WorldWideScience

Sample records for uptake produce astrocytic

  1. Active sulforhodamine 101 uptake into hippocampal astrocytes.

    Directory of Open Access Journals (Sweden)

    Christian Schnell

    Full Text Available Sulforhodamine 101 (SR101 is widely used as a marker of astrocytes. In this study we investigated labeling of astrocytes by SR101 in acute slices from the ventrolateral medulla and the hippocampus of transgenic mice expressing EGFP under the control of the astrocyte-specific human GFAP promoter. While SR101 efficiently and specifically labeled EGFP-expressing astrocytes in hippocampus, we found that the same staining procedure failed to label astrocytes efficiently in the ventrolateral medulla. Although carbenoxolone is able to decrease the SR101-labeling of astrocytes in the hippocampus, it is unlikely that SR101 is taken up via gap-junction hemichannels because mefloquine, a blocker for pannexin and connexin hemichannels, was unable to prevent SR101-labeling of hippocampal astrocytes. However, SR101-labeling of the hippocampal astrocytes was significantly reduced by substrates of organic anion transport polypeptides, including estron-3-sulfate and dehydroepiandrosterone sulfate, suggesting that SR101 is actively transported into hippocampal astrocytes.

  2. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability.

    Science.gov (United States)

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W; Pfluger, Paul T; Fernandez, Ana M; Luquet, Serge; Woods, Stephen C; Torres-Alemán, Ignacio; Kahn, C Ronald; Götz, Magdalena; Horvath, Tamas L; Tschöp, Matthias H

    2016-08-11

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Mitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles

    Science.gov (United States)

    Wilson, Christina L.; Natarajan, Vaishaali; Hayward, Stephen L.; Khalimonchuk, Oleh; Kidambi, Srivatsan

    2015-11-01

    Titanium dioxide (TiO2) nanoparticles are currently the second most produced engineered nanomaterial in the world with vast usage in consumer products leading to recurrent human exposure. Animal studies indicate significant nanoparticle accumulation in the brain while cellular toxicity studies demonstrate negative effects on neuronal cell viability and function. However, the toxicological effects of nanoparticles on astrocytes, the most abundant cells in the brain, have not been extensively investigated. Therefore, we determined the sub-toxic effect of three different TiO2 nanoparticles (rutile, anatase and commercially available P25 TiO2 nanoparticles) on primary rat cortical astrocytes. We evaluated some events related to astrocyte functions and mitochondrial dysregulation: (1) glutamate uptake; (2) redox signaling mechanisms by measuring ROS production; (3) the expression patterns of dynamin-related proteins (DRPs) and mitofusins 1 and 2, whose expression is central to mitochondrial dynamics; and (4) mitochondrial morphology by MitoTracker® Red CMXRos staining. Anatase, rutile and P25 were found to have LC50 values of 88.22 +/- 10.56 ppm, 136.0 +/- 31.73 ppm and 62.37 +/- 9.06 ppm respectively indicating nanoparticle specific toxicity. All three TiO2 nanoparticles induced a significant loss in glutamate uptake indicative of a loss in vital astrocyte function. TiO2 nanoparticles also induced an increase in reactive oxygen species generation, and a decrease in mitochondrial membrane potential, suggesting mitochondrial damage. TiO2 nanoparticle exposure altered expression patterns of DRPs at low concentrations (25 ppm) and apoptotic fission at high concentrations (100 ppm). TiO2 nanoparticle exposure also resulted in changes to mitochondrial morphology confirmed by mitochondrial staining. Collectively, our data provide compelling evidence that TiO2 nanoparticle exposure has potential implications in astrocyte-mediated neurological dysfunction.Titanium dioxide (Ti

  4. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability

    NARCIS (Netherlands)

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W.; Pfluger, Paul T.; Fernandez, Ana M.; Luquet, Serge; Woods, Stephen C.; Torres-Alemán, Ignacio; Kahn, C. Ronald; Götz, Magdalena; Horvath, Tamas L.; Tschöp, Matthias H.

    2016-01-01

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and

  5. Sulfocerebrosides upregulate liposome uptake in human astrocytes without inducing a proinflammatory response.

    Science.gov (United States)

    Suesca, Elizabeth; Alejo, Jose Luis; Bolaños, Natalia I; Ocampo, Jackson; Leidy, Chad; González, John M

    2013-07-01

    Astrocytes are involved in the pathogenesis of demyelinating diseases, where they actively regulate the secretion of proinflammatory factors, and trigger the recruitment of immune cells in the central nervous system (CNS). Antigen presentation of myelin-derived proteins has been shown to trigger astrocyte response, suggesting that astrocytes can directly sense demyelination. However, the direct response of astrocytes to lipid-debris generated during demyelination has not been investigated. The lipid composition of the myelin sheath is distinct, presenting significant amounts of cerebrosides, sulfocerebrosides (SCB), and ceramides. Studies have shown that microglia are activated in the presence of myelin-derived lipids, pointing to the possibility of lipid-induced astrocyte activation. In this study, a human astrocyte cell line was exposed to liposomes enriched in each myelin lipid component. Although liposome uptake was observed for all compositions, astrocytes had augmented uptake for liposomes containing sulfocerebroside (SCB). This enhanced uptake did not modify their expression of human leukocyte antigen (HLA) molecules or secretion of chemokines. This was in contrast to changes observed in astrocyte cells stimulated with IFNγ. Contrary to human monocytes, astrocytes did not internalize beads in the size-range of liposomes, indicating that liposome uptake is lipid specific. Epifluorescence microscopy corroborated that liposome uptake takes place through endocytosis. Soluble SCB were found to partially block uptake of liposomes containing this same lipid. Endocytosis was not decreased when cells were treated with cytochalasin D, but it was decreased by cold temperature incubation. The specific uptake of SCB in the absence of a proinflammatory response indicates that astrocytes may participate in the trafficking and regulation of sulfocerebroside metabolism and homeostasis in the CNS. Copyright © 2013 International Society for Advancement of Cytometry.

  6. Astrocytes

    DEFF Research Database (Denmark)

    Rasmussen, Rune; Samson, Andrew J.

    2017-01-01

    Anatomy, physiology, proteomics, and genomics reveal the prospect of distinct highly specialized astrocyte subtypes within neural circuits.......Anatomy, physiology, proteomics, and genomics reveal the prospect of distinct highly specialized astrocyte subtypes within neural circuits....

  7. Lactate produced by glycogenolysis in astrocytes regulates memory processing.

    Science.gov (United States)

    Newman, Lori A; Korol, Donna L; Gold, Paul E

    2011-01-01

    When administered either systemically or centrally, glucose is a potent enhancer of memory processes. Measures of glucose levels in extracellular fluid in the rat hippocampus during memory tests reveal that these levels are dynamic, decreasing in response to memory tasks and loads; exogenous glucose blocks these decreases and enhances memory. The present experiments test the hypothesis that glucose enhancement of memory is mediated by glycogen storage and then metabolism to lactate in astrocytes, which provide lactate to neurons as an energy substrate. Sensitive bioprobes were used to measure brain glucose and lactate levels in 1-sec samples. Extracellular glucose decreased and lactate increased while rats performed a spatial working memory task. Intrahippocampal infusions of lactate enhanced memory in this task. In addition, pharmacological inhibition of astrocytic glycogenolysis impaired memory and this impairment was reversed by administration of lactate or glucose, both of which can provide lactate to neurons in the absence of glycogenolysis. Pharmacological block of the monocarboxylate transporter responsible for lactate uptake into neurons also impaired memory and this impairment was not reversed by either glucose or lactate. These findings support the view that astrocytes regulate memory formation by controlling the provision of lactate to support neuronal functions.

  8. A Computational Model to Investigate Astrocytic Glutamate Uptake Influence on Synaptic Transmission and Neuronal Spiking

    Directory of Open Access Journals (Sweden)

    Sushmita Lakshmi Allam

    2012-10-01

    Full Text Available Over the past decades, our view of astrocytes has switched from passive support cells to active processing elements in the brain. The current view is that astrocytes shape neuronal communication and also play an important role in many neurodegenerative diseases. Despite the growing awareness of the importance of astrocytes, the exact mechanisms underlying neuron-astrocyte communication and the physiological consequences of astrocytic-neuronal interactions remain largely unclear. In this work, we define a modeling framework that will permit to address unanswered questions regarding the role of astrocytes. Our computational model of a detailed glutamatergic synapse facilitates the analysis of neural system responses to various stimuli and conditions that are otherwise difficult to obtain experimentally, in particular the readouts at the sub-cellular level. In this paper, we extend a detailed glutamatergic synaptic model, to include astrocytic glutamate transporters. We demonstrate how these glial transporters, responsible for the majority of glutamate uptake, modulate synaptic transmission mediated by ionotropic AMPA and NMDA receptors at glutamatergic synapses. Furthermore, we investigate how these local signaling effects at the synaptic level are translated into varying spatio-temporal patterns of neuron firing. Paired pulse stimulation results reveal that the effect of astrocytic glutamate uptake is more apparent when the input inter-spike interval is sufficiently long to allow the receptors to recover from desensitization. These results suggest an important functional role of astrocytes in spike timing dependent processes and demand further investigation of the molecular basis of certain neurological diseases specifically related to alterations in astrocytic glutamate uptake, such as epilepsy.

  9. Methylglyoxal Induces Changes in the Glyoxalase System and Impairs Glutamate Uptake Activity in Primary Astrocytes.

    Science.gov (United States)

    Hansen, Fernanda; Galland, Fabiana; Lirio, Franciane; de Souza, Daniela Fraga; Da Ré, Carollina; Pacheco, Rafaela Ferreira; Vizuete, Adriana Fernanda; Quincozes-Santos, André; Leite, Marina Concli; Gonçalves, Carlos-Alberto

    2017-01-01

    The impairment of astrocyte functions is associated with diabetes mellitus and other neurodegenerative diseases. Astrocytes have been proposed to be essential cells for neuroprotection against elevated levels of methylglyoxal (MG), a highly reactive aldehyde derived from the glycolytic pathway. MG exposure impairs primary astrocyte viability, as evaluated by different assays, and these cells respond to MG elevation by increasing glyoxalase 1 activity and glutathione levels, which improve cell viability and survival. However, C6 glioma cells have shown strong signs of resistance against MG, without significant changes in the glyoxalase system. Results for aminoguanidine coincubation support the idea that MG toxicity is mediated by glycation. We found a significant decrease in glutamate uptake by astrocytes, without changes in the expression of the major transporters. Carbenoxolone, a nonspecific inhibitor of gap junctions, prevented the cytotoxicity induced by MG in astrocyte cultures. Thus, our data reinforce the idea that astrocyte viability depends on gap junctions and that the impairment induced by MG involves glutamate excitotoxicity. The astrocyte susceptibility to MG emphasizes the importance of this compound in neurodegenerative diseases, where the neuronal damage induced by MG may be aggravated by the commitment of the cells charged with MG clearance.

  10. Excitatory amino acid-stimulated uptake of 22Na+ in primary astrocyte cultures

    International Nuclear Information System (INIS)

    Kimelberg, H.K.; Pang, S.; Treble, D.H.

    1989-01-01

    In this study we have found that L-glutamic acid, as well as being taken up by a Na+-dependent mechanism, will stimulate the uptake of 22Na+ by primary astrocyte cultures from rat brain in the presence of ouabain. By simultaneously measuring the uptake of 22Na+ and L-3H-glutamate a stoichiometry of 2-3 Na+ per glutamate was measured, implying electrogenic uptake. Increasing the medium K+ concentration to depolarize the cells inhibited L-3H-glutamate uptake, while calculations of the energetics of the observed L-3H-glutamate accumulation also supported an electrogenic mechanism of at least 2 Na+:1 glutamate. In contrast, kinetic analysis of the Na+ dependence of L-3H-glutamate uptake indicated a stoichiometry of Na+ to glutamate of 1:1, but further analysis showed that the stoichiometry cannot be resolved by purely kinetic studies. Studies with glutamate analogs, however, showed that kainic acid was a very effective stimulant of 22Na+ uptake, but 3H-kainic acid showed no Na+ -dependent uptake. Furthermore, while L-3H-glutamate uptake was very sensitive to lowered temperatures, glutamate-stimulated 22Na+ uptake was relatively insensitive. These results indicate that glutamate-stimulated uptake of 22Na+ in primary astrocytes cultures cannot be explained solely by cotransport of Na+ with glutamate, and they suggest that direct kainic acid-type receptor induced stimulation of Na+ uptake also occurs. Since both receptor and uptake effects involve transport of Na+, accurate measurements of the Na+ :glutamate stoichiometry for uptake can only be done using completely specific inhibitors of these 2 systems

  11. Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurotoxicity.

    Science.gov (United States)

    Virgin, C E; Ha, T P; Packan, D R; Tombaugh, G C; Yang, S H; Horner, H C; Sapolsky, R M

    1991-10-01

    Glucocorticoids (GCs), the adrenal steroid hormones secreted during stress, can damage the hippocampus and impair its capacity to survive coincident neurological insults. This GC endangerment of the hippocampus is energetic in nature, as it can be prevented when neurons are supplemented with additional energy substrates. This energetic endangerment might arise from the ability of GCs to inhibit glucose transport into both hippocampal neurons and astrocytes. The present study explores the GC inhibition in astrocytes. (1) GCs inhibited glucose transport approximately 15-30% in both primary and secondary hippocampal astrocyte cultures. (2) The parameters of inhibition agreed with the mechanisms of GC inhibition of glucose transport in peripheral tissues: A minimum of 4 h of GC exposure were required, and the effect was steroid specific (i.e., it was not triggered by estrogen, progesterone, or testosterone) and tissue specific (i.e., it was not triggered by GCs in cerebellar or cortical cultures). (3) Similar GC treatment caused a decrease in astrocyte survival during hypoglycemia and a decrease in the affinity of glutamate uptake. This latter observation suggests that GCs might impair the ability of astrocytes to aid neurons during times of neurologic crisis (i.e., by impairing their ability to remove damaging glutamate from the synapse).

  12. Cellular Origin of [18F]FDG-PET Imaging Signals During Ceftriaxone-Stimulated Glutamate Uptake: Astrocytes and Neurons.

    Science.gov (United States)

    Dienel, Gerald A; Behar, Kevin L; Rothman, Douglas L

    2017-12-01

    Ceftriaxone stimulates astrocytic uptake of the excitatory neurotransmitter glutamate, and it is used to treat glutamatergic excitotoxicity that becomes manifest during many brain diseases. Ceftriaxone-stimulated glutamate transport was reported to drive signals underlying [ 18 F]fluorodeoxyglucose-positron emission tomographic ([ 18 F]FDG-PET) metabolic images of brain glucose utilization and interpreted as supportive of the notion of lactate shuttling from astrocytes to neurons. This study draws attention to critical roles of astrocytes in the energetics and imaging of brain activity, but the results are provocative because (1) the method does not have cellular resolution or provide information about downstream pathways of glucose metabolism, (2) neuronal and astrocytic [ 18 F]FDG uptake were not separately measured, and (3) strong evidence against lactate shuttling was not discussed. Evaluation of potential metabolic responses to ceftriaxone suggests lack of astrocytic specificity and significant contributions by pre- and postsynaptic neuronal compartments. Indeed, astrocytic glycolysis may not make a strong contribution to the [ 18 F]FDG-PET signal because partial or complete oxidation of one glutamate molecule on its uptake generates enough ATP to fuel uptake of 3 to 10 more glutamate molecules, diminishing reliance on glycolysis. The influence of ceftriaxone on energetics of glutamate-glutamine cycling must be determined in astrocytes and neurons to elucidate its roles in excitotoxicity treatment.

  13. Human T-cell lymphotropic virus type 1-infected T lymphocytes impair catabolism and uptake of glutamate by astrocytes via Tax-1 and tumor necrosis factor alpha.

    Science.gov (United States)

    Szymocha, R; Akaoka, H; Dutuit, M; Malcus, C; Didier-Bazes, M; Belin, M F; Giraudon, P

    2000-07-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of a chronic progressive myelopathy called tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). In this disease, lesions of the central nervous system (CNS) are associated with perivascular infiltration by lymphocytes. We and others have hypothesized that these T lymphocytes infiltrating the CNS may play a prominent role in TSP/HAM. Here, we show that transient contact of human or rat astrocytes with T lymphocytes chronically infected by HTLV-1 impairs some of the major functions of brain astrocytes. Uptake of extracellular glutamate by astrocytes was significantly decreased after transient contact with infected T cells, while the expression of the glial transporters GLAST and GLT-1 was decreased. In two-compartment cultures avoiding direct cell-to-cell contact, similar results were obtained, suggesting possible involvement of soluble factors, such as cytokines and the viral protein Tax-1. Recombinant Tax-1 and tumor necrosis factor alpha (TNF-alpha) decreased glutamate uptake by astrocytes. Tax-1 probably acts by inducing TNF-alpha, as the effect of Tax-1 was abolished by anti-TNF-alpha antibody. The expression of glutamate-catabolizing enzymes in astrocytes was increased for glutamine synthetase and decreased for glutamate dehydrogenase, the magnitudes of these effects being correlated with the level of Tax-1 transcripts. In conclusion, Tax-1 and cytokines produced by HTLV-1-infected T cells impair the ability of astrocytes to manage the steady-state level of glutamate, which in turn may affect neuronal and oligodendrocytic functions and survival.

  14. Glucose replaces glutamate as energy substrate to fuel glutamate uptake in glutamate dehydrogenase-deficient astrocytes

    DEFF Research Database (Denmark)

    Pajęcka, Kamilla; Nissen, Jakob D; Stridh, Malin H

    2015-01-01

    -500 µM) in the presence or in the absence of glucose, the metabolism of these substrates was studied by using tritiated glutamate or 2-deoxyglucose as tracers. In addition, the cellular contents of glutamate and ATP were determined. The astrocytes were able to maintain physiological levels of ATP...... regardless of the expression level of GDH and the incubation condition, indicating a high degree of flexibility with regard to regulatory mechanisms involved in maintaining an adequate energy level in the cells. Glutamate uptake was found to be increased in these cells when exposed to increasing levels...

  15. Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-β uptake in astrocytes

    Directory of Open Access Journals (Sweden)

    Sreemathi Logan

    2018-03-01

    Full Text Available Objective: A decline in mitochondrial function and biogenesis as well as increased reactive oxygen species (ROS are important determinants of aging. With advancing age, there is a concomitant reduction in circulating levels of insulin-like growth factor-1 (IGF-1 that is closely associated with neuronal aging and neurodegeneration. In this study, we investigated the effect of the decline in IGF-1 signaling with age on astrocyte mitochondrial metabolism and astrocyte function and its association with learning and memory. Methods: Learning and memory was assessed using the radial arm water maze in young and old mice as well as tamoxifen-inducible astrocyte-specific knockout of IGFR (GFAP-CreTAM/igfrf/f. The impact of IGF-1 signaling on mitochondrial function was evaluated using primary astrocyte cultures from igfrf/f mice using AAV-Cre mediated knockdown using Oroboros respirometry and Seahorse assays. Results: Our results indicate that a reduction in IGF-1 receptor (IGFR expression with age is associated with decline in hippocampal-dependent learning and increased gliosis. Astrocyte-specific knockout of IGFR also induced impairments in working memory. Using primary astrocyte cultures, we show that reducing IGF-1 signaling via a 30–50% reduction IGFR expression, comparable to the physiological changes in IGF-1 that occur with age, significantly impaired ATP synthesis. IGFR deficient astrocytes also displayed altered mitochondrial structure and function and increased mitochondrial ROS production associated with the induction of an antioxidant response. However, IGFR deficient astrocytes were more sensitive to H2O2-induced cytotoxicity. Moreover, IGFR deficient astrocytes also showed significantly impaired glucose and Aβ uptake, both critical functions of astrocytes in the brain. Conclusions: Regulation of astrocytic mitochondrial function and redox status by IGF-1 is essential to maintain astrocytic function and coordinate hippocampal

  16. Kinetics and autoradiography of high affinity uptake of serotonin by primary astrocyte cultures

    International Nuclear Information System (INIS)

    Katz, D.M.; Kimelberg, H.K.

    1985-01-01

    Primary astrocyte cultures prepared from the cerebral cortices of neonatal rats showed significant accumulation of serotonin (5-hydroxytryptamine; [ 3 H]-5-HT). At concentrations in the range of 0.01 to 0.7 microM [ 3 H]-5-HT, this uptake was 50 to 85% Na+ dependent and gave a Km of 0.40 +/- 0.11 microM [ 3 H]-5-HT and a Vmax of 6.42 +/- 0.85 (+/- SEM) pmol of [ 3 H]-5-HT/mg of protein/4 min for the Na+-dependent component. In the absence of Na+ the uptake was nonsaturable. Omission of the monoamine oxidase inhibitor pargyline markedly reduced the Na+-dependent component of [ 3 H]-5-HT uptake but had a negligible effect on the Na+-independent component. This suggest significant oxidative deamination of serotonin after it has been taken up by the high affinity system, followed by release of its metabolite. The authors estimated that this system enabled the cells to concentrate [ 3 H]-5-HT up to 44-fold at an external [ 3 H]-5-HT concentration of 10(-7) M. Inhibition of [ 3 H]-5-HT uptake by a number of clinically effective antidepressants was also consistent with a specific high affinity uptake mechanism for 5-HT, the order of effectiveness of inhibition being chlorimipramine greater than fluoxetine greater than imipramine = amitriptyline greater than desmethylimipramine greater than iprindole greater than mianserin. Uptake of [ 3 H]-5-HT was dependent on the presence of Cl- as well as Na+ in the medium, and the effect of omission of both ions was nonadditive. Varying the concentration of K+ in the media from 1 to 50 mM had a limited effect on [ 3 H]-5-HT uptake

  17. Role of Na,K-ATPase α1 and α2 isoforms in the support of astrocyte glutamate uptake.

    Directory of Open Access Journals (Sweden)

    Nina B Illarionova

    Full Text Available Glutamate released during neuronal activity is cleared from the synaptic space via the astrocytic glutamate/Na(+ co-transporters. This transport is driven by the transmembrane Na(+ gradient mediated by Na,K-ATPase. Astrocytes express two isoforms of the catalytic Na,K-ATPase α subunits; the ubiquitously expressed α1 subunit and the α2 subunit that has a more specific expression profile. In the brain α2 is predominantly expressed in astrocytes. The isoforms differ with regard to Na+ affinity, which is lower for α2. The relative roles of the α1 and α2 isoforms in astrocytes are not well understood. Here we present evidence that the presence of the α2 isoform may contribute to a more efficient restoration of glutamate triggered increases in intracellular sodium concentration [Na(+]i. Studies were performed on primary astrocytes derived from E17 rat striatum expressing Na,K-ATPase α1 and α2 and the glutamate/Na(+ co-transporter GLAST. Selective inhibition of α2 resulted in a modest increase of [Na(+]i accompanied by a disproportionately large decrease in uptake of aspartate, an indicator of glutamate uptake. To compare the capacity of α1 and α2 to handle increases in [Na(+]i triggered by glutamate, primary astrocytes overexpressing either α1 or α2 were used. Exposure to glutamate 200 µM caused a significantly larger increase in [Na(+]i in α1 than in α2 overexpressing cells, and as a consequence restoration of [Na(+]i, after glutamate exposure was discontinued, took longer time in α1 than in α2 overexpressing cells. Both α1 and α2 interacted with astrocyte glutamate/Na(+ co-transporters via the 1st intracellular loop.

  18. Beta2- and beta3-adrenoceptors activate glucose uptake in chick astrocytes by distinct mechanisms: a mechanism for memory enhancement?

    Science.gov (United States)

    Hutchinson, Dana S; Summers, Roger J; Gibbs, Marie E

    2007-11-01

    Isoprenaline, acting at beta-adrenoceptors (ARs), enhances memory formation in single trial discriminated avoidance learning in day-old chicks by mechanisms involving alterations in glucose and glycogen metabolism. Earlier studies of memory consolidation in chicks indicated that beta3-ARs enhanced memory by increasing glucose uptake, whereas beta2-ARs enhance memory by increasing glycogenolysis. This study examines the ability of beta-ARs to increase glucose uptake in chick forebrain astrocytes. The beta-AR agonist isoprenaline increased glucose uptake in a concentration-dependent manner, as did insulin. Glucose uptake was increased by the beta2-AR agonist zinterol and the beta3-AR agonist CL316243, but not by the beta1-AR agonist RO363. In chick astrocytes, reverse transcription-polymerase chain reaction studies showed that beta1-, beta2-, and beta3-AR mRNA were present, whereas radioligand-binding studies showed the presence of only beta2- and beta3-ARs. beta-AR or insulin-mediated glucose uptake was inhibited by phosphatidylinositol-3 kinase and protein kinase C inhibitors, suggesting a possible interaction between the beta-AR and insulin pathways. However beta2- and beta3-ARs increase glucose uptake by two different mechanisms: beta2-ARs via a Gs-cAMP-protein kinase A-dependent pathway, while beta3-ARs via interactions with Gi. These results indicate that activation of beta2- and beta3-ARs causes glucose uptake in chick astrocytes by distinct mechanisms, which may be relevant for memory enhancement.

  19. Laser-scanning astrocyte mapping reveals increased glutamate-responsive domain size and disrupted maturation of glutamate uptake following neonatal cortical freeze-lesion

    Directory of Open Access Journals (Sweden)

    Mortiz eArmbruster

    2014-09-01

    Full Text Available Astrocytic uptake of glutamate shapes extracellular neurotransmitter dynamics, receptor activation, and synaptogenesis. During development, glutamate transport becomes more robust. How neonatal brain insult affects the functional maturation of glutamate transport remains unanswered. Neonatal brain insult can lead to developmental delays, cognitive losses, and epilepsy; the disruption of glutamate transport is known to cause changes in synaptogenesis, receptor activation, and seizure. Using the neonatal freeze-lesion (FL model, we have investigated how insult affects the maturation of astrocytic glutamate transport. As lesioning occurs on the day of birth, a time when astrocytes are still functionally immature, this model is ideal for identifying changes in astrocyte maturation following insult. Reactive astrocytosis, astrocyte proliferation, and in vitro hyperexcitability are known to occur in this model. To probe astrocyte glutamate transport with better spatial precision we have developed a novel technique, Laser Scanning Astrocyte Mapping (LSAM, which combines glutamate transport current (TC recording from astrocytes with laser scanning glutamate photolysis. LSAM allows us to identify the area from which a single astrocyte can transport glutamate and to quantify spatial heterogeneity in the rate of glutamate clearance kinetics within that domain. Using LSAM, we report that cortical astrocytes have an increased glutamate-responsive area following FL and that TCs have faster decay times in distal, as compared to proximal processes. Furthermore, the developmental shift from GLAST- to GLT-1-dominated clearance is disrupted following FL. These findings introduce a novel method to probe astrocyte glutamate uptake and show that neonatal cortical FL disrupts the functional maturation of cortical astrocytes.

  20. Detection of the Cyanotoxins L-BMAA Uptake and Accumulation in Primary Neurons and Astrocytes.

    Science.gov (United States)

    Tan, Vanessa X; Mazzocco, Claire; Varney, Bianca; Bodet, Dominique; Guillemin, Tristan A; Bessede, Alban; Guillemin, Gilles J

    2018-01-01

    We show for the first time that a newly developed polyclonal antibody (pAb) can specifically target the cyanotoxin β-methylamino-L-alanine (BMAA) and can be used to enable direct visualization of BMAA entry and accumulation in primary brain cells. We used this pAb to investigate the effect of acute and chronic accumulation, and toxicity of both BMAA and its natural isomer 2,4-diaminobutyric acid (DAB), separately or in combination, on primary cultures of rat neurons. We further present evidence that co-treatment with BMAA and DAB increased neuronal death, as measured by MAP2 fluorescence level, and appeared to reduce BMAA accumulation. DAB is likely to be acting synergistically with BMAA resulting in higher level of cellular toxicity. We also found that glial cells such as microglia and astrocytes are also able to directly uptake BMAA indicating that additional brain cell types are affected by BMAA-induced toxicity. Therefore, BMAA clearly acts at multiple cellular levels to possibly increase the risk of developing neurodegenerative diseases, including neuro- and gliotoxicity and synergetic exacerbation with other cyanotoxins.

  1. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    International Nuclear Information System (INIS)

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun; Fu, Yinghui

    2014-01-01

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1 + or nestin + stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU + cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU + cells, very few are mash1 + or nestin + stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1 + microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition

  2. Computational Flux Balance Analysis Predicts that Stimulation of Energy Metabolism in Astrocytes and their Metabolic Interactions with Neurons Depend on Uptake of K+ Rather than Glutamate.

    Science.gov (United States)

    DiNuzzo, Mauro; Giove, Federico; Maraviglia, Bruno; Mangia, Silvia

    2017-01-01

    Brain activity involves essential functional and metabolic interactions between neurons and astrocytes. The importance of astrocytic functions to neuronal signaling is supported by many experiments reporting high rates of energy consumption and oxidative metabolism in these glial cells. In the brain, almost all energy is consumed by the Na + /K + ATPase, which hydrolyzes 1 ATP to move 3 Na + outside and 2 K + inside the cells. Astrocytes are commonly thought to be primarily involved in transmitter glutamate cycling, a mechanism that however only accounts for few % of brain energy utilization. In order to examine the participation of astrocytic energy metabolism in brain ion homeostasis, here we attempted to devise a simple stoichiometric relation linking glutamatergic neurotransmission to Na + and K + ionic currents. To this end, we took into account ion pumps and voltage/ligand-gated channels using the stoichiometry derived from available energy budget for neocortical signaling and incorporated this stoichiometric relation into a computational metabolic model of neuron-astrocyte interactions. We aimed at reproducing the experimental observations about rates of metabolic pathways obtained by 13 C-NMR spectroscopy in rodent brain. When simulated data matched experiments as well as biophysical calculations, the stoichiometry for voltage/ligand-gated Na + and K + fluxes generated by neuronal activity was close to a 1:1 relationship, and specifically 63/58 Na + /K + ions per glutamate released. We found that astrocytes are stimulated by the extracellular K + exiting neurons in excess of the 3/2 Na + /K + ratio underlying Na + /K + ATPase-catalyzed reaction. Analysis of correlations between neuronal and astrocytic processes indicated that astrocytic K + uptake, but not astrocytic Na + -coupled glutamate uptake, is instrumental for the establishment of neuron-astrocytic metabolic partnership. Our results emphasize the importance of K + in stimulating the activation of

  3. Astrocytes and energy metabolism.

    Science.gov (United States)

    Prebil, Mateja; Jensen, Jørgen; Zorec, Robert; Kreft, Marko

    2011-05-01

    Astrocytes are glial cells, which play a significant role in a number of processes, including the brain energy metabolism. Their anatomical position between blood vessels and neurons make them an interface for effective glucose uptake from blood. After entering astrocytes, glucose can be involved in different metabolic pathways, e.g. in glycogen production. Glycogen in the brain is localized mainly in astrocytes and is an important energy source in hypoxic conditions and normal brain functioning. The portion of glucose metabolized into glycogen molecules in astrocytes is as high as 40%. It is thought that the release of gliotransmitters (such as glutamate, neuroactive peptides and ATP) into the extracellular space by regulated exocytosis supports a significant part of communication between astrocytes and neurons. On the other hand, neurotransmitter action on astrocytes has a significant role in brain energy metabolism. Therefore, understanding the astrocytes energy metabolism may help understanding neuron-astrocyte interactions.

  4. Uptake of nourseothricin by the producing microorganism, Streptomyces noursei

    International Nuclear Information System (INIS)

    Roeder, B.; Graefe, U.

    1985-01-01

    The uptake of 14 C-(U)-nourseothricin by stationary phase mycelium of Streptomyces noursei JA 3890b-NG 13/14 was demonstrated. An energy-dependent transport system appears to be involved in the transport of the antibiotic. Relatively large quantities of the antibiotic were adsorbed to the surface of mycelium. Degradation of nourseothricin by the producing microorganism was not detectable. (author)

  5. Multifunctional role of astrocytes as gatekeepers of neuronal energy supply

    Directory of Open Access Journals (Sweden)

    Jillian L Stobart

    2013-04-01

    Full Text Available Dynamic adjustments to neuronal energy supply in response to synaptic activity are critical for neuronal function. Glial cells known as astrocytes have processes that ensheath most central synapses and express G-protein-coupled neurotransmitter receptors and transporters that respond to neuronal activity. Astrocytes also release substrates for neuronal oxidative phosphorylation and have processes that terminate on the surface of brain arterioles and can influence vascular smooth muscle tone and local blood flow. Membrane receptor or transporter-mediated effects of glutamate represent a convergence point of astrocyte influence on neuronal bioenergetics. Astrocytic glutamate uptake drives glycolysis and subsequent shuttling of lactate from astrocytes to neurons for oxidative metabolism. Astrocytes also convert synaptically reclaimed glutamate to glutamine, which is returned to neurons for glutamate salvage or oxidation. Finally, astrocytes store brain energy currency in the form of glycogen, which can be mobilized to produce lactate for neuronal oxidative phosphorylation in response to glutamatergic neurotransmission. These mechanisms couple synaptically-driven astrocytic responses to glutamate with release of energy substrates back to neurons to match demand with supply. In addition, astrocytes directly influence the tone of penetrating brain arterioles in response to glutamatergic neurotransmission, coordinating dynamic regulation of local blood flow. We will describe the role of astrocytes in neurometabolic and neurovascular coupling in detail and discuss, in turn, how astrocyte dysfunction may contribute to neuronal bioenergetic deficit and neurodegeneration. Understanding the role of astrocytes as a hub for neurometabolic and neurovascular coupling mechanisms is a critical underpinning for therapeutic development in a broad range of neurodegenerative disorders characterized by chronic generalized brain ischemia and brain microvascular

  6. Apolipoproteins E and J interfere with amyloid-beta uptake by primary human astrocytes and microglia in vitro

    NARCIS (Netherlands)

    Mulder, S.D.; Nielsen, H.M.; Blankenstein, M.A.; Eikelenboom, P.; Veerhuis, R.

    2014-01-01

    Defective clearance of the amyloid-β peptide (Aβ) from the brain is considered a strong promoter in Alzheimer's disease (AD) pathogenesis. Astrocytes and microglia are important mediators of Aβ clearance and Aβ aggregation state and the presence of amyloid associated proteins (AAPs), such as

  7. Effects of an Aβ-antibody fragment on Aβ aggregation and astrocytic uptake are modulated by apolipoprotein E and J mimetic peptides.

    Directory of Open Access Journals (Sweden)

    Laia Montoliu-Gaya

    Full Text Available Aβ-Immunotherapy has long been studied in the treatment of Alzheimer's disease (AD, but not how other molecules involved in the disease can affect antibody performance. We previously designed an antibody fragment, scFv-h3D6, and showed that it precludes Aβ-induced cytotoxicity by withdrawing Aβ oligomers from the amyloid pathway towards a non-toxic, worm-like pathway. ScFv-h3D6 was effective at the behavioral, cellular, and molecular levels in the 3xTg-AD mouse model. Because scFv-h3D6 treatment restored apolipoprotein E (apoE and J (apoJ concentrations to non-pathological values, and Aβ internalization by glial cells was found to be decreased in the presence of these apolipoproteins, we now aimed to test the influence of scFv-h3D6 on Aβ aggregation and cellular uptake by primary human astrocytes in the presence of therapeutic apoE and apoJ mimetic peptides (MPs. Firstly, we demonstrated by CD and FTIR that the molecules used in this work were well folded. Next, interactions between apoE or apoJ-MP, scFv-h3D6 and Aβ were studied by CD. The conformational change induced by the interaction of Aβ with apoE-MP was much bigger than the induced with apoJ-MP, in line with the observed formation of protective worm-like fibrils by the scFv-h3D6/Aβ complex in the presence of apoJ-MP, but not of apoE-MP. ScFv-h3D6, apoJ-MP, and apoE-MP to a different extent reduced Aβ uptake by astrocytes, and apoE-MP partially interfered with the dramatic reduction by scFv-h3D6 while apoJ-MP had no effect on scFv-h3D6 action. As sustained Aβ uptake by astrocytes may impair their normal functions, and ultimately neuronal viability, this work shows another beneficence of scFv-h3D6 treatment, which is not further improved by the use of apoE or apoJ mimetic peptides.

  8. Differentiation of Inflammation-Responsive Astrocytes from Glial Progenitors Generated from Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Renata Santos

    2017-06-01

    Full Text Available Astrocyte dysfunction and neuroinflammation are detrimental features in multiple pathologies of the CNS. Therefore, the development of methods that produce functional human astrocytes represents an advance in the study of neurological diseases. Here we report an efficient method for inflammation-responsive astrocyte generation from induced pluripotent stem cells (iPSCs and embryonic stem cells. This protocol uses an intermediate glial progenitor stage and generates functional astrocytes that show levels of glutamate uptake and calcium activation comparable with those observed in human primary astrocytes. Stimulation of stem cell-derived astrocytes with interleukin-1β or tumor necrosis factor α elicits a strong and rapid pro-inflammatory response. RNA-sequencing transcriptome profiling confirmed that similar gene expression changes occurred in iPSC-derived and primary astrocytes upon stimulation with interleukin-1β. This protocol represents an important tool for modeling in-a-dish neurological diseases with an inflammatory component, allowing for the investigation of the role of diseased astrocytes in neuronal degeneration.

  9. Differentiation of Inflammation-Responsive Astrocytes from Glial Progenitors Generated from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Santos, Renata; Vadodaria, Krishna C; Jaeger, Baptiste N; Mei, Arianna; Lefcochilos-Fogelquist, Sabrina; Mendes, Ana P D; Erikson, Galina; Shokhirev, Maxim; Randolph-Moore, Lynne; Fredlender, Callie; Dave, Sonia; Oefner, Ruth; Fitzpatrick, Conor; Pena, Monique; Barron, Jerika J; Ku, Manching; Denli, Ahmet M; Kerman, Bilal E; Charnay, Patrick; Kelsoe, John R; Marchetto, Maria C; Gage, Fred H

    2017-06-06

    Astrocyte dysfunction and neuroinflammation are detrimental features in multiple pathologies of the CNS. Therefore, the development of methods that produce functional human astrocytes represents an advance in the study of neurological diseases. Here we report an efficient method for inflammation-responsive astrocyte generation from induced pluripotent stem cells (iPSCs) and embryonic stem cells. This protocol uses an intermediate glial progenitor stage and generates functional astrocytes that show levels of glutamate uptake and calcium activation comparable with those observed in human primary astrocytes. Stimulation of stem cell-derived astrocytes with interleukin-1β or tumor necrosis factor α elicits a strong and rapid pro-inflammatory response. RNA-sequencing transcriptome profiling confirmed that similar gene expression changes occurred in iPSC-derived and primary astrocytes upon stimulation with interleukin-1β. This protocol represents an important tool for modeling in-a-dish neurological diseases with an inflammatory component, allowing for the investigation of the role of diseased astrocytes in neuronal degeneration. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. In vitro study of uptake and synthesis of creatine and its precursors by cerebellar granule cells and astrocytes suggests some hypotheses on the physiopathology of the inherited disorders of creatine metabolism

    Directory of Open Access Journals (Sweden)

    Carducci Claudia

    2012-04-01

    Full Text Available Abstract Background The discovery of the inherited disorders of creatine (Cr synthesis and transport in the last few years disclosed the importance of blood Cr supply for the normal functioning of the brain. These putatively rare diseases share a common pathogenetic mechanism (the depletion of brain Cr and similar phenotypes characterized by mental retardation, language disturbances, seizures and movement disorders. In the effort to improve our knowledge on the mechanisms regulating Cr pool inside the nervous tissue, Cr transport and synthesis and related gene transcripts were explored in primary cultures of rat cerebellar granule cells and astrocytes. Methods Cr uptake and synthesis were explored in vitro by incubating monotypic primary cultures of rat type I astrocytes and cerebellar granule cells with: a D3-Creatine (D3Cr and D3Cr plus β-guanidinopropionate (GPA, an inhibitor of Cr transporter, and b labelled precursors of Guanidinoacetate (GAA and Cr (Arginine, Arg; Glycine, Gly. Intracellular D3Cr and labelled GAA and Cr were assessed by ESI-MS/MS. Creatine transporter (CT1, L-arginine:glycine amidinotransferase (AGAT, and S-adenosylmethionine:guanidinoacetate N-methyltransferase (GAMT gene expression was assessed in the same cells by real time PCR. Results D3Cr signal was extremely high in cells incubated with this isotope (labelled/unlabelled Cr ratio reached about 10 and 122, respectively in cerebellar granule cells and astrocytes and was reduced by GPA. Labelled Arg and Gly were taken up by the cells and incorporated in GAA, whose concentration paralleled that of these precursors both in the extracellular medium and inside the cells (astrocytes. In contrast, the increase of labelled Cr was relatively much more limited since labelled Cr after precursors' supplementation did not exceed 2,7% (cerebellar granule cells and 21% (astrocytes of unlabelled Cr. Finally, AGAT, GAMT and SLC6A8 were expressed in both kind of cells. Conclusions Our

  11. Synaptically evoked glutamate transporter currents in Spinal Dorsal Horn Astrocytes

    Directory of Open Access Journals (Sweden)

    Dougherty Patrick M

    2009-07-01

    Full Text Available Abstract Background Removing and sequestering synaptically released glutamate from the extracellular space is carried out by specific plasma membrane transporters that are primarily located in astrocytes. Glial glutamate transporter function can be monitored by recording the currents that are produced by co-transportation of Na+ ions with the uptake of glutamate. The goal of this study was to characterize glutamate transporter function in astrocytes of the spinal cord dorsal horn in real time by recording synaptically evoked glutamate transporter currents. Results Whole-cell patch clamp recordings were obtained from astrocytes in the spinal substantia gelatinosa (SG area in spinal slices of young adult rats. Glutamate transporter currents were evoked in these cells by electrical stimulation at the spinal dorsal root entry zone in the presence of bicuculline, strychnine, DNQX and D-AP5. Transporter currents were abolished when synaptic transmission was blocked by TTX or Cd2+. Pharmacological studies identified two subtypes of glutamate transporters in spinal astrocytes, GLAST and GLT-1. Glutamate transporter currents were graded with stimulus intensity, reaching peak responses at 4 to 5 times activation threshold, but were reduced following low-frequency (0.1 – 1 Hz repetitive stimulation. Conclusion These results suggest that glutamate transporters of spinal astrocytes could be activated by synaptic activation, and recording glutamate transporter currents may provide a means of examining the real time physiological responses of glial cells in spinal sensory processing, sensitization, hyperalgesia and chronic pain.

  12. Trafficking of astrocytic vesicles in hippocampal slices

    International Nuclear Information System (INIS)

    Potokar, Maja; Kreft, Marko; Lee, So-Young; Takano, Hajime; Haydon, Philip G.; Zorec, Robert

    2009-01-01

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  13. Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission

    DEFF Research Database (Denmark)

    Schousboe, A; Sarup, A; Bak, L K

    2004-01-01

    The fine tuning of both glutamatergic and GABAergic neurotransmission is to a large extent dependent upon optimal function of astrocytic transport processes. Thus, glutamate transport in astrocytes is mandatory to maintain extrasynaptic glutamate levels sufficiently low to prevent excitotoxic...... neuronal damage. In GABA synapses hyperactivity of astroglial GABA uptake may lead to diminished GABAergic inhibitory activity resulting in seizures. As a consequence of this the expression and functional activity of astrocytic glutamate and GABA transport is regulated in a number of ways...

  14. Closing the Gap between Climate Information Producers and Users: Assessment of Needs and Uptake in Senegal

    Directory of Open Access Journals (Sweden)

    Issa Ouedraogo

    2018-02-01

    Full Text Available West Africa is a very vulnerable part of the world to the impacts of climate change due to a combination of exposure and low adaptive capacity. Climate change has induced an increase in rainfall variability which in turn has affected the availability of water resources, ecosystem services and agricultural production. To adapt to the increased aridity, farmers have used indigenous and modern coping strategies such as soil and water conservation techniques, the use of drought-tolerant crops and varieties, crop diversification, etc., and lately, climate information services (CIS. The latter, according to the discourses, has positively contributed to suitable decision-making in terms of farming, pastoral and fishing management systems. However, the scientific documentation of the engagement approaches, the uptake of the CIS and the ways the delivered information is being used, as well as feedback from the users, is lacking. Additionally, in most of the cases where CIS are introduced, the disconnect between the users and producers of the CIS seems to undercut large-scale uptake. The objective of this paper is to examine the approach used to involve stakeholders in the CIS uptake process in Senegal. We analyzed the experiences and lessons learnt in the country where various CIS products were introduced using participatory methods (stakeholder consultations, interviews, field demonstrations, training workshops, etc. and innovative stressors (SMS, voice messages, radios, mobile applications, etc. to effectively involve producers, technicians and policy-makers. Results showed that 16 relevant CIS have been produced out of 27 identified by the various users; 11 CIS diffusion channels have been developed out of 13 requested; 27 climate advisory bodies (MWGs have been created in 27 districts out of 30 districts in the study zone; about 6800 users have been trained directly and indirectly to effectively use CIS and about 8500 people are receiving CIS via SMS

  15. Primary cultures of astrocytes

    DEFF Research Database (Denmark)

    Lange, Sofie C; Bak, Lasse Kristoffer; Waagepetersen, Helle S

    2012-01-01

    During the past few decades of astrocyte research it has become increasingly clear that astrocytes have taken a central position in all central nervous system activities. Much of our new understanding of astrocytes has been derived from studies conducted with primary cultures of astrocytes...... subsequently found in vivo. Nevertheless, primary cultures of astrocytes are an in vitro model that does not fully mimic the complex events occurring in vivo. Here we present an overview of the numerous contributions generated by the use of primary astrocyte cultures to uncover the diverse functions...... of astrocytes. Many of these discoveries would not have been possible to achieve without the use of astrocyte cultures. Additionally, we address and discuss the concerns that have been raised regarding the use of primary cultures of astrocytes as an experimental model system....

  16. NH4+ triggers the release of astrocytic lactate via mitochondrial pyruvate shunting

    Science.gov (United States)

    Lerchundi, Rodrigo; Fernández-Moncada, Ignacio; Contreras-Baeza, Yasna; Sotelo-Hitschfeld, Tamara; Mächler, Philipp; Wyss, Matthias T.; Stobart, Jillian; Baeza-Lehnert, Felipe; Alegría, Karin; Weber, Bruno; Barros, L. Felipe

    2015-01-01

    Neural activity is accompanied by a transient mismatch between local glucose and oxygen metabolism, a phenomenon of physiological and pathophysiological importance termed aerobic glycolysis. Previous studies have proposed glutamate and K+ as the neuronal signals that trigger aerobic glycolysis in astrocytes. Here we used a panel of genetically encoded FRET sensors in vitro and in vivo to investigate the participation of NH4+, a by-product of catabolism that is also released by active neurons. Astrocytes in mixed cortical cultures responded to physiological levels of NH4+ with an acute rise in cytosolic lactate followed by lactate release into the extracellular space, as detected by a lactate-sniffer. An acute increase in astrocytic lactate was also observed in acute hippocampal slices exposed to NH4+ and in the somatosensory cortex of anesthetized mice in response to i.v. NH4+. Unexpectedly, NH4+ had no effect on astrocytic glucose consumption. Parallel measurements showed simultaneous cytosolic pyruvate accumulation and NADH depletion, suggesting the involvement of mitochondria. An inhibitor-stop technique confirmed a strong inhibition of mitochondrial pyruvate uptake that can be explained by mitochondrial matrix acidification. These results show that physiological NH4+ diverts the flux of pyruvate from mitochondria to lactate production and release. Considering that NH4+ is produced stoichiometrically with glutamate during excitatory neurotransmission, we propose that NH4+ behaves as an intercellular signal and that pyruvate shunting contributes to aerobic lactate production by astrocytes. PMID:26286989

  17. NH4(+) triggers the release of astrocytic lactate via mitochondrial pyruvate shunting.

    Science.gov (United States)

    Lerchundi, Rodrigo; Fernández-Moncada, Ignacio; Contreras-Baeza, Yasna; Sotelo-Hitschfeld, Tamara; Mächler, Philipp; Wyss, Matthias T; Stobart, Jillian; Baeza-Lehnert, Felipe; Alegría, Karin; Weber, Bruno; Barros, L Felipe

    2015-09-01

    Neural activity is accompanied by a transient mismatch between local glucose and oxygen metabolism, a phenomenon of physiological and pathophysiological importance termed aerobic glycolysis. Previous studies have proposed glutamate and K(+) as the neuronal signals that trigger aerobic glycolysis in astrocytes. Here we used a panel of genetically encoded FRET sensors in vitro and in vivo to investigate the participation of NH4(+), a by-product of catabolism that is also released by active neurons. Astrocytes in mixed cortical cultures responded to physiological levels of NH4(+) with an acute rise in cytosolic lactate followed by lactate release into the extracellular space, as detected by a lactate-sniffer. An acute increase in astrocytic lactate was also observed in acute hippocampal slices exposed to NH4(+) and in the somatosensory cortex of anesthetized mice in response to i.v. NH4(+). Unexpectedly, NH4(+) had no effect on astrocytic glucose consumption. Parallel measurements showed simultaneous cytosolic pyruvate accumulation and NADH depletion, suggesting the involvement of mitochondria. An inhibitor-stop technique confirmed a strong inhibition of mitochondrial pyruvate uptake that can be explained by mitochondrial matrix acidification. These results show that physiological NH4(+) diverts the flux of pyruvate from mitochondria to lactate production and release. Considering that NH4(+) is produced stoichiometrically with glutamate during excitatory neurotransmission, we propose that NH4(+) behaves as an intercellular signal and that pyruvate shunting contributes to aerobic lactate production by astrocytes.

  18. Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain.

    Science.gov (United States)

    Dienel, Gerald A

    2017-11-01

    Glutamate-stimulated aerobic glycolysis in astrocytes coupled with lactate shuttling to neurons where it can be oxidized was proposed as a mechanism to couple excitatory neuronal activity with glucose utilization (CMR glc ) during brain activation. From the outset, this model was not viable because it did not fulfill critical stoichiometric requirements: (i) Calculated glycolytic rates and measured lactate release rates were discordant in cultured astrocytes. (ii) Lactate oxidation requires oxygen consumption, but the oxygen-glucose index (OGI, calculated as CMR O2 /CMR glc ) fell during activation in human brain, and the small rise in CMR O2 could not fully support oxidation of lactate produced by disproportionate increases in CMR glc . (iii) Labeled products of glucose metabolism are not retained in activated rat brain, indicating rapid release of a highly labeled, diffusible metabolite identified as lactate, thereby explaining the CMR glc -CMR O2 mismatch. Additional independent lines of evidence against lactate shuttling include the following: astrocytic oxidation of glutamate after its uptake can help "pay" for its uptake without stimulating glycolysis; blockade of glutamate receptors during activation in vivo prevents upregulation of metabolism and lactate release without impairing glutamate uptake; blockade of β-adrenergic receptors prevents the fall in OGI in activated human and rat brain while allowing glutamate uptake; and neurons upregulate glucose utilization in vivo and in vitro under many stimulatory conditions. Studies in immature cultured cells are not appropriate models for lactate shuttling in adult brain because of their incomplete development of metabolic capability and astrocyte-neuron interactions. Astrocyte-neuron lactate shuttling does not make large, metabolically significant contributions to energetics of brain activation. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Effects of environmental biomass-producing factors on Cd uptake in two Swedish ecotypes of Pinus sylvestris

    Energy Technology Data Exchange (ETDEWEB)

    Ekvall, Lars; Greger, Maria

    2003-03-01

    Cadmium uptake in Scots pine seedlings was mainly regulated by biomass production. - A factorial design was used to study direct effects of external biomass-producing factors such as light, temperature and photoperiod on cadmium (Cd) uptake and indirect effects, via change in biomass production in two ecotypes of Scots pine (Pinus silvestris). The aim was to find out if the external factors affect the Cd uptake directly or via change in biomass production, and if the effect differs between ecotypes. Seedlings were grown under 10 combinations of external factors, i.e. temperature (15 and 20 deg. C), light intensity (50 and 200 {mu}mol photons m{sup -2} s{sup -1}), photoperiod (18 h light/8 h darkness and continuous light) and external Cd concentration (totally 1.88 and 7.50 {mu}mol). The treatment lasted for 18 days and Cd concentrations in roots and shoots were determined by AAS. The results showed that an increased biomass production increased the total Cd uptake but had a dilution effect on the Cd concentration, especially in the root tissues. The external factors tested did not have any direct effects on the Cd uptake, only in the case of Cd translocation to the shoot did the higher temperature show a direct increase, but only in the southern ecotype. The two ecotypes reacted differently in Cd uptake and translocation to the external factors studied. The relative Cd uptake increased with increasing photoperiod in the northern but not in the southern ecotype. The southern ecotype decreased the Cd concentration in the shoot with increased light intensity caused by a dilution effect due to extensive shoot growth of this ecotype. The conclusion is that the uptake in pine seedlings is mainly regulated via biomass production, and not directly by light and temperature and that resulting plant Cd contents to a certain extent depend on plant origin.

  20. Effects of environmental biomass-producing factors on Cd uptake in two Swedish ecotypes of Pinus sylvestris

    International Nuclear Information System (INIS)

    Ekvall, Lars; Greger, Maria

    2003-01-01

    Cadmium uptake in Scots pine seedlings was mainly regulated by biomass production. - A factorial design was used to study direct effects of external biomass-producing factors such as light, temperature and photoperiod on cadmium (Cd) uptake and indirect effects, via change in biomass production in two ecotypes of Scots pine (Pinus silvestris). The aim was to find out if the external factors affect the Cd uptake directly or via change in biomass production, and if the effect differs between ecotypes. Seedlings were grown under 10 combinations of external factors, i.e. temperature (15 and 20 deg. C), light intensity (50 and 200 μmol photons m -2 s -1 ), photoperiod (18 h light/8 h darkness and continuous light) and external Cd concentration (totally 1.88 and 7.50 μmol). The treatment lasted for 18 days and Cd concentrations in roots and shoots were determined by AAS. The results showed that an increased biomass production increased the total Cd uptake but had a dilution effect on the Cd concentration, especially in the root tissues. The external factors tested did not have any direct effects on the Cd uptake, only in the case of Cd translocation to the shoot did the higher temperature show a direct increase, but only in the southern ecotype. The two ecotypes reacted differently in Cd uptake and translocation to the external factors studied. The relative Cd uptake increased with increasing photoperiod in the northern but not in the southern ecotype. The southern ecotype decreased the Cd concentration in the shoot with increased light intensity caused by a dilution effect due to extensive shoot growth of this ecotype. The conclusion is that the uptake in pine seedlings is mainly regulated via biomass production, and not directly by light and temperature and that resulting plant Cd contents to a certain extent depend on plant origin

  1. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    acid (TCA) cycle was studied using high-performance liquid chromatography analysis supplemented with gas chromatography-mass spectrometry technology. It was found that AMPK activation had profound effects on the pathways involved in glutamate metabolism since the entrance of the glutamate carbon...... on glutamate metabolism in astrocytes was studied using primary cultures of these cells from mouse cerebral cortex during incubation in media containing 2.5 mM glucose and 100 µM [U-(13)C]glutamate. The metabolism of glutamate including a detailed analysis of its metabolic pathways involving the tricarboxylic...... skeleton into the TCA cycle was reduced. On the other hand, glutamate uptake into the astrocytes as well as its conversion to glutamine catalyzed by glutamine synthetase was not affected by AMPK activation. Interestingly, synthesis and release of citrate, which are hallmarks of astrocytic function, were...

  2. Metabolic alterations produced by 3-nitropropionic acid in rat striata and cultured astrocytes: quantitative in vitro 1H nuclear magnetic resonance spectroscopy and biochemical characterization

    International Nuclear Information System (INIS)

    Chang, C.; Wan, Y.L.; Goh, C.C.; Tsai, M.J.

    1997-01-01

    Quantitative high resolution in vitro 1 H nuclear magnetic resonance spectroscopy was employed to study the metabolic effects of 3-nitropropionic acid associated with aging from perchloric acid extracts of rat striata. Systemic injection of 3-nitropropionic acid in rats at a dose of 10 mg/kg/day for seven consecutive days significantly impaired energy metabolism in rats one, four and eight months of age, as evidenced by a marked elevation of succinate and lactate levels. However, a significant decrease in N-acetyl-l-aspartate level, a neuronal marker, was observed in four- and eight-month-old rats but not in one-month-old rats. This would indicate that rats at four to eight months are more susceptible to 3-nitropropionic acid than those at one month. A significant decrease in GABA level was observed in four-month-old 3-nitropropionic acid-treated rats, which is consistent with the literature that GABAergic neurons are particularly vulnerable to 3-nitropropionic acid treatment. In addition, glutamine and glutamate levels were markedly decreased at four and eight months in 3-nitropropionic acid-treated rats. Since glutamine is synthesized predominantly in glia, the observation above suggests that 3-nitropropionic acid intoxication may involve perturbation of energy metabolism, glial injury and consequent neuronal damage. Astrocytes which are essential in the metabolism of glutamate and glutamine were used to further assess 3-nitropropionic acid-induced toxicity. Glial proliferation, mitochondrial metabolism and glutamine synthetase activity were all reduced by 3-nitropropionic acid treatment with a concomitant increase, in a dose-dependent manner, of lactate levels, suggesting that 3-nitropropionic acid is also detrimental to astrocytes in vivo and thus may affect metabolic interaction between neurons and glia.These results not only imply that 3-nitropropionic acid blocks energy metabolism prior to exerting neurotoxic damage but also demonstrate that the degree of

  3. Oxidative metabolism of astrocytes is not reduced in hepatic encephalopathy

    DEFF Research Database (Denmark)

    Iversen, Peter; Mouridsen, Kim; Hansen, Mikkel B

    2014-01-01

    In patients with impaired liver function and hepatic encephalopathy (HE), consistent elevations of blood ammonia concentration suggest a crucial role in the pathogenesis of HE. Ammonia and acetate are metabolized in brain both primarily in astrocytes. Here, we used dynamic [(11)C]acetate PET...... of the brain to measure the contribution of astrocytes to the previously observed reduction of brain oxidative metabolism in patients with liver cirrhosis and HE, compared to patients with cirrhosis without HE, and to healthy subjects. We used a new kinetic model to estimate uptake from blood to astrocytes...

  4. Immune and inflammatory responses in the CNS : Modulation by astrocytes

    DEFF Research Database (Denmark)

    Penkowa, Milena; aschner, michael; hidalgo, juan

    2008-01-01

    Beyond their long-recognized support functions, astrocytes are active partners of neurons in processing information, synaptic integration, and production of trophic factors, just to name a few. Both microglia and astrocytes produce and secrete a number of cytokines, modulating and integrating...... the communication between hematogenous cells and resident cells of the central nervous system (CNS). This review will address (1) the functions of astrocytes in the normal brain and (2) their role in surveying noxious stimuli within the brain, with particular emphasis on astrocytic responses to damage or disease...

  5. Astrocytic energetics during excitatory neurotransmission: What are contributions of glutamate oxidation and glycolysis?

    OpenAIRE

    Dienel, Gerald A.

    2013-01-01

    Astrocytic energetics of excitatory neurotransmission is controversial due to discrepant findings in different experimental systems in vitro and in vivo. The energy requirements of glutamate uptake are believed by some researchers to be satisfied by glycolysis coupled with shuttling of lactate to neurons for oxidation. However, astrocytes increase glycogenolysis and oxidative metabolism during sensory stimulation in vivo, indicating that other sources of energy are used by astrocytes during b...

  6. A phase plane analysis of neuron-astrocyte interactions.

    Science.gov (United States)

    Amiri, Mahmood; Montaseri, Ghazal; Bahrami, Fariba

    2013-08-01

    Intensive experimental studies have shown that astrocytes are active partners in modulation of synaptic transmission. In the present research, we study neuron-astrocyte signaling using a biologically inspired model of one neuron synapsing one astrocyte. In this model, the firing dynamics of the neuron is described by the Morris-Lecar model and the Ca(2+) dynamics of a single astrocyte explained by a functional model introduced by Postnov and colleagues. Using the coupled neuron-astrocyte model and based on the results of the phase plane analyses, it is demonstrated that the astrocyte is able to activate the silent neuron or change the neuron spiking frequency through bidirectional communication. This suggests that astrocyte feedback signaling is capable of modulating spike transmission frequency by changing neuron spiking frequency. This effect is described by a saddle-node on invariant circle bifurcation in the coupled neuron-astrocyte model. In this way, our results suggest that the neuron-astrocyte crosstalk has a fundamental role in producing diverse neuronal activities and therefore enhances the information processing capabilities of the brain. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  7. RNA Localization in Astrocytes

    DEFF Research Database (Denmark)

    Thomsen, Rune

    2012-01-01

    , regulation of the blood brain barrier and glial scar tissue formation. Despite the involvement in various CNS functions only a limited number of studies have addressed mRNA localization in astrocytes. This PhD project was initially focused on developing and implementing methods that could be used to asses mRNA......Messenger RNA (mRNA) localization is a mechanism by which polarized cells can regulate protein synthesis to specific subcellular compartments in a spatial and temporal manner, and plays a pivotal role in multiple physiological processes from embryonic development to cell differentiation...... localization in astrocyte protrusions, and following look into the subcellular localization pattern of specific mRNA species of both primary astrocytes isolated from cortical hemispheres of newborn mice, and the mouse astrocyte cell line, C8S. The Boyden chamber cell fractionation assay was optimized, in a way...

  8. Subcellular location of astrocytic calcium stores favors extrasynaptic neuron-astrocyte communication.

    Science.gov (United States)

    Patrushev, Ilya; Gavrilov, Nikolay; Turlapov, Vadim; Semyanov, Alexey

    2013-11-01

    Neuron-astrocyte interactions are important for brain computations and synaptic plasticity. Perisynaptic astrocytic processes (PAPs) contain a high density of transporters that are responsible for neurotransmitter clearance. Metabotropic glutamate receptors are thought to trigger Ca(2+) release from Ca(2+) stores in PAPs in response to synaptic activity. Our ultrastructural study revealed that PAPs are actually devoid of Ca(2+) stores and have a high surface-to-volume ratio favorable for uptake. Astrocytic processes containing Ca(2+) stores were located further away from the synapses and could therefore respond to changes in ambient glutamate. Thus, the anatomic data do not support communication involving Ca(2+) stores in tripartite synapses, but rather point to extrasynaptic communication. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Control of mitochondrial pH by uncoupling protein 4 in astrocytes promotes neuronal survival

    KAUST Repository

    Lambert, Hélène Perreten

    2014-09-18

    Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival.

  10. Glutamate/glutamine metabolism coupling between astrocytes and glioma cells: neuroprotection and inhibition of glioma growth.

    Science.gov (United States)

    Yao, Pei-Sen; Kang, De-Zhi; Lin, Ru-Ying; Ye, Bing; Wang, Wei; Ye, Zu-Cheng

    2014-07-18

    Glioma glutamate release has been shown to promote the growth of glioma cells and induce neuronal injuries from epilepsy to neuronal death. However, potential counteractions from normal astrocytes against glioma glutamate release have not been fully evaluated. In this study, we investigated the glutamate/glutamine cycling between glioma cells and astrocytes and their impact on neuronal function. Co-cultures of glioma cells with astrocytes (CGA) in direct contact were established under different mix ratio of astrocyte/glioma. Culture medium conditioned in these CGAs were sampled for HPLC measurement, for neuronal ratiometric calcium imaging, and for neuronal survival assay. We found: (1) High levels of glutaminase expression in glioma cells, but not in astrocytes, glutaminase enables glioma cells to release large amount of glutamate in the presence of glutamine. (2) Glutamate levels in CGAs were directly determined by the astrocyte/glioma ratios, indicating a balance between glioma glutamate release and astrocyte glutamate uptake. (3) Culture media from CGAs of higher glioma/astrocyte ratios induced stronger neuronal Ca(2+) response and more severe neuronal death. (4) Co-culturing with astrocytes significantly reduced the growth rate of glioma cells. These results indicate that normal astrocytes in the brain play pivotal roles in glioma growth inhibition and in reducing neuronal injuries from glioma glutamate release. However, as tumor growth, the protective role of astrocytes gradually succumb to glioma cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Astrocytes in endocannabinoid signalling.

    Science.gov (United States)

    Navarrete, Marta; Díez, Adolfo; Araque, Alfonso

    2014-10-19

    Astrocytes are emerging as integral functional components of synapses, responding to synaptically released neurotransmitters and regulating synaptic transmission and plasticity. Thus, they functionally interact with neurons establishing tripartite synapses: a functional concept that refers to the existence of communication between astrocytes and neurons and its crucial role in synaptic function. Here, we discuss recent evidence showing that astrocytes are involved in the endocannabinoid (ECB) system, responding to exogenous cannabinoids as well as ECBs through activation of type 1 cannabinoid receptors, which increase intracellular calcium and stimulate the release of glutamate that modulates synaptic transmission and plasticity. We also discuss the consequences of ECB signalling in tripartite synapses on the astrocyte-mediated regulation of synaptic function, which reveal novel properties of synaptic regulation by ECBs, such as the spatially controlled dual effect on synaptic strength and the lateral potentiation of synaptic efficacy. Finally, we discuss the potential implications of ECB signalling for astrocytes in brain pathology and animal behaviour. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. Acute treatment with 17beta-estradiol attenuates astrocyte-astrocyte and astrocyte-neuron communication.

    Science.gov (United States)

    Rao, Shilpa P; Sikdar, Sujit Kumar

    2007-12-01

    Astrocytes are now recognized as dynamic signaling elements in the brain. Bidirectional communication between neurons and astrocytes involves integration of neuronal inputs by astrocytes and release of gliotransmitters that modulate neuronal excitability and synaptic transmission. The ovarian steroid hormone, 17beta-estradiol, in addition to its rapid actions on neuronal electrical activity can rapidly alter astrocyte intracellular calcium concentration ([Ca2+]i) through a membrane-associated estrogen receptor. Using calcium imaging and electrophysiological techniques, we investigated the functional consequences of acute treatment with estradiol on astrocyte-astrocyte and astrocyte-neuron communication in mixed hippocampal cultures. Mechanical stimulation of an astrocyte evoked a [Ca2+]i rise in the stimulated astrocyte, which propagated to the surrounding astrocytes as a [Ca2+]i wave. Following acute treatment with estradiol, the amplitude of the [Ca2+]i elevation in astrocytes around the stimulated astrocyte was attenuated. Further, estradiol inhibited the [Ca2+]i rise in individual astrocytes in response to the metabotropic glutamate receptor agonist, trans-(+/-)-1-amino-1,3-cyclopentanedicarboxylic acid. Mechanical stimulation of astrocytes induced [Ca2+]i elevations and electrophysiological responses in adjacent neurons. Estradiol rapidly attenuated the astrocyte-evoked glutamate-mediated [Ca2+]i rise and slow inward current in neurons. Also, the incidence of astrocyte-induced increase in spontaneous postsynaptic current frequency was reduced in the presence of estradiol. The effects of estradiol were stereo-specific and reversible following washout. These findings may indicate that the regulation of neuronal excitability and synaptic transmission by astrocytes is sensitive to rapid estradiol-mediated hormonal control. (c) 2007 Wiley-Liss, Inc.

  13. Synergistic induction of astrocytic differentiation by factors secreted from meninges in the mouse developing brain.

    Science.gov (United States)

    Kawamura, Yoichiro; Katada, Sayako; Noguchi, Hirofumi; Yamamoto, Hiroyuki; Sanosaka, Tsukasa; Iihara, Koji; Nakashima, Kinichi

    2017-11-01

    Astrocytes, which support diverse neuronal functions, are generated from multipotent neural stem/precursor cells (NS/PCs) during brain development. Although many astrocyte-inducing factors have been identified and studied in vitro, the regions and/or cells that produce these factors in the developing brain remain elusive. Here, we show that meninges-produced factors induce astrocytic differentiation of NS/PCs. Consistent with the timing when astrocytic differentiation of NS/PCs increases, expression of astrocyte-inducing factors is upregulated. Meningeal secretion-mimicking combinatorial treatment of NS/PCs with bone morphogenetic protein 4, retinoic acid and leukemia inhibitory factor synergistically activate the promoter of a typical astrocytic marker, glial fibrillary acidic protein. Taken together, our data suggest that meninges play an important role in astrocytic differentiation of NS/PCs in the developing brain. © 2017 Federation of European Biochemical Societies.

  14. Multi-lipofection efficiently transfected genes into astrocytes in primary culture.

    Science.gov (United States)

    Wu, B Y; Liu, R Y; So, K L; Yu, A C

    2000-10-30

    This study demonstrated that liposome-mediated transfection - lipofection - is suitable for delivering genes into astrocytes. By repeatedly lipofecting the same astrocyte cultures, a process we call multi-lipofection, the transfection efficiency of the beta-galactosidase (beta-gal) gene was improved from 2.6+/-0.6 to 17. 4+/-1.1%. This is the highest efficiency ever reported in gene-transfer with Lipofectin(R) in a primary culture of mouse cerebral cortical astrocytes. Furthermore, multi-lipofection did not cause observable disturbance to astrocytes as indicated by insignificant changes in the glial fibrillary acidic protein content in the cultures. In order to demonstrate that the transfected gene achieved a physiologically relevant expression level, a plasmid containing the pEF-hsp70 protein gene was lipofected into astrocytes. This produced colonies of astrocytes showing an increased resistance to heat-induced cell death. A similar experiment was performed with the glial-derived neurotrophic factor (GDNF) gene. Control astrocytes had no detectable GDNF. In the transfected astrocytes, the GDNF protein could be identified intracellularly by immunocytochemistry. Western blot analysis revealed, as compared to astrocytes with one lipofection, a 2.9-fold increase of GDNF with four lipofections. GDNF remained detectable in astrocytes 2 weeks after four lipofections. Thus, multi-lipofection provides a mild and efficient means of delivering foreign genes into astrocytes in a primary culture, making astrocytes good candidate vehicle cells for gene/cell therapy in the CNS.

  15. Astrocytes in Alzheimer's Disease

    Czech Academy of Sciences Publication Activity Database

    Verkhratsky, Alexei; Olabarria, M.; Noristani, H. N.; Yeh, C. Y.; Rodríguez Arellano, Jose Julio

    2010-01-01

    Roč. 7, č. 4 (2010), s. 399-412 ISSN 1933-7213 R&D Projects: GA ČR GA309/09/1696; GA ČR GA305/08/1384 Institutional research plan: CEZ:AV0Z50390703 Keywords : Astrocytes * neuroglia * neurodegeneration Subject RIV: FH - Neurology Impact factor: 6.084, year: 2010

  16. Amines, Astrocytes and Arousal

    OpenAIRE

    Bazargani, N.; Attwell, D.

    2017-01-01

    Amine neurotransmitters, such as noradrenaline, mediate arousal, attention, and reward in the CNS. New data suggest that, from flies to mammals, a major mechanism for amine transmitter action is to raise astrocyte [Ca2+]i and release gliotransmitters that modulate neuronal activity and behavior.

  17. Human astrocytes: secretome profiles of cytokines and chemokines.

    Directory of Open Access Journals (Sweden)

    Sung S Choi

    Full Text Available Astrocytes play a key role in maintenance of neuronal functions in the central nervous system by producing various cytokines, chemokines, and growth factors, which act as a molecular coordinator of neuron-glia communication. At the site of neuroinflammation, astrocyte-derived cytokines and chemokines play both neuroprotective and neurotoxic roles in brain lesions of human neurological diseases. At present, the comprehensive profile of human astrocyte-derived cytokines and chemokines during inflammation remains to be fully characterized. We investigated the cytokine secretome profile of highly purified human astrocytes by using a protein microarray. Non-stimulated human astrocytes in culture expressed eight cytokines, including G-CSF, GM-CSF, GROα (CXCL1, IL-6, IL-8 (CXCL8, MCP-1 (CCL2, MIF and Serpin E1. Following stimulation with IL-1β and TNF-α, activated astrocytes newly produced IL-1β, IL-1ra, TNF-α, IP-10 (CXCL10, MIP-1α (CCL3 and RANTES (CCL5, in addition to the induction of sICAM-1 and complement component 5. Database search indicated that most of cytokines and chemokines produced by non-stimulated and activated astrocytes are direct targets of the transcription factor NF-kB. These results indicated that cultured human astrocytes express a distinct set of NF-kB-target cytokines and chemokines in resting and activated conditions, suggesting that the NF-kB signaling pathway differentially regulates gene expression of cytokines and chemokines in human astrocytes under physiological and inflammatory conditions.

  18. Tritium oxide uptake and desorption kinetics in a primary producer: chlorella pyrenoidosa

    International Nuclear Information System (INIS)

    Dunstall, T.G.

    1983-01-01

    The alga Chlorella pyrenoidosa grown in batch culture under chronic tritium oxide exposure was used to model behavior of tritium at the primary producer level of an aquatic food chain. The specific activity ratio of organically bound tritium to medium tritium increased during initial growth stages, then reached an asymptotic steady state value of 0.59 after approximately seven cell doublings. The intracellular to extracellular concentrations of tritium oxide appeared to be in equilibrium. Loss of previously formed organically bound tritium in cells transferred to tritium-free media averaged less than 5 % for exponential growth phase cultures which had undergone more than three cell doublings. Over a comparable time period, a greater loss of organically bound tritium from stationary cells (average 13.4 %) was attributed to increased degradative metabolism in senescent cultures. Concentration of tritium in organically bound form may exceed environmental tritium oxide levels under dynamic conditions in which a pulse of tritium oxide to the environment is dissipated over time

  19. Electrodiffusive model for astrocytic and neuronal ion concentration dynamics.

    Directory of Open Access Journals (Sweden)

    Geir Halnes

    Full Text Available The cable equation is a proper framework for modeling electrical neural signalling that takes place at a timescale at which the ionic concentrations vary little. However, in neural tissue there are also key dynamic processes that occur at longer timescales. For example, endured periods of intense neural signaling may cause the local extracellular K(+-concentration to increase by several millimolars. The clearance of this excess K(+ depends partly on diffusion in the extracellular space, partly on local uptake by astrocytes, and partly on intracellular transport (spatial buffering within astrocytes. These processes, that take place at the time scale of seconds, demand a mathematical description able to account for the spatiotemporal variations in ion concentrations as well as the subsequent effects of these variations on the membrane potential. Here, we present a general electrodiffusive formalism for modeling of ion concentration dynamics in a one-dimensional geometry, including both the intra- and extracellular domains. Based on the Nernst-Planck equations, this formalism ensures that the membrane potential and ion concentrations are in consistency, it ensures global particle/charge conservation and it accounts for diffusion and concentration dependent variations in resistivity. We apply the formalism to a model of astrocytes exchanging ions with the extracellular space. The simulations show that K(+-removal from high-concentration regions is driven by a local depolarization of the astrocyte membrane, which concertedly (i increases the local astrocytic uptake of K(+, (ii suppresses extracellular transport of K(+, (iii increases axial transport of K(+ within astrocytes, and (iv facilitates astrocytic relase of K(+ in regions where the extracellular concentration is low. Together, these mechanisms seem to provide a robust regulatory scheme for shielding the extracellular space from excess K(+.

  20. Electric field-induced astrocyte alignment directs neurite outgrowth.

    Science.gov (United States)

    Alexander, John K; Fuss, Babette; Colello, Raymond J

    2006-05-01

    The extension and directionality of neurite outgrowth are key to achieving successful target connections during both CNS development and during the re-establishment of connections lost after neural trauma. The degree of axonal elongation depends, in large part, on the spatial arrangement of astrocytic processes rich in growth-promoting proteins. Because astrocytes in culture align their processes on exposure to an electrical field of physiological strength, we sought to determine the extent to which aligned astrocytes affect neurite outgrowth. To this end, dorsal root ganglia cells were seeded onto cultured rat astrocytes that were pre-aligned by exposure to an electric field of physiological strength (500 mV mm(-1)). Using confocal microscopy and digital image analysis, we found that neurite outgrowth at 24 hours and at 48 hours is enhanced significantly and directed consistently along the aligned astrocyte processes. Moreover, this directed neurite outgrowth is maintained when grown on fixed, aligned astrocytes. Collectively, these results indicate that endogenous electric fields present within the developing CNS might act to align astrocyte processes, which can promote and direct neurite growth. Furthermore, these results demonstrate a simple method to produce an aligned cellular substrate, which might be used to direct regenerating neurites.

  1. Does rapid and physiological astrocyte-neuron signalling amplify epileptic activity?

    Science.gov (United States)

    Henneberger, Christian

    2017-03-15

    The hippocampus is a key brain region in the pathophysiology of mesial temporal lobe epilepsy. Long-term changes of its architecture and function on the network and cellular level are well documented in epilepsy. Astrocytes can control many aspects of neuronal function and their long-term alterations over weeks, months and years play an important role in epilepsy. However, a pathophysiological transformation of astrocytes does not seem to be required for astrocytes to contribute to epileptic activity. Some of the properties of physiological astrocyte-neuron communication could allow these cells to exacerbate or synchronize neuronal firing on shorter time scales of milliseconds to minutes. Therefore, these astrocyte-neuron interactions are increasingly recognized as potential contributors to epileptic activity. Fast and reciprocal communication between astrocytes and neurons is enabled by a diverse set of mechanisms that could both amplify and counteract epileptic activity. They may thus promote or cause development of epileptic activity or inhibit it. Mechanisms of astrocyte-neuron interactions that can quickly increase network excitability involve, for example, astrocyte Ca 2+ and Na + signalling, K + buffering, gap junction coupling and metabolism. However, rapid changes of astrocyte neurotransmitter uptake and morphology may also underlie or support development of network hyperexcitability. The temporal characteristics of these interactions, their ability to synchronize neuronal activity and their net effect on network activity will determine their contribution to the emergence or maintenance of epileptic activity. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  2. Connexin Hemichannels in Astrocytes

    DEFF Research Database (Denmark)

    Nielsen, Brian Skriver; Hansen, Daniel Bloch; Ransom, Bruce R.

    2017-01-01

    Astrocytes in the mammalian central nervous system are interconnected by gap junctions made from connexins of the subtypes Cx30 and Cx43. These proteins may exist as hemichannels in the plasma membrane in the absence of a ‘docked’ counterpart on the neighboring cell. A variety of stimuli are repo...... selectivity. We expect that some, or all, of the controversies discussed here will be resolved by future research and sincerely hope that this review serves to motivate such clarifying investigations.......Astrocytes in the mammalian central nervous system are interconnected by gap junctions made from connexins of the subtypes Cx30 and Cx43. These proteins may exist as hemichannels in the plasma membrane in the absence of a ‘docked’ counterpart on the neighboring cell. A variety of stimuli....... Published studies about astrocyte hemichannel behavior, however, have been highly variable and/or contradictory. The field of connexin hemichannel research has been complicated by great variability in the experimental preparations employed, a lack of highly specific pharmacological inhibitors...

  3. Effects of aspartame metabolites on astrocytes and neurons.

    Science.gov (United States)

    Rycerz, Karol; Jaworska-Adamu, Jadwiga Elżbieta

    2013-01-01

    Aspartame, a widespread sweetener used in many food products, is considered as a highly hazardous compound. Aspartame was discovered in 1965 and raises a lot of controversy up to date. Astrocytes are glial cells, the presence and functions of which are closely connected with the central nervous system (CNS). The aim of this article is to demonstrate the direct and indirect role of astrocytes participating in the harmful effects of aspartame metabolites on neurons. The artificial sweetener is broken down into phenylalanine (50%), aspartic acid (40%) and methanol (10%) during metabolism in the body. The excess of phenylalanine blocks the transport of important amino acids to the brain contributing to reduced levels of dopamine and serotonin. Astrocytes directly affect the transport of this amino acid and also indirectly by modulation of carriers in the endothelium. Aspartic acid at high concentrations is a toxin that causes hyperexcitability of neurons and is also a precursor of other excitatory amino acid - glutamates. Their excess in quantity and lack of astrocytic uptake induces excitotoxicity and leads to the degeneration of astrocytes and neurons. The methanol metabolites cause CNS depression, vision disorders and other symptoms leading ultimately to metabolic acidosis and coma. Astrocytes do not play a significant role in methanol poisoning due to a permanent consumption of large amounts of aspartame. Despite intense speculations about the carcinogenicity of aspartame, the latest studies show that its metabolite - diketopiperazine - is cancirogenic in the CNS. It contributes to the formation of tumors in the CNS such as gliomas, medulloblastomas and meningiomas. Glial cells are the main source of tumors, which can be caused inter alia by the sweetener in the brain. On the one hand the action of astrocytes during aspartame poisoning may be advantageous for neuro-protection while on the other it may intensify the destruction of neurons. The role of the glia in

  4. Astrocyte Sodium Signalling and Panglial Spread of Sodium Signals in Brain White Matter.

    Science.gov (United States)

    Moshrefi-Ravasdjani, Behrouz; Hammel, Evelyn L; Kafitz, Karl W; Rose, Christine R

    2017-09-01

    In brain grey matter, excitatory synaptic transmission activates glutamate uptake into astrocytes, inducing sodium signals which propagate into neighboring astrocytes through gap junctions. These sodium signals have been suggested to serve an important role in neuro-metabolic coupling. So far, it is unknown if astrocytes in white matter-that is in brain regions devoid of synapses-are also able to undergo such intra- and intercellular sodium signalling. In the present study, we have addressed this question by performing quantitative sodium imaging in acute tissue slices of mouse corpus callosum. Focal application of glutamate induced sodium transients in SR101-positive astrocytes. These were largely unaltered in the presence of ionotropic glutamate receptors blockers, but strongly dampened upon pharmacological inhibition of glutamate uptake. Sodium signals induced in individual astrocytes readily spread into neighboring SR101-positive cells with peak amplitudes decaying monoexponentially with distance from the stimulated cell. In addition, spread of sodium was largely unaltered during pharmacological inhibition of purinergic and glutamate receptors, indicating gap junction-mediated, passive diffusion of sodium between astrocytes. Using cell-type-specific, transgenic reporter mice, we found that sodium signals also propagated, albeit less effectively, from astrocytes to neighboring oligodendrocytes and NG2 cells. Again, panglial spread was unaltered with purinergic and glutamate receptors blocked. Taken together, our results demonstrate that activation of sodium-dependent glutamate transporters induces sodium signals in white matter astrocytes, which spread within the astrocyte syncytium. In addition, we found a panglial passage of sodium signals from astrocytes to NG2 cells and oligodendrocytes, indicating functional coupling between these macroglial cells in white matter.

  5. Immune and Inflammatory Responses in the Central Nervous System: Modulation by Astrocytes

    DEFF Research Database (Denmark)

    Penkowa, Milena; hidalgo, juan; aschner, michael

    2008-01-01

    Beyond their long-recognized support functions, astrocytes are active partners of neurons in processing information, synaptic integration, and production of trophic factors, just to name a few. Both microglia and astrocytes produce and secrete a number of cytokines, modulating and integrating...... the communication between hematogenous cells and resident cells of the central nervous system (CNS). This review will address (1) the functions of astrocytes in the normal brain and (2) their role in surveying noxious stimuli within the brain, with particular emphasis on astrocytic responses to damage or disease...

  6. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    DEFF Research Database (Denmark)

    Kreft, Marko; Bak, Lasse Kristoffer; Waagepetersen, Helle S

    2012-01-01

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy......-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation....

  7. Calcium in the Mechanism of Ammonia-Induced Astrocyte Swelling

    Science.gov (United States)

    Jayakumar, A.R.; Rao, K.V. Rama; Tong, X.Y; Norenberg, M.D.

    2016-01-01

    Brain edema, due largely to astrocyte swelling, is an important clinical problem in patients with acute liver failure. While mechanisms underlying astrocyte swelling in this condition are not fully understood, ammonia and associated oxidative/nitrosative stress (ONS) appear to be involved. Mechanisms responsible for the increase in reactive oxygen/nitrogen species (RONS) and their role in ammonia-induced astrocyte swelling, however, are poorly understood. Recent studies have demonstrated a transient increase in intracellular Ca2+ in cultured astrocytes exposed to ammonia. As Ca2+ is a known inducer of RONS, we investigated potential mechanisms by which Ca2+ may be responsible for the production of RONS and cell swelling in cultured astrocytes after treatment with ammonia. Exposure of cultured astrocytes to ammonia (5 mM) increased the formation of free radicals, including nitric oxide, and such increase was significantly diminished by treatment with the Ca2+ chelator BAPTA-AM. We then examined the activity of Ca2+-dependent enzymes that are known to generate RONS and found that ammonia significantly increased the activities of NADPH oxidase (NOX), constitutive nitric oxide synthase (cNOS) and phospholipase A2 (PLA2) and such increases in activity were significantly diminished by BAPTA. Pretreatment of cultures with 7-nitroindazole, apocyanin and quinacrine, respective inhibitors of cNOS, NOX and PLA2, all significantly diminished RONS production. Additionally, treatment of cultures with BAPTA or with inhibitors of cNOS, NOX and PLA2 reduced ammonia-induced astrocyte swelling. These studies suggest that the ammonia-induced rise in intracellular Ca2+ activates free radical producing enzymes that ultimately contribute to the mechanism of astrocyte swelling. PMID:19393035

  8. The synaptic cell adhesion molecule, SynCAM1, mediates astrocyte-to-astrocyte and astrocyte-to-GnRH neuron adhesiveness in the mouse hypothalamus.

    Science.gov (United States)

    Sandau, Ursula S; Mungenast, Alison E; McCarthy, Jack; Biederer, Thomas; Corfas, Gabriel; Ojeda, Sergio R

    2011-06-01

    We previously identified synaptic cell adhesion molecule 1 (SynCAM1) as a component of a genetic network involved in the hypothalamic control of female puberty. Although it is well established that SynCAM1 is a synaptic adhesion molecule, its contribution to hypothalamic function is unknown. Here we show that, in addition to the expected neuronal localization illustrated by its presence in GnRH neurons, SynCAM1 is expressed in hypothalamic astrocytes. Cell adhesion assays indicated that SynCAM is recognized by both GnRH neurons and astrocytes as an adhesive partner and promotes cell-cell adhesiveness via homophilic, extracellular domain-mediated interactions. Alternative splicing of the SynCAM1 primary mRNA transcript yields four mRNAs encoding membrane-spanning SynCAM1 isoforms. Variants 1 and 4 are predicted to be both N and O glycosylated. Hypothalamic astrocytes and GnRH-producing GT1-7 cells express mainly isoform 4 mRNA, and sequential N- and O-deglycosylation of proteins extracted from these cells yields progressively smaller SynCAM1 species, indicating that isoform 4 is the predominant SynCAM1 variant expressed in astrocytes and GT1-7 cells. Neither cell type expresses the products of two other SynCAM genes (SynCAM2 and SynCAM3), suggesting that SynCAM-mediated astrocyte-astrocyte and astrocyte-GnRH neuron adhesiveness is mostly mediated by SynCAM1 homophilic interactions. When erbB4 receptor function is disrupted in astrocytes, via transgenic expression of a dominant-negative erbB4 receptor form, SynCAM1-mediated adhesiveness is severely compromised. Conversely, SynCAM1 adhesive behavior is rapidly, but transiently, enhanced in astrocytes by ligand-dependent activation of erbB4 receptors, suggesting that erbB4-mediated events affecting SynCAM1 function contribute to regulate astrocyte adhesive communication.

  9. Astrocytes from adult Wistar rats aged in vitro show changes in glial functions.

    Science.gov (United States)

    Souza, Débora Guerini; Bellaver, Bruna; Raupp, Gustavo Santos; Souza, Diogo Onofre; Quincozes-Santos, André

    2015-11-01

    Astrocytes, the most versatile cells of the central nervous system, play an important role in the regulation of neurotransmitter homeostasis, energy metabolism, antioxidant defenses and the anti-inflammatory response. Recently, our group characterized cortical astrocyte cultures from adult Wistar rats. In line with that work, we studied glial function using an experimental in vitro model of aging astrocytes (30 days in vitro after reaching confluence) from newborn (NB), adult (AD) and aged (AG) Wistar rats. We evaluated metabolic parameters, such as the glucose uptake, glutamine synthetase (GS) activity, and glutathione (GSH) content, as well as the GFAP, GLUT-1 and xCT expression. AD and AG astrocytes take up less glucose than NB astrocytes and had decreased GLUT1 expression levels. Furthermore, AD and AG astrocytes exhibited decreased GS activity compared to NB cells. Simultaneously, AD and AG astrocytes showed an increase in GSH levels, along with an increase in xCT expression. NB, AD and AG astrocytes presented similar morphology; however, differences in GFAP levels were observed. Taken together, these results improve the knowledge of cerebral senescence and represent an innovative tool for brain studies of aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Determinants of functional coupling between astrocytes and respiratory neurons in the pre-Bötzinger complex.

    Directory of Open Access Journals (Sweden)

    Christian Schnell

    Full Text Available Respiratory neuronal network activity is thought to require efficient functioning of astrocytes. Here, we analyzed neuron-astrocyte communication in the pre-Bötzinger Complex (preBötC of rhythmic slice preparations from neonatal mice. In astrocytes that exhibited rhythmic potassium fluxes and glutamate transporter currents, we did not find a translation of respiratory neuronal activity into phase-locked astroglial calcium signals. In up to 20% of astrocytes, 2-photon calcium imaging revealed spontaneous calcium fluctuations, although with no correlation to neuronal activity. Calcium signals could be elicited in preBötC astrocytes by metabotropic glutamate receptor activation or after inhibition of glial glutamate uptake. In the latter case, astrocyte calcium elevation preceded a surge of respiratory neuron discharge activity followed by network failure. We conclude that astrocytes do not exhibit respiratory-rhythmic calcium fluctuations when they are able to prevent synaptic glutamate accumulation. Calcium signaling is, however, observed when glutamate transport processes in astrocytes are suppressed or neuronal discharge activity is excessive.

  11. Astrocytic GABA transporter activity modulates excitatory neurotransmission

    DEFF Research Database (Denmark)

    Boddum, Kim; Jensen, Thomas P.; Magloire, Vincent

    2016-01-01

    unrecognized role for the astrocytic GABA transporter, GAT-3. GAT-3 activity results in a rise in astrocytic Na(+) concentrations and a consequent increase in astrocytic Ca(2+) through Na(+)/Ca(2+) exchange. This leads to the release of ATP/adenosine by astrocytes, which then diffusely inhibits neuronal...

  12. Astrocytic GABA Transporters

    DEFF Research Database (Denmark)

    Schousboe, Arne; Wellendorph, Petrine; Frølund, Bente

    2017-01-01

    , and several of these compounds have been shown to exhibit pronounced anticonvulsant activity in a variety of animal seizure models. As proof of concept of the validity of this drug development approach, one GABA-transport inhibitor, tiagabine, has been developed as a clinically active antiepileptic drug......Inactivation of GABA-mediated neurotransmission is achieved by high-affinity transporters located at both GABAergic neurons and the surrounding astrocytes. Early studies of the pharmacological properties of neuronal and glial GABA transporters suggested that different types of transporters might...... be expressed in the two cell types, and such a scenario was confirmed by the cloning of four distinctly different GABA transporters from a number of different species. These GABA-transport entities have been extensively characterized using a large number of GABA analogues of restricted conformation...

  13. A Comparison of Fluoride Uptake by Sound Enamel Following Application of Sodium Fluoride Mouthrinses and APF Gels Produced in Iran with Standardized Foreign Samples

    Directory of Open Access Journals (Sweden)

    A Kowsari

    2002-02-01

    Full Text Available The goal of this investigation is to compare the extent of fluoride uptake by sound enamel following application of two commercial mouthrinses containing sodium fluoride (0.2% and a topical gel containing APF (1.23% produced in Iran with those of foreign standardized ones. Sixty extracted premolars were used. Each tooth was divided into two lingual and buccal halves, one half as control, the other one as experimental. Enamel biopsy technique (two- step acid etching was used to determine the concentration of fluoride and calcium in each sample. For data comparison and fluoride uptake estimation, the depths of layers with the use of linear regression analysis were standardized to 25 and 50um. The analysis showed that in Iranian mouthrinse no. 1, there is linear correlation between fluoride concentration and enamel depth, in both control and experimental group at the first and second layers, while, in other groups, this correlation was observed just at the first layer (superficial enamel layer. The greatest fluoride uptake was seen at Iranian mouthrinse no.2 and the least was seen at foreign mouthrinse no. 3. From among two APF gels, the greatest uptake was observed at gel no. 1 (Iranian. The results showed that all three Iranian products increase fluoride content of enamel, moreover the level of fluoride uptake, while applying Iranian products, in comparison with foreign ones, shows considerable increase.

  14. Astrocyte, the star avatar: redefined

    Indian Academy of Sciences (India)

    Srinivas

    LIF, leukaemia inhibitory factor; LTP, long-term potentiation; MBP, myelin basic protein; MCP, ... In short, astrocytes are multifunctional, efficient housekeeping cells that help neurons become ..... memory, synaptic plasticity and induction of LTP.

  15. Epilepsy and astrocyte energy metabolism.

    Science.gov (United States)

    Boison, Detlev; Steinhäuser, Christian

    2018-06-01

    Epilepsy is a complex neurological syndrome characterized by neuronal hyperexcitability and sudden, synchronized electrical discharges that can manifest as seizures. It is now increasingly recognized that impaired astrocyte function and energy homeostasis play key roles in the pathogenesis of epilepsy. Excessive neuronal discharges can only happen, if adequate energy sources are made available to neurons. Conversely, energy depletion during seizures is an endogenous mechanism of seizure termination. Astrocytes control neuronal energy homeostasis through neurometabolic coupling. In this review, we will discuss how astrocyte dysfunction in epilepsy leads to distortion of key metabolic and biochemical mechanisms. Dysfunctional glutamate metabolism in astrocytes can directly contribute to neuronal hyperexcitability. Closure of astrocyte intercellular gap junction coupling as observed early during epileptogenesis limits activity-dependent trafficking of energy metabolites, but also impairs clearance of the extracellular space from accumulation of K + and glutamate. Dysfunctional astrocytes also increase the metabolism of adenosine, a metabolic product of ATP degradation that broadly inhibits energy-consuming processes as an evolutionary adaptation to conserve energy. Due to the critical role of astroglial energy homeostasis in the control of neuronal excitability, metabolic therapeutic approaches that prevent the utilization of glucose might represent a potent antiepileptic strategy. In particular, high fat low carbohydrate "ketogenic diets" as well as inhibitors of glycolysis and lactate metabolism are of growing interest for the therapy of epilepsy. © 2017 Wiley Periodicals, Inc.

  16. Astrocytes as a source for Extracellular matrix molecules and cytokines

    Directory of Open Access Journals (Sweden)

    Stefan eWiese

    2012-06-01

    Full Text Available Research of the past 25 years has shown that astrocytes do more than participating and building up the blood brain barrier and detoxify the active synapse by reuptake of neurotransmitters and ions. Indeed, astrocytes express neurotransmitter receptors and, as a consequence, respond to stimuli. Deeper knowledge of the differentiation processes during development of the central nervous system (CNS might help explaining and even help treating neurological diseases like Alzheimer’s disease, Amyotrophic lateral sclerosis (ALS and psychiatric disorders in which astrocytes have been shown to play a role. Astrocytes and oligodendrocytes develop from a multipotent stem cell that prior to this has produced primarily neuronal precursor cells. This switch towards the more astroglial differentiation is regulated by a change in receptor composition on the cell surface and responsiveness of the respective trophic factors Fibroblast growth factor (FGF and Epidermal growth factor (EGF. The glial precursor cell is driven into the astroglial direction by signaling molecules like Ciliary neurotrophic factor (CNTF, Bone Morphogenetic Proteins (BMPs, and EGF. However, the early astrocytes influence their environment not only by releasing and responding to diverse soluble factors but also express a wide range of extracellular matrix (ECM molecules, in particular proteoglycans of the lectican family and tenascins. Lately these ECM molecules have been shown to participate in glial development. In this regard, especially the matrix protein Tenascin C (Tnc proved to be an important regulator of astrocyte precursor cell proliferation and migration during spinal cord development. On the other hand, ECM molecules expressed by reactive astrocytes are also known to act mostly in an inhibitory fashion under pathophysiological conditions. In this regard, we further summarize recent data concerning the role of chondroitin sulfate proteoglycans and Tnc under pathological

  17. Glucose and Intermediary Metabolism and Astrocyte-Neuron Interactions Following Neonatal Hypoxia-Ischemia in Rat.

    Science.gov (United States)

    Brekke, Eva; Berger, Hester Rijkje; Widerøe, Marius; Sonnewald, Ursula; Morken, Tora Sund

    2017-01-01

    Neonatal hypoxia-ischemia (HI) and the delayed injury cascade that follows involve excitotoxicity, oxidative stress and mitochondrial failure. The susceptibility to excitotoxicity of the neonatal brain may be related to the capacity of astrocytes for glutamate uptake. Furthermore, the neonatal brain is vulnerable to oxidative stress, and the pentose phosphate pathway (PPP) may be of particular importance for limiting this kind of injury. Also, in the neonatal brain, neurons depend upon de novo synthesis of neurotransmitters via pyruvate carboxylase in astrocytes to increase neurotransmitter pools during normal brain development. Several recent publications describing intermediary brain metabolism following neonatal HI have yielded interesting results: (1) Following HI there is a prolonged depression of mitochondrial metabolism in agreement with emerging evidence of mitochondria as vulnerable targets in the delayed injury cascade. (2) Astrocytes, like neurons, are metabolically impaired following HI, and the degree of astrocytic malfunction may be an indicator of the outcome following hypoxic and hypoxic-ischemic brain injury. (3) Glutamate transfer from neurons to astrocytes is not increased following neonatal HI, which may imply that astrocytes fail to upregulate glutamate uptake in response to the massive glutamate release during HI, thus contributing to excitotoxicity. (4) In the neonatal brain, the activity of the PPP is reduced following HI, which may add to the susceptibility of the neonatal brain to oxidative stress. The present review aims to discuss the metabolic temporal alterations observed in the neonatal brain following HI.

  18. Intracellular ascorbic acid inhibits transport of glucose by neurons, but not by astrocytes.

    Science.gov (United States)

    Castro, Maite A; Pozo, Miguel; Cortés, Christian; García, María de Los Angeles; Concha, Ilona I; Nualart, Francisco

    2007-08-01

    It has been demonstrated that glutamatergic activity induces ascorbic acid (AA) depletion in astrocytes. Additionally, different data indicate that AA may inhibit glucose accumulation in primary cultures of rat hippocampal neurons. Thus, our hypothesis postulates that AA released from the astrocytes during glutamatergic synaptic activity may inhibit glucose uptake by neurons. We observed that cultured neurons express the sodium-vitamin C cotransporter 2 and the facilitative glucose transporters (GLUT) 1 and 3, however, in hippocampal brain slices GLUT3 was the main transporter detected. Functional activity of GLUTs was confirmed by means of kinetic analysis using 2-deoxy-d-glucose. Therefore, we showed that AA, once accumulated inside the cell, inhibits glucose transport in both cortical and hippocampal neurons in culture. Additionally, we showed that astrocytes are not affected by AA. Using hippocampal slices, we observed that upon blockade of monocarboxylate utilization by alpha-cyano-4-hydroxycinnamate and after glucose deprivation, glucose could rescue neuronal response to electrical stimulation only if AA uptake is prevented. Finally, using a transwell system of separated neuronal and astrocytic cultures, we observed that glutamate can reduce glucose transport in neurons only in presence of AA-loaded astrocytes, suggesting the essential role of astrocyte-released AA in this effect.

  19. Memory in astrocytes: a hypothesis

    Directory of Open Access Journals (Sweden)

    Caudle Robert M

    2006-01-01

    Full Text Available Abstract Background Recent work has indicated an increasingly complex role for astrocytes in the central nervous system. Astrocytes are now known to exchange information with neurons at synaptic junctions and to alter the information processing capabilities of the neurons. As an extension of this trend a hypothesis was proposed that astrocytes function to store information. To explore this idea the ion channels in biological membranes were compared to models known as cellular automata. These comparisons were made to test the hypothesis that ion channels in the membranes of astrocytes form a dynamic information storage device. Results Two dimensional cellular automata were found to behave similarly to ion channels in a membrane when they function at the boundary between order and chaos. The length of time information is stored in this class of cellular automata is exponentially related to the number of units. Therefore the length of time biological ion channels store information was plotted versus the estimated number of ion channels in the tissue. This analysis indicates that there is an exponential relationship between memory and the number of ion channels. Extrapolation of this relationship to the estimated number of ion channels in the astrocytes of a human brain indicates that memory can be stored in this system for an entire life span. Interestingly, this information is not affixed to any physical structure, but is stored as an organization of the activity of the ion channels. Further analysis of two dimensional cellular automata also demonstrates that these systems have both associative and temporal memory capabilities. Conclusion It is concluded that astrocytes may serve as a dynamic information sink for neurons. The memory in the astrocytes is stored by organizing the activity of ion channels and is not associated with a physical location such as a synapse. In order for this form of memory to be of significant duration it is necessary

  20. Neuroinflammation leads to region-dependent alterations in astrocyte gap junction communication and hemichannel activity.

    Science.gov (United States)

    Karpuk, Nikolay; Burkovetskaya, Maria; Fritz, Teresa; Angle, Amanda; Kielian, Tammy

    2011-01-12

    Inflammation attenuates gap junction (GJ) communication in cultured astrocytes. Here we used a well-characterized model of experimental brain abscess as a tool to query effects of the CNS inflammatory milieu on astrocyte GJ communication and electrophysiological properties. Whole-cell patch-clamp recordings were performed on green fluorescent protein (GFP)-positive astrocytes in acute brain slices from glial fibrillary acidic protein-GFP mice at 3 or 7 d after Staphylococcus aureus infection in the striatum. Astrocyte GJ communication was significantly attenuated in regions immediately surrounding the abscess margins and progressively increased to levels typical of uninfected brain with increasing distance from the abscess proper. Conversely, astrocytes bordering the abscess demonstrated hemichannel activity as evident by enhanced ethidium bromide (EtBr) uptake that could be blocked by several pharmacological inhibitors, including the connexin 43 (Cx43) mimetic peptide Gap26, carbenoxolone, the pannexin1 (Panx1) mimetic peptide (10)Panx1, and probenecid. However, hemichannel opening was transient with astrocytic EtBr uptake observed near the abscess at day 3 but not day 7 after infection. The region-dependent pattern of hemichannel activity at day 3 directly correlated with increases in Cx43, Cx30, Panx1, and glutamate transporter expression (glial L-glutamate transporter and L-glutamate/L-aspartate transporter) along the abscess margins. Changes in astrocyte resting membrane potential and input conductance correlated with the observed changes in GJ communication and hemichannel activity. Collectively, these findings indicate that astrocyte coupling and electrical properties are most dramatically affected near the primary inflammatory site and reveal an opposing relationship between the open states of GJ channels versus hemichannels during acute infection. This relationship may extend to other CNS diseases typified with an inflammatory component.

  1. Compost and Crude Humic Substances Produced from Selected Wastes and Their Effects on Zea mays L. Nutrient Uptake and Growth

    Science.gov (United States)

    Palanivell, Perumal; Susilawati, Kasim; Ahmed, Osumanu Haruna; Majid, Nik Muhamad

    2013-01-01

    Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA), crude fulvic acids (CFA), crude humin (CH), soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants' diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation. PMID:24319353

  2. Coating Nanoparticles with Plant-Produced Transferrin-Hydrophobin Fusion Protein Enhances Their Uptake in Cancer Cells

    DEFF Research Database (Denmark)

    Reuter, Lauri J.; Shahbazi, Mohammad-Ali; Makila, Ermei M.

    2017-01-01

    can be expressed in Nicotiana benthamiana plants as a fusion with Trichoderma reesei hydrophobins HFBI, HFBII, or HFBIV. Transferrin-HFBIV was further expressed in tobacco BY-2 suspension cells. Both partners of the fusion protein retained their functionality; the hydrophobin moiety enabled migration...... to a surfactant phase in an aqueous two-phase system, and the transferrin moiety was able to reversibly bind iron. Coating porous silicon nanoparticles with the fusion protein resulted in uptake of the nanoparticles in human cancer cells. This study provides a proof-of concept for the functionalization...

  3. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease.

    Science.gov (United States)

    Jo, Seonmi; Yarishkin, Oleg; Hwang, Yu Jin; Chun, Ye Eun; Park, Mijeong; Woo, Dong Ho; Bae, Jin Young; Kim, Taekeun; Lee, Jaekwang; Chun, Heejung; Park, Hyun Jung; Lee, Da Yong; Hong, Jinpyo; Kim, Hye Yun; Oh, Soo-Jin; Park, Seung Ju; Lee, Hyo; Yoon, Bo-Eun; Kim, YoungSoo; Jeong, Yong; Shim, Insop; Bae, Yong Chul; Cho, Jeiwon; Kowall, Neil W; Ryu, Hoon; Hwang, Eunmi; Kim, Daesoo; Lee, C Justin

    2014-08-01

    In Alzheimer's disease (AD), memory impairment is the most prominent feature that afflicts patients and their families. Although reactive astrocytes have been observed around amyloid plaques since the disease was first described, their role in memory impairment has been poorly understood. Here, we show that reactive astrocytes aberrantly and abundantly produce the inhibitory gliotransmitter GABA by monoamine oxidase-B (Maob) and abnormally release GABA through the bestrophin 1 channel. In the dentate gyrus of mouse models of AD, the released GABA reduces spike probability of granule cells by acting on presynaptic GABA receptors. Suppressing GABA production or release from reactive astrocytes fully restores the impaired spike probability, synaptic plasticity, and learning and memory in the mice. In the postmortem brain of individuals with AD, astrocytic GABA and MAOB are significantly upregulated. We propose that selective inhibition of astrocytic GABA synthesis or release may serve as an effective therapeutic strategy for treating memory impairment in AD.

  4. Understanding spatial and temporal patterning of astrocyte calcium transients via interactions between network transport and extracellular diffusion

    Science.gov (United States)

    Shtrahman, E.; Maruyama, D.; Olariu, E.; Fink, C. G.; Zochowski, M.

    2017-02-01

    Astrocytes form interconnected networks in the brain and communicate via calcium signaling. We investigate how modes of coupling between astrocytes influence the spatio-temporal patterns of calcium signaling within astrocyte networks and specifically how these network interactions promote coordination within this group of cells. To investigate these complex phenomena, we study reduced cultured networks of astrocytes and neurons. We image the spatial temporal patterns of astrocyte calcium activity and quantify how perturbing the coupling between astrocytes influences astrocyte activity patterns. To gain insight into the pattern formation observed in these cultured networks, we compare the experimentally observed calcium activity patterns to the patterns produced by a reduced computational model, where we represent astrocytes as simple units that integrate input through two mechanisms: gap junction coupling (network transport) and chemical release (extracellular diffusion). We examine the activity patterns in the simulated astrocyte network and their dependence upon these two coupling mechanisms. We find that gap junctions and extracellular chemical release interact in astrocyte networks to modulate the spatiotemporal patterns of their calcium dynamics. We show agreement between the computational and experimental findings, which suggests that the complex global patterns can be understood as a result of simple local coupling mechanisms.

  5. Mechanisms of astrocytic K(+) clearance and swelling under high extracellular K(+) concentrations.

    Science.gov (United States)

    Murakami, Shingo; Kurachi, Yoshihisa

    2016-03-01

    In response to the elevation of extracellular K(+) concentration ([K(+)]out), astrocytes clear excessive K(+) to maintain conditions necessary for neural activity. K(+) clearance in astrocytes occurs via two processes: K(+) uptake and K(+) spatial buffering. High [K(+)]out also induces swelling in astrocytes, leading to edema and cell death in the brain. Despite the importance of astrocytic K(+) clearance and swelling, the underlying mechanisms remain unclear. Here, we report results from a simulation analysis of astrocytic K(+) clearance and swelling. Astrocyte models were constructed by incorporating various mechanisms such as intra/extracellular ion concentrations of Na(+), K(+), and Cl(-), cell volume, and models of Na,K-ATPase, Na-K-Cl cotransporter (NKCC), K-Cl cotransporter, inwardly-rectifying K(+) (KIR) channel, passive Cl(-) current, and aquaporin channel. The simulated response of astrocyte models under the uniform distribution of high [K(+)]out revealed significant contributions of NKCC and Na,K-ATPase to increases of intracellular K(+) and Cl(-) concentrations, and swelling. Moreover, we found that, under the non-uniform distribution of high [K(+)]out, KIR channels localized at synaptic clefts absorbed excess K(+) by depolarizing the equivalent potential of K(+) (E K) above membrane potential, while K(+) released through perivascular KIR channels was enhanced by hyperpolarizing E K and depolarizing membrane potential. Further analysis of simulated drug effects revealed that astrocyte swelling was modulated by blocking each of the ion channels and transporters. Our simulation analysis revealed controversial mechanisms of astrocytic K(+) clearance and swelling resulting from complex interactions among ion channels and transporters.

  6. Astrocyte lipid metabolism is critical for synapse development and function in vivo.

    Science.gov (United States)

    van Deijk, Anne-Lieke F; Camargo, Nutabi; Timmerman, Jaap; Heistek, Tim; Brouwers, Jos F; Mogavero, Floriana; Mansvelder, Huibert D; Smit, August B; Verheijen, Mark H G

    2017-04-01

    The brain is considered to be autonomous in lipid synthesis with astrocytes producing lipids far more efficiently than neurons. Accordingly, it is generally assumed that astrocyte-derived lipids are taken up by neurons to support synapse formation and function. Initial confirmation of this assumption has been obtained in cell cultures, but whether astrocyte-derived lipids support synapses in vivo is not known. Here, we address this issue and determined the role of astrocyte lipid metabolism in hippocampal synapse formation and function in vivo. Hippocampal protein expression for the sterol regulatory element-binding protein (SREBP) and its target gene fatty acid synthase (Fasn) was found in astrocytes but not in neurons. Diminishing SREBP activity in astrocytes using mice in which the SREBP cleavage-activating protein (SCAP) was deleted from GFAP-expressing cells resulted in decreased cholesterol and phospholipid secretion by astrocytes. Interestingly, SCAP mutant mice showed more immature synapses, lower presynaptic protein SNAP-25 levels as well as reduced numbers of synaptic vesicles, indicating impaired development of the presynaptic terminal. Accordingly, hippocampal short-term and long-term synaptic plasticity were defective in mutant mice. These findings establish a critical role for astrocyte lipid metabolism in presynaptic terminal development and function in vivo. GLIA 2017;65:670-682. © 2017 Wiley Periodicals, Inc.

  7. Proteomic analysis of astrocytic secretion that regulates neurogenesis using quantitative amine-specific isobaric tagging

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hu; Zhou, Wenhao [Children' s Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102 (China); Wei, Liming; Zhong, Fan [Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Roda, Shanghai 200032 (China); Yang, Yi, E-mail: yyang@shmu.edu.cn [Children' s Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102 (China)

    2010-01-08

    Astrocytes are essential components of neurogenic niches that affect neurogenesis through membrane association and/or the release of soluble factors. To identify factors released from astrocytes that could regulate neural stem cell differentiation and proliferation, we used mild oxygen-glucose deprivation (OGD) to inhibit the secretory capacity of astrocytes. Using the Transwell co-culture system, we found that OGD-treated astrocytes could not promote neural stem cell differentiation and proliferation. Next, isobaric tagging for the relative and absolute quantitation (iTRAQ) proteomics techniques was performed to identify the proteins in the supernatants of astrocytes (with or without OGD). Through a multi-step analysis and gene ontology classification, 130 extracellular proteins were identified, most of which were involved in neuronal development, the inflammatory response, extracellular matrix composition and supportive functions. Of these proteins, 44 had never been reported to be produced by astrocytes. Using ProteinPilot software analysis, we found that 60 extracellular proteins were significantly altered (27 upregulated and 33 downregulated) in the supernatant of OGD-treated astrocytes. Among these proteins, 7 have been reported to be able to regulate neurogenesis, while others may have the potential to regulate neurogenesis. This study profiles the major proteins released by astrocytes, which play important roles in the modulation of neurogenesis.

  8. A digital implementation of neuron-astrocyte interaction for neuromorphic applications.

    Science.gov (United States)

    Nazari, Soheila; Faez, Karim; Amiri, Mahmood; Karami, Ehsan

    2015-06-01

    Recent neurophysiologic findings have shown that astrocytes play important roles in information processing and modulation of neuronal activity. Motivated by these findings, in the present research, a digital neuromorphic circuit to study neuron-astrocyte interaction is proposed. In this digital circuit, the firing dynamics of the neuron is described by Izhikevich model and the calcium dynamics of a single astrocyte is explained by a functional model introduced by Postnov and colleagues. For digital implementation of the neuron-astrocyte signaling, Single Constant Multiply (SCM) technique and several linear approximations are used for efficient low-cost hardware implementation on digital platforms. Using the proposed neuron-astrocyte circuit and based on the results of MATLAB simulations, hardware synthesis and FPGA implementation, it is demonstrated that the proposed digital astrocyte is able to change the firing patterns of the neuron through bidirectional communication. Utilizing the proposed digital circuit, it will be illustrated that information processing in synaptic clefts is strongly regulated by astrocyte. Moreover, our results suggest that the digital circuit of neuron-astrocyte crosstalk produces diverse neural responses and therefore enhances the information processing capabilities of the neuromorphic circuits. This is suitable for applications in reconfigurable neuromorphic devices which implement biologically brain circuits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Proteomic analysis of astrocytic secretion that regulates neurogenesis using quantitative amine-specific isobaric tagging

    International Nuclear Information System (INIS)

    Yan, Hu; Zhou, Wenhao; Wei, Liming; Zhong, Fan; Yang, Yi

    2010-01-01

    Astrocytes are essential components of neurogenic niches that affect neurogenesis through membrane association and/or the release of soluble factors. To identify factors released from astrocytes that could regulate neural stem cell differentiation and proliferation, we used mild oxygen-glucose deprivation (OGD) to inhibit the secretory capacity of astrocytes. Using the Transwell co-culture system, we found that OGD-treated astrocytes could not promote neural stem cell differentiation and proliferation. Next, isobaric tagging for the relative and absolute quantitation (iTRAQ) proteomics techniques was performed to identify the proteins in the supernatants of astrocytes (with or without OGD). Through a multi-step analysis and gene ontology classification, 130 extracellular proteins were identified, most of which were involved in neuronal development, the inflammatory response, extracellular matrix composition and supportive functions. Of these proteins, 44 had never been reported to be produced by astrocytes. Using ProteinPilot software analysis, we found that 60 extracellular proteins were significantly altered (27 upregulated and 33 downregulated) in the supernatant of OGD-treated astrocytes. Among these proteins, 7 have been reported to be able to regulate neurogenesis, while others may have the potential to regulate neurogenesis. This study profiles the major proteins released by astrocytes, which play important roles in the modulation of neurogenesis.

  10. Glutamate mediated astrocytic filtering of neuronal activity.

    Directory of Open Access Journals (Sweden)

    Gilad Wallach

    2014-12-01

    Full Text Available Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity.

  11. Glutamate Mediated Astrocytic Filtering of Neuronal Activity

    Science.gov (United States)

    Herzog, Nitzan; De Pittà, Maurizio; Jacob, Eshel Ben; Berry, Hugues; Hanein, Yael

    2014-01-01

    Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity. PMID:25521344

  12. (13)C heteronuclear NMR studies of the interaction of cultured neurons and astrocytes and aluminum blockade of the preferential release of citrate from astrocytes.

    Science.gov (United States)

    Meshitsuka, Shunsuke; Aremu, David A

    2008-02-01

    Citrate has been identified as a major tricarboxylic acid (TCA) cycle constituent preferentially released by astrocytes. We undertook the present study to examine further the nature of metabolic compartmentation in central nervous system tissues using (13)C-labeled glucose and to provide new information on the influence of aluminum on the metabolic interaction between neurons and astrocytes. Metabolites released into the culture medium from astrocytes and neuron-astrocyte coculture, as well as the perchloric acid extracts of the cells were analyzed using 2D (1)H and (13)C NMR spectroscopy. Astrocytes released citrate into the culture medium and the released citrate was consumed by neurons in coculture. Citrate release by astrocytes was blocked in the presence of aluminum, with progressive accumulation of citrate within the cells. We propose citrate supply is a more efficient energy source than lactate for neurons to produce ATP, especially in the hypoglycemic state on account of it being a direct component of the TCA cycle. Astrocytes may be the cellular compartment for aluminum accumulation as a citrate complex in the brain.

  13. Uptake of 14C-labelled chloroquine and an 125I-labelled chloroquine analogue in some polypeptide hormone producing cell systems

    International Nuclear Information System (INIS)

    Dencker, L.; Lindquist, N.G.; Tjaelve, H.

    1976-01-01

    After the injection of 14 C-labelled chloroquine and the 125 I-labelled chloroquine analogue 4-(3 1 -dimethylaminopropylamino)-7-iodoquinoline [ 125 I]DAPQ into mice, rats and a monkey the distribution of the radioactivity was studied by autoradiographical methods. A high and persistent uptake occurred in some endocrine cell systems, such as the pancreatic islets, the hypophysis, the adrenal medulla and the thyroid (in cells that were probably identical with the parafollicular cells). The melanin-containing tissues were the only ones which showed a higher uptake and retention of radioactivity. The above mentioned endocrine cells and the melanocytes have a common embryological origin and common morphological and cytochemical characteristics. They have been called the APUD (Amine Precursor Uptake and Decarboxylation)-cell series. It is proposed that the polypeptide hormone producing cells and the melanocytes may use a similar mechanism for accumulating chloroquine and (as shown earlier) also some other drugs such as nicotine, alprenolol, local anesthetics and atropine. These drugs however, accumulate stronger within the melanocytes and become bound to the melanin for a long time. The ability to accumulate these drugs may be considered another characteristic of the APUD-cell series. (author)

  14. Astrocyte, the star avatar: redefined

    Indian Academy of Sciences (India)

    This review summarizes the past and present knowledge of glial cell functions that has evolved over the years, and has resulted in a new appreciation of astrocytes and their value in studying the neurobiology of human brain cells and their functions. In this review, we highlight recent advances in the role of glial cells in ...

  15. Effects of lactic acid on astrocytes in primary culture.

    Science.gov (United States)

    Norenberg, M D; Mozes, L W; Gregorios, J B; Norenberg, L O

    1987-03-01

    Excessive tissue lactic acidosis is considered to be detrimental to the central nervous system (CNS) and may adversely affect recovery from anoxia, ischemia, trauma and epilepsy. Since astrocytes are believed to play a role in pH regulation in the CNS, we studied the effect of this acid on primary astrocyte cultures. Cells exposed to lactic acid showed chromatin clumping, an increase of lipid and dense bodies, a loss of polyribosomal clusters, slightly increased cytoplasmic lucency, swollen mitochondria and tangled intermediate filaments. These alterations progressed with lower pH and longer exposure. Irreversible changes occurred one to two hours after exposure at pH 6; after 30 to 60 minutes (min) at pH 5.5 and after ten to 30 min at pH 5. Comparable results were obtained with the use of other weak acids indicating that the observed changes were due to increased hydrogen ion concentration rather than secondary to lactate per se. Additionally, various concentrations of lactic acid adjusted to identical pH produced similar morphologic alterations. Thus, while lactic acid caused marked and at times irreversible alterations in astrocytes, severe and prolonged acidosis was required to produce such injurious effects. This relative resistance of astrocytes to acidosis is in keeping with their potential role in pH regulation in brain.

  16. Thyroid hormone action: Astrocyte-neuron communication.

    Directory of Open Access Journals (Sweden)

    Beatriz eMorte

    2014-05-01

    Full Text Available Thyroid hormone action is exerted mainly through regulation of gene expression by binding of T3 to the nuclear receptors. T4 plays an important role as a source of intracellular T3 in the central nervous system via the action of the type 2 deiodinase, expressed in the astrocytes. A model of T3 availability to neural cells has been proposed and validated. The model contemplates that brain T3 has a double origin: a fraction is available directly from the circulation, and another is produced locally from T4 in the astrocytes by type 2 deiodinase. The fetal brain depends almost entirely on the T3 generated locally. The contribution of systemic T3 increases subsequently during development to account for approximately 50% of total brain T3 in the late postnatal and adult stages. In this article we review the experimental data in support of this model, and how the factors affecting T3 availability in the brain, such as deiodinases and transporters, play a decisive role in modulating local thyroid hormone action during development.

  17. Beneficial Use of Produced Water from Oil and Gas Operations for Agriculture: Effects on Crop Health and Crop Uptake of Contaminants

    Science.gov (United States)

    Sedlacko, E.; Blaine, A. C.; Haynes, K. M.; Higgins, C. P.

    2016-12-01

    The balance between water conservation and energy generation is difficult to maintain. Oil and gas (O&G) companies look to dispose of produced water in safe, economical ways, while farmers desperate for water seek plentiful sources to maintain their fields. The solution seems simple—purify the water from O&G operations and deliver it to the farmers for irrigation to ensure a reliable source of food. Unfortunately, little research has been conducted to date that could provide purification guidelines, risk warnings, or standard methods for how to implement this solution. In addition, multiple barriers to implementation including regulatory, economic, liability, and social license considerations, must be addressed. This presentation contains data regarding the uptake of compounds two crops, Triticum aestivum (spring wheat) and Helianthus annus (sunflower), grown in a controlled greenhouse environment and irrigated with different dilutions of raw and treated produced water from O&G operations. Differences in plant height, plant color, leaf area, and plant mass were examined, and additional laboratory analyses were conducted on the plants to detect uptake of inorganic and organic substances. Plant stress was also assessed both qualitatively and through plant hormone analysis. In addition, this project provided the opportunity for K-12 teachers to become involved in university research through a new National Science Foundation Research Experience for Teachers (RET) program at Colorado School of Mines. The subsequent impacts of this food-energy-water nexus research on local communities and local STEM curricula via the RET program will also be highlighted.

  18. Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space.

    Directory of Open Access Journals (Sweden)

    Ivar Østby

    2009-01-01

    Full Text Available Neuronal stimulation causes approximately 30% shrinkage of the extracellular space (ECS between neurons and surrounding astrocytes in grey and white matter under experimental conditions. Despite its possible implications for a proper understanding of basic aspects of potassium clearance and astrocyte function, the phenomenon remains unexplained. Here we present a dynamic model that accounts for current experimental data related to the shrinkage phenomenon in wild-type as well as in gene knockout individuals. We find that neuronal release of potassium and uptake of sodium during stimulation, astrocyte uptake of potassium, sodium, and chloride in passive channels, action of the Na/K/ATPase pump, and osmotically driven transport of water through the astrocyte membrane together seem sufficient for generating ECS shrinkage as such. However, when taking into account ECS and astrocyte ion concentrations observed in connection with neuronal stimulation, the actions of the Na(+/K(+/Cl(- (NKCC1 and the Na(+/HCO(3 (- (NBC cotransporters appear to be critical determinants for achieving observed quantitative levels of ECS shrinkage. Considering the current state of knowledge, the model framework appears sufficiently detailed and constrained to guide future key experiments and pave the way for more comprehensive astroglia-neuron interaction models for normal as well as pathophysiological situations.

  19. Characterization of Amino Acid Profile and Enzymatic Activity in Adult Rat Astrocyte Cultures.

    Science.gov (United States)

    Souza, Débora Guerini; Bellaver, Bruna; Hansel, Gisele; Arús, Bernardo Assein; Bellaver, Gabriela; Longoni, Aline; Kolling, Janaina; Wyse, Angela T S; Souza, Diogo Onofre; Quincozes-Santos, André

    2016-07-01

    Astrocytes are multitasking players in brain complexity, possessing several receptors and mechanisms to detect, participate and modulate neuronal communication. The functionality of astrocytes has been mainly unraveled through the study of primary astrocyte cultures, and recently our research group characterized a model of astrocyte cultures derived from adult Wistar rats. We, herein, aim to characterize other basal functions of these cells to explore the potential of this model for studying the adult brain. To characterize the astrocytic phenotype, we determined the presence of GFAP, GLAST and GLT 1 proteins in cells by immunofluorescence. Next, we determined the concentrations of thirteen amino acids, ATP, ADP, adenosine and calcium in astrocyte cultures, as well as the activities of Na(+)/K(+)-ATPase and acetylcholine esterase. Furthermore, we assessed the presence of the GABA transporter 1 (GAT 1) and cannabinoid receptor 1 (CB 1) in the astrocytes. Cells demonstrated the presence of glutamine, consistent with their role in the glutamate-glutamine cycle, as well as glutamate and D-serine, amino acids classically known to act as gliotransmitters. ATP was produced and released by the cells and ADP was consumed. Calcium levels were in agreement with those reported in the literature, as were the enzymatic activities measured. The presence of GAT 1 was detected, but the presence of CB 1 was not, suggesting a decreased neuroprotective capacity in adult astrocytes under in vitro conditions. Taken together, our results show cellular functionality regarding the astrocytic role in gliotransmission and neurotransmitter management since they are able to produce and release gliotransmitters and to modulate the cholinergic and GABAergic systems.

  20. The value and adaptation of plant uptake models in international trade of produce treated with crop protection products

    DEFF Research Database (Denmark)

    Kennedy, C.; Anderson, J.; Snyder, N.

    2010-01-01

    Crop Protection Product (CPP) national registrations and/or international trade require magnitude and decline of residue data for treated produce. These data are used to assess human dietary risk and establish legal limits (Maximum Residue Limits, MRLs) for traded produce. The ability to predict...... residues based on limited data sets affords business value by enabling informed product development decisions about the likelihood for MRL compliance for varied product use scenarios. Predicted residues can additionally support the design and conduct of time-constrained interdependent studies required...... for product registrations. While advances in predicting residues for the case of foliar applications of CPPs have been achieved, predictions for the case of soil applications of CPPs provide additional challenge. The adaptation of a newly developed dynamic model to CPP product use scenarios will be explored...

  1. Gap junction coupling confers isopotentiality on astrocyte syncytium

    Science.gov (United States)

    Ma, Baofeng; Buckalew, Richard; Du, Yixing; Kiyoshi, Conrad M.; Alford, Catherine C.; Wang, Wei; McTigue, Dana D.; Enyeart, John J.; Terman, David; Zhou, Min

    2015-01-01

    Astrocytes are extensively coupled through gap junctions into a syncytium. However, the basic role of this major brain network remains largely unknown. Using electrophysiological and computational modeling methods, we demonstrate that the membrane potential (VM) of an individual astrocyte in a hippocampal syncytium, but not in a single, freshly isolated cell preparation, can be well-maintained at quasi-physiological levels when recorded with reduced or K+ free pipette solutions that alter the K+ equilibrium potential to non-physiological voltages. We show that an astrocyte’s associated syncytium provides powerful electrical coupling, together with ionic coupling at a lesser extent, that equalizes the astrocyte’s VM to levels comparable to its neighbors. Functionally, this minimizes VM depolarization attributable to elevated levels of local extracellular K+ and thereby maintains a sustained driving force for highly efficient K+ uptake. Thus, gap junction coupling functions to achieve isopotentiality in astrocytic networks, whereby a constant extracellular environment can be powerfully maintained for crucial functions of neural circuits. PMID:26435164

  2. Cortical astrocytes exposed to tributyltin undergo morphological changes in vitro.

    Science.gov (United States)

    Mizuhashi, S; Ikegaya, Y; Nishiyama, N; Matsuki, N

    2000-11-01

    We investigated the effect of tributyltin (TBT), an endocrine-disrupting chemical, on the morphology and viability of cultured rat cortical astrocytes. Cultured astrocytes exhibited smooth and planiform morphology under normal conditions. Following exposure to TBT, however, they showed rapid morphological changes that are characterized by asteriated cell bodies and process formation in a time- and concentration-dependent manner. Higher concentrations of TBT produced progressive cell death of the astrocytes. In serum-free medium, TBT at a concentration as low as 200 nM induced the stellation. Pharmacological studies revealed that the morphological changes were alleviated by application of diverse free radical scavengers or antioxidants such as catalase, superoxide dismutase, Trolox, ascorbic acid and N-acetyl-L-cysteine, suggesting that TBT-induced stellation is caused by oxidative stress involving free radicals, particularly reactive oxygen species. Furthermore, we found that the astrocyte stellation was abolished by treatment with inhibitors of phospholipase C, mitogen-activated protein kinase kinase or tyrosine phosphatase. The data suggest that TBT causes the stellation through intracellular signaling cascades rather than its non-specific toxicity. These findings provide an important insight for reconciling the problems in assumed aversive actions of this environmental pollutant for mammals.

  3. Glycogen synthase kinase-3 regulates inflammatory tolerance in astrocytes

    Science.gov (United States)

    Beurel, Eléonore; Jope, Richard S.

    2010-01-01

    Inflammatory tolerance is the down-regulation of inflammation upon repeated stimuli, which is well-established to occur in peripheral immune cells. However, less is known about inflammatory tolerance in the brain although it may provide an important protective mechanism from detrimental consequences of prolonged inflammation, which appears to occur in many psychiatric and neurodegenerative conditions. Array analysis of 308 inflammatory molecules produced by mouse primary astrocytes after two sequential stimulations with lipopolysaccharide (LPS) distinguished three classes, tolerant, sensitized and unaltered groups. For many of these inflammatory molecules, inhibition of glycogen synthase kinase-3 (GSK3) increased tolerance and reduced sensitization. Focusing on LPS-tolerance in interleukin-6 (IL-6) production, we found that microglia exhibited a strong tolerance response that matched that of macrophages, whereas astrocytes exhibited only partial tolerance. The astrocyte semi-tolerance was found to be regulated by GSK3. GSK3 inhibitors or knocking down GSK3 levels promoted LPS-tolerance and astrocytes expressing constitutively active GSK3 did not develop LPS-tolerance. These findings identify the critical role of GSK3 in counteracting IL-6 inflammatory tolerance in cells of the CNS, supporting the therapeutic potential of GSK3 inhibitors to reduce neuroinflammation by promoting tolerance. PMID:20553816

  4. Involvement of astrocytes in neurovascular communication.

    Science.gov (United States)

    Nuriya, M; Hirase, H

    2016-01-01

    The vascular interface of the brain is distinct from that of the peripheral tissue in that astrocytes, the most numerous glial cell type in the gray matter, cover the vasculature with their endfeet. This morphological feature of the gliovascular junction has prompted neuroscientists to suggest possible functional roles of astrocytes including astrocytic modulation of the vasculature. Additionally, astrocytes develop an intricate morphology that intimately apposes neuronal synapses, making them an ideal cellular mediator of neurovascular coupling. In this article, we first introduce the classical anatomical and physiological findings that led to the proposal of various gliovascular interaction models. Next, we touch on the technological advances in the past few decades that enabled investigations and evaluations of neuro-glio-vascular interactions in situ. We then review recent experimental findings on the roles of astrocytes in neurovascular coupling from the viewpoints of intra- and intercellular signalings in astrocytes. © 2016 Elsevier B.V. All rights reserved.

  5. Cell Biology of Astrocyte-Synapse Interactions.

    Science.gov (United States)

    Allen, Nicola J; Eroglu, Cagla

    2017-11-01

    Astrocytes, the most abundant glial cells in the mammalian brain, are critical regulators of brain development and physiology through dynamic and often bidirectional interactions with neuronal synapses. Despite the clear importance of astrocytes for the establishment and maintenance of proper synaptic connectivity, our understanding of their role in brain function is still in its infancy. We propose that this is at least in part due to large gaps in our knowledge of the cell biology of astrocytes and the mechanisms they use to interact with synapses. In this review, we summarize some of the seminal findings that yield important insight into the cellular and molecular basis of astrocyte-neuron communication, focusing on the role of astrocytes in the development and remodeling of synapses. Furthermore, we pose some pressing questions that need to be addressed to advance our mechanistic understanding of the role of astrocytes in regulating synaptic development. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Methamphetamine compromises gap junctional communication in astrocytes and neurons.

    Science.gov (United States)

    Castellano, Paul; Nwagbo, Chisom; Martinez, Luis R; Eugenin, Eliseo A

    2016-05-01

    Methamphetamine (meth) is a central nervous system (CNS) stimulant that results in psychological and physical dependency. The long-term effects of meth within the CNS include neuronal plasticity changes, blood-brain barrier compromise, inflammation, electrical dysfunction, neuronal/glial toxicity, and an increased risk to infectious diseases including HIV. Most of the reported meth effects in the CNS are related to dysregulation of chemical synapses by altering the release and uptake of neurotransmitters, especially dopamine, norepinephrine, and epinephrine. However, little is known about the effects of meth on connexin (Cx) containing channels, such as gap junctions (GJ) and hemichannels (HC). We examined the effects of meth on Cx expression, function, and its role in NeuroAIDS. We found that meth altered Cx expression and localization, decreased GJ communication between neurons and astrocytes, and induced the opening of Cx43/Cx36 HC. Furthermore, we found that these changes in GJ and HC induced by meth treatment were mediated by activation of dopamine receptors, suggesting that dysregulation of dopamine signaling induced by meth is essential for GJ and HC compromise. Meth-induced changes in GJ and HC contributed to amplified CNS toxicity by dysregulating glutamate metabolism and increasing the susceptibility of neurons and astrocytes to bystander apoptosis induced by HIV. Together, our results indicate that connexin containing channels, GJ and HC, are essential in the pathogenesis of meth and increase the sensitivity of the CNS to HIV CNS disease. Methamphetamine (meth) is an extremely addictive central nervous system stimulant. Meth reduced gap junctional (GJ) communication by inducing internalization of connexin-43 (Cx43) in astrocytes and reducing expression of Cx36 in neurons by a mechanism involving activation of dopamine receptors (see cartoon). Meth-induced changes in Cx containing channels increased extracellular levels of glutamate and resulted in higher

  7. Reactive Astrocytes in Brain Metastasis

    Directory of Open Access Journals (Sweden)

    David Wasilewski

    2017-12-01

    Full Text Available Brain metastasis, the secondary growth of malignant cells within the central nervous system (CNS, exceeds the incidence of primary brain tumors (i.e., gliomas by tenfold and are seemingly on the rise owing to the emergence of novel targeted therapies that are more effective in controlling extracranial disease relatively to intracranial lesions. Despite the fact that metastasis to the brain poses a unmet clinical problem, with afflicted patients carrying significant morbidity and a fatal prognosis, our knowledge as to how metastatic cells manage to adapt to the tissue environment of the CNS remains limited. Answering this question could pave the way for novel and more specific therapeutic modalities in brain metastasis by targeting the specific makeup of the brain metastatic niche. In regard to this, astrocytes have emerged as the major host cell type that cancer cells encounter and interact with during brain metastasis formation. Similarly to other CNS disorders, astrocytes become reactive and respond to the presence of cancer cells by changing their phenotype and significantly influencing the outcome of disseminated cancer cells within the CNS. Here, we summarize the current knowledge on the contribution of reactive astrocytes in brain metastasis by focusing on the signaling pathways and types of interactions that play a crucial part in the communication with cancer cells and how these could be translated into innovative therapies.

  8. Astrocytic actions on extrasynaptic neuronal currents

    Directory of Open Access Journals (Sweden)

    Balazs ePal

    2015-12-01

    Full Text Available In the last few decades, knowledge about astrocytic functions has significantly increased. It was demonstrated that astrocytes are not passive elements of the central nervous system, but active partners of neurons. There is a growing body of knowledge about the calcium excitability of astrocytes, the actions of different gliotransmitters and their release mechanisms, as well as the participation of astrocytes in the regulation of synaptic functions and their contribution to synaptic plasticity. However, astrocytic functions are even more complex than being a partner of the 'tripartite synapse', as they can influence extrasynaptic neuronal currents either by releasing substances or regulating ambient neurotransmitter levels. Several types of currents or changes of membrane potential with different kinetics and via different mechanisms can be elicited by astrocytic activity. Astrocyte-dependent phasic or tonic, inward or outward currents were described in several brain areas. Such currents, together with the synaptic actions of astrocytes, can contribute to neuromodulatory mechanisms, neurosensory and –secretory processes, cortical oscillatory activity, memory and learning or overall neuronal excitability. This mini-review is an attempt to give a brief summary of astrocyte-dependent extrasynaptic neuronal currents and their possible functional significance.

  9. Lateral regulation of synaptic transmission by astrocytes.

    Science.gov (United States)

    Covelo, A; Araque, A

    2016-05-26

    Fifteen years ago the concept of the "tripartite synapse" was proposed to conceptualize the functional view that astrocytes are integral elements of synapses. The signaling exchange between astrocytes and neurons within the tripartite synapse results in the synaptic regulation of synaptic transmission and plasticity through an autocrine form of communication. However, recent evidence indicates that the astrocyte synaptic regulation is not restricted to the active tripartite synapse but can be manifested through astrocyte signaling at synapses relatively distant from active synapses, a process termed lateral astrocyte synaptic regulation. This phenomenon resembles the classical heterosynaptic modulation but is mechanistically different because it involves astrocytes and its properties critically depend on the morphological and functional features of astrocytes. Therefore, the functional concept of the tripartite synapse as a fundamental unit must be expanded to include the interaction between tripartite synapses. Through lateral synaptic regulation, astrocytes serve as an active processing bridge for synaptic interaction and crosstalk between synapses with no direct neuronal connectivity, supporting the idea that neural network function results from the coordinated activity of astrocytes and neurons. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Endocannabinoids mediate neuron-astrocyte communication.

    Science.gov (United States)

    Navarrete, Marta; Araque, Alfonso

    2008-03-27

    Cannabinoid receptors play key roles in brain function, and cannabinoid effects in brain physiology and drug-related behavior are thought to be mediated by receptors present in neurons. Neuron-astrocyte communication relies on the expression by astrocytes of neurotransmitter receptors. Yet, the expression of cannabinoid receptors by astrocytes in situ and their involvement in the neuron-astrocyte communication remain largely unknown. We show that hippocampal astrocytes express CB1 receptors that upon activation lead to phospholipase C-dependent Ca2+ mobilization from internal stores. These receptors are activated by endocannabinoids released by neurons, increasing astrocyte Ca2+ levels, which stimulate glutamate release that activates NMDA receptors in pyramidal neurons. These results demonstrate the existence of endocannabinoid-mediated neuron-astrocyte communication, revealing that astrocytes are targets of cannabinoids and might therefore participate in the physiology of cannabinoid-related addiction. They also reveal the existence of an endocannabinoid-glutamate signaling pathway where astrocytes serve as a bridge for nonsynaptic interneuronal communication.

  11. Tight coupling of astrocyte energy metabolism to synaptic activity revealed by genetically encoded FRET nanosensors in hippocampal tissue.

    Science.gov (United States)

    Ruminot, Iván; Schmälzle, Jana; Leyton, Belén; Barros, L Felipe; Deitmer, Joachim W

    2017-01-01

    The potassium ion, K + , a neuronal signal that is released during excitatory synaptic activity, produces acute activation of glucose consumption in cultured astrocytes, a phenomenon mediated by the sodium bicarbonate cotransporter NBCe1 ( SLC4A4). We have explored here the relevance of this mechanism in brain tissue by imaging the effect of neuronal activity on pH, glucose, pyruvate and lactate dynamics in hippocampal astrocytes using BCECF and FRET nanosensors. Electrical stimulation of Schaffer collaterals produced fast activation of glucose consumption in astrocytes with a parallel increase in intracellular pyruvate and biphasic changes in lactate . These responses were blocked by TTX and were absent in tissue slices prepared from NBCe1-KO mice. Direct depolarization of astrocytes with elevated extracellular K + or Ba 2+ mimicked the metabolic effects of electrical stimulation. We conclude that the glycolytic pathway of astrocytes in situ is acutely sensitive to neuronal activity, and that extracellular K + and the NBCe1 cotransporter are involved in metabolic crosstalk between neurons and astrocytes. Glycolytic activation of astrocytes in response to neuronal K + helps to provide an adequate supply of lactate, a metabolite that is released by astrocytes and which acts as neuronal fuel and an intercellular signal.

  12. Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil

    International Nuclear Information System (INIS)

    Sheng Xiafang; He Linyan; Wang Qingya; Ye Hesong; Jiang Chunyu

    2008-01-01

    A biosurfactant-producing Bacillus sp. J119 isolated from heavy metal contaminated soils was investigated for its effects on the plant growth-promoting characteristics and heavy metal and antibiotic resistance. A pot experiment was conducted for investigating the capability of the biosurfactant-producing bacterial strain Bacillus sp. J119 to promote the plant growth and cadmium uptake of rape, maize, sudangrass and tomato in soil artificially contaminated with different levels of cadmium (Cd) (0 and 50 mg kg -1 ). The strain was found to exhibit different multiple heavy metal (Pb, Cd, Cu, Ni and Zn) and antibiotic (kanamycin, streptomycin, ampicillin, tetracycline and rifampin) resistance characteristics. The strain had the capacity to produce indole acetic acid (IAA) and siderophores. Cd treatment did not significantly decreased growth of tomato, maize and rape plants, but Cd treatment significantly decreased growth of sudangrass (p -1 , increase in above-ground tissue Cd content varied from 39 to 70% in live bacterium-inoculated plants compared to dead bacterium-inoculated control. In addition, among the inoculated plants, tomato was the greatest Cd accumulator. The bacterial strain was also able to colonize and develop in the rhizosphere soils after root inoculation

  13. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    International Nuclear Information System (INIS)

    Milsted, A.; Barna, B.P.; Ransohoff, R.M.; Brosnihan, K.B.; Ferrario, C.M.

    1990-01-01

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures

  14. Altered astrocytic swelling in the cortex of α-syntrophin-negative GFAP/EGFP mice.

    Directory of Open Access Journals (Sweden)

    Miroslava Anderova

    Full Text Available Brain edema accompanying ischemic or traumatic brain injuries, originates from a disruption of ionic/neurotransmitter homeostasis that leads to accumulation of K(+ and glutamate in the extracellular space. Their increased uptake, predominantly provided by astrocytes, is associated with water influx via aquaporin-4 (AQP4. As the removal of perivascular AQP4 via the deletion of α-syntrophin was shown to delay edema formation and K(+ clearance, we aimed to elucidate the impact of α-syntrophin knockout on volume changes in individual astrocytes in situ evoked by pathological stimuli using three dimensional confocal morphometry and changes in the extracellular space volume fraction (α in situ and in vivo in the mouse cortex employing the real-time iontophoretic method. RT-qPCR profiling was used to reveal possible differences in the expression of ion channels/transporters that participate in maintaining ionic/neurotransmitter homeostasis. To visualize individual astrocytes in mice lacking α-syntrophin we crossbred GFAP/EGFP mice, in which the astrocytes are labeled by the enhanced green fluorescent protein under the human glial fibrillary acidic protein promoter, with α-syntrophin knockout mice. Three-dimensional confocal morphometry revealed that α-syntrophin deletion results in significantly smaller astrocyte swelling when induced by severe hypoosmotic stress, oxygen glucose deprivation (OGD or 50 mM K(+. As for the mild stimuli, such as mild hypoosmotic or hyperosmotic stress or 10 mM K(+, α-syntrophin deletion had no effect on astrocyte swelling. Similarly, evaluation of relative α changes showed a significantly smaller decrease in α-syntrophin knockout mice only during severe pathological conditions, but not during mild stimuli. In summary, the deletion of α-syntrophin markedly alters astrocyte swelling during severe hypoosmotic stress, OGD or high K(+.

  15. From in silico astrocyte cell models to neuron-astrocyte network models: A review.

    Science.gov (United States)

    Oschmann, Franziska; Berry, Hugues; Obermayer, Klaus; Lenk, Kerstin

    2018-01-01

    The idea that astrocytes may be active partners in synaptic information processing has recently emerged from abundant experimental reports. Because of their spatial proximity to neurons and their bidirectional communication with them, astrocytes are now considered as an important third element of the synapse. Astrocytes integrate and process synaptic information and by doing so generate cytosolic calcium signals that are believed to reflect neuronal transmitter release. Moreover, they regulate neuronal information transmission by releasing gliotransmitters into the synaptic cleft affecting both pre- and postsynaptic receptors. Concurrent with the first experimental reports of the astrocytic impact on neural network dynamics, computational models describing astrocytic functions have been developed. In this review, we give an overview over the published computational models of astrocytic functions, from single-cell dynamics to the tripartite synapse level and network models of astrocytes and neurons. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Nitric Oxide in Astrocyte-Neuron Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Nianzhen [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Astrocytes, a subtype of glial cell, have recently been shown to exhibit Ca2+ elevations in response to neurotransmitters. A Ca2+ elevation can propagate to adjacent astrocytes as a Ca2+ wave, which allows an astrocyte to communicate with its neighbors. Additionally, glutamate can be released from astrocytes via a Ca2+-dependent mechanism, thus modulating neuronal activity and synaptic transmission. In this dissertation, the author investigated the roles of another endogenous signal, nitric oxide (NO), in astrocyte-neuron signaling. First the author tested if NO is generated during astrocytic Ca2+ signaling by imaging NO in purified murine cortical astrocyte cultures. Physiological concentrations of a natural messenger, ATP, caused a Ca2+-dependent NO production. To test the roles of NO in astrocytic Ca2+ signaling, the author applied NO to astrocyte cultures via addition of a NO donor, S-nitrosol-N-acetylpenicillamine (SNAP). NO induced an influx of external Ca2+, possibly through store-operated Ca2+ channels. The NO-induced Ca2+ signaling is cGMP-independent since 8-Br-cGMP, an agonistic analog of cGMP, did not induce a detectable Ca2+ change. The consequence of this NO-induced Ca2+ influx was assessed by simultaneously monitoring of cytosolic and internal store Ca2+ using fluorescent Ca2+ indicators x-rhod-1 and mag-fluo-4. Blockage of NO signaling with the NO scavenger PTIO significantly reduced the refilling percentage of internal stores following ATP-induced Ca2+ release, suggesting that NO modulates internal store refilling. Furthermore, locally photo-release of NO to a single astrocyte led to a Ca2+ elevation in the stimulated astrocyte and a subsequent Ca2+ wave to neighbors. Finally, the author tested the role of NO inglutamate-mediated astrocyte-neuron signaling by

  17. Large-scale recording of astrocyte activity

    Science.gov (United States)

    Nimmerjahn, Axel; Bergles, Dwight E.

    2015-01-01

    Astrocytes are highly ramified glial cells found throughout the central nervous system (CNS). They express a variety of neurotransmitter receptors that can induce widespread chemical excitation, placing these cells in an optimal position to exert global effects on brain physiology. However, the activity patterns of only a small fraction of astrocytes have been examined and techniques to manipulate their behavior are limited. As a result, little is known about how astrocytes modulate CNS function on synaptic, microcircuit, or systems levels. Here, we review current and emerging approaches for visualizing and manipulating astrocyte activity in vivo. Deciphering how astrocyte network activity is controlled in different physiological and pathological contexts is critical for defining their roles in the healthy and diseased CNS. PMID:25665733

  18. Podocalyxin expression in malignant astrocytic tumors

    International Nuclear Information System (INIS)

    Hayatsu, Norihito; Kaneko, Mika Kato; Mishima, Kazuhiko; Nishikawa, Ryo; Matsutani, Masao; Price, Janet E.; Kato, Yukinari

    2008-01-01

    Podocalyxin is an anti-adhesive mucin-like transmembrane sialoglycoprotein that has been implicated in the development of aggressive forms of cancer. Podocalyxin is also known as keratan sulfate (KS) proteoglycan. Recently, we revealed that highly sulfated KS or another mucin-like transmembrane sialoglycoprotein podoplanin/aggrus is upregulated in malignant astrocytic tumors. The aim of this study is to examine the relationship between podocalyxin expression and malignant progression of astrocytic tumors. In this study, 51 astrocytic tumors were investigated for podocalyxin expression using immunohistochemistry, Western blot analysis, and quantitative real-time PCR. Immunohistochemistry detected podocalyxin on the surface of tumor cells in six of 14 anaplastic astrocytomas (42.9%) and in 17 of 31 glioblastomas (54.8%), especially around proliferating endothelial cells. In diffuse astrocytoma, podocalyxin expression was observed only in vascular endothelial cells. Podocalyxin might be associated with the malignant progression of astrocytic tumors, and be a useful prognostic marker for astrocytic tumors

  19. Astrocyte-neuron communication: functional consequences.

    Science.gov (United States)

    Ben Achour, Sarrah; Pascual, Olivier

    2012-11-01

    Astrocyte-neuron communication has recently been proposed as a potential mechanism participating to synaptic transmission. With the development of this concept and accumulating evidences in favor of a modulation of synaptic transmission by astrocytes, has emerged the term gliotransmission. It refers to the capacity of astrocytes to release various transmitters, such as ATP, glutamate, D-serine, and GABA in the vicinity of synapses. While the cellular mechanisms involved in gliotransmission still need to be better described and, for some, identified, the aim of more and more studies is to determine the role of astrocytes from a functional point of view. This review will summarize the principal studies that have investigated a potential role of astrocytes in the various functions regulated by the brain (sleep, breathing, perception, learning and memory…). This will allow us to highlight the similarities and discrepancies in the signaling pathways involved in the different areas of the brain related to these functions.

  20. Micropatterned substrates for studying astrocytes in culture

    Directory of Open Access Journals (Sweden)

    William Lee

    2009-12-01

    Full Text Available Recent studies of the physiological roles of astrocytes have ignited renewed interest in the functional significance of these glial cells in the central nervous system. Many of the newly discovered astrocytic functions were initially demonstrated and characterized in cell culture systems. We discuss the use of microculture techniques and micropatterning of cell-adhesive substrates in studies of astrocytic Ca2+ excitability and bidirectional neuron-astrocyte signaling. This culturing approach aims to reduce the level of complexity of the system by limiting the interacting partners and by controlling the localization of cells. It provides tight control over experimental conditions allowing detailed characterization of cellular functions and intercellular communication. Although such a reductionist approach yields some difference in observations between astrocytic properties in culture and in situ, general phenomena discovered in cell culture systems, however, have also been found in vivo.

  1. Extracellular Electrophysiological Measurements of Cooperative Signals in Astrocytes Populations

    Science.gov (United States)

    Mestre, Ana L. G.; Inácio, Pedro M. C.; Elamine, Youssef; Asgarifar, Sanaz; Lourenço, Ana S.; Cristiano, Maria L. S.; Aguiar, Paulo; Medeiros, Maria C. R.; Araújo, Inês M.; Ventura, João; Gomes, Henrique L.

    2017-01-01

    Astrocytes are neuroglial cells that exhibit functional electrical properties sensitive to neuronal activity and capable of modulating neurotransmission. Thus, electrophysiological recordings of astroglial activity are very attractive to study the dynamics of glial signaling. This contribution reports on the use of ultra-sensitive planar electrodes combined with low noise and low frequency amplifiers that enable the detection of extracellular signals produced by primary cultures of astrocytes isolated from mouse cerebral cortex. Recorded activity is characterized by spontaneous bursts comprised of discrete signals with pronounced changes on the signal rate and amplitude. Weak and sporadic signals become synchronized and evolve with time to higher amplitude signals with a quasi-periodic behavior, revealing a cooperative signaling process. The methodology presented herewith enables the study of ionic fluctuations of population of cells, complementing the single cells observation by calcium imaging as well as by patch-clamp techniques. PMID:29109679

  2. Spinal dorsal horn astrocytes: New players in chronic itch

    Directory of Open Access Journals (Sweden)

    Makoto Tsuda

    2017-01-01

    Full Text Available Chronic itch is a debilitating symptom of inflammatory skin conditions, such as atopic dermatitis, and systemic diseases, for which existing treatment is largely ineffective. Recent studies have revealed the selective neuronal pathways that are involved in itch sensations; however, the mechanisms by which itch turns into a pathological chronic state are poorly understood. Recent advances in our understanding of the mechanisms producing chronic itch have been made by defining causal roles for astrocytes in the spinal dorsal horn in mouse models of chronic itch including atopic dermatitis. Understanding the key roles of astrocytes may provide us with exciting insights into the mechanisms for itch chronicity and lead to a previously unrecognized target for treating chronic itch.

  3. Reduced expression of glutamate transporter EAAT2 and impaired glutamate transport in human primary astrocytes exposed to HIV-1 or gp120

    International Nuclear Information System (INIS)

    Wang Zhuying; Pekarskaya, Olga; Bencheikh, Meryem; Chao Wei; Gelbard, Harris A.; Ghorpade, Anuja; Rothstein, Jeffrey D.; Volsky, David J.

    2003-01-01

    L-Glutamate is the major excitatory neurotransmitter in the brain. Astrocytes maintain low levels of synaptic glutamate by high-affinity uptake and defects in this function may lead to neuronal cell death by excitotoxicity. We tested the effects of HIV-1 and its envelope glycoprotein gp120 upon glutamate uptake and expression of glutamate transporters EAAT1 and EAAT2 in fetal human astrocytes in vitro. Astrocytes isolated from fetal tissues between 16 and 19 weeks of gestation expressed EAAT1 and EAAT2 RNA and proteins as detected by Northern blot analysis and immunoblotting, respectively, and the cells were capable of specific glutamate uptake. Exposure of astrocytes to HIV-1 or gp120 significantly impaired glutamate uptake by the cells, with maximum inhibition within 6 h, followed by gradual decline during 3 days of observation. HIV-1-infected cells showed a 59% reduction in V max for glutamate transport, indicating a reduction in the number of active transporter sites on the cell surface. Impaired glutamate transport after HIV-1 infection or gp120 exposure correlated with a 40-70% decline in steady-state levels of EAAT2 RNA and protein. EAAT1 RNA and protein levels were less affected. Treatment of astrocytes with tumor necrosis factor-α (TNF-α) decreased the expression of both EAAT1 and EAAT2, but neither HIV-1 nor gp120 were found to induce TNF-α production by astrocytes. These findings demonstrate that HIV-1 and gp120 induce transcriptional downmodulation of the EAAT2 transporter gene in human astrocytes and coordinately attenuate glutamate transport by the cells. Reduction of the ability of HIV-1-infected astrocytes to take up glutamate may contribute to the development of neurological disease

  4. Astrocytes play a key role in activation of microglia by persistent Borna disease virus infection

    Directory of Open Access Journals (Sweden)

    Sauder Christian

    2008-11-01

    Full Text Available Abstract Neonatal Borna disease virus (BDV infection of the rat brain is associated with microglial activation and damage to certain neuronal populations. Since persistent BDV infection of neurons is nonlytic in vitro, activated microglia have been suggested to be responsible for neuronal cell death in vivo. However, the mechanisms of activation of microglia in neonatally BDV-infected rat brains remain unclear. Our previous studies have shown that activation of microglia by BDV in culture requires the presence of astrocytes as neither the virus nor BDV-infected neurons alone activate microglia. Here, we evaluated the mechanisms whereby astrocytes can contribute to activation of microglia in neuron-glia-microglia mixed cultures. We found that persistent infection of neuronal cells leads to activation of uninfected astrocytes as measured by elevated expression of RANTES. Activation of astrocytes then produces activation of microglia as evidenced by increased formation of round-shaped, MHCI-, MHCII- and IL-6-positive microglia cells. Our analysis of possible molecular mechanisms of activation of astrocytes and/or microglia in culture indicates that the mediators of activation may be soluble heat-resistant, low molecular weight factors. The findings indicate that astrocytes may mediate activation of microglia by BDV-infected neurons. The data are consistent with the hypothesis that microglia activation in the absence of neuronal damage may represent initial steps in the gradual neurodegeneration observed in brains of neonatally BDV-infected rats.

  5. Cyclic AMP signaling restricts activation and promotes maturation and antioxidant defenses in astrocytes.

    Science.gov (United States)

    Paco, Sonia; Hummel, Manuela; Plá, Virginia; Sumoy, Lauro; Aguado, Fernando

    2016-04-23

    cAMP signaling produces dramatic changes in astrocyte morphology and physiology. However, its involvement in phenotype acquisition and the transcriptionally mediated mechanisms of action are largely unknown. Here we analyzed the global transcriptome of cultured astroglial cells incubated with activators of cAMP pathways. A bulk of astroglial transcripts, 6221 annotated genes, were differentially regulated by cAMP signaling. cAMP analogs strongly upregulated genes involved in typical functions of mature astrocytes, such as homeostatic control, metabolic and structural support to neurons, antioxidant defense and communication, whereas they downregulated a considerable number of proliferating and immaturity-related transcripts. Moreover, numerous genes typically activated in reactive cells, such as scar components and immunological mediators, were repressed by cAMP. GSEA analysis contrasting gene expression profiles with transcriptome signatures of acutely isolated astrocytes and in situ evaluation of protein levels in these cells showed that cAMP signaling conferred mature and in vivo-like transcriptional features to cultured astrocytes. These results indicate that cAMP signaling is a key pathway promoting astrocyte maturation and restricting their developmental and activation features. Therefore, a positive modulation of cAMP signaling may promote the normal state of differentiated astrocytes and favor the protection and function of neuronal networks.

  6. Cholesterol efflux is differentially regulated in neurons and astrocytes: implications for brain cholesterol homeostasis

    Science.gov (United States)

    Chen, Jing; Zhang, Xiaolu; Kusumo, Handojo; Costa, Lucio G.; Guizzetti, Marina

    2012-01-01

    Disruption of cholesterol homeostasis in the central nervous system (CNS) has been associated with neurological, neurodegenerative, and neurodevelopmental disorders. The CNS is a closed system with regard to cholesterol homeostasis, as cholesterol-delivering lipoproteins from the periphery cannot pass the blood-brain-barrier and enter the brain. Different cell types in the brain have different functions in the regulation of cholesterol homeostasis, with astrocytes producing and releasing apolipoprotein E and lipoproteins, and neurons metabolizing cholesterol to 24(S)-hydroxycholesterol. We present evidence that astrocytes and neurons adopt different mechanisms also in regulating cholesterol efflux. We found that in astrocytes cholesterol efflux is induced by both lipid-free apolipoproteins and lipoproteins, while cholesterol removal from neurons is triggered only by lipoproteins. The main pathway by which apolipoproteins induce cholesterol efflux is through ABCA1. By upregulating ABCA1 levels and by inhibiting its activity and silencing its expression, we show that ABCA1 is involved in cholesterol efflux from astrocytes but not from neurons. Furthermore, our results suggest that ABCG1 is involved in cholesterol efflux to apolipoproteins and lipoproteins from astrocytes but not from neurons, while ABCG4, whose expression is much higher in neurons than astrocytes, is involved in cholesterol efflux from neurons but not astrocytes. These results indicate that different mechanisms regulate cholesterol efflux from neurons and astrocytes, reflecting the different roles that these cell types play in brain cholesterol homeostasis. These results are important in understanding cellular targets of therapeutic drugs under development for the treatments of conditions associated with altered cholesterol homeostasis in the CNS. PMID:23010475

  7. Artificial Astrocytes Improve Neural Network Performance

    Science.gov (United States)

    Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-01-01

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157

  8. Artificial astrocytes improve neural network performance.

    Directory of Open Access Journals (Sweden)

    Ana B Porto-Pazos

    Full Text Available Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN and artificial neuron-glia networks (NGN to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  9. Artificial astrocytes improve neural network performance.

    Science.gov (United States)

    Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-04-19

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  10. Loose excitation-secretion coupling in astrocytes.

    Science.gov (United States)

    Vardjan, Nina; Parpura, Vladimir; Zorec, Robert

    2016-05-01

    Astrocytes play an important housekeeping role in the central nervous system. Additionally, as secretory cells, they actively participate in cell-to-cell communication, which can be mediated by membrane-bound vesicles. The gliosignaling molecules stored in these vesicles are discharged into the extracellular space after the vesicle membrane fuses with the plasma membrane. This process is termed exocytosis, regulated by SNARE proteins, and triggered by elevations in cytosolic calcium levels, which are necessary and sufficient for exocytosis in astrocytes. For astrocytic exocytosis, calcium is sourced from the intracellular endoplasmic reticulum store, although its entry from the extracellular space contributes to cytosolic calcium dynamics in astrocytes. Here, we discuss calcium management in astrocytic exocytosis and the properties of the membrane-bound vesicles that store gliosignaling molecules, including the vesicle fusion machinery and kinetics of vesicle content discharge. In astrocytes, the delay between the increase in cytosolic calcium activity and the discharge of secretions from the vesicular lumen is orders of magnitude longer than that in neurons. This relatively loose excitation-secretion coupling is likely tailored to the participation of astrocytes in modulating neural network processing. © 2015 Wiley Periodicals, Inc.

  11. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism.

    Science.gov (United States)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John D R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-04-23

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anaesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyses the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identify the neuron as the principal locus of glucose uptake as visualized by functional brain imaging.

  12. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism

    Science.gov (United States)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John Douglas R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using 2-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyze the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identifies the neuron as the principal locus of glucose uptake as visualized by functional brain imaging. PMID:25904018

  13. Astrocytic glutamate transport regulates a Drosophila CNS synapse that lacks astrocyte ensheathment.

    Science.gov (United States)

    MacNamee, Sarah E; Liu, Kendra E; Gerhard, Stephan; Tran, Cathy T; Fetter, Richard D; Cardona, Albert; Tolbert, Leslie P; Oland, Lynne A

    2016-07-01

    Anatomical, molecular, and physiological interactions between astrocytes and neuronal synapses regulate information processing in the brain. The fruit fly Drosophila melanogaster has become a valuable experimental system for genetic manipulation of the nervous system and has enormous potential for elucidating mechanisms that mediate neuron-glia interactions. Here, we show the first electrophysiological recordings from Drosophila astrocytes and characterize their spatial and physiological relationship with particular synapses. Astrocyte intrinsic properties were found to be strongly analogous to those of vertebrate astrocytes, including a passive current-voltage relationship, low membrane resistance, high capacitance, and dye-coupling to local astrocytes. Responses to optogenetic stimulation of glutamatergic premotor neurons were correlated directly with anatomy using serial electron microscopy reconstructions of homologous identified neurons and surrounding astrocytic processes. Robust bidirectional communication was present: neuronal activation triggered astrocytic glutamate transport via excitatory amino acid transporter 1 (Eaat1), and blocking Eaat1 extended glutamatergic interneuron-evoked inhibitory postsynaptic currents in motor neurons. The neuronal synapses were always located within 1 μm of an astrocytic process, but none were ensheathed by those processes. Thus, fly astrocytes can modulate fast synaptic transmission via neurotransmitter transport within these anatomical parameters. J. Comp. Neurol. 524:1979-1998, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Sustained Na+/H+ exchanger activation promotes gliotransmitter release from reactive hippocampal astrocytes following oxygen-glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Pelin Cengiz

    Full Text Available Hypoxia ischemia (HI-related brain injury is the major cause of long-term morbidity in neonates. One characteristic hallmark of neonatal HI is the development of reactive astrogliosis in the hippocampus. However, the impact of reactive astrogliosis in hippocampal damage after neonatal HI is not fully understood. In the current study, we investigated the role of Na(+/H(+ exchanger isoform 1 (NHE1 protein in mouse reactive hippocampal astrocyte function in an in vitro ischemia model (oxygen/glucose deprivation and reoxygenation, OGD/REOX. 2 h OGD significantly increased NHE1 protein expression and NHE1-mediated H(+ efflux in hippocampal astrocytes. NHE1 activity remained stimulated during 1-5 h REOX and returned to the basal level at 24 h REOX. NHE1 activation in hippocampal astrocytes resulted in intracellular Na(+ and Ca(2+ overload. The latter was mediated by reversal of Na(+/Ca(2+ exchange. Hippocampal astrocytes also exhibited a robust release of gliotransmitters (glutamate and pro-inflammatory cytokines IL-6 and TNFα during 1-24 h REOX. Interestingly, inhibition of NHE1 activity with its potent inhibitor HOE 642 not only reduced Na(+ overload but also gliotransmitter release from hippocampal astrocytes. The noncompetitive excitatory amino acid transporter inhibitor TBOA showed a similar effect on blocking the glutamate release. Taken together, we concluded that NHE1 plays an essential role in maintaining H(+ homeostasis in hippocampal astrocytes. Over-stimulation of NHE1 activity following in vitro ischemia disrupts Na(+ and Ca(2+ homeostasis, which reduces Na(+-dependent glutamate uptake and promotes release of glutamate and cytokines from reactive astrocytes. Therefore, blocking sustained NHE1 activation in reactive astrocytes may provide neuroprotection following HI.

  15. Amyloid-beta aggregates cause alterations of astrocytic metabolic phenotype: impact on neuronal viability.

    Science.gov (United States)

    Allaman, Igor; Gavillet, Mathilde; Bélanger, Mireille; Laroche, Thierry; Viertl, David; Lashuel, Hilal A; Magistretti, Pierre J

    2010-03-03

    Amyloid-beta (Abeta) peptides play a key role in the pathogenesis of Alzheimer's disease and exert various toxic effects on neurons; however, relatively little is known about their influence on glial cells. Astrocytes play a pivotal role in brain homeostasis, contributing to the regulation of local energy metabolism and oxidative stress defense, two aspects of importance for neuronal viability and function. In the present study, we explored the effects of Abeta peptides on glucose metabolism in cultured astrocytes. Following Abeta(25-35) exposure, we observed an increase in glucose uptake and its various metabolic fates, i.e., glycolysis (coupled to lactate release), tricarboxylic acid cycle, pentose phosphate pathway, and incorporation into glycogen. Abeta increased hydrogen peroxide production as well as glutathione release into the extracellular space without affecting intracellular glutathione content. A causal link between the effects of Abeta on glucose metabolism and its aggregation and internalization into astrocytes through binding to members of the class A scavenger receptor family could be demonstrated. Using astrocyte-neuron cocultures, we observed that the overall modifications of astrocyte metabolism induced by Abeta impair neuronal viability. The effects of the Abeta(25-35) fragment were reproduced by Abeta(1-42) but not by Abeta(1-40). Finally, the phosphoinositide 3-kinase (PI3-kinase) pathway appears to be crucial in these events since both the changes in glucose utilization and the decrease in neuronal viability are prevented by LY294002, a PI3-kinase inhibitor. This set of observations indicates that Abeta aggregation and internalization into astrocytes profoundly alter their metabolic phenotype with deleterious consequences for neuronal viability.

  16. Analysis of the repaglinide concentration increase produced by gemfibrozil and itraconazole based on the inhibition of the hepatic uptake transporter and metabolic enzymes.

    Science.gov (United States)

    Kudo, Toshiyuki; Hisaka, Akihiro; Sugiyama, Yuichi; Ito, Kiyomi

    2013-02-01

    The plasma concentration of repaglinide is reported to increase greatly when given after repeated oral administration of itraconazole and gemfibrozil. The present study analyzed this interaction based on a physiologically based pharmacokinetic (PBPK) model incorporating inhibition of the hepatic uptake transporter and metabolic enzymes involved in repaglinide disposition. Firstly, the plasma concentration profiles of inhibitors (itraconazole, gemfibrozil, and gemfibrozil glucuronide) were reproduced by a PBPK model to obtain their pharmacokinetic parameters. The plasma concentration profiles of repaglinide were then analyzed by a PBPK model, together with those of the inhibitors, assuming a competitive inhibition of CYP3A4 by itraconazole, mechanism-based inhibition of CYP2C8 by gemfibrozil glucuronide, and inhibition of organic anion transporting polypeptide (OATP) 1B1 by gemfibrozil and its glucuronide. The plasma concentration profiles of repaglinide were well reproduced by the PBPK model based on the above assumptions, and the optimized values for the inhibition constants (0.0676 nM for itraconazole against CYP3A4; 14.2 μM for gemfibrozil against OATP1B1; and 5.48 μM for gemfibrozil glucuronide against OATP1B1) and the fraction of repaglinide metabolized by CYP2C8 (0.801) were consistent with the reported values. The validity of the obtained parameters was further confirmed by sensitivity analyses and by reproducing the repaglinide concentration increase produced by concomitant gemfibrozil administration at various timings/doses. The present findings suggested that the reported concentration increase of repaglinide, suggestive of synergistic effects of the coadministered inhibitors, can be quantitatively explained by the simultaneous inhibition of the multiple clearance pathways of repaglinide.

  17. Isolation of phytase-producing bacteria from Himalayan soils and their effect on growth and phosphorus uptake of Indian mustard (Brassica juncea).

    Science.gov (United States)

    Kumar, Vinod; Singh, Prashant; Jorquera, Milko A; Sangwan, Punesh; Kumar, Piyush; Verma, A K; Agrawal, Sanjeev

    2013-08-01

    Phytase-producing bacteria (PPB) is being investigated as plant growth promoting rhizobacteria (PGPR) to improve the phosphorus (P) nutrition and growth of plants grown in soil with high phytate content. Phytate is dominant organic P forms in many soils and must be hydrolyzed to be available for plants. Indian mustard (Brassica juncea) is a plant with economic importance in agriculture and phytoremediation, therefore biotechnological tools to improve growth and environmental stress tolerance are needed. In this study, we isolated and characterized PPB from Himalayan soils and evaluated their effect on growth and P uptake by B. juncea under greenhouse conditions. Sixty five PPB were isolated and based on phytate hydrolysis, three efficient PPB were chosen and identified as Acromobacter sp. PB-01, Tetrathiobacter sp. PB-03 and Bacillus sp. PB-13. Selected PPB showed ability to grow at wide range of pH, temperature and salt concentrations as well as to harbour diverse PGPR activities, such as: solubilization of insoluble Ca-phosphate (193-642 μg ml(-1)), production of phytohormone indole acetic acid (5-39 μg ml(-1)) and siderophore. Tetrathiobacter sp. PB-03 and Bacillus sp. PB-13 showed 50 and 70 % inhibition of phytopathogen Rhizoctonia solani, respectively. Greenhouse potting assay also showed that the bacterization of B. juncea seeds with Tetrathiobacter sp. PB-03 and Bacillus sp. PB-13 significantly increased the biomass and P content in 30 days old seedlings. This study reveals the potential of PPB as PGPR to improve the growth of B. juncea.

  18. ATP stimulates calcium influx in primary astrocyte cultures

    International Nuclear Information System (INIS)

    Neary, J.T.; van Breemen, C.; Forster, E.; Norenberg, L.O.; Norenberg, M.D.

    1988-01-01

    The effect of ATP and other purines on 45 Ca uptake was studied in primary cultures of rat astrocytes. Treatment of the cells with ATP for 1 to 30 min brought about an increase in cellular 45 Ca. Stimulation of calcium influx by ATP was investigated using a 90 sec exposure to 45 Ca and over a concentration range of 0.1 nM to 3 mM; a biphasic dose-response curve was obtained with EC50 values of 0.3 nM and 9 uM, indicating the presence of low and high affinity purinergic binding sites. Similar levels of 45 Ca influx at 90 sec were observed with ATP, ADP and adenosine (all at 100 uM). Prior treatment of the cultures with LaCl3 blocked the purine-induced 45 Ca influx. These findings indicate that one pathway for calcium entry in astrocytes involves purinergic receptor-operated, calcium channels

  19. Astrocyte Ca2+ signalling: an unexpected complexity

    OpenAIRE

    Volterra, Andrea; Liaudet, Nicolas; Savtchouk, Iaroslav

    2014-01-01

    Astrocyte Ca(2+) signalling has been proposed to link neuronal information in different spatial-temporal dimensions to achieve a higher level of brain integration. However, some discrepancies in the results of recent studies challenge this view and highlight key insufficiencies in our current understanding. In parallel, new experimental approaches that enable the study of astrocyte physiology at higher spatial-temporal resolution in intact brain preparations are beginning to reveal an unexpec...

  20. Astrocytes expressing ALS‐linked mutant FUS induce motor neuron death through release of tumor necrosis factor‐alpha

    Science.gov (United States)

    Kia, Azadeh; McAvoy, Kevin; Krishnamurthy, Karthik; Trotti, Davide

    2018-01-01

    Mutations in fused in sarcoma (FUS) are linked to amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease affecting both upper and lower motor neurons. While it is established that astrocytes contribute to the death of motor neurons in ALS, the specific contribution of mutant FUS (mutFUS) through astrocytes has not yet been studied. Here, we used primary astrocytes expressing a N‐terminally GFP tagged R521G mutant or wild‐type FUS (WTFUS) and show that mutFUS‐expressing astrocytes undergo astrogliosis, damage co‐cultured motor neurons via activation of an inflammatory response and produce conditioned medium (ACM) that is toxic to motor neurons in isolation. Time lapse imaging shows that motor neuron cultures exposed to mutFUS ACM, but not WTFUS ACM, undergo significant cell loss, which is preceded by progressive degeneration of neurites. We found that Tumor Necrosis Factor‐Alpha (TNFα) is secreted into ACM of mutFUS‐expressing astrocytes. Accordingly, mutFUS astrocyte‐mediated motor neuron toxicity is blocked by targeting soluble TNFα with neutralizing antibodies. We also found that mutant astrocytes trigger changes to motor neuron AMPA receptors (AMPAR) that render them susceptible to excitotoxicity and AMPAR‐mediated cell death. Our data provide the first evidence of astrocytic involvement in FUS‐ALS, identify TNFα as a mediator of this toxicity, and provide several potential therapeutic targets to protect motor neurons in FUS‐linked ALS. PMID:29380416

  1. Astrocytic Vesicle Mobility in Health and Disease

    Directory of Open Access Journals (Sweden)

    Robert Zorec

    2013-05-01

    Full Text Available Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i intercellular communication by gliotransmitters (glutamate, adenosine 5'-triphosphate, atrial natriuretic peptide, (ii plasma membrane exchange of transporters and receptors (EAAT2, MHC-II, and (iii the involvement of vesicle mobility carrying aquaporins (AQP4 in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.

  2. Glucocorticoid regulation of astrocytic fate and function.

    Directory of Open Access Journals (Sweden)

    Shuang Yu

    Full Text Available Glial loss in the hippocampus has been suggested as a factor in the pathogenesis of stress-related brain disorders that are characterized by dysregulated glucocorticoid (GC secretion. However, little is known about the regulation of astrocytic fate by GC. Here, we show that astrocytes derived from the rat hippocampus undergo growth inhibition and display moderate activation of caspase 3 after exposure to GC. Importantly, the latter event, observed both in situ and in primary astrocytic cultures is not followed by either early- or late-stage apoptosis, as monitored by stage I or stage II DNA fragmentation. Thus, unlike hippocampal granule neurons, astrocytes are resistant to GC-induced apoptosis; this resistance is due to lower production of reactive oxygen species (ROS and a greater buffering capacity against the cytotoxic actions of ROS. We also show that GC influence hippocampal cell fate by inducing the expression of astrocyte-derived growth factors implicated in the control of neural precursor cell proliferation. Together, our results suggest that GC instigate a hitherto unknown dialog between astrocytes and neural progenitors, adding a new facet to understanding how GC influence the cytoarchitecture of the hippocampus.

  3. Astrocyte glycogen and brain energy metabolism.

    Science.gov (United States)

    Brown, Angus M; Ransom, Bruce R

    2007-09-01

    The brain contains glycogen but at low concentration compared with liver and muscle. In the adult brain, glycogen is found predominantly in astrocytes. Astrocyte glycogen content is modulated by a number of factors including some neurotransmitters and ambient glucose concentration. Compelling evidence indicates that astrocyte glycogen breaks down during hypoglycemia to lactate that is transferred to adjacent neurons or axons where it is used aerobically as fuel. In the case of CNS white matter, this source of energy can extend axon function for 20 min or longer. Likewise, during periods of intense neural activity when energy demand exceeds glucose supply, astrocyte glycogen is degraded to lactate, a portion of which is transferred to axons for fuel. Astrocyte glycogen, therefore, offers some protection against hypoglycemic neural injury and ensures that neurons and axons can maintain their function during very intense periods of activation. These emerging principles about the roles of astrocyte glycogen contradict the long held belief that this metabolic pool has little or no functional significance.

  4. Astrocyte atrophy and immune dysfunction in self-harming macaques.

    Science.gov (United States)

    Lee, Kim M; Chiu, Kevin B; Sansing, Hope A; Inglis, Fiona M; Baker, Kate C; MacLean, Andrew G

    2013-01-01

    Self-injurious behavior (SIB) is a complex condition that exhibits a spectrum of abnormal neuropsychological and locomotor behaviors. Mechanisms for neuropathogenesis could include irregular immune activation, host soluble factors, and astrocyte dysfunction. We examined the role of astrocytes as modulators of immune function in macaques with SIB. We measured changes in astrocyte morphology and function. Paraffin sections of frontal cortices from rhesus macaques identified with SIB were stained for glial fibrillary acidic protein (GFAP) and Toll-like receptor 2 (TLR2). Morphologic features of astrocytes were determined using computer-assisted camera lucida. There was atrophy of white matter astrocyte cell bodies, decreased arbor length in both white and gray matter astrocytes, and decreased bifurcations and tips on astrocytes in animals with SIB. This was combined with a five-fold increase in the proportion of astrocytes immunopositive for TLR2. These results provide direct evidence that SIB induces immune activation of astrocytes concomitant with quantifiably different morphology.

  5. Fatty acid oxidation and ketogenesis in astrocytes

    International Nuclear Information System (INIS)

    Auestad, N.

    1988-01-01

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO 2 in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO 2 and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and ω-terminal carbons, indicating that fatty acids were oxidized by β-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the ω-terminal 4-carbon unit of the fatty acids bypassed the β-ketothiolase step of the β-oxidation pathway. The [ 14 C]acetoacetate formed from the [1- 14 C]labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the [ 14 C]acetoacetate formed from the (ω-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1

  6. The presence of serum alters the properties of iron oxide nanoparticles and lowers their accumulation by cultured brain astrocytes

    International Nuclear Information System (INIS)

    Geppert, Mark; Petters, Charlotte; Thiel, Karsten; Dringen, Ralf

    2013-01-01

    Iron oxide nanoparticles (IONPs) are considered for various diagnostic and therapeutic applications. Such particles are able to cross the blood–brain barrier and are taken up into brain cells. To test whether serum components affect the properties of IONPs and/or their uptake into brain cells, we have incubated dimercaptosuccinate-coated magnetic IONPs without and with fetal calf serum (FCS) and have exposed cultured brain astrocytes with IONPs in the absence or presence of FCS. Incubation with FCS caused a concentration-dependent increase in the average hydrodynamic diameter of the particles and of their zeta-potential. In the presence of 10 % FCS, the diameter of the IONPs increased from 57 ± 2 to 107 ± 6 nm and the zeta-potential of the particles from −22 ± 5 to −9 ± 1 mV. FCS affected also strongly the uptake of IONPs by cultured astrocytes. The efficient time- and temperature-dependent cellular accumulation of IONPs was lowered with increasing concentration of FCS by up to 90 %. In addition, in the absence of serum, endocytosis inhibitors did not alter the IONP accumulation by astrocytes, while chlorpromazine or wortmannin lowered significantly the accumulation of IONPs in the presence of FCS, suggesting that clathrin-mediated endocytosis and macropinocytosis are involved in astrocytic IONP uptake from serum-containing medium. These data demonstrate that the presence of FCS strongly affects the properties of IONPs as well as their accumulation by cultured brain cells.

  7. Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle.

    Science.gov (United States)

    Patel, Anant B; Lai, James C K; Chowdhury, Golam M I; Hyder, Fahmeed; Rothman, Douglas L; Shulman, Robert G; Behar, Kevin L

    2014-04-08

    Previous (13)C magnetic resonance spectroscopy experiments have shown that over a wide range of neuronal activity, approximately one molecule of glucose is oxidized for every molecule of glutamate released by neurons and recycled through astrocytic glutamine. The measured kinetics were shown to agree with the stoichiometry of a hypothetical astrocyte-to-neuron lactate shuttle model, which predicted negligible functional neuronal uptake of glucose. To test this model, we measured the uptake and phosphorylation of glucose in nerve terminals isolated from rats infused with the glucose analog, 2-fluoro-2-deoxy-D-glucose (FDG) in vivo. The concentrations of phosphorylated FDG (FDG6P), normalized with respect to known neuronal metabolites, were compared in nerve terminals, homogenate, and cortex of anesthetized rats with and without bicuculline-induced seizures. The increase in FDG6P in nerve terminals agreed well with the increase in cortical neuronal glucose oxidation measured previously under the same conditions in vivo, indicating that direct uptake and oxidation of glucose in nerve terminals is substantial under resting and activated conditions. These results suggest that neuronal glucose-derived pyruvate is the major oxidative fuel for activated neurons, not lactate-derived from astrocytes, contradicting predictions of the original astrocyte-to-neuron lactate shuttle model under the range of study conditions.

  8. Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes

    Science.gov (United States)

    Fuente-Martín, Esther; García-Cáceres, Cristina; Granado, Miriam; de Ceballos, María L.; Sánchez-Garrido, Miguel Ángel; Sarman, Beatrix; Liu, Zhong-Wu; Dietrich, Marcelo O.; Tena-Sempere, Manuel; Argente-Arizón, Pilar; Díaz, Francisca; Argente, Jesús; Horvath, Tamas L.; Chowen, Julie A.

    2012-01-01

    Glial cells perform critical functions that alter the metabolism and activity of neurons, and there is increasing interest in their role in appetite and energy balance. Leptin, a key regulator of appetite and metabolism, has previously been reported to influence glial structural proteins and morphology. Here, we demonstrate that metabolic status and leptin also modify astrocyte-specific glutamate and glucose transporters, indicating that metabolic signals influence synaptic efficacy and glucose uptake and, ultimately, neuronal function. We found that basal and glucose-stimulated electrical activity of hypothalamic proopiomelanocortin (POMC) neurons in mice were altered in the offspring of mothers fed a high-fat diet. In adulthood, increased body weight and fasting also altered the expression of glucose and glutamate transporters. These results demonstrate that whole-organism metabolism alters hypothalamic glial cell activity and suggest that these cells play an important role in the pathology of obesity. PMID:23064363

  9. CD44-positive cells are candidates for astrocyte precursor cells in developing mouse cerebellum.

    Science.gov (United States)

    Cai, Na; Kurachi, Masashi; Shibasaki, Koji; Okano-Uchida, Takayuki; Ishizaki, Yasuki

    2012-03-01

    Neural stem cells are generally considered to be committed to becoming precursor cells before terminally differentiating into either neurons or glial cells during neural development. Neuronal and oligodendrocyte precursor cells have been identified in several areas in the murine central nervous system. The presence of astrocyte precursor cells (APCs) is not so well understood. The present study provides several lines of evidence that CD44-positive cells are APCs in the early postnatal mouse cerebellum. In developing mouse cerebellum, CD44-positive cells, mostly located in the white matter, were positive for the markers of the astrocyte lineage, but negative for the markers of mature astrocytes. CD44-positive cells were purified from postnatal cerebellum by fluorescence-activated cell sorting and characterized in vitro. In the absence of any signaling molecule, many cells died by apoptosis. The surviving cells gradually expressed glial fibrillary acidic protein, a marker for mature astrocytes, indicating that differentiation into mature astrocytes is the default program for these cells. The cells produced no neurospheres nor neurons nor oligodendrocytes under any condition examined, indicating these cells are not neural stem cells. Leukemia inhibitory factor greatly promoted astrocytic differentiation of CD44-positive cells, whereas bone morphogenetic protein 4 (BMP4) did not. Fibroblast growth factor-2 was a potent mitogen for these cells, but was insufficient for survival. BMP4 inhibited activation of caspase-3 and greatly promoted survival, suggesting a novel role for BMP4 in the control of development of astrocytes in cerebellum. We isolated and characterized only CD44 strongly positive large cells and discarded small and/or CD44 weakly positive cells in this study. Further studies are necessary to characterize these cells to help determine whether CD44 is a selective and specific marker for APCs in the developing mouse cerebellum. In conclusion, we succeeded in

  10. Diclofenac enhances proinflammatory cytokine-induced nitric oxide production through NF-κB signaling in cultured astrocytes

    International Nuclear Information System (INIS)

    Kakita, Hiroki; Aoyama, Mineyoshi; Hussein, Mohamed Hamed; Kato, Shin; Suzuki, Satoshi; Ito, Tetsuya; Togari, Hajime; Asai, Kiyofumi

    2009-01-01

    Recently, the number of reports of encephalitis/encephalopathy associated with influenza virus has increased. In addition, the use of a non-steroidal anti-inflammatory drug, diclofenac sodium (DCF), is associated with a significant increase in the mortality rate of influenza-associated encephalopathy. Activated astrocytes are a source of nitric oxide (NO), which is largely produced by inducible NO synthase (iNOS) in response to proinflammatory cytokines. Therefore, we investigated whether DCF enhances nitric oxide production in astrocytes stimulated with proinflammatory cytokines. We stimulated cultured rat astrocytes with three cytokines, interleukin-1β, tumor necrosis factor-α and interferon-γ, and then treated the astrocytes with DCF or acetaminophen (N-acetyl-p-aminophenol: APAP). iNOS and NO production in astrocyte cultures were induced by proinflammatory cytokines. The addition of DCF augmented NO production, but the addition of APAP did not. NF-κB inhibitors SN50 and MG132 inhibited iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. Similarly, NF-κB p65 Stealth small interfering RNA suppressed iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. LDH activity and DAPI staining showed that DCF induces cell damage in cytokine-stimulated astrocytes. An iNOS inhibitor, L-NMMA, inhibited the cytokine- and DCF-induced cell damage. In conclusion, this study demonstrates that iNOS and NO are induced in astrocyte cultures by proinflammatory cytokines. Addition of DCF further augments NO production. This effect is mediated via NF-κB signaling and leads to cell damage. The enhancement of DCF on NO production may explain the significant increase in the mortality rate of influenza-associated encephalopathy in patients treated with DCF.

  11. Adrenoceptors in Brain: Cellular Gene Expression and Effects on Astrocytic Metabolism and [Ca2+]i

    Science.gov (United States)

    Hertz, Leif; Lovatt, Ditte; Goldman, Steven A.; Nedergaard, Maiken

    2010-01-01

    Recent in vivo studies have established astrocytes as a major target for locus coeruleus activation (Bekar et al., Cereb. Cortex 18, 2789–2795), renewing interest in cell culture studies on noradrenergic effects on astrocytes in primary cultures and calling for additional information about the expression of adrenoceptor subtypes on different types of brain cells. In the present communication, mRNA expression of α1-, α2- and β-adrenergic receptors and their subtypes was determined in freshly-isolated, cell marker-defined populations of astrocytes, NG2-positive cells, microglia, endothelial cells, and Thy1-positive neurons (mainly glutamatergic projection neurons) in murine cerebral cortex. Immediately after dissection of frontal, parietal and occipital cortex of 10–12-week-old transgenic mice, which combined each cell-type marker with a specific fluorescent signal, the tissue was digested, triturated and centrifuged, yielding a solution of dissociated cells of all types, which were separated by fluorescence-activated cell sorting (FACS). mRNA expression in each cell fraction was determined by microarray analysis. α1A-Receptors were unequivocally expressed in astrocytes and NG2-positive cells, but absent in other cell types, and α1B-receptors were not expressed in any cell population. Among α2-receptors only α2A-receptors were expressed, unequivocally in astrocytes and NG-positive cells, tentatively in microglia and questionably in Thy1-positive neurons and endothelial cells. β1-Receptors were unequivocally expressed in astrocytes, tentatively in microglia, and questionably in neurons and endothelial cells, whereas β2-adrenergic receptors showed tentative expression in neurons and astrocytes and unequivocal expression in other cell types. This distribution was supported by immunochemical data and its relevance established by previous studies in well-differentiated primary cultures of mouse astrocytes, showing that stimulation of α2-adrenoceptors

  12. Methylmercury-induced alterations in astrocyte functions are attenuated by ebselen.

    Science.gov (United States)

    Yin, Zhaobao; Lee, Eunsook; Ni, Mingwei; Jiang, Haiyan; Milatovic, Dejan; Rongzhu, Lu; Farina, Marcelo; Rocha, Joao B T; Aschner, Michael

    2011-06-01

    Methylmercury (MeHg) preferentially accumulates in glia of the central nervous system (CNS), but its toxic mechanisms have yet to be fully recognized. In the present study, we tested the hypothesis that MeHg induces neurotoxicity via oxidative stress mechanisms, and that these effects are attenuated by the antioxidant, ebselen. Rat neonatal primary cortical astrocytes were pretreated with or without 10 μM ebselen for 2h followed by MeHg (0, 1, 5, and 10 μM) treatments. MeHg-induced changes in astrocytic [(3)H]-glutamine uptake were assessed along with changes in mitochondrial membrane potential (ΔΨ(m)), using the potentiometric dye tetramethylrhodamine ethyl ester (TMRE). Western blot analysis was used to detect MeHg-induced ERK (extracellular-signal related kinase) phosphorylation and caspase-3 activation. MeHg treatment significantly decreased (pEbselen fully reversed MeHg's (1 μM) effect on [(3)H]-glutamine uptake at 1 min. At higher MeHg concentrations, ebselen partially reversed the MeHg-induced astrocytic inhibition of [(3)H]-glutamine uptake [at 1 min (5 and 10 μM) (pEbselen fully reversed the effect of 1 μM MeHg treatment for 1h on astrocytic ΔΨ(m) and partially reversed the effect of 5 and 10 μM MeHg treatments for 1h on ΔΨ(m). In addition, ebselen inhibited MeHg-induced phosphorylation of ERK (pebselen reinforce the idea that organic selenocompounds represent promising strategies to counteract MeHg-induced neurotoxicity. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential ... or imaging device that produces pictures and provides molecular information. The thyroid scan and thyroid uptake provide ...

  14. Astrocyte galectin-9 potentiates microglial TNF secretion.

    Science.gov (United States)

    Steelman, Andrew J; Li, Jianrong

    2014-08-27

    Aberrant neuroinflammation is suspected to contribute to the pathogenesis of myriad neurological diseases. As such, determining the pathways that promote or inhibit glial activation is of interest. Activation of the surface glycoprotein T-cell immunoglobulin and mucin-domain containing protein 3 (Tim-3) by the lectin galectin-9 has been implicated in promoting innate immune cell activation by potentiating or synergizing toll-like receptor (TLR) signaling. In the present study we examined the role of the Tim-3/galectin-9 pathway in glial activation in vitro. Primary monocultures of microglia or astrocytes, co-cultures containing microglia and astrocytes, and mixed glial cultures consisting of microglia, astrocytes and oligodendrocytes were stimulated with poly(I:C) or LPS, and galectin-9 up-regulation was determined. The effect of endogenous galectin-9 production on microglial activation was examined using cultures from wild-type and Lgals9 null mice. The ability for recombinant galectin-9 to promote microglia activation was also assessed. Tim-3 expression on microglia and BV2 cells was examined by qPCR and flow cytometry and its necessity in transducing the galectin-9 signal was determined using a Tim-3 specific neutralizing antibody or recombinant soluble Tim-3. Astrocytes potentiated TNF production from microglia following TLR stimulation. Poly(I:C) stimulation increased galectin-9 expression in microglia and microglial-derived factors promoted galectin-9 up-regulation in astrocytes. Astrocyte-derived galectin-9 in turn enhanced microglial TNF production. Similarly, recombinant galectin-9 enhanced poly(I:C)-induced microglial TNF and IL-6 production. Inhibition of Tim-3 did not alter TNF production in mixed glial cultures stimulated with poly(I:C). Galectin-9 functions as an astrocyte-microglia communication signal and promotes cytokine production from microglia in a Tim-3 independent manner. Activation of CNS galectin-9 likely modulates neuroinflammatory

  15. Electrospun fiber surface nanotopography influences astrocyte-mediated neurite outgrowth.

    Science.gov (United States)

    Johnson, Christopher D; D'Amato, Anthony R; Puhl, Devan L; Wich, Douglas M; Vespermann, Amanda; Gilbert, Ryan J

    2018-05-15

    Aligned, electrospun fiber scaffolds provide topographical guidance for regenerating neurons and glia after central nervous system injury. To date, no study has explored how fiber surface nanotopography affects astrocyte response to fibrous scaffolds. Astrocytes play important roles in the glial scar, the blood brain barrier, and in maintaining homeostasis in the central nervous system. In this study, electrospun poly L-lactic acid fibers were engineered with smooth, pitted, or divoted surface nanotopography. Cortical or spinal cord primary rat astrocytes were cultured on the surfaces for either 1 or 3 days to examine the astrocyte response over time. The results showed that cortical astrocytes were significantly shorter and broader on the pitted and divoted fibers compared to those on smooth fibers. However, spinal cord astrocyte morphology was not significantly altered by the surface features. These findings indicate that astrocytes from unique anatomical locations respond differently to the presence of nanotopography. Western Blot results show that the differences in morphology were not associated with significant changes in GFAP or vinculin in either astrocyte population, suggesting that surface pits and divots do not induce a reactive phenotype in either cortical or spinal cord astrocytes. Finally, astrocytes were co-cultured with dorsal root ganglia to determine how the surfaces affected astrocyte-mediated neurite outgrowth. Astrocytes cultured on the fibers for shorter periods of time (1 day) generally supported longer neurite outgrowth. Pitted and divoted fibers restricted spinal cord astrocyte-mediated neurite outgrowth, while smooth fibers increased 3 day spinal cord astrocyte-mediated neurite outgrowth. In total, fiber surface nanotopography can influence astrocyte elongation and influence the capability of astrocytes to direct neurites. Therefore, fiber surface characteristics should be carefully controlled to optimize astrocyte-mediated axonal

  16. Astrocyte calcium signal and gliotransmission in human brain tissue.

    Science.gov (United States)

    Navarrete, Marta; Perea, Gertrudis; Maglio, Laura; Pastor, Jesús; García de Sola, Rafael; Araque, Alfonso

    2013-05-01

    Brain function is recognized to rely on neuronal activity and signaling processes between neurons, whereas astrocytes are generally considered to play supportive roles for proper neuronal function. However, accumulating evidence indicates that astrocytes sense and control neuronal and synaptic activity, indicating that neuron and astrocytes reciprocally communicate. While this evidence has been obtained in experimental animal models, whether this bidirectional signaling between astrocytes and neurons occurs in human brain remains unknown. We have investigated the existence of astrocyte-neuron communication in human brain tissue, using electrophysiological and Ca(2+) imaging techniques in slices of the cortex and hippocampus obtained from biopsies from epileptic patients. Cortical and hippocampal human astrocytes displayed spontaneous Ca(2+) elevations that were independent of neuronal activity. Local application of transmitter receptor agonists or nerve electrical stimulation transiently elevated Ca(2+) in astrocytes, indicating that human astrocytes detect synaptic activity and respond to synaptically released neurotransmitters, suggesting the existence of neuron-to-astrocyte communication in human brain tissue. Electrophysiological recordings in neurons revealed the presence of slow inward currents (SICs) mediated by NMDA receptor activation. The frequency of SICs increased after local application of ATP that elevated astrocyte Ca(2+). Therefore, human astrocytes are able to release the gliotransmitter glutamate, which affect neuronal excitability through activation of NMDA receptors in neurons. These results reveal the existence of reciprocal signaling between neurons and astrocytes in human brain tissue, indicating that astrocytes are relevant in human neurophysiology and are involved in human brain function.

  17. Systematic Three-Dimensional Coculture Rapidly Recapitulates Interactions between Human Neurons and Astrocytes

    Directory of Open Access Journals (Sweden)

    Robert Krencik

    2017-12-01

    Full Text Available Summary: Human astrocytes network with neurons in dynamic ways that are still poorly defined. Our ability to model this relationship is hampered by the lack of relevant and convenient tools to recapitulate this complex interaction. To address this barrier, we have devised efficient coculture systems utilizing 3D organoid-like spheres, termed asteroids, containing pre-differentiated human pluripotent stem cell (hPSC-derived astrocytes (hAstros combined with neurons generated from hPSC-derived neural stem cells (hNeurons or directly induced via Neurogenin 2 overexpression (iNeurons. Our systematic methods rapidly produce structurally complex hAstros and synapses in high-density coculture with iNeurons in precise numbers, allowing for improved studies of neural circuit function, disease modeling, and drug screening. We conclude that these bioengineered neural circuit model systems are reliable and scalable tools to accurately study aspects of human astrocyte-neuron functional properties while being easily accessible for cell-type-specific manipulations and observations. : In this article, Krencik and colleagues show that high-density cocultures of pre-differentiated human astrocytes with induced neurons, from pluripotent stem cells, elicit mature characteristics by 3–5 weeks. This provides a faster and more defined alternative method to organoid cultures for investigating human neural circuit function. Keywords: human pluripotent stem cells, neurons, astrocytes, synapses, coculture, three-dimensional spheres, organoids, disease modeling

  18. Hypoxia inducible factor-2α regulates the development of retinal astrocytic network by maintaining adequate supply of astrocyte progenitors.

    Directory of Open Access Journals (Sweden)

    Li-Juan Duan

    Full Text Available Here we investigate the role of hypoxia inducible factor (HIF-2α in coordinating the development of retinal astrocytic and vascular networks. Three Cre mouse lines were used to disrupt floxed Hif-2α, including Rosa26(CreERT2, Tie2(Cre, and GFAP(Cre. Global Hif-2α disruption by Rosa26(CreERT2 led to reduced astrocytic and vascular development in neonatal retinas, whereas endothelial disruption by Tie2(Cre had no apparent effects. Hif-2α deletion in astrocyte progenitors by GFAP(Cre significantly interfered with the development of astrocytic networks, which failed to reach the retinal periphery and were incapable of supporting vascular development. Perplexingly, the abundance of strongly GFAP(+ mature astrocytes transiently increased at P0 before they began to lag behind the normal controls by P3. Pax2(+ and PDGFRα(+ astrocytic progenitors and immature astrocytes were dramatically diminished at all stages examined. Despite decreased number of astrocyte progenitors, their proliferation index or apoptosis was not altered. The above data can be reconciled by proposing that HIF-2α is required for maintaining the supply of astrocyte progenitors by slowing down their differentiation into non-proliferative mature astrocytes. HIF-2α deficiency in astrocyte progenitors may accelerate their differentiation into astrocytes, a change which greatly interferes with the replenishment of astrocyte progenitors due to insufficient time for proliferation. Rapidly declining progenitor supply may lead to premature cessation of astrocyte development. Given that HIF-2α protein undergoes oxygen dependent degradation, an interesting possibility is that retinal blood vessels may regulate astrocyte differentiation through their oxygen delivery function. While our findings support the consensus that retinal astrocytic template guides vascular development, they also raise the possibility that astrocytic and vascular networks may mutually regulate each other

  19. Sodium signaling and astrocyte energy metabolism

    KAUST Repository

    Chatton, Jean-Yves; Magistretti, Pierre J.; Barros, L. Felipe

    2016-01-01

    The Na+ gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na+-dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na+ load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na+ extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na+ following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na+ as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na+ and the metabolic machinery. © 2016 Wiley Periodicals, Inc.

  20. Astrocytes in physiological aging and Alzheimer's disease.

    Science.gov (United States)

    Rodríguez-Arellano, J J; Parpura, V; Zorec, R; Verkhratsky, A

    2016-05-26

    Astrocytes are fundamental for homoeostasis, defence and regeneration of the central nervous system. Loss of astroglial function and astroglial reactivity contributes to the aging of the brain and to neurodegenerative diseases. Changes in astroglia in aging and neurodegeneration are highly heterogeneous and region-specific. In animal models of Alzheimer's disease (AD) astrocytes undergo degeneration and atrophy at the early stages of pathological progression, which possibly may alter the homeostatic reserve of the brain and contribute to early cognitive deficits. At later stages of AD reactive astrocytes are associated with neurite plaques, the feature commonly found in animal models and in human diseased tissue. In animal models of the AD reactive astrogliosis develops in some (e.g. in the hippocampus) but not in all regions of the brain. For instance, in entorhinal and prefrontal cortices astrocytes do not mount gliotic response to emerging β-amyloid deposits. These deficits in reactivity coincide with higher vulnerability of these regions to AD-type pathology. Astroglial morphology and function can be regulated through environmental stimulation and/or medication suggesting that astrocytes can be regarded as a target for therapies aimed at the prevention and cure of neurodegenerative disorders. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Sodium signaling and astrocyte energy metabolism

    KAUST Repository

    Chatton, Jean-Yves

    2016-03-31

    The Na+ gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na+-dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na+ load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na+ extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na+ following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na+ as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na+ and the metabolic machinery. © 2016 Wiley Periodicals, Inc.

  2. Unravelling and Exploiting Astrocyte Dysfunction in Huntington's Disease

    DEFF Research Database (Denmark)

    Khakh, Baljit S.; Beaumont, Vahri; Cachope, Roger

    2017-01-01

    Astrocytes are abundant within mature neural circuits and are involved in brain disorders. Here, we summarize our current understanding of astrocytes and Huntington's disease (HD), with a focus on correlative and causative dysfunctions of ion homeostasis, calcium signaling, and neurotransmitter...

  3. Disentangling the role of astrocytes in alcohol use disorder

    Science.gov (United States)

    Adermark, Louise; Bowers, M. Scott

    2016-01-01

    Several laboratories recently identified that astrocytes are critical regulators of addiction machinery. It is now known that astrocyte pathology is a common feature of ethanol exposure in both humans and animal models, as even brief ethanol exposure is sufficient to elicit long-lasting perturbations in astrocyte gene expression, activity, and proliferation. Astrocytes were also recently shown to modulate the motivational properties of ethanol and other strongly reinforcing stimuli. Given the role of astrocytes in regulating glutamate homeostasis, a crucial component of alcohol use disorder, astrocytes might be an important target for the development of next generation alcoholism treatments. This review will outline some of the more prominent features displayed by astrocytes, how these properties are influenced by acute and long term ethanol exposure, and future directions that may help to disentangle astrocytic from neuronal functions in the etiology of alcohol use disorder. PMID:27476876

  4. Direct neuronal glucose uptake Heralds activity-dependent increases in cerebral metabolism

    DEFF Research Database (Denmark)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two......-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anaesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover......, hexokinase, which catalyses the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identify the neuron as the principal locus...

  5. New tools for investigating astrocyte-to-neuron communication

    OpenAIRE

    Li, Dongdong; Agulhon, Cendra; Schmidt, Elke; Oheim, Martin; Ropert, Nicole

    2013-01-01

    Gray matter protoplasmic astrocytes extend very thin processes and establish close contacts with synapses. It has been suggested that the release of neuroactive gliotransmitters at the tripartite synapse contributes to information processing. However, the concept of calcium (Ca2+)-dependent gliotransmitter release from astrocytes, and the release mechanisms are being debated. Studying astrocytes in their natural environment is challenging because: (i) astrocytes are electrically silent; (ii) ...

  6. Streptozotocin alters glucose transport, connexin expression and endoplasmic reticulum functions in neurons and astrocytes.

    Science.gov (United States)

    Biswas, Joyshree; Gupta, Sonam; Verma, Dinesh Kumar; Singh, Sarika

    2017-07-25

    The study was undertaken to explore the cell-specific streptozotocin (STZ)-induced mechanistic alterations. STZ-induced rodent model is a well-established experimental model of Alzheimer's disease (AD) and in our previous studies we have established it as an in vitro screening model of AD by employing N2A neuronal cells. Therefore, STZ was selected in the present study to understand the STZ-induced cell-specific alterations by utilizing neuronal N2A and astrocytes C6 cells. Both neuronal and astrocyte cells were treated with STZ at 10, 50, 100 and 1000μM concentrations for 48h. STZ exposure caused significant decline in cellular viability and augmented cytotoxicity of cells involving astrocytes activation. STZ treatment also disrupted the energy metabolism by altered glucose uptake and its transport in both cells as reflected with decreased expression of glucose transporters (GLUT) 1/3. The consequent decrease in ATP level and decreased mitochondrial membrane potential was also observed in both the cells. STZ caused increased intracellular calcium which could cause the initiation of endoplasmic reticulum (ER) stress. Significant upregulation of ER stress-related markers were observed in both cells after STZ treatment. The cellular communication of astrocytes and neurons was altered as reflected by increased expression of connexin 43 along with DNA fragmentation. STZ-induced apoptotic death was evaluated by elevated expression of caspase-3 and PI/Hoechst staining of cells. In conclusion, study showed that STZ exert alike biochemical alterations, ER stress and cellular apoptosis in both neuronal and astrocyte cells. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Atmospheric deposition, resuspension and root uptake of plutonium in corn and other grain-producing agroecosystems near a nuclear fuel facility

    International Nuclear Information System (INIS)

    Pinder, J.E. III; McLeod, K.W.; Adriano, D.C.; Corey, J.C.; Boni, A.L.

    1989-01-01

    Plutonium released to the environment may contribute to dose to humans through inhalation or ingestion of contaminated foodstuffs. Plutonium contamination of agricultural plants may result from interception and retention of atmospheric deposition, resuspension of Pu-bearing soil particles to plant surfaces, and root uptake and translocation to grain. Plutonium on vegetation surfaces may be transferred to grain surfaces during mechanical harvesting. Data obtained from corn grown near the US Department of Energy's H-Area nuclear fuel chemical separations facility on the Savannah River Site was used to estimated parameters of a simple model of Pu transport in agroecosystems. The parameter estimates for corn were compared to those previously obtained for wheat and soybeans. Despite some differences in parameter estimates among crops, the relative importances of atmospheric deposition, resuspension and root uptake were similar among crops. For even small deposition rates, the relative importances of processes for Pu contamination of corn grain should be: transfer of atmospheric deposition from vegetation surfaces to grain surfaces during combining > resuspension of soil to grain surfaces > root uptake. Approximately 3.9 x 10 -5 of a year's atmospheric deposition is transferred to grain. Approximately 6.2 x 10 -9 of the Pu inventory in the soil is resuspended to corn grain, and a further 7.3 x 10 -10 of the soil inventory is absorbed by roots and translocated to grains

  8. DJ-1 KNOCK-DOWN IMPAIRS ASTROCYTE MITOCHONDRIAL FUNCTION

    Science.gov (United States)

    LARSEN, N. J.; AMBROSI, G.; MULLETT, S. J.; BERMAN, S. B.; HINKLE, D. A.

    2012-01-01

    Mitochondrial dysfunction has long been implicated in the pathogenesis of Parkinson’s disease (PD). PD brain tissues show evidence for mitochondrial respiratory chain Complex I deficiency. Pharmacological inhibitors of Complex I, such as rotenone, cause experimental parkinsonism. The cytoprotective protein DJ-1, whose deletion is sufficient to cause genetic PD, is also known to have mitochondria-stabilizing properties. We have previously shown that DJ-1 is over-expressed in PD astrocytes, and that DJ-1 deficiency impairs the capacity of astrocytes to protect co-cultured neurons against rotenone. Since DJ-1 modulated, astrocyte-mediated neuroprotection against rotenone may depend upon proper astrocytic mitochondrial functioning, we hypothesized that DJ-1 deficiency would impair astrocyte mitochondrial motility, fission/fusion dynamics, membrane potential maintenance, and respiration, both at baseline and as an enhancement of rotenone-induced mitochondrial dysfunction. In astrocyte-enriched cultures, we observed that DJ-1 knock-down reduced mitochondrial motility primarily in the cellular processes of both untreated and rotenone treated cells. In these same cultures, DJ-1 knock-down did not appreciably affect mitochondrial fission, fusion, or respiration, but did enhance rotenone-induced reductions in the mitochondrial membrane potential. In neuron–astrocyte co-cultures, astrocytic DJ-1 knock-down reduced astrocyte process mitochondrial motility in untreated cells, but this effect was not maintained in the presence of rotenone. In the same co-cultures, astrocytic DJ-1 knock-down significantly reduced mitochondrial fusion in the astrocyte cell bodies, but not the processes, under the same conditions of rotenone treatment in which DJ-1 deficiency is known to impair astrocyte-mediated neuroprotection. Our studies therefore demonstrated the following new findings: (i) DJ-1 deficiency can impair astrocyte mitochondrial physiology at multiple levels, (ii) astrocyte

  9. Characterization of the L-glutamate clearance pathways across the blood-brain barrier and the effect of astrocytes in an in vitro blood-brain barrier model

    DEFF Research Database (Denmark)

    Helms, Hans CC; Aldana, Blanca I; Groth, Simon

    2017-01-01

    The aim was to characterize the clearance pathways for L-glutamate from the brain interstitial fluid across the blood-brain barrier using a primary in vitro bovine endothelial/rat astrocyte co-culture. Transporter profiling was performed using uptake studies of radiolabeled L-glutamate with co...... brain to blood via the concerted action of abluminal and luminal transport proteins, but the total brain clearance is highly dependent on metabolism in astrocytes and endothelial cells followed by transport of metabolites....

  10. Bipotential precursors of putative fibrous astrocytes and oligodendrocytes in rat cerebellar cultures express distinct surface features and neuron-like γ-aminobutyric acid transport

    International Nuclear Information System (INIS)

    Levi, G.; Gallo, V.; Ciotti, T.

    1986-01-01

    When postnatal rat cerebellar cells were cultured in a chemically defined, serum-free medium, the only type of astrocyte present was unable to accumulate γ-[ 3 H]aminobutyric acid (GABA), did not express surface antigens recognized by two monoclonal antibodies, A2B5 and LB1, and showed minimal proliferation. In these cultures, nonneuronal A2B5 + , LB1 + stellate cells exhibiting neuron-like [ 3 H]GABA uptake formed cell colonies of increasing size and were GFAP - . After about one week of culturing, the A2B5 + , LB1 + , GABA-uptake positive cell groups became galactocerebroside (GalCer) positive. Immunocytolysis of the A2B5 + cells at 3 and 4 days in vitro prevented the appearance of the A2B5 + , LB1 + , GABA-uptake positive cell colonies, and also of the GalCer + cell groups. If 10% (vol/vol) fetal calf serum was added to 6-day cultures, the A2B5 + , LB1 + , GABA-uptake positive cell groups expressed GFAP and not GalCer. If the serum was added to the cultures 2 days after lysing the A2B5 + cells, only A2B5 - , LB1 - , GABA-uptake negative astrocytes proliferated. It is concluded that the putative fibrous astrocytes previously described in serum-containing cultures derive from bipotential precursors that differentiate into oligodendrocytes (GalCer + ) in serum-free medium or into astrocytes (GFAP + ) in the presence of serum, while the epithelioid A2B5 - , LB1 - , GABA-uptake negative astrocytes originate from a different precursor not yet identified

  11. Spatial organization of astrocytes in ferret visual cortex

    Science.gov (United States)

    López‐Hidalgo, Mónica; Hoover, Walter B.

    2016-01-01

    ABSTRACT Astrocytes form an intricate partnership with neural circuits to influence numerous cellular and synaptic processes. One prominent organizational feature of astrocytes is the “tiling” of the brain with non‐overlapping territories. There are some documented species and brain region–specific astrocyte specializations, but the extent of astrocyte diversity and circuit specificity are still unknown. We quantitatively defined the rules that govern the spatial arrangement of astrocyte somata and territory overlap in ferret visual cortex using a combination of in vivo two‐photon imaging, morphological reconstruction, immunostaining, and model simulations. We found that ferret astrocytes share, on average, half of their territory with other astrocytes. However, a specific class of astrocytes, abundant in thalamo‐recipient cortical layers (“kissing” astrocytes), overlap markedly less. Together, these results demonstrate novel features of astrocyte organization indicating that different classes of astrocytes are arranged in a circuit‐specific manner and that tiling does not apply universally across brain regions and species. J. Comp. Neurol. 524:3561–3576, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:27072916

  12. The computational power of astrocyte mediated synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Rogier eMin

    2012-11-01

    Full Text Available Research in the last two decades has made clear that astrocytes play a crucial role in the brain beyond their functions in energy metabolism and homeostasis. Many studies have shown that astrocytes can dynamically modulate neuronal excitability and synaptic plasticity, and might participate in higher brain functions like learning and memory. With the plethora of astrocyte-mediated signaling processes described in the literature today, the current challenge is to identify which of these processes happen under what physiological condition, and how this shapes information processing and, ultimately, behavior. To answer these questions will require a combination of advanced physiological, genetical and behavioral experiments. Additionally, mathematical modeling will prove crucial for testing predictions on the possible functions of astrocytes in neuronal networks, and to generate novel ideas as to how astrocytes can contribute to the complexity of the brain. Here, we aim to provide an outline of how astrocytes can interact with neurons. We do this by reviewing recent experimental literature on astrocyte-neuron interactions, discussing the dynamic effects of astrocytes on neuronal excitability and short- and long-term synaptic plasticity. Finally, we will outline the potential computational functions that astrocyte-neuron interactions can serve in the brain. We will discuss how astrocytes could govern metaplasticity in the brain, how they might organize the clustering of synaptic inputs, and how they could function as memory elements for neuronal activity. We conclude that astrocytes can enhance the computational power of neuronal networks in previously unexpected ways.

  13. New tools for investigating astrocyte-to-neuron communication.

    Science.gov (United States)

    Li, Dongdong; Agulhon, Cendra; Schmidt, Elke; Oheim, Martin; Ropert, Nicole

    2013-10-29

    Gray matter protoplasmic astrocytes extend very thin processes and establish close contacts with synapses. It has been suggested that the release of neuroactive gliotransmitters at the tripartite synapse contributes to information processing. However, the concept of calcium (Ca(2+))-dependent gliotransmitter release from astrocytes, and the release mechanisms are being debated. Studying astrocytes in their natural environment is challenging because: (i) astrocytes are electrically silent; (ii) astrocytes and neurons express an overlapping repertoire of transmembrane receptors; (iii) the size of astrocyte processes in contact with synapses are below the resolution of confocal and two-photon microscopes (iv) bulk-loading techniques using fluorescent Ca(2+) indicators lack cellular specificity. In this review, we will discuss some limitations of conventional methodologies and highlight the interest of novel tools and approaches for studying gliotransmission. Genetically encoded Ca(2+) indicators (GECIs), light-gated channels, and exogenous receptors are being developed to selectively read out and stimulate astrocyte activity. Our review discusses emerging perspectives on: (i) the complexity of astrocyte Ca(2+) signaling revealed by GECIs; (ii) new pharmacogenetic and optogenetic approaches to activate specific Ca(2+) signaling pathways in astrocytes; (iii) classical and new techniques to monitor vesicle fusion in cultured astrocytes; (iv) possible strategies to express specifically reporter genes in astrocytes.

  14. New Tools for Investigating Astrocyte-to-Neuron Communication

    Directory of Open Access Journals (Sweden)

    Dongdong eLi

    2013-10-01

    Full Text Available Grey matter protoplasmic astrocytes extend very thin processes and establish close contacts with synapses. It has been suggested that the release of neuroactive gliotransmitters at the tripartite synapse contributes to information processing. However, the concept of calcium (Ca2+-dependent gliotransmitter release from astrocytes, and the release mechanisms are being debated.Studying astrocytes in their natural environment is challenging because: i astrocytes are electrically silent; ii astrocytes and neurons express an overlapping repertoire of transmembrane receptors; iii astrocyte processes in contact with synapses are below confocal and two-photon microscope resolution; iv bulk-loading techniques using fluorescent Ca2+ indicators lack cellular specificity.In this review, we will discuss some limitations of conventional methodologies and highlight the interest of novel tools and approaches for studying gliotransmission. Genetically encoded Ca2+ indicators (GECIs, light-gated channels, and exogenous receptors are being developed to selectively read out and stimulate astrocyte activity. Our review discusses emerging perspectives on: i the complexity of astrocyte Ca2+ signalling revealed by GECIs; ii new pharmacogenetic and optogenetic approaches to activate specific Ca2+ signalling pathways in astrocytes; iii classical and new techniques to monitor vesicle fusion in cultured astrocytes; iv possible strategies to express specifically reporter genes in astrocytes.

  15. Recent molecular approaches to understanding astrocyte function in vivo

    Directory of Open Access Journals (Sweden)

    David eDavila

    2013-12-01

    Full Text Available Astrocytes are a predominant glial cell type in the nervous systems, and are becoming recognized as important mediators of normal brain function as well as neurodevelopmental, neurological, and neurodegenerative brain diseases. Although numerous potential mechanisms have been proposed to explain the role of astrocytes in the normal and diseased brain, research into the physiological relevance of these mechanisms in vivo is just beginning. In this review, we will summarize recent developments in innovative and powerful molecular approaches, including knockout mouse models, transgenic mouse models, and astrocyte-targeted gene transfer/expression, which have led to advances in understanding astrocyte biology in vivo that were heretofore inaccessible to experimentation. We will examine the recently improved understanding of the roles of astrocytes - with an emphasis on astrocyte signaling - in the context of both the healthy and diseased brain, discuss areas where the role of astrocytes remains debated, and suggest new research directions.

  16. ASTROCYTES IN THE NEUROPROTECTION AFTER BRAIN STROKE

    Directory of Open Access Journals (Sweden)

    Gloria Patricia Cardona Gomez

    2015-03-01

    Full Text Available Astrocytes are specialized glial cells of the nervous system, which have multiple homeostatic functions for the survival and maintenance of the neurovascular unit. It has been shown that astrocytes have critical role in the dynamics pro survival conferring neuroprotective, angiogenic, immunomodulatory, neurogenic, antioxidants and regulatory synapse functions (Shen et al 2012; Gimsa et al 2013; Proschel et al 2014; making them excellent candidates as the source of neuroprotection and neurorestauration of tissue affected by events ischemia and / or reperfusion. However, these cells also may be involved in negative responses such as reactive astrocytes and glial scar under chronic excitotoxic responses generated by these events. To know what are the key points in the pro and anti-survival responses of astrocytes, would allow use them as targets in cellular therapies. This review has aim to study the mechanisms for neuroprotection in these cells (Posada-Duque et al submitted, which would make them targets of cell therapy, through of inducing regeneration, such as vehicle for corrective molecular systems and trigger endogenous cellular events that can recover the tissue homeostasis, which is lost after progressive damage.

  17. Fluoxetin Upregulates Connexin 43 Expression in Astrocyte

    Directory of Open Access Journals (Sweden)

    Hossein Mostafavi

    2014-02-01

    Full Text Available Introduction: Recent studies have shown that astrocytes play major roles in normal and disease condition of the central nervous system including multiple sclerosis (MS. Molecular target therapy studies in MS have revealed that connexin-43 (Cx43 and Aquaporin-4 (AQP4 contents of astrocytes undergo expression alteration. Fluoxetine had some effects in MS patients unrelated to its known antidepressant effects. Some of fluoxetine effects were attributed to its capability of cAMP signaling pathway stimulation. This study aimed to investigate possible acute effects of fluoxetine on Cx43 and AQP4 expression in astrocyte.  Methods: Astrocytoma cells were treated for 24 hours with fluoxetine (10 and 20 &mug/ml with or without adenyl cyclase (AC and protein kinase A (PKA inhibition. Cx43 expression at both mRNA and protein levels and AQP4 expression at mRNA level were evaluated.  Results: Acquired results showed that fluoxetine with and without AC and PKA inhibition resulted in Cx43 up-regulation both in mRNA and protein levels, whereas AQP4 expression have not changed.  Discussion: In conclusion, data showed that fluoxetine alone and in the absence of serotonin acutely up-regulated Cx43 expression in astrocytes that can be assumed in molecular target therapy of MS patients. It seems that cAMP involvement in fluoxetine effects need more researches.

  18. Astrocytes in Alzheimer’s disease

    OpenAIRE

    Verkhratsky, Alexei; Olabarria, Markel; Noristani, Harun N.; Yeh, Chia-Yu; Rodriguez, Jose Julio

    2010-01-01

    The circuitry of the human brain is formed by neuronal networks embedded into astroglial syncytia. The astrocytes perform numerous functions, providing for the overall brain homeostasis, assisting in neurogenesis, determining the micro-architecture of the grey matter, and defending the brain through evolutionary conserved astrogliosis programs.

  19. Immune Players in the CNS : The Astrocyte

    NARCIS (Netherlands)

    Jensen, Cathy J.; Massie, Ann; De Keyser, Jacques

    In the finely balanced environment of the central nervous system astrocytes, the most numerous cell type, play a role in regulating almost every physiological system. First found to regulate extracellular ions and pH, they have since been shown to regulate neurotransmitter levels, cerebral blood

  20. Characterization of astrocytic and neuronal benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bender, A.S.

    1988-01-01

    Primary cultures of astrocytes and neurons express benzodiazepine receptors. Neuronal benzodiazepine receptors were of high-affinity, K{sub D} values were 7.5-43 nM and the densities of receptors (B{sub max}) were 924-4131 fmol/mg protein. Astrocytes posses a high-affinity benzodiazepine receptor, K{sub D} values were 6.6-13 nM. The B{sub max} values were 6,033-12,000 fmol/mg protein. The pharmacological profile of the neuronal benzodiazepine receptor was that of the central-type benzodiazepine receptor, where clonazepam has a high-affinity and Ro 5-4864 (4{prime}-chlorodiazepam) has a low-affinity. Whereas astrocytic benzoidazepine receptor was characteristic of the so called peripheral-type benzodiazepine receptors, which shows a high-affinity towards Ro 5-4863, and a low-affinity towards clonazepam. The astrocytic benzodiazepine receptors was functionally correlated with voltage dependent calcium channels, since dihydropyridines and benzodiazepines interacted with ({sup 3}H) diazepam and ({sup 3}H) nitrendipine receptors with the same rank order of potency, showing a statistically significant correlation. No such correlation was observed in neurons.

  1. TGF-β2 and TGF-β3 from cultured β-amyloid-treated or 3xTg-AD-derived astrocytes may mediate astrocyte-neuron communication.

    Science.gov (United States)

    Tapella, Laura; Cerruti, Matteo; Biocotino, Isabella; Stevano, Alessio; Rocchio, Francesca; Canonico, Pier Luigi; Grilli, Mariagrazia; Genazzani, Armando A; Lim, Dmitry

    2018-02-01

    Astrocytes participate in the development and resolution of neuroinflammation in numerous ways, including the release of cytokines and growth factors. Among many, astrocytes release transforming growth factors beta (TGF-β) TGF-β1, TGF-β2 and TGF-β3. TGF-β1 is the most studied isoform, while production and release of TGF-β2 and TGF-β3 by astrocytes have been poorly characterized. Here, we report that purified cultures of hippocampal astrocytes produce mainly TGF-β3 followed by TGF-β2 and TGF-β1. Furthermore, astrocytes release principally the active form of TGF-β3 over the other two. Changes in release of TGF-β were sensitive to the calcineurin (CaN) inhibitor FK506. Starvation had no effect on TGF-β1 and TGF-β3 while TGF-β2 mRNA was significantly up-regulated in a CaN-dependent manner. We further investigated production and release of astroglial TGF-β in Alzheimer's disease-related conditions. Oligomeric β-amyloid (Aβ) down-regulated TGF-β1, while up-regulating TGF-β2 and TGF-β3, in a CaN-dependent manner. In cultured hippocampal astrocytes from 3xTg-AD mice, TGF-β2 and TGF-β3, but not TGF-β1, were up-regulated, and this was CaN-independent. In hippocampal tissues from symptomatic 3xTg-AD mice, TGF-β2 was up-regulated with respect to control mice. Finally, treatment with recombinant TGF-βs showed that TGF-β2 and TGF-β3 significantly reduced PSD95 protein in cultured hippocampal neurons, and this effect was paralleled by conditioned media from Aβ-treated astrocytes or from astrocytes from 3xTg-AD mice. Taken together, our data suggest that TGF-β2 and TGF-β3 are produced by astrocytes in a CaN-dependent manner and should be investigated further in the context of astrocyte-mediated neurodegeneration. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Arm Crank and Wheelchair Ergometry Produce Similar Peak Oxygen Uptake but Different Work Economy Values in Individuals with Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Tom Tørhaug

    2016-01-01

    Full Text Available Objective. To study whether values for peak oxygen uptake (VO2peak and work economy (WE at a standardized workload are different when tested by arm crank ergometry (ACE and wheelchair ergometry (WCE. Methods. Twelve paraplegic men with spinal cord injury (SCI in stable neurological condition participated in this cross-sectional repeated-measures study. We determined VO2peak and peak power output (POpeak values during ACE and WCE in a work-matched protocol. Work economy was tested at a standardized workload of 30 Watts (W for both ACE and WCE. Results. There were no significant differences in VO2peak (mL·kg−1·min−1 between ACE (27.3±3.2 and WCE (27.4±3.8 trials, and a Bland-Altman plot shows that findings are within 95% level of agreement. WE or oxygen consumption at 30 W (VO2-30W was significantly lower during WCE compared to ACE (P<0.039. Mean (95% CI POpeak (W were 130 (111–138 and 100 (83–110 during ACE and WCE, respectively. Conclusion. The findings in the present study support the use of both ACE and WCE for testing peak oxygen uptake. However, WE differed between the two test modalities, meaning that less total energy is used to perform external work of 30 W during wheelchair exercise when using this WCE (VP100 Handisport ergometer. Clinical Trials Protocol Record is NCT00987155/4.2007.2271.

  3. Thyroid hormone modulates the extracellular matrix organization and expression in cerebellar astrocyte: effects on astrocyte adhesion.

    Science.gov (United States)

    Trentin, Andréa Gonçalves; De Aguiar, Cláudia Beatriz Nedel Mendes; Garcez, Ricardo Castilho; Alvarez-Silva, Marcio

    2003-06-01

    The effects of thyroid hormone (T(3)) on extracellular matrix (ECM) expression and organization in cerebellar astrocytes were studied. Control astrocytes exhibit laminin immunostaining distributed in a punctate configuration and fibronectin concentrated in focal points at the cell surface. These cells attach to the substratum by membrane points, as shown by scanning microscopy, possibly by focal points stained to fibronectin. In contrast, after T(3) treatment, laminin assumes a fibrillary pattern and fibronectin becomes organized in filaments homogeneously distributed on the cell surface; the cells acquire a very flat and spread morphology. T(3) treatment also modulates astrocyte adhesion. In addition, increased expression of both laminin and fibronectin was detected by Western blot. These alterations in fibronectin and/or laminin production and organization may be involved in the flat and spread morphology and in altered adhesion. We observed that fibroblast growth factor-2 (FGF(2)) added to cultures had similar effects to those described to T(3). Neutralizing antibodies against FGF(2) reversed T(3) effects on fibronectin and laminin distribution. We also observed that cerebellar neurons co-cultured on T(3)-treated astrocytes had an increase in the number of cells and presented longer neurites. Thus, we propose a novel mechanism of the effect of thyroid hormone on cerebellar development mediated by astrocytes: T(3) may induce astrocyte secretion of growth factors, mainly FGF(2), that autocrinally stimulate astrocyte proliferation, reorganization in ECM proteins, and alterations in cell spreading and adhesion. These effects may indirectly influence neuronal development. Copyright 2003 Wiley-Liss, Inc.

  4. Human astrocytes: structure and functions in the healthy brain.

    Science.gov (United States)

    Vasile, Flora; Dossi, Elena; Rouach, Nathalie

    2017-07-01

    Data collected on astrocytes' physiology in the rodent have placed them as key regulators of synaptic, neuronal, network, and cognitive functions. While these findings proved highly valuable for our awareness and appreciation of non-neuronal cell significance in brain physiology, early structural and phylogenic investigations of human astrocytes hinted at potentially different astrocytic properties. This idea sparked interest to replicate rodent-based studies on human samples, which have revealed an analogous but enhanced involvement of astrocytes in neuronal function of the human brain. Such evidence pointed to a central role of human astrocytes in sustaining more complex information processing. Here, we review the current state of our knowledge of human astrocytes regarding their structure, gene profile, and functions, highlighting the differences with rodent astrocytes. This recent insight is essential for assessment of the relevance of findings using animal models and for comprehending the functional significance of species-specific properties of astrocytes. Moreover, since dysfunctional astrocytes have been described in many brain disorders, a more thorough understanding of human-specific astrocytic properties is crucial for better-adapted translational applications.

  5. Astrocyte reactivity to unconjugated bilirubin requires TNF-α and IL-1β receptor signaling pathways.

    Science.gov (United States)

    Fernandes, Adelaide; Barateiro, Andreia; Falcão, Ana Sofia; Silva, Sandra Leit-Ao; Vaz, Ana Rita; Brito, Maria Alexandra; Silva, Rui Fernando Marques; Brites, Dora

    2011-01-01

    Jaundice and sepsis are common neonatal conditions that can lead to neurodevelopment sequelae, namely if present at the same time. We have reported that tumor necrosis factor (TNF)-α and interleukin (IL)-1β are produced by cultured neurons and mainly by glial cells exposed to unconjugated bilirubin (UCB). The effects of these cytokines are mediated by cell surface receptors through a nuclear factor (NF)-κB-dependent pathway that we have showed to be activated by UCB. The present study was designed to evaluate the role of TNF-α and IL-1β signaling on astrocyte reactivity to UCB in rat cortical astrocytes. Exposure of astrocytes to UCB increased the expression of both TNF-α receptor (TNFR)1 and IL-1β receptor (IL-1R)1, but not TNFR2, as well as their activation, observed by augmented binding of receptors' molecular adaptors, TRAF2 and TRAF6, respectively. Silencing of TNFR1, using siRNA technology, or blockade of IL-1β cascade, using its endogenous antagonist, IL-1 receptor antagonist (IL-1ra), prevented UCB-induced cytokine release and NF-κB activation. Interestingly, lack of TNF-α signal transduction reduced UCB-induced cell death for short periods of incubation, although an increase was observed after extended exposure; in contrast, inhibition of IL-1β cascade produced a sustained blockade of astrocyte injury by UCB. Together, our data show that inflammatory pathways are activated during in vitro exposure of rat cortical astrocytes to UCB and that this activation is prolonged in time. This supports the concept that inflammatory pathways play a role in brain damage by UCB, and that they may represent important pharmacological targets. Copyright © 2010 Wiley-Liss, Inc.

  6. Fatty acid-induced astrocyte ketone production and the control of food intake.

    Science.gov (United States)

    Le Foll, Christelle; Levin, Barry E

    2016-06-01

    Obesity and Type 2 diabetes are major worldwide public health issues today. A relationship between total fat intake and obesity has been found. In addition, the mechanisms of long-term and excessive high-fat diet (HFD) intake in the development of obesity still need to be elucidated. The ventromedial hypothalamus (VMH) is a major site involved in the regulation of glucose and energy homeostasis where "metabolic sensing neurons" integrate metabolic signals from the periphery. Among these signals, fatty acids (FA) modulate the activity of VMH neurons using the FA translocator/CD36, which plays a critical role in the regulation of energy and glucose homeostasis. During low-fat diet (LFD) intake, FA are oxidized by VMH astrocytes to fuel their ongoing metabolic needs. However, HFD intake causes VMH astrocytes to use FA to generate ketone bodies. We postulate that these astrocyte-derived ketone bodies are exported to neurons where they produce excess ATP and reactive oxygen species, which override CD36-mediated FA sensing and act as a signal to decrease short-term food intake. On a HFD, VMH astrocyte-produced ketones reduce elevated caloric intake to LFD levels after 3 days in rats genetically predisposed to resist (DR) diet-induced obesity (DIO), but not leptin-resistant DIO rats. This suggests that, while VMH ketone production on a HFD can contribute to protection from obesity, the inherent leptin resistance overrides this inhibitory action of ketone bodies on food intake. Thus, astrocytes and neurons form a tight metabolic unit that is able to monitor circulating nutrients to alter food intake and energy homeostasis. Copyright © 2016 the American Physiological Society.

  7. Disruption of Lipid Uptake in Astroglia Exacerbates Diet-Induced Obesity.

    Science.gov (United States)

    Gao, Yuanqing; Layritz, Clarita; Legutko, Beata; Eichmann, Thomas O; Laperrousaz, Elise; Moullé, Valentine S; Cruciani-Guglielmacci, Celine; Magnan, Christophe; Luquet, Serge; Woods, Stephen C; Eckel, Robert H; Yi, Chun-Xia; Garcia-Caceres, Cristina; Tschöp, Matthias H

    2017-10-01

    Neuronal circuits in the brain help to control feeding behavior and systemic metabolism in response to afferent nutrient and hormonal signals. Although astrocytes have historically been assumed to have little relevance for such neuroendocrine control, we investigated whether lipid uptake via lipoprotein lipase (LPL) in astrocytes is required to centrally regulate energy homeostasis. Ex vivo studies with hypothalamus-derived astrocytes showed that LPL expression is upregulated by oleic acid, whereas it is decreased in response to palmitic acid or triglycerides. Likewise, astrocytic LPL deletion reduced the accumulation of lipid droplets in those glial cells. Consecutive in vivo studies showed that postnatal ablation of LPL in glial fibrillary acidic protein-expressing astrocytes induced exaggerated body weight gain and glucose intolerance in mice exposed to a high-fat diet. Intriguingly, astrocytic LPL deficiency also triggered increased ceramide content in the hypothalamus, which may contribute to hypothalamic insulin resistance. We conclude that hypothalamic LPL functions in astrocytes to ensure appropriately balanced nutrient sensing, ceramide distribution, body weight regulation, and glucose metabolism. © 2017 by the American Diabetes Association.

  8. Astrocyte mega-domain hypothesis of the autistic savantism.

    Science.gov (United States)

    Mitterauer, Bernhard J

    2013-01-01

    Individuals with autism who show high abilities are called savants. Whereas in their brains a disconnection in and between neural networks has been identified, savantism is yet poorly understood. Focusing on astrocyte domain organization, it is hypothesized that local astrocyte mega-organizations may be responsible for exerting high capabilities in brains of autistic savants. Astrocytes, the dominant glial cell type, modulate synaptic information transmission. Each astrocyte is organized in non-overlapping domains. Formally, each astrocyte contacting n-neurons with m-synapses via its processes generates dynamic domains of synaptic interactions based on qualitative computation criteria, and hereby it structures neuronal information processing. If the number of processes is genetically significantly increased, these astrocytes operate in a mega-domain with a higher complexitiy of computation. From this model savant abilities are deduced. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Astrocytes in neurodegenerative diseases (I): function and molecular description.

    Science.gov (United States)

    Guillamón-Vivancos, T; Gómez-Pinedo, U; Matías-Guiu, J

    2015-03-01

    Astrocytes have been considered mere supporting cells in the CNS. However, we now know that astrocytes are actively involved in many of the functions of the CNS and may play an important role in neurodegenerative diseases. This article reviews the roles astrocytes play in CNS development and plasticity; control of synaptic transmission; regulation of blood flow, energy, and metabolism; formation of the blood-brain barrier; regulation of the circadian rhythms, lipid metabolism and secretion of lipoproteins; and in neurogenesis. Astrocyte markers and the functions of astrogliosis are also described. Astrocytes play an active role in the CNS. A good knowledge of astrocytes is essential to understanding the mechanisms of neurodegenerative diseases. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  10. Calcium dynamics of cortical astrocytic networks in vivo.

    Directory of Open Access Journals (Sweden)

    Hajime Hirase

    2004-04-01

    Full Text Available Large and long-lasting cytosolic calcium surges in astrocytes have been described in cultured cells and acute slice preparations. The mechanisms that give rise to these calcium events have been extensively studied in vitro. However, their existence and functions in the intact brain are unknown. We have topically applied Fluo-4 AM on the cerebral cortex of anesthetized rats, and imaged cytosolic calcium fluctuation in astrocyte populations of superficial cortical layers in vivo, using two-photon laser scanning microscopy. Spontaneous [Ca(2+](i events in individual astrocytes were similar to those observed in vitro. Coordination of [Ca(2+](i events among astrocytes was indicated by the broad cross-correlograms. Increased neuronal discharge was associated with increased astrocytic [Ca(2+](i activity in individual cells and a robust coordination of [Ca(2+](i signals in neighboring astrocytes. These findings indicate potential neuron-glia communication in the intact brain.

  11. Astrocyte-neuronal interactions in epileptogenesis.

    Science.gov (United States)

    Hadera, Mussie Ghezu; Eloqayli, Haytham; Jaradat, Saied; Nehlig, Astrid; Sonnewald, Ursula

    2015-07-01

    Pentylenetetrazol, kainic acid, or pilocarpine can be used to induce seizures in animal models of epilepsy. The present Review describes disturbances in astrocyte-neuron interactions in the acute, latent, and chronic phases analyzed by magnetic resonance spectroscopy of brain tissue extracts from rats injected with [1-(13)C]glucose and [1,2-(13)C]acetate. The most consistent change after onset of seizures was the decrease in (13)C labeling of glutamate (GLU) from [1-(13) C]glucose regardless of brain area, severity, or duration of the period with seizures and toxin used. In most cases this decrease was accompanied by a reduction in glutamine (GLN) labeling from [1-(13)C]glucose, presumably as a direct consequence of the reduction in labeling of GLU and the GLU-GLN cycle. Amounts of GLN were never changed. Reduction in the content of N-acetyl aspartate (NAA) was first detectable some time after status epilepticus but before the occurrence of spontaneous seizures. This decrease can be an indication of neuronal death and/or mitochondrial impairment and might indicate beginning gliosis. It is known that gliosis occurs in the chronic phase of temporal lobe epilepsy in hippocampus, but astrocyte metabolism appears normal in this phase, indicating that the gliotic astrocytes have a somewhat reduced metabolism per volume. A decrease in (13)C labeling of GLU from [1-(13)C]glucose is a very sensitive measure for the onset of epileptogenesis, whereas reduction of NAA is first detectable later. In the chronic phases of the hippocampal formation, astrocyte metabolism is upregulated given that the number of neurons is reduced. © 2015 Wiley Periodicals, Inc.

  12. The AMP-activated protein kinase is involved in the regulation of ketone body production by astrocytes.

    Science.gov (United States)

    Blázquez, C; Woods, A; de Ceballos, M L; Carling, D; Guzmán, M

    1999-10-01

    The possible role of the AMP-activated protein kinase (AMPK), a highly conserved stress-activated kinase, in the regulation of ketone body production by astrocytes was studied. AMPK activity in rat cortical astrocytes was three times higher than in rat cortical neurons. AMPK in astrocytes was shown to be functionally active. Thus, incubation of astrocytes with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), a cell-permeable activator of AMPK, stimulated both ketogenesis from palmitate and carnitine palmitoyltransferase I. This was concomitant to a decrease of intracellular malonyl-CoA levels and an inhibition of acetyl-CoA carboxylase/fatty acid synthesis and 3-hydroxy-3-methylglutaryl-CoA reductase/cholesterol synthesis. Moreover, in microdialysis experiments AICAR was shown to stimulate brain ketogenesis markedly. The effect of chemical hypoxia on AMPK and the ketogenic pathway was studied subsequently. Incubation of astrocytes with azide led to a remarkable drop of fatty acid beta-oxidation. However, activation of AMPK during hypoxia compensated the depression of beta-oxidation, thereby sustaining ketone body production. This effect seemed to rely on the cascade hypoxia --> increase of the AMP/ATP ratio --> AMPK stimulation --> acetyl-CoA carboxylase inhibition --> decrease of malonyl-CoA concentration --> carnitine palmitoyltransferase I deinhibition --> enhanced ketogenesis. Furthermore, incubation of neurons with azide blunted lactate oxidation, but not 3-hydroxybutyrate oxidation. Results show that (a) AMPK plays an active role in the regulation of ketone body production by astrocytes, and (b) ketone bodies produced by astrocytes during hypoxia might be a substrate for neuronal oxidative metabolism.

  13. [Mechanism of potassium channel in hypoxia-ischemic brain edema: experiment with neonatal rat astrocyte].

    Science.gov (United States)

    Fu, Xue-mei; Xiang, Long; Liao, Da-qing; Feng, Zhi-chun; Mu, De-zhi

    2008-11-04

    To investigate the mechanism of potassium channel in brain edema caused by hypoxia-ischemia (HI). Astrocytes were obtained from 3-day-old SD rats, cultured, and randomly divided into 2 groups: normoxia group, cultured under normoxic condition, and hypoxic-ischemic group, cultured under hypoxic-ischemic condition. The cell volume was measured by radiologic method. Patch-clamp technique was used to observe the electric physiological properties of the voltage-gated potassium channels (Kv) in a whole cell configuration, and the change of voltage-gated potassium channel current (IKv) was recorded in cultured neonatal rat astrocyte during HI. Aquaporin 4 (AQP4) expression vector was constructed from pSUPER vector and transfected into the astrocytes (AQP4 RNAi) to construct AQP4 knockdown (AQP4-/-) cells. cellular volume was determined using [3H]-3-O-methyl-D-glucose uptake in both AQP4-/- and AQP4+/+ cells under the condition of HI. Real time PCR and Western blotting were used to detect the mRNA and protein expression of AQP4. The percentages of the AQP4+/+ and AQP4-/- astrocyte volumes in the condition of HI for 0.5, 1, 2, and 4 h were 104+/-7, 109+/-6, 126+/-12, and 152+/-9 times, and 97+/-7, 105+/-9, 109+/-7, and 132+/-6 times as those of their corresponding control groups (all Pastrocytes significantly increased during HI and the degrees of edema mediated by AQP4 knockdown at different time points were all significantly milder (all Pastrocytes via aquaporin-4 and then cell swelling.

  14. Taurine Biosynthesis by Neurons and Astrocytes*

    Science.gov (United States)

    Vitvitsky, Victor; Garg, Sanjay K.; Banerjee, Ruma

    2011-01-01

    The physiological roles of taurine, a product of cysteine degradation and one of the most abundant amino acids in the body, remain elusive. Taurine deficiency leads to heart dysfunction, brain development abnormalities, retinal degradation, and other pathologies. The taurine synthetic pathway is proposed to be incomplete in astrocytes and neurons, and metabolic cooperation between these cell types is reportedly needed to complete the pathway. In this study, we analyzed taurine synthesis capability as reported by incorporation of radioactivity from [35S]cysteine into taurine, in primary murine astrocytes and neurons, and in several transformed cell lines (human (SH-SY5Y) and murine (N1E-115) neuroblastoma, human astrocytoma (U-87MG and 1321 N1), and rat glioma (C6)). Extensive incorporation of radioactivity from [35S]cysteine into taurine was observed in rat glioma cells as well as in primary mouse astrocytes and neurons, establishing the presence of an intact taurine synthesis pathway in these cells. Interestingly, exposure of cells to cysteine or cysteamine resulted in elevated intracellular hypotaurine without a corresponding increase in taurine levels, suggesting that oxidation of hypotaurine limits taurine synthesis in cells. Consistent with its role as an organic osmolyte, taurine synthesis was stimulated under hypertonic conditions in neurons. PMID:21778230

  15. Neuron-astrocyte signaling is preserved in the aging brain.

    Science.gov (United States)

    Gómez-Gonzalo, Marta; Martin-Fernandez, Mario; Martínez-Murillo, Ricardo; Mederos, Sara; Hernández-Vivanco, Alicia; Jamison, Stephanie; Fernandez, Ana P; Serrano, Julia; Calero, Pilar; Futch, Hunter S; Corpas, Rubén; Sanfeliu, Coral; Perea, Gertrudis; Araque, Alfonso

    2017-04-01

    Astrocytes play crucial roles in brain homeostasis and are emerging as regulatory elements of neuronal and synaptic physiology by responding to neurotransmitters with Ca 2+ elevations and releasing gliotransmitters that activate neuronal receptors. Aging involves neuronal and astrocytic alterations, being considered risk factor for neurodegenerative diseases. Most evidence of the astrocyte-neuron signaling is derived from studies with young animals; however, the features of astrocyte-neuron signaling in adult and aging brain remain largely unknown. We have investigated the existence and properties of astrocyte-neuron signaling in physiologically and pathologically aging mouse hippocampal and cortical slices at different lifetime points (0.5 to 20 month-old animals). We found that astrocytes preserved their ability to express spontaneous and neurotransmitter-dependent intracellular Ca 2+ signals from juvenile to aging brains. Likewise, resting levels of gliotransmission, assessed by neuronal NMDAR activation by glutamate released from astrocytes, were largely preserved with similar properties in all tested age groups, but DHPG-induced gliotransmission was reduced in aged mice. In contrast, gliotransmission was enhanced in the APP/PS1 mouse model of Alzheimer's disease, indicating a dysregulation of astrocyte-neuron signaling in pathological conditions. Disruption of the astrocytic IP 3 R2 mediated-signaling, which is required for neurotransmitter-induced astrocyte Ca 2+ signals and gliotransmission, boosted the progression of amyloid plaque deposits and synaptic plasticity impairments in APP/PS1 mice at early stages of the disease. Therefore, astrocyte-neuron interaction is a fundamental signaling, largely conserved in the adult and aging brain of healthy animals, but it is altered in Alzheimer's disease, suggesting that dysfunctions of astrocyte Ca 2+ physiology may contribute to this neurodegenerative disease. GLIA 2017 GLIA 2017;65:569-580. © 2017 Wiley

  16. Fisetin regulates astrocyte migration and proliferation in vitro

    OpenAIRE

    Wang, Nan; Yao, Fang; Li, Ke; Zhang, Lanlan; Yin, Guo; Du, Mingjun; Wu, Bingyi

    2017-01-01

    Fisetin (3,3?,4?,7-tetrahydroxyflavone) is a plant flavonol found in fruits and vegetables that has been reported to inhibit migration and proliferation in several types of cancer. Reactive astrogliosis involves astrocyte migration and proliferation, and contributes to the formation of glial scars in central nervous system (CNS) disorders. However, the effect of fisetin on the migration and proliferation of astrocytes remains unclear. In this study, we found that fisetin inhibited astrocyte m...

  17. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Marta Navarrete

    2012-02-01

    Full Text Available Long-term potentiation (LTP of synaptic transmission represents the cellular basis of learning and memory. Astrocytes have been shown to regulate synaptic transmission and plasticity. However, their involvement in specific physiological processes that induce LTP in vivo remains unknown. Here we show that in vivo cholinergic activity evoked by sensory stimulation or electrical stimulation of the septal nucleus increases Ca²⁺ in hippocampal astrocytes and induces LTP of CA3-CA1 synapses, which requires cholinergic muscarinic (mAChR and metabotropic glutamate receptor (mGluR activation. Stimulation of cholinergic pathways in hippocampal slices evokes astrocyte Ca²⁺ elevations, postsynaptic depolarizations of CA1 pyramidal neurons, and LTP of transmitter release at single CA3-CA1 synapses. Like in vivo, these effects are mediated by mAChRs, and this cholinergic-induced LTP (c-LTP also involves mGluR activation. Astrocyte Ca²⁺ elevations and LTP are absent in IP₃R2 knock-out mice. Downregulating astrocyte Ca²⁺ signal by loading astrocytes with BAPTA or GDPβS also prevents LTP, which is restored by simultaneous astrocyte Ca²⁺ uncaging and postsynaptic depolarization. Therefore, cholinergic-induced LTP requires astrocyte Ca²⁺ elevations, which stimulate astrocyte glutamate release that activates mGluRs. The cholinergic-induced LTP results from the temporal coincidence of the postsynaptic activity and the astrocyte Ca²⁺ signal simultaneously evoked by cholinergic activity. Therefore, the astrocyte Ca²⁺ signal is necessary for cholinergic-induced synaptic plasticity, indicating that astrocytes are directly involved in brain storage information.

  18. Control of HIV replication in astrocytes by a family of highly conserved host proteins with a common Rev-interacting domain (Risp).

    Science.gov (United States)

    Vincendeau, Michelle; Kramer, Susanne; Hadian, Kamyar; Rothenaigner, Ina; Bell, Jeanne; Hauck, Stefanie M; Bickel, Christian; Nagel, Daniel; Kremmer, Elisabeth; Werner, Thomas; Leib-Mösch, Christine; Brack-Werner, Ruth

    2010-10-23

    In human astrocytes, restriction of HIV replication involves inhibition of HIV Rev activity. We previously identified a Rev-interacting human protein fragment (16.4.1) that can reduce Rev activity. The 16.4.1 sequence is contained in a group of highly similar host cell proteins, which we call the Risp family. Here we investigate whether the Risp family is connected to HIV replication in astrocytes. Cell/tissue lysates were analyzed for Risp expression by western blot with various anti-Risp antibodies. The interaction of astrocytic Risp members with Rev was investigated by affinity chromatography. Astrocytes were transfected with expression plasmids containing cDNAs encoding full-length Risp or the isolated 16.4.1 region for Risp overexpression or with siRNAs designed for Risp knock-down. Rev activity was investigated with a Rev-reporter assay. RNA levels were quantified by real-time RT-PCR, HIV Gag levels by p24ELISA. Expression of the Risp family was demonstrated in human brain tissues and astrocytes. Astrocytes were shown to produce Risp family members that interact with Rev. Production of HIV Gag proteins and Rev-dependent RNAs in persistently infected astrocytes increased upon Risp knock-down and decreased upon Risp overexpression. Risp knock-down increased Rev activity and raised proportions of Rev proteins in the nucleus of astrocytes. Our results link the Risp family to restriction of HIV production and inhibition of Rev activity in astrocytes. We conclude that the Risp family represents a novel family of host factors that can control HIV replication and may be important for the containment of HIV infection in brain reservoirs.

  19. Autoantibody-induced internalization of CNS AQP4 water channel and EAAT2 glutamate transporter requires astrocytic Fc receptor.

    Science.gov (United States)

    Hinson, Shannon R; Clift, Ian C; Luo, Ningling; Kryzer, Thomas J; Lennon, Vanda A

    2017-05-23

    Aquaporin-4 (AQP4) water channel-specific IgG distinguishes neuromyelitis optica (NMO) from multiple sclerosis and causes characteristic immunopathology in which central nervous system (CNS) demyelination is secondary. Early events initiating the pathophysiological outcomes of IgG binding to astrocytic AQP4 are poorly understood. CNS lesions reflect events documented in vitro following IgG interaction with AQP4: AQP4 internalization, attenuated glutamate uptake, intramyelinic edema, interleukin-6 release, complement activation, inflammatory cell recruitment, and demyelination. Here, we demonstrate that AQP4 internalization requires AQP4-bound IgG to engage an astrocytic Fcγ receptor (FcγR). IgG-lacking Fc redistributes AQP4 within the plasma membrane and induces interleukin-6 release. However, AQP4 endocytosis requires an activating FcγR's gamma subunit and involves astrocytic membrane loss of an inhibitory FcγR, CD32B. Interaction of the IgG-AQP4 complex with FcγRs triggers coendocytosis of the excitatory amino acid transporter 2 (EAAT2). Requirement of FcγR engagement for internalization of two astrocytic membrane proteins critical to CNS homeostasis identifies a complement-independent, upstream target for potential early therapeutic intervention in NMO.

  20. Fluxes of lactate into, from, and among gap junction-coupled astrocytes and their interaction with noradrenaline

    Directory of Open Access Journals (Sweden)

    Leif eHertz

    2014-09-01

    Full Text Available Lactate is a versatile metabolite with important roles in modulation of brain glucose utilization rate (CMRglc, diagnosis of brain-injured patients, redox- and receptor-mediated signaling, memory, and alteration of gene transcription. Neurons and astrocytes release and accumulate lactate using equilibrative monocarboxylate transporters that carry out net transmembrane transport of lactate only until intra- and extracellular levels reach equilibrium. Astrocytes have much faster lactate uptake than neurons and shuttle more lactate among gap junction-coupled astrocytes than to nearby neurons. Lactate diffusion within syncytia can provide precursors for oxidative metabolism and glutamate synthesis and facilitate its release from endfeet to perivascular space to stimulate blood flow. Lactate efflux from brain during activation underlies the large underestimation of CMRglc with labeled glucose and fall in CMRO2/CMRglc ratio. Receptor-mediated effects of lactate on locus coeruleus neurons include noradrenaline release in cerebral cortex and c-AMP-mediated stimulation of astrocytic gap junctional coupling, thereby enhancing its dispersal and release from brain. Lactate transport is essential for its multifunctional roles.

  1. Astrocyte atrophy and immune dysfunction in self-harming macaques.

    Directory of Open Access Journals (Sweden)

    Kim M Lee

    Full Text Available BACKGROUND: Self-injurious behavior (SIB is a complex condition that exhibits a spectrum of abnormal neuropsychological and locomotor behaviors. Mechanisms for neuropathogenesis could include irregular immune activation, host soluble factors, and astrocyte dysfunction. METHODS: We examined the role of astrocytes as modulators of immune function in macaques with SIB. We measured changes in astrocyte morphology and function. Paraffin sections of frontal cortices from rhesus macaques identified with SIB were stained for glial fibrillary acidic protein (GFAP and Toll-like receptor 2 (TLR2. Morphologic features of astrocytes were determined using computer-assisted camera lucida. RESULTS: There was atrophy of white matter astrocyte cell bodies, decreased arbor length in both white and gray matter astrocytes, and decreased bifurcations and tips on astrocytes in animals with SIB. This was combined with a five-fold increase in the proportion of astrocytes immunopositive for TLR2. CONCLUSIONS: These results provide direct evidence that SIB induces immune activation of astrocytes concomitant with quantifiably different morphology.

  2. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke

    Science.gov (United States)

    Liu, Zhongwu; Chopp, Michael

    2015-01-01

    Astrocytes are the most abundant cell type within the central nervous system. They play essential roles in maintaining normal brain function, as they are a critical structural and functional part of the tripartite synapses and the neurovascular unit, and communicate with neurons, oligodendrocytes and endothelial cells. After an ischemic stroke, astrocytes perform multiple functions both detrimental and beneficial, for neuronal survival during the acute phase. Aspects of the astrocytic inflammatory response to stroke may aggravate the ischemic lesion, but astrocytes also provide benefit for neuroprotection, by limiting lesion extension via anti-excitotoxicity effects and releasing neurotrophins. Similarly, during the late recovery phase after stroke, the glial scar may obstruct axonal regeneration and subsequently reduce the functional outcome; however, astrocytes also contribute to angiogenesis, neurogenesis, synaptogenesis, and axonal remodeling, and thereby promote neurological recovery. Thus, the pivotal involvement of astrocytes in normal brain function and responses to an ischemic lesion designates them as excellent therapeutic targets to improve functional outcome following stroke. In this review, we will focus on functions of astrocytes and astrocyte-mediated events during stroke and recovery. We will provide an overview of approaches on how to reduce the detrimental effects and amplify the beneficial effects of astrocytes on neuroprotection and on neurorestoration post stroke, which may lead to novel and clinically relevant therapies for stroke. PMID:26455456

  3. The multi-dimensional roles of astrocytes in ALS.

    Science.gov (United States)

    Yamanaka, Koji; Komine, Okiru

    2018-01-01

    Despite significant progress in understanding the molecular and genetic aspects of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease characterized by the progressive loss of motor neurons, the precise and comprehensive pathomechanisms remain largely unknown. In addition to motor neuron involvement, recent studies using cellular and animal models of ALS indicate that there is a complex interplay between motor neurons and neighboring non-neuronal cells, such as astrocytes, in non-cell autonomous neurodegeneration. Astrocytes are key homeostatic cells that play numerous supportive roles in maintaining the brain environment. In neurodegenerative diseases such as ALS, astrocytes change their shape and molecular expression patterns and are referred to as reactive or activated astrocytes. Reactive astrocytes in ALS lose their beneficial functions and gain detrimental roles. In addition, interactions between motor neurons and astrocytes are impaired in ALS. In this review, we summarize growing evidence that astrocytes are critically involved in the survival and demise of motor neurons through several key molecules and cascades in astrocytes in both sporadic and inherited ALS. These observations strongly suggest that astrocytes have multi-dimensional roles in disease and are a viable therapeutic target for ALS. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Astrocytic Pathological Calcium Homeostasis and Impaired Vesicle Trafficking in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Nina Vardjan

    2017-02-01

    Full Text Available Although the central nervous system (CNS consists of highly heterogeneous populations of neurones and glial cells, clustered into diverse anatomical regions with specific functions, there are some conditions, including alertness, awareness and attention that require simultaneous, coordinated and spatially homogeneous activity within a large area of the brain. During such events, the brain, representing only about two percent of body mass, but consuming one fifth of body glucose at rest, needs additional energy to be produced. How simultaneous energy procurement in a relatively extended area of the brain takes place is poorly understood. This mechanism is likely to be impaired in neurodegeneration, for example in Alzheimer’s disease, the hallmark of which is brain hypometabolism. Astrocytes, the main neural cell type producing and storing glycogen, a form of energy in the brain, also hold the key to metabolic and homeostatic support in the central nervous system and are impaired in neurodegeneration, contributing to the slow decline of excitation-energy coupling in the brain. Many mechanisms are affected, including cell-to-cell signalling. An important question is how changes in cellular signalling, a process taking place in a rather short time domain, contribute to the neurodegeneration that develops over decades. In this review we focus initially on the slow dynamics of Alzheimer’s disease, and on the activity of locus coeruleus, a brainstem nucleus involved in arousal. Subsequently, we overview much faster processes of vesicle traffic and cytosolic calcium dynamics, both of which shape the signalling landscape of astrocyte-neurone communication in health and neurodegeneration.

  5. Albumin induces upregulation of matrix metalloproteinase-9 in astrocytes via MAPK and reactive oxygen species-dependent pathways

    Directory of Open Access Journals (Sweden)

    Ranaivo Hantamalala

    2012-04-01

    Full Text Available Abstract Background Astrocytes are an integral component of the blood–brain barrier (BBB which may be compromised by ischemic or traumatic brain injury. In response to trauma, astrocytes increase expression of the endopeptidase matrix metalloproteinase (MMP-9. Compromise of the BBB leads to the infiltration of fluid and blood-derived proteins including albumin into the brain parenchyma. Albumin has been previously shown to activate astrocytes and induce the production of inflammatory mediators. The effect of albumin on MMP-9 activation in astrocytes is not known. We investigated the molecular mechanisms underlying the production of MMP-9 by albumin in astrocytes. Methods Primary enriched astrocyte cultures were used to investigate the effects of exposure to albumin on the release of MMP-9. MMP-9 expression was analyzed by zymography. The involvement of mitogen-activated protein kinase (MAPK, reactive oxygen species (ROS and the TGF-β receptor-dependent pathways were investigated using pharmacological inhibitors. The production of ROS was observed by dichlorodihydrofluorescein diacetate fluorescence. The level of the MMP-9 inhibitor tissue inhibitor of metalloproteinase (TIMP-1 produced by astrocytes was measured by ELISA. Results We found that albumin induces a time-dependent release of MMP-9 via the activation of p38 MAPK and extracellular signal regulated kinase, but not Jun kinase. Albumin-induced MMP-9 production also involves ROS production upstream of the MAPK pathways. However, albumin-induced increase in MMP-9 is independent of the TGF-β receptor, previously described as a receptor for albumin. Albumin also induces an increase in TIMP-1 via an undetermined mechanism. Conclusions These results link albumin (acting through ROS and the p38 MAPK to the activation of MMP-9 in astrocytes. Numerous studies identify a role for MMP-9 in the mechanisms of compromise of the BBB, epileptogenesis, or synaptic remodeling after ischemia or

  6. Time dependent effects of haloperidol on glutamine and GABA homeostasis and astrocyte activity in the rat brain

    Science.gov (United States)

    Konopaske, Glenn T.; Bolo, Nicolas R.; Basu, Alo C.; Renshaw, Perry F.; Coyle, Joseph T.

    2013-01-01

    Rationale Schizophrenia is a severe, persistent, and fairly common mental illness. Haloperidol is widely used and is effective against the symptoms of psychosis seen in schizophrenia. Chronic oral haloperidol administration decreased the number of astrocytes in the parietal cortex of macaque monkeys (Konopaske et al. Biol Psych, 2008). Since astrocytes play a key role in glutamate metabolism, chronic haloperidol administration was hypothesized to modulate astrocyte metabolic function and glutamate homeostasis. Objectives This study investigated the effects of chronic haloperidol administration on astrocyte metabolic activity and glutamate, glutamine, and GABA homeostasis. Methods We used ex vivo 13C magnetic resonance spectroscopy along with high performance liquid chromatography after [1-13C]glucose and [1,2-13C]acetate administration to analyze forebrain tissue from rats administered oral haloperidol for 1 or 6 months. Results Administration of haloperidol for 1 month produced no changes in 13C labeling of glutamate, glutamine, or GABA, or in their total levels. However, a 6 month haloperidol administration increased 13C labeling of glutamine by [1,2-13C]acetate. Moreover, total GABA levels were also increased. Haloperidol administration also increased the acetate/glucose utilization ratio for glutamine in the 6 month cohort. Conclusions Chronic haloperidol administration in rats appears to increase forebrain GABA production along with astrocyte metabolic activity. Studies exploring these processes in subjects with schizophrenia should take into account the potential confounding effects of antipsychotic medication treatment. PMID:23660600

  7. Activity of the lactate-alanine shuttle is independent of glutamate-glutamine cycle activity in cerebellar neuronal-astrocytic cultures

    DEFF Research Database (Denmark)

    Bak, Lasse K; Sickmann, Helle M; Schousboe, Arne

    2004-01-01

    The glutamate-glutamine cycle describes the neuronal release of glutamate into the synaptic cleft, astrocytic uptake, and conversion into glutamine, followed by release for use as a neuronal glutamate precursor. This only explains the fate of the carbon atoms, however, and not that of the ammonia....... Recently, a role for alanine has been proposed in transfer of ammonia between glutamatergic neurons and astrocytes, denoted the lactate-alanine shuttle (Waagepetersen et al. [ 2000] J. Neurochem. 75:471-479). The role of alanine in this context has been studied further using cerebellar neuronal cultures...... and corresponding neuronal-astrocytic cocultures. A superfusion paradigm was used to induce repetitively vesicular glutamate release by N-methyl-D-aspartate (NMDA) in the neurons, allowing the relative activity dependency of the lactate-alanine shuttle to be assessed. [(15)N]Alanine (0.2 mM), [2-(15)N]/[5-(15)N...

  8. Specificity of exogenous acetate and glutamate as astrocyte substrates examined in acute brain slices from female mice using methionine sulfoximine (MSO) to inhibit glutamine synthesis

    DEFF Research Database (Denmark)

    Andersen, Jens Velde; McNair, Laura Frendrup; Schousboe, Arne

    2017-01-01

    Removal of endogenously released glutamate is mediated primarily by astrocytes and exogenous (13) C-labeled glutamate has been applied to study glutamate metabolism in astrocytes. Likewise, studies have clearly established the relevance of (13) C-labeled acetate as an astrocyte specific metabolic...... cortical slices from female NMRI mice were incubated in media containing [1,2-(13) C]acetate or [U-(13) C]glutamate, with or without methionine sulfoximine (MSO) to inhibit glutamine synthetase (GS). Tissue extracts were analyzed by gas chromatography-mass spectrometry. Blocking GS abolished the majority...... of glutamine (13) C-labeling from [1,2-(13) C]acetate as intended. However, (13) C-labeling of GABA was only 40-50% reduced by MSO, suggesting considerable neuronal uptake of acetate. Moreover, labeling of glutamate from [1,2-(13) C]acetate in the presence of MSO exceeded the level probable from exclusive...

  9. Plant uptake of dual-labeled organic N biased by inorganic C uptake

    DEFF Research Database (Denmark)

    Rasmussen, Jim; Sauheitl, Leopold; Eriksen, Jørgen

    2010-01-01

    glycine or CO2-3 , but found no differences in uptake rates between these C-sources. The uptake of inorganic C to the shoot tissue was higher for maize grown in full light compared to shading, which indicates a passive uptake of inorganic C with water. We conclude that uptake of inorganic C produced...

  10. Liposomal clodronate selectively eliminates microglia from primary astrocyte cultures

    Directory of Open Access Journals (Sweden)

    Kumamaru Hiromi

    2012-05-01

    Full Text Available Abstract Background There is increasing interest in astrocyte biology because astrocytes have been demonstrated to play prominent roles in physiological and pathological conditions of the central nervous system, including neuroinflammation. To understand astrocyte biology, primary astrocyte cultures are most commonly used because of the direct accessibility of astrocytes in this system. However, this advantage can be hindered by microglial contamination. Although several authors have warned regarding microglial contamination in this system, complete microglial elimination has never been achieved. Methods The number and proliferative potential of contaminating microglia in primary astrocyte cultures were quantitatively assessed by immunocytologic and flow cytometric analyses. To examine the utility of clodronate for microglial elimination, primary astrocyte cultures or MG-5 cells were exposed to liposomal or free clodronate, and then immunocytologic, flow cytometric, and gene expression analyses were performed. The gene expression profiles of microglia-eliminated and microglia-contaminated cultures were compared after interleukin-6 (IL-6 stimulation. Results The percentage of contaminating microglia exceeded 15% and continued to increase because of their high proliferative activity in conventional primary astrocyte cultures. These contaminating microglia were selectively eliminated low concentration of liposomal clodronate. Although primary microglia and MG-5 cells were killed by both liposomal and free clodronate, free clodronate significantly affected the viability of astrocytes. In contrast, liposomal clodronate selectively eliminated microglia without affecting the viability, proliferation or activation of astrocytes. The efficacy of liposomal clodronate was much higher than that of previously reported methods used for decreasing microglial contamination. Furthermore, we observed rapid tumor necrosis factor-α and IL-1b gene induction in

  11. Transcriptomic analyses of primary astrocytes under TNFα treatment

    Directory of Open Access Journals (Sweden)

    Cindy Birck

    2016-03-01

    Full Text Available Astrocytes, the most abundant glial cell population in the central nervous system, have important functional roles in the brain as blood brain barrier maintenance, synaptic transmission or intercellular communications [1,2]. Numerous studies suggested that astrocytes exhibit a functional and morphological high degree of plasticity. For example, following any brain injury, astrocytes become reactive and hypertrophic. This phenomenon, also called reactive gliosis, is characterized by a set of progressive gene expression and cellular changes [3]. Interestingly, in this context, astrocytes can re-acquire neurogenic properties. It has been shown that astrocytes can undergo dedifferentiation upon injury and inflammation, and may re-acquire the potentiality of neural progenitors [4,5,6,7].To assess the effect of inflammation on astrocytes, primary mouse astrocytes were treated with tumor necrosis factor α (TNFα, one of the main pro-inflammatory cytokines. The strength of this study is that pure primary astrocytes were used. As microglia are highly reactive immune cells, we used a magnetic cell sorting separation (MACS method to further obtain highly pure astrocyte cultures devoid of microglia.Here, we provide details of the microarray data, which have been deposited in the Gene Expression Omnibus (GEO under the series accession number GSE73022. The analysis and interpretation of these data are included in Gabel et al. (2015. Analysis of gene expression indicated that the NFκB pathway-associated genes were induced after a TNFα treatment. We have shown that primary astrocytes devoid of microglia can respond to a TNFα treatment with the re-expression of genes implicated in the glial cell development. Keywords: Primary astrocytes, Inflammation, Microarrays, Gene expression

  12. Plasma membrane ordering agent pluronic F-68 (PF-68) reduces neurotransmitter uptake and release and produces learning and memory deficits in rats

    Science.gov (United States)

    Clarke, M. S.; Prendergast, M. A.; Terry, A. V. Jr

    1999-01-01

    A substantial body of evidence indicates that aged-related changes in the fluidity and lipid composition of the plasma membrane contribute to cellular dysfunction in humans and other mammalian species. In the CNS, reductions in neuronal plasma membrane order (PMO) (i.e., increased plasma membrane fluidity) have been attributed to age as well as the presence of the beta-amyloid peptide-25-35, known to play an important role in the neuropathology of Alzheimer's disease (AD). These PMO increases may influence neurotransmitter synthesis, receptor binding, and second messenger systems as well as signal transduction pathways. The effects of neuronal PMO on learning and memory processes have not been adequately investigated, however. Based on the hypothesis that an increase in PMO may alter a number of aspects of synaptic transmission, we investigated several neurochemical and behavioral effects of the membrane ordering agent, PF-68. In cell culture, PF-68 (nmoles/mg SDS extractable protein) reduced [3H]norepinephrine (NE) uptake into differentiated PC-12 cells as well as reduced nicotine stimulated [3H]NE release. The compound (800-2400 microg/kg, i.p., resulting in nmoles/mg SDS extractable protein in the brain) decreased step-through latencies and increased the frequencies of crossing into the unsafe side of the chamber in inhibitory avoidance training. In the Morris water maze, PF-68 increased the latencies and swim distances required to locate a hidden platform and reduced the time spent and distance swam in the previous target quadrant during transfer (probe) trials. PF-68 did not impair performance of a well-learned working memory task, the rat delayed stimulus discrimination task (DSDT), however. Studies with 14C-labeled PF-68 indicated that significant (pmoles/mg wet tissue) levels of the compound entered the brain from peripheral (i.p.) injection. No PF-68 related changes were observed in swim speeds or in visual acuity tests in water maze experiments, rotorod

  13. Expression of the human isoform of glutamate dehydrogenase, hGDH2, augments TCA cycle capacity and oxidative metabolism of glutamate during glucose deprivation in astrocytes.

    Science.gov (United States)

    Nissen, Jakob D; Lykke, Kasper; Bryk, Jaroslaw; Stridh, Malin H; Zaganas, Ioannis; Skytt, Dorte M; Schousboe, Arne; Bak, Lasse K; Enard, Wolfgang; Pääbo, Svante; Waagepetersen, Helle S

    2017-03-01

    A key enzyme in brain glutamate homeostasis is glutamate dehydrogenase (GDH) which links carbohydrate and amino acid metabolism mediating glutamate degradation to CO 2 and expanding tricarboxylic acid (TCA) cycle capacity with intermediates, i.e. anaplerosis. Humans express two GDH isoforms, GDH1 and 2, whereas most other mammals express only GDH1. hGDH1 is widely expressed in human brain while hGDH2 is confined to astrocytes. The two isoforms display different enzymatic properties and the nature of these supports that hGDH2 expression in astrocytes potentially increases glutamate oxidation and supports the TCA cycle during energy-demanding processes such as high intensity glutamatergic signaling. However, little is known about how expression of hGDH2 affects the handling of glutamate and TCA cycle metabolism in astrocytes. Therefore, we cultured astrocytes from cerebral cortical tissue of hGDH2-expressing transgenic mice. We measured glutamate uptake and metabolism using [ 3 H]glutamate, while the effect on metabolic pathways of glutamate and glucose was evaluated by use of 13 C and 14 C substrates and analysis by mass spectrometry and determination of radioactively labeled metabolites including CO 2 , respectively. We conclude that hGDH2 expression increases capacity for uptake and oxidative metabolism of glutamate, particularly during increased workload and aglycemia. Additionally, hGDH2 expression increased utilization of branched-chain amino acids (BCAA) during aglycemia and caused a general decrease in oxidative glucose metabolism. We speculate, that expression of hGDH2 allows astrocytes to spare glucose and utilize BCAAs during substrate shortages. These findings support the proposed role of hGDH2 in astrocytes as an important fail-safe during situations of intense glutamatergic activity. GLIA 2017;65:474-488. © 2016 Wiley Periodicals, Inc.

  14. Deciphering the Astrocyte Reaction in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Beatriz G. Perez-Nievas

    2018-04-01

    Full Text Available Reactive astrocytes were identified as a component of senile amyloid plaques in the cortex of Alzheimer’s disease (AD patients several decades ago. However, their role in AD pathophysiology has remained elusive ever since, in part owing to the extrapolation of the literature from primary astrocyte cultures and acute brain injury models to a chronic neurodegenerative scenario. Recent accumulating evidence supports the idea that reactive astrocytes in AD acquire neurotoxic properties, likely due to both a gain of toxic function and a loss of their neurotrophic effects. However, the diversity and complexity of this glial cell is only beginning to be unveiled, anticipating that astrocyte reaction might be heterogeneous as well. Herein we review the evidence from mouse models of AD and human neuropathological studies and attempt to decipher the main conundrums that astrocytes pose to our understanding of AD development and progression. We discuss the morphological features that characterize astrocyte reaction in the AD brain, the consequences of astrocyte reaction for both astrocyte biology and AD pathological hallmarks, and the molecular pathways that have been implicated in this reaction.

  15. Synapse-specific astrocyte gating of amygdala-related behavior.

    Science.gov (United States)

    Martin-Fernandez, Mario; Jamison, Stephanie; Robin, Laurie M; Zhao, Zhe; Martin, Eduardo D; Aguilar, Juan; Benneyworth, Michael A; Marsicano, Giovanni; Araque, Alfonso

    2017-11-01

    The amygdala plays key roles in fear and anxiety. Studies of the amygdala have largely focused on neuronal function and connectivity. Astrocytes functionally interact with neurons, but their role in the amygdala remains largely unknown. We show that astrocytes in the medial subdivision of the central amygdala (CeM) determine the synaptic and behavioral outputs of amygdala circuits. To investigate the role of astrocytes in amygdala-related behavior and identify the underlying synaptic mechanisms, we used exogenous or endogenous signaling to selectively activate CeM astrocytes. Astrocytes depressed excitatory synapses from basolateral amygdala via A 1 adenosine receptor activation and enhanced inhibitory synapses from the lateral subdivision of the central amygdala via A 2A receptor activation. Furthermore, astrocytic activation decreased the firing rate of CeM neurons and reduced fear expression in a fear-conditioning paradigm. Therefore, we conclude that astrocyte activity determines fear responses by selectively regulating specific synapses, which indicates that animal behavior results from the coordinated activity of neurons and astrocytes.

  16. Computational Models for Calcium-Mediated Astrocyte Functions

    Directory of Open Access Journals (Sweden)

    Tiina Manninen

    2018-04-01

    Full Text Available The computational neuroscience field has heavily concentrated on the modeling of neuronal functions, largely ignoring other brain cells, including one type of glial cell, the astrocytes. Despite the short history of modeling astrocytic functions, we were delighted about the hundreds of models developed so far to study the role of astrocytes, most often in calcium dynamics, synchronization, information transfer, and plasticity in vitro, but also in vascular events, hyperexcitability, and homeostasis. Our goal here is to present the state-of-the-art in computational modeling of astrocytes in order to facilitate better understanding of the functions and dynamics of astrocytes in the brain. Due to the large number of models, we concentrated on a hundred models that include biophysical descriptions for calcium signaling and dynamics in astrocytes. We categorized the models into four groups: single astrocyte models, astrocyte network models, neuron-astrocyte synapse models, and neuron-astrocyte network models to ease their use in future modeling projects. We characterized the models based on which earlier models were used for building the models and which type of biological entities were described in the astrocyte models. Features of the models were compared and contrasted so that similarities and differences were more readily apparent. We discovered that most of the models were basically generated from a small set of previously published models with small variations. However, neither citations to all the previous models with similar core structure nor explanations of what was built on top of the previous models were provided, which made it possible, in some cases, to have the same models published several times without an explicit intention to make new predictions about the roles of astrocytes in brain functions. Furthermore, only a few of the models are available online which makes it difficult to reproduce the simulation results and further develop

  17. Computational Models for Calcium-Mediated Astrocyte Functions.

    Science.gov (United States)

    Manninen, Tiina; Havela, Riikka; Linne, Marja-Leena

    2018-01-01

    The computational neuroscience field has heavily concentrated on the modeling of neuronal functions, largely ignoring other brain cells, including one type of glial cell, the astrocytes. Despite the short history of modeling astrocytic functions, we were delighted about the hundreds of models developed so far to study the role of astrocytes, most often in calcium dynamics, synchronization, information transfer, and plasticity in vitro , but also in vascular events, hyperexcitability, and homeostasis. Our goal here is to present the state-of-the-art in computational modeling of astrocytes in order to facilitate better understanding of the functions and dynamics of astrocytes in the brain. Due to the large number of models, we concentrated on a hundred models that include biophysical descriptions for calcium signaling and dynamics in astrocytes. We categorized the models into four groups: single astrocyte models, astrocyte network models, neuron-astrocyte synapse models, and neuron-astrocyte network models to ease their use in future modeling projects. We characterized the models based on which earlier models were used for building the models and which type of biological entities were described in the astrocyte models. Features of the models were compared and contrasted so that similarities and differences were more readily apparent. We discovered that most of the models were basically generated from a small set of previously published models with small variations. However, neither citations to all the previous models with similar core structure nor explanations of what was built on top of the previous models were provided, which made it possible, in some cases, to have the same models published several times without an explicit intention to make new predictions about the roles of astrocytes in brain functions. Furthermore, only a few of the models are available online which makes it difficult to reproduce the simulation results and further develop the models. Thus

  18. Astrocytes Control Neuronal Excitability in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Tommaso Fellin

    2007-01-01

    Full Text Available Though accumulating evidence shows that the metabotropic glutamate receptor 5 (mGluR5 mediates some of the actions of extracellular glutamate after cocaine use, the cellular events underlying this action are poorly understood. In this review, we will discuss recent results showing that mGluR5 receptors are key regulators of astrocyte activity. Synaptic release of glutamate activates mGluR5 expressed in perisynaptic astrocytes and generates intense Ca2+ signaling in these cells. Ca2+ oscillations, in turn, trigger the release from astrocytes of the gliotransmitter glutamate, which modulates neuronal excitability by activating NMDA receptors. By integrating these results with the most recent evidence demonstrating the importance of astrocytes in the regulation of neuronal excitability, we propose that astrocytes are involved in mediating some of the mGluR5-dependent drug-induced behaviors.

  19. Involvement of astrocyte metabolic coupling in Tourette syndrome pathogenesis.

    Science.gov (United States)

    de Leeuw, Christiaan; Goudriaan, Andrea; Smit, August B; Yu, Dongmei; Mathews, Carol A; Scharf, Jeremiah M; Verheijen, Mark H G; Posthuma, Danielle

    2015-11-01

    Tourette syndrome is a heritable neurodevelopmental disorder whose pathophysiology remains unknown. Recent genome-wide association studies suggest that it is a polygenic disorder influenced by many genes of small effect. We tested whether these genes cluster in cellular function by applying gene-set analysis using expert curated sets of brain-expressed genes in the current largest available Tourette syndrome genome-wide association data set, involving 1285 cases and 4964 controls. The gene sets included specific synaptic, astrocytic, oligodendrocyte and microglial functions. We report association of Tourette syndrome with a set of genes involved in astrocyte function, specifically in astrocyte carbohydrate metabolism. This association is driven primarily by a subset of 33 genes involved in glycolysis and glutamate metabolism through which astrocytes support synaptic function. Our results indicate for the first time that the process of astrocyte-neuron metabolic coupling may be an important contributor to Tourette syndrome pathogenesis.

  20. Investigation on the suitable pressure for the preservation of astrocyte

    International Nuclear Information System (INIS)

    Sotome, S; Shimizu, A; Nakajima, K; Yoshimura, Y

    2010-01-01

    The effects of pressure on the survival rate of astrocytes in growth medium (DMEM) were investigated at room temperature and at 4 0 C, in an effort to establish the best conditions for the preservation. Survival rate at 4 0 C was found to be higher than that at room temperature. The survival rate of astrocytes preserved for 4 days at 4 0 C increased with increasing pressure up to 1.6 MPa, but decreased with increasing pressure above 1.6 MPa. At 10 MPa, all astrocytes died. The survival rate of cultured astrocytes decreased significantly following pressurization for 2 hours and the subsequent preservation for 2 days at atmospheric pressure. Therefore, it is necessary to maintain pressure when preserving astrocytes. These results indicate that the cells can be stored at 4 0 C under pressurization without freezing and without adding cryoprotective agents. Moreover, it may be possible to use this procedure as a new preservation method when cryopreservation is impractical.

  1. Phagocytic response of astrocytes to damaged neighboring cells.

    Directory of Open Access Journals (Sweden)

    Nicole M Wakida

    Full Text Available This study aims to understand the phagocytic response of astrocytes to the injury of neurons or other astrocytes at the single cell level. Laser nanosurgery was used to damage individual cells in both primary mouse cortical astrocytes and an established astrocyte cell line. In both cases, the release of material/substances from laser-irradiated astrocytes or neurons induced a phagocytic response in near-by astrocytes. Propidium iodide stained DNA originating from irradiated cells was visible in vesicles of neighboring cells, confirming phagocytosis of material from damaged cortical cells. In the presence of an intracellular pH indicator dye, newly formed vesicles correspond to acidic pH fluorescence, thus suggesting lysosome bound degradation of cellular debris. Cells with shared membrane connections prior to laser damage had a significantly higher frequency of induced phagocytosis compared to isolated cells with no shared membrane. The increase in phagocytic response of cells with a shared membrane occurred regardless of the extent of shared membrane (a thin filopodial connection vs. a cell cluster with significant shared membrane. In addition to the presence (or lack of a membrane connection, variation in phagocytic ability was also observed with differences in injury location within the cell and distance separating isolated astrocytes. These results demonstrate the ability of an astrocyte to respond to the damage of a single cell, be it another astrocyte, or a neuron. This single-cell level of analysis results in a better understanding of the role of astrocytes to maintain homeostasis in the CNS, particularly in the sensing and removal of debris in damaged or pathologic nervous tissue.

  2. Neuroinflammation alters voltage-dependent conductance in striatal astrocytes.

    Science.gov (United States)

    Karpuk, Nikolay; Burkovetskaya, Maria; Kielian, Tammy

    2012-07-01

    Neuroinflammation has the capacity to alter normal central nervous system (CNS) homeostasis and function. The objective of the present study was to examine the effects of an inflammatory milieu on the electrophysiological properties of striatal astrocyte subpopulations with a mouse bacterial brain abscess model. Whole cell patch-clamp recordings were performed in striatal glial fibrillary acidic protein (GFAP)-green fluorescent protein (GFP)(+) astrocytes neighboring abscesses at postinfection days 3 or 7 in adult mice. Cell input conductance (G(i)) measurements spanning a membrane potential (V(m)) surrounding resting membrane potential (RMP) revealed two prevalent astrocyte subsets. A1 and A2 astrocytes were identified by negative and positive G(i) increments vs. V(m), respectively. A1 and A2 astrocytes displayed significantly different RMP, G(i), and cell membrane capacitance that were influenced by both time after bacterial exposure and astrocyte proximity to the inflammatory site. Specifically, the percentage of A1 astrocytes was decreased immediately surrounding the inflammatory lesion, whereas A2 cells were increased. These changes were particularly evident at postinfection day 7, revealing increased cell numbers with an outward current component. Furthermore, RMP was inversely modified in A1 and A2 astrocytes during neuroinflammation, and resting G(i) was increased from 21 to 30 nS in the latter. In contrast, gap junction communication was significantly decreased in all astrocyte populations associated with inflamed tissues. Collectively, these findings demonstrate the heterogeneity of striatal astrocyte populations, which experience distinct electrophysiological modifications in response to CNS inflammation.

  3. α-Synuclein transfer between neurons and astrocytes indicates that astrocytes play a role in degradation rather than in spreading.

    Science.gov (United States)

    Loria, Frida; Vargas, Jessica Y; Bousset, Luc; Syan, Sylvie; Salles, Audrey; Melki, Ronald; Zurzolo, Chiara

    2017-11-01

    Recent evidence suggests that disease progression in Parkinson's disease (PD) could occur by the spreading of α-synuclein (α-syn) aggregates between neurons. Here we studied the role of astrocytes in the intercellular transfer and fate of α-syn fibrils, using in vitro and ex vivo models. α-Syn fibrils can be transferred to neighboring cells; however, the transfer efficiency changes depending on the cell types. We found that α-syn is efficiently transferred from astrocytes to astrocytes and from neurons to astrocytes, but less efficiently from astrocytes to neurons. Interestingly, α-syn puncta are mainly found inside the lysosomal compartments of the recipient cells. However, differently from neurons, astrocytes are able to efficiently degrade fibrillar α-syn, suggesting an active role for these cells in clearing α-syn deposits. Astrocytes co-cultured with organotypic brain slices are able to take up α-syn fibrils from the slices. Altogether our data support a role for astrocytes in trapping and clearing α-syn pathological deposits in PD.

  4. ATP Modifies the Proteome of Extracellular Vesicles Released by Microglia and Influences Their Action on Astrocytes

    Directory of Open Access Journals (Sweden)

    Francesco Drago

    2017-12-01

    Full Text Available Extracellular ATP is among molecules promoting microglia activation and inducing the release of extracellular vesicles (EVs, which are potent mediators of intercellular communication between microglia and the microenvironment. We previously showed that EVs produced under ATP stimulation (ATP-EVs propagate a robust inflammatory reaction among astrocytes and microglia in vitro and in mice with subclinical neuroinflammation (Verderio et al., 2012. However, the proteome of EVs released upon ATP stimulation has not yet been elucidated. In this study we applied a label free proteomic approach to characterize the proteome of EVs released constitutively and during microglia activation with ATP. We show that ATP drives sorting in EVs of a set of proteins implicated in cell adhesion/extracellular matrix organization, autophagy-lysosomal pathway and cellular metabolism, that may influence the response of recipient astrocytes to EVs. These data provide new clues to molecular mechanisms involved in microglia response to ATP and in microglia signaling to the environment via EVs.

  5. Disruption of Lipid Uptake in Astroglia Exacerbates Diet-Induced Obesity

    NARCIS (Netherlands)

    Gao, Yuanqing; Layritz, Clarita; Legutko, Beata; Eichmann, Thomas O.; Laperrousaz, Elise; Moullé, Valentine S.; Cruciani-Guglielmacci, Celine; Magnan, Christophe; Luquet, Serge; Woods, Stephen C.; Eckel, Robert H.; Yi, Chun-Xia; Garcia-Caceres, Cristina; Tschöp, Matthias H.

    2017-01-01

    Neuronal circuits in the brain help to control feeding behavior and systemic metabolism in response to afferent nutrient and hormonal signals. Although astrocytes have historically been assumed to have little relevance for such neuroendocrine control, we investigated whether lipid uptake via

  6. Phosphoinositide metabolism and adrenergic receptors in astrocytes

    International Nuclear Information System (INIS)

    Noble, E.P.; Ritchie, T.; de Vellis, J.

    1986-01-01

    Agonist-induced phosphoinositide (PI) breakdown functions as a signal generating system. Diacylglycerol, one breakdown product of phosphotidylinositol-4,5-diphosphate hydrolysis, can stimulate protein kinase C, whereas inositol triphosphate, the other product, has been proposed to be a second messenger for Ca ++ mobilization. Using purified astrocyte cultures from neonatal rat brain, the effects of adrenergic agonists and antagonists at 10 -5 M were measured on PI breakdown. Astrocytes grown in culture were prelabeled with ( 3 H)inositol, and basal ( 3 H) inositol phosphate (IP 1 ) accumulation was measured in the presence of Li + . Epinephrine > norepinephrine (NE) were the most active stimulants of IP 1 production. The α 1 adrenoreceptor blockers, phentolamine and phenoxybenzamine, added alone had no effect on IP 1 production was reduced below basal levels. Propranolol partially blocked the effects of NE. Clonidine and isoproterenol, separately added, reduced IP 1 below basal levels and when added together diminished IP 1 accumulation even further. The role of adrenergic stimulation in the production of c-AMP

  7. Astrocytes require insulin-like growth factor I to protect neurons against oxidative injury [v1; ref status: indexed, http://f1000r.es/2lf

    Directory of Open Access Journals (Sweden)

    Laura Genis

    2014-01-01

    Full Text Available Oxidative stress is a proposed mechanism in brain aging, making the study of its regulatory processes an important aspect of current neurobiological research. In this regard, the role of the aging regulator insulin-like growth factor I (IGF-I in brain responses to oxidative stress remains elusive as both beneficial and detrimental actions have been ascribed to this growth factor. Because astrocytes protect neurons against oxidative injury, we explored whether IGF-I participates in astrocyte neuroprotection and found that blockade of the IGF-I receptor in astrocytes abrogated their rescuing effect on neurons. The protection mediated by IGF-I against oxidative stress (H2O2 in astrocytes is probably needed for these cells to provide adequate neuroprotection. Indeed, in astrocytes but not in neurons, IGF-I helps decrease the pro-oxidant protein thioredoxin-interacting protein 1 and normalizes the levels of reactive oxygen species. Furthermore, IGF-I cooperates with trophic signals produced by astrocytes in response to H2O2 such as stem cell factor (SCF to protect neurons against oxidative insult. After stroke, a condition associated with brain aging where oxidative injury affects peri-infarcted regions, a simultaneous increase in SCF and IGF-I expression was found in the cortex, suggesting that a similar cooperative response takes place in vivo. Cell-specific modulation by IGF-I of brain responses to oxidative stress may contribute in clarifying the role of IGF-I in brain aging.

  8. Astrocytes require insulin-like growth factor I to protect neurons against oxidative injury [v2; ref status: indexed, http://f1000r.es/38u

    Directory of Open Access Journals (Sweden)

    Laura Genis

    2014-04-01

    Full Text Available Oxidative stress is a proposed mechanism in brain aging, making the study of its regulatory processes an important aspect of current neurobiological research. In this regard, the role of the aging regulator insulin-like growth factor I (IGF-I in brain responses to oxidative stress remains elusive as both beneficial and detrimental actions have been ascribed to this growth factor. Because astrocytes protect neurons against oxidative injury, we explored whether IGF-I participates in astrocyte neuroprotection and found that blockade of the IGF-I receptor in astrocytes abrogated their rescuing effect on neurons. We found that IGF-I directly protects astrocytes against oxidative stress (H2O2. Indeed, in astrocytes but not in neurons, IGF-I decreases the pro-oxidant protein thioredoxin-interacting protein 1 and normalizes the levels of reactive oxygen species. Furthermore, IGF-I cooperates with trophic signals produced by astrocytes in response to H2O2 such as stem cell factor (SCF to protect neurons against oxidative insult. After stroke, a condition associated with brain aging where oxidative injury affects peri-infarcted regions, a simultaneous increase in SCF and IGF-I expression was found in the cortex, suggesting that a similar cooperative response takes place in vivo. Cell-specific modulation by IGF-I of brain responses to oxidative stress may contribute in clarifying the role of IGF-I in brain aging.

  9. Evidence for heterogeneity of astrocyte de-differentiation in vitro: astrocytes transform into intermediate precursor cells following induction of ACM from scratch-insulted astrocytes.

    Science.gov (United States)

    Yang, Hao; Qian, Xin-Hong; Cong, Rui; Li, Jing-wen; Yao, Qin; Jiao, Xi-Ying; Ju, Gong; You, Si-Wei

    2010-04-01

    Our previous study definitely demonstrated that the mature astrocytes could undergo a de-differentiation process and further transform into pluripotential neural stem cells (NSCs), which might well arise from the effect of diffusible factors released from scratch-insulted astrocytes. However, these neurospheres passaged from one neurosphere-derived from de-differentiated astrocytes possessed a completely distinct characteristic in the differentiation behavior, namely heterogeneity of differentiation. The heterogeneity in cell differentiation has become a crucial but elusive issue. In this study, we show that purified astrocytes could de-differentiate into intermediate precursor cells (IPCs) with addition of scratch-insulted astrocyte-conditioned medium (ACM) to the culture, which can express NG2 and A2B5, the IPCs markers. Apart from the number of NG2(+) and A2B5(+) cells, the percentage of proliferative cells as labeled with BrdU progressively increased with prolonged culture period ranging from 1 to 10 days. Meanwhile, the protein level of A2B5 in cells also increased significantly. These results revealed that not all astrocytes could de-differentiate fully into NSCs directly when induced by ACM, rather they generated intermediate or more restricted precursor cells that might undergo progressive de-differentiation to generate NSCs.

  10. Astrocytic Gap Junctional Communication is Reduced in Amyloid-β-Treated Cultured Astrocytes, but not in Alzheimer's Disease Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Nancy F Cruz

    2010-07-01

    Full Text Available Alzheimer's disease is characterized by accumulation of amyloid deposits in brain, progressive cognitive deficits and reduced glucose utilization. Many consequences of the disease are attributed to neuronal dysfunction, but roles of astrocytes in its pathogenesis are not well understood. Astrocytes are extensively coupled via gap junctions, and abnormal trafficking of metabolites and signalling molecules within astrocytic syncytia could alter functional interactions among cells comprising the neurovascular unit. To evaluate the influence of amyloid-β on astrocyte gap junctional communication, cultured astrocytes were treated with monomerized amyloid-β1-40 (1 μmol/l for intervals ranging from 2 h to 5 days, and the areas labelled by test compounds were determined by impaling a single astrocyte with a micropipette and diffusion of material into coupled cells. Amyloid-β-treated astrocytes had rapid, sustained 50-70% reductions in the area labelled by Lucifer Yellow, anionic Alexa Fluor® dyes and energy-related compounds, 6-NBDG (a fluorescent glucose analogue, NADH and NADPH. Amyloid-β treatment also caused a transient increase in oxidative stress. In striking contrast with these results, spreading of Lucifer Yellow within astrocytic networks in brain slices from three regions of 8.5-14-month-old control and transgenic Alzheimer's model mice was variable, labelling 10-2000 cells; there were no statistically significant differences in the number of dye-labelled cells among the groups or with age. Thus amyloid-induced dysfunction of gap junctional communication in cultured astrocytes does not reflect the maintenance of dye transfer through astrocytic syncytial networks in transgenic mice; the pathophysiology of Alzheimer's disease is not appropriately represented by the cell culture system.

  11. Astrocytic gap junctional communication is reduced in amyloid-β-treated cultured astrocytes, but not in Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Cruz, Nancy F; Ball, Kelly K; Dienel, Gerald A

    2010-08-17

    Alzheimer's disease is characterized by accumulation of amyloid deposits in brain, progressive cognitive deficits and reduced glucose utilization. Many consequences of the disease are attributed to neuronal dysfunction, but roles of astrocytes in its pathogenesis are not well understood. Astrocytes are extensively coupled via gap junctions, and abnormal trafficking of metabolites and signalling molecules within astrocytic syncytia could alter functional interactions among cells comprising the neurovascular unit. To evaluate the influence of amyloid-beta on astrocyte gap junctional communication, cultured astrocytes were treated with monomerized amyloid-β(1-40) (1 μmol/l) for intervals ranging from 2 h to 5 days, and the areas labelled by test compounds were determined by impaling a single astrocyte with a micropipette and diffusion of material into coupled cells. Amyloid-β-treated astrocytes had rapid, sustained 50-70% reductions in the area labelled by Lucifer Yellow, anionic Alexa Fluor® dyes and energy-related compounds, 6-NBDG (a fluorescent glucose analogue), NADH and NADPH. Amyloid-β treatment also caused a transient increase in oxidative stress. In striking contrast with these results, spreading of Lucifer Yellow within astrocytic networks in brain slices from three regions of 8.5-14-month-old control and transgenic Alzheimer's model mice was variable, labelling 10-2000 cells; there were no statistically significant differences in the number of dye-labelled cells among the groups or with age. Thus amyloid-induced dysfunction of gap junctional communication in cultured astrocytes does not reflect the maintenance of dye transfer through astrocytic syncytial networks in transgenic mice; the pathophysiology of Alzheimer's disease is not appropriately represented by the cell culture system.

  12. [3H]GABA uptake as a marker for cell type in primary cultures of cerebellum and olfactory bulb

    International Nuclear Information System (INIS)

    Currie, D.N.; Dutton, G.R.

    1980-01-01

    Uptake of [ 3 H]GABA into cell cultures of rat cerebellum and olfactory bulb was studied by autoradiography, using β-alanine and aminocyclohexane carboxylic acid to distinguish neuronal-specific and glial-specific uptake. Neurons and astrocytes were also labelled by tetanus toxin and anti-GFAP respectively. This combination of markers allowed identification and quantification of several cell types. Cerebellar cultures were found to contain 77% granule neurons, 7.5% inhibitory neurons (probably stellate and basket cells) and 15% astrocytes. Olfactory bulb cultures were over 50% in small neurons which accumulated GABA, the olfactory bulb granule neuron being GABAergic in vivo. (Auth.)

  13. Astrocytic TYMP and VEGFA drive blood-brain barrier opening in inflammatory central nervous system lesions.

    Science.gov (United States)

    Chapouly, Candice; Tadesse Argaw, Azeb; Horng, Sam; Castro, Kamilah; Zhang, Jingya; Asp, Linnea; Loo, Hannah; Laitman, Benjamin M; Mariani, John N; Straus Farber, Rebecca; Zaslavsky, Elena; Nudelman, German; Raine, Cedric S; John, Gareth R

    2015-06-01

    In inflammatory central nervous system conditions such as multiple sclerosis, breakdown of the blood-brain barrier is a key event in lesion pathogenesis, predisposing to oedema, excitotoxicity, and ingress of plasma proteins and inflammatory cells. Recently, we showed that reactive astrocytes drive blood-brain barrier opening, via production of vascular endothelial growth factor A (VEGFA). Here, we now identify thymidine phosphorylase (TYMP; previously known as endothelial cell growth factor 1, ECGF1) as a second key astrocyte-derived permeability factor, which interacts with VEGFA to induce blood-brain barrier disruption. The two are co-induced NFκB1-dependently in human astrocytes by the cytokine interleukin 1 beta (IL1B), and inactivation of Vegfa in vivo potentiates TYMP induction. In human central nervous system microvascular endothelial cells, VEGFA and the TYMP product 2-deoxy-d-ribose cooperatively repress tight junction proteins, driving permeability. Notably, this response represents part of a wider pattern of endothelial plasticity: 2-deoxy-d-ribose and VEGFA produce transcriptional programs encompassing angiogenic and permeability genes, and together regulate a third unique cohort. Functionally, each promotes proliferation and viability, and they cooperatively drive motility and angiogenesis. Importantly, introduction of either into mouse cortex promotes blood-brain barrier breakdown, and together they induce severe barrier disruption. In the multiple sclerosis model experimental autoimmune encephalitis, TYMP and VEGFA co-localize to reactive astrocytes, and correlate with blood-brain barrier permeability. Critically, blockade of either reduces neurologic deficit, blood-brain barrier disruption and pathology, and inhibiting both in combination enhances tissue preservation. Suggesting importance in human disease, TYMP and VEGFA both localize to reactive astrocytes in multiple sclerosis lesion samples. Collectively, these data identify TYMP as an

  14. Direct Signaling from Astrocytes to Neurons in Cultures of Mammalian Brain Cells

    Science.gov (United States)

    Nedergaard, Maiken

    1994-03-01

    Although astrocytes have been considered to be supportive, rather than transmissive, in the adult nervous system, recent studies have challenged this assumption by demonstrating that astrocytes possess functional neurotransmitter receptors. Astrocytes are now shown to directly modulate the free cytosolic calcium, and hence transmission characteristics, of neighboring neurons. When a focal electric field potential was applied to single astrocytes in mixed cultures of rat forebrain astrocytes and neurons, a prompt elevation of calcium occurred in the target cell. This in turn triggered a wave of calcium increase, which propagated from astrocyte to astrocyte. Neurons resting on these astrocytes responded with large increases in their concentration of cytosolic calcium. The gap junction blocker octanol attenuated the neuronal response, which suggests that the astrocytic-neuronal signaling is mediated through intercellular connections rather than synaptically. This neuronal response to local astrocytic stimulation may mediate local intercellular communication within the brain.

  15. The role of astrocytes in multiple sclerosis pathogenesis.

    Science.gov (United States)

    Guerrero-García, J J

    2017-09-25

    Multiple sclerosis (MS) is a demyelinating autoimmune disease of the central nervous system (CNS), in which astrocytes play an important role as CNS immune cells. However, the activity of astrocytes as antigen-presenting cells (APC) continues to be subject to debate. This review analyses the existing evidence on the participation of astrocytes in CNS inflammation in MS and on several mechanisms that modify astrocyte activity in the disease. Astrocytes play a crucial role in the pathogenesis of MS because they express toll-like receptors (TLR) and major histocompatibility complex (MHC) classI andII. In addition, astrocytes participate in regulating the blood-brain barrier (BBB) and in modulating T cell activity through the production of cytokines. Future studies should focus on the role of astrocytes in order to find new therapeutic targets for the treatment of MS. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Simultaneous neuron- and astrocyte-specific fluorescent marking

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Wiebke [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Hayata-Takano, Atsuko [Molecular Research Center for Children' s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kamo, Toshihiko [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nakazawa, Takanobu, E-mail: takanobunakazawa-tky@umin.ac.jp [iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nagayasu, Kazuki [iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kasai, Atsushi; Seiriki, Kaoru [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Shintani, Norihito [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ago, Yukio [Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Farfan, Camille [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); and others

    2015-03-27

    Systematic and simultaneous analysis of multiple cell types in the brain is becoming important, but such tools have not yet been adequately developed. Here, we aimed to generate a method for the specific fluorescent labeling of neurons and astrocytes, two major cell types in the brain, and we have developed lentiviral vectors to express the red fluorescent protein tdTomato in neurons and the enhanced green fluorescent protein (EGFP) in astrocytes. Importantly, both fluorescent proteins are fused to histone 2B protein (H2B) to confer nuclear localization to distinguish between single cells. We also constructed several expression constructs, including a tandem alignment of the neuron- and astrocyte-expression cassettes for simultaneous labeling. Introducing these vectors and constructs in vitro and in vivo resulted in cell type-specific and nuclear-localized fluorescence signals enabling easy detection and distinguishability of neurons and astrocytes. This tool is expected to be utilized for the simultaneous analysis of changes in neurons and astrocytes in healthy and diseased brains. - Highlights: • We develop a method for the specific fluorescent labeling of neurons and astrocytes. • Neuron-specific labeling is achieved using Scg10 and synapsin promoters. • Astrocyte-specific labeling is generated using the minimal GFAP promoter. • Nuclear localization of fluorescent proteins is achieved with histone 2B protein.

  17. Simultaneous neuron- and astrocyte-specific fluorescent marking

    International Nuclear Information System (INIS)

    Schulze, Wiebke; Hayata-Takano, Atsuko; Kamo, Toshihiko; Nakazawa, Takanobu; Nagayasu, Kazuki; Kasai, Atsushi; Seiriki, Kaoru; Shintani, Norihito; Ago, Yukio; Farfan, Camille

    2015-01-01

    Systematic and simultaneous analysis of multiple cell types in the brain is becoming important, but such tools have not yet been adequately developed. Here, we aimed to generate a method for the specific fluorescent labeling of neurons and astrocytes, two major cell types in the brain, and we have developed lentiviral vectors to express the red fluorescent protein tdTomato in neurons and the enhanced green fluorescent protein (EGFP) in astrocytes. Importantly, both fluorescent proteins are fused to histone 2B protein (H2B) to confer nuclear localization to distinguish between single cells. We also constructed several expression constructs, including a tandem alignment of the neuron- and astrocyte-expression cassettes for simultaneous labeling. Introducing these vectors and constructs in vitro and in vivo resulted in cell type-specific and nuclear-localized fluorescence signals enabling easy detection and distinguishability of neurons and astrocytes. This tool is expected to be utilized for the simultaneous analysis of changes in neurons and astrocytes in healthy and diseased brains. - Highlights: • We develop a method for the specific fluorescent labeling of neurons and astrocytes. • Neuron-specific labeling is achieved using Scg10 and synapsin promoters. • Astrocyte-specific labeling is generated using the minimal GFAP promoter. • Nuclear localization of fluorescent proteins is achieved with histone 2B protein

  18. Adenoviral transfer of the heme oxygenase-1 gene protects striatal astrocytes from heme-mediated oxidative injury.

    Science.gov (United States)

    Teng, Zhi-Ping; Chen, Jing; Chau, Lee-Young; Galunic, Nicholas; Regan, Raymond F

    2004-11-01

    Heme oxygenase-1 (HO-1) is induced in the CNS after hemorrhage, and may have an effect on injury to surrounding tissue. Hemin, the preferred substrate of HO, is a neurotoxin that is present in intracranial hematomas. In a prior study, we observed that HO inhibitors increased the vulnerability of cultured cortical astrocytes to heme-mediated oxidative injury. To investigate the effect of HO more specifically, we used an adenoviral vector encoding the human HO-1 gene to specifically increase HO-1 expression. Incubation with 100 MOI of the HO-1 adenovirus (Adv-HHO-1) for 24 h increased both HO-1 protein and HO activity; a control adenovirus lacking the HO-1 gene had no effect. Using a DNA probe that was specific for human HO-1, 80.5 +/- 7.2% of astrocytes were observed to be infected by in situ hybridization. The cell death produced by 30-60 microM hemin was significantly reduced by pretreatment with 100 MOI Adv-HHO-1, as assessed by LDH release, propidium iodide exclusion, and MTT reduction assay. The threefold increase in cell protein oxidation produced by hemin was also attenuated in cultures pretreated with Adv-HHO-1. These results support the hypothesis that HO-1 protects astrocytes from heme-mediated oxidative injury. Specifically increasing astrocytic HO-1 by gene transfer may have a beneficial effect on hemorrhagic CNS injury.

  19. Characterisation of the expression of NMDA receptors in human astrocytes.

    Directory of Open Access Journals (Sweden)

    Ming-Chak Lee

    Full Text Available Astrocytes have long been perceived only as structural and supporting cells within the central nervous system (CNS. However, the discovery that these glial cells may potentially express receptors capable of responding to endogenous neurotransmitters has resulted in the need to reassess astrocytic physiology. The aim of the current study was to characterise the expression of NMDA receptors (NMDARs in primary human astrocytes, and investigate their response to physiological and excitotoxic concentrations of the known endogenous NMDAR agonists, glutamate and quinolinic acid (QUIN. Primary cultures of human astrocytes were used to examine expression of these receptors at the mRNA level using RT-PCR and qPCR, and at the protein level using immunocytochemistry. The functionality role of the receptors was assessed using intracellular calcium influx experiments and measuring extracellular lactate dehydrogenase (LDH activity in primary cultures of human astrocytes treated with glutamate and QUIN. We found that all seven currently known NMDAR subunits (NR1, NR2A, NR2B, NR2C, NR2D, NR3A and NR3B are expressed in astrocytes, but at different levels. Calcium influx studies revealed that both glutamate and QUIN could activate astrocytic NMDARs, which stimulates Ca2+ influx into the cell and can result in dysfunction and death of astrocytes. Our data also show that the NMDAR ion channel blockers, MK801, and memantine can attenuate glutamate and QUIN mediated cell excitotoxicity. This suggests that the mechanism of glutamate and QUIN gliotoxicity is at least partially mediated by excessive stimulation of NMDARs. The present study is the first to provide definitive evidence for the existence of functional NMDAR expression in human primary astrocytes. This discovery has significant implications for redefining the cellular interaction between glia and neurons in both physiological processes and pathological conditions.

  20. Is there an astrocyte-neuron ketone body shuttle?

    Science.gov (United States)

    Guzmán, M; Blázquez, C

    2001-01-01

    Ketone bodies can replace glucose as the major source of brain energy when glucose becomes scarce. Although it is generally assumed that the liver supplies extrahepatic tissues with ketone bodies, recent evidence shows that astrocytes are also ketogenic cells. Moreover, the partitioning of fatty acids between ketogenesis and ceramide synthesis de novo might control the survival/death decision of neural cells. These findings support the notion that astrocytes might supply neurons with ketone bodies in situ, and raise the possibility that astrocyte ketogenesis is a cytoprotective pathway.

  1. Endothelial-astrocytic interactions in acute liver failure.

    Science.gov (United States)

    Jayakumar, A R; Norenberg, M D

    2013-06-01

    Brain edema and the subsequent increase in intracranial pressure are major neurological complications of acute liver failure (ALF), and swelling of astrocytes (cytotoxic brain edema) is the most prominent neuropathological abnormality in ALF. Recent studies, however, have suggested the co-existence of cytotoxic and vasogenic mechanisms in the brain edema associated with ALF. This review 1) summarizes the nature of the brain edema in humans and experimental animals with ALF; 2) reviews in vitro studies supporting the presence of cytotoxic brain edema (cell swelling in cultured astrocytes); and 3) documents the role of brain endothelial cells in the development of astrocyte swelling/brain edema in ALF.

  2. [2,4-(13)C]β-hydroxybutyrate metabolism in astrocytes and C6 glioblastoma cells.

    Science.gov (United States)

    Eloqayli, Haytham; Melø, Torun M; Haukvik, Anne; Sonnewald, Ursula

    2011-08-01

    This study was undertaken to determine if the ketogenic diet could be useful for glioblastoma patients. The hypothesis tested was whether glioblastoma cells can metabolize ketone bodies. Cerebellar astrocytes and C6 glioblastoma cells were incubated in glutamine and serum free medium containing [2,4-(13)C]β-hydroxybutyrate (BHB) with and without glucose. Furthermore, C6 cells were incubated with [1-(13)C]glucose in the presence and absence of BHB. Cell extracts were analyzed by mass spectrometry and media by (1)H magnetic resonance spectroscopy and HPLC. Using [2,4-(13)C]BHB and [1-(13)C]glucose it could be shown that C6 cells, in analogy to astrocytes, had efficient mitochondrial activity, evidenced by (13)C labeling of glutamate, glutamine and aspartate. However, in the presence of glucose, astrocytes were able to produce and release glutamine, whereas this was not accomplished by the C6 cells, suggesting lack of anaplerosis in the latter. We hypothesize that glioblastoma cells kill neurons by not supplying the necessary glutamine, and by releasing glutamate.

  3. Human microglia and astrocytes express cGAS-STING viral sensing components.

    Science.gov (United States)

    Jeffries, Austin M; Marriott, Ian

    2017-09-29

    While microglia and astrocytes are known to produce key inflammatory and anti-viral mediators following infection with replicative DNA viruses, the mechanisms by which these cell types perceive such threats are poorly understood. Recently, cyclic GMP-AMP synthase (cGAS) has been identified as an important cytosolic sensor for DNA viruses and retroviruses in peripheral leukocytes. Here we confirm the ability of human microglial and astrocytic cell lines and primary human glia to respond to foreign intracellular double stranded DNA. Importantly, we provide the first demonstration that human microglia and astrocytes show robust levels of cGAS protein expression at rest and following activation. Furthermore, we show these cell types also constitutively express the critical downstream cGAS adaptor protein, stimulator of interferon genes (STING). The present finding that human glia express the principle components of the cGAS-STING pathway provides a foundation for future studies to investigate the relative importance of these molecules in clinically relevant viral CNS infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Dynamic 18F-FET PET in newly diagnosed astrocytic low-grade glioma identifies high-risk patients.

    Science.gov (United States)

    Jansen, Nathalie L; Suchorska, Bogdana; Wenter, Vera; Eigenbrod, Sabina; Schmid-Tannwald, Christine; Zwergal, Andreas; Niyazi, Maximilian; Drexler, Mark; Bartenstein, Peter; Schnell, Oliver; Tonn, Jörg-Christian; Thon, Niklas; Kreth, Friedrich-Wilhelm; la Fougère, Christian

    2014-02-01

    Because the clinical course of low-grade gliomas in the individual adult patient varies considerably and is unpredictable, we investigated the prognostic value of dynamic (18)F-fluorethyltyrosine ((18)F-FET) PET in the early diagnosis of astrocytic low-grade glioma (World Health Organization grade II). Fifty-nine patients with newly diagnosed low-grade glioma and dynamic (18)F-FET PET before histopathologic assessment were retrospectively investigated. (18)F-FET PET analysis comprised a qualitative visual classification of lesions; assessment of the semiquantitative parameters maximal, mean, and total standardized uptake value as ratio to background and biologic tumor volume; and dynamic analysis of intratumoral (18)F-FET uptake over time (increasing vs. decreasing time-activity curves). The correlation between PET parameters and progression-free survival, overall survival, and time to malignant transformation was investigated. (18)F-FET uptake greater than the background level was found in 34 of 59 tumors. Dynamic (18)F-FET uptake analysis was available for 30 of these 34 patients. Increasing and decreasing time-activity curves were found in 18 and 12 patients, respectively. Neither the qualitative factor presence or absence of (18)F-FET uptake nor any of the semiquantitative uptake parameters significantly influenced clinical outcome. In contrast, decreasing time-activity curves in the kinetic analysis were highly prognostic for shorter progression-free survival and time to malignant transformation (P dynamic (18)F-FET PET constitute an unfavorable prognostic factor in astrocytic low-grade glioma and, by identifying high-risk patients, may ease treatment decisions.

  5. Astrocyte and Oligodendrocyte Connexins of the Glial Syncytium in Relation to Astrocyte Anatomical Domains and Spatial Buffering

    OpenAIRE

    NAGY, JAMES I.; RASH, JOHN E.

    2003-01-01

    Astroctyes express a set of three connexins (Cx26, Cx30, and Cx43) that are contained in astrocyte-to-astrocyte (A/A) gap junctions; oligodendrocytes express a different set of three connexins (Cx29, Cx32, and Cx47) that are contained in the oligodendrocyte side of necessarily heterotypic astrocyte-to-oligodendrocyte (A/O) gap junctions, and there is little ultrastructural evidence for gap junction formation between individual oligodendrocytes. In addition, primarily Cx29 and Cx32 are contain...

  6. Channel-Mediated Lactate Release by K+-Stimulated Astrocytes

    KAUST Repository

    Sotelo-Hitschfeld, T.; Niemeyer, M. I.; Machler, P.; Ruminot, I.; Lerchundi, R.; Wyss, M. T.; Stobart, J.; Fernandez-Moncada, I.; Valdebenito, R.; Garrido-Gerter, P.; Contreras-Baeza, Y.; Schneider, B. L.; Aebischer, P.; Lengacher, S.; San Martin, A.; Le Douce, J.; Bonvento, G.; Magistretti, Pierre J.; Sepulveda, F. V.; Weber, B.; Barros, L. F.

    2015-01-01

    in response to local field stimulation. The existence of an astrocytic lactate reservoir and its quick mobilization via an ion channel in response to a neuronal cue provides fresh support to lactate roles in neuronal fueling and in gliotransmission.

  7. A critical role for astrocytes in hypercapnic vasodilation in brain

    DEFF Research Database (Denmark)

    Howarth, C; Sutherland, B A; Choi, H B

    2017-01-01

    increases in astrocyte calcium signaling which in turn stimulates COX-1 activity and generates downstream PgE2 production. We demonstrate that astrocyte calcium-evoked production of the vasodilator, PgE2, is critically dependent on brain levels of the antioxidant, glutathione. These data suggest a novel......Cerebral blood flow (CBF) is controlled by arterial blood pressure, arterial CO2, arterial O2, and brain activity and is largely constant in the awake state. Although small changes in arterial CO2 are particularly potent to change CBF (1 mmHg variation in arterial CO2 changes CBF by 3...... in brain slices with in vivo work in rats and C57Bl/6J mice to examine the hemodynamic responses to CO2 and somatosensory stimulation before and after inhibition of astrocytic glutathione and PgE2 synthesis. We demonstrate that hypercapnia (increased CO2) evokes an increase in astrocyte [Ca(2+)]i...

  8. Astrocyte regulation of sleep circuits: experimental and modeling perspectives

    Directory of Open Access Journals (Sweden)

    Tommaso eFellin

    2012-08-01

    Full Text Available Integrated within neural circuits, astrocytes have recently been shown to modulate brain rhythms thought to mediate sleep function. Experimental evidence suggests that local impact of astrocytes on single synapses translates into global modulation of neuronal networks and behavior. We discuss these findings in the context of current conceptual models of sleep generation and function, each of which have historically focused on neural mechanisms. We highlight the implications and the challenges introduced by these results from a conceptual and computational perspective. We further provide modeling directions on how these data might extend our knowledge of astrocytic properties and sleep function. Given our evolving understanding of how local cellular activities during sleep lead to functional outcomes for the brain, further mechanistic and theoretical understanding of astrocytic contribution to these dynamics will undoubtedly be of great basic and translational benefit.

  9. Identification of diverse astrocyte populations and their malignant analogs.

    Science.gov (United States)

    John Lin, Chia-Ching; Yu, Kwanha; Hatcher, Asante; Huang, Teng-Wei; Lee, Hyun Kyoung; Carlson, Jeffrey; Weston, Matthew C; Chen, Fengju; Zhang, Yiqun; Zhu, Wenyi; Mohila, Carrie A; Ahmed, Nabil; Patel, Akash J; Arenkiel, Benjamin R; Noebels, Jeffrey L; Creighton, Chad J; Deneen, Benjamin

    2017-03-01

    Astrocytes are the most abundant cell type in the brain, where they perform a wide array of functions, yet the nature of their cellular heterogeneity and how it oversees these diverse roles remains shrouded in mystery. Using an intersectional fluorescence-activated cell sorting-based strategy, we identified five distinct astrocyte subpopulations present across three brain regions that show extensive molecular diversity. Application of this molecular insight toward function revealed that these populations differentially support synaptogenesis between neurons. We identified correlative populations in mouse and human glioma and found that the emergence of specific subpopulations during tumor progression corresponded with the onset of seizures and tumor invasion. In sum, we have identified subpopulations of astrocytes in the adult brain and their correlates in glioma that are endowed with diverse cellular, molecular and functional properties. These populations selectively contribute to synaptogenesis and tumor pathophysiology, providing a blueprint for understanding diverse astrocyte contributions to neurological disease.

  10. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways

    Science.gov (United States)

    Chung, Won-Suk; Clarke, Laura E.; Wang, Gordon X.; Stafford, Benjamin K.; Sher, Alexander; Chakraborty, Chandrani; Joung, Julia; Foo, Lynette C.; Thompson, Andrew; Chen, Chinfei; Smith, Stephen J.; Barres, Ben A.

    2013-12-01

    To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes.

  11. Patterning of functional human astrocytes onto parylene-C/SiO2 substrates for the study of Ca2+ dynamics in astrocytic networks

    Science.gov (United States)

    Raos, B. J.; Simpson, M. C.; Doyle, C. S.; Murray, A. F.; Graham, E. S.; Unsworth, C. P.

    2018-06-01

    Objective. Recent literature suggests that astrocytes form organized functional networks and communicate through transient changes in cytosolic Ca2+. Traditional techniques to investigate network activity, such as pharmacological blocking or genetic knockout, are difficult to restrict to individual cells. The objective of this work is to develop cell-patterning techniques to physically manipulate astrocytic interactions to enable the study of Ca2+ in astrocytic networks. Approach. We investigate how an in vitro cell-patterning platform that utilizes geometric patterns of parylene-C on SiO2 can be used to physically isolate single astrocytes and small astrocytic networks. Main results. We report that single astrocytes are effectively isolated on 75  ×  75 µm square parylene nodes, whereas multi-cellular astrocytic networks are isolated on larger nodes, with the mean number of astrocytes per cluster increasing as a function of node size. Additionally, we report that astrocytes in small multi-cellular clusters exhibit spatio-temporal clustering of Ca2+ transients. Finally, we report that the frequency and regularity of Ca2+ transients was positively correlated with astrocyte connectivity. Significance. The significance of this work is to demonstrate how patterning hNT astrocytes replicates spatio-temporal clustering of Ca2+ signalling that is observed in vivo but not in dissociated in vitro cultures. We therefore highlight the importance of the structure of astrocytic networks in determining ensemble Ca2+ behaviour.

  12. Electric field-induced astrocyte alignment directs neurite outgrowth

    OpenAIRE

    ALEXANDER, JOHN K.; FUSS, BABETTE; COLELLO, RAYMOND J.

    2006-01-01

    The extension and directionality of neurite outgrowth are key to achieving successful target connections during both CNS development and during the re-establishment of connections lost after neural trauma. The degree of axonal elongation depends, in large part, on the spatial arrangement of astrocytic processes rich in growth-promoting proteins. Because astrocytes in culture align their processes on exposure to an electrical field of physiological strength, we sought to determine the extent t...

  13. Subthalamic nucleus electrical stimulation modulates calcium activity of nigral astrocytes.

    Directory of Open Access Journals (Sweden)

    Elodie Barat

    Full Text Available The substantia nigra pars reticulata (SNr is a major output nucleus of the basal ganglia, delivering inhibitory efferents to the relay nuclei of the thalamus. Pathological hyperactivity of SNr neurons is known to be responsible for some motor disorders e.g. in Parkinson's disease. One way to restore this pathological activity is to electrically stimulate one of the SNr input, the excitatory subthalamic nucleus (STN, which has emerged as an effective treatment for parkinsonian patients. The neuronal network and signal processing of the basal ganglia are well known but, paradoxically, the role of astrocytes in the regulation of SNr activity has never been studied.In this work, we developed a rat brain slice model to study the influence of spontaneous and induced excitability of afferent nuclei on SNr astrocytes calcium activity. Astrocytes represent the main cellular population in the SNr and display spontaneous calcium activities in basal conditions. Half of this activity is autonomous (i.e. independent of synaptic activity while the other half is dependent on spontaneous glutamate and GABA release, probably controlled by the pace-maker activity of the pallido-nigral and subthalamo-nigral loops. Modification of the activity of the loops by STN electrical stimulation disrupted this astrocytic calcium excitability through an increase of glutamate and GABA releases. Astrocytic AMPA, mGlu and GABA(A receptors were involved in this effect.Astrocytes are now viewed as active components of neural networks but their role depends on the brain structure concerned. In the SNr, evoked activity prevails and autonomous calcium activity is lower than in the cortex or hippocampus. Our data therefore reflect a specific role of SNr astrocytes in sensing the STN-GPe-SNr loops activity and suggest that SNr astrocytes could potentially feedback on SNr neuronal activity. These findings have major implications given the position of SNr in the basal ganglia network.

  14. Subthalamic nucleus electrical stimulation modulates calcium activity of nigral astrocytes.

    Science.gov (United States)

    Barat, Elodie; Boisseau, Sylvie; Bouyssières, Céline; Appaix, Florence; Savasta, Marc; Albrieux, Mireille

    2012-01-01

    The substantia nigra pars reticulata (SNr) is a major output nucleus of the basal ganglia, delivering inhibitory efferents to the relay nuclei of the thalamus. Pathological hyperactivity of SNr neurons is known to be responsible for some motor disorders e.g. in Parkinson's disease. One way to restore this pathological activity is to electrically stimulate one of the SNr input, the excitatory subthalamic nucleus (STN), which has emerged as an effective treatment for parkinsonian patients. The neuronal network and signal processing of the basal ganglia are well known but, paradoxically, the role of astrocytes in the regulation of SNr activity has never been studied. In this work, we developed a rat brain slice model to study the influence of spontaneous and induced excitability of afferent nuclei on SNr astrocytes calcium activity. Astrocytes represent the main cellular population in the SNr and display spontaneous calcium activities in basal conditions. Half of this activity is autonomous (i.e. independent of synaptic activity) while the other half is dependent on spontaneous glutamate and GABA release, probably controlled by the pace-maker activity of the pallido-nigral and subthalamo-nigral loops. Modification of the activity of the loops by STN electrical stimulation disrupted this astrocytic calcium excitability through an increase of glutamate and GABA releases. Astrocytic AMPA, mGlu and GABA(A) receptors were involved in this effect. Astrocytes are now viewed as active components of neural networks but their role depends on the brain structure concerned. In the SNr, evoked activity prevails and autonomous calcium activity is lower than in the cortex or hippocampus. Our data therefore reflect a specific role of SNr astrocytes in sensing the STN-GPe-SNr loops activity and suggest that SNr astrocytes could potentially feedback on SNr neuronal activity. These findings have major implications given the position of SNr in the basal ganglia network.

  15. Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network

    OpenAIRE

    Mart?n-Jim?nez, Cynthia A.; Salazar-Barreto, Diego; Barreto, George E.; Gonz?lez, Janneth

    2017-01-01

    Astrocytes are the most abundant cells of the central nervous system; they have a predominant role in maintaining brain metabolism. In this sense, abnormal metabolic states have been found in different neuropathological diseases. Determination of metabolic states of astrocytes is difficult to model using current experimental approaches given the high number of reactions and metabolites present. Thus, genome-scale metabolic networks derived from transcriptomic data can be used as a framework t...

  16. Higher transport and metabolism of glucose in astrocytes compared with neurons: a multiphoton study of hippocampal and cerebellar tissue slices.

    Science.gov (United States)

    Jakoby, Patrick; Schmidt, Elke; Ruminot, Iván; Gutiérrez, Robin; Barros, L Felipe; Deitmer, Joachim W

    2014-01-01

    Glucose is the most important energy substrate for the brain, and its cellular distribution is a subject of great current interest. We have employed fluorescent glucose probes, the 2-deoxy-D-glucose derivates 6- and 2-([N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose) (2-NBDG), to measure transport and metabolism of glucose in acute slices of mouse hippocampus and cerebellum. In the hippocampus, 6-NBDG, which is not metabolized and hence indicates glucose transport, was taken up faster in astrocyte-rich layers (Stratum radiatum [S.r.], Stratum oriens [S.o.]) than in pyramidal cells. Metabolizable 2-NBDG showed larger signals in S.r. and S.o. than in Stratum pyramidale, suggesting faster glucose utilization rate in the astrocyte versus the neuronal compartment. Similarly, we found higher uptake and temperature-sensitive metabolism of 2-NBDG in Bergmann glia when compared with adjacent Purkinje neurons of cerebellar slices. A comparison between 6-NBDG transport and glucose transport in cultured cells using a fluorescence resonance energy transfer nanosensor showed that relative to glucose, 6-NBDG is transported better by neurons than by astrocytes. These results indicate that the preferential transport and metabolism of glucose by glial cells versus neurons proposed for the hippocampus and cerebellum by ourselves (in vitro) and for the barrel cortex by Chuquet et al. (in vivo) is more pronounced than anticipated.

  17. Targeting of astrocytic glucose metabolism by beta-hydroxybutyrate.

    Science.gov (United States)

    Valdebenito, Rocío; Ruminot, Iván; Garrido-Gerter, Pamela; Fernández-Moncada, Ignacio; Forero-Quintero, Linda; Alegría, Karin; Becker, Holger M; Deitmer, Joachim W; Barros, L Felipe

    2016-10-01

    The effectiveness of ketogenic diets and intermittent fasting against neurological disorders has brought interest to the effects of ketone bodies on brain cells. These compounds are known to modify the metabolism of neurons, but little is known about their effect on astrocytes, cells that control the supply of glucose to neurons and also modulate neuronal excitability through the glycolytic production of lactate. Here we have used genetically-encoded Förster Resonance Energy Transfer nanosensors for glucose, pyruvate and ATP to characterize astrocytic energy metabolism at cellular resolution. Our results show that the ketone body beta-hydroxybutyrate strongly inhibited astrocytic glucose consumption in mouse astrocytes in mixed cultures, in organotypic hippocampal slices and in acute hippocampal slices prepared from ketotic mice, while blunting the stimulation of glycolysis by physiological and pathophysiological stimuli. The inhibition of glycolysis was paralleled by an increased ability of astrocytic mitochondria to metabolize pyruvate. These results support the emerging notion that astrocytes contribute to the neuroprotective effect of ketone bodies. © The Author(s) 2015.

  18. Astrocytes regulate heterogeneity of presynaptic strengths in hippocampal networks

    Science.gov (United States)

    Letellier, Mathieu; Park, Yun Kyung; Chater, Thomas E.; Chipman, Peter H.; Gautam, Sunita Ghimire; Oshima-Takago, Tomoko; Goda, Yukiko

    2016-01-01

    Dendrites are neuronal structures specialized for receiving and processing information through their many synaptic inputs. How input strengths are modified across dendrites in ways that are crucial for synaptic integration and plasticity remains unclear. We examined in single hippocampal neurons the mechanism of heterosynaptic interactions and the heterogeneity of synaptic strengths of pyramidal cell inputs. Heterosynaptic presynaptic plasticity that counterbalances input strengths requires N-methyl-d-aspartate receptors (NMDARs) and astrocytes. Importantly, this mechanism is shared with the mechanism for maintaining highly heterogeneous basal presynaptic strengths, which requires astrocyte Ca2+ signaling involving NMDAR activation, astrocyte membrane depolarization, and L-type Ca2+ channels. Intracellular infusion of NMDARs or Ca2+-channel blockers into astrocytes, conditionally ablating the GluN1 NMDAR subunit, or optogenetically hyperpolarizing astrocytes with archaerhodopsin promotes homogenization of convergent presynaptic inputs. Our findings support the presence of an astrocyte-dependent cellular mechanism that enhances the heterogeneity of presynaptic strengths of convergent connections, which may help boost the computational power of dendrites. PMID:27118849

  19. Preferential lentiviral targeting of astrocytes in the central nervous system.

    Directory of Open Access Journals (Sweden)

    Michael Fassler

    Full Text Available The ability to visualize and genetically manipulate specific cell populations of the central nervous system (CNS is fundamental to a better understanding of brain functions at the cellular and molecular levels. Tools to selectively target cells of the CNS include molecular genetics, imaging, and use of transgenic animals. However, these approaches are technically challenging, time consuming, and difficult to control. Viral-mediated targeting of cells in the CNS can be highly beneficial for studying and treating neurodegenerative diseases. Yet, despite specific marking of numerous cell types in the CNS, in vivo selective targeting of astrocytes has not been optimized. In this study, preferential targeting of astrocytes in the CNS was demonstrated using engineered lentiviruses that were pseudotyped with a modified Sindbis envelope and displayed anti-GLAST IgG on their surfaces as an attachment moiety. Viral tropism for astrocytes was initially verified in vitro in primary mixed glia cultures. When injected into the brains of mice, lentiviruses that displayed GLAST IgG on their surface, exhibited preferential astrocyte targeting, compared to pseudotyped lentiviruses that did not incorporate any IgG or that expressed a control isotype IgG. Overall, this approach is highly flexible and can be exploited to selectively target astrocytes or other cell types of the CNS. As such, it can open a window to visualize and genetically manipulate astrocytes or other cells of the CNS as means of research and treatment.

  20. Metabolic aspects of Neuronal – Oligodendrocytic - Astrocytic (NOA interactions

    Directory of Open Access Journals (Sweden)

    Ana I Amaral

    2013-05-01

    Full Text Available Whereas astrocytes have been in the limelight on the metabolic glucose interaction scene for a while, oligodendrocytes are still waiting for a place. We would like to call oligodendrocyte interaction with astrocytes and neurons: NOA (neuron – oligodendrocyte – astrocyte interactions. One of the reasons to find out more about oligodendrocyte interaction with neurons and astrocytes is to detect markers of healthy oligodendrocyte metabolism, to be used in diagnosis and treatment assessment in diseases such as Perinatal hypoxic-ischemic encephalopathy and multiple sclerosis in which oligodendrocyte function is impaired, possibly due to glutamate toxicity. Glutamate receptors are expressed in oligodendrocytes and also vesicular glutamate release in the white matter has received considerable attention. It is also important to establish if the glial precursor cells recruited to damaged areas are developing oligodendrocyte characteristics or those of astrocytes. Thus, it is important to study astrocytes and oligodendrocytes separately to be able to differentiate between them. This is of particular importance in the white matter where the number of oligodendrocytes is considerable. The present review summarizes the not very extensive information published on glucose metabolism in oligodendrocytes in an attempt to stimulate research into this important field.

  1. An Efficient Platform for Astrocyte Differentiation from Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Julia TCW

    2017-08-01

    Full Text Available Growing evidence implicates the importance of glia, particularly astrocytes, in neurological and psychiatric diseases. Here, we describe a rapid and robust method for the differentiation of highly pure populations of replicative astrocytes from human induced pluripotent stem cells (hiPSCs, via a neural progenitor cell (NPC intermediate. We evaluated this protocol across 42 NPC lines (derived from 30 individuals. Transcriptomic analysis demonstrated that hiPSC-astrocytes from four individuals are highly similar to primary human fetal astrocytes and characteristic of a non-reactive state. hiPSC-astrocytes respond to inflammatory stimulants, display phagocytic capacity, and enhance microglial phagocytosis. hiPSC-astrocytes also possess spontaneous calcium transient activity. Our protocol is a reproducible, straightforward (single medium, and rapid (<30 days method to generate populations of hiPSC-astrocytes that can be used for neuron-astrocyte and microglia-astrocyte co-cultures for the study of neuropsychiatric disorders.

  2. The phosphorylation status and cytoskeletal remodeling of striatal astrocytes treated with quinolinic acid

    International Nuclear Information System (INIS)

    Pierozan, Paula; Ferreira, Fernanda; Ortiz de Lima, Bárbara; Gonçalves Fernandes, Carolina; Totarelli Monteforte, Priscila; Castro Medaglia, Natalia de; Bincoletto, Claudia; Soubhi Smaili, Soraya; Pessoa-Pureur, Regina

    2014-01-01

    Quinolinic acid (QUIN) is a glutamate agonist which markedly enhances the vulnerability of neural cells to excitotoxicity. QUIN is produced from the amino acid tryptophan through the kynurenine pathway (KP). Dysregulation of this pathway is associated with neurodegenerative conditions. In this study we treated striatal astrocytes in culture with QUIN and assayed the endogenous phosphorylating system associated with glial fibrillary acidic protein (GFAP) and vimentin as well as cytoskeletal remodeling. After 24 h incubation with 100 µM QUIN, cells were exposed to 32 P-orthophosphate and/or protein kinase A (PKA), protein kinase dependent of Ca 2+ /calmodulin II (PKCaMII) or protein kinase C (PKC) inhibitors, H89 (20 μM), KN93 (10 μM) and staurosporin (10 nM), respectively. Results showed that hyperphosphorylation was abrogated by PKA and PKC inhibitors but not by the PKCaMII inhibitor. The specific antagonists to ionotropic NMDA and non-NMDA (50 µM DL-AP5 and CNQX, respectively) glutamate receptors as well as to metabotropic glutamate receptor (mGLUR; 50 µM MCPG), mGLUR1 (100 µM MPEP) and mGLUR5 (10 µM 4C3HPG) prevented the hyperphosphorylation provoked by QUIN. Also, intra and extracellular Ca 2+ quelators (1 mM EGTA; 10 µM BAPTA-AM, respectively) prevented QUIN-mediated effect, while Ca 2+ influx through voltage-dependent Ca 2+ channel type L (L-VDCC) (blocker: 10 µM verapamil) is not implicated in this effect. Morphological analysis showed dramatically altered actin cytoskeleton with concomitant change of morphology to fusiform and/or flattened cells with retracted cytoplasm and disruption of the GFAP meshwork, supporting misregulation of actin cytoskeleton. Both hyperphosphorylation and cytoskeletal remodeling were reversed 24 h after QUIN removal. Astrocytes are highly plastic cells and the vulnerability of astrocyte cytoskeleton may have important implications for understanding the neurotoxicity of QUIN in neurodegenerative disorders. - Highlights:

  3. The phosphorylation status and cytoskeletal remodeling of striatal astrocytes treated with quinolinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Pierozan, Paula; Ferreira, Fernanda; Ortiz de Lima, Bárbara; Gonçalves Fernandes, Carolina [Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003 (Brazil); Totarelli Monteforte, Priscila; Castro Medaglia, Natalia de; Bincoletto, Claudia; Soubhi Smaili, Soraya [Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP (Brazil); Pessoa-Pureur, Regina, E-mail: rpureur@ufrgs.br [Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003 (Brazil)

    2014-04-01

    Quinolinic acid (QUIN) is a glutamate agonist which markedly enhances the vulnerability of neural cells to excitotoxicity. QUIN is produced from the amino acid tryptophan through the kynurenine pathway (KP). Dysregulation of this pathway is associated with neurodegenerative conditions. In this study we treated striatal astrocytes in culture with QUIN and assayed the endogenous phosphorylating system associated with glial fibrillary acidic protein (GFAP) and vimentin as well as cytoskeletal remodeling. After 24 h incubation with 100 µM QUIN, cells were exposed to {sup 32}P-orthophosphate and/or protein kinase A (PKA), protein kinase dependent of Ca{sup 2+}/calmodulin II (PKCaMII) or protein kinase C (PKC) inhibitors, H89 (20 μM), KN93 (10 μM) and staurosporin (10 nM), respectively. Results showed that hyperphosphorylation was abrogated by PKA and PKC inhibitors but not by the PKCaMII inhibitor. The specific antagonists to ionotropic NMDA and non-NMDA (50 µM DL-AP5 and CNQX, respectively) glutamate receptors as well as to metabotropic glutamate receptor (mGLUR; 50 µM MCPG), mGLUR1 (100 µM MPEP) and mGLUR5 (10 µM 4C3HPG) prevented the hyperphosphorylation provoked by QUIN. Also, intra and extracellular Ca{sup 2+} quelators (1 mM EGTA; 10 µM BAPTA-AM, respectively) prevented QUIN-mediated effect, while Ca{sup 2+} influx through voltage-dependent Ca{sup 2+} channel type L (L-VDCC) (blocker: 10 µM verapamil) is not implicated in this effect. Morphological analysis showed dramatically altered actin cytoskeleton with concomitant change of morphology to fusiform and/or flattened cells with retracted cytoplasm and disruption of the GFAP meshwork, supporting misregulation of actin cytoskeleton. Both hyperphosphorylation and cytoskeletal remodeling were reversed 24 h after QUIN removal. Astrocytes are highly plastic cells and the vulnerability of astrocyte cytoskeleton may have important implications for understanding the neurotoxicity of QUIN in neurodegenerative

  4. Hippocampal Astrocytes in Migrating and Wintering Semipalmated Sandpiper Calidris pusilla.

    Science.gov (United States)

    Carvalho-Paulo, Dario; de Morais Magalhães, Nara G; de Almeida Miranda, Diego; Diniz, Daniel G; Henrique, Ediely P; Moraes, Isis A M; Pereira, Patrick D C; de Melo, Mauro A D; de Lima, Camila M; de Oliveira, Marcus A; Guerreiro-Diniz, Cristovam; Sherry, David F; Diniz, Cristovam W P

    2017-01-01

    Seasonal migratory birds return to the same breeding and wintering grounds year after year, and migratory long-distance shorebirds are good examples of this. These tasks require learning and long-term spatial memory abilities that are integrated into a navigational system for repeatedly locating breeding, wintering, and stopover sites. Previous investigations focused on the neurobiological basis of hippocampal plasticity and numerical estimates of hippocampal neurogenesis in birds but only a few studies investigated potential contributions of glial cells to hippocampal-dependent tasks related to migration. Here we hypothesized that the astrocytes of migrating and wintering birds may exhibit significant morphological and numerical differences connected to the long-distance flight. We used as a model the semipalmated sandpiper Calidris pusilla , that migrates from northern Canada and Alaska to South America. Before the transatlantic non-stop long-distance component of their flight, the birds make a stopover at the Bay of Fundy in Canada. To test our hypothesis, we estimated total numbers and compared the three-dimensional (3-D) morphological features of adult C. pusilla astrocytes captured in the Bay of Fundy ( n = 249 cells) with those from birds captured in the coastal region of Bragança, Brazil, during the wintering period ( n = 250 cells). Optical fractionator was used to estimate the number of astrocytes and for 3-D reconstructions we used hierarchical cluster analysis. Both morphological phenotypes showed reduced morphological complexity after the long-distance non-stop flight, but the reduction in complexity was much greater in Type I than in Type II astrocytes. Coherently, we also found a significant reduction in the total number of astrocytes after the transatlantic flight. Taken together these findings suggest that the long-distance non-stop flight altered significantly the astrocytes population and that morphologically distinct astrocytes may play

  5. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.

    Science.gov (United States)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H; Skytt, Dorte M; Waagepetersen, Helle S

    2015-12-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte glutamate and glucose metabolism employing siRNA mediated knock down (KD) of GDH in cultured astrocytes using stable and radioactive isotopes for metabolic mapping. An increased level of aspartate was observed upon exposure to [U-(13) C]glutamate in astrocytes exhibiting reduced GDH activity. (13) C Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids. © 2015 Wiley Periodicals, Inc.

  6. Hippocampal Astrocytes in Migrating and Wintering Semipalmated Sandpiper Calidris pusilla

    Directory of Open Access Journals (Sweden)

    Dario Carvalho-Paulo

    2018-01-01

    Full Text Available Seasonal migratory birds return to the same breeding and wintering grounds year after year, and migratory long-distance shorebirds are good examples of this. These tasks require learning and long-term spatial memory abilities that are integrated into a navigational system for repeatedly locating breeding, wintering, and stopover sites. Previous investigations focused on the neurobiological basis of hippocampal plasticity and numerical estimates of hippocampal neurogenesis in birds but only a few studies investigated potential contributions of glial cells to hippocampal-dependent tasks related to migration. Here we hypothesized that the astrocytes of migrating and wintering birds may exhibit significant morphological and numerical differences connected to the long-distance flight. We used as a model the semipalmated sandpiper Calidris pusilla, that migrates from northern Canada and Alaska to South America. Before the transatlantic non-stop long-distance component of their flight, the birds make a stopover at the Bay of Fundy in Canada. To test our hypothesis, we estimated total numbers and compared the three-dimensional (3-D morphological features of adult C. pusilla astrocytes captured in the Bay of Fundy (n = 249 cells with those from birds captured in the coastal region of Bragança, Brazil, during the wintering period (n = 250 cells. Optical fractionator was used to estimate the number of astrocytes and for 3-D reconstructions we used hierarchical cluster analysis. Both morphological phenotypes showed reduced morphological complexity after the long-distance non-stop flight, but the reduction in complexity was much greater in Type I than in Type II astrocytes. Coherently, we also found a significant reduction in the total number of astrocytes after the transatlantic flight. Taken together these findings suggest that the long-distance non-stop flight altered significantly the astrocytes population and that morphologically distinct astrocytes

  7. Hyperglycaemia and diabetes impair gap junctional communication among astrocytes.

    Science.gov (United States)

    Gandhi, Gautam K; Ball, Kelly K; Cruz, Nancy F; Dienel, Gerald A

    2010-03-15

    Sensory and cognitive impairments have been documented in diabetic humans and animals, but the pathophysiology of diabetes in the central nervous system is poorly understood. Because a high glucose level disrupts gap junctional communication in various cell types and astrocytes are extensively coupled by gap junctions to form large syncytia, the influence of experimental diabetes on gap junction channel-mediated dye transfer was assessed in astrocytes in tissue culture and in brain slices from diabetic rats. Astrocytes grown in 15-25 mmol/l glucose had a slow-onset, poorly reversible decrement in gap junctional communication compared with those grown in 5.5 mmol/l glucose. Astrocytes in brain slices from adult STZ (streptozotocin)-treated rats at 20-24 weeks after the onset of diabetes also exhibited reduced dye transfer. In cultured astrocytes grown in high glucose, increased oxidative stress preceded the decrement in dye transfer by several days, and gap junctional impairment was prevented, but not rescued, after its manifestation by compounds that can block or reduce oxidative stress. In sharp contrast with these findings, chaperone molecules known to facilitate protein folding could prevent and rescue gap junctional impairment, even in the presence of elevated glucose level and oxidative stress. Immunostaining of Cx (connexin) 43 and 30, but not Cx26, was altered by growth in high glucose. Disruption of astrocytic trafficking of metabolites and signalling molecules may alter interactions among astrocytes, neurons and endothelial cells and contribute to changes in brain function in diabetes. Involvement of the microvasculature may contribute to diabetic complications in the brain, the cardiovascular system and other organs.

  8. Novel cell separation method for molecular analysis of neuron-astrocyte cocultures

    Directory of Open Access Journals (Sweden)

    Andrea eGoudriaan

    2014-01-01

    Full Text Available Over the last decade, the importance of astrocyte-neuron communication in neuronal development and synaptic plasticity has become increasingly clear. Since neuron-astrocyte interactions represent highly dynamic and reciprocal processes, we hypothesized that many astrocyte genes may be regulated as a consequence of their interactions with maturing neurons. In order to identify such neuron-responsive astrocyte genes in vitro, we sought to establish an expedite technique for separation of neurons from co-cultured astrocytes. Our newly established method makes use of cold jet, which exploits different adhesion characteristics of subpopulations of cells (Jirsova et al., 1997, and is rapid, performed under ice-cold conditions and avoids protease-mediated isolation of astrocytes or time-consuming centrifugation, yielding intact astrocyte mRNA with approximately 90% of neuronal RNA removed. Using this purification method, we executed genome-wide profiling in which RNA derived from astrocyte-only cultures was compared with astrocyte RNA derived from differentiating neuron-astrocyte co-cultures. Data analysis determined that many astrocytic mRNAs and biological processes are regulated by neuronal interaction. Our results validate the cold jet as an efficient method to separate astrocytes from neurons in co-culture, and reveals that neurons induce robust gene-expression changes in co-cultured astrocytes.

  9. Palmitoylethanolamide Blunts Amyloid-β42-Induced Astrocyte Activation and Improves Neuronal Survival in Primary Mouse Cortical Astrocyte-Neuron Co-Cultures.

    Science.gov (United States)

    Beggiato, Sarah; Borelli, Andrea Celeste; Ferraro, Luca; Tanganelli, Sergio; Antonelli, Tiziana; Tomasini, Maria Cristina

    2018-01-01

    Based on the pivotal role of astrocytes in brain homeostasis and the strong metabolic cooperation existing between neurons and astrocytes, it has been suggested that astrocytic dysfunctions might cause and/or contribute to neuroinflammation and neurodegenerative processes. Therapeutic approaches aimed at both neuroprotection and neuroinflammation reduction may prove particularly effective in slowing the progression of these diseases. The endogenous lipid mediator palmitoylethanolamide (PEA) displayed neuroprotective and anti(neuro)inflammatory properties, and demonstrated interesting potential as a novel treatment for Alzheimer's disease. We firstly evaluated whether astrocytes could participate in regulating the Aβ42-induced neuronal damage, by using primary mouse astrocytes cell cultures and mixed astrocytes-neurons cultures. Furthermore, the possible protective effects of PEA against Aβ42-induced neuronal toxicity have also been investigated by evaluating neuronal viability, apoptosis, and morphometric parameters. The presence of astrocytes pre-exposed to Aβ42 (0.5μM; 24 h) induced a reduction of neuronal viability in primary mouse astrocytes-neurons co-cultures. Furthermore, under these experimental conditions, an increase in the number of neuronal apoptotic nuclei and a decrease in the number of MAP-2 positive neurons were observed. Finally, astrocytic Aβ42 pre-exposure induced an increase in the number of neurite aggregations/100μm as compared to control (i.e., untreated) astrocytes-neurons co-cultures. These effects were not observed in neurons cultured in the presence of astrocytes pre-exposed to PEA (0.1μM), applied 1 h before and maintained during Aβ42 treatment. Astrocytes contribute to Aβ42-induced neurotoxicity and PEA, by blunting Aβ42-induced astrocyte activation, improved neuronal survival in mouse astrocyte-neuron co-cultures.

  10. Striatal output markers do not alter in response to circling behaviour in 6-OHDA lesioned rats produced by acute or chronic administration of the monoamine uptake inhibitor BTS 74 398.

    Science.gov (United States)

    Lane, E L; Cheetham, S; Jenner, P

    2008-01-01

    The monoamine uptake inhibitor BTS 74 398 induces ipsilateral circling in 6-hydroxydopamine (6-OHDA) lesioned rats without induction of abnormal motor behaviours associated with L-dopa administration. We examined whether this was reflected in the expression of peptide mRNA in the direct and indirect striatal output pathways.6-OHDA lesioning of the nigrostriatal pathway increased striatal expression of PPE-A mRNA and decreased levels of PPT mRNA with PPE-B mRNA expression remaining unchanged. Acute L-dopa administration normalised PPE-A mRNA and elevated PPT mRNA while PPE-B mRNA expression remained unchanged. Acute administration of BTS 74 398 did not alter striatal peptide mRNA levels. Following chronic treatment with L-dopa, PPE-A mRNA expression in the lesioned striatum continued to be normalised and PPT mRNA was increased compared to the intact side. PPE-B mRNA expression was also markedly increased relative to the non-lesioned striatum. Chronic BTS 74 398 administration did not alter mRNA expression in the 6-OHDA lesioned striatum although small increases in PPT mRNA expression in the intact and sham lesioned striatum were observed. The failure of BTS 74 398 to induce changes in striatal neuropeptide mRNA correlated with its failure to induce abnormal motor behaviours or behavioural sensitisation but does not explain how it produces a reversal of motor deficits. An action in another area of the brain appears likely and may explain the subsequent failure of BTS 74 398 and related compounds to exert anti-parkinsonian actions in man.

  11. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems.

    Science.gov (United States)

    Thevenet, Jonathan; De Marchi, Umberto; Domingo, Jaime Santo; Christinat, Nicolas; Bultot, Laurent; Lefebvre, Gregory; Sakamoto, Kei; Descombes, Patrick; Masoodi, Mojgan; Wiederkehr, Andreas

    2016-05-01

    Medium-chain triglycerides have been used as part of a ketogenic diet effective in reducing epileptic episodes. The health benefits of the derived medium-chain fatty acids (MCFAs) are thought to result from the stimulation of liver ketogenesis providing fuel for the brain. We tested whether MCFAs have direct effects on energy metabolism in induced pluripotent stem cell-derived human astrocytes and neurons. Using single-cell imaging, we observed an acute pronounced reduction of the mitochondrial electrical potential and a concomitant drop of the NAD(P)H signal in astrocytes, but not in neurons. Despite the observed effects on mitochondrial function, MCFAs did not lower intracellular ATP levels or activate the energy sensor AMP-activated protein kinase. ATP concentrations in astrocytes were unaltered, even when blocking the respiratory chain, suggesting compensation through accelerated glycolysis. The MCFA decanoic acid (300 μM) promoted glycolysis and augmented lactate formation by 49.6%. The shorter fatty acid octanoic acid (300 μM) did not affect glycolysis but increased the rates of astrocyte ketogenesis 2.17-fold compared with that of control cells. MCFAs may have brain health benefits through the modulation of astrocyte metabolism leading to activation of shuttle systems that provide fuel to neighboring neurons in the form of lactate and ketone bodies.-Thevenet, J., De Marchi, U., Santo Domingo, J., Christinat, N., Bultot, L., Lefebvre, G., Sakamoto, K., Descombes, P., Masoodi, M., Wiederkehr, A. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems. © FASEB.

  12. Channel-Mediated Lactate Release by K+-Stimulated Astrocytes

    KAUST Repository

    Sotelo-Hitschfeld, T.

    2015-03-11

    Excitatory synaptic transmission is accompanied by a local surge in interstitial lactate that occurs despite adequate oxygen availability, a puzzling phenomenon termed aerobic glycolysis. In addition to its role as an energy substrate, recent studies have shown that lactate modulates neuronal excitability acting through various targets, including NMDA receptors and G-protein-coupled receptors specific for lactate, but little is known about the cellular and molecular mechanisms responsible for the increase in interstitial lactate. Using a panel of genetically encoded fluorescence nanosensors for energy metabolites, we show here that mouse astrocytes in culture, in cortical slices, and in vivo maintain a steady-state reservoir of lactate. The reservoir was released to the extracellular space immediately after exposure of astrocytes to a physiological rise in extracellular K+ or cell depolarization. Cell-attached patch-clamp analysis of cultured astrocytes revealed a 37 pS lactate-permeable ion channel activated by cell depolarization. The channel was modulated by lactate itself, resulting in a positive feedback loop for lactate release. A rapid fall in intracellular lactate levels was also observed in cortical astrocytes of anesthetized mice in response to local field stimulation. The existence of an astrocytic lactate reservoir and its quick mobilization via an ion channel in response to a neuronal cue provides fresh support to lactate roles in neuronal fueling and in gliotransmission.

  13. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Eva M; Koehler, Yvonne; Dringen, Ralf [Center for Biomolecular Interactions Bremen, University of Bremen, PO Box 330440, D-28334 Bremen (Germany); Diendorf, Joerg; Epple, Matthias, E-mail: ralf.dringen@uni-bremen.de [Inorganic Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Universitaetsstrasse 5-7, D-45117 Essen (Germany)

    2011-09-16

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO{sub 3} already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 {sup 0}C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 {sup 0}C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  14. Electrical coupling between hippocampal astrocytes in rat brain slices.

    Science.gov (United States)

    Meme, William; Vandecasteele, Marie; Giaume, Christian; Venance, Laurent

    2009-04-01

    Gap junctions in astrocytes play a crucial role in intercellular communication by supporting both biochemical and electrical coupling between adjacent cells. Despite the critical role of electrical coupling in the network organization of these glial cells, the electrophysiological properties of gap junctions have been characterized in cultures while no direct evidence has been sought in situ. In the present study, gap-junctional currents were investigated using simultaneous dual whole-cell patch-clamp recordings between astrocytes from rat hippocampal slices. Bidirectional electrotonic coupling was observed in 82% of the cell pairs with an average coupling coefficient of 5.1%. Double patch-clamp analysis indicated that junctional currents were independent of the transjunctional voltage over a range from -100 to +110 mV. Interestingly, astrocytic electrical coupling displayed weak low-pass filtering properties compared to neuronal electrical synapses. Finally, during uncoupling processes triggered by either the gap-junction inhibitor carbenoxolone or endothelin-1, an increase in the input resistance in the injected cell paralleled the decrease in the coupling coefficient. Altogether, these results demonstrate that hippocampal astrocytes are electrically coupled through gap-junction channels characterized by properties that are distinct from those of electrical synapses between neurons. In addition, gap-junctional communication is efficiently regulated by endogenous compounds. This is taken to represent a mode of communication that may have important implications for the functional role of astrocyte networks in situ.

  15. Staurosporine induces different cell death forms in cultured rat astrocytes

    International Nuclear Information System (INIS)

    Simenc, Janez; Lipnik-Stangelj, Metoda

    2012-01-01

    Astroglial cells are frequently involved in malignant transformation. Besides apoptosis, necroptosis, a different form of regulated cell death, seems to be related with glioblastoma genesis, proliferation, angiogenesis and invasion. In the present work we elucidated mechanisms of necroptosis in cultured astrocytes, and compared them with apoptosis, caused by staurosporine. Cultured rat cortical astrocytes were used for a cell death studies. Cell death was induced by different concentrations of staurosporine, and modified by inhibitors of apoptosis (z-vad-fmk) and necroptosis (nec-1). Different forms of a cell death were detected using flow cytometry. We showed that staurosporine, depending on concentration, induces both, apoptosis as well as necroptosis. Treatment with 10 −7 M staurosporine increased apoptosis of astrocytes after the regeneration in a staurosporine free medium. When caspases were inhibited, apoptosis was attenuated, while necroptosis was slightly increased. Treatment with 10 −6 M staurosporine induced necroptosis that occurred after the regeneration of astrocytes in a staurosporine free medium, as well as without regeneration period. Necroptosis was significantly attenuated by nec-1 which inhibits RIP1 kinase. On the other hand, the inhibition of caspases had no effect on necroptosis. Furthermore, staurosporine activated RIP1 kinase increased the production of reactive oxygen species, while an antioxidant BHA significantly attenuated necroptosis. Staurosporine can induce apoptosis and/or necroptosis in cultured astrocytes via different signalling pathways. Distinction between different forms of cell death is crucial in the studies of therapy-induced necroptosis

  16. Cell adhesion and matricellular support by astrocytes of the tripartite synapse

    NARCIS (Netherlands)

    Hillen, Anne E J; Burbach, J Peter H; Hol, Elly M

    2018-01-01

    Astrocytes contribute to the formation, function, and plasticity of synapses. Their processes enwrap the neuronal components of the tripartite synapse, and due to this close interaction they are perfectly positioned to modulate neuronal communication. The interaction between astrocytes and synapses

  17. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse

    OpenAIRE

    Zhang, Ye; Sloan, Steven A.; Clarke, Laura E.; Caneda, Christine; Plaza, Colton A.; Blumenthal, Paul D.; Vogel, Hannes; Steinberg, Gary K.; Edwards, Michael S. B.; Li, Gordon; Duncan, John A.; Cheshier, Samuel H.; Shuer, Lawrence M.; Chang, Edward F.; Grant, Gerald A.

    2015-01-01

    The functional and molecular similarities and distinctions between human and murine astrocytes are poorly understood. Here we report the development of an immunopanning method to acutely purify astrocytes from fetal, juvenile, and adult human brains, and to maintain these cells in serum-free cultures. We found that human astrocytes have similar abilities to murine astrocytes in promoting neuronal survival, inducing functional synapse formation, and engulfing synaptosomes. In contrast to exist...

  18. Sex Differences and Laterality in Astrocyte Number and Complexity in the Adult Rat Medial Amygdala

    Science.gov (United States)

    JOHNSON, RYAN T.; BREEDLOVE, S. MARC; JORDAN, CYNTHIA L.

    2008-01-01

    The posterodorsal portion of the medial amygdala (MePD) is sexually dimorphic in several rodent species. In several other brain nuclei, astrocytes change morphology in response to steroid hormones. We visualized MePD astrocytes using glial-fibrillary acidic protein (GFAP) immunocytochemistry. We compared the number and process complexity of MePD astrocytes in adult wildtype male and female rats and testicular feminized mutant (TFM) male rats that lack functional androgen receptors (ARs) to determine whether MePD astrocytes are sexually differentiated and whether ARs have a role. Unbiased stereological methods revealed laterality and sex differences in MePD astrocyte number and complexity. The right MePD contained more astrocytes than the left in all three genotypes, and the number of astrocytes was also sexually differentiated in the right MePD, with males having more astrocytes than females. In contrast, the left MePD contained more complex astrocytes than did the right MePD in all three genotypes, and males had more complex astrocytes than females in this hemisphere. TFM males were comparable to wildtype females, having fewer astrocytes on the right and simpler astrocytes on the left than do wildtype males. Taken together, these results demonstrate that astrocytes are sexually dimorphic in the adult MePD and that the nature of the sex difference is hemisphere-dependent: a sex difference in astrocyte number in the right MePD and a sex difference in astrocyte complexity in the left MePD. Moreover, functional ARs appear to be critical in establishing these sex differences in MePD astrocyte morphology. PMID:18853427

  19. Preclinical Studies of Induced Pluripotent Stem Cell-Derived Astrocyte Transplantation in ALS

    Science.gov (United States)

    2012-10-01

    Pluripotent Stem Cell -Derived Astrocyte Transplantation in ALS PRINCIPAL INVESTIGATOR: Nicholas J. Maragakis, M.D...Pluripotent Stem Cell -Derived Astrocyte Transplantation in ALS 5b. GRANT NUMBER W81XWH-10-1-0520 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...into astrocytes following transplantation. 15. SUBJECT TERMS Stem Cells , iPS cells, astrocytes, familial ALS 16. SECURITY CLASSIFICATION OF

  20. Novel cell separation method for molecular analysis of neuron-astrocyte co-cultures

    OpenAIRE

    Goudriaan, Andrea; Camargo, Nutabi; Carney, Karen E.; Oliet, Stéphane H. R.; Smit, August B.; Verheijen, Mark H. G.

    2014-01-01

    Over the last decade, the importance of astrocyte-neuron communication in neuronal development and synaptic plasticity has become increasingly clear. Since neuron-astrocyte interactions represent highly dynamic and reciprocal processes, we hypothesized that many astrocyte genes may be regulated as a consequence of their interactions with maturing neurons. In order to identify such neuron-responsive astrocyte genes in vitro, we sought to establish an expedited technique for separation of neuro...

  1. Novel cell separation method for molecular analysis of neuron-astrocyte cocultures

    OpenAIRE

    Andrea eGoudriaan; Nutabi eCamargo; Karen eCarney; Karen eCarney; Karen eCarney; Stéphane H.R. Oliet; Stéphane H.R. Oliet; August B. Smit; Mark H.G. Verheijen

    2014-01-01

    Over the last decade, the importance of astrocyte-neuron communication in neuronal development and synaptic plasticity has become increasingly clear. Since neuron-astrocyte interactions represent highly dynamic and reciprocal processes, we hypothesized that many astrocyte genes may be regulated as a consequence of their interactions with maturing neurons. In order to identify such neuron-responsive astrocyte genes in vitro, we sought to establish an expedite technique for separation of neuron...

  2. Astrocytes promote myelination in response to electrical impulses.

    Science.gov (United States)

    Ishibashi, Tomoko; Dakin, Kelly A; Stevens, Beth; Lee, Philip R; Kozlov, Serguei V; Stewart, Colin L; Fields, R Douglas

    2006-03-16

    Myelin, the insulating layers of membrane wrapped around axons by oligodendrocytes, is essential for normal impulse conduction. It forms during late stages of fetal development but continues into early adult life. Myelination correlates with cognitive development and can be regulated by impulse activity through unknown molecular mechanisms. Astrocytes do not form myelin, but these nonneuronal cells can promote myelination in ways that are not understood. Here, we identify a link between myelination, astrocytes, and electrical impulse activity in axons that is mediated by the cytokine leukemia inhibitory factor (LIF). These findings show that LIF is released by astrocytes in response to ATP liberated from axons firing action potentials, and LIF promotes myelination by mature oligodendrocytes. This activity-dependent mechanism promoting myelination could regulate myelination according to functional activity or environmental experience and may offer new approaches to treating demyelinating diseases.

  3. Glutamate oxidation in astrocytes: Roles of glutamate dehydrogenase and aminotransferases

    DEFF Research Database (Denmark)

    McKenna, Mary C; Stridh, Malin H; McNair, Laura Frendrup

    2016-01-01

    to the presynaptic neurons as the nonexcitatory amino acid glutamine. The cycle was initially thought to function with a 1:1 ratio between glutamate released and glutamine taken up by neurons. However, studies of glutamate metabolism in astrocytes have shown that a considerable proportion of glutamate undergoes...... the enzymes that mediate this conversion. Methods include pharmacological tools such as the transaminase inhibitor aminooxyacetic acid, studies using GDH knockout mice, and siRNA-mediated knockdown of GDH in astrocytes. Studies in brain slices incubated with [15N]glutamate demonstrated activity of GDH......The cellular distribution of transporters and enzymes related to glutamate metabolism led to the concept of the glutamate–glutamine cycle. Glutamate is released as a neurotransmitter and taken up primarily by astrocytes ensheathing the synapses. The glutamate carbon skeleton is transferred back...

  4. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes

    DEFF Research Database (Denmark)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte...... Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo...... synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle...

  5. Are astrocytes executive cells within the central nervous system?

    Directory of Open Access Journals (Sweden)

    Roberto E. Sica

    2016-08-01

    Full Text Available ABSTRACT Experimental evidence suggests that astrocytes play a crucial role in the physiology of the central nervous system (CNS by modulating synaptic activity and plasticity. Based on what is currently known we postulate that astrocytes are fundamental, along with neurons, for the information processing that takes place within the CNS. On the other hand, experimental findings and human observations signal that some of the primary degenerative diseases of the CNS, like frontotemporal dementia, Parkinson’s disease, Alzheimer’s dementia, Huntington’s dementia, primary cerebellar ataxias and amyotrophic lateral sclerosis, all of which affect the human species exclusively, may be due to astroglial dysfunction. This hypothesis is supported by observations that demonstrated that the killing of neurons by non-neural cells plays a major role in the pathogenesis of those diseases, at both their onset and their progression. Furthermore, recent findings suggest that astrocytes might be involved in the pathogenesis of some psychiatric disorders as well.

  6. Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks

    DEFF Research Database (Denmark)

    Postnov, D.E.; Koreshkov, R.N.; Brazhe, N.A.

    2009-01-01

    We propose a functional mathematical model for neuron-astrocyte networks. The model incorporates elements of the tripartite synapse and the spatial branching structure of coupled astrocytes. We consider glutamate-induced calcium signaling as a specific mode of excitability and transmission...... in astrocytic-neuronal networks. We reproduce local and global dynamical patterns observed experimentally....

  7. Regulation of Neuron-Astrocyte Metabolic Coupling across the Sleep-Wake Cycle

    KAUST Repository

    Petit, Jean-Marie; Magistretti, Pierre J.

    2015-01-01

    The aim of this review is to bring into perspective the role of astrocytes and neurometabolic coupling in the regulation of the sleep/wake cycle. The data reviewed also suggest an important role of the astrocytic network. In addition, the role of astrocytes in NMC mechanisms is consistent with the “local and use dependent” sleep hypothesis.

  8. Novel cell separation method for molecular analysis of neuron-astrocyte co-cultures

    NARCIS (Netherlands)

    Goudriaan, A.; Camargo, N.K.; Carney, K.E.; Oliet, S.H.R.; Smit, A.B.; Verheijen, M.H.G.

    2014-01-01

    Over the last decade, the importance of astrocyte-neuron communication in neuronal development and synaptic plasticity has become increasingly clear. Since neuron-astrocyte interactions represent highly dynamic and reciprocal processes, we hypothesized that many astrocyte genes may be regulated as a

  9. Neuron to astrocyte communication via cannabinoid receptors is necessary for sustained epileptiform activity in rat hippocampus.

    OpenAIRE

    Coiret Guyllaume; Ster Jeanne; Grewe Benjamin; Wendling Fabrice; Helmchen Fritjof; Gerber Urs; Benquet Pascal

    2012-01-01

    International audience; Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of astrocytes mediated by these neurotransmitters can promote seizure-like activ...

  10. Astrocytes and Glutamate Homoeostasis in Alzheimer's Disease: A Decrease in Glutamine Synthetase, But Not in Glutamate Transporter-1, in the Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Magdalena Kulijewicz-Nawrot

    2013-09-01

    Full Text Available Astrocytes control tissue equilibrium and hence define the homoeostasis and function of the CNS (central nervous system. Being principal homoeostatic cells, astroglia are fundamental for various forms of neuropathology, including AD (Alzheimer's disease. AD is a progressive neurodegenerative disorder characterized by the loss of cognitive functions due to specific lesions in mnesic-associated regions, including the mPFC (medial prefrontal cortex. Here, we analyzed the expression of GS (glutamine synthetase and GLT-1 (glutamate transporter-1 in astrocytes in the mPFC during the progression of AD in a triple-transgenic mouse model (3xTg-AD. GS is an astrocyte-specific enzyme, responsible for the intracellular conversion of glutamate into glutamine, whereas the removal of glutamate from the extracellular space is accomplished mainly by astroglia-specific GLT-1. We found a significant decrease in the numerical density (Nv, cells/mm3 of GS-positive astrocytes from early to middle ages (1–9 months; at the age of 1 month by 17%, 6 months by 27% and 9 months by 27% when compared with control animals in parallel with a reduced expression of GS (determined by Western blots, which started at the age of 6 months and was sustained up to 12 months of age. We did not, however, find any changes in the expression of GLT-1, which implies an intact glutamate uptake mechanism. Our results indicate that the decrease in GS expression may underlie a gradual decline in the vital astrocyte-dependent glutamate–glutamine conversion pathway, which in turn may compromise glutamate homoeostasis, leading towards failures in synaptic connectivity with deficient cognition and memory.

  11. NT2 derived neuronal and astrocytic network signalling.

    Directory of Open Access Journals (Sweden)

    Eric J Hill

    Full Text Available A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns expressed sodium dependent action potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling. Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality.

  12. Ketogenic diet and astrocyte/neuron metabolic interactions

    Directory of Open Access Journals (Sweden)

    Vamecq Joseph

    2007-05-01

    Full Text Available The ketogenic diet is an anticonvulsant diet enriched in fat. It provides the body with a minimal protein requirement and a restricted carbohydrate supply, the vast majority of calories (more than 80-90% being given by fat. Though anticonvulsant activity of ketogenic diet has been well documented by a large number of experimental and clinical studies, underlying mechanisms still remain partially unclear. Astrocyte-neuron interactions, among which metabolic shuttles, may influence synaptic activity and hence anticonvulsant protection. The astrocyte-neuron metabolic shuttles may be themselves influenced by the availability in energetic substrates such as hydrates of carbon and fats. Historically, ketogenic diet had been designed to mimic changes such as ketosis occurring upon starvation, a physiological state already known to exhibit anticonvulsant protection and sometimes referred to as “water diet”. For this reason, a special attention should be paid to metabolic features shared in common by ketogenic diet and starvation and especially those features that might result in anticonvulsant protection. Compared to feeding by usual mixed diet, starvation and ketogenic diet are both characterised by increased fat, lowered glucose and aminoacid supplies to cells. The resulting impact of these changes in energetic substrates on astrocyte/neuron metabolic shuttles might have anticonvulsant and/or neuroprotective properties. This is the aim of this communication to review some important astrocyte/neuron metabolic interactions (astrocyte/neuron lactate shuttle, glutamateinduced astrocytic glycolysis activation, glutamate/glutamine cycle along with the neurovascular coupling and the extent to which the way of their alteration by starvation and/or ketogenic diet might result in seizure and/or brain protection.

  13. Contributions of Glycogen to Astrocytic Energetics during Brain Activation

    Science.gov (United States)

    Dienel, Gerald A.; Cruz, Nancy F.

    2014-01-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 mol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K+ level, oxidative stress management, and memory consolidation; it is a multi-functional compound. PMID:24515302

  14. Contributions of glycogen to astrocytic energetics during brain activation.

    Science.gov (United States)

    Dienel, Gerald A; Cruz, Nancy F

    2015-02-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 μmol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K(+) level, oxidative stress management, and memory consolidation; it is a multi-functional compound.

  15. High affinity (3H) β-Alanine uptake by scar margins of ferric chloride-induced epileptogenic foci in rat isocortex

    International Nuclear Information System (INIS)

    Robitaille, Y.; Sherwin, A.

    1984-01-01

    Cortical astrocytes of normal mammalian brain are endowed with a high affinity uptake system for β-Alanine which is competitively inhibited by gamma aminobutyric acid (GABA), a neurotransmitter strongly implicated in epileptogenesis. The authors evaluated ( 3 H) β-Alanine uptake by reactive astrocytes proliferating within scar of epileptogenic foci induced in rat motor cortex by microinjections of 100 mM ferric chloride. Following in vitro incubation of scar tissue with ( 3 H) β-Alanine, ultrastructural morphometry of grain patterns at 5, 30 and 120 days post injection revealed early and significant grain count increases over astroglial processes, predominantly those related to perivascular glial end-feet. Astrocytic cell body and endothelial cell counts showed a more gradual and stepwise increase. Similar data were obtained by comparing visual and edited mean astrocytic grain counts. These results suggest that the enhanced uptake of reactive astrocytes may reflect a marked decrease of inhibitory GABAergic neurons within ferric chloride-induced scars. 7 figures, 1 table

  16. Transcriptional regulation of Nfix by NFIB drives astrocytic maturation within the developing spinal cord.

    Science.gov (United States)

    Matuzelski, Elise; Bunt, Jens; Harkins, Danyon; Lim, Jonathan W C; Gronostajski, Richard M; Richards, Linda J; Harris, Lachlan; Piper, Michael

    2017-12-15

    During mouse spinal cord development, ventricular zone progenitor cells transition from producing neurons to producing glia at approximately embryonic day 11.5, a process known as the gliogenic switch. The transcription factors Nuclear Factor I (NFI) A and B initiate this developmental transition, but the contribution of a third NFI member, NFIX, remains unknown. Here, we reveal that ventricular zone progenitor cells within the spinal cord express NFIX after the onset of NFIA and NFIB expression, and after the gliogenic switch has occurred. Mice lacking NFIX exhibit normal neurogenesis within the spinal cord, and, while early astrocytic differentiation proceeds normally, aspects of terminal astrocytic differentiation are impaired. Finally, we report that, in the absence of Nfia or Nfib, there is a marked reduction in the spinal cord expression of NFIX, and that NFIB can transcriptionally activate Nfix expression in vitro. These data demonstrate that NFIX is part of the downstream transcriptional program through which NFIA and NFIB coordinate gliogenesis within the spinal cord. This hierarchical organisation of NFI protein expression and function during spinal cord gliogenesis reveals a previously unrecognised auto-regulatory mechanism within this gene family. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Kynurenine Pathway Metabolism is Involved in the Maintenance of the Intracellular NAD Concentration in Human Primary Astrocytes

    Directory of Open Access Journals (Sweden)

    Ross Grant

    2010-01-01

    Full Text Available Efficient synthesis of NAD + is critical to maintaining cell viability in all organs of the body. However, little is known of the pathway(s by which cells of the central nervous system produce NAD + . The aim of this study was to investigate the relationship, between tryptophan degradation via the kynurenine pathway (KP and de novo NAD + synthesis in human astrocytes, a major cell type within the brain. In this study we observed that inhibition of single enzymes of the KP resulted in significant decreases in NAD + levels in astroglial cells after a 24 hr period. We also observed that astrocytes cultured in media deficient in tryptophan, nicotinic acid and nicotinamide resulted in a 50% decrease in NAD + levels after 24 hrs. This decrease in NAD + was partially restored by supplementation of the culture media with either tryptophan or kynurenine, or nicotinic acid or with supply of the salvage pathway precursor nicotinamide.

  18. Kynurenine Pathway Metabolism is Involved in the Maintenance of the Intracellular NAD+ Concentration in Human Primary Astrocytes

    Science.gov (United States)

    Grant, Ross; Nguyen, Susan; Guillemin, Gilles

    2010-01-01

    Efficient synthesis of NAD+ is critical to maintaining cell viability in all organs of the body. However, little is known of the pathway(s) by which cells of the central nervous system produce NAD+. The aim of this study was to investigate the relationship, between tryptophan degradation via the kynurenine pathway (KP) and de novo NAD+ synthesis in human astrocytes, a major cell type within the brain. In this study we observed that inhibition of single enzymes of the KP resulted in significant decreases in NAD+ levels in astroglial cells after a 24 hr period. We also observed that astrocytes cultured in media deficient in tryptophan, nicotinic acid and nicotinamide resulted in a 50% decrease in NAD+ levels after 24 hrs. This decrease in NAD+ was partially restored by supplementation of the culture media with either tryptophan or kynurenine, or nicotinic acid or with supply of the salvage pathway precursor nicotinamide. PMID:22084595

  19. Versatile and simple approach to determine astrocyte territories in mouse neocortex and hippocampus.

    Directory of Open Access Journals (Sweden)

    Antje Grosche

    Full Text Available BACKGROUND: Besides their neuronal support functions, astrocytes are active partners in neuronal information processing. The typical territorial structure of astrocytes (the volume of neuropil occupied by a single astrocyte is pivotal for many aspects of glia-neuron interactions. METHODS: Individual astrocyte territorial volumes are measured by Golgi impregnation, and astrocyte densities are determined by S100β immunolabeling. These data are compared with results from conventionally applied methods such as dye filling and determination of the density of astrocyte networks by biocytin loading. Finally, we implemented our new approach to investigate age-related changes in astrocyte territories in the cortex and hippocampus of 5- and 21-month-old mice. RESULTS: The data obtained by our simplified approach based on Golgi impregnation were compared to previously published dye filling experiments, and yielded remarkably comparable results regarding astrocyte territorial volumes. Moreover, we found that almost all coupled astrocytes (as indicated by biocytin loading were immunopositive for S100β. A first application of this new experimental approach gives insight in age-dependent changes in astrocyte territorial volumes. They increased with age, while cell densities remained stable. In 5-month-old mice, the overlap factor was close to 1, revealing little or no interdigitation of astrocyte territories. However, in 21-month-old mice, the overlap factor was more than 2, suggesting that processes of adjacent astrocytes interdigitate. CONCLUSION: Here we verified the usability of a simple, versatile method for assessing astrocyte territories and the overlap factor between adjacent territories. Second, we found that there is an age-related increase in territorial volumes of astrocytes that leads to loss of the strict organization in non-overlapping territories. Future studies should elucidate the physiological relevance of this adaptive reaction of

  20. Astrocyte truncated-TrkB mediates BDNF antiapoptotic effect leading to neuroprotection.

    Science.gov (United States)

    Saba, Julieta; Turati, Juan; Ramírez, Delia; Carniglia, Lila; Durand, Daniela; Lasaga, Mercedes; Caruso, Carla

    2018-05-31

    Astrocytes are glial cells that help maintain brain homeostasis and become reactive in neurodegenerative processes releasing both harmful and beneficial factors. We have demonstrated that brain-derived neurotrophic factor (BDNF) expression is induced by melanocortins in astrocytes but BDNF actions in astrocytes are largely unknown. We hypothesize that BDNF may prevent astrocyte death resulting in neuroprotection. We found that BDNF increased astrocyte viability, preventing apoptosis induced by serum deprivation by decreasing active caspase-3 and p53 expression. The antiapoptotic action of BDNF was abolished by ANA-12 (a specific TrkB antagonist) and by K252a (a general Trk antagonist). Astrocytes only express the BDNF receptor TrkB truncated isoform 1, TrkB-T1. BDNF induced ERK, Akt and Src (a non-receptor tyrosine kinase) activation in astrocytes. Blocking ERK and Akt pathways abolished BDNF protection in serum deprivation-induced cell death. Moreover, BDNF protected astrocytes from death by 3-nitropropionic acid (3-NP), an effect also blocked by ANA-12, K252a, and inhibitors of ERK, calcium and Src. BDNF reduced reactive oxygen species (ROS) levels induced in astrocytes by 3-NP and increased xCT expression and glutathione levels. Astrocyte conditioned media (ACM) from untreated astrocytes partially protected PC12 neurons whereas ACM from BDNF-treated astrocytes completely protected PC12 neurons from 3-NP-induced apoptosis. Both ACM from control and BDNF-treated astrocytes markedly reduced ROS levels induced by 3-NP in PC12 cells. Our results demonstrate that BDNF protects astrocytes from cell death through TrkB-T1 signaling, exerts an antioxidant action, and induces release of neuroprotective factors from astrocytes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Astrocytes protect neurons against methylmercury via ATP/P2Y(1) receptor-mediated pathways in astrocytes.

    Science.gov (United States)

    Noguchi, Yusuke; Shinozaki, Youichi; Fujishita, Kayoko; Shibata, Keisuke; Imura, Yoshio; Morizawa, Yosuke; Gachet, Christian; Koizumi, Schuichi

    2013-01-01

    Methylmercury (MeHg) is a well known environmental pollutant that induces serious neuronal damage. Although MeHg readily crosses the blood-brain barrier, and should affect both neurons and glial cells, how it affects glia or neuron-to-glia interactions has received only limited attention. Here, we report that MeHg triggers ATP/P2Y1 receptor signals in astrocytes, thereby protecting neurons against MeHg via interleukin-6 (IL-6)-mediated pathways. MeHg increased several mRNAs in astrocytes, among which IL-6 was the highest. For this, ATP/P2Y1 receptor-mediated mechanisms were required because the IL-6 production was (i) inhibited by a P2Y1 receptor antagonist, MRS2179, (ii) abolished in astrocytes obtained from P2Y1 receptor-knockout mice, and (iii) mimicked by exogenously applied ATP. In addition, (iv) MeHg released ATP by exocytosis from astrocytes. As for the intracellular mechanisms responsible for IL-6 production, p38 MAP kinase was involved. MeHg-treated astrocyte-conditioned medium (ACM) showed neuro-protective effects against MeHg, which was blocked by anti-IL-6 antibody and was mimicked by the application of recombinant IL-6. As for the mechanism of neuro-protection by IL-6, an adenosine A1 receptor-mediated pathway in neurons seems to be involved. Taken together, when astrocytes sense MeHg, they release ATP that autostimulates P2Y1 receptors to upregulate IL-6, thereby leading to A1 receptor-mediated neuro-protection against MeHg.

  2. Astrocyte-to-neuron signaling in response to photostimulation with a femtosecond laser

    Science.gov (United States)

    Zhao, Yuan; Liu, Xiuli; Zhou, Wei; Zeng, Shaoqun

    2010-08-01

    Conventional stimulation techniques used in studies of astrocyte-to-neuron signaling are invasive or dependent on additional electrical devices or chemicals. Here, we applied photostimulation with a femtosecond laser to selectively stimulate astrocytes in the hippocampal neural network, and the neuronal responses were examined. The results showed that, after photostimulation, cell-specific astrocyte-to-neuron signaling was triggered; sometimes the neuronal responses were even synchronous. Since photostimulation with a femtosecond laser is noninvasive, agent-free, and highly precise, this method has been proved to be efficient in activating astrocytes for investigations of astrocytic functions in neural networks.

  3. Primary Neuron/Astrocyte Co-Culture on Polyelectrolyte Multilayer Films: A Template for Studying Astrocyte-Mediated Oxidative Stress in Neurons**

    OpenAIRE

    Kidambi, Srivatsan; Lee, Ilsoon; Chan, Christina

    2008-01-01

    We engineered patterned co-cultures of primary neurons and astrocytes on polyelectrolyte multilayer (PEM) films without the aid of adhesive proteins/ligands to study the oxidative stress mediated by astrocytes on neuronal cells. A number of studies have explored engineering co-culture of neurons and astrocytes predominantly using cell lines rather than primary cells owing to the difficulties involved in attaching primary cells onto synthetic surfaces. To our knowledge this is the first demons...

  4. Altered astrocyte glutamate transporter regulation of hypothalamic neurosecretory neurons in heart failure rats.

    Science.gov (United States)

    Potapenko, Evgeniy S; Biancardi, Vinicia C; Zhou, Yiqiang; Stern, Javier E

    2012-08-01

    Neurohumoral activation, which includes augmented plasma levels of the neurohormone vasopressin (VP), is a common finding in heart failure (HF) that contributes to morbidity and mortality in this disease. While an increased activation of magnocellular neurosecretory cells (MNCs) and enhanced glutamate function in HF is well documented, the precise underlying mechanisms remain to be elucidated. Here, we combined electrophysiology and protein measurements to determine whether altered glial glutamate transporter function and/or expression occurs in the hypothalamic supraoptic nucleus (SON) during HF. Patch-clamp recordings obtained from MNCs in brain slices show that pharmacological blockade of astrocyte glutamate transporter 1 (GLT1) function [500 μM dihydrokainate (DHK)], resulted in a persistent N-methyl-D-aspartate receptor (NMDAR)-mediated inward current (tonic I(NMDA)) in sham rats, an effect that was significantly smaller in MNCs from HF rats. In addition, we found a diminished GLT1 protein content in plasma membrane (but not cytosolic) fractions of SON punches in HF rats. Conversely, astrocyte GLAST expression was significantly higher in the SON of HF rats, while nonselective blockade of glutamate transport activity (100 μM TBOA) evoked an enhanced tonic I(NMDA) activation in HF rats. Steady-state activation of NMDARs by extracellular glutamate levels was diminished during HF. Taken together, these results support a shift in the relative expression and function of two major glial glutamate transporters (from GLT1 to GLAST predominance) during HF. This shift may act as a compensatory mechanism to preserve an adequate basal glutamate uptake level in the face of an enhanced glutamatergic afferent activity in HF rats.

  5. Activity-dependent switch of GABAergic inhibition into glutamatergic excitation in astrocyte-neuron networks.

    Science.gov (United States)

    Perea, Gertrudis; Gómez, Ricardo; Mederos, Sara; Covelo, Ana; Ballesteros, Jesús J; Schlosser, Laura; Hernández-Vivanco, Alicia; Martín-Fernández, Mario; Quintana, Ruth; Rayan, Abdelrahman; Díez, Adolfo; Fuenzalida, Marco; Agarwal, Amit; Bergles, Dwight E; Bettler, Bernhard; Manahan-Vaughan, Denise; Martín, Eduardo D; Kirchhoff, Frank; Araque, Alfonso

    2016-12-24

    Interneurons are critical for proper neural network function and can activate Ca 2+ signaling in astrocytes. However, the impact of the interneuron-astrocyte signaling into neuronal network operation remains unknown. Using the simplest hippocampal Astrocyte-Neuron network, i.e., GABAergic interneuron, pyramidal neuron, single CA3-CA1 glutamatergic synapse, and astrocytes, we found that interneuron-astrocyte signaling dynamically affected excitatory neurotransmission in an activity- and time-dependent manner, and determined the sign (inhibition vs potentiation) of the GABA-mediated effects. While synaptic inhibition was mediated by GABA A receptors, potentiation involved astrocyte GABA B receptors, astrocytic glutamate release, and presynaptic metabotropic glutamate receptors. Using conditional astrocyte-specific GABA B receptor ( Gabbr1 ) knockout mice, we confirmed the glial source of the interneuron-induced potentiation, and demonstrated the involvement of astrocytes in hippocampal theta and gamma oscillations in vivo. Therefore, astrocytes decode interneuron activity and transform inhibitory into excitatory signals, contributing to the emergence of novel network properties resulting from the interneuron-astrocyte interplay.

  6. Impairments of astrocytes are involved in the D-galactose-induced brain aging

    International Nuclear Information System (INIS)

    Lei Ming; Hua Xiangdong; Xiao Ming; Ding Jiong; Han Qunying; Hu Gang

    2008-01-01

    Astrocyte dysfunction is implicated in course of various age-related neurodegenerative diseases. Chronic injection of D-galactose can cause a progressive deterioration in learning and memory capacity and serve as an animal model of aging. To investigate the involvement of astrocytes in this model, oxidative stress biomarkers, biochemical and pathological changes of astrocytes were examined in the hippocampus of the rats with six weeks of D-galactose injection. D-galactose-injected rats displayed impaired antioxidant systems, an increase in nitric oxide levels, and a decrease in reduced glutathione levels. Consistently, western blotting and immunostaining of glial fibrillary acidic protein showed extensive activation of astrocytes. Double-immunofluorescent staining further showed activated astrocytes highly expressed inducible nitric oxide synthase. Electron microscopy demonstrated the degeneration of astrocytes, especially in the aggregated area of synapse and brain microvessels. These findings indicate that impairments of astrocytes are involved in oxidative stress-induced brain aging by chronic injection of D-galactose

  7. Immunocytochemical detection of the microsomal glucose-6-phosphatase in human brain astrocytes.

    Science.gov (United States)

    Bell, J E; Hume, R; Busuttil, A; Burchell, A

    1993-10-01

    Using an antibody raised against the catalytic subunit of glucose-6-phosphatase, this enzyme was immunolocalized in many astrocytes in 20 normal human brains. Double immunofluorescence studies showed co-localization of glial fibrillary acidic protein (GFAP) with glucose-6-phosphatase in astrocytes. However, not all GFAP-positive cells were also glucose-6-phosphatase positive, indicating that some astrocytes do not contain demonstrable expression of this enzyme. Reactive astrocytes in a variety of abnormal brains were strongly glucose-6-phosphatase positive, but neoplastic astrocytes were often only weakly positive. Expression of the enzyme could not be demonstrated in radial glia, neurons or oligodendroglia. Astrocytes normally contain glycogen and the demonstration that some astrocytes also contain glucose-6-phosphatase indicates that they are competent for both glycogenolysis and gluconeogenesis, which may be critical for neuronal welfare.

  8. role of heterogeneous astrocyte receptor expression in determining

    African Journals Online (AJOL)

    2018-02-28

    Feb 28, 2018 ... has been increasing (Denis et al, 1989; Lau and. Breteler, 2006). ... toxicity, the excess glutamate binds to N-Methyl-. D-aspartate ... absorption into the astrocyte (Lau and .... Heales JR, Lam AJ, Duncan AJ, Land JM. 2004.

  9. The Indispensable Roles of Microglia and Astrocytes during Brain Development

    NARCIS (Netherlands)

    Reemst, K.; Noctor, S.C.; Lucassen, P.J.; Hol, E.M.

    2016-01-01

    Glia are essential for brain functioning during development and in the adult brain. Here, we discuss the various roles of both microglia and astrocytes, and their interactions during brain development. Although both cells are fundamentally different in origin and function, they often affect the same

  10. Astrocytes in development, aging and disease: starring GFAP

    NARCIS (Netherlands)

    Middeldorp, J.

    2010-01-01

    We show in this thesis that different subtypes of astrocytes comprise specialized GFAP-IF networks, that change during development, aging and Alzheimer’s disease. The novel functions that have emerged for the IF network suggest these changes can play an important part in the specialized function of

  11. Probabilistic encoding of stimulus strength in astrocyte global calcium signals.

    Science.gov (United States)

    Croft, Wayne; Reusch, Katharina; Tilunaite, Agne; Russell, Noah A; Thul, Rüdiger; Bellamy, Tomas C

    2016-04-01

    Astrocyte calcium signals can range in size from subcellular microdomains to waves that spread through the whole cell (and into connected cells). The differential roles of such local or global calcium signaling are under intense investigation, but the mechanisms by which local signals evolve into global signals in astrocytes are not well understood, nor are the computational rules by which physiological stimuli are transduced into a global signal. To investigate these questions, we transiently applied receptor agonists linked to calcium signaling to primary cultures of cerebellar astrocytes. Astrocytes repetitively tested with the same stimulus responded with global signals intermittently, indicating that each stimulus had a defined probability for triggering a response. The response probability varied between agonists, increased with agonist concentration, and could be positively and negatively modulated by crosstalk with other signaling pathways. To better understand the processes determining the evolution of a global signal, we recorded subcellular calcium "puffs" throughout the whole cell during stimulation. The key requirement for puffs to trigger a global calcium wave following receptor activation appeared to be the synchronous release of calcium from three or more sites, rather than an increasing calcium load accumulating in the cytosol due to increased puff size, amplitude, or frequency. These results suggest that the concentration of transient stimuli will be encoded into a probability of generating a global calcium response, determined by the likelihood of synchronous release from multiple subcellular sites. © 2015 Wiley Periodicals, Inc.

  12. Glutamate metabolism in the brain focusing on astrocytes

    DEFF Research Database (Denmark)

    Schousboe, Arne; Scafidi, Susanna; Bak, Lasse Kristoffer

    2014-01-01

    , as well as in nitrogen trafficking and ammonia homeostasis in brain. The anatomical specialization of astrocytic endfeet enables these cells to rapidly and efficiently remove neurotransmitters from the synaptic cleft to maintain homeostasis, and to provide glutamine to replenish neurotransmitter pools...

  13. Astrocytes and extracellular matrix in extrasynaptic volume transmission

    Czech Academy of Sciences Publication Activity Database

    Vargová, Lýdia; Syková, Eva

    2014-01-01

    Roč. 369, č. 1654 (2014) ISSN 0962-8436 R&D Projects: GA ČR GA13-11867S; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:68378041 Keywords : extracellular space * diffusion * astrocytes Subject RIV: FH - Neurology Impact factor: 7.055, year: 2014

  14. Fisetin regulates astrocyte migration and proliferation in vitro

    Science.gov (United States)

    Wang, Nan; Yao, Fang; Li, Ke; Zhang, Lanlan; Yin, Guo; Du, Mingjun; Wu, Bingyi

    2017-01-01

    Fisetin (3,3′,4′,7-tetrahydroxyflavone) is a plant flavonol found in fruits and vegetables that has been reported to inhibit migration and proliferation in several types of cancer. Reactive astrogliosis involves astrocyte migration and proliferation, and contributes to the formation of glial scars in central nervous system (CNS) disorders. However, the effect of fisetin on the migration and proliferation of astrocytes remains unclear. In this study, we found that fisetin inhibited astrocyte migration in a scratch-wound assay and diminished the phosphorylation of focal adhesion kinase (FAK; Tyr576/577 and paxillin (Tyr118). It also suppressed cell proliferation, as indicated by the decreased number of 5-ethynyl-2′-deoxyuridine (EdU)-positive cells, induced cell cycle arrest in the G1 phase, reduced the percentage of cells in the G2 and S phase (as measured by flow cytometry), and decreased cyclin D1 expression, but had no effect on apoptosis. Fisetin also decreased the phosphorylation levels of Akt and extracellular signal-regulated kinase (Erk)1/2, but had no effect on the phosphorylation of p38 mitogen-activated protein kinase (MAPK). These results indicate that fisetin inhibits aggressive cell phenotypes by suppressing cell migration and proliferation via the Akt/Erk signaling pathway. Fisetin may thus have potential for use as a therapeutic strategy targeting reactive astrocytes, which may lead to the inhibition of glial scar formation in vitro. PMID:28204814

  15. Glucose Tightly Controls Morphological and Functional Properties of Astrocytes

    Czech Academy of Sciences Publication Activity Database

    Lee, Ch. Y.; Dallérac, G.; Ezan, P.; Anděrová, Miroslava; Rouach, N.

    2016-01-01

    Roč. 8, č. 85 (2016) ISSN 1663-4365 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:68378041 Keywords : hippocampus * astrocytes * neuroglial interactions Subject RIV: ED - Physiology Impact factor: 4.504, year: 2016

  16. Astrocytes are central in the pathomechanisms of vanishing white matter

    NARCIS (Netherlands)

    Dooves, Stephanie; Bugiani, Marianna; Postma, Nienke L.; Polder, Emiel; Land, Niels; Horan, Stephen T.; van Deijk, Anne-Lieke F.; van de Kreeke, Aleid; Jacobs, Gerbren; Vuong, Caroline; Klooster, Jan; Kamermans, Maarten; Wortel, Joke; Loos, Maarten; Wisse, Lisanne E.; Scheper, Gert C.; Abbink, Truus E. M.; Heine, Vivi M.; van der Knaap, Marjo S.

    2016-01-01

    Vanishing white matter (VWM) is a fatal leukodystrophy that is caused by mutations in genes encoding subunits of eukaryotic translation initiation factor 2B (eIF2B). Disease onset and severity are codetermined by genotype. White matter astrocytes and oligodendrocytes are almost exclusively affected;

  17. The indispensable roles of microglia and astrocytes during brain development

    NARCIS (Netherlands)

    Reemst, Kitty; Noctor, Stephen C.; Lucassen, Paul J.; Hol, Elly M.

    2016-01-01

    Glia are essential for brain functioning during development and in the adult brain. Here, we discuss the various roles of both microglia and astrocytes, and their interactions during brain development. Although both cells are fundamentally different in origin and function, they often affect the same

  18. Acetazolamide Mitigates Astrocyte Cellular Edema Following Mild Traumatic Brain Injury

    Science.gov (United States)

    Sturdivant, Nasya M.; Smith, Sean G.; Ali, Syed F.; Wolchok, Jeffrey C.; Balachandran, Kartik

    2016-09-01

    Non-penetrating or mild traumatic brain injury (mTBI) is commonly experienced in accidents, the battlefield and in full-contact sports. Astrocyte cellular edema is one of the major factors that leads to high morbidity post-mTBI. Various studies have reported an upregulation of aquaporin-4 (AQP4), a water channel protein, following brain injury. AZA is an antiepileptic drug that has been shown to inhibit AQP4 expression and in this study we investigate the drug as a therapeutic to mitigate the extent of mTBI induced cellular edema. We hypothesized that mTBI-mediated astrocyte dysfunction, initiated by increased intracellular volume, could be reduced when treated with AZA. We tested our hypothesis in a three-dimensional in vitro astrocyte model of mTBI. Samples were subject to no stretch (control) or one high-speed stretch (mTBI) injury. AQP4 expression was significantly increased 24 hours after mTBI. mTBI resulted in a significant increase in the cell swelling within 30 min of mTBI, which was significantly reduced in the presence of AZA. Cell death and expression of S100B was significantly reduced when AZA was added shortly before mTBI stretch. Overall, our data point to occurrence of astrocyte swelling immediately following mTBI, and AZA as a promising treatment to mitigate downstream cellular mortality.

  19. Glutamine Synthetase Deficiency in Murine Astrocytes Results in Neonatal Death

    NARCIS (Netherlands)

    He, Youji; Hakvoort, Theodorus B. M.; Vermeulen, Jacqueline L. M.; Labruyère, Wilhelmina T.; de Waart, D. Rudi; van der Hel, W. Saskia; Ruijter, Jan M.; Uylings, Harry B. M.; Lamers, Wouter H.

    2010-01-01

    Glutamine synthetase (GS) is a key enzyme in the "glutamine-glutamate cycle" between astrocytes and neurons, but its function in vivo was thus far tested only pharmacologically. Crossing GS(fl/lacZ) or GS(fl/f)l mice with hGFAP-Cre mice resulted in prenatal excision of the GS(fl) allele in

  20. The psychostimulant modafinil enhances gap junctional communication in cortical astrocytes.

    Science.gov (United States)

    Liu, Xinhe; Petit, Jean-Marie; Ezan, Pascal; Gyger, Joël; Magistretti, Pierre; Giaume, Christian

    2013-12-01

    Sleep-wake cycle is characterized by changes in neuronal network activity. However, for the last decade there is increasing evidence that neuroglial interaction may play a role in the modulation of sleep homeostasis and that astrocytes have a critical impact in this process. Interestingly, astrocytes are organized into communicating networks based on their high expression of connexins, which are the molecular constituents of gap junction channels. Thus, neuroglial interactions should also be considered as the result of the interplay between neuronal and astroglial networks. Here, we investigate the effect of modafinil, a wakefulness-promoting agent, on astrocyte gap junctional communication. We report that in the cortex modafinil injection increases the expression of mRNA and protein of connexin 30 but not those of connexin 43, the other major astroglial connexin. These increases are correlated with an enhancement of intercellular dye coupling in cortical astrocytes, which is abolished when neuronal activity is silenced by tetrodotoxin. Moreover, gamma-hydroxybutyric acid, which at a millimolar concentration induces sleep, has an opposite effect on astroglial gap junctions in an activity-independent manner. These results support the proposition that astroglia may play an important role in complex physiological brain functions, such as sleep regulation, and that neuroglial networking interaction is modified during sleep-wake cycle. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'. Copyright © 2013. Published by Elsevier Ltd.

  1. Connexin-based intercellular communication and astrocyte heterogeneity.

    Science.gov (United States)

    Theis, Martin; Giaume, Christian

    2012-12-03

    This review gives an overview of the current knowledge on connexin-mediated communication in astrocytes, covering gap junction and hemichannel functions mediated by connexins. Astroglia is the main brain cell type that expresses the largest amount of connexin and exhibits high level of gap junctional communication compared to neurons and oligodendrocytes. However, in certain developmental and regional situations, astrocytes are also coupled with oligodendrocytes and neurons. This heterotypic coupling is infrequent and minor in terms of extent of the coupling area, which does not mean that it is not important in terms of cell interaction. Here, we present an update on heterogeneity of connexin expression and function at the molecular, subcellular, cellular and networking levels. Interestingly, while astrocytes were initially considered as a homogenous population, there is now increasing evidence for morphological, developmental, molecular and physiological heterogeneity of astrocytes. Consequently, the specificity of gap junction channel- and hemichannel-mediated communication, which tends to synchronize cell populations, is also a parameter to take into account when neuroglial interactions are investigated. This article is part of a Special Issue entitled Electrical Synapses. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Molecular Neuropathology of Astrocytes and Oligodendrocytes in Alcohol Use Disorders

    Directory of Open Access Journals (Sweden)

    José J. Miguel-Hidalgo

    2018-03-01

    Full Text Available Postmortem studies reveal structural and molecular alterations of astrocytes and oligodendrocytes in both the gray and white matter (GM and WM of the prefrontal cortex (PFC in human subjects with chronic alcohol abuse or dependence. These glial cellular changes appear to parallel and may largely explain structural and functional alterations detected using neuroimaging techniques in subjects with alcohol use disorders (AUDs. Moreover, due to the crucial roles of astrocytes and oligodendrocytes in neurotransmission and signal conduction, these cells are very likely major players in the molecular mechanisms underpinning alcoholism-related connectivity disturbances between the PFC and relevant interconnecting brain regions. The glia-mediated etiology of alcohol-related brain damage is likely multifactorial since metabolic, hormonal, hepatic and hemodynamic factors as well as direct actions of ethanol or its metabolites have the potential to disrupt distinct aspects of glial neurobiology. Studies in animal models of alcoholism and postmortem human brains have identified astrocyte markers altered in response to significant exposures to ethanol or during alcohol withdrawal, such as gap-junction proteins, glutamate transporters or enzymes related to glutamate and gamma-aminobutyric acid (GABA metabolism. Changes in these proteins and their regulatory pathways would not only cause GM neuronal dysfunction, but also disturbances in the ability of WM axons to convey impulses. In addition, alcoholism alters the expression of astrocyte and myelin proteins and of oligodendrocyte transcription factors important for the maintenance and plasticity of myelin sheaths in WM and GM. These changes are concomitant with epigenetic DNA and histone modifications as well as alterations in regulatory microRNAs (miRNAs that likely cause profound disturbances of gene expression and protein translation. Knowledge is also available about interactions between astrocytes and

  3. Dynamic volume changes in astrocytes are an intrinsic phenomenon mediated by bicarbonate ion flux.

    Directory of Open Access Journals (Sweden)

    Clare M Florence

    Full Text Available Astrocytes, the major type of non-neuronal cells in the brain, play an important functional role in extracellular potassium ([K(+](o and pH homeostasis. Pathological brain states that result in [K(+](o and pH dysregulation have been shown to cause astrocyte swelling. However, whether astrocyte volume changes occur under physiological conditions is not known. In this study we used two-photon imaging to visualize real-time astrocyte volume changes in the stratum radiatum of the hippocampus CA1 region. Astrocytes were observed to swell by 19.0±0.9% in response to a small physiological increase in the concentration of [K(+](o (3 mM. Astrocyte swelling was mediated by the influx of bicarbonate (HCO(3- ions as swelling was significantly decreased when the influx of HCO(3- was reduced. We found: 1 in HCO(3- free extracellular solution astrocytes swelled by 5.4±0.7%, 2 when the activity of the sodium-bicarbonate cotransporter (NBC was blocked the astrocytes swelled by 8.3±0.7%, and 3 in the presence of an extracellular carbonic anhydrase (CA inhibitor astrocytes swelled by 11.4±0.6%. Because a significant HCO(3- efflux is known to occur through the γ-amino-butyric acid (GABA channel, we performed a series of experiments to determine if astrocytes were capable of HCO(3- mediated volume shrinkage with GABA channel activation. Astrocytes were found to shrink -7.7±0.5% of control in response to the GABA(A channel agonist muscimol. Astrocyte shrinkage from GABA(A channel activation was significantly decreased to -5.0±0.6% of control in the presence of the membrane-permeant CA inhibitor acetazolamide (ACTZ. These dynamic astrocyte volume changes may represent a previously unappreciated yet fundamental mechanism by which astrocytes regulate physiological brain functioning.

  4. Astrocyte uncoupling as a cause of human temporal lobe epilepsy.

    Science.gov (United States)

    Bedner, Peter; Dupper, Alexander; Hüttmann, Kerstin; Müller, Julia; Herde, Michel K; Dublin, Pavel; Deshpande, Tushar; Schramm, Johannes; Häussler, Ute; Haas, Carola A; Henneberger, Christian; Theis, Martin; Steinhäuser, Christian

    2015-05-01

    Glial cells are now recognized as active communication partners in the central nervous system, and this new perspective has rekindled the question of their role in pathology. In the present study we analysed functional properties of astrocytes in hippocampal specimens from patients with mesial temporal lobe epilepsy without (n = 44) and with sclerosis (n = 75) combining patch clamp recording, K(+) concentration analysis, electroencephalography/video-monitoring, and fate mapping analysis. We found that the hippocampus of patients with mesial temporal lobe epilepsy with sclerosis is completely devoid of bona fide astrocytes and gap junction coupling, whereas coupled astrocytes were abundantly present in non-sclerotic specimens. To decide whether these glial changes represent cause or effect of mesial temporal lobe epilepsy with sclerosis, we developed a mouse model that reproduced key features of human mesial temporal lobe epilepsy with sclerosis. In this model, uncoupling impaired K(+) buffering and temporally preceded apoptotic neuronal death and the generation of spontaneous seizures. Uncoupling was induced through intraperitoneal injection of lipopolysaccharide, prevented in Toll-like receptor4 knockout mice and reproduced in situ through acute cytokine or lipopolysaccharide incubation. Fate mapping confirmed that in the course of mesial temporal lobe epilepsy with sclerosis, astrocytes acquire an atypical functional phenotype and lose coupling. These data suggest that astrocyte dysfunction might be a prime cause of mesial temporal lobe epilepsy with sclerosis and identify novel targets for anti-epileptogenic therapeutic intervention. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Astrocytic mitochondrial membrane hyperpolarization following extended oxygen and glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Andrej Korenić

    Full Text Available Astrocytes can tolerate longer periods of oxygen and glucose deprivation (OGD as compared to neurons. The reasons for this reduced vulnerability are not well understood. Particularly, changes in mitochondrial membrane potential (Δψ(m in astrocytes, an indicator of the cellular redox state, have not been investigated during reperfusion after extended OGD exposure. Here, we subjected primary mouse astrocytes to glucose deprivation (GD, OGD and combinations of both conditions varying in duration and sequence. Changes in Δψ(m, visualized by change in the fluorescence of JC-1, were investigated within one hour after reconstitution of oxygen and glucose supply, intended to model in vivo reperfusion. In all experiments, astrocytes showed resilience to extended periods of OGD, which had little effect on Δψ(m during reperfusion, whereas GD caused a robust Δψ(m negativation. In case no Δψ(m negativation was observed after OGD, subsequent chemical oxygen deprivation (OD induced by sodium azide caused depolarization, which, however, was significantly delayed as compared to normoxic group. When GD preceded OD for 12 h, Δψ(m hyperpolarization was induced by both GD and subsequent OD, but significant interaction between these conditions was not detected. However, when GD was extended to 48 h preceding OGD, hyperpolarization enhanced during reperfusion. This implicates synergistic effects of both conditions in that sequence. These findings provide novel information regarding the role of the two main substrates of electron transport chain (glucose and oxygen and their hyperpolarizing effect on Δψ(m during substrate deprivation, thus shedding new light on mechanisms of astrocyte resilience to prolonged ischemic injury.

  6. Effects of Ranolazine on Astrocytes and Neurons in Primary Culture.

    Directory of Open Access Journals (Sweden)

    Martin Aldasoro

    Full Text Available Ranolazine (Rn is an antianginal agent used for the treatment of chronic angina pectoris when angina is not adequately controlled by other drugs. Rn also acts in the central nervous system and it has been proposed for the treatment of pain and epileptic disorders. Under the hypothesis that ranolazine could act as a neuroprotective drug, we studied its effects on astrocytes and neurons in primary culture. We incubated rat astrocytes and neurons in primary cultures for 24 hours with Rn (10-7, 10-6 and 10-5 M. Cell viability and proliferation were measured using trypan blue exclusion assay, MTT conversion assay and LDH release assay. Apoptosis was determined by Caspase 3 activity assay. The effects of Rn on pro-inflammatory mediators IL-β and TNF-α was determined by ELISA technique, and protein expression levels of Smac/Diablo, PPAR-γ, Mn-SOD and Cu/Zn-SOD by western blot technique. In cultured astrocytes, Rn significantly increased cell viability and proliferation at any concentration tested, and decreased LDH leakage, Smac/Diablo expression and Caspase 3 activity indicating less cell death. Rn also increased anti-inflammatory PPAR-γ protein expression and reduced pro-inflammatory proteins IL-1 β and TNFα levels. Furthermore, antioxidant proteins Cu/Zn-SOD and Mn-SOD significantly increased after Rn addition in cultured astrocytes. Conversely, Rn did not exert any effect on cultured neurons. In conclusion, Rn could act as a neuroprotective drug in the central nervous system by promoting astrocyte viability, preventing necrosis and apoptosis, inhibiting inflammatory phenomena and inducing anti-inflammatory and antioxidant agents.

  7. Astrocyte-derived proinflammatory cytokines induce hypomyelination in the periventricular white matter in the hypoxic neonatal brain.

    Directory of Open Access Journals (Sweden)

    Yiyu Deng

    Full Text Available Hypoxic exposure in the perinatal period causes periventricular white matter damage (PWMD, a condition associated with myelination abnormalities. Under hypoxic conditions, glial cells were activated and released a large number of inflammatory mediators in the PWM in neonatal brain, which may result in oligodendrocyte (OL loss and axonal injury. This study aims to determine if astrocytes are activated and generate proinflammatory cytokines that may be coupled with the oligodendroglial loss and hypomyelination observed in hypoxic PWMD. Twenty-four 1-day-old Wistar rats were exposed to hypoxia for 2 h. The rats were then allowed to recover under normoxic conditions for 7 or 28 days before being killed. Another group of 24 rats kept outside the chamber was used as age-matched controls. Upregulated expression of TNF-α and IL-1β was observed in astrocytes in the PWM of P7 hypoxic rats by double immunofluorescence, western blotting and real time RT-PCR. This was linked to apoptosis and enhanced expression of TNF-R1 and IL-1R1 in APC(+ OLs. PLP expression was decreased significantly in the PWM of P28d hypoxic rats. The proportion of myelinated axons was markedly reduced by electron microscopy (EM and the average g-ratios were higher in P28d hypoxic rats. Upregulated expression of TNF-α and IL-1β in primary cultured astrocytes as well as their corresponding receptors in primary culture APC(+ oligodendrocytes were detected under hypoxic conditions. Our results suggest that following a hypoxic insult, astrocytes in the PWM of neonatal rats produce inflammatory cytokines such as TNF-α and IL-1β, which induce apoptosis of OLs via their corresponding receptors associated with them. This results in hypomyelination in the PWM of hypoxic rats.

  8. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain.

    Science.gov (United States)

    Gao, Yong-Jing; Zhang, Ling; Samad, Omar Abdel; Suter, Marc R; Yasuhiko, Kawasaki; Xu, Zhen-Zhong; Park, Jong-Yeon; Lind, Anne-Li; Ma, Qiufu; Ji, Ru-Rong

    2009-04-01

    Our previous study showed that activation of c-jun-N-terminal kinase (JNK) in spinal astrocytes plays an important role in neuropathic pain sensitization. We further investigated how JNK regulates neuropathic pain. In cultured astrocytes, tumor necrosis factor alpha (TNF-alpha) transiently activated JNK via TNF receptor-1. Cytokine array indicated that the chemokine CCL2/MCP-1 (monocyte chemoattractant protein-1) was strongly induced by the TNF-alpha/JNK pathway. MCP-1 upregulation by TNF-alpha was dose dependently inhibited by the JNK inhibitors SP600125 (anthra[1,9-cd]pyrazol-6(2H)-one) and D-JNKI-1. Spinal injection of TNF-alpha produced JNK-dependent pain hypersensitivity and MCP-1 upregulation in the spinal cord. Furthermore, spinal nerve ligation (SNL) induced persistent neuropathic pain and MCP-1 upregulation in the spinal cord, and both were suppressed by D-JNKI-1. Remarkably, MCP-1 was primarily induced in spinal cord astrocytes after SNL. Spinal administration of MCP-1 neutralizing antibody attenuated neuropathic pain. Conversely, spinal application of MCP-1 induced heat hyperalgesia and phosphorylation of extracellular signal-regulated kinase in superficial spinal cord dorsal horn neurons, indicative of central sensitization (hyperactivity of dorsal horn neurons). Patch-clamp recordings in lamina II neurons of isolated spinal cord slices showed that MCP-1 not only enhanced spontaneous EPSCs but also potentiated NMDA- and AMPA-induced currents. Finally, the MCP-1 receptor CCR2 was expressed in neurons and some non-neuronal cells in the spinal cord. Together, we have revealed a previously unknown mechanism of MCP-1 induction and action. MCP-1 induction in astrocytes after JNK activation contributes to central sensitization and neuropathic pain facilitation by enhancing excitatory synaptic transmission. Inhibition of the JNK/MCP-1 pathway may provide a new therapy for neuropathic pain management.

  9. T cells' immunological synapses induce polarization of brain astrocytes in vivo and in vitro: a novel astrocyte response mechanism to cellular injury.

    Science.gov (United States)

    Barcia, Carlos; Sanderson, Nicholas S R; Barrett, Robert J; Wawrowsky, Kolja; Kroeger, Kurt M; Puntel, Mariana; Liu, Chunyan; Castro, Maria G; Lowenstein, Pedro R

    2008-08-20

    Astrocytes usually respond to trauma, stroke, or neurodegeneration by undergoing cellular hypertrophy, yet, their response to a specific immune attack by T cells is poorly understood. Effector T cells establish specific contacts with target cells, known as immunological synapses, during clearance of virally infected cells from the brain. Immunological synapses mediate intercellular communication between T cells and target cells, both in vitro and in vivo. How target virally infected astrocytes respond to the formation of immunological synapses established by effector T cells is unknown. Herein we demonstrate that, as a consequence of T cell attack, infected astrocytes undergo dramatic morphological changes. From normally multipolar cells, they become unipolar, extending a major protrusion towards the immunological synapse formed by the effector T cells, and withdrawing most of their finer processes. Thus, target astrocytes become polarized towards the contacting T cells. The MTOC, the organizer of cell polarity, is localized to the base of the protrusion, and Golgi stacks are distributed throughout the protrusion, reaching distally towards the immunological synapse. Thus, rather than causing astrocyte hypertrophy, antiviral T cells cause a major structural reorganization of target virally infected astrocytes. Astrocyte polarization, as opposed to hypertrophy, in response to T cell attack may be due to T cells providing a very focused attack, and thus, astrocytes responding in a polarized manner. A similar polarization of Golgi stacks towards contacting T cells was also detected using an in vitro allogeneic model. Thus, different T cells are able to induce polarization of target astrocytes. Polarization of target astrocytes in response to immunological synapses may play an important role in regulating the outcome of the response of astrocytes to attacking effector T cells, whether during antiviral (e.g. infected during HIV, HTLV-1, HSV-1 or LCMV infection), anti

  10. T cells' immunological synapses induce polarization of brain astrocytes in vivo and in vitro: a novel astrocyte response mechanism to cellular injury.

    Directory of Open Access Journals (Sweden)

    Carlos Barcia

    2008-08-01

    Full Text Available Astrocytes usually respond to trauma, stroke, or neurodegeneration by undergoing cellular hypertrophy, yet, their response to a specific immune attack by T cells is poorly understood. Effector T cells establish specific contacts with target cells, known as immunological synapses, during clearance of virally infected cells from the brain. Immunological synapses mediate intercellular communication between T cells and target cells, both in vitro and in vivo. How target virally infected astrocytes respond to the formation of immunological synapses established by effector T cells is unknown.Herein we demonstrate that, as a consequence of T cell attack, infected astrocytes undergo dramatic morphological changes. From normally multipolar cells, they become unipolar, extending a major protrusion towards the immunological synapse formed by the effector T cells, and withdrawing most of their finer processes. Thus, target astrocytes become polarized towards the contacting T cells. The MTOC, the organizer of cell polarity, is localized to the base of the protrusion, and Golgi stacks are distributed throughout the protrusion, reaching distally towards the immunological synapse. Thus, rather than causing astrocyte hypertrophy, antiviral T cells cause a major structural reorganization of target virally infected astrocytes.Astrocyte polarization, as opposed to hypertrophy, in response to T cell attack may be due to T cells providing a very focused attack, and thus, astrocytes responding in a polarized manner. A similar polarization of Golgi stacks towards contacting T cells was also detected using an in vitro allogeneic model. Thus, different T cells are able to induce polarization of target astrocytes. Polarization of target astrocytes in response to immunological synapses may play an important role in regulating the outcome of the response of astrocytes to attacking effector T cells, whether during antiviral (e.g. infected during HIV, HTLV-1, HSV-1 or LCMV

  11. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... for a thyroid scan is 30 minutes or less. Thyroid Uptake You will be given radioactive iodine ( ... for each thyroid uptake is five minutes or less. top of page What will I experience during ...

  12. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... uptake measurements are obtained at different times. For example, you may have uptake measurements at four to ... medicine procedures can be time consuming. It can take several hours to days for the radiotracer to ...

  13. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Scan and Uptake Thyroid scan and uptake uses small amounts of radioactive materials called radiotracers, a special ... is a branch of medical imaging that uses small amounts of radioactive material to diagnose and determine ...

  14. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... radioactive iodine uptake test (RAIU) is also known as a thyroid uptake. It is a measurement of ... potential to identify disease in its earliest stages as well as a patient’s immediate response to therapeutic ...

  15. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... known as a thyroid uptake. It is a measurement of thyroid function, but does not involve imaging. ... eating can affect the accuracy of the uptake measurement. Jewelry and other metallic accessories should be left ...

  16. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Uptake? A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) ... of thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that ...

  17. Regulation of neurotrophic factors and energy metabolism by antidepressants in astrocytes

    KAUST Repository

    Martin, Jean Luc; Magistretti, Pierre J.; Allaman, Igor

    2013-01-01

    There is growing evidence that astrocytes are involved in the neuropathology of major depression. In particular, decreases in glial cell density observed in the cerebral cortex of individuals with major depressive disorder are accompanied by a reduction of several astrocytic markers suggesting that astrocyte dysfunction may contribute to the pathophysiology of major depression. In rodents, glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors and antidepressant treatment prevents the stress-induced reduction of astrocyte number in the hippocampus. Collectively, these data support the existence of a link between astrocyte loss or dysfunction, depressive-like behavior and antidepressant treatment. Astrocytes are increasingly recognized to play important roles in neuronal development, neurotransmission, synaptic plasticity and maintenance of brain homeostasis. It is also well established that astrocytes provide trophic, structural, and metabolic support to neurons. In this article, we review evidence that antidepressants regulate energy metabolism and neurotrophic factor expression with particular emphasis on studies in astrocytes. These observations support a role for astrocytes as new targets for antidepressants. The contribution of changes in astrocyte glucose metabolism and neurotrophic factor expression to the therapeutic effects of antidepressants remains to be established. © 2013 Bentham Science Publishers.

  18. Calcium imaging of living astrocytes in the mouse spinal cord following sensory stimulation.

    Science.gov (United States)

    Cirillo, Giovanni; De Luca, Daniele; Papa, Michele

    2012-01-01

    Astrocytic Ca(2+) dynamics have been extensively studied in ex vivo models; however, the recent development of two-photon microscopy and astrocyte-specific labeling has allowed the study of Ca(2+) signaling in living central nervous system. Ca(2+) waves in astrocytes have been described in cultured cells and slice preparations, but evidence for astrocytic activation during sensory activity is lacking. There are currently few methods to image living spinal cord: breathing and heart-beating artifacts have impeded the widespread application of this technique. We here imaged the living spinal cord by two-photon microscopy in C57BL6/J mice. Through pressurized injection, we specifically loaded spinal astrocytes using the red fluorescent dye sulforhodamine 101 (SR101) and imaged astrocytic Ca(2+) levels with Oregon-Green BAPTA-1 (OGB). Then, we studied astrocytic Ca(2+) levels at rest and after right electrical hind paw stimulation. Sensory stimulation significantly increased astrocytic Ca(2+) levels within the superficial dorsal horn of the spinal cord compared to rest. In conclusion, in vivo morphofunctional imaging of living astrocytes in spinal cord revealed that astrocytes actively participate to sensory stimulation.

  19. Regulation of neurotrophic factors and energy metabolism by antidepressants in astrocytes

    KAUST Repository

    Martin, Jean Luc

    2013-09-01

    There is growing evidence that astrocytes are involved in the neuropathology of major depression. In particular, decreases in glial cell density observed in the cerebral cortex of individuals with major depressive disorder are accompanied by a reduction of several astrocytic markers suggesting that astrocyte dysfunction may contribute to the pathophysiology of major depression. In rodents, glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors and antidepressant treatment prevents the stress-induced reduction of astrocyte number in the hippocampus. Collectively, these data support the existence of a link between astrocyte loss or dysfunction, depressive-like behavior and antidepressant treatment. Astrocytes are increasingly recognized to play important roles in neuronal development, neurotransmission, synaptic plasticity and maintenance of brain homeostasis. It is also well established that astrocytes provide trophic, structural, and metabolic support to neurons. In this article, we review evidence that antidepressants regulate energy metabolism and neurotrophic factor expression with particular emphasis on studies in astrocytes. These observations support a role for astrocytes as new targets for antidepressants. The contribution of changes in astrocyte glucose metabolism and neurotrophic factor expression to the therapeutic effects of antidepressants remains to be established. © 2013 Bentham Science Publishers.

  20. Astrocyte-secreted thrombospondin-1 modulates synapse and spine defects in the fragile X mouse model.

    Science.gov (United States)

    Cheng, Connie; Lau, Sally K M; Doering, Laurie C

    2016-08-02

    Astrocytes are key participants in various aspects of brain development and function, many of which are executed via secreted proteins. Defects in astrocyte signaling are implicated in neurodevelopmental disorders characterized by abnormal neural circuitry such as Fragile X syndrome (FXS). In animal models of FXS, the loss in expression of the Fragile X mental retardation 1 protein (FMRP) from astrocytes is associated with delayed dendrite maturation and improper synapse formation; however, the effect of astrocyte-derived factors on the development of neurons is not known. Thrombospondin-1 (TSP-1) is an important astrocyte-secreted protein that is involved in the regulation of spine development and synaptogenesis. In this study, we found that cultured astrocytes isolated from an Fmr1 knockout (Fmr1 KO) mouse model of FXS displayed a significant decrease in TSP-1 protein expression compared to the wildtype (WT) astrocytes. Correspondingly, Fmr1 KO hippocampal neurons exhibited morphological deficits in dendritic spines and alterations in excitatory synapse formation following long-term culture. All spine and synaptic abnormalities were prevented in the presence of either astrocyte-conditioned media or a feeder layer derived from FMRP-expressing astrocytes, or following the application of exogenous TSP-1. Importantly, this work demonstrates the integral role of astrocyte-secreted signals in the establishment of neuronal communication and identifies soluble TSP-1 as a potential therapeutic target for Fragile X syndrome.

  1. Decreased STAT3 Phosphorylation Mediates Cell Swelling in Ammonia-Treated Astrocyte Cultures

    Directory of Open Access Journals (Sweden)

    Arumugam R. Jayakumar

    2016-12-01

    Full Text Available Brain edema, due largely to astrocyte swelling, and the subsequent increase in intracranial pressure and brain herniation, are major complications of acute liver failure (ALF. Elevated level of brain ammonia has been strongly implicated in the development of astrocyte swelling associated with ALF. The means by which ammonia brings about astrocyte swelling, however, is incompletely understood. Recently, oxidative/nitrosative stress and associated signaling events, including activation of mitogen-activated protein kinases (MAPKs, as well as activation of the transcription factor, nuclear factor-kappaB (NF-κB, have been implicated in the mechanism of ammonia-induced astrocyte swelling. Since these signaling events are known to be regulated by the transcription factor, signal transducer and activator of transcription 3 (STAT3, we examined the state of STAT3 activation in ammonia-treated cultured astrocytes, and determined whether altered STAT3 activation and/or protein expression contribute to the ammonia-induced astrocyte swelling. STAT3 was found to be dephosphorylated (inactivated at Tyrosine705 in ammonia-treated cultured astrocytes. Total STAT3 protein level was also reduced in ammonia-treated astrocytes. We also found a significant increase in protein tyrosine phosphatase receptor type-1 (PTPRT-1 protein expression in ammonia-treated cultured astrocytes, and that inhibition of PTPRT-1 enhanced the phosphorylation of STAT3 after ammonia treatment. Additionally, exposure of cultured astrocytes to inhibitors of protein tyrosine phosphatases diminished the ammonia-induced cell swelling, while cultured astrocytes over-expressing STAT3 showed a reduction in the astrocyte swelling induced by ammonia. Collectively, these studies strongly suggest that inactivation of STAT3 represents a critical event in the mechanism of the astrocyte swelling associated with acute liver failure.

  2. Astrocytic gap junctional networks suppress cellular damage in an in vitro model of ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Shinotsuka, Takanori; Yasui, Masato; Nuriya, Mutsuo, E-mail: mnuriya@z2.keio.jp

    2014-02-07

    Highlights: • Astrocytes exhibit characteristic changes in [Ca{sup 2+}]{sub i} under OGD. • Astrocytic [Ca{sup 2+}]{sub i} increase is synchronized with a neuronal anoxic depolarization. • Gap junctional couplings protect neurons as well as astrocytes during OGD. - Abstract: Astrocytes play pivotal roles in both the physiology and the pathophysiology of the brain. They communicate with each other via extracellular messengers as well as through gap junctions, which may exacerbate or protect against pathological processes in the brain. However, their roles during the acute phase of ischemia and the underlying cellular mechanisms remain largely unknown. To address this issue, we imaged changes in the intracellular calcium concentration ([Ca{sup 2+}]{sub i}) in astrocytes in mouse cortical slices under oxygen/glucose deprivation (OGD) condition using two-photon microscopy. Under OGD, astrocytes showed [Ca{sup 2+}]{sub i} oscillations followed by larger and sustained [Ca{sup 2+}]{sub i} increases. While the pharmacological blockades of astrocytic receptors for glutamate and ATP had no effect, the inhibitions of gap junctional intercellular coupling between astrocytes significantly advanced the onset of the sustained [Ca{sup 2+}]{sub i} increase after OGD exposure. Interestingly, the simultaneous recording of the neuronal membrane potential revealed that the onset of the sustained [Ca{sup 2+}]{sub i} increase in astrocytes was synchronized with the appearance of neuronal anoxic depolarization. Furthermore, the blockade of gap junctional coupling resulted in a concurrent faster appearance of neuronal depolarizations, which remain synchronized with the sustained [Ca{sup 2+}]{sub i} increase in astrocytes. These results indicate that astrocytes delay the appearance of the pathological responses of astrocytes and neurons through their gap junction-mediated intercellular network under OGD. Thus, astrocytic gap junctional networks provide protection against tissue damage

  3. Astrocytic gap junctional networks suppress cellular damage in an in vitro model of ischemia

    International Nuclear Information System (INIS)

    Shinotsuka, Takanori; Yasui, Masato; Nuriya, Mutsuo

    2014-01-01

    Highlights: • Astrocytes exhibit characteristic changes in [Ca 2+ ] i under OGD. • Astrocytic [Ca 2+ ] i increase is synchronized with a neuronal anoxic depolarization. • Gap junctional couplings protect neurons as well as astrocytes during OGD. - Abstract: Astrocytes play pivotal roles in both the physiology and the pathophysiology of the brain. They communicate with each other via extracellular messengers as well as through gap junctions, which may exacerbate or protect against pathological processes in the brain. However, their roles during the acute phase of ischemia and the underlying cellular mechanisms remain largely unknown. To address this issue, we imaged changes in the intracellular calcium concentration ([Ca 2+ ] i ) in astrocytes in mouse cortical slices under oxygen/glucose deprivation (OGD) condition using two-photon microscopy. Under OGD, astrocytes showed [Ca 2+ ] i oscillations followed by larger and sustained [Ca 2+ ] i increases. While the pharmacological blockades of astrocytic receptors for glutamate and ATP had no effect, the inhibitions of gap junctional intercellular coupling between astrocytes significantly advanced the onset of the sustained [Ca 2+ ] i increase after OGD exposure. Interestingly, the simultaneous recording of the neuronal membrane potential revealed that the onset of the sustained [Ca 2+ ] i increase in astrocytes was synchronized with the appearance of neuronal anoxic depolarization. Furthermore, the blockade of gap junctional coupling resulted in a concurrent faster appearance of neuronal depolarizations, which remain synchronized with the sustained [Ca 2+ ] i increase in astrocytes. These results indicate that astrocytes delay the appearance of the pathological responses of astrocytes and neurons through their gap junction-mediated intercellular network under OGD. Thus, astrocytic gap junctional networks provide protection against tissue damage during the acute phase of ischemia

  4. Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Stephen J A Davies

    2011-03-01

    Full Text Available Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulting astrocytes differed in expression of multiple proteins thought to either promote or inhibit central nervous system homeostasis and regeneration. When transplanted into acute transection injuries of the adult rat spinal cord, astrocytes generated by exposing human glial precursor cells to bone morphogenetic protein promoted significant recovery of volitional foot placement, axonal growth and notably robust increases in neuronal survival in multiple spinal cord laminae. In marked contrast, human glial precursor cells and astrocytes generated from these cells by exposure to ciliary neurotrophic factor both failed to promote significant behavioral recovery or similarly robust neuronal survival and support of axon growth at sites of injury. Our studies thus demonstrate functional differences between human astrocyte populations and suggest that pre-differentiation of precursor cells into a specific astrocyte subtype is required to optimize astrocyte replacement therapies. To our knowledge, this study is the first to show functional differences in ability to promote repair of the injured adult central nervous system between two distinct subtypes of human astrocytes derived from a common fetal glial precursor population. These findings are consistent with our previous studies of transplanting specific subtypes of rodent glial precursor derived astrocytes into sites of spinal cord injury, and indicate a remarkable conservation from rat to human of functional differences between astrocyte subtypes. In addition, our studies provide a specific population of human

  5. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... for a thyroid scan is 30 minutes or less. Thyroid Uptake You will be given radioactive iodine (I-123 or I-131) in liquid or capsule form to swallow. The thyroid uptake will begin several hours to 24 hours later. Often, two separate uptake ...

  6. Impaired APP activity and altered Tau splicing in embryonic stem cell-derived astrocytes obtained from an APPsw transgenic minipig

    Directory of Open Access Journals (Sweden)

    Vanessa J. Hall

    2015-10-01

    Full Text Available Animal models of familial juvenile onset of Alzheimer's disease (AD often fail to produce diverse pathological features of the disease by modification of single gene mutations that are responsible for the disease. They can hence be poor models for testing and development of novel drugs. Here, we analyze in vitro-produced stem cells and their derivatives from a large mammalian model of the disease created by overexpression of a single mutant human gene (APPsw. We produced hemizygous and homozygous radial glial-like cells following culture and differentiation of embryonic stem cells (ESCs isolated from embryos obtained from mated hemizygous minipigs. These cells were confirmed to co-express varying neural markers, including NES, GFAP and BLBP, typical of type one radial glial cells (RGs from the subgranular zone. These cells had altered expression of CCND1 and NOTCH1 and decreased expression of several ribosomal RNA genes. We found that these cells were able to differentiate into astrocytes upon directed differentiation. The astrocytes produced had decreased α- and β-secretase activity, increased γ-secretase activity and altered splicing of tau. This indicates novel aspects of early onset mechanisms related to cell renewal and function in familial AD astrocytes. These outcomes also highlight that radial glia could be a potentially useful population of cells for drug discovery, and that altered APP expression and altered tau phosphorylation can be detected in an in vitro model of the disease. Finally, it might be possible to use large mammal models to model familial AD by insertion of only a single mutation.

  7. From the Cover: AstrocytesAre Protective Against Chlorpyrifos Developmental Neurotoxicity in Human Pluripotent Stem Cell-Derived Astrocyte-Neuron Cocultures.

    Science.gov (United States)

    Wu, Xian; Yang, Xiangkun; Majumder, Anirban; Swetenburg, Raymond; Goodfellow, Forrest T; Bartlett, Michael G; Stice, Steven L

    2017-06-01

    Human neural progenitor cells are capable of independent, directed differentiation into astrocytes, oligodendrocytes and neurons and thus offer a potential cell source for developmental neurotoxicity (DNT) systems. Human neural progenitor-derived astrocyte-neuron cocultured at defined ratios mimic cellular heterogeneity and interaction in the central nervous system. Cytochrome P450 enzymes are expressed at a relatively high level in astrocytes and may play a critical role in the biotransformation of endogenous or exogenous compounds, including chlorpyrifos, an organophosphate insecticide that affects the central nervous system. P450 enzymes metabolize chlorpyrifos to chlorpyrifos-oxon, which is then metabolized primarily to 3, 5, 6-trichloropyridinol in addition to diethylphosphate and diethylthiophosphate. These end metabolites are less neurotoxic than chlorpyrifos and chlorpyrifos-oxon. Our objective was to identify the interactive role of astrocytes and neurons in chlorpyrifos-induced human DNT. In neuron-only cultures, chlorpyrifos inhibited neurite length, neurite number and branch points per neuron in a dose-dependent manner during a 48 h exposure, starting at 10 μM. However, in astrocyte-neuron cocultures, astrocytes protected neurons from the effects of chlorpyrifos at higher concentrations, up to and including 30 μM chlorpyrifos and endogenous astrocyte P450 enzymes effectively metabolized chlorpyrifos. The P450 inhibitor SKF525A partly negated the protective effect of astrocytes, allowing reduction in branch points with chlorpyrifos (10 μM). Thus, the scalable and defined astrocyte-neuron cocultures model that we established here has potentially identified a role for P450 enzymes in astrocytic neuroprotection against chlorpyrifos and provides a novel model for addressing DNT in a more accurate multicellular environment. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For

  8. Diverse FGF receptor signaling controls astrocyte specification and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyungjun [School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Song, Mi-Ryoung, E-mail: msong@gist.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Bioimaging Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2010-05-07

    During CNS development, pluripotency neuronal progenitor cells give rise in succession to neurons and glia. Fibroblast growth factor-2 (FGF-2), a major signal that maintains neural progenitors in the undifferentiated state, is also thought to influence the transition from neurogenesis to gliogenesis. Here we present evidence that FGF receptors and underlying signaling pathways transmit the FGF-2 signals that regulate astrocyte specification aside from its mitogenic activity. Application of FGF-2 to cortical progenitors suppressed neurogenesis whereas treatment with an FGFR antagonist in vitro promoted neurogenesis. Introduction of chimeric FGFRs with mutated tyrosine residues into cortical progenitors and drug treatments to specifically block individual downstream signaling pathways revealed that the overall activity of FGFR rather than individual autophosphorylation sites is important for delivering signals for glial specification. In contrast, a signal for cell proliferation by FGFR was mainly delivered by MAPK pathway. Together our findings indicate that FGFR activity promotes astrocyte specification in the developing CNS.

  9. Biomechanical and proteomic analysis of INF- {beta}-treated astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Vergara, Daniele; Leporatti, Stefano; Maruccio, Giuseppe; Cingolani, Roberto; Rinaldi, Ross [National Nanotechnology Laboratory of CNR-INFM, ISUFI, University of Lecce, Italian Institute of Technology (IIT) Research Unit, via Arnesano, I-73100 Lecce (Italy); Martignago, Roberta; Nuccio, Franco De; Nicolardi, Giuseppe; Maffia, Michele [Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, I-73100 Lecce (Italy); Bonsegna, Stefania; Santino, Angelo, E-mail: michele.maffia@unile.i, E-mail: ross.rinaldi@unile.i [Institute of Sciences of Food Production CNR, Unit of Lecce I-73100 (Italy)

    2009-11-11

    Astrocytes have a key role in the pathogenesis of several diseases including multiple sclerosis and were proposed as the designed target for immunotherapy. In this study we used atomic force microscopy (AFM) and proteomics methods to analyse and correlate the modifications induced in the viscoleastic properties of astrocytes to the changes induced in protein expression after interferon- {beta} (IFN-{beta}) treatment. Our results indicated that IFN-{beta} treatment resulted in a significant decrease in the Young's modulus, a measure of cell elasticity, in comparison with control cells. The molecular mechanisms that trigger these changes were investigated by 2DE (two-dimensional electrophoresis) and confocal analyses and confirmed by western blotting. Altered proteins were found to be involved in cytoskeleton organization and other important physiological processes.

  10. Mammalian cortical astrocytes align themselves in a physiological voltage gradient.

    Science.gov (United States)

    Borgens, R B; Shi, R; Mohr, T J; Jaeger, C B

    1994-07-01

    Astrocytes obtained from primary cultures of newborn rat cerebral cortex show a marked structural rearrangement to weak (50-500 mV/mm) applied voltage gradients. Astrocytes reorient their processes so that the cells are aligned perpendicular to the voltage gradient. At field strengths of 100 mV/mm or greater, this realignment occurs in over 90% of the cell population. Furthermore, these magnitudes of electric fields completely eliminate any parallel alignments originally observed prior to application of the voltage. Realignment usually occurs by a withdrawal, followed by an extension, of cell processes. These responses occur at voltage gradients within the physiological range that naturally exist across the neural tube during early development. We suggest the possibility that architectural arrangements of developing glia and, subsequently, neurons may be regulated by endogenous transepithelial potentials that exist across embryonic neuroepithelium.

  11. Biomechanical and proteomic analysis of INF- β-treated astrocytes

    International Nuclear Information System (INIS)

    Vergara, Daniele; Leporatti, Stefano; Maruccio, Giuseppe; Cingolani, Roberto; Rinaldi, Ross; Martignago, Roberta; Nuccio, Franco De; Nicolardi, Giuseppe; Maffia, Michele; Bonsegna, Stefania; Santino, Angelo

    2009-01-01

    Astrocytes have a key role in the pathogenesis of several diseases including multiple sclerosis and were proposed as the designed target for immunotherapy. In this study we used atomic force microscopy (AFM) and proteomics methods to analyse and correlate the modifications induced in the viscoleastic properties of astrocytes to the changes induced in protein expression after interferon- β (IFN-β) treatment. Our results indicated that IFN-β treatment resulted in a significant decrease in the Young's modulus, a measure of cell elasticity, in comparison with control cells. The molecular mechanisms that trigger these changes were investigated by 2DE (two-dimensional electrophoresis) and confocal analyses and confirmed by western blotting. Altered proteins were found to be involved in cytoskeleton organization and other important physiological processes.

  12. Involvement of Astrocytes in Mediating the Central Effects of Ghrelin

    Science.gov (United States)

    Frago, Laura M.; Chowen, Julie A.

    2017-01-01

    Although astrocytes are the most abundant cells in the mammalian brain, much remains to be learned about their molecular and functional features. Astrocytes express receptors for numerous hormones and metabolic factors, including the appetite-promoting hormone ghrelin. The metabolic effects of ghrelin are largely opposite to those of leptin, as it stimulates food intake and decreases energy expenditure. Ghrelin is also involved in glucose-sensing and glucose homeostasis. The widespread expression of the ghrelin receptor in the central nervous system suggests that this hormone is not only involved in metabolism, but also in other essential functions in the brain. In fact, ghrelin has been shown to promote cell survival and neuroprotection, with some studies exploring the use of ghrelin as a therapeutic agent against metabolic and neurodegenerative diseases. In this review, we highlight the possible role of glial cells as mediators of ghrelin’s actions within the brain. PMID:28257088

  13. Diverse FGF receptor signaling controls astrocyte specification and proliferation

    International Nuclear Information System (INIS)

    Kang, Kyungjun; Song, Mi-Ryoung

    2010-01-01

    During CNS development, pluripotency neuronal progenitor cells give rise in succession to neurons and glia. Fibroblast growth factor-2 (FGF-2), a major signal that maintains neural progenitors in the undifferentiated state, is also thought to influence the transition from neurogenesis to gliogenesis. Here we present evidence that FGF receptors and underlying signaling pathways transmit the FGF-2 signals that regulate astrocyte specification aside from its mitogenic activity. Application of FGF-2 to cortical progenitors suppressed neurogenesis whereas treatment with an FGFR antagonist in vitro promoted neurogenesis. Introduction of chimeric FGFRs with mutated tyrosine residues into cortical progenitors and drug treatments to specifically block individual downstream signaling pathways revealed that the overall activity of FGFR rather than individual autophosphorylation sites is important for delivering signals for glial specification. In contrast, a signal for cell proliferation by FGFR was mainly delivered by MAPK pathway. Together our findings indicate that FGFR activity promotes astrocyte specification in the developing CNS.

  14. Ultrastructural study of myelinating cells and sub-pial astrocytes in developing rat spinal cord.

    Science.gov (United States)

    Nagashima, K

    1979-12-01

    The anterior funiculus of the spinal cervical cord of post-natal rats was examined ultrastructurally. The myelinating cells found one day after brith contained a large amount of evenly distributed ribosomes up to the outer tongue of mesaxons, representing the cytoplasmic density. These cells were separated by astrocytic processes from the pial basement membrane, even when they were located on the pial surface. Astrocytes contained glial fibrils from one day onwards and often attached their processes to the pial basement membrane. Although the cytoplasmic processes of astrocytes occasionally wrapped axons, they were never shown to form the initial layer of myelin sheaths. However, the tenuous processes of the sub-pial astrocytes were occasionally rolled in myelin lamellae, as if a part of the myelin sheaths was constructed by astrocytic processes. The interpretation for this finding is discussed in relation to function and potency of the astrocytes, and variations and anomalies of nervous ontogeny.

  15. Three-dimensional Ca2+ imaging advances understanding of astrocyte biology.

    Science.gov (United States)

    Bindocci, Erika; Savtchouk, Iaroslav; Liaudet, Nicolas; Becker, Denise; Carriero, Giovanni; Volterra, Andrea

    2017-05-19

    Astrocyte communication is typically studied by two-dimensional calcium ion (Ca 2+ ) imaging, but this method has not yielded conclusive data on the role of astrocytes in synaptic and vascular function. We developed a three-dimensional two-photon imaging approach and studied Ca 2+ dynamics in entire astrocyte volumes, including during axon-astrocyte interactions. In both awake mice and brain slices, we found that Ca 2+ activity in an individual astrocyte is scattered throughout the cell, largely compartmented between regions, preponderantly local within regions, and heterogeneously distributed regionally and locally. Processes and endfeet displayed frequent fast activity, whereas the soma was infrequently active. In awake mice, activity was higher than in brain slices, particularly in endfeet and processes, and displayed occasional multifocal cellwide events. Astrocytes responded locally to minimal axonal firing with time-correlated Ca 2+ spots. Copyright © 2017, American Association for the Advancement of Science.

  16. Ketogenic diet and astrocyte/neuron metabolic interactions

    OpenAIRE

    Vamecq Joseph; Maurois Pierre; Bac Pierre; Delplanque Bernadette; Pages Nicole

    2007-01-01

    The ketogenic diet is an anticonvulsant diet enriched in fat. It provides the body with a minimal protein requirement and a restricted carbohydrate supply, the vast majority of calories (more than 80-90%) being given by fat. Though anticonvulsant activity of ketogenic diet has been well documented by a large number of experimental and clinical studies, underlying mechanisms still remain partially unclear. Astrocyte-neuron interactions, among which metabolic shuttles, may influence synaptic ac...

  17. Fisetin regulates astrocyte migration and proliferation in vitro.

    Science.gov (United States)

    Wang, Nan; Yao, Fang; Li, Ke; Zhang, Lanlan; Yin, Guo; Du, Mingjun; Wu, Bingyi

    2017-04-01

    Fisetin (3,3',4',7-tetrahydroxyflavone) is a plant flavonol found in fruits and vegetables that has been reported to inhibit migration and proliferation in several types of cancer. Reactive astrogliosis involves astrocyte migration and proliferation, and contributes to the formation of glial scars in central nervous system (CNS) disorders. However, the effect of fisetin on the migration and proliferation of astrocytes remains unclear. In this study, we found that fisetin inhibited astrocyte migration in a scratch-wound assay and diminished the phosphorylation of focal adhesion kinase (FAK; Tyr576/577 and paxillin (Tyr118). It also suppressed cell proliferation, as indicated by the decreased number of 5-ethynyl-2'-deoxyuridine (EdU)-positive cells, induced cell cycle arrest in the G1 phase, reduced the percentage of cells in the G2 and S phase (as measured by flow cytometry), and decreased cyclin D1 expression, but had no effect on apoptosis. Fisetin also decreased the phosphorylation levels of Akt and extracellular signal-regulated kinase (Erk)1/2, but had no effect on the phosphorylation of p38 mitogen-activated protein kinase (MAPK). These results indicate that fisetin inhibits aggressive cell phenotypes by suppressing cell migration and proliferation via the Akt/Erk signaling pathway. Fisetin may thus have potential for use as a therapeutic strategy targeting reactive astrocytes, which may lead to the inhibition of glial scar formation in vitro.

  18. Key Metabolic Enzymes Underlying Astrocytic Upregulation of GABAergic Plasticity

    Directory of Open Access Journals (Sweden)

    Przemysław T. Kaczor

    2017-05-01

    Full Text Available GABAergic plasticity is recognized as a key mechanism of shaping the activity of the neuronal networks. However, its description is challenging because of numerous neuron-specific mechanisms. In particular, while essential role of glial cells in the excitatory plasticity is well established, their involvement in GABAergic plasticity only starts to emerge. To address this problem, we used two models: neuronal cell culture (NC and astrocyte-neuronal co-culture (ANCC, where we chemically induced long-term potentiation at inhibitory synapses (iLTP. iLTP could be induced both in NC and ANCC but in ANCC its extent was larger. Importantly, this functional iLTP manifestation was accompanied by an increase in gephyrin puncta size. Furthermore, blocking astrocyte Krebs cycle with fluoroacetate (FA in ANCC prevented enhancement of both mIPSC amplitude and gephyrin puncta size but this effect was not observed in NC, indicating a key role in neuron-astrocyte cross-talk. Blockade of monocarboxylate transport with α-Cyano-4-hydroxycinnamic acid (4CIN abolished iLTP both in NC and ANCC and in the latter model prevented also enlargement of gephyrin puncta. Similarly, blockade of glycogen phosphorylase with BAYU6751 prevented enlargement of gephyrin puncta upon iLTP induction. Finally, block of glutamine synthetase with methionine sulfoxide (MSO nearly abolished mIPSC increase in both NMDA stimulated cell groups but did not prevent enlargement of gephyrin puncta. In conclusion, we provide further evidence that GABAergic plasticity is strongly regulated by astrocytes and the underlying mechanisms involve key metabolic enzymes. Considering the strategic role of GABAergic interneurons, the plasticity described here indicates possible mechanism whereby metabolism regulates the network activity.

  19. The glutamate aspartate transporter (GLAST) mediates L-glutamate-stimulated ascorbate-release via swelling-activated anion channels in cultured neonatal rodent astrocytes.

    Science.gov (United States)

    Lane, Darius J R; Lawen, Alfons

    2013-03-01

    Vitamin C (ascorbate) plays important neuroprotective and neuromodulatory roles in the mammalian brain. Astrocytes are crucially involved in brain ascorbate homeostasis and may assist in regenerating extracellular ascorbate from its oxidised forms. Ascorbate accumulated by astrocytes can be released rapidly by a process that is stimulated by the excitatory amino acid, L-glutamate. This process is thought to be neuroprotective against excitotoxicity. Although of potential clinical interest, the mechanism of this stimulated ascorbate-release remains unknown. Here, we report that primary cultures of mouse and rat astrocytes release ascorbate following initial uptake of dehydroascorbate and accumulation of intracellular ascorbate. Ascorbate-release was not due to cellular lysis, as assessed by cellular release of the cytosolic enzyme lactate dehydrogenase, and was stimulated by L-glutamate and L-aspartate, but not the non-excitatory amino acid L-glutamine. This stimulation was due to glutamate-induced cellular swelling, as it was both attenuated by hypertonic and emulated by hypotonic media. Glutamate-stimulated ascorbate-release was also sensitive to inhibitors of volume-sensitive anion channels, suggesting that the latter may provide the conduit for ascorbate efflux. Glutamate-stimulated ascorbate-release was not recapitulated by selective agonists of either ionotropic or group I metabotropic glutamate receptors, but was completely blocked by either of two compounds, TFB-TBOA and UCPH-101, which non-selectively and selectively inhibit the glial Na(+)-dependent excitatory amino acid transporter, GLAST, respectively. These results suggest that an impairment of astrocytic ascorbate-release may exacerbate neuronal dysfunction in neurodegenerative disorders and acute brain injury in which excitotoxicity and/or GLAST deregulation have been implicated.

  20. Exposure of rat hippocampal astrocytes to Ziram increases oxidative stress.

    Science.gov (United States)

    Matei, Ann-Marie; Trombetta, Louis D

    2016-04-01

    Pesticides have been shown in several studies to be the leading candidates of environmental toxins and may contribute to the pathogenesis of several neurodegenerative diseases. Ziram (zinc-bis(dimethyldithiocarbamate)) is an agricultural dithiocarbamate fungicide that is used to treat a variety of plant diseases. In spite of their generally acknowledged low toxicity, dithiocarbamates are known to cause a wide range of neurobehavioral effects as well as neuropathological changes in the brain. Astrocytes play a key role in normal brain physiology and in the pathology of the nervous system. This investigation studied the effects of 1.0 µM Ziram on rat hippocampal astrocytes. The thiobarbituric acid reactive substance assay performed showed a significant increase in malondialdehyde, a product of lipid peroxidation, in the Ziram-treated cells. Biochemical analysis also revealed a significant increase in the induction of 70 kDa heat shock and heme oxygenase 1 stress proteins. In addition, an increase of glutathione peroxidase (GPx) and a significant increase in oxidized glutathione (GSSG) were observed in the Ziram-treated cells. The ratio GSH to GSSG calculated from the treated cells was also decreased. Light and transmission electron microscopy supported the biochemical findings in Ziram-treated astrocytes. This data suggest that the cytotoxic effects observed with Ziram treatments may be related to the increase of oxidative stress. © The Author(s) 2013.

  1. Glucose and hypothalamic astrocytes: More than a fueling role?

    Science.gov (United States)

    Leloup, C; Allard, C; Carneiro, L; Fioramonti, X; Collins, S; Pénicaud, L

    2016-05-26

    Brain plays a central role in energy homeostasis continuously integrating numerous peripheral signals such as circulating nutrients, and in particular blood glucose level, a variable that must be highly regulated. Then, the brain orchestrates adaptive responses to modulate food intake and peripheral organs activity in order to achieve the fine tuning of glycemia. More than fifty years ago, the presence of glucose-sensitive neurons was discovered in the hypothalamus, but what makes them specific and identifiable still remains disconnected from their electrophysiological signature. On the other hand, astrocytes represent the major class of macroglial cells and are now recognized to support an increasing number of neuronal functions. One of these functions consists in the regulation of energy homeostasis through neuronal fueling and nutrient sensing. Twenty years ago, we discovered that the glucose transporter GLUT2, the canonical "glucosensor" of the pancreatic beta-cell together with the glucokinase, was also present in astrocytes and participated in hypothalamic glucose sensing. Since then, many studies have identified other actors and emphasized the astroglial participation in this mechanism. Growing evidence suggest that astrocytes form a complex network and have to be considered as spatially coordinated and regulated metabolic units. In this review we aim to provide an updated view of the molecular and respective cellular pathways involved in hypothalamic glucose sensing, and their relevance in physiological and pathological states. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Regulation of neuron–astrocyte metabolic coupling across the sleep–wake cycle

    OpenAIRE

    Petit, J.-M.; Magistretti, P.J.

    2016-01-01

    Over the last thirty years, a growing number of studies showed that astrocytes play a pivotal role in the energy support to synapses. More precisely, astrocytes adjust energy production to neuronal energy needs through different mechanisms grouped under the term "neurometabolic coupling" (NMC). In this review we describe these mechanisms of coupling and how they involve astrocytes. From a physiological point of view, these mechanisms of coupling are particularly important to ensure normal syn...

  3. Astrocyte morphology, heterogeneity and density in the developing African Giant Rat (Cricetomys gambianus

    Directory of Open Access Journals (Sweden)

    James Olukayode Olopade

    2015-05-01

    Full Text Available Astrocyte morphologies and heterogeneity were described in male African giant rats (AGR (Cricetomys gambianus, Waterhouse across three age groups (5 neonates, 5 juveniles and 5 adults using Silver impregnation method and immunohistochemistry against glia fibrillary acidic protein (GFAP. Immunopositive cell signaling, cell size and population were least in neonates, followed by adults and juveniles respectively. In neonates, astrocyte processes were mostly detected within the glia limitans of the mid and hind brain; their cell bodies measuring 32±4.8 µm in diameter against 91±5.4µm and 75± 1.9µm in juveniles and adults respectively. Astrocyte heterogeneity in juvenile and adult groups revealed eight subtypes to include fibrous astrocytes chiefly in the corpus callosum and brain stem, protoplasmic astrocytes in the cortex and dentate gyrus (DG; radial glia were found along the olfactory bulb (OB and subventricular zone (SVZ; velate astrocytes were mainly found in the cerebellum and hippocampus; marginal astrocytes close to the pia mater; Bergmann glia in the molecular layer of the cerebellum; perivascular and periventricular astrocytes in the cortex and third ventricle respectively. Cell counts from twelve anatomical regions of the brain were significantly higher in juveniles than in adults (p≤0.01 using unpaired student t-test in the cerebral cortex, pia, corpus callosum, rostral migratory stream (RMS, DG and cerebellum. Highest astrocyte count was found in the DG, while the least count was in the brain stem and sub cortex. Astrocytes along the periventricular layer of the OB are believed to be part of the radial glia system that transport newly formed cells towards the hippocampus and play roles in neurogenesis migration and homeostasis in the AGR. Therefore, astrocyte heterogeneity was examined across age groups in the AGR to determine whether age influences astrocytes population in different regions of the AGR brain and discuss

  4. Stretch-induced Ca2+ independent ATP release in hippocampal astrocytes.

    Science.gov (United States)

    Xiong, Yingfei; Teng, Sasa; Zheng, Lianghong; Sun, Suhua; Li, Jie; Guo, Ning; Li, Mingli; Wang, Li; Zhu, Feipeng; Wang, Changhe; Rao, Zhiren; Zhou, Zhuan

    2018-02-28

    Similar to neurons, astrocytes actively participate in synaptic transmission via releasing gliotransmitters. The Ca 2+ -dependent release of gliotransmitters includes glutamate and ATP. Following an 'on-cell-like' mechanical stimulus to a single astrocyte, Ca 2+ independent single, large, non-quantal, ATP release occurs. Astrocytic ATP release is inhibited by either selective antagonist treatment or genetic knockdown of P2X7 receptor channels. Our work suggests that ATP can be released from astrocytes via two independent pathways in hippocampal astrocytes; in addition to the known Ca 2+ -dependent vesicular release, larger non-quantal ATP release depends on P2X7 channels following mechanical stretch. Astrocytic ATP release is essential for brain functions such as synaptic long-term potentiation for learning and memory. However, whether and how ATP is released via exocytosis remains hotly debated. All previous studies of non-vesicular ATP release have used indirect assays. By contrast, two recent studies report vesicular ATP release using more direct assays. In the present study, using patch clamped 'ATP-sniffer cells', we re-investigated astrocytic ATP release at single-vesicle resolution in hippocampal astrocytes. Following an 'on-cell-like' mechanical stimulus of a single astrocyte, a Ca 2+ independent single large non-quantal ATP release occurred, in contrast to the Ca 2+ -dependent multiple small quantal ATP release in a chromaffin cell. The mechanical stimulation-induced ATP release from an astrocyte was inhibited by either exposure to a selective antagonist or genetic knockdown of P2X7 receptor channels. Functional P2X7 channels were expressed in astrocytes in hippocampal brain slices. Thus, in addition to small quantal ATP release, larger non-quantal ATP release depends on P2X7 channels in astrocytes. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  5. Transformation of Astrocytes to a Neuroprotective Phenotype by Microglia via P2Y1 Receptor Downregulation

    Directory of Open Access Journals (Sweden)

    Youichi Shinozaki

    2017-05-01

    Full Text Available Microglia and astrocytes become reactive following traumatic brain injury (TBI. However, the coordination of this reactivity and its relation to pathophysiology are unclear. Here, we show that microglia transform astrocytes into a neuroprotective phenotype via downregulation of the P2Y1 purinergic receptor. TBI initially caused microglial activation in the injury core, followed by reactive astrogliosis in the peri-injured region and formation of a neuroprotective astrocyte scar. Equivalent changes to astrocytes were observed in vitro after injury. This change in astrocyte phenotype resulted from P2Y1 receptor downregulation, mediated by microglia-derived cytokines. In mice, astrocyte-specific P2Y1 receptor overexpression (Astro-P2Y1OE counteracted scar formation, while astrocyte-specific P2Y1 receptor knockdown (Astro-P2Y1KD facilitated scar formation, suggesting critical roles of P2Y1 receptors in the transformation. Astro-P2Y1OE and Astro-P2Y1KD mice showed increased and reduced neuronal damage, respectively. Altogether, our findings indicate that microglia-astrocyte interaction, involving a purinergic signal, is essential for the formation of neuroprotective astrocytes.

  6. An Efficient Platform for Astrocyte Differentiation from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Tcw, Julia; Wang, Minghui; Pimenova, Anna A; Bowles, Kathryn R; Hartley, Brigham J; Lacin, Emre; Machlovi, Saima I; Abdelaal, Rawan; Karch, Celeste M; Phatnani, Hemali; Slesinger, Paul A; Zhang, Bin; Goate, Alison M; Brennand, Kristen J

    2017-08-08

    Growing evidence implicates the importance of glia, particularly astrocytes, in neurological and psychiatric diseases. Here, we describe a rapid and robust method for the differentiation of highly pure populations of replicative astrocytes from human induced pluripotent stem cells (hiPSCs), via a neural progenitor cell (NPC) intermediate. We evaluated this protocol across 42 NPC lines (derived from 30 individuals). Transcriptomic analysis demonstrated that hiPSC-astrocytes from four individuals are highly similar to primary human fetal astrocytes and characteristic of a non-reactive state. hiPSC-astrocytes respond to inflammatory stimulants, display phagocytic capacity, and enhance microglial phagocytosis. hiPSC-astrocytes also possess spontaneous calcium transient activity. Our protocol is a reproducible, straightforward (single medium), and rapid (method to generate populations of hiPSC-astrocytes that can be used for neuron-astrocyte and microglia-astrocyte co-cultures for the study of neuropsychiatric disorders. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2016-10-01

    Full Text Available Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS. Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca2+ release, thereby inducing endoplasmic reticulum (ER stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca2+ release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca2+ overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca2+ release and ER stress.

  8. Synthetic AAV/CRISPR vectors for blocking HIV-1 expression in persistently infected astrocytes.

    Science.gov (United States)

    Kunze, Christine; Börner, Kathleen; Kienle, Eike; Orschmann, Tanja; Rusha, Ejona; Schneider, Martha; Radivojkov-Blagojevic, Milena; Drukker, Micha; Desbordes, Sabrina; Grimm, Dirk; Brack-Werner, Ruth

    2018-02-01

    Astrocytes, the most abundant cells in the mammalian brain, perform key functions and are involved in several neurodegenerative diseases. The human immunodeficiency virus (HIV) can persist in astrocytes, contributing to the HIV burden and neurological dysfunctions in infected individuals. While a comprehensive approach to HIV cure must include the targeting of HIV-1 in astrocytes, dedicated tools for this purpose are still lacking. Here we report a novel Adeno-associated virus-based vector (AAV9P1) with a synthetic surface peptide for transduction of astrocytes. Analysis of AAV9P1 transduction efficiencies with single brain cell populations, including primary human brain cells, as well as human brain organoids demonstrated that AAV9P1 targeted terminally differentiated human astrocytes much more efficiently than neurons. We then investigated whether AAV9P1 can be used to deliver HIV-inhibitory genes to astrocytes. To this end we generated AAV9P1 vectors containing genes for HIV-1 proviral editing by CRISPR/Cas9. Latently HIV-1 infected astrocytes transduced with these vectors showed significantly diminished reactivation of proviruses, compared with untransduced cultures. Sequence analysis identified mutations/deletions in key HIV-1 transcriptional control regions. We conclude that AAV9P1 is a promising tool for gene delivery to astrocytes and may facilitate inactivation/destruction of persisting HIV-1 proviruses in astrocyte reservoirs. © 2017 Wiley Periodicals, Inc.

  9. Disruption of astrocyte-neuron cholesterol cross talk affects neuronal function in Huntington's disease.

    Science.gov (United States)

    Valenza, M; Marullo, M; Di Paolo, E; Cesana, E; Zuccato, C; Biella, G; Cattaneo, E

    2015-04-01

    In the adult brain, neurons require local cholesterol production, which is supplied by astrocytes through apoE-containing lipoproteins. In Huntington's disease (HD), such cholesterol biosynthesis in the brain is severely reduced. Here we show that this defect, occurring in astrocytes, is detrimental for HD neurons. Astrocytes bearing the huntingtin protein containing increasing CAG repeats secreted less apoE-lipoprotein-bound cholesterol in the medium. Conditioned media from HD astrocytes and lipoprotein-depleted conditioned media from wild-type (wt) astrocytes were equally detrimental in a neurite outgrowth assay and did not support synaptic activity in HD neurons, compared with conditions of cholesterol supplementation or conditioned media from wt astrocytes. Molecular perturbation of cholesterol biosynthesis and efflux in astrocytes caused similarly altered astrocyte-neuron cross talk, whereas enhancement of glial SREBP2 and ABCA1 function reversed the aspects of neuronal dysfunction in HD. These findings indicate that astrocyte-mediated cholesterol homeostasis could be a potential therapeutic target to ameliorate neuronal dysfunction in HD.

  10. Direct Thy-1/alphaVbeta3 integrin interaction mediates neuron to astrocyte communication.

    Science.gov (United States)

    Hermosilla, Tamara; Muñoz, Daniel; Herrera-Molina, Rodrigo; Valdivia, Alejandra; Muñoz, Nicolás; Nham, Sang-Uk; Schneider, Pascal; Burridge, Keith; Quest, Andrew F G; Leyton, Lisette

    2008-06-01

    Thy-1 is an abundant neuronal glycoprotein of poorly defined function. We recently provided evidence indicating that Thy-1 clusters a beta3-containing integrin in astrocytes to induce tyrosine phosphorylation, RhoA activation and the formation of focal adhesions and stress fibers. To date, the alpha subunit partner of beta3 integrin in DI TNC1 astrocytes is unknown. Similarly, the ability of neuronal, membrane-bound Thy-1 to trigger astrocyte signaling via integrin engagement remains speculation. Here, evidence that alphav forms an alphavbeta3 heterodimer in DI TNC1 astrocytes was obtained. In neuron-astrocyte association assays, the presence of either anti-alphav or anti-beta3 integrin antibodies reduced cell-cell interaction demonstrating the requirement of both integrin subunits for this association. Moreover, anti-Thy-1 antibodies blocked stimulation of astrocytes by neurons but not the binding of these two cell types. Thus, neuron-astrocyte association involved binding between molecular components in addition to the Thy-1-integrin; however, the signaling events leading to focal adhesion formation in astrocytes depended exclusively on the latter interaction. Additionally, wild-type (RLD) but not mutated (RLE) Thy-1 was shown to directly interact with alphavbeta3 integrin by Surface Plasmon Resonance analysis. This interaction was promoted by divalent cations and was species-independent. Together, these results demonstrate that the alphavbeta3 integrin heterodimer interacts directly with Thy-1 present on neuronal cells to stimulate astrocytes.

  11. Functional alterations of astrocytes in mental disorders: pharmacological significance as a drug target

    Directory of Open Access Journals (Sweden)

    Yutaka eKoyama

    2015-07-01

    Full Text Available Astrocytes play an essential role in supporting brain functions in physiological and pathological states. Modulation of their pathophysiological responses have beneficial actions on nerve tissue injured by brain insults and neurodegenerative diseases, therefore astrocytes are recognized as promising targets for neuroprotective drugs. Recent investigations have identified several astrocytic mechanisms for modulating synaptic transmission and neural plasticity. These include altered expression of transporters for neurotransmitters, release of gliotransmitters and neurotrophic factors, and intercellular communication through gap junctions. Investigation of patients with mental disorders shows morphological and functional alterations in astrocytes. According to these observations, manipulation of astrocytic function by gene mutation and pharmacological tools reproduce mental disorder-like behavior in experimental animals. Some drugs clinically used for mental disorders affect astrocyte function. As experimental evidence shows their role in the pathogenesis of mental disorders, astrocytes have gained much attention as drug targets for mental disorders. In this article, I review functional alterations of astrocytes in several mental disorders including schizophrenia, mood disorder, drug dependence, and neurodevelopmental disorders. The pharmacological significance of astrocytes in mental disorders is also discussed.

  12. Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures

    Science.gov (United States)

    Koizumi, Schuichi; Fujishita, Kayoko; Tsuda, Makoto; Shigemoto-Mogami, Yukari; Inoue, Kazuhide

    2003-09-01

    Originally ascribed passive roles in the CNS, astrocytes are now known to have an active role in the regulation of synaptic transmission. Neuronal activity can evoke Ca2+ transients in astrocytes, and Ca2+ transients in astrocytes can evoke changes in neuronal activity. The excitatory neurotransmitter glutamate has been shown to mediate such bidirectional communication between astrocytes and neurons. We demonstrate here that ATP, a primary mediator of intercellular Ca2+ signaling among astrocytes, also mediates intercellular signaling between astrocytes and neurons in hippocampal cultures. Mechanical stimulation of astrocytes evoked Ca2+ waves mediated by the release of ATP and the activation of P2 receptors. Mechanically evoked Ca2+ waves led to decreased excitatory glutamatergic synaptic transmission in an ATP-dependent manner. Exogenous application of ATP does not affect postsynaptic glutamatergic responses but decreased presynaptic exocytotic events. Finally, we show that astrocytes exhibit spontaneous Ca2+ waves mediated by extracellular ATP and that inhibition of these Ca2+ responses enhanced excitatory glutamatergic transmission. We therefore conclude that ATP released from astrocytes exerts tonic and activity-dependent down-regulation of synaptic transmission via presynaptic mechanisms.

  13. Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers.

    Science.gov (United States)

    Lanjakornsiripan, Darin; Pior, Baek-Jun; Kawaguchi, Daichi; Furutachi, Shohei; Tahara, Tomoaki; Katsuyama, Yu; Suzuki, Yutaka; Fukazawa, Yugo; Gotoh, Yukiko

    2018-04-24

    Non-pial neocortical astrocytes have historically been thought to comprise largely a nondiverse population of protoplasmic astrocytes. Here we show that astrocytes of the mouse somatosensory cortex manifest layer-specific morphological and molecular differences. Two- and three-dimensional observations revealed that astrocytes in the different layers possess distinct morphologies as reflected by differences in cell orientation, territorial volume, and arborization. The extent of ensheathment of synaptic clefts by astrocytes in layer II/III was greater than that by those in layer VI. Moreover, differences in gene expression were observed between upper-layer and deep-layer astrocytes. Importantly, layer-specific differences in astrocyte properties were abrogated in reeler and Dab1 conditional knockout mice, in which neuronal layers are disturbed, suggesting that neuronal layers are a prerequisite for the observed morphological and molecular differences of neocortical astrocytes. This study thus demonstrates the existence of layer-specific interactions between neurons and astrocytes, which may underlie their layer-specific functions.

  14. Astrocyte-neuron crosstalk regulates the expression and subcellular localization of carbohydrate metabolism enzymes.

    Science.gov (United States)

    Mamczur, Piotr; Borsuk, Borys; Paszko, Jadwiga; Sas, Zuzanna; Mozrzymas, Jerzy; Wiśniewski, Jacek R; Gizak, Agnieszka; Rakus, Dariusz

    2015-02-01

    Astrocytes releasing glucose- and/or glycogen-derived lactate and glutamine play a crucial role in shaping neuronal function and plasticity. Little is known, however, how metabolic functions of astrocytes, e.g., their ability to degrade glucosyl units, are affected by the presence of neurons. To address this issue we carried out experiments which demonstrated that co-culturing of rat hippocampal astrocytes with neurons significantly elevates the level of mRNA and protein for crucial enzymes of glycolysis (phosphofructokinase, aldolase, and pyruvate kinase), glycogen metabolism (glycogen synthase and glycogen phosphorylase), and glutamine synthetase in astrocytes. Simultaneously, the decrease of the capability of neurons to metabolize glucose and glutamine is observed. We provide evidence that neurons alter the expression of astrocytic enzymes by secretion of as yet unknown molecule(s) into the extracellular fluid. Moreover, our data demonstrate that almost all studied enzymes may localize in astrocytic nuclei and this localization is affected by the co-culturing with neurons which also reduces proliferative activity of astrocytes. Our results provide the first experimental evidence that the astrocyte-neuron crosstalk substantially affects the expression of basal metabolic enzymes in the both types of cells and influences their subcellular localization in astrocytes. © 2014 Wiley Periodicals, Inc.

  15. Lab-Attenuated Rabies Virus Causes Abortive Infection and Induces Cytokine Expression in Astrocytes by Activating Mitochondrial Antiviral-Signaling Protein Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Bin Tian

    2018-01-01

    Full Text Available Rabies is an ancient disease but remains endemic in most parts of the world and causes approximately 59,000 deaths annually. The mechanism through which the causative agent, rabies virus (RABV, evades the host immune response and infects the host central nervous system (CNS has not been completely elucidated thus far. Our previous studies have shown that lab-attenuated, but not wild-type (wt, RABV activates the innate immune response in the mouse and dog models. In this present study, we demonstrate that lab-attenuated RABV causes abortive infection in astrocytes, the most abundant glial cells in the CNS. Furthermore, we found that lab-attenuated RABV produces more double-stranded RNA (dsRNA than wt RABV, which is recognized by retinoic acid-inducible gene I (RIG-I or melanoma differentiation-associated protein 5 (MDA5. Activation of mitochondrial antiviral-signaling protein (MAVS, the common adaptor molecule for RIG-I and MDA5, results in the production of type I interferon (IFN and the expression of hundreds of IFN-stimulated genes, which suppress RABV replication and spread in astrocytes. Notably, lab-attenuated RABV replicates in a manner identical to that of wt RABV in MAVS−/− astrocytes. It was also found that lab-attenuated, but not wt, RABV induces the expression of inflammatory cytokines via the MAVS- p38/NF-κB signaling pathway. These inflammatory cytokines increase the blood–brain barrier permeability and thus enable immune cells and antibodies infiltrate the CNS parenchyma, resulting in RABV control and elimination. In contrast, wt RABV restricts dsRNA production and thus evades innate recognition by RIG-I/MDA5 in astrocytes, which could be one of the mechanisms by which wt RABV evades the host immune response in resident CNS cells. Our findings suggest that astrocytes play a critical role in limiting the replication of lab-attenuated RABV in the CNS.

  16. Thyroid uptake test

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    The uptake of radioiodine by the thyroid gland is altered by the iodine content of diet or drugs. American diet has a high iodine content because each slice of the white bread contains nearly 150μg of iodine due to the bleaching process employed in the production of the bread. This carrier content of iodine reduces the uptake so much, that the normal American uptakes are usually three to four times lower than the uptakes in the developing countries. The other drawback of the thyroid uptake test is that it is affected by the iodine containing drugs. Anti-diarrhoea medications are quire common in the developing countries and many of them contain iodine moiety. Without a reliable drug history, a low thyroid uptake value may lead to a misleading conclusion

  17. Amitriptyline induces brain-derived neurotrophic factor (BDNF) mRNA expression through ERK-dependent modulation of multiple BDNF mRNA variants in primary cultured rat cortical astrocytes and microglia.

    Science.gov (United States)

    Hisaoka-Nakashima, Kazue; Kajitani, Naoto; Kaneko, Masahiro; Shigetou, Takahiro; Kasai, Miho; Matsumoto, Chie; Yokoe, Toshiki; Azuma, Honami; Takebayashi, Minoru; Morioka, Norimitsu; Nakata, Yoshihiro

    2016-03-01

    A significant role of brain-derived neurotrophic factor (BDNF) has been previously implicated in the therapeutic effect of antidepressants. To ascertain the contribution of specific cell types in the brain that produce BDNF following antidepressant treatment, the effects of the tricyclic antidepressant amitriptyline on rat primary neuronal, astrocytic and microglial cortical cultures were examined. Amitriptyline increased the expression of BDNF mRNA in astrocytic and microglial cultures but not neuronal cultures. Antidepressants with distinct mechanisms of action, such as clomipramine, duloxetine and fluvoxamine, also increased BDNF mRNA expression in astrocytic and microglial cultures. There are multiple BDNF mRNA variants (exon I, IIA, IV and VI) expressed in astrocytes and microglia and the variant induced by antidepressants has yet to be elaborated. Treatment with antidepressants increased the expression of exon I, IV and VI in astrocyte and microglia. Clomipramine alone significantly upregulated expression of exon IIA. The amitriptyline-induced expression of both total and individual BDNF mRNA variants (exon I, IV and VI) were blocked by MEK inhibitor U0126, indicating MEK/ERK signaling is required in the expression of BDNF. These findings indicate that non-neural cells are a significant target of antidepressants and further support the contention that glial production of BDNF is crucial role in the therapeutic effect of antidepressants. The current data suggest that targeting of glial function could lead to the development of antidepressants with a truly novel mechanism of action. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Astrocyte Transforming Growth Factor Beta 1 Protects Synapses against Aβ Oligomers in Alzheimer's Disease Model.

    Science.gov (United States)

    Diniz, Luan Pereira; Tortelli, Vanessa; Matias, Isadora; Morgado, Juliana; Bérgamo Araujo, Ana Paula; Melo, Helen M; Seixas da Silva, Gisele S; Alves-Leon, Soniza V; de Souza, Jorge M; Ferreira, Sergio T; De Felice, Fernanda G; Gomes, Flávia Carvalho Alcantara

    2017-07-12

    Alzheimer's disease (AD) is characterized by progressive cognitive decline, increasingly attributed to neuronal dysfunction induced by amyloid-β oligomers (AβOs). Although the impact of AβOs on neurons has been extensively studied, only recently have the possible effects of AβOs on astrocytes begun to be investigated. Given the key roles of astrocytes in synapse formation, plasticity, and function, we sought to investigate the impact of AβOs on astrocytes, and to determine whether this impact is related to the deleterious actions of AβOs on synapses. We found that AβOs interact with astrocytes, cause astrocyte activation and trigger abnormal generation of reactive oxygen species, which is accompanied by impairment of astrocyte neuroprotective potential in vitro We further show that both murine and human astrocyte conditioned media (CM) increase synapse density, reduce AβOs binding, and prevent AβO-induced synapse loss in cultured hippocampal neurons. Both a neutralizing anti-transforming growth factor-β1 (TGF-β1) antibody and siRNA-mediated knockdown of TGF-β1, previously identified as an important synaptogenic factor secreted by astrocytes, abrogated the protective action of astrocyte CM against AβO-induced synapse loss. Notably, TGF-β1 prevented hippocampal dendritic spine loss and memory impairment in mice that received an intracerebroventricular infusion of AβOs. Results suggest that astrocyte-derived TGF-β1 is part of an endogenous mechanism that protects synapses against AβOs. By demonstrating that AβOs decrease astrocyte ability to protect synapses, our results unravel a new mechanism underlying the synaptotoxic action of AβOs in AD. SIGNIFICANCE STATEMENT Alzheimer's disease is characterized by progressive cognitive decline, mainly attributed to synaptotoxicity of the amyloid-β oligomers (AβOs). Here, we investigated the impact of AβOs in astrocytes, a less known subject. We show that astrocytes prevent synapse loss induced by A

  19. A comparative transcriptomic analysis of astrocytes differentiation from human neural progenitor cells.

    Science.gov (United States)

    Magistri, Marco; Khoury, Nathalie; Mazza, Emilia Maria Cristina; Velmeshev, Dmitry; Lee, Jae K; Bicciato, Silvio; Tsoulfas, Pantelis; Faghihi, Mohammad Ali

    2016-11-01

    Astrocytes are a morphologically and functionally heterogeneous population of cells that play critical roles in neurodevelopment and in the regulation of central nervous system homeostasis. Studies of human astrocytes have been hampered by the lack of specific molecular markers and by the difficulties associated with purifying and culturing astrocytes from adult human brains. Human neural progenitor cells (NPCs) with self-renewal and multipotent properties represent an appealing model system to gain insight into the developmental genetics and function of human astrocytes, but a comprehensive molecular characterization that confirms the validity of this cellular system is still missing. Here we used an unbiased transcriptomic analysis to characterize in vitro culture of human NPCs and to define the gene expression programs activated during the differentiation of these cells into astrocytes using FBS or the combination of CNTF and BMP4. Our results demonstrate that in vitro cultures of human NPCs isolated during the gliogenic phase of neurodevelopment mainly consist of radial glial cells (RGCs) and glia-restricted progenitor cells. In these cells the combination of CNTF and BMP4 activates the JAK/STAT and SMAD signaling cascades, leading to the inhibition of oligodendrocytes lineage commitment and activation of astrocytes differentiation. On the other hand, FBS-derived astrocytes have properties of reactive astrocytes. Our work suggests that in vitro culture of human NPCs represents a valuable cellular system to study human disorders characterized by impairment of astrocytes development and function. Our datasets represent an important resource for researchers studying human astrocytes development and might set the basis for the discovery of novel human-specific astrocyte markers. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Effect of 8-bromo-cAMP and dexamethasone on glutamate metabolism in rat astrocytes

    International Nuclear Information System (INIS)

    Zielke, H.R.; Tildon, J.T.; Landry, M.E.; Max, S.R.

    1990-01-01

    Glutamine synthetase (GS) activity in cultured rat astrocytes was measured in extracts and compared to the intracellular rate of glutamine synthesis by intact control astrocytes or astrocytes exposed to 1 mM 8-bromo-cAMP (8Br-cAMP) + 1 microM dexamethasone (DEX) for 4 days. GS activity in extracts of astrocytes treated with 8Br-cAMP + DEX was 7.5 times greater than the activity in extracts of control astrocytes. In contrast, the intracellular rate of glutamine synthesis by intact cells increased only 2-fold, suggesting that additional intracellular effectors regulate the expression of GS activity inside the intact cell. The rate of glutamine synthesis by astrocytes was 4.3 times greater in MEM than in HEPES buffered Hank's salts. Synthesis of glutamine by intact astrocytes cultured in MEM was independent of the external glutamine or ammonia concentrations but was increased by higher extracellular glutamate concentrations. In studies with intact astrocytes 80% of the original [U- 14 C]glutamate was recovered in the medium as radioactive glutamine, 2-3% as aspartate, and 7% as glutamate after 2 hours for both control and treated astrocytes. The results suggest: (1) astrocytes are highly efficient in the conversion of glutamate to glutamine; (2) induction of GS activity increases the rate of glutamate conversion to glutamine by astrocytes and the rate of glutamine release into the medium; (3) endogenous intracellular regulators of GS activity control the flux of glutamate through this enzymatic reaction; and (4) the composition of the medium alters the rate of glutamine synthesis from external glutamate

  1. Prostaglandin E2 released from activated microglia enhances astrocyte proliferation in vitro

    International Nuclear Information System (INIS)

    Zhang Dan; Hu Xiaoming; Qian Li; Wilson, Belinda; Lee, Christopher; Flood, Patrick; Langenbach, Robert; Hong, J.-S.

    2009-01-01

    Microglial activation has been implicated in many astrogliosis-related pathological conditions including astroglioma; however, the detailed mechanism is not clear. In this study, we used primary enriched microglia and astrocyte cultures to determine the role of microglial prostaglandin E 2 (PGE 2 ) in the proliferation of astrocytes. The proliferation of astrocytes was measured by BrdU incorporation. The level of PGE 2 was measured by ELISA method. Pharmacological inhibition or genetic ablation of COX-2 in microglia were also applied in this study. We found that proliferation of astrocytes increased following lipopolysaccharide (LPS) treatment in the presence of microglia. Furthermore, increased proliferation of astrocytes was observed in the presence of conditioned media from LPS-treated microglia. The potential involvement of microglial PGE 2 in enhanced astrocyte proliferation was suggested by the findings that PGE 2 production and COX-2 expression in microglia were increased by LPS treatment. In addition, activated microglia-induced increases in astrocyte proliferation were blocked by the PGE 2 antagonist AH6809, COX-2 selective inhibitor DuP-697 or by genetic knockout of microglial COX-2. These findings were further supported by the finding that addition of PGE 2 to the media significantly induced astrocyte proliferation. These results indicate that microglial PGE 2 plays an important role in astrocyte proliferation, identifying PGE 2 as a key neuroinflammatory molecule that triggers the pathological response related to uncontrollable astrocyte proliferation. These findings are important in elucidating the role of activated microglia and PGE 2 in astrocyte proliferation and in suggesting a potential avenue in the use of anti-inflammatory agents for the therapy of astroglioma.

  2. Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons

    International Nuclear Information System (INIS)

    Pizzurro, Daniella M.; Dao, Khoi; Costa, Lucio G.

    2014-01-01

    Evidence from in vivo and epidemiological studies suggests that organophosphorus insecticides (OPs) are developmental neurotoxicants, but possible underlying mechanisms are still unclear. Astrocytes are increasingly recognized for their active role in normal neuronal development. This study sought to investigate whether the widely-used OP diazinon (DZ), and its oxygen metabolite diazoxon (DZO), would affect glial–neuronal interactions as a potential mechanism of developmental neurotoxicity. Specifically, we investigated the effects of DZ and DZO on the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. The results show that both DZ and DZO adversely affect astrocyte function, resulting in inhibited neurite outgrowth in hippocampal neurons. This effect appears to be mediated by oxidative stress, as indicated by OP-induced increased reactive oxygen species production in astrocytes and prevention of neurite outgrowth inhibition by antioxidants. The concentrations of OPs were devoid of cytotoxicity, and cause limited acetylcholinesterase inhibition in astrocytes (18 and 25% for DZ and DZO, respectively). Among astrocytic neuritogenic factors, the most important one is the extracellular matrix protein fibronectin. DZ and DZO decreased levels of fibronectin in astrocytes, and this effect was also attenuated by antioxidants. Underscoring the importance of fibronectin in this context, adding exogenous fibronectin to the co-culture system successfully prevented inhibition of neurite outgrowth caused by DZ and DZO. These results indicate that DZ and DZO increase oxidative stress in astrocytes, and this in turn modulates astrocytic fibronectin, leading to impaired neurite outgrowth in hippocampal neurons. - Highlights: • DZ and DZO inhibit astrocyte-mediated neurite outgrowth in rat hippocampal neurons. • Oxidative stress is involved in inhibition of neuritogenesis by DZ and DZO. • DZ and DZO decrease expression of the neuritogenic

  3. Cleavage of Hyaluronan and CD44 Adhesion Molecule Regulate Astrocyte Morphology via Rac1 Signalling.

    Directory of Open Access Journals (Sweden)

    Anna Konopka

    Full Text Available Communication of cells with their extracellular environment is crucial to fulfill their function in physiological and pathophysiological conditions. The literature data provide evidence that such a communication is also important in case of astrocytes. Mechanisms that contribute to the interaction between astrocytes and extracellular matrix (ECM proteins are still poorly understood. Hyaluronan is the main component of ECM in the brain, where its major receptor protein CD44 is expressed by a subset of astrocytes. Considering the fact that functions of astrocytes are tightly coupled with changes in their morphology (e.g.: glutamate clearance in the synaptic cleft, migration, astrogliosis, we investigated the influence of hyaluronan cleavage by hyaluronidase, knockdown of CD44 by specific shRNA and CD44 overexpression on astrocyte morphology. Our results show that hyaluronidase treatment, as well as knockdown of CD44, in astrocytes result in a "stellate"-like morphology, whereas overexpression of CD44 causes an increase in cell body size and changes the shape of astrocytes into flattened cells. Moreover, as a dynamic reorganization of the actin cytoskeleton is supposed to be responsible for morphological changes of cells, and this reorganization is controlled by small GTPases of the Rho family, we hypothesized that GTPase Rac1 acts as a downstream effector for hyaluronan and CD44 in astrocytes. We used FRET-based biosensor and a dominant negative mutant of Rac1 to investigate the involvement of Rac1 activity in hyaluronidase- and CD44-dependent morphological changes of astrocytes. Both, hyaluronidase treatment and knockdown of CD44, enhances Rac1 activity while overexpression of CD44 reduces the activity state in astrocytes. Furthermore, morphological changes were blocked by specific inhibition of Rac1 activity. These findings indicate for the first time that regulation of Rac1 activity is responsible for hyaluronidase and CD44-driven morphological

  4. Cleavage of Hyaluronan and CD44 Adhesion Molecule Regulate Astrocyte Morphology via Rac1 Signalling.

    Science.gov (United States)

    Konopka, Anna; Zeug, Andre; Skupien, Anna; Kaza, Beata; Mueller, Franziska; Chwedorowicz, Agnieszka; Ponimaskin, Evgeni; Wilczynski, Grzegorz M; Dzwonek, Joanna

    2016-01-01

    Communication of cells with their extracellular environment is crucial to fulfill their function in physiological and pathophysiological conditions. The literature data provide evidence that such a communication is also important in case of astrocytes. Mechanisms that contribute to the interaction between astrocytes and extracellular matrix (ECM) proteins are still poorly understood. Hyaluronan is the main component of ECM in the brain, where its major receptor protein CD44 is expressed by a subset of astrocytes. Considering the fact that functions of astrocytes are tightly coupled with changes in their morphology (e.g.: glutamate clearance in the synaptic cleft, migration, astrogliosis), we investigated the influence of hyaluronan cleavage by hyaluronidase, knockdown of CD44 by specific shRNA and CD44 overexpression on astrocyte morphology. Our results show that hyaluronidase treatment, as well as knockdown of CD44, in astrocytes result in a "stellate"-like morphology, whereas overexpression of CD44 causes an increase in cell body size and changes the shape of astrocytes into flattened cells. Moreover, as a dynamic reorganization of the actin cytoskeleton is supposed to be responsible for morphological changes of cells, and this reorganization is controlled by small GTPases of the Rho family, we hypothesized that GTPase Rac1 acts as a downstream effector for hyaluronan and CD44 in astrocytes. We used FRET-based biosensor and a dominant negative mutant of Rac1 to investigate the involvement of Rac1 activity in hyaluronidase- and CD44-dependent morphological changes of astrocytes. Both, hyaluronidase treatment and knockdown of CD44, enhances Rac1 activity while overexpression of CD44 reduces the activity state in astrocytes. Furthermore, morphological changes were blocked by specific inhibition of Rac1 activity. These findings indicate for the first time that regulation of Rac1 activity is responsible for hyaluronidase and CD44-driven morphological changes of

  5. Paracrine effect of carbon monoxide - astrocytes promote neuroprotection through purinergic signaling in mice.

    Science.gov (United States)

    Queiroga, Cláudia S F; Alves, Raquel M A; Conde, Sílvia V; Alves, Paula M; Vieira, Helena L A

    2016-08-15

    The neuroprotective role of carbon monoxide (CO) has been studied in a cell-autonomous mode. Herein, a new concept is disclosed - CO affects astrocyte-neuron communication in a paracrine manner to promote neuroprotection. Neuronal survival was assessed when co-cultured with astrocytes that had been pre-treated or not with CO. The CO-pre-treated astrocytes reduced neuronal cell death, and the cellular mechanisms were investigated, focusing on purinergic signaling. CO modulates astrocytic metabolism and extracellular ATP content in the co-culture medium. Moreover, several antagonists of P1 adenosine and P2 ATP receptors partially reverted CO-induced neuroprotection through astrocytes. Likewise, knocking down expression of the neuronal P1 adenosine receptor A2A-R (encoded by Adora2a) reverted the neuroprotective effects of CO-exposed astrocytes. The neuroprotection of CO-treated astrocytes also decreased following prevention of ATP or adenosine release from astrocytic cells and inhibition of extracellular ATP metabolism into adenosine. Finally, the neuronal downstream event involves TrkB (also known as NTRK2) receptors and BDNF. Pharmacological and genetic inhibition of TrkB receptors reverts neuroprotection triggered by CO-treated astrocytes. Furthermore, the neuronal ratio of BDNF to pro-BDNF increased in the presence of CO-treated astrocytes and decreased whenever A2A-R expression was silenced. In summary, CO prevents neuronal cell death in a paracrine manner by targeting astrocytic metabolism through purinergic signaling. © 2016. Published by The Company of Biologists Ltd.

  6. Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons

    Energy Technology Data Exchange (ETDEWEB)

    Pizzurro, Daniella M.; Dao, Khoi [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Costa, Lucio G. [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Department of Neuroscience, University of Parma, Parma (Italy)

    2014-02-01

    Evidence from in vivo and epidemiological studies suggests that organophosphorus insecticides (OPs) are developmental neurotoxicants, but possible underlying mechanisms are still unclear. Astrocytes are increasingly recognized for their active role in normal neuronal development. This study sought to investigate whether the widely-used OP diazinon (DZ), and its oxygen metabolite diazoxon (DZO), would affect glial–neuronal interactions as a potential mechanism of developmental neurotoxicity. Specifically, we investigated the effects of DZ and DZO on the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. The results show that both DZ and DZO adversely affect astrocyte function, resulting in inhibited neurite outgrowth in hippocampal neurons. This effect appears to be mediated by oxidative stress, as indicated by OP-induced increased reactive oxygen species production in astrocytes and prevention of neurite outgrowth inhibition by antioxidants. The concentrations of OPs were devoid of cytotoxicity, and cause limited acetylcholinesterase inhibition in astrocytes (18 and 25% for DZ and DZO, respectively). Among astrocytic neuritogenic factors, the most important one is the extracellular matrix protein fibronectin. DZ and DZO decreased levels of fibronectin in astrocytes, and this effect was also attenuated by antioxidants. Underscoring the importance of fibronectin in this context, adding exogenous fibronectin to the co-culture system successfully prevented inhibition of neurite outgrowth caused by DZ and DZO. These results indicate that DZ and DZO increase oxidative stress in astrocytes, and this in turn modulates astrocytic fibronectin, leading to impaired neurite outgrowth in hippocampal neurons. - Highlights: • DZ and DZO inhibit astrocyte-mediated neurite outgrowth in rat hippocampal neurons. • Oxidative stress is involved in inhibition of neuritogenesis by DZ and DZO. • DZ and DZO decrease expression of the neuritogenic

  7. Costimulation of N-methyl-d-aspartate and muscarinic neuronal receptors modulates gap junctional communication in striatal astrocytes

    OpenAIRE

    Rouach, N.; Tencé, M.; Glowinski, J.; Giaume, C.

    2002-01-01

    Cocultures of neurons and astrocytes from the rat striatum were used to determine whether the stimulation of neuronal receptors could affect the level of intercellular communication mediated by gap junctions in astrocytes. The costimulation of N-methyl-D-asparte (NMDA) and muscarinic receptors led to a prominent reduction of astrocyte gap junctional communication (GJC) in coculture. This treatment was not effective in astrocyte cultures, these cells being devoid of NMDA receptors. Both types ...

  8. Evidence for a Role of Proline and Hypothalamic Astrocytes in the Regulation of Glucose Metabolism in Rats

    OpenAIRE

    Arrieta-Cruz, Isabel; Su, Ya; Knight, Colette M.; Lam, Tony K.T.; Gutiérrez-Juárez, Roger

    2013-01-01

    The metabolism of lactate to pyruvate in the mediobasal hypothalamus (MBH) regulates hepatic glucose production. Because astrocytes and neurons are functionally linked by metabolic coupling through lactate transfer via the astrocyte-neuron lactate shuttle (ANLS), we reasoned that astrocytes might be involved in the hypothalamic regulation of glucose metabolism. To examine this possibility, we used the gluconeogenic amino acid proline, which is metabolized to pyruvate in astrocytes. Our result...

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is also known as a thyroid uptake. ...

  10. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake Thyroid scan and uptake uses ...

  11. Glutamate metabolism is down-regulated in astrocytes during experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Hardin-Pouzet, H; Krakowski, M; Bourbonnière, L

    1997-01-01

    dehydrogenase (GDH) expression were dramatically reduced. These two astrocytic enzymes are responsible for degradation of glutamate, the most abundant excitatory neurotransmitter in the brain. Since elevated levels of glutamate may be neurotoxic, we propose that the decreased capacity of astrocytes...... to metabolize glutamate may contribute to EAE pathology....

  12. Protein targeting to glycogen is a master regulator of glycogen synthesis in astrocytes

    KAUST Repository

    Ruchti, E.

    2016-10-08

    The storage and use of glycogen, the main energy reserve in the brain, is a metabolic feature of astrocytes. Glycogen synthesis is regulated by Protein Targeting to Glycogen (PTG), a member of specific glycogen-binding subunits of protein phosphatase-1 (PPP1). It positively regulates glycogen synthesis through de-phosphorylation of both glycogen synthase (activation) and glycogen phosphorylase (inactivation). In cultured astrocytes, PTG mRNA levels were previously shown to be enhanced by the neurotransmitter noradrenaline. To achieve further insight into the role of PTG in the regulation of astrocytic glycogen, its levels of expression were manipulated in primary cultures of mouse cortical astrocytes using adenovirus-mediated overexpression of tagged-PTG or siRNA to downregulate its expression. Infection of astrocytes with adenovirus led to a strong increase in PTG expression and was associated with massive glycogen accumulation (>100 fold), demonstrating that increased PTG expression is sufficient to induce glycogen synthesis and accumulation. In contrast, siRNA-mediated downregulation of PTG resulted in a 2-fold decrease in glycogen levels. Interestingly, PTG downregulation strongly impaired long-term astrocytic glycogen synthesis induced by insulin or noradrenaline. Finally, these effects of PTG downregulation on glycogen metabolism could also be observed in cultured astrocytes isolated from PTG-KO mice. Collectively, these observations point to a major role of PTG in the regulation of glycogen synthesis in astrocytes and indicate that conditions leading to changes in PTG expression will directly impact glycogen levels in this cell type.

  13. In Vivo Evidence for a Lactate Gradient from Astrocytes to Neurons

    KAUST Repository

    Mä chler, Philipp; Wyss, Matthias  T.; Elsayed, Maha; Stobart, Jillian; Gutierrez, Robin; von  Faber-Castell, Alexandra; Kaelin, Vincens; Zuend, Marc; San  Martí n, Alejandro; Romero-Gó mez, Ignacio; Baeza-Lehnert, Felipe; Lengacher, Sylvain; Schneider, Bernard  L.; Aebischer, Patrick; Magistretti, Pierre J.; Barros, L.  Felipe; Weber, Bruno

    2015-01-01

    Investigating lactate dynamics in brain tissue is challenging, partly because in vivo data at cellular resolution are not available. We monitored lactate in cortical astrocytes and neurons of mice using the genetically encoded FRET sensor Laconic in combination with two-photon microscopy. An intravenous lactate injection rapidly increased the Laconic signal in both astrocytes and neurons, demonstrating high lactate permeability across tissue. The signal increase was significantly smaller in astrocytes, pointing to higher basal lactate levels in these cells, confirmed by a one-point calibration protocol. Trans-acceleration of the monocarboxylate transporter with pyruvate was able to reduce intracellular lactate in astrocytes but not in neurons. Collectively, these data provide in vivo evidence for a lactate gradient from astrocytes to neurons. This gradient is a prerequisite for a carrier-mediated lactate flux from astrocytes to neurons and thus supports the astrocyte-neuron lactate shuttle model, in which astrocyte-derived lactate acts as an energy substrate for neurons. © 2016 Elsevier Inc.

  14. Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons.

    Science.gov (United States)

    Halim, Nader D; Mcfate, Thomas; Mohyeldin, Ahmed; Okagaki, Peter; Korotchkina, Lioubov G; Patel, Mulchand S; Jeoung, Nam Ho; Harris, Robert A; Schell, Michael J; Verma, Ajay

    2010-08-01

    Glucose metabolism in nervous tissue has been proposed to occur in a compartmentalized manner with astrocytes contributing largely to glycolysis and neurons being the primary site of glucose oxidation. However, mammalian astrocytes and neurons both contain mitochondria, and it remains unclear why in culture neurons oxidize glucose, lactate, and pyruvate to a much larger extent than astrocytes. The objective of this study was to determine whether pyruvate metabolism is differentially regulated in cultured neurons versus astrocytes. Expression of all components of the pyruvate dehydrogenase complex (PDC), the rate-limiting step for pyruvate entry into the Krebs cycle, was determined in cultured astrocytes and neurons. In addition, regulation of PDC enzymatic activity in the two cell types via protein phosphorylation was examined. We show that all components of the PDC are expressed in both cell types in culture, but that PDC activity is kept strongly inhibited in astrocytes through phosphorylation of the pyruvate dehydrogenase alpha subunit (PDH alpha). In contrast, neuronal PDC operates close to maximal levels with much lower levels of phosphorylated PDH alpha. Dephosphorylation of astrocytic PDH alpha restores PDC activity and lowers lactate production. Our findings suggest that the glucose metabolism of astrocytes and neurons may be far more flexible than previously believed. (c) 2010 Wiley-Liss, Inc.

  15. Long-term culture of astrocytes attenuates the readily releasable pool of synaptic vesicles.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kawano

    Full Text Available The astrocyte is a major glial cell type of the brain, and plays key roles in the formation, maturation, stabilization and elimination of synapses. Thus, changes in astrocyte condition and age can influence information processing at synapses. However, whether and how aging astrocytes affect synaptic function and maturation have not yet been thoroughly investigated. Here, we show the effects of prolonged culture on the ability of astrocytes to induce synapse formation and to modify synaptic transmission, using cultured autaptic neurons. By 9 weeks in culture, astrocytes derived from the mouse cerebral cortex demonstrated increases in β-galactosidase activity and glial fibrillary acidic protein (GFAP expression, both of which are characteristic of aging and glial activation in vitro. Autaptic hippocampal neurons plated on these aging astrocytes showed a smaller amount of evoked release of the excitatory neurotransmitter glutamate, and a lower frequency of miniature release of glutamate, both of which were attributable to a reduction in the pool of readily releasable synaptic vesicles. Other features of synaptogenesis and synaptic transmission were retained, for example the ability to induce structural synapses, the presynaptic release probability, the fraction of functional presynaptic nerve terminals, and the ability to recruit functional AMPA and NMDA glutamate receptors to synapses. Thus the presence of aging astrocytes affects the efficiency of synaptic transmission. Given that the pool of readily releasable vesicles is also small at immature synapses, our results are consistent with astrocytic aging leading to retarded synapse maturation.

  16. Exercise counteracts aging-related memory impairment: a potential role for the astrocytic metabolic shuttle

    Directory of Open Access Journals (Sweden)

    Sheng-Feng eTsai

    2016-03-01

    Full Text Available Age-related cognitive impairment has become one of the most common health threats in many countries. The biological substrate of cognition is the interconnection of neurons to form complex information processing networks. Experience-based alterations in the activities of these information processing networks lead to neuroadaptation, which is physically represented at the cellular level as synaptic plasticity. Although synaptic plasticity is known to be affected by aging, the underlying molecular mechanisms are not well described. Astrocytes, a glial cell type that is infrequently investigated in cognitive science, have emerged as energy suppliers which are necessary for meeting the abundant energy demand resulting from glutamatergic synaptic activity. Moreover, the concerted action of an astrocyte-neuron metabolic shuttle is essential for cognitive function; whereas, energetic incoordination between astrocytes and neurons may contribute to cognitive impairment. Whether altered function of the astrocyte-neuron metabolic shuttle links aging to reduced synaptic plasticity is unexplored. However, accumulated evidence documents significant beneficial effects of long-term, regular exercise on cognition and synaptic plasticity. Furthermore, exercise increases the effectiveness of astrocyte-neuron metabolic shuttle by upregulation of astrocytic lactate transporter levels. This review summarizes previous findings related to the neuronal activity-dependent astrocyte-neuron metabolic shuttle. Moreover, we discuss how aging and exercise may shape the astrocyte-neuron metabolic shuttle in cognition-associated brain areas.

  17. MUSCARINIC ACETYLCHOLINE RECEPTOR-EXPRESSION IN ASTROCYTES IN THE CORTEX OF YOUNG AND AGED RATS

    NARCIS (Netherlands)

    VANDERZEE, EA; DEJONG, GI; STROSBERG, AD; LUITEN, PGM

    The present report describes the cellular and subcellular distribution pattern of immunoreactivity to M35, a monoclonal antibody raised against purified muscarinic acetylcholine receptor protein, in astrocytes in the cerebral cortex of young and aged rats. Most M35-positive astrocytes were localized

  18. Hippocampal astrocytes are necessary for antidepressant treatment of learned helplessness rats.

    Science.gov (United States)

    Iwata, Masaaki; Shirayama, Yukihiko; Ishida, Hisahito; Hazama, Gen-i; Nakagome, Kazuyuki

    2011-08-01

    The astrocyte is a major component of the neural network and plays a role in brain function. Previous studies demonstrated changes in the number of astrocytes in depression. In this study, we examined alterations in the number of astrocytes in the learned helplessness (LH) rat, an animal model of depression. The numbers of activated and nonactivated astrocytes in the dentate gyrus (molecular layer, subgranular zone, and hilus), and CA1 and CA3 regions of the hippocampus were significantly increased 2 and 8 days after attainment of LH. Subchronic treatment with imipramine showed a tendency (although not statistically significant) to decrease the LH-induced increment of activated astrocytes in the CA3 region and dentate gyrus. Furthermore, subchronic treatment of naïve rats with imipramine did not alter the numbers of activated and nonactivated astrocytes. However, the antidepressant-like effects of imipramine in the LH paradigm were blocked when fluorocitrate (a reversible inhibitor of astrocyte function) was injected into the dentate gyrus or CA3 region. Injection of fluorocitrate into naive rats failed to induce behavioral deficits in the conditioned avoidance test. These results indicate that astrocytes are responsive to the antidepressant-like effect of imipramine in the dentate gyrus and CA3 region of the hippocampus. Copyright © 2010 Wiley-Liss, Inc.

  19. Neuron to astrocyte communication via cannabinoid receptors is necessary for sustained epileptiform activity in rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Guyllaume Coiret

    Full Text Available Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of astrocytes mediated by these neurotransmitters can promote seizure-like activity by initiating a positive feedback loop that induces excessive neuronal discharge. Recent work has demonstrated that astrocytes express cannabinoid 1 (CB1 receptors, which are sensitive to endocannabinoids released by nearby pyramidal cells. In this study, we tested whether this mechanism also contributes to epileptiform activity. In a model of 4-aminopyridine induced epileptic-like activity in hippocampal slice cultures, we show that pharmacological blockade of astrocyte CB1 receptors did not modify the initiation, but significantly reduced the maintenance of epileptiform discharge. When communication in astrocytic networks was disrupted by chelating astrocytic calcium, this CB1 receptor-mediated modulation of epileptiform activity was no longer observed. Thus, endocannabinoid signaling from neurons to astrocytes represents an additional significant factor in the maintenance of epileptiform activity in the hippocampus.

  20. IFN-γ signaling to astrocytes protects from autoimmune mediated neurological disability.

    Directory of Open Access Journals (Sweden)

    Claudia Hindinger

    Full Text Available Demyelination and axonal degeneration are determinants of progressive neurological disability in patients with multiple sclerosis (MS. Cells resident within the central nervous system (CNS are active participants in development, progression and subsequent control of autoimmune disease; however, their individual contributions are not well understood. Astrocytes, the most abundant CNS cell type, are highly sensitive to environmental cues and are implicated in both detrimental and protective outcomes during autoimmune demyelination. Experimental autoimmune encephalomyelitis (EAE was induced in transgenic mice expressing signaling defective dominant-negative interferon gamma (IFN-γ receptors on astrocytes to determine the influence of inflammation on astrocyte activity. Inhibition of IFN-γ signaling to astrocytes did not influence disease incidence, onset, initial progression of symptoms, blood brain barrier (BBB integrity or the composition of the acute CNS inflammatory response. Nevertheless, increased demyelination at peak acute disease in the absence of IFN-γ signaling to astrocytes correlated with sustained clinical symptoms. Following peak disease, diminished clinical remission, increased mortality and sustained astrocyte activation within the gray matter demonstrate a critical role of IFN-γ signaling to astrocytes in neuroprotection. Diminished disease remission was associated with escalating demyelination, axonal degeneration and sustained inflammation. The CNS infiltrating leukocyte composition was not altered; however, decreased IL-10 and IL-27 correlated with sustained disease. These data indicate that astrocytes play a critical role in limiting CNS autoimmune disease dependent upon a neuroprotective signaling pathway mediated by engagement of IFN-γ receptors.

  1. Prostaglandin E(2) stimulates glutamate receptor-dependent astrocyte neuromodulation in cultured hippocampal cells.

    Science.gov (United States)

    Sanzgiri, R P; Araque, A; Haydon, P G

    1999-11-05

    Recent Ca(2+) imaging studies in cell culture and in situ have shown that Ca(2+) elevations in astrocytes stimulate glutamate release and increase neuronal Ca(2+) levels, and that this astrocyte-neuron signaling can be stimulated by prostaglandin E(2) (PGE(2)). We investigated the electrophysiological consequences of the PGE(2)-mediated astrocyte-neuron signaling using whole-cell recordings on cultured rat hippocampal cells. Focal application of PGE(2) to astrocytes evoked a Ca(2+) elevation in the stimulated cell by mobilizing internal Ca(2+) stores, which further propagated as a Ca(2+) wave to neighboring astrocytes. Whole-cell recordings from neurons revealed that PGE(2) evoked a slow inward current in neurons adjacent to astrocytes. This neuronal response required the presence of an astrocyte Ca(2+) wave and was mediated through both N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors. Taken together with previous studies, these data demonstrate that PGE(2)-evoked Ca(2+) elevations in astrocyte cause the release of glutamate which activates neuronal ionotropic receptors. Copyright 1999 John Wiley & Sons, Inc.

  2. Ca2+ Entry is Required for Mechanical Stimulation-induced ATP Release from Astrocyte

    Science.gov (United States)

    Lee, Jaekwang; Chun, Ye-Eun; Han, Kyung-Seok; Lee, Jungmoo; Woo, Dong Ho

    2015-01-01

    Astrocytes and neurons are inseparable partners in the brain. Neurotransmitters released from neurons activate corresponding G protein-coupled receptors (GPCR) expressed in astrocytes, resulting in release of gliotransmitters such as glutamate, D-serine, and ATP. These gliotransmitters in turn influence neuronal excitability and synaptic activities. Among these gliotransmitters, ATP regulates the level of network excitability and is critically involved in sleep homeostasis and astrocytic Ca2+ oscillations. ATP is known to be released from astrocytes by Ca2+-dependent manner. However, the precise source of Ca2+, whether it is Ca2+ entry from outside of cell or from the intracellular store, is still not clear yet. Here, we performed sniffer patch to detect ATP release from astrocyte by using various stimulation. We found that ATP was not released from astrocyte when Ca2+ was released from intracellular stores by activation of Gαq-coupled GPCR including PAR1, P2YR, and B2R. More importantly, mechanical stimulation (MS)-induced ATP release from astrocyte was eliminated when external Ca2+ was omitted. Our results suggest that Ca2+ entry, but not release from intracellular Ca2+ store, is critical for MS-induced ATP release from astrocyte. PMID:25792866

  3. In Vivo Evidence for a Lactate Gradient from Astrocytes to Neurons

    KAUST Repository

    Mächler, Philipp

    2015-11-19

    Investigating lactate dynamics in brain tissue is challenging, partly because in vivo data at cellular resolution are not available. We monitored lactate in cortical astrocytes and neurons of mice using the genetically encoded FRET sensor Laconic in combination with two-photon microscopy. An intravenous lactate injection rapidly increased the Laconic signal in both astrocytes and neurons, demonstrating high lactate permeability across tissue. The signal increase was significantly smaller in astrocytes, pointing to higher basal lactate levels in these cells, confirmed by a one-point calibration protocol. Trans-acceleration of the monocarboxylate transporter with pyruvate was able to reduce intracellular lactate in astrocytes but not in neurons. Collectively, these data provide in vivo evidence for a lactate gradient from astrocytes to neurons. This gradient is a prerequisite for a carrier-mediated lactate flux from astrocytes to neurons and thus supports the astrocyte-neuron lactate shuttle model, in which astrocyte-derived lactate acts as an energy substrate for neurons. © 2016 Elsevier Inc.

  4. Spinal astrocytic activation contributes to mechanical allodynia in a rat chemotherapy-induced neuropathic pain model.

    Directory of Open Access Journals (Sweden)

    Xi-Tuan Ji

    Full Text Available Chemotherapy-induced neuropathic pain (CNP is the major dose-limiting factor in cancer chemotherapy. However, the neural mechanisms underlying CNP remain enigmatic. Accumulating evidence implicates the involvement of spinal glia in some neuropathic pain models. In this study, using a vincristine-evoked CNP rat model with obvious mechanical allodynia, we found that spinal astrocyte rather than microglia was dramatically activated. The mechanical allodynia was dose-dependently attenuated by intrathecal administratration of L-α-aminoadipate (astrocytic specific inhibitor; whereas minocycline (microglial specific inhibitor had no such effect, indicating that spinal astrocytic activation contributes to allodynia in CNP rat. Furthermore, oxidative stress mediated the development of spinal astrocytic activation, and activated astrocytes dramatically increased interleukin-1β expression which induced N-methyl-D-aspartic acid receptor (NMDAR phosphorylation in spinal neurons to strengthen pain transmission. Taken together, our findings suggest that spinal activated astrocytes may be a crucial component of the pathophysiology of CNP and "Astrocyte-Cytokine-NMDAR-neuron" pathway may be one detailed neural mechanisms underlying CNP. Thus, inhibiting spinal astrocytic activation may represent a novel therapeutic strategy for treating CNP.

  5. Reactive Transformation and Increased BDNF Signaling by Hippocampal Astrocytes in Response to MK-801.

    Directory of Open Access Journals (Sweden)

    Wenjuan Yu

    Full Text Available MK-801, also known as dizocilpine, is a noncompetitive N-methyl-D-aspartic acid (NMDA receptor antagonist that induces schizophrenia-like symptoms. While astrocytes have been implicated in the pathophysiology of psychiatric disorders, including schizophrenia, astrocytic responses to MK-801 and their significance to schizotypic symptoms are unclear. Changes in the expression levels of glial fibrillary acid protein (GFAP, a marker of astrocyte activation in response to a variety of pathogenic stimuli, were examined in the hippocampus of rats treated with the repeated MK-801 injection (0.5 mg/10 ml/kg body weight for 6 days and in primary cultured hippocampal astrocytes incubated with MK-801 (5 or 20 μM for 24 h. Moreover, the expression levels of BDNF and its receptors TrkB and p75 were examined in MK-801-treated astrocyte cultures. MK-801 treatment enhanced GFAP expression in the rat hippocampus and also increased the levels of GFAP protein and mRNA in hippocampal astrocytes in vitro. Treatment of cultured hippocampal astrocytes with MK-801 enhanced protein and mRNA levels of BDNF, TrkB, and p75. Collectively, our results suggest that hippocampal astrocytes may contribute to the pathophysiology of schizophrenia symptoms associated with NMDA receptor hypofunction by reactive transformation and altered BDNF signaling.

  6. Complete Neuron-Astrocyte Interaction Model: Digital Multiplierless Design and Networking Mechanism.

    Science.gov (United States)

    Haghiri, Saeed; Ahmadi, Arash; Saif, Mehrdad

    2017-02-01

    Glial cells, also known as neuroglia or glia, are non-neuronal cells providing support and protection for neurons in the central nervous system (CNS). They also act as supportive cells in the brain. Among a variety of glial cells, the star-shaped glial cells, i.e., astrocytes, are the largest cell population in the brain. The important role of astrocyte such as neuronal synchronization, synaptic information regulation, feedback to neural activity and extracellular regulation make the astrocytes play a vital role in brain disease. This paper presents a modified complete neuron-astrocyte interaction model that is more suitable for efficient and large scale biological neural network realization on digital platforms. Simulation results show that the modified complete interaction model can reproduce biological-like behavior of the original neuron-astrocyte mechanism. The modified interaction model is investigated in terms of digital realization feasibility and cost targeting a low cost hardware implementation. Networking behavior of this interaction is investigated and compared between two cases: i) the neuron spiking mechanism without astrocyte effects, and ii) the effect of astrocyte in regulating the neurons behavior and synaptic transmission via controlling the LTP and LTD processes. Hardware implementation on FPGA shows that the modified model mimics the main mechanism of neuron-astrocyte communication with higher performance and considerably lower hardware overhead cost compared with the original interaction model.

  7. Neuron to astrocyte communication via cannabinoid receptors is necessary for sustained epileptiform activity in rat hippocampus.

    Science.gov (United States)

    Coiret, Guyllaume; Ster, Jeanne; Grewe, Benjamin; Wendling, Fabrice; Helmchen, Fritjof; Gerber, Urs; Benquet, Pascal

    2012-01-01

    Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of astrocytes mediated by these neurotransmitters can promote seizure-like activity by initiating a positive feedback loop that induces excessive neuronal discharge. Recent work has demonstrated that astrocytes express cannabinoid 1 (CB1) receptors, which are sensitive to endocannabinoids released by nearby pyramidal cells. In this study, we tested whether this mechanism also contributes to epileptiform activity. In a model of 4-aminopyridine induced epileptic-like activity in hippocampal slice cultures, we show that pharmacological blockade of astrocyte CB1 receptors did not modify the initiation, but significantly reduced the maintenance of epileptiform discharge. When communication in astrocytic networks was disrupted by chelating astrocytic calcium, this CB1 receptor-mediated modulation of epileptiform activity was no longer observed. Thus, endocannabinoid signaling from neurons to astrocytes represents an additional significant factor in the maintenance of epileptiform activity in the hippocampus.

  8. Characteristics of calcium signaling in astrocytes induced by photostimulation with femtosecond laser

    Science.gov (United States)

    Zhao, Yuan; Zhang, Yuan; Zhou, Wei; Liu, Xiuli; Zeng, Shaoqun; Luo, Qingming

    2010-05-01

    Astrocytes have been identified to actively contribute to brain functions through Ca2+ signaling, serving as a bridge to communicate with neurons and other brain cells. However, conventional stimulation techniques are hard to apply to delicate investigations on astrocytes. Our group previously reported photostimulation with a femtosecond laser to evoke astrocytic calcium (Ca2+) waves, providing a noninvasive and efficient approach with highly precise targeting. In this work, detailed characteristics of astrocytic Ca2+ signaling induced by photostimulation are presented. In a purified astrocytic culture, after the illumination of a femtosecond laser onto one cell, a Ca2+ wave throughout the network with reduced speed is induced, and intracellular Ca2+ oscillations are observed. The intercellular propagation is pharmacologically confirmed to be mainly mediated by ATP through P2Y receptors. Different patterns of Ca2+ elevations with increased amplitude in the stimulated astrocyte are discovered by varying the femtosecond laser power, which is correspondingly followed by broader intercellular waves. These indicate that the strength of photogenerated Ca2+ signaling in astrocytes has a positive relationship with the stimulating laser power. Therefore, distinct Ca2+ signaling is feasibly available for specific studies on astrocytes by employing precisely controlled photostimulation.

  9. Cerebral Mast Cells Participate In Postoperative Cognitive Dysfunction by Promoting Astrocyte Activation.

    Science.gov (United States)

    Zhang, Xiang; Yao, Hao; Qian, Qingqing; Li, Nana; Jin, Wenjie; Qian, Yanning

    2016-01-01

    Astrocytes, the major glial cell type that has been increasingly recognized as contributing to neuroinflammation, are critical in the occurrence and development of postoperative cognitive dysfunction (POCD). Although emerging evidence showed that brain mast cells (MCs) are the "first responders" in neuroinflammation, little is known about the functional communication between MCs and astrocytes. In this study, we investigated the potential regulation of astrocyte activation by MCs. Rats received an intracerebroventricular injection of Cromolyn (an MC stabilizer) or sterile saline 30 min before undergoing open tibial fracture surgery, and the levels of neuroinflammation and the degree of memory dysfunction were evaluated at 1 day and 3 days after surgery. In the in vitro study, the effect of activated MCs on astrocytes were further clarified. Surgery increased the number of MCs, the astrocyte activation and the production of inflammatory factors, and resulted in cognitive deficits. Site-directed pre-injection of Cromolyn can inhibit this effect. In the vitro study, the conditioned medium from C48/80-stimulated mast cells (P815) could induce primary astrocyte activation and subsequent production of inflammatory cytokines, which could be inhibited by Cromolyn. These findings indicate that activated MCs could trigger astrocyte activation, be involved in neuroinflammation and possibly contribute to POCD. Interactions between MCs and astrocytes could provide potential therapeutic targets for POCD. © 2016 The Author(s) Published by S. Karger AG, Basel.

  10. Cerebral Mast Cells Participate In Postoperative Cognitive Dysfunction by Promoting Astrocyte Activation

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    2016-11-01

    Full Text Available Background: Astrocytes, the major glial cell type that has been increasingly recognized as contributing to neuroinflammation, are critical in the occurrence and development of postoperative cognitive dysfunction (POCD. Although emerging evidence showed that brain mast cells (MCs are the "first responders” in neuroinflammation, little is known about the functional communication between MCs and astrocytes. Methods: In this study, we investigated the potential regulation of astrocyte activation by MCs. Rats received an intracerebroventricular injection of Cromolyn (an MC stabilizer or sterile saline 30 min before undergoing open tibial fracture surgery, and the levels of neuroinflammation and the degree of memory dysfunction were evaluated at 1 day and 3 days after surgery. In the in vitro study, the effect of activated MCs on astrocytes were further clarified. Results: Surgery increased the number of MCs, the astrocyte activation and the production of inflammatory factors, and resulted in cognitive deficits. Site-directed pre-injection of Cromolyn can inhibit this effect. In the vitro study, the conditioned medium from C48/80-stimulated mast cells (P815 could induce primary astrocyte activation and subsequent production of inflammatory cytokines, which could be inhibited by Cromolyn. Conclusion: These findings indicate that activated MCs could trigger astrocyte activation, be involved in neuroinflammation and possibly contribute to POCD. Interactions between MCs and astrocytes could provide potential therapeutic targets for POCD.

  11. Reactive Transformation and Increased BDNF Signaling by Hippocampal Astrocytes in Response to MK-801

    Science.gov (United States)

    Wang, Yueming; Li, Guanjun; Wang, Lihua; Li, Huafang

    2015-01-01

    MK-801, also known as dizocilpine, is a noncompetitive N-methyl-D-aspartic acid (NMDA) receptor antagonist that induces schizophrenia-like symptoms. While astrocytes have been implicated in the pathophysiology of psychiatric disorders, including schizophrenia, astrocytic responses to MK-801 and their significance to schizotypic symptoms are unclear. Changes in the expression levels of glial fibrillary acid protein (GFAP), a marker of astrocyte activation in response to a variety of pathogenic stimuli, were examined in the hippocampus of rats treated with the repeated MK-801 injection (0.5 mg/10ml/kg body weight for 6 days) and in primary cultured hippocampal astrocytes incubated with MK-801 (5 or 20 μM for 24 h). Moreover, the expression levels of BDNF and its receptors TrkB and p75 were examined in MK-801-treated astrocyte cultures. MK-801 treatment enhanced GFAP expression in the rat hippocampus and also increased the levels of GFAP protein and mRNA in hippocampal astrocytes in vitro. Treatment of cultured hippocampal astrocytes with MK-801 enhanced protein and mRNA levels of BDNF, TrkB, and p75. Collectively, our results suggest that hippocampal astrocytes may contribute to the pathophysiology of schizophrenia symptoms associated with NMDA receptor hypofunction by reactive transformation and altered BDNF signaling. PMID:26700309

  12. Tumor grading of adult astrocytic glioma on MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Hyun; Choi, Choong Gon; Han, Moon Hee; Lee, Seon Kyu [Seoul National University College of Medicine, Seoul (Korea, Republic of); Suh, Jung Ho [Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, Ho Kyu; Suh, Dae Chul [Ulsan University College of Medicine, Seoul (Korea, Republic of); Choi, Kyu Ho [Catholic University College of Medicine, Seoul (Korea, Republic of); Byun, Hong Sik [Korea Cancer Center Hospital, Seoul (Korea, Republic of); Choi, Woo Suk [Kyung Hee University College of Medicine, Seoul (Korea, Republic of)

    1994-09-15

    The purpose of this study is to determine predictive MR features for grading of astrocytic gliomas and to evaluate the accuracy of MR grading in these tumors. We retrospectively reviewed 135 cases of supratentorial astrocytic gliomas in adult (age > 15 years), all of which were proved by open biopsy. Two observers analysed MR images independently with criteria of margin, edema, mass effect, signal heterogeneity, necrosis, cyst formation, hemorrhage, tumor vascularity, enhancement degree, and enhancement size. The patterns of enhancement were categorized into no, homogeneous, heterogeneous, thin smooth rim, thin irregular rim, and thick irregular rim enhancement patterns. Observers finally diagnosed each case as one of low-grade astrocytoma, anaplastic astrocytoma or glioblastoma multiforme. Statistically significant MR features for grading of these tumors were revealed as necrosis (p < 0.001), edema (0.008), and signal heterogeneity (p < 0.025). When compared with histopathologic grading, MR graded correctly 76%- 77% of cases in two tired system(low-grade astrocytoma versus high-grade astrocytoma), but only 67%-69% of cases in three tiered system(low-grade astrocytoma, anaplastic astrocytoma, glioblastoma multiforme). No contrast enhancement was seen in 45% and 23% of low-grade astrocytoma and anaplastic astrocytoma respectively. Glioblastoma multiforme frequently showed thick irregular rim enhancement (57%), but no enhancement at all in 8%. We have concluded that necrosis and edema are significant predictive MR features for grading of supratentorial astrocytic gliomas in adult, and MR was correct in 76%-77% of cases for predicting pathologic grading astrocytomas in two tiered system.

  13. Tumor grading of adult astrocytic glioma on MR imaging

    International Nuclear Information System (INIS)

    Chang, Kee Hyun; Choi, Choong Gon; Han, Moon Hee; Lee, Seon Kyu; Suh, Jung Ho; Lee, Ho Kyu; Suh, Dae Chul; Choi, Kyu Ho; Byun, Hong Sik; Choi, Woo Suk

    1994-01-01

    The purpose of this study is to determine predictive MR features for grading of astrocytic gliomas and to evaluate the accuracy of MR grading in these tumors. We retrospectively reviewed 135 cases of supratentorial astrocytic gliomas in adult (age > 15 years), all of which were proved by open biopsy. Two observers analysed MR images independently with criteria of margin, edema, mass effect, signal heterogeneity, necrosis, cyst formation, hemorrhage, tumor vascularity, enhancement degree, and enhancement size. The patterns of enhancement were categorized into no, homogeneous, heterogeneous, thin smooth rim, thin irregular rim, and thick irregular rim enhancement patterns. Observers finally diagnosed each case as one of low-grade astrocytoma, anaplastic astrocytoma or glioblastoma multiforme. Statistically significant MR features for grading of these tumors were revealed as necrosis (p < 0.001), edema (0.008), and signal heterogeneity (p < 0.025). When compared with histopathologic grading, MR graded correctly 76%- 77% of cases in two tired system(low-grade astrocytoma versus high-grade astrocytoma), but only 67%-69% of cases in three tiered system(low-grade astrocytoma, anaplastic astrocytoma, glioblastoma multiforme). No contrast enhancement was seen in 45% and 23% of low-grade astrocytoma and anaplastic astrocytoma respectively. Glioblastoma multiforme frequently showed thick irregular rim enhancement (57%), but no enhancement at all in 8%. We have concluded that necrosis and edema are significant predictive MR features for grading of supratentorial astrocytic gliomas in adult, and MR was correct in 76%-77% of cases for predicting pathologic grading astrocytomas in two tiered system

  14. Ethanol-induced swelling in neonatal rat primary astrocyte cultures.

    Science.gov (United States)

    Aschner, M; Allen, J W; Mutkus, L A; Cao, C

    2001-05-11

    We tested the hypothesis that astrocytes swell in response to ethanol (EtOH) exposure. The experimental approach consisted of an electrical impedance method designed to measure cell volume. In chronic experiments, EtOH (100 mM) was added to the culture media for 1, 3, or 7 days. The cells were subsequently exposed for 15 min to isotonic buffer (122 mM NaCl) also containing 100 mM EtOH. Subsequently, the cells were washed and exposed to hypotonic buffer (112 mM NaCl) containing 100 mM mannitol. Chronic exposure to EtOH led to a marked increase in cell volume compared with control cells. Specific anion cotransport blockers, such as SITS, DIDS, furosemide, or bumetanide, when simultaneously added with EtOH to hyponatremic buffer, failed to reverse the EtOH-induced effect on swelling. In acute experiments, confluent neonatal rat primary astrocyte cultures were exposed to isotonic media (122 mM NaCl) for 15 min, followed by 45-min exposure to hypotonic media (112 mM NaCl, mimicking in vivo hyponatremic conditions associated with EtOH withdrawal) in the presence of 0-100 mM EtOH. This exposure led to a concentration-dependent increase in cell volume. Combined, these studies suggest that astrocytes exposed to EtOH accumulate compensatory organic solutes to maintain cell volume, and that in response to hyponatremia and EtOH withdrawal their volume increases to a greater extent than in cells exposed to hyponatremia alone. Furthermore, the changes associated with EtOH are osmotic in nature, and they are not reversed by anion cotransport blockers.

  15. Pyrrolidine dithiocarbamate activates the Nrf2 pathway in astrocytes.

    Science.gov (United States)

    Liddell, Jeffrey R; Lehtonen, Sarka; Duncan, Clare; Keksa-Goldsteine, Velta; Levonen, Anna-Liisa; Goldsteins, Gundars; Malm, Tarja; White, Anthony R; Koistinaho, Jari; Kanninen, Katja M

    2016-02-26

    Endogenous defense against oxidative stress is controlled by nuclear factor erythroid 2-related factor 2 (Nrf2). The normal compensatory mechanisms to combat oxidative stress appear to be insufficient to protect against the prolonged exposure to reactive oxygen species during disease. Counterbalancing the effects of oxidative stress by up-regulation of Nrf2 signaling has been shown to be effective in various disease models where oxidative stress is implicated, including Alzheimer's disease. Stimulation of Nrf2 signaling by small-molecule activators is an appealing strategy to up-regulate the endogenous defense mechanisms of cells. Here, we investigate Nrf2 induction by the metal chelator and known nuclear factor-κB inhibitor pyrrolidine dithiocarbamate (PDTC) in cultured astrocytes and neurons, and mouse brain. Nrf2 induction is further examined in cultures co-treated with PDTC and kinase inhibitors or amyloid-beta, and in Nrf2-deficient cultures. We show that PDTC is a potent inducer of Nrf2 signaling specifically in astrocytes and demonstrate the critical role of Nrf2 in PDTC-mediated protection against oxidative stress. This induction appears to be regulated by both Keap1 and glycogen synthase kinase 3β. Furthermore, the presence of amyloid-beta magnifies PDTC-mediated induction of endogenous protective mechanisms, therefore suggesting that PDTC may be an effective Nrf2 inducer in the context of Alzheimer's disease. Finally, we show that PDTC increases brain copper content and glial expression of heme oxygenase-1, and decreases lipid peroxidation in vivo, promoting a more antioxidative environment. PDTC activates Nrf2 and its antioxidative targets in astrocytes but not neurons. These effects may contribute to the neuroprotection observed for PDTC in models of Alzheimer's disease.

  16. The RNA helicase DDX1 is involved in restricted HIV-1 Rev function in human astrocytes

    International Nuclear Information System (INIS)

    Fang Jianhua; Acheampong, Edward; Dave, Rajnish; Wang Fengxiang; Mukhtar, Muhammad; Pomerantz, Roger J.

    2005-01-01

    Productive infection by human immunodeficiency virus type I (HIV-1) in the central nervous system (CNS) involves mainly macrophages and microglial cells. A frequency of less than 10% of human astrocytes is estimated to be infectable with HIV-1. Nonetheless, this relatively low percentage of infected astrocytes, but associated with a large total number of astrocytic cells in the CNS, makes human astrocytes a critical part in the analyses of potential HIV-1 reservoirs in vivo. Investigations in astrocytic cell lines and primary human fetal astrocytes revealed that limited HIV-1 replication in these cells resulted from low-level viral entry, transcription, viral protein processing, and virion maturation. Of note, a low ratio of unspliced versus spliced HIV-1-specific RNA was also investigated, as Rev appeared to act aberrantly in astrocytes, via loss of nuclear and/or nucleolar localization and diminished Rev-mediated function. Host cellular machinery enabling Rev function has become critical for elucidation of diminished Rev activity, especially for those factors leading to RNA metabolism. We have recently identified a DEAD-box protein, DDX1, as a Rev cellular co-factor and now have explored its potential importance in astrocytes. Cells were infected with HIV-1 pseudotyped with envelope glycoproteins of amphotropic murine leukemia viruses (MLV). Semi-quantitative reverse transcriptase-polymerase chain reactions (RT-PCR) for unspliced, singly-spliced, and multiply-spliced RNA clearly showed a lower ratio of unspliced/singly-spliced over multiply-spliced HIV-1-specific RNA in human astrocytes as compared to Rev-permissive, non-glial control cells. As well, the cellular localization of Rev in astrocytes was cytoplasmically dominant as compared to that of Rev-permissive, non-glial controls. This endogenous level of DDX1 expression in astrocytes was demonstrated directly to lead to a shift of Rev sub-cellular distribution dominance from nuclear and/or nucleolar to

  17. Thyroid hormones upregulate apolipoprotein E gene expression in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Corina; Fuior, Elena V.; Trusca, Violeta G. [Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest (Romania); Kardassis, Dimitris [University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Crete (Greece); Simionescu, Maya [Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest (Romania); Gafencu, Anca V., E-mail: anca.gafencu@icbp.ro [Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest (Romania)

    2015-12-04

    Apolipoprotein E (apoE), a protein mainly involved in lipid metabolism, is associated with several neurodegenerative disorders including Alzheimer's disease. Despite numerous attempts to elucidate apoE gene regulation in the brain, the exact mechanism is still uncovered. The mechanism of apoE gene regulation in the brain involves the proximal promoter and multienhancers ME.1 and ME.2, which evolved by gene duplication. Herein we questioned whether thyroid hormones and their nuclear receptors have a role in apoE gene regulation in astrocytes. Our data showed that thyroid hormones increase apoE gene expression in HTB14 astrocytes in a dose-dependent manner. This effect can be intermediated by the thyroid receptor β (TRβ) which is expressed in these cells. In the presence of triiodothyronine (T3) and 9-cis retinoic acid, in astrocytes transfected to overexpress TRβ and retinoid X receptor α (RXRα), apoE promoter was indirectly activated through the interaction with ME.2. To determine the location of TRβ/RXRα binding site on ME.2, we performed DNA pull down assays and found that TRβ/RXRα complex bound to the region 341–488 of ME.2. This result was confirmed by transient transfection experiments in which a series of 5′- and 3′-deletion mutants of ME.2 were used. These data support the existence of a biologically active TRβ binding site starting at 409 in ME.2. In conclusion, our data revealed that ligand-activated TRβ/RXRα heterodimers bind with high efficiency on tissue-specific distal regulatory element ME.2 and thus modulate apoE gene expression in the brain. - Highlights: • T3 induce a dose-dependent increase of apoE expression in astrocytes. • Thyroid hormones activate apoE promoter in a cell specific manner. • Ligand activated TRβ/RXRα bind on the distal regulatory element ME.2 to modulate apoE. • The binding site of TRβ/RXRα heterodimer is located at 409 bp on ME.2.

  18. Nonlinear Waves on Stochastic Support: Calcium Waves in Astrocyte Syncytia

    Science.gov (United States)

    Jung, P.; Cornell-Bell, A. H.

    Astrocyte-signaling has been observed in cell cultures and brain slices in the form of Calcium waves. Their functional relevance for neuronal communication, brain functions and diseases is, however, not understood. In this paper, the propagation of intercellular calcium waves is modeled in terms of waves in excitable media on a stochastic support. We utilize a novel method to decompose the spatiotemporal patterns into space-time clusters (wave fragments). Based on this cluster decomposition, a statistical description of wave patterns is developed.

  19. Thyroid hormones upregulate apolipoprotein E gene expression in astrocytes

    International Nuclear Information System (INIS)

    Roman, Corina; Fuior, Elena V.; Trusca, Violeta G.; Kardassis, Dimitris; Simionescu, Maya; Gafencu, Anca V.

    2015-01-01

    Apolipoprotein E (apoE), a protein mainly involved in lipid metabolism, is associated with several neurodegenerative disorders including Alzheimer's disease. Despite numerous attempts to elucidate apoE gene regulation in the brain, the exact mechanism is still uncovered. The mechanism of apoE gene regulation in the brain involves the proximal promoter and multienhancers ME.1 and ME.2, which evolved by gene duplication. Herein we questioned whether thyroid hormones and their nuclear receptors have a role in apoE gene regulation in astrocytes. Our data showed that thyroid hormones increase apoE gene expression in HTB14 astrocytes in a dose-dependent manner. This effect can be intermediated by the thyroid receptor β (TRβ) which is expressed in these cells. In the presence of triiodothyronine (T3) and 9-cis retinoic acid, in astrocytes transfected to overexpress TRβ and retinoid X receptor α (RXRα), apoE promoter was indirectly activated through the interaction with ME.2. To determine the location of TRβ/RXRα binding site on ME.2, we performed DNA pull down assays and found that TRβ/RXRα complex bound to the region 341–488 of ME.2. This result was confirmed by transient transfection experiments in which a series of 5′- and 3′-deletion mutants of ME.2 were used. These data support the existence of a biologically active TRβ binding site starting at 409 in ME.2. In conclusion, our data revealed that ligand-activated TRβ/RXRα heterodimers bind with high efficiency on tissue-specific distal regulatory element ME.2 and thus modulate apoE gene expression in the brain. - Highlights: • T3 induce a dose-dependent increase of apoE expression in astrocytes. • Thyroid hormones activate apoE promoter in a cell specific manner. • Ligand activated TRβ/RXRα bind on the distal regulatory element ME.2 to modulate apoE. • The binding site of TRβ/RXRα heterodimer is located at 409 bp on ME.2.

  20. Ginsenoside compound K promotes β-amyloid peptide clearance in primary astrocytes via autophagy enhancement.

    Science.gov (United States)

    Guo, Jinhui; Chang, Li; Zhang, Xin; Pei, Sujuan; Yu, Meishuang; Gao, Jianlian

    2014-10-01

    The aim of the present study was to investigate the effect of ginsenoside compound K on β-amyloid (Aβ) peptide clearance in primary astrocytes. Aβ degradation in primary astrocytes was determined using an intracellular Aβ clearance assay. Aggregated LC3 in astrocyte cells, which is a marker for the level of autophagy, was detected using laser scanning confocal microscope. The effect of compound K on the mammalian target of rapamycin (mTOR)/autophagy pathway was determined using western blot analysis, and an enzyme-linked immunosorbent assay was used for Aβ detection. The results demonstrated that compound K promoted the clearance of Aβ and enhanced autophagy in primary astrocytes. In addition, it was found that phosphorylation of mTOR was inhibited by compound K, which may have contributed to the enhanced autophagy. In conclusion, compound K promotes Aβ clearance by enhancing autophagy via the mTOR signaling pathway in primary astrocytes.

  1. Tlx acts as a proangiogenic switch by regulating extracellular assembly of fibronectin matrices in retinal astrocytes.

    Science.gov (United States)

    Uemura, Akiyoshi; Kusuhara, Sentaro; Wiegand, Stanley J; Yu, Ruth T; Nishikawa, Shin-ichi

    2006-02-01

    In response to hypoxia, hypoxia-inducible factors act as the primary proangiogenic triggers by regulating transcription levels of target genes, including VEGF. However, little is known about the specific factors that control other components of the angiogenic process, particularly formation of matrix scaffolds that promote adhesion and migration of endothelial cells. We show that in the postnatal mouse retina, the orphan nuclear receptor tailless (Tlx) is strongly expressed in the proangiogenic astrocytes, which secrete VEGF and fibronectin. Tlx expression by retinal astrocytes is controlled by oxygen concentration and rapidly downregulated upon contact with blood vessels. In mice null for Tlx, retinal astrocytes maintain VEGF expression; however, the extracellular assembly of fibronectin matrices by astrocytes is severely impaired, leading to defective scaffold formation and a complete failure of normal retinal vascular development. This work identifies Tlx as an essential component of the molecular network involved in the hypoxia-inducible proangiogenic switch in retinal astrocytes.

  2. Astrocytes control GABAergic inhibition of neurons in the mouse barrel cortex

    Science.gov (United States)

    Benedetti, B; Matyash, V; Kettenmann, H

    2011-01-01

    Astrocytes in the barrel cortex respond with a transient Ca2+ increase to neuronal stimulation and this response is restricted to the stimulated barrel field. In the present study we suppressed the astrocyte response by dialysing these cells with the Ca2+ chelator BAPTA. Electrical stimulation triggered a depolarization in stellate or pyramidal ‘regular spiking’ neurons from cortex layer 4 and 2/3 and this response was augmented in amplitude and duration after astrocytes were dialysed with BAPTA. Combined blockade of GABAA and GABAB receptors mimicked the effect of BAPTA dialysis, while glutamate receptor blockers had no effect. Moreover, the frequency of spontaneous postsynaptic currents was increased after BAPTA dialysis. Outside the range of BAPTA dialysis astrocytes responded with a Ca2+ increase, but in contrast to control, the response was no longer restricted to one barrel field. Our findings indicate that astrocytes control neuronal inhibition in the barrel cortex. PMID:21224221

  3. Does Global Astrocytic Calcium Signaling Participate in Awake Brain State Transitions and Neuronal Circuit Function?

    DEFF Research Database (Denmark)

    Kjaerby, Celia; Rasmussen, Rune; Andersen, Mie

    2017-01-01

    of the neuromodulators, noradrenaline and acetylcholine. Astrocytes have emerged as a new player participating in the regulation of brain activity, and have recently been implicated in brain state shifts. Astrocytes display global Ca(2+) signaling in response to activation of the noradrenergic system, but whether...... astrocytic Ca(2+) signaling is causative or correlative for shifts in brain state and neural activity patterns is not known. Here we review the current available literature on astrocytic Ca(2+) signaling in awake animals in order to explore the role of astrocytic signaling in brain state shifts. Furthermore......We continuously need to adapt to changing conditions within our surrounding environment, and our brain needs to quickly shift between resting and working activity states in order to allow appropriate behaviors. These global state shifts are intimately linked to the brain-wide release...

  4. Dynamic transition on the seizure-like neuronal activity by astrocytic calcium channel block

    International Nuclear Information System (INIS)

    Li, Jiajia; Wang, Rong; Du, Mengmeng; Tang, Jun; Wu, Ying

    2016-01-01

    The involvement of astrocytes in neuronal firing dynamics is becoming increasingly evident. In this study, we used a classical hippocampal tripartite synapse model consisting of soma-dendrite coupled neuron models and a Hodgkin–Huxley-like astrocyte model, to investigate the seizure-like firing in the somatic neuron induced by the over-expressed neuronal N-methyl-d-aspartate (NMDA) receptors. Based on this model, we further investigated the effect of the astrocytic channel block on the neuronal firing through a bifurcation analysis. Results show that blocking inositol-1,4,5-triphosphate(IP3)-dependent calcium channel in astrocytes efficiently suppresses the astrocytic calcium oscillation, which in turn suppresses the seizure-like firing in the neuron.

  5. Astrocytes control GABAergic inhibition of neurons in the mouse barrel cortex.

    Science.gov (United States)

    Benedetti, B; Matyash, V; Kettenmann, H

    2011-03-01

    Astrocytes in the barrel cortex respond with a transient Ca2+ increase to neuronal stimulation and this response is restricted to the stimulated barrel field. In the present study we suppressed the astrocyte response by dialysing these cells with the Ca2+ chelator BAPTA. Electrical stimulation triggered a depolarization in stellate or pyramidal ‘regular spiking' neurons from cortex layer 4 and 2/3 and this response was augmented in amplitude and duration after astrocytes were dialysed with BAPTA. Combined blockade of GABAA and GABAB receptors mimicked the effect of BAPTA dialysis, while glutamate receptor blockers had no effect. Moreover, the frequency of spontaneous postsynaptic currents was increased after BAPTA dialysis. Outside the range of BAPTA dialysis astrocytes responded with a Ca2+ increase, but in contrast to control, the response was no longer restricted to one barrel field. Our findings indicate that astrocytes control neuronal inhibition in the barrel cortex.

  6. Raindrops of synaptic noise on dual excitability landscape: an approach to astrocyte network modelling

    Science.gov (United States)

    Verisokin, Andrey Yu.; Postnov, Dmitry E.; Verveyko, Darya V.; Brazhe, Alexey R.

    2018-04-01

    The most abundant non-neuronal cells in the brain, astrocytes, populate all parts of the central nervous system (CNS). Astrocytic calcium activity ranging from subcellular sparkles to intercellular waves is believed to be the key to a plethora of regulatory pathways in the central nervous system from synaptic plasticity to blood flow regulation. Modeling of the calcium wave initiation and transmission and their spatiotemporal dynamics is therefore an important step stone in understanding the crucial cogs of cognition. Astrocytes are active sensors of ongoing neuronal and synaptic activity, and neurotransmitters diffusing from the synaptic cleft make a strong impact on the astrocytic activity. Here we propose a model describing the patterns of calcium wave formation at a single cell level and discuss the interplay between astrocyte shape the calcium waves dynamics driven by local stochastic surges of glutamate simulating synaptic activity.

  7. Eph receptors and ephrins in neuron-astrocyte communication at synapses.

    Science.gov (United States)

    Murai, Keith K; Pasquale, Elena B

    2011-11-01

    Neuron-glia communication is essential for regulating the properties of synaptic connections in the brain. Astrocytes, in particular, play a critical and complex role in synapse development, maintenance, and plasticity. Likewise, neurons reciprocally influence astrocyte physiology. However, the molecular signaling events that enable astrocytes and neurons to effectively communicate with each other are only partially defined. Recent findings have revealed that Eph receptor tyrosine kinases and ephrins play an important role in contact-dependent neuron-glia communication at synapses. Upon binding, these two families of cell surface-associated proteins trigger bidirectional signaling events that regulate the structural and physiological properties of both neurons and astrocytes. This review will focus on the emerging role of Eph receptors and ephrins in neuron-astrocyte interaction at synapses and discuss implications for synaptic plasticity, behavior, and disease. Copyright © 2011 Wiley-Liss, Inc.

  8. The EBI2 signalling pathway plays a role in cellular crosstalk between astrocytes and macrophages.

    Science.gov (United States)

    Rutkowska, Aleksandra; O'Sullivan, Sinead A; Christen, Isabelle; Zhang, Juan; Sailer, Andreas W; Dev, Kumlesh K

    2016-05-11

    EBI2 is a G protein-coupled receptor activated by oxysterol 7α, 25-dihydroxycholesterol (7α25HC) and regulates T cell-dependant antibody response and B cell migration. We recently found EBI2 is expressed in human astrocytes, regulates intracellular signalling and modulates astrocyte migration. Here, we report that LPS treatment of mouse astrocytes alters mRNA levels of EBI2 and oxysterols suggesting that the EBI2 signalling pathway is sensitive to LPS-mediated immune challenge. We also find that conditioned media obtained from LPS-stimulated mouse astrocytes induces macrophage migration, which is inhibited by the EBI2 antagonist NIBR189. These results demonstrate a role for the EBI2 signalling pathway in astrocytes as a sensor for immune challenge and for communication with innate immune cells such as macrophages.

  9. A tale of two stories: astrocyte regulation of synaptic depression and facilitation.

    Directory of Open Access Journals (Sweden)

    Maurizio De Pittà

    2011-12-01

    Full Text Available Short-term presynaptic plasticity designates variations of the amplitude of synaptic information transfer whereby the amount of neurotransmitter released upon presynaptic stimulation changes over seconds as a function of the neuronal firing activity. While a consensus has emerged that the resulting decrease (depression and/or increase (facilitation of the synapse strength are crucial to neuronal computations, their modes of expression in vivo remain unclear. Recent experimental studies have reported that glial cells, particularly astrocytes in the hippocampus, are able to modulate short-term plasticity but the mechanism of such a modulation is poorly understood. Here, we investigate the characteristics of short-term plasticity modulation by astrocytes using a biophysically realistic computational model. Mean-field analysis of the model, supported by intensive numerical simulations, unravels that astrocytes may mediate counterintuitive effects. Depending on the expressed presynaptic signaling pathways, astrocytes may globally inhibit or potentiate the synapse: the amount of released neurotransmitter in the presence of the astrocyte is transiently smaller or larger than in its absence. But this global effect usually coexists with the opposite local effect on paired pulses: with release-decreasing astrocytes most paired pulses become facilitated, namely the amount of neurotransmitter released upon spike i+1 is larger than that at spike i, while paired-pulse depression becomes prominent under release-increasing astrocytes. Moreover, we show that the frequency of astrocytic intracellular Ca(2+ oscillations controls the effects of the astrocyte on short-term synaptic plasticity. Our model explains several experimental observations yet unsolved, and uncovers astrocytic gliotransmission as a possible transient switch between short-term paired-pulse depression and facilitation. This possibility has deep implications on the processing of neuronal spikes

  10. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca2+ signaling

    Directory of Open Access Journals (Sweden)

    Manuel Francisco Muñoz

    2015-03-01

    Full Text Available Neuronal activity must be tightly coordinated with blood flow to keep proper brain function, which is achieved by a mechanism known as neurovascular coupling. Then, an increase in synaptic activity leads to a dilation of local parenchymal arterioles that matches the enhanced metabolic demand. Neurovascular coupling is orchestrated by astrocytes. These glial cells are located between neurons and the microvasculature, with the astrocytic endfeet ensheathing the vessels, which allows fine intercellular communication. The neurotransmitters released during neuronal activity reach astrocytic receptors and trigger a Ca2+ signaling that propagates to the endfeet, activating the release of vasoactive factors and arteriolar dilation. The astrocyte Ca2+ signaling is coordinated by gap junction channels and hemichannels formed by connexins (Cx43 and Cx30 and channels formed by pannexins (Panx-1. The neuronal activity-initiated Ca2+ waves are propagated among neighboring astrocytes directly via gap junctions or through ATP release via connexin hemichannels or pannexin channels. In addition, Ca2+ entry via connexin hemichannels or pannexin channels may participate in the regulation of the astrocyte signaling-mediated neurovascular coupling. Interestingly, nitric oxide (NO can activate connexin hemichannel by S-nitrosylation and the Ca2+-dependent NO-synthesizing enzymes endothelial NO synthase (eNOS and neuronal NOS (nNOS are expressed in astrocytes. Therefore, the astrocytic Ca2+ signaling triggered in neurovascular coupling may activate NO production, which, in turn, may lead to Ca2+ influx through hemichannel activation. Furthermore, NO release from the hemichannels located at astrocytic endfeet may contribute to the vasodilation of parenchymal arterioles. In this review, we discuss the mechanisms involved in the regulation of the astrocytic Ca2+ signaling that mediates neurovascular coupling, with a special emphasis in the possible participation of NO in

  11. Astrocytes Can Adopt Endothelial Cell Fates in a p53-Dependent Manner.

    Science.gov (United States)

    Brumm, Andrew J; Nunez, Stefanie; Doroudchi, Mehdi M; Kawaguchi, Riki; Duan, Jinhzu; Pellegrini, Matteo; Lam, Larry; Carmichael, S Thomas; Deb, Arjun; Hinman, Jason D

    2017-08-01

    Astrocytes respond to a variety of CNS injuries by cellular enlargement, process outgrowth, and upregulation of extracellular matrix proteins that function to prevent expansion of the injured region. This astrocytic response, though critical to the acute injury response, results in the formation of a glial scar that inhibits neural repair. Scar-forming cells (fibroblasts) in the heart can undergo mesenchymal-endothelial transition into endothelial cell fates following cardiac injury in a process dependent on p53 that can be modulated to augment cardiac repair. Here, we sought to determine whether astrocytes, as the primary scar-forming cell of the CNS, are able to undergo a similar cellular phenotypic transition and adopt endothelial cell fates. Serum deprivation of differentiated astrocytes resulted in a change in cellular morphology and upregulation of endothelial cell marker genes. In a tube formation assay, serum-deprived astrocytes showed a substantial increase in vessel-like morphology that was comparable to human umbilical vein endothelial cells and dependent on p53. RNA sequencing of serum-deprived astrocytes demonstrated an expression profile that mimicked an endothelial rather than astrocyte transcriptome and identified p53 and angiogenic pathways as specifically upregulated. Inhibition of p53 with genetic or pharmacologic strategies inhibited astrocyte-endothelial transition. Astrocyte-endothelial cell transition could also be modulated by miR-194, a microRNA downstream of p53 that affects expression of genes regulating angiogenesis. Together, these studies demonstrate that differentiated astrocytes retain a stimulus-dependent mechanism for cellular transition into an endothelial phenotype that may modulate formation of the glial scar and promote injury-induced angiogenesis.

  12. Angiogenin induces modifications in the astrocyte secretome: relevance to amyotrophic lateral sclerosis.

    Science.gov (United States)

    Skorupa, Alexandra; Urbach, Serge; Vigy, Oana; King, Matthew A; Chaumont-Dubel, Séverine; Prehn, Jochen H M; Marin, Philippe

    2013-10-08

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting lower and upper motoneurons. Recent studies have shown that both motor neurons and non-neuronal neighbouring cells such as astrocytes and microglia contribute to disease pathology. Loss-of-function mutations in the angiogenin (ANG) gene have been identified in ALS patients. Angiogenin is enriched in motor neurons and exerts neuroprotective effects in vitro and in vivo. We have recently shown that motoneurons secrete angiogenin, and that secreted angiogenin is exclusively taken up by astrocytes, suggesting a paracrine mechanism of neuroprotection. To gain insights into astrocyte effectors of angiogenin-induced neuroprotection, we examined alterations in the astrocyte secretome induced by angiogenin treatment using quantitative proteomics based on Stable Isotope Labelling by Amino Acids in Cell Culture (SILAC). We identified 2128 proteins in conditioned media from primary cultured mouse astrocytes, including 1247 putative secreted proteins. Of these, 60 proteins showed significant regulation of secretion in response to angiogenin stimulation. Regulated proteins include chemokines and cytokines, proteases and protease inhibitors as well as proteins involved in reorganising the extracellular matrix. In conclusion, this proteomic analysis increases our knowledge of the astrocyte secretome and reveals potential molecular substrates underlying the paracrine, neuroprotective effects of angiogenin. This study provides the most extensive list of astrocyte-secreted proteins available and reveals novel potential molecular substrates of astrocyte-neuron communication. It also identifies a set of astrocyte-derived proteins that might slow down ALS disease progression. It should be relevant to a large readership of neuroscientists and clinicians, in particular those with an interest in the physiological and pathological roles of astrocytes and in the molecular and cellular mechanisms underlying

  13. CPEB1 modulates lipopolysaccharide-mediated iNOS induction in rat primary astrocytes

    International Nuclear Information System (INIS)

    Kim, Ki Chan; Hyun Joo, So; Shin, Chan Young

    2011-01-01

    Highlights: → Expression and phosphorylation of CPEB1 is increased by LPS stimulation in rat primary astrocytes. → JNK regulates expression and phosphorylation of CPEB1 in reactive astrocytes. → Down-regulation of CPEB1 using siRNA inhibits oxidative stress and iNOS induction by LPS stimulation. → CPEB1 may play an important role in regulating inflammatory responses in reactive astrocytes induced by LPS. -- Abstract: Upon CNS damage, astrocytes undergo a series of biological changes including increased proliferation, production of inflammatory mediators and morphological changes, in a response collectively called reactive gliosis. This process is an essential part of the brains response to injury, yet much is unknown about the molecular mechanism(s) that induce these changes. In this study, we investigated the role of cytoplasmic polyadenylation element binding protein 1 (CPEB1) in the regulation of inflammatory responses in a model of reactive gliosis, lipopolysaccharide-stimulated astrocytes. CPEB1 is an mRNA-binding protein recently shown to be expressed in astrocytes that may play a role in astrocytes migration. After LPS stimulation, the expression and phosphorylation of CPEB1 was increased in rat primary astrocytes in a JNK-dependent process. siRNA-induced knockdown of CPEB1 expression inhibited the LPS-induced up-regulation of iNOS as well as NO and ROS production, a hallmark of immunological activation of astrocytes. The results from the study suggest that CPEB1 is actively involved in the regulation of inflammatory responses in astrocytes, which might provide new insights into the regulatory mechanism after brain injury.

  14. Spatial organization of NG2 glial cells and astrocytes in rat hippocampal CA1 region.

    Science.gov (United States)

    Xu, Guangjin; Wang, Wei; Zhou, Min

    2014-04-01

    Similar to astrocytes, NG2 glial cells are uniformly distributed in the central nervous system (CNS). However, little is known about the interspatial relationship, nor the functional interactions between these two star-shaped glial subtypes. Confocal morphometric analysis showed that NG2 immunostained cells are spatially organized as domains in rat hippocampal CA1 region and that each NG2 glial domain occupies a spatial volume of ∼178, 364 μm(3) . The processes of NG2 glia and astrocytes overlap extensively; each NG2 glial domain interlaces with the processes deriving from 5.8 ± 0.4 neighboring astrocytes, while each astrocytic domain accommodates processes stemming from 4.5 ± 0.3 abutting NG2 glia. In CA1 stratum radiatum, the cell bodies of morphologically identified glial cells often appear to make direct somatic-somata contact, termed as doublets. We used dual patch recording and postrecording NG2/GFAP double staining to determine the glial identities of these doublets. We show that among 44 doublets, 50% were NG2 glia-astrocyte pairs, while another 38.6% and 11.4% were astrocyte-astrocyte and NG2 glia-NG2 glia pairs, respectively. In dual patch recording, neither electrical coupling nor intercellular biocytin transfer was detected in astrocyte-NG2 glia or NG2 glia-NG2 glia doublets. Altogether, although NG2 glia and astrocytes are not gap junction coupled, their cell bodies and processes are interwoven extensively. The anatomical and physiological relationships revealed in this study should facilitate future studies to understand the metabolic coupling and functional communication between NG2 glia and astrocytes. Copyright © 2013 Wiley Periodicals, Inc.

  15. Effect of long-term (2 years) exposure of mouse brains to global system for mobile communication (GSM) radiofrequency fields on astrocytic immunoreactivity.

    Science.gov (United States)

    Court-Kowalski, Stefan; Finnie, John W; Manavis, Jim; Blumbergs, Peter C; Helps, Stephen C; Vink, Robert

    2015-04-01

    This study was designed to determine whether long-term (2 years) brain exposure to mobile telephone radiofrequency (RF) fields produces any astrocytic activation as these glia react to a wide range of neural perturbations by astrogliosis. Using a purpose-designed exposure system at 900 MHz, mice were given a single, far-field whole body exposure at a specific absorption rate of 4 W/kg on five successive days per week for 104 weeks. Control mice were sham-exposed or freely mobile in a cage to control any stress caused by immobilization in the exposure module. Brains were perfusion-fixed with 4% paraformaldehyde and three coronal levels immunostained for glial fibrillary acidic protein (GFAP). These brain slices were then examined by light microscopy and the amount of this immunomarker quantified using a color deconvolution method. There was no change in astrocytic GFAP immunostaining in brains after long-term exposure to mobile telephony microwaves compared to control (sham-exposed or freely moving caged mice). It was concluded that long-term (2 years) exposure of murine brains to mobile telephone RF fields did not produce any astrocytic reaction (astrogliosis) detectable by GFAP immunostaining. © 2015 Wiley Periodicals, Inc.

  16. Enhanced astrocytic nitric oxide production and neuronal modifications in the neocortex of a NOS2 mutant mouse.

    Directory of Open Access Journals (Sweden)

    Yossi Buskila

    Full Text Available BACKGROUND: It has been well accepted that glial cells in the central nervous system (CNS produce nitric oxide (NO through the induction of a nitric oxide synthase isoform (NOS2 only in response to various insults. Recently we described rapid astroglial, NOS2-dependent, NO production in the neocortex of healthy mice on a time scale relevant to neuronal activity. To explore a possible role for astroglial NOS2 in normal brain function we investigated a NOS2 knockout mouse (B6;129P2-Nos2(tm1Lau/J, Jackson Laboratory. Previous studies of this mouse strain revealed mainly altered immune responses, but no compensatory pathways and no CNS abnormalities have been reported. METHODOLOGY/PRINCIPAL FINDINGS: To our surprise, using NO imaging in brain slices in combination with biochemical methods we uncovered robust NO production by neocortical astrocytes of the NOS2 mutant. These findings indicate the existence of an alternative pathway that increases basal NOS activity. In addition, the astroglial mutation instigated modifications of neuronal attributes, shown by changes in the membrane properties of pyramidal neurons, and revealed in distinct behavioral abnormalities characterized by an increase in stress-related parameters. CONCLUSIONS/SIGNIFICANCE: The results strongly indicate the involvement of astrocytic-derived NO in modifying the activity of neuronal networks. In addition, the findings corroborate data linking NO signaling with stress-related behavior, and highlight the potential use of this genetic model for studies of stress-susceptibility. Lastly, our results beg re-examination of previous studies that used this mouse strain to examine the pathophysiology of brain insults, assuming lack of astrocytic nitrosative reaction.

  17. HIV-1, Methamphetamine and Astrocytes at Neuroinflammatory crossroads

    Directory of Open Access Journals (Sweden)

    Kathleen eBorgmann

    2015-10-01

    Full Text Available As a popular psychostimulant, methamphetamine (METH use leads to long-lasting, strong euphoric effects. While METH abuse is common in the general population, between 10-15% of human immunodeficiency virus-1 (HIV-1 patients report having abused METH. METH exacerbates the severity and onset of HIV-1-associated neurocognitive disorders (HAND through direct and indirect mechanisms. Repetitive METH use decreases adherence to antiretroviral drug regimens, increasing the likelihood of HIV-1 disease progression towards AIDS. METH exposure also directly affects both innate and adaptive immunity, altering lymphocyte number and activity, cytokine signaling, phagocytic function, and CNS infiltration through the blood brain barrier. Further, METH triggers the neuronal dopamine reward pathway and leads to altered neuronal activity and direct toxicity. Concurrently, METH and HIV-1 alter the neuroimmune balance and induce neuroinflammation. Neuroinflammation modulates a wide range of brain functions including neuronal signaling and activity, glial activation, viral infection, oxidative stress and excitotoxicity. Pathologically, glial activation is a hallmark of both HIV-1 and METH-associated neuroinflammation. Significant commonality exists in the neurotoxic mechanisms for both METH and HAND; however, the pathways dysregulated in astroglia during METH exposure are less clear. Thus alterations in astrocyte intracellular signaling pathways, gene expression and function during METH and HIV-1 comorbidity, neuroinflammation and HAND are carefully reviewed. Interventions targeting astrocytes in HAND and METH are presented as potential novel therapeutic approaches.

  18. Mathematical investigation of IP3-dependent calcium dynamics in astrocytes.

    Science.gov (United States)

    Handy, Gregory; Taheri, Marsa; White, John A; Borisyuk, Alla

    2017-06-01

    We study evoked calcium dynamics in astrocytes, a major cell type in the mammalian brain. Experimental evidence has shown that such dynamics are highly variable between different trials, cells, and cell subcompartments. Here we present a qualitative analysis of a recent mathematical model of astrocyte calcium responses. We show how the major response types are generated in the model as a result of the underlying bifurcation structure. By varying key channel parameters, mimicking blockers used by experimentalists, we manipulate this underlying bifurcation structure and predict how the distributions of responses can change. We find that store-operated calcium channels, plasma membrane bound channels with little activity during calcium transients, have a surprisingly strong effect, underscoring the importance of considering these channels in both experiments and mathematical settings. Variation in the maximum flow in different calcium channels is also shown to determine the range of stable oscillations, as well as set the range of frequencies of the oscillations. Further, by conducting a randomized search through the parameter space and recording the resulting calcium responses, we create a database that can be used by experimentalists to help estimate the underlying channel distribution of their cells.

  19. Does menaquinone participate in brain astrocyte electron transport?

    Science.gov (United States)

    Lovern, Douglas; Marbois, Beth

    2013-10-01

    Quinone compounds act as membrane resident carriers of electrons between components of the electron transport chain in the periplasmic space of prokaryotes and in the mitochondria of eukaryotes. Vitamin K is a quinone compound in the human body in a storage form as menaquinone (MK); distribution includes regulated amounts in mitochondrial membranes. The human brain, which has low amounts of typical vitamin K dependent function (e.g., gamma carboxylase) has relatively high levels of MK, and different regions of brain have different amounts. Coenzyme Q (Q), is a quinone synthesized de novo, and the levels of synthesis decline with age. The levels of MK are dependent on dietary intake and generally increase with age. MK has a characterized role in the transfer of electrons to fumarate in prokaryotes. A newly recognized fumarate cycle has been identified in brain astrocytes. The MK precursor menadione has been shown to donate electrons directly to mitochondrial complex III. Vitamin K compounds function in the electron transport chain of human brain astrocytes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... information about your thyroid’s size, shape, position and function that is often unattainable using other imaging procedures. ... thyroid uptake. It is a measurement of thyroid function, but does not involve imaging. Nuclear medicine is ...

  1. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... which are encased in metal and plastic and most often shaped like a box, attached to a ... will I experience during and after the procedure? Most thyroid scan and thyroid uptake procedures are painless. ...

  2. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... eat for several hours before your exam because eating can affect the accuracy of the uptake measurement. ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  3. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is ... thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that uses ...

  4. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Actual scanning time for each thyroid uptake is five minutes or less. top of page What will ... diagnostic procedures have been used for more than five decades, and there are no known long-term ...

  5. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... top of page Additional Information and Resources RTAnswers.org Radiation Therapy for Head and Neck Cancer top ... Scan and Uptake Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your ...

  6. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... When radiotracer is taken by mouth, in either liquid or capsule form, it is typically swallowed up ... radioactive iodine (I-123 or I-131) in liquid or capsule form to swallow. The thyroid uptake ...

  7. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... RAIU) is also known as a thyroid uptake. It is a measurement of thyroid function, but does ... they offer the potential to identify disease in its earliest stages as well as a patient’s immediate ...

  8. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... for several hours before your exam because eating can affect the accuracy of the uptake measurement. Jewelry ... small hand-held device resembling a microphone that can detect and measure the amount of the radiotracer ...

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of page What will I experience during and after the procedure? Most thyroid scan and thyroid uptake ... you otherwise, you may resume your normal activities after your nuclear medicine scan. If any special instructions ...

  10. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... scan and thyroid uptake provide information about the structure and function of the thyroid. The thyroid is ... computer, create pictures offering details on both the structure and function of organs and tissues in your ...

  11. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... eat for several hours before your exam because eating can affect the accuracy of the uptake measurement. ... its radioactivity over time. It may also pass out of your body through your urine or stool ...

  12. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... procedures within the last two months that used iodine-based contrast material. Your doctor will instruct you ... a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is also known as a ...

  13. Channel-mediated and carrier-mediated uptake of K+ into cultured ovine oligodendrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hertz, L.; Soliven, B.; Hertz, E.; Szuchet, S.; Nelson, D.J. (Univ. of Saskatchewan, Saskatoon (Canada))

    1990-01-01

    Uptake of radioactive K+ by mature ovine oligodendrocytes (OLGs) maintained in primary culture was measured under steady-state conditions, i.e., in cells maintained in a normal tissue culture medium (5.4 mM K+), and in cells after depletion of intracellular K+ to less than 15% of its normal value by pre-incubation in K(+)-free medium. The latter value is dominated by an active, carrier-mediated uptake (although it may include some diffusional uptake), whereas the former, in addition to active uptake, also reflects passive K+ diffusion through ion selective channels and possible self-exchange between extracellular and intracellular K+, which may be carrier-mediated. The total uptake rate was 144 +/- 10 nmol/min/mg protein, and the uptake after K+ depletion was 60 +/- 2 nmol/min/mg protein, much lower rates than previously observed in astrocytes. The uptake into K(+)-depleted cells was inhibited by about 80% in the presence of ouabain (1 mM) and about 30% in the presence of furosemide (2 mM). Activators of protein kinase C (phorbol esters) and cAMP-dependent protein kinase (forskolin) have been shown to alter the myelinogenic metabolism as well as outward K+ current in cultured OLGs. The present study demonstrates that K+ homeostasis in OLGs is modulated through similar second messenger pathways. Active uptake was inhibited by about 60% in the presence of active phorbol esters (100 nM) but was not affected by forskolin (100 nM). Forskolin likewise had no effect on total uptake, whereas phorbol esters caused a much larger inhibition than expected from their effect on carrier-mediated uptake alone, suggesting that channel-mediated uptake was also reduced.

  14. Bi-directionally protective communication between neurons and astrocytes under ischemia

    Directory of Open Access Journals (Sweden)

    Xiao-Mei Wu

    2017-10-01

    Full Text Available The extensive existing knowledge on bi-directional communication between astrocytes and neurons led us to hypothesize that not only ischemia-preconditioned (IP astrocytes can protect neurons but also IP neurons protect astrocytes from lethal ischemic injury. Here, we demonstrated for the first time that neurons have a significant role in protecting astrocytes from ischemic injury. The cultured medium from IP neurons (IPcNCM induced a remarkable reduction in LDH and an increase in cell viability in ischemic astrocytes in vitro. Selective neuronal loss by kainic acid injection induced a significant increase in apoptotic astrocyte numbers in the brain of ischemic rats in vivo. Furthermore, TUNEL analysis, DNA ladder assay, and the measurements of ROS, GSH, pro- and anti-apoptotic factors, anti-oxidant enzymes and signal molecules in vitro and/or in vivo demonstrated that IP neurons protect astrocytes by an EPO-mediated inhibition of pro-apoptotic signals, activation of anti-apoptotic proteins via the P13K/ERK/STAT5 pathways and activation of anti-oxidant proteins via up-regulation of anti-oxidant enzymes. We demonstrated the existence of astro-protection by IP neurons under ischemia and proposed that the bi-directionally protective communications between cells might be a common activity in the brain or peripheral organs under most if not all pathological conditions.

  15. α7 Nicotinic Receptor Promotes the Neuroprotective Functions of Astrocytes against Oxaliplatin Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Lorenzo Di Cesare Mannelli

    2015-01-01

    Full Text Available Neuropathies are characterized by a complex response of the central nervous system to injuries. Glial cells are recruited to maintain neuronal homeostasis but dysregulated activation leads to pain signaling amplification and reduces the glial neuroprotective power. Recently, we highlighted the property of α7 nicotinic-acetylcholine-receptor (nAChR agonists to relieve pain and induce neuroprotection simultaneously with a strong increase in astrocyte density. Aimed to study the role of α7 nAChR in the neuron-glia cross-talk, we treated primary rat neurons and astrocytes with the neurotoxic anticancer drug oxaliplatin evaluating the effect of the α7 nAChR agonist PNU-282987 (PNU. Oxaliplatin (1 μM, 48 h reduced cell viability and increased caspase-3 activity of neuron monocultures without damaging astrocytes. In cocultures, astrocytes were not able to protect neurons by oxaliplatin even if glial cell metabolism was stimulated (pyruvate increase. On the contrary, the coculture incubation with 10 μM PNU improved neuron viability and inhibited apoptosis. In the absence of astrocytes, the protection disappeared. Furthermore, PNU promoted the release of the anti-inflammatory cytokine TGF-β1 and the expression of the glutamate-detoxifying enzyme glutamine synthetase. The α7 nAChR stimulation protects neurons from oxaliplatin toxicity through an astrocyte-mediated mechanism. α7 nAChR is suggested for recovering the homeostatic role of astrocytes.

  16. A computational study of astrocytic glutamate influence on post-synaptic neuronal excitability.

    Directory of Open Access Journals (Sweden)

    Bronac Flanagan

    2018-04-01

    Full Text Available The ability of astrocytes to rapidly clear synaptic glutamate and purposefully release the excitatory transmitter is critical in the functioning of synapses and neuronal circuits. Dysfunctions of these homeostatic functions have been implicated in the pathology of brain disorders such as mesial temporal lobe epilepsy. However, the reasons for these dysfunctions are not clear from experimental data and computational models have been developed to provide further understanding of the implications of glutamate clearance from the extracellular space, as a result of EAAT2 downregulation: although they only partially account for the glutamate clearance process. In this work, we develop an explicit model of the astrocytic glutamate transporters, providing a more complete description of the glutamate chemical potential across the astrocytic membrane and its contribution to glutamate transporter driving force based on thermodynamic principles and experimental data. Analysis of our model demonstrates that increased astrocytic glutamate content due to glutamine synthetase downregulation also results in increased postsynaptic quantal size due to gliotransmission. Moreover, the proposed model demonstrates that increased astrocytic glutamate could prolong the time course of glutamate in the synaptic cleft and enhances astrocyte-induced slow inward currents, causing a disruption to the clarity of synaptic signalling and the occurrence of intervals of higher frequency postsynaptic firing. Overall, our work distilled the necessity of a low astrocytic glutamate concentration for reliable synaptic transmission of information and the possible implications of enhanced glutamate levels as in epilepsy.

  17. Bi-directionally protective communication between neurons and astrocytes under ischemia.

    Science.gov (United States)

    Wu, Xiao-Mei; Qian, Christopher; Zhou, Yu-Fu; Yan, Yick-Chun; Luo, Qian-Qian; Yung, Wing-Ho; Zhang, Fa-Li; Jiang, Li-Rong; Qian, Zhong Ming; Ke, Ya

    2017-10-01

    The extensive existing knowledge on bi-directional communication between astrocytes and neurons led us to hypothesize that not only ischemia-preconditioned (IP) astrocytes can protect neurons but also IP neurons protect astrocytes from lethal ischemic injury. Here, we demonstrated for the first time that neurons have a significant role in protecting astrocytes from ischemic injury. The cultured medium from IP neurons (IPcNCM) induced a remarkable reduction in LDH and an increase in cell viability in ischemic astrocytes in vitro. Selective neuronal loss by kainic acid injection induced a significant increase in apoptotic astrocyte numbers in the brain of ischemic rats in vivo. Furthermore, TUNEL analysis, DNA ladder assay, and the measurements of ROS, GSH, pro- and anti-apoptotic factors, anti-oxidant enzymes and signal molecules in vitro and/or in vivo demonstrated that IP neurons protect astrocytes by an EPO-mediated inhibition of pro-apoptotic signals, activation of anti-apoptotic proteins via the P13K/ERK/STAT5 pathways and activation of anti-oxidant proteins via up-regulation of anti-oxidant enzymes. We demonstrated the existence of astro-protection by IP neurons under ischemia and proposed that the bi-directionally protective communications between cells might be a common activity in the brain or peripheral organs under most if not all pathological conditions. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Neuromyelitis optica IgG stimulates an immunological response in rat astrocyte cultures.

    Science.gov (United States)

    Howe, Charles L; Kaptzan, Tatiana; Magaña, Setty M; Ayers-Ringler, Jennifer R; LaFrance-Corey, Reghann G; Lucchinetti, Claudia F

    2014-05-01

    Neuromyelitis optica (NMO) is a primary astrocyte disease associated with central nervous system inflammation, demyelination, and tissue injury. Brain lesions are frequently observed in regions enriched in expression of the aquaporin-4 (AQP4) water channel, an antigenic target of the NMO IgG serologic marker. Based on observations of disease reversibility and careful characterization of NMO lesion development, we propose that the NMO IgG may induce a dynamic immunological response in astrocytes. Using primary rat astrocyte-enriched cultures and treatment with NMO patient-derived serum or purified IgG, we observed a robust pattern of gene expression changes consistent with the induction of a reactive and inflammatory phenotype in astrocytes. The reactive astrocyte factor lipocalin-2 and a broad spectrum of chemokines, cytokines, and stress response factors were induced by either NMO patient serum or purified IgG. Treatment with IgG from healthy controls had no effect. The effect is disease-specific, as serum from patients with relapsing-remitting multiple sclerosis, Sjögren's, or systemic lupus erythematosus did not induce a response in the cultures. We hypothesize that binding of the NMO IgG to AQP4 induces a cellular response that results in transcriptional and translational events within the astrocyte that are consistent with a reactive and inflammatory phenotype. Strategies aimed at reducing the inflammatory response of astrocytes may short circuit an amplification loop associated with NMO lesion development. Copyright © 2014 Wiley Periodicals, Inc.

  19. Different Astrocytic Activation between Adult Gekko japonicus and Rats during Wound Healing In Vitro.

    Directory of Open Access Journals (Sweden)

    Yun Gu

    Full Text Available Glial scar formation is a major obstacle to regeneration after spinal cord injury. Moreover, it has been shown that the astrocytic response to injury differs between species. Gekko japonicas is a type of reptile and it shows differential glial activation compared to that of rats. The purpose of the present study was to compare the proliferation and migration of astrocytes in the spinal cords of geckos and rats after injury in vitro. Spinal cord homogenate stimulation and scratch wound models were used to induce astrocytic activation in adult and embryonic rats, as well as in adult geckos. Our results indicated that astrocytes from the adult rat were likely activated by mechanical stimulation, even though they showed lower proliferation abilities than the astrocytes from the gecko under normal conditions. Furthermore, a transcriptome analysis revealed that the differentially expressed genes in astrocytes from adult rats and those from geckos were enriched in pathways involved in proliferation and the response to stimuli. This implies that intrinsic discrepancies in gene expression patterns might contribute to the differential activation of astrocytes between species.

  20. Bi-directional astrocytic regulation of neuronal activity within a network

    Directory of Open Access Journals (Sweden)

    Susan Yu Gordleeva

    2012-11-01

    Full Text Available The concept of a tripartite synapse holds that astrocytes can affect both the pre- and postsynaptic compartments through the Ca2+-dependent release of gliotransmitters. Because astrocytic Ca2+ transients usually last for a few seconds, we assumed that astrocytic regulation of synaptic transmission may also occur on the scale of seconds. Here, we considered the basic physiological functions of tripartite synapses and investigated astrocytic regulation at the level of neural network activity. The firing dynamics of individual neurons in a spontaneous firing network was described by the Hodgkin-Huxley model. The neurons received excitatory synaptic input driven by the Poisson spike train with variable frequency. The mean field concentration of the released neurotransmitter was used to describe the presynaptic dynamics. The amplitudes of the excitatory postsynaptic currents (PSCs obeyed the gamma distribution law. In our model, astrocytes depressed the presynaptic release and enhanced the postsynaptic currents. As a result, low frequency synaptic input was suppressed while high frequency input was amplified. The analysis of the neuron spiking frequency as an indicator of network activity revealed that tripartite synaptic transmission dramatically changed the local network operation compared to bipartite synapses. Specifically, the astrocytes supported homeostatic regulation of the network activity by increasing or decreasing firing of the neurons. Thus, the astrocyte activation may modulate a transition of neural network into bistable regime of activity with two stable firing levels and spontaneous transitions between them.