reserves, producing countries of concentrated uranium oxides and percentage of the world's total production, civilian and military uses of uranium. The use of depleted uranium in the Gulf War, the Balkans and Iraq has caused political and environmental effects which are complex, raising problems and questions about the effects that nuclear compounds left on human health and environment.

  17. Mineralogical characterization of uranium yellow cake concentrates

    International Nuclear Information System (INIS)

    Hausen, D.M.

    1992-01-01

    Uranium yellow cake concentrates have been analyzed and characterized mineralogically by means of differential thermal analysis, X-ray diffraction, infrared spectra and wet chemical methods. On the basis of mineralogical methods of characterization, the following four major structural types of yellow cake may be classified: Uranyl Hydroxide Hydrate, UO 2 (OH) 2 nH 2 O; Basic Uranyl Sulfate Hydrate, (UO 2 ) x (SO 4 ) y (OH) s(x-y ).nH 2 O; Sodium Para-Uranate, Na 5 U 7 O 24 and Uranyl Peroxide Hydrate, UO 4 .nH 2 O. In this paper conditions of yellow cake preparation and characterization are described, along with discussion of significance of structural types to the physical and chemical properties of yellow cake production

  18. Characterization of low concentration uranium glass working materials

    Energy Technology Data Exchange (ETDEWEB)

    Eppich, G. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wimpenny, J. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Leever, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Knight, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hutcheon, I. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ryerson, F. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-22

    A series of uranium-doped silicate glasses were created at (Lawrence Livermore National Laboratory) LLNL, to be used as working reference material analogs for low uranium concentration research. Specifically, the aim of this effort was the generation of well-characterized glasses spanning a range of concentrations and compositions, and of sufficient homogeneity in uranium concentration and isotopic composition, for instrumentation research and development purposes. While the glasses produced here are not intended to replace or become standard materials for uranium concentration or uranium isotopic composition, it is hoped that they will help fill a current gap, providing low-level uranium glasses sufficient for methods development and method comparisons within the limitations of the produced glass suite. Glasses are available for research use by request.

  19. Development of system on predicting uranium concentration from pregnant solution

    International Nuclear Information System (INIS)

    Yi Weiping

    2004-01-01

    Uranium concentration from pregnant solution is primary index of process for in-situ leaching of uranium, and the suitable method with which to predicate this index and effective means to solve it with were continuously studied hard. SPUC-system on predicting uranium concentration based on GM model of gray system theory is developed, and the mathematical model, constitution, function and theory foundation of this system are introduced. (authors)

  20. Maximum permissible concentrations of uranium in air

    CERN Document Server

    Adams, N

    1973-01-01

    The retention of uranium by bone and kidney has been re-evaluated taking account of recently published data for a man who had been occupationally exposed to natural uranium aerosols and for adults who had ingested uranium at the normal dietary levels. For life-time occupational exposure to uranium aerosols the new retention functions yield a greater retention in bone and a smaller retention in kidney than the earlier ones, which were based on acute intakes of uranium by terminal patients. Hence bone replaces kidney as the critical organ. The (MPC) sub a for uranium 238 on radiological considerations using the current (1959) ICRP lung model for the new retention functions is slightly smaller than for earlier functions but the (MPC) sub a determined by chemical toxicity remains the most restrictive.

  1. Physicochemical aspects of extraction of uranium concentrate from the wastes and thermodynamic characteristics of thorium-uranium compounds

    International Nuclear Information System (INIS)

    Khamidov, F.A.

    2017-01-01

    The purpose of present work is elaboration of physicochemical aspects of extraction of uranium concentrate from the wastes and study of thermodynamic characteristics of thorium-uranium compounds. Therefore, the radiological monitoring of tailing dumps of Tajikistan has been conducted; the obtaining of uranium concentrate from the tailing dumps of uranium production has been studied; the obtaining of uranium concentrate from the tailing dumps of uranium production with application of local sorbents has been studied as well; thermal stability and thermodynamic characteristics of uranium-thorium compounds has been investigated; the flowsheets of extraction of uranium concentrate from the wastes have been elaborated.

  2. Analytical procedure for the titrimetric determination of uranium in concentrates

    International Nuclear Information System (INIS)

    Florence, T.M.; Pakalns, P.

    1989-01-01

    In 1964 Davis and gray published a titrimetric method for uranium which does not require column reductors, electronic instruments or inert atmospheres, and is sufficiently selective to enable uranium to be determined without prior separation. The method involves reduction of uranium (VI) to (IV) by ferrous sulphate in concentrated phosphoric acid medium. The excess ion (II) is then selectively oxidised by nitric acid using molybdenum catalyst. After addition of sulphuric acid and dilution with water, the uranium (IV) is titrated with standard potassium dichromate, using barium diphenylamine sulphonate indicator. This method has been found to be simple, precise and reliable, and applicable to a wide range of uranium-containing materials. The method given here for determining uranium in concentrates is essentially that of Davies and Gray. Its applications, apparatus, reagents, procedures and accuracy and precision are discussed. 10 refs

  3. Review of the uranium miner experience in the United States

    International Nuclear Information System (INIS)

    Hilberg, A.W.

    1973-01-01

    Mining of uranium ores on a very small scale began in the United States in 1898. In 1948 mining of uranium ores increased significantly as a result of the increasing demands of the atomic energy program, particularly, the weapons program. It was well-known that radioactivity was associated with uranium ore and potential health hazards had been identified as early as 1921. It was then suggested that the large number of lung cancers found in the Schneeberg miners could possibly be caused by ionizing radiation. Radiation exposure to the lungs of uranium ore miners comes about because of varying concentrations of radon decay products in the mine atmosphere. Measurements of the amount of radioactivity in mine atmospheres began in the United States in 1950 and between 1951 and through 1968, approximately 43,000 measurements were made in about 2,500 uranium mines. Periodic medical surveys were made starting in 1950, but it was not until 1954, that a concerted effort was made to examine all miners. At this time an epidemiological study was begun by the U.S. Public Health Service to determine the effects of uranium mining with particular emphasis on the problem of lung cancer induction. The study of the miners, the results of which have been published, revealed a distinct and somewhat dramatic increase in lung cancer. This increase has been ascribed to the radiation exposure to radon-daughters. Because of the presence of a number of other potential occupational carcinogens in the dust of underground mines, there has been some question as to whether radon and radon-daughters constitute the principal cause of increased lung cancer risk among these miners

  4. Uranium mining and production of concentrates in India

    International Nuclear Information System (INIS)

    Bhasin, J.L.

    1997-01-01

    In order to meet the uranium requirements for the atomic power programme of the country, uranium deposits were explored, mined and concentrates were produced indigenously. The geology of the areas, mode of entries and the various extraction methods deployed in different mines with their constraints are described. The various equipments used in mining and processing activities are elaborated. The flow sheets for processing the uranium ore and that of the effluent treatment plant are given in detail. The future plans of the company for undertaking the new projects to meet the demand of uranium requirement for the increasing nuclear power programme are given. (author). 18 figs

  5. Management of wastes from the refining and conversion of uranium ore concentrate to uranium hexafluoride

    International Nuclear Information System (INIS)

    1981-01-01

    This report is the outcome of an IAEA Advisory Group Meeting on ''Waste Management Aspects in Relation to the Refining of Uranium Ore Concentrates and their Conversion to Uranium Hexafluoride'', which was held in Vienna from 17 to 21 December 1979. The report summarizes the main topics discussed at the meeting and gives an overview of uranium refining processes, being used in nuclear industry. The meeting was organized by the International Atomic Energy Agency, Radioactive Waste Management Section

  6. Survey of United States uranium marketing activity

    International Nuclear Information System (INIS)

    1978-05-01

    Uranium marketing activity was much lower in 1977 than during 1976, which was the largest procurement year to date. Results from the survey suggest that there is an adequate supply of uranium--at least through 1985--in light of apparent buyer concepts of demand. Unfilled requirements were reduced by additional procurement and slippages in requirements. U.S. buyers continue to concentrate almost exclusively on U.S. sources for procurement. Buyer and producer inventories changed only slightly during the year. The average price reported for 1977 deliveries was $19.75 per pound of U 3 O 8 , compared to the $17.20 estimate reported as of July 1, 1977. An average of $17.40 was reported for 1978. Settlements of market prices in 1977 averaged $41.50 and for 1978 averaged $43.95. Most market price contracts have a base price. These prices are much higher than average contract prics and are closer to market price settlements. Producers estimate they will be able to offer for sale substantial additional quantities of uranium, indicating that they expect to expand production considerably

  7. Uranium hydrogeochemical and stream sediment reconnaissance of the Gillette NTMS quadrangle, Wyoming, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Warren, R.G.; George, W.E.; Minor, M.M.; Simi, O.R.; Talcott, C.L.; Hensley, W.K.; Cheadle, J.M. III.

    1980-08-01

    During 1976 and 1977, 752 water and 843 sediment samples were collected from 1419 locations within the 17 700-km 2 area of the Gillette quadrangle, Wyoming. Water samples were collected primarily from wells, and also from springs, ponds, and streams; sediment samples were collected primarily from stream channels, and also from springs and ponds. Each water sample was analyzed for uranium and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit of 0.02 to 212.20 ppB and have a median of 1.10 ppB. The highest background uranium concentrations, as well as the highest individual uranium values, are in areas where favorable host units for uranium mineralization crop out. These units are the Wasatch and Fort Union formations in the Powder River Basin and the Inyan Kara group in the Black Hills. Uranium concentrations in sediment samples range from 0.64 to 29.83 ppM and have a median of 3.24 ppM. Background uranium concentrations are strongly controlled by the exposed geologic unit, and range from 4 to 8 ppM for the Cretaceous Colorado group to 1 to 3 ppM for the Triassic and Paleozoic units exposed in the Black Hills. Several areas where the Wasatch and Fort Union formations are exposed exhibit uranium concentrations in sediment samples that are slightly, but distinctly, above background values for these units. All of these areas are also associated with notably high uranium concentrations in water samples. Because epigenetic uranium mineralization in economically important areas can exhibit a similar geochemical signature, these areas within the Gillette quadrangle should be further examined for the possible presence of uranium mineralization

  8. REMOVAL AND CONCENTRATION OF URANIUM FROM WASTE MINE

    Directory of Open Access Journals (Sweden)

    Elizângela Augusta Santos

    2011-01-01

    Full Text Available The use of leaching agents, such as sodium citrate and ammonium carbonate, were assessed for the extraction of uranium from one mining residue containing 0.25% U. Concentration techniques such as precipitation and ion exchange were employed to recover the uranium from the leaching liquor. Leaching results showed maximum uranium extraction of about 40% for both reagents. The use 10 mol L-1 NaOH to precipitate the uranium from the leach liquor leads to a recovery of 62%; what was considered not satisfactory. In view of this, resins were used to concentrate the uranium from the liquor and the metal loading obtained at pH 3.9 was higher for the resin DOWEX RPU, whose maximum loading maximum capacity was 148.3 mg g-1, compared to 126.9 mg g-1 presented by the resin IRA 910 U.

  9. Recovery of uranium mineral concentrate from copper tailings

    International Nuclear Information System (INIS)

    Chakravarty, S.; Tewari, U.K.; Beri, K.K.

    1991-01-01

    Based on the studies conducted on the samples of copper tailings from Surda Copper Concentrator plant, wet concentrating table (Diaster Diagonal Deck) was found most suitable for recovering uranium mineral concentrate. Based on this technique, uranium recovery plants were set up at Surda, Rakha and Mosabani. The recoveries obtained from Surda Uranium Recovery Plant and Rakha Uranium Recovery Plant were in the range of 40-50%. But in Mosaboni Uranium Recovery Plant which is treating copper tailings from Mosaboni Copper Concentrator Plant, the biggest concentrator plant processing nearly 2,700 MT/day of copper ore, the recovery by wet concentrating tables was found to be around 22%. Low recovery was mainly due to low concentration of uranium in ore and as well as more percentage of uranium distribution in fines which tables were unable to recover. Studies were done to recover uranium mineral concentrate from the fines with new set of equipment viz. Curved Static Screen/Bartles Mozley Separator/Cross Belt Concentrator. This gave an improvement of 14-16% only. Studies by low acid leaching in chemical process side have shown that an overall recovery of 68% can be achieved. Though the chemical process is best as far as recovery is concerned but there are several constraints. The major constraint is pertaining to environmental and pollution control. Depending on the results of studies to overcome the constraints decision for the process to be adopted will be taken up and executed. The test results and plant performance data have also been included in the paper. (author). 8 figs., 11 tabs., 1 appendix

  10. Concentration of Uranium levels in groundwater

    International Nuclear Information System (INIS)

    Babu, M. N. S.; Somashekar, R. K.; Kumar, S. A.; Shivanna, K.; Krishnamurthy, V.; Eappen, K. P.

    2008-01-01

    The uranium isotopes during their course of their disintegration decay into other radioactive elements and eventually decay into stable lead isotopes. The cause of environmental concern is the emanation of beta and gamma radiation during disintegration. The present study tends to estimate uranium in groundwater trapped in granite and gneiss rocks. Besides, the study aims at estimating the radiation during natural disintegration process. The water samples were collected and analyzed following inductively coupled plasma mass spectrometric technique while water sample collection was given to the regions of Kolar District, South India, due to the representation. The significant finding was the observation of very high levels of uranium in groundwater compared to similar assays reported at other nearby districts. Also, the levels were considerable to those compared to groundwater levels of uranium reported by other scientists, On the basis of this study, it was inferred that the origin of uranium was from granite strata and there was a trend of diffusion observed in the course of flow-path of water in the region

  11. Uranium in open ocean: concentration and isotopic composition

    International Nuclear Information System (INIS)

    Ku, T.L.; Knauss, K.G.; Mathieu, G.G.

    1977-01-01

    Uranium concentrations and 234 U/ 238 U activity ratios have been determined in 63 seawater samples (nine vertical profiles) from the Atlantic, and Pacific, and Arctic, and the Antarctic oceans, using the alpha-spectrometric method for their determinations. Correlation between uranium and salinity is well manifested by the data from the Arctic and the Antarctic oceans, but such a relation cannot be clearly defined with the +-(1 to 2)% precision of uranium measurements for the Atlantic and Pacific data. At the 95% confidence level: (1) the uranium/salinity ratio is (9.34 + - 0.56) x 10 -8 g/g for the seawater analyzed with salinity ranging from 30.3 to 36.2 per thousand; the uranium concentration of seawater of 35 per thousand salinity is 3.3 5 + - 0.2 μ g l -1 ; (2) the 234 U/ 238 U activity ratio is 1.14 +- 0.03. Uranium isotopes in interstitial waters of the Pacific surface sediments analyzed do not show large concentration differences across the sediment-water interface as suggested by previous measurements. Current estimations of the average world river uranium concentration (0.3 to 0.6 μ g l -1 ) and 234 U/ 238 U ratio (1.2 to 1.3) and of the diffusional 234 U influx from sediments 0.3 dpm cm -2 10 -3 yr -1 ) are essentially consistent with a model which depicts a steady state distribution of uranium in the ocean. However, the 0.3 to 0.6 μ g l -1 value for river uranium may be an upper limit estimate. (author)

  12. Anion analysis in uranium more concentrates by ion chromatography

    International Nuclear Information System (INIS)

    Badaut, V.

    2009-01-01

    In the present exploratory study, the applicability of anionic impurities or attributing nuclear material to a certain chemical process or origin has been investigated. Anions (e.g., nitrate, sulphate, fluoride, chloride) originate from acids or salt solutions that are used for processing of solutions containing uranium or plutonium. The study focuses on uranium ore concentrates ('yellow cakes') originating from different mines. Uranium is mined from different types of ore body and depending on the type of rock, different chemical processes for leaching, dissolving and precipitating the uranium need to be applied. Consequently, the anionic patterns observed in he products of these processes (the 'ore concentrates') are different. The concentrations of different anionic species were measured by ion chromatography using conductivity detection. The results show clear differences of anion concentrations and patterns between samples from different uranium mines. Besides this, differences between sampling campaigns n a same mine were also observed indicating that the uranium ore is not homogeneous in a mine. These within-mine variations, however, were smaller than the between-mine variations. (author)

  13. Uranium

    International Nuclear Information System (INIS)

    Mackay, G.A.

    1978-01-01

    The author discusses the contribution made by various energy sources in the production of electricity. Estimates are made of the future nuclear contribution, the future demand for uranium and future sales of Australian uranium. Nuclear power growth in the United States, Japan and Western Europe is discussed. The present status of the six major Australian uranium deposits (Ranger, Jabiluka, Nabarlek, Koongarra, Yeelerrie and Beverley) is given. Australian legislation relevant to the uranium mining industry is also outlined

  14. Uranium concentrations in sediments of the Suez Canal

    International Nuclear Information System (INIS)

    Ibrahiem, N.M.; Pimpl, M.

    1994-01-01

    Suez Canal bottom sediment samples have been analyzed by alpha-spectrometry for the measurement of uranium. This method is based on the extraction of uranium with trioctylphosphine oxide/cyclohexane (TOPO) followed by reextraction and separation on anion exchange resins, and finally electrodeposition. The α-activity of 238 U and 234 U were measured by surface barrier detectors, in Bq/kg dry weight. The obtained results were compared with concentrations determined by γ measurements. The results point to a state of disequilibrium between 238 U and RaeU (radium equivalent uranium) which is attributed to the escape of radon. (author)

  15. Analysis of uranium concentrates by atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    Naeem, M.; Capdevila, C.; Alduan, F.A.

    1977-01-01

    The determination of As, Ca, Fe, Mo and V in uranium concentrates, removing the bulk of the uranium matrix by extracting with tributyl phosphate in hexane has been tried. No interferences were found due to uranium, sodium, aluminium, sulfates and phosphates. Only for calcium a depressive effect of aluminium and uranium has been found and it is overcome by addition of lanthanum. Air-acetylene flame for Fe, Ca and As, and nitrous oxide-acetylene flame for Mo and V have been used. The considered concentration range has been 0.15 - 3% for Ca and Fe, 0.1 -2% for As and 0.1 - 1% for Mo and V. (author) [es

  16. United States Transuranium and Uranium Registries

    International Nuclear Information System (INIS)

    Kathren, R.L.; Filipy, R.E.; Dietert, S.E.

    1991-06-01

    This report summarizes the primary scientific activities of the United States Transuranium and Uranium Registries for the period October 1, 1989 through September 30, 1990. The Registries are parallel human tissue research programs devoted to the study of the actinide elements in humans. To date there have been 261 autopsy or surgical specimen donations, which include 11 whole bodies. The emphasis of the Registry was directed towards quality improvement and the development of a fully computerized data base that would incorporate not only the results of postmortem radiochemical analysis, but also medical and monitoring information obtained during life. Human subjects reviews were also completed. A three compartment biokinetic model for plutonium distribution is proposed. 2 tabs

  17. Uranium uptake and accumulation in plants from soil contaminated with uranium in different concentrations

    International Nuclear Information System (INIS)

    Zhao Luxue; Tang Yongjin; Luo Xuegang

    2014-01-01

    The plants of Medicago sativa L., Hibiscus esulentus L, Waterspinach, Amaranthus retroflexus and Abutilon theophrasti Medic were employed as the indicator to investigate the uranium uptake and accumulation from soils contaminated with uranium (UO_2 (CH_3COO)_2 · 2H_2O) of 25 mg · kg"-"l, 75 mg · kg"-"1, 125 mg · kg"-"l, 175 mg · kg"-"l respectively, in a pot experiment. The result shows that, U concentration in the aerial part and underground part of the whole plant increased with the rise of uranium concentration in the soils. In the contaminated soils with 25∼125 mg · kg"-"l concentrations of uranium, U content of Medicago sativa L is the highset (6.78 mg · kg"-"l, 61.53 mg · kg"-"l, 74.06 mg · kg"-"l separately). While in the 175 mg · kg"-"l concentration of uranium contaminated soils, U content of Hibiscus esulentus L is the highest (86.72 mg · kg"-"1), which is mainly because of U concentration in its roots have higher level of uranium (388.16 mg · kg"-"l). Comprehensive analysis shows that Medicago sativa L. is a good plant for phytoextraction and Hibiscus esulentus L is a good immobilizing plant for phytoremediation. The results can provide some theoretical basis and technical support for remedying U-contaminated soils in different areas of our country. (authors)

  18. Paleozoic unconformities favorable for uranium concentration in northern Appalachian basin

    International Nuclear Information System (INIS)

    Dennison, J.M.

    1986-01-01

    Unconformities can redistribute uranium from protore rock as ground water moves through poorly consolidated strata beneath the erosion surface, or later moves along the unconformity. Groundwater could migrate farther than in present-day lithified Paleozoic strata in the Appalachian basin, now locally deformed by the Taconic and Allegheny orogenies. Several paleoaquifer systems could have developed uranium geochemical cells. Sandstone mineralogy, occurrences of fluvial strata, and reduzate facies are important factors. Other possibilities include silcrete developed during desert exposure, and uranium concentrated in paleokarst. Thirteen unconformities are evaluated to determine favorable areas for uranium concentration. Cambrian Potsdam sandstone (New York) contains arkoses and possible silcretes just above crystalline basement. Unconformities involving beveled sandstones and possible fluvial strata include Cambrian Hardyston sandstone (New Jersey), Cambrian Potsdam Sandstone (New York), Ordovician Oswego and Juniata formations (Pennsylvania and New York), Silurian Medina Group (New York), and Silurian Vernon, High Falls, and Longwood formations (New York and New Jersey). Devonian Catskill Formation is beveled by Pennsylvanian strata (New York and Pennsylvania). The pre-Pennsylvanian unconformity also bevels Lower Mississippian Pocono, Knapp, and Waverly strata (Pennsylvania, New York, and Ohio), truncates Upper Mississippian Mauch Chunk Formation (Pennsylvania), and forms paleokarst on Mississippian Loyalhanna Limestone (Pennsylvania) and Maxville Limestone (Ohio). Strata associated with these unconformities contain several reports of uranium. Unconformities unfavorable for uranium concentration occur beneath the Middle Ordovician (New York), Middle Devonian (Ohio and New York), and Upper Devonian (Ohio and New York); these involve marine strata overlying marine strata and probably much submarine erosion

  19. Elevated Arsenic and Uranium Concentrations in Unregulated Water Sources on the Navajo Nation, USA.

    Science.gov (United States)

    Hoover, Joseph; Gonzales, Melissa; Shuey, Chris; Barney, Yolanda; Lewis, Johnnye

    2017-01-01

    Regional water pollution and use of unregulated water sources can be an important mixed metals exposure pathway for rural populations located in areas with limited water infrastructure and an extensive mining history. Using censored data analysis and mapping techniques we analyzed the joint geospatial distribution of arsenic and uranium in unregulated water sources throughout the Navajo Nation, where over 500 abandoned uranium mine sites are located in the rural southwestern United States. Results indicated that arsenic and uranium concentrations exceeded national drinking water standards in 15.1 % (arsenic) and 12.8 % (uranium) of tested water sources. Unregulated sources in close proximity (i.e., within 6 km) to abandoned uranium mines yielded significantly higher concentrations of arsenic or uranium than more distant sources. The demonstrated regional trends for potential co-exposure to these chemicals have implications for public policy and future research. Specifically, to generate solutions that reduce human exposure to water pollution from unregulated sources in rural areas, the potential for co-exposure to arsenic and uranium requires expanded documentation and examination. Recommendations for prioritizing policy and research decisions related to the documentation of existing health exposures and risk reduction strategies are also provided.

  20. Two concepts of uranium geology in the United States of America that may be useful in Latin American uranium exploration

    International Nuclear Information System (INIS)

    Curry, D.L.

    1981-01-01

    Two concepts of the origin and deposition of uranium are described that are somewhat different from the conventional sandstone deposits of the United States of America. The first concept relates to granites as source and host rocks. Work done in the Granite Mountains of Wyoming provides considerable support for a granitic source. Calculations indicate that between 50 and 75% of the uranium has been leached from the granite to depths of nearly 400 m, and could have been source rocks for deposits in the Tertiary sandstones in adjacent basins. Areas of intense fracturing are also hosts for redeposition and concentration of uranium in granites of the Granite Mountains. The second concept describes resurgent cauldrons as source and host rocks. The development of resurgent cauldrons provides a variety of geological settings favourable for both intra-caldera deposits and deposits forming in adjacent basins. A collapsed caldera may contain a lake into which sediments from ejected material carrying uranium could be carried and into which direct contributions of uranium could come from the underlying magma. Weathering of uranium-bearing material deposited outside the caldera could provide uranium to be redeposited in conventional deposits such as roll fronts. Geological investigations carried out in the Great Basins of Utah and Nevada are cited. (author)

  1. Feasibility study of the dissolution rates of uranium ore dust, uranium concentrates and uranium compounds in simulated lung fluid

    International Nuclear Information System (INIS)

    Robertson, R.

    1986-01-01

    A flow-through apparatus has been devised to study the dissolution in simulated lung fluid of aerosol materials associated with the Canadian uranium industry. The apparatus has been experimentally applied over 16 day extraction periods to approximately 2g samples of < 38um and 53-75um particle-size fractions of both Elliot Lake and Mid-Western uranium ores. The extraction of uranium-238 was in the range 24-60% for these samples. The corresponding range for radium-226 was 8-26%. Thorium-230, lead-210, polonium-210, and thorium-232 were not significantly extracted. It was incidentally found that the elemental composition of the ores studied varies significantly with particle size, the radionuclide-containing minerals and several extractable stable elements being concentrated in the smaller size fraction. Samples of the refined compounds uranium dioxide and uranium trioxide were submitted to similar 16 day extraction experiments. Approximately 0.5% of the uranium was extracted from a 0.258g sample of unsintered (fluid bed) uranium dioxide of particle size < 38um. The corresponding figure for a 0.292g sample of uranium trioxide was 97%. Two aerosol samples on filters were also studied. Of the 88ug uranium initially measured on stage 2 of a cascade impactor sample collected from the yellow cake packing area of an Elliot Lake mill, essentially 100% was extracted over a 16 day period. The corresponding figure for an open face filter sample collected in a fuel fabrication plant and initially measured at 288ug uranium was approximately 3%. Recommendations are made with regard to further work of a research nature which would be useful in this area. Recommendations are also made on sampling methods, analytical methods and extraction conditions for various aerosols of interest which are to be studied in a work of broader scope designed to yield meaningful data in connection with lung dosimetry calculations

  2. Effect of uranium concentrations on plant growth - a control study

    International Nuclear Information System (INIS)

    Verma, P.C.; Hegde, A.G.; Arey, N.C.

    2010-01-01

    This paper presents the details of pot culture experiments carried out to study the migration of uranium in soil to plant system. The effect of varying concentration and chemical forms of uranium on shoot and root length, shoot and root weight, leaf area, water potential, chlorophyll contents, soluble protein, total phenol etc. of two test crops were studied. In case of barley crop, the effect of uranium on seed yield and modulation were also studied. 100% germination could be achieved respectively after a period of 36 hours and 28 hours in uranyl acetate and uranyl nitrate in case of cowpea, whereas it is and 48 hours and 24 hours respectively for barley crop. Higher doses of uranium retarded both the speed as well as germination of seeds for tested crops

  3. Concentrations of uranium and thorium isotopes in uranium millers' and miners' tissues

    International Nuclear Information System (INIS)

    Wrenn, M.E.; Singh, N.P.; Paschoa, A.S.; Lloyd, R.D.; Saccomanno, G.

    1985-09-01

    The alpha-emitting isotopes of uranium and thorium were determined in the lungs of 14 former uranium miners and in soft tissues and bones of three miners and two millers. These radionuclides were also determined in soft tissues and bones of seven normal controls. The average concentrations in pCi/kg wet weight in 17 former miners' lungs are as follows: 238 U, 75; 234 U, 80; 230 Th, 79. Concentrations of each nuclide ranged from 2 to 325 pCi/kg. The average ratio of 238 U/ 234 U was 0.92, ranging from 0.64 to 1.06. The mean ratio of 230 Th/ 234 U was 1.04, ranging from 0.33 to 3.54. The near equilibrium between 230 Th and /sup 238,234/U indicates that the rate of elimination of uranium and thorium from lungs is the same in former uranium miners. The concentrations of 234 U and 238 U were highest in lung; however, the concentration of 230 Th in bones was either higher than or comparable to its concentration in lung. The concentration ratios of 230 Th/ 234 U in bone of uranium miners and millers measured in our laboratory have been compared with results predicted by ICRP-30 metabolic models. These results indicate that the ICRP metabolic models for thorium and uranium were only marginally successful in predicting the ratio of 230 Th/ 234 U in bones, and that effective release rate of uranium from skeleton may be more rapid than predicted by the ICRP model. 9 figs., 21 tabs

  4. Precipitation of uranium concentrates by hydrogen peroxide

    International Nuclear Information System (INIS)

    Barbosa Filho, O.

    1986-12-01

    An experimental study on the (UO 4 .xH 2 ) uranyl peroxide precipitation from a uranium process strip solution is presented. The runs were performed in a batch reactor, in laboratory scale. The main objective was to assess the possibility of the peroxide route as an alternative to a conventional ammonium diuranate process. The chemical composition of process solution was obtained. The experiments were conducted according to a factorial design, aiming to evaluate the effects of initial pH, precipitation pH and H 2 O 2 /UO 2 2+ ratio upon the process. The responses were measured in terms of the efficiency of U precipitation, the content of U in the precipitates and the distribution of impurities in the precipitates. The results indicated that the process works is satisfactory on the studied conditions and depending on conditions, it is possible to achieve levels of U precipitation efficiency greater than 99.9% in reaction times of 2 hours. The precipitates reach grades around 99% U 3 O 8 after calcination (900 0 C) and impurities fall below the limit for penalties established by the ASTM and the Allied Chemical Standards. The precipitates are composed of large aggregates of crystals of 1-4 μm, are fast settling and filtering, and are free-flowing when dry. (Author) [pt

  5. Uranium

    International Nuclear Information System (INIS)

    Poty, B.; Cuney, M.; Bruneton, P.; Virlogeux, D.; Capus, G.

    2010-01-01

    concentration in peat bogs, deposits combined with marine phosphates, with coal and lignite, with black shales, with carbonate rocks, deposits in Precambrian quartz pebble conglomerates, basal-type deposits, deposits in sandstones (tabular, roll-type and tectono-lithologic deposits), breccia chimney filling deposits, deposits in metamorphic rocks, metasomatic deposits, deposits in intrusive rocks, deposits associated with hematite breccia complexes, deposits in granitic rocks, deposits in volcanic rocks, deposits in proterozoic discordances (Athabasca basin, Pine Creek geo-syncline); 4 - French uranium bearing areas and deposits: history of the French uranium mining industry, geological characteristics of French deposits (black shales, sandstones, granites), abroad success of French mining companies (Africa, North America, South America, Australia, Asia); 5 - exploration and exploitation; 6 - uranium economy: perspectives of uranium demand, present day production status, secondary resources, possible resources, market balances, prices and trends, future availability and nuclear perspectives. (J.S.)

  6. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, J.A.B.; Durazzo, M.

    2010-01-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 gU/cm 3 by using the U 3 Si 2 -Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 gU/cm 3 for the U 3 Si 2 -Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian-Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  7. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jose Antonio Batista de; Durazzo, Michelangelo, E-mail: jasouza@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 g U/c m3 by using the U{sub 3}Si{sub 2}-Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 g U/c m3 for the U{sub 3}Si{sub 2}-Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian- Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  8. Uranium production, the United States perspective

    International Nuclear Information System (INIS)

    Glasier, G.E.

    1984-06-01

    U.S. uranium production appears to be headed for a level of approximately one quarter of the peak production of the early 1980's. In a free world market the majority of the U.S. production capability is noncompetitive and unnecessary to supply the free world's demand. Those world producers which can produce into the competitive uranium market of the present and the foreseeable future will be sufficient to supply the uranium needs of the world for the next ten to fifteen years. Thus, the U.S. production industry once the leading producer in the world will not regain nor approach that status in the foreseeable future

  9. Nannoplankton and uranium concentration relations in the Black Sea Deposits

    Directory of Open Access Journals (Sweden)

    Vedia TOKER

    1983-12-01

    Full Text Available Nannoplanktons obtained from sixty-two core samples taken from twenty-three holes penetrated in the Southern part of Black Sea were investigated in this work. Twelve species belonging to the Emiliania huxleyi zone (NN 21-Holocene were determined. Emiliania huxleyi (Lohmann came into existence in Black Sea three thousand years ago and is very abundant in these sediments. This study clearly showed that uranium concentration increases with increasing nannoplankton content of the sediments. It is also observed that the uranium oxide (U3O8 contents of the Emiliania huxleyi (Lohmann accumulations on the abyssal plains are higher than those other sediments in the same environments.

  10. Uranium procurement in the United States of America

    International Nuclear Information System (INIS)

    Thomas, D.C.; Krusiewski, S.V.

    1983-01-01

    The United States Department of Energy conducts surveys of US uranium marketing activity. The results of this year's survey compared with last year's survey indicate that delivery commitments of US uranium producers to US uranium users have decreased in the early part of this decade, but have increased in the latter part of the decade. Unfilled uranium requirements are nearly the same through 1986 in both surveys, but in the 1987-1990 period this years's unfilled requirements are lower than those reported last year. Non-US purchase commitments by US utilities are somewhat greater than those reported last year. Non-US purchase commitments by US reactor manufacturers and producers have increased significantly over the past year; about two-thirds of these purchase commitments resulted from the settlement of litigation with non-US suppliers. The attitude of US utilities as to their use of non-US uranium has remained the same over the past year. Although some of the utilities were uncertain about future non-US uranium purchases, many of them indicated that they would possibly purchase non-US uranium. Natural uranium inventories of US reactor manufacturers and utilities have increased over the past year, and now amount to about 3 years of forward coverage. The enriched uranium inventories held by these users have decreased over the past year, and now amount to less than 1 year's forward coverage. (author)

  11. Uranium enrichment in the United States

    International Nuclear Information System (INIS)

    Hill, J.H.; Parks, J.W.

    1975-01-01

    History, improvement programs, status of electrical power availability, demands for uranium enrichment, operating plan for the U. S. enriching facilities, working inventory of enriched uranium, possible factors affecting deviations in the operating plan, status of gaseous diffusion technology, status of U. S. gas centrifuge advances, transfer of enrichment technology, gaseous diffusion--gas centrifuge comparison, new enrichment capacity, U. S. separative work pricing, and investment in nuclear energy are discussed. (LK)

  12. Adaptive control theory of concentration in the uranium enrichment plant

    International Nuclear Information System (INIS)

    Sugitsue, Noritake; Miyagawa, Hiroshi; Yokoyama, Kaoru; Nakakura, Hiroyuki

    1999-01-01

    This paper presents the new adaptive control of concentration in the uranium enrichment plant. The purpose of this control system is average concentration control in production tram. As a result the accuracy and practical use of this control system have already been confirmed by the operation of the uranium enrichment demonstration plant. Three elements of technology are required to this method. The first is the measurement of the concentration using product flow quantity change. This technology shall be called 'Qp difference to Xp transform method'. The second is the relationship between temperature change and flow quantity using G.M.D.H. (Groupe Method of Data Handling) and the third is the estimation of temperature change using AR (Auto-regressive) model. (author)

  13. Optimization of dissolution process parameters for uranium ore concentrate powders

    Energy Technology Data Exchange (ETDEWEB)

    Misra, M.; Reddy, D.M.; Reddy, A.L.V.; Tiwari, S.K.; Venkataswamy, J.; Setty, D.S.; Sheela, S.; Saibaba, N. [Nuclear Fuel Complex, Hyderabad (India)

    2013-07-01

    Nuclear fuel complex processes Uranium Ore Concentrate (UOC) for producing uranium dioxide powder required for the fabrication of fuel assemblies for Pressurized Heavy Water Reactor (PHWR)s in India. UOC is dissolved in nitric acid and further purified by solvent extraction process for producing nuclear grade UO{sub 2} powder. Dissolution of UOC in nitric acid involves complex nitric oxide based reactions, since it is in the form of Uranium octa oxide (U{sub 3}O{sub 8}) or Uranium Dioxide (UO{sub 2}). The process kinetics of UOC dissolution is largely influenced by parameters like concentration and flow rate of nitric acid, temperature and air flow rate and found to have effect on recovery of nitric oxide as nitric acid. The plant scale dissolution of 2 MT batch in a single reactor is studied and observed excellent recovery of oxides of nitrogen (NO{sub x}) as nitric acid. The dissolution process is automated by PLC based Supervisory Control and Data Acquisition (SCADA) system for accurate control of process parameters and successfully dissolved around 200 Metric Tons of UOC. The paper covers complex chemistry involved in UOC dissolution process and also SCADA system. The solid and liquid reactions were studied along with multiple stoichiometry of nitrous oxide generated. (author)

  14. Environmental protection uranium recovery issues in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Peake, R.T.; Cherepy, A.; Rosnick, R.; Schultheisz, D.; Setlow, L. [U.S. Environmental Protection Agency, Washington, DC (United States)

    2011-07-01

    Uranium recovery activities in the United States were at a standstill just a few years ago. Demand for processed uranium yellowcake has increased, as has its price, though the price is down since the Fukushima reactor accident. Interest in producing uranium has increased, too. Currently the most preferred, low-cost uranium extraction method in the United States is in-situ leach (ISL) recovery where the geohydrology is conducive to injection, mobilization and pumping. A number of applications for new ISL and conventional mills have recently been submitted or are expected to be submitted for licensing by the Nuclear Regulatory Commission (NRC). In the United States, the Environmental Protection Agency (EPA) has developed Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings under the authority of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). These standards are found in the Code of Federal Regulations, Title 40, Part 192 (40 CFR Part 192). The NRC develops implementing regulations for 40 CFR Part 192 and then NRC or delegated States enforce the NRC and EPA regulations. Facilities regulated under 40 CFR Part 192 include conventional uranium and thorium mills as well as in-situ leach operations, which are considered to be 'milling underground' for regulatory purposes. However, there are no explicit standards for ISL operations in 40 CFR Part 192. In addition, EPA has determined that portions of the operations at uranium recovery operations, specifically the radon emissions from tailings impoundments, are covered by Section 112 of the Clean Air Act as a source of hazardous air pollutants (HAPs). EPA addresses these operations in 40 CFR Part 61, Subpart W. EPA is in the process of reviewing both 40 CFR Part 192 and 40 CFR Part 61, Subpart W for possible revision. This paper presents some of the issues related to uranium recovery that are being considered in the current regulatory review. (author)

  15. Uranium hydrogeochemical and stream sediment reconnasissance of the Trinidad NTMS Quadrangle, Colorado, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Shannon, S.S. Jr.

    1980-05-01

    Uranium and other elemental data resulting from the Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Trinidad National Topographic Map Series (NTMS) quadrangle, Colorado, by the Los Alamos Scientific Laboratory (LASL) are reported herein. This study was conducted as part of the United States Department of Energy's National Uranium Resource Evaluation (NURE), which is designed to provide improved estimates of the availability and economics of nuclear fuel resources and to make available to industry information for use in exploration and development of uranium resources. The HSSR data will ultimately be integrated with other NURE data (e.g., airborne radiometric surveys and geological investigations) to complete the entire NURE program. This report is a supplement to the HSSR uranium evaluation report for the Trinidad quadrange (Morris et al, 1978), which presented the field and uranium data for the 1060 water and 1240 sediment samples collected from 1768 locations in the quadrangle. The earlier report contains an evaluation of the uranium concentrations of the samples as well as descriptions of the geology, hydrology, climate, and uranium occurrences of the quadrange. This supplement presents the sediment field and uranium data again and the analyses of 42 other elements in the sediments. All uranium samples were redetermined by delayed-neutron counting (DNC) when the sediment samples were analyzed for 31 elements by neutron activation. For 99.6% of the sediment samples analyzed, the differences between the uranium contents first determined (Morris et al, 1978) and the analyses reported herein are less than 10%

  16. Continuous measurement of uranium concentrations with the laser spark

    International Nuclear Information System (INIS)

    Gutmacher, R.G.; Cremers, D.A.; Wachter, J.R.

    1987-01-01

    Laser-induced breakdown spectroscopy has been applied to the continuous determination of uranium concentrations between 0.1 and 300 g/L in flowing solutions. The technique is rapid, noninvasive, and unaffected by radioactivity. A concentration of 10 g/L was measured with 0.8% precision in 3 min. Substances that absorb at the laser wavelength, suspended materials, and variations in the acidity of the solution have little or no effect on the results. High concentrations of zirconium, cadmium, aluminum, or stainless steel in solution do not interfere

  17. Link between ore bodies and biosphere concentrations of uranium

    International Nuclear Information System (INIS)

    Gordon, S.

    1992-01-01

    A literature review of uranium exploration studies was carried out to determine the size and concentration of uranium anomalies in the biosphere. Fourteen sites were studied and uranium data were obtained for rocks, water-borne sediments, surface waters, groundwaters, soils and plants. Detailed descriptions of the study areas and of their uranium anomalies are provided. No statistical analyses of the data of anomaly sizes was undertaken because of the variation in the scale of the studies and in the threshold values used and the small number of samples for each medium. The threshold values and the size of the anomaly were found to be dependent on the scale of the study and of the sampling density. Sediments and surface waters were found to have the largest uranium dispersion. Although there was a wide range in the anomaly sizes it was possible to assign typical values for each medium. Based on a typical source of 1 km 2 in the rock it was found that anomalies of similar size as the source are expected in soils and plants, anomalies twice as large are typical for sediments and surface waters and anomalies of smaller areas than the source are possible for groundwater. Some limitations to providing typical groundwater anomaly sizes are outlined. Typical maximum concentrations for the sites studied were greater than 1300 ppm for rock, 10 to 110 ppm for sediment, and 5 ppb for surface waters. No typical values were observed for groundwater, soils and plants. Susceptibility of the host rock to leaching and the presence of discharge zones were assessed for their role in biosphere anomalies

  18. Automated assay of uranium solution concentration and enrichment

    International Nuclear Information System (INIS)

    Horley, E.C.; Gainer, K.; Hansen, W.J.; Kelley, T.A.; Parker, J.L.; Sampson, T.E.; Walton, G.; Jones, S.A.

    1992-01-01

    For the first time, the concentration and enrichment of uranium solutions can be measured in one step. We have developed a new instrument to automatically measure the concentration and enrichment of uranium solutions through the adaptation of a commercial robot. Two identical solution enrichment systems are being installed in the Portsmouth Gaseous Diffusion Plant. These automated systems will reduce radiation exposure to personnel and increase the reliability and repeatability of the measurements. Each robotic system can process up to 40 batch and 8 priority samples in an unattended mode. Both passive gamma-ray and x-ray fluorescence (XRF) analyses are performed to determine total uranium concentration and 235 U enrichment. Coded samples are read by a bar-code reader to determine measurement requirements, then assayed by either or both of the gamma-ray and XRF instruments. The robot moves the sample containers and operates all shield doors and shutters, reducing hardware complexity. If the robots is out of service, an operator can manually perform all operations

  19. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, Jose Antonio Batista de

    2011-01-01

    IPEN-CNEN/SP developed the technology to produce the dispersion type fuel elements for research reactors and made it available for routine production. Today, the fuel produced in IPEN-CNEN/SP is limited to the uranium concentration of 3.0 gU/cm 3 for U 3 Si 2 -Al dispersion-based and 2.3 gU/cm 3 for U 3 O 8 -Al dispersion. The increase of uranium concentration in fuel plates enables the reactivity of the reactor core reactivity to be higher and extends the fuel life. Concerning technology, it is possible to increase the uranium concentration in the fuel meat up to the limit of 4.8 gU/cm 3 in U 3 Si 2 -Al dispersion and 3.2 gU/cm 3 U 3 O 8 -Al dispersion. These dispersions are well qualified worldwide. This work aims to develop the manufacturing process of both fuel meats with high uranium concentrations, by redefining the manufacturing procedures currently adopted in the Nuclear Fuel Center of IPEN-CNEN/SP. Based on the results, it was concluded that to achieve the desired concentration, it is necessary to make some changes in the established procedures, such as in the particle size of the fuel powder and in the feeding process inside the matrix, before briquette pressing. These studies have also shown that the fuel plates, with a high concentration of U 3 Si 2 -Al, met the used specifications. On the other hand, the appearance of the microstructure obtained from U 3 O 8 -Al dispersion fuel plates with 3.2 gU/cm 3 showed to be unsatisfactory, due to the considerably significant porosity observed. The developed fabrication procedure was applied to U 3 Si 2 production at 4.8 gU/cm 3 , with enriched uranium. The produced plates were used to assemble the fuel element IEA-228, which was irradiated in order to check its performance in the IEA-R1 reactor at IPEN-CNEN/SP. These new fuels have potential to be used in the new Brazilian Multipurpose Reactor - RMB. (author)

  20. Survey of United States uranium marketing activity

    International Nuclear Information System (INIS)

    Combs, G.F. Jr.; Krusiewski, S.V.

    1980-07-01

    In 1979 US buyers contracted for a net increase of 15,400 tons U 3 O 8 in new procurement after deducting for changes to January 1, 1979, commitments. Export commitments made in 1979 totalled 2800 tons, while import commitments amounted to 1000 tons U 3 O 8 . Buyers' inventories of domestic- and foreign-origin normal and enriched uranium increased to 52,300 tons U 3 O 8 during 1979, with the larger part of the increase being in enriched uranium. The average price reported for 1979 deliveries was $23.85 per pound of U 3 O 8 . Settlements of market price contracts average $42.55 for 1979 delivery and $45.80 for 1980 delivery. Producers expect to be able to offer 33,700 tons U 3 O 8 for sale in the 1980-1985 period, about 20% less than was estimated in the 1979 survey. Utilities made sales of 500 tons U 3 O 8 for 1979-1980 delivery as well as loans of 1600 tons U 3 O 8 that are to be repaid by 1984; more than half of these sales or loans were made to uranium producers. Reactor manufacturers have sold about 1100 tons U 3 O 8 since January 1, 1979, and loaned 120 tons. Unfilled requirements have decreased more than 100,000 tons U 3 O 8 since January 1, 1978, and currently total 75,700 tons U 3 O 8 . Responses to the 1980 survey suggest that there seems to be an adequate supply of uranium to meet US demand at least through 1985

  1. Evaluation of the precision in fluoride determination in uranium concentrate

    International Nuclear Information System (INIS)

    Palmieri, Helena E. Leonhardt; Rocha, Zildete; Mata, Maria Olivia Cintra

    1995-01-01

    The fluoride in uranium concentrate is previously separated by steam distillation and then determined by direct potentiometric with an ion-select electrode. The potential of all ion-specific electrodes is a logarithmic function of the concentration of the ion to which the electrode in question responds. This relationship is expressed by the Nernst equation. A calibration curve, potential (mV) versus standard fluoride concentration is established and then the sample concentration is determined by interpolation. A least squares curve-fitting procedure has been used to determine the parameters of this calibration curve equation. Using these parameters are determined the standard deviation, the confidence limits and the precision of the fluoride concentrations. (author). 3 refs., 2 figs., 1 tab

  2. Hydrochloric acid leach of Agnew Lake uranium concentrate

    International Nuclear Information System (INIS)

    Haque, K.E.; Ipekoglue, B.

    1981-10-01

    Hydrochloric acid leaching was conducted on the radioactive mineral concentrate separated from the Agenw Lake uranium ore. Leach tests conducted at the optimum conditions (75 0 C; 36 hours; 66.0 Kg HCl/tonne; solid:liquid -1:1) resulted in the extraction of 87% uranium and 84% radium. The radionuclide level of the residue was U-0.016%, Th-0.24% and Ra-65 pCi/g solids. However to obtain a residue almost free of radium (i.e., Ra level at the detection limit: 4-6 pCi/g solids), the first stage leach residue was further treated with hydrochloric acid. The radium level in the best second stage leach residue was also above the target level. Therefore, multistage (3 or 4) hydrochloric acid and/or neutral chloride leaching is recommended to obtain tailings almost free of radionuclide

  3. Mining-metallurgical projects for the production of uranium concentrates

    International Nuclear Information System (INIS)

    Ajuria-Garza, S.

    1983-01-01

    This report presents an overall view of a complete project for a mining-metallurgical complex for the production of uranium concentrates. Relevant aspects of each important topic are discussed as parts of an integrated methodology. The principal project activities are analyzed and the relationships among the various factors affecting the design are indicated. A list of 96 principal activities is proposed as an example. These activities are distributed in eight groups: initial evaluations preliminary feasibility studies, project engineering, construction, industrial operation, decommissioning and post-decommissioning activities. The environmental impact and the radiological risks due to the construction and operation of the mining metallurgical complex are analyzed. The principles of radiological protection and the regulations, standards and recommendations for radiological protection in uranium mines and mills are discussed. This report is also a guide to the specialized literature: a bibliography with 765 references is included. (author)

  4. Uranium concentrate analysis by X-ray fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Diaz-Guerra, J.P.; Bayon, A.; Roca, R.

    1978-01-01

    The determination of As, Ca, Fe, Mo, P, S, Si. Th, V and U in uranium concentrates by X-ray fluorescence spectroscopy has been studied. As and U are determined in nitric solutions and for the rest of elements analysis is performed by a bead fusion technique using Li 2 B 4 O 7 and Li 2 CO 3 as fluxes. Although the uranium matrix minimizes the absorption and enhancement effects, because of the content variations of this element it is advisable to operate at a constant level of U 3 O 8 . Despite the high matrix absorption and the large dilution of the samples, sensitivity and speed are found to be satisfactory as the result of the use of a high sensitivity automatic spectrometer. The spectral interferences of Mo on S and P, and of Pb on As have been particularly considered. (author) [es

  5. Survey of United States uranium marketing activity

    International Nuclear Information System (INIS)

    Krusiewski, S.V.; Thomas, D.C.; Patterson, J.A.

    1981-06-01

    In 1980 US buyers contracted for 12,500 short tons U 3 O 8 in new procurement. Nontheless, there was a net decrease of 13,100 tons in total commitments as of January 1, 1981, because of even larger changes to the delivery commitments as of January 1, 1980. The average contract price of domestic uranium was $28.15 per pound of U 3 O 8 for 1980 delivery and $30.70 for 1981 delivery. Settlements of domestic market price contracts averaged $36.75 for 1980 delivery and $46.80 for 1981 delivery. Prices of foreign uranium averaged $43.10 for 1980 delivery and $40.00 for 1981 delivery. Producers expect to be able to offer 21,800 tons U 3 O 8 for sale in the 1981 to 1985 period, about 30 percent less than was estimated in the 1980 survey. US producers also estimated that 30,600 tons U 3 O 8 would be available for sale in the 1986 to 1990 period. Utilities made sales of 800 tons U 3 O 8 for 1980 to 1981 delivery as well as loans of another 800 tons. New export commitments made in 1980 totalled 4000 tons U 3 O 8 ; however, 2500 tons of these commitments are options or delivery is contingent on price developments. Import commitments made in 1980 totalled 2300 tons U 3 O 8 . Inventories of natural and enriched uranium held by US buyers increased from 52,300 to 63,400 tons U 3 O 8 during 1980. In addition, inventories of uranium held by US producers increased from 2400 to 2700 tons U 3 O 8 . Unfilled requirements for the 1981 to 1990 period decreased from 75,300 tons U 3 O 8 , as reported in last year's survey, to 54,500 tons in this year's survey, a decrease of 20,800 tons. Responses to the 1981 survey suggest that there seems to be an adequate supply of uranium to meet US demand at least through 1986, although the apparent buyer requirements reported as of January 1, 1981 for the 1987 to 1990 period are higher than the total domestic production or supply

  6. Uranium- and thorium-bearing pegmatites of the United States

    International Nuclear Information System (INIS)

    Adams, J.W.; Arengi, J.T.; Parrish, I.S.

    1980-04-01

    This report is part of the National Uranium Resource Evaluation (NURE) Program designed to identify criteria favorable for the occurrence of the world's significant uranium deposits. This project deals specifically with uranium- and thorium-bearing pegmatites in the United States and, in particular, their distribution and origin. From an extensive literature survey and field examination of 44 pegmatite localities in the United States and Canada, the authors have compiled an index to about 300 uranium- and thorium-bearing pegmatites in the United States, maps giving location of these deposits, and an annotated bibliography to some of the most pertinent literature on the geology of pegmatites. Pegmatites form from late-state magma differentiates rich in volatile constituents with an attendant aqueous vapor phase. It is the presence of an aqueous phase which results in the development of the variable grain size which characterizes pegmatites. All pegmatites occur in areas of tectonic mobility involving crustal material usually along plate margins. Those pegmatites containing radioactive mineral species show, essentially, a similar distribution to those without radioactive minerals. Criteria such as tectonic setting, magma composition, host rock, and elemental indicators among others, all serve to help delineate areas more favorable for uranium- and thorium-bearing pegmatites. The most useful guide remains the radioactivity exhibited by uranium- and thorium-bearing pegmatites. Although pegmatites are frequently noted as favorable hosts for radioactive minerals, the general paucity and sporadic distribution of these minerals and inherent mining and milling difficulties negate the resource potential of pegmatites for uranium and thorium

  7. Uranium- and thorium-bearing pegmatites of the United States

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J.W.; Arengi, J.T.; Parrish, I.S.

    1980-04-01

    This report is part of the National Uranium Resource Evaluation (NURE) Program designed to identify criteria favorable for the occurrence of the world's significant uranium deposits. This project deals specifically with uranium- and thorium-bearing pegmatites in the United States and, in particular, their distribution and origin. From an extensive literature survey and field examination of 44 pegmatite localities in the United States and Canada, the authors have compiled an index to about 300 uranium- and thorium-bearing pegmatites in the United States, maps giving location of these deposits, and an annotated bibliography to some of the most pertinent literature on the geology of pegmatites. Pegmatites form from late-state magma differentiates rich in volatile constituents with an attendant aqueous vapor phase. It is the presence of an aqueous phase which results in the development of the variable grain size which characterizes pegmatites. All pegmatites occur in areas of tectonic mobility involving crustal material usually along plate margins. Those pegmatites containing radioactive mineral species show, essentially, a similar distribution to those without radioactive minerals. Criteria such as tectonic setting, magma composition, host rock, and elemental indicators among others, all serve to help delineate areas more favorable for uranium- and thorium-bearing pegmatites. The most useful guide remains the radioactivity exhibited by uranium- and thorium-bearing pegmatites. Although pegmatites are frequently noted as favorable hosts for radioactive minerals, the general paucity and sporadic distribution of these minerals and inherent mining and milling difficulties negate the resource potential of pegmatites for uranium and thorium.

  8. Study PWA8 resin for chromatographic uranium concentration

    International Nuclear Information System (INIS)

    Coceancigh, Herman; Ramella, J. L.; Marrero, Julieta; Jiménez Rebagliati, Raúl

    2013-01-01

    For many years nuclear industry have been using resins as filler of chromatographic columns. These methods are specific and give reliable results in different applications, for those reasons are extremely useful as separation process. Currently the nuclear industry is growing and this brings new issues such as the need of reduction of the amount of waste, the optimization of the production process and others that the chromatography could solve with great results. AMBERLITETM PWA8 resin is an anion exchange resin which can be used for the removal of uranium from drinking water. In addition to high exchange capacity, this resin has excellent physical stability and a wide range of pH in which is operational. With the idea of concentrating uranium from wastes solution as main goal we made different experiments to understand the AMBERLITETM PWA8 and obtain the most important characteristics like; pH working range; capacity; activation and elution procedures. These procedures were developed and optimized the capacity was determined using a batch experiment and we obtain that the maximum capacity is 882,5 U ug /resin gr at a pH of 4,2. Following on from these results chromatographic experiments were performed in which both were obtained the percentage of recovery and the concentration factor. The percent recovery (% R) calculated as the percentage ratio between the total mass and the load mass eluted (% R = eluted mass / total mass * 100) was 94% with a concentration factor of 5 times From these results it is intended to concentrate wastes solutions from the fuel cycle processes with two main goals: decreasing volume for storage and for future reusing of the uranium coming from production. (author)

  9. Measurements of natural uranium concentration in Caspian Sea and Persian Gulf water by laser fluorimetric method

    International Nuclear Information System (INIS)

    Garshasbi, H.; Karimi Diba, J.; Jahanbakhshian, M. H.; Asghari, S. K.; Heravi, G. H.

    2005-01-01

    Natural uranium exists in earth crust and seawater. The concentration of uranium might increase by human manipulation or geological changes. The aim of this study was to verify susceptibility of laser fluorimetry method to determine the uranium concentration in Caspian Sea and Persian Gulf water. Materials and Methods: Laser fluorimetric method was used to determine the uranium concentration in several samples prepared from Caspian Sea and Persian Gulf water. Biological and chemical substances were eliminated in samples for better evaluation of the method. Results: As the concentration of natural uranium in samples increases, the response of instrument (uranium analyzer) increases accordingly. The standard deviation also increased slightly and gradually. Conclusion: Results indicate that the laser fluorimetry method show a reliable and accurate response with uranium concentration up to 100 μg/L in samples after removal of biological and organic substances

  10. Process for recovering a uranium containing concentrate and purified phosphoric acid from a wet process phosphoric acid containing uranium

    International Nuclear Information System (INIS)

    Weterings, C.A.M.; Janssen, J.A.

    1985-01-01

    A process is claimed for recovering from a wet process phosphoric acid which contains uranium, a uranium containing concentrate and a purified phosphoric acid. The wet process phosphoric acid is treated with a precipitant in the presence of a reducing agent and an aliphatic ketone

  11. Process for recovering a uranium containing concentrate and purified phosphoric acid from a wet process phosphoric acid containing uranium

    Energy Technology Data Exchange (ETDEWEB)

    Weterings, C.A.M.; Janssen, J.A.

    1985-04-30

    A process is claimed for recovering from a wet process phosphoric acid which contains uranium, a uranium containing concentrate and a purified phosphoric acid. The wet process phosphoric acid is treated with a precipitant in the presence of a reducing agent and an aliphatic ketone.

  12. Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R M

    1976-01-01

    Evidence of expanding markets, improved prices and the short supply of uranium became abundantly clear in 1975, providing the much needed impetus for widespread activity in all phases of uranium operations. Exploration activity that had been at low levels in recent years in Canada was evident in most provinces as well as the Northwest Territories. All producers were in the process of expanding their uranium-producing facilities. Canada's Atomic Energy Control Board (AECB) by year-end had authorized the export of over 73,000 tons of U/sub 3/0/sub 8/ all since September 1974, when the federal government announced its new uranium export guidelines. World production, which had been in the order of 25,000 tons of U/sub 3/0/sub 8/ annually, was expected to reach about 28,000 tons in 1975, principally from increased output in the United States.

  13. Marine mollusks as bio concentrators of uranium and plutonium

    International Nuclear Information System (INIS)

    Ordonez R, E.; Almazan T, M. G.; Escalante G, D. C.

    2017-09-01

    The sudden presence of certain radionuclides in the marine environment has been of global concern and has raised concerns about the nature and abundance of these, in an attempt to establish dispersion patterns from their discharge points. In the particular case of our country, there are few data on the presence and concentration of alpha emitters, such as uranium and plutonium in the littorals and due to this fact there is a need to establish their reference levels in some specific points of the Mexican littoral. This work thus raises the study of part of the biota that grows and develops in sites near the sampling points. Is known that bivalve mollusks are natural bio-concentrators due to their capacity to absorb some metals dissolved in water, being able to find contaminating metals in their soft bodies, but they also accumulate large quantities when they generate their shells from dissolved carbonates that are complex with uranium and plutonium. The shells of the mollusks were studied to determine the physicochemical characteristics of their shells and the U and Pu were also separated by means of radiochemical techniques, being then electrodeposited in steel discs and evaluated by means of alpha spectroscopy. The results of the methodology prototype are presented to determine the U and Pu dispersed in the littoral by means of the analysis of some mollusks of the zone. (Author)

  14. Comparative study of uranium concentration in water samples of SW and NE Punjab, India

    International Nuclear Information System (INIS)

    Saini, Komal; Bajwa, B.S.

    2014-01-01

    Since the commencement of the earth, radiations and natural radioactivity has always been a part of environment. Uranium is heaviest naturally occurring element which is widespread in nature, mainly occurs in granites mineral deposits. The natural weathering of rocks such as granite dissolves the natural uranium, which goes into groundwater by leaching and precipitation called illumination process. People are always exposed to certain amount of uranium from air, water, soil and food as it is usually present in these components. About 85% of ingested uranium enter into human body through drinking water which makes it very important to estimate uranium concentration in potable water. Uranium and some other heavy metals may increase the risk of kidney damage, cancer diseases where experimental evidence suggests that respiratory and reproductive system are also affected by uranium exposure. In the present study comparative study of uranium concentration in potable water samples of SW and NE Punjab has been analysed

  15. Uranium hydrogeochemical and stream sediment reconnaissance of the Arminto NTMS quadrangle, Wyoming, including concentrations of forty-three additional elements

    International Nuclear Information System (INIS)

    Morgan, T.L.

    1979-11-01

    During the summers of 1976 and 1977, 570 water and 1249 sediment samples were collected from 1517 locations within the 18,000-km 2 area of the Arminto NTMS quadrangle of central Wyoming. Water samples were collected from wells, springs, streams, and artifical ponds; sediment samples were collected from wet and dry streams, springs, and wet and dry ponds. All water samples were analyzed for 13 elements, including uranium, and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit to 84.60 parts per billion (ppb) with a mean of 4.32 ppb. All water sample types except pond water samples were considered as a single population in interpreting the data. Pond water samples were excluded due to possible concentration of uranium by evaporation. Most of the water samples containing greater than 20 ppb uranium grouped into six clusters that indicate possible areas of interest for further investigation. One cluster is associated with the Pumpkin Buttes District, and two others are near the Kaycee and Mayoworth areas of uranium mineralization. The largest cluster is located on the west side of the Powder River Basin. One cluster is located in the central Big Horn Basin and another is in the Wind River Basin; both are in areas underlain by favorable host units. Uranium concentrations in sediment samples range from 0.08 parts per million (ppm) to 115.50 ppm with a mean of 3.50 ppm. Two clusters of sediment samples over 7 ppm were delineated. The first, containing the two highest-concentration samples, corresponds with the Copper Mountain District. Many of the high uranium concentrations in samples in this cluster may be due to contamination from mining or prospecting activity upstream from the sample sites. The second cluster encompasses a wide area in the Wind River Basin along the southern boundary of the quadrangle

  16. Uranium hydrogeochemical and stream sediment reconnaissance of the Arminto NTMS quadrangle, Wyoming, including concentrations of forty-three additional elements

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, T.L.

    1979-11-01

    During the summers of 1976 and 1977, 570 water and 1249 sediment samples were collected from 1517 locations within the 18,000-km/sup 2/ area of the Arminto NTMS quadrangle of central Wyoming. Water samples were collected from wells, springs, streams, and artifical ponds; sediment samples were collected from wet and dry streams, springs, and wet and dry ponds. All water samples were analyzed for 13 elements, including uranium, and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit to 84.60 parts per billion (ppb) with a mean of 4.32 ppb. All water sample types except pond water samples were considered as a single population in interpreting the data. Pond water samples were excluded due to possible concentration of uranium by evaporation. Most of the water samples containing greater than 20 ppb uranium grouped into six clusters that indicate possible areas of interest for further investigation. One cluster is associated with the Pumpkin Buttes District, and two others are near the Kaycee and Mayoworth areas of uranium mineralization. The largest cluster is located on the west side of the Powder River Basin. One cluster is located in the central Big Horn Basin and another is in the Wind River Basin; both are in areas underlain by favorable host units. Uranium concentrations in sediment samples range from 0.08 parts per million (ppm) to 115.50 ppm with a mean of 3.50 ppm. Two clusters of sediment samples over 7 ppm were delineated. The first, containing the two highest-concentration samples, corresponds with the Copper Mountain District. Many of the high uranium concentrations in samples in this cluster may be due to contamination from mining or prospecting activity upstream from the sample sites. The second cluster encompasses a wide area in the Wind River Basin along the southern boundary of the quadrangle.

  17. Critical analysis of the management of waste system originated at the uranium mining and processing. A case study of the Concentrated Unit of Uranium - INB; Analise critica do sistema de gerenciamento de rejeitos provenientes de mineracao e beneficiamento de uranio. Um estudo de caso da Unidade de Concentrado de Uranio/INB

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Valeska Peres de

    2005-07-01

    The uranium world market faced a depreciation of this commodity during the last decades. Recently, decreases in the secondary supply (represented by highly enriched uranium - HEU - stocks detained by the former Soviet Union) turned out the market dependent upon primary supply again. In order to cope with this changing demands and market conditions, new uranium mining/milling projects must start operation, or at least, former uranium production plants must be improved. Environmental questions have been and certainly will continue to be a determinant factor concerning the operational feasibility of these facilities. Mining/milling activities have the potential to cause risks to the human health and to the environment. In case of uranium projects, radiological impacts shall also be taken into consideration. Amongst the most relevant environmental aspects associated with the operation of a uranium project, generated wastes are usually of major concern and deserve appropriate management strategies. As a result the objective of the present work was to examine the waste management system of the Brazilian uranium production unity located at the municipality of Caetite, northeast region of the country. An open pit mine and a milling facility compose this unit. The extraction method employed is acid heap leach (using H{sub 2}SO{sub 4}). It could be assessed that the overall conceptual management strategy is in agreement with the practices adopted worldwide. Atmospheric impacts, caused by the emissions of radon and aerosols must be investigated in more details. Mathematical simulation revealed that no significant impact in groundwater is expected due to mobilization and transport of radionuclides from the milling wastes. However, the impacts of drainage water, accumulated in the open pit, into groundwater cannot be discarded yet. Screening techniques were applied to assess the potential contribution of the leached ore piles as a {sup 226}Ra source of pollution. Our results

  18. Standard practices for sampling uranium-Ore concentrate

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 These practices are intended to provide the nuclear industry with procedures for obtaining representative bulk samples from uranium-ore concentrates (UOC) (see Specification C967). 1.2 These practices also provide for obtaining a series of representative secondary samples from the original bulk sample for the determination of moisture and other test purposes, and for the preparation of pulverized analytical samples (see Test Methods C1022). 1.3 These practices consist of a number of alternative procedures for sampling and sample preparation which have been shown to be satisfactory through long experience in the nuclear industry. These procedures are described in the following order. Stage Procedure Section Primary Sampling One-stage falling stream 4 Two-stage falling stream 5 Auger 6 Secondary Sampling Straight-path (reciprocating) 7 Rotating (Vezin) 8, 9 Sample Preparation 10 Concurrent-drying 11-13 Natural moisture 14-16 Calcination 17, 18 Sample Packaging 19 Wax s...

  19. Physicochemical characterization of Capstone depleted uranium aerosols I: uranium concentration in aerosols as a function of time and particle size.

    Science.gov (United States)

    Parkhurst, Mary Ann; Cheng, Yung Sung; Kenoyer, Judson L; Traub, Richard J

    2009-03-01

    During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing DU were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time, particularly within the first minute after a shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s after perforation, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% after 30 min. The initial and maximum uranium concentrations were lower in the Bradley vehicle than those observed in the Abrams tank, and the concentration levels decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in a cyclone sampler, which collected aerosol continuously for 2 h after perforation. The percentages of uranium mass in the cyclone separator stages ranged from 38 to 72% for the Abrams tank with conventional armor. In most cases, it varied with particle size, typically with less uranium associated with the smaller particle sizes. Neither the Abrams tank with DU armor nor the Bradley vehicle results were specifically correlated with particle size and can best be represented by their average uranium mass concentrations of 65

  20. Concentrations of heavy metals (lead, manganese, cadmium) in blood and urine of former uranium workers

    International Nuclear Information System (INIS)

    Apostolova, D.; Pavlova, S.; Paskalev, Z.

    1999-01-01

    Uranium ores contain heavy metals and other stable chemical elements as oxides, hydro-carbonates, sulphates, etc. During chemical processing of ore they could be transformed into compounds soluble in biologic liquids. The purpose of this study was to determine the combined intoxication of uranium miners and millers by heavy metals and radiation. Heavy metal (lead, manganese and cadmium) concentrations in blood and urine od 149 former uranium miners and millers were determined by AAS method. Data of significantly increased lead and manganese concentration in blood (p<0.05) of two groups were established in comparison with a control group. There is no statistical significant differences in the cadmium concentrations. The lead and manganese blood levels at the uranium millers were significant higher than those of the uranium miner group (p<0.05). Tendency towards increased blood lead concentrations of uranium millers depending on the length of service was established

  1. Determination of uranium concentration in an ore sample using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Kim, Y.-S.; Han, B.-Y.; Shin, H.S.; Kim, H.D.; Jung, E.C.; Jung, J.H.; Na, S.H.

    2012-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been recognized as a promising technique for analyzing sensitive nuclear materials such as uranium, plutonium, and curium in a high-radiation environment, especially since the implementation of IAEA (International Atomic Energy Agency) safeguards. The uranium spectra of ore samples were quantitatively analyzed prior to analyzing sensitive materials in the nuclear industry. The purpose of this experiment is to extract quantitative information about the uranium in a uranium ore using a standard addition approach. The uranium ore samples containing different concentrations of U were prepared by mixing raw ore powder with natural uranium oxide powders. Calibration sets of 0.2, 0.4, 0.6, 0.8 and 1.0 wt.% uranium concentrations within the uranium ore sample were achieved. A pulsed and Q-switched Nd:YAG laser at a wavelength of 532 nm was used as a light source. An echelle spectrometer that covers a 190–420 nm wavelength range is used to generate a calibration curve and determine the detection limit of uranium in the ore matrix. The neutral atomic-emission peak at a wavelength of 356.659 nm indicated a detection limit of ∼ 158 ppm for uranium, and the uranium concentration was determined in a raw ore sample that has an unknown quantity of uranium. - Highlights: ► The feasibility of LIBS application to monitor uranium element was carried out. ► The detection limit of U in ore was determined by a standard additional approach. ► Quantitative analyses of U concentration in a natural uranium ore were performed.

  2. Determination of uranium metal concentration in irradiated fuel storage basin sludge using selective dissolution

    International Nuclear Information System (INIS)

    Delegard, C.H.; Sinkov, S.I.; Chenault, J.W.; Schmidt, A.J.; Pool, K.N.; Welsh, T.L.

    2014-01-01

    Irradiated uranium metal fuel was stored underwater in the K East and K West storage basins at the US Department of Energy Hanford Site. The uranium metal under damaged cladding reacted with water to generate hydrogen gas, uranium oxides, and spalled uranium metal particles which intermingled with other particulates to form sludge. While the fuel has been removed, uranium metal in the sludge remains hazardous. An expeditious routine method to analyze 0.03 wt% uranium metal in the presence of >30 wt% total uranium was needed to support safe sludge management and processing. A selective dissolution method was designed based on the rapid uranium oxide dissolution but very low uranium metal corrosion rates in hot concentrated phosphoric acid. The uranium metal-bearing heel from the phosphoric acid step then is rinsed before the uranium metal is dissolved in hot concentrated nitric acid for analysis. Technical underpinnings of the selective dissolution method, including the influence of sludge components, were investigated to design the steps and define the reagents, quantities, concentrations, temperatures, and times within the selective dissolution analysis. Tests with simulant sludge proved the technique feasible. Tests with genuine sludge showed a 0.0028 ± 0.0037 wt% (at one standard deviation) uranium metal analytical background, a 0.011 wt% detection limit, and a 0.030 wt% quantitation limit in settled (wet) sludge. In tests using genuine K Basin sludge spiked with uranium metal at concentrations above the 0.030 wt% ± 25 % (relative) quantitation limit, uranium metal recoveries averaged 99.5 % with a relative standard deviation of 3.5 %. (author)

  3. Effect of ion concentrations on uranium absorption from sodium carbonate solutions

    International Nuclear Information System (INIS)

    Traut, D.E.; El Hazek, N.M.T.; Palmer, G.R.; Nichols, I.L.

    1979-01-01

    The effect of various ion concentrations on uranium absorption from a sodium carbonate solution by a strong-base, anion resin was investigated in order to help assure an adequate uranium supply for future needs. The studies were conducted to improve the recovery of uranium from in situ leach solutions by ion exchange. The effects of carbonate, bicarbonate, chloride, and sulfate ions were examined. Relatively low (less than 5 g/l) concentrations of chloride, sulfate, and bicarbonate were found to be detrimental to the absorption of uranium. High (greater than 10 g/l) carbonate concentrations also adversely affected the uranium absorption. In addition, the effect of initial resin form was investigated in tests of the chloride, carbonate, and bicarbonate forms; resin form was shown to have no effect on the absorption of uranium

  4. A survey of natural uranium concentrations in drinking water supplies in Iran

    International Nuclear Information System (INIS)

    Alirezazadeh, N.; Garshasbi, N.

    2003-01-01

    Background: Measurement of background concentration of uranium in drinking water is very important for many reasons, specially, for human health. The uranium concentration in drinking water in many countries is a matter of concern for clinical and radioactive poisoning. Materials and methods: The uranium concentration in drinking water is determined using laser fluorimetric uranium analyzer. For this purpose after sampling, sample handling and sample preserving, sample preparation and treatment for reduction of organic matter, the concentration of uranium is measured. Results: To determine the uranium concentrations in drinking water in Iran, nearly 200 water samples were collected from all sources supplying drinking water in 21 provincial centers in the country. The wells were found to be the main source for drinking water. Uranium in the samples was measured by a laser fluorimetry technique. According to results, the concentration values found in the wells ranged from 1.0 to 10.90 μgL -1 , while nearly 95 percent of the cities had uranium concentrations in the wells at less than 4.70 μgL -1 . Surface waters showed uranium concentrations in the range of 0.75 to 2.58 μgL -1 . The daily intake of uranium from drinking water was estimated to range from 2.04 to 21.80 μgd -1 , with the mean value of 5.44 μgd -1 . Conclusion: Highest uranium mean concentration of 10.9 μgL -1 was found in Ardabil area where more studies should be done in that province in the future

  5. Uranium

    International Nuclear Information System (INIS)

    Perkin, D.J.

    1982-01-01

    Developments in the Australian uranium industry during 1980 are reviewed. Mine production increased markedly to 1841 t U 3 O 8 because of output from the new concentrator at Nabarlek and 1131 t of U 3 O 8 were exported at a nominal value of $37.19/lb. Several new contracts were signed for the sale of yellowcake from Ranger and Nabarlek Mines. Other developments include the decision by the joint venturers in the Olympic Dam Project to sink an exploration shaft and the release of an environmental impact statement for the Honeymoon deposit. Uranium exploration expenditure increased in 1980 and additions were made to Australia's demonstrated economic uranium resources. A world review is included

  6. Application of ion-exchange unit in uranium extraction process in China (to be continued)

    International Nuclear Information System (INIS)

    Gong Chuanwen

    2004-01-01

    The application conditions of five different ion exchange units in uranium milling plant and wastewater treatment plant of uranium mine in China are introduced, including working parameters, existing problems and improvements. The advantages and disadvantages of these units are reviewed briefly. The procedure points to be followed in selecting ion exchange unit are recommended in the engineering design. The primary views are presented upon the application prospects of some ion exchange units in uranium extraction process in China

  7. Measurements of radon daughter concentrations in structures built on or near uranium mine tailings

    International Nuclear Information System (INIS)

    Haywood, F.F.; Kerr, G.D.; Goldsmith, W.A.; Perdue, P.T.; Thorngate, J.H.

    1976-01-01

    A technique is discussed that has been used to measure air concentrations of short-lived daughters of 222 Rn in residential and commercial structures built on or near uranium mill tailings in the western part of the United States. In this technique, the concentrations of RaA, RaB, and RaC are calculated from one integral count of the RaA and two integral counts of the RaC' alpha-particle activity collected on a filter with an air sampling device. A computer program is available to calculate the concentrations of RaA, RaB, and RaC in air and to estimate the accuracy in these calculated concentrations. This program is written in the BASIC language. Also discussed in this paper are the alpha-particle spectrometer used to count activity on the air filters and the results of our radon daughter measurements in Colorado, Utah, and New Mexico. These results and results of other measurements discussed in a companion paper are now being used in a comprehensive study of potential radiation exposures to the public from uranium mill tailing piles

  8. Recovery of uranium mineral from Liaoning Fengcheng ludwigite ore by gravity concentration

    International Nuclear Information System (INIS)

    Zhang Tao; Liang Haijun; Xue Xiangxin

    2009-01-01

    A laboratory research was carried out to recover uranium mineral from Liaoning Fengcheng ludwigite ore. Gravity concentration methods including hydroclone, spiral chute and shaking table were applied in this study. The results show that a concentrate with uranium grade of 0.216% and recovery of 44.24% could be produced from the feed of uranium content 0.006 3%. This research is helpful to comprehensive utilization of the mineral resources. Increasing further uranium mineral liberation degree is the key to improve separation effects. (authors)

  9. Los Alamos Scientific Laboratory approach to hydrogeochemical and stream sediment reconnaissance for uranium in the United States

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1980-01-01

    The Los Alamos Scientific Laboratory of the United States is conducting a geochemical survey for uranium in the Rocky Mountain states of New Mexico, Colorado, Wyoming, and Montana and in Alaska. This survey is part of a national hydrogeochemical and stream sediment reconnaissance in which four Department of Energy laboratories will study the uranium resources of the United States to provide data for the National Uranium Resource Evaluation program. The reconnaissance will identify areas having higher than background concentrations of uranium in ground waters, surface waters, and water-transported sediments. The reconnaissance data will be combined with data from airborne radiometric surveys and geological and geophysical investigations to provide an improved estimate for the economics and availability of nuclear fuel resources in the United States and to make information available to industry for use in the exploration and development of uranium resources. Water samples are analyzed for uranium by fluorometry which has a 0.02 parts per billion lower limit of detection. Concentrations of 12 additional elements in water are determined by plasma-source emission spectrography. All sediments are analyzed for uranium by delayed-neutron counting and a 20 parts per billion lower limit of detection. Elemental concentrations in sediments are also determined by neutron activation analysis, x-ray fluorescence, and by arc-source emission spectrography. To date, all of four Rocky Mountain states and about 80% of Alaska have been sampled. About 220,000 samples have been collected from an area of nearly 2,500,000 km 2 . The philosophy, sampling methodology, analytical techniques, and progress of the reconnaissance are described in several published pilot study, reconnaissance, and technical reports. The Los Alamos program was designed to maximize the identification of uranium in terrains of varied geography, geology, and climate

  10. Los Alamos Scientific Laboratory approach to hydrogeochemical and stream sediment reconnaissance for uranium in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.L.

    1981-01-01

    The Los Alamos Scientific Laboratory of the United States is conducting a geochemical survey for uranium in the Rocky Mountain states of New Mexico, Colorado, Wyoming, and Montana and in Alaska. This survey is part of a national hydrogeochemical and stream sediment reconnaissance in which four Department of Energy laboratories will study the uranium resources of the United States to provide data for the National Uranium Resource Evaluation program. The reconnaissance will identify areas having higher than background concentrations of uranium in ground waters, surface waters, and water-transported sediments. Water and sediment samples are collected at a nominal density of one sample location per 10 km/sup 2/ except for lake areas of Alaska where the density is one sample location per 23 km/sup 2/. Water samples are analyzed for uranium by fluorometry which has a 0.02 parts per billion lower limit of detection. Concentrations of 12 additional elements in water are determined by plasma-source emission spectrography. All sediments are analyzed for uranium by delayed-neutron counting with a 20 parts per billion lower limit of detection, which is well below the range of uranium concentrations in natural sediment samples. Elemental concentrations in sediments are also determined by neutron activation analysis for 31 elements by x-ray fluorescence for 9 elements, and by arc-source emission spectrography for 2 elements. The multielement analyses provide valuable data for studies concerning pathfinder elements, environmental pollution, elemental distributions, dispersion halos, and economic ore deposits other than uranium. To date, all of four Rocky Mountain states and about 80% of Alaska have been sampled. About 220,000 samples have been collected from an area of nearly 2,500,000 km/sup 2/.

  11. Los Alamos Scientific Laboratory approach to hydrogeochemical and stream sediment reconnaissance for uranium in the United States

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1981-01-01

    The Los Alamos Scientific Laboratory of the United States is conducting a geochemical survey for uranium in the Rocky Mountain states of New Mexico, Colorado, Wyoming, and Montana and in Alaska. This survey is part of a national hydrogeochemical and stream sediment reconnaissance in which four Department of Energy laboratories will study the uranium resources of the United States to provide data for the National Uranium Resource Evaluation program. The reconnaissance will identify areas having higher than background concentrations of uranium in ground waters, surface waters, and water-transported sediments. Water and sediment samples are collected at a nominal density of one sample location per 10 km 2 except for lake areas of Alaska where the density is one sample location per 23 km 2 . Water samples are analyzed for uranium by fluorometry which has a 0.02 parts per billion lower limit of detection. Concentrations of 12 additional elements in water are determined by plasma-source emission spectrography. All sediments are analyzed for uranium by delayed-neutron counting with a 20 parts per billion lower limit of detection, which is well below the range of uranium concentrations in natural sediment samples. Elemental concentrations in sediments are also determined by neutron activation analysis for 31 elements by x-ray fluorescence for 9 elements, and by arc-source emission spectrography for 2 elements. The multielement analyses provide valuable data for studies concerning pathfinder elements, environmental pollution, elemental distributions, dispersion halos, and economic ore deposits other than uranium. To date, all of four Rocky Mountain states and about 80% of Alaska have been sampled. About 220,000 samples have been collected from an area of nearly 2,500,000 km 2

  12. Uranium prospecting program: memorandum of request United Nations Assistance Rotatory Fund for Naturals resources in Uranium Prospecting

    International Nuclear Information System (INIS)

    1976-01-01

    The Uruguayan government required assistance to Unit Nations funds with the aim of studies the Natural resources in Uranium prospecting, their antecedent, actual and projected works, equipment and end considerations

  13. The conditions for uranium concentration in the phosphates of Tchivoula, Congo

    International Nuclear Information System (INIS)

    Giresse, P.; N'Landou, J. de Dieu; Wiber, M.

    1986-01-01

    The processes of deposition of marine phosphates in the Maastrichtian seas of the Congo do not appear capable alone of having produced the significant concentrations of uranium found. Diagenetic phenomena resulted in a mobilisation and a secondary concentration of uranium in the interior of recrystallized apatites. This secondary uranium may have been derived from the residual organic matrix in the deposit. Towards the top of the beds, hydrolysis of the apatites and authigenesis of crandallite, barrandite and ferruginous variscite led to uranium concentrations which are characteristic of alteration in a tropical climate. In contrast, wavellite, the final product of supergene alteration does not retain uranium. In the case of the Tchivoula deposits, the overlying Paleocene beds may have been the source of the uraniferous solutions' downslope movement which favored concentration in the underlying sediments. (orig.)

  14. Can we predict uranium bioavailability based on soil parameters? Part 1: Effect of soil parameters on soil solution uranium concentration

    International Nuclear Information System (INIS)

    Vandenhove, H.; Hees, M. van; Wouters, K.; Wannijn, J.

    2007-01-01

    Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for 238 U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K d , L kg -1 ) and the organic matter content (R 2 = 0.70) and amorphous Fe content (R 2 = 0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH = 6, log(K d ) was linearly related with pH [log(K d ) = - 1.18 pH + 10.8, R 2 = 0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex. - Uranium solubility in soil can be predicted from organic matter or amorphous iron content and pH or with complex multilinear models considering several soil parameters

  15. Process for the winning of a concentrate containing uranium and purified phosphoric acid, as well as the concentrate containing uranium and purified phosphoric acid obtained by this process

    International Nuclear Information System (INIS)

    1980-01-01

    The uranium containing concentrate and purified phosphoric acid are obtained by treating wet phosphoric acid with an inorganic fluorine compound (ammonium fluoride) and an aliphatic ketone (acetone) in the presence of a reducing agent (finely divided iron). The ketone is added first and the formed uranium precipitate is separated from the solution. If the fluorine compound is added first, the yield is lowered by a factor of 2. (Th.P.)

  16. Determination of thorium, uranium and potassium elemental concentrations in surface soils in Cyprus

    International Nuclear Information System (INIS)

    Tzortzis, Michalis; Tsertos, Haralabos

    2004-01-01

    A comprehensive study was conducted to determine thorium, uranium and potassium elemental concentrations in surface soils throughout the accessible area of Cyprus using high-resolution γ-ray spectrometry. A total of 115 soil samples was collected from all over the bedrock surface of the island based on the different lithological units of the study area. The soil samples were air-dried, sieved through a fine mesh, sealed in 1000-ml plastic Marinelli beakers, and measured in the laboratory in terms of their gamma radioactivity for a counting time of 18 h each. From the measured γ-ray spectra, elemental concentrations were determined for thorium (range from 2.5x10 -3 to 9.8 μg g -1 ), uranium (from 8.1x10 -4 to 3.2 μg g -1 ) and potassium (from 1.3x10 -4 to 1.9%). The arithmetic mean values (A.M.±S.D.) calculated from all samples are: (1.2±1.7) μg g -1 , (0.6±0.7) μg g -1 and (0.4±0.3)%, for thorium, uranium and potassium, respectively, which are by a factor of three-six lower than the world average values of 7.4 μg g -1 (Th), 2.8 μg g -1 (U) and 1.3% (K) derived from all data available worldwide. The best-fitting relation between the concentrations of Th and K versus U and also of K versus Th, is essentially of linear type with a correlation coefficient of 0.93, 0.84 and 0.90, respectively. The Th/U, K/U and K/Th ratios (slopes) extracted are equal to 2.0, 2.8x10 3 and 1.4x10 3 , respectively

  17. A study on prediction of uranium concentration in pregnant solution from in-situ leaching

    International Nuclear Information System (INIS)

    Yi Weiping; Zhou Quan; Yu Yunzhen; Wang Shude; Yang Yihan; Lei Qifeng

    2005-01-01

    The modeling course on prediction of uranium concentration in pregnant solution from in-situ leaching of uranium is described, a mathematical model based on grey system theory is put forward, and a set of computer application software is correspondingly developed. (authors)

  18. Removing ferric ions from concentrated acid leaching solution of an uranium ore by jarosite

    International Nuclear Information System (INIS)

    Song Huanbi; Hu Yezang

    1997-01-01

    The author expounds the fundamental rules of removing ferric ions by jarosite and presents results of removing ferric ions from concentrated acid curing-trickle leaching solution of an uranium ore. It turns out that the method can be applied to uranium hydrometallurgical process effectively

  19. Situation and development trend of nuclear power and uranium industry in the united states and Russia

    International Nuclear Information System (INIS)

    Tan Chenglong

    2005-01-01

    This paper introduces the situation, trend of nuclear electrical and uranium industry in the United States and Russia. The United States and Russia are the two biggest countries in the world which generated nuclear power earliest. After 40 years' development, nuclear power in the United States and Russia are approximately 20%, 11% respectively of the total generation capacity in 2001. In the United States, only 6% of the nuclear power consumed uranium resource is domestic, in Russia about half of its uranium production is for export. Due to the collision between the energy development and environment protection, nuclear power in USA is still strong, but the uranium industry declines. In the future, uranium production for nuclear power in the United States will depend on the international market and the uranium storage of different levels. On the basis of pacifying people and making the country prosper, Russia has established their great plans for nuclear power with their substantial uranium resources. The author considers the supply and demand of uranium industry will remain balanced in the future decade on the whole, despite the United States and Russia's trend of uranium industry could take a major effect on uranium industry to the world. (authors)

  20. Ore-concentrating structures with telescoped uranium mineralization

    International Nuclear Information System (INIS)

    Shchetochkin, V.N.; Dmitriyev, V.I.; Tkachenko, I.I.

    1986-01-01

    Deep faults are the main controlling elements in uranium ore fields, although the immediate geologic environments may be quite varied. Within the fault zones, the uranium fields are usually associated with areas where major transverse and diagonal faults intersect or link, and with points of splitting or change in strike in disjunctive zones. Another distinctive feature of the mineralized structure is their long history, with a combination of tectonic elements differing in age and type, usually associated with retrograde dislocation metamorphism. The specific features of these structures control the uranium mineralization, which is usually localized in foci with telescoped tectonic, magmatic, hydrothermal, metasomatic, and sometimes exogenous processes. The unnamed area (in the Ukraine?) furnishes a good example of how successive stages of a complex geologic history affect the occurrence of such a highly mobile element as uranium. 12 references, 4 figures

  1. Effect of pH and uranium concentration on interaction of uranium(VI) and uranium(IV) with organic ligands in aqueous solutions

    International Nuclear Information System (INIS)

    Li, W.C.; Victor, D.M.; Chakrabarti, C.L.

    1980-01-01

    The effect of pH and uranium concentration on the interactions of uranium(VI) and uranium(IV) with organic ligands was studied by employing dialysis and ultrafiltration techniques. The interactions of U(VI) and U(IV) with organic ligands in nitrate or chloride aqueous solution have been found to be pH-dependent. The stability constants of uranium-organic complexes decrease in the order: fulvic acid>humic acid>tannic acid for U(VI) and humic acid>tannic acid>fulvic acid for U(IV). Scatchard plots for the uranium-organic acid systems indicate two types of binding sites with a difference in stability constants of about 10 2 . Ultrafiltration of uranium-humic acid complexes indicates that U(VI) and U(IV) ions are concentrated in larger molecular size fractions (>5.1 nm) at pH less than or equal to 3 and in smaller molecular size fractions (in the range 5.1 to 3.1 nm and 2.4 to 1.9 nm) at pH greater than or equal to 5. 7 figures, 4 tables

  2. Concentration factors of uranium mineralization in VII depositional cycle of Shuixigou group, lower-middle Jurassic at Wukurqi uranium deposit, Yili basin

    International Nuclear Information System (INIS)

    Liu Taoyong

    2004-01-01

    Starting with the analysis on uranium mineralization, this paper emphatically discusses factors related to uranium concentration in VII depositional cycle, such as the structure, the paleoclimate, the lithofacies-paleogeography, the lithology, the hydrogeology, the geochemistry, and the content of effective reductant. The author suggests that key factors of uranium migration and concentration at Wukurqi uranium deposit are the existence of ore-hosting formation (sand body), the long-term recharge of oxygen and uranium-bearing groundwater, the existence of effective reductant in ore-hosting formation

  3. Can we predict uranium bioavailability based on soil parameters? Part 1: effect of soil parameters on soil solution uranium concentration.

    Science.gov (United States)

    Vandenhove, H; Van Hees, M; Wouters, K; Wannijn, J

    2007-01-01

    Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for (238)U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K(d), L kg(-1)) and the organic matter content (R(2)=0.70) and amorphous Fe content (R(2)=0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH=6, log(K(d)) was linearly related with pH [log(K(d))=-1.18 pH+10.8, R(2)=0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex.

  4. Predicting arsenic concentrations in porewaters of buried uranium mill tailings

    Energy Technology Data Exchange (ETDEWEB)

    Langmuir, D.; Mahoney, J.; MacDonald, A.; Rowson, J.

    1999-10-01

    The proposed JEB Tailings Management Facility (TMF) to be emplaced below the groundwater table in northern Saskatchewan, Canada, will contain uranium mill tailings from McClean Lake, Midwest and Cigar Lake ore bodies, which are high in arsenic (up to 10%) and nickel (up to 5%). A serious concern is the possibility that high arsenic and nickel concentrations may be released from the buried tailings, contaminating adjacent groundwaters and a nearby lake. Laboratory tests and geochemical modeling were performed to examine ways to reduce the arsenic and nickel concentrations in TMF porewaters so as to minimize such contamination from tailings buried for 50 years and longer. The tests were designed to mimic conditions in the mill neutralization circuit (3 hr tests at 25 C), and in the TMF after burial (5--49 day aging tests). The aging tests were run at 50, 25 and 4 C (the temperature in the TMF). In order to optimize the removal of arsenic by adsorption and precipitation, ferric sulfate was added to tailings raffinates having Fe/As ratios of less than 3--5. The acid raffinates were then neutralized by addition of slaked lime to nominal pH values of 7, 8, or 9. Analysis and modeling of the test results showed that with slaked lime addition to acid tailings raffinates, relatively amorphous scorodite (ferric arsenate) precipitates near pH 1, and is the dominant form of arsenate in slake limed tailings solids except those high in Ni and As and low in Fe, in which cabrerite-annabergite (Ni, Mg, Fe(II) arsenate) may also precipitate near pH 5--6. In addition to the arsenate precipitates, smaller amounts of arsenate are also adsorbed onto tailings solids. The aging tests showed that after burial of the tailings, arsenic concentrations may increase with time from the breakdown of the arsenate phases (chiefly scorodite). However, the tests indicate that the rate of change decreases and approaches zero after 72 hrs at 25 C, and may equal zero at all times in the TMF at 4 C

  5. Determination of trace concentration of uranium in soils by the nuclear track technique

    International Nuclear Information System (INIS)

    Islam, G.S.; Abdullah, M.N.A.

    1998-04-01

    Solid state nuclear track detector CR-39 has been used to estimate trace concentration of uranium in soil and sand samples from various places of Bangladesh. Uranium contents in soil samples have been found to vary from ∼3.79 to ∼8.63 ppm and in sand samples from ∼2.39 to ∼6.53 ppm. The mean concentration in soil and in sand samples were found to be ∼4.52 and ∼2.96 ppm respectively. The maximum uranium concentration in soil samples was observed in Sylhet while the uranium concentration of sand was found to be maximum in the sea beach of Cox's Bazar. The implication of results is briefly discussed in the paper. (author)

  6. Uranium concentrations in natural waters, South Park, Colorado

    International Nuclear Information System (INIS)

    Sharp, R.R. Jr.; Aamodt, P.L.

    1976-08-01

    During the summer of 1975, 464 water samples from 149 locations in South Park, Colorado, were taken for the Los Alamos Scientific Laboratory in order to test the field sampling and analytical methodologies proposed for the NURE Hydrogeochemical and Stream Sediment Reconnaissance for uranium in the Rocky Mountain states and Alaska. The study showed, in the South Park area, that the analytical results do not vary significantly between samples which were untreated, filtered and acidified, filtered only, or acidified only. Furthermore, the analytical methods of fluorometry and delayed-neutron counting, as developed at the LASL for the reconnaissance work, provide fast, adequately precise, and complementary procedures for analyzing a broad range of uranium in natural waters. The data generated using this methodology does appear to identify uraniferous areas, and when applied using sound geochemical, geological, and hydrological principles, should prove a valuable tool in reconnaissance surveying to delineate new districts or areas of interest for uranium exploration

  7. Status Report from the United Kingdom [Processing of Low-Grade Uranium Ores

    Energy Technology Data Exchange (ETDEWEB)

    North, A A [Warren Spring Laboratory, Stevenage, Herts. (United Kingdom)

    1967-06-15

    The invitation to present this status report could have been taken literally as a request for information on experience gained in the actual processing of low-grade uranium ores in the United Kingdom, in which case there would have been very little to report; however, the invitation naturally was considered to be a request for a report on the experience gained by the United Kingdom of the processing of uranium ores. Lowgrade uranium ores are not treated in the United Kingdom simply because the country does not possess any known significant deposits of uranium ore. It is of interest to record the fact that during the nineteenth century mesothermal vein deposits associated with Hercynian granite were worked at South Terras, Cornwall, and ore that contained approximately 100 tons of uranium oxide was exported to Germany. Now only some 20 tons of contained uranium oxide remain at South Terras; also in Cornwall there is a small number of other vein deposits that each hold about five tons of uranium. Small lodes of uranium ore have been located in the southern uplands of Scotland; in North Wales lower palaeozoic black shales have only as much as 50 to 80 parts per million of uranium oxide, and a slightly lower grade carbonaceous shale is found near the base of the millstone grit that occurs in the north of England. Thus the experience gained by the United Kingdom has been of the treatment of uranium ores that occur abroad.

  8. Concentration of uranium in the drinking and surface water around the WIPP site

    International Nuclear Information System (INIS)

    Khaing, H.; Lemons, B.G.; Thakur, P.

    2016-01-01

    Activity concentration of uranium isotopes ( 238 U, 234 U and 235 U) were analyzed in drinking and surface water samples collected in the vicinity of the WIPP site using alpha spectroscopy. The purpose of this study was to investigate the changes in uranium concentrations (if any) in the vicinity of the WIPP site and whether the February 14, 2014 radiation release event at the WIPP had any detectable impact on the water bodies around the WIPP. (author)

  9. Acid pressure leaching of a concentrate containing uranium, thorium and rare earth elements

    International Nuclear Information System (INIS)

    Lan Xinghua; Peng Ruqing.

    1987-01-01

    The acid pressure leaching of a concentrate containing rinkolite for recovering uranium, thorium and rare earth elements is described. The laboratory and the pilot plant test results are given. Under the optimum leaching conditions, the recovery of uranium, thorium and rare earth elements are 82.9%, 86.0% and 88.3% respectively. These results show that the acid pressure leaching process is a effective process for treating the concentrate

  10. Fission track ages and uranium concentration of apatites of different rocks of South India

    International Nuclear Information System (INIS)

    Nand Lal; Nagpaul, K.K.; Nagpal, M.K.

    1975-01-01

    The uranium concentration and ages of apatite grains of various rocks of South India have been measured by fission track technique. The ages range from 100 m.y. to 730 m.y. whereas uranium concentrations vary from 0.5 to 23.8 atom/million atoms of the apatite mineral. The ages agree well with the Deccan volcanic and Ocean Cycle activities. (author)

  11. Evaluating the reliability of uranium concentration and isotope ratio measurements via an interlaboratory comparison program

    International Nuclear Information System (INIS)

    Oliveira Junior, Olivio Pereira de; Oliveira, Inez Cristina de; Pereira, Marcia Regina; Tanabe, Eduardo

    2009-01-01

    The nuclear fuel cycle is a strategic area for the Brazilian development because it is associated with the generation of electricity needed to boost the country economy. Uranium is one the chemical elements in this cycle and its concentration and isotope composition must be accurately known. In this present work, the reliability of the uranium concentration and isotope ratio measurements carried out at the CTMSP analytical laboratories is evaluated by the results obtained in an international interlaboratory comparison program. (author)

  12. Treatment technology of low concentration uranium-bearing wastewater and its research progress

    International Nuclear Information System (INIS)

    Wei Guangzhi; Xu Lechang

    2007-01-01

    With growth of the discharged uranium-bearing wastewater capacity, a low cost and effective treatment technology is required to avoid transferring and diffusion of the radioactive nuclides. On the basis of analyses of the source and characteristics of the low-concentration uranium-bearing wastewater, the conventional treatment technologies, such as, flocculating settling, ion exchange, concentration, adsorption, and some innovatory technologies, such as, membrane, microorganism, phytoremediation and zero-valent iron technology are introduced. (authors)

  13. The United States Transuranium and Uranium Registries: overview and recent progress

    International Nuclear Information System (INIS)

    Kathren, R.L.

    1989-01-01

    This paper describes the organisation, activities and recent scientific accomplishments of the United States Transuranium and Uranium Registries. Through voluntary donations of tissue obtained at autopsies, the Registries carry out studies of the concentration, distribution and biokinetics of actinides in occupationally exposed persons. Findings from tissue analyses from more than 200 autopsies include the following: a greater proportion of the americium intake, as compared with plutonium, is found in the skeleton; the half-time of americium in liver is significantly shorter than that of plutonium; the concentration of actinide in the skeleton is inversely proportional to the calcium and ash content of the bone; only a small percentage of the total skeletal deposition of plutonium is found in the marrow, implying a smaller risk from irradiation of the marrow relative to the bone surfaces; estimates of plutonium body burden made from urinalysis typically exceed those made from autopsy data; pathologists are unable to discriminate between a group of uranium workers and persons without known occupational exposure on the basis of evaluation of microscopic kidney slides; the skeleton is an important long-term depot for uranium and its fractional uptake by both skeleton and kidney may be greater than indicated by current models. These and other findings and current studies are discussed in depth. (author)

  14. Study of Uranium Concentrations in Water and Organic Material from Streams in Sweden

    International Nuclear Information System (INIS)

    Ek, J.

    1981-12-01

    The purpose of the investigation has been to study how uranium concentrations in stream water and organic material are related to various geological parameters such as rock types, average uranium content and radioactivity, fracturing, leachability of uranium from the bedrock, occurrence of uranium mineralisations and thickness and type of Quarternary deposits. The investigation has also taken account of the effects of environmental factors such as climate , precipitation, height above sea level and topography. The background concentration of uranium in organic stream sediment varies from 1 ppm to 45 ppm, with a background value of 10 ppm for all 14 areas considered together. The threshold value for organic stream material varies from 3 ppm U to 303 ppm U with a threshold value of 133 ppm U for all 14 areas considered together. For water, the background concentration varies between the 5 areas from 0.2 ppb U to 0.7 ppb U with a background value of 0.4 ppb U for all 5 areas together. The threshold value varies from 0.3 ppb U to 5.2 ppb U with a threshold value of 2.9 ppb U for all 5 areas together. An investigation of the correlation between uranium concentrations in water and organic stream material from one and the same sampling point shows a positive correlation for high concentrations, but the correlation becomes successively less significant with lower concentrations. Uranium concentrations in organic stream material and water are positively correlated with the following geological parameters:1) Background concentrations of uranium in the bedrock. 2) Abundance of fractures in the bedrock. 3) Leachability of uranium from the bedrock. 4) Presence of uranium mineralisations. For organic stream material, this positive correlation is obtained for both high and low uranium concentrations whereas for water it occurs only with high concentrations. In areas of broken topography and high relief, there is a more clearly defined correlation to the bedrock than in areas of

  15. The effects of different uranium concentrations on soil microbial populations and enzymatic activities

    International Nuclear Information System (INIS)

    Bagherifam, S.; Lakziyan, A.; Ahmadi, S. J.; Fotovvat, A.; Rahimi, M. F.

    2010-01-01

    Uranium is an ubiquitous constituent of natural environment with an average concentration of 4 mg/kg in earth crust. However, in local areas it may exceed the normal concentration due to human activities resulting in radionuclide contamination in groundwater and surface soil. The effect of six levels of uranium concentration (0, 50, 100,250. 500 and 1000 mg kg -1 ) on soil phosphatase activities and microbial populations were studied in a completely randomized design as a factorial experiment with three replications. The results showed a significant decrease in phosphatase activity. The result of the experiment suggests that soil microbial populations (bacteria, funji and actinomycetes) decrease by increasing the uranium levels in the soil. Therefore, assessment of soil enzymatic activities and microbial populations can be helpful as a useful index for a better management of uranium and radioactive contaminated soils.

  16. Uranium Concentration of Contaminated Zone due to the Cover Depth for Self-Disposal

    International Nuclear Information System (INIS)

    Koo, Dae Seo; Sung, Hyun Hee; Kim, Gye Nam; Kim, Seung Soo; Kim, Il Gook; Han, Gyu Seong; Choi, Jong Won

    2016-01-01

    To acquire radiation dose under self disposal from them, the study on decontamination of some uranium contaminated soil and concrete wastes was performed using electrokinetic-electrodialytic. In this study, we evaluated radiation dose due to cover depth on contaminated zone such as uranium contaminated soil and concrete wastes under radiation dose limit using RESRAD Version 6.5. At first, the calculation of the radiation dose on the contaminated zone are carried out. The second, the uranium concentration of contaminated zone due to the cover depth are also analyzed. The uranium contaminated soil and concrete wastes under radiation dose limit by decontaminating them have application to self-disposal of contaminated zone. The area of contaminated zone is 1,500 m"2. The thickness of contaminated zone is 2 m. The length parallel to aquifer flow is 43.702m. The age of the residents on contaminated zone is 15 years old. The period of evaluation on the contaminated zone is from regulation exemption of uranium contaminated soil and concrete wastes till 1,000 years. The calculation of the radiation dose on contaminated zone are carried out. The uranium concentration of contaminated zone due to the cover depth was also analyzed. as the cover depth increases, the uranium concentration has an increasing trend. As the cover depth increases, radiation dose of a person has a decreasing trend. As the cover depth increases, the radiation dose of residents has also a decreasing trend.

  17. Uranium Concentration of Contaminated Zone due to the Cover Depth for Self-Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Dae Seo; Sung, Hyun Hee; Kim, Gye Nam; Kim, Seung Soo; Kim, Il Gook; Han, Gyu Seong; Choi, Jong Won [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    To acquire radiation dose under self disposal from them, the study on decontamination of some uranium contaminated soil and concrete wastes was performed using electrokinetic-electrodialytic. In this study, we evaluated radiation dose due to cover depth on contaminated zone such as uranium contaminated soil and concrete wastes under radiation dose limit using RESRAD Version 6.5. At first, the calculation of the radiation dose on the contaminated zone are carried out. The second, the uranium concentration of contaminated zone due to the cover depth are also analyzed. The uranium contaminated soil and concrete wastes under radiation dose limit by decontaminating them have application to self-disposal of contaminated zone. The area of contaminated zone is 1,500 m{sup 2}. The thickness of contaminated zone is 2 m. The length parallel to aquifer flow is 43.702m. The age of the residents on contaminated zone is 15 years old. The period of evaluation on the contaminated zone is from regulation exemption of uranium contaminated soil and concrete wastes till 1,000 years. The calculation of the radiation dose on contaminated zone are carried out. The uranium concentration of contaminated zone due to the cover depth was also analyzed. as the cover depth increases, the uranium concentration has an increasing trend. As the cover depth increases, radiation dose of a person has a decreasing trend. As the cover depth increases, the radiation dose of residents has also a decreasing trend.

  18. Radium and uranium concentrations and associated hydrogeochemistry in ground water in southwestern Pueblo County, Colorado

    Science.gov (United States)

    Felmlee, J. Karen; Cadigan, Robert Allen

    1979-01-01

    Radium and uranium concentrations in water from 37 wells tapping the aquifer system of the Dakota Sandstone and Purgatoire Formation in southwestern Pueblo County, Colorado, have a wide range of values and define several areas of high radioactivity in the ground water. Radium ranges from 0.3 to 420 picocuries per liter and has a median value of 8.8, and uranium ranges from 0.02 to 180 micrograms per liter and has a median value of 2.4. Radon concentrations, measured in 32 of the 37 wells, range from less than 100 picocuries per liter to as much as 27,000 and have a median value of 580. Relationships among the radioactive elements and 28 other geochemical parameters were studied by using correlation coefficients and R-mode factor analysis. Five factor groups were determined to represent major influences on water chemistry: (1) short-term solution reactions, (2) oxidation reactions, (3) hydrolysis reactions, (4) uranium distribution, and (5) long-term solution reactions. Uranium concentrations are most strongly influenced by oxidation reactions but also are affected by solution reactions and distribution of uranium in the rocks of the aquifer system. Radon and radium concentrations are mostly controlled by uranium distribution; radium also shows a moderate negative relationship with oxidation. To explain the statistical and spatial relationships among the parameters, a model was developed involving the selective leaching of uranium-bearing phases and metal sulfides which occur in discontinuous zones in sandstone and shale. When reducing conditions prevail, uranium is immobile, but radium can be taken into solution. When faults and associated fractured rocks allow oxidizing conditions to dominate, uranium can be taken into solution; radium can also be taken into solution, or it may become immobilized by coprecipitation with iron and manganese oxides or with barite. Several areas within the study area are discussed in terms of the model.

  19. Uranium concentrations in natural waters, South Park, Colorado. [Part of National Uranium Resource Evaluation program

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, R.R. Jr.; Aamodt, P.L.

    1976-08-01

    During the summer of 1975, 464 water samples from 149 locations in South Park, Colorado, were taken for the Los Alamos Scientific Laboratory in order to test the field sampling and analytical methodologies proposed for the NURE Hydrogeochemical and Stream Sediment Reconnaissance for uranium in the Rocky Mountain states and Alaska. The study showed, in the South Park area, that the analytical results do not vary significantly between samples which were untreated, filtered and acidified, filtered only, or acidified only. Furthermore, the analytical methods of fluorometry and delayed-neutron counting, as developed at the LASL for the reconnaissance work, provide fast, adequately precise, and complementary procedures for analyzing a broad range of uranium in natural waters. The data generated using this methodology does appear to identify uraniferous areas, and when applied using sound geochemical, geological, and hydrological principles, should prove a valuable tool in reconnaissance surveying to delineate new districts or areas of interest for uranium exploration.

  20. Uranium

    International Nuclear Information System (INIS)

    Cuney, M.; Pagel, M.; Leroy, J.

    1992-01-01

    First, this book presents the physico-chemical properties of Uranium and the consequences which can be deduced from the study of numerous geological process. The authors describe natural distribution of Uranium at different scales and on different supports, and main Uranium minerals. A great place in the book is assigned to description and classification of uranium deposits. The book gives also notions on prospection and exploitation of uranium deposits. Historical aspects of Uranium economical development (Uranium resources, production, supply and demand, operating costs) are given in the last chapter. 7 refs., 17 figs

  1. Elevated Arsenic and Uranium Concentrations in Unregulated Water Sources on the Navajo Nation, USA

    OpenAIRE

    Hoover, Joseph; Gonzales, Melissa; Shuey, Chris; Barney, Yolanda; Lewis, Johnnye

    2016-01-01

    Regional water pollution and use of unregulated water sources can be an important mixed metals exposure pathway for rural populations located in areas with limited water infrastructure and an extensive mining history.?Using censored data analysis and mapping techniques we analyzed the joint geospatial distribution of arsenic and uranium in unregulated water sources throughout the Navajo Nation, where over 500 abandoned uranium mine sites are located in the rural southwestern United States. Re...

  2. Uranium concentration in blood samples of Southern Iraqi leukemia patients using CR-39 track detector

    International Nuclear Information System (INIS)

    Al-Hamzawi, A.A.; Al-Qadisiyah University, Qadisiyah; Jaafar, M.S.; Tawfiq, N.F.

    2014-01-01

    The simple and effective technique of fission track etch has been applied to determine trace concentration of uranium in human blood samples taken from two groups of male and female participants: leukemia patients and healthy subjects group. The blood samples of leukemia patients and healthy subjects were collected from three key southern governorates namely, Basrah, Muthanna and Dhi-Qar. These governorates were the centers of intensive military activities during the 1991 and 2003 Gulf wars, and the discarded weapons are still lying around in these regions. CR-39 track detector was used for registration of induced fission tracks. The results show that the highest recorded uranium concentration in the blood samples of leukemia patients was 4.71 ppb (female, 45 years old, from Basrah) and the minimum concentration was 1.91 ppb (male, 3 years old, from Muthanna). For healthy group, the maximum uranium concentration was 2.15 ppb (female, 55 years old, from Basrah) and the minimum concentration was 0.86 ppb (male, 5 years old, from Dhi-Qar). It has been found that the uranium concentrations in human blood samples of leukemia patients are higher than those of the healthy group. These uranium concentrations in the leukemia patients group were significantly different (P < 0.001) from those in the healthy group. (author)

  3. Uranium concentration measurements in human blood for some governorates in Iraq using CR-39 track detector

    International Nuclear Information System (INIS)

    Tawfiq, N.F.; Ali, L.T.; Al-Jobouri, H.A.

    2013-01-01

    The sensitive and simple technique of fission track etch has been applied to determine trace concentration of uranium in blood samples for occupational and non-occupational workers, male and female, using CR-39 track detector that is employed for registration of induced fission tracks. The results show that the highest recorded uranium concentration in human blood of workers in the ministry of Science and Technology were 1.90 ppb (male, 36 years old, 12 years' work experience, and living in Basrah governorate) and minimum concentration 0.26 ppb (female, 40 years old, 10 years' work experience, and living in Baghdad), while for non-occupational worker, the maximum uranium concentration was 1.76 ppb (female, 63 years old, and living in Al-Muthana) and minimum concentration was 0.28 ppb (female, 20 years old, and living in Baghdad). It has also been found that the uranium concentration in human blood samples of workers in the ministry of Science and Technology are higher than those of non-occupational workers, and the uranium concentrations for female workers and for non-occupational workers were higher than those for male workers and non-occupational workers. (author)

  4. On the peculiarities of subsurface uranium concentrations in the arid regions

    International Nuclear Information System (INIS)

    Kochenov, A.V.; Chernikov, A.A.

    1976-01-01

    The general features of uranium distribution in the zone of hypergenesis of the area under investigation suggest a lack of accumulations due to climatic or landscape factors alone and formed at the expense of background near-clark contents of uranium in primary rocks. The low uranium concentrations in the debris layer of weathered crusts of acidic effusive rocks and granites as well as in salt marshes are of areal distribution and, in practice, never recorded as anomalies. The processes of salt formation in the area discussed appear, in the absence of organic matter in the sediments, to be insufficient by themselves for the accumulation of uranium from its near-clark contents in the primary rocks. At the same time the arid conditions are undoubtedly favorable for the formation and persistence of accumulative diffusion aureoles emphasizing and revealing on the surface the smallest and poorest primary concentrations of uranium. It is inadmissible to extrapolate the results of a study of one area to the entire variety of geomorphological conditions of the arid zone. The data reported show that care should be taken in interpreting uranium anomalies in arid areas, by all means taking account of the geological structure of the particular anomalous area and the uranium resources of the primary rocks

  5. Organic matter in uranium concentration during ancient bed oxidation of carboniferons sediments

    International Nuclear Information System (INIS)

    Kruglova, V.G.; Uspenskij, V.A.; Dement'ev, P.K.; Kochenov, A.V.

    1984-01-01

    Changes in the organic matter accompanying the process of epigenetic ore formation are studied using the example of a deposit localized in carboniferous molasse strata of the Cretaceous period. Peculiarities of the organic matter as the main mineralization agent are studied by a complex of physical and themical methods. A distinct relationship between the uranium concentration and the degree of organic matter oxigenation is a most characteristic feature of the ore localization, however, there is no direct correlation between the contents of uranium and organic matter in ores. Uranium minerallzation was accumulated during infiltration of acid uraniferous.waters into grey stratum in the process of the bed oxidation zone formation oxidizing. Brown coal matter possessing a maximum adsorbability, as compared to other sedimentary rocks, apprared to be the uranium precipitator. The adsorption was accompanie by the formation of proper uranium minerals (coffinite, pitchblende) due to uranium reduction by oxidizing organic matter. Thus, the oxidative epigenesis was an are-forming process with the uranium concentration on organic matter proportionally to oxidation of the latter

  6. Uranium Potential and Socio-Political Environment for Uranium Mining in the Eastern United States Of America with Emphasis on the Coles Hill Uranium Deposit

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, N.W., E-mail: MMastilovic@vaunic.com [Virginia Uranium, Inc., Chatham, VA (United States)

    2014-05-15

    Virginia Uranium, Inc. (“VUI”) is an exploration and development company that holds exclusive rights to the world class Coles Hill uranium project in Pittsylvania County, Virginia. This project has the potential to supply significant uranium to the market. Since the 1980s over US$60 million has been expended to advance the project. The Coles Hill uranium deposit is located in south central Virginia and is probably the largest undeveloped uranium deposit in the United States. It has a measured and indicated resource of 119 million pounds of U{sub 3}O{sub 8}{sup (A)} {sup (B)} at a cut-off grade of 0.025% U{sub 3}O{sub 8} based on a National Instrument 43-101 technical report prepared for Santoy Resources Ltd. and Virginia Uranium, Inc. by Behre Dolbear and Company, Ltd., Marshall Miller and Associates, Inc., and PAC Geological Consulting Inc. dated February 2, 2009 and revised April, 2009. The whole rock analyses of the deposit indicate a relatively monomineralic ore that does not contain quantities of heavy metals that are typical of uranium ores of the southwestern United States. The Colorado School of Mines Research Institute conducted mill mineral processing tests in the 1980s. Project pre-feasibility studies and other plans completed in the 1980s will be updated over the next 12 months.Mining and support personnel can reasonably be recruited from the local area, as the skill sets needed for miners exist already among people and companies who are comfortable with farming and heavy equipment. Virginia currently requires that uranium mining regulations and permitting be adopted by law prior to approving a mining operation at Coles Hill. Virginia has regulated and permitted many similar mining industries. In fact, lead has been mined in the state from 1750–1981 and heavy metal sands have been mined since 1991 in Dinwiddie County that is over 90 miles/144 kilometers east of Coles Hill. A process to evaluate uranium mining through the Virginia Coal and Energy

  7. Obtaining of uranium tetrafluoride UF4 by electrodialysis reactive from uranium concentrates

    International Nuclear Information System (INIS)

    Munoz Lay, Danny Mauricio

    2014-01-01

    The generation of uranium fuels has always been a topic worldwide. The uranium fuel manufacturing base is made under very strict parameters of radiological and industrial safety, being a stage called 'nuclear fuel cycle'. In Chile, it is done constant research for fuels. This report focuses primarily on participating in such research; mainly in the production of uranium tetrafluoride (UF 4 ) .The tetrafluoride production is very crucial for the nuclear fuel industry. Its production varies from precipitation in stirred conditions to electrolysis in mercury. However, both processes has shortcomings either in performance and environmental pollution, which is why it is proposed a new method of production based on a friendly process to the environment and easier to operate, the reactive electrodialysis (RED). Electrodialysis is a hybrid reactive process of separation by membranes, cationic and / or anionic, namely, ionic species. In the process, ions are induced to move by an electric potential applied and separated by these membranes, a highly selective physical barrier which allows passage of ions with certain charge, and prevents the passage of oppositely charged ions. And in turn, it is reactive because it forces a chemical reaction, redox, to obtain uranium tetrafluoride (UF 4 ). The results of these experiments show that by reactive electrodialysis, NH 4 UF 5 deposits were obtained. However, calcinating the NH 4 UF 5 to 450 o C, it decomposes to obtain uranium tetrafluoride, UF 4 . The best working conditions were obtained with an electric current of 0.5 (A), 41 o C and a flow of 16 (ml / s) of the electrolyte. It was possible to obtain 5,995 (g) to 3 (h), giving a current efficiency of 71.42%. In turn, working at high temperatures and flow recirculation is possible to operate with a potential difference of 1.7 (V)

  8. Characterization and classification of uranium ore concentrates (yellow cakes) using infrared spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Z.; Oeztuerk, B.; Mayer, K.; Wallenius, M.; Apostolidis, C. [Joint Research Centre, Karlsruhe (Germany). Inst. for Transuranium Elements; Meppen, M. [Carl Friedrich von Weizsaecker-Zentrum fuer Naturwissenschaft und Friedensforschung, Hamburg (Germany)

    2011-07-01

    In this work the applicability of Fourier-transform infrared spectrometry (FTIR) for nuclear forensic studies of uranium ore concentrates (UOC) are investigated. The technique was used for the identification of the type of uranium compound and various process-related impurities, which can give information on the production method of the material. The measured spectra were evaluated also by statistical means, using the soft independent modelling of class analogy (SIMCA) technique to reveal less apparent similarities between the measured UOC samples.

  9. Assessment report on uranium in the United States of America

    International Nuclear Information System (INIS)

    1980-10-01

    Assessment of the uranium resources in the United States as of October 1, 1980, indicates a range of reserves, in mean values, from 645 thousand tons of U 3 O 8 (in the $30 per pound of U 3 O 8 cost category) to 1.122 million tons (in the $100 per pound of U 3 O 8 category). Ranges of potential resources are also shown for the same cost categories: from 885 thousand to over 2 million tons of U 3 O 8 in the probable class; 346 thousand to over 1 million tons in the possible class; and 311 thousand to nearly 700 thousand tons in the speculative class. There are an estimated 140 thousand tons of U 3 O 8 that could be recovered as a byproduct of phosphate and copper mining through the year 2009. Production capability studies indicate that the demand could be satisfied from currently estimated resources if there is a transition from current production of lower cost resources to production from the $50 per pound of U 3 O 8 resources by the mid 1990s. If, due to foreign competition or other market forces, production incentives are not maintained, domestic production potential will not be realized, and the United States could become dependent on foreign sources for much of its U 3 O 8

  10. Recovery of uranium in the production of concentrated phosphoric acid by a hemihydrate process

    International Nuclear Information System (INIS)

    Nakajima, S.; Miyamoto, M.

    1983-01-01

    Nissan Chemical Industries as manufacturers of phosphoric acid have studied the recovery of uranium, based on a concentrated phosphoric acid production process. The process consists of two stages, a hemihydrate stage with a formation of hemihydrate and a filtration section, followed by a dihydrate stage with hydration and a filtration section. In the hemihydrate stage, phosphate is treated with a mixture of phosphoric acid and sulphuric acid to produce phosphoric acid and hydrous calcium sulphate; the product is recovered in the filtration section and its concentration is 40-50% P 2 O 3 . In the dihydrate stage, the hemihydrate is transformed by re-dissolution and hydration, producing hydrous calcium sulphate, i.e. gypsum. This process therefore comprises two parts, each with different acid concentrations. As the extraction of uranium is easier in the case of a low concentration of phosphoric acid, the process consists of the recovery of uranium starting from the filtrate of the hydration section. The tests have shown that the yield of recovery of uranium was of the order of 80% disregarding the handling losses and no disadvantageous effect has been found in the combination of the process of uranium extraction with the process of concentrated phosphoric acid production. Compared with the classical process where uranium is recovered from acid with 30% P 2 O 5 , the process of producing high-concentration phosphoric acid such as the Nissan process, in which the uranium recovery is effected from acid with 15% P 2 O 5 from the hydration section, presents many advantages [fr

  11. New route for uranium concentrate production from Caetite ore, Bahia State, Brazil; dynamic leaching - direct precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Carlos A. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mail: cmorais@cdtn.br; Gomiero, Luiz A.; Scassiotti Filho, Walter [Industrias Nucleares do Brasil S.A. (INB), Caetite, BA (Brazil)]. E-mails: gomiero@inb.gov.br; scassiotti@inb.gov.br

    2007-07-01

    The common uranium concentrate production consists of ore leaching, uranium purification/concentration by solvent extraction and uranium precipitation as ammonium diuranate steps. In the present work, a new route of uranium concentrate production from Caetite, BA-Brazil ore was investigated. The following steps were investigated: dynamic leaching of the ground ore with sulfuric acid; sulfuric liquor pre-neutralization until pH 3.7; uranium peroxide precipitation. The study was carried out in bath and continuous circuits. In the dynamic leaching of ground ore in agitated tanks the uranium content in the leached ore may be as low as 100 {mu}g/g U{sub 3}O{sub 8}, depending on grinding size. In the pre-neutralization step, the iron content in the liquor is decreased in 99 wt.%, dropping from 3.62 g/L to 0.030 g/L. The sulfate content in the liquor reduces from 46 g/L to 22 g/L. A calcinated final product assaying 99.7 wt.% U{sub 3}O{sub 8} was obtained. The full process recovery was over 94%. (author)

  12. Concentrations of Uranium,Thorium and Potassium in Sweden

    International Nuclear Information System (INIS)

    Thunholm, Bo; Linden, Anders H.; Gustafsson, Bosse

    2005-04-01

    This report is largely a result of the Swedish contribution to an IAEA co-ordinated research programme (CRP) on the use of selected safety indicators in the assessment of radioactive waste disposal. The CRP was focusing on the assessment of the longterm safety of radioactive waste disposal by means of additional safety indicators based on data from natural systems with emphasis on description of existing data on radioactive elements and radionuclides. A major part of the work was focused on collecting data on geophysics as well as geochemistry and groundwater chemistry; mainly uranium (U), thorium (Th) and potassium (K). Data were interpreted resulting in maps and statistical description

  13. Concentrations of Uranium,Thorium and Potassium in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Thunholm, Bo; Linden, Anders H.; Gustafsson, Bosse [Geological Survey of Sweden, Uppsala (Sweden)

    2005-04-01

    This report is largely a result of the Swedish contribution to an IAEA co-ordinated research programme (CRP) on the use of selected safety indicators in the assessment of radioactive waste disposal. The CRP was focusing on the assessment of the longterm safety of radioactive waste disposal by means of additional safety indicators based on data from natural systems with emphasis on description of existing data on radioactive elements and radionuclides. A major part of the work was focused on collecting data on geophysics as well as geochemistry and groundwater chemistry; mainly uranium (U), thorium (Th) and potassium (K). Data were interpreted resulting in maps and statistical description.

  14. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The article briefly discusses the Australian government policy and the attitude of political party factions towards the mining and exporting of the uranium resources in Australia. Australia has a third of the Western World's low-cost uranium resources

  15. Uranium

    International Nuclear Information System (INIS)

    1982-01-01

    The development, prospecting, research, processing and marketing of South Africa's uranium industry and the national policies surrounding this industry form the headlines of this work. The geology of South Africa's uranium occurences and their positions, the processes used in the extraction of South Africa's uranium and the utilisation of uranium for power production as represented by the Koeberg nuclear power station near Cape Town are included in this publication

  16. Uranium

    International Nuclear Information System (INIS)

    Stewart, E.D.J.

    1974-01-01

    A discussion is given of uranium as an energy source in The Australian economy. Figures and predictions are presented on the world supply-demand position and also figures are given on the added value that can be achieved by the processing of uranium. Conclusions are drawn about Australia's future policy with regard to uranium (R.L.)

  17. Uranium

    International Nuclear Information System (INIS)

    Toens, P.D.

    1981-03-01

    The geological setting of uranium resources in the world can be divided in two basic categories of resources and are defined as reasonably assured resources, estimated additional resources and speculative resources. Tables are given to illustrate these definitions. The increasing world production of uranium despite the cutback in the nuclear industry and the uranium requirements of the future concluded these lecture notes

  18. A compilation of radioelement concentrations in granitic rocks of the contiguous United States

    International Nuclear Information System (INIS)

    Stuckless, J.S.; VanTrump, G. Jr.

    1982-01-01

    Concentration data for uranium, thorium, and potassium have been compiled for approximately 2,500 granitic samples from the contiguous United States. Uranium and thorium concentrations and ratios involving these elements exhibit a log-normal distribution with statistical parameters. In order to check for a bias in the results due to high concentrations of data in anomalous or heavily sampled areas, the data were reevaluated by averaging all analyses within a 0.5 0 latitude by 0.5 0 longitude grid. The resulting data set contains 330 entries for which radioelements are log-normally distributed. Mean values are not significantly different from those of the ungridded data, but standard deviations are lower by as much as nearly 50 percent. The areal distribution of anomalously high values (more than one standard deviation greater than the geometric mean) does not delineate large uranium districts by either treatment of the data. There is sufficient information for approximately 1,500 samples to permit subdivision of the granites by degree of alumina saturation. Relative to the six variables listed above, peraluminous samples have slightly lower mean values, but the differences are not statistically significant. Standard deviations are also largest for the peraluminous granites with α for Th/U nearly 3 times larger for peraluminous granite than for metaluminous granite. Examination of the variations in Th/U ratios for a few specific granites for which isotopic data are available suggests that variability is caused by late-stage magmatic or secondary processes that may be associated with ore-forming processes. Therefore, although anomalous radioelement concentrations in granitic rocks do not seem to be useful in delineating large uranium provinces with sediment-hosted deposits, highly variable uranium concentrations or Th/U ratios in granitic rocks may be helpful in the search for uranium deposits

  19. Uranium recovery from the concentrated phosphoric acid prepared by the hemi-hydrate process

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, E A; Mahdy, M A; Bakr, M Y [Nuclear materials authority, Cairo, (Egypt); Zatout, A A [Faculty of engineering, Alex. university, Alex, (Egypt)

    1995-10-01

    It has been proved that the uranium dissolution from El-sebaiya phosphate ore was possible by using 10 Kg of K Cl O{sub 4}/ ton rock during the preparation of high strength phosphoric acid using the hemi hydrate process. In the present work, effective extraction of uranium (about 90%) from the high strength phosphoric acid using a new synergistic solvent mixture of 0.75 M D 2 EHPA/0.1 M TOHPO had been a success. Stripping of uranium from the organic phase was possible by 10 M phosphoric acid while the direct precipitation of uranium concentrate from the later was feasible by using N H{sub 4} F in presence of acetone. 8 figs.

  20. Uranium recovery from the concentrated phosphoric acid prepared by the hemi-hydrate process

    International Nuclear Information System (INIS)

    Fouad, E.A.; Mahdy, M.A.; Bakr, M.Y.; Zatout, A.A.

    1995-01-01

    It has been proved that the uranium dissolution from El-sebaiya phosphate ore was possible by using 10 Kg of K Cl O 4 / ton rock during the preparation of high strength phosphoric acid using the hemi hydrate process. In the present work, effective extraction of uranium (about 90%) from the high strength phosphoric acid using a new synergistic solvent mixture of 0.75 M D 2 EHPA/0.1 M TOHPO had been a success. Stripping of uranium from the organic phase was possible by 10 M phosphoric acid while the direct precipitation of uranium concentrate from the later was feasible by using N H 4 F in presence of acetone. 8 figs

  1. Biological processes for concentrating trace elements from uranium mine waters. Technical completion report

    International Nuclear Information System (INIS)

    Brierley, C.L.; Brierley, J.A.

    1981-12-01

    Waste water from uranium mines in the Ambrosia Lake district near Grants, New Mexico, USA, contains uranium, selenium, radium and molybdenum. The Kerr-McGee Corporation has a novel treatment process for waters from two mines to reduce the concentrations of the trace contaminants. Particulates are settled by ponding, and the waters are passed through an ion exchange resin to remove uranium; barium chloride is added to precipitate sulfate and radium from the mine waters. The mine waters are subsequently passed through three consecutive algae ponds prior to discharge. Water, sediment and biological samples were collected over a 4-year period and analyzed to assess the role of biological agents in removal of inorganic trace contaminants from the mine waters. Some of the conclusions derived from this study are: (1) The concentrations of soluble uranium, selenium and molybdenum were not diminished in the mine waters by passage through the series of impoundments which constituted the mine water treatment facility. Uranium concentrations were reduced but this was due to passage of the water through an ion exchange column. (2) The particulate concentrations of the mine water were reduced at least ten-fold by passage of the waters through the impoundments. (3) The sediments were anoxic and enriched in uranium, molybdenum and selenium. The deposition of particulates and the formation of insoluble compounds were proposed as mechanisms for sediment enrichment. (4) The predominant algae of the treatment ponds were the filamentous Spirogyra and Oscillatoria, and the benthic alga, Chara. (5) Adsorptive processes resulted in the accumulation of metals in the algae cells. (6) Stimulation of sulfate reduction by the bacteria resulted in retention of molybdenum, selenium, and uranium in sediments. 1 figure, 16 tables

  2. Development of an on-line analyzer for organic phase uranium concentration in extraction process

    International Nuclear Information System (INIS)

    Dong Yanwu; Song Yufen; Zhu Yaokun; Cong Peiyuan; Cui Songru

    1998-10-01

    The working principle, constitution, performance of an on-line analyzer and the development characteristic of immersion sonde, data processing system and examination standard are reported. The performance of this instrument is reliable. For identical sample, the signal fluctuation in continuous monitoring for four months is less than +-1%. According to required measurement range by choosing appropriate length of sample cell the precision of measurement is better than 1% at uranium concentration 100 g/L. The detection limit is (50 +- 10) mg/L. The uranium concentration in process stream can be automatically displayed and printed out in real time and 4∼20 mA current signal being proportional to the uranium concentration can be presented. So the continuous control and computer management for the extraction process can be achieved

  3. Investigation into sorption of uranium fron its high-concentrated nitric acid solutions on resin AMP

    International Nuclear Information System (INIS)

    Savel'eva, V.I.; Sudarikov, B.N.; Kireeva, G.N.; Ryzhkova, V.N.; Kandaryuk, V.V.

    1976-01-01

    Sorption of uranium has been studied on strongly basic anion-exchange resin from nitric acid solutions with concentration in metal 10-150 g/l in presence of sodium, calcium, and aluminium nitrates. Sorption of uranium from solutions has been performed by the static method with the aid of contacting the initial solution with airdry resin for 4 hours, resin to solution ratio being 1:12.5. It has been established that sorption of uranium increases with a rise in concentration of salting out agents in the following order: Al(NO 3 ) 3 > Ca(NO 3 ) 2 > Na(NO 3 ). It has been shown spectrophotometricatly that in solutions of nitrates and HNO 3 with a concentration 3 exceeds 6 mol/l

  4. Concentration of uranium in human cancerous tissues of Southern Iraqi patients using fission track analysis

    International Nuclear Information System (INIS)

    Al-Hamzawi, A.A.; Al-Qadisiyah University, Qadisiyah; Jaafar, M.S.; Tawfiq, N.F.

    2015-01-01

    The technique of nuclear fission track analysis with solid state nuclear track detectors CR-39 has been applied to determine concentrations of uranium in cancerous samples of human tissues that excised from patients in the three key southern Iraqi governorates namely, Basrah, Dhi-Qar, and Muthanna. These provinces were the sites of intensive military events during the Gulf Wars in 1991 and 2003. The investigation was based on the study of 24 abnormal samples and 12 normal samples for comparing the results. These samples include four types of soft tissues (kidney, breast, stomach and uterus). The results show that uranium concentrations in the normal tissues ranged between (1.42-4.76 μg kg -1 ), whereas in the cancerous tissues ranged between (3.37-7.22 μg kg -1 ). The uranium concentrations in the normal tissues were significantly lower than in the abnormal tissues (P < 0.001). (author)

  5. Determination of the uranium concentration in soil solutions by the fission track registration technique

    International Nuclear Information System (INIS)

    Fernandes, G.P.

    1980-02-01

    The fission tracks registration technique was used to determine the uranium concentration in soil solutions. The Makrofol KG, a synthetic plastic manufactured by Bayer, was used as a detector and the wet method was applied. From the calibration curves obtained, it was possible to determine uranium concentrations in soil solutions, from 90 to 320 μg U/l, with an error between 9.4% and 4.0%, respectively. The method was applied to a few soil samples from Pocos de Caldas, Minas Gerais in Brazil. The uranium concentrations in the sample and residues were also determined by other methods to compare the results obtained; only one sample showed deviation from the results obtained by the fission tracks method. And this discrepancy was explained in a reasonable way. It was shown that the fission tracks technique can be used with sucess for application in soil solutions. (Author) [pt

  6. Uranium Ore and Concentrate Sampling; Echantillonnage des Minerais et des Concentres d'Uranium; Otbor prob uranovoj rudy i kontsentratov; Muestreo de Minerales y Concentrados de Uranio

    Energy Technology Data Exchange (ETDEWEB)

    McGinley, F. E.; Brown, D. L.; Langridge, R. W. [United States Atomic Energy Commission, Grand Junction, CO (United States)

    1966-02-15

    The Grand Junction Office of the United States Atomic Energy Commission has been responsible for procuring large quantities of natural uranium in both ores and concentrates. The techniques used for sampling ores are necessarily different from those used for concentrates. Each step in the overall measurement and sampling systems for both ores and concentrates is discussed, giving particular attention to the accuracy and precision of that step. During the years 1948-1964, a total of 58 million tons of ore was sampled in about 40 different mechanical sampling plants in the western United States. All plants have been required to weigh, sample and analyse ore in accordance with practices satisfactory to the USAEC. The ordinary principles of ore sampling, as used for years in the mining industry, have been followed. However, sufficient check sampling and other tests were performed to ensure that the uranium content of the variety of ores sampled was as accurately determined as economically feasible. Concentrates containing about 129 000 t of U{sub 3}O{sub 8} were purchased from domestic producers during the last 17 years. This uranium was contained in approximately 10 000 lots, each of which was weighed, sampled, and analysed in accordance with carefully controlled procedures. These lots were received at USAEC-owned sampling facilities at Grand Junction or Weldon Spring, Missouri, both of which are contractor operated. The average lot consists of about 50 drums (55-gallon size) and weighs approximately 35 000 lb. Because concentrate varies so much in both physical and chemical characteristics, it is necessary to sample each drum. Through the years, various sampling systems were used, such as pipes, open auger, enclosed augers, and falling stream sampling. Falling stream sampling is the most accurate, provided precautions are taken to prevent changes in weight due to exposure to the atmosphere. Because of the tendency of concentrates to sorb or desorb moisture, depending

  7. Radioactive dust concentration around the Ranger uranium mine

    International Nuclear Information System (INIS)

    Kavasnicka, Jiri.

    1988-07-01

    Environmental dust sampling and wind direction/velocity monitory were carried out between July and November 1987 at five points around the Ranger Uranium Mines project near Jabiru, Northern Territory. The measured radioactive dust alpha activities in the air were used to calculate the radioactive dust source-term and develop a site-specific air dispersion model which takes the depletion of the dust plume into account. The above model was used to estimate the effective committed dose equivalent as 15 μSv/year to children in Jabiru East. This corresponds to an increase of 2.6 x 10 -4 Bq. m -3 in the annual average dust alpha activity above the natural background. The dose to the children in Jabiru is about 5 μSv/year, so that the critical group of the public is in Jabiru East. 12 refs., 11 tabs., 2 maps

  8. Concentration of uranium-235 in mixtures with uranium-238 using ion exchange resins

    International Nuclear Information System (INIS)

    Seko, M.; Kakihana, H.

    1976-01-01

    A method is described of simultaneously obtaining separate enriched fractions of 235 U and 238 U from isotopic mixtures thereof with the use of an ion exchange column by passing a liquid body containing the isotopic mixture through the column. The uranium as it is passed through the column is presented as a U(IV) coordination compound with a ligand at different valent states and is followed by an eluant and forms a band which travels through the column, the front and rear portions of which are respectively enriched in one of the isotopes and depleted in the other. 16 claims

  9. Concentration of uranium-235 in mixtures with uranium-238 using ion exchange resins

    International Nuclear Information System (INIS)

    Seko, M.; Kakihana, H.

    1976-01-01

    A method is described for simultaneously obtaining separate enriched fractions of 235 U and 238 U from isotopic mixtures of these with the use of an ion exchange column by passing a liquid body containing the isotopic mixture through the column. The uranium as it is passed through the column is present as a U(IV) coordination compound with a ligand at different valent states and is followed by an eluant and forms a band which travels through the column, the front and rear portions of which are respectively enriched in one of the isotopes and depleted in the other. 16 claims, no drawings

  10. United States Transuranium and Uranium Registries. Annual report February 1, 2001 - January 31, 2002

    International Nuclear Information System (INIS)

    Ehrhart, Susan M.; Filipy, Ronald E.

    2002-01-01

    This report documents the activities of the United States Transuranium and Uranium Registries (USTUR) from February 2001 through January 2002. Progress in continuing collaborations and several new collaborations is reviewed

  11. United States Transuranium and Uranium Registries. Annual report February 1, 2001--January 31, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhart, Susan M. (ed.); Filipy, Ronald E. (ed)

    2002-07-01

    This report documents the activities of the United States Transuranium and Uranium Registries (USTUR) from February 2001 through January 2002. Progress in continuing collaborations and several new collaborations is reviewed.

  12. Development of a stable uranium recovery regulatory framework for uranium recovery activities in the United States

    International Nuclear Information System (INIS)

    Layton, M.C.; Abrams, C.E.

    2000-01-01

    The U.S. Nuclear Regulatory Commission (NRC) has historically regulated operations at all uranium and thorium recovery facilities under the authority of the Atomic Energy Act of 1954, as amended. Uranium recovery facilities are those plants, or portions of facilities that process uranium- or thorium-bearing material primarily for its source material content. The uranium recovery industry expressed some concerns over several aspects of the NRC's practices, as described in the NRC's guidance documents. In April 1998, the National Mining Association submitted a report to the Commission, that identified specific concerns with NRC's current position and guidance regarding concurrent jurisdiction at uranium mills; dual regulatory authority at in situ leach facilities; the use of mill tailings impoundments for disposal of radioactive material other than 11e.(2) byproduct material; and the ability to process alternate feed material at uranium mills. The NRC staff addressed most of these concerns in two SECY (staff recommendations) papers that were concurrently provided to the Commission, along with a SECY paper on a draft rulemaking plan relating to these and other issues. The issues addressed in these papers included a new rulemaking, disposal of materials other than 11 e.(2) byproduct material, processing of materials other than natural ores, and improved efficiency for regulating in situ leach uranium facilities. The Commission issued final policy decisions on these issues and directions for NRC staff to implement those decisions in July 2000. (author)

  13. Uranium hydrogeochemical and stream sediment reconnaissance of the Dalhart NTMS quadrangle, New Mexico/Texas/Oklahoma, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Morgan, T.L.

    1980-08-01

    Totals of 1583 water samples and 503 sediment samples were collected from 2028 locations within the 20 000-km 2 area of the quadrangle at an average density of one location per 9.86 km 2 . Water samples were collected from wells, springs, and streams and were analyzed for uranium. Sediment samples were collected from streams and springs and were analyzed for uranium, thorium, and 41 additional elements. All field and analytical data are listed in the appendixes of this report. Discussion is limited to anomalous samples, which are considered to be those containing over 20 ppB uranium for waters and over 5 ppM uranium for sediments. Uranium concentrations in water samples range from below the detection limit of 0.2 ppB to 1457.65 ppB and average 7.41 ppB. Most of the seventy anomalous water samples (4.4% of all water samples) are grouped spatially into five clusters or areas of interest. Samples in three of the clusters were collected along the north edge of the quadrangle where Mesozoic strata are exposed. The other two clusters are from the central and southern portions where the Quaternary Ogallala formation is exposed. Sediment samples from the quadrangle have uranium concentrations that range from 0.90 ppM to 27.20 ppM and average 3.27 ppM. Fourteen samples (2.8% of all sediment samples) contain over 5 ppM uranium and are considered anomalous. The five samples with the highest concentrations occur where downcutting streams expose Cretaceous units beneath the Quaternary surficial deposits. The remaining anomalous sediment samples were collected from scattered locations and do not indicate any single formation or unit as a potential source for the anomalous concentrations

  14. Groundwater radon, radium and uranium concentrations in Regiao dos Lagos, Rio de Janeiro State, Brazil

    International Nuclear Information System (INIS)

    Almeida, R.M.R.; Lauria, D.C.; Ferreira, A.C.; Sracek, O.

    2004-01-01

    Ground water from Regiao dos Lagos, a coastal area of Rio de Janeiro state, was analysed for 226 Ra, 228 Ra, 222 Rn, 238 U, major ion concentrations, and physico-chemical parameters were also measured. Concentrations values ranged from -1 for 226 Ra, from -1 for 228 Ra and from -4 to 8.0x10 -2 Bq l -1 for 238 U. Detectable 222 Rn concentrations (>3 Bq l -1 ) were found only in two samples. The spatial distribution of Ra concentration delineated one distinct area and some hot spots with high Ra concentration. Low pH value is the most important water parameter linked to high radium concentration. This is probably related to limited adsorption of radium on soil ferric oxides and hydroxides at low pH range. There was a significant correlation between uranium concentrations and electrical conductivity values, and also between uranium concentrations and concentrations of Ca, Mg, Na, K, and Cl, indicating sea water impact. Uranium concentrations were lower than maximum contaminant level for drinking water, whereas 17 out of the 88 ground water samples had levels of radium that exceeded the maximum contaminant level for tap water. The total annual effective dose for adult due to the water consumption reaches values up to 0.8 mSv

  15. 1982 survey of United States uranium marketing activity

    International Nuclear Information System (INIS)

    1983-09-01

    This report is based on survey data from all utilities, reactor manufacturers, and uranium producers who market uranium. The survey forms are mailed in January of each year with updates in July of each year. This year 59 utilities, 5 reactor manufacturers and agents, and 57 uranium producers were surveyed. Completed survey forms were checked for errors, corrected as necessary, and processed. These data formed the basis for the development of the report. This report is intended for Congress, federal and state agencies, the nuclear industry, and the general public

  16. United States uranium resources: an analysis of historical data

    International Nuclear Information System (INIS)

    Lieberman, M.A.

    1976-01-01

    Using historical data, a study of U.S. uranium resources was performed with emphasis on discovery and drilling rates for the time interval from 1948 until the present. The ultimate recoverable resource up to a forward cost category of $30 or less per pound is estimated to be 1,134,000 short tons--about one third the estimate offered by ERDA. A serious shortfall in uranium supply is predicted for the late 1980's if nuclear power proceeds as planned; and courses of action are recommended for uranium resource management

  17. Uranium industry annual 1994

    International Nuclear Information System (INIS)

    1995-01-01

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ''Uranium Industry Annual Survey.'' Data collected on the ''Uranium Industry Annual Survey'' (UIAS) provide a comprehensive statistical characterization of the industry's activities for the survey year and also include some information about industry's plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ''Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,'' is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2

  18. Proceedings of Workshop on Uranium Production Environmental Restoration: An exchange between the United States and Germany

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    Scientists, engineers, elected officials, and industry regulators from the United, States and Germany met in Albuquerque, New Mexico, August 16--20, 1993, in the first joint international workshop to discuss uranium tailings remediation. Entitled ``Workshop on Uranium Production Environmental Restoration: An Exchange between the US and Germany,`` the meeting was hosted by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The goal of the workshop was to further understanding and communication on the uranium tailings cleanup projects in the US and Germany. Many communities around the world are faced with an environmental legacy -- enormous quantities of hazardous and low-level radioactive materials from the production of uranium used for energy and nuclear weapons. In 1978, the US Congress passed the Uranium Mill Tailings Radiation Control Act. Title I of the law established a program to assess the tailings at inactive uranium processing sites and provide a means for joint federal and state funding of the cleanup efforts at sites where all or substantially all of the uranium was produced for sale to a federal agency. The UMTRA Project is responsible for the cleanup of 24 sites in 10 states. Germany is facing nearly identical uranium cleanup problems and has established a cleanup project. At the workshop, participants had an opportunity to interact with a broad cross section of the environmental restoration and waste disposal community, discuss common concerns and problems, and develop a broader understanding of the issues. Abstracts are catalogued individually for the data base.

  19. Proceedings of Workshop on Uranium Production Environmental Restoration: An exchange between the United States and Germany

    International Nuclear Information System (INIS)

    1993-01-01

    Scientists, engineers, elected officials, and industry regulators from the United, States and Germany met in Albuquerque, New Mexico, August 16--20, 1993, in the first joint international workshop to discuss uranium tailings remediation. Entitled ''Workshop on Uranium Production Environmental Restoration: An Exchange between the US and Germany,'' the meeting was hosted by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The goal of the workshop was to further understanding and communication on the uranium tailings cleanup projects in the US and Germany. Many communities around the world are faced with an environmental legacy -- enormous quantities of hazardous and low-level radioactive materials from the production of uranium used for energy and nuclear weapons. In 1978, the US Congress passed the Uranium Mill Tailings Radiation Control Act. Title I of the law established a program to assess the tailings at inactive uranium processing sites and provide a means for joint federal and state funding of the cleanup efforts at sites where all or substantially all of the uranium was produced for sale to a federal agency. The UMTRA Project is responsible for the cleanup of 24 sites in 10 states. Germany is facing nearly identical uranium cleanup problems and has established a cleanup project. At the workshop, participants had an opportunity to interact with a broad cross section of the environmental restoration and waste disposal community, discuss common concerns and problems, and develop a broader understanding of the issues. Abstracts are catalogued individually for the data base

  20. Uranium

    International Nuclear Information System (INIS)

    Battey, G.C.; McKay, A.D.

    1988-01-01

    Production for 1986 was 4899 t U 3 O 8 (4154 t U), 30% greater than in 1985, mainly because of a 39% increase in production at Ranger. Exports for 1986 were 4166 t U 3 O 8 at an average f.o.b. unit value of $40.57/lb U 3 O 8 . Private exploration expenditure for uranium in Australia during the 1985-86 fiscal year was $50.2 million. Plans were announced to increase the nominal capacity of the processing plant at Ranger from 3000 t/year U 3 O 8 to 4500 t and later to 6000 t/year. Construction and initial mine development at Olympic Dam began in March. Production is planned for mid 1988 at an annual rate of 2000 t U 3 O 8 , 30 000 t Cu, and 90 000 oz (2800 kg) Au. The first long-term sales agreement was concluded in September 1986. At the Manyingee deposit, testing of the alkaline solution mining method was completed, and the treatment plant was dismantled. Spot market prices (in US$/lb U 3 O 8 ) quoted by Nuexco were generally stable. From January-October the exchange value fluctuated from US$17.00-US$17.25; for November and December it was US$16.75. Australia's Reasonably Assured Resources of uranium recoverable at less than US$80/kg U at December 1986 were estimated as 462 000 t U, 3000 t U less than in 1985. This represents 30% of the total low-cost RAR in the WOCA (World Outside the Centrally Planned Economy Areas) countries. Australia also has 257 000 t U in the low-cost Estimated Additional Resources Category I, 29% of the WOCA countries' total resources in this category

  1. Recent progress of the United States transuranium and uranium registries

    International Nuclear Information System (INIS)

    Kathren, R.L.

    1986-01-01

    This paper provides a brief overview of the history and objectives of the US Transuranium and Uranium Registries along with a discussion of some recent activities and accomplishments of these two parallel programs. 17 refs

  2. Response of plants to high concentrations of uranium stress and the screening of remediation plants

    International Nuclear Information System (INIS)

    Tang Yongjin; Luo Xuegang; Zeng Feng; Jiang Shijie

    2013-01-01

    Studies of the resistance and accumulation ability of different plant species to uranium (U) has important influence on the bioremediation of U contaminated soil. The resistance and enrichment ability of high concentrations of U (500 mg · kg"-"1 soil) in fourteen plant species were investigated and evaluated in this study in order to screen remediation plants for governance soil U contamination. The results showed that: (1) high concentrations of U stress had different effects on the emergence and survival of the different plants. The seed emergence of Hibiscus esculentus was reduced by 2/3, but the seed emergence of Gynura cusimbua (D. Don) S. Moore, Chenopodium album L. and Phaseolus vulgaris var. humilis Alef were not reduced. Under the contaminated soil, all the sesamum indicum died within a month after the emergence and the survival number of Amaranth and Iresine herbstii 'Aureo-reticulata' reduced by about 80%. But the survival number of Alternanthera philoxeroides (Mart.) Griseb., Chenopodium album L. and Phaseolus vulgaris var. humilis Alef were not influenced. (2) The biomass of the plants would be reduced by 8-99% in the uranium-contaminated soil. The anti-stress ability of Phaseolus vulgaris var. humilis Alef was the strongest in the fourteen plants, and Cucurbita pepo L., Sorghumbicolor (L.) Moench, Ipomoea aquatica Forsk, Helianthus annuus, Chenopodium album L. and Alternanthera philoxeroides (Mart.) Griseb. showed some the anti-stress ability. (3) Significant differences were found in the capacity of plants to absorb uranium between under high-uranium contaminated soil and under the non-uranium contaminated soil were. The plants with higher uranium content in thenon-contaminated soil were Gomphrena globosa, and Cucurbita pepo L., which were 2.249 mg · kg"-"1 DW and 1.620 mg · kg"-"1 DW, respectively. But the plants with higher uranium content in the high uranium contaminated soil were Cichorium intybus L., Amaranth and Ipomoea aquatica Forsk, which

  3. Synergy between Security and Safeguards in Uranium Concentrate Export Control

    International Nuclear Information System (INIS)

    Soumana, T.

    2010-01-01

    This paper is a proposal to the government of Niger and all national institutions involved in the ISSAS and INSSERV Missions held in Niger to optimally coordinate they activities in nuclear field. It is essential to notice that Niger has significant nuclear activities, mainly in uranium prospecting, mining, milling, and export. In Niger, there are also many radioactive sources in non nuclear use. The safeguards agreement of Niger, infcirc/664, is in force since 16 February 2005 and its relating additional protocol since 2 May 2007. For the safeguards implementation in Niger, Government has requested to the IAEA an ISSAS Mission which was completed in February 2008. A main recommendation of this mission is to consider an overall plan for security measures and in this regards, an INSSERV Mission was completed in December 2008. Nuclear safeguards conclusions focus on correctness and completeness of declarations provided by operators. Nuclear security activities (prevention, detection and response) are useful contributions to confirm safeguards conclusions specially, a good detection strategy at national level can help to confirm the absence of undeclared activities in a country like Niger. Many governmental institutions are involved in nuclear activities and there are lacks of communication between them. Creating a synergy between safeguards and security can federate the mechanisms of control at national level and have impact in many aspects specially in (i) awareness of decision makers (ii) optimal use of the equipments (iii) organizing training activities and human resource management and (iv) designing national strategic plans. The institution which hosted the two IAEA consultative missions (Directorate of Peaceful Use of Nuclear Techniques-DUPTN for the ISSAS Mission and Civil Defence for INSSERV Mission) in consultation with other national institutions had to create a framework for this synergy. This framework must be submitted to the IAEA for observation and

  4. Uranium concentrations in the water consumed by the resident population in the vicinity of the Lagoa Real uranium province, Bahia, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luciana S. [State University of Bahia (UNEB), Campus Caetite, BA (Brazil); Pecequilo, Brigitte R.S.; Sarkis, Jorge; Nisti, Marcelo B., E-mail: brigitte@ipen.br, E-mail: jesarkis@ipen.br, E-mail: mbnisti@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The Lagoa Real Uranium Province, situated in South Central Bahia in the region of Caetite and Lagoa Real, is considered the most important monomineralic province of Brazil. The urban population who lives in the proximities of this uranium province in the cities of Caetite, Lagoa Real and Livramento uses public supply water, while the inhabitants of the rural area due to long terms of dry weather use water from wells, cisterns, small dams, reservoirs and dikes which are supplied with the rains. In this work it was determined the concentration of uranium in the water consumed by the rural and urban population living in the proximities of the Lagoa Real Uranium Province. The study comprehends 32 sampling spots spread throughout the region of interest. Samples were collected in January and July 2010, covering superficial, underground and public supply water from the region. The uranium concentrations were determined by an inductively coupled plasma mass spectrometer (ICP-MS). Preliminary results showed that the uranium concentrations in the water from the Lagoa Real Uranium Province varied from 0.064 {+-} 0.005 {mu}g.L{sup -1} to 90 {+-} 1,5 {+-}g.L{sup -1}. It was observed that only two of them obtained values higher than the World Health Organization's recommended limit (2011) of 30 {mu}g.L{sup -1} for maximum uranium concentration in the water for human consumption. For a conclusive evaluation, the uranium concentrations results will be analyzed together with total alpha and beta concentrations determined elsewhere for the same samples. (author)

  5. Uranium concentrations in the water consumed by the resident population in the vicinity of the Lagoa Real uranium province, Bahia, Brazil

    International Nuclear Information System (INIS)

    Silva, Luciana S.; Pecequilo, Brigitte R.S.; Sarkis, Jorge; Nisti, Marcelo B.

    2011-01-01

    The Lagoa Real Uranium Province, situated in South Central Bahia in the region of Caetite and Lagoa Real, is considered the most important monomineralic province of Brazil. The urban population who lives in the proximities of this uranium province in the cities of Caetite, Lagoa Real and Livramento uses public supply water, while the inhabitants of the rural area due to long terms of dry weather use water from wells, cisterns, small dams, reservoirs and dikes which are supplied with the rains. In this work it was determined the concentration of uranium in the water consumed by the rural and urban population living in the proximities of the Lagoa Real Uranium Province. The study comprehends 32 sampling spots spread throughout the region of interest. Samples were collected in January and July 2010, covering superficial, underground and public supply water from the region. The uranium concentrations were determined by an inductively coupled plasma mass spectrometer (ICP-MS). Preliminary results showed that the uranium concentrations in the water from the Lagoa Real Uranium Province varied from 0.064 ± 0.005 μg.L -1 to 90 ± 1,5 ±g.L -1 . It was observed that only two of them obtained values higher than the World Health Organization's recommended limit (2011) of 30 μg.L -1 for maximum uranium concentration in the water for human consumption. For a conclusive evaluation, the uranium concentrations results will be analyzed together with total alpha and beta concentrations determined elsewhere for the same samples. (author)

  6. Effects of uranium concentration on microbial community structure and functional potential.

    Science.gov (United States)

    Sutcliffe, Brodie; Chariton, Anthony A; Harford, Andrew J; Hose, Grant C; Greenfield, Paul; Elbourne, Liam D H; Oytam, Yalchin; Stephenson, Sarah; Midgley, David J; Paulsen, Ian T

    2017-08-01

    Located in the Northern Territory of Australia, Ranger uranium mine is directly adjacent to the UNESCO World Heritage listed Kakadu National Park, with rehabilitation targets needed to ensure the site can be incorporated into the park following the mine's closure in 2026. This study aimed to understand the impact of uranium concentration on microbial communities, in order to identify and describe potential breakpoints in microbial ecosystem services. This is the first study to report in situ deployment of uranium-spiked sediments along a concentration gradient (0-4000 mg U kg -1 ), with the study design maximising the advantages of both field surveys and laboratory manipulative studies. Changes to microbial communities were characterised through the use of amplicon and shotgun metagenomic next-generation sequencing. Significant changes to taxonomic and functional community assembly occurred at a concentration of 1500 mg U kg -1 sediment and above. At uranium concentrations of ≥ 1500 mg U kg -1 , genes associated with methanogenic consortia and processes increased in relative abundance, while numerous significant changes were also seen in the relative abundances of genes involved in nitrogen cycling. Such alterations in carbon and nitrogen cycling pathways suggest that taxonomic and functional changes to microbial communities may result in changes in ecosystem processes and resilience. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Measurement of uranium concentration by molecular absorption spectrophotometry by means optical fibers

    International Nuclear Information System (INIS)

    Gauna, Alberto C.; Pascale, Ariel A.

    1996-01-01

    An on-line method for measuring the concentration of uranium in uranyl nitrate-nitric acid aqueous solutions is described. The method is based on molecular absorption spectrophotometry with transmission of light by means of optical fibers. It is ideally suited for control and processes development applications. (author)

  8. Testing of a uranium downhole logging system to measure in-situ plutonium concentrations in sediments

    International Nuclear Information System (INIS)

    Kasper, R.B.; Kay, M.A.; Bruns, L.E.; Stokes, J.A.; Steinman, D.K.; Adams, J.

    1980-11-01

    A prototype urainium borehole logging system, developed for uranium exploration, was modified for Pu assay and testing at the site. It uses the delayed fission neutron (DFN) method. It was tested in a retired Pu facility, the 216-Z-1A Crib. General agreement between laboratory determined Pu concentrations in sediment samples and neutron flux measurements was found for the relative distribution with depth

  9. Uranium in situ leach mining in the United States. Information circular

    International Nuclear Information System (INIS)

    Larson, W.C.

    1978-01-01

    This report discusses uranium in situ leach mining in the United States; the purpose of which is to acquaint the reader with an overview of this emerging mining technology. This report is not a technical discussion of the subject matter, but rather should be used as a reference source for information on in situ leaching. An in situ leaching bibliography is included as well as engineering data tables for almost all of the active pilot-scale and commercial uranium in situ leaching operators. These tables represent a first attempt at consolidating operational data in one source, on a regional scale. Additional information is given which discusses the current Bureau of Mines uranium in situ leaching research program. Also included is a listing of various State and Federal permitting agencies, and a summary of the current uranium in situ leaching operators. Finally, a glossary of terms has been added, listing some of the more common terms used in uranium in situ leach mining

  10. Evaluation the effect of uranium ore concentrations on the cyc2 gene expression in the mutated Acidithiobacillus sp. FJ2

    Directory of Open Access Journals (Sweden)

    Faezeh Fatemi

    2018-06-01

    Full Text Available Introduction: The uranium bioleaching process is performed using Acidithiobacillus ferrooxidans. This bacterium is capable of iron oxidation by an electron transport chain. One of the most important components of this chain is the cyc2 gene product that involved in the oxidation process of iron. Materials and methods: Evaluation of UV mutated (60, 120 and 180s Acidithiobacillus sp. FJ2 cyc2gene in the presence of uranium ore concentrations, has been implemented in this project. For this purpose, the original and mutated bacteria were cultivated in the presence of uranium ore concentrations (5, 10, 15, 25 and 50%. Uranium extraction, variation of pH and Eh values were measured at 24 h intervals. Then, when the uranium extraction yield reached to 100%, gene expressions of cyc2 original and mutatedAcidithiobacillus sp. FJ2 were analyzed using Real-time PCR method. Results: The results of the experiments showed that, with increasing pulp density, the uranium extraction rate and oxidation activity of bacteria were reduced. In addition, the result of cyc2 gene expression showed that the target gene expression increases in the presence of uranium ore compared to sample with absence of uranium ore, andwith further increase of pulp density, due to the toxicity of uranium, shows a decreasing trend. Discussion and conclusion: The results of this study indicated that the mutation in the bacterium has a positive effect on the uranium bioleaching process, which can play an important role in the process of uranium bioleaching at high concentrations. In addition, with increasing pulp density due to uranium toxicity, there is a decreasing trend in the process of uranium extraction, which indicates the important role of this factor in the uranium bioleaching process.

  11. Concentration of uranium on TiO-PAN and NaTiO-PAN composite absorbers

    International Nuclear Information System (INIS)

    Motl, Alois; Sebesta, Ferdinand; John, Jan; Spendlikova, Irena; Nemec, Mojmir

    2013-01-01

    Inorganic ion exchangers have been extensively tested for use in separation and concentration of uranium from Surface water. Except for separation of uranium from uranium -Contaminated waste water (e.g. waste water from mining and milling of uranium, Waste from nuclear fuel reprocessing) their main area of application has been foreseen to be their use for extraction of uranium from sea water which could partially cover future needs of uranium. Another perspective area of application is pre-concentration of uranium from natural waters followed by uranium determination via various specialized techniques such as TRLFS or AMS. Possibilities of uranium extraction from sea water have been subject of several international conferences (e.g. Topical meetings on the Recovery of Uranium from Seawater in 1980's, ACS National Meetings 2012 etc.) and are critically evaluated in a review by Bitte or recently by Kim. In the Czech Republic uranium-selective inorganic ion exchangers might be applied for treatment of various wastes from uranium industry, namely underground Water, uranium milling over-balance water, or acid waste water from underground uranium leaching and also like in other countries for determination of uranium isotopic composition focusing on anthropogenic and natural 236 U content. Among the best performing inorganic ion exchangers for the above listed purposes hydrated titanium dioxide (abbreviated as TiO) and sodium titanate (abbreviated as NaTiO) can be listed. Properties of TiO and NaTiO were reviewed by Lehto. From the point of view of ion-exchange, properties of hydrated titanium oxide and sodium titanate are very similar. The main disadvantage of these ion exchangers for industrial-scale application is their insufficient mechanical stability. To improve this property, the sorption materials can be embedded into a binding matrix. Modified polyacrylonitrile (PAN) has been proposed at the Czech Technical University in Prague as a universal binding matrix for

  12. Simple, cost effective method for determination of phosphorus in uranium ore concentrate

    International Nuclear Information System (INIS)

    Misra, U.B.; Ramamurty, Vasantha; Dutta, M.; Balaji Rao, Y.; Subba Rao, Y.

    2015-01-01

    In this paper determination of phosphate as phosphorus in uranium ore concentrate has been described. The method used is spectrophotometric determination of phosphorus as phospho-molybdenum blue complex. As uranyl ion do not absorb in 600-900 nm range of visible region in the present medium, the phosphomolybdenum blue complex formation which is having maximum absorbance at 825 nm is exploited for determination of phosphorus. The molar absorptivity coefficient with and without the presence of uranium matrix are 2.6048 x 10 4 and 2.6730 x 10 4 lmol -1 cm -1 . The effect of matrix is not evident from the experiment carried out. (author)

  13. An Overview of Process Monitoring Related to the Production of Uranium Ore Concentrate

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis, Brent [Innovative Solutions Unlimited, LLC

    2014-04-01

    Uranium ore concentrate (UOC) in various chemical forms, is a high-value commodity in the commercial nuclear market, is a potential target for illicit acquisition, by both State and non-State actors. With the global expansion of uranium production capacity, control of UOC is emerging as a potentially weak link in the nuclear supply chain. Its protection, control and management thus pose a key challenge for the international community, including States, regulatory authorities and industry. This report evaluates current process monitoring practice and makes recommendations for utilization of existing or new techniques for managing the inventory and tracking this material.

  14. Uranium separation and concentration from ground waters on TIO-PAN sorbent and determination by TRLFS

    International Nuclear Information System (INIS)

    Raindl, Jakub; Spendlikova, Irena; Nemec, Mojmir; Sebesta, Ferdinand; Zavadilova, Alena; John, Jan

    2011-01-01

    A new sorbent, viz. hydrated titanium dioxide embedded on a polyacrylonitrile solid support, was tested for the title purpose. Uranium so separated was eluted with 0.1M HCl. Uranium concentrations before and after sorption/elution were determined by time resolved laser induced fluorescence spectroscopy (TRLFS ). The study is aimed at the development of a method suitable for sample preparation for Accelerator Mass Spectrometry (AMS) measurements and at determining the 236 U/U ratio (in cooperation with the VERA facility at the University of Vienna, Austria)

  15. Determination of Uranium Concentration in Soil of Baghdad Governorate and its Effect on Mitotic Index Assay

    International Nuclear Information System (INIS)

    Mryoush, A.Q.; Salim, H.M.

    2015-01-01

    The aim of this work is to determine the uranium concentration in soil samples taken from the north, south, east, west and center of the city of Baghdad and measure its impact on the rate of cell division for non-smokers peoples and living in those areas and that between the ages 25-30 year.The uranium concentration in the samples determined by using CR-39 track detector.As calculated for the ten samples of each site when irradiated by thermal neutrons from the (Am - Be) source with flux (5x 10 3 n S -1 cm -2 ), the concentration values were calculated by a comparison with standard geological samples. The results indicate that the extent of the concentration of uranium in the soil north and east of Baghdad was 12.9 ± 0.7 in Al- Taji north of Baghdad and 12.4 ± 0.23ppm in the Diyala- Bridge area east of Baghdad and the results were recorded lower concentration of uranium in the western, central and southern Baghdad, which stood at 0.60 ± 0.21 in the Abu Ghraib area west of Baghdad, and 4.6 ± 0.7ppm in the Bab-Al-Sharqee of central Baghdad and 0.87 ± 0.7ppm in Al-Mhmodya area south of Baghdad.The mitotic index assay MI in the north and east of Baghdad was 2.3 ± 0.059 in the north and 2.43 ± 0.059 in eastern Baghdad, while the lowest rate in West and Central and South compared with the threshold level of 0.6 . Which indicates contamination north and east of Baghdad as a result of uranium wars on Iraq passed in 2003 which negatively affects the behavior of lymphocytes and on the rate of division

  16. Uranium

    International Nuclear Information System (INIS)

    Whillans, R.T.

    1981-01-01

    Events in the Canadian uranium industry during 1980 are reviewed. Mine and mill expansions and exploration activity are described, as well as changes in governmental policy. Although demand for uranium is weak at the moment, the industry feels optimistic about the future. (LL)

  17. Collection/concentration of trace uranium for spectrophotometric detection using activated carbon and first-derivative spectrophotometry

    International Nuclear Information System (INIS)

    El-Sayed, A.A.; Hamed, M.M.; El-Reefy, S.; Hmmad, H.A.

    2007-01-01

    The need exists for preconcentration of trace and ultratrace amounts of uranium from environmental, geological and biological samples. The adsorption of uranium on various solids is important from the purification, environmental, and radioactivity waste disposal points of view. A method is described for the determination of traces of uranium using first-derivative spectrophotometry after adsorptive preconcentration of uranium on activated carbon. Various parameters that influence the adsorptive preconcentration of uranium on activated carbon, viz., pH, amounts of activated carbon and time of stirring and interference of metals have been studied. First-derivative spectrophotometry in conjunction with adsorptive preconcentration of uranium on activated carbon is used for determining uranium at concentration levels down to 20 ppb (w/v). (orig.)

  18. Uranium concentration in building materials used in the central region of Egypt

    International Nuclear Information System (INIS)

    Higgy, R.H.; El-Tahawy, M.S.; Ghods, A.

    1997-01-01

    Within a radiological survey of the building materials used in the urban dwellings in the central region of Egypt, the uranium concentration in 80 representative samples of raw and fabricated building materials are determined using laser fluorimetry technique. For 40 samples from the studied raw building materials of sand, gravel, gypsum, lime-stone, granite and marble the determined uranium concentration values range between 0.3 and 3.6 ppm for all these samples except for one type of granite having the corresponding value of 7.8 ppm. For 37 samples from studied fabricated building materials of normal cement, clay brick, sand brick, tiles and ceramic plates the determined uranium concentration values range from 0.5 to 3.4 ppm. The corresponding values for three types of iron cement are 3.1, 6.1 and 9.3 ppm. The radium-226 content (of the uranium-238 series) in the same samples was determined using high resolution gamma-ray spectrometers based on HP Ge-detectors. The data obtained by the two techniques are in good agreement for the majority of the studied samples. (author)

  19. Uranium and thorium concentration process during partial fusion and crystallization of granitic magma

    International Nuclear Information System (INIS)

    Cuney, M.

    1982-01-01

    Two major processes, frequently difficult to distinguish, lead to uranium and thorium enrichment in igneous rocks and more particularly in granitoids; these are partial melting and fractional crystallization. Mont-Laurier uranothoriferous pegmatoids, Bancroft and Roessing deposits are examples of radioelement concentrations resulting mostly of low grade of melting on essentially metasedimentary formations deposited on a continental margin or intracratonic. Fractional crystallization follows generally partial melting even in migmatitic areas. Conditions prevailing during magma crystallization and in particular oxygen fugacity led either to the formation of uranium preconcentrations in granitoids, or to its partition in the fluid phase expelled from the magma. No important economic uranium deposit appears to be mostly related to fractional crystallization of large plutonic bodies

  20. Uranium supply in the United States: a current assessment

    International Nuclear Information System (INIS)

    Hogerton, J.F.

    1976-01-01

    Not long ago the availability of uranium was taken for granted by utilities planning nuclear power projects. Today it is difficult to find a utility with nuclear commitments that is not concerned about some aspect of uranium supply. Some are concerned about lack of coverage for near-term or even close-in requirements. Others are concerned about resources for the long-haul. All are concerned about what has been happening in the marketplace and are wondering what to expect in the future. Each of these three aspects of uranium supply are examined from the U.S. standpoint. The remarks reflect the findings of a study from the S. M. Stoller Corporation, carried out recently for the Edison Electric Institute and other utility sponsors, the report on which was released on March 31, 1976

  1. Estimating the concentration of uranium in some environmental samples in Kuwait after the 1991 Gulf War

    International Nuclear Information System (INIS)

    Bou-Rabee, F.

    1995-01-01

    The concentration of uranium in Kuwait soil samples as well as in solid fall-out and surface air-suspended matter samples has been assayed by inductively coupled plasma mass spectrometry (ICP-MS). It was found that average U concentration in the soil samples (∼ 0.7 μg/g) is half of that in solid fall-out and air particulate matter samples. The average U concentration in the latter samples in the summer season was 2 μg g -1 and decreased to 1 μg g -1 during the winter of 1993/94. The higher concentration in the solid fall-out and air samples cannot be explained by fall-out from the oil fired power station as the U average concentration of the escaping fly ashes from the station was only 0.22 μg g -1 . The uranium concentration in the tap water was a very low 0.02 μg L -1 . The total per capita annual intake of uranium via inhalation by Kuwait inhabitants was appraised to be ''approx =''0.05 Bq, which is <0.2% of the recommended annual limit on intake for members of the general population. (author)

  2. Concentration of thorium and uranium in the ecosystem of Atlantic Forest (Mata Atlantica) of Pernambuco state

    International Nuclear Information System (INIS)

    Ferreira, Fabiano S.; Silva, Waldecy A.; Lira, Marcelo B.G.; Souza, Ebenezer M. de; França, Elvis de

    2017-01-01

    Thorium (Th) and Uranium (U) are distributed throughout the earth's crust. The mean thorium concentration ranges from 6 to 15 ppm, which makes it 3 times more abundant than uranium. These radionuclides in their natural form, and in low amounts, do not present a risk to the population because they have low activity, but the effects caused by the accumulation in living beings have not yet been fully elucidated. This work aims to evaluate the concentration of Th and U in the soils of an excerpt in the Atlantic Forest in the State of Pernambuco. Soil sampling (depth 0-20 cm) occurred in the projection of tree crowns of the predominant species in the studied areas. After drying and comminution, samples of 0.1 g of soil were submitted to chemical treatment to enable the analysis. This treatment consisted in the addition of 9 ml of HNO 3 (nitric acid) and 3 ml of HF (hydrofluoric acid) with subsequent heating of the sample and reference materials in a digester oven. The concentrations of Th and U were quantified by Inductively Coupled Plasma Mass Spectrometry - ICP-MS. The mean concentrations found were: 10.5 mg kg -1 for thorium and 2.18 mg.kg -1 for uranium, with values of 35 mg.kg -1 and 26 mg.kg -1 quantified in a thorium sample and uranium respectively. In this region, uranium and thorium hotspot were found, which reinforces the need for greater attention to these radionuclides in the Atlantic Forest of the State of Pernambuco

  3. Some concepts of favorability for world-class-type uranium deposits in the northeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Adler, H.H.

    1981-03-01

    An account is given of concepts of favorability of geologic environments in the eastern United States for uranium deposits of several major types existing elsewhere in the world. The purpose is to convey some initial ideas about the interrelationships of the geology of the eastern United States and the geologic settings of certain of these world-class deposits. The study and report include consideration of uranium deposits other than those generally manifesting the geologic, geochemical and genetic characteristics associated with the conventional sandstone-type ores of the western United States.

  4. Some concepts of favorability for world-class-type uranium deposits in the northeastern United States

    International Nuclear Information System (INIS)

    Adler, H.H.

    1981-03-01

    An account is given of concepts of favorability of geologic environments in the eastern United States for uranium deposits of several major types existing elsewhere in the world. The purpose is to convey some initial ideas about the interrelationships of the geology of the eastern United States and the geologic settings of certain of these world-class deposits. The study and report include consideration of uranium deposits other than those generally manifesting the geologic, geochemical and genetic characteristics associated with the conventional sandstone-type ores of the western United States

  5. Uranium hydrogeochemical and stream sediment reconnaissance of the Pueblo NTMS quadrangel, Colorado, including concentrations of forty-three additional elements

    International Nuclear Information System (INIS)

    Shannon, S.S. Jr.

    1978-12-01

    This report is a supplement to the HSSR uranium evaluation report for the Pueblo quadrangle (Shannon, 1978), which presented the field and uranium data for the 861 water and 1060 sediment samples collected from 1402 locations in the quadrangle. This supplement presents those data again and the results of subsequent multielement analyses of those HSSR samples. In addition to uranium, the concentrations of 12 elements are presented for the waters and 42 elements for the sediments

  6. Uranium luminescence in La2 Zr2 O7 : effect of concentration and annealing temperature.

    Science.gov (United States)

    Mohapatra, M; Rajeswari, B; Hon, N S; Kadam, R M

    2016-12-01

    The speciation of a particular element in any given matrix is a prerequisite to understanding its solubility and leaching properties. In this context, speciation of uranium in lanthanum zirconate pyrochlore (La 2 Zr 2 O 7  = LZO), prepared by a low-temperature combustion route, was carried out using a simple photoluminescence lifetime technique. The LZO matrix is considered to be a potential ceramic host for fixing nuclear and actinide waste products generated during the nuclear fuel cycle. Special emphasis has been given to understanding the dynamics of the uranium species in the host as a function of annealing temperature and concentration. It was found that, in the LZO host, uranium is stabilized as the commonly encountered uranyl species (UO 2 2+ ) up to a heat treatment of 500 °C at the surface. Above 500 °C, the uranyl ion is diffused into the matrix as the more symmetric octahedral uranate species (UO 6 6- ). The uranate ions thus formed replace the six-coordinated 'Zr' atoms at regular lattice positions. Further, it was observed that concentration quenching takes place beyond 5 mol% of uranium doping. The mechanism of the quenching was found to be a multipolar interaction. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Determination of the uranium concentration in water samples by the technique of fission track recording

    International Nuclear Information System (INIS)

    Geraldo, L.P.

    1979-01-01

    The technique of fission track register was developed for the determination of micrograms of uranium. The Makrofol KG, a synthetic plastic made by Bayer, was used as the detector and the wet method was utilized. The detector calibration curve allows the determination of the uranium concentration in a sample within an interval from 8.0 to 0.4μgU/L, the total error ranging from 3.3% to 29.0% respectively. The method was used in the determination of the uranium content in various water samples, obtained from various sources like rivers, sea etc. in the state of Sao Paulo, Brazil. Results were compared with those obtained by other authors using different methods. The average concentration found in sea waters (3.27 +- 9.12μgU/l) by this method is compatible with the international average accepted value of 3.3μgU/l, irrespective of site and depth. The determination of the uranium content by fission track counting has proved to be very convenient. (Author) [pt

  8. Can we predict uranium bioavailability based on soil parameters? Part 2: soil solution uranium concentration is not a good bioavailability index.

    Science.gov (United States)

    Vandenhove, H; Van Hees, M; Wannijn, J; Wouters, K; Wang, L

    2007-01-01

    The present study aimed to quantify the influence of soil parameters on uranium uptake by ryegrass. Ryegrass was established on eighteen distinct soils, spiked with (238)U. Uranium soil-to-plant transfer factors (TF) ranged from 0.0003 to 0.0340kgkg(-1). There was no significant relation between the U soil-to-plant transfer (or total U uptake or flux) and the uranium concentration in the soil solution or any other soil factor measured, nor with the U recovered following selective soil extractions. Multiple linear regression analysis resulted in a significant though complex model explaining up to 99% of variation in TF. The influence of uranium speciation on uranium uptake observed was featured: UO(2)(+2), uranyl carbonate complexes and UO(2)PO(4)(-) seem the U species being preferentially taken up by the roots and transferred to the shoots. Improved correlations were obtained when relating the uranium TF with the summed soil solution concentrations of mentioned uranium species.

  9. Determination of uranium concentration and burn-up of irradiated reactor fuel in contaminated areas in Belarus using uranium isotopic ratios in soil samples

    International Nuclear Information System (INIS)

    Mironov, V.P.; Matusevich, J.L.; Kudrjashov, V.P.; Ananich, P.I.; Zhuravkov, V.V.; Boulyga, S.F.; Becker, J.S.

    2005-01-01

    An analytical method is described for the estimation of uranium concentrations, of 235 U/ 238 U and 236 U/ 238 U isotope ratios and burn-up of irradiated reactor uranium in contaminated soil samples by inductively coupled plasma mass spectrometry. Experimental results obtained at 12 sampling sites situated on northern and western radioactive fallout tails 4 to 53 km distant from Chernobyl nuclear power plant (NPP) are presented. Concentrations of irradiated uranium in the upper 0-10 cm soil layers at the investigated sampling sites varied from 2.1 x 10 -9 g/g to 2.0 x 10 -6 g/g depending mainly on the distance from Chernobyl NPP. A slight variation of the degree of burn-up of spent reactor uranium was revealed by analyzing 235 U/ 238 U and 236 U/ 238 U isotope ratios and the average value amounted to 9.4±0.3 MWd/(kg U). (orig.)

  10. Calculation of depleted uranium concentration in dental fillings samples using the nuclear track detector CR-39

    International Nuclear Information System (INIS)

    Mahdi, K. H.; Subhi, A. T.; Tawfiq, N. F.

    2012-12-01

    The purpose of this study is to determine the concentration of depleted uranium in dental fillings samples, which were obtained some hospital and dental office, sale of materials deployed in Iraq. 8 samples were examined from two different fillings and lead-filling (amalgam) and composite filling (plastic). concentrations of depleted uranium were determined in these samples using a nuclear track detector CR-39 through the recording of the tracks left by of fragments of fission resulting from the reaction 2 38U (n, f). The samples are bombarded by neutrons emitted from the neutron source (2 41A m-Be) with flux of ( 10 5 n. cm- 2. s -1 ). The period of etching to show the track of fission fragments is 5 hours using NaOH solution with normalization (6.25N), and temperature (60 o C ). Concentration of depleted uranium were calculated by comparison with standard samples. The result that obtained showed that the value of the weighted average for concentration of uranium in the samples fillings (5.54± 1.05) ppm lead to thr filling (amalgam) and (5.33±0.6) ppm of the filling composite (plastic). The hazard- index, the absorbed dose and the effective dose for these concentration were determined. The obtained results of the effective dose for each of the surface of the bone and skin (as the areas most affected by this compensation industrial) is (0.56 mSv / y) for the batting lead (amalgam) and (0.54 mSv / y) for the filling composite (plastic). From the results of study it was that the highest rate is the effective dose to a specimen amalgam filling (0.68 mSv / y) which is less than the allowable limit for exposure of the general people set the World Health Organization (WHO), a (1 mSv / y). (Author)

  11. Quantification of Kinetic Rate Law Parameters of Uranium Release from Sodium Autunite as a Function of Aqueous Bicarbonate Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn M.; Lagos, Leonel; Tansel, Berrin

    2013-09-05

    ABSTRACT: Hydrogen carbonate is one of the most significant components within the uranium geochemical cycle. In aqueous solutions, hydrogen carbonate forms strong complexes with uranium. As such, aqueous bicarbonate may significantly increase the rate of uranium release from uranium minerals. Quantifying the relationship of aqueous hydrogen carbonate solutions to the rate of uranium release during dissolution is critical to understanding the long-term fate of uranium within the environment. Single-pass flow-through (SPTF) experiments were conducted to estimate the rate of uranium release from Na meta-autunite as a function of bicarbonate solutions (0.0005-0.003 M) under the pH range of 6-11 and temperatures of 5-60oC. Consistent with the results of previous investigation, the rate of uranium release from sodium autunite exhibited minimal dependency on temperature; but were strongly dependent on pH and increasing concentrations of bicarbonate solutions. Most notably at pH 7, the rate of uranium release exhibited 370 fold increases relative to the rate of uranium release in the absence of bicarbonate. However, the effect of increasing concentrations of bicarbonate solutions on the release of uranium was significantly less under higher pH conditions. It is postulated that at high pH values, surface sites are saturated with carbonate, thus the addition of more bicarbonate would have less effect on uranium release. Results indicate the activation energies were unaffected by temperature and bicarbonate concentration variations, but were strongly dependent on pH conditions. As pH increased from 6 to 11, activation energy values were observed to decrease from 29.94 kJ mol-1 to 13.07 kJ mol-1. The calculated activation energies suggest a surface controlled dissolution mechanism.

  12. Uranium concentration by Crustacea: a structural, ultrastructural and microanalytical study by secondary ion emission and electron probe X ray microanalysis

    International Nuclear Information System (INIS)

    Chassard-Bouchaud, Colette

    1982-01-01

    Experimental intoxications were performed on the Crayfish Pontastacus leptodactylus using hydrosoluble uranium nitrate. Investigations demonstrate that Crustacea are able to concentrate both uranium main radioactive isotopes 238 U and 235 U within the cuticle, gill epithelium, midgut gland (=hepatopancreas) and macrophagic hemocytes. The storage occurs within nucleus and lysosomal system where uranium is precipitated in the form of an unsoluble phosphate. The proposed hypothesis for the metal extrusion is the following: residual bodies containing the uranium precipitates are extruded into the extracellular space where they are absorbed by phagocytosis, by the macrophagic hemocytes [fr

  13. Competitiveness through change: institutional restructuring of the United States uranium enrichment enterprise

    International Nuclear Information System (INIS)

    Longenecker, J.R.

    1987-01-01

    The position of the United States programme of uranium enrichment under the Department of Energy is explained. Its competitiveness has improved over the past few years by normalising supply and demand and by streamlining the costs of gaseous diffusion plant production. The historical aspects of the uranium enrichment service are explained. Revised criteria to describe the guidelines to cover pricing, contracting and other crucial functions are under discussion. Two aspects of the new criteria of particular interest -restrictions on foreign-origin uranium and recovery of Government costs - are noted. Possible private sector involvement in uranium enrichment is discussed. Technological innovations are explained and equipment illustrated. These should improve the industry's competitiveness. (U.K.)

  14. Electric heating of a unit for uranium trioxide production

    International Nuclear Information System (INIS)

    Faron, R.; Striff, A.

    1985-01-01

    Ammonium diuranate U 2 O 7 (NH 4 ) 2 containing about 50% of water is dried and transformed by calcination in uranium trioxide UO 3 . Drying and calcination was obtained by air heated by two burners using domestic fuel. In 1984 the plant was transformed for utilization of electric heating improving maintenance cost, decreasing heat losses and by energy saving the payback period on investment is of 2.6 years [fr

  15. Application of fission track technique for estimation of uranium concentration in drinking waters of Punjab

    International Nuclear Information System (INIS)

    Prabhu, S.P.; Sawant, P.D.; Raj, S.S.; Kumar, A.; Sarkar, P.K.; Tripathi, R.M.

    2012-01-01

    Drinking water samples were collected from four different districts, namely Bhatinda, Mansa, Faridkot and Firozpur, of Punjab for ascertaining the U(nat.) concentrations. All samples were preserved, processed and analyzed by laser fluorimetry (LF). To ensure accuracy of the data obtained by LF, few samples (10 nos) from each district were analyzed by alpha spectrometry as well as by fission track analysis (FTA) technique. For FTA technique few μl of water sample was transferred to polythene tube, lexan detector was immersed in it and the other end of the tube was also heat-sealed. Two samples and one uranium standard were irradiated in DHRUVA reactor. Irradiated detectors were chemically etched and tracks counted using an optical microscope. Uranium concentrations in samples ranged from 3.2 to 60.5 ppb and were comparable with those observed by LF. (author)

  16. Determination of 226Ra and natural uranium concentration in Botafogo river

    International Nuclear Information System (INIS)

    Nascimento, M.B. do; Amaral, R.S.; Khoury, H.J.; Andrade Lima, R. de

    1990-01-01

    In the Brazilian Northeast region at the coastal area from Pernambuco to Paraiba there is a 4 km wide strip deposit of phosphate rock. This phosphate is used to produce fertilizes by a factory located at the border of the Botafogo river, which cross this area. The phosphate is associated with uranium and no research has been conducted on the river radioactive contamination due the natural processes and to the fertizer factory the present investigation was undertaken to determine 226 Ra and natural uranium concentration in the river water, near the factory. Results show that the radionuclide concentration increases sharply in front of the place of the factory discharge and then decreases rapidly to the same levels found before the factory, 0,01 Bq/1. (author) [pt

  17. Recent developments in the United States uranium enrichment enterprise

    International Nuclear Information System (INIS)

    Longenecker, J.R.

    1987-01-01

    In the near term, DOE is reducing production costs at the gaseous diffusion plants (GDPs), and we've made significant progress already. GDP production costs are expected to decline even further in the near future. DOE is also negotiating new power contracts for the GDPs. The new power contracts, capital improvements, and the use of more unfirm power should reduce our GDP average cost of production to about $60/SWU in the 1990s. Significant technical progress on the Atomic Vapor Laser Isotope Separation (AVLIS) advanced enrichment technology has been made recently. The highlight has been a series of half-scale integrated enrichment experiments using the Laser Demonstration Facility and the Mars separator. We are also ready to initiate testing in the full-scale Separator Demonstration Facility, including a 100 hour run that will vaporize over 5 tons of uranium. DOE is developing plans to restructure the enterprise into a more businesslike entity. The key objective in 1987 is to work with Congress to advance the restructuring of the U.S. uranium enrichment enterprise, to assure its long term competitiveness. We hope to establish in law the charter, objectives, and goals for the restructured enterprise. DOE expects that the world price for enrichment services will continue to decrease in the future. There should be sufficient excess enrichment capacity in the future to assure that competition will be keen. Such a healthy, competitive, world enrichment market will be beneficial to both suppliers and consumers of uranium enrichment services. (J.P.N.)

  18. Recovery of uranium from low uranium concentration waste water using collagen fiber immobilized bayberry tannin

    International Nuclear Information System (INIS)

    Wu Yun; Long Xianming; Zhao Ning; Liao Pinxue

    2012-01-01

    Tannin, extracted from plants, is a kind of natural polyphenol, which is able to chelate with various metal ions and also exhibits selectivity in some extent. The collagen fiber immobilized bayberry tannin was prepared by the immobilization of bayberry tannin onto collagen fiber through the Mannich reaction. Experiment of the adsorption of U from U containing wastewater by using collagen fiber immobilized bayberry tannin suggested that the pH increase of U containing wastewater can promote the adsorption of U onto the adsorbent. When the pH was 4.5 and the initial concentration of U was 300.0 mg/L, the adsorption capacity of U reached the maximum of 52 mg/g while the other impurity metal ions were less than 16.0 mg/g, thus exhibiting excellent selectivity. The treatment of wastewater can be optimized by changing the U concentration, inlet rate of wastewater, and the ratio of column height/diameter etc. In addition. the adsorbed U can be desorbed using 0.1 mol/L HNO 3 solution when the column was saturated, the column can also be re used for the treatment of U containing wastewater after the column is washed by deionized water, collagen fiber immobilized bayberry tannin exhibit selectivity, high adsorption capacity, good reusability when adsorbed U. (authors)

  19. Sandstone uranium deposits in the United States: a review of the history, distribution, genesis, mining areas, and outlook

    International Nuclear Information System (INIS)

    Crawley, R.A.

    1983-03-01

    Sandstone uranium deposits account for about 94 percent of uranium reserves in the United States. Most sandstone uranium districts had been found by the mid-1950s in response to incentives promulgated by the US Atomic Energy Commission. Principal uranium resource regions in the United States are the Colorado Plateau, Wyoming Basins, and Texas Coastal Plain. Statistical data published annually by the US Department of Energy show trends of uranium exploration and production, estimates of resources, and distributions and characteristics of reserves. At present, US exploration and production are curtailed because of uranium oversupply, a trend that will continue for the next few years. Although the outlook is more optimistic over the longer term, it is clouded by possible competition from foreign low-cost, nonsandstone uranium. Roll-type and peneconcordant are the two principal types of sandstone uranium deposits. Roll deposits are formed at geochemical fronts where oxidizing uranium-bearing groundwater penetrates reduced sandstone. Uranium is precipitated by reduction at the front. Under mildly reducing conditions, uranium may remain in solution until it is locally precipitated by reduction, chelation, or complexing to form peneconcordant deposits. Proposed precipitating agents include carbonaceous matter, humate, pyrite, and hydrogen sulfide. The uranium is thought to have been derived from leaching of tuffaceous or arkosic sediments, or of granitic rocks

  20. Radiological Modeling for Determination of Derived Concentration Levels of an Area with Uranium Residual Material - 13533

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Sanchez, Danyl [CIEMAT, Avenida Complutense 40, 28040, Madrid (Spain)

    2013-07-01

    As a result of a pilot project developed at the old Spanish 'Junta de Energia Nuclear' to extract uranium from ores, tailings materials were generated. Most of these residual materials were sent back to different uranium mines, but a small amount of it was mixed with conventional building materials and deposited near the old plant until the surrounding ground was flattened. The affected land is included in an area under institutional control and used as recreational area. At the time of processing, uranium isotopes were separated but other radionuclides of the uranium decay series as Th-230, Ra-226 and daughters remain in the residue. Recently, the analyses of samples taken at different ground's depths confirmed their presence. This paper presents the methodology used to calculate the derived concentration level to ensure that the reference dose level of 0.1 mSv y-1 used as radiological criteria. In this study, a radiological impact assessment was performed modeling the area as recreational scenario. The modelization study was carried out with the code RESRAD considering as exposure pathways, external irradiation, inadvertent ingestion of soil, inhalation of resuspended particles, and inhalation of radon (Rn-222). As result was concluded that, if the concentration of Ra-226 in the first 15 cm of soil is lower than, 0.34 Bq g{sup -1}, the dose would not exceed the reference dose. Applying this value as a derived concentration level and comparing with the results of measurements on the ground, some areas with a concentration of activity slightly higher than latter were found. In these zones the remediation proposal has been to cover with a layer of 15 cm of clean material. This action represents a reduction of 85% of the dose and ensures compliance with the reference dose. (authors)

  1. Method for the recovery of uranium from a concentrate using pure phosphoric acid

    International Nuclear Information System (INIS)

    1980-01-01

    Procedure for the recovery of an uranium bearing concentrate and pure phosphoric acid from a wet process phosphoric acid from the treatment fluid with a precipitation means in conjunction with an organic diluent, the thus formed precipitate to separate and from the remaining mixture of phosphoric acid and diluent the phosphoric acid to extract, characterised in that one applies an inorganic fluorine compound. (G.C.)

  2. Design scheme of automatic feeding equipment of domestic uranium chemical concentrate

    International Nuclear Information System (INIS)

    Hu Jinming; Wang Chao; Peng Jinhui; Zhang Libo

    2014-01-01

    In order to solve problems by artificial feeding mode with low work efficiency, large intensity manual labor and environmental pollution in domestic uranium concentrate purification process, the design scheme of automatic feeding device was set up, including work flow sheet, composition of automatic equipment and operation. By application of automatic feeding equipment, the feeding speed can be greatly increased, labor force can be reduced, and harm to workman health can be decreased. (authors)

  3. Recovery of uranium from seawater using wave power and floating offshore units

    International Nuclear Information System (INIS)

    Bjoerk, B.; Vallander, P.

    1981-03-01

    This report is the final contribution to a study of the technical and economic feasibility of floating units for the recovery of uranium from seawater. The seawater is supplied by wave energy and received by a sloping plane. An optimization was carried out which involved study of the number of storeys of adsorbent beds in a floating unit, the number and tonnage of service vessels and the number of moorings. Different absorbent bed areas, thicknesses of layers of adsorbent material, length of floating units and length of extraction cycles were considered. The annual uranium uptake was calculated for an offshore location 20 nautical miles to the south-east of South Africa. The costs of the total plant for each combination of optimization parameters were calculated and are presented. The cost of the recovered uranium for each combination of optimization parameters is shown. The most feasible offshore plant will recover uranium at a cost of about 1 900 SEK/kg. It will comprise 22 floating units, each with an adsorbent bed area of 300 m 2 per metre of the unit and an adsorbent thickness of 0.10 metres. A conceptual layout of the selected floating unit is shown in drawings. (author)

  4. Feasibility of Uranium Concentration Measurements for H Canyon Tank 16.7

    International Nuclear Information System (INIS)

    Lascola, R.J.

    2003-01-01

    Savannah River Technology Center (SRTC) evaluated the feasibility of using the H Canyon on-line diode array spectrophotometer to measure uranium concentrations in Tank 16.7. On-line measurements will allow an increase in highly enriched uranium (HEU) production by removing delays associated with off-line measurements. The instrument must be able to measure uranium at concentrations below 1.0 g/L with an uncertainty no greater than 0.3 g/L. SRTC determined that the system has a limit of quantitation of 0.15 g/L. At concentrations of 0.5 and 1.0 g/L, the spectrometer uncertainty is 0.10 g/L. No design changes, such as an increase in flow cell path length, are required to obtain this performance. Expected levels of iron in Tank 16.7 solutions will not interfere with the measurement. The CHEMCHEK method should not be used for confirmatory analysis, as it contributes excessively to the overall uncertainty of the measurement. SRTC expects that the spectrophotometer will meet the measurement requirements for Tank 16.7

  5. Seasonal variation in concentration of radon and thoron at non-uranium mines in China

    International Nuclear Information System (INIS)

    Cui Hongxing; Wu Yunyun; Zhang Qingzhao; Shang Bing

    2009-01-01

    Objective: To study the seasonal variation in concentrations of radon and thoron in non-uranium mine. Methods: Eight kinds of mineral types from 9 non-uranium mines were selected, including copper, gold, aluminium, manganese, antimonium, tungsten, copper-nickel and coal mines in 6 provinces, such as Yunnan, Shandong, Xinjiang, Heilongjiang, Hunan and Guizhou. LD-P R-T discriminative detectors were used to measure radon and thoron concentrations in underground mines during four seasons in one year. Results: Radon concentrations in underground mines showed a significantly seasonal variation. Radon concentration ranged from 35.5 to 4841 Bq/m 3 in summer, and the average value in four mines exceeded 1000 Bq/m 3 of the control limit for workplace (GB 18871-2002) . In winter, radon concentration ranged from 5 to 1917 Bq/m 3 , only one of them exceeded the control limit. The ratio of radon from summer to winter ranged from 2 to 12. Ventilation was one of the main factors which influenced the seasonal variation of radon. While the thoron concentration in underground mines showed a tendency that it was higher in summer and lower in winter. It was difficult to attain representative values for thoron, due to the influence of location of detectors. The seasonal variation of thoron should be further studied. Conclusions: Seasonal variation for radon and thoron should be taken into account to estimate the effective dose to miners. The values of radon concentration during the short term should be corrected. (authors)

  6. Development of a process to reduce the uranium concentration of liquid radioactive waste

    International Nuclear Information System (INIS)

    Fuentealba Toro, Edgardo David

    2015-01-01

    The purpose of radioactive waste management is to prevent the discharge of waste into the biosphere, a function carried out in Chile by the Chilean Nuclear Energy Commission (CCHEN), which stores around 500 [L] of these organic and inorganic waste in cans coming from research of Universities and CCHEN' laboratories. Within the inorganic liquid waste are concentrations of Uranyl salts with sulfates, chlorides and phosphates. The purpose of this work is to develop at laboratory level a process to concentrate and precipitate uranium salts (Sulfate and Uranyl Chloride) present in radioactive liquid effluents, because in the case of these very long period wastes in liquid state, the most widely used processes are aimed at concentrating or extracting radioactive compounds through separation processes, for their conditioning and final storage under conditions whose radiological risk is minimized. The selected process is liquid-liquid extraction, being evaluated solvents such as benzene and kerosene with the following extractants: tri-n-octylphosphine oxide (TOPO), di-2-ethylhexyl phosphoric acid (DEHPA) and Cyanex© 923. To determine the extraction conditions, which allow to reduce the concentration of uranium to values lower than 10 ppm, the extractant concentration was modified from 0.05 to 0.41 [M] with solvent volume / residue (VO/VA) ratios of 0.2 to 0.5, at an initial concentration of 8,446 [gU/L] and subsequent precipitation of uranium extracted by a reaction with ammonium carbonate. From these experimental tests the maximum extraction conditions were determined. To the generated effluents, a second stage of extraction was necessary in order to reduce its concentration below 10 [mg / L]. The experimental tests allowed to reduce the concentration under 2.5 [mgU/L], equivalent to 99.97% extraction efficiency. The tests with Cyanex© 923 in replacement of the TOPO, allowed to obtain similar results and even better in some cases, due to the fact that final

  7. Uranium

    International Nuclear Information System (INIS)

    Gabelman, J.W.; Chenoweth, W.L.; Ingerson, E.

    1981-01-01

    The uranium production industry is well into its third recession during the nuclear era (since 1945). Exploration is drastically curtailed, and many staffs are being reduced. Historical market price production trends are discussed. A total of 3.07 million acres of land was acquired for exploration; drastic decrease. Surface drilling footage was reduced sharply; an estimated 250 drill rigs were used by the uranium industry during 1980. Land acquisition costs increased 8%. The domestic reserve changes are detailed by cause: exploration, re-evaluation, or production. Two significant discoveries of deposits were made in Mohave County, Arizona. Uranium production during 1980 was 21,850 short tons U 3 O 8 ; an increase of 17% from 1979. Domestic and foreign exploration highlights were given. Major producing areas for the US are San Juan basin, Wyoming basins, Texas coastal plain, Paradox basin, northeastern Washington, Henry Mountains, Utah, central Colorado, and the McDermitt caldera in Nevada and Oregon. 3 figures, 8 tables

  8. Application of fission track technique for estimation of uranium concentration in drinking waters of Punjab

    International Nuclear Information System (INIS)

    Prabhu, S.P.; Raj, Sanu S.; Sawant, P.D.; Kumar, Ajay; Sarkar, P.K.; Tripathi, R.M.

    2010-01-01

    Full text: Drinking water samples were collected from four different districts, namely Bhatinda, Mansa, Faridkot and Firozpur, of Punjab for ascertaining the U(nat.) concentrations. The samples were collected from bore wells, hand pumps, tube wells and treated municipal water supply. All these samples (235 nos.) collected were preserved and processed by following the international standard protocol and analyzed by Laser Fluorimetry. Results of analysis by laser fluorimetry have been already reported. To ensure accuracy of the data obtained by laser fluorimetry, few samples (10 nos) from each district were analyzed by alpha spectrometry as well as by fission track analysis (FTA) technique. FTA in solution media for uranium has been already standardized in Bioassay laboratory of Health Physics Division. Few of drinking water sample was directly transferred to polythene tube sealed at one end. Lexan detector with proper identification mark was immersed in the samples and the other open end of the tube was also heat-sealed. Two tubes containing samples and one containing uranium standard (80 ppb) were irradiated in the Pneumatic Carrier Facility (PCF) of DHRUVA reactor. The Lexan detectors were then chemically etched and tracks were counted under an optical microscope at 400X magnification. Concentration of uranium in sample was determined by comparison technique. Quality assurance was carried out by replicate analysis and by analysis of standard reference materials. Uranium concentration in these samples ranged from 3.2 to 60.5 ppb with an average of 28.8 ppb. A t-test analysis for paired data was done to compare the results obtained by FTA and those obtained by laser fluorimeter. The calculated value for t is -1.19, which is greater than the tabulated value of t for 40 observations (-2.02 at 95% confidence level). This shows that the results of the measurements carried out by the FTA and laser fluorimetry are not significantly different. The preliminary studies

  9. Natural uranium concentrations of native plants over a low-grade ore body

    International Nuclear Information System (INIS)

    Sheppard, M.I.; Thibault, D.H.

    1984-01-01

    Plant uranium concentrations generally reflect soil or rock substrate concentrations in upland areas, but they may not in lowland areas where the rhizoids of Sphagnum spp. and rocks of Ledum groenlandicum may be in direct contact either continuously or on a seasonal basis with the groundwater. This study points out the importance of selecting plant species and collection sites where the true substrate can be well defined and sampled. Sphagnum spp. and Ledum groenlandicum best reflect the substrate uranium concentrations in lowland areas, Umbilicaria spp. and Cladonia spp. in rock outcrop, and Picea mariana and Betula papyrifera in upland locations. The study shows the best plant part to sample is the older tissue such as the stems, twigs, and wood. Since no systematic changes in plant tissue concentrations were found throughout the season, sampling can be carried out anytime. Expression of soil concentrations on an ash weight basis gave a considerably different result than those on a dry weight basis, particularly when comparisons were made between litter-enriched mineral soil and true organic soils. The amount of ash varied among plant organs, species, and taxonomic divisions, and a constant value cannot be used to convert plant ash concentrations on a dry weight basis

  10. Recovery of uranium from seawater using wave power and floating offshore units

    International Nuclear Information System (INIS)

    Bjoerk, B.; Vallander, P.

    1981-06-01

    This report is a final contribution to a study of the technical and economic feasibility of floating units for the recovery of uranium from seawater. The seawater is supplied by wave energy and received by a sloping plane. An optimization was carried out which involved study of the number of storeys of adsorbent beds in a floating unit, the number and tonnage of service vessels and the number of moorings. Different adsorbent bed areas, thickness of layers of adsorbent material, length of floating units and length of extraction cycles were considered. The costs of a plant for each combination of optimization parameters were calculated and are presented. The most feasible offshore plant will recover uranium at a cost of about 1900 SEK/kg. It will comprise 22 floating units, each with an adsorbent bed area of 300 m 2 per metre of the unit and an adsorbent thickness of 0.10 metres. (Authors)

  11. Uranium concentrations in the phosphates of Congo related to marin and continental mineral authigenesis

    International Nuclear Information System (INIS)

    Giresse, P.; N'Landou, J. de Dieu; Wiber, M.

    1984-01-01

    In the Maastrichtian phosphates of Tchivoula (Congo), uanium, for the most part fixed and tetravalent in marine apatites in there after mobilized and occasionally concentrates during the course of successive stages of dissolution, recrystallization (secondary apatite) or authigenesis (ferro-aluminous phosphates, autunite and torbernite). Very high levels near the top of the deposit appear to be related to the percolation of uraniferous solutions from Ypresian phosphatic beds which are no longer present. In the marine Tertiary phosphates of Djeno, diagenesis is less advanced; radial changes in uranium concentration on the scale of individual coprolites of selacians can be observed and are related to the loss of P 2 O 5 [fr

  12. Groundwater restoration of uranium ISL mines in the United States

    International Nuclear Information System (INIS)

    Catchpole, G.; Kuchelka, R.

    1993-01-01

    Although the in-situ leach (ISL) mining of uranium in the US started in the 1960's, the real expansion of this form of mining, which is also called solution mining, took place in the early to mid 1970's in Texas. Some of the early test work used an acid lixiviant but it was soon recognized that, because of environmental considerations, the use of alkaline lixiviants would be preferable to the regulatory agencies and the public. In the past, the two types of alkaline based lixiviants used at US ISL mines were ammonia bicarbonate and sodium bicarbonate. A few ISL mines get by with just adding carbon dioxide to the well field solution. Ammonia bicarbonate is no longer being used today in the US because of the difficulties and expense of restoring the water quality to acceptable standards following mining. This paper briefly describes ISL mining principles and then details procedures and techniques used at USA ISL uranium mines to restore water quality in the mined aquifer. The basic elements are fairly constant but there can be considerable variation in type of water treatment equipment, methods of waste water disposal and use of chemical reducing agents. Three case histories are also presented

  13. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Recent decisions by the Australian Government will ensure a significant expansion of the uranium industry. Development at Roxby Downs may proceed and Ranger may fulfil two new contracts but the decision specifies that apart from Roxby Downs, no new mines should be approved. The ACTU maintains an anti-uranium policy but reaction to the decision from the trade union movement has been muted. The Australian Science and Technology Council (ASTEC) has been asked by the Government to conduct an inquiry into a number of issues relating to Australia's role in the nuclear fuel cycle. The inquiry will examine in particular Australia's nuclear safeguards arrangements and the adequacy of existing waste management technology. In two additional decisions the Government has dissociated itself from a study into the feasibility of establishing an enrichment operation and has abolished the Uranium Advisory Council. Although Australian reserves account for 20% of the total in the Western World, Australia accounts for a relatively minor proportion of the world's uranium production

  14. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The French Government has decided to freeze a substantial part of its nuclear power programme. Work has been halted on 18 reactors. This power programme is discussed, as well as the effect it has on the supply of uranium by South Africa

  15. Pre-concentration of uranium from water samples by dispersive liquid-liquid micro-extraction

    Energy Technology Data Exchange (ETDEWEB)

    Khajeh, Mostafa; Nemch, Tabandeh Karimi [Zabol Univ. (Iran, Islamic Republic of). Dept. of Chemistry

    2014-07-01

    In this study, a simple and rapid dispersive liquid-liquid microextraction (DLLME) was developed for the determination of uranium in water samples prior to high performance liquid chromatography with diode array detection. 1-(2-pyridylazo)-2-naphthol (PAN) was used as complexing agent. The effect of various parameters on the extraction step including type and volume of extraction and dispersive solvents, pH of solution, concentration of PAN, extraction time, sample volume and ionic strength were studied and optimized. Under the optimum conditions, the limit of detection (LOD) and preconcentration factor were 0.3 μg L{sup -1} and 194, respectively. Furthermore, the relative standard deviation of the ten replicate was <2.6%. The developed procedure was then applied to the extraction and determination of uranium in the water samples.

  16. Origin assessment of uranium ore concentrates based on their rare-earth elemental impurity pattern

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Z.; Wallenius, M.; Mayer, K. [Commission of the European Communities, Karlsruhe (Germany). European Inst. for Transuranium Elements

    2010-07-01

    The rare-earth element pattern was used as an additional tool for the identification and origin assessment of uranium ore concentrates (yellow cakes) for nuclear forensic purposes. By this means, the source of an unknown material can be straightforwardly verified by comparing the pattern with that of a known or declared sample. In contrast to other indicators used for nuclear forensic studies, the provenance of the material can also be assessed in several cases even if no comparison sample is available due to the characteristic pattern. The milling process was found not to change the pattern and no significant elemental fractionation occurs between the rare-earth elements, thus the pattern in the yellow cakes corresponds to that found in the uranium ore. (orig.)

  17. Streamline-concentration balance model for in-situ uranium leaching and site restoration

    International Nuclear Information System (INIS)

    Bommer, P.M.; Schechter, R.S.; Humenick, M.J.

    1981-03-01

    This work presents two computer models. One describes in-situ uranium leaching and the other describes post leaching site restoration. Both models use a streamline generator to set up the flow field over the reservoir. The leaching model then uses the flow data in a concentration balance along each streamline coupled with the appropriate reaction kinetics to calculate uranium production. The restoration model uses the same procedure except that binary cation exchange is used as the restoring mechanism along each streamline and leaching cation clean up is simulated. The mathematical basis for each model is shown in detail along with the computational schemes used. Finally, the two models have been used with several data sets to point out their capabilities and to illustrate important leaching and restoration parameters and schemes

  18. Pre-concentration of uranium from water samples by dispersive liquid-liquid micro-extraction

    International Nuclear Information System (INIS)

    Khajeh, Mostafa; Nemch, Tabandeh Karimi

    2014-01-01

    In this study, a simple and rapid dispersive liquid-liquid microextraction (DLLME) was developed for the determination of uranium in water samples prior to high performance liquid chromatography with diode array detection. 1-(2-pyridylazo)-2-naphthol (PAN) was used as complexing agent. The effect of various parameters on the extraction step including type and volume of extraction and dispersive solvents, pH of solution, concentration of PAN, extraction time, sample volume and ionic strength were studied and optimized. Under the optimum conditions, the limit of detection (LOD) and preconcentration factor were 0.3 μg L -1 and 194, respectively. Furthermore, the relative standard deviation of the ten replicate was <2.6%. The developed procedure was then applied to the extraction and determination of uranium in the water samples.

  19. Method and apparatus for determining uranium concentration in a moving stream

    International Nuclear Information System (INIS)

    Bartko, J.; Wonn, J.W.

    1977-01-01

    The concentration of uranium in a moving stream is determined by agglomerating background microbubbles out of the 6 to 10 micron size range, counting microbubbles in the stream which are about 6 to about 10 microns in size, exposing the stream to a radiation source to cause uranium fission fragments to produce microbubbles, counting microbubbles which are about 6 to about 10 microns in size, and subtracting one count from the other and multiplying by a calibration constant. The subtraction can be performed on an earlier first count so that both counts are made on the same volume. The radiation exposure can be automatically increased when the difference between the first and second counts is low

  20. Enhancement of Cu, Ni and Mo recoveries in the bulk concentrate of Jaduguda uranium bearing ore

    International Nuclear Information System (INIS)

    Rao, G.V.; Besra, L.D.

    1998-01-01

    The uranium ore treatment plant at Jaduguda, India, recovers copper, nickel and molybdenum as byproducts before the bulk flotation tailings are subjected to leaching to recover uranium values. The recoveries of these sulfide metals in this 900 TPD plant are reported to be around 60 % Cu, 25% Ni and 55% Mo in the bulk concentrate. In this article, flotation studies carried out, at the instance of M/S UCIL, with various reagents and their combination to improve the over all recoveries are presented. It was observed that material coarser than 100 microns, from the flotation feed, could not be floated even in presence of excessive reagent unless it is ground further. It was established that around 95% Cu, 75% Ni and 74% Mo values could be recovered by using either amyl xanthate or mixture of amyl xanthate and Aero Promoter 194 in place of cresylic acid that is being currently used as collector in the plant. (author)

  1. Streamline-concentration balance model for in situ uranium leaching and site restoration

    International Nuclear Information System (INIS)

    Bommer, P.M.

    1979-01-01

    This work presents two computer models. One describes in situ uranium leaching and the other describes post leaching site restoration. Both models use a streamline generator to set up the flow field over the reservoir. The leaching model then uses the flow data in a concentration balance along each streamline coupled with the appropriate reaction kinetics to calculate uranium production. The restoration model uses the same procedure ecept that binary cation exchange is used as the restoring mechanism along each streamline and leaching cation clean up is stimulated. The mathematical basis for each model is shown in detail along with the computational schemes used. Finally, the two models have been used with several data sets to point out their capabilities and to illustrate important leaching and restoration parameters and schemes

  2. Concentration and characteristics of depleted uranium in biological and water samples collected in Bosnia and Herzegovina

    International Nuclear Information System (INIS)

    Jia Guogang; Belli, Maria; Sansone, Umberto; Rosamilia, Silvia; Gaudino, Stefania

    2006-01-01

    During Balkan conflicts in 1994-1995, depleted uranium (DU) ordnance was employed and was left in the battlefield. Health concern is related to the risk arising from contamination of the environment with DU penetrators and dust. In order to evaluate the impact of DU on the environment and population in Bosnia and Herzegovina, radiological survey of DU in biological and water samples were carried out over the period 12-24 October 2002. The uranium isotopic concentrations in biological samples collected in Bosnia and Herzegovina, mainly lichens, mosses and barks, were found to be in the range of 0.27-35.7 Bq kg -1 for 238 U, 0.24-16.8 Bq kg -1 for 234 U, and 0.02-1.11 Bq kg -1 for 235 U, showing uranium levels to be higher than in the samples collected at the control site. Moreover, the 236 U in some of the samples was detectable. The isotopic ratios of 234 U/ 238 U showed DU to be detectable in many biological samples at most sites examined, but in very low levels. The presence of DU in the biological samples was as a result of DU contamination in air. The uranium concentrations in water samples collected in Bosnia and Herzegovina were found to be in the range of 0.27-16.2 mBq l -1 for 238 U, 0.41-15.6 mBq l -1 for 234 U and 0.012-0.695 mBq l -1 for 235 U, and two water samples were observed to be DU positive; these values are much lower than those in mineral water found in central Italy and below the WHO guideline for public drinking water. From radiotoxicological point of view, at this moment there is no significant radiological risk related to these investigated sites in terms of possible DU contamination of water and/or plants

  3. The ''waste unit'' of the opencast uranium mine of Bellezane

    International Nuclear Information System (INIS)

    Sirot, P.

    1986-01-01

    Cogema works at Bellezane by an opencast method a deposit of uraniferous ore which will have to extract a tonnage of 15 Mt gross for a uranium metal content of 800 t. The waste of the overburden is mined in steps of 15 m height. The ore itself is mined in slices of 3 to 5 m height to improve the selectivity. Heavy equipment is used; it comprises in particular for the overburden a large Liebherr 914 power shovel with a bucket of 11m 3 which operates in two shifts per day, loading three Caterpillar trucks of 77 t. The results are impressive, i.e. 750 t per man and shift for the overburden and 400 t per man and shift for the ore. The author gives also a breakdown for the extraction costs of the two sectors [fr

  4. The kinetics of the cerium(IV)-uranium(IV) reaction at low sulfate concentrations

    International Nuclear Information System (INIS)

    Michaille, P.; Kikindai, T.

    1977-01-01

    The rate of oxidation of uranium(IV) by cerium(IV) was measured with a stopped-flow spectrophotometer at sulfuric acid concentrations of 2 x 10 -6 to 0.5 M. At a constant hydrogen ion concentration of 0.5 M, the maximum rate constant was observed for 2 x 10 -3 M sulfuric acid; at that concentration, two sulfate ions were involved in the activated complex. The dependence of the rate constant on the hydrogen ion concentration showed that the reaction paths involving one or two sulfate ions also involved one hydroxyl ion, whereas one hydrogen ion was involved in the five sulfate dependent path. Spectrophotometric measurements supported the existence of a hydrolyzed monosulfatocomplex of cerium(IV). (author)

  5. The distribution of E-centres concentration in the minerals of the wall-rocks of uranium deposit

    International Nuclear Information System (INIS)

    Kislyakov, Ya.M.; Moiseev, B.M.; Rakov, L.T.; Kulagin, Eh.G.

    1975-01-01

    Electron paramagnetic resonance was used to investigate the distribution of electron-hole centres caused by natural radioactive irradiation in terrigenous arcosic rocks and their principal mineral components (quartz-feldspar concretions, white and smoky quartz, feldspars). The relationship between concentrations of E-centres and the uranium content of the rocks reflects the genetic features of the uranium mineralization. Taking one specific deposit as an example, the author shows the proportional dependence between uranium content and E-centre concentration. The dependence reflects the practically simultraneous formation of the main mass of epigenetic mineralization. The hypothesis that older (syngenetic) ore deposits may have existed was not confirmed. Despite the long interval between sedimentary accumulation end epigenesis, no significant surplus concentrations of E-centres were found in epigenetic-metamorphic rocks. Anomalous concentrations of uranium and E-centres are caused by uranium migration during later epigenetic processes superimposed on the mesozoic ore-controlling zonality. One result of this migration is the formation in limonitized rocks of ''augen'' ores for which low concentrations of paramagnetic centres are typical. For the study of the distribution of E-centres in rocks from uranium deposits, it is possible to use polymineral mixtures. For the proper interpratation of the data obtained, however, account must be taken of the sensitivity to irradiation of the various mineral components, particularly the various forms of quartz, which is the principal natural dosimeter. (E.G.)

  6. The discovery and character of Pleistocene calcrete uranium deposits in the Southern High Plains of west Texas, United States

    Science.gov (United States)

    Van Gosen, Bradley S.; Hall, Susan M.

    2017-12-18

    This report describes the discovery and geology of two near-surface uranium deposits within calcareous lacustrine strata of Pleistocene age in west Texas, United States. Calcrete uranium deposits have not been previously reported in the United States. The west Texas uranium deposits share characteristics with some calcrete uranium deposits in Western Australia—uranium-vanadium minerals hosted by nonpedogenic calcretes deposited in saline lacustrine environments.In the mid-1970s, Kerr-McGee Corporation conducted a regional uranium exploration program in the Southern High Plains province of the United States, which led to the discovery of two shallow uranium deposits (that were not publicly reported). With extensive drilling, Kerr-McGee delineated one deposit of about 2.1 million metric tons of ore with an average grade of 0.037 percent U3O8 and another deposit of about 0.93 million metric tons of ore averaging 0.047 percent U3O8.The west-Texas calcrete uranium-vanadium deposits occur in calcareous, fine-grained sediments interpreted to be deposited in saline lakes formed during dry interglacial periods of the Pleistocene. The lakes were associated with drainages upstream of a large Pleistocene lake. Age determinations of tephra in strata adjacent to one deposit indicate the host strata is middle Pleistocene in age.Examination of the uranium-vanadium mineralization by scanning-electron microscopy indicated at least two generations of uranium-vanadium deposition in the lacustrine strata identified as carnotite and a strontium-uranium-vanadium mineral. Preliminary uranium-series results indicate a two-component system in the host calcrete, with early lacustrine carbonate that was deposited (or recrystallized) about 190 kilo-annum, followed much later by carnotite-rich crusts and strontium-uranium-vanadium mineralization in the Holocene (about 5 kilo-annum). Differences in initial 234U/238U activity ratios indicate two separate, distinct fluid sources.

  7. Monitoring of uranium concentrations in water samples collected near potentially hazardous objects in North-West Tajikistan.

    Science.gov (United States)

    Zoriy, P; Schläger, M; Murtazaev, K; Pillath, J; Zoriy, M; Heuel-Fabianek, B

    2018-01-01

    The water contamination near ecologically problematic objects was investigated between 2009 and 2014 in North-West Tajikistan as a part of a joint project between Forschungszentrum Jülich and Khujand State University. The main part of this work was the determination of uranium in water samples collected near the Degmay tailings dump, the Taboshar pit lake and the Syr Darya river. More than 130 water samples were collected and analyzed to monitor the uranium concentration near the investigated areas. Two different mass spectrometers and an ion chromatograph were used for element concentration measurements. Based on the results obtained, the uranium influence of the Degmay tailings on the rivers Khoja-Bakyrgan-Say and Syr Darya and surrounding water was not found. The uranium concentration in water samples was monitored for a lengthy period at seven locations Great differences in the uranium concentration in waters collected in 2010, 2011, 2012, 2013 for each location were not observed. Drinking water samples from the region of North-West Tajikistan were analyzed and compared with the World Health Organization's guidelines. Seven out of nine drinking water samples near Taboshar exceeded the WHO guideline value for uranium concentrations (30 μg/L). The average uranium concentration of water samples from Syr Darya for the period from 2009 to 2014 was determined to be 20.1 (±5.2) μg/L. The uranium contamination of the Syr Darya was determined from the western border to the eastern border and the results are shown in this paper. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. International Uranium Resources Evaluation Project (IUREP) national favourability studies: United Kingdom

    International Nuclear Information System (INIS)

    1977-10-01

    Although uranium prospecting was commenced in the United Kingdom (area 244,813 km) at the end of the last century and was resumed just after the Second World War, it does not seem, for various reasons, despite the level of competence of its specialists and the level of instrumentation available, that the country has been adequately prospected for uranium. The small reserves discovered to date, some 7400t U for all the official NEA/lAEA categories, probably do not reflect the true uranium potential of the United Kingdom. However, they do indicate without doubt that the resources remaining to be discovered are so located that detection will be difficult. The most promising areas of investigation in our opinion are the Old Red Sandstones of the Devonian period on the one hand and the districts where the uraniferous black shales of the Cambro-Ordovician and Namurian have suffered perturbations which may have led to immobilization of their uranium content (in particular, granitizations). All the considerations put forward in this analysis lead us to place the United Kingdom in category 4 of the classification adopted for IUREP. (author)

  9. Uranium exploration

    International Nuclear Information System (INIS)

    De Voto, R.H.

    1984-01-01

    This paper is a review of the methodology and technology that are currently being used in varying degrees in uranium exploration activities worldwide. Since uranium is ubiquitous and occurs in trace amounts (0.2 to 5 ppm) in virtually all rocks of the crust of the earth, exploration for uranium is essentially the search of geologic environments in which geologic processes have produced unusual concentrations of uranium. Since the level of concentration of uranium of economic interest is dependent on the present and future price of uranium, it is appropriate here to review briefly the economic realities of uranium-fueled power generation. (author)

  10. Precambrian uranium-bearing quartz-pebble conglomerates: exploration model and United States resource potential

    International Nuclear Information System (INIS)

    Houston, R.S.; Karlstrom, K.E.

    1979-11-01

    Uranium has been discovered in fluvial quartz-pebble conglomerates in most of the Precambrian shield areas of the world, including the Canadian, African, South American, Indian, Baltic, and Australian shields. Occurrences in these and other areas are shown. Two of these occurrences, the Huronian supergroup of Canada and the Witwatersrand deposit of South Africa contain 20 to 30 percent of the planet's known uranium reserves. Thus it is critical that we understand the origin of these deposits and develop exploration models that can aid in finding new deposits. Inasmuch as these uranium-bearing conglomerates are confined almost entirely to rocks of Precambrian age, Part I of this review begins with a discussion of Precambrian geology as it applies to the conglomerates. This is followed by a discussion of genetic concepts, a discussion of unresolved problems, and finally a suggested exploration model. Part II summarizes known and potential occurrences of Precambrian fossil placers in the world and evaluates them in terms of the suggested exploration model. Part III discusses the potential for important Precambrian fossil-placer uranium deposits in the United States and includes suggestions that may be helpful in establishing an exploration program in this country. Part III also brings together new (1975-1978) data on uranium occurrences in the Precambrian of the Wyoming Province. Part IV is a complete bibliography of Precambrian fossil placers, divided according to geographical areas. In total, this paper is designed to be a comprehensive review of Precambrian uranium-bearing fossil placers which will be of use to uranium explorationists and to students of Precambrian geology

  11. Precambrian uranium-bearing quartz-pebble conglomerates: exploration model and United States resource potential

    Energy Technology Data Exchange (ETDEWEB)

    Houston, R.S.; Karlstrom, K.E.

    1979-11-01

    Uranium has been discovered in fluvial quartz-pebble conglomerates in most of the Precambrian shield areas of the world, including the Canadian, African, South American, Indian, Baltic, and Australian shields. Occurrences in these and other areas are shown. Two of these occurrences, the Huronian supergroup of Canada and the Witwatersrand deposit of South Africa contain 20 to 30 percent of the planet's known uranium reserves. Thus it is critical that we understand the origin of these deposits and develop exploration models that can aid in finding new deposits. Inasmuch as these uranium-bearing conglomerates are confined almost entirely to rocks of Precambrian age, Part I of this review begins with a discussion of Precambrian geology as it applies to the conglomerates. This is followed by a discussion of genetic concepts, a discussion of unresolved problems, and finally a suggested exploration model. Part II summarizes known and potential occurrences of Precambrian fossil placers in the world and evaluates them in terms of the suggested exploration model. Part III discusses the potential for important Precambrian fossil-placer uranium deposits in the United States and includes suggestions that may be helpful in establishing an exploration program in this country. Part III also brings together new (1975-1978) data on uranium occurrences in the Precambrian of the Wyoming Province. Part IV is a complete bibliography of Precambrian fossil placers, divided according to geographical areas. In total, this paper is designed to be a comprehensive review of Precambrian uranium-bearing fossil placers which will be of use to uranium explorationists and to students of Precambrian geology.

  12. International Uranium Resources Evaluation Project (IUREP) national favourability studies: United Arab Emirates

    International Nuclear Information System (INIS)

    1977-11-01

    While most of the rocks in the United Arab Emirates are of sedimentary marine origin there are also some granites and metamorphic rock areas. It is understood that Hunting Geology and Geophysics Ltd were contracted in 1975 to carry out a mineral survey over 11,500 square kilometres utilising, among others, gamma-ray spectrometry. The results of this survey are not known. A report in 1974 of a large occurrence of uranium in Fujairah was later discredited but at least two radioactive anomalies are known in the country. The existence of granitic rocks and the appropriate conditions for calcareous duricrust formations may indicate some slight potential for uranium. The Speculative Potential may be in the 1000 to 10,000 tonnes uranium category. (author)

  13. The prediction of concentration profiles for a NIMCIX column absorbing uranium from aqueous solution

    International Nuclear Information System (INIS)

    Wright, R.S.

    1979-01-01

    A procedure is proposed for the prediction of concentration profiles for a countercurrent ion-exchange absorption column, use being made of equilibrium and kinetic data derived from small-scale batch tests. A comparison is presented between the predictions and the measured performance of a column (2,5 m in diameter) absorbing uranium from solution. The method is shown to be adequate for design purposes provided that the data used are from tests in which the solution and resin conditions approximate those for which the plant is being designed [af

  14. Study on automatic control of high uranium concentration solvent extraction with pulse sieve-plate column

    International Nuclear Information System (INIS)

    You Wenzhi; Xing Guangxuan; Long Maoxiong; Zhang Jianmin; Zhou Qin; Chen Fuping; Ye Lingfeng

    1998-01-01

    The author mainly described the working condition of the automatic control system of high uranium concentration solvent extraction with pulse sieve-plate column on a large scale test. The use of the automatic instrument and meter, automatic control circuit, and the best feedback control point of the solvent extraction processing with pulse sieve-plate column are discussed in detail. The writers point out the success of this experiment on automation, also present some questions that should be cared for the automatic control, instruments and meters in production in the future

  15. Determination of low concentrations of uranium in granite samples by X-ray fluorescence

    International Nuclear Information System (INIS)

    Roca, M.; Diaz-Guerra, J.P.

    1981-01-01

    An x-ray fluorescence method for the determination of uranium in granite samples for concentrations ranging from 3 to 100 ppm U 3 O 8 has been developed. To this purpose a sample holder, specially designed, allowing the irradiation of sample surfaces 42.5 mm in diameter and a molybdenum tube operating with a power of 2700 W (90 kV, 30 mA) are used. The background influence and the spectral interferences from rubidium and strontium have been taken into account and specific correction coefficients have been computed. A Basic program facilitates the report of the analytical results. (author)

  16. A database of radionuclide activity and metal concentrations for the Alligator Rivers Region uranium province.

    Science.gov (United States)

    Doering, Che; Bollhöfer, Andreas

    2016-10-01

    This paper presents a database of radionuclide activity and metal concentrations for the Alligator Rivers Region (ARR) uranium province in the Australian wet-dry tropics. The database contains 5060 sample records and 57,473 concentration values. The data are for animal, plant, soil, sediment and water samples collected by the Environmental Research Institute of the Supervising Scientist (ERISS) as part of its statutory role to undertake research and monitoring into the impacts of uranium mining on the environment of the ARR. Concentration values are provided in the database for 11 radionuclides ( 227 Ac, 40 K, 210 Pb, 210 Po, 226 Ra, 228 Ra, 228 Th, 230 Th, 232 Th, 234 U, 238 U) and 26 metals (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, P, Pb, Rb, S, Sb, Se, Sr, Th, U, V, Zn). Potential uses of the database are discussed. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  17. Anomalously high concentrations of uranium, radium and radon in water from drilled wells in the Helsinki region

    International Nuclear Information System (INIS)

    Asikainen, M.; Kahlos, H.

    1979-01-01

    The concentrations of uranium, 226 Ra and 222 Rn were determined in 308 drilled and 58 dug wells in the Helsinki region. The study area was about 400 km 2 and geologically highly variable, with granites, amphibolites and migmatites the dominant rocks. The radioactivity of water in the dug wells was on a 'normal' level, but in numerous drilled wells it was anomalously high. In 14 drilled wells the concentration of uranium exceeded 1000 μg/l, the highest concentration being 14,870 μg/l. For 222 Rn the maximum concentration was 880,000 pCi/l. The 226 Ra/ 228 Ra and 230 Th/ 232 Th activity ratios showed the isotopes of the uranium series to be dominant in the study area. A state of disequilibrium between 238 U and 234 U was very common in the samples. The 234 U/ 238 U activity ratios varied in the range 1.0 to 4.0 regardless of the amount of uranium in the water. The conclusion can be drawn from the isotopic data that the high radioactivity of water is in some cases caused by primary uranium mineralizations, but mostly by uranium deposited in fissures of the bedrock. The paper includes a summary of the results of two studies carried out between 1967 and 1977. (author)

  18. Uranium concentrations and 234U/238U activity ratios in fault-associated groundwater as possible earthquake precursors

    International Nuclear Information System (INIS)

    Finkel, R.C.

    1981-01-01

    In order to assess the utility of uranium isotopes as fluid phase earthquake precursors, uranium concentrations and 234 U/ 238 U activity ratios have been monitored on a monthly or bimonthly basis in water from 24 wells and springs associated with Southern California fault zones. Uranium concentrations vary from 0.002 ppb at Indian Canyon Springs on the San Jacinto fault to 8.3 ppb at Lake Hughes well on the San Andreas fault in the Palmdale area. 234 U/ 238 U activity ratios vary from 0.88 at Agua Caliente Springs on the Elsinore fault to 5.4 at Niland Slab well on the San Andreas fault in the Imperial Valley. There was one large earthquake in the study area during 1979, the 15 October 1979 M = 6.6 Imperial Valley earthquake. Correlated with this event, uranium concentrations varied by a factor of more than 60 and activity ratios by a factor of 3 at the Niland Slab site, about 70 km from the epicenter. At the other sites monitored, uranium concentrations varied in time, but with no apparent pattern, while uranium activity ratios remained essentially constant throughout the monitoring period

  19. Behaviour of the pH adjustment, Ion exchange and concentrate precipitation stages in the acid leaching of uranium phosphate ores

    International Nuclear Information System (INIS)

    Estrada Aguilar, J.; Uriarte Hueda, A.

    1962-01-01

    The uranium recovery from acid leach solutions of uranium-phosphate ores has been studied. Relations have been found between the solution characteristics and the results obtained at different stages of the process. The following data can thus be predicted: solids to remove and uranium recovery in the pH adjustment stage, uranium capacity of the resin, more suitable eluating agent, elution velocity and uranium concentration in the eluate in the ion exchange stage, and composition of the concentrate produced by direct precipitation of the eluate in the concentrate precipitation stage. (Author) 8 refs

  20. Data release for intermediate-density hydrogeochemical and stream sediment sampling in the Vallecito Creek Special Study Area, Colorado, including concentrations of uranium and forty-six additional elements

    International Nuclear Information System (INIS)

    Warren, R.G.

    1981-04-01

    A sediment sample and two water samples were collected at each location about a kilometer apart from small tributary streams within the area. One of the two water samples collected at each location was filtered in the field and the other was not. Both samples were acidified to a pH of < 1; field data and uranium concentrations are listed first for the filtered sample (sample type = 07) and followed by the unfiltered sample (sample type = 27) for each location in Appendix I-A. Uranium concentrations are higher in unfiltered samples than in filtered samples for most locations. Measured uranium concentrations in control standards analyzed with the water samples are listed in Appendix II. All sediments were air dried and the fraction finer than 100 mesh was separated and analyzed for uranium and forty-six additional elements. Field data and analytical results for each sediment sample are listed in Appendix I-B. Analytical procedures for both water and sediment samples are briefly described in Appendix III. Most bedrock units within the sampled area are of Precambrian age. Three Precambrian units are known or potential hosts for uranium deposits; the Trimble granite is associated with the recently discovered Florida Mountain vein deposit, the Uncompahgre formation hosts a vein-type occurrence in Elk Park near the contact with the Irving formation, and the Vallecito conglomerate has received some attention as a possible host for a quartz pebble conglomerate deposit. Nearly all sediment samples collected downslope from exposures of Timble granite (geologic unit symbol ''T'' in Appendix I) contain unusually high uranium concentrations. High uranium concentrations in sediment also occur for an individual sample location that has a geologic setting similar to the Elk Park occurrence and for a sample associated with the Vallecito conglomerate

  1. Radon and radon-daughter concentrations in air in the vicinity of the Anaconda Uranium Mill

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, M H; Lindstrom, J B; Dungey, C E; Kisieleski, W E

    1979-11-01

    Radon concentration, working level, and meteorological variables were measured continuously from June 1977 through June 1978 at three stations in the vicinity of the Anaconda Uranium Mill with measurements integrated to hourly intervals. Both radon and daughters show strong variations associated with low wind velocities and stable atmospheric conditions, and diurnal variations associated with thermal inversions. Average radon concentration shows seasonal dependence with highest concentrations observed during fall and winter. Comparison of radon concentrations and working levels between three stations shows strong dependence on wind direction and velocity. Radon concentrations and working-level distributions for each month and each station were analyzed. The average maximum, minimum, and modal concentration and working levels were estimated with observed frequencies. The highest concentration is 11,000 pCi/m/sup 3/ on the tailings. Working-level variations parallel radon variations but lag by less than one hour. The highest working levels were observed at night when conditions of higher secular radioactive equilibrium for radon daughters exist. Background radon concentration was measured at two stations, each located about 25 km from the mill, and the average is 408 pCi/m/sup 3/. Average working-level background is 3.6 x 10/sup -3/.

  2. Radon and radon-daughter concentrations in air in the vicinity of the Anaconda Uranium Mill

    International Nuclear Information System (INIS)

    Momeni, M.H.; Lindstrom, J.B.; Dungey, C.E.; Kisieleski, W.E.

    1979-11-01

    Radon concentration, working level, and meteorological variables were measured continuously from June 1977 through June 1978 at three stations in the vicinity of the Anaconda Uranium Mill with measurements integrated to hourly intervals. Both radon and daughters show strong variations associated with low wind velocities and stable atmospheric conditions, and diurnal variations associated with thermal inversions. Average radon concentration shows seasonal dependence with highest concentrations observed during fall and winter. Comparison of radon concentrations and working levels between three stations shows strong dependence on wind direction and velocity. Radon concentrations and working-level distributions for each month and each station were analyzed. The average maximum, minimum, and modal concentration and working levels were estimated with observed frequencies. The highest concentration is 11,000 pCi/m 3 on the tailings. Working-level variations parallel radon variations but lag by less than one hour. The highest working levels were observed at night when conditions of higher secular radioactive equilibrium for radon daughters exist. Background radon concentration was measured at two stations, each located about 25 km from the mill, and the average is 408 pCi/m 3 . Average working-level background is 3.6 x 10 -3

  3. Uranium of Kazakhstan

    International Nuclear Information System (INIS)

    Tsalyuk, Yu.; Gurevich, D.

    2000-01-01

    Over 25 % of the world's uranium reserves are concentrated in Kazakhstan. So, the world's largest Shu-Sarysu uranium province is situated on southern Kazakhstan, with resources exceeding 1 billion tonnes of uranium. No less, than 3 unique deposits with resources exceeding 100,000 tonnes are situated here. From the economic point of view the most important thing is that these deposits are suitable for in-situ leaching, which is the cheapest, environmentally friendly and most efficient method available for uranium extracting. In 1997 the Kazatomprom National Joint-Stock Company united all Kazakhstan's uranium enterprises (3 mine and concentrating plants, Volkovgeologiya Joint-Stock Company and the Ulbinskij Metallurgical plant). In 1998 uranium production came to 1,500 tonnes (860 kg in 1997). In 1999 investment to the industry were about $ 30 million. Plans for development of Kazakhstan's uranium industry provide a significant role for foreign partners. At present, 2 large companies (Comeco (Canada), Cogema (France) working in Kazakhstan. Kazakatomprom continues to attract foreign investors. The company's administration announced that in that in next year they have plan to make a radical step: to sell 67 % of stocks to strategic investors (at present 100 % of stocks belongs to state). Authors of the article regard, that the Kazakhstan's uranium industry still has significant reserves to develop. Even if the scenario for the uranium industry could be unfavorable, uranium production in Kazakhstan may triple within the next three to four years. The processing of uranium by the Ulbinskij Metallurgical Plant and the production of some by-products, such as rhenium, vanadium and rare-earth elements, may provide more profits. Obviously, the sale of uranium (as well as of any other reserves) cannot make Kazakhstan a prosperous country. However, country's uranium industry has a god chance to become one of the most important and advanced sectors of national economy

  4. The effect of different uranium concentrations on physiological characteristics and chlorophyll contents in sunflowers and soy bean

    International Nuclear Information System (INIS)

    Bagherifam, S.; Lakzian, A.; Ahmadi, S. J.; Fotovat, A.; Rahimi, M. F.

    2009-01-01

    Uranium as a natural radioactive heavy metal, widely disperses throughout the earth's crust. In many cases, the natural abundance has been re-distributed due to anthropogenic activities, resulting in radionuclide contamination in groundwater and surface soil. A pot experiment had been conducted in the Agricultural College Research Greenhouse, at the Ferdowsi University of Mashhad under the controlled condition. The effect of six levels of uranium (0, 50, 100, 250, 500 and 1000 mg U kg -1 ) on physiological characteristics and chlorophyll contents in sunflower and soy bean were studied in a completely randomized design as a factorial experiment with three replications. Plants were harvested after 40 days and before the reproductive stages. Root and stem length, root dry weight, stem dry weight, biomass and chlorophyll contents were determined. The shoot and root length, fresh and dry mass as well as leaf area and chlorophyll contents showed a significant negative correlation with the applied uranium concentrations. The influence on plant growth was also measured in terms of tolerance index and grade of growth inhibition. The results showed that tolerance index increased and grade od growth inhibition decreased with the applied uranium concentration. Biomass and tolerance of sunflower during the experiment on higher uranium concentrations showed that sun flower is more resistant against uranium toxicity

  5. Distribution of indoor radon concentrations and uranium-bearing rocks in Texas

    International Nuclear Information System (INIS)

    Hudak, P.F.

    1996-01-01

    The purpose of this study was to compare regional patterns of indoor radon concentration with uranium-bearing rock zones and county populations in Texas. Zones yielding radon concentrations that are relatively high for Texas include shale and sandstone in northwest Texas; red beds in north-central Texas; felsic volcanic rocks in west Texas; and sandstone, limestone, and igneous rocks in central Texas. Located in northwest Tecas, only five of the 202 counties evaluated have mean indoor radon concentrations above 4.0 pCi l -1 . Two of those counties have populations above the state median of 20115. The highest county mean concentration is 8.8 pCi l -1 . Results of the study suggest that (1) regional geology influences indoor radon concentrations in Texas, (2) statewide, the radon concentrations are relatively low, (3) highly populated counties do not coincide with regions of high indoor radon concentration, and (4) regions that may warrant further monitoring include northwest Texas and, to a lesser degree, west and central Texas. (orig.)

  6. Uranium concentration in drinking water from small-scale water supplies in Schleswig-Holstein, Germany; Urankonzentration im Trinkwasser aus Hausbrunnen in Schleswig-Holstein

    Energy Technology Data Exchange (ETDEWEB)

    Ostendorp, G. [Landesamt fuer soziale Dienste, Kiel (Germany). Dezernat Umweltbezogener Gesundheitsschutz

    2015-07-01

    In this study the drinking water of 212 small-scale water supplies, mainly situated in areas with intensive agriculture or fruit-growing, was analysed for uranium. The median uranium concentration amounted to 0.04 μg/lL, the 95th percentile was 2.5 μg/L. The maximum level was 14 μg/L. This sample exceeded the guideline value for uranium in drinking water. The uranium concentration in small-scale water supplies was found to be slightly higher than that in central water works in Schleswig-Holstein. Water containing more than 10 mg/L nitrate showed significantly higher uranium contents. The results indicate that the uranium burden in drinking water from small wells is mainly determined by geological factors. An additional anthropogenic effect of soil management cannot be excluded. Overall uranium concentrations were low and not causing health concerns. However, in specific cases higher concentrations may occur.

  7. Determination Of Uranium Concentration In Teeth Female Samples Using Fission Tracks In CR-39 From Different Countries

    International Nuclear Information System (INIS)

    Hummadi, S.S

    2010-01-01

    The present study was under taken to measure the uranium concentration in female teeth samples collected from different nationalities.The determination of uranium concentration in these samples has been done by using CR-39 track detector.The nuclear reaction is used as a source of nuclear fission fragments is (n, f) obtained by the bombardment of U-235 with thermal neutrons with flux (5*10 3 n/cm 2 .s) was used from (Am-Be) neutron source.The obtained results show the concentration is ranging from (0.58±0.7ppm) in Oman and Uae to (0.35±0.03ppm)in Iraqi for male, the uranium concentration was the highest in Oman and Uae for female

  8. Uranium conversion

    International Nuclear Information System (INIS)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina

    2006-03-01

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF 6 and UF 4 are present require equipment that is made of corrosion resistant material

  9. Mobility of fertiliser-derived uranium in arable soils and its contribution to uranium concentrations in groundwater and tap water

    International Nuclear Information System (INIS)

    Smidt, Geerd Ahlrich

    2011-01-01

    Phosphorus (P) mineral fertilisers are found to contain high concentrations of uranium (U) (up to 206 mg U kg -1 ) and other trace elements (TE), such as Cd, Pb, Ni, Cu, Zn, Th, Nb, Sr, V, and rare earth elements. The content of U and other trace elements is depended on the sedimentary of igneous origin of the rock phosphate. In this study, the production of P fertilisers has been shown to contaminate top soil horizons with U and other trace elements in the close vicinity of a factory located in Southern Brazil. In contrast to this point source, agricultural P fertilisation leads to a diffuse contamination of the agro-ecosystem with U and other fertiliser-derived trace elements on a large scale. Top soil horizons of arable land accumulate fertiliser-derived U. According to the geochemical behaviour of U(VI) species under oxidising conditions, the mobilisation capacity for U in top soil horizons is considered to be high, contrary to other fertiliser-derived heavy metals (e.g. Cd). Hence, it is assumed that U can be leached to shallow groundwater and can reach fresh water resources potentially used for drinking water supply. The aims of this study were to investigate the concentration of U and other contaminants in P fertilisers, to identify geochemical processes of fertiliser-derived U mobility and mobilisation from arable top soil horizons to the groundwater, and to evaluate the origin of U in German groundwater and tap water. This study presents the broadest recent data set on regional distribution of U concentrations in German tap water to which 76 % of the German population has access. The mean U concentration was 0.68 μg L -1 , the median 0.50 μg L -1 . 1.3 % or 1 million of the 80.6 million inhabitants in Germany are exposed to U concentrations in tap water which are higher than the German drinking water threshold limit of 10 μg L -1 . The regional distribution of U concentrations largely agrees with the geological setting reported for mineral waters

  10. Mobility of fertiliser-derived uranium in arable soils and its contribution to uranium concentrations in groundwater and tap water

    Energy Technology Data Exchange (ETDEWEB)

    Smidt, Geerd Ahlrich

    2011-12-20

    Phosphorus (P) mineral fertilisers are found to contain high concentrations of uranium (U) (up to 206 mg U kg{sup -1}) and other trace elements (TE), such as Cd, Pb, Ni, Cu, Zn, Th, Nb, Sr, V, and rare earth elements. The content of U and other trace elements is depended on the sedimentary of igneous origin of the rock phosphate. In this study, the production of P fertilisers has been shown to contaminate top soil horizons with U and other trace elements in the close vicinity of a factory located in Southern Brazil. In contrast to this point source, agricultural P fertilisation leads to a diffuse contamination of the agro-ecosystem with U and other fertiliser-derived trace elements on a large scale. Top soil horizons of arable land accumulate fertiliser-derived U. According to the geochemical behaviour of U(VI) species under oxidising conditions, the mobilisation capacity for U in top soil horizons is considered to be high, contrary to other fertiliser-derived heavy metals (e.g. Cd). Hence, it is assumed that U can be leached to shallow groundwater and can reach fresh water resources potentially used for drinking water supply. The aims of this study were to investigate the concentration of U and other contaminants in P fertilisers, to identify geochemical processes of fertiliser-derived U mobility and mobilisation from arable top soil horizons to the groundwater, and to evaluate the origin of U in German groundwater and tap water. This study presents the broadest recent data set on regional distribution of U concentrations in German tap water to which 76 % of the German population has access. The mean U concentration was 0.68 μg L{sup -1}, the median 0.50 μg L{sup -1}. 1.3 % or 1 million of the 80.6 million inhabitants in Germany are exposed to U concentrations in tap water which are higher than the German drinking water threshold limit of 10 μg L{sup -1}. The regional distribution of U concentrations largely agrees with the geological setting reported for

  11. Age specific interactions between smoking and radon among United States uranium miners

    International Nuclear Information System (INIS)

    Steenland, K.

    1994-01-01

    United States uranium miners who smoked have death rates from lung cancer that are intermediate between the rates predicted by the additive and multiplicative models (on a ratio scale) across all age groups. Age specific patterns of interaction have not been thoroughly examined, and most analyses have been internal ones in which there was no truly non-exposed group. Here age specific death rates of lung cancer among ever smoking uranium miners have been examined for conformity with the additive and multiplicative models. The multiplicative model fits well for the youngest and oldest categories, but poorly for the middle age ranges. In the middle age range, predicted rates under the multiplicative model were quite high, surpassing the corresponding United States death rates for all causes combined. (Author)

  12. United States Transuranium and Uranium Registries. Annual report October 1, 1994 - September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Kathren, R.L.; Harwick, L.A.; Markel, M.J.

    1996-07-01

    The United States Transuranium and Uranium Registries (USTUR) comprise a human tissue research program studying the deposition, biokinetics and dosimetry of the actinide elements in humans with the primary goals of providing data fundamental to the verification, refinement, or future development of radiation protection standards for these and other radionuclides, and of determining possible bioeffects on both a macro and subcellular level attributable to exposure to the actinides. This report covers USTUR activities during the year from October 1994 through September 1995.

  13. United States Transuranium and Uranium Registries. Annual report February 1, 2000--January 31, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhart, Susan M. (ed.); Filipy, Ronald E. (ed.)

    2001-07-01

    The United States Transuranium and Uranium Registries (USTUR) comprise a human tissue research program studying the deposition, biokinetics and dosimetry of the actinide elements in humans with the primary goals of providing data fundamental to the verification, refinement, or future development of radiation protection standards for these and other radionuclides, and of determining possible bioeffects on both a macro and subcellular level attributable to exposure to the actinides. This report covers USTUR activities during the year from February 2000 through January 2001.

  14. Engineering assessment of inactive uranium mill tailings: Phillips/United Nuclear site, Ambrosia Lake, New Mexico

    International Nuclear Information System (INIS)

    1981-10-01

    Ford, Bacon and Davis Utah, Inc., has reevaluated the Phillips/United Nuclear site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Ambrosia Lake, New Mexico. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from 2.6 million dry tons of tailings at the Phillips/United Nuclear site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material, to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $21,500,000 for stabilization in-place, to about $45,200,000 for disposal at a distance of about 15 mi. Three principal alternatives for the reprocessing of the Phillips/United Nuclear tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing.The cost of the uranium recovered would be about $87/lb of U 3 O 8 by either heap leach or conventional plant process. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Phillips/United Nuclear tailings for uranium recovery does not appear to be economically attractive under present or foreseeable market conditions

  15. United States Transuranium and Uranium Registries. Annual report February 1, 2000-January 31, 2001

    International Nuclear Information System (INIS)

    Ehrhart, Susan M.; Filipy, Ronald E.

    2001-01-01

    The United States Transuranium and Uranium Registries (USTUR) comprise a human tissue research program studying the deposition, biokinetics and dosimetry of the actinide elements in humans with the primary goals of providing data fundamental to the verification, refinement, or future development of radiation protection standards for these and other radionuclides, and of determining possible bioeffects on both a macro and subcellular level attributable to exposure to the actinides. This report covers USTUR activities during the year from February 2000 through January 2001

  16. Determination of uranium concentration and burn-up of irradiated reactor fuel in contaminated areas in Belarus using uranium isotopic ratios in soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, V.P.; Matusevich, J.L.; Kudrjashov, V.P.; Ananich, P.I.; Zhuravkov, V.V. [Inst. of Radiobiology, Minsk Univ. (Belarus); Boulyga, S.F. [Inst. of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-Univ. Mainz, Mainz (Germany); Becker, J.S. [Central Div. of Analytical Chemistry, Research Centre Juelich, Juelich (Germany)

    2005-07-01

    An analytical method is described for the estimation of uranium concentrations, of {sup 235}U/{sup 238}U and {sup 236}U/{sup 238}U isotope ratios and burn-up of irradiated reactor uranium in contaminated soil samples by inductively coupled plasma mass spectrometry. Experimental results obtained at 12 sampling sites situated on northern and western radioactive fallout tails 4 to 53 km distant from Chernobyl nuclear power plant (NPP) are presented. Concentrations of irradiated uranium in the upper 0-10 cm soil layers at the investigated sampling sites varied from 2.1 x 10{sup -9}g/g to 2.0 x 10{sup -6}g/g depending mainly on the distance from Chernobyl NPP. A slight variation of the degree of burn-up of spent reactor uranium was revealed by analyzing {sup 235}U/{sup 238}U and {sup 236}U/{sup 238}U isotope ratios and the average value amounted to 9.4{+-}0.3 MWd/(kg U). (orig.)

  17. Adsorption kinetic investigations of low concentrated uranium in aqua media by polymeric adsorban

    International Nuclear Information System (INIS)

    Guerellier, R.

    2004-02-01

    In order to remove the uranium from aqueous media, the solution of polyethylene glycol in acrylonitrile was irradiated using ''6' degree Celsius Co γ-ray source and Interpenetrating Polymer Networks (IPNs) was formed. After IPNs were amidoximated at 65 0 for 3.5 hours, they were kept in 10''-''2 M of uranil nitrate solution at 17, 25, 35, 45 degree Celsius temperatures until to establish the adsorption equilibrium. Adsorption analyses were measured by gamma spectrometer, gravimetry and UV spectrofotometer. Structure analysis of IPN, before and after amidoximation and after the adsorption of uranium, was interpreted by FTIR spectrometer. It was found that as the temperature increased the amount of max adsorption also increased. The amount of max adsorption capacity at 45 degree Celsius was 602 mg U/g IPN. In addition to, it was determined that the uranium adsorption increased a little in shaking media. The reaction was determined as 'zeroth degree' until 240 minutes due to the changing of adsorption capacity by the time at different temperatures. It was observed that as the temperature increased, the adsorption rate also increased and the activation energy was calculated as 34.6 kJ/mol. By using the changing of adsorption equilibrium coefficient by the temperature, thermodynamic quantities of ΔH, ΔS and ΔG were calculated consecutively. Adsorption reaction was determined as endothermic and it was interpreted that the adsorption was controlled by particular diffusion, namely it was a physical adsorption. Adsorption isotherms were found by changing the solution concentrations from 5X10''4 to parallel x parallel O''- 2 M at 20, 25, 35, 45 degree Celsius temperatures. The obtained data from this study was applied to different adsorption isotherms. It was observed that at lower temperatures, the adsorption isotherms were fitted to Giles C type, at higher temperatures, they were fitted to Freundlich type

  18. Application for assistance to United Nations rotating fund for the study of natural resources, for uranium prospecting

    International Nuclear Information System (INIS)

    1976-01-01

    This memoranda is a United Nations petition about natural resources study which allow the uranium prospecting. These areas will be studied on sedentary, anomalous and crystal land as well as radiometric rises

  19. Assessment of heavy metal concentration in water around the proposed Mkuju river uranium project in Tanzania

    International Nuclear Information System (INIS)

    Banzi, F.P.; Msaki, P.K.; Mohammed, N.K.

    2015-01-01

    Effective verification for compliance with water quality standards in uranium mining in Tanzania requires data sensitive to monitor heavy metal concentration in water around the Mkuju River Uranium Project before mining commences. The area susceptible for pollution by the project was estimated using AERMOD dispersion model and found to cover about 1300 km"2. Thirty one surface and groundwater samples were collected and analysed for heavy metals and physicochemical properties using ICP-MS and standards techniques, respectively. The physicochemical properties for water samples analysed ranges from 5.7 to 7.8 for pH, 2.8 to 80.2 mg/L for TDS and 15 to 534.5 mS/cm for EC. These values show that the water in the vicinity of the Mkuju River Uranium Project is normal. The ranges of concentration of heavy metals (µgL"-"1) determined in water ranges were: Al(2 to 9049), Cr(0.2 to 19.96), Mn (0.1 to 1452), Fe(2 to 53890), Co(0.02 to 27.63), Ni(0.2 to 9.7), Cu(2 to 17), Zn(2 to 62.94), As(0.4 to 19.17), Cd(0.02 to 0.14), Pb (0.02 to 78.68), Th (0.002 to 1.73), U(0.002 to 29.76). These values are below the tolerance levels of concentrations set by different International organisations. Therefore heavy metal toxicity in the study area is marginal. The parameters that could serve as baseline data because of their enhanced sensitivity to pollution were (i) concentration of chromium, cobalt, nickel, copper, zinc, arsenic, cadmium and lead in water (ii) pH, TDS and EC for water, (iii) TDS ratio for surface to ground water values and (iv) correlation coefficients between the heavy metals. However, since TDS values are season dependent, this indicator can serve as baseline data when measured during the dry season as was the case in the study. (author)

  20. Licensing Status of New and Expanding In-Situ Recovery Uranium Projects in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Catchpole, G.; Thomas, M., E-mail: gccatchpole@uranerz.com [Uranerz Energy Corporation (URZ), Casper, WY (United States)

    2014-05-15

    The authors investigated the licensing status of new in-situ recovery (“ISR”) uranium projects, as well as the expansion of existing projects, within the United States (“US”). Specific emphasis and analysis is placed on those projects within the states of Texas and Wyoming. Of note, information used to prepare this paper was obtained from public sources that included company web sites, the US Securities and Exchange Commission, the US Nuclear Regulatory Commission (“NRC”), the US Energy Information Agency (“EIA”), and the relevant state regulatory agencies. The renewed interest in the production of natural uranium has been motivated, in part, by the increased sale price of yellowcake beginning around 2003 resulting in numerous new and existing natural resources companies acquiring mineral rights in the United States. Because of the economic favorability in terms of both operating and capital costs of ISR mines versus conventional mines in the US (with its relatively low grade of uranium ore), the model for most companies was to acquire mineral properties that had the potential for being mined using the ISR method. There were, however, exceptions to this model. The Uravan mineral district in southwest Colorado and southeast Utah, where relatively high-grade, shallow uranium deposits have the potential to be mined using underground methods, is one such exception. However, the focus of this paper will be on ISR projects. In Wyoming, which has been the top producer of natural uranium among the 50 states for the past seven years, there is one producing ISR mine (Bill Smith — Highland), one ISR mine on standby (Christensen Ranch), and two ISR uranium projects licensed but not yet built (Gas Hills and North Butte). Cameco Resources is planning to develop two ISR projects in Wyoming that have been licensed but not yet constructed. Additionally, three new uranium companies (Ur-Energy, Uranerz and Uranium One) have filed applications with the federal and

  1. Uranium producer region of Lagoa Real, Brazil. Guarantee of supply of uranium concentrated (DUA) for the brazilian needs

    International Nuclear Information System (INIS)

    Matos, Evandro Carele de; Franco, Jamyle Praxedes

    2008-01-01

    This work focus at the Uranium Province of Lagoa Real, notably considering the geological reserves of uranium already defined (100,000 tones of U 3 O 8 ) and the respective autonomy in providing raw material needed for making fuel elements. The province, based on geo economical parameters, supported by three main vectors (geological model/grade, mining/process route, investment/finance) has been elected to supply the required brazilian demand. Supplying of uranium for the brazilian power plants is in charge of Industrias Nucleares do Brasil - INB and is based on national production. Thus the Industrial Complex of Caetite has been implemented in the state of Bahia, aiming primarily to supply the needs of Angra 1 and Angra 2 power plants. This new production center has the capacity of producing up to 400 tones/yr. of U 3 O 8 . (author)

  2. Effect of depositional environment and sources of pollution on uranium concentration in sediment, coral, algae and seagrass species from the Gulf of Aqaba (Red Sea)

    International Nuclear Information System (INIS)

    Abu-Hilal, A.H.

    1994-01-01

    Uranium concentrations were determined in sediment samples, four hard and two soft corals, one seagrass and four species of algae collected from phosphate-polluted sites in the northern reef area of the Gulf of Aqaba. High uranium concentrations were found in all samples examined from a phosphate-polluted site near a phosphate loading berth compared to the unpolluted ones. Uranium levels, U/Ca ratios, concentration and discrimination factors were also high compared to those reported from other regions of the world. The effects of the exported raw phosphate powder as the main source of pollution and depositional environment on the concentration of uranium in the examined species are discussed. (Author)

  3. Uranium concentration phenomena in continental evaporitic environment: Australian Ylgarn calcretes. Comparison with Mauritanian and Namibian calcretes

    International Nuclear Information System (INIS)

    Briot, P.

    1978-12-01

    The Ylgarn calcretes are described and their formation is studied. Uranium migration and trapping in the hydrologic cycle is examined. These calcretes are compared with those from Mauritania and Namibia as a guide for uranium prospection [fr

  4. Uranium series isotopes concentration in sediments at San Marcos and Luis L. Leon reservoirs, Chihuahua, Mexico

    Science.gov (United States)

    Méndez-García, C.; Renteria-Villalobos, M.; García-Tenorio, R.; Montero-Cabrera, M. E.

    2014-07-01

    Spatial and temporal distribution of the radioisotopes concentrations were determined in sediments near the surface and core samples extracted from two reservoirs located in an arid region close to Chihuahua City, Mexico. At San Marcos reservoir one core was studied, while from Luis L. Leon reservoir one core from the entrance and another one close to the wall were investigated. 232Th-series, 238U-series, 40K and 137Cs activity concentrations (AC, Bq kg-1) were determined by gamma spectrometry with a high purity Ge detector. 238U and 234U ACs were obtained by liquid scintillation and alpha spectrometry with a surface barrier detector. Dating of core sediments was performed applying CRS method to 210Pb activities. Results were verified by 137Cs AC. Resulting activity concentrations were compared among corresponding surface and core sediments. High 238U-series AC values were found in sediments from San Marcos reservoir, because this site is located close to the Victorino uranium deposit. Low AC values found in Luis L. Leon reservoir suggest that the uranium present in the source of the Sacramento - Chuviscar Rivers is not transported up to the Conchos River. Activity ratios (AR) 234U/overflow="scroll">238U and 238U/overflow="scroll">226Ra in sediments have values between 0.9-1.2, showing a behavior close to radioactive equilibrium in the entire basin. 232Th/overflow="scroll">238U, 228Ra/overflow="scroll">226Ra ARs are witnesses of the different geological origin of sediments from San Marcos and Luis L. Leon reservoirs.

  5. Uranium series isotopes concentration in sediments at San Marcos and Luis L. Leon reservoirs, Chihuahua, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Méndez-García, C.; Montero-Cabrera, M. E., E-mail: elena.montero@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, CIMAV, Miguel de Cervantes 120, 31109, Chihuahua, Chihuahua (Mexico); Renteria-Villalobos, M. [Facultad de Zootecnia y Ecología Universidad Autónoma de Chihuahua, Periferico Francisco R. Almada Km 1, 31410, Chihuahua (Mexico); García-Tenorio, R. [Applied Nuclear Physics Group, University of Seville, ETS Arquitectura, Avda. Reina Mercedes s/n, 41012 Seville (Spain)

    2008-01-01

    Spatial and temporal distribution of the radioisotopes concentrations were determined in sediments near the surface and core samples extracted from two reservoirs located in an arid region close to Chihuahua City, Mexico. At San Marcos reservoir one core was studied, while from Luis L. Leon reservoir one core from the entrance and another one close to the wall were investigated. ²³²Th-series, ²³⁸U-series, ⁴⁰K and ¹³⁷Cs activity concentrations (AC, Bq kg⁻¹) were determined by gamma spectrometry with a high purity Ge detector. ²³⁸U and ²³⁴U ACs were obtained by liquid scintillation and alpha spectrometry with a surface barrier detector. Dating of core sediments was performed applying CRS method to ²¹⁰Pb activities. Results were verified by ¹³⁷Cs AC. Resulting activity concentrations were compared among corresponding surface and core sediments. High ²³⁸U-series AC values were found in sediments from San Marcos reservoir, because this site is located close to the Victorino uranium deposit. Low AC values found in Luis L. Leon reservoir suggest that the uranium present in the source of the Sacramento – Chuviscar Rivers is not transported up to the Conchos River. Activity ratios (AR) ²³⁴U/²³⁸U and ²³⁸U/²²⁶Ra in sediments have values between 0.9–1.2, showing a behavior close to radioactive equilibrium in the entire basin. ²³²Th/²³⁸U, ²²⁸Ra/²²⁶Ra ARs are witnesses of the different geological origin of sediments from San Marcos and Luis L. Leon reservoirs.

  6. Uranium series isotopes concentration in sediments at San Marcos and Luis L. Leon reservoirs, Chihuahua, Mexico

    International Nuclear Information System (INIS)

    Méndez-García, C.; Montero-Cabrera, M. E.; Renteria-Villalobos, M.; García-Tenorio, R.

    2014-01-01

    Spatial and temporal distribution of the radioisotopes concentrations were determined in sediments near the surface and core samples extracted from two reservoirs located in an arid region close to Chihuahua City, Mexico. At San Marcos reservoir one core was studied, while from Luis L. Leon reservoir one core from the entrance and another one close to the wall were investigated. 232 Th-series, 238 U-series, 40 K and 137 Cs activity concentrations (AC, Bq kg −1 ) were determined by gamma spectrometry with a high purity Ge detector. 238 U and 234 U ACs were obtained by liquid scintillation and alpha spectrometry with a surface barrier detector. Dating of core sediments was performed applying CRS method to 210 Pb activities. Results were verified by 137 Cs AC. Resulting activity concentrations were compared among corresponding surface and core sediments. High 238 U-series AC values were found in sediments from San Marcos reservoir, because this site is located close to the Victorino uranium deposit. Low AC values found in Luis L. Leon reservoir suggest that the uranium present in the source of the Sacramento – Chuviscar Rivers is not transported up to the Conchos River. Activity ratios (AR) 234 U/ 238 U and 238 U/ 226 Ra in sediments have values between 0.9–1.2, showing a behavior close to radioactive equilibrium in the entire basin. 232 Th/ 238 U, 228 Ra/ 226 Ra ARs are witnesses of the different geological origin of sediments from San Marcos and Luis L. Leon reservoirs

  7. Determination by neutron activation of the uranium-235 concentration in uranium oxides; Determination par activation neutronique de la concentration d'uranium-235 dans des oxydes d'urane

    Energy Technology Data Exchange (ETDEWEB)

    May, S; Leveque, P [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    Classical methods of measuring isotopic abundance have the disadvantage of being long and of requiring chemical separation. A non-destructive method of measuring the uranium-235 content is described. It is based on an overall measurement of the short lived fission product activity formed during a 15 s neutron irradiation. The precision is of the order {+-} 1.5 per cent for 20 per cent enriched samples. The error due to the contribution from fast fission is discussed in detail. (author) [French] Les methodes classiques de mesure de l'abondance isotopique presentent le gros inconvenient d'etre longues et de necessiter des separations chimiques. Nous exposons une methode non destructive de mesure de la concentration d'uranium-235. Elle est basee sur la mesure globale de l'activite des produits de fission de courte periode formes par une irradiation neutronique de 15 s de l'echantillon. La precision est de l'ordre de {+-} 1,5 pour cent pour des echantillons enrichis jusqu'a 20 pour cent. L'erreur a la contribution de la fission rapide est discutee en detail. (auteur)

  8. Effect of chloride concentration on the solubility of amorphous uranium dioxide at 25deg C under reducing conditions

    International Nuclear Information System (INIS)

    Aguilar, M.; Casas, I.; Pablo, J. de; Torrero, M.E.

    1991-01-01

    The dependence of the solubility of a microcrystalline uranium dioxide on the chloride concentration has been studied at 25deg C under reducing conditions. The concentration of uranium in solution has been found to be some orders of magnitude lower than in perchlorate media. Possible changes of both the morphology and the composition of the solid phase have been investigated by means of Energy Dispersive X-ray Analysis (EDX) and X-ray Powder Difraction (XPD). The formation of a secondary solid phase as a reason for the decrease of the solubility has been postulated. (orig.)

  9. RA-226 concentration in water samples near uranium mines and in marine fishes

    International Nuclear Information System (INIS)

    Porntepkasemsan, B.

    1987-11-01

    Radium-226 and calcium were measured in water samples from the vicinity of three uranium mines and in fish samples collected from Puget sound, Washington State. The radium content of the samples were below the maximum permissible concentration 3 pCi/L for drinking water recommended by the Public Health Service and U.S. Environmental Protection Agency. The mean value of Ra-226 in water was 0.428 pCi/L and ranged from 0.043 to 1.552 pCi/L, whereas calcium content ranged from 3.0 to 190.0 mg/L. Ra-226 concentrations and calcium content in whole fish were 0.833-20.328 pCi/kg wet wt. and 114.1-259.3 mg/g ash, respectively. Results of the study indicated that Ra-226 concentration in water was correlated with calcium concentration but that this correlation was not observed in fish sample except English sole

  10. United States Transuranium and Uranium Registries. Annual Report, October 1, 1993--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kathren, R.L.; Harwick, L.A. [comps.] [eds.

    1995-08-01

    This report summarizes the salient activities and progress of the United States Transuranium. and Uranium Registries for the period October 1, 1993 through September 30, 1994, along with details of specific programs areas including the National Human Radiobiology Tissue Repository (NHRTR) and tissue radiochemistry analysis project. Responsibility for tissue radioanalysis was transferred from Los Alamos National Laboratory to Washington State University in February 1994. The University of Washington was selected as the Quality Assurance/Quality Control laboratory and a three way intercomparison with them and LANL has been initiated. The results of the initial alpha spectrometry intercomparison showed excellent agreement among the laboratories and are documented in full in the Appendices to the report. The NHRTR serves as the initial point of receipt for samples received from participants in the USTUR program. Samples are weighed, divided, and reweighed, and a portion retained by the NHRTR as backup or for use in other studies. Tissue specimens retained in the NHRTR are maintained frozen at -70 C and include not only those from USTUR registrants but also those from the radium dial painter and thorium worker studies formerly conducted by Argonne National Laboratory. In addition, there are fixed tissues and a large collection of histopathology slides from all the studies, plus about 20,000 individual solutions derived from donated tissues. These tissues and tissue related materials are made available to other investigators for legitimate research purposes. Ratios of the concentration of actinides in various tissues have been used to evaluate the biokinetics, and retention half times of plutonium and americium. Retention half times for plutonium in various soft tissues range from 10-20 y except for the testes for which a retention half time of 58 y was observed. For americium, the retention half time in various soft tissues studied was 2.2-3.5 y.

  11. United States Transuranium and Uranium Registries. Annual Report, October 1, 1993--September 30, 1994

    International Nuclear Information System (INIS)

    Kathren, R.L.; Harwick, L.A.

    1995-01-01

    This report summarizes the salient activities and progress of the United States Transuranium. and Uranium Registries for the period October 1, 1993 through September 30, 1994, along with details of specific programs areas including the National Human Radiobiology Tissue Repository (NHRTR) and tissue radiochemistry analysis project. Responsibility for tissue radioanalysis was transferred from Los Alamos National Laboratory to Washington State University in February 1994. The University of Washington was selected as the Quality Assurance/Quality Control laboratory and a three way intercomparison with them and LANL has been initiated. The results of the initial alpha spectrometry intercomparison showed excellent agreement among the laboratories and are documented in full in the Appendices to the report. The NHRTR serves as the initial point of receipt for samples received from participants in the USTUR program. Samples are weighed, divided, and reweighed, and a portion retained by the NHRTR as backup or for use in other studies. Tissue specimens retained in the NHRTR are maintained frozen at -70 C and include not only those from USTUR registrants but also those from the radium dial painter and thorium worker studies formerly conducted by Argonne National Laboratory. In addition, there are fixed tissues and a large collection of histopathology slides from all the studies, plus about 20,000 individual solutions derived from donated tissues. These tissues and tissue related materials are made available to other investigators for legitimate research purposes. Ratios of the concentration of actinides in various tissues have been used to evaluate the biokinetics, and retention half times of plutonium and americium. Retention half times for plutonium in various soft tissues range from 10-20 y except for the testes for which a retention half time of 58 y was observed. For americium, the retention half time in various soft tissues studied was 2.2-3.5 y

  12. Early stress responses in Atlantic salmon (Salmo salar) exposed to environmentally relevant concentrations of uranium

    International Nuclear Information System (INIS)

    Song You; Salbu, Brit; Heier, Lene Sørlie; Teien, Hans-Christian; Lind, Ole-Christian; Oughton, Deborah; Petersen, Karina; Rosseland, Bjørn Olav; Skipperud, Lindis; Tollefsen, Knut Erik

    2012-01-01

    Uranium (U) is a naturally occurring heavy metal widely used in many military and civil applications. Uranium contamination and the associated potential adverse effects of U on the aquatic environment have been debated during recent years. In order to understand the effect and mode of action (MoA) of U in vivo, juvenile Atlantic salmon (Salmo salar) were exposed to 0.25 mg/L, 0.5 mg/L and 1.0 mg/L waterborne depleted uranyl acetate, respectively, in a static system for 48 h. The U concentrations in the gill and liver were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and the resulting biological effects were determined by a combination of analysis of gene expression and micronuclei formation. The hepatic transcriptional level of 12 biomarker genes from four stress–response categories, including oxidative stress (γ-glutamyl cysteine synthetase (GCS), glutathione reductase (GR), glutathione peroxidase (GPx)), DNA damage and repair (P53, cyclin-dependent kinase inhibitor 1 (P21), growth arrest and DNA damage-inducible gene gamma (Gadd45G), proliferating cell nuclear antigen (PCNA), Rad51), apoptosis (Bcl2-associated X protein (BAX), Bcl-x, Caspase 6A,) and protein degradation (Ubiquitin) were evaluated by quantitative real-time polymerase chain reaction (q-rtPCR). The results clearly showed accumulation of U in the gill and liver with increasing concentrations of U in the exposure water. The effects of U on differential hepatic gene expression also occurred in a concentration-dependent manner, although deviations from ideal concentration–response relationships were observed at the highest U concentration (1.0 mg/L). All the genes tested were found to be up-regulated by U while no significant micronuclei formation was identified. The results suggest that U may cause oxidative stress in fish liver at concentrations greater than 0.25 mg/L, giving rise to clear induction of several toxicologically relevant biomarker genes, although no significant

  13. Geochemistry and hydrology of perched groundwater springs: assessing elevated uranium concentrations at Pigeon Spring relative to nearby Pigeon Mine, Arizona (USA)

    Science.gov (United States)

    Beisner, Kimberly R.; Paretti, Nicholas; Tillman, Fred; Naftz, David L.; Bills, Donald; Walton-Day, Katie; Gallegos, Tanya J.

    2017-01-01

    The processes that affect water chemistry as the water flows from recharge areas through breccia-pipe uranium deposits in the Grand Canyon region of the southwestern United States are not well understood. Pigeon Spring had elevated uranium in 1982 (44 μg/L), compared to other perched springs (2.7–18 μg/L), prior to mining operations at the nearby Pigeon Mine. Perched groundwater springs in an area around the Pigeon Mine were sampled between 2009 and 2015 and compared with material from the Pigeon Mine to better understand the geochemistry and hydrology of the area. Two general groups of perched groundwater springs were identified from this study; one group is characterized by calcium sulfate type water, low uranium activity ratio 234U/238U (UAR) values, and a mixture of water with some component of modern water, and the other group by calcium-magnesium sulfate type water, higher UAR values, and radiocarbon ages indicating recharge on the order of several thousand years ago. Multivariate statistical principal components analysis of Pigeon Mine and spring samples indicate Cu, Pb, As, Mn, and Cd concentrations distinguished mining-related leachates from perched groundwater springs. The groundwater potentiometric surface indicates that perched groundwater at Pigeon Mine would likely flow toward the northwest away from Pigeon Spring. The geochemical analysis of the water, sediment and rock samples collected from the Snake Gulch area indicate that the elevated uranium at Pigeon Spring is likely related to a natural source of uranium upgradient from the spring and not likely related to the Pigeon Mine.

  14. Red blood cells sensitivity to oxidative stress in the presence of low concentrations of uranium compound

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, O.G. [Institute of Biology, Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 167982, Syktyvkar (Russian Federation)

    2014-07-01

    Uranium is a natural radioactive element widespread in biosphere. There are a few works that examined cellular and molecular mechanisms of uranium toxicity. Red blood cells are classical model to investigate toxicity mechanisms on cell membrane system. The aim of present work is to study the effect of uranyl ion in nano-molar concentrations on erythrocytes sensitivity (in vitro) to factors provoking acute oxidative stress. Uranyl ions were added to suspension of mice red blood cells in PBS as UO{sub 2}Cl{sub 2} solution. Samples were incubated in a thermostatic shaker at 37 deg. C during 3-5 hours. Than acute oxidative stress was induced by H{sub 2}O{sub 2} (0.9 mM) or AAPH (5 mM) solutions. Destabilization of the membrane was induced by nonionic detergent Triton X-100. The hemolysis degree and the content of LPO secondary products reacting with 2-thiobarbituric acid in the incubation mixture were determined spectrophotometrically. The ratio of hemoglobin various forms (oxyHb, metHb and ferrylHb) was calculated taking into account extinction coefficients. It was shown that uranyl chloride enhances cell sensitivity to nonionic detergent Triton X-100 effects, indicating alterations of membrane acyl chain order due to contact with the radionuclide ions. Uranium exposure also caused an increase in the cell sensitivity to the AAPH effects, resulted in a decrease in red cell survival rate, a sharp increase in accumulation of hemoglobin oxidation products and a slight increase in the concentration of LPO secondary products. Thus, uranyl ions change physicochemical properties of the erythrocyte membranes that resulted in increased sensitivity to effects of peroxyl radicals formed by thermal decomposition of AAPH. On the contrary, use of another source of free radicals - H{sub 2}O{sub 2} - after uranyl ions exposure resulted in marked decrease of oxidative hemolysis, inhibition of LPO and hemoglobin oxidation. Since the uranium chemical properties similar to properties of

  15. Concentrations and biological availability of 238U and 230Th in the environs of a uranium milling operation

    International Nuclear Information System (INIS)

    Ibrahim, S.; Flot, S.; Whicker, F.W.

    1982-01-01

    This paper reports on a study whose objectives were to determine 238 U and 230 Th concentrations in soil and native plants from various sites around a conventional acid leach uranium milling operation in the Western US, and to estimate plant/soil concentration factors. Soil and vegetation samples were collected from exposed, weathered tailings; near the edge of a tailings pond; from a reclamation area; and at several native range background (control) locations. The results indicate that mean plant/soil concentration factors varied significantly among sites and between radionuclides, but no significant differences between plant groups were found. Concentration factors for 230 Th were greater than for 238 U for plants growing at the edge of the tailings pond. It is speculated that the lower concentration factors for uranium relative to thorium at this site may be due to the proportion of their contents in soil that is biologically available for plant uptake

  16. Correlation between gamma radiation levels and soil radium concentrations at the Edgemont uranium mill site

    International Nuclear Information System (INIS)

    Wallace, R.G.; Reed, R.P.; Polehn, J.L.; Wilson, G.T.

    1985-01-01

    The Tennessee Valley Authority's uranium mill in Edgemont, South Dakota, is being decommissioned. Approximately 4 million tons of contaminated tailings, building equipment, and contaminated soil and debris on the mill site will be removed to the disposal site located approximately 3 kilometers to the southeast. To minimize recontamination of cleaned areas, tailings removal will progress from the northwest corner to the southeast corner of the mill site. As specific areas are cleaned, surveys will be conducted to determine if the concentrations of radium-226 in soil are within the limits outlined in 40 CFR, Part 192. Conformance with the criteria will be demonstrated by a gamma survey of the area employing the differential, or delta-measurement, technique. This technique involves fitting the detector with a base and a receptacle for a removable high-density filter. By making measurements with and without the filter in place, a gamma radiation level proportional to the radium-226 concentration in soil can be determined. This paper describes the results obtained in the development of the correlation between the gamma survey measurements and the soil radium concentrations

  17. Correlation between gamma radiation levels and soil radium concentrations at the Edgemont uranium mill site

    International Nuclear Information System (INIS)

    Wallace, R.G.; Reed, R.P.; Polehn, J.L.; Wilson, G.T.

    1986-01-01

    The Tennessee Valley Authority's uranium mill in Edgemont, South Dakota is being decommissioned. Approximately 4 million tons of contaminated tailings, building equipment, and contaminated soil and debris on the mill site will be removed to the disposal site located approximately 3 kilometers to the southeast. To minimize recontamination of cleaned areas, tailings removal will progress from the northwest corner to the southeast corner of the mill site. As specific areas are cleaned, surveys will be conducted to determine if the concentrations of radium-226 in soil are within the limits outlined in 40 CFR, Part 192. Conformance with the criteria will be demonstrated by a gamma survey of the area employing the differential, or delta-measurement, technique. This technique involves fitting the detector with a base and a receptacle for a removable high-density filter. By making measurements with and without the filter in place, a gamma radiation level proportional to the radium-226 concentration in soil can be determined. This paper describes the results obtained in the development of the correlation between the gamma survey measurements and the soil radium concentrations

  18. Concentration of radionuclides in uranium tailings and its uptake by plants at Jaduguda, Jharkhand, India

    International Nuclear Information System (INIS)

    Singh, Lal; Soni, Prafulla

    2010-01-01

    Mining and processing of uranium ore was started in several parts of eastern Singhbhum, viz. Jaduguda, Bhatin and Narwapahar (Jharkhand) in 1968. Radioactivity in the mine tailings has to be consolidated so that it does not emanate in the atmosphere or enter the food chain. Hence, the area has been covered with 30 cm thick soil cover followed by development of plant species that do not have any socioeconomic relevance in the area. Seven native plant species of forestry origin, viz. Colebrookea oppositifolia, Dodonaea viscosa, Furcraea foetida, Imperata cylindrica, Jatropha gossypifolia, Pogostemon benghalense and Saccharum spontaneum have been selected for experimental trials. Distribution and concentration of radionuclides have been evaluated in a tailing pond at different depths in soil and tailings. Radionuclide uptake in each of the selected plant species has been evaluated and discussed in this article. The highest concentration of radionuclides has been found in tailings > soil cover on tailings > roots of selected plant species > shoots of all the selected species. These results show that among the seven species tried, J. gossypifolia and F. foetida have the lowest uptake (below detectable limits), while S. spontaneum and P. benghalense have comparatively higher uptake. However, radionuclide concentration in all the tried species is significantly low compared to species of natural occurrence which have higher radionuclides uptake and accumulation. (author)

  19. Concentration of radionuclides in uranium tailings and its uptake by plants at Jaduguda, Jharkhand, India

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Lal; Soni, Prafulla [Ecology and Environment Div., Forest Research Institute, Dehradun (India)

    2010-01-10

    Mining and processing of uranium ore was started in several parts of eastern Singhbhum, viz. Jaduguda, Bhatin and Narwapahar (Jharkhand) in 1968. Radioactivity in the mine tailings has to be consolidated so that it does not emanate in the atmosphere or enter the food chain. Hence, the area has been covered with 30 cm thick soil cover followed by development of plant species that do not have any socioeconomic relevance in the area. Seven native plant species of forestry origin, viz. Colebrookea oppositifolia, Dodonaea viscosa, Furcraea foetida, Imperata cylindrica, Jatropha gossypifolia, Pogostemon benghalense and Saccharum spontaneum have been selected for experimental trials. Distribution and concentration of radionuclides have been evaluated in a tailing pond at different depths in soil and tailings. Radionuclide uptake in each of the selected plant species has been evaluated and discussed in this article. The highest concentration of radionuclides has been found in tailings > soil cover on tailings > roots of selected plant species > shoots of all the selected species. These results show that among the seven species tried, J. gossypifolia and F. foetida have the lowest uptake (below detectable limits), while S. spontaneum and P. benghalense have comparatively higher uptake. However, radionuclide concentration in all the tried species is significantly low compared to species of natural occurrence which have higher radionuclides uptake and accumulation. (author)

  20. Comparison of neutron activation analysis techniques for the determination of uranium concentrations in geological and environmental materials

    International Nuclear Information System (INIS)

    Landsberger, S.; Kapsimalis, R.

    2013-01-01

    We have described the determination of uranium in environmental, geological, and agricultural specimens by three different non-destructive nuclear methods. The effectiveness, as defined as the lower limits of detection in this work, of quantifying trace levels of bulk uranium in geological samples was evaluated for several common NAA techniques. These techniques include short-lived and medium-lived neutron activation analysis using thermal and epithermal neutrons; these results were compared with an assessment of Compton suppressed gamma-ray counting. A careful evaluation of three major (n,γ) reactions with chlorine, manganese and sodium that could impede determining low levels of uranium due to high Compton continuums was done. The evaluation of Compton suppressed passive gamma counting revealed that uranium concentrations below 50 mg kg −1 were not adequate to achieve good counting statistics using the 234m Pa the second daughter product of 238 U. -- Highlights: ► Determination of uranium concentrations in geological, environmental, and agricultural specimens. ► Use of several NAA and passive counting methods. ► Identified several key interferences. ► Use of Compton suppression to minimize effects of interferences

  1. Baccharis Salicifolia development in the presence of high concentrations of uranium in the arid environment of San Marcos, Chihuahua

    Energy Technology Data Exchange (ETDEWEB)

    Luna P, M. Y.; Alarcon H, M. T.; Silva S, M.; Renteria V, M; Rodriguez V, M. A.; Herrera P, E.; Reyes C, M.; Montero C, M. E., E-mail: elena.montero@cimav.edu.m [Centro de Investigacion en Materiales Avanzados, S. C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, 31109 Chihuahua (Mexico)

    2011-02-15

    In humid zones and marine environments the bio indicator contaminants by trace elements are well established. However, in arid zones it is more difficult to find these tools because there is less biodiversity. The objective of this paper was to analyze the behavior of the Baccharis salicifolia plant in areas with high uranium concentration in arid zones, to determine the characteristics of tolerance and possible use as a bio monitor for the presence of such contaminants. For this project a uraniferous zone was selected in San Marcos, located northwest of the City of Chihuahua. A total of 8 sampling points of the plant and soil were located here. Each sample was divided into the root and the stem and leaves to determine the specific activity of the uranium in both parts of the plant and its sediments. The determination of the specific activities of the total uranium in the samples was obtained by liquid scintillation with alpha-beta separation. The results indicate a tendency for the plant to accumulate the uranium in its different parts, and to trans locate it to its stem and leaves. The plant is resistant to high concentrations of uranium, not showing any specific changes in relation to non contaminated areas that might indicate the presence of the contaminant. Therefore, its use as a bio monitor species is limited. (Author)

  2. Baccharis Salicifolia development in the presence of high concentrations of uranium in the arid environment of San Marcos, Chihuahua

    International Nuclear Information System (INIS)

    Luna P, M. Y.; Alarcon H, M. T.; Silva S, M.; Renteria V, M; Rodriguez V, M. A.; Herrera P, E.; Reyes C, M.; Montero C, M. E.

    2011-01-01

    In humid zones and marine environments the bio indicator contaminants by trace elements are well established. However, in arid zones it is more difficult to find these tools because there is less biodiversity. The objective of this paper was to analyze the behavior of the Baccharis salicifolia plant in areas with high uranium concentration in arid zones, to determine the characteristics of tolerance and possible use as a bio monitor for the presence of such contaminants. For this project a uraniferous zone was selected in San Marcos, located northwest of the City of Chihuahua. A total of 8 sampling points of the plant and soil were located here. Each sample was divided into the root and the stem and leaves to determine the specific activity of the uranium in both parts of the plant and its sediments. The determination of the specific activities of the total uranium in the samples was obtained by liquid scintillation with alpha-beta separation. The results indicate a tendency for the plant to accumulate the uranium in its different parts, and to trans locate it to its stem and leaves. The plant is resistant to high concentrations of uranium, not showing any specific changes in relation to non contaminated areas that might indicate the presence of the contaminant. Therefore, its use as a bio monitor species is limited. (Author)

  3. Uranium concentrations in lake and stream waters and sediments from selected sites in the Susitna River Basin, Alaska

    International Nuclear Information System (INIS)

    Hill, D.E.

    1977-03-01

    During the summer of 1976, 141 water and 211 sediment samples were taken from 147 locations in the Susitna River basin in Alaska by the Geophysical Institute of the University of Alaska for the LASL. These samples were taken to provide preliminary information on the uranium concentrations in waters and sediments from the Susitna River basin and to test the analytical methods proposed for the NURE Hydrogeochemical and Stream Sediment Reconnaissance for uranium in Alaska. The uranium determinations resulting from the fluorometric analysis of the water samples and the delayed-neutron counting of the sediment samples are presented. The low levels of uranium in the water samples, many of which were below the detectable limit of the LASL fluorometric technique, indicate that a more sensitive analytical method is needed for the analysis of Alaskan water samples from this area. An overlay showing numbered sample locations and overlays graphically portraying the concentrations of uranium in the water and sediment samples, all at 1:250,000 scale for use with existing USGS topographic sheets, are also provided as plates

  4. Analysis methods and performance of an automated system for measuring both concentration and enrichment of uranium in solutions

    International Nuclear Information System (INIS)

    Kelley, T.A.; Parker, J.L.; Sampson, T.E.

    1993-01-01

    For the 1992 INNM meeting, the authors reported on the general characteristics of an automated system--then under development--for measuring both the concentration and enrichment of uranium in solutions. That paper emphasized the automated control capability, the measurement sequences, and safety features of the system. In this paper, the authors report in detail on the measurement methods, the analysis algorithms, and the performance of the delivered system. The uranium concentration is measured by a transmission-corrected X-ray fluorescence method. Cobalt-57 is the fluorescing source and a combined 153 Gd and 57 Co source is used for the transmission measurements. Corrections are made for both the absorption of the exciting 57 Co gamma rays and the excited uranium X-rays. The 235 U concentration is measured by a transmission-corrected method, which employs the 185.7-keV gamma ray of 235 U and a transmission source of 75 Se to make corrections for the self-absorption of the 235 U gamma rays in the solution samples. Both measurements employ high-resolution gamma-ray spectrometry and use the same 50ml sample contained in a custom-molded, flat-bottomed, polypropylene bottle. Both measurements are intended for uranium solutions with concentrations ≥0.1 g U/l, although at higher enrichments the passive measurement will be even more sensitive

  5. Developed methodology for the geologic control of the secondary uranium concentrations in Osamu Utsumi, Pocos de Caldas (MG)

    International Nuclear Information System (INIS)

    Magno Junior, L.B.

    1982-01-01

    It was developed a methodology for the geologic control of the mining of the secondary uranium concentrations in the Osamu Utsumi mine, Pocos de Caldas. A sequential systematization with the definitions and objectives of the operational phases of the mining explotation is shown, in addition of a scheme and flow charts of them. (A.B.) [pt

  6. Whole-organism concentration ratios in wildlife inhabiting Australian uranium mining environments

    Energy Technology Data Exchange (ETDEWEB)

    Hirth, Gillian A.; Carpenter, Julia G. [Australian Radiation Protection and Nuclear Safety Agency, 619 Lower Plenty Rd, Yallambie, 3085, Victoria (Australia); Bollhoefer, Andreas [Environmental Research Institute of the Supervising Scientist, GPO Box 461, Darwin, 0801 Northern Territory (Australia); Johansen, Mathew P. [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee, DC, NSW 2232 (Australia); Beresford, Nicholas A. [NERC Centre for Ecology and Hydrology, Bailrigg, Lancaster LA1 4AP (United Kingdom)

    2014-07-01

    Environmental impact assessments conducted for Australian mine sites involving naturally occurring radioactive material require an assessment of radiation doses to wildlife. Whole-organism concentration ratios (CR{sub wo}) are pivotal in these assessments and previous reviews have identified a need for a more complete and consolidated database of Australian-specific CR{sub wo} that could be used. Concern had also been expressed by some stakeholders in Australia about the suitability of the default CR{sub wo} values provided in standard biota dose models (e.g., ERICA Tool, RESRAD-BIOTA, ICRP framework) for Australian wildlife and environmental conditions. In order to address these concerns and support the implementation of best-practice standards in environmental radiological assessment, the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), with support from the Department of Resources, Energy and Tourism (RET), undertook an evaluation of existing data relating to wildlife inhabiting Australian uranium mining environments. CR{sub wo} values were calculated using data from a range of original sources. These included scientific journal publications, technical reports from Australian government organisations, site-specific data from mining operators and data from baseline environmental surveys undertaken during the 1970's and 1980's. The Australian data previously included in the international Wildlife Transfer Database (WTD, www.wildlifetransferdatabase.org) were also reviewed and updated. This paper discusses the data analysis process and associated uncertainties. CR{sub wo} values are reported for uranium, thorium, radium-226, lead-210 and polonium-210 for a range of endemic and introduced wildlife, with a focus on plants and animals from both terrestrial and freshwater environments where uranium mining has been proposed or undertaken. This has resulted in the calculation of more than 500 CR{sub wo} values for inclusion in the database

  7. Procedure for recovery from an uranium containing concentrate and phosphoric acid, as well as an uranium containing concentrate and phosphoric acid obtained by this procedure

    International Nuclear Information System (INIS)

    1980-01-01

    The phosphate ore is dissolved in sulphuric acid and the formed calcium sulphate is separated from the solution. The uranium is then precipitated by adding ammonium fluoride solution to the remaining phosphoric acid solution. When the phosphate ore is dissolved in sulphuric acid, fluorine gas is liberated and this is then used to produce the ammonium fluoride solution. (Th.P.)

  8. Non-destructive measurements of uranium and thorium concentrations and quantities

    International Nuclear Information System (INIS)

    Dragnev, T.N.; Damjanov, B.P.; Karamanova, J.S.

    1979-01-01

    The passive X-ray fluorescent-gamma spectrometry method and technique for uranium concentration measurements was developed and tested. It is based on the measurement of the intensity ratios of self-excited Ksub(α) X-rays of uranium to the intensity of the combined peak with 92.8 keV average energy. The last peak has 92.367 and 92.792 keV gamma rays of 234 Th, representing the activities of 238 U and its daughter isotopes, and 93.35 keV Th Ksub(α) X-rays representing the activities of 235 U and its daughters. The results of the measurements do not depend on the size and the shape of the measurements. The procedure is developed to take automatically into account the presence of any absorber or cladding between the measured sample and the detector. The attainable precision of the measurements (at 95% confidence level) is 0.2 - 0.3%. If combined with enrichment measurements, and after suitable empirical calibration, the method can be used without standards. Gamma-spectrometric measurements of 238 U and 232 Th are based on the daughter isotopes' gamma activities. However, this is correct only when there is a corresponding equilibrium between 238 U and 232 Th and the daughter isotopes' activities. Where such equilibrium is not reached the status of the daughter products' activities regarding equilibrium, has to be taken into account. Two methods of quantitative corrections are proposed: (i) The use of an absolute determination of the 228 Ac/ 224 Ra activity ratio through self-calibrated measurements and individual activities and their correlation with the equilibrium activities. (ii) Use of two of the same sample measurements at two different moments during the unrestored equilibrium and the correlation of the measurement results with the 232 Th activity. This method can be generally applied. (author)

  9. Preliminary results on variations of radon concentration associated with rock deformation in a uranium mine

    Science.gov (United States)

    Verdoya, Massimo; Bochiolo, Massimo; Chiozzi, Paolo; Pasquale, Vincenzo; Armadillo, Egidio; Rizzello, Daniele; Chiaberto, Enrico

    2013-04-01

    Time-series of radon concentration and environmental parameters were recently recorded in a uranium mine gallery, located in the Maritime Alps (NW Italy). The mine was bored in metarhyolites and porphyric schists mainly composed by quartz, feldspar, sericite and fluorite. U-bearing minerals are generally concentrated in veins heterogeneously spaced and made of crystals of metaautunite and metatorbernite. Radon air concentration monitoring was performed with an ionization chamber which was placed at the bottom of the gallery. Hourly mean values of temperature, pressure, and relative humidity were also measured. External data of atmospheric temperature, pressure and rainfall were also available from a meteorological station located nearby, at a similar altitude of the mine. The analysis of the time series recorded showed variation of radon concentration, of large amplitude, exhibiting daily and half-daily periods, which do not seem correlated with meteorological records. Searching for the origin of radon concentration changes and monitoring their amplitude as a function of time can provide important clues on the complex emanation process. During this process, radon reaches the air- and water-filled interstices by recoil and diffusion, where its migration is directed towards lower concentration regions, following the local gradient. The radon emanation from the rock matrix could also be controlled by stress changes acting on the rate of migration of radon into fissures, and fractures. This may yield emanation boosts due to rock extension and the consequent crack broadening, and emanation decrease when joints between cracks close. Thus, besides interaction and mass transfer with the external atmospheric environment, one possible explanation for the periodic changes in radon concentrations in the investigated mine, could be the variation of rock deformation related to lunar-solar tides. The large variation of concentration could be also due to the fact that the mine is

  10. Criteria for uranium occurrences in Saskatchewan and Australia as guides to favorability for similar deposits in the United States

    International Nuclear Information System (INIS)

    Kalliokoski, J.; Langford, F.F.; Ojakangas, R.W.

    1978-07-01

    The objective of this study was to explain the occurrence of the large uranium deposits that have been found in northern Saskatchewan and the Northern Territory of Australia, to provide criteria to evaluate the favorability of Proterozoic rocks in the United States for similar deposits. All of these deposits belong to the class known as the Proterozoic unconformity-type pitchblende deposits. Chapters are devoted to: uranium deposits in Saskatchewan; uranium deposits of the Darwin and Arnhem Land area, Northern Territory of Australia; model for the Proterozoic unconformity-type pitchblende deposits; and evaluation of the geology of selected states for its favorability for Proterozoic unconformity-type pitchblende deposits

  11. Investigation of spectral interference effects on determination of uranium concentration in phosphate ore by inductively coupled plasma optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bachari, Ayoob H.; Jalali, Fatemeh; Alahyarizadeh, Ghasem [Tehran Univ. (Iran, Islamic Republic of). Engineering Dept.

    2017-04-01

    Effects of spectral interferences on determination of the uranium concentration in phosphate ore were investigated by inductively coupled plasma optical emission spectroscopy (ICP-OES). Eleven high intensity emission lines including four lines recommended by ICP-OES apparatus were chosen to determine the uranium concentration. The ore samples were collected from phosphate acid producing industry in the south of Iran. Three different acid combinations [(HNO{sub 3}:HCl:HF-2:6:2), (H{sub 3}PO{sub 4}:H{sub 2}SO{sub 4}:HF-3:3:3), (HNO{sub 3}:H{sub 2}O{sub 2}:HF-4:2:2)] used in microwave digestion method to explore the spectral interference effects in different solvent environments. The results showed that the trusty uranium concentration, obtained in the 367.007 nm, 386.592 nm, 389.036 nm and 409.014 nm by second acid digestion method which were 0.665 ppm, 0.972 ppm, 0.670 ppm and 0.801 ppm, respectively. Although the line of 409.014 nm was reported as the best line for determining of the uranium concentration in several literatures, the results showed that this line has a significant spectral interference with vanadium in some ores which should be considered in determining of the uranium concentration. Spectral interference effects of some elements which have high concentrations in the phosphate ore including Ca, Fe, Mg, Pb, V, Mn, and Ti on the line intensities were also investigated. Results indicated that the chosen elements affect emission intensities of all of 11 lines. They also indicated that the line of 409.014 nm provides a trusty precision in the determination of the uranium concentration in the ore sample with low vanadium concentration (at least, U/V ratio of 1:5). Results show that the line of 409.014 nm provides acceptable precision with some corrections in comparison with other selected lines. For instance in high concentrations of other elements including Fe and Ti in the ore samples, strong influences on the line intensities of the 367.007 nm (by Fe

  12. Influence of Uranium and Polivinyl Alcohol Concentration in the Feed of Sol Gel Process on the Gel Spherical Product

    International Nuclear Information System (INIS)

    Indra Suryawan; Endang Susiantini

    2007-01-01

    The gel particles have been made at various uranium and polyvinyl alcohol concentration in the sol gel process. The variables of uranium concentration were 0.3; 0.5; 0.7; 0.9; 1.1; 1.3; 1.5; 1.7; 1.9 and 2.1 M The variables of polyvinyl alcohol concentration were 0.3; 0.6; 0.9; 1.2; 1.5; 1.8; 2.1 and 2.4 M After drying the sol gel process products were heated at 300, 500 and 750°C during 4 hours. The gel particles were characterized using an optic microscope to know the shape and condition morphology of gel. From experimental result using uranium concentration of 0.3 until 2.1 M and polyvinyl alcohol of 1.8 until 2.4 M spherical and gel was formed elastic, after heating at 750°C it was unbreakable. At the concentration of polyvinyl alcohol from 0.3 to 0.5 M, the gel product was soft and broken after being dried. At the concentration of polyvinyl alcohol from 0.6 to 0.8 M, the dried gel product was not perfect. At the concentration of polyvinyl alcohol from 0.9 to 1.7 M, the gel product of gelation process was spherical and it was broken after being heated up to 300°C. (author)

  13. Doses for various pathways to man based on unit concentrations of radionuclides pertinent to decontamination and decommissioning of properties

    International Nuclear Information System (INIS)

    Hill, G.S.

    1979-03-01

    This report gives dose tabulations for unit concentrations of radionuclides likely to be encountered in the decommissioning of real estate contaminated with uranium and thorium ores and residues. The reported doses may be ratioed to known air, soil, and water concentrations, exposure times, and intakes to estimate the total radiation dose for individuals exposed to the facilities. These dose estimates may be used in developing criteria to determine appropriate remedial actions for returning the properties to useful purposes and for establishing restrictions for such use

  14. Sensor concentrator unit for the Continuous Automated Vault Inventory System

    International Nuclear Information System (INIS)

    Nodine, R.N.; Lenarduzzi, R.

    1997-06-01

    The purpose of this document is to describe the use and operation of the sensor concentrator in the Continuous Automated Vault Inventory System (CAVIS). The CAVIS electronically verifies the presence of items of stored special nuclear material (SNM). US Department of Energy orders require that stored SNM be inventoried periodically to provide assurance that the material is secure. Currently this inventory is a highly manual activity, requiring personnel to enter the storage vaults. Using a CAVIS allows the frequency of physical inventories to be significantly reduced, resulting in substantial cost savings, increased security, and improved safety. The electronic inventory of stored SNM requires two different types of sensors for each item. The two sensors measure different parameters of the item, usually weight and gamma rays. A CAVIS is constructed using four basic system components: sensors, sensor concentrators, a data collection unit, and a database/user interface unit. One sensor concentrator supports the inventory of up to 20 items (40 sensors) and continuously takes readings from the item sensors. On request the sensor concentrator outputs the most recent sensor readings to the data collection unit. The information transfer takes place over a RS485 communications link. The data collection unit supports from 1 to 120 sensor concentrators (1 to 2,400 items) and is referred to as the Sensor Polling and Configuration System (SPCS). The SPCS is connected by a secure Transmission Control Protocol/Internet Protocol (TCP/IP) network to the database/user interface unit, which is referred to as the Graphical Facility Information Center (GraFIC). A CAVIS containing more than 2,400 items is supported by connecting additional SPCS units to the GraFIC

  15. Sensor concentrator unit for the Continuous Automated Vault Inventory System

    Energy Technology Data Exchange (ETDEWEB)

    Nodine, R.N.; Lenarduzzi, R.

    1997-06-01

    The purpose of this document is to describe the use and operation of the sensor concentrator in the Continuous Automated Vault Inventory System (CAVIS). The CAVIS electronically verifies the presence of items of stored special nuclear material (SNM). US Department of Energy orders require that stored SNM be inventoried periodically to provide assurance that the material is secure. Currently this inventory is a highly manual activity, requiring personnel to enter the storage vaults. Using a CAVIS allows the frequency of physical inventories to be significantly reduced, resulting in substantial cost savings, increased security, and improved safety. The electronic inventory of stored SNM requires two different types of sensors for each item. The two sensors measure different parameters of the item, usually weight and gamma rays. A CAVIS is constructed using four basic system components: sensors, sensor concentrators, a data collection unit, and a database/user interface unit. One sensor concentrator supports the inventory of up to 20 items (40 sensors) and continuously takes readings from the item sensors. On request the sensor concentrator outputs the most recent sensor readings to the data collection unit. The information transfer takes place over a RS485 communications link. The data collection unit supports from 1 to 120 sensor concentrators (1 to 2,400 items) and is referred to as the Sensor Polling and Configuration System (SPCS). The SPCS is connected by a secure Transmission Control Protocol/Internet Protocol (TCP/IP) network to the database/user interface unit, which is referred to as the Graphical Facility Information Center (GraFIC). A CAVIS containing more than 2,400 items is supported by connecting additional SPCS units to the GraFIC.

  16. On the anomalous concentrations of uranium in sediments from hydrothermal mounds. A geochemical roll-type mechanism

    International Nuclear Information System (INIS)

    Bernat, M.; Benhassaine, A.

    1987-01-01

    Sediments close to the nontronite formations of hydrothermal mounds often show anomalously high concentrations of uranium. This is frequently interpreted as being due to seeping of low temperature U bearing hydrothermal water through the basal basalt and into the overlying sediments. But we think that this phenomenon is the consequence of leaching of the sediment by hydrothermal water initially depleted in uranium. The migration of U is favoured by the pH of these water which dissolve the iron oxides and hydroxides giving Fe +++ ions in solution. The location and strength of the formed U anomalies are controlled by geochemical and hydrodynamicals factors. 22 refs [fr

  17. Study of some modern carbonated marine organisms, using U234/U238 activities and its uranium concentration

    International Nuclear Information System (INIS)

    Pregnolatto, Y.

    1975-01-01

    Several types of alive carbonated organisms of marine fluvial or mixed environment origin were analized in its concentrations of Uranium and about its activity ratio U 234 /U 238 . In the same way measurements were made from the water of these three types of environments. The results indicate that the mollusks shells show a very low concentration compared with corals. Its concentration varies from 0.04 to 0.33 ppm. Inside the limit of errors we can say that the several types of carbonated organisms show the same disequilibrium U 234 /U 238 which was found in associated waters. An analysis of a piece of wood from long time immersed in the sea water was made. The result indicates that there was a marked high in concentration of Uranium due to chelatation with organic matter. (C.D.G.) [pt

  18. Resource Conservation and Recovery Act (RCRA) closure sumamry for the Uranium Treatment Unit

    International Nuclear Information System (INIS)

    1996-05-01

    This closure summary has been prepared for the Uranium Treatment Unit (UTU) located at the Y-12 Plant in Oak Ridge, Tennessee. The actions required to achieve closure of the UTU area are outlined in the Closure Plan, submitted to and approved by the Tennessee Department of Environmental and Conservation staff, respectively. The UTU was used to store and treat waste materials that are regulated by the Resource Conservation and Recovery Act. This closure summary details all steps that were performed to close the UTU in accordance with the approved plan

  19. Uranium in granites from the Southwestern United States: actinide parent-daughter systems, sites and mobilization. First year report

    Energy Technology Data Exchange (ETDEWEB)

    Silver, L T; Williams, I S; Woodhead, J A

    1980-10-01

    Some of the principal findings of the study on the Lawler Peak Granite are: the granite is dated precisely by this work at 1411 +- 3 m.y., confirming its synchroneity with a great regional terrane of granites. Uranium is presently 8-10 times crustal abundance and thorium 2-3 times in this granite. Uranium is found to be enriched in at least eight, possibly ten, primary igneous mineral species over the whole-rock values. Individual mineral species show distinct levels in, and characteristics ranges of, uranium concentration. It appears that in a uraniferous granite such as this, conventional accuracy mineral suites probably cannot account for most of the uranium in the rock, and more rare, high U-concentration phases also are present and are significant uranium hosts. It appears that at least two different geological episodes have contributed to the disturbance of the U-Th-Pb isotope systems. Studies of various sites for transient dispersal of uranium, thorium, and radiogenic lead isotopes indicate a non-uniform dispersal of these components. It appears that the bulk rock has lost at least 24 percent of its original uranium endowment, accepting limited or no radiogenic lead or thorium migration from the sample.

  20. Uranium in granites from the Southwestern United States: actinide parent-daughter systems, sites and mobilization. First year report

    International Nuclear Information System (INIS)

    Silver, L.T.; Williams, I.S.; Woodhead, J.A.

    1980-10-01

    Some of the principal findings of the study on the Lawler Peak Granite are: the granite is dated precisely by this work at 1411 +- 3 m.y., confirming its synchroneity with a great regional terrane of granites. Uranium is presently 8-10 times crustal abundance and thorium 2-3 times in this granite. Uranium is found to be enriched in at least eight, possibly ten, primary igneous mineral species over the whole-rock values. Individual mineral species show distinct levels in, and characteristics ranges of, uranium concentration. It appears that in a uraniferous granite such as this, conventional accuracy mineral suites probably cannot account for most of the uranium in the rock, and more rare, high U-concentration phases also are present and are significant uranium hosts. It appears that at least two different geological episodes have contributed to the disturbance of the U-Th-Pb isotope systems. Studies of various sites for transient dispersal of uranium, thorium, and radiogenic lead isotopes indicate a non-uniform dispersal of these components. It appears that the bulk rock has lost at least 24 percent of its original uranium endowment, accepting limited or no radiogenic lead or thorium migration from the sample

  1. Physicochemical basics for production of uranium concentrate from wastes of hydrometallurgical plants and technical waters

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Khojiyon, M.; Mirsaidov, I.U.; Nazarov, K.M.; Barotov, B.B.

    2012-01-01

    Physicochemical and technological basics for reprocessing of uranium industry wastes of Northern Tajikistan shows that the most perspective for reprocessing is Chkalovsk tailing's wastes. Engineer and geological condition and content of radionuclides in wastes are investigated. It is determined that considered wastes by radioactivity are low-active and they can be reprocessed with the purpose of U 3 O 8 production. Grinding, crumbling, thickening and etc. operations are decreased during the wastes reprocessing process. Uranium output is more than 90%. Optimal parameters of products extraction from uranium mining industry wastes are found. Characteristics of mine and technical waters of uranium industry wastes are studied. Characteristics of mine and technical waters of Kiik-Tal and Istiklol city (former Taboshar) showed the expediency of uranium oxide extraction from them. The reasons for non-additional recovery extraction from dumps of State Enterprise 'Vostokredmet' by classical methods of uranium leaching are studied. Kinetics of sulfuric leaching of residues from anthropogenic deposit of Map 1-9 (Chkalovsk city) is investigated. Carried out investigations are revealing the flow mechanism process of residues' sulfuric leaching and enable selection of radiation regime of U 3 O 8 production. Kinetics of sorption process of uranium extraction from mine and technical waters of uranium industry wastes is studied. High sorption properties of apricot's shell comparing to other sorbents are revealed. Basic process flow diagram for reprocessing of uranium tailing wastes is developed as well as diagram for uranium extraction from mine and technical waters from uranium industry wastes which consists of the following stages: acidification, sorption, burning, leaching, sedimentation, filtration, drying.

  2. Introduction. Physicochemical aspects of uranium concentrates obtaining from the wastes and raw materials

    International Nuclear Information System (INIS)

    Mirsaidov, I.U.

    2014-01-01

    The uranium deposits of Tajikistan played an immensely significant role in the practical solution of a radioactive raw materials problem which appeared during the post-World War II years in the USSR. The pioneer in this field became complex №6 (currently known as 'Vostokredmet'). The first soviet uranium was produced from the ores extracted from the republic's deposits. For 50 years (1945-1995 y.), uranium bearing raw materials from all over the former USSR were delivered to Tajikistan, and uranium oxide was produced, which was later delivered back to Russia for further production of enriched uranium. The total volume of uranium produced in Tajikistan plants was approximately 100 thousands tons. In Sughd region, during that period, more than 55 million tons of uranium waste was accumulated. The total activity of the waste, according to different calculations, is approximately 240-285 TBq. The total amount of waste in dumps and tailings piles is estimated to be more than 170 million tons, most of which are located in the neighborhoods of hydrometallurgical plants and heap leaching locations. Uranium industry wastes in Northern Tajikistan have become attractive for different investors and commercial companies, from secondary reprocessing of mines and tailings' point of view, since the uranium price is increasing. In this regard, research on developing uranium extraction methods from wastes is broadening. The study of the possibility and economic reasonability of reprocessing former year's dumps requires comprehensive examination, and relates not only to uranium extraction but to safe extraction of dumps from tailings as well.

  3. Physicochemical basics for production of uranium concentrate from wastes of hydrometallurgical plants and technical waters

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Khojiyon, M.; Mirsaidov, I.U.; Nazarov, K.M.; Barotov, B.B.

    2012-01-01

    Physicochemical and technological basics for reprocessing of uranium industry wastes of Northern Tajikistan shows that the most perspective for reprocessing is Chkalovsk tailing's wastes. Engineer and geological condition and content of radionuclides in wastes are investigated. It is determined that considered wastes by radioactivity are low-active and they can be reprocessed with the purpose of U 3 O 8 production. Grinding, crumbling, thickening and etc. operations are decreased during the wastes reprocessing process. Uranium output is more than 90%. Optimal parameters of products extraction from uranium mining industry wastes are found. Characteristics of mine and technical waters of uranium industry wastes are studied. Characteristics of mine and technical waters of Kiik-Tal and Istiklol city (former Taboshar) showed the expediency of uranium oxide extraction from them. The reasons for non-additional recovery extraction from dumps of State Enterprise 'Vostokredmet' by classical methods of uranium leaching are studied. Kinetics of sulfuric leaching of residues from anthropogenic deposit of Map 1-9 (Chkalovsk city) is investigated. Carried out investigations are revealing the flow mechanism process of residues' sulfuric leaching and enable selection of radiation regime of U 3 O 8 production. Kinetics of sorption process of uranium extraction from mine and technical waters of uranium industry wastes is studied. High sorption properties of apricot's shell comparing to other sorbents are revealed. Basic process flow diagram for reprocessing of uranium tailing wastes is developed as well as diagram for uranium extraction from mine and technical waters from uranium industry wastes which consists of the following stages: acidification, sorption, burning, leaching, sedimentation, filtration, drying.

  4. Uranium hydrogeochemical and stream sediment reconnaissance of the Bozeman NTMS quadrangle, Montana, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Bolivar, S.L.; Hensley, W.K.; Van Haaften, I.J.; Pirtle, J.; George, W.E.; Gallimore, D.; Apel, C.; Hansel, J.

    1980-07-01

    This report contains uranium analyses for 1251 water samples and multielement analyses for 1536 sediment samples. Sediments were analyzed for uranium and thorium as well as aluminum, antimony, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, chlorine, chromium, cobalt, copper, dysprosium, europium, gold, hafnium, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, nickel, niobium, potassium, rubidium, samarium, scandium, silver, sodium, strontium, tantalum, terbium, tin, titanium, tungsten, vanadium, ytterbium, and zinc. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than 40 ppB uranium were reanalyzed by delayed-neutron counting (DNC). All sediments were analyzed for uranium by DNC. Other elemental concentrations in sediments were determined by neutron activation analysis for 31 elements, by x-ray fluorescence for 9 elements, and by arc-source emission spectrography for 2 elements. Analytical results for sediments are reported as parts per million. Descriptions of procedures used for analysis of water and sediment samples as well as analytical precisions and detection limits are given

  5. Environmental assessment: Transfer of normal and low-enriched uranium billets to the United Kingdom, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1995-11-01

    Under the auspices of an agreement between the U.S. and the United Kingdom, the U.S. Department of Energy (DOE) has an opportunity to transfer approximately 710,000 kilograms (1,562,000 pounds) of unneeded normal and low-enriched uranium (LEU) to the United Kingdom; thus, reducing long-term surveillance and maintenance burdens at the Hanford Site. The material, in the form of billets, is controlled by DOE's Defense Programs, and is presently stored as surplus material in the 300 Area of the Hanford Site. The United Kingdom has expressed a need for the billets. The surplus uranium billets are currently stored in wooden shipping containers in secured facilities in the 300 Area at the Hanford Site (the 303-B and 303-G storage facilities). There are 482 billets at an enrichment level (based on uranium-235 content) of 0.71 weight-percent. This enrichment level is normal uranium; that is, uranium having 0.711 as the percentage by weight of uranium-235 as occurring in nature. There are 3,242 billets at an enrichment level of 0.95 weight-percent (i.e., low-enriched uranium). This inventory represents a total of approximately 532 curies. The facilities are routinely monitored. The dose rate on contact of a uranium billet is approximately 8 millirem per hour. The dose rate on contact of a wooden shipping container containing 4 billets is approximately 4 millirem per hour. The dose rate at the exterior of the storage facilities is indistinguishable from background levels

  6. Accumulation of thorium and uranium by microbes. The effect of pH, concentration of metals, and time course on the accumulation of both elements using streptomyces levoris

    International Nuclear Information System (INIS)

    Tsuruta, Takehiko

    2006-01-01

    The accumulation of thorium and uranium by various microorganisms from a solution containing both metals at pH 3.5 was examined. Among the tested species, a high accumulation ability for thorium was exhibited by strains of gram-positive bacteria, such as Arthrobacter nicotianae, Bacillus megaterium, B. subtilis, Micrococcus luteus, Rhodococcus erythropolis, and Streptomyces levoris. Though uranium was accumulated in small amounts by most of microorganisms. A. nicotianae, S. flavoviridis, and S. levoris had relatively high uranium accumulation abilities. In these high performance thorium- and uranium-accumulating microorganisms, S. levoris, which accumulated the largest amount of uranium from the solution containing only uranium at pH 3.5, accumulated about 300 μmol thorium and 133 μmol uranium per gram dry weight of microbial cells from a solution containing both thorium and uranium at pH 3.5. The amount and time course of the thorium accumulation were almost unaffected by the co-existing uranium, while those of uranium were strongly affected by the co-existing thorium. The effects of pH, the thorium and uranium concentrations, and time course on both metal accumulations were also evaluated by numerical formulas. (author)

  7. Pre-concentration and quantification of uranium from lean feed by stir adsorptive membranes

    International Nuclear Information System (INIS)

    Das, Sadananda; Pandey, A.K.; Manchanda, V.K.; Athawale, A.A.

    2010-01-01

    Uranium recovery from bio-aggressive but lean feed like seawater is a challenging problem as it requires in situ preconcentration of uranium in presence of huge excess of competing ions with fast sorption kinetics. In our laboratory, widely used amidoxime membrane (AO-membrane) was evaluated for uranium sorption under seawater conditions. This study indicated that AO-membrane was inherently slow because of the complexation chemistry involved in transfer of U(VI) from (UO 2 (CO 3 ) 3 ) 4- to AO sites in membrane. In order to search better options, several chemical compositions of membrane were scanned for their efficacy for uranium preconcentration from seawater, and concluded that EGMP-membrane offers several advantages over AO-membrane. In this paper, the comparison of EGMP-membrane with AO-membrane for uranium sorption under seawater conditions has been reviewed. (author)

  8. United States Geological Survey: uranium and thorium resource assessment and exploration research program, fiscal year 1979

    International Nuclear Information System (INIS)

    Offield, T.W.

    1978-01-01

    Objectives and current plans are given for the following projects: uranium geochemistry and mineralogy; uranium in sedimentary environments; uranium in igneous and metamorphic environments; geophysical techniques in uranium and thorium exploration; and thorium investigations and resource assessment. Selected noteworthy results of FY 1978 research are given

  9. Simultaneous determination of nitric acid and uranium concentrations in aqueous solution from measurements of electrical conductivity, density, and temperature

    International Nuclear Information System (INIS)

    Spencer, B.B.

    1991-01-01

    Nuclear fuel reprocessing plants handle aqueous solutions of nitric acid and uranium in large quantities. Automatic control of process operations requires reliable measurements of these solutes concentration, but this is difficult to directly measure. Physical properties such as solution density and electrical conductivity vary with solute concentration and temperature. Conductivity, density and temperature can be measured accurately with relatively simple and inexpensive devices. These properties can be used to determine solute concentrations will good correlations. This paper provides the appropriate correlations for solutions containing 2 to 6 Molar (M) nitric acid and 0 to 300 g/L uranium metal at temperatures from 25--90 degrees C. The equations are most accurate below 5 M nitric acid, due to a broad maximum in the conductivity curve at 6 M. 12 refs., 9 figs., 6 tabs

  10. Analysis of queuing mine-cars affecting shaft station radon concentrations in Quzhou uranium mine, eastern China

    Directory of Open Access Journals (Sweden)

    Changshou Hong

    2018-04-01

    Full Text Available Shaft stations of underground uranium mines in China are not only utilized as waiting space for loaded mine-cars queuing to be hoisted but also as the principal channel for fresh air taken to working places. Therefore, assessment of how mine-car queuing processes affect shaft station radon concentration was carried out. Queuing network of mine-cars has been analyzed in an underground uranium mine, located in Quzhou, Zhejiang province of Eastern China. On the basis of mathematical analysis of the queue network, a MATLAB-based quasi-random number generating program utilizing Monte-Carlo methods was worked out. Extensive simulations were then implemented via MATALB operating on a DELL PC. Thereafter, theoretical calculations and field measurements of shaft station radon concentrations for several working conditions were performed. The queuing performance measures of interest, like average queuing length and waiting time, were found to be significantly affected by the utilization rate (positively correlated. However, even with respect to the “worst case”, the shaft station radon concentration was always lower than 200 Bq/m3. The model predictions were compared with the measuring results, and a satisfactory agreement was noted. Under current working conditions, queuing-induced variations of shaft station radon concentration of the study mine are not remarkable. Keywords: Hoist and Transport Systems, Mine-cars, Queuing Simulation, Radon Concentration, Underground Uranium Mine

  11. The obtainment of highly concentrated uranium pellets for plate type (MTR) fuel by dispersion of uranium aluminides in aluminium

    International Nuclear Information System (INIS)

    Morando, R.A.; Raffaeli, H.A.; Balzaretti, D.E.

    1980-01-01

    The use of the intermetallic UAl 3 for manufacturing plate type MTR fuel with 20% U 235 enriched uranium and a density of about 20 kg/m 3 is analyzed. The technique used is the dispersion of UAl 3 particles in aluminium powder. The obtainment of the UAl 3 intermetallic was performed by fusion in an induction furnace in an atmosphere of argon at a pressure of 0.7 BAR (400 mm) using an alumina melting pot. To make the aluminide powder and attain the wished granulometry a cutting and a rotating crusher were used. Aluminide powders of different granulometries and different pressures of compactation were analyzed. In each case the densities were measured. The compacts were colaminated with the 'Picture Frame' technique at temperatures of 490 and 0 deg C with excellent results from the manufacturing view point. (M.E.L.) [es

  12. Optimization of Davies and Gray/NBL method used for determination of total uranium concentration in the safeguards destructive analysis

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jose Wanderley S. da; Viana, Aline Gonzalez; Barros, Pedro Dionisio de; Cristiano, Barbara Fernandes G., E-mail: wanderley@ird.gov.br, E-mail: agonzalez@ird.gov.br, E-mail: pedrodio@ird.gov.br, E-mail: barbara@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    One important activity conducted by the Brazilian State System of Accounting for and Control of Nuclear Materials - SSAC is to verify inventories of the nuclear facilities by nondestructive analysis and destructive analysis. For destructive analysis, the Safeguards Laboratory of Brazilian Nuclear Energy Commission - LASAL/CNEN has been applying the 'Davies and Gray/NBL' method in samples taken during inspections at nuclear facilities since 1984 in Brazil and Argentina. This method consists of the determination of total uranium concentration by potentiometric titration of uranium (IV) with a standard solution of potassium dichromate as oxidizing agent. This solution is prepared using a K{sub 2}Cr{sub 2}O{sub 7} SRM 136e standard reference material (99.984 ±0.010) wt% certified by National Institute of Standard and Technology - NIST. The procedure also includes the calibration with primary uranium standards reference material (NBL CRM 112A). In order to reduce the consumption of K{sub 2}Cr{sub 2}O{sub 7} and the other reagent involved in the procedure, without any loss in the performance of the method, a K{sub 2}Cr{sub 2}O{sub 7} solution with half the regular concentration was prepared and used to test the uranium concentration in several aliquots with a content between 30 mg to 40 mg of uranium per gram of solution. After optimizing the parameters and procedure, it was possible to get the same performance as well. As a consequence, decreasing of the cost, the amount of waste and also a reduction in the titration time of each aliquot was achieved. Thus, this work describes all details in this research as well as the results and its evaluation. (author)

  13. Optimization of Davies and Gray/NBL method used for determination of total uranium concentration in the safeguards destructive analysis

    International Nuclear Information System (INIS)

    Silva, Jose Wanderley S. da; Viana, Aline Gonzalez; Barros, Pedro Dionisio de; Cristiano, Barbara Fernandes G.

    2013-01-01

    One important activity conducted by the Brazilian State System of Accounting for and Control of Nuclear Materials - SSAC is to verify inventories of the nuclear facilities by nondestructive analysis and destructive analysis. For destructive analysis, the Safeguards Laboratory of Brazilian Nuclear Energy Commission - LASAL/CNEN has been applying the 'Davies and Gray/NBL' method in samples taken during inspections at nuclear facilities since 1984 in Brazil and Argentina. This method consists of the determination of total uranium concentration by potentiometric titration of uranium (IV) with a standard solution of potassium dichromate as oxidizing agent. This solution is prepared using a K 2 Cr 2 O 7 SRM 136e standard reference material (99.984 ±0.010) wt% certified by National Institute of Standard and Technology - NIST. The procedure also includes the calibration with primary uranium standards reference material (NBL CRM 112A). In order to reduce the consumption of K 2 Cr 2 O 7 and the other reagent involved in the procedure, without any loss in the performance of the method, a K 2 Cr 2 O 7 solution with half the regular concentration was prepared and used to test the uranium concentration in several aliquots with a content between 30 mg to 40 mg of uranium per gram of solution. After optimizing the parameters and procedure, it was possible to get the same performance as well. As a consequence, decreasing of the cost, the amount of waste and also a reduction in the titration time of each aliquot was achieved. Thus, this work describes all details in this research as well as the results and its evaluation. (author)

  14. Overview of uranium mill tailings remedial action project of the United States of America 1995-1996

    International Nuclear Information System (INIS)

    Edge, R.

    1997-01-01

    From the early 1940's through the 1960's the United States federal government contracted for processed uranium ore for national defense research, weapons development and commercial nuclear energy. When these contracts were terminated, the mills ceased operation leaving large uranium tailings on the former mill sites. The purpose of the Uranium Remedial Action Project (UMTRA) is to minimize or eliminate potential health hazards resulting from exposure of the public to the tailings at these abandons sites. There are 24 inactive uranium mill tailings sites, in 10 states and an Indian reservation lands, included for clean up under the auspices of UMTRA. Presently the last 2 sites are under remediation. This paper addresses the progress of the project over the last two years. (author)

  15. Separation and concentration of uranium by extraction chromatography : U(VI) - H3PO4 system

    International Nuclear Information System (INIS)

    Nobre, J.S.M.

    1981-01-01

    The feasibility of using the extraction chromatographic technique as a way to recover uranium from phosphatic rocks evaluated. The behaviour of uranium from raw phsophoric acid solutions in chromatographic systems using the mixture di(2-ethylhexyl) orthophosphoric acid (D2EHPA) - tributyl phosphate (TBP) as the stationary phase was studied. Materials as alumina, activated carbon and the macroporous resins XAD-4 and XAD-7 were used as supports for organic stationary phase. The best results were obtained with poliacrilic polymer XAD-7, due to its excellent chromatographic properties and efficient organic phase retention. Uranium was quantitatively retained by D2EHPA-TBP-XAD-7 columns from synthetic phosphoric acid solutions with typical composition of phosphatic acid liquors. The elution of uranium from this system was also studied, and the best results were obtained with phosphoric acid solutions. This chromatographic column presented a high stability, not changing their properties even after more than twenty cycles, including the conditioning, sorption, wasking and elution steps. Uranium determinations were perfpormed by indirect titration with potassium dichromate and by molecular absorption spectrophotometry with hydrogen peroxide- carbonate. A new and more sensitive method for uranium determination in phosphoric medium, which might be applied to acid liquors of phosphatic ores, was developed. An extraction-photometric method was used, with Arsenazo III (1,8-dihydroxynaphtalene-3,6-disulphonic acid-2,7-bis(azo-2)-phenylarsonic acid) as the reagent for uranium. (Author) [pt

  16. Uranium hydrogeochemical and stream sediment reconnaissance of the thermopolis NTMS Quadrangle, Wyoming, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Maassen, L.W.

    1980-08-01

    The Los Alamos Scientific Laboratory conducted a hydrogeochemical and stream sediment reconnaissance for uranium in the Thermopolis National Topographic Map Series quadrangle, Wyoming. Totals of 920 water and 1821 sediment samples were collected from 1977 locations at an average density of one sample location per 9 km 2 over an 18,000-km 2 area. Water samples were collected from streams, springs, and wells; sediment samples were collected from streams and springs. The uranium contents of water samples range from below the detection limit of 0.02 ppB to 307.98 ppB with a median of 0.56 ppB. Six clusters of anomalous water samples were delineated within the Wind River Basin and are associated predominantly with the Wind River formation. Two clusters of anomalous waters were collected on the southern margin of the Bighorn Basin and are associated with sandstone and shales of Permian through Cretaceous age. The uranium contents of sediment samples range from 0.43 to 94.65 ppM with a median of 2.90 ppM. Most sediment samples with uranium concentrations of greater than 12 ppM are underlain by Precambrian crystalline rocks of the Wind River Range; this area contains the highest uranium values found in sediments from the Thermopolis quadrangle. Other samples containing greater than 12 ppM uranium are found associated with the Wind River and Aycross formations along the northern margin of the Wind River Basin, and one sample was collected from Precambrian granitic terrain of the Owl Creek Mountains

  17. Determination of the concentration of radionuclides in soil and water next the uranium mine of Caetite, Bahia, Brazil

    International Nuclear Information System (INIS)

    Almeida, Geangela M.; Souza, Susana O.; Campos, Simara S.S.; Gennari, Roseli F.

    2011-01-01

    The economic growing in Brazil is responsible for an urgent demand for energy. Uranium is the fuel used to generate nuclear power. Brazil has the sixth largest reserve of the uranium ore in the world and, nowadays there is only one mine under exploration (Uraniferous District of Lagoa Real - Caetite-BA). Some Non-Governmental Organizations (NGOs), such as Greenpeace, state that the explored uranium mine is dangerous and polluting, causing water contamination by uranium. So, the population would be receiving radiation doses above permissible limits. However, Industrias Nucleares do Brasil (INB) the company in charge of the complex extraction and production of yellow cake rejected these accusations. The main purpose of this work is the determination of the composition of natural radionuclides in the Uraniferous District of Lagoa Real in order to determine if the nearest population is exposed to environmental radiation. It was checked if there is water contamination due to the natural transport in the uranium mining surroundings. Soil and water samples from Caetite mine and also from nearby town were collected. Only one water sample collected had concentrations higher than the limits recommended by World Health Organization. The presence of radionuclides in soil samples is considered independent of mineral exploration. The effective dose rates in almost all samples are above the world average which is 2.4 mSv/y. To sum up, the presence of uranium in water and soil of the tested areas is probably due to the nature of the soil and not to the exploration of mine. (author)

  18. Determination of the concentration of radionuclides in soil and water next the uranium mine of Caetite, Bahia, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Geangela M.; Souza, Susana O. [Federal University of Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. of Physics; Campos, Simara S.S. [State University of Southwest Bahia (UESB), Itapetinga, BA (Brazil). Dept. of Basic and Instrumental Studies; Gennari, Roseli F., E-mail: rgennari@dfn.if.usp.b [University of Sao Paulo (USP), Sao Paulo, SP (Brazil). Inst. of Physics. Dept. of Nuclear Physics

    2011-07-01

    The economic growing in Brazil is responsible for an urgent demand for energy. Uranium is the fuel used to generate nuclear power. Brazil has the sixth largest reserve of the uranium ore in the world and, nowadays there is only one mine under exploration (Uraniferous District of Lagoa Real - Caetite-BA). Some Non-Governmental Organizations (NGOs), such as Greenpeace, state that the explored uranium mine is dangerous and polluting, causing water contamination by uranium. So, the population would be receiving radiation doses above permissible limits. However, Industrias Nucleares do Brasil (INB) the company in charge of the complex extraction and production of yellow cake rejected these accusations. The main purpose of this work is the determination of the composition of natural radionuclides in the Uraniferous District of Lagoa Real in order to determine if the nearest population is exposed to environmental radiation. It was checked if there is water contamination due to the natural transport in the uranium mining surroundings. Soil and water samples from Caetite mine and also from nearby town were collected. Only one water sample collected had concentrations higher than the limits recommended by World Health Organization. The presence of radionuclides in soil samples is considered independent of mineral exploration. The effective dose rates in almost all samples are above the world average which is 2.4 mSv/y. To sum up, the presence of uranium in water and soil of the tested areas is probably due to the nature of the soil and not to the exploration of mine. (author)

  19. Comparison between the tricaprylylamine and trilaurilamine extrability in uranium and mobibdenum extraction of low concentration liquors

    International Nuclear Information System (INIS)

    Duarte Neto, J.; Coelho, S.V.

    1980-01-01

    The extrability of trilaurilamine and tricaprylilamine in uranium and molibdenum extraction of sulfuric lixivium were studied and compared. The characteristics of solvent extraction, phase separation, emulsion formation and impurity interference were also determined. (C.G.C.) [pt

  20. Critical evaluation of safety and radiological protection requirements adopted for the transport of uranium and thorium ores and concentrates

    International Nuclear Information System (INIS)

    Mezrahi, Arnaldo; Crispim, Verginia R.

    2009-01-01

    This work evaluates in a critical way the safety and radiological protection recommendations established by the International Atomic Energy Agency - IAEA and adopted national and internationally, for the transport of uranium and thorium ores and concentrates, known according the transport regulations, as being of the Low Specific Activity Material Type-I, LSA-I, basing on more realistic scenarios than the presently existent, aiming at the determination of maximum exposure levels of radiation as well as the maximal contents of those materials in packages and conveyance. A general overview taking into account the scenarios foreseen by the regulations of the IAEA pointed out for a need of a better justification of the requirements edited by the Agency or should be used to support a request of revision of those regulations, national and internationally adopted, in the pertinent aspects to the transport of uranium and thorium ores and concentrates. (author)

  1. Uranium hydrogeochemical and stream sediment reconnaissance of the vernal NTMS quadrangle, Utah/Colorado, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Purson, J.D.

    1980-08-01

    The Los Alamos Scientific Laboratory conducted a geochemical reconnaissance for uranium in the Vernal NTMS quadrangle, Utah/Colorado, in the summers of 1977 and 1978. Totals of 422 water and 1552 sediment samples were collected from 1652 locations. These samples were collected at an average density of one sample location per 11 km 2 over an 18,800 km 2 area. Water samples were collected from streams and springs. Only those samples containing >10 ppB uranium for waters and >8 ppM uranium for sediments are discussed; however, all field and analytical data are included in the appendixes. The uranium concentrations in waters range from below the detection limit of 0.01 ppB to 108.04 ppB, with a mean uranium concentration for all water types of 3.11 ppB. Three clusters of samples containing relatively high uranium values are defined; they are associated with the Duchesne River formation, the Mancos shale, or the Uinta Mountain group and Browns Park formations. A few of the samples having the highest uranium values are associated with host rocks favorable for significant uranium mineralization. Sediments collected in this study have uranium concentrations that range between 0.70 ppM and 56.70 ppM, with a mean of 3.46 ppM. The majority of sediment samples with relatively high uranium concentrations were collected from one area in the Sand Wash basin in the northeastern corner of the quadrangle and are associated with the Wasatch formation. None of the water clusters define areas of significant interest; however, the area having high uranium values in sediments is worthy of further study

  2. Concentration of Uranium Radioisotopes in Albanian Drinking Waters Measured by Alpha Spectrometry

    Science.gov (United States)

    Bylyku, Elida; Cfarku, Florinda; Deda, Antoneta; Bode, Kozeta; Fishka, Kujtim

    2010-01-01

    Uranium is a radioactive material that is frequently found in rocks and soil. When uranium decays, it changes into different elements that are also radioactive, including radon, a gas that is known to cause a lung cancer. The main concern with uranium in drinking water is harm to the kidneys. Public water systems are required to keep uranium levels at or below 500 mBq per liter to protect against kidney damage. Such an interest is needed due to safety, regulatory compliance and disposal issue for uranium in the environment since uranium is included as an obligatory controlled radionuclide in the European Legislation (Directive 98/83 CE of Council of 03.11.1998). The aim of this work is to measure the levels of uranium in drinking and drilled well waters in Albania. At first each sample was measured for total Alpha and total Beta activity. The samples with the highest levels of total alpha activity were chosen for the determination of uranium radioisotopes by alpha spectrometry. A radiochemical procedure using extraction with TBP (Tri-Butyl-Phosphate) is used in the presence of U232 as a yield tracer. Thin sources for alpha spectrometry are prepared by electrodepositing on to stainless steel discs. The results of the U238 activity measured in the different samples, depending from their geological origin range between 0.55-13.87 mBq/l. All samples measured results under the European Directive limits for U238 (5-500 mBq/1), Dose Coefficients according to Directive 96/29 EURATOM.

  3. Annual report of the United States transuranium and uranium registries, October 1, 1988--September 30, 1989

    International Nuclear Information System (INIS)

    Kathren, R.L.; Swint, M.J.; Dietert, S.E.

    1990-04-01

    This report summarizes the primary scientific activities of the United States Transuranium and Uranium Registries for the period October 1, 1988 through September 30, 1989. The Registries are parallel human tissue research programs devoted to the study of the actinide elements in man. The emphasis of the Transuranium Registry was directed toward evaluation of six whole body donations. In the five cases whose exposure was through inhalation, approximately half of the total body content of Pu-239 + 240 and a third of the Am-241 was found in the respiratory tract, suggesting that these nuclides are more avidly retained than predicted by the current model of the International Commission on Radiological Protection. A significant fraction of these nuclides is found in soft tissues other than liver, and an uptake fraction of 0.2 is proposed for muscle, with a residence half-time of 10 years. Studies of these and routine autopsy cases indicate that more than 90% of the total respiratory tract plutonium or americium is in the lungs, with the remainder in the lymph nodes, and that a greater fraction is found in the lungs of smokers relative to the lymph nodes. Primary activities of the Uranium Registry centered around the acquisition of a whole body donation from a woman who had received an injection of colloidal thorium dioxide some 38 years prior to death

  4. Wet high-intensity magnetic separation for the concentration of Witwatersrand gold-uranium ores and residues

    International Nuclear Information System (INIS)

    Corrans, I.J.; Levin, J.

    1979-01-01

    Wet high-intensity magnetic separation (WHIMS) for the concentration of gold and uranium was tested on many Witwatersrand cyanidation residues, and on some ores and flotation tailings. The results varied, but many indicated recoveries of over 60 per cent of the gold and uranium. The main source of loss is the inefficiency of WHIMS for material of smaller particle size than 20μm. The recoveries in the continuous tests were lower than those in the batch tests. The continuous tests indicated an operational difficulty that could be experienced in practice, namely the tendency for wood chips and ferromagnetic particles to block the matrix of the separator. It was decided that a solution to the problem lies in the modification of the separator to allow continuous removal of the matrix for cleaning. A system has been developed for this purpose and is being demonstrated on a pilot-plant scale. Promising results were obtained in tests on a process that combines a coarse grind, gravity concentration, and WHIMS. In the gravity-concentration step, considerable recoveries, generally over 50 per cent, of high-grade pyrite were obtained, together with high recoveries of gold and moderate, but possibly important, recoveries of uranium. A simple model describing the operation of the WHIMS machine in terms of the operating parameters is described. This should reduce the amount of empirical testwork required for the optimization of operating conditions and should provide a basis for scale-up calculations. The economics of the WHIMS process is discussed [af

  5. Nuclear forensic analysis of an unknown uranium ore concentrate sample seized in a criminal investigation in Australia

    International Nuclear Information System (INIS)

    Keegan, Elizabeth; Kristo, Michael J.; Colella, Michael; Robel, Martin; Williams, Ross; Lindvall, Rachel; Eppich, Gary; Roberts, Sarah; Borg, Lars; Gaffney, Amy; Plaue, Jonathan; Wong, Henri; Davis, Joel; Loi, Elaine; Reinhard, Mark; Hutcheon, Ian

    2014-01-01

    In early 2009, a state policing agency raided a clandestine drug laboratory in a suburb of a major city in Australia. While searching the laboratory, they discovered a small glass jar labelled 'Gamma Source' and containing a green powder. The powder was radioactive. This paper documents the detailed nuclear forensic analysis undertaken to characterize and identify the material and determine its provenance. Isotopic and impurity content, phase composition, microstructure and other characteristics were measured on the seized sample, and the results were compared with similar material obtained from the suspected source (ore and ore concentrate material). While an extensive range of parameters were measured, the key 'nuclear forensic signatures' used to identify the material were the U isotopic composition, Pb and Sr isotope ratios, and the rare earth element pattern. These measurements, in combination with statistical analysis of the elemental and isotopic content of the material against a database of uranium ore concentrates sourced from mines located worldwide, led to the conclusion that the seized material (a uranium ore concentrate of natural isotopic abundance) most likely originated from Mary Kathleen, a former Australian uranium mine

  6. Concentration and characteristics of depleted uranium in water, air and biological samples collected in Serbia and Montenegro

    International Nuclear Information System (INIS)

    Jia Guogang; Belli, Maria; Sansone, Umberto; Rosamilia, Silvia; Gaudino, Stefania

    2005-01-01

    During the Balkan conflicts, in 1995 and 1999, depleted uranium (DU) rounds were employed and were left in the battlefield. Health concern is related to the risk arising from contamination of the environment with DU penetrators and dust. In order to evaluate the impact of DU on the environment and population in Serbia and Montenegro, radiological surveys of DU in water, air and biological samples were carried out over the period 27 October-5 November 2001. The uranium isotopic concentrations in biological samples collected in Serbia and Montenegro, mainly lichens and barks, were found to be in the range of 0.67-704 Bq kg -1 for 238 U, 0.48-93.9 Bq kg -1 for 234 U and 0.02-12.2 Bq kg -1 for 235 U, showing uranium levels to be higher than in the samples collected at the control sites. Moreover, 236 U was detectable in some of the samples. The isotopic ratios of 234 U/ 238 U showed DU to be detectable in many biological samples at all examined sites, especially in Montenegro, indicating widespread ground-surface DU contamination, albeit at very low level. The uranium isotopic concentrations in air obtained from the air filter samples collected in Serbia and Montenegro were found to be in the range of 1.99-42.1 μBq m -3 for 238 U, 0.96-38.0 μBq m -3 for 234 U, and 0.05-1.83 μBq m -3 for 235 U, being in the typical range of natural uranium values. Thus said, most of the air samples are DU positive, this fact agreeing well with the widespread DU contamination detected in the biological samples. The uranium concentrations in water samples collected in Serbia and Montenegro were found to be in the range of 0.40-21.9 mBq l -1 for 238 U, 0.27-28.1 mBq l -1 for 234 U, and 0.01-0.88 mBq l -1 for 235 U, these values being much lower than those in mineral water found in central Italy and below the WHO guideline for drinking water. From a radiotoxicological point of view, at this moment there is no significant radiological risk related to these investigated sites in terms of

  7. Concentration and characteristics of depleted uranium in water, air and biological samples collected in Serbia and Montenegro.

    Science.gov (United States)

    Jia, Guogang; Belli, Maria; Sansone, Umberto; Rosamilia, Silvia; Gaudino, Stefania

    2005-09-01

    During the Balkan conflicts, in 1995 and 1999, depleted uranium (DU) rounds were employed and were left in the battlefield. Health concern is related to the risk arising from contamination of the environment with DU penetrators and dust. In order to evaluate the impact of DU on the environment and population in Serbia and Montenegro, radiological surveys of DU in water, air and biological samples were carried out over the period 27 October-5 November 2001. The uranium isotopic concentrations in biological samples collected in Serbia and Montenegro, mainly lichens and barks, were found to be in the range of 0.67-704 Bqkg(-1) for (238)U, 0.48-93.9 Bqkg(-1) for (234)U and 0.02-12.2 Bqkg(-1) for (235)U, showing uranium levels to be higher than in the samples collected at the control sites. Moreover, (236)U was detectable in some of the samples. The isotopic ratios of (234)U/(238)U showed DU to be detectable in many biological samples at all examined sites, especially in Montenegro, indicating widespread ground-surface DU contamination, albeit at very low level. The uranium isotopic concentrations in air obtained from the air filter samples collected in Serbia and Montenegro were found to be in the range of 1.99-42.1 microBqm(-3) for (238)U, 0.96-38.0 microBqm(-3) for (234)U, and 0.05-1.83 microBqm(-3) for (235)U, being in the typical range of natural uranium values. Thus said, most of the air samples are DU positive, this fact agreeing well with the widespread DU contamination detected in the biological samples. The uranium concentrations in water samples collected in Serbia and Montenegro were found to be in the range of 0.40-21.9 mBql(-1) for (238)U, 0.27-28.1 mBql(-1) for (234)U, and 0.01-0.88 mBql(-1) for (235)U, these values being much lower than those in mineral water found in central Italy and below the WHO guideline for drinking water. From a radiotoxicological point of view, at this moment there is no significant radiological risk related to these investigated

  8. The Influences of Uranium Concentration and Polyvinyl Alcohol on the Quality UO2 Microsphere for Fuel of High Temperature Reactor

    International Nuclear Information System (INIS)

    Damunir; Sukarsono; Bangun-Wasito; Endang Nawangsih

    2000-01-01

    The influences of uranium concentration and PVA on the quality of UO 2 microspheres for fuel of high temperature reactor have been investigated. The UO 2 particles were prepared by gel precipitation using internal gelation process. Uranyl nitrate solution containing uranium of 100 g/l was neutralized using NH 4 OH 1 M. The solution was changed into sol by adding 60 g PVA/l solution while stirred and heated up to 80 o C for 20 minutes. In order to find gels in spherical shape, the sol solution was dropped into 5 M NH 4 OH medium. The formed gels were small spheres, was washed, screened and heated up to 120 o C. After that, the gels were calcined at 800 o C for 4 hours, resulting in U 3 O 8 spheres. The U 3 O 8 particles were reduced using H 2 gas in a N 2 media at 800 o C for 4 hours, yielded in UO 2 spheres. Using a similar procedure, the influence of uranium concentration of 150-250 g/l and PVA 40-80 g/l were studied. The qualities of UO 2 particles were obtained by their physical properties, i.e. density, specific surface area, total volume of pores and pore radius using surface area meter and N 2 gas used as absorbent, and the particle size was observed using optical microscope. The result showed that the changing of uranium and PVA concentrations on the internal gelation affected the density, specific surface area, total volume of pores and pore radius of UO 2 particles. (author)

  9. Uranium, Thorium and Potassium concentrations and volumetric heat production rates at the eastern border of the Parana basin

    International Nuclear Information System (INIS)

    Andrade, Telma C.Q.; Ribeiro, Fernando B.

    1997-01-01

    Uranium, thorium and potassium concentrations were measured and volumetric heat production rates were calculated for rocks from the exposed basement at the eastern-southeastern border of the Parana Basin between 23 deg S and 32 deg S. Heat generating element concentration data available in the literature were also used when possible, for volumetric heat production calculations. The uranium concentrations vary from below determination limit (0.51 ppm) and 16 ppm whereas the thorium concentrations vary from below the determination limit (1.26 ppm) and 68 ppm, and K concentrations vary between 0.08% and 5.6%. Volumetric heat production rates vary between 0.07 μW/m 3 to 6.2 μW/m 3 , and the obtained results show a variable heat generation rate with high heat producing bodies scattered along this Parana Basin border. The higher observed values concentrate in the Ribeira fold belt at about 23 deg S and between 30 deg S and 32 deg S in the Down Feliciano fold belt. Isolated high heat production rates can also be observed between 26 deg S and 28 deg S. (author). 11 refs., 3 tabs

  10. Implementation of the United States-Russian Highly Enriched Uranium Agreement: Current Status and Prospects

    International Nuclear Information System (INIS)

    R.rutkowski, E; Armantrout, G; Mastal, E; Glaser, J; Benton, J

    2004-01-01

    The National Nuclear Security Administration's (NNSA) Highly Enriched Uranium (HEU) Transparency Implementation Program (TIP) monitors and provides assurance that Russian weapons-grade HEU is processed into low enriched uranium (LEU) under the transparency provisions of the 1993 United States (U.S.)-Russian HEU Purchase Agreement. Meeting the Agreement's transparency provisions is not just a program requirement; it is a legal requirement. The HEU Purchase Agreement requires transparency measures to be established to provide assurance that the nonproliferation objectives of the Agreement are met. The Transparency concept has evolved into a viable program that consists of complimentary elements that provide necessary assurances. The key elements include: (1) monitoring by technical experts; (2) independent measurements of enrichment and flow; (3) nuclear material accountability documents from Russian plants; and (4) comparison of transparency data with declared processing data. In the interest of protecting sensitive information, the monitoring is neither full time nor invasive. Thus, an element of trust is required regarding declared operations that are not observed. U.S. transparency monitoring data and independent instrument measurements are compared with plant accountability records and other declared processing data to provide assurance that the nonproliferation objectives of the 1993 Agreement are being met. Similarly, Russian monitoring of U. S. storage and fuel fabrication operations provides assurance to the Russians that the derived LEU is being used in accordance with the Agreement. The successful implementation of the Transparency program enables the receipt of Russian origin LEU into the United States. Implementation of the 1993 Agreement is proceeding on schedule, with the permanent elimination of over 8,700 warhead equivalents of HEU. The successful implementation of the Transparency program has taken place over the last 10 years and has provided the

  11. Uranium industry annual, 1991

    International Nuclear Information System (INIS)

    1992-10-01

    In the Uranium Industry Annual 1991, data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2. A feature article entitled ''The Uranium Industry of the Commonwealth of Independent States'' is included in this report

  12. Code of Practice on radiation protection in the mining and milling of radioactive ores (1980) - Guidelines for storage and packaging of uranium concentrates

    International Nuclear Information System (INIS)

    1986-01-01

    This Guideline is intended to provide assistance in the application of the 1980 Code of Practice on radiation protection in mining and milling of radioactive ores. Its purpose is to give advice relevant to the design, construction and operation of an uranium concentrate storage and packaging facility in which exposure to ionizing radiation from uranium-bearing concentrate will not only conform to the Code, but will also be as low as reasonably achievable. (NEA) [fr

  13. Quantifying multiple trace elements in uranium ore concentrates. An interlaboratory comparison

    International Nuclear Information System (INIS)

    Buerger, S.; Boulyga, S.F.; Penkin, M.V.; Jovanovic, S.; Lindvall, R.; Rasmussen, G.; Riciputi, L.

    2014-01-01

    An intercomparison was organized, with six laboratories tasked to quantify sixty-nine impurities in two uranium materials. The main technique employed for analysis was inductively coupled plasma mass spectrometry in combination with matrix-matched external calibration. The results presented highlight the current state-of-the-practice; lessons learned include previously unaccounted polyatomic interferences, issues related to sample dissolution, blank correction and calibration, and the challenge of estimating measurement uncertainties. The exercise yielded consensus values for the two analysed materials, suitable for use as laboratory standards to partially fill a gap in the availability of uranium reference materials characterized for impurities. (author)

  14. Uranium-238 and thorium-232 series concentrations in soil, radon-222 indoor and drinking water concentrations and dose assessment in the city of Alameda, Chihuahua, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Colmenero Sujo, L.; Montero Cabrera, M.E. E-mail: elena.montero@cimav.edu.mx; Villalba, L.; Renteria Villalobos, M.; Torres Moye, E.; Garcia Leon, M.; Garcia-Tenorio, R.; Mireles Garcia, F.; Herrera Peraza, E.F.; Sanchez Aroche, D

    2004-07-01

    High-resolution gamma spectrometry was used to determine the concentration of {sup 40}K, {sup 238}U and {sup 232}Th series in soil samples taken from areas surrounding the city of Aldama, in Chihuahua. Results of indoor air short-time sampling, with diffusion barrier charcoal detectors, revealed relatively high indoor radon levels, ranging from 29 to 422 Bq/m{sup 3}; the radon concentrations detected exceeded 148 Bq/m{sup 3} in 76% of the homes tested. Additionally, liquid scintillation counting showed concentrations of radon in drinking water ranging from 4.3 to 42 kBq/m{sup 3}. The high activity of {sup 238}U in soil found in some places may be a result of the uranium milling process performed 20 years ago in the area. High radon concentrations indoor and in water may be explained by assuming the presence of uranium-bearing rocks underneath of the city, similar to a felsic dike located near Aldama. The estimated annual effective dose of gamma radiation from the soil and radon inhalation was 3.83 mSv.

  15. Uranium-238 and thorium-232 series concentrations in soil, radon-222 indoor and drinking water concentrations and dose assessment in the city of Aldama, Chihuahua, Mexico.

    Science.gov (United States)

    Colmenero Sujo, L; Montero Cabrera, M E; Villalba, L; Rentería Villalobos, M; Torres Moye, E; García León, M; García-Tenorio, R; Mireles García, F; Herrera Peraza, E F; Sánchez Aroche, D

    2004-01-01

    High-resolution gamma spectrometry was used to determine the concentration of 40K, 238U and 232Th series in soil samples taken from areas surrounding the city of Aldama, in Chihuahua. Results of indoor air short-time sampling, with diffusion barrier charcoal detectors, revealed relatively high indoor radon levels, ranging from 29 to 422 Bq/m3; the radon concentrations detected exceeded 148 Bq/m3 in 76% of the homes tested. Additionally, liquid scintillation counting showed concentrations of radon in drinking water ranging from 4.3 to 42 kBq/m3. The high activity of 238U in soil found in some places may be a result of the uranium milling process performed 20 years ago in the area. High radon concentrations indoor and in water may be explained by assuming the presence of uranium-bearing rocks underneath of the city, similar to a felsic dike located near Aldama. The estimated annual effective dose of gamma radiation from the soil and radon inhalation was 3.83 mSv.

  16. Developments in uranium in 1982

    International Nuclear Information System (INIS)

    Chenoweth, W.L.

    1983-01-01

    Slippage in demand, increasing costs, and low spot market prices continued to influence the uranium industry during 1982. The supply of uranium exceeds the current demand and, as a result, exploration for uranium declined in the United States for the fourth straight year. During 1982, 92 companies spent $73.86 million on uranium exploration, including 6.1 million ft of surface drilling. This drilling was done mainly in the producing areas and in the areas of recent discoveries. During the year, a significant discovery was announced in south-central Virginia, the first major discovery in the eastern United States. Production of uranium concentrate declined in 1982, when 1,343 short tons of uranium oxide were produced. Numerous mines and 4 mills were closed during the year. Domestic uranium reserves, as calculated by the Department of Energy, decreased during 1982, mainly because of increasing production costs and the lack of exploration to find new reserves. Exploration for uranium in foreign countries also declined during 1982. Canada and Australia continue to dominate the long-term supply

  17. Uranium industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  18. Uranium industry annual 1996

    International Nuclear Information System (INIS)

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs

  19. Magnetic separation for pre-concentration of uranium values from copper plant tailings

    International Nuclear Information System (INIS)

    Jha, R.S.; Sreenivas, T.; Natarajan, R.; Sridhar, U.; Rao, N.K.

    1991-01-01

    Using the paramagnetic character of uranium minerals, the preconcentration of uranium bearing ores and copper plant tailings of Singhbhum area have been investigated in a pilot plant scale wet high intensity magnetic separator (WHIMS). The variables studied include magnetic field intensity, matrix drum speed feed slurry flow rate and its pulp density. The results of these investigations have shown that 75-85% of the contained uranium values could be recovered in 45-55% weight in the magnetic fraction in the case of copper plant tailings from Rakha, Surda and Mosabani. The losses in the non magnetics were primarily due to the ultrafine liberated uraninite particles not collected by WHIMS due to machine limitations and the values occurring as fine inclusions in quartz. Improved recovery can be obtained by offering higher field gradients and preventing loss of very fine liberated uranium values. High gradient magnetic separator (HGMS) offers higher field gradients. A test sample of Mosabani copper tailings studied at the Sala Magnetic Inc in HGMS has indicated superior results in comparison to WHIMS. (author). 7 refs., 3 figs., 6 tabs

  20. Determination of ultratrace concentrations of uranium and thorium in natural waters by x-ray fluorescence

    International Nuclear Information System (INIS)

    Stewart, J.H. Jr.; Brooksbank, R.D.

    1981-01-01

    An x-ray fluorescence method for the simultaneous determination of uranium and thorium at the less than 1 ppM level in natural waters is described. Uranium and thorium are coprecipitated with an internal standard, yttrium, and incorporated into an iron-aluminum hydroxide carrier. The hydroxide precipitate is filtered, and the filter disk is analyzed by the energy-dispersive x-ray fluorescence technique. Matrix interferences caused by the presence of unpredictable anions and cations are compensated for by the internal standard. The U/Y and Th/Y ratios are linear over the 5- to 100-μg range of interest, and the detection limit of each element on the filter disk is 2 μg (3 sigma). Relative standard deviation was 17% at the 15-μg and 4% at the 100-μg level for thorium and 11% at the 11-μg and 2% at the 100-μg level for uranium. Analysis of spiked solutions showed a recovery of 19.6 +- 0.3 μg for uranium and 19.8 +- 0.3 μg for thorium at the 20-μg level, and the normal lower reporting limit is 5 μg. Fifty disks can be routinely measured during a normal working day

  1. Assessment of the total uranium concentration in surface and underground water samples from the Caetite region, Bahia, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Julia Grasiela Batista; Geraldo, Luiz Paulo [Centro Universitario da Fundacao Educacional de Barretos (UNIFEB), (SP) (Brazil); Yamazaki, Ione Makiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    At the region of Caetite, BA, it is located the largest uranium mine in exploration at present days in Brazil. During the uranium extraction process, it may be having an environmental contamination by this heavy metal due to rain water and other natural transport mechanism, with potential exposition risk to the local population. The aim of this work was to investigate the total uranium concentration in surface and underground water samples collected at the Caetite region, using the nuclear track registration technique (SSNTD) in a polycarbonate plastic. A 100 mL volume of water samples were initially treated in 10 mL of HNO{sub 3} (PA) and concentrated by evaporation at a temperature around 80 deg C. The resulting residue was diluted to a total volume of 25 mL without pass it to a filter. About 10 {mu}L of this solution was deposited on the plastic detector surface (around 1.0 cm{sup 2} area) together with 5 {mu}L of a Cyastat detergent solution (5%) and evaporated under an infrared lamp. All the resulting deposits of non volatile constituents were irradiated, together with a uranium standard sample, at the IPEN-IEA-R1 (3.5 MW) nuclear reactor for approximately 3 min. After irradiations, chemical etching of the plastic detectors was carried out at 60 deg C, for 65 min. in a NaOH (6N) solution. The fission tracks were counted scanning all the deposit area of the polycarbonate plastic detector with a system consisting of an optical microscope together with a video camera and TV monitor. The average values of uranium concentrations obtained in this work ranged from (0.95{+-}0.19) {mu}g.L{sup -1} to (25.60{+-}3.3) {mu}g.L{sup -1}. These results were compared to values reported in the literature for water samples from other regions and discussed in terms of safe limits recommended by WHO -World Health Organization and CONAMA - Conselho Nacional do Meio Ambiente. (author)

  2. Assessment of the total uranium concentration in surface and underground water samples from the Caetite region, Bahia, Brazil

    International Nuclear Information System (INIS)

    Silva, Julia Grasiela Batista; Geraldo, Luiz Paulo; Yamazaki, Ione Makiko

    2011-01-01

    At the region of Caetite, BA, it is located the largest uranium mine in exploration at present days in Brazil. During the uranium extraction process, it may be having an environmental contamination by this heavy metal due to rain water and other natural transport mechanism, with potential exposition risk to the local population. The aim of this work was to investigate the total uranium concentration in surface and underground water samples collected at the Caetite region, using the nuclear track registration technique (SSNTD) in a polycarbonate plastic. A 100 mL volume of water samples were initially treated in 10 mL of HNO 3 (PA) and concentrated by evaporation at a temperature around 80 deg C. The resulting residue was diluted to a total volume of 25 mL without pass it to a filter. About 10 μL of this solution was deposited on the plastic detector surface (around 1.0 cm 2 area) together with 5 μL of a Cyastat detergent solution (5%) and evaporated under an infrared lamp. All the resulting deposits of non volatile constituents were irradiated, together with a uranium standard sample, at the IPEN-IEA-R1 (3.5 MW) nuclear reactor for approximately 3 min. After irradiations, chemical etching of the plastic detectors was carried out at 60 deg C, for 65 min. in a NaOH (6N) solution. The fission tracks were counted scanning all the deposit area of the polycarbonate plastic detector with a system consisting of an optical microscope together with a video camera and TV monitor. The average values of uranium concentrations obtained in this work ranged from (0.95±0.19) μg.L -1 to (25.60±3.3) μg.L -1 . These results were compared to values reported in the literature for water samples from other regions and discussed in terms of safe limits recommended by WHO -World Health Organization and CONAMA - Conselho Nacional do Meio Ambiente. (author)

  3. LITERATURE SURVEY FOR GROUNDWATER TREATMENT OPTIONS FOR NITRATE IODINE-129 AND URANIUM 200-ZP-1 OPERABLE UNIT HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    BYRNES ME

    2008-06-05

    This literature review presents treatment options for nitrate, iodine-129, and uranium, which are present in groundwater at the 200-ZP-I Groundwater Operable Unit (OU) within the 200 West Area of the Hanford Site. The objective of this review is to determine available methods to treat or sequester these contaminants in place (i.e., in situ) or to pump-and-treat the groundwater aboveground (i.e., ex situ). This review has been conducted with emphasis on commercially available or field-tested technologies, but theoretical studies have, in some cases, been considered when no published field data exist. The initial scope of this literature review included only nitrate and iodine-I 29, but it was later expanded to include uranium. The focus of the literature review was weighted toward researching methods for treatment of nitrate and iodine-129 over uranium because of the relatively greater impact of those compounds identified at the 200-ZP-I OU.

  4. LITERATURE SURVEY FOR GROUNDWATER TREATMENT OPTIONS FOR NITRATE, IODINE-129 AND URANIUM 200-ZP-1 OPERABLE UNIT, HANFORD SITE

    International Nuclear Information System (INIS)

    BYRNES ME

    2008-01-01

    This literature review presents treatment options for nitrate, iodine-129, and uranium, which are present in groundwater at the 200-ZP-I Groundwater Operable Unit (OU) within the 200 West Area of the Hanford Site. The objective of this review is to determine available methods to treat or sequester these contaminants in place (i.e., in situ) or to pump-and-treat the groundwater aboveground (i.e., ex situ). This review has been conducted with emphasis on commercially available or field-tested technologies, but theoretical studies have, in some cases, been considered when no published field data exist. The initial scope of this literature review included only nitrate and iodine-I 29, but it was later expanded to include uranium. The focus of the literature review was weighted toward researching methods for treatment of nitrate and iodine-129 over uranium because of the relatively greater impact of those compounds identified at the 200-ZP-I OU

  5. Detailed uranium hydrogeochemical and stream sediment reconnaissance data release for the eastern portion of the Montrose NTMS Quadrangle, Colorado, including concentrations of forty-five additional elements

    International Nuclear Information System (INIS)

    Maassen, L.W.

    1981-01-01

    In September and October 1979, the Los Alamos Scientific Laboratory (LASL) conducted a detailed geochemical survey for uranium primarily in the Sawatch Range in the eastern part of the Montrose National Topographic Map Series (NTMS) quadrangle, Colorado, as part of the National Hydrogeochemical and Stream Sediment Reconnaissance (HSSR). Totals of 1034 water and 2087 sediment samples were collected from streams and springs from 2088 locations within a 5420-km 2 area. Statistical data for uranium concentrations in water and sediment samples are presented. Elemental concentration, field measurement, weather, geologic, and geographic data for each sample location are listed for waters and for sediments in appendices. Uranium/thorium ratios for sediment samples are also included. This report contains uranium analyses for water samples and multielement analyses for sediment samples. Sediments were analyzed for uranium and thorium as well as Al, Sb, As, Ba, Be, Bi, Cd, Ca, Ce, Cs, Cl, Cr, Co, Cu, Dy, Eu, Au, Hf, Fe, La, Pb, Li, Lu, Mg, Mn, Ni, Nb, K, Rb, Sm, Sc, Se, Ag, Na, Sr, Ta, Tb, Sn, Ti, W, V, Yb, Zn, and Zr. All elemental analyses were performed at the LASL. Water samples were analyzed for uranium by fluorometry. Sediments were analyzed for uranium by delayed neutron counting. Other elemental concentrations in sediments were determined by neutron activation analysis for 31 elements, by x-ray fluorescence for 12 elements, and by arc-source emission spectrography for 2 elements. Descriptions of procedures as analytical precisions and detection limits are given in the appendix

  6. Predictive geochemical modeling of contaminant concentrations in laboratory columns and in plumes migrating from uranium mill tailings waste impoundments

    International Nuclear Information System (INIS)

    Peterson, S.R.; Martin, W.J.; Serne, R.J.

    1986-04-01

    A computer-based conceptual chemical model was applied to predict contaminant concentrations in plumes migrating from a uranium mill tailings waste impoundment. The solids chosen for inclusion in the conceptual model were selected based on reviews of the literature, on ion speciation/solubility calculations performed on the column effluent solutions and on mineralogical characterization of the contacted and uncontacted sediments. The mechanism of adsorption included in the conceptual chemical model was chosen based on results from semiselective extraction experiments and from mineralogical characterization procedures performed on the sediments. This conceptual chemical model was further developed and partially validated in laboratory experiments where assorted acidic uranium mill tailings solutions percolated through various sediments. This document contains the results of a partial field and laboratory validation (i.e., test of coherence) of this chemical model. Macro constituents (e.g., Ca, SO 4 , Al, Fe, and Mn) of the tailings solution were predicted closely by considering their concentrations to be controlled by the precipitation/dissolution of solid phases. Trace elements, however, were generally predicted to be undersaturated with respect to plausible solid phase controls. The concentration of several of the trace elements were closely predicted by considering their concentrations to be controlled by adsorption onto the amorphous iron oxyhydroxides that precipitated

  7. Concentrations and fluxes of dissolved uranium in the Yellow River estuary: seasonal variation and anthropogenic (Water-Sediment Regulation Scheme) impact

    International Nuclear Information System (INIS)

    Juanjuan, Sui; Zhigang, Yu; Bochao, Xu; Wenhua, Dong; Dong, Xia; Xueyan, Jiang

    2014-01-01

    The Water-Sediment Regulation Scheme (WSRS) of the Yellow River is a procedure implemented annually from June to July to expel sediments deposited in Xiaolangdi and other large middle-reach reservoirs and to scour the lower reaches of the river, by controlling water and sediment discharges. Dissolved uranium isotopes were measured in river waters collected monthly as well as daily during the 2010 WSRS (June 19–July 16) from Station Lijin (a hydrologic station nearest to the Yellow River estuary). The monthly samples showed dissolved uranium concentrations of 3.85–7.57 μg l −1 and 234 U/ 238 U activity ratios of 1.24–1.53. The concentrations were much higher than those reported for other global major rivers, and showed seasonal variability. Laboratory simulation experiments showed significant uranium release from bottom and suspended sediment. The uranium concentrations and activity ratios differed during the two stages of the WSRS, which may reflect desorption/dissolution of uranium from suspended river sediments of different origins. An annual flux of dissolved uranium of 1.04 × 10 8 g y −1 was estimated based on the monthly average water discharge and dissolved uranium concentration in the lower reaches of the Yellow River. The amount of dissolved uranium (2.65 × 10 7 g) transported from the Yellow River to the sea during the WSRS constituted about 1/4 of the annual flux. -- Highlights: • Dissolved U in the Yellow River estuary has distinct seasonal variability. • Geochemistry of dissolved U influenced by the WSRS has been analyzed. • Uranium flux during the WSRS has been evaluated

  8. Uranium hydrogeochemical and stream sediment reconnaissance data release for the Socorro NRMS Quadrangle, New Mexico, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Planner, H.N.; Fuka, M.A.; Hanks, D.E.; Hansel, J.M.; Minor, M.M.; Montoya, J.D.; Sandoval, W.F.

    1980-10-01

    Results for uranium in water samples and uranium and 42 additional elements in sediment samples are given. A total of 650 water samples was collected from wells (525), springs (99), streams (25), and one pond. Uranium concentrations for all water samples range from below the detection limit to 157.20 parts per billion (ppB). Mean concentrations in springs and well waters are 4.91 ppB and 5.04 ppB, respectively, compared to a value of 2.78 ppB in stream waters. Of the 1384 sediment samples collected, 1246 are from dry stream beds. The remaining 138 samples are from springs (68), ponds (50), and flowing streams (20). Uranium concentrations in sediments range from 0.84 to 13.40 parts per million (ppM) with the exception of a single 445.10-ppM concentration. The mean uranium content of all sediments is 3.12 ppM. Field data, recorded at the collection site, are reported with the elemental concentrations for each water and sediment sample listed in Appendixes I-A and I-B. These data include a scintillometer determination of the equivalent uranium, pH and conductivity measurements, and geographic and weather information. Appendix II explains the codes used in Appendix I and describes the standard field and analytical procedures used by the LASL in the HSSR program

  9. Uranium hydrogeochemical and stream sediment reconnaissance data release for the Leadville NTMS Quadrangle, Colorado, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Planner, H.N.

    1980-10-01

    A total of 1797 locations was sampled over a 19 330-km 2 area, providing an average density of one sample location per 11 km 2 . This report contains results for uranium in water samples and uranium and 42 additional elements in sediment samples. A total of 1279 water samples was collected from streams (1125) and springs (154). Uranium concentrations for all water samples range from below the detection limit of 0.02 ppB to 37.56 ppB. Mean concentrations in streams and springs are 1.05 ppB and 1.19 ppB, respectively. A total of 1784 sediment samples was collected from streams (1590), springs (193), and one pond. Uranium concentrations in sediments range from 1.27 to 223.80 ppM. Statistical mean uranium concentrations for wet stream (8.55 ppM) and spring (7.51 ppM) sediments are found to be greater than their dry counterparts (5.13 ppM and 4.96 ppM, respectively). Field data, recorded at the collection site, are reported with the elemental concentrations for each water and sediment sample listed. These data include a scintillometer determination of the equivalent uranium, pH and conductivity measurements, and geographic and weather information

  10. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Introduction to Data Files, United States: Volume 1

    International Nuclear Information System (INIS)

    1985-01-01

    One product of the Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program, a component of the National Uranium Resource Evaluation (NURE), is a data-base of interest to scientists and professionals in the academic, business, industrial, and governmental communities. This database contains individual records for water and sediment samples taken during the reconnaissance survey of the entire United States, excluding Hawaii. The purpose of this report is to describe the NURE HSSR data by highlighting its key characteristics and providing user guides to the data. A companion report, ''A Technical History of the NURE HSSR Program,'' summarizes those aspects of the HSSR Program which are likely to be important in helping users understand the database. Each record on the database contains varying information on general field or site characteristics and analytical results for elemental concentrations in the sample; the database is potentially valuable for describing the geochemistry of specified locations and addressing issues or questions in other areas such as water quality, geoexploration, and hydrologic studies. This report is organized in twelve volumes. This first volume presents a brief history of the NURE HSSR program, a description of the data files produced by ISP, a Users' Dictionary for the Analysis File and graphs showing the distribution of elemental concentrations for sediments at the US level. Volumes 2 through 12 are comprised of Data Summary Tables displaying the percentile distribution of the elemental concentrations on the file. Volume 2 contains data for the individual states. Volumes 3 through 12 contain data for the 1 0 x 2 0 quadrangles, organized into eleven regional files; the data for the two regional files for Alaska (North and South) are bound together as Volume 12

  11. Uranium enrichment

    International Nuclear Information System (INIS)

    1990-01-01

    This report looks at the following issues: How much Soviet uranium ore and enriched uranium are imported into the United States and what is the extent to which utilities flag swap to disguise these purchases? What are the U.S.S.R.'s enriched uranium trading practices? To what extent are utilities required to return used fuel to the Soviet Union as part of the enriched uranium sales agreement? Why have U.S. utilities ended their contracts to buy enrichment services from DOE?

  12. On the applicability of the critical safety function concept to a uranium hexafluoride conversion unit

    International Nuclear Information System (INIS)

    Santos, F.C.; Goncalves, J.S.; Melo, P.F. Frutuoso e; Medeiros, J.A.C.C.

    2013-01-01

    This paper presents a discussion on the applicability on the critical safety function (CSF) concept as a design criterion for the new UF 6 conversion plant of Industrias Nucleares do Brazil (INB). This discussion is in the context of accident management, under the safety function oriented management. Safety functions may be understood as those whose loss may lead to releases of radioactive material or highly toxic chemicals, having possible radiological and/or occupational consequences for workers, the public or the environment. They should be designed to prevent criticality and to ensure adequate process confinement, thus preventing radioactive material releases that might lead to internal or external exposure and highly toxic chemical releases and exposure. The main hazards is the potential release of chemicals, especially HF and UF 6 . A criticality hazard exists only if the conversion facility processes uranium with a 235 U concentration greater than 1% Industrial activities for UF 6 production include handling and processing explosive, toxic and lethal chemicals, such as HF, H 2 and elemental F 2 , besides intermediate compounds containing uranium. State trees and definition of logical arrangements to construct an annunciation system are the next development stages, resulting form the establishment of applicable CSFs as representative of the next development stages, resulting from the establishment of applicable CSFs as representative of the various systems that make up the conversion plant. Discussed also in the biggest challenge of the development of this innovation, that is, the uncertainties related to the impact of human factors (not subject to monitoring by sensors or process conventional instrumentation). (author)

  13. On the applicability of the critical safety function concept to a uranium hexafluoride conversion unit

    Energy Technology Data Exchange (ETDEWEB)

    Santos, F.C.; Goncalves, J.S.; Melo, P.F. Frutuoso e; Medeiros, J.A.C.C., E-mail: fcruz@nuclear.ufrj.br, E-mail: jsgoncalves@inb.gov.br, E-mail: frutuoso@nuclear.ufrj.br, E-mail: canedo@imp.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    This paper presents a discussion on the applicability on the critical safety function (CSF) concept as a design criterion for the new UF{sub 6} conversion plant of Industrias Nucleares do Brazil (INB). This discussion is in the context of accident management, under the safety function oriented management. Safety functions may be understood as those whose loss may lead to releases of radioactive material or highly toxic chemicals, having possible radiological and/or occupational consequences for workers, the public or the environment. They should be designed to prevent criticality and to ensure adequate process confinement, thus preventing radioactive material releases that might lead to internal or external exposure and highly toxic chemical releases and exposure. The main hazards is the potential release of chemicals, especially HF and UF{sub 6}. A criticality hazard exists only if the conversion facility processes uranium with a {sup 235}U concentration greater than 1% Industrial activities for UF{sub 6} production include handling and processing explosive, toxic and lethal chemicals, such as HF, H{sub 2} and elemental F{sub 2}, besides intermediate compounds containing uranium. State trees and definition of logical arrangements to construct an annunciation system are the next development stages, resulting form the establishment of applicable CSFs as representative of the next development stages, resulting from the establishment of applicable CSFs as representative of the various systems that make up the conversion plant. Discussed also in the biggest challenge of the development of this innovation, that is, the uncertainties related to the impact of human factors (not subject to monitoring by sensors or process conventional instrumentation). (author)

  14. Modeling the interaction of light intensity, nutrient concentration and uranium toxicity in Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, E.; Horemans, N.; Vandenhove, H. [Belgian Nuclear Research Centre SCK-CEN (Belgium); Cedergreen, N. [University of Copenhagen (Denmark); Jager, T. [Vrije Universiteit Amsterdam (Netherlands)

    2014-07-01

    focused on (heterotrophic) animals, where usually only one food source with constant composition is taken into account. Reproduction can in most cases be modeled simplistically as continuous production of offspring in the final developmental stage. A DEB model for a (photoautotrophic) plant should take into account both light and nutrients as energy input. Additionally, reproduction takes place differently than in animals (e.g., vegetative reproduction). Until now, no plant model based on DEB has been developed yet. We here present the first DEB model for a plant. It explicitly takes light as an input of energy into account, which enables us to study the interaction of light intensity and radionuclides. As study organism, we chose Lemna minor,because of its advantages of being a relatively simple higher plant. We discuss the interaction of light intensity, nutrient concentration and radionuclides using uranium toxicity as a case study. Document available in abstract form only. (authors)

  15. Recovery of valuable products in liquid effluents from uranium and thorium pilot units

    International Nuclear Information System (INIS)

    Jardim, E.A.; Abrao, A.

    1988-01-01

    IPEN-CNEN/SP has being very active in refining yellowcake to pure ammonium diuranate which is converted to uranium trioxide, uranium dioxide, uranium tetra- and hexafluoride in a sequential way. The technology of the thorium purification and its conversion to nuclear grade products has been a practice since several years as well. For both elements the major waste to be worked is the refinate from the solvent extraction column where uranium and thorium are purified via TBP-varsol in pulsed columns. In this paper the actual processing technology is reviewed with special emphasis on the recovery of valuable products, mainly nitric acid and ammonium nitrate. Distilled nitric acid and the final sulfuric acid as residue are recycle. Ammonium nitrate from the precipitation of uranium diuranate is of good quality, being radioactivity and uranium-free, and recommended to be applied as fertilizer. In conclusion the main effort is to maximise the recycle and reuse of the abovementioned chemicals. (author) [pt

  16. Influence of season growth, soils and irrigation water composition on the concentration of uranium in two lettuce (Lactuca sativa L.) varieties. Field experiments

    Science.gov (United States)

    Abreu, M. M.; Neves, O.; Marcelino, M.

    2012-04-01

    Former uranium mines areas are frequently the sources of environmental radionuclides problems even many years after the closure of mining operations. A concern for inhabitants from mining areas is the use of contaminated land or irrigation water for agriculture, and the potential transfer of metals from soils to vegetables, and to humans through the food chain. The main aim of this study was to compare the uranium concentration in lettuce (Lactuca sativa L. varieties Marady and Romana) grown in different seasons (autumn and summer) and exposed to high and low uranium concentrations both in irrigation water and agricultural soil. The content of uranium in irrigation water, soil (total and available fraction) and in lettuce leaf samples was analyzed in a certified laboratory. In the field experiments, two agricultural soils were divided into two plots (four replicates each); one of them was irrigated with uranium contaminated water (0.94 to 1.14 mg/L) and the other with uncontaminated water (< 0.02 mg/L). Irrigation with contaminated water together with highest soil uranium available concentration (10 to 13 mg/kg) had negative effects on both studied lettuce varieties, namely yield reduction (up to 53% and 87% in autumn and summer experiments, respectively) and increase of uranium leaf concentration (up to 1.4 and 7 fold in autumn and summer, respectively). Effect on lettuce yield was mainly due to the high soil salinity (1.01 to 6.31 mS/cm) as a consequence of high irrigation water electrical conductivity (up to 1.82 mS/cm) and low lettuce soil salinity tolerance (1 to 3 mS/cm). The highest lettuce uranium concentration (dry weight) observed was 2.13 and 5.37 mg/kg for Marady and Romana variety, respectively. The highest uranium lettuce concentration in Romana variety was also the effect of its growing in summer season when it was subject to greatest frequency and amount of water irrigation. The consumption by an adult of the lettuce that concentrate more uranium

  17. Application of bimodal distribution to the detection of changes in uranium concentration in drinking water collected by random daytime sampling method from a large water supply zone.

    Science.gov (United States)

    Garboś, Sławomir; Święcicka, Dorota

    2015-11-01

    The random daytime (RDT) sampling method was used for the first time in the assessment of average weekly exposure to uranium through drinking water in a large water supply zone. Data set of uranium concentrations determined in 106 RDT samples collected in three runs from the water supply zone in Wroclaw (Poland), cannot be simply described by normal or log-normal distributions. Therefore, a numerical method designed for the detection and calculation of bimodal distribution was applied. The extracted two distributions containing data from the summer season of 2011 and the winter season of 2012 (nI=72) and from the summer season of 2013 (nII=34) allowed to estimate means of U concentrations in drinking water: 0.947 μg/L and 1.23 μg/L, respectively. As the removal efficiency of uranium during applied treatment process is negligible, the effect of increase in uranium concentration can be explained by higher U concentration in the surface-infiltration water used for the production of drinking water. During the summer season of 2013, heavy rains were observed in Lower Silesia region, causing floods over the territory of the entire region. Fluctuations in uranium concentrations in surface-infiltration water can be attributed to releases of uranium from specific sources - migration from phosphate fertilizers and leaching from mineral deposits. Thus, exposure to uranium through drinking water may increase during extreme rainfall events. The average chronic weekly intakes of uranium through drinking water, estimated on the basis of central values of the extracted normal distributions, accounted for 3.2% and 4.1% of tolerable weekly intake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Project development for mining-metallurgical complexes for production of uranium concentrates - an analysis and a methodology

    International Nuclear Information System (INIS)

    Ajuria G, S.; Blanco P, B.; Pena A, J.; Manzanera Q, C.

    1978-10-01

    Activities comprising the development of a project for a mining-metallurgical complex for production of uranium concentrates, from sampling and evaluation of an orebody until plant start-up, are analyzed. The analysis of the orebody, characterization of the ore, bench scale and pilot plant metallurgical studies, environmental studies and economic analyses of the project are described. The mining project and mine preparation and engineering and construction of the plant are reviewed in less detail. The estimated time lapse for the development of a typical project under ideal conditions is 66 months. A bar diagram is included showing an approximate timetable for each activity. (author)

  19. Preservation and concentration of uranium mineralization in the crust of weathering

    International Nuclear Information System (INIS)

    Ashikhmin, A.A.; Kuznetsov, S.V.; Shmarovich, E.M.

    1983-01-01

    Inprecision of the concept on indispensable evacuation of U from ores during formation of the crust of weathering of lateritic or kaolinitic profile due to the existence of oxidative situation in the crusts is established. At hydrothermal uranium deposit in Eocambrian sandy-shaly and Paleozoic volcanogenous-sedimentary rocks a high degree of mineralization preservation in lower and medium horizons of Mesozoic-Cenozoic hydro-micaceous-kaolinitic crust of weathering, characterized by reductive situation, presence of carbonaceous substance, pyrite and siderite, is established. Mineralization attained there black composition and was additionally enriched with uranium. A supposition is made that the case is specific for the development of lateritic and kaolinitic crust formation according to ore-bearing rocks, rich in reducing agents-carbonaceous substances, sulfides and minerals of protoxidic iron. The data obtained should be taken into account during prediction and prospecting activities

  20. Determination of the uranium concentration in apatite by the fission - track registration technique

    International Nuclear Information System (INIS)

    D'Oliveira Cardoso, D.

    1983-01-01

    The feasibility of using the fission-track registration technique to determine the uranium content in the phosphate rock beneficiation steps carried on by CompanhiA Arafertil, Araxa, Minas Gerais, Brazil is studied. This determination is of considerable interest to the environmental control of the Arafertil installations as well as of its surroundings or of the areas where these products will be used. The so called wet method was adopted and a 10 μm polycarbonate foil, fabricated by Bayer under the trade name Makrofol KG was used as detector. From the calibration curve obtained, it was possible to determine uranium contents in sample solutions ranging from 21 to 212 μg U/1 with an accuracy of 8 to 14.7%, respectively. The results obtained demonstrated that the technique used is appropriate to the purposes previously aimed at. (Author) [pt

  1. Uranium concentrations in stream waters and sediments from selected sites in the eastern Seward Peninsula, Koyukuk, and Charley River areas, and across South-Central Alaska

    International Nuclear Information System (INIS)

    Sharp, R.R. Jr.; Hill, D.E.

    1978-04-01

    During the summer of 1975, a 6-week reconnaissance was conducted in widespread areas of Alaska as part of the National Uranium Resource Evaluation (NURE) program; Water, stream sediment, and bedrock samples were taken from the eastern Seward Peninsula, from north of Koyukuk River, from the Charley River area, and from across south central Alaska. This report contains the LASL uranium determinations resulting from fluorometric analysis of the water samples and delayed-neutron counting of the stream sediment samples. Results of total uranium for 611 water and 641 sediment samples, from 691 stream locations, are presented. Overlays showing the numbered sample locations and graphically portraying the concentrations of uranium in water and stream sediment samples, at 1:250,000 scale for use with existing National Topographic Map Series (NTMS) sheets and published geologic maps, are provided as plates. The main purposes of this work are to make the uranium data available to the public in the standard computer format used in the NURE Hydrogeochemical and Stream Sediment Reconnaissance (i.e., with a DOE sample number giving the latitude and longitude of each sample location) and to provide uranium concentration overlays at the standard scale of 1:250,000 adopted by the DOE for the NURE program. It also allows a plausible explanation of differences between the uranium values for sediment as determined by acid dissolution/extraction/fluorometry and by delayed-neutron counting that were noted in the earlier report

  2. Issues in uranium availability

    International Nuclear Information System (INIS)

    Schanz, J.J. Jr.; Adams, S.S.; Gordon, R.L.

    1982-01-01

    The purpose of this publication is to show the process by which information about uranium reserves and resources is developed, evaluated and used. The following three papers in this volume have been abstracted and indexed for the Energy Data Base: (1) uranium reserve and resource assessment; (2) exploration for uranium in the United States; (3) nuclear power, the uranium industry, and resource development

  3. Uranium industry annual, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    Uranium industry data collected in the EIA-858 survey provide a comprehensive statistical characterization of annual activities of the industry and include some information about industry plans over the next several years. This report consists of two major sections. The first addresses uranium raw materials activities and covers the following topics: exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment. The second major section is concerned with the following uranium marketing activities: uranium purchase commitments, uranium prices, procurement arrangements, uranium imports and exports, enrichment services, inventories, secondary market activities utility market requirements and related topics

  4. Concentrations and fluxes of dissolved uranium in the Yellow River estuary: seasonal variation and anthropogenic (Water-Sediment Regulation Scheme) impact.

    Science.gov (United States)

    Juanjuan, Sui; Zhigang, Yu; Bochao, Xu; Wenhua, Dong; Dong, Xia; Xueyan, Jiang

    2014-02-01

    The Water-Sediment Regulation Scheme (WSRS) of the Yellow River is a procedure implemented annually from June to July to expel sediments deposited in Xiaolangdi and other large middle-reach reservoirs and to scour the lower reaches of the river, by controlling water and sediment discharges. Dissolved uranium isotopes were measured in river waters collected monthly as well as daily during the 2010 WSRS (June 19-July 16) from Station Lijin (a hydrologic station nearest to the Yellow River estuary). The monthly samples showed dissolved uranium concentrations of 3.85-7.57 μg l(-1) and (234)U/(238)U activity ratios of 1.24-1.53. The concentrations were much higher than those reported for other global major rivers, and showed seasonal variability. Laboratory simulation experiments showed significant uranium release from bottom and suspended sediment. The uranium concentrations and activity ratios differed during the two stages of the WSRS, which may reflect desorption/dissolution of uranium from suspended river sediments of different origins. An annual flux of dissolved uranium of 1.04 × 10(8) g y(-1) was estimated based on the monthly average water discharge and dissolved uranium concentration in the lower reaches of the Yellow River. The amount of dissolved uranium (2.65 × 10(7) g) transported from the Yellow River to the sea during the WSRS constituted about 1/4 of the annual flux. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Uranium hydrogeochemical and stream sediment reconnaissance data release for the Butte NTMS Quadrangle, Montana, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Broxton, D.E.; George, W.E.; Montoya, J.V.; Martell, C.J.; Hensley, W.K.; Hanks, D.

    1980-05-01

    This report contains data collected during a geochemical survey for uranium in the Butte National Topographic Map Series (NTMS) quadrangle of west-central Montana. Histograms and statistical data for uranium concentrations in water and sediment samples and thorium concentrations in sediment samples are given. Elemental concentration, field measurement, weather, geologic, and geographic data for each sample location are listed for waters and for sediments. Uranium/thorium ratios for sediment samples are also included. This report contains uranium analyses for water samples and multielement analyses for sediment samples. A supplemental report containing the results of multielement analyses of water samples will be open filed in the near future. Sediments were analyzed for uranium and thorium as well as aluminum, antimony, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, chlorine, chromium, cobalt, copper, dysprosium, europium, gold, hafnium, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, nickel, niobium, potassium, rubidium, samarium, scandium, silver, sodium, strontium, tantalum, terbium, tin, titanium, tungsten, vanadium, ytterbium, and zinc. All elemental analyses were performed at the LASL. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than 40 ppB uranium were reanalyzed by delayed-neutron counting (DNC). All sediments were analyzed for uranium by DNC. Other elemental concentrations in sediments were determined by neutron activation analysis for 31 elements, by x-ray fluorescence for 9 elements, and by arc-source emission spectrography for 2 elements. Analytical results for sediments are reported as parts per million. Descriptions of procedures used for analysis of water and sediment samples as well as analytical precisions and detection limits are given

  6. Uranium hydrogeochemical and stream sediment reconnaissance data release for the Rock Springs NTMS Quadrangle, Wyoming, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Morgan, T.L.

    1981-01-01

    This report contains data collected by the Los Alamos Scientific Laboratory (LASL) during a regional geochemical survey for uranium in the Rock Springs National Topographic Map Series (NTMS) quadrangle, southwestern Wyoming, as part of the nationwide hydrogeochemical and Stream Sediment Reconnaissance (HSSR). Totals of 397 water and 1794 sediment samples were collected from 1830 locations in the Rock Springs quadrangle of southern Wyoming during the summer of 1976. The average uranium concentration of all water samples is 6.57 ppb and the average sediment uranium concentration is 3.64 ppM. Elemental concentration, field measurement, weather, geologic, and geographic data for each sample location are listed for waters and for sediments in the appendices. Uranium/thorium ratios for sediment samples are also included. A sample location overlay (Plate I) at 1:250 000 scale for use in conjunction with the Rock Springs NTMS quadrangle sheet (US Geological Survey, 1954) is provided. All elemental analyses were performed at the LASL. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than 40 ppB uranium were reanalyzed by delayed-neutron counting. Sediments were analyzed for uranium and thorium as well as Al, Sb, Ba, Be, Bi, Cd, Ca, Ce, Cs, Cl, Cr, Co, Cu, Dy, Eu, Au, Hf, Fe, La, Pb, Li, Lu, Mg, Mn, Ni, Nb, K, Rb, Sm, Sc, Ag, Na, Sr, Ta, Tb, Sn, T, W, V, Yb, and Zn. All sediments were analyzed for uranium by delayed-neutron counting. Other elemental concentrations in sediments were determined by neutron-activation analysis for 30 elements, by x-ray fluorescence for 12 elements, and by arc-source emission spectrography for 2 elements. These analytical methods are described briefly in the appendix. This report is simply a data release and is intended to make the data available to the DOE and to the public as quickly as possible

  7. Domestic uranium exploration activities

    International Nuclear Information System (INIS)

    Chenoweth, W.L.

    1980-01-01

    Uranium exploration in the United States reached its alltime high in 1978 when the chief exploration indicator, surface drilling, totaled 47 million feet. In 1979, however, total drilling declined to 41 million feet, and during the first 8 months of 1980 the trend continued, as surface drilling was 27% less than for the same period in 1979. The total drilling for 1980 now is expected to be below 30 million feet, far less than the 39.4 million feet planned by industry at the beginning of the year. Falling uranium prices, the uncertainties of future uranium demand, rising costs, and the possibility of stiff foreign competition are the prime causes for the current reduction in domestic uranium exploration. Uranium exploration in the United States continues to be concentrated in the vicinity of major producing areas such as the San Juan Basin, Wyoming Basins, Texas Coastal Plain, Paradox Basin, and northeastern Washington, and in areas of recent discoveries including the Henry Mountains, Utah, the McDermitt caldera in Nevada and Oregon, and central Colorado. The distributions, by location, of total surface drilling for 1979 and the first half of 1980 are presented

  8. United States Transuranium and Uranium Registries: Researching radiation protection. USTUR annual report for February 1, 1999 through January 31, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhart, Susan M. (ed.); Filipy, Ronald E. (ed.)

    2000-07-01

    The United States Transuranium and Uranium Registries (USTUR) comprise a human tissue research program studying the deposition, biokinetics and dosimetry of the actinide elements in humans with the primary goals of providing data fundamental to the verification, refinement, or future development of radiation protection standards for these and other radionuclides, and of determining possible bioeffects on both a macro and subcellular level attributable to exposure to the actinides. This report covers USTUR activities during the year from February 1999 through January 2000.

  9. United States Transuranium and Uranium Registries: Researching radiation protection. USTUR annual report for February 1, 1999 through January 31, 2000

    International Nuclear Information System (INIS)

    Ehrhart, Susan M.; Filipy, Ronald E.

    2000-01-01

    The United States Transuranium and Uranium Registries (USTUR) comprise a human tissue research program studying the deposition, biokinetics and dosimetry of the actinide elements in humans with the primary goals of providing data fundamental to the verification, refinement, or future development of radiation protection standards for these and other radionuclides, and of determining possible bioeffects on both a macro and subcellular level attributable to exposure to the actinides. This report covers USTUR activities during the year from February 1999 through January 2000

  10. Summary of the engineering assessment of inactive uranium mill tailings: Phillips/United Nuclear site, Ambrosia Lake, New Mexico

    International Nuclear Information System (INIS)

    1981-10-01

    Ford, Bacon and Davis Utah, Inc., has reevaluated the Phillips/United Nuclear site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Ambrosia Lake, New Mexico. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.6 million dry tons of tailings at the Phillips/United Nuclear site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material, to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $21,500,000 for stabilization in-place, to about $45,200,000 for disposal at a distance of about 15 mi. Three principal alternatives for the reprocessing of the Phillips/United Nuclear tailings were examined: heap leaching; treatment at an existing mill; reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $87/lb of U 3 O 8 by either heap leach or conventional plant process. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Phillips/United Nuclear tailings for uranium recovery does not appear to be economically attractive under present or foreseeable market conditions

  11. Concentration of gold, sulphide minerals, and uranium oxide minerals by flotation from ores and metallurgical plant products

    International Nuclear Information System (INIS)

    Weston, D.

    1976-01-01

    A process is described for the concentration by flotation of gold, gold bearing minerals and uranium oxide minerals from ores and metallurgical plant products. A pulp of a ground ore is agitation conditioned in at least two agitation conditioning stages wherein in at least one stage the pH of the pulp is lowered with an acid agent to within the pH range of about 1.5 to 5.0, and wherein in at least one additional agitation conditioning stage the pH of the pulp is raised to within the pH range of about 6.0 to 11.0 and wherein in at least the last stage prior to flotation at least one collector selected from the group of sulfhydryl anionic collectors is present. Subsequently, the at least two stage agitation conditioned pulp is subjected to flotation to produce a flotation concentrate enriched in at least one of the mineral values from the group consisting of gold, gold bearing minerals and uranium minerals

  12. Marine mollusks as bio concentrators of uranium and plutonium; Moluscos marinos como bioconcentradores de uranio y plutonio

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez R, E.; Almazan T, M. G.; Escalante G, D. C., E-mail: eduardo.ordonez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    The sudden presence of certain radionuclides in the marine environment has been of global concern and has raised concerns about the nature and abundance of these, in an attempt to establish dispersion patterns from their discharge points. In the particular case of our country, there are few data on the presence and concentration of alpha emitters, such as uranium and plutonium in the littorals and due to this fact there is a need to establish their reference levels in some specific points of the Mexican littoral. This work thus raises the study of part of the biota that grows and develops in sites near the sampling points. Is known that bivalve mollusks are natural bio-concentrators due to their capacity to absorb some metals dissolved in water, being able to find contaminating metals in their soft bodies, but they also accumulate large quantities when they generate their shells from dissolved carbonates that are complex with uranium and plutonium. The shells of the mollusks were studied to determine the physicochemical characteristics of their shells and the U and Pu were also separated by means of radiochemical techniques, being then electrodeposited in steel discs and evaluated by means of alpha spectroscopy. The results of the methodology prototype are presented to determine the U and Pu dispersed in the littoral by means of the analysis of some mollusks of the zone. (Author)

  13. Direct quantification of thorium, uranium and rare earth element concentration in natural waters by ICP-MS

    International Nuclear Information System (INIS)

    Palmieri, Helena E.L.; Knupp, Eliana A.N.; Auler, Lucia M.L.A.; Gomes, Luiza M.F.; Windmoeller, Claudia C.

    2011-01-01

    A direct quantification of the thorium, uranium and rare earth elements in natural water samples using inductively coupled plasma mass spectrometry (ICP-MS) was evaluated with respect to selection of isotopes, detection limits, accuracy, precision, matrix effects for each isotope and spectral interferences. Accuracy of the method was evaluated by analysis of Spectra pure Standards (SPS-SW1 Batch 116-Norway) for the rare earth elements (REEs), thorium, uranium, scandium and yttrium. The measurements were carried out for each of the following analytical isotopes: 139 La, 140 Ce, 141 Pr, 143 Nd, 147 Sm, 151 Eu, 160 Gd, 159 Tb, 163 Dy, 165 Ho, 167 Er, 16 9Tm, 174 Yb, 175 Lu, 45 Sc, 89 Y, 232 Th and 238 U. Recovery percentage values found in these certified samples varied between 95 and 107%. The method was applied to the analysis of spring water samples collected in fountains spread throughout the historical towns of Ouro Preto, Mariana, Sabara and Diamantina in the state of Minas Gerais, Brazil. In the past these fountains played an essential and strategic role in supplying these towns with potable water. Until today this water is used by both the local population and tourists who believe in its quality. REE were quantified at levels comparable to those found in estuarine waters, which are characterized by low REE concentrations. In two fountains analyzed the concentration of REEs presented high levels and thus possible health risks for humans may not be excluded. (author)

  14. Measurement of the radioactive concentration in consumer's goods containing natural uranium and thorium and evaluation of the exposure by their utilization

    International Nuclear Information System (INIS)

    Yoshida, Masahiro; Satou, Shigerou; Ohhata, Tsutomu; Watanabe, Masatoshi; Ohyama, Ryutaro; Furuya, Hirotaka; Endou, Akira

    2005-01-01

    A number of consumer's goods which contain natural uranium and thorium are circulated in the familiar living environment. Based on various kinds of information sources, 20 kinds of these consumer's goods were collected and their radioactive concentrations were measured by using ICP-MS and Ge semiconductor detector. As this result, it was found that the concentrations of uranium and thorium in the consumer's goods used at home and industries were below 34 Bq/g and below 270 Bq/g, respectively. Next, the concentrations of daughter nuclides were not so different from the ones of uranium or thorium, which showed that the secular radioactive equilibrium held between both concentrations. In addition, the radiation exposures for public consumer were evaluated when four kinds of typical consumer's goods frequently used in daily life are utilized. The results computed by MCNP-4C code were below 250 μSv/y. (author)

  15. Application of the Geographic Information Systems (GIS) in the spatialization of U, Th and K concentrations on the proximity of brazilian uranium mines

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Simara S.; Veiga, Artur J.P., E-mail: simaracampos@gmail.com [Universidade Estadual do Sudoeste da Bahia (UESB), Itapetinga, BA (Brazil); Souza, Susana O. [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Fisica; Gennari, Roseli F. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Dept. de Fisica Nuclear

    2013-07-01

    GIS is a computational tool for improving the obtained data with spatial geographic information. An understanding of complex analysis by overlaying and integrating several types of information is possible. With GIS one can question, analyze, interpret and understand the data to reveal relationships, patterns and trends. In environmental monitoring, GIS have become indispensable to do the contextualization of the problem. The cartographic products generated by the application of these techniques allow the visualization of the environmental current situation, which may also contribute to the prediction of future problems. After accidents with Fukushima and Chernobyl nuclear power plants there is a crescent public fear intensified every time there are nuclear fuel cycle activities occurring. The absence of reliable information leads to unfounded rumors about the daily life and this can impact negatively on activity performed, mainly in situations related to power generation by nuclear route, notably known more by its harm effects than by the benefits. Faced with such controversial subjects, two main Brazilian uranium reserves (Caetite-BA and Santa Quiteria-CE) were studied. We performed ICP-MS analyzes for the U, Th and K determination in water and soil samples. The obtained data GIS tools were applied to survey topography and watershed where URA - Uranium Concentrate Unit of Nuclear Industries of Brazil - INB is inserted. Our aim was to identify the affluent hydrography found in the region and overlaps the radiological data, checking possible routes of contamination. The radionuclides concentration found in soil and water, in both regions, are within the limit set by the World Health Organization. In Santa Quiteria, once this URA is in pre-operational phase, no hydraulic connections were established. In the URA - Caetite, we observe that there is no hydraulic connection between the URA and the City of Caetite, so the Greenpeace affirmation about the radionuclide

  16. Application of the Geographic Information Systems (GIS) in the spatialization of U, Th and K concentrations on the proximity of brazilian uranium mines

    International Nuclear Information System (INIS)

    Campos, Simara S.; Veiga, Artur J.P.; Souza, Susana O.; Gennari, Roseli F.

    2013-01-01

    GIS is a computational tool for improving the obtained data with spatial geographic information. An understanding of complex analysis by overlaying and integrating several types of information is possible. With GIS one can question, analyze, interpret and understand the data to reveal relationships, patterns and trends. In environmental monitoring, GIS have become indispensable to do the contextualization of the problem. The cartographic products generated by the application of these techniques allow the visualization of the environmental current situation, which may also contribute to the prediction of future problems. After accidents with Fukushima and Chernobyl nuclear power plants there is a crescent public fear intensified every time there are nuclear fuel cycle activities occurring. The absence of reliable information leads to unfounded rumors about the daily life and this can impact negatively on activity performed, mainly in situations related to power generation by nuclear route, notably known more by its harm effects than by the benefits. Faced with such controversial subjects, two main Brazilian uranium reserves (Caetite-BA and Santa Quiteria-CE) were studied. We performed ICP-MS analyzes for the U, Th and K determination in water and soil samples. The obtained data GIS tools were applied to survey topography and watershed where URA - Uranium Concentrate Unit of Nuclear Industries of Brazil - INB is inserted. Our aim was to identify the affluent hydrography found in the region and overlaps the radiological data, checking possible routes of contamination. The radionuclides concentration found in soil and water, in both regions, are within the limit set by the World Health Organization. In Santa Quiteria, once this URA is in pre-operational phase, no hydraulic connections were established. In the URA - Caetite, we observe that there is no hydraulic connection between the URA and the City of Caetite, so the Greenpeace affirmation about the radionuclide

  17. Influence of radon-daughter exposure rate and uranium ore dust concentration on occurrence of lung tumors

    International Nuclear Information System (INIS)

    Cross, F.T.; Palmer, R.F.; Busch, R.H.

    1980-01-01

    Groups of male SPF Wistar rats were exposed concurrently to several levels of radon daughters and uranium ore dust to study the effect of these variables on pulmonary disease states. Clinical pathology data at 1 yr postexposure indicate no significant differences among exposed animals when compared with controls. Preliminary histopathologic data suggest a trend toward increasing lung tumor risk as the exposure rate is decreased (constant total dose), but the differences are not statistically significant at the 0.05 level. A similar trend occurs with decrease in ore dust concentration (except for the 2560-WLM exposure group), but these differences are also not significant at the 0.05 level. The tumor risk is significantly (0.05 level) increased as the exposure level increases from approximately 320 and 640 WLM to 2560 WLM at the high ore dust concentration

  18. Radiation dose-dependent risk on individuals due to ingestion of uranium and radon concentration in drinking water samples of four districts of Haryana, India

    Science.gov (United States)

    Panghal, Amanjeet; Kumar, Ajay; Kumar, Suneel; Singh, Joga; Sharma, Sumit; Singh, Parminder; Mehra, Rohit; Bajwa, B. S.

    2017-06-01

    Uranium gets into drinking water when the minerals containing uranium are dissolved in groundwater. Uranium and radon concentrations have been measured in drinking water samples from different water sources such as hand pumps, tube wells and bore wells at different depths from various locations of four districts (Jind, Rohtak, Panipat and Sonipat) of Haryana, India, using the LED flourimetry technique and RAD7, electronic silicon solid state detector. The uranium (238U) and radon (222Rn) concentrations in water samples have been found to vary from 1.07 to 40.25 µg L-1 with an average of 17.91 µg L-1 and 16.06 ± 0.97 to 57.35 ± 1.28 Bq L-1 with an average of 32.98 ± 2.45 Bq L-1, respectively. The observed value of radon concentration in 43 samples exceeded the recommended limits of 11 Bq L-1 (USEPA) and all the values are within the European Commission recommended limit of 100 Bq L-1. The average value of uranium concentration is observed to be within the safe limit recommended by World Health Organization (WHO) and Atomic Energy Regulatory Board. The annual effective dose has also been measured in all the water samples and is found to be below the prescribed dose limit of 100 µSv y-1 recommended by WHO. Risk assessment of uranium in water is also calculated using life time cancer risk, life time average daily dose and hazard quotient. The high uranium concentration observed in certain areas is due to interaction of ground water with the soil formation of this region and the local subsurface geology of the region.

  19. Uranium ores

    International Nuclear Information System (INIS)

    Poty, B.; Roux, J.

    1998-01-01

    The processing of uranium ores for uranium extraction and concentration is not much different than the processing of other metallic ores. However, thanks to its radioactive property, the prospecting of uranium ores can be performed using geophysical methods. Surface and sub-surface detection methods are a combination of radioactive measurement methods (radium, radon etc..) and classical mining and petroleum prospecting methods. Worldwide uranium prospecting has been more or less active during the last 50 years, but the rise of raw material and energy prices between 1970 and 1980 has incited several countries to develop their nuclear industry in order to diversify their resources and improve their energy independence. The result is a considerable increase of nuclear fuels demand between 1980 and 1990. This paper describes successively: the uranium prospecting methods (direct, indirect and methodology), the uranium deposits (economical definition, uranium ores, and deposits), the exploitation of uranium ores (use of radioactivity, radioprotection, effluents), the worldwide uranium resources (definition of the different categories and present day state of worldwide resources). (J.S.)

  20. Health risks associated with ingesting venison from a uranium enrichment facility with multiple operable units

    International Nuclear Information System (INIS)

    Duncan, J.; Welsh, C.

    1995-01-01

    Ingestion of game, including venison, may be a significant exposure pathway in human health risk assessments at hazardous waste sites. The difficulty associated with modeling contaminant tissue concentrations in a wide-ranging herbivorous mammal is compounded when the home range of the mammal extends over multiple operable units (OUs) of varying size and media contaminant concentration. Using biotransfer factors extracted from the literature and species-specific parameter information (e.g., home range size, diet, forage and water ingestion rates) the authors estimate contaminant concentrations in venison based on soil and surface water contaminant concentrations and determine the contribution of individual OUs to modeled venison tissue concentrations. Estimated tissue concentrations are calculated through the use of site foraging factors (SFFS) that adjust exposure contributions from individual OUs to account for the size of the OU in relation to the animals home range. The authors then use the venison tissue concentrations to estimate human health risk associated with ingesting venison under both a current and future exposure scenario

  1. Uranium price reporting systems

    International Nuclear Information System (INIS)

    1987-09-01

    This report describes the systems for uranium price reporting currently available to the uranium industry. The report restricts itself to prices for U 3 O 8 natural uranium concentrates. Most purchases of natural uranium by utilities, and sales by producers, are conducted in this form. The bulk of uranium in electricity generation is enriched before use, and is converted to uranium hexafluoride, UF 6 , prior to enrichment. Some uranium is traded as UF 6 or as enriched uranium, particularly in the 'secondary' market. Prices for UF 6 and enriched uranium are not considered directly in this report. However, where transactions in UF 6 influence the reported price of U 3 O 8 this influence is taken into account. Unless otherwise indicated, the terms uranium and natural uranium used here refer exclusively to U 3 O 8 . (author)

  2. Uranium Industry Annual, 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ''Decommissioning of US Conventional Uranium Production Centers,'' is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2

  3. Uranium Industry Annual, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  4. Uranium enrichment

    International Nuclear Information System (INIS)

    1989-01-01

    GAO was asked to address several questions concerning a number of proposed uranium enrichment bills introduced during the 100th Congress. The bill would have restructured the Department of Energy's uranium enrichment program as a government corporation to allow it to compete more effectively in the domestic and international markets. Some of GAO's findings discussed are: uranium market experts believe and existing market models show that the proposed DOE purchase of a $750 million of uranium from domestic producers may not significantly increase production because of large producer-held inventories; excess uranium enrichment production capacity exists throughout the world; therefore, foreign producers are expected to compete heavily in the United States throughout the 1990s as utilities' contracts with DOE expire; and according to a 1988 agreement between DOE's Offices of Nuclear Energy and Defense Programs, enrichment decommissioning costs, estimated to total $3.6 billion for planning purposes, will be shared by the commercial enrichment program and the government

  5. Uranium in Canada

    International Nuclear Information System (INIS)

    1989-01-01

    In 1988 Canada's five uranium producers reported output of concentrate containing a record 12,470 metric tons of uranium (tU), or about one third of total Western world production. Shipments exceeded 13,200 tU, valued at $Cdn 1.1 billion. Most of Canada's uranium output is available for export for peaceful purposes, as domestic requirements represent about 15 percent of production. The six uranium marketers signed new sales contracts for over 11,000 tU, mostly destined for the United States. Annual exports peaked in 1987 at 12,790 tU, falling back to 10,430 tU in 1988. Forward domestic and export contract commitments were more than 70,000 tU and 60,000 tU, respectively, as of early 1989. The uranium industry in Canada was restructured and consolidated by merger and acquisition, including the formation of Cameco. Three uranium projects were also advanced. The Athabasca Basin is the primary target for the discovery of high-grade low-cost uranium deposits. Discovery of new reserves in 1987 and 1988 did not fully replace the record output over the two-year period. The estimate of overall resources as of January 1989 was down by 4 percent from January 1987 to a total (measured, indicated and inferred) of 544,000 tU. Exploration expenditures reached $Cdn 37 million in 1987 and $59 million in 1988, due largely to the test mining programs at the Cigar Lake and Midwest projects in Saskatchewan. Spot market prices fell to all-time lows from 1987 to mid-1989, and there is little sign of relief. Canadian uranium production capability could fall below 12,000 tU before the late 1990s; however, should market conditions warrant output could be increased beyond 15,000 tU. Canada's known uranium resources are more than sufficient to meet the 30-year fuel requirements of those reactors in Canada that are now or are expected to be in service by the late 1990s. There is significant potential for discovering additional uranium resources. Canada's uranium production is equivalent, in

  6. A case study of radon-thoron concentrations in dwellings around uranium deposit sites in Meghalaya

    International Nuclear Information System (INIS)

    Shaikh, A.N.; Ramachandran, T.V.; Eappen, K.P.; Mayya, Y.S.; Khan, A.H.; Puranik, V.D.; Hoda, S.Q.

    2004-01-01

    Measurement of 222 Rn and 220 Rn were carried out in a few houses of different construction types selected at 21 locations around uranium deposit sites at Meghalaya using Solid State Nuclear Track Detector (SSNTD) based dosimeter developed at the Bhabha Atomic Research Centre (BARC). It comprises of two cylindrical cups with slots for placing the detector films. The cups are designed for 222 Rn and 220 Rn gas estimations. Detector film used is 12 mm thick cellulose nitrate (LR -115 Type -II), of Kodak pathe. 222 Rn levels in these dwellings varied from 4.6 to 117.0 Bq m -3 with a GM of 19.4 Bq. m -3 (GSD 4.5), while 220 Rn varied from 5.0 to 123.0 Bq. m -3 with al GM of 16.6 Bqm -3 (GSD 2.0). The higher values were observed in building housing geological laboratories. (author)

  7. Environmental monitoring of the Uranium Concentrate Unity (URA) at Caetite - Bahia State - Brazil

    International Nuclear Information System (INIS)

    Pereira, Wagner de Souza; Py Junior, Delcy de Azevedo

    2002-01-01

    The pre operational monitoring program has been executed in order to set a baseline, on which comparisons with the same points and the same radionuclides will be made after beginning of operation, having the objective of environmental impact evaluation, in the vicinity of the installation. The program was held in the period of 1982 to 1999, collecting non biological environmental samples (aerosol, rain water, surface water, underground water soil and sediment) and samples that are related to the human food chain (manioc, manioc flour, milk, browse, fish, been, corn, cactus and silage). The analyzed radionuclides are natural uranium, natural thorium, Ra-226, Ra-228, Rn-222 and Pb-210. This work intends to analyze data from the last ten years, program (1989 - 1999), analyzing approximately 350 biological samples and 3500 non biological samples, in order to establishing the baseline to be used in future studies of environmental impact. (author)

  8. Evaluation of the effect of implanted depleted uranium on male reproductive success, sperm concentration, and sperm velocity

    International Nuclear Information System (INIS)

    Arfsten, Darryl P.; Schaeffer, David J.; Johnson, Eric W.; Robert Cunningham, J.; Still, Kenneth R.; Wilfong, Erin R.

    2006-01-01

    Depleted uranium (DU) projectiles have been used in battle in Iraq and the Balkans and will continue to be a significant armor-penetrating munition for the US military. As demonstrated in the Persian Gulf War, battle injury from DU projectiles and shrapnel is a possibility, and removal of embedded DU fragments from the body is not always practical because of their location in the body or their small size. Previous studies in rodents have demonstrated that implanted DU mobilizes and translocates to the gonads, and natural uranium may be toxic to spermatazoa and the male reproductive tract. In this study, the effects of implanted DU pellets on sperm concentration, motility, and male reproductive success were evaluated in adult (P1) Sprague-Dawley rats implanted with 0, 12, or 20, DU pellets of 1x2 mm or 12 or 20 tantalum (Ta) steel pellets of 1x2 mm. Twenty DU pellets of 1x2 mm (760 mg) implanted in a 500-g rat are equal to approximately 0.2 pound of DU in a 154-lb (70-kg) person. Urinary analysis found that male rats implanted with DU were excreting uranium at postimplantation days 27 and 117 with the amount dependent on dose. No deaths or evidence of toxicity occurred in P1 males over the 150-day postimplantation study period. When assessed at postimplantation day 150, the concentration, motion, and velocity of sperm isolated from DU-implanted animals were not significantly different from those of sham surgery controls. Velocity and motion of sperm isolated from rats treated with the positive control compound α-chlorohydrin were significantly reduced compared with sham surgery controls. There was no evidence of a detrimental effect of DU implantation on mating success at 30-45 days and 120-145 days postimplantation. The results of this study suggest that implantation of up to 20 DU pellets of 1x2 mm in rats for approximately 21% of their adult lifespan does not have an adverse impact on male reproductive success, sperm concentration, or sperm velocity

  9. Frontier areas and exploration techniques. Frontier uranium exploration in the South-Central United States

    International Nuclear Information System (INIS)

    Campbell, M.D.; Biddle, K.T.

    1977-01-01

    Selected areas of the South-Central United States outside the known U trends of South Texas have a largely untested potential for the occurrence of significant U mineralization. These areas, underlain by Tertiary and older sediments, include parts of Texas, Oklahoma, Arkansas, Louisiana, Mississippi and Alabama. The commonly accepted criteria employed in U exploration are applicable to these frontier areas but special consideration must also be given to the atypical geologic aspects of such areas as they may apply to relatively unique types of U mineralization or to the development of special exploration criteria for common types of roll-front and fault-and dome-related uranium mineralization. The procedures used in evaluating frontier areas should be based on comprehensive evaluations involving: (1) location and analysis of potential source rocks (e.g., intrusive igneous rocks, bentonitic sediments, unique complexes, etc.); (2) definition of regional variations in the potential host sediments (e.g. marginal marine to nonmarine environments of deposition); (3) review of all available radiometric data in Tertiary or older rocks; (4) local groundwater sampling; (5) widely spaced reconnaissance (or stratigraphic) drilling, coring and borehole geophysical logging to define favorable sedimentary facies and to establish the specific lithologic character of the sediments; and (6) detailed petrographic evaluation of all available samples to define the environment of deposition and diagenetic history of ''favorable'' sediments. If procedures produce favorable results, an expanded exploration program is justified. Depths up to 3,000 feet should be anticipated if up-dip information is favorable. Selected areas are discussed that have: (1) favorable source and host rocks;(2) favorable age; (3) favorable regional and local structure; and (4) radiometric characteristics favorable for U mineralization of potentially economic grade and reserves in the areas

  10. Uranium conversion; Urankonvertering

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina [Swedish Defence Research Agency (FOI), Stockholm (Sweden)

    2006-03-15

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF{sub 6} and UF{sub 4} are present require equipment that is made of corrosion resistant material.

  11. Concentration of WWER-1000 unit power on one site

    International Nuclear Information System (INIS)

    Rousek, J.; Kysel, J.; Sladek, V.

    1987-01-01

    The problem of a suitable number of nuclear power plant units built on one site is discussed. Using an example of three sites being prepared now in Czechoslovakia, two alternatives - one with two WWER-1000 units, the other with four WWER-1000 units on one site - are evaluated from the viewpoint of long-range nuclear power development program in Czechoslovakia, costs, transmission of electric power and heat supply. (author). 10 tabs., 13 refs

  12. Uranium industry annual 1985

    International Nuclear Information System (INIS)

    1986-11-01

    This report consists of two major sections. The first addresses uranium raw materials activities and covers the following topics: exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment. The second major section is concerned with the following uranium marketing activities: uranium purchase commitments, uranium prices, procurement arrangements, uranium imports and exports, enrichment services, inventories, secondary market activities, utility market requirements, and related topics. A glossary and appendices are included to assist the reader in interpreting the substantial array of statistical data in this report and to provide background information about the survey

  13. Mitochondrial energetic metabolism perturbations in skeletal muscles and brain of zebrafish (Danio rerio) exposed to low concentrations of waterborne uranium

    Energy Technology Data Exchange (ETDEWEB)

    Lerebours, Adelaide; Adam-Guillermin, Christelle [Laboratoire de Radioecologie et d' Ecotoxicologie, Institut de Radioprotection et de Surete Nucleaire, Bat 186, BP 3, 13115 Saint-Paul-Lez-Durance Cedex (France); Brethes, Daniel [CNRS, UMR 5095, Institut de Biochimie et Genetique Cellulaires, Universite Victor Segalen-Bordeaux 2 (France); Frelon, Sandrine; Floriani, Magali; Camilleri, Virginie; Garnier-Laplace, Jacqueline [Laboratoire de Radioecologie et d' Ecotoxicologie, Institut de Radioprotection et de Surete Nucleaire, Bat 186, BP 3, 13115 Saint-Paul-Lez-Durance Cedex (France); Bourdineaud, Jean-Paul, E-mail: jp.bourdineaud@epoc.u-bordeaux1.fr [CNRS, UMR 5095, Institut de Biochimie et Genetique Cellulaires, Universite Victor Segalen-Bordeaux 2 (France)

    2010-10-01

    Anthropogenic release of uranium (U), originating from the nuclear fuel cycle or military activities, may considerably increase U concentrations in terrestrial and aquatic ecosystems above the naturally occurring background levels found throughout the environment. With a projected increase in the world-wide use of nuclear power, it is important to improve our understanding of the possible effects of this metal on the aquatic fauna at concentrations commensurate with the provisional drinking water guideline value of the World Health Organization (15 {mu}g U/L). The present study has examined the mitochondrial function in brain and skeletal muscles of the zebrafish, Danio rerio, exposed to 30 and 100 {mu}g/L of waterborne U for 10 and 28 days. At the lower concentration, the basal mitochondrial respiration rate was increased in brain at day 10 and in muscles at day 28. This is due to an increase of the inner mitochondrial membrane permeability, resulting in a decrease of the respiratory control ratio. In addition, levels of cytochrome c oxidase subunit IV (COX-IV) increased in brain at day 10, and those of COX-I increased in muscles at day 28. Histological analyses performed by transmission electron microscopy revealed an alteration of myofibrils and a dilatation of endomysium in muscle cells. These effects were largest at the lowest concentration, following 28 days of exposure.

  14. Effects of temperature, concentration, and uranium chloride mixture on zirconium electrochemical studies in LiCl−KCl eutectic salt

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Robert O. [Department of Chemical and Materials Engineering and Nuclear Engineering Program, University of Idaho, Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 8340 (United States); Yoon, Dalsung [Department of Mechanical & Nuclear Engineering, Virginia Commonwealth University, 401 West Main St., Richmond, VA 23284 (United States); Phongikaroon, Supathorn, E-mail: sphongikaroon@vcu.edu [Department of Mechanical & Nuclear Engineering, Virginia Commonwealth University, 401 West Main St., Richmond, VA 23284 (United States)

    2016-08-01

    Experimental studies were performed to provide measurement and analysis of zirconium (Zr) electrochemistry in LiCl−KCl eutectic salt at different temperatures and concentrations using cyclic voltammetry (CV). An additional experimental set with uranium chloride added into the system forming UCl{sub 3}−ZrCl{sub 4}−LiCl−KCl was performed to explore the general behavior of these two species together. Results of CV experiments with ZrCl{sub 4} show complicated cathodic and anodic peaks, which were identified along with the Zr reactions. The CV results reveal that diffusion coefficients (D) of ZrCl{sub 4} and ZrCl{sub 2} as the function of temperature can be expressed as D{sub Zr(IV)} = 0.00046exp(−3716/T) and D{sub Zr(II)} = 0.027exp(−5617/T), respectively. The standard rate constants and apparent standard potentials of ZrCl{sub 4} at different temperatures were calculated. Furthermore, the results from the mixture of UCl{sub 3} and ZrCl{sub 4} indicate that high concentrations of UCl{sub 3} hide the features of the smaller concentration of ZrCl{sub 4} while Zr peaks become prominent as the concentration of ZrCl{sub 4} increases.

  15. Determination of uranium and thorium activity concentrations using activation analysis in beach sands from extreme south Bahia, Brazil

    International Nuclear Information System (INIS)

    Vasconcelos, Danilo C.; Oliveira, Arno H.; Silva, Mario R.S.; Penna, Rodrigo; Santos, Talita O.; Pereira, Claubia; Rocha, Zildete; Menezes, Maria Angela B.C.

    2009-01-01

    Levels of natural radioactivity are the major cause of external exposure to gamma radiation. Thus, the determination of activity concentration of primordial radionuclides, such as 238 U and 232 Th, in soils, sand and rock is of basic importance to estimate the radiation levels to which man is directly or indirectly exposed. In order to study the process of specific activity of 238 U and 232 Th, beaches sands samples were collected from eight different locations in extreme south of Bahia state from Brazil. The samples have been analyzed by instrumental neutron activation analyses and for determination of thorium concentrations and delayed neutrons analysis for determination of uranium. The mean specific activity for 238 U and 232 Th was higher in Cumuruxatiba than in others locations studied. Alcobaca and Caraiva also presented high values. The concentrations of these radionuclides were compared with typical world values and Cumuruxatiba have specific activity higher than the others locations, 2,984 Bq/kg maximum value for 238 U and 1,8450 Bq/kg maximum value for 232 Th and activity concentrations in Cumuruxatiba are higher in black sand than in no black sand, suggesting presence of monazite.(author)

  16. Uranium hydrogeochemical and stream sediment reconnaissance of the McGrath and Talkeetna NTMS Quadrangles, Alaska, including concentrations of forty-three additional elements

    International Nuclear Information System (INIS)

    Aamodt, P.L.; Jacobsen, S.I.; Hill, D.E.

    1979-04-01

    During the summer of 1977, 1268 water and 1206 sediment samples were collected from 1292 lakes and streams throughout the two quadrangles in south-central Alaska. Each of the water samples was analyzed for uranium and 12 other elements and each of the sediment samples for uranium, thorium, and 41 other elements. Uranium concentrations in water samples range from below 0.02 ppB to 19.64 ppB. In general, lake waters contain somewhat less uranium than stream waters, and the highest concentrations in both sample types were found in or near the Alaska Range. Uranium concentrations in sediment samples range from 0.10 ppM to 172.40 ppM. The highest concentrations are found in samples collected in the Alaska Range near areas of felsic igneous rocks. Sediment samples having high thorium concentrations also come from areas underlain by felsic igneous rocks in the Alaska Range. The following areas were found to be most favorable for significant uranium mineralization: (1) the Windy Fork stock on the southeastern boundary of the McGrath quadrangle; (2) an area in the northwest corner of the Talkeetna quadrangle near the Mespelt prospects; (3) the Hidden River drainage in the northeast corner of the Talkeetna quadrangle; (4) an area near Chelatna Lake in the center of the Talkeetna quadrangle; (5) the Kichatna River drainage, near the western border of the Talkeetna quadrangle; and (6) an area near the Mount Estelle pluton in the extreme southwest corner of the Talkeetna quadrangle

  17. Status Report from the United States of America [Processing of Low-Grade Uranium Ores

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, R H [United States Atomic Energy Commission, Washington, D.C. (United States)

    1967-06-15

    The US uranium production rate has been dropping gradually from a high of 17 760 tons in fiscal year 1961 to a level of about 10 400 tons in fiscal year 1966. As of 1 January 1966, there were 17 uranium mills in operation in the USA compared with a maximum of 26 during 1961, the peak production year. Uranium procurement contracts between the USAEC and companies operating 11 mills have been extended through calendar year 1970. The USAEC contracts for the other six mills are scheduled to expire 31 December 1966. Some of these mills, however, have substantial private orders for production of uranium for nuclear power plants and will continue to operate after completion of deliveries under USAEC contracts. No new uranium mills have been brought into production since 1962. Under these circumstances the emphasis in process development activities in recent years has tended toward improvements that could be incorporated within the general framework of the existing plants. Some major flowsheet changes have been made, however. For example, two of the ore-processing plants have shifted from acid leaching to sodium carbonate leach in order to provide the flexibility to process an increasing proportion of ores of high limestone content in the tributary areas. Several mills employing ion exchange as the primary step for recovery of uranium from solution have added an 'Eluex' solvent extraction step on the ion exchange eluate. This process not only results in a highgrade final product, but also eliminates several metallurgical problems formerly caused by the chloride and nitrate eluants. Such changes together with numerous minor improvements have gradually reduced production cost and increased recoveries. The domestic uranium milling companies have generally had reserves of normal-grade ores well in excess of the amounts required to fulfil the requirements for their contracts with the USAEC. Therefore, there has been little incentive to undertake the processing of lower grade

  18. Thorium, uranium and rare earth elements concentration in weathered Japanese soil samples

    International Nuclear Information System (INIS)

    Sahoo, Sarata Kumar; Hosoda, Masahiro; Kamagata, Sadatoshi; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Tokonami, Shinji; Uchida, Shigeo

    2011-01-01

    The geochemical behavior of thorium, uranium and rare earth elements (REEs) are relatively close to one another while compared to other elements in a geological environment. Radioactive elements like 232 Th and 238 U along with their decay products (e.g. 226 Ra) are present in most environmental matrices and can be transferred to living bodies by different pathways which can lead to the sources of exposure to man. For these reasons, it has been necessary to monitor those natural radionuclides in weathered soil samples to assess the possible hazards. It has been observed that granitic rocks contain higher amounts of U, Th and light REEs compared to other igneous rocks such as basalt and andesites. To better understand the interaction between REEs and soils, the nature of soils must be considered. In this paper, we discussed the distribution pattern of 232 Th and 238 U along with REEs in soil samples of weathered acid rock (granite and ryolite) collected from two prefectures of Japan: (1) Kobe city in Hyogo prefecture and (2) Mutsu city and Higashidori village in Aomori prefecture. (author)

  19. Effect of abnormal outflow from end stages on concentration profile in uranium-stripping bank of PUREX flowsheet

    International Nuclear Information System (INIS)

    Ueda, Yoshinori; Matsumoto, Shiro

    2002-01-01

    The effect of the abnormal outflow from the end stages on the concentration profile was studied for the uranium-stripping bank to consider the design and the operation of the solvent extraction process, which eases the undesirable effects due to such abnormal flow. The abnormal outflow affected the concentration profile in the same manner as the decrease in the rate of the corresponding liquid flow rate entering the bank. The results suggested that the solvent extractor at the aqueous inlet stage in stripping banks and the solvent extractor at the organic inlet stage in extraction banks should be carefully designed to restrict the respective abnormal aqueous and organic outflows within the normal operational liquid flow rate range. Combining the result and the inherent phase separation behavior of the extractor suggested the possibility of designing the process with the self-controlled function of throughput, which eases the change of the concentration profile due to the undesirable increase in the rate of liquid flow rate entering the bank. Basically the proposed approaches are probably applicable to other general extraction and stripping processes. (author)

  20. Uranium hydrogeochemical and stream sediment reconnaissance data release for the Elk City NTMS Quadrangle, Idaho/Montana, including concentrations of forty-five additional elements

    Energy Technology Data Exchange (ETDEWEB)

    Broxton, D.E.; Beyth, M.

    1980-07-01

    Totals of 1580 water and 1720 sediment samples were collected from 1754 locations in the quadrangle. Elemental concentration, field measurement, weather, geologic, and geographic data for each sample location are listed for waters in Appendix I-A and for sediments in Appendix I-B. Uranium/thorium ratios for sediment samples are also included in Appendix I-B. All elemental analyses were performed at the LASL. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than 40 parts per billion (ppB) uranium were reanalyzed by delayed-neutron counting (DNC). A supplemental report containing the multielement analyses of water samples will be open filed in the near future. Sediments were analyzed for uranium and thorium as well as aluminum, antimony, arsenic, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, chlorine, chromium, cobalt, copper, dysprosium, europium, gold, hafnium, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, nickel, niobium, potassium, rubidium, samarium, selenium, scandium, silver, sodium, strontium, tantalum, terbium, tin, titanium, tungsten, vanadium, ytterbium, zinc, and zirconium. Basic statistics for 40 of these elements are presented. All sediments were analyzed for uranium by delayed-neutron counting. Other elemental concentrations in sediments were determined by neutron-activation analysis for 30 elements, by x-ray fluorescence for 12 elements, and by arc-source emission spectrography for 2 elements. Analytical results for sediments are reported as parts per million.

  1. Airborne particulate concentrations and fluxes at an active uranium mill tailings site

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1978-01-01

    Direct measurements of airborne particulate concentrations and fluxes of transported mill tailing materials were measured at an active mill tailings site. Experimental measurement equipment consisted of meteorological instrumentation to automatically activate total particulate air samplers as a function of wind speed increments and direction, as well as particle cascade impactors to measure airborne respirable concentrations as a function of particle size. In addition, an inertial impaction device measured nonrespirable fluxes of airborne particles. Caclulated results are presented in terms of the airborne solid concentration in g/m 3 , the horizontal airborne mass flux in g/(m 2 -day) for total collected nonrespirable particles and the radionuclide concentrations in dpm/g as a function of particle diameter for respirable and nonrespirable particles

  2. The Text of the Agreement of 2 March 1977 between the Agency and Pakistan for the Application of Safeguards in Connection with the Supply of Uranium Concentrate

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-07-07

    The text of the Agreement of 2 March 1977 between the Agency and Pakistan for the application of safeguards in connection with the supply of uranium concentrate from Niger is reproduced in this document for the information of all Members. The Agreement entered into force pursuant to Article 24, on 2 March 1977.

  3. Measurement of uranium concentration by molecular absorption spectrophotometry by means optical fibers; Medicion continua de concentracion de uranio por espectrofotometria de absorcion molecular mediante fibras opticas

    Energy Technology Data Exchange (ETDEWEB)

    Gauna, Alberto C.; Pascale, Ariel A. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Centro Atomico Ezeiza. Agencia Minipost

    1996-07-01

    An on-line method for measuring the concentration of uranium in uranyl nitrate-nitric acid aqueous solutions is described. The method is based on molecular absorption spectrophotometry with transmission of light by means of optical fibers. It is ideally suited for control and processes development applications. (author)

  4. Testing of a uranium downhole logging system to measure in-situ plutonium concentrations in sediments. [216-Z-1A crib

    Energy Technology Data Exchange (ETDEWEB)

    Kasper, R.B.; Kay, M.A.; Bruns, L.E.; Stokes, J.A.; Steinman, D.K.; Adams, J.

    1980-11-01

    A prototype urainium borehole logging system, developed for uranium exploration, was modified for Pu assay and testing at the site. It uses the delayed fission neutron (DFN) method. It was tested in a retired Pu facility, the 216-Z-1A Crib. General agreement between laboratory determined Pu concentrations in sediment samples and neutron flux measurements was found for the relative distribution with depth.

  5. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements; Procedimentos de fabricacao de elementos combustiveis a base de dispersoes com alta concentracao de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Souza, J.A.B.; Durazzo, M., E-mail: jasouza@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 gU/cm{sup 3} by using the U{sub 3}Si{sub 2}-Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 gU/cm{sup 3} for the U{sub 3}Si{sub 2}-Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian-Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  6. Physico-chemical basics for production of uranium concentrate from wastes of hydrometallurgical plants and technical waters

    International Nuclear Information System (INIS)

    Mirsaidov, I.; Nazarov, K.

    2014-01-01

    Physico-chemical and technological basics for reprocessing of uranium industry wastes of Northern Tajikistan shows that the most perspective site for reprocessing is Chkalovkst tailings wastes. The engineering and geological conditions and content of radionuclides in wastes were investigated. It was determined that considered by radioactivity the wastes are low activity and they can be reprocessed for the purpose of U_3O_8 production. Characteristics of mine and technical waters of uranium industry wastes were studied. Characteristics of mine and technical waters of Kiik-Tal and Istiklol city (former Taboshar) showed the expediency of uranium oxide extraction from them. The reasons for non-additional recovery extraction from dumps of SE “Vostokredmet” by classical methods of uranium leaching are studied. The kinetics of sulfuric leaching of residues from anthropogenic deposit of Map 1-9 (Chkalovsk City) were also investigated. Further investigations are to reveal the flow mechanism process of sulfuric leaching of residues and to enable the selection of a radiation regime for U_3O_8 production. The kinetics of sorption process of uranium extraction from mine and technical waters of uranium industry wastes were studied. High sorption properties of apricot shell compared to other sorbents were revealed. A basic process flow diagram for reprocessing of uranium tailing wastes was developed as well as diagrams for uranium extraction from mine and technical waters from uranium industry wastes. The process consists of the following stages: acidification, sorption, burning, leaching, sedimentation, filtration and drying. The possibility of uranium extraction from natural uranic waters of a complicated salt composition was considered. Investigations revealed that uranium extraction from brines containing chloride ion is possible. A developed uranium extraction scheme from Sasik-Kul lake’s brine consists of the following main stages: evaporation, leaching, chloride

  7. Trends of atmospheric black carbon concentration over the United Kingdom

    Science.gov (United States)

    Singh, Vikas; Ravindra, Khaiwal; Sahu, Lokesh; Sokhi, Ranjeet

    2018-04-01

    The continuous observations over a period of 7 years (2009-2016) available at 7 locations show declining trend of atmospheric BC in the UK. Among all the locations, the highest decrease of 8 ± 3 percent per year was observed at the Marylebone road in London. The detailed analysis performed at 21 locations during 2009-2011 shows that average annual mean atmospheric BC concentration were 0.45 ± 0.10, 1.47 ± 0.58, 1.34 ± 0.31, 1.83 ± 0.46 and 9.72 ± 0.78 μgm-3 at rural, suburban, urban background, urban centre and kerbside sites respectively. Around 1 μgm-3 of atmospheric BC could be attributed to urban emission, whereas traffic contributed up to 8 μg m-3 of atmospheric BC near busy roads. Seasonal pattern was also observed at all locations except rural and kerbside location, with maximum concentrations (1.2-4 μgm-3) in winter. Further, minimum concentrations (0.3-1.2 μgm-3) were observed in summer and similar concentrations in spring and fall. At suburban and urban background locations, similar diurnal pattern were observed with atmospheric BC concentration peaks (≈1.8 μg m-3) in the morning (around 9 a.m.) and evening (7-9 p.m.) rush hours, whereas minimum concentrations were during late night hours (peak at 5 a.m.) and the afternoon hours (peak at 2 p.m.). The urban centre values show a similar morning pattern (peak at 9 a.m.; concentration - 2.5 μgm-3) in relation to background locations but only a slight decrease in concentration in the afternoon which remained above 2 μgm-3 till midnight. It is concluded that the higher flow of traffic at urban centre locations results in higher atmospheric BC concentrations throughout the day. Comparison of weekday and weekend daily averaged atmospheric BC showed maximum concentrations on Friday, having minimum levels on Sunday. This study will help to refine the atmospheric BC emission inventories and provide data for air pollution and climate change models evaluation, which are used to formulate air pollution

  8. Determination of Background Uranium Concentration in the Snake River Plain Aquifer under the Idaho National Engineering and Environmental Laboratory's Radioactive Waste Management Complex

    International Nuclear Information System (INIS)

    Molly K. Leecaster; L. Don Koeppen; Gail L. Olson

    2003-01-01

    Uranium occurs naturally in the environment and is also a contaminant that is disposed of at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory. To determine whether uranium concentrations in the Snake River Plain Aquifer, which underlies the laboratory, are elevated as a result of migration of anthropogenic uranium from the Subsurface Disposal Area in the RWMC, uranium background concentrations are necessary. Guideline values are calculated for total uranium, 234U, 235U, and 238U from analytical results from up to five datasets. Three of the datasets include results of samples analyzed using isotope dilution thermal ionization mass spectrometry (ID-TIMS) and two of the datasets include results obtained using alpha spectrometry. All samples included in the statistical testing were collected from aquifer monitoring wells located within 10 miles of the RWMC. Results from ID-TIMS and alpha spectrometry are combined when the data are not statistically different. Guideline values for total uranium were calculated using four of the datasets, while guideline values for 234U were calculated using only the alpha spectrometry results (2 datasets). Data from all five datasets were used to calculate 238U guideline values. No limit is calculated for 235U because the ID-TIMS results are not useful for comparison with routine monitoring data, and the alpha spectrometry results are too close to the detection limit to be deemed accurate or reliable for calculating a 235U guideline value. All guideline values presented represent the upper 95% coverage 95% confidence tolerance limits for background concentration. If a future monitoring result is above this guideline, then the exceedance will be noted in the quarterly monitoring report and assessed with respect to other aquifer information. The guidelines (tolerance limits) for total U, 234U, and 238U are 2.75 pCi/L, 1.92 pCi/L, and 0.90 pCi/L, respectively

  9. Calibration of X-ray densitometers for the determination of uranium and plutonium concentrations in reprocessing input and product solutions

    International Nuclear Information System (INIS)

    Ottmar, H.; Eberle, H.; Michel-Piper, I.; Kuhn, E.; Johnson, E.

    1985-11-01

    In June 1985 a calibration exercise has been carried out, which included the calibration of the KfK K-Edge Densitometer for uranium assay in the uranium product solutions from reprocessing, and the calibration of the Hybrid K-Edge/K-XRF Instrument for the determination of total uranium and plutonium in reprocessing input solutions. The calibration measuremnts performed with the two X-ray densitometers are described and analyzed, and calibration constants are evaluated from the obtained results. (orig.)

  10. Study of a proposed method of uranium concentration determination using low-energy γ-ray spectroscopy

    International Nuclear Information System (INIS)

    Rossiter, K.G.; Tang, J.C.N.

    1980-01-01

    The problems associated with in-situ uranium assaying are discussed, especially in relation to the secular disequilibrium between the parent uranium and its radioactive daughters. A detailed study of the gamma-spectra of some natural uranium bearing ore and mineral samples was performed using a high resolution Ge(Li) detector. A method of spectroscopic analysis of the low energy gamma-rays of U-238 and its daughter Th-234, using a proportional counter and a series of Ross filters, was found to be feasible. The application of such a method to uranium assaying in natural ore bodies is discussed

  11. Uranium Sequestration by Aluminum Phosphate Minerals in Unsaturated Soils

    International Nuclear Information System (INIS)

    Jerden, James L. Jr.

    2007-01-01

    A mineralogical and geochemical study of soils developed from the unmined Coles Hill uranium deposit (Virginia) was undertaken to determine how phosphorous influences the speciation of uranium in an oxidizing soil/saprolite system typical of the eastern United States. This paper presents mineralogical and geochemical results that identify and quantify the processes by which uranium has been sequestered in these soils. It was found that uranium is not leached from the saturated soil zone (saprolites) overlying the deposit due to the formation of a sparingly soluble uranyl phosphate mineral of the meta-autunite group. The concentration of uranium in the saprolites is approximately 1000 mg uranium per kg of saprolite. It was also found that a significant amount of uranium was retained in the unsaturated soil zone overlying uranium-rich saprolites. The uranium concentration in the unsaturated soils is approximately 200 mg uranium per kg of soil (20 times higher than uranium concentrations in similar soils adjacent to the deposit). Mineralogical evidence indicates that uranium in this zone is sequestered by a barium-strontium-calcium aluminum phosphate mineral of the crandallite group (gorceixite). This mineral is intimately inter-grown with iron and manganese oxides that also contain uranium. The amount of uranium associated with both the aluminum phosphates (as much as 1.4 weight percent) has been measured by electron microprobe micro-analyses and the geochemical conditions under which these minerals formed has been studied using thermodynamic reaction path modeling. The geochemical data and modeling results suggest the meta-autunite group minerals present in the saprolites overlying the deposit are unstable in the unsaturated zone soils overlying the deposit due to a decrease in soil pH (down to a pH of 4.5) at depths less than 5 meters below the surface. Mineralogical observations suggest that, once exposed to the unsaturated environment, the meta-autunite group

  12. Ra-226 concentrations in blueberries Vaccinium angustifolium Ait. near an inactive uranium tailings site in Elliot Lake, Ontario, Canada

    International Nuclear Information System (INIS)

    Dave, N.K.; Lim, T.P.; Cloutier, N.R.

    1985-01-01

    Ra-226 concentrations were measured in blueberries growing around the Stanrock uranium tailings area near Elliot Lake, Ontario, Canada. Elevated levels of total Ra-226 ranging between 20 to 290 mBq g -1 were observed in samples collected within 500 m from the tailings. Highest levels, approx. 285 mBq g -1 , were observed in a sample collected on a tailings spill. For sites located more than 500 m away in the upwind direction, and those situated at distances greater than 1 km downwind from the waste pile, the total Ra-226 concentrations approached background levels which were measured as 2 to 6 mBq g -1 . Approximately 17% of the total Ra-226 measured was removable by washing the samples with distilled water. Wind dispersal of the tailings material and its deposition in the form of dust on blueberries was believed to be responsible for the external contamination. Based on the ICRP recommended dose limits for oral intake of Ra-226, it was calculated that approximately 160 kg a -1 , 3350 kg a -1 and 47 kg a -1 of washed blueberries from inside and outside the influenced zone, and from the tailings spill site, respectively, would need to be consumed before the individual annual limit for the general public was exceeded. (author)

  13. Variations of uranium concentrations in a multi-aquifer system under the impact of surface water-groundwater interaction

    Science.gov (United States)

    Wu, Ya; Li, Junxia; Wang, Yanxin; Xie, Xianjun

    2018-04-01

    Understanding uranium (U) mobility is vital to minimizing its concentrations in potential drinking water sources. In this study, we report spatial-seasonal variations in U speciation and concentrations in a multi-aquifer system under the impact of Sanggan River in Datong basin, northern China. Hydrochemical and H, O, Sr isotopic data, thermodynamic calculations, and geochemical modeling are used to investigate the mechanisms of surface water-groundwater mixing-induced mobilization and natural attenuation of U. In the study site, groundwater U concentrations are up to 30.2 μg/L, and exhibit strong spatial-seasonal variations that are related to pH and Eh values, as well as dissolved Ca2+, HCO3-, and Fe(III) concentrations. For the alkaline aquifers of this site (pH 7.02-8.44), U mobilization is due to the formation and desorption of Ca2UO2(CO3)30 and CaUO2(CO3)32- caused by groundwater Ca2+ elevation via mineral weathering and Na-Ca exchange, incorporated U(VI) release from calcite, and U(IV) oxidation by Fe(OH)3. U immobilization is linked to the adsorption of CaUO2(CO3)32- and UO2(CO3)34- shifted from Ca2UO2(CO3)30 because of HCO3- elevation and Ca2+ depletion, U(VI) co-precipitation with calcite, and U(VI) reduction by adsorbed Fe2+ and FeS. Those results are of great significance for the groundwater resource management of this and similar other surface water-groundwater interaction zones.

  14. Concentrations of stable elements and uranium in estuarine areas of Japan

    International Nuclear Information System (INIS)

    Takata, Hyoe; Aono, Tatsuo; Tagami, Keiko; Uchida, Shigeo

    2008-01-01

    The geochemistry of stable elements can be a good analogue for understanding the behavior of radionuclides in estuarine and coastal environments. In this study, the behavior of nutrients (NO 3 + NO 2 , PO 4 , Si(OH) 4 ), heavy metals, and U was observed in several estuarine and coastal waters of Japan. We also collected data on salinity, pH, and suspended particle matter (SPM). Nutrient concentrations followed conservative dilution lines in these estuaries, and concentrations of dissolved Fe decreased as salinity increased from 0 to 20. In general, most of the dissolved Fe in estuaries is in colloidal form. The behavior of dissolved Fe might reflect a loss of colloidal Fe through coagulation in this salinity range. Dissolved Co and Ni concentrations followed approximate dilution lines from the rivers to the seawater end-members, suggesting that they were quasi-conservative in these estuarine systems. A rapid increase in dissolved Cd concentrations was observed at low levels of salinity (<4). Estimated fluxes of dissolved Cd to the estuarine and coastal waters showed that the salt-induced desorption of Cd from particles constitutes a significant source of dissolved Cd in the estuarine and coastal waters. (author)

  15. Separation and concentration of lead, uranium and copper using polystyrene resins functionalised with azobenzylphosphonic acid ligands

    International Nuclear Information System (INIS)

    Ueda, Kazumasa; Sato, Yuko; Yoshimura, Osamu; Yamamoto, Yoshikazu

    1988-01-01

    Two polystyrene resins functionalised with azobenzylphosphonic acid ligands were synthesised and applications for the concentration, separation and determination of micro- or milligram concentrations of metal ions were studied. Physical and chemical properties such as specific mass, water content and ion-exchange capacity were measured and the characteristics of the resins were examined. The resins were especially useful for the concentration of Pbsup(II), Usup(VI) and Cusup(II) by batch and column operations, and effective separations of Pbsup(II) from Group VIII and IIB ions could be achieved by selecting the eluents. Trace amounts of Pbsup(II), Usup(VI), Cusup(II), Mnsup(II), Znsup(II) and Fesup(III) were quantitatively retained on the resin columns at neutral pH and easily recovered by elution with 2M HCl and 2M HNO 3 . The resins were successfully applied to the concentration of trace amounts of metals in river and sea waters prior to spectroscopic determinations. (author)

  16. Uranium recovery from slags of metallic uranium

    International Nuclear Information System (INIS)

    Fornarolo, F.; Frajndlich, E.U.C.; Durazzo, M.

    2006-01-01

    The Center of the Nuclear Fuel of the Institute of Nuclear Energy Research - IPEN finished the program of attainment of fuel development for research reactors the base of Uranium Scilicet (U 3 Si 2 ) from Hexafluoride of Uranium (UF 6 ) with enrichment 20% in weight of 235 U. In the process of attainment of the league of U 3 Si 2 we have as Uranium intermediate product the metallic one whose attainment generates a slag contend Uranium. The present work shows the results gotten in the process of recovery of Uranium in slags of calcined slags of Uranium metallic. Uranium the metallic one is unstable, pyrophoricity and extremely reactive, whereas the U 3 O 8 is a steady oxide of low chemical reactivity, what it justifies the process of calcination of slags of Uranium metallic. The calcination of the Uranium slag of the metallic one in oxygen presence reduces Uranium metallic the U 3 O 8 . Experiments had been developed varying it of acid for Uranium control and excess, nitric molar concentration gram with regard to the stoichiometric leaching reaction of temperature of the leaching process. The 96,0% income proves the viability of the recovery process of slags of Uranium metallic, adopting it previous calcination of these slags in nitric way with low acid concentration and low temperature of leaching. (author)

  17. A new approach for the high-precision determination of the elemental uranium concentration in uranium ore by gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Nagel, W.; Quik, F.

    1993-01-01

    A new approach for the determination of elemental uranium in uranium bearing ore, using high resolution gamma-ray spectrometry, was applied. Using a variant of the enrichment meter technique an agreement of better than 1% has been obtained between gamma-ray measurement results and the certified value obtained by other analytical methods. For the calibration of the gamma-ray spectrometer uranium reference samples have been used which are made available jointly in Europe and the USA as Certified Reference Materials for Gamma-ray Spectrometry (EC NRM 171 and NBS SRM 969, respectively). The measured ore has been put in a special designed container which ensured in all directions seen from the radiation window a uniform degree of infinite thickness of about 95%. The measurement results can be taken as an example for the applicability of gamma-ray spectrometry when high accuracy is required and under conditions where homogeneous distributed elemental uranium is embedded in a larger amount of matrix material. (author). 8 refs., 10 figs., 2 tabs., 2 appendices

  18. Determination of the uranium concentration in public supply drink water wells of the uranium-phosphatic region of the Pernambuco state, Brazil

    International Nuclear Information System (INIS)

    Silva, Cleomacio Miguel da; Sousa, Gustavo Henrique; Amaral, Romilton dos Santos

    2002-01-01

    This work was developed for the determination of the uranium levels in the water of the public drink water supply of the region, comparing with levels established by the Ministry of Health, for evaluation of the health hazards of the population by the water consumption

  19. United States transuranium and uranium registries - 25 years of growth, research, and service. Annual report, April 1992--September 1993

    International Nuclear Information System (INIS)

    Kathren, R.L.; Harwick, L.A.; Toohey, R.E.; Russell, J.J.; Filipy, R.E.; Dietert, S.E.; Hunacek, M.M.; Hall, C.A.

    1994-01-01

    The Registries originated in 1968 as the National Plutonium Registry with the name changed to the United States Transuranium Registry the following year to reflect a broader concern with the heavier actinides as well. Initially, the scientific effort of the USTR was directed towards study of the distribution and dose of plutonium and americium in occupationally exposed persons, and to assessment of the effects of exposure to the transuranium elements on health. This latter role was reassessed during the 1970's when it was recognized that the biased cohort of the USTR was inappropriate for epidemiologic analysis. In 1978, the administratively separate but parallel United States Uranium Registry was created to carry out similar work among persons exposed to uranium and its decay products. A seven member scientific advisory committee provided guidance and scientific oversight. In 1992, the two Registries were administratively combined and transferred from the purview of a Department of Energy contractor to Washington State University under the provisions of a grant. Scientific results for the first twenty-five years of the Registries are summarized, including the 1985 publication of the analysis of the first whole body donor. Current scientific work in progress is summarized along with administrative activities for the period

  20. United States transuranium and uranium registries - 25 years of growth, research, and service. Annual report, April 1992--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kathren, R.L.; Harwick, L.A.; Toohey, R.E.; Russell, J.J.; Filipy, R.E.; Dietert, S.E.; Hunacek, M.M.; Hall, C.A.

    1994-10-01

    The Registries originated in 1968 as the National Plutonium Registry with the name changed to the United States Transuranium Registry the following year to reflect a broader concern with the heavier actinides as well. Initially, the scientific effort of the USTR was directed towards study of the distribution and dose of plutonium and americium in occupationally exposed persons, and to assessment of the effects of exposure to the transuranium elements on health. This latter role was reassessed during the 1970`s when it was recognized that the biased cohort of the USTR was inappropriate for epidemiologic analysis. In 1978, the administratively separate but parallel United States Uranium Registry was created to carry out similar work among persons exposed to uranium and its decay products. A seven member scientific advisory committee provided guidance and scientific oversight. In 1992, the two Registries were administratively combined and transferred from the purview of a Department of Energy contractor to Washington State University under the provisions of a grant. Scientific results for the first twenty-five years of the Registries are summarized, including the 1985 publication of the analysis of the first whole body donor. Current scientific work in progress is summarized along with administrative activities for the period.

  1. Concentrations and activity ratios of uranium isotopes in groundwater from Donana National Park, South of Spain

    International Nuclear Information System (INIS)

    Bolivar, J. P.; Olias, M.; Gonzalez-Garcia, F.; Garcia-Tenorio, R.

    2008-01-01

    The levels and distribution of natural radionuclides in groundwaters from the unconfined Almonte-Marismas aquifer, upon which Donana National Park is located, have been analysed. Most sampled points were multiple piezometers trying to study the vertical distribution of the hydrogeochemical characteristics in the aquifer. Temperature, pH, electrical conductivity, dissolved oxygen and redox potential were determined in the field. A large number of parameters, physico-chemical properties, major and minor ions, trace elements and natural radionuclides (U-isotopes, Th-isotopes, Ra-isotopes and 210 Po), were also analysed. In the southern zone, where aeolian sands crop out, water composition is of the sodium chloride type, and the lower U-isotopes concentrations have been obtained. As water circulates through the aquifer, bicarbonate and calcium concentrations increase slightly, and higher radionuclides concentrations were measured. Finally, we have demonstrated that 234 U/ 238 U activity ratios can be used as markers of the type of groundwater and bedrock, as it has been the case for old waters with marine origin confined by a marsh in the south-east part of aquifer

  2. Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: Correlations with redox indicative parameters and implications for groundwater treatment

    International Nuclear Information System (INIS)

    Katsoyiannis, Ioannis A.; Hug, Stephan J.; Ammann, Adrian; Zikoudi, Antonia; Hatziliontos, Christodoulos

    2007-01-01

    The cities in the Aksios and Kalikratia areas in Northern Greece rely on arsenic contaminated groundwater for their municipal water supply. As remedial action strongly depends on arsenic speciation, the presence of other possible contaminants, and on the general water composition, a detailed study with samples from 21 representative locations was undertaken. Arsenic concentrations were typically 10-70 μg/L. In the groundwaters of the Aksios area with lower Eh values (87-172 mV), pH 7.5-8.2 and 4-6 mM HCO 3 alkalinity, As(III) predominated. Manganese concentrations were mostly above the EC standard of 0.05 mg/L (0.1-0.7 mg/L). In groundwaters of the Kalikratia area with higher Eh values (272-352 mV), pH 6.7-7.5 and 6-12 mM HCO 3 alkalinity, As(V) was the main species. Uranium in the groundwaters was also investigated and correlations with total arsenic concentrations and speciation were examined to understand more of the redox chemistry of the examined groundwaters. Uranium concentrations were in the range 0.01-10 μg/L, with the higher concentrations to occur in the oxidizing groundwaters of the Kalikratia area. Uranium and total arsenic concentrations showed no correlation, whereas uranium concentrations correlated strongly with As(III)/As(tot) ratios, depicting their use as a possible indicator of groundwater redox conditions. Finally, boron was found to exceed the EC drinking water standard of 1 mg/L in some wells in the Kalikratia area and its removal should also be considered in the design of a remedial action

  3. Microbial accumulation of uranium

    International Nuclear Information System (INIS)

    Zhang Wei; Dong Faqin; Dai Qunwei

    2005-01-01

    The mechanism of microbial accumulation of uranium and the effects of some factors (including pH, initial uranium concentration, pretreatment of bacteria, and so on) on microbial accumulation of uranium are discussed briefly. The research direction and application prospect are presented. (authors)

  4. Investigation of Great Basin big sagebrush and black greasewood as biogeochemical indicators of uranium mineralization. Final report. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Diebold, F.E.; McGrath, S.

    1982-11-01

    The effects of varying phosphate concentrations in natural aqueous systems upon the uptake of uranium by big sagebrush (Artemesia tridentata subsp. tridentata) and black greasewood (Sarcobatus vermiculatus (Hook) Torr.) were investigated. Two separate growth experiments with five drip-flow hyroponic units were used and plant seedlings were grown for 60 days in solutions of varying phosphate and uranium concentrations. Successful growth experiments were obtained only for big sagebrush; black greasewood did not sustain sufficient growth. The phosphate concentration of the water did affect the uptake of uranium by the big sagebrush, and this effect is most pronounced in the region of higher concentrations of uranium in the water. The ratio of the concentration of uranium in the plant to that in the water was observed to decrease with increasing uranium concentration in solution. This is indicative of an absorption barrier in the plants. The field data shows that big sagebrush responds to uranium concentrations in the soil water and not the groundwater. The manifestation of these results is that the use of big sagebrush as a biogeochemical indicator of uranium is not recommended. Since the concentration of phosphate must also be knwon in the water supplying the uranium to the plant, one should analyze this natural aqueous phase as a hydrochemical indicator rather than the big sagebrush

  5. Synthesis of novel chitosan resin derivatized with serine moiety for the column collection/concentration of uranium and the determination of uranium by ICP-MS

    International Nuclear Information System (INIS)

    Oshita, Koji; Oshima, Mitsuko; Gao Yunhua; Lee, Kyue-Hyung; Motomizu, Shoji

    2003-01-01

    A chitosan resin derivatized with serine moiety (serine-type chitosan) was newly developed by using the cross-linked chitosan as a base material. The adsorption behavior of trace amounts of metal ions on the serine-type chitosan resin was systematically examined by packing it in a mini-column, passing a metal solution through it and measuring metal ions in the effluent by ICP-MS. The resin could adsorb a number of metal cations at pH from neutral to alkaline region, and several oxoanionic metals at acidic pH region by an anion exchange mechanism. Uranium and Cu could be adsorbed selectively at pH from acidic to alkaline region by a chelating mechanism; U could be adsorbed quantitatively even at pH 3-4. Uranium adsorbed on the resin was easily eluted with 1 M nitric acid: the preconcentration (5-, 10-, 50- and 100-fold) of U was possible. The column treatment method was used prior to the ICP-MS measurement of U in natural river, sea and tap waters; R.S.D. were 2.63, 1.13 and 1.37%, respectively. Uranium in tap water could be determined by 10-fold preconcentration: analytical result was 1.46±0.02 ppt. The resin also was applied to the recovery of U in sea water: the recovery tests for artificial and natural sea water were 97.1 and 93.0%, respectively

  6. On monitoring anthropogenic airborne uranium concentrations and 235U/238U isotopic ratio by Lichen - bio-indicator technique

    International Nuclear Information System (INIS)

    Golubev, A.V.; Golubeva, V.N.; Krylov, N.G.; Kuznetsova, V.F.; Mavrin, S.V.; Aleinikov, A.Yu.; Hoppes, W.G.; Surano, K.A.

    2005-01-01

    Lichens are widely used to assess the atmospheric pollution by heavy metals and radionuclides. However, few studies are available in publications on using lichens to qualitatively assess the atmospheric pollution levels. The paper presents research results applying epiphytic lichens as bio-monitors of quantitative atmospheric contamination with uranium. The observations were conducted during 2.5 years in the natural environment. Two experimental sites were used: one in the vicinity of a uranium contamination source, the other one - at a sufficient distance away to represent the background conditions. Air and lichens were sampled at both sites monthly. Epiphytic lichens Hypogimnia physodes were used as bio-indicators. Lichen samples were taken from various trees at about 1.5m from the ground. Air was sampled with filters at sampling stations. The uranium content in lichen and air samples as well as isotopic mass ratios 235 U/ 238 U were measured by mass-spectrometer technique after uranium pre-extraction. Measured content of uranium were 1.45mgkg -1 in lichen at 2.09E-04μgm -3 in air and 0.106mgkg -1 in lichen at 1.13E-05μgm -3 in air. The relationship of the uranium content in atmosphere and that in lichens was determined, C AIR =exp(1.1xC LICHEN -12). The possibility of separate identification of natural and man-made uranium in lichens was demonstrated in principle

  7. Separation and concentration of uranium by extraction chromatography : U(VI) - H/sub 3/PO/sub 4/ system

    Energy Technology Data Exchange (ETDEWEB)

    Nobre, J S.M.

    1981-01-01

    The feasibility of using the extraction chromatographic technique as a way to recover uranium from phosphatic rocks is evaluated. The behaviour of uranium from raw phsophoric acid solutions in chromatographic systems using the mixture di(2-ethylhexyl) orthophosphoric acid (D2EHPA) - tributyl phosphate (TBP) as the stationary phase was studied. Materials as alumina, activated carbon and the macroporous resins XAD-4 and XAD-7 were used as supports for organic stationary phase. The best results were obtained with poliacrilic polymer XAD-7, due to its excellent chromatographic properties and efficient organic phase retention. Uranium was quantitatively retained by D2EHPA-TBP-XAD-7 columns from synthetic phosphoric acid solutions with typical composition of phosphatic acid liquors. The elution of uranium from this system was also studied, and the best results were obtained with phosphoric acid solutions. This chromatographic column presented a high stability, not changing their properties even after more than twenty cycles, including the conditioning, sorption, washing and elution steps. Uranium determinations were perfpormed by indirect titration with potassium dichromate and by molecular absorption spectrophotometry with hydrogen peroxide- carbonate. A new and more sensitive method for uranium determination in phosphoric medium, which might be applied to acid liquors of phosphatic ores, was developed. An extraction-photometric method was used, with Arsenazo III (1,8-dihydroxynaphtalene-3,6-disulphonic acid-2,7-bis(azo-2)-phenylarsonic acid) as the reagent for uranium.

  8. Radiation damage of uranium

    International Nuclear Information System (INIS)

    Lazarevic, Dj.

    1966-11-01

    Study of radiation damage covered the following: Kinetics of electric resistance of uranium and uranium alloy with 1% of molybdenum dependent on the second phase and burnup rate; Study of gas precipitation and diffusion of bubbles by transmission electron microscopy; Numerical analysis of the influence of defects distribution and concentration on the rare gas precipitation in uranium; study of thermal sedimentation of uranium alloy with molybdenum; diffusion of rare gas in metal by gas chromatography method

  9. Uranium in fossil bones

    International Nuclear Information System (INIS)

    Koul, S.L.

    1978-01-01

    An attempt has been made to determine the uranium content and thus the age of certain fossil bones Haritalyangarh (Himachal Pradesh), India. The results indicate that bones rich in apatite are also rich in uranium, and that the radioactivity is due to radionuclides in the uranium series. The larger animals apparently have a higher concentration of uranium than the small. The dating of a fossil jaw (elephant) places it in the Pleistocene. (Auth.)

  10. Treatment of severe insulin resistance in pregnancy with 500 units per milliliter of concentrated insulin.

    Science.gov (United States)

    Mendez-Figueroa, Hector; Maggio, Lindsay; Dahlke, Joshua D; Daley, Julie; Lopes, Vrishali V; Coustan, Donald R; Rouse, Dwight J

    2013-07-01

    To evaluate glycemic control and pregnancy outcomes among pregnant women with severe insulin resistance treated with 500 units/mL concentrated insulin. Retrospective analysis of gravid women with severe insulin resistance (need for greater than 100 units of insulin per injection or greater than 200 units/d) treated with either 500 units/mL concentrated insulin or conventional insulin therapy. We performed a two-part analysis: 1) between gravid women treated with and without 500 units/mL concentrated insulin; and 2) among gravid women treated with 500 units/mL concentrated insulin, comparing glycemic control before and after its initiation. Seventy-three pregnant women with severe insulin resistance were treated with 500 units/mL concentrated insulin and 78 with conventional insulin regimens. Patients treated with 500 units/mL concentrated insulin were older and more likely to have type 2 diabetes mellitus. Average body mass index was comparable between both groups (38.6 compared with 40.4, P=.11) as were obstetric and perinatal outcomes and glycemic control during the last week of gestation. Within the 500 units/mL concentrated insulin cohort, after initiation of this medication, fasting and postprandial blood glucose concentrations improved. However, the rates of blood glucose values less than 60 mg/dL and less than 50 mg/dL were higher in the 500 units/mL concentrated insulin group after initiation than before, 4.8% compared with 2.0% (Pinsulin in severely obese insulin-resistant pregnant women confers similar glycemic control compared with traditional insulin regimens but may increase the risk of hypoglycemia. II.

  11. Uranium industry annual 1998

    International Nuclear Information System (INIS)

    1999-01-01

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ''Uranium Industry Annual Survey.'' Data provides a comprehensive statistical characterization of the industry's activities for the survey year and also include some information about industry's plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ''Uranium Industry Annual Survey'' is provided in Appendix C. The Form EIA-858 ''Uranium Industry Annual Survey'' is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs

  12. Uranium hydrogeochemical and stream sediment reconnaissance data release for the Lewistown NTMS Quadrangle, Montana, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Shannon, S.S. Jr.

    1980-08-01

    Totals of 758 water and 1170 sediment samples were collected from 1649 locations in the Levistown quadrangle. Water samples were collected at streams, springs, wells, ponds, and marshes; sediment samples were obtained from streams, springs, and ponds. Histograms and statistical data for uranium concentrations in water and sediment samples and thorium concentrations in sediment samples are given. All samples were collected at the nominal reconnaissance density of one sample location per 10 km 2 . Elemental concentration, field measurement, weather, geologic, and geographic data for each sample location are listed for waters and for sediments. Uranium to thorium (U/Th) ratios for sediment samples are included. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than 40 ppB U were reanalyzed by delayed-neutron counting. Sediments were analyzed for U and Th as well as Al, Sb, Ba, Be, Bi, Cd, Ca, Ce, Cs, Cl, Cr, Co, Cu, Dy, Eu, Au, Hf, Fe, La, Pb, Li, Lu, Mg, Mn, Ni, Nb, K, Rb, Sa, Sc, Ag, Na, Sr, Ta, Tb, Sn, Ti, W, V, Yb, and Zn. All sediments were analyzed for U by delayed neutron counting. Other elemental concentrations in sediments were determined by neutron activation analysis for 31 elements, by x-ray fluorescence for 9 elements, and by arc-source emission spectrography for 2 elements. Analytical results are reported as parts per million. Descriptions of procedures used for analysis of water and sediments samples as well as analytical precisions and detection limits are given

  13. An investigation to compare the performance of methods for the determination of free acid in highly concentrated solutions of plutonium and uranium nitrate

    International Nuclear Information System (INIS)

    Crossley, D.

    1980-08-01

    An investigation has been carried out to compare the performance of the direct titration method and the indirect mass balance method, for the determination of free acid in highly concentrated solutions of uranium nitrate and plutonium nitrate. The direct titration of free acid with alkali is carried out in a fluoride medium to avoid interference from the hydrolysis of uranium or plutonium, while free acid concentration by the mass balance method is obtained by calculation from the metal concentration, metal valency state, and total nitrate concentration in a sample. The Gran plot end-point prediction technique has been used extensively in the investigation to gain information concerning the hydrolysis of uranium and plutonium in fluoride media and in other complexing media. The use of the Gran plot technique has improved the detection of the end-point of the free acid titration which gives an improvement in the precision of the determination. The experimental results obtained show that there is good agreement between the two methods for the determination of free acidity, and that the precision of the direct titration method in a fluoride medium using the Gran plot technique to detect the end-point is 0.75% (coefficient of variation), for a typical separation plant plutonium nitrate solution. The performance of alternative complexing agents in the direct titration method has been studied and is discussed. (author)

  14. National Uranium Resource Evaluation Program (NURE): hydrogeochemical and stream sediment reconnaissance in the eastern United States

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Price, V. Jr.

    1976-01-01

    A geochemical reconnaissance of twenty-five eastern states for uranium will be conducted by the Savannah River Laboratory for the U.S. Energy Research and Development Administration. A sound technical basis for the reconnaissance is being developed by intensive studies of sampling, analysis, and data management. Results of three orientation studies in the southern Appalachian Piedmont and Blue Ridge areas indicate that multi-element analysis of -100 mesh (less than 149 μm) stream sediments will provide adequate information for reconnaissance. Stream and groundwater samples also provide useful information but are not considered cost-effective for regional reconnaissance in the areas studied

  15. United States Transuranium and Uranium Registries. Annuary report, February 1, 2004 - June 30, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Alldredge, J. Richard [Washington State Univ., Richland, WA (United States); Ehrhart, Susan M. [Washington State Univ., Richland, WA (United States); Eliston, James T. [Washington State Univ., Richland, WA (United States); Emmel, Robert R. [Washington State Univ., Richland, WA (United States); Filipy, Ronald E. [Washington State Univ., Richland, WA (United States); James, Anthony C. [Washington State Univ., Richland, WA (United States); Sasser, Lyle B. [Washington State Univ., Richland, WA (United States); Wood, Tanya G. [Washington State Univ., Richland, WA (United States)

    2006-05-31

    Three events of significance to the U. S. Transuranium and Uranium Registries (USTUR) occurred during this reporting period: 1. The search for a new Associate Director was successful in that Dr. Anthony C. (Tony) James was appointed to the position, 2. A five-year grant for the operation of the USTUR was approved by the U. S. Department of Energy; the previous grant cycles were for three years, 3. I retired from the USTUR Directorship on July 1, 2005 and Tony James became the new Director.

  16. International Uranium Resources Evaluation Project (IUREP) national favourability studies: United States of America

    International Nuclear Information System (INIS)

    1977-08-01

    In the first years of the uranium program, starting in 1948, drilling was primarily undertaken by the government. The AEC and the U.S. Geological Survey continued a modest program until the mid-1950's. The government drilled about 5-6 million feet (1.7 million meters), and a number of significant ore deposits were defined, primarily in the Uravan Mineral Belt, Colorado. Except for the early years, private drilling exceeded the government program. Drilling reached a peak of 2.8 million meters in 1957, but dropped back to 0.6 million meters in 1965 when the government purchase program had been phased out. Later, with resurgence of uranium demand it rose again to nearly 9.1 million meters in 1969. After a decline in the early 1970's, activity rose dramatically to 10.3 million meters in 1976. Total drilling through 1976 has been about 88.3 million meters. Exploration costs from 1966 through 1976 are estimated to be $679 million. During 1976, 32 percent of the drilling or 3.3 million meters was in the Wyoming Basins, with 4.5 million meters or 43 percent in the Colorado Plateau, and 0.9 million meters or 8 percent in the Gulf Coastal Plain. Total 1976 drilling was 0.9 million meters and average depth of hole 155 meters; this contrasts with 1.7 million meters and 53 meters average depth in 1960. Reserves of uranium are located in the western portion of the country with over 85 percent in the Colorado Plateau and Wyoming Basins. The Basin and Range province of Oregon, California, Nevada, Arizona, New Mexico, and Texas is receiving considerable exploration emphasis. Other areas of increasing activity include sedimentary rocks of the Great Plains and the crystalline rocks of the Rocky Mountains, Appalachian Mountains, and the Precambrian shield of Michigan and Wisconsin. Work in the new areas emphasizes geologic and geophysical assessment, so relatively little drilling has been done. When programs have matured, it is assumed that drilling effort will be accelerated

  17. Feeding the nuclear fuel cycle with a long term view; AREVA's front-end business units, uranium mining, UF6 conversion and isotopic enrichment

    International Nuclear Information System (INIS)

    Capus, G.A.P.; Autegert, R.

    2005-01-01

    As a leading provider of technological solutions for nuclear power generation and electricity transmission, the AREVA group has the unique capability of offering a fully integrated fuel supply, when requested by its customers. At the core of the AREVA group, COGEMA Front End Division is an essential part of the overall fuel supply chain. Composed of three Business Units and gathering several subsidiaries and joint 'ventures, this division enjoys several leading positions as shown by its market shares and historical production records. Current Uranium market evolutions put the natural uranium supply under focus. The uranium conversion segment also recently revealed some concerning evolutions. And no doubt, the market pressure will soon be directed also at the enrichment segment. Looking towards the long term, AREVA strongly believes that a nuclear power renewal is needed, especially to help limiting green house effect gas release. Therefore, to address future supplies needed to fuel the existing fleet of nuclear power plants, but also new ones, the AREVA group is planning very significant investments to build new facilities in all the three front-end market segments. As far as uranium mining is concerned, these new mines will be based upon uranium reserves of outstanding quality. As for uranium conversion and enrichment, two large projects will be based on the most advanced technologies. This paper is aimed at recalling COGEMA Front End Division experience, the current status of its plants and operating entities and will provide a detailed overview of its major projects. (authors)

  18. Impact of uranium concentration reduction in side plates of the fuel elements of IEA-R1 reactor on neutronic and thermal hydraulic analyses

    International Nuclear Information System (INIS)

    Rios, Ilka Antonia

    2013-01-01

    This master thesis presents a study to verify the impact of the uranium concentration reduction in the side plates of the reactor IEA-R1 fuel elements on the neutronic and thermal-hydraulic analyses. To develop such study, a previous IPEN-CNEN/SP research was reproduced by simulating the fuel elements burn-up, with side plate uranium density reduced to 50, 60 and 70% of the standard fuel element plates. This research begins with the neutronic analysis using the computer code HAMMER and the first step consists in the calculation of the cross section of all materials presented at the reactor core, with their initial concentration; the second step consists in the calculation of the fast and thermal neutron group fluxes and power densities for fuel elements using the computer code CITATION. HAMMER output data is used as input data. Once the neutronic analysis is finished and the most critical fuel elements with highest power density have been defined, the thermal-hydraulics analysis begins. This analysis uses MCTR-IEA-R1 thermal-hydraulics model, which equations are solved by commercial code EES. Thermalhydraulics analysis input is the power density data calculated by CITATION: it is considered the highest power density on each fuel element, where there is a higher energy release and, consequently, higher temperatures. This data is used on energy balance equations to calculate temperatures on critical fuel element regions. Reactor operation comparison for three different uranium densities on fuel side plates is presented. Uranium density reduction contributes to the cladding surface temperature to remain below the established limit, as reactor operation safety requirement and it does not affect significantly fuel element final burn-up nor reactor reactivity. The reduction of uranium in the side plates of the fuel elements of the IEA-R1 showed to be a viable option to avoid corrosion problems due to high temperatures. (author)

  19. Department of Energy depleted uranium recycle

    International Nuclear Information System (INIS)

    Kosinski, F.E.; Butturini, W.G.; Kurtz, J.J.

    1994-01-01

    With its strategic supply of depleted uranium, the Department of Energy is studying reuse of the material in nuclear radiation shields, military hardware, and commercial applications. the study is expected to warrant a more detailed uranium recycle plan which would include consideration of a demonstration program and a program implementation decision. Such a program, if implemented, would become the largest nuclear material recycle program in the history of the Department of Energy. The bulk of the current inventory of depleted uranium is stored in 14-ton cylinders in the form of solid uranium hexafluoride (UF 6 ). The radioactive 235 U content has been reduced to a concentration of 0.2% to 0.4%. Present estimates indicate there are about 55,000 UF 6 -filled cylinders in inventory and planned operations will provide another 2,500 cylinders of depleted uranium each year. The United States government, under the auspices of the Department of Energy, considers the depleted uranium a highly-refined strategic resource of significant value. A possible utilization of a large portion of the depleted uranium inventory is as radiation shielding for spent reactor fuels and high-level radioactive waste. To this end, the Department of Energy study to-date has included a preliminary technical review to ascertain DOE chemical forms useful for commercial products. The presentation summarized the information including preliminary cost estimates. The status of commercial uranium processing is discussed. With a shrinking market, the number of chemical conversion and fabrication plants is reduced; however, the commercial capability does exist for chemical conversion of the UF 6 to the metal form and for the fabrication of uranium radiation shields and other uranium products. Department of Energy facilities no longer possess a capability for depleted uranium chemical conversion

  20. International trade in uranium

    International Nuclear Information System (INIS)

    Two reports are presented; one has been prepared by the Uranium Institute and is submitted by the United Kingdom delegation, the other by the United States delegation. The report of the Uranium Institute deals with the influence of the government on international trade in uranium. This influence becomes apparent predominantly by export and import restrictions, as well as by price controls. The contribution submitted by the United States is a uranium market trend analysis, with pricing methods and contracting modes as well as the effect of government policies being investigated in the light of recent developments

  1. Uranium hydrogeochemical and stream sediment reconnaissance data release for the Dubois NTMS Quadrangle, Idaho/Montana, including concentrations of forty-five additional elements

    International Nuclear Information System (INIS)

    LaDelfe, C.M.

    1980-08-01

    Totals of 1024 water samples and 1600 sediment samples were collected from 1669 locations in the Dubois quadrangle. Water samples were taken at streams, springs, and wells; sediment samples were collected from streams and springs. All field and analytical data are presented for waters in Appendix I-A and for sediments in I-B. All elemental analyses were performed at the LASL. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than the upper detection limit of uranium were reanalyzed by delayed neutron counting. Sediments were analyzed for uranium and thorium as well as aluminum, antimony, arsenic, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, chlorine, chromium, cobalt, copper, dysprosium, europium, gold, hafnium, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, nickel, niobium, potassium rubidium, samarium, scandium, selenium, silver, sodium, strontium, tantalum, terbium, tin, titanium, tungsten, vanadium, ytterbium, zinc and zirconium. All sediments were analyzed for uranium by delayed-neutron counting. Other elemental concentrations in sediments were determined by neutron-activation analysis for 30 elements, by x-ray fluorescence for 12 elements, and by arc-source emission spectrography for 2 elements. Analytical results for sediments are reported as parts per million

  2. Uranium hydrogeochemical and stream sediment reconnaissance data release for the Dubois NTMS Quadrangle, Idaho/Montana, including concentrations of forty-five additional elements

    Energy Technology Data Exchange (ETDEWEB)

    LaDelfe, C.M.

    1980-08-01

    Totals of 1024 water samples and 1600 sediment samples were collected from 1669 locations in the Dubois quadrangle. Water samples were taken at streams, springs, and wells; sediment samples were collected from streams and springs. All field and analytical data are presented for waters in Appendix I-A and for sediments in I-B. All elemental analyses were performed at the LASL. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than the upper detection limit of uranium were reanalyzed by delayed neutron counting. Sediments were analyzed for uranium and thorium as well as aluminum, antimony, arsenic, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, chlorine, chromium, cobalt, copper, dysprosium, europium, gold, hafnium, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, nickel, niobium, potassium rubidium, samarium, scandium, selenium, silver, sodium, strontium, tantalum, terbium, tin, titanium, tungsten, vanadium, ytterbium, zinc and zirconium. All sediments were analyzed for uranium by delayed-neutron counting. Other elemental concentrations in sediments were determined by neutron-activation analysis for 30 elements, by x-ray fluorescence for 12 elements, and by arc-source emission spectrography for 2 elements. Analytical results for sediments are reported as parts per million.

  3. Low-degree partial melting of metapelites - another possible implement for selective concentration of uranium: Example from the Rozna uranium deposit, Bohemian Massif

    International Nuclear Information System (INIS)

    Leichmann, J.; Matula, M.; Broska, I.; Holeczy, D.

    2002-01-01

    Monazite, as the main carrier of U and Th in host biotite gneiss at the Rozna uranium deposit, was replaced by allanite during the process of partial melting. The transformation was accompanied by a release of U, and to a lesser extent of Th, from the monazite lattice. The liberated U and Th crystallized in the extracted granitic melt mainly in the form of thorogummite or cheralite. The granites are depleted in HFS and LREE. Garnet-poor granites are depleted in HREE as well, whereas garnet-rich types are enriched in HREE. (author)

  4. Communication received from the United Kingdom of Great Britain and Northern Ireland concerning its national holdings of civil high enriched uranium

    International Nuclear Information System (INIS)

    1998-01-01

    The document reproduces the text of the note verbale and its attachment dated 1 July 1998 received by the Director General of the IAEA from the Permanent Mission to the IAEA of the United Kingdom of Great Britain and Northern Ireland, making available information on its national holdings of civil high enriched uranium as of 31 December 1997

  5. Uranium hydrogeochemical and stream sediment reconnaissance of the Dixon Entrance NTMS and Prince Rupert D-6 quadrangles, Alaska, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Warren, R.G.; Hensley, W.K.; Hanks, D.E.

    1980-09-01

    During August 1978, sediment and water samples were collected from 203 lakes, streams, and springs in the Dixon Entrance and Prince Rupert D-6 quadrangles, Alaska. Variations in concentrations of all 43 elements among the five sieve fractions at each location are generally less than analytical uncertainty. Therefore, elemental analyses are generally comparable for a wide range in sieve fractions for sediment sample locations in southeastern Alaska. However, at some few locations, several elemental concentrations increase with finer mesh size; for uranium, such an increase may be associated with mineralization. Waterborne sediment samples collected from the center of a stream yield analyses essentially identical to those collected from the adjacent bank for most elements. Chlorine concentrations are generally higher in bank sediments, probably as a result of concentration of halogens in the vegetation that stabilizes the bank. At a few locations, concentrations of the ferrous elements, particularly Mn and Co, differ notably between the stream center and bank: such behavior is characteristic of mineralized areas. Concentrations of the ferrous elements, particularly Mn and Co, are strikingly enriched in the stream sediments compared either to lake sediments or to crustal abundances. This suggests that this area might be a favorable location for strategic resources of these elements. Uranium concentrations in all 950 sediment samples of all sieve fractions range from 0.54 to 22.80 ppM, with a median of 2.70 ppM

  6. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements; Procedimentos de fabricacao de elementos combustiveis a base de dispersoes com alta concentracao de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jose Antonio Batista de

    2011-07-01

    IPEN-CNEN/SP developed the technology to produce the dispersion type fuel elements for research reactors and made it available for routine production. Today, the fuel produced in IPEN-CNEN/SP is limited to the uranium concentration of 3.0 gU/cm{sup 3} for U{sub 3}Si{sub 2}-Al dispersion-based and 2.3 gU/cm{sup 3} for U{sub 3}O{sub 8}-Al dispersion. The increase of uranium concentration in fuel plates enables the reactivity of the reactor core reactivity to be higher and extends the fuel life. Concerning technology, it is possible to increase the uranium concentration in the fuel meat up to the limit of 4.8 gU/cm{sup 3} in U{sub 3}Si{sub 2}-Al dispersion and 3.2 gU/cm{sup 3} U{sub 3}O{sub 8}-Al dispersion. These dispersions are well qualified worldwide. This work aims to develop the manufacturing process of both fuel meats with high uranium concentrations, by redefining the manufacturing procedures currently adopted in the Nuclear Fuel Center of IPEN-CNEN/SP. Based on the results, it was concluded that to achieve the desired concentration, it is necessary to make some changes in the established procedures, such as in the particle size of the fuel powder and in the feeding process inside the matrix, before briquette pressing. These studies have also shown that the fuel plates, with a high concentration of U{sub 3}Si{sub 2}-Al, met the used specifications. On the other hand, the appearance of the microstructure obtained from U{sub 3}O{sub 8}-Al dispersion fuel plates with 3.2 gU/cm{sup 3} showed to be unsatisfactory, due to the considerably significant porosity observed. The developed fabrication procedure was applied to U{sub 3}Si{sub 2} production at 4.8 gU/cm{sup 3}, with enriched uranium. The produced plates were used to assemble the fuel element IEA-228, which was irradiated in order to check its performance in the IEA-R1 reactor at IPEN-CNEN/SP. These new fuels have potential to be used in the new Brazilian Multipurpose Reactor - RMB. (author)

  7. Concentration of gold, sulphide minerals and uranium oxide minerals by flotation from ores and metallurgical plant products

    International Nuclear Information System (INIS)

    Weston, D.

    1974-01-01

    A process for the recovery by froth flotation of gold and mineral values selected from the group consisting of gold bearing minerals, platinum group minerals, silver group minerals, and uranium group minerals, from ores and metallurgical plant products containing at least gold and at least one of the other said minerals comprising: subjecting a suitably prepared pulp of the material to mechanical agitation in at least one agitation conditioning stage wherein the pH of the said pulp has been lowered with an acid agent to an optimum pH point within the pH range of about 1.5 to 5.0 and wherein the agitation conditioning is for a sufficient period of time to bring about heavy activation of at least one of the said mineral values in at least one subsequent mechanical agitation conditioning stage wherein the said pulp is further agitation conditioned for a sufficient period of time and at an optimum pH point in the pH range of about 6.0 to 11.0 in the presence of at least one collector selected from the group of sulfhydryl anionic collectors to produce the said heavy activation of at least gold and at least one of the other said mineral values; and subsequently in the presence of a frother subjecting and said agitation conditioned pulp to flotation to produce a concentrate enriched in gold and at least one of the othersaid mineral values, and a tailings product impoverished in at least gold and at least one of the other said mineral values

  8. Development of uranium industry in Romania

    International Nuclear Information System (INIS)

    Iuhas, Tiberiu

    2000-01-01

    The management of the uranium resources is performed in Romania by the National Uranium Company. The tasks to be done are: 1. management and protection of rare and radioactive metal ores in the exploitation areas; 2. mining, preparation, refining and trading the radioactive ores, as well as reprocessing the uranium stock from the uranium concentrate in the national reserve; 3. performing geologic and technologic studies in the exploitation areas; 4. performing studies and projects concerning the maintenance of the present facilities and unearthing new ores; 5. building industrial facilities; 6. carrying out technological transport; 7. importation-exportation operations; 8. performing micro-production activity in experimental research units; 9. personnel training; 10. medical assistance for the personnel; 11. environment protection. The company is organized as follows: 1.three branches for uranium ore mining, located at Suceava, Bihor and Banat; 2. one branch for geologic survey, located at Magurele; 3. one branch for uranium ore preparation and concentration and for refining uranium concentrates, located at Feldioara; 4. One group for mine conservation, closure and ecology, located at Bucuresti. The final product, sintered powder of UO 2 produced at Feldioara plant, was tested in 1994 by the Canadian partner and met successfully the required standards. The Feldioara plant was certified as supplier of raw material for CANDU nuclear fuel production and as such, Romania is the only authorized producer of CANDU nuclear fuel in Europe and the second in the world, after Canada. Maintaining the uranium production in Romania is justified by the existence of uranium ore resources, the declining of natural gas resources, lower costs per kWh for electric nuclear power as compared to fossil-fuel power production, the possibility for Romania to become an important supplier of CANDU nuclear fuel, the low environmental impact and high costs for total shutdown of activity, high

  9. Gas centrifuge uranium enrichment programme in the United States of America

    International Nuclear Information System (INIS)

    Gestson, D.K.

    1983-01-01

    The technology of uranium enrichment using the gas centrifuge is fully proven as a result of over twenty years of research. The high performance of the centrifuge has been confirmed, and its reliability established, through detailed evaluation of a series of centrifuge designs. The baseline centrifuge for the Gas Centrifuge Enrichment Plant (GCEP) is now in commercial production by three qualified manufacturers. It will be ready for installation in GCEP on schedule. The GCEP construction is also on schedule, with two process buildings expected to start operation in 1988 and 1989. Development and demonstration of the Set IV advanced gas centrifuge is under way and it is expected to be ready for installation in Process Building 3 in early 1989. (author)

  10. Concentration of uranium in the urine of the staff of a nuclear power plant. [Personnel engaged in chemistry and metallurgy of uranium]. Concentrazione d'uranio nelle urine del personale di un centro nucleare

    Energy Technology Data Exchange (ETDEWEB)

    Camera, V.; Giubileo, M.

    1962-07-01

    The concentration of natural uranium in the urine of 78 workers from the groups of industrial chemistry and metallurgy of uranium, was followed for 3 years. A total of 1471 analyses were done with the fluorometric method. The urine checks were done every week, or every 15 days or more according to the amount of exposure, which was evaluated by investigations done at the place of work and on the basis of information collected from the workers during the periodical medical examinations. The validity of this criterion was proved by the data obtained: the majority (74%) of the analyses of personnel least exposed revealed levels equal to or inferior to 1 gamma/liter, whereas (66%) the group with an intermediate risk showed 1 to 5 gamma/liter, and in the group most exposed levels of 5-10 gamma/liter were found in 37% of the cases; from 10-20 gamma/liter in 19%; and from 20-50 gamma/liter in 7% of the cases. Only 1% of the samples had a level superior to 50 gamma/liter. The attempt to establish a correlation between the level of uranium found in the air and in the urine gave no tenable indication concerning the real work risk, due to the variability of atmospheric contamination with time and the incessant movement of almost all the workers from one laboratory to another during the day.

  11. Concentration of uranium in the urine of the staff of a nuclear power plant. [Personnel engaged in chemistry and metallurgy of uranium]. Concentrazione d'uranio nelle urine del personale di un centro nucleare

    Energy Technology Data Exchange (ETDEWEB)

    Camera, V.; Giubileo, M.

    1962-07-01

    The concentration of natural uranium in the urine of 78 workers from the groups of industrial chemistry and metallurgy of uranium, was followed for 3 years. A total of 1471 analyses were done with the fluorometric method. The urine checks were done every week, or every 15 days or more according to the amount of exposure, which was evaluated by investigations done at the place of work and on the basis of information collected from the workers during the periodical medical examinations. The validity of this criterion was proved by the data obtained: the majority (74%) of the analyses of personnel least exposed revealed levels equal to or inferior to 1 gamma/liter, whereas (66%) the group with an intermediate risk showed 1 to 5 gamma/liter, and in the group most exposed levels of 5-10 gamma/liter were found in 37% of the cases; from 10-20 gamma/liter in 19%; and from 20-50 gamma/liter in 7% of the cases. Only 1% of the samples had a level superior to 50 gamma/liter. The attempt to establish a correlation between the level of uranium found in the air and in the urine gave no tenable indication concerning the real work risk, due to the variability of atmospheric contamination with time and the incessant movement of almost all the workers from one laboratory to another during the day.

  12. Determination of elemental impurities and U and O isotopic compositions with a view to identify the geographical and industrial origins of uranium ore concentrates

    Science.gov (United States)

    Salaun, A.; Hubert, A.; Pointurier, F.; Aupiais, J.; Pili, E.; Richon, P.; Fauré, A.; Diallo, S.

    2012-12-01

    First events of illicit trafficking of nuclear and radiological materials occurred 50 years ago. Nuclear forensics expertise are aiming at determining the use of seized material, its industrial history and provenance (geographical area, place of production or processing), at assisting in the identification and dismantling of illicit trafficking networks. This information is also valuable in the context of inspections of declared facilities to verify the consistency of operator's declaration. Several characteristics can be used to determine the origin of uranium ore concentrates such as trace elemental impurity patterns (Keegan et al., 2008 ; Varga et al., 2010a, 2010b) or uranium, oxygen and lead isotopic compositions (Tamborini et al., 2002a, 2002b ; Wallenius et al., 2006; Varga et al., 2009). We developed analytical procedures for measuring the isotopic compositions of uranium (234U/238U and 235U/238U) and oxygen (18O/16O) and levels of elemental impurities (e.g. REE, Th) from very small amounts of uranium ore concentrates (or yellow cakes). Micrometer particles and few milligrams of material are used for oxygen isotope measurements and REE determination, respectively. Reference materials were analyzed by mass spectrometry (TIMS, SF-ICP-MS and SIMS) to validate testing protocols. Finally, materials of unknown origin were analyzed to highlight significant differences and determine whether these differences allow identifying the origin of these ore concentrates. References: Keegan, E., et al. (2008). Applied Geochemistry 23, 765-777. Tamborini, G., et al. (2002a). Analytical Chemistry 74, 6098-6101. Tamborini, G., et al. (2002b). Microchimica Acta 139, 185-188. Varga, Z., et al. (2009). Analytical Chemistry 81, 8327-8334. Varga, Z., et al. (2010a). Talanta 80, 1744-1749. Varga, Z., et al. (2010b). Radiochimica Acta 98, 771-778 Wallenius, M., et al. (2006). Forensic Science International 156, 55-62.

  13. Improved Technique for the Determination of Uranium Minor Isotopes Concentrations in Microparticles by Using Secondary Ion Mass-Spectrometer in Multicollection Mode

    International Nuclear Information System (INIS)

    Aleshin, M.; Elantyev, I.; Stebelkov, Y.

    2015-01-01

    Traditional method of the analysis implies simultaneous measuring of secondary ion currents of isotopes 234U + , 235U + , 238U + , ions with mass 236 amu (236U + and 235UH + ) and hydride ions 238UH + by using mass-spectrometer Cameca IMS1280 in multicollection mode. Calculating of uranium isotopic composition is performed using the results of 40 successive measurements of those currents (cycles). Duration of each measurement is 8 s. Small amounts of uranium minor isotopes are limitation for precise determination of their concentrations. To prevent the damage of the secondary ions detector the intensity of ion current should be no more than 5 x 10 5 s -1 . This limitation does not allow setting a higher primary ion current for the increasing of minor uranium isotopes ions emission because of the signal of ions 238U + gets too high. New technique is developed to improve the accuracy of determination of uranium minor isotopes concentrations. Process of measurement is divided on two steps. First step is a measurement of ion currents during 20 cycles by five detectors. The second step implies the elimination of ions 238U + hitting to the detector and 10 times increasing of primary ion current. The ratio 235U/238U is calculated from the first step results, so uncertainty of determination of this value is 1.4 times bigger than with duration of 40 cycles of the measurement. The ratios 234U/235U and 236U/235U are calculated during the second step. This technique allows to determine content of 234U and 236U with 3 and 5 times less uncertainties respectively, but with different degree of the sputtering particles. Moreover the duration of each cycle was set less (1 second) to use data more efficient. The technique accordingly with every second counting provides uncertainty of determination 236U concentration 4 times less than traditional method at the same degree of sputtering particles. (author)

  14. Recovery of uranium by a reverse osmosis process

    International Nuclear Information System (INIS)

    Cleary, J.G.; Stana, R.R.

    1980-01-01

    A method for concentrating and recovering uranium material from an aqueous solution, comprises passing a feed solution containing uranium through at least one reverse osmosis membrane system to concentrate the uranium, and then flushing the concentrated uranium solution with water in a reverse osmosis membrane system to further concentrate the uranium

  15. Absolute analysis of uranium isotopic concentrations with a gas ion source mass spectrometer; Analyses absolues des concentrations isotopiques de l'uranium par spectrometre de masse equipe d'une source a gaz

    Energy Technology Data Exchange (ETDEWEB)

    Chaussy, L.; Boyer, R. [Commissariat a l' Energie Atomique, Pierrelatte (France)

    1969-07-01

    Mass spectrometer with electronic bombardment ions source for routine uranium isotopic analysis are used like relative measurements apparatus. We show that such mass spectrometers can be used for absolute measurements with a very high sensitivity and precision which are ten times better than theses of thermo-ionic ions source mass spectrometer. We examine the causes of systematic errors and we give experimental data. In particular natural uranium sample used as reference give: U{sub 5} = 0.7202 {+-} 0.0005 atoms per cent; U{sub 4} = 0.00552 {+-} 0.0003 atoms per cent. The use of this method is justified for standards control. (authors) [French] Les spectrometres de masse a source par bombardement electronique pour l'analyse de l'uranium sous forme d'hexafluorure, sont utilises en routine comme des appareils de mesure relative. On montre que l'on peut utiliser de tels appareils pour effectuer des mesures absolues avec une excellente sensibilite et reproductibilite, dix fois superieure a celle des spectrometres a source thermoionique. On examine en detail les causes d'erreurs systematiques et on donne des resultats experimentaux. En particulier, l'analyse d'un echantillon d'uranium naturel donne: U{sub 5} = 0.7202 {+-} 0.0005 atomes pour cent; U{sub 4} = 0.00552 {+-} 0.0003 atomes pour cent. La technique de mesure est utile pour le controle d'etalons isotopiques. (auteurs)

  16. The text of the Agreement of 30 September 1986 concerning the Agen