WorldWideScience

Sample records for upregulates cardiac autonomic

  1. Autonomic cardiac innervation

    Science.gov (United States)

    Hasan, Wohaib

    2013-01-01

    Autonomic cardiac neurons have a common origin in the neural crest but undergo distinct developmental differentiation as they mature toward their adult phenotype. Progenitor cells respond to repulsive cues during migration, followed by differentiation cues from paracrine sources that promote neurochemistry and differentiation. When autonomic axons start to innervate cardiac tissue, neurotrophic factors from vascular tissue are essential for maintenance of neurons before they reach their targets, upon which target-derived trophic factors take over final maturation, synaptic strength and postnatal survival. Although target-derived neurotrophins have a central role to play in development, alternative sources of neurotrophins may also modulate innervation. Both developing and adult sympathetic neurons express proNGF, and adult parasympathetic cardiac ganglion neurons also synthesize and release NGF. The physiological function of these “non-classical” cardiac sources of neurotrophins remains to be determined, especially in relation to autocrine/paracrine sustenance during development.   Cardiac autonomic nerves are closely spatially associated in cardiac plexuses, ganglia and pacemaker regions and so are sensitive to release of neurotransmitter, neuropeptides and trophic factors from adjacent nerves. As such, in many cardiac pathologies, it is an imbalance within the two arms of the autonomic system that is critical for disease progression. Although this crosstalk between sympathetic and parasympathetic nerves has been well established for adult nerves, it is unclear whether a degree of paracrine regulation occurs across the autonomic limbs during development. Aberrant nerve remodeling is a common occurrence in many adult cardiovascular pathologies, and the mechanisms regulating outgrowth or denervation are disparate. However, autonomic neurons display considerable plasticity in this regard with neurotrophins and inflammatory cytokines having a central regulatory

  2. Abnormal Cardiac Autonomic Regulation in Mice Lacking ASIC3

    Directory of Open Access Journals (Sweden)

    Ching-Feng Cheng

    2014-01-01

    Full Text Available Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3 is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3−/− mice. Asic3−/− mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3−/− mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3−/− mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.

  3. Alterations in cardiac autonomic control in spinal cord injury.

    Science.gov (United States)

    Biering-Sørensen, Fin; Biering-Sørensen, Tor; Liu, Nan; Malmqvist, Lasse; Wecht, Jill Maria; Krassioukov, Andrei

    2018-01-01

    A spinal cord injury (SCI) interferes with the autonomic nervous system (ANS). The effect on the cardiovascular system will depend on the extent of damage to the spinal/central component of ANS. The cardiac changes are caused by loss of supraspinal sympathetic control and relatively increased parasympathetic cardiac control. Decreases in sympathetic activity result in heart rate and the arterial blood pressure changes, and may cause arrhythmias, in particular bradycardia, with the risk of cardiac arrest in those with cervical or high thoracic injuries. The objective of this review is to give an update of the current knowledge related to the alterations in cardiac autonomic control following SCI. With this purpose the review includes the following subheadings: 2. Neuro-anatomical plasticity and cardiac control 2.1 Autonomic nervous system and the heart 2.2 Alteration in autonomic control of the heart following spinal cord injury 3. Spinal shock and neurogenic shock 3.1 Pathophysiology of spinal shock 3.2 Pathophysiology of neurogenic shock 4. Autonomic dysreflexia 4.1 Pathophysiology of autonomic dysreflexia 4.2 Diagnosis of autonomic dysreflexia 5. Heart rate/electrocardiography following spinal cord injury 5.1 Acute phase 5.2 Chronic phase 6. Heart rate variability 6.1 Time domain analysis 6.2 Frequency domain analysis 6.3 QT-variability index 6.4 Nonlinear (fractal) indexes 7. Echocardiography 7.1 Changes in cardiac structure following spinal cord injury 7.2 Changes in cardiac function following spinal cord injury 8. International spinal cord injury cardiovascular basic data set and international standards to document the remaining autonomic function in spinal cord injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Exercise improves cardiac autonomic function in obesity and diabetes.

    Science.gov (United States)

    Voulgari, Christina; Pagoni, Stamatina; Vinik, Aaron; Poirier, Paul

    2013-05-01

    Physical activity is a key element in the prevention and management of obesity and diabetes. Regular physical activity efficiently supports diet-induced weight loss, improves glycemic control, and can prevent or delay type 2 diabetes diagnosis. Furthermore, physical activity positively affects lipid profile, blood pressure, reduces the rate of cardiovascular events and associated mortality, and restores the quality of life in type 2 diabetes. However, recent studies have documented that a high percentage of the cardiovascular benefits of exercise cannot be attributed solely to enhanced cardiovascular risk factor modulation. Obesity in concert with diabetes is characterized by sympathetic overactivity and the progressive loss of cardiac parasympathetic influx. These are manifested via different pathogenetic mechanisms, including hyperinsulinemia, visceral obesity, subclinical inflammation and increased thrombosis. Cardiac autonomic neuropathy is an underestimated risk factor for the increased cardiovascular morbidity and mortality associated with obesity and diabetes. The same is true for the role of physical exercise in the restoration of the heart cardioprotective autonomic modulation in these individuals. This review addresses the interplay of cardiac autonomic function in obesity and diabetes, and focuses on the importance of exercise in improving cardiac autonomic dysfunction. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Cardiac autonomic profile in different sports disciplines during all-day activity.

    Science.gov (United States)

    Sztajzel, J; Jung, M; Sievert, K; Bayes De Luna, A

    2008-12-01

    Physical training and sport activity have a beneficial effect on cardiac autonomic activity. However, the exact impact of different types of sports disciplines on cardiac autonomic function is still unclear. The aim of this study was to evaluate the cardiac autonomic profile in different sports discplines and to determine their impact on cardiac autonomic function by using heart rate variability (HRV), a noninvasive electrocardiographic (ECG) analysis of the sympatho-vagal balance. Temporal and spectral HRV parameters determined from 24-hour continuous ECG monitoring were studied in 40 subjects, including 12 endurance athletes, 14 hockey players and 14 untrained male volunteers (control group). Each participant had to wear a Holter recorder during 24 hours and to continue his everyday activities. All HRV parameters were compared between the 3 study groups. All heart rate values were lower and all parasympathetic-related time domain indices, including root mean square of successive differences (RMSSD) and pNN50 (NN50 count divided by the total number of all NN intervals), were higher in both athletes groups as compared with controls (PHRV, were significantly higher only in endurance athletes (PHRV (higher SDNN), indicating thereby that this type sports discipline may have a more substantially favorable effect on the cardiac autonomic profile.

  6. Cardiac autonomic testing and treating heart disease. 'A clinical perspective'

    Directory of Open Access Journals (Sweden)

    Nicholas L. DePace

    2014-12-01

    Full Text Available Background Coronary heart disease (CHD is a major health concern, affecting nearly half the middle-age population and responsible for nearly one-third of all deaths. Clinicians have several major responsibilities beyond diagnosing CHD, such as risk stratification of patients for major adverse cardiac events (MACE and treating risks, as well as the patient. This second of a two-part review series discusses treating risk factors, including autonomic dysfunction, and expected outcomes. Methods Therapies for treating cardiac mortality risks including cardiovascular autonomic neuropathy (CAN, are discussed. Results While risk factors effectively target high-risk patients, a large number of individuals who will develop complications from heart disease are not identified by current scoring systems. Many patients with heart conditions, who appear to be well-managed by traditional therapies, experience MACE. Parasympathetic and Sympathetic (P&S function testing provides more information and has the potential to further aid doctors in individualizing and titrating therapy to minimize risk. Advanced autonomic dysfunction (AAD and its more severe form cardiovascular autonomic neuropathy have been strongly associated with an elevated risk of cardiac mortality and are diagnosable through autonomic testing. This additional information includes patient-specific physiologic measures, such as sympathovagal balance (SB. Studies have shown that establishing and maintaining proper SB minimizes morbidity and mortality risk. Conclusions P&S testing promotes primary prevention, treating subclinical disease states, as well as secondary prevention, thereby improving patient outcomes through (1 maintaining wellness, (2 preventing symptoms and disorder and (3 treating subclinical manifestations (autonomic dysfunction, as well as (4 disease and symptoms (autonomic neuropathy.

  7. Bidirectional Prospective Associations between Cardiac Autonomic Activity and Inflammatory Markers

    NARCIS (Netherlands)

    Hu, Mandy X; Lamers, Femke; Neijts, Melanie; Willemsen, Gonneke; de Geus, Eco J C; Penninx, Brenda W J H

    2018-01-01

    OBJECTIVE: Autonomic nervous system (ANS) imbalance has been cross-sectionally associated with inflammatory processes. Longitudinal studies are needed to shed light on the nature of this relationship. We examined cross-sectional and bidirectional prospective associations between cardiac autonomic

  8. Cardiac autonomic modulation impairments in advanced breast cancer patients.

    Science.gov (United States)

    Arab, Claudia; Vanderlei, Luiz Carlos Marques; da Silva Paiva, Laércio; Fulghum, Kyle Levi; Fristachi, Carlos Elias; Nazario, Afonso Celso Pinto; Elias, Simone; Gebrim, Luiz Henrique; Ferreira Filho, Celso; Gidron, Yori; Ferreira, Celso

    2018-05-02

    To compare cardiac autonomic modulation in early- versus advanced-stage breast cancer patients before any type of cancer treatment and investigate associated factors. This cross-sectional study included women (30-69 years old) with primary diagnosis of breast cancer and women with benign breast tumors. We evaluated cardiac modulation by heart rate variability and assessed factors of anxiety, depression, physical activity, and other relevant medical variables. Patients were divided into three groups based on TNM staging of cancer severity: early-stage cancer (n = 42), advanced-stage cancer (n = 37), or benign breast tumors to serve as a control (n = 37). We analyzed heart rate variability in time and frequency domains. The advanced-stage cancer group had lower vagal modulation than early-stage and benign groups; also, the advance-stage group had lower overall heart rate variability when compared to benign conditions. Heart rate variability was influenced by age, menopausal status, and BMI. Heart rate variability seems to be a promising, non-invasive tool for early diagnosis of autonomic dysfunction in breast cancer and detection of cardiovascular impairments at cancer diagnosis. Cardiac autonomic modulation is inversely associated with breast cancer staging.

  9. Cardiac effects of electrically induced intrathoracic autonomic reflexes.

    Science.gov (United States)

    Armour, J A

    1988-06-01

    Electrical stimulation of the afferent components in one cardiopulmonary nerve (the left vagosympathetic complex at a level immediately caudal to the origin of the left recurrent laryngeal nerve) in acutely decentralized thoracic autonomic ganglionic preparations altered cardiac chronotropism and inotropism in 17 of 44 dogs. Since these neural preparations were acutely decentralized, the effects were mediated presumably via intrathoracic autonomic reflexes. The lack of consistency of these reflexly generated cardiac responses presumably were due in part to anatomical variation of afferent axons in the afferent nerve stimulated. As stimulation of the afferent components in the same neural structure caudal to the heart (where cardiopulmonary afferent axons are not present) failed to elicit cardiac responses in any dog, it is presumed that when cardiac responses were elicited by the more cranially located stimulations, these were due to activation of afferent axons arising from the heart and (or) lungs. When cardiac responses were elicited, intramyocardial pressures in the right ventricular conus as well as the ventral and lateral walls of the left ventricle were augmented. Either bradycardia or tachycardia was elicited. Following hexamethonium administration no responses were produced, demonstrating that nicotonic cholinergic synaptic mechanisms were involved in these intrathoracic cardiopulmonary-cardiac reflexes. In six of the animals, when atropine was administered before hexamethonium, reflexly generated responses were attenuated. The same thing occurred when morphine was administered in four animals. In contrast, in four animals following administration of phentolamine, the reflexly generated changes were enhanced.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Type 2 diabetes and cardiac autonomic neuropathy screening using dynamic pupillometry

    Science.gov (United States)

    Lerner, Alana G.; Bernabé-Ortiz, Antonio; Ticse, Ray; Hernandez, Arturo; Huaylinos, Yvonne; Pinto, Miguel E.; Málaga, Germán; Checkley, William; Gilman, Robert H.; Miranda, J. Jaime

    2015-01-01

    Aim To determine if changes in pupillary response are useful as a screening tool for diabetes and to assess whether pupillometry is associated with cardiac autonomic neuropathy. Methods We conducted a cross-sectional study with participants drawn from two settings: a hospital and a community site. At the community site, individuals with newly diagnosed diabetes as well as a random sample of control individuals without diabetes, confirmed by oral glucose tolerance test, were selected. Participants underwent an LED light stimulus test and eight pupillometry variables were measured. Outcomes were diabetes, defined by oral glucose tolerance test, and cardiac autonomic dysfunction, determined by a positive readout on two of four diagnostic tests: heart rate response to the Valsalva manoeuvre; orthostatic hypotension; 30:15 ratio; and expiration-to-inspiration ratio. The area under the curve, best threshold, sensitivity and specificity of each pupillometry variable was calculated. Results Data from 384 people, 213 with diabetes, were analysed. The mean (±SD) age of the people with diabetes was 58.6 (±8.2) years and in the control subjects it was 56.1 (±8.6) years. When comparing individuals with and without diabetes, the amplitude of the pupil reaction had the highest area under the curve [0.69 (sensitivity: 78%; specificity: 55%)]. Cardiac autonomic neuropathy was present in 51 of the 138 people evaluated (37.0%; 95% CI 28.8–45.1). To diagnose cardiac autonomic neuropathy, two pupillometry variables had the highest area under the curve: baseline pupil radius [area under the curve: 0.71 (sensitivity: 51%; specificity: 84%)], and amplitude of the pupil reaction [area under the curve: 070 (sensitivity: 82%; specificity: 55%)]. Conclusions Pupillometry is an inexpensive technique to screen for diabetes and cardiac autonomic neuropathy, but it does not have sufficient accuracy for clinical use as a screening tool. PMID:25761508

  11. Cardiac Autonomic Dysfunction in Offspring of Hypertensive Parents During Exercise.

    Science.gov (United States)

    Almeida, Leonardo Barbosa de; Peçanha, Tiago; Mira, Pedro Augusto de Carvalho; Souza, Livia Victorino de; da Silva, Lílian Pinto; Martinez, Daniel Godoy; Freitas, Isabelle Magalhães Guedes; Laterza, Mateus Camaroti

    2017-12-01

    Offspring of hypertensive parents present autonomic dysfunction at rest and during physiological maneuvers. However, the cardiac autonomic modulation during exercise remains unknown. This study tested whether the cardiac autonomic modulation would be reduced in offspring of hypertensive parents during exercise. Fourteen offspring of hypertensive and 14 offspring of normotensive individuals were evaluated. The groups were matched by age (24.5±1.0 vs. 26.6±1.5 years; p=0.25) and BMI (22.8±0.6 vs. 24.2±1.0 kg/m 2 ; p=0.30). Blood pressure and heart rate were assessed simultaneously during 3 min at baseline followed by 3-min isometric handgrip at 30% of maximal voluntary contraction. Cardiac autonomic modulation was evaluated using heart rate variability. Primary variables were subjected to two-way ANOVA (group vs. time). P valueexercise protocol. In contrast, offspring of hypertensive subjects showed a reduction of SDNN (Basal=34.8±3.5 vs. 45.2±3.7 ms; Exercise=30.8±3.3 vs. 41.5±3.9 ms; p group=0.01), RMSSD (Basal=37.1±3.7 vs. 52.0±6.0 ms; Exercise=28.6±3.4 vs. 41.9±5.3 ms; p group=0.02) and pNN50 (Basal=15.7±4.0 vs. 29.5±5.5%; Exercise=7.7±2.4 vs. 18.0±4.3%; p group=0.03) during the exercise protocol in comparison with offspring of normotensive parents. We concluded that normotensive offspring of hypertensive parents exhibit impaired cardiac autonomic modulation during exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Impaired cardiac uptake of meta-[123I]iodobenzylguanidine in Parkinson's disease with autonomic failure

    International Nuclear Information System (INIS)

    Braune, S.; Luecking, C.H.; Reinhardt, M.; Bathmann, J.; Krause, T.; Lehmann, M.

    1998-01-01

    Objective - To selectively investigate postganglionic sympathetic cardiac neurons in patients with Parkinson's disease and autonomic failure. Material and methods - Metaiodobenzylguanidine (MIBG) is a pharmacologically inactive analogue of noradrenaline, which is similarly metabolized in noradrenergic neurons. Therefore the uptake of radiolabelled MIBG represents not only the localization of postganglionic sympathetic neurons but also their functional integrity. Ten patients with Parkinson's disease and autonomic failure underwent standardized autonomic testing, assessment of catecholamine plasma levels and scintigraphy with [ 123 I]MIGB. Results - The cardiac uptake of MIBG, as demonstrated by the heart/mediastinum ratio, was significantly lower in patients in comparison with controls. Scintigraphy with MIBG allowed the selective in-vivo investigation of postganglionic sympathetic cardiac efferent in patients with autonomic failure, a procedure which was previously confined to post-mortem examination. Conclusion - These findings point to a relevant postganglionic pattern of involvement of the autonomic nervous system (ANS) in Parkinson's disease and autonomic failure. (au)

  13. May a unitary autonomic index help assess autonomic cardiac regulation in elite athletes? Preliminary observations on the national Italian Olympic committee team.

    Science.gov (United States)

    Sala, Roberto; Malacarne, Mara; Tosi, Fabio; Benzi, Manuela; Solaro, Nadia; Tamorri, Stefano; Spataro, Antonio; Pagani, Massimo; Lucini, Daniela

    2017-12-01

    Long term endurance training, as occurring in elite athletes, is associated to cardiac neural remodeling in favor of cardioprotective vagal mechanisms, resulting in resting bradycardia and augmented contribution of cardiac parasympathetic nerve activity. Autonomic assessment can be performed by way of heart rate variability. This technique however provides multiple indices, and there is not yet complete agreement on their specific significance. Purpose of the study was to assess whether a rank transformation and radar plot could provide a unitary autonomic index, capable to show a correlation between intensity of individual work and quality of autonomic regulation. We studied 711 (23.6±6.2 years) elite athletes that took part in the selection procedure for the 2016 Rio Olympic Games for the National Italian Olympic Committee (CONI). Indices from Heart Rate Variability HRV obtained at rest, during standing up and during recovery from an exercise test were used to compute a percent ranked unitary autonomic index for sport (ANSIs), taken as proxy of quality of autonomic regulation. Within the observed wide range of energy expenditure, the unitary autonomic index ANSIs appears significantly correlated to individual and discipline specific training workloads (r=0.25, P<0.001 and r=0.78, P<0.001, respectively), correcting for possible age and gender bias. ANSIs also positively correlates to lipid profile. Estimated intensity of physical activity correlates with quality of cardiac autonomic regulation, as expressed by a novel unitary index of cardiac autonomic regulation. ANSIs could provide a novel and convenient approach to individual autonomic evaluation in athletes.

  14. Impact of malnutrition on cardiac autonomic modulation in children

    Directory of Open Access Journals (Sweden)

    Gláucia Siqueira Carvalho Barreto

    2016-11-01

    Conclusion: Malnourished children present changes in cardiac autonomic modulation, characterized by reductions in both sympathetic and parasympathetic activity, as well as increased heart rate and decreased blood pressure.

  15. Sleep restriction progress to cardiac autonomic imbalance ...

    African Journals Online (AJOL)

    Since it's more difficult to maintain adequate sleep duration among night watchmen during their working schedule, hence the purpose of our present study was to investigate whether mental stress or fatigue over restricted sleep period in night shift, affects HRV, in order to elucidate on cardiac autonomic modulation among ...

  16. Music Improves Subjective Feelings Leading to Cardiac Autonomic Nervous Modulation: A Pilot Study.

    Science.gov (United States)

    Kume, Satoshi; Nishimura, Yukako; Mizuno, Kei; Sakimoto, Nae; Hori, Hiroshi; Tamura, Yasuhisa; Yamato, Masanori; Mitsuhashi, Rika; Akiba, Keigo; Koizumi, Jun-Ichi; Watanabe, Yasuyoshi; Kataoka, Yosky

    2017-01-01

    It is widely accepted that listening to music improves subjective feelings and reduces fatigue sensations, and different kinds of music lead to different activations of these feelings. Recently, cardiac autonomic nervous modulation has been proposed as a useful objective indicator of fatigue. However, scientific considerations of the relation between feelings of fatigue and cardiac autonomic nervous modulation while listening to music are still lacking. In this study, we examined which subjective feelings of fatigue are related to participants' cardiac autonomic nervous function while they listen to music. We used an album of comfortable and relaxing environmental music, with blended sounds from a piano and violin as well as natural sound sources. We performed a crossover trial of environmental music and silent sessions for 20 healthy subjects, 12 females, and 8 males, after their daily work shift. We measured changes in eight types of subjective feelings, including healing, fatigue, sleepiness, relaxation, and refreshment, using the KOKORO scale, a subjective mood measurement system for self-reported feelings. Further, we obtained measures of cardiac autonomic nervous function on the basis of heart rate variability before and after the sessions. During the music session, subjective feelings significantly shifted toward healing and a secure/relaxed feeling and these changes were greater than those in the silent session. Heart rates (ΔHR) in the music session significantly decreased compared with those in the silent session. Other cardiac autonomic parameters such as high-frequency (HF) component and the ratio of low-frequency (LF) and HF components (LF/HF) were similar in the two sessions. In the linear regression analysis of the feelings with ΔHR and changes in LF/HF (ΔLF/HF), increases and decreases in ΔHR were correlated to the feeling axes of Fatigue-Healing and Anxiety/Tension-Security/Relaxation, whereas those in ΔLF/HF were related to the feeling axes

  17. Cardiac Autonomic Dysfunction in Type 2 Diabetes – Effect of Hyperglycemia and Disease Duration

    OpenAIRE

    Mika P. Tarvainen; Mika P. Tarvainen; Tomi Petteri Laitinen; Jukka Antero Lipponen; David eCornforth; Herbert eJelinek

    2014-01-01

    Heart rate variability (HRV) is reduced in diabetes mellitus (DM) patients, suggesting dysfunction of cardiac autonomic regulation and an increased risk for cardiac events. The aim of this paper was to examine the associations of blood glucose level (BGL), glycated hemoglobin (HbA1c) and duration of diabetes with cardiac autonomic regulation assessed by HRV analysis. Resting electrocardiogram (ECG), recorded over 20 minutes in supine position, and clinical measurements of 189 healthy controls...

  18. Cardiac autonomic impairment and chronotropic incompetence in fibromyalgia

    OpenAIRE

    da Cunha Ribeiro, Roberta Potenza; Roschel, Hamilton; Artioli, Guilherme Gianini; Dassouki, Thalita; Perandini, Luiz Augusto; Calich, Ana Luisa; de Sá Pinto, Ana Lúcia; Lima, Fernanda Rodrigues; Bonfá, Eloísa; Gualano, Bruno

    2011-01-01

    Abstract Introduction We aimed to gather knowledge on the cardiac autonomic modulation in patients with fibromyalgia (FM) in response to exercise and to investigate whether this population suffers from chronotropic incompetence (CI). Methods Fourteen women with FM (age: 46 ± 3 y...

  19. Burnout versus work engagement in their effects on 24-hour ambulatory monitored cardiac autonomic function

    NARCIS (Netherlands)

    L.J.P. van Doornen (Lorenz); J.H. Houtveen (Jan); S. Langelaan (Saar); A.B. Bakker (Arnold); W. van Rhenen (Willem); W.B. Schaufeli (Wilmar)

    2009-01-01

    textabstractBurnout has been associated with increased risk of cardiovascular disease. This relationship may be mediated by a stress-related disruption in cardiac autonomic activity. The aim of the present study was to assess cardiac autonomic activity (sympathetic and parasympathetic) during a

  20. Pulse wave velocity and cardiac autonomic function in type 2 diabetes mellitus.

    Science.gov (United States)

    Chorepsima, Stamatina; Eleftheriadou, Ioanna; Tentolouris, Anastasios; Moyssakis, Ioannis; Protogerou, Athanasios; Kokkinos, Alexandros; Sfikakis, Petros P; Tentolouris, Nikolaos

    2017-05-19

    Increased carotid-femoral pulse wave velocity (PWV) has been associated with incident cardiovascular disease, independently of traditional risk factors. Cardiac autonomic dysfunction is a common complication of diabetes and has been associated with reduced aortic distensibility. However, the association of cardiac autonomic dysfunction with PWV is not known. In this study we examined the association between cardiac autonomic function and PWV in subjects with type 2 diabetes mellitus. A total of 290 patients with type 2 diabetes were examined. PWV was measured at the carotid-femoral segment with applanation tonometry. Central mean arterial blood pressure (MBP) was determined by the same apparatus. Participants were classified as having normal (n = 193) or abnormal (n = 97) PWV values using age-corrected values. Cardiac autonomic nervous system activity was determined by measurement of parameters of heart rate variability (HRV). Subjects with abnormal PWV were older, had higher arterial blood pressure and higher heart rate than those with normal PWV. Most of the values of HRV were significantly lower in subjects with abnormal than in those with normal PWV. Multivariate analysis, after controlling for various confounding factors, demonstrated that abnormal PWV was associated independently only with peripheral MBP [odds ratio (OR) 1.049, 95% confidence intervals (CI) 1.015-1.085, P = 0.005], central MBP (OR 1.052, 95% CI 1.016-1.088, P = 0.004), log total power (OR 0.490, 95% CI 0.258-0.932, P = 0.030) and log high frequency power (OR 0.546, 95% CI 0.301-0.991, P = 0.047). In subjects with type 2 diabetes, arterial blood pressure and impaired cardiac autonomic function is associated independently with abnormal PWV.

  1. The ECG vertigo in diabetes and cardiac autonomic neuropathy.

    Science.gov (United States)

    Voulgari, Christina; Tentolouris, Nicholas; Stefanadis, Christodoulos

    2011-01-01

    The importance of diabetes in the epidemiology of cardiovascular diseases cannot be overemphasized. About one third of acute myocardial infarction patients have diabetes, and its prevalence is steadily increasing. The decrease in cardiac mortality in people with diabetes is lagging behind that of the general population. Cardiovascular disease is a broad term which includes any condition causing pathological changes in blood vessels, cardiac muscle or valves, and cardiac rhythm. The ECG offers a quick, noninvasive clinical and research screen for the early detection of cardiovascular disease in diabetes. In this paper, the clinical and research value of the ECG is readdressed in diabetes and in the presence of cardiac autonomic neuropathy.

  2. Cardiac Autonomic Dysfunction in Type 2 Diabetes – Effect of Hyperglycemia and Disease Duration

    OpenAIRE

    Tarvainen, Mika P.; Laitinen, Tomi P.; Lipponen, Jukka A.; Cornforth, David J.; Jelinek, Herbert F.

    2014-01-01

    Heart rate variability (HRV) is reduced in diabetes mellitus (DM) patients, suggesting dysfunction of cardiac autonomic regulation and an increased risk for cardiac events. The aim of this paper was to examine the associations of blood glucose level (BGL), glycated hemoglobin (HbA1c), and duration of diabetes with cardiac autonomic regulation assessed by HRV analysis. Resting electrocardiogram (ECG), recorded over 20 min in supine position, and clinical measurements of 189 healthy controls an...

  3. Cardiac autonomic function in patients with diabetes improves with practice of comprehensive yogic breathing program

    Directory of Open Access Journals (Sweden)

    Viveka P Jyotsna

    2013-01-01

    Full Text Available Background: The aim of this study was to observe the effect comprehensive yogic breathing (Sudarshan Kriya Yoga [SKY] and Pranayam had on cardiac autonomic functions in patients with diabetes. Materials and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 64 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes and the other group receiving standard therapy for diabetes and comprehensive yogic breathing program. Standard therapy included dietary advice, brisk walking for 45 min daily, and administration of oral antidiabetic drugs. Comprehensive yogic breathing program was introduced to the participants through a course of 12 h spread over 3 days. It was an interactive session in which SKY, a rhythmic cyclical breathing, preceded by Pranayam is taught under the guidance of a certified teacher. Cardiac autonomic function tests were done before and after 6 months of intervention. Results: In the intervention group, after practicing the breathing techniques for 6 months, the improvement in sympathetic functions was statistically significant (P 0.04. The change in sympathetic functions in the standard therapy group was not significant (P 0.75.Parasympathetic functions did not show any significant change in either group. When both parasympathetic and sympathetic cardiac autonomic functions were considered, there was a trend toward improvement in patients following comprehensive yogic breathing program (P 0.06. In the standard therapy group, no change in cardiac autonomic functions was noted (P 0.99. Conclusion: Cardiac autonomic functions improved in patients with diabetes on standard treatment who followed the comprehensive yogic breathing program compared to patients who were on standard therapy alone.

  4. The ECG Vertigo in Diabetes and Cardiac Autonomic Neuropathy

    Directory of Open Access Journals (Sweden)

    Christina Voulgari

    2011-01-01

    Full Text Available The importance of diabetes in the epidemiology of cardiovascular diseases cannot be overemphasized. About one third of acute myocardial infarction patients have diabetes, and its prevalence is steadily increasing. The decrease in cardiac mortality in people with diabetes is lagging behind that of the general population. Cardiovascular disease is a broad term which includes any condition causing pathological changes in blood vessels, cardiac muscle or valves, and cardiac rhythm. The ECG offers a quick, noninvasive clinical and research screen for the early detection of cardiovascular disease in diabetes. In this paper, the clinical and research value of the ECG is readdressed in diabetes and in the presence of cardiac autonomic neuropathy.

  5. Effects of short-term food deprivation on interoceptive awareness, feelings and autonomic cardiac activity.

    Science.gov (United States)

    Herbert, Beate M; Herbert, Cornelia; Pollatos, Olga; Weimer, Katja; Enck, Paul; Sauer, Helene; Zipfel, Stephan

    2012-01-01

    The perception of internal bodily signals (interoception) plays a relevant role for emotion processing and feelings. This study investigated changes of interoceptive awareness and cardiac autonomic activity induced by short-term food deprivation and its relationship to hunger and affective experience. 20 healthy women were exposed to 24h of food deprivation in a controlled setting. Interoceptive awareness was assessed by using a heartbeat tracking task. Felt hunger, cardiac autonomic activity, mood and subjective appraisal of interoceptive sensations were assessed before and after fasting. Results show that short-term fasting intensifies interoceptive awareness, not restricted to food cues, via changes of autonomic cardiac and/or cardiodynamic activity. The increase of interoceptive awareness was positively related to felt hunger. Additionally, the results demonstrate the role of cardiac vagal activity as a potential index of emotion related self-regulation, for hunger, mood and the affective appraisal of interoceptive signals during acute fasting. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Influence of classic massage on cardiac autonomic modulation

    Directory of Open Access Journals (Sweden)

    Mário Augusto Paschoal

    Full Text Available Abstract Introduction: Massage can be defined as the rhythmic and smooth manipulation of body tissues, with the aim to promote health and well-being. Objective: To assess the influence of classic massage on cardiac autonomic modulation. Methods: Cross-sectional study that evaluated healthy participants, with mean age between 18 and 25 years, divided into two groups: test group (TG, n=11 and control group (CG, n=10. The TG had their heartbeat recorded for 5min before receiving a classic massage for 40min and during three periods after this procedure: 0-5min, 5-10min and 10-15min. The CG had their heartbeats recorded at the same time; without receive massage. Cardiac autonomic modulation was investigated by heart rate variability (HRV. Results: The mean values of HRV rates were: pNN50, respectively, for the TG: before massage (10.5 ± 9.5%, and after massage: 0-5min (11.6 ± 7.2%, 5-10min (12.1 ± 8.0% and 10-15min (11.1 ± 7.9%, with no significant statistical difference. The same result was found for the mean values of rMSSD index of the TG; before massage: 52.1 ± 46.2 ms, and after massage: 0-5min (50.0 ± 21.6ms, 5-10min (52.0 ± 27.4 ms and 10-15min (48.2 ± 21.1 ms. Also, the values of LFnuand HFnu indexes did not change significantly before and after massage, and they were not statistically different from the values presented by the control group. Conclusion: The study results suggest that one session of classic massage does not modify cardiac autonomic modulation in healthy young adults.

  7. Recurrent myocardial infarction: Mechanisms of free-floating adaptation and autonomic derangement in networked cardiac neural control.

    Science.gov (United States)

    Kember, Guy; Ardell, Jeffrey L; Shivkumar, Kalyanam; Armour, J Andrew

    2017-01-01

    The cardiac nervous system continuously controls cardiac function whether or not pathology is present. While myocardial infarction typically has a major and catastrophic impact, population studies have shown that longer-term risk for recurrent myocardial infarction and the related potential for sudden cardiac death depends mainly upon standard atherosclerotic variables and autonomic nervous system maladaptations. Investigative neurocardiology has demonstrated that autonomic control of cardiac function includes local circuit neurons for networked control within the peripheral nervous system. The structural and adaptive characteristics of such networked interactions define the dynamics and a new normal for cardiac control that results in the aftermath of recurrent myocardial infarction and/or unstable angina that may or may not precipitate autonomic derangement. These features are explored here via a mathematical model of cardiac regulation. A main observation is that the control environment during pathology is an extrapolation to a setting outside prior experience. Although global bounds guarantee stability, the resulting closed-loop dynamics exhibited while the network adapts during pathology are aptly described as 'free-floating' in order to emphasize their dependence upon details of the network structure. The totality of the results provide a mechanistic reasoning that validates the clinical practice of reducing sympathetic efferent neuronal tone while aggressively targeting autonomic derangement in the treatment of ischemic heart disease.

  8. Prospective randomized controlled intervention trial: Comprehensive Yogic Breathing Improves Cardiac autonomic functions and Quality of life in Diabetes

    Directory of Open Access Journals (Sweden)

    V P Jyotsna

    2012-01-01

    Full Text Available Aims and Objectives: To assess the effect of Comprehensive Yogic Breathing Program on glycemic control, quality of life, and cardiac autonomic functions in diabetes. Material and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 120 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes (n = 56 and the other group receiving standard therapy for diabetes and comprehensive yogic breathing program (n = 64. Standard therapy included advice on diet, walk, and oral antidiabetic drugs. Comprehensive yogic breathing program was an interactive session in which Sudarshan kriya yoga, a rhythmic cyclical breathing, preceded by Pranayam was taught under guidance of a certified teacher. Change in fasting, post prandial blood sugars, glycated hemoglobin, and quality of life were assessed. Cardiac autonomic function tests were done before and six months after intervention. Results: There was significant improvement in psychological (P = 0.006 and social domains (P = 0.04 and total quality of life (P = 0.02 in the group practicing comprehensive yogic breathing program as compared to the group following standard therapy alone. In the group following breathing program, the improvement in sympathetic cardiac autonomic functions was statistically significant (P = 0.01, while the change in the standard group was not significant (P = 0.17. When both parasympathetic and sympathetic cardiac autonomic functions were considered, there was a trend toward improvement in patients following comprehensive yogic breathing program (P = 0.07. In the standard therapy group, no change in cardiac autonomic functions was noted (P = 0.76. The parameters of glycemic control were comparable in both groups. Conclusion: There was significant improvement in quality of life and cardiac autonomic functions in the diabetes patients practicing comprehensive yogic breathing

  9. Recurrent myocardial infarction: Mechanisms of free-floating adaptation and autonomic derangement in networked cardiac neural control

    Science.gov (United States)

    Ardell, Jeffrey L.; Shivkumar, Kalyanam; Armour, J. Andrew

    2017-01-01

    The cardiac nervous system continuously controls cardiac function whether or not pathology is present. While myocardial infarction typically has a major and catastrophic impact, population studies have shown that longer-term risk for recurrent myocardial infarction and the related potential for sudden cardiac death depends mainly upon standard atherosclerotic variables and autonomic nervous system maladaptations. Investigative neurocardiology has demonstrated that autonomic control of cardiac function includes local circuit neurons for networked control within the peripheral nervous system. The structural and adaptive characteristics of such networked interactions define the dynamics and a new normal for cardiac control that results in the aftermath of recurrent myocardial infarction and/or unstable angina that may or may not precipitate autonomic derangement. These features are explored here via a mathematical model of cardiac regulation. A main observation is that the control environment during pathology is an extrapolation to a setting outside prior experience. Although global bounds guarantee stability, the resulting closed-loop dynamics exhibited while the network adapts during pathology are aptly described as ‘free-floating’ in order to emphasize their dependence upon details of the network structure. The totality of the results provide a mechanistic reasoning that validates the clinical practice of reducing sympathetic efferent neuronal tone while aggressively targeting autonomic derangement in the treatment of ischemic heart disease. PMID:28692680

  10. Recurrent myocardial infarction: Mechanisms of free-floating adaptation and autonomic derangement in networked cardiac neural control.

    Directory of Open Access Journals (Sweden)

    Guy Kember

    Full Text Available The cardiac nervous system continuously controls cardiac function whether or not pathology is present. While myocardial infarction typically has a major and catastrophic impact, population studies have shown that longer-term risk for recurrent myocardial infarction and the related potential for sudden cardiac death depends mainly upon standard atherosclerotic variables and autonomic nervous system maladaptations. Investigative neurocardiology has demonstrated that autonomic control of cardiac function includes local circuit neurons for networked control within the peripheral nervous system. The structural and adaptive characteristics of such networked interactions define the dynamics and a new normal for cardiac control that results in the aftermath of recurrent myocardial infarction and/or unstable angina that may or may not precipitate autonomic derangement. These features are explored here via a mathematical model of cardiac regulation. A main observation is that the control environment during pathology is an extrapolation to a setting outside prior experience. Although global bounds guarantee stability, the resulting closed-loop dynamics exhibited while the network adapts during pathology are aptly described as 'free-floating' in order to emphasize their dependence upon details of the network structure. The totality of the results provide a mechanistic reasoning that validates the clinical practice of reducing sympathetic efferent neuronal tone while aggressively targeting autonomic derangement in the treatment of ischemic heart disease.

  11. Diabetic cardiac autonomic dysfunction. Parasympathetic versus sympathetic

    International Nuclear Information System (INIS)

    Uehara, Akihiko; Kurata, Chinori; Sugi, Toshihiko; Mikami, Tadashi; Shouda, Sakae

    1999-01-01

    Diabetic cardiac autonomic dysfunction often causes lethal arrhythmia and sudden cardiac death. 123 I-Metaiodobenzylguanidine (MIBG) can evaluate cardiac sympathetic dysfunction, and analysis of heart rate variability (HRV) can reflect cardiac parasympathetic activity. We examined whether cardiac parasympathetic dysfunction assessed by HRV may correlate with sympathetic dysfunction assessed by MIBG in diabetic patients. In 24-hour electrocardiography, we analyzed 4 HRV parameters: high-frequency power (HF), HF in the early morning (EMHF), rMSSD and pNN50. MIBG planar images and SPECT were obtained 15 minutes (early) and 150 minutes (late) after injection and the heart washout rate was calculated. The defect score in 9 left ventricular regions was scored on a 4 point scale (0=normal - 3=severe defect). In 20 selected diabetic patients without congestive heart failure, coronary artery disease and renal failure, parasympathetic HRV parameters had a negative correlation with the sum of defect scores (DS) in the late images (R=-0.47 to -0.59, p<0.05) and some parameters had a negative correlation with the washout rate (R=-0.50 to -0.55, p<0.05). In a total of 64 diabetic patients also, these parameters had a negative correlation with late DS (R=-0.28 to -0.35, p<0.05) and early DS (R=-0.27 to -0.32, p<0.05). The progress of diabetic cardiac parasympathetic dysfunction may parallel the sympathetic one. (author)

  12. Abnormal autonomic cardiac response to transient hypoxia in sickle cell anemia

    International Nuclear Information System (INIS)

    Sangkatumvong, S; Khoo, M C K; Coates, T D

    2008-01-01

    The objective of this study was to non-invasively assess cardiac autonomic control in subjects with sickle cell anemia (SCA) by tracking the changes in heart rate variability (HRV) that occur following brief exposure to a hypoxic stimulus. Five African–American SCA patients and seven healthy control subjects were recruited to participate in this study. Each subject was exposed to a controlled hypoxic stimulus consisting of five breaths of nitrogen. Time-varying spectral analysis of HRV was applied to estimate the cardiac autonomic response to the transient episode of hypoxia. The confounding effects of changes in respiration on the HRV spectral indices were reduced by using a computational model. A significant decrease in the parameters related to parasympathetic control was detected in the post-hypoxic responses of the SCA subjects relative to normal controls. The spectral index related to sympathetic activity, on the other hand, showed a tendency to increase the following hypoxic stimulation, but the change was not significant. This study suggests that there is some degree of cardiovascular autonomic dysfunction in SCA that is revealed by the response to transient hypoxia

  13. Modulation of Cardiac Autonomic Dysfunction in Ischemic Stroke following Ayurveda (Indian System of Medicine Treatment

    Directory of Open Access Journals (Sweden)

    Sriranjini Sitaram Jaideep

    2014-01-01

    Full Text Available Objectives. Cardiac autonomic dysfunction in stroke has implications on morbidity and mortality. Ayurveda (Indian system of medicine describes stroke as pakshaghata. We intended to study the effect of Ayurveda therapies on the cardiac autonomic dysfunction. Methods. Fifty patients of ischemic stroke (middle cerebral artery territory (mean age 39.26 ± 9.88 years; male 43, female 7 were recruited within one month of ictus. All patients received standard allopathic medications as advised by neurologist. In addition, patients were randomized to receive physiotherapy (Group I or Ayurveda treatment (Group II for 14 days. Continuous electrocardiogram and finger arterial pressure were recorded for 15 min before and after treatments and analyzed offline to obtain heart rate and blood pressure variability and baroreflex sensitivity (BRS. Results were analysed by RMANOVA. Results. Patients in Group II showed statistically significant improvement in cardiac autonomic parameters. The standard deviation of normal to normal intervals,and total and low frequency powers were significantly enhanced (F=8.16, P=0.007, F=9.73, P=0.004, F=13.51, and P=0.001, resp.. The BRS too increased following the treatment period (F=10.129, P=0.004. Conclusions. The current study is the first to report a positive modulation of cardiac autonomic activity after adjuvant Ayurveda treatment in ischemic stroke. Further long term studies are warranted.

  14. Egr-1 Upregulates Siva-1 Expression and Induces Cardiac Fibroblast Apoptosis

    Directory of Open Access Journals (Sweden)

    Karin Zins

    2014-01-01

    Full Text Available The early growth response transcription factor Egr-1 controls cell specific responses to proliferation, differentiation and apoptosis. Expression of Egr-1 and downstream transcription is closely controlled and cell specific upregulation induced by processes such as hypoxia and ischemia has been previously linked to multiple aspects of cardiovascular injury. In this study, we showed constitutive expression of Egr-1 in cultured human ventricular cardiac fibroblasts, used adenoviral mediated gene transfer to study the effects of continuous Egr-1 overexpression and studied downstream transcription by Western blotting, immunohistochemistry and siRNA transfection. Apoptosis was assessed by fluorescence microscopy and flow cytometry in the presence of caspase inhibitors. Overexpression of Egr-1 directly induced apoptosis associated with caspase activation in human cardiac fibroblast cultures in vitro assessed by fluorescence microscopy and flow cytometry. Apoptotic induction was associated with a caspase activation associated loss of mitochondrial membrane potential and transient downstream transcriptional up-regulation of the pro-apoptotic gene product Siva-1. Suppression of Siva-1 induction by siRNA partially reversed Egr-1 mediated loss of cell viability. These findings suggest a previously unknown role for Egr-1 and transcriptional regulation of Siva-1 in the control of cardiac accessory cell death.

  15. Cardiac Autonomic Function Is Associated With the Coronary Microcirculatory Function in Patients With Type 2 Diabetes

    DEFF Research Database (Denmark)

    von Scholten, Bernt Johan; Hansen, Christian Stevns; Hasbak, Philip

    2016-01-01

    Cardiac autonomic dysfunction and cardiac microvascular dysfunction are diabetic complications associated with increased mortality, but the association between these has been difficult to assess. We applied new and sensitive methods to assess this in patients with type 2 diabetes mellitus (T2DM......). In a cross-sectional design, coronary flow reserve (CFR) assessed by cardiac (82)Rb-positron emission tomography/computed tomography, cardiac autonomic reflex tests, and heart rate variability indices were performed in 55 patients with T2DM, without cardiovascular disease, and in 28 control subjects. Cardiac....... A heart rate variability index, reflecting sympathetic and parasympathetic function (low-frequency power), and the late heart-to-mediastinum ratio, reflecting the function of adrenergic receptors and sympathetic activity, were positively correlated with CFR after adjustment for age and heart rate...

  16. Effects of cigarette smoking on cardiac autonomic function during dynamic exercise.

    Science.gov (United States)

    Mendonca, Goncalo V; Pereira, Fernando D; Fernhall, Bo

    2011-06-01

    The purpose of this study was to investigate the acute effect of cigarette smoking on cardiac autonomic function in young adult smokers during dynamic exercise. Fourteen healthy young smokers (21.4 ± 3.4 years) performed peak and submaximal exercise protocols under control and smoking conditions. Resting and submaximal beat-to-beat R-R series were recorded and spectrally decomposed using the fast Fourier transformation. Smoking resulted in a significant decrease in work time, VO(2peak) and peak O(2) pulse (P exercise after smoking (P smoking, both at rest and during exercise (P smoking (P smoking, but only at rest (P smoking is accompanied by acute changes in heart rate spectral components both at rest and during exercise. Therefore, the cardiac autonomic control is altered by smoking not only at rest, but also during exercise, resulting in reduced vagal modulation and increased sympathetic dominance.

  17. Screening for diabetic cardiac autonomic neuropathy using a new handheld device

    DEFF Research Database (Denmark)

    Gulichsen, Elisabeth; Fleischer, Jesper; Ejskjaer, Niels

    2012-01-01

    Cardiac autonomic neuropathy (CAN) is a serious complication of longstanding diabetes and is associated with an increased morbidity and reduced quality of life in patients with diabetes. The present study evaluated the prevalence of CAN diagnosed by reduced heart rate variability (HRV) using a ne...

  18. Resistance Training After Myocardial Infarction in Rats: Its Role on Cardiac and Autonomic Function

    Directory of Open Access Journals (Sweden)

    Camilla Figueiredo Grans

    2014-07-01

    Full Text Available Background: Although resistance exercise training is part of cardiovascular rehabilitation programs, little is known about its role on the cardiac and autonomic function after myocardial infarction. Objective: To evaluate the effects of resistance exercise training, started early after myocardial infarction, on cardiac function, hemodynamic profile, and autonomic modulation in rats. Methods: Male Wistar rats were divided into four groups: sedentary control, trained control, sedentary infarcted and trained infarcted rats. Each group with n = 9 rats. The animals underwent maximum load test and echocardiography at the beginning and at the end of the resistance exercise training (in an adapted ladder, 40% to 60% of the maximum load test, 3 months, 5 days/week. At the end, hemodynamic, baroreflex sensitivity and autonomic modulation assessments were made. Results: The maximum load test increased in groups trained control (+32% and trained infarcted (+46% in relation to groups sedentary control and sedentary infarcted. Although no change occurred regarding the myocardial infarction size and systolic function, the E/A ratio (-23%, myocardial performance index (-39% and systolic blood pressure (+6% improved with resistance exercise training in group trained infarcted. Concomitantly, the training provided additional benefits in the high frequency bands of the pulse interval (+45%, as well as in the low frequency band of systolic blood pressure (-46% in rats from group trained infarcted in relation to group sedentary infarcted. Conclusion: Resistance exercise training alone may be an important and safe tool in the management of patients after myocardial infarction, considering that it does not lead to significant changes in the ventricular function, reduces the global cardiac stress, and significantly improves the vascular and cardiac autonomic modulation in infarcted rats.

  19. Resistance Training After Myocardial Infarction in Rats: Its Role on Cardiac and Autonomic Function

    International Nuclear Information System (INIS)

    Grans, Camilla Figueiredo; Feriani, Daniele Jardim; Abssamra, Marcos Elias Vergilino; Rocha, Leandro Yanase; Carrozzi, Nicolle Martins; Mostarda, Cristiano; Figueroa, Diego Mendrot; Angelis, Kátia De; Irigoyen, Maria Cláudia; Rodrigues, Bruno

    2014-01-01

    Although resistance exercise training is part of cardiovascular rehabilitation programs, little is known about its role on the cardiac and autonomic function after myocardial infarction. To evaluate the effects of resistance exercise training, started early after myocardial infarction, on cardiac function, hemodynamic profile, and autonomic modulation in rats. Male Wistar rats were divided into four groups: sedentary control, trained control, sedentary infarcted and trained infarcted rats. Each group with n = 9 rats. The animals underwent maximum load test and echocardiography at the beginning and at the end of the resistance exercise training (in an adapted ladder, 40% to 60% of the maximum load test, 3 months, 5 days/week). At the end, hemodynamic, baroreflex sensitivity and autonomic modulation assessments were made. The maximum load test increased in groups trained control (+32%) and trained infarcted (+46%) in relation to groups sedentary control and sedentary infarcted. Although no change occurred regarding the myocardial infarction size and systolic function, the E/A ratio (-23%), myocardial performance index (-39%) and systolic blood pressure (+6%) improved with resistance exercise training in group trained infarcted. Concomitantly, the training provided additional benefits in the high frequency bands of the pulse interval (+45%), as well as in the low frequency band of systolic blood pressure (-46%) in rats from group trained infarcted in relation to group sedentary infarcted. Resistance exercise training alone may be an important and safe tool in the management of patients after myocardial infarction, considering that it does not lead to significant changes in the ventricular function, reduces the global cardiac stress, and significantly improves the vascular and cardiac autonomic modulation in infarcted rats

  20. Resistance Training After Myocardial Infarction in Rats: Its Role on Cardiac and Autonomic Function

    Energy Technology Data Exchange (ETDEWEB)

    Grans, Camilla Figueiredo; Feriani, Daniele Jardim; Abssamra, Marcos Elias Vergilino; Rocha, Leandro Yanase; Carrozzi, Nicolle Martins [Laboratório do Movimento Humano, Universidade São Judas Tadeu (USJT), São Paulo, SP (Brazil); Mostarda, Cristiano [Departamento de Educação Física, Universidade Federal do Maranhão (UFMA), São Luís, MA (Brazil); Figueroa, Diego Mendrot [Laboratório de Hipertensão Experimental, Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP (Brazil); Angelis, Kátia De [Laboratório de Fisiologia Translacional, Universidade Nove de Julho (Uninove), São Paulo, SP (Brazil); Irigoyen, Maria Cláudia [Laboratório de Hipertensão Experimental, Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP (Brazil); Rodrigues, Bruno, E-mail: bruno.rodrigues@incor.usp.br [Laboratório do Movimento Humano, Universidade São Judas Tadeu (USJT), São Paulo, SP (Brazil)

    2014-07-15

    Although resistance exercise training is part of cardiovascular rehabilitation programs, little is known about its role on the cardiac and autonomic function after myocardial infarction. To evaluate the effects of resistance exercise training, started early after myocardial infarction, on cardiac function, hemodynamic profile, and autonomic modulation in rats. Male Wistar rats were divided into four groups: sedentary control, trained control, sedentary infarcted and trained infarcted rats. Each group with n = 9 rats. The animals underwent maximum load test and echocardiography at the beginning and at the end of the resistance exercise training (in an adapted ladder, 40% to 60% of the maximum load test, 3 months, 5 days/week). At the end, hemodynamic, baroreflex sensitivity and autonomic modulation assessments were made. The maximum load test increased in groups trained control (+32%) and trained infarcted (+46%) in relation to groups sedentary control and sedentary infarcted. Although no change occurred regarding the myocardial infarction size and systolic function, the E/A ratio (-23%), myocardial performance index (-39%) and systolic blood pressure (+6%) improved with resistance exercise training in group trained infarcted. Concomitantly, the training provided additional benefits in the high frequency bands of the pulse interval (+45%), as well as in the low frequency band of systolic blood pressure (-46%) in rats from group trained infarcted in relation to group sedentary infarcted. Resistance exercise training alone may be an important and safe tool in the management of patients after myocardial infarction, considering that it does not lead to significant changes in the ventricular function, reduces the global cardiac stress, and significantly improves the vascular and cardiac autonomic modulation in infarcted rats.

  1. Resistance Training After Myocardial Infarction in Rats: Its Role on Cardiac and Autonomic Function

    Science.gov (United States)

    Grans, Camilla Figueiredo; Feriani, Daniele Jardim; Abssamra, Marcos Elias Vergilino; Rocha, Leandro Yanase; Carrozzi, Nicolle Martins; Mostarda, Cristiano; Figueroa, Diego Mendrot; Angelis, Kátia De; Irigoyen, Maria Cláudia; Rodrigues, Bruno

    2014-01-01

    Background Although resistance exercise training is part of cardiovascular rehabilitation programs, little is known about its role on the cardiac and autonomic function after myocardial infarction. Objective To evaluate the effects of resistance exercise training, started early after myocardial infarction, on cardiac function, hemodynamic profile, and autonomic modulation in rats. Methods Male Wistar rats were divided into four groups: sedentary control, trained control, sedentary infarcted and trained infarcted rats. Each group with n = 9 rats. The animals underwent maximum load test and echocardiography at the beginning and at the end of the resistance exercise training (in an adapted ladder, 40% to 60% of the maximum load test, 3 months, 5 days/week). At the end, hemodynamic, baroreflex sensitivity and autonomic modulation assessments were made. Results The maximum load test increased in groups trained control (+32%) and trained infarcted (+46%) in relation to groups sedentary control and sedentary infarcted. Although no change occurred regarding the myocardial infarction size and systolic function, the E/A ratio (-23%), myocardial performance index (-39%) and systolic blood pressure (+6%) improved with resistance exercise training in group trained infarcted. Concomitantly, the training provided additional benefits in the high frequency bands of the pulse interval (+45%), as well as in the low frequency band of systolic blood pressure (-46%) in rats from group trained infarcted in relation to group sedentary infarcted. Conclusion Resistance exercise training alone may be an important and safe tool in the management of patients after myocardial infarction, considering that it does not lead to significant changes in the ventricular function, reduces the global cardiac stress, and significantly improves the vascular and cardiac autonomic modulation in infarcted rats. PMID:25014059

  2. Effect of an aerobic exercise intervention on cardiac autonomic regulation

    DEFF Research Database (Denmark)

    Hallman, David M; Holtermann, Andreas; Søgaard, Karen

    2017-01-01

    obtained at baseline and at 4-month follow-up. Time and frequency domain indices of HRV were derived during work, leisure time and sleep to evaluate cardiac autonomic regulation. Linear mixed models were used to determine the effect of the intervention on HRV indices, with adjustment for age, gender...... and daily use of antihypertensive and/or heart medication. RESULTS: Compared with the reference group, the exercise group increased all HRV indices apart from a reduction in LF/HF ratio from baseline to follow-up both during work (psleep, the HRV indices......, but not during sleep. The health effect of this contrasting change in autonomic regulation needs further investigation....

  3. Influences of lifestyle factors on cardiac autonomic nervous system activity over time

    NARCIS (Netherlands)

    Hu, Mandy Xian; Lamers, Femke; de Geus, Eco J C; Penninx, Brenda W J H

    Physical activity, alcohol use and smoking might affect cardiovascular disease through modifying autonomic nervous system (ANS) activity. We investigated: 1) whether there are consistent relationships between lifestyle factors and cardiac ANS activity over time, and 2) whether 2-year changes in

  4. The influence of midazolam on heart rate arises from cardiac autonomic tones alterations in Burmese pythons, Python molurus.

    Science.gov (United States)

    Lopes, Ivã Guidini; Armelin, Vinicius Araújo; Braga, Victor Hugo da Silva; Florindo, Luiz Henrique

    2017-12-01

    The GABA A receptor agonist midazolam is a compound widely used as a tranquilizer and sedative in mammals and reptiles. It is already known that this benzodiazepine produces small to intermediate heart rate (HR) alterations in mammals, however, its influence on reptiles' HR remains unexplored. Thus, the present study sought to verify the effects of midazolam on HR and cardiac modulation in the snake Python molurus. To do so, the snakes' HR, cardiac autonomic tones, and HR variability were evaluated during four different experimental stages. The first stage consisted on the data acquisition of animals under untreated conditions, in which were then administered atropine (2.5mgkg -1 ; intraperitoneal), followed later by propranolol (3.5mgkg -1 ; intraperitoneal) (cardiac double autonomic blockade). The second stage focused on the data acquisition of animals under midazolam effect (1.0mgkg -1 ; intramuscular), which passed through the same autonomic blockade protocol of the first stage. The third and fourth stages consisted of the same protocol of stages one and two, respectively, with the exception that atropine and propranolol injections were reversed. By comparing the HR of animals that received midazolam (second and fourth stages) with those that did not (first and third stages), it could be observed that this benzodiazepine reduced the snakes' HR by ~60%. The calculated autonomic tones showed that such cardiac depression was elicited by an ~80% decrease in cardiac adrenergic tone and an ~620% increase in cardiac cholinergic tone - a finding that was further supported by the results of HR variability analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Cardiac arrest after anesthetic management in a patient with hereditary sensory autonomic neuropathy type IV

    Directory of Open Access Journals (Sweden)

    Yakup Ergül

    2011-01-01

    Full Text Available Hereditary sensory autonomic neuropathy type IV is a rare disorder with an autosomal recessive transmission and characterized by self-mutilation due to a lack in pain and heat sensation. Recurrent hyperpyrexia and anhydrosis are seen in patients as a result of a lack of sweat gland innervation. Self-mutilation and insensitivity to pain result in orthopedic complications and patients undergone recurrent surgical interventions with anesthesia. However, these patients are prone to perioperative complications such as hyperthermia, hypothermia, and cardiac complications like bradycardia and hypotension. We report a 5-year-old boy with hereditary sensory autonomic neuropathy type IV, developing hyperpyrexia and cardiac arrest after anesthesia.

  6. Cardiac arrest after anesthetic management in a patient with hereditary sensory autonomic neuropathy type IV.

    Science.gov (United States)

    Ergül, Yakup; Ekici, Bariş; Keskin, Sabiha

    2011-01-01

    Hereditary sensory autonomic neuropathy type IV is a rare disorder with an autosomal recessive transmission and characterized by self-mutilation due to a lack in pain and heat sensation. Recurrent hyperpyrexia and anhydrosis are seen in patients as a result of a lack of sweat gland innervation. Self-mutilation and insensitivity to pain result in orthopedic complications and patients undergone recurrent surgical interventions with anesthesia. However, these patients are prone to perioperative complications such as hyperthermia, hypothermia, and cardiac complications like bradycardia and hypotension. We report a 5-year-old boy with hereditary sensory autonomic neuropathy type IV, developing hyperpyrexia and cardiac arrest after anesthesia.

  7. Glycemic Variability Is Associated With Reduced Cardiac Autonomic Modulation in Women With Type 2 Diabetes

    DEFF Research Database (Denmark)

    Fleischer, Jesper; Lebech Cichosz, Simon; Hoeyem, Pernille

    2015-01-01

    OBJECTIVE: To investigate the sex differences in cardiac autonomic modulation in patients with newly diagnosed type 2 diabetes and to determine whether cardiac autonomic modulation is associated with glycemic variability. RESEARCH DESIGN AND METHODS: We investigated a cohort consisting of 48 men...... and 39 women with non-insulin-treated type 2 diabetes and a known duration of diabetes ... by the standard deviation of normal-to-normal intervals (P = 0.001), the root mean square of successive differences (P = 0.018), LF (P power (P = 0.008), RS ratio (P = 0.027), and expiration-to-inspiration ratio (P = 0.006) was significantly associated with increased glycemic...

  8. Sphenopalatine ganglion stimulation induces changes in cardiac autonomic regulation in cluster headache

    DEFF Research Database (Denmark)

    Barloese, Mads; Petersen, Anja S; Guo, Song

    2018-01-01

    regulation. MATERIALS AND METHODS: In a double-blind, randomized, sham-controlled crossover design, patients received low-frequency and sham stimulation. RR intervals were recorded, and heart rate variability was analysed (time-domain, frequency-domain, nonlinear parameters). Headache characteristics......-frequency stimulation, there was a greater increase in heart rate compared to sham (Ptime domain (P...INTRODUCTION: Cluster headache is characterized by attacks of severe unilateral pain accompanied by cranial and systemic autonomic changes. Our knowledge of the latter is imperfect. This study aimed to investigate the effect of low-frequency sphenopalatine ganglion stimulation on cardiac autonomic...

  9. Cardiac autonomic regulation is disturbed in children with euthyroid Hashimoto thyroiditis.

    Science.gov (United States)

    Kilic, Ayhan; Gulgun, Mustafa; Tascilar, Mehmet Emre; Sari, Erkan; Yokusoglu, Mehmet

    2012-03-01

    Hashimoto thyroiditis (chronic autoimmune thyroiditis) is the most common form of thyroiditis in childhood. Previous studies have found autonomic dysfunction of varying magnitude in patients with autoimmune diseases, which is considered a cardiovascular risk factor. We aimed to evaluate the heart rate variability (HRV), a measure of cardiac autonomic modulation, in children with euthyroid Hashimoto thyroiditis (eHT). The study included 32 patients with eHT (27 girls and 5 boys; mean age 11 ± 4.1 years, range 8-16; body mass index 0.47 ± 0.69 kg/m(2)), as judged by normal or minimally elevated serum TSH levels (normal range: 0.34-5.6 mIU/l) and normal levels of free thyroid hormones (FT4 and FT3) and 38 euthyroid age-matched controls. Patients with eHT and control subjects underwent physical examination and 24-hour ambulatory ECG monitoring. Time-domain parameters of HRV were evaluated for cardiac autonomic functions. Children with eHT displayed significantly lower values of time-domain parameters of SDANN (standard deviation of the averages of NN intervals), RMSSD (square root of the mean of the sum of the squares of differences between adjacent NN intervals), NN50 counts (number of pairs of adjacent NN intervals differing by more than 50 ms) and PNN50 (NN50 count divided by the total number of all NN intervals) for each 5-min interval, compared to healthy controls (p < 0.05 for each), indicating the decreased beat-to-beat variation of heart rate. In conclusion, eHT is associated with disturbed autonomic regulation of heart rate. Hence, the children with eHT are at higher risk for developing cardiovascular diseases.

  10. Cardiac Autonomic Function during Submaximal Treadmill Exercise in Adults with Down Syndrome

    Science.gov (United States)

    Mendonca, Goncalo V.; Pereira, Fernando D.; Fernhall, Bo

    2011-01-01

    This study determined whether the cardiac autonomic function of adults with Down syndrome (DS) differs from that of nondisabled persons during submaximal dynamic exercise. Thirteen participants with DS and 12 nondisabled individuals performed maximal and submaximal treadmill tests with metabolic and heart rate (HR) measurements. Spectral analysis…

  11. Cardiac autonomic impairment and chronotropic incompetence in fibromyalgia.

    Science.gov (United States)

    da Cunha Ribeiro, Roberta Potenza; Roschel, Hamilton; Artioli, Guilherme Gianini; Dassouki, Thalita; Perandini, Luiz Augusto; Calich, Ana Luisa; de Sá Pinto, Ana Lúcia; Lima, Fernanda Rodrigues; Bonfá, Eloísa; Gualano, Bruno

    2011-01-01

    We aimed to gather knowledge on the cardiac autonomic modulation in patients with fibromyalgia (FM) in response to exercise and to investigate whether this population suffers from chronotropic incompetence (CI). Fourteen women with FM (age: 46 ± 3 years; body mass index (BMI): 26.6 ± 1.4 kg/m2) and 14 gender-, BMI- (25.4 ± 1.3 kg/m2), and age-matched (age: 41 ± 4 years) healthy individuals (CTRL) took part in this cross-sectional study. A treadmill cardiorespiratory test was performed and heart-rate (HR) response during exercise was evaluated by the chronotropic reserve. HR recovery (deltaHRR) was defined as the difference between HR at peak exercise and at both first (deltaHRR1) and second (deltaHRR2) minutes after the exercise test. FM patients presented lower maximal oxygen consumption (VO2 max) when compared with healthy subjects (22 ± 1 versus CTRL: 32 ± 2 mL/kg/minute, respectively; P < 0.001). Additionally, FM patients presented lower chronotropic reserve (72.5 ± 5 versus CTRL: 106.1 ± 6, P < 0.001), deltaHRR1 (24.5 ± 3 versus CTRL: 32.6 ± 2, P = 0.059) and deltaHRR2 (34.3 ± 4 versus CTRL: 50.8 ± 3, P = 0.002) than their healthy peers. The prevalence of CI was 57.1% among patients with FM. Patients with FM who undertook a graded exercise test may present CI and delayed HR recovery, both being indicative of cardiac autonomic impairment and higher risk of cardiovascular events and mortality.

  12. Effect of autogenic training on cardiac autonomic nervous activity in high-risk fire service workers for posttraumatic stress disorder.

    Science.gov (United States)

    Mitani, Satoko; Fujita, Masatoshi; Sakamoto, Satoko; Shirakawa, Taro

    2006-05-01

    We investigated the effect of autogenic training (AT) on cardiac autonomic nervous activity in fire services workers with the use of the questionnaire of the Japanese-language version of Impact of Event Scale-Revised (IES-R-J) and indexes of heart rate variability. We studied 22 male fire services workers who were divided into posttraumatic stress disorder (PTSD)-related stress group (n=10) and control group (n=12). They underwent AT twice or three times a week for 2 months. Posttraumatic stress disorder-related stress group showed a significantly higher cardiac sympathetic nervous activity and a significantly lower cardiac parasympathetic nervous activity than control group at baseline. Autogenic training significantly decreased cardiac sympathetic nervous activity and significantly increased cardiac parasympathetic nervous activity in both groups. These changes were accompanied by a significant decrease in the total points of IES-R-J. Autogenic training is effective for ameliorating the disturbance of cardiac autonomic nervous activity and psychological issues secondary to PTSD.

  13. Cardiac autonomic control in adolescents with primary hypertension

    Directory of Open Access Journals (Sweden)

    Havlíceková Z

    2009-12-01

    Full Text Available Abstract Background Impairment in cardiovascular autonomic regulation participates in the onset and maintenance of primary hypertension. Objective The aim of the present study was to evaluate cardiac autonomic control using long-term heart rate variability (HRV analysis in adolescents with primary hypertension. Subjects and methods Twenty two adolescent patients with primary hypertension (5 girls/17 boys aged 14-19 years and 22 healthy subjects matched for age and gender were enrolled. Two periods from 24-hour ECG recording were evaluated by HRV analysis: awake state and sleep. HRV analysis included spectral power in low frequency band (LF, in high frequency band (HF, and LF/HF ratio. Results In awake state, adolescents with primary hypertension had lower HF and higher LF and LF/HF ratio. During sleep, HF was lower and LF/HF ratio was higher in patients with primary hypertension. Conclusions A combination of sympathetic predominance and reduced vagal activity might represent a potential link between psychosocial factors and primary hypertension, associated with increased cardiovascular morbidity.

  14. The autonomic nervous system and cardiac GLP-1 receptors control heart rate in mice

    Directory of Open Access Journals (Sweden)

    Laurie L. Baggio

    2017-11-01

    Conclusions: GLP-1R agonists increase HR through multiple mechanisms, including regulation of autonomic nervous system function, and activation of the atrial GLP-1R. Surprisingly, the isolated atrial GLP-1R does not transduce a direct chronotropic effect following exposure to GLP-1R agonists in the intact heart, or isolated atrium, ex vivo. Hence, cardiac GLP-1R circuits controlling HR require neural inputs and do not function in a heart-autonomous manner.

  15. The association between depressive disorder and cardiac autonomic control in adults 60 years and older.

    Science.gov (United States)

    Licht, Carmilla M M; Naarding, Paul; Penninx, Brenda W J H; van der Mast, Roos C; de Geus, Eco J C; Comijs, Hannie

    2015-04-01

    Altered cardiac autonomic control has often been reported in depressed persons and might play an important role in the increased risk for cardiovascular disease (CVD). A negative association between cardiac autonomic control and depression might become specifically clinically relevant in persons 60 years or older as CVD risk increases with age. This study included data of 321 persons with a depressive disorder and 115 controls participating in the Netherlands Study of Depression in Older Persons (mean age = 70.3 years, 65.7% female). Respiratory sinus arrhythmia (RSA), heart rate (HR), and preejection period (PEP) were measured and compared between depressed persons and controls. In addition, the role of antidepressants and clinical characteristics (e.g., age of depression onset and comorbid anxiety) was examined. Compared with controls, depressed persons had lower RSA (mean [standard error of the mean] = 23.5 [1.2] milliseconds versus 18.6 [0.7] milliseconds, p = .001, d = 0.373) and marginally higher HR (73.1 [1.1] beats/min versus 75.6 [0.6] beats/min, p = .065, d = 0.212), but comparable PEP (113.9 [2.1] milliseconds versus 112.0 [1.2] milliseconds, p = .45, d = 0.087), fully adjusted. Antidepressants strongly attenuated the associations between depression and HR and RSA. Antidepressant-naïve depressed persons had similar HR and RSA to controls, whereas users of antidepressants showed significantly lower RSA. In addition, tricyclic antidepressant users had higher HR (p 768) and shorter PEP (p = .014, d = 0.395) than did controls. Depression was not associated with cardiac autonomic control, but antidepressants were in this sample. All antidepressants were associated with low cardiac parasympathetic control and specifically tricyclic antidepressants with high cardiac sympathetic control.

  16. Gross anatomical study on the human myocardial bridges with special reference to the spatial relationship among coronary arteries, cardiac veins, and autonomic nerves.

    Science.gov (United States)

    Watanabe, Yuko; Arakawa, Takamitsu; Kageyama, Ikuo; Aizawa, Yukio; Kumaki, Katsuji; Miki, Akinori; Terashima, Toshio

    2016-04-01

    Coronary arteries are frequently covered by cardiac muscles. This arrangement is termed a myocardial bridge. Previous studies have shown that myocardial bridges can cause myocardial ischemic diseases or cardiac arrhythmia, but the relevant pathogenic mechanisms remain unknown. We examined 60 hearts from Japanese cadavers macroscopically to clarify the spatial relationships among coronary arteries, cardiac veins and autonomic nerves. We found 86 myocardial bridges in 47 hearts from the 60 cadavers examined (78.3%). Next, we dissected out nine hearts with myocardial bridges in detail under the operating microscope. We found no additional branches of coronary arteries on the myocardial bridge surfaces. However, the cardiac veins, which usually accompany the coronary arteries, ran independently on the myocardial bridge surfaces in the same region. Cardiac autonomic nerves comprised two rami: one was associated with the coronary artery under the myocardial bridge and the other ran on the surface of the bridge. Such spatial relationships among the coronary arteries, cardiac veins and cardiac autonomic nerves at the myocardial bridges are quite similar to those in mouse embryo hearts. © 2015 Wiley Periodicals, Inc.

  17. Quantity and Quality of Carbohydrate Intake during Pregnancy, Newborn Body Fatness and Cardiac Autonomic Control: Conferred Cardiovascular Risk?

    Directory of Open Access Journals (Sweden)

    Kirsty M. Mckenzie

    2017-12-01

    Full Text Available The fetal environment has an important influence on health and disease over the life course. Maternal nutritional status during pregnancy is potentially a powerful contributor to the intrauterine environment, and may alter offspring physiology and later life cardio-metabolic risk. Putative early life markers of cardio-metabolic risk include newborn body fatness and cardiac autonomic control. We sought to determine whether maternal dietary carbohydrate quantity and/or quality during pregnancy are associated with newborn body composition and cardiac autonomic function. Maternal diet during pregnancy was assessed in 142 mother-infant pairs using a validated food frequency questionnaire. Infant adiposity and body composition were assessed at birth using air-displacement plethysmography. Cardiac autonomic function was assessed as heart rate variability. The quantity of carbohydrates consumed during pregnancy, as a percentage of total energy intake, was not associated with meaningful differences in offspring birth weight, adiposity or heart rate variability (p > 0.05. There was some evidence that maternal carbohydrate quality, specifically higher fibre and lower glycemic index, is associated with higher heart rate variability in the newborn offspring (p = 0.06. This suggests that poor maternal carbohydrate quality may be an important population-level inter-generational risk factor for later cardiac and hemodynamic risk of their offspring.

  18. Circadian profile of cardiac autonomic nervous modulation in healthy subjects

    DEFF Research Database (Denmark)

    Bonnemeier, Hendrik; Richardt, Gert; Potratz, Jürgen

    2003-01-01

    UNLABELLED: Circadian Profile of Heart Rate Variability. INTRODUCTION: Although heart rate variability (HRV) has been established as a tool to study cardiac autonomic activity, almost no data are available on the circadian patterns of HRV in healthy subjects aged 20 to 70 years. METHODS AND RESULTS...... higher in men. Younger men also exhibited significantly higher values...... parasympathetic activity. The significant gender-related difference of HRV decreases with aging. These findings emphasize the need to determine age-, gender-, and nycthemeral-dependent normal ranges for HRV assessment....

  19. Cardiac autonomic responses induced by mental tasks and the influence of musical auditory stimulation.

    Science.gov (United States)

    Barbosa, Juliana Cristina; Guida, Heraldo L; Fontes, Anne M G; Antonio, Ana M S; de Abreu, Luiz Carlos; Barnabé, Viviani; Marcomini, Renata S; Vanderlei, Luiz Carlos M; da Silva, Meire L; Valenti, Vitor E

    2014-08-01

    We investigated the acute effects of musical auditory stimulation on cardiac autonomic responses to a mental task in 28 healthy men (18-22 years old). In the control protocol (no music), the volunteers remained at seated rest for 10 min and the test was applied for five minutes. After the end of test the subjects remained seated for five more minutes. In the music protocol, the volunteers remained at seated rest for 10 min, then were exposed to music for 10 min; the test was then applied over five minutes, and the subjects remained seated for five more minutes after the test. In the control and music protocols the time domain and frequency domain indices of heart rate variability remained unchanged before, during and after the test. We found that musical auditory stimulation with baroque music did not influence cardiac autonomic responses to the mental task. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Effects of Kefir on the Cardiac Autonomic Tones and Baroreflex Sensitivity in Spontaneously Hypertensive Rats.

    Science.gov (United States)

    Klippel, Brunella F; Duemke, Licia B; Leal, Marcos A; Friques, Andreia G F; Dantas, Eduardo M; Dalvi, Rodolfo F; Gava, Agata L; Pereira, Thiago M C; Andrade, Tadeu U; Meyrelles, Silvana S; Campagnaro, Bianca P; Vasquez, Elisardo C

    2016-01-01

    It has been previously shown that the probiotic kefir (a symbiotic matrix containing acid bacteria and yeasts) attenuated the hypertension and the endothelial dysfunction in spontaneously hypertensive rats (SHR). In the present study, the effect of chronic administration of kefir on the cardiac autonomic control of heart rate (HR) and baroreflex sensitivity (BRS) in SHR was evaluated. SHR were treated with kefir (0.3 mL/100 g body weight) for 60 days and compared with non-treated SHR and with normotensive Wistar-Kyoto rats. Cardiac autonomic vagal (VT) and sympathetic (ST) tones were estimated through the blockade of the cardiac muscarinic receptors (methylatropine) and the blockade of β1-adrenoceptor (atenolol). The BRS was evaluated by the tachycardia and bradycardia responses to vasoactive drug-induced decreases and increases in arterial blood pressure (BP), respectively. Additionally, spontaneous BRS was estimated by autoregressive spectral analysis. Kefir-treated SHR exhibited significant attenuation of basal BP, HR, and cardiac hypertrophy compared to non-treated SHR (12, 13, and 21%, respectively). Cardiac VT and ST were significantly altered in the SHR (~40 and ~90 bpm) compared with Wistar rats (~120 and ~30 bpm) and were partially recovered in SHR-kefir (~90 and ~25 bpm). SHR exhibited an impaired bradycardic BRS (~50%) compared with Wistar rats, which was reduced to ~40% in the kefir-treated SHR and abolished by methylatropine in all groups. SHR also exhibited a significant impairment of the tachycardic BRS (~23%) compared with Wistar rats and this difference was reduced to 8% in the SHR-kefir. Under the action of atenolol the residual reflex tachycardia was smaller in SHR than in Wistar rats and kefir attenuated this abnormality. Spectral analysis revealed increased low frequency components of BP (~3.5-fold) and pulse interval (~2-fold) compared with Wistar rats and these differences were reduced by kefir-treatment to ~1.6- and ~1.5-fold, respectively

  1. Effects of Kefir on the Cardiac Autonomic Tones and Baroreflex Sensitivity in Spontaneously Hypertensive Rats

    Science.gov (United States)

    Klippel, Brunella F.; Duemke, Licia B.; Leal, Marcos A.; Friques, Andreia G. F.; Dantas, Eduardo M.; Dalvi, Rodolfo F.; Gava, Agata L.; Pereira, Thiago M. C.; Andrade, Tadeu U.; Meyrelles, Silvana S.; Campagnaro, Bianca P.; Vasquez, Elisardo C.

    2016-01-01

    Aims: It has been previously shown that the probiotic kefir (a symbiotic matrix containing acid bacteria and yeasts) attenuated the hypertension and the endothelial dysfunction in spontaneously hypertensive rats (SHR). In the present study, the effect of chronic administration of kefir on the cardiac autonomic control of heart rate (HR) and baroreflex sensitivity (BRS) in SHR was evaluated. Methods: SHR were treated with kefir (0.3 mL/100 g body weight) for 60 days and compared with non-treated SHR and with normotensive Wistar-Kyoto rats. Cardiac autonomic vagal (VT) and sympathetic (ST) tones were estimated through the blockade of the cardiac muscarinic receptors (methylatropine) and the blockade of β1−adrenoceptor (atenolol). The BRS was evaluated by the tachycardia and bradycardia responses to vasoactive drug-induced decreases and increases in arterial blood pressure (BP), respectively. Additionally, spontaneous BRS was estimated by autoregressive spectral analysis. Results: Kefir-treated SHR exhibited significant attenuation of basal BP, HR, and cardiac hypertrophy compared to non-treated SHR (12, 13, and 21%, respectively). Cardiac VT and ST were significantly altered in the SHR (~40 and ~90 bpm) compared with Wistar rats (~120 and ~30 bpm) and were partially recovered in SHR-kefir (~90 and ~25 bpm). SHR exhibited an impaired bradycardic BRS (~50%) compared with Wistar rats, which was reduced to ~40% in the kefir-treated SHR and abolished by methylatropine in all groups. SHR also exhibited a significant impairment of the tachycardic BRS (~23%) compared with Wistar rats and this difference was reduced to 8% in the SHR-kefir. Under the action of atenolol the residual reflex tachycardia was smaller in SHR than in Wistar rats and kefir attenuated this abnormality. Spectral analysis revealed increased low frequency components of BP (~3.5-fold) and pulse interval (~2-fold) compared with Wistar rats and these differences were reduced by kefir-treatment to ~1

  2. Method to measure autonomic control of cardiac function using time interval parameters from impedance cardiography

    International Nuclear Information System (INIS)

    Meijer, Jan H; Boesveldt, Sanne; Elbertse, Eskeline; Berendse, H W

    2008-01-01

    The time difference between the electrocardiogram and impedance cardiogram can be considered as a measure for the time delay between the electrical and mechanical activities of the heart. This time interval, characterized by the pre-ejection period (PEP), is related to the sympathetic autonomous nervous control of cardiac activity. PEP, however, is difficult to measure in practice. Therefore, a novel parameter, the initial systolic time interval (ISTI), is introduced to provide a more practical measure. The use of ISTI instead of PEP was evaluated in three groups: young healthy subjects, patients with Parkinson's disease, and a group of elderly, healthy subjects of comparable age. PEP and ISTI were studied under two conditions: at rest and after an exercise stimulus. Under both conditions, PEP and ISTI behaved largely similarly in the three groups and were significantly correlated. It is concluded that ISTI can be used as a substitute for PEP and, therefore, to evaluate autonomic neuropathy both in clinical and extramural settings. Measurement of ISTI can also be used to non-invasively monitor the electromechanical cardiac time interval, and the associated autonomic activity, under physiological circumstances

  3. Lactate up-regulates the expression of lactate oxidation complex-related genes in left ventricular cardiac tissue of rats.

    Directory of Open Access Journals (Sweden)

    Daniele Gabriel-Costa

    Full Text Available Besides its role as a fuel source in intermediary metabolism, lactate has been considered a signaling molecule modulating lactate-sensitive genes involved in the regulation of skeletal muscle metabolism. Even though the flux of lactate is significantly high in the heart, its role on regulation of cardiac genes regulating lactate oxidation has not been clarified yet. We tested the hypothesis that lactate would increase cardiac levels of reactive oxygen species and up-regulate the expression of genes related to lactate oxidation complex.Isolated hearts from male adult Wistar rats were perfused with control, lactate or acetate (20mM added Krebs-Henseleit solution during 120 min in modified Langendorff apparatus. Reactive oxygen species (O2●-/H2O2 levels, and NADH and NADPH oxidase activities (in enriched microsomal or plasmatic membranes, respectively were evaluated by fluorimetry while SOD and catalase activities were evaluated by spectrophotometry. mRNA levels of lactate oxidation complex and energetic enzymes MCT1, MCT4, HK, LDH, PDH, CS, PGC1α and COXIV were quantified by real time RT-PCR. Mitochondrial DNA levels were also evaluated. Hemodynamic parameters were acquired during the experiment. The key findings of this work were that lactate elevated cardiac NADH oxidase activity but not NADPH activity. This response was associated with increased cardiac O2●-/H2O2 levels and up-regulation of MCT1, MCT4, LDH and PGC1α with no changes in HK, PDH, CS, COXIV mRNA levels and mitochondrial DNA levels. Lactate increased NRF-2 nuclear expression and SOD activity probably as counter-regulatory responses to increased O2●-/H2O2.Our results provide evidence for lactate-induced up-regulation of lactate oxidation complex associated with increased NADH oxidase activity and cardiac O2●-/H2O2 driving to an anti-oxidant response. These results unveil lactate as an important signaling molecule regulating components of the lactate oxidation complex in

  4. Modulation of cardiac autonomic tone in non-hypotensive hypovolemia during blood donation.

    Science.gov (United States)

    Yadav, Kavita; Singh, Akanksha; Jaryal, Ashok Kumar; Coshic, Poonam; Chatterjee, Kabita; Deepak, K K

    2017-08-01

    Non-hypotensive hypovolemia, observed during mild haemorrhage or blood donation leads to reflex readjustment of the cardiac autonomic tone. In the present study, the cardiac autonomic tone was quantified using heart rate and blood pressure variability during and after non-hypotensive hypovolemia of blood donation. 86 voluntary healthy male blood donors were recruited for the study (age 35 ± 9 years; weight 78 ± 12 kg; height 174 ± 6 cms). Continuous lead II ECG and beat-to-beat blood pressure was recorded before, during and after blood donation followed by offline time and frequency domain analysis of HRV and BPV. The overall heart rate variability (SDNN and total power) did not change during or after blood donation. However, there was a decrease in indices that represent the parasympathetic component (pNN50 %, SDSD and HF) while an increase was observed in sympathetic component (LF) along with an increase in sympathovagal balance (LF:HF ratio) during blood donation. These changes were sustained for the period immediately following blood donation. No fall of blood pressure was observed during the period of study. The blood pressure variability showed an increase in the SDNN, CoV and RMSSD time domain measures in the post donation period. These results suggest that mild hypovolemia produced by blood donation is non-hypotensive but is associated with significant changes in the autonomic tone. The increased blood pressure variability and heart rate changes that are seen only in the later part of donation period could be because of the progressive hypovolemia associated parasympathetic withdrawal and sympathetic activation that manifest during the course of blood donation.

  5. Factors influencing the role of cardiac autonomic regulation in the service of cognitive control.

    Science.gov (United States)

    Capuana, Lesley J; Dywan, Jane; Tays, William J; Elmers, Jamie L; Witherspoon, Richelle; Segalowitz, Sidney J

    2014-10-01

    Working from a model of neurovisceral integration, we examined whether adding response contingencies and motivational involvement would increase the need for cardiac autonomic regulation in maintaining effective cognitive control. Respiratory sinus arrhythmia (RSA) was recorded during variants of the Stroop color-word task. The Basic task involved "accepting" congruent items and "rejecting" words printed in incongruent colors (BLUE in red font); an added contingency involved rejecting a particular congruent word (e.g., RED in red font), or a congruent word repeated on an immediately subsequent trial. Motivation was increased by adding a financial incentive phase. Results indicate that pre-task RSA predicted accuracy best when response contingencies required the maintenance of a specific item in memory or on the Basic Stroop task when errors resulted in financial loss. Overall, RSA appeared to be most relevant to performance when the task encouraged a more proactive style of cognitive control, a control strategy thought to be more metabolically costly, and hence, more reliant on flexible cardiac autonomic regulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Prevalence and pattern of cardiac autonomic dysfunction in newly detected type 2 diabetes mellitus.

    Science.gov (United States)

    Jyotsna, Viveka P; Sahoo, Abhay; Sreenivas, V; Deepak, K K

    2009-01-01

    Cardiac autonomic functions were assessed in 145 consecutive recently detected type 2 diabetics. Ninety-nine healthy persons served as controls. Criteria for normalcy were, heart rate variation during deep breathing >or=15 beats/min, deep breathing expiratory to inspiratory R-R ratio >or=1.21, Valsalva ratio >or=1.21, sustained handgrip test >or=16 mm of mercury, cold pressor test >or=10, BP response to standing or=1.04. An abnormal test was defined as the above parameters being or=30 mm of mercury and Cardiac autonomic function was normal in 7.8% patients and 32.5% healthy controls.

  7. Percutaneous autonomic neural modulation: A novel technique to treat cardiac arrhythmia

    International Nuclear Information System (INIS)

    DeSimone, Christopher V.; Madhavan, Malini; Venkatachalam, Kalpathi L.; Knudson, Mark B.; Asirvatham, Samuel J.

    2013-01-01

    Ablation and anti-arrhythmic medications have shown promise but have been met with varying success and unwanted side effects such as myocardial injury, arrhythmias, and morbidity from invasive surgical intervention. The answer to improving efficacy of ablation may include modulation of the cardiac aspect of the autonomic nervous system. Our lab has developed a novel approach and device to navigate the oblique sinus and to use DC current and saline/alcohol irrigation to selectively stimulate and block the autonomic ganglia found on the epicardial side of the heart. This novel approach minimizes myocardial damage from thermal injury and provides a less invasive and targeted approach. For feasibility, proof-of-concept, and safety monitoring, we carried out canine studies to test this novel application. Our results suggest a safer and less invasive way of modulating arrhythmogenic substrate that may lead to improved treatment of AF in humans

  8. Percutaneous autonomic neural modulation: A novel technique to treat cardiac arrhythmia

    Energy Technology Data Exchange (ETDEWEB)

    DeSimone, Christopher V.; Madhavan, Malini [Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, MN (United States); Venkatachalam, Kalpathi L. [Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Jacksonville, FL (United States); Knudson, Mark B. [Mayo Clinic, Rochester, MN (United States); EnteroMedics, EnteroMedics, St. Paul, MN (United States); Asirvatham, Samuel J., E-mail: asirvatham.samuel@mayo.edu [Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, MN (United States); Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN (United States)

    2013-05-15

    Ablation and anti-arrhythmic medications have shown promise but have been met with varying success and unwanted side effects such as myocardial injury, arrhythmias, and morbidity from invasive surgical intervention. The answer to improving efficacy of ablation may include modulation of the cardiac aspect of the autonomic nervous system. Our lab has developed a novel approach and device to navigate the oblique sinus and to use DC current and saline/alcohol irrigation to selectively stimulate and block the autonomic ganglia found on the epicardial side of the heart. This novel approach minimizes myocardial damage from thermal injury and provides a less invasive and targeted approach. For feasibility, proof-of-concept, and safety monitoring, we carried out canine studies to test this novel application. Our results suggest a safer and less invasive way of modulating arrhythmogenic substrate that may lead to improved treatment of AF in humans.

  9. Regular physical exercise improves cardiac autonomic and muscle vasodilatory responses to isometric exercise in healthy elderly

    Science.gov (United States)

    Sarmento, Adriana de Oliveira; Santos, Amilton da Cruz; Trombetta, Ivani Credidio; Dantas, Marciano Moacir; Oliveira Marques, Ana Cristina; do Nascimento, Leone Severino; Barbosa, Bruno Teixeira; Dos Santos, Marcelo Rodrigues; Andrade, Maria do Amparo; Jaguaribe-Lima, Anna Myrna; Brasileiro-Santos, Maria do Socorro

    2017-01-01

    The objective of this study was to evaluate cardiac autonomic control and muscle vasodilation response during isometric exercise in sedentary and physically active older adults. Twenty healthy participants, 10 sedentary and 10 physically active older adults, were evaluated and paired by gender, age, and body mass index. Sympathetic and parasympathetic cardiac activity (spectral and symbolic heart rate analysis) and muscle blood flow (venous occlusion plethysmography) were measured for 10 minutes at rest (baseline) and during 3 minutes of isometric handgrip exercise at 30% of the maximum voluntary contraction (sympathetic excitatory maneuver). Variables were analyzed at baseline and during 3 minutes of isometric exercise. Cardiac autonomic parameters were analyzed by Wilcoxon and Mann–Whitney tests. Muscle vasodilatory response was analyzed by repeated-measures analysis of variance followed by Tukey’s post hoc test. Sedentary older adults had higher cardiac sympathetic activity compared to physically active older adult subjects at baseline (63.13±3.31 vs 50.45±3.55 nu, P=0.02). The variance (heart rate variability index) was increased in active older adults (1,438.64±448.90 vs 1,402.92±385.14 ms, P=0.02), and cardiac sympathetic activity (symbolic analysis) was increased in sedentary older adults (5,660.91±1,626.72 vs 4,381.35±1,852.87, P=0.03) during isometric handgrip exercise. Sedentary older adults showed higher cardiac sympathetic activity (spectral analysis) (71.29±4.40 vs 58.30±3.50 nu, P=0.03) and lower parasympathetic modulation (28.79±4.37 vs 41.77±3.47 nu, P=0.03) compared to physically active older adult subjects during isometric handgrip exercise. Regarding muscle vasodilation response, there was an increase in the skeletal muscle blood flow in the second (4.1±0.5 vs 3.7±0.4 mL/min per 100 mL, P=0.01) and third minute (4.4±0.4 vs 3.9±0.3 mL/min per 100 mL, P=0.03) of handgrip exercise in active older adults. The results indicate that

  10. Prenatal stress and balance of the child's cardiac autonomic nervous system at age 5-6 years.

    Directory of Open Access Journals (Sweden)

    Aimée E van Dijk

    Full Text Available OBJECTIVE: Autonomic nervous system (ANS misbalance is a potential causal factor in the development of cardiovascular disease. The ANS may be programmed during pregnancy due to various maternal factors. Our aim is to study maternal prenatal psychosocial stress as a potential disruptor of cardiac ANS balance in the child. METHODS: Mothers from a prospective birth cohort (ABCD study filled out a questionnaire at gestational week 16 [IQR 12-20], that included validated instruments for state anxiety, depressive symptoms, pregnancy-related anxiety, parenting daily hassles and job strain. A cumulative stress score was also calculated (based on 80(th percentiles. Indicators of cardiac ANS in the offspring at age 5-6 years are: pre-ejection period (PEP, heart rate (HR, respiratory sinus arrhythmia (RSA and cardiac autonomic balance (CAB, measured with electrocardiography and impedance cardiography in resting supine and sitting positions. RESULTS: 2,624 mother-child pairs, only single births, were available for analysis. The stress scales were not significantly associated with HR, PEP, RSA and CAB (p≥0.17. Accumulation of maternal stress was also not associated with HR, PEP, RSA and CAB (p≥0.07. CONCLUSION: Results did not support the hypothesis that prenatal maternal psychosocial stress deregulates cardiac ANS balance in the offspring, at least in rest, and at the age of five-six years.

  11. Cardiac autonomic function and hot flashes among perimenopausal and postmenopausal women.

    Science.gov (United States)

    Gibson, Carolyn J; Mendes, Wendy Berry; Schembri, Michael; Grady, Deborah; Huang, Alison J

    2017-07-01

    Abnormalities in autonomic function are posited to play a pathophysiologic role in menopausal hot flashes. We examined relationships between resting cardiac autonomic activity and hot flashes in perimenopausal and postmenopausal women. Autonomic function was assessed at baseline and 12 weeks among perimenopausal and postmenopausal women (n = 121, mean age 53 years) in a randomized trial of slow-paced respiration for hot flashes. Pre-ejection period (PEP), a marker of sympathetic activation, was measured with impedance cardiography. Respiratory sinus arrhythmia (RSA), a marker of parasympathetic activation, was measured with electrocardiography. Participants self-reported hot flash frequency and severity in 7-day symptom diaries. Analysis of covariance models were used to relate autonomic function and hot flash frequency and severity at baseline, and to relate changes in autonomic function to changes in hot flash frequency and severity over 12 weeks, adjusting for age, body mass index, and intervention assignment. PEP was not associated with hot flash frequency or severity at baseline or over 12 weeks (P > 0.05 for all). In contrast, there was a trend toward greater frequency of moderate-to-severe hot flashes with higher RSA at baseline (β = 0.43, P = 0.06), and a positive association between change in RSA and change in frequency of moderate-to-severe hot flashes over 12 weeks (β = 0.63, P = 0.04). Among perimenopausal and postmenopausal women with hot flashes, variations in hot flash frequency and severity were not explained by variations in resting sympathetic activation. Greater parasympathetic activation was associated with more frequent moderate-to-severe hot flashes, which may reflect increased sensitivity to perceiving hot flashes.

  12. Bidirectional Prospective Associations Between Cardiac Autonomic Activity and Inflammatory Markers.

    Science.gov (United States)

    Hu, Mandy Xian; Lamers, Femke; Neijts, Melanie; Willemsen, Gonneke; de Geus, Eco J C; Penninx, Brenda W J H

    2018-06-01

    Autonomic nervous system (ANS) imbalance has been cross-sectionally associated with inflammatory processes. Longitudinal studies are needed to shed light on the nature of this relationship. We examined cross-sectional and bidirectional prospective associations between cardiac autonomic measures and inflammatory markers. Analyses were conducted with baseline (n = 2823), 2-year (n = 2099), and 6-year (n = 1774) data from the Netherlands Study of Depression and Anxiety. To compare the pattern of results, prospective analyses with ANS (during sleep, leisure time, and work) and inflammation were conducted in two data sets from the Netherlands Twin Register measured for 4.9 years (n = 356) and 5.4 years (n = 472). Autonomic nervous system measures were heart rate (HR) and respiratory sinus arrhythmia (RSA). Inflammatory markers were C-reactive protein (CRP) and interleukin (IL)-6. The Netherlands Study of Depression and Anxiety results showed that higher HR and lower RSA were cross-sectionally significantly associated with higher inflammatory levels. Higher HR predicted higher levels of CRP (B = .065, p < .001) and IL-6 (B = .036, p = .014) at follow-up. Higher CRP levels predicted lower RSA (B = -.024, p = .048) at follow-up. The Netherlands Twin Register results confirmed that higher HR was associated with higher CRP and IL-6 levels 4.9 years later. Higher IL-6 levels predicted higher HR and lower RSA at follow-up. Autonomic imbalance is associated with higher levels of inflammation. Independent data from two studies converge in evidence that higher HR predicts subsequent higher levels of CRP and IL-6. Inflammatory markers may also predict future ANS activity, but evidence for this was less consistent.

  13. An Autonomic Link Between Inhaled Diesel Exhaust and Impaired Cardiac Performance: Insight From Treadmill and Doubutamine Challenges in Heart Failure-Prone Rats

    Science.gov (United States)

    Background: Short-term exposure to vehicular emissions is associated with adverse cardiac events. Diesel exhaust (DE) is an ubiquitous air pollutant believed to provoke cardiac events partly through imbalance of the sympathetic and parasympathetic branches of the autonomic nervo...

  14. Autonomic, locomotor and cardiac abnormalities in a mouse model of muscular dystrophy: targeting the renin-angiotensin system.

    Science.gov (United States)

    Sabharwal, Rasna; Chapleau, Mark W

    2014-04-01

    New Findings What is the topic of this review? This symposium report summarizes autonomic, cardiac and skeletal muscle abnormalities in sarcoglycan-δ-deficient mice (Sgcd-/-), a mouse model of limb girdle muscular dystrophy, with emphasis on the roles of autonomic dysregulation and activation of the renin-angiotensin system at a young age. What advances does it highlight? The contributions of the autonomic nervous system and the renin-angiotensin system to the pathogenesis of muscular dystrophy are highlighted. Results demonstrate that autonomic dysregulation precedes and predicts later development of cardiac dysfunction in Sgcd-/- mice and that treatment of young Sgcd-/- mice with the angiotensin type 1 receptor antagonist losartan or with angiotensin-(1-7) abrogates the autonomic dysregulation, attenuates skeletal muscle pathology and increases spontaneous locomotor activity. Muscular dystrophies are a heterogeneous group of genetic muscle diseases characterized by muscle weakness and atrophy. Mutations in sarcoglycans and other subunits of the dystrophin-glycoprotein complex cause muscular dystrophy and dilated cardiomyopathy in animals and humans. Aberrant autonomic signalling is recognized in a variety of neuromuscular disorders. We hypothesized that activation of the renin-angiotensin system contributes to skeletal muscle and autonomic dysfunction in mice deficient in the sarcoglycan-δ (Sgcd) gene at a young age and that this early autonomic dysfunction contributes to the later development of left ventricular (LV) dysfunction and increased mortality. We demonstrated that young Sgcd-/- mice exhibit histopathological features of skeletal muscle dystrophy, decreased locomotor activity and severe autonomic dysregulation, but normal LV function. Autonomic regulation continued to deteriorate in Sgcd-/- mice with age and was accompanied by LV dysfunction and dilated cardiomyopathy at older ages. Autonomic dysregulation at a young age predicted later development of

  15. Evaluation of cardiac autonomic function in overweight males: A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Debasish Das

    2017-01-01

    Full Text Available Background and Aim: Cardiovascular autonomic function tests (CAFTs are non-invasive tests that can assess both sympathetic and parasympathetic autonomic functions. Autonomic dysfunction may be considered as a risk factor for obesity and vice versa. For measurement of obesity, body mass index (BMI is a simple, valid and inexpensive method. Hence, this study was designed to evaluate the effect of obesity based on BMI criteria on autonomic nervous system based on CAFT in young adult males. Methods: A cross-sectional study was carried out on 43 young adult males in the age group of 18–25 years with an age-matched control (n = 43 group. After initial screening, anthropometric measurements were recorded. CAFTs were performed and recorded by the Cardiac Autonomic Neuropathy Analysis System (CANWin. Unpaired t- test was done to compare the parameters of study and control groups in Microsoft Excel® 2010. Results: Parasympathetic test parameters of study and control groups when expressed in mean ± standard deviation were not found statistically significant (P > 0.05. The fall in systolic blood pressure (BP in orthostatic test of study group (12.19 ± 4.8 mmHg was significantly (P = 0.0001 higher than that of control group (7.33 ± 5.16 mmHg. Increase in diastolic BP in isometric handgrip exercise test of study group (11.84 ± 5.39 mmHg was significantly less (P = 0.004 than that of control group (16.39 ± 8.71 mmHg. Conclusion: Overweight young males have altered sympathetic activity but parasympathetic activity did not show any significant difference when compared to normal weight males.

  16. Cardiac autonomic regulation during exposure to auditory stimulation with classical baroque or heavy metal music of different intensities.

    Science.gov (United States)

    Amaral, Joice A T; Nogueira, Marcela L; Roque, Adriano L; Guida, Heraldo L; De Abreu, Luiz Carlos; Raimundo, Rodrigo Daminello; Vanderlei, Luiz Carlos M; Ribeiro, Vivian L; Ferreira, Celso; Valenti, Vitor E

    2014-03-01

    The effects of chronic music auditory stimulation on the cardiovascular system have been investigated in the literature. However, data regarding the acute effects of different styles of music on cardiac autonomic regulation are lacking. The literature has indicated that auditory stimulation with white noise above 50 dB induces cardiac responses. We aimed to evaluate the acute effects of classical baroque and heavy metal music of different intensities on cardiac autonomic regulation. The study was performed in 16 healthy men aged 18-25 years. All procedures were performed in the same soundproof room. We analyzed heart rate variability (HRV) in time (standard deviation of normal-to-normal R-R intervals [SDNN], root-mean square of differences [RMSSD] and percentage of adjacent NN intervals with a difference of duration greater than 50 ms [pNN50]) and frequency (low frequency [LF], high frequency [HF] and LF/HF ratio) domains. HRV was recorded at rest for 10 minutes. Subsequently, the volunteers were exposed to one of the two musical styles (classical baroque or heavy metal music) for five minutes through an earphone, followed by a five-minute period of rest, and then they were exposed to the other style for another five minutes. The subjects were exposed to three equivalent sound levels (60-70dB, 70-80dB and 80-90dB). The sequence of songs was randomized for each individual. Auditory stimulation with heavy metal music did not influence HRV indices in the time and frequency domains in the three equivalent sound level ranges. The same was observed with classical baroque musical auditory stimulation with the three equivalent sound level ranges. Musical auditory stimulation of different intensities did not influence cardiac autonomic regulation in men.

  17. Cardiac autonomic regulation in response to a mixed meal is impaired in obese children and adolescents: the role played by insulin resistance.

    Science.gov (United States)

    Cozzolino, Domenico; Esposito, Katherine; Palmiero, Giuseppe; De Bellis, Annamaria; Furlan, Raffaello; Perrotta, Silverio; Perrone, Laura; Torella, Daniele; Miraglia del Giudice, Emanuele

    2014-09-01

    Obesity in children/adolescents has been associated with subtle cardiac abnormalities, including myocardial dysfunction and cardiac autonomic dysregulation at rest, both likely responsible for a higher mortality in adulthood. Food intake induces remarkable adjustments of cardiovascular autonomic activity in healthy subjects. The objective of the study was to evaluate in obese children/adolescents meal-induced cardiac autonomic response and the role played by insulin resistance. Sixty-eight obese and 30 matched normal-weight children/adolescents underwent blood sampling and cardiovascular autonomic analysis while recumbent and 20 minutes after a mixed meal ingestion. Spectrum analysis of the R-R interval and systolic blood pressure (SBP) variability provided the indices of sympathetic [low frequency (LFRR)] and vagal [high frequency (HFRR)] modulation of the sinoatrial node and the low frequency component of SBP. The homeostasis model assessment of insulin resistance served to separate insulin resistant (n = 35) from non insulin resistant (n = 33) obese children/adolescents. At baseline, C-reactive protein, the LFRR to HFRR ratio, SBP, and low frequency oscillatory component of SBP variability in obese children/adolescents were significantly (P meal-induced increase in the LFRR to HFRR ratio was significantly less than in controls and exaggeratedly scanty (or opposite) among insulin resistant subjects. The homeostasis model assessment of insulin resistance index strongly and inversely correlated (r = -0.871; P meal-induced changes in the LFRR to HFRR ratio among obese subjects. Autonomic modulation of the heart was impaired after eating in obese children/adolescents. This abnormality was exaggerated among insulin resistant subjects and strongly correlated with the degree of insulin resistance.

  18. Early Seizure Detection Based on Cardiac Autonomic Regulation Dynamics

    Directory of Open Access Journals (Sweden)

    Jonatas Pavei

    2017-10-01

    Full Text Available Epilepsy is a neurological disorder that causes changes in the autonomic nervous system. Heart rate variability (HRV reflects the regulation of cardiac activity and autonomic nervous system tone. The early detection of epileptic seizures could foster the use of new treatment approaches. This study presents a new methodology for the prediction of epileptic seizures using HRV signals. Eigendecomposition of HRV parameter covariance matrices was used to create an input for a support vector machine (SVM-based classifier. We analyzed clinical data from 12 patients (9 female; 3 male; age 34.5 ± 7.5 years, involving 34 seizures and a total of 55.2 h of interictal electrocardiogram (ECG recordings. Data from 123.6 h of ECG recordings from healthy subjects were used to test false positive rate per hour (FP/h in a completely independent data set. Our methodological approach allowed the detection of impending seizures from 5 min to just before the onset of a clinical/electrical seizure with a sensitivity of 94.1%. The FP rate was 0.49 h−1 in the recordings from patients with epilepsy and 0.19 h−1 in the recordings from healthy subjects. Our results suggest that it is feasible to use the dynamics of HRV parameters for the early detection and, potentially, the prediction of epileptic seizures.

  19. Oral Contraceptives Attenuate Cardiac Autonomic Responses to Musical Auditory Stimulation: Pilot Study.

    Science.gov (United States)

    Milan, Réveni Carmem; Plassa, Bruna Oliveira; Guida, Heraldo Lorena; de Abreu, Luiz Carlos; Gomes, Rayana L; Garner, David M; Valenti, Vitor E

    2015-01-01

    The literature presents contradictory results regarding the effects of contraceptives on cardiac autonomic regulation. The research team aimed to evaluate the effects of musical auditory stimulation on cardiac autonomic regulation in women who use oral contraceptives. The research team designed a transversal observational pilot study. The setting was the Centro de Estudos do Sistema Nervoso Autônomo (CESNA) in the Departamento de Fonoaudiologia at the Universidade Estadual Paulista (UNESP) in Marília, SP, Brazil. Participants were 22 healthy nonathletic and nonsedentary females, all nonsmokers and aged between 18 and 27 y. Participants were divided into 2 groups: (1) 12 women who were not taking oral contraceptives, the control group; and (2) 10 women who were taking oral contraceptives, the oral contraceptive group. In the first stage, a rest control, the women sat with their earphones turned off for 20 min. After that period, the participants were exposed to 20 min of classical baroque music (ie, "Canon in D Major," Johann Pachelbel), at 63-84 dB. Measurements of the equivalent sound levels were conducted in a soundproof room, and the intervals between consecutive heartbeats (R-R intervals) were recorded, with a sampling rate of 1000 Hz. For calculation of the linear indices, the research team used software to perform an analysis of heart rate variability (HRV). Linear indices of HRV were analyzed in the time domain: (1) the standard deviation of normal-to-normal R-R intervals (SDNN), (2) the root-mean square of differences between adjacent normal R-R intervals in a time interval (RMSSD), and (3) the percentage of adjacent R-R intervals with a difference of duration greater than 50 ms (pNN50). The study also analyzed the frequency domain-low frequency (LF), high frequency (HF), and LF/HF ratio. For the control group, the musical auditory stimulation reduced (1) the SDNN from 52.2 ± 10 ms to 48.4 ± 16 ms (P = .0034); (2) the RMSSD from 45.8 ± 22 ms to 41.2

  20. Are Cardiac Autonomic Nervous System Activity and Perceived Stress Related to Functional Somatic Symptoms in Adolescents? The TRAILS Study

    NARCIS (Netherlands)

    Janssens, Karin A. M.; Riese, Harriëtte; van Roon, Arie M.; Hunfeld, Joke A. M.; Groot, Paul F. C.; Oldehinkel, Albertine J.; Rosmalen, Judith G. M.

    2016-01-01

    Stressors have been related to medically insufficiently explained or functional somatic symptoms (FSS). However, the underlying mechanism of this association is largely unclear. In the current study, we examined whether FSS are associated with different perceived stress and cardiac autonomic nervous

  1. Apocynin improving cardiac remodeling in chronic renal failure disease is associated with up-regulation of epoxyeicosatrienoic acids.

    Science.gov (United States)

    Zhang, Kun; Liu, Yu; Liu, Xiaoqiang; Chen, Jie; Cai, Qingqing; Wang, Jingfeng; Huang, Hui

    2015-09-22

    Cardiac remodeling is one of the most common cardiac abnormalities and associated with a high mortality in chronic renal failure (CRF) patients. Apocynin, a nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase inhibitor, has been showed cardio-protective effects. However, whether apocynin can improve cardiac remodeling in CRF and what is the underlying mechanism are unclear. In the present study, we enrolled 94 participants. In addition, we used 5/6 nephrectomized rats to mimic cardiac remodeling in CRF. Serum levels of epoxyeicosatrienoic acids (EETs) and its mainly metabolic enzyme-soluble epoxide hydrolase (sEH) were measured. The results showed that the serum levels of EETs were significantly decreased in renocardiac syndrome participants (P < 0.05). In 5/6 nephrectomized CRF model, the ratio of left ventricular weight / body weight, left ventricular posterior wall thickness, and cardiac interstitial fibrosis were significantly increased while ejection fraction significantly decreased (P < 0.05). All these effects could partly be reversed by apocynin. Meanwhile, we found during the process of cardiac remodeling in CRF, apocynin significantly increased the reduced serum levels of EETs and decreased the mRNA and protein expressions of sEH in the heart (P < 0.05). Our findings indicated that the protective effect of apocynin on cardiac remodeling in CRF was associated with the up-regulation of EETs. EETs may be a new mediator for the injury of kidney-heart interactions.

  2. Apocynin improving cardiac remodeling in chronic renal failure disease is associated with up-regulation of epoxyeicosatrienoic acids

    Science.gov (United States)

    Chen, Jie; Cai, Qingqing; Wang, Jingfeng; Huang, Hui

    2015-01-01

    Cardiac remodeling is one of the most common cardiac abnormalities and associated with a high mortality in chronic renal failure (CRF) patients. Apocynin, a nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase inhibitor, has been showed cardio-protective effects. However, whether apocynin can improve cardiac remodeling in CRF and what is the underlying mechanism are unclear. In the present study, we enrolled 94 participants. In addition, we used 5/6 nephrectomized rats to mimic cardiac remodeling in CRF. Serum levels of epoxyeicosatrienoic acids (EETs) and its mainly metabolic enzyme-soluble epoxide hydrolase (sEH) were measured. The results showed that the serum levels of EETs were significantly decreased in renocardiac syndrome participants (P < 0.05). In 5/6 nephrectomized CRF model, the ratio of left ventricular weight /body weight, left ventricular posterior wall thickness, and cardiac interstitial fibrosis were significantly increased while ejection fraction significantly decreased (P < 0.05). All these effects could partly be reversed by apocynin. Meanwhile, we found during the process of cardiac remodeling in CRF, apocynin significantly increased the reduced serum levels of EETs and decreased the mRNA and protein expressions of sEH in the heart (P < 0.05). Our findings indicated that the protective effect of apocynin on cardiac remodeling in CRF was associated with the up-regulation of EETs. EETs may be a new mediator for the injury of kidney-heart interactions. PMID:26322503

  3. Blood pressure and cardiac autonomic modulation at rest, during exercise and recovery time in the young overweight

    Directory of Open Access Journals (Sweden)

    Jaqueline Alves de Araújo

    2016-03-01

    Full Text Available Abstract This study aimed to assess the blood pressure (BP, cardiac autonomic modulation at rest, in physical exercise and in the recovery in untrained eutrophic (E and overweight (O youth. The body mass index (BMI, waist circumference (WC, systolic BP-SBP (E: 109.80 ± 10.05; O: 121.85 ± 6.98 mmHg and diastolic BP - DBP (E: 65.90 ± 7.28; O: 73.14 ± 12.22 mmHg were higher in overweight and the heart rate recovery (%HRR was lower as compared with E volunteers. The BMI was associated with SBP (r= 0.54, DBP (r= 0.65, load on the heart rate variability threshold - HRVT (r= -0.46, %HRR 2' (r= -0.48 and %HRR 5' (r= -0.48, and WC was associated with SBP (r= 0.54, DBP (r= 0.64 and HRR 2' (r= -0.49. The %HRR was associated to SBP, DBP and HRVT. In summary, the anthropometric variables, BP and cardiac autonomic modulation in the recovery are altered in overweight youth.

  4. Simvastatin-induced cardiac autonomic control improvement in fructose-fed female rats

    Directory of Open Access Journals (Sweden)

    Renata Juliana da Silva

    2011-01-01

    Full Text Available OBJECTIVE: Because autonomic dysfunction has been found to lead to cardiometabolic disorders and because studies have reported that simvastatin treatment has neuroprotective effects, the objective of the present study was to investigate the effects of simvastatin treatment on cardiovascular and autonomic changes in fructose-fed female rats. METHODS: Female Wistar rats were divided into three groups: controls (n=8, fructose (n=8, and fructose+ simvastatin (n=8. Fructose overload was induced by supplementing the drinking water with fructose (100 mg/L, 18 wks. Simvastatin treatment (5 mg/kg/day for 2 wks was performed by gavage. The arterial pressure was recorded using a data acquisition system. Autonomic control was evaluated by pharmacological blockade. RESULTS: Fructose overload induced an increase in the fasting blood glucose and triglyceride levels and insulin resistance. The constant rate of glucose disappearance during the insulin intolerance test was reduced in the fructose group (3.4+ 0.32%/min relative to that in the control group (4.4+ 0.29%/min. Fructose+simvastatin rats exhibited increased insulin sensitivity (5.4+0.66%/min. The fructose and fructose+simvastatin groups demonstrated an increase in the mean arterial pressure compared with controls rats (fructose: 124+2 mmHg and fructose+simvastatin: 126 + 3 mmHg vs. controls: 112 + 2 mmHg. The sympathetic effect was enhanced in the fructose group (73 + 7 bpm compared with that in the control (48 + 7 bpm and fructose+simvastatin groups (31+8 bpm. The vagal effect was increased in fructose+simvastatin animals (84 + 7 bpm compared with that in control (49 + 9 bpm and fructose animals (46+5 bpm. CONCLUSION: Simvastatin treatment improved insulin sensitivity and cardiac autonomic control in an experimental model of metabolic syndrome in female rats. These effects were independent of the improvements in the classical plasma lipid profile and of reductions in arterial pressure. These results

  5. Impact of aging on cardiac function in a female rat model of menopause: role of autonomic control, inflammation, and oxidative stress

    Science.gov (United States)

    Machi, Jacqueline Freire; Dias, Danielle da Silva; Freitas, Sarah Cristina; de Moraes, Oscar Albuquerque; da Silva, Maikon Barbosa; Cruz, Paula Lázara; Mostarda, Cristiano; Salemi, Vera M C; Morris, Mariana; De Angelis, Kátia; Irigoyen, Maria-Cláudia

    2016-01-01

    Objective The aim of this study was to evaluate the effects of aging on metabolic, cardiovascular, autonomic, inflammatory, and oxidative stress parameters after ovarian hormone deprivation (OVX). Methods Female Wistar rats (3 or 22 months old) were divided into: young controls, young ovariectomized, old controls, and old ovariectomized (bilateral ovaries removal). After a 9-week follow-up, physical capacity, metabolic parameters, and morphometric and cardiac functions were assessed. Subsequently, arterial pressure was recorded and cardiac autonomic control was evaluated. Oxidative stress was measured on the cardiac tissue, while inflammatory profile was assessed in the plasma. Results Aging or OVX caused an increase in body and fat weight and triglyceride concentration and a decrease in both insulin sensitivity and aerobic exercise capacity. Left ventricular diastolic dysfunction and increased cardiac overload (myocardial performance index) were reported in old groups when compared with young groups. Aging and OVX led to an increased sympathetic tonus, and vagal tonus was lower only for the old groups. Tumor necrosis factor-α and interleukin-6 were increased in old groups when compared with young groups. Glutathione redox balance (GSH/GSSG) was reduced in young ovariectomized, old controls, and old ovariectomized groups when compared with young controls, indicating an increased oxidative stress. A negative correlation was found between GSH/GSSG and tumor necrosis factor-α (r=−0.6, P<0.003). Correlations were found between interleukin-6 with adipose tissue (r=0.5, P<0.009) and vagal tonus (r=−0.7, P<0.0002); and among myocardial performance index with interleukin-6 (r=0.65, P<0.0002), sympathetic tonus (r=0.55, P<0.006), and physical capacity (r=−0.55, P<0.003). The findings in this trial showed that ovariectomy aggravated the impairment of cardiac and functional effects of aging in female rats, probably associated with exacerbated autonomic dysfunction

  6. Cardiac Autonomic Neuropathy Predicts All-Cause and Cardiovascular Mortality in Patients With End-Stage Renal Failure: A 5-Year Prospective Study

    Directory of Open Access Journals (Sweden)

    Dimitrios Doulgerakis

    2017-07-01

    Discussion: Age and presence of CAN are independent predictors of all-cause and CV mortality in patients with ESRF. The functionality of the cardiac autonomic nervous system activity can be used for the risk stratification in patients with ESRF.

  7. Short-term supervised inpatient physiotherapy exercise protocol improves cardiac autonomic function after coronary artery bypass graft surgery--a randomised controlled trial.

    Science.gov (United States)

    Mendes, Renata Gonçalves; Simões, Rodrigo Polaquini; De Souza Melo Costa, Fernando; Pantoni, Camila Bianca Falasco; Di Thommazo, Luciana; Luzzi, Sérgio; Catai, Aparecida Maria; Arena, Ross; Borghi-Silva, Audrey

    2010-01-01

    Coronary artery bypass grafting (CABG) is accompanied by severe impairment of cardiac autonomous regulation (CAR). This study aimed to determine whether a short-term physiotherapy exercise protocol post-CABG, during inpatient cardiac rehabilitation (CR), might improve CAR. Seventy-four patients eligible for CABG were recruited and randomised into physiotherapy exercise group (EG) or physiotherapy usual care group (UCG). EG patients underwent a short-term supervised inpatient physiotherapy exercise protocol consisting of an early mobilisation with progressive exercises plus usual care (respiratory exercises). UCG only received respiratory exercises. Forty-seven patients (24 EG and 23 UGC) completed the study. Outcome measures of CAR included linear and non-linear measures of heart rate variability (HRV) assessed before discharge. By hospital discharge, EG presented significantly higher parasympathetic HRV values [rMSSD, high frequency (HF), SD1)], global power (STD RR, SD2), non-linear HRV indexes [detrended fluctuation analysis (DFA)alpha1, DFAalpha2, approximate entropy (ApEn)] and mean RR compared to UCG (pexercise protocol during inpatient CR improves CAR at the time of discharge. Thus, exercise-based inpatient CR might be an effective non-pharmacological tool to improve autonomic cardiac tone in patient's post-CABG.

  8. Comparative study of short-term cardiovascular autonomic control in cardiac surgery patients who underwent coronary artery bypass grafting or correction of valvular heart disease.

    Science.gov (United States)

    Shvartz, Vladimir A; Kiselev, Anton R; Karavaev, Anatoly S; Vulf, Kristina A; Borovkova, Ekaterina I; Prokhorov, Mikhail D; Petrosyan, Andrey D; Bockeria, Olga L

    2018-01-01

    Introduction: Our aim was to perform a comparative study of short-term cardiovascular autonomic control in cardiac surgery patients who underwent coronary artery bypass grafting (CABG) or surgical correction of valvular heart disease (SCVHD ). Methods: The synchronous 15 minutes records of heart rate variability (HRV) and finger's photoplethysmographic waveform variability (PPGV) were performed in 42 cardiac surgery patients (12 women) aged 61.8 ± 8.6 years (mean ± standard deviation), who underwent CABG, and 36 patients (16 women) aged 54.2 ± 14.9 years, who underwent SCVHD , before surgery and in 5-7 days after surgery. Conventional time and frequency domain measures of HRV and index S of synchronization between the slow oscillations in PPGV and HRV were analyzed. We also calculated personal dynamics of these indices after surgery. Results: We found no differences ( Р > 0.05) in all studied autonomic indices (preoperative and post-surgery) between studied patients' groups, except for the preoperative heart rate, which was higher in patients who underwent SCVHD ( P = 0.013). We have shown a pronounced preoperative and post-surgery variability (magnitude of inter-quartile ranges) of all autonomic indices in studied patients. In the cluster analysis based on cardiovascular autonomic indices (preoperative and post-surgery), we divided all patients into two clusters (38 and 40 subjects) which did not differ in all clinical characteristics (except for the preoperative hematocrit, P = 0.038), index S, and all post-surgery HRV indices. First cluster (38 patients) had higher preoperative values of the HR, TP, HF, and HF%, and lower preoperative values of the LF% and LF/HF. Conclusion: The variability of cardiovascular autonomic indices in on-pump cardiac surgery patients (two characteristic clusters were identified based on preoperative indices) was not associated with their clinical characteristics and features of surgical procedure (including cardioplegia).

  9. Regular physical exercise improves cardiac autonomic and muscle vasodilatory responses to isometric exercise in healthy elderly

    Directory of Open Access Journals (Sweden)

    Sarmento AO

    2017-06-01

    Full Text Available Adriana de Oliveira Sarmento,1–3 Amilton da Cruz Santos,1,4 Ivani Credidio Trombetta,2,5 Marciano Moacir Dantas,1 Ana Cristina Oliveira Marques,1,4 Leone Severino do Nascimento,1,4 Bruno Teixeira Barbosa,1,2 Marcelo Rodrigues Dos Santos,2 Maria do Amparo Andrade,3 Anna Myrna Jaguaribe-Lima,3,6 Maria do Socorro Brasileiro-Santos1,3,4 1Laboratory of Physical Training Studies Applied to Health, Department of Physical Education, Federal University of Paraiba, João Pessoa, Brazil; 2Unit of Cardiovascular Rehabilitation and Exercise Physiology – Heart Institute (InCor/HC-FMUSP, University of São Paulo, São Paulo, Brazil; 3Graduate Program in Physiotherapy, Federal University of Pernambuco, Recife, Brazil; 4Associate Graduate Program in Physical Education UPE/UFPB, João Pessoa, Brazil; 5Graduate Program in Medicine, Universidade Nove de Julho (UNINOVE, São Paulo, Brazil; 6Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Recife, Brazil Abstract: The objective of this study was to evaluate cardiac autonomic control and muscle vasodilation response during isometric exercise in sedentary and physically active older adults. Twenty healthy participants, 10 sedentary and 10 physically active older adults, were evaluated and paired by gender, age, and body mass index. Sympathetic and parasympathetic cardiac activity (spectral and symbolic heart rate analysis and muscle blood flow (venous occlusion plethysmography were measured for 10 minutes at rest (baseline and during 3 minutes of isometric handgrip exercise at 30% of the maximum voluntary contraction (sympathetic excitatory maneuver. Variables were analyzed at baseline and during 3 minutes of isometric exercise. Cardiac autonomic parameters were analyzed by Wilcoxon and Mann–Whitney tests. Muscle vasodilatory response was analyzed by repeated-measures analysis of variance followed by Tukey’s post hoc test. Sedentary older adults had higher cardiac

  10. Inhibition of N-type Ca2+ channels ameliorates an imbalance in cardiac autonomic nerve activity and prevents lethal arrhythmias in mice with heart failure.

    Science.gov (United States)

    Yamada, Yuko; Kinoshita, Hideyuki; Kuwahara, Koichiro; Nakagawa, Yasuaki; Kuwabara, Yoshihiro; Minami, Takeya; Yamada, Chinatsu; Shibata, Junko; Nakao, Kazuhiro; Cho, Kosai; Arai, Yuji; Yasuno, Shinji; Nishikimi, Toshio; Ueshima, Kenji; Kamakura, Shiro; Nishida, Motohiro; Kiyonaka, Shigeki; Mori, Yasuo; Kimura, Takeshi; Kangawa, Kenji; Nakao, Kazuwa

    2014-10-01

    Dysregulation of autonomic nervous system activity can trigger ventricular arrhythmias and sudden death in patients with heart failure. N-type Ca(2+) channels (NCCs) play an important role in sympathetic nervous system activation by regulating the calcium entry that triggers release of neurotransmitters from peripheral sympathetic nerve terminals. We have investigated the ability of NCC blockade to prevent lethal arrhythmias associated with heart failure. We compared the effects of cilnidipine, a dual N- and L-type Ca(2+) channel blocker, with those of nitrendipine, a selective L-type Ca(2+) channel blocker, in transgenic mice expressing a cardiac-specific, dominant-negative form of neuron-restrictive silencer factor (dnNRSF-Tg). In this mouse model of dilated cardiomyopathy leading to sudden arrhythmic death, cardiac structure and function did not significantly differ among the control, cilnidipine, and nitrendipine groups. However, cilnidipine dramatically reduced arrhythmias in dnNRSF-Tg mice, significantly improving their survival rate and correcting the imbalance between cardiac sympathetic and parasympathetic nervous system activity. A β-blocker, bisoprolol, showed similar effects in these mice. Genetic titration of NCCs, achieved by crossing dnNRSF-Tg mice with mice lacking CACNA1B, which encodes the α1 subunit of NCCs, improved the survival rate. With restoration of cardiac autonomic balance, dnNRSF-Tg;CACNA1B(+/-) mice showed fewer malignant arrhythmias than dnNRSF-Tg;CACNA1B(+/+) mice. Both pharmacological blockade of NCCs and their genetic titration improved cardiac autonomic balance and prevented lethal arrhythmias in a mouse model of dilated cardiomyopathy and sudden arrhythmic death. Our findings suggest that NCC blockade is a potentially useful approach to preventing sudden death in patients with heart failure. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  11. Effects of psychological stress test on the cardiac response of public safety workers: alternative parameters to autonomic balance

    Science.gov (United States)

    Huerta-Franco, M. R.; Vargas-Luna, F. M.; Delgadillo-Holtfort, I.

    2015-01-01

    It is well known that public safety workers (PSW) face many stressful situations that yield them as high-risk population for suffering chronic stress diseases. In this multidisciplinary research the cardiac response to induced psychological stress by a short duration Stroop test was evaluated in 20 female and 19 male PSW, in order to compare traditionally used cardiac response parameters with alternative ones. Electrocardiograms have been recorded using the Eindhoven electrodes configuration for 1 min before, 3 min during and 1 min after the test. Signals analysis has been performed for the heart rate and the power spectra of its variability and of the variability of the amplitude of the R-wave, i.e. the highest peak of the electrocardiographic signal periodic sequence. The results demonstrated that the traditional autonomic balance index shows no significant differences between stages. In contrast, the median of the area of the power spectrum of the R-wave amplitude variability in the frequency region dominated by the autonomous nervous system (0.04-to-0.4 Hz) is the more sensitive parameter. Moreover, this parameter allows to identify gender differences consistent with those encountered in other studies.

  12. Effects of psychological stress test on the cardiac response of public safety workers: alternative parameters to autonomic balance

    International Nuclear Information System (INIS)

    Huerta-Franco, M R; Vargas-Luna, F M; Delgadillo-Holtfort, I

    2015-01-01

    It is well known that public safety workers (PSW) face many stressful situations that yield them as high-risk population for suffering chronic stress diseases. In this multidisciplinary research the cardiac response to induced psychological stress by a short duration Stroop test was evaluated in 20 female and 19 male PSW, in order to compare traditionally used cardiac response parameters with alternative ones. Electrocardiograms have been recorded using the Eindhoven electrodes configuration for 1 min before, 3 min during and 1 min after the test. Signals analysis has been performed for the heart rate and the power spectra of its variability and of the variability of the amplitude of the R-wave, i.e. the highest peak of the electrocardiographic signal periodic sequence. The results demonstrated that the traditional autonomic balance index shows no significant differences between stages. In contrast, the median of the area of the power spectrum of the R-wave amplitude variability in the frequency region dominated by the autonomous nervous system (0.04-to-0.4 Hz) is the more sensitive parameter. Moreover, this parameter allows to identify gender differences consistent with those encountered in other studies

  13. Limits of clinical tests to screen autonomic function in diabetes type 1.

    Science.gov (United States)

    Ducher, M; Bertram, D; Sagnol, I; Cerutti, C; Thivolet, C; Fauvel, J P

    2001-11-01

    A precocious detection of cardiac autonomic dysfunction is of major clinical interest that could lead to a more intensive supervision of diabetic patients. However, classical clinical exploration of cardiac autonomic function is not easy to undertake in a reproducible way. Thus, respective interests of autonomic nervous parameters provided by both clinical tests and computerized analysis of resting blood pressure were checked in type 1 diabetic patients without orthostatic hypotension and microalbuminuria. Thirteen diabetic subjects matched for age and gender to thirteen healthy subjects volunteered to participate to the study. From clinical tests (standing up, deep breathing, Valsalva maneuver, handgrip test), autonomic function was scored according to Ewing's methodology. Analysis of resting beat to beat blood pressure provided autonomic indices of the cardiac function (spectral analysis or Z analysis). 5 of the 13 diabetic patients exhibited a pathological score (more than one pathological response) suggesting the presence of cardiovascular autonomic dysfunction. The most discriminative test was the deep breathing test. However, spectral indices of BP recordings and baro-reflex sensitivity (BRS) of these 5 subjects were similar to those of healthy subjects and of remaining diabetic subjects. Alteration in Ewing's score given by clinical tests may not reflect an alteration of cardiac autonomic function in asymptomatic type 1 diabetic patients, because spectral indices of sympathetic and parasympathetic (including BRS) function were within normal range. Our results strongly suggest to confront results provided by both methodologies before concluding to an autonomic cardiac impairment in asymptomatic diabetic patients.

  14. Catecholamines and diabetic autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J

    1995-01-01

    In diabetic patients with autonomic neuropathy plasma noradrenaline concentration, used as an index of sympathetic nervous activity, is low. This decrease is, however, only found in patients with a long duration of diabetes with clinically severe autonomic neuropathy. This apparent insensitivity...... of plasma catecholamine measurements is not due to changes in the clearance of catecholamines in diabetic autonomic neuropathy. The physiological responses to infused adrenaline and to noradrenaline are enhanced, for noradrenaline mainly cardiovascular responses. Adrenoceptors (alpha and beta adrenoceptors......) are not altered in circulating blood cells in diabetic autonomic neuropathy. Thus, a generalized up-regulation of adrenoceptors does not occur in diabetic autonomic neuropathy....

  15. Impact of aging on cardiac function in a female rat model of menopause: role of autonomic control, inflammation, and oxidative stress

    Directory of Open Access Journals (Sweden)

    Machi JF

    2016-03-01

    Full Text Available Jacqueline Freire Machi,1,2 Danielle da Silva Dias,3 Sarah Cristina Freitas,3 Oscar Albuquerque de Moraes,1 Maikon Barbosa da Silva,1 Paula Lázara Cruz,1 Cristiano Mostarda,4 Vera M C Salemi,1 Mariana Morris,2 Kátia De Angelis,3 Maria-Cláudia Irigoyen1 1Hypertension Unit, Heart Institute (InCor, School of Medicine, University of Sao Paulo, São Paulo, Brazil; 2Institute of Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; 3Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE, São Paulo, 4Health Adult and Child, Federal University of Maranhao (UFMA, São Luiz, Maranhão, Brazil Objective: The aim of this study was to evaluate the effects of aging on metabolic, cardiovascular, autonomic, inflammatory, and oxidative stress parameters after ovarian hormone deprivation (OVX. Methods: Female Wistar rats (3 or 22 months old were divided into: young controls, young ovariectomized, old controls, and old ovariectomized (bilateral ovaries removal. After a 9-week follow-up, physical capacity, metabolic parameters, and morphometric and cardiac functions were assessed. Subsequently, arterial pressure was recorded and cardiac autonomic control was evaluated. Oxidative stress was measured on the cardiac tissue, while inflammatory profile was assessed in the plasma. Results: Aging or OVX caused an increase in body and fat weight and triglyceride concentration and a decrease in both insulin sensitivity and aerobic exercise capacity. Left ventricular diastolic dysfunction and increased cardiac overload (myocardial performance index were reported in old groups when compared with young groups. Aging and OVX led to an increased sympathetic tonus, and vagal tonus was lower only for the old groups. Tumor necrosis factor-α and interleukin-6 were increased in old groups when compared with young groups. Glutathione redox balance (GSH/GSSG was reduced in young ovariectomized, old controls, and old ovariectomized

  16. Combined moderate and high intensity exercise with dietary restriction improves cardiac autonomic function associated with a reduction in central and systemic arterial stiffness in obese adults: a clinical trial

    Directory of Open Access Journals (Sweden)

    Min Hu

    2017-10-01

    Full Text Available Objective The present study aimed to assess the effects of exercise with dietary restriction on cardiac autonomic activity, arterial stiffness, and cardiovascular biomarkers in obese individuals. Methods Seventeen obese adults completed an 8-week exercise and dietary program. Anthropometry, body composition, and multiple biochemical markers were measured. We used carotid-femoral pulse wave velocity (cfPWV, brachial-ankle pulse wave velocity (baPWV, central blood pressure, and augmentation index (AIx to assess arterial stiffness. To determine cardiac autonomic activity, heart rate variability (HRV was analyzed by standard deviation of normal-to-normal intervals (SDNN, square root of the mean squared differences of successive normal-to-normal intervals (RMSSD, total power (TF, low-frequency power in normalized units (LFnu, high-frequency power in normalized units (HFnu, and low-frequency power/high-frequency power (LF/HF. Results Following the exercise and diet intervention, obese subjects had significant reductions in body weight, body mass index, body fat percentage, brachial systolic blood pressure, and resting heart rate, and they had shown improvements in blood chemistry markers such as lipid profiles, insulin, and high-sensitivity C-reactive protein. There was a significant reduction in both cfPWV and baPWV following the intervention when compared to baseline levels. Moreover, the AIx and aortic systolic blood pressure were significantly reduced after the intervention. The diet and exercise intervention significantly increased cardiac autonomic modulation (determined by improved SDNN, RMSSD, TP LF, HF, and LF/HF, which was partly due to changes in heart rate, insulin resistance, and the inflammatory pattern. Furthermore, we observed a correlation between enhanced cardiac autonomic modulation (LF/HF and decreased arterial stiffness, as measured by central cfPWV and systemic baPWV. Discussion An 8-week combined intervention of diet and

  17. Influence of hydrotherapy on clinical and cardiac autonomic function in migraine patients.

    Science.gov (United States)

    Sujan, M U; Rao, M Raghavendra; Kisan, Ravikiran; Abhishekh, Hulegar A; Nalini, Atchayaram; Raju, Trichur R; Sathyaprabha, T N

    2016-01-01

    Migraine is associated with autonomic symptoms. The growing body of literature suggests that the dysfunctional autonomic nervous system might play a pivotal role in the pathogenesis of migraine. Thermal therapies have been hypothesized to modulate these changes and alleviate pain. However, data regarding the efficacy of hydrotherapy in migraine remain scant. We evaluated the effect of add on hydrotherapy procedure (a hot arm and foot bath with ice massage to head) in migraine patients. Forty chronic migraine patients fulfilling the International Classification of Headache Disorders II criteria were recruited from the neurology outpatient clinic. Patients were randomized to receive either hydrotherapy plus conventional pharmacological care (n = 20) or conventional medication only (n = 20). Hydrotherapy group received treatment with hot arm and foot bath (103°F to 110°F) and ice massage to head daily for 20 min for 45 days. Patients were assessed using headache impact test (HIT), visual analog scale for pain and cardiac autonomic function by heart rate variability (HRV) before and after intervention period. There was a significant decrease in HIT score, frequency, and intensity of headaches following treatment in both the groups. However, it was more evident in add on hydrotherapy group compared to pharmacological treatment alone group. There was also significant improvement in the HRV parameters. In particular, there was a significant decrease in heart rate (P = 0.017), increase in high frequency (HF) (P = 0.014) and decrease in low frequency/HF ratio (P = 0.004) in add on hydrotherapy group. Our study shows that add on hydrotherapy enhanced the vagal tone in addition to reducing the frequency and intensity of headaches in migraine patients.

  18. Cycling before and after Exhaustion Differently Affects Cardiac Autonomic Control during Heart Rate Matched Exercise

    Directory of Open Access Journals (Sweden)

    Matthias Weippert

    2017-11-01

    Full Text Available During cycling before (PRE and after exhaustion (POST different modes of autonomic cardiac control might occur due to different interoceptive input and altered influences from higher brain centers. We hypothesized that heart rate variability (HRV is significantly affected by an interaction of the experimental period (PRE vs. POST and exercise intensity (HIGH vs. LOW; HIGH = HR > HR at the lactate threshold (HRLT, LOW = HR ≤ HRLT despite identical average HR.Methods: Fifty healthy volunteers completed an incremental cycling test until exhaustion. Workload started with 30 W at a constant pedaling rate (60 revolutions · min−1 and was gradually increased by 30 W · 5 min−1. Five adjacent 60 s inter-beat (R-R interval segments from the immediate recovery period (POST 1–5 at 30 W and 60 rpm were each matched with their HR-corresponding 60 s-segments during the cycle test (PRE 1–5. An analysis of covariance was carried out with one repeated-measures factor (PRE vs. POST exhaustion, one between-subject factor (HIGH vs. LOW intensity and respiration rate as covariate to test for significant effects (p < 0.050 on the natural log-transformed root mean square of successive differences between adjacent R-R intervals (lnRMSSD60s.Results: LnRMSSD60s was significantly affected by the interaction of experimental period × intensity [F(1, 242 = 30.233, p < 0.001, ηp2 = 0.111]. LnRMSSD60s was higher during PRE compared to POST at LOW intensity (1.6 ± 0.6 vs. 1.4 ± 0.6 ms; p < 0.001. In contrast, at HIGH intensity lnRMSSD60s was lower during PRE compared to POST (1.0 ± 0.4 vs. 1.2 ± 0.4 ms; p < 0.001.Conclusion: Identical net HR during cycling can result from distinct autonomic modulation patterns. Results suggest a pronounced sympathetic-parasympathetic coactivation immediately after the cessation of peak workload compared to HR-matched cycling before exhaustion at HIGH intensity. On the opposite, at LOW intensity cycling, a stronger coactivational

  19. Relationship between inflammatory and coagulation biomarkers and cardiac autonomic function in HIV-infected individuals

    DEFF Research Database (Denmark)

    Young, Lari C; Roediger, Mollie P; Grandits, Greg

    2014-01-01

    Therapy study. We examined the association between IL-6, high-sensitivity C-reactive protein (hsCRP) and D-dimer with heart rate variability measures (SDNN and rMSSD), both cross-sectionally and longitudinally. RESULTS: Cross-sectional analysis revealed significant inverse associations between IL-6, hs......CRP and d-dimer with SDNN and rMSSD (p Cross-sectionally, higher levels of inflammatory and coagulation biomarkers were......AIM: To examine the relationship between inflammatory and coagulation biomarkers and cardiac autonomic function (CAF) as measured by heart rate variability in persons with HIV. MATERIALS & METHODS: This analysis included 4073 HIV-infected persons from the Strategies for Management of Antiretroviral...

  20. Influence of hydrotherapy on clinical and cardiac autonomic function in migraine patients

    Directory of Open Access Journals (Sweden)

    M U Sujan

    2016-01-01

    Full Text Available Background: Migraine is associated with autonomic symptoms. The growing body of literature suggests that the dysfunctional autonomic nervous system might play a pivotal role in the pathogenesis of migraine. Thermal therapies have been hypothesized to modulate these changes and alleviate pain. However, data regarding the efficacy of hydrotherapy in migraine remain scant. We evaluated the effect of add on hydrotherapy procedure (a hot arm and foot bath with ice massage to head in migraine patients. Methods: Forty chronic migraine patients fulfilling the International Classification of Headache Disorders II criteria were recruited from the neurology outpatient clinic. Patients were randomized to receive either hydrotherapy plus conventional pharmacological care (n = 20 or conventional medication only (n = 20. Hydrotherapy group received treatment with hot arm and foot bath (103°F to 110°F and ice massage to head daily for 20 min for 45 days. Patients were assessed using headache impact test (HIT, visual analog scale for pain and cardiac autonomic function by heart rate variability (HRV before and after intervention period. Results: There was a significant decrease in HIT score, frequency, and intensity of headaches following treatment in both the groups. However, it was more evident in add on hydrotherapy group compared to pharmacological treatment alone group. There was also significant improvement in the HRV parameters. In particular, there was a significant decrease in heart rate (P = 0.017, increase in high frequency (HF (P = 0.014 and decrease in low frequency/HF ratio (P = 0.004 in add on hydrotherapy group. Conclusion: Our study shows that add on hydrotherapy enhanced the vagal tone in addition to reducing the frequency and intensity of headaches in migraine patients.

  1. Triptolide Upregulates Myocardial Forkhead Helix Transcription Factor p3 Expression and Attenuates Cardiac Hypertrophy

    Science.gov (United States)

    Ding, Yuan-Yuan; Li, Jing-Mei; Guo, Feng-Jie; Liu, Ya; Tong, Yang-Fei; Pan, Xi-Chun; Lu, Xiao-Lan; Ye, Wen; Chen, Xiao-Hong; Zhang, Hai-Gang

    2016-01-01

    The forkhead/winged helix transcription factor (Fox) p3 can regulate the expression of various genes, and it has been reported that the transfer of Foxp3-positive T cells could ameliorate cardiac hypertrophy and fibrosis. Triptolide (TP) can elevate the expression of Foxp3, but its effects on cardiac hypertrophy remain unclear. In the present study, neonatal rat ventricular myocytes (NRVM) were isolated and stimulated with angiotensin II (1 μmol/L) to induce hypertrophic response. The expression of Foxp3 in NRVM was observed by using immunofluorescence assay. Fifty mice were randomly divided into five groups and received vehicle (control), isoproterenol (Iso, 5 mg/kg, s.c.), one of three doses of TP (10, 30, or 90 μg/kg, i.p.) for 14 days, respectively. The pathological morphology changes were observed after Hematoxylin and eosin, lectin and Masson’s trichrome staining. The levels of serum brain natriuretic peptide (BNP) and troponin I were determined by enzyme-linked immunosorbent assay and chemiluminescence, respectively. The mRNA and protein expressions of α- myosin heavy chain (MHC), β-MHC and Foxp3 were determined using real-time PCR and immunohistochemistry, respectively. It was shown that TP (1, 3, 10 μg/L) treatment significantly decreased cell size, mRNA and protein expression of β-MHC, and upregulated Foxp3 expression in NRVM. TP also decreased heart weight index, left ventricular weight index and, improved myocardial injury and fibrosis; and decreased the cross-scetional area of the myocardium, serum cardiac troponin and BNP. Additionally, TP markedly reduced the mRNA and protein expression of myocardial β-MHC and elevated the mRNA and protein expression of α-MHC and Foxp3 in a dose-dependent manner. In conclusion, TP can effectively ameliorate myocardial damage and inhibit cardiac hypertrophy, which is at least partly related to the elevation of Foxp3 expression in cardiomyocytes. PMID:27965581

  2. CARDIAC AUTONOMIC NEUROPATHY AND MICROALBUMINURIA IN TYPE 2 DIABETES MELLITUS- A CROSS-SECTIONAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Suresh Padmini

    2017-02-01

    Full Text Available BACKGROUND Autonomous neuropathy is one of the least focused complications of type 2 diabetes mellitus in clinical practice. CAN is a significant cause of morbidity and mortality associated with a high risk of cardiac arrhythmias and sudden death. Higher urinary albumin excretion has been suggested as a predicting diabetic nephropathy. This cross-sectional study sought to determine relationship of CAN with early renal decline in type 2 diabetes mellitus. MATERIALS AND METHODS Over a period of two years, patients with type 2 diabetes mellitus after careful exclusion of other risk factors for proteinuria, 199 patients were included in this cross-sectional survey. CAN was measured by portable ANSiscope and 24-hour urine microalbumin level was estimated. Correlation was sought between the two variable. RESULTS Out of the 199 patients chosen for the study, 127 were male. The mean age of diabetes was 6.4±3.9 years. 57.8% had late or advanced CAN and there was a significant linear correlation with 24-hour urine microalbumin levels. CONCLUSION Measurement of CAN is an effective way to assess the level of cardiac sympathetic dysfunction due to disease in patients with type 2 diabetes mellitus of more than 5 years duration. Urine microalbumin levels correlate with the degree of CAN. There is a strong need to conduct more studies about CAN to fully understand its pathology and develop treatment strategies to reduce cardiac mortality.

  3. Affect during incremental exercise: The role of inhibitory cognition, autonomic cardiac function, and cerebral oxygenation.

    Directory of Open Access Journals (Sweden)

    Weslley Quirino Alves da Silva

    Full Text Available Pleasure is a key factor for physical activity behavior in sedentary individuals. Inhibitory cognitive control may play an important role in pleasure perception while exercising, especially at high intensities. In addition, separate work suggests that autonomic regulation and cerebral hemodynamics influence the affective and cognitive responses during exercise.We investigated the effects of exercise intensity on affect, inhibitory control, cardiac autonomic function, and prefrontal cortex (PFC oxygenation.Thirty-seven sedentary young adults performed two experimental conditions (exercise and control in separate sessions in a repeated-measures design. In the exercise condition, participants performed a maximum graded exercise test on a cycle ergometer as we continuously measured oxygen consumption, heart rate variability (HRV, and PFC oxygenation. At each of 8 intensity levels we also measured inhibitory control (Stroop test, associative and dissociative thoughts (ADT, and affective/pleasure ratings. In the control condition, participants sat motionless on a cycle ergometer without active pedaling, and we collected the same measures at the same points in time as the exercise condition. We evaluated the main effects and interactions of exercise condition and intensity level for each measure using two-way repeated measures ANOVAs. Additionally, we evaluated the relationship between affect and inhibitory control, ADT, HRV, and PFC oxygenation using Pearson's correlation coefficients.For exercise intensities below and at the ventilatory threshold (VT, participants reported feeling neutral, with preservation of inhibitory control, while intensities above the VT were associated with displeasure (p<0.001, decreased inhibitory control and HRV (p<0.001, and increased PFC oxygenation (p<0.001. At the highest exercise intensity, pleasure was correlated with the low-frequency index of HRV (r = -0.34; p<0.05 and the low-frequency/high-frequency HRV ratio (r

  4. Cardiac autonomic neuropathy in patients with uraemia is not related to pre-diabetes

    DEFF Research Database (Denmark)

    Eming, Marie Bayer; Hornum, Mads; Feldt-Rasmussen, Bo Friis

    2011-01-01

    INTRODUCTION: It has been proposed that pre-diabetes may cause neuropathy. The aim of this study was to investigate whether cardiac autonomic neuropathy (CAN) in uraemic patients was related to the presence of pre-diabetes. MATERIAL AND METHODS: The study included 66 non-diabetic uraemic patients...... enrolled. Beat-to-beat variability was determined from the echocardiographic (ECG) recording during deep inspiration and expiration. CAN was defined as a beat-to-beat value below 10 beats/min. Pre-diabetes was defined as presence of impaired fasting glucose and/or impaired glucose tolerance measured...... by oral glucose tolerance test (WHO/American Diabetes Association criteria 2007). RESULTS: The prevalence of CAN was 38% in uraemic patients compared with 8% in the controls (p prediabetic, while the remaining 39 had a normal glucose...

  5. The effect of sleep apnea severity on cardiac autonomic activity during night time in obstructive sleep apnea patients

    Directory of Open Access Journals (Sweden)

    Gulay Ozkececi

    Full Text Available ABSTRACT CONTEXT AND OBJECTIVE: Impaired autonomic cardiac function is an important consequence of obstructive sleep apnea (OSA. This impairment is mainly due to intermittent hypoxia episodes following apneas. However, the impact of apnea severity on autonomic cardiac function remains unclear. The aim of this study was to evaluate the relationship between the severity of sleep apnea and heart rate turbulence (HRT and heart rate variability (HRV in OSA. DESIGN AND SETTING: Observational cross-sectional study conducted in the Departments of Cardiology and Pulmonary Diseases, Afyon Kocatepe University, Turkey. METHODS: 106 patients with OSA and 27 healthy volunteers were enrolled. Based on apnea hypopnea index (AHI values, obstructive sleep apnea severity was classified as follows: mild OSA (AHI ≥ 5 and 30. HRV and HRT parameters were assessed via 24-hour digital Holter electrocardiogram recordings for all subjects. RESULTS: HRV and HRT results were significantly lower among OSA patients than among control subjects (P < 0.05. However, there were no significant differences in HRT and HRV between the three patient subgroups. Correlations did emerge between AHI and the NN-interval parameter RMSSD and between oxygen desaturation and turbulence slope (respectively: r = -0.22, P = 0.037; and r = -0.28, P = 0.025. CONCLUSION: HRT and HRV results deteriorate in OSA. Correlations between apnea severity and these parameters seem to be present.

  6. Cardiac sympathetic neuronal imaging using PET

    International Nuclear Information System (INIS)

    Lautamaeki, Riikka; Tipre, Dnyanesh; Bengel, Frank M.

    2007-01-01

    Balance of the autonomic nervous system is essential for adequate cardiac performance, and alterations seem to play a key role in the development and progression of various cardiac diseases. PET imaging of the cardiac autonomic nervous system has advanced extensively in recent years, and multiple pre- and postsynaptic tracers have been introduced. The high spatial and temporal resolution of PET enables noninvasive quantification of neurophysiologic processes at the tissue level. Ligands for catecholamine receptors, along with radiolabeled catecholamines and catecholamine analogs, have been applied to determine involvement of sympathetic dysinnervation at different stages of heart diseases such as ischemia, heart failure, and arrhythmia. This review summarizes the recent findings in neurocardiological PET imaging. Experimental studies with several radioligands and clinical findings in cardiac dysautonomias are discussed. (orig.)

  7. Sudarshan Kriya Yoga improves cardiac autonomic control in patients with anxiety-depression disorders.

    Science.gov (United States)

    Toschi-Dias, Edgar; Tobaldini, Eleonora; Solbiati, Monica; Costantino, Giorgio; Sanlorenzo, Roberto; Doria, Stefania; Irtelli, Floriana; Mencacci, Claudio; Montano, Nicola

    2017-05-01

    Several studies have demonstrated that adjuvant therapies as exercise and breathing training are effective in improving cardiac autonomic control (CAC) in patients with affective spectrum disorders. However, the effects of Sudarshan Kriya Yoga (SKY) on autonomic function in this population is unknown. Our objective was to test the hypothesis that SKY training improves CAC and cardiorespiratory coupling in patients with anxiety and/or depression disorders. Forty-six patients with a diagnosis of anxiety and/or depression disorders (DSM-IV) were consecutively enrolled and divided in two groups: 1) conventional therapy (Control) and 2) conventional therapy associated with SKY (Treatment) for 15 days. Anxiety and depression levels were determined using quantitative questionnaires. For the assessment of CAC and cardiorespiratory coupling, cardiorespiratory traces were analyzed using monovariate and bivariate autoregressive spectral analysis, respectively. After 15-days, we observed a reduction of anxiety and depression levels only in Treatment group. Moreover, sympathetic modulation and CAC were significantly lower while parasympathetic modulation and cardiorespiratory coupling were significantly higher in the Treatment compared to Control group. Intensive breathing training using SKY approach improves anxiety and/or depressive disorders as well as CAC and cardiorespiratory coupling. These finding suggest that the SKY training may be a useful non-pharmacological intervention to improve symptoms and reduce cardiovascular risk in patients with anxiety/depression disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Cardiac effects produced by long-term stimulation of thoracic autonomic ganglia or nerves: implications for interneuronal interactions within the thoracic autonomic nervous system.

    Science.gov (United States)

    Butler, C; Watson-Wright, W M; Wilkinson, M; Johnstone, D E; Armour, J A

    1988-03-01

    Electrical stimulation of an acutely decentralized stellate or middle cervical ganglion or cardiopulmonary nerve augments cardiac chronotropism or inotropism; as the stimulation continues there is a gradual reduction of this augmentation following the peak response, i.e., an inhibition of augmentation. The amount of this inhibition was found to be dependent upon the region of the heart investigated and the neural structure stimulated. The cardiac parameters which were augmented the most displayed the greatest inhibition. Maximum augmentation or inhibition occurred, in most instances, when 5-20 Hz stimuli were used. Inhibition of augmentation was overcome when the stimulation frequency was subsequently increased or following the administration of nicotine or tyramine, indicating that the inhibition was not primarily due to the lack of availability of noradrenaline in the nerve terminals of the efferent postganglionic sympathetic neurons. Furthermore, as infusions of isoproterenol or noradrenaline during the period of inhibition could still augment cardiac responses, whereas during the early peak responses they did not, the inhibition of augmentation does not appear to be due primarily to down regulation of cardiac myocyte beta-adrenergic receptors. The inhibition was modified by hexamethonium but not by phentolamine or atropine. Inhibition occurred when all ipsilateral cardiopulmonary nerves connected with acutely decentralized middle cervical and stellate ganglia were stimulated, whereas significant inhibition did not occur when these nerves were stimulated after they had been disconnected from the ipsilateral decentralized ganglia. Taken together these data indicate that the inhibition of cardiac augmentation which occurs during relatively long-term stimulation of intrathoracic sympathetic neural elements is due in large part to nicotinic cholinergic synaptic mechanisms that lie primarily in the major thoracic autonomic ganglia. They also indicate that long

  9. Profound Autonomic Instability Complicated by Multiple Episodes of Cardiac Asystole and Refractory Bradycardia in a Patient with Anti-NMDA Encephalitis

    Directory of Open Access Journals (Sweden)

    Stephanie R. Mehr

    2016-01-01

    Full Text Available Anti-N-methyl-D-aspartate receptor encephalitis (anti-NMDARE is autoimmune encephalitis primarily affecting young adults and children. First described about a decade ago, it frequently manifests as a syndrome that includes progressive behavioral changes, psychosis, central hypoventilation, seizures, and autonomic instability. Although cardiac arrhythmias often accompany anti-NMDARE, the need for long-term electrophysiological support is rare. We describe the case of NMDARE whose ICU course was complicated by progressively worsening episodes of tachyarrhythmia-bradyarrhythmia and episodes of asystole from which she was successfully resuscitated. Her life-threatening episodes of autonomic instability were successfully controlled only after the placement of a permanent pacemaker during her ICU stay. She made a clinical recovery and was discharged to a skilled nursing facility after a protracted hospital course.

  10. Aging in autonomic control by multifractal studies of cardiac interbeat intervals in the VLF band

    International Nuclear Information System (INIS)

    Makowiec, Danuta; Kryszewski, Stanisław; Rynkiewicz, Andrzej; Wdowczyk-Szulc, Joanna; Żarczyńska-Buchowiecka, Marta; Gałąska, Rafał

    2011-01-01

    The heart rate responds dynamically to various intrinsic and environmental stimuli. The autonomic nervous system is said to play a major role in this response. Multifractal analysis offers a novel method to assess the response of cardiac interbeat intervals. Twenty-four hour ECG recordings of RR interbeat intervals (of 48 elderly volunteers (age 65–94), 40 middle-aged persons (age 45–53) and 36 young adults (age 18–26)) were investigated to study the effect of aging on autonomic regulation during normal activity in healthy adults. Heart RR-interval variability in the very low frequency (VLF) band (32–420 RR intervals) was evaluated by multifractal tools. The nocturnal and diurnal signals of 6 h duration were studied separately. For each signal, the analysis was performed twice: for a given signal and for the integrated signal. A multifractal spectrum was quantified by the h max value at which a multifractal spectrum attained its maximum, width of a spectrum, Hurst exponent, extreme events h left and distance between the maxima of a signal and its integrated counterpart. The following seven characteristics are suggested as quantifying the age-related decrease in the autonomic function ('int' refers to the integrated signal): (a) h sleep max − h max wake > 0.05 for a signal; (b) h int max > 1.15 for wake; (c) h int max − h max > 0.85 for sleep; (d) Hurst wake − Hurst sleep < 0.01; (e) width wake > 0.07; (f) width int < 0.30 for sleep; (g) h int left > 0.75. Eighty-one percent of elderly people had at least four of these properties, and ninety-two percent of young people had three or less. This shows that the multifractal approach offers a concise and reliable index of healthy aging for each individual. Additionally, the applied method yielded insights into dynamical changes in the autonomic regulation due to the circadian cycle and aging. Our observations support the hypothesis that imbalance in the autonomic control due to healthy aging could

  11. Study of the association between left ventricular diastolic impairment and cardiac autonomic neuropathy in diabetic patients using [123I] metaiodobenzylguanidine scintigraphy

    International Nuclear Information System (INIS)

    Suzuki, Rokuro; Tanaka, Shiro; Tojo, Osamu; Ishii, Tomofusa; Sato, Toshihiko; Fujii, Satoru; Tumura, Kei.

    1994-01-01

    The association between left ventricular (LV) diastolic dysfunction and myocardial MIBG accumulation was investigated. The subjects were 14 Type II diabetic patients who had no evidence of ischemic heat disease, LV hypertrophy or dilated cardiomyopathy as determined by exercise Tl-201 myocardial scintigraphy and echocardiography. In 14 diabetic patients, isovolumic relaxation time (IRT) was measured by M-mode echocardiography, and the subjects were subdivided into two groups: Group1, 8 patients with impaired left ventricular diastolic function (IRT≥80 msec), and Group 2, 6 patients with normal left ventricular diastolic function (IRT 123 I-MIBG myocardial scintigraphy was performed, and the myocardial accumulation of 123 I-MIBG was investigated. The ratio of myocardial to mediastinal MIBG uptake was significantly (p<0.01) lower in Group 1 than in Group 2. And scintigraphic defects were significantly (p<0.05) more numerous in Group 1 than in Group 2. Patients in Group 1 had a greater frequency of cardiac autonomic neuropathy evaluated by QTc interval and coefficient of variation of R-R interval, when compared with Group 2. These data suggest that, in diabetic patients with no evidence of ischemic heart disease, LV hypertrophy or dilated cardiomyopathy, impairment of left ventricular diastolic function is associated with cardiac autonomic neuropathy. (author)

  12. Evaluation of diabetic autonomic neuropathy by 123I-metaiodobenzyl-guanidine (MIBG) cardiac imaging. Initial report

    International Nuclear Information System (INIS)

    Osonoi, Takeshi; Fukumoto, Yoshihiro; Saitou, Miyoko; Kuroda, Yasuhisa; Uchimi, Nobuo; Ishioka, Kuniharu; Onuma, Tomio; Suga, Shigeki; Takebe, Kazuo.

    1994-01-01

    Single-photon emission computed tomography was performed in 52 diabetics and 10 healthy volunteers using MIBG. The diabetics had no particular findings of electrocardiography, echocardiography, or exercise thallium imaging and no cardiovascular episodes. The healthy volunteers had no abnormal findings on exercise thallium imaging or glucose tolerance test. The average relative regional uptake (RRU) was decreased in the inferoposterior wall compared with the anterior or lateral wall in both the diabetics and volunteers. According to the RRU and visual images, we divided the diabetics into the following four groups: 14 who were normal (group N), 30 with segmental defects (group S), 4 with diffuse defects (group D) and 4 without accumulation (group DH). Diabetic complications (retinopathy, nephropathy, and neuropathy) and hypertension were more frequent in group S than group N. However, there were no significant differences in the physiological evidence of autonomic neuropathy (C.V. of the R-R interval on the ECG and blood pressure response to standing or deep breathing) between groups S and N. Vibration sense was significantly more impaired in group S than in group N. These results suggest that cardiac imaging with MIBG might be a useful examination for the early diagnosis of diabetic autonomic neuropathy. (author)

  13. Cardiac Organ Damage and Arterial Stiffness in Autonomic Failure: Comparison With Essential Hypertension.

    Science.gov (United States)

    Milazzo, Valeria; Maule, Simona; Di Stefano, Cristina; Tosello, Francesco; Totaro, Silvia; Veglio, Franco; Milan, Alberto

    2015-12-01

    Autonomic failure (AF) is characterized by orthostatic hypotension, supine hypertension, and increased blood pressure (BP) variability. AF patients develop cardiac organ damage, similarly to essential hypertension (EH), and have higher arterial stiffness than healthy controls. Determinants of cardiovascular organ damage in AF are not well known: both BP variability and mean BP values may be involved. The aim of the study was to evaluate cardiac organ damage, arterial stiffness, and central hemodynamics in AF, compared with EH subjects with similar 24-hour BP and a group of healthy controls, and to evaluate determinants of target organ damage in patients with AF. Twenty-seven patients with primary AF were studied (mean age, 65.7±11.2 years) using transthoracic echocardiography, carotid-femoral pulse wave velocity, central hemodynamics, and 24-hour ambulatory BP monitoring. They were compared with 27 EH subjects matched for age, sex, and 24-hour mean BP and with 27 healthy controls. AF and EH had similar left ventricular mass (101.6±33.3 versus 97.7±28.1 g/m(2), P=0.59) and carotid-femoral pulse wave velocity (9.3±1.8 versus 9.2±3.0 m/s, P=0.93); both parameters were significantly lower in healthy controls (Phypertensive heart disease and increased arterial stiffness, similar to EH with comparable mean BP values. Twenty-four-hour and nighttime systolic BP were determinants of cardiovascular damage, independent of BP variability. © 2015 American Heart Association, Inc.

  14. Marine n-3 Polyunsaturated Fatty Acids in Psoriatic Arthritis – Inflammation and Cardiac Autonomic and Hemodynamic Function

    DEFF Research Database (Denmark)

    Kristensen, Salome

    This thesis is based on three studies of patients with established psoriatic arthritis (PsA) aiming at investigating the effect of marine n-3 polyunsaturated fatty acids (PUFA) on clinical symptoms and selected measures of inflammation, cardiac autonomic and hemodynamic function in these patients...... with either 3 g of marine n-3 PUFA (6 capsules of fish oil) or 3 g of olive oil daily for 24 weeks. A total of 133 patients (92%) completed the study. The difference in the outcomes between baseline and 24 weeks was analysed within and between the two supplemented groups. In Study II, the effects of n-3 PUFA...

  15. Cardiac Autonomic and Blood Pressure Responses to an Acute Bout of Kettlebell Exercise.

    Science.gov (United States)

    Wong, Alexei; Nordvall, Michael; Walters-Edwards, Michelle; Lastova, Kevin; Francavillo, Gwendolyn; Summerfield, Liane; Sanchez-Gonzalez, Marcos

    2017-10-07

    Kettlebell (KB) training has become an extremely popular exercise program for improving both muscle strength and aerobic fitness. However, the cardiac autonomic modulation and blood pressure (BP) responses induced by an acute KB exercise session are currently unknown. Understanding the impact of this exercise modality on the post-exercise autonomic modulation and BP would facilitate appropriate exercise prescription in susceptible populations. The present study evaluated the effects of an acute session of KB exercise on heart rate variability (HRV) and BP responses in healthy individuals. Seventeen (M=10, F=7) healthy subjects completed either a KB or non-exercise control trial in randomized order. HRV and BP measurements were collected at baseline, 3, 10 and 30 min after each trial. There were significant increases (P < 0.01) in heart rate, markers of sympathetic activity (nLF) and sympathovagal balance (nLF/nHF) for 30 min after the trial KB trial, while no changes from baseline were observed after the control trial. There were also significant decreases (P < 0.01) in markers of vagal tone (RMMSD, nHF) for 30 min as well as (P < 0.01) systolic BP and diastolic BP at 10 and 30 min after the trial KB trial while no changes from baseline were observed after the control trial. Our findings indicate that KB exercise increases sympathovagal balance for 30 min post-intervention which is concurrent with an important hypotensive effect. Further research is warranted to evaluate the potential clinical application of KB training in populations that might benefit from post-exercise hypotension, such as hypertensives.

  16. Social stress contagion in rats: Behavioural, autonomic and neuroendocrine correlates.

    Science.gov (United States)

    Carnevali, Luca; Montano, Nicola; Statello, Rosario; Coudé, Gino; Vacondio, Federica; Rivara, Silvia; Ferrari, Pier Francesco; Sgoifo, Andrea

    2017-08-01

    The negative emotional consequences associated with life stress exposure in an individual can affect the emotional state of social partners. In this study, we describe an experimental rat model of social stress contagion and its effects on social behaviour and cardiac autonomic and neuroendocrine functions. Adult male Wistar rats were pair-housed and one animal (designated as "demonstrator" (DEM)) was submitted to either social defeat stress (STR) by an aggressive male Wild-type rat in a separate room or just exposed to an unfamiliar empty cage (control condition, CTR), once a day for 4 consecutive days. We evaluated the influence of cohabitation with a STR DEM on behavioural, cardiac autonomic and neuroendocrine outcomes in the cagemate (defined "observer" (OBS)). After repeated social stress, STR DEM rats showed clear signs of social avoidance when tested in a new social context compared to CTR DEM rats. Interestingly, also their cagemate STR OBSs showed higher levels of social avoidance compared to CTR OBSs. Moreover, STR OBS rats exhibited a higher heart rate and a larger shift of cardiac autonomic balance toward sympathetic prevalence (as indexed by heart rate variability analysis) immediately after the first reunification with their STR DEMs, compared to the control condition. This heightened cardiac autonomic responsiveness habituated over time. Finally, STR OBSs showed elevated plasma corticosterone levels at the end of the experimental protocol compared to CTR OBSs. These findings demonstrate that cohabitation with a DEM rat, which has experienced repeated social defeat stress, substantially disrupts social behaviour and induces short-lasting cardiac autonomic activation and hypothalamic-pituitary-adrenal axis hyperactivity in the OBS rat, thus suggesting emotional state-matching between the OBS and the DEM rats. We conclude that this rodent model may be further exploited for investigating the neurobiological bases of negative affective sharing between

  17. Cardiac Autonomic Responses during Exercise and Post-exercise Recovery Using Heart Rate Variability and Systolic Time Intervals—A Review

    Science.gov (United States)

    Michael, Scott; Graham, Kenneth S.; Davis, Glen M.

    2017-01-01

    Cardiac parasympathetic activity may be non-invasively investigated using heart rate variability (HRV), although HRV is not widely accepted to reflect sympathetic activity. Instead, cardiac sympathetic activity may be investigated using systolic time intervals (STI), such as the pre-ejection period. Although these autonomic indices are typically measured during rest, the “reactivity hypothesis” suggests that investigating responses to a stressor (e.g., exercise) may be a valuable monitoring approach in clinical and high-performance settings. However, when interpreting these indices it is important to consider how the exercise dose itself (i.e., intensity, duration, and modality) may influence the response. Therefore, the purpose of this investigation was to review the literature regarding how the exercise dosage influences these autonomic indices during exercise and acute post-exercise recovery. There are substantial methodological variations throughout the literature regarding HRV responses to exercise, in terms of exercise protocols and HRV analysis techniques. Exercise intensity is the primary factor influencing HRV, with a greater intensity eliciting a lower HRV during exercise up to moderate-high intensity, with minimal change observed as intensity is increased further. Post-exercise, a greater preceding intensity is associated with a slower HRV recovery, although the dose-response remains unclear. A longer exercise duration has been reported to elicit a lower HRV only during low-moderate intensity and when accompanied by cardiovascular drift, while a small number of studies have reported conflicting results regarding whether a longer duration delays HRV recovery. “Modality” has been defined multiple ways, with limited evidence suggesting exercise of a greater muscle mass and/or energy expenditure may delay HRV recovery. STI responses during exercise and recovery have seldom been reported, although limited data suggests that intensity is a key

  18. Central nervous system involvement in the autonomic responses to psychological distress

    NARCIS (Netherlands)

    de Morree, H.M.; Szabó, B.M.; Rutten, G.J.; Kop, W.J.

    2013-01-01

    Psychological distress can trigger acute coronary syndromes and sudden cardiac death in vulnerable patients. The primary pathophysiological mechanism that plays a role in stress-induced cardiac events involves the autonomic nervous system, particularly disproportional sympathetic activation and

  19. Mechanical stretch up-regulates the B-type natriuretic peptide system in human cardiac fibroblasts: a possible defense against transforming growth factor-ß mediated fibrosis

    LENUS (Irish Health Repository)

    Watson, Chris J

    2012-07-07

    AbstractBackgroundMechanical overload of the heart is associated with excessive deposition of extracellular matrix proteins and the development of cardiac fibrosis. This can result in reduced ventricular compliance, diastolic dysfunction, and heart failure. Extracellular matrix synthesis is regulated primarily by cardiac fibroblasts, more specifically, the active myofibroblast. The influence of mechanical stretch on human cardiac fibroblasts’ response to pro-fibrotic stimuli, such as transforming growth factor beta (TGFβ), is unknown as is the impact of stretch on B-type natriuretic peptide (BNP) and natriuretic peptide receptor A (NPRA) expression. BNP, acting via NPRA, has been shown to play a role in modulation of cardiac fibrosis.Methods and resultsThe effect of cyclical mechanical stretch on TGFβ induction of myofibroblast differentiation in primary human cardiac fibroblasts and whether differences in response to stretch were associated with changes in the natriuretic peptide system were investigated. Cyclical mechanical stretch attenuated the effectiveness of TGFβ in inducing myofibroblast differentiation. This finding was associated with a novel observation that mechanical stretch can increase BNP and NPRA expression in human cardiac fibroblasts, which could have important implications in modulating myocardial fibrosis. Exogenous BNP treatment further reduced the potency of TGFβ on mechanically stretched fibroblasts.ConclusionWe postulate that stretch induced up-regulation of the natriuretic peptide system may contribute to the observed reduction in myofibroblast differentiation.

  20. High-frequency autonomic modulation: a new model for analysis of autonomic cardiac control.

    Science.gov (United States)

    Champéroux, Pascal; Fesler, Pierre; Judé, Sebastien; Richard, Serge; Le Guennec, Jean-Yves; Thireau, Jérôme

    2018-05-03

    Increase in high-frequency beat-to-beat heart rate oscillations by torsadogenic hERG blockers appears to be associated with signs of parasympathetic and sympathetic co-activation which cannot be assessed directly using classic methods of heart rate variability analysis. The present work aimed to find a translational model that would allow this particular state of the autonomic control of heart rate to be assessed. High-frequency heart rate and heart period oscillations were analysed within discrete 10 s intervals in a cohort of 200 healthy human subjects. Results were compared to data collected in non-human primates and beagle dogs during pharmacological challenges and torsadogenic hERG blockers exposure, in 127 genotyped LQT1 patients on/off β-blocker treatment and in subgroups of smoking and non-smoking subjects. Three states of autonomic modulation, S1 (parasympathetic predominance) to S3 (reciprocal parasympathetic withdrawal/sympathetic activation), were differentiated to build a new model of heart rate variability referred to as high-frequency autonomic modulation. The S2 state corresponded to a specific state during which both parasympathetic and sympathetic systems were coexisting or co-activated. S2 oscillations were proportionally increased by torsadogenic hERG-blocking drugs, whereas smoking caused an increase in S3 oscillations. The combined analysis of the magnitude of high-frequency heart rate and high-frequency heart period oscillations allows a refined assessment of heart rate autonomic modulation applicable to long-term ECG recordings and offers new approaches to assessment of the risk of sudden death both in terms of underlying mechanisms and sensitivity. © 2018 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  1. Impact of a soccer match on the cardiac autonomic control of referees.

    Science.gov (United States)

    Boullosa, Daniel Alexandre; Abreu, Laurinda; Tuimil, José Luis; Leicht, Anthony Scott

    2012-06-01

    The purpose of this study was to assess the effect of a soccer match on the cardiac autonomic control of heart rate (HR) in soccer referees. Sixteen Spanish regional and third division referees (11 males: 26 ± 7 years, 74.4 ± 4.1 kg, 178 ± 3 cm, Yo-Yo IR1 ~600-1,560 m; 5 females: 22 ± 3 years, 59.3 ± 4.8 kg, 158 ± 8 cm, Yo-Yo IR1 ~200-520 m) participated with 24-h HR recordings measured with a Polar RS800 during a rest and a match day. Autonomic control of HR was assessed from HR variability (HRV) analysis. Inclusion of a soccer match (92.5% spent at >75% maximum HR) reduced pre-match (12:00-17:00 hours; small to moderate), post-match (19:00-00:00 hours; moderate to almost perfect), and night-time (00:00-05:00 hours; small to moderate) HRV. Various moderate-to-large correlations were detected between resting HRV and the rest-to-match day difference in HRV. The rest-to-match day differences of low and high-frequency bands ratio (LF/HF) and HR in the post-match period were moderately correlated with time spent at different exercise intensities. Yo-Yo IR1 performance was highly correlated with jump capacity and peak lactate, but not with any HRV parameter. These results suggest that a greater resting HRV may allow referees to tolerate stresses during a match day with referees who spent more time at higher intensities during matches exhibiting a greater LF/HF increment in the post-match period. The relationship between match activities, [Formula: see text] and HR recovery kinetics in referees and team sport athletes of different competitive levels remains to be clarified.

  2. Cardiac autonomic modulation by estrogen in female mice undergoing ambulatory monitoring and in vivo electrophysiologic testing.

    Science.gov (United States)

    Saba, Samir; Shusterman, Vladimir; Usiene, Irmute; London, Barry

    2004-04-01

    Estrogen is an important modulator of cardiovascular risk, but its mechanism of action is not fully understood. We investigated the effect of ovariectomy and its timing on the cardiac electrophysiology in mice. Thirty female mice (age 18.8 +/- 3.1 weeks) underwent in vivo electrophysiologic testing before and after autonomic blockade. Fifteen mice were ovariectomized prepuberty (PRE) and ten postpuberty (POST), 2 weeks prior to electrophysiologic testing. Five age-matched sham-operated female mice (Control) served as controls. A subset of 13 mice (5 PRE, 3 POST, and 5 Controls) underwent 24-hour ambulatory monitoring. With ambulatory monitoring, the average (668 +/- 28 vs 769 +/- 52 b/min, P = 0.008) and minimum (485 +/- 47 vs 587 +/- 53 b/min, P = 0.02) heart rates were significantly slower in the ovariectomized mice (PRE and POST groups) compared to the Control group. At baseline electrophysiologic testing, there were no significant differences among the ovariectomized and intact mice in any of the measured parameters. With autonomic blockade, the Control group had a significantly larger change (delta) in the atrioventricular (AV) nodal Wenckebach (AVW) periodicity (deltaAVW = 11.3 +/- 2.9 vs 2.1 +/- 7.3 ms, P = 0.05) and functional refractory period (deltaFRP = 11.3 +/- 2.1 vs 1.25 +/- 6.8 ms, P = 0.02) compared to the ovariectomized mice. These results were not altered by the time of ovariectomy (PRE vs POST groups). Our results suggest that estrogen modulates the autonomic inputs into the murine sinus and AV nodes. These findings, if replicated in humans, might underlie the observed clustering of certain arrhythmias around menstruation and explain the higher incidence of arrhythmias in men and postmenopausal women.

  3. The ECG Vertigo in Diabetes and Cardiac Autonomic Neuropathy

    OpenAIRE

    Voulgari, Christina; Tentolouris, Nicholas; Stefanadis, Christodoulos

    2011-01-01

    The importance of diabetes in the epidemiology of cardiovascular diseases cannot be overemphasized. About one third of acute myocardial infarction patients have diabetes, and its prevalence is steadily increasing. The decrease in cardiac mortality in people with diabetes is lagging behind that of the general population. Cardiovascular disease is a broad term which includes any condition causing pathological changes in blood vessels, cardiac muscle or valves, and cardiac rhythm. The ECG offers...

  4. Autonomic hyper-vigilance in post-infective fatigue syndrome.

    Science.gov (United States)

    Kadota, Yumiko; Cooper, Gavin; Burton, Alexander R; Lemon, Jim; Schall, Ulrich; Lloyd, Andrew; Vollmer-Conna, Ute

    2010-09-01

    This study examined whether post-infective fatigue syndrome (PIFS) is associated with a disturbance in bidirectional autonomic signalling resulting in heightened perception of symptoms and sensations from the body in conjunction with autonomic hyper-reactivity to perceived challenges. We studied 23 patients with PIFS and 25 healthy matched control subjects. A heartbeat discrimination task and a pressure pain threshold test were used to assess interoceptive sensitivity. Cardiac response was assessed over a 4-min Stroop task. PIFS was associated with higher accuracy in heartbeat discrimination and a lower pressure pain threshold. Increased interoceptive sensitivity correlated strongly with current symptoms and potentiated differences in the cardiac response to the Stroop task, which in PIFS was characterized by insensitivity to task difficulty and lack of habituation. Our results provide the first evidence of heightened interoceptive sensitivity in PIFS. Together with the distinct pattern in cardiac responsivity these findings present a picture of physiological hyper-vigilance and response inflexibility. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  5. Improvements in Attention and Cardiac Autonomic Modulation After a 2-Weeks Sprint Interval Training Program: A Fidelity Approach

    Directory of Open Access Journals (Sweden)

    Arilson F. M. de Sousa

    2018-03-01

    Full Text Available This study aimed to: (1 investigate the influence of a 2-weeks sprint interval training (SIT program on aerobic capacity, cardiac autonomic control, and components of attention in young healthy university students; and (2 to ascertain whether training fidelity would influence these adaptations. One hundred and nine participants were divided into an experimental (EG and control (CG groups. The EG performed a SIT program that consisted of 6 sessions of 4 × 30 s “all-out” efforts on a cycle ergometer, interspersed with active rests of 4 min. The criterion for fidelity was achieving >90% of estimated maximum heart rate (HR during sprint bouts. After analyses, the EG was divided into HIGH (n = 26 and LOW (n = 46 fidelity groups. Components of attention were assessed using the Attention Network Test (ANT. Aerobic capacity (VO2max was estimated while the sum of skinfolds was determined. Autonomic control of HR was assessed by means of HR variability (HRV and HR complexity at rest and during ANT. Both HIGH and LOW significantly increased aerobic capacity, vagal modulation before and during ANT, and executive control, and decreased body fatness after SIT (p < 0.05. However, only participants from HIGH showed an increase in HR complexity and accuracy in ANT when compared to LOW (p < 0.05. Two weeks of SIT improved executive control, body fatness, aerobic fitness, and autonomic control in university students with better results reported in those individuals who exhibited high fidelity.

  6. Toll‐Like Receptor‐2 Mediates Adaptive Cardiac Hypertrophy in Response to Pressure Overload Through Interleukin‐1β Upregulation via Nuclear Factor κB Activation

    Science.gov (United States)

    Higashikuni, Yasutomi; Tanaka, Kimie; Kato, Megumi; Nureki, Osamu; Hirata, Yasunobu; Nagai, Ryozo; Komuro, Issei; Sata, Masataka

    2013-01-01

    Background Inflammation is induced in the heart during the development of cardiac hypertrophy. The initiating mechanisms and the role of inflammation in cardiac hypertrophy, however, remain unclear. Toll‐like receptor‐2 (TLR2) recognizes endogenous molecules that induce noninfectious inflammation. Here, we examined the role of TLR2‐mediated inflammation in cardiac hypertrophy. Methods and Results At 2 weeks after transverse aortic constriction, Tlr2−/− mice showed reduced cardiac hypertrophy and fibrosis with greater left ventricular dilatation and impaired systolic function compared with wild‐type mice, which indicated impaired cardiac adaptation in Tlr2−/− mice. Bone marrow transplantation experiment revealed that TLR2 expressed in the heart, but not in bone marrow–derived cells, is important for cardiac adaptive response to pressure overload. In vitro experiments demonstrated that TLR2 signaling can induce cardiomyocyte hypertrophy and fibroblast and vascular endothelial cell proliferation through nuclear factor–κB activation and interleukin‐1β upregulation. Systemic administration of a nuclear factor–κB inhibitor or anti–interleukin‐1β antibodies to wild‐type mice resulted in impaired adaptive cardiac hypertrophy after transverse aortic constriction. We also found that heat shock protein 70, which was increased in murine plasma after transverse aortic constriction, can activate TLR2 signaling in vitro and in vivo. Systemic administration of anti–heat shock protein 70 antibodies to wild‐type mice impaired adaptive cardiac hypertrophy after transverse aortic constriction. Conclusions Our results demonstrate that TLR2‐mediated inflammation induced by extracellularly released heat shock protein 70 is essential for adaptive cardiac hypertrophy in response to pressure overload. Thus, modulation of TLR2 signaling in the heart may provide a novel strategy for treating heart failure due to inadequate adaptation to hemodynamic

  7. Macaque cardiac physiology is sensitive to the valence of passively viewed sensory stimuli.

    Directory of Open Access Journals (Sweden)

    Eliza Bliss-Moreau

    Full Text Available Autonomic nervous system activity is an important component of affective experience. We demonstrate in the rhesus monkey that both the sympathetic and parasympathetic branches of the autonomic nervous system respond differentially to the affective valence of passively viewed video stimuli. We recorded cardiac impedance and an electrocardiogram while adult macaques watched a series of 300 30-second videos that varied in their affective content. We found that sympathetic activity (as measured by cardiac pre-ejection period increased and parasympathetic activity (as measured by respiratory sinus arrhythmia decreased as video content changes from positive to negative. These findings parallel the relationship between autonomic nervous system responsivity and valence of stimuli in humans. Given the relationship between human cardiac physiology and affective processing, these findings suggest that macaque cardiac physiology may be an index of affect in nonverbal animals.

  8. Hypothalamic-pituitary-adrenal and cardiac autonomic responses to transrectal examination differ with behavioral reactivity in dairy cows.

    Science.gov (United States)

    Kovács, L; Kézér, F L; Kulcsár-Huszenicza, M; Ruff, F; Szenci, O; Jurkovich, V

    2016-09-01

    Behavior, hypothalamic-pituitary-adrenal axis, and cardiac autonomic nervous system (ANS) activity were evaluated in response to transrectal examination in nonlactating Holstein-Friesian cows with different behavioral reactivity. According to behavioral reactions shown to the procedure of fixing the heart rate (HR) monitors, the 20 cows with the highest and the 20 cows with the lowest behavioral reactivity were involved in the study (high responder, n=20; and low responder, n=20, respectively). Activity of the ANS was assessed by HR and HR variability parameters. Blood and saliva were collected at 5 min before (baseline) and 0, 5 10, 15, 20, 30, 40, 60, and 120 min after the examination to determine cortisol concentrations. The examination lasted for 5 min. Cardiac parameters included HR, the root mean square of successive differences between the consecutive interbeat intervals, the high frequency (HF) component of heart rate variability, and the ratio between the low frequency (LF) and HF parameter (LF/HF). Following the examination, peak plasma and saliva cortisol levels and the amplitude of the plasma and saliva cortisol response were higher in high responder cows than in low responders. Areas under the plasma and saliva cortisol response curves were greater in high responder cows. Plasma and salivary cortisol levels correlated significantly at baseline (r=0.91), right after examination (r=0.98), and at peak levels (r=0.96). Area under the HR response curve was higher in low responder cows; however, maximum HR and the amplitude of the HR response showed no differences between groups. Minimum values of both parameters calculated for the examination were higher in high responders. Following the examination, response parameters of root mean square of successive differences and HF did not differ between groups. The maximum and the amplitude of LF/HF response and area under the LF/HF response curve were lower in low responder cows, suggesting a lower sympathetic

  9. Arg16Gly and Gln27Glu β2 adrenergic polymorphisms influence cardiac autonomic modulation and baroreflex sensitivity in healthy young Brazilians

    Science.gov (United States)

    Atala, Magda M; Goulart, Alessandra; Guerra, Grazia M; Mostarda, Cristiano; Rodrigues, Bruno; Mello, Priscila R; Casarine, Dulce E; Irigoyen, Maria-Claudia; Pereira, Alexandre C; Consolim-Colombo, Fernanda M

    2015-01-01

    The association between functional β2 adrenergic receptor (β2-AR) polymorphisms and cardiac autonomic modulation is still unclear. Thus, two common polymorphisms in the β2-AR gene (Gln27Glu β2 and Arg16Gly β2) were studied to determine whether they might affect tonic and reflex cardiac sympathetic activity in healthy young subjects. A total of 213 healthy young white subjects of both genders (53% female), aged 18-30 years (23.5±3.4 y), had their continuous blood pressure curves noninvasively recorded by Finometer at baseline, and other hemodynamic parameters, as cardiac autonomic modulation, baroreflex sensitivity, and allele, genotype, and diplotype frequencies calculated. Associations were made between Arg16Gly β2 and Gln27Glu β2 polymorphisms and between β2-AR diplotypes and all variables. The heart rate was significantly lower (P<0.001) in the presence of homozygous Arg/Arg alleles (60.9±1.5 bpm) than in that of Arg/Gly heterozygotes (65.9±1.0 bpm) or Gly/Gly homozygotes (66.3±1.2 bpm). Homozygous carriers of Arg16 allele had an alpha index (19.2±1.3) significantly higher (P<0.001) than that of the subjects with the Gly allele Gly/Gly (14.5±0.7) or Arg/Gly (14.6±0.7). Furthermore, the recessive Glu27Glu and the heterozygous Gln27Glu genotypes had a higher percentage of low-frequency components (LF%) than the homozygous Gln27Gln (15.1% vs. 16.0% vs. 8.2%, P=0.03, respectively). In healthy young subjects, the presence of β2-AR Arg16 allele in a recessive model was associated with higher baroreflex sensitivity, and increased parasympathetic modulation in studied individuals. PMID:25755837

  10. Autonomic innervation of the heart. Role of molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Slart, Riemer H.J.A; Elsinga, Philip H. [Univ. Medical Center Groningen (Netherlands). Nuclear Medicine and Molecular Imaging; Tio, Rene A. [Univ. Medical Center Groningen (Netherlands). Thorax Center Cardiology; Schwaiger, Markus (ed.) [Technische Univ. Muenchen Klinikum Rechts der Isar (Germany). Nuklearmedizinische Klinik

    2015-03-01

    Reviews in detail the value of SPECT-CT and PET-CT in the imaging of cardiac innervation. Details the role of imaging in a range of conditions and diseases. Includes important background on pathophysiology, tracers, radiopharmaceutical production, and kinetic modeling software. This book explains in detail the potential value of the hybrid modalities, SPECT-CT and PET-CT, in the imaging of cardiac innervation in a wide range of conditions and diseases, including ischemic heart disease, diabetes mellitus, heart failure, amyloidosis, heart transplantation, and ventricular arrhythmias. Imaging of the brain-heart axis in neurodegenerative disease and stress and of cardiotoxicity is also discussed. The roles of the various available tracers are fully considered, and individual chapters address radiopharmaceutical development under GMP, imaging physics, and kinetic modeling software. Highly relevant background information is included on the autonomic nervous system of the heart and its pathophysiology, and in addition future perspectives are discussed. Awareness of the importance of autonomic innervation of the heart for the optimal management of cardiac patients is growing, and there is an evident need for objective measurement techniques or imaging modalities. In this context, Autonomic Innervation of the Heart will be of wide interest to clinicians, researchers, and industry.

  11. Autonomic innervation of the heart. Role of molecular imaging

    International Nuclear Information System (INIS)

    Slart, Riemer H.J.A; Elsinga, Philip H.; Tio, Rene A.; Schwaiger, Markus

    2015-01-01

    Reviews in detail the value of SPECT-CT and PET-CT in the imaging of cardiac innervation. Details the role of imaging in a range of conditions and diseases. Includes important background on pathophysiology, tracers, radiopharmaceutical production, and kinetic modeling software. This book explains in detail the potential value of the hybrid modalities, SPECT-CT and PET-CT, in the imaging of cardiac innervation in a wide range of conditions and diseases, including ischemic heart disease, diabetes mellitus, heart failure, amyloidosis, heart transplantation, and ventricular arrhythmias. Imaging of the brain-heart axis in neurodegenerative disease and stress and of cardiotoxicity is also discussed. The roles of the various available tracers are fully considered, and individual chapters address radiopharmaceutical development under GMP, imaging physics, and kinetic modeling software. Highly relevant background information is included on the autonomic nervous system of the heart and its pathophysiology, and in addition future perspectives are discussed. Awareness of the importance of autonomic innervation of the heart for the optimal management of cardiac patients is growing, and there is an evident need for objective measurement techniques or imaging modalities. In this context, Autonomic Innervation of the Heart will be of wide interest to clinicians, researchers, and industry.

  12. Distinctive cardiac autonomic dysfunction following stress exposure in both sexes in an animal model of PTSD.

    Science.gov (United States)

    Koresh, Ori; Kaplan, Zeev; Zohar, Joseph; Matar, Michael A; Geva, Amir B; Cohen, Hagit

    2016-07-15

    It is unclear whether the poor autonomic flexibility or dysregulation observed in patients with posttraumatic stress disorder (PTSD) represents a pre-trauma vulnerability factor or results from exposure to trauma. We used an animal model of PTSD to assess the association between the behavioral response to predator scent stress (PSS) and the cardiac autonomic modulation in male and female rats. The rats were surgically implanted with radiotelemetry devices to measure their electrocardiograms and locomotor activity (LMA). Following baseline telemetric monitoring, the animals were exposed to PSS or sham-PSS. Continuous telemetric monitoring (24h/day sampling) was performed over the course of 7days. The electrocardiographic recordings were analyzed using the time- and frequency-domain indexes of heart rate variability (HRV). The behavioral response patterns were assessed using the elevated plus maze and acoustic startle response paradigms for the retrospective classification of individuals according to the PTSD-related cut-off behavioral criteria. During resting conditions, the male rats had significantly higher heart rates (HR) and lower HRV parameters than the female rats during both the active and inactive phases of the daily cycle. Immediately after PSS exposure, both the female and male rats demonstrated a robust increase in HR and a marked drop in HRV parameters, with a shift of sympathovagal balance towards sympathetic predominance. In both sexes, autonomic system habituation and recovery were selectively inhibited in the rats whose behavior was extremely disrupted after exposure to PSS. However, in the female rats, exposure to the PSS produced fewer EBR rats, with a more rapid recovery curve than that of the male rats. PSS did not induce changes to the circadian rhythm of the LMA. According to our results, PTSD can be conceptualized as a disorder that is related to failure-of-recovery mechanisms that impede the restitution of physiological homeostasis

  13. CAPSAICIN SUPPLEMENTATION FAILS TO MODULATE AUTONOMIC AND CARDIAC ELECTROPHYSIOLOGIC ACTIVITY DURING EXERCISE IN THE OBESE: WITH VARIANTS OF UCP2 AND UCP3 POLYMORPHISM

    Directory of Open Access Journals (Sweden)

    Ki Ok Shin

    2008-09-01

    Full Text Available We investigated the effects of capsaicin supplementation (150mg on alterations of autonomic nervous system (ANS activity associated with adverse effects of cardiac depolarization-repolarization intervals during aerobic exercise in obese humans. Nine obese males (26.1 ± 1.5 yrs volunteered between study designed. The cardiac ANS activities evaluated by means of heart rate variability of power spectral analysis and cardiac QT interval were continuously measured during 5-min rest and 30-min exercise at 50% of maximal ventilation threshold (50%VTmax on stationary ergometer with placebo (CON or capsaicin (CAP oral administration chosen at random. The uncoupling protein (UCP 2 and UCP 3 genetic variants of the subjects were analyzed by noninvasive genotyping method from collecting buccal mucosa cells. The results indicated that there were no significant differences in cardiac ANS activities during rest and exercise between CON and CAP trials. Although no significant difference, A/A allele of UCP2 polymorphism showed a reduced sympathetic nervous system (SNS index activity compared to G/G + G/A allele during exercise intervention in our subjects. On the other hand, the data on cardiac QT interval showed no significant difference, indicating that oral administration of capsaicin did not cause any adverse effect on cardiac depolarization-repolarization. In conclusion, our results suggest that capsaicin supplementation 1 h before exercise intervention has no effect on cardiac ANS activities and cardiac electrical stability during exercise in obese individuals. Further studies should also consider genetic variants for exercise efficacy against obesity

  14. Are Cardiac Autonomic Nervous System Activity and Perceived Stress Related to Functional Somatic Symptoms in Adolescents? The TRAILS Study.

    Directory of Open Access Journals (Sweden)

    Karin A M Janssens

    Full Text Available Stressors have been related to medically insufficiently explained or functional somatic symptoms (FSS. However, the underlying mechanism of this association is largely unclear. In the current study, we examined whether FSS are associated with different perceived stress and cardiac autonomic nervous system (ANS levels during a standardized stressful situation, and whether these associations are symptom-specific.We examined 715 adolescents (16.1 years, 51.3% girls from the Dutch cohort study Tracking Adolescents' Individual Lives Sample during the Groningen Social Stress Test (GSST. FSS were assessed by the Youth Self-Report, and clustered into a cluster of overtiredness, dizziness and musculoskeletal pain and a cluster of headache and gastrointestinal symptoms. Perceived stress levels (i.e. unpleasantness and arousal were assessed by the Self-Assessment Manikin, and cardiac ANS activity by assessing heart rate variability (HRV-HF and pre-ejection period (PEP. Perceived stress and cardiac ANS levels before, during, and after the GSST were studied as well as cardiac ANS reactivity. Linear regression analyses were used to examine the associations.Perceived arousal levels during (beta = 0.09, p = 0.04 and after (beta = 0.07, p = 0.047 the GSST, and perceived unpleasantness levels before (beta = 0.07, p = 0.048 and during (beta = 0.12, p = 0.001 the GSST were related to FSS during the past couple of months. The association between perceived stress and FSS was stronger for the FSS cluster of overtiredness, dizziness and musculoskeletal pain than for the cluster of headache and gastrointestinal symptoms. Neither ANS activity levels before, during, and after the GSST, nor maximal HF-HRV and PEP reactivity were related to FSS.This study suggests that perceived stress levels during social stress are related to FSS, whereas cardiac ANS activity and reactivity are not related to FSS.

  15. Cardiac parasympathetic reactivation following exercise: implications for training prescription.

    Science.gov (United States)

    Stanley, Jamie; Peake, Jonathan M; Buchheit, Martin

    2013-12-01

    The objective of exercise training is to initiate desirable physiological adaptations that ultimately enhance physical work capacity. Optimal training prescription requires an individualized approach, with an appropriate balance of training stimulus and recovery and optimal periodization. Recovery from exercise involves integrated physiological responses. The cardiovascular system plays a fundamental role in facilitating many of these responses, including thermoregulation and delivery/removal of nutrients and waste products. As a marker of cardiovascular recovery, cardiac parasympathetic reactivation following a training session is highly individualized. It appears to parallel the acute/intermediate recovery of the thermoregulatory and vascular systems, as described by the supercompensation theory. The physiological mechanisms underlying cardiac parasympathetic reactivation are not completely understood. However, changes in cardiac autonomic activity may provide a proxy measure of the changes in autonomic input into organs and (by default) the blood flow requirements to restore homeostasis. Metaboreflex stimulation (e.g. muscle and blood acidosis) is likely a key determinant of parasympathetic reactivation in the short term (0-90 min post-exercise), whereas baroreflex stimulation (e.g. exercise-induced changes in plasma volume) probably mediates parasympathetic reactivation in the intermediate term (1-48 h post-exercise). Cardiac parasympathetic reactivation does not appear to coincide with the recovery of all physiological systems (e.g. energy stores or the neuromuscular system). However, this may reflect the limited data currently available on parasympathetic reactivation following strength/resistance-based exercise of variable intensity. In this review, we quantitatively analyse post-exercise cardiac parasympathetic reactivation in athletes and healthy individuals following aerobic exercise, with respect to exercise intensity and duration, and fitness

  16. Alterations in cardiac autonomic control in spinal cord injury

    DEFF Research Database (Denmark)

    Biering-Sørensen, Fin; Biering-Sørensen, Tor; Liu, Nan

    2018-01-01

    parasympathetic cardiac control. Decreases in sympathetic activity result in heart rate and the arterial blood pressure changes, and may cause arrhythmias, in particular bradycardia, with the risk of cardiac arrest in those with cervical or high thoracic injuries. The objective of this review is to give an update...

  17. Cardiac autonomic functions and the emergence of violence in a highly realistic model of social conflict in humans.

    Directory of Open Access Journals (Sweden)

    Jozsef eHaller

    2014-10-01

    Full Text Available Among the multitude of factors that can transform human social interactions into violent conflicts, biological features received much attention in recent years as correlates of decision making and aggressiveness especially in critical situations. We present here a highly realistic new model of human aggression and violence, where genuine acts of aggression are readily performed and which at the same time allows the parallel recording of biological concomitants. Particularly, we studied police officers trained at the International Training Centre (Budapest, Hungary, who are prepared to perform operations under extreme conditions of stress. We found that aggressive arousal can transform a basically peaceful social encounter into a violent conflict. Autonomic recordings show that this change is accompanied by increased heart rates, which was associated earlier with reduced cognitive complexity of perceptions (attentional myopia and promotes a bias towards hostile attributions and aggression. We also observed reduced heart rate variability in violent subjects, which is believed to signal a poor functioning of prefrontal-subcortical inhibitory circuits and reduces self-control. Importantly, these autonomic particularities were observed already at the beginning of social encounters i.e. before aggressive acts were initiated, suggesting that individual characteristics of the stress-response define the way in which social pressure affects social behavior, particularly the way in which this develops into violence. Taken together, these findings suggest that cardiac autonomic functions are valuable external symptoms of internal motivational states and decision making processes, and raise the possibility that behavior under social pressure can be predicted by the individual characteristics of stress responsiveness.

  18. Characterization of Glutamatergic Neurons in the Rat Atrial Intrinsic Cardiac Ganglia that Project to the Cardiac Ventricular Wall

    Science.gov (United States)

    Wang, Ting; Miller, Kenneth E.

    2016-01-01

    The intrinsic cardiac nervous system modulates cardiac function by acting as an integration site for regulating autonomic efferent cardiac output. This intrinsic system is proposed to be composed of a short cardio-cardiac feedback control loop within the cardiac innervation hierarchy. For example, electrophysiological studies have postulated the presence of sensory neurons in intrinsic cardiac ganglia for regional cardiac control. There is still a knowledge gap, however, about the anatomical location and neurochemical phenotype of sensory neurons inside intrinsic cardiac ganglia. In the present study, rat intrinsic cardiac ganglia neurons were characterized neurochemically with immunohistochemistry using glutamatergic markers: vesicular glutamate transporters 1 and 2 (VGLUT1; VGLUT2), and glutaminase (GLS), the enzyme essential for glutamate production. Glutamatergic neurons (VGLUT1/VGLUT2/GLS) in the ICG that have axons to the ventricles were identified by retrograde tracing of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injected in the ventricular wall. Co-labeling of VGLUT1, VGLUT2, and GLS with the vesicular acetylcholine transporter (VAChT) was used to evaluate the relationship between post-ganglionic autonomic neurons and glutamatergic neurons. Sequential labeling of VGLUT1 and VGLUT2 in adjacent tissue sections was used to evaluate the co-localization of VGLUT1 and VGLUT2 in ICG neurons. Our studies yielded the following results: (1) intrinsic cardiac ganglia contain glutamatergic neurons with GLS for glutamate production and VGLUT1 and 2 for transport of glutamate into synaptic vesicles; (2) atrial intrinsic cardiac ganglia contain neurons that project to ventricle walls and these neurons are glutamatergic; (3) many glutamatergic ICG neurons also were cholinergic, expressing VAChT. (4) VGLUT1 and VGLUT2 co-localization occurred in ICG neurons with variation of their protein expression level. Investigation of both glutamatergic and cholinergic ICG

  19. Assessment of cardiac sympathetic nerve integrity with positron emission tomography

    International Nuclear Information System (INIS)

    Raffel, David M.; Wieland, Donald M.

    2001-01-01

    The autonomic nervous system plays a critical role in the regulation of cardiac function. Abnormalities of cardiac innervation have been implicated in the pathophysiology of many heart diseases, including sudden cardiac death and congestive heart failure. In an effort to provide clinicians with the ability to regionally map cardiac innervation, several radiotracers for imaging cardiac sympathetic neurons have been developed. This paper reviews the development of neuronal imaging agents and discusses their emerging role in the noninvasive assessment of cardiac sympathetic innervation

  20. Autonomic Modulation in Duchenne Muscular Dystrophy during a Computer Task: A Prospective Control Trial.

    Directory of Open Access Journals (Sweden)

    Mayra Priscila Boscolo Alvarez

    Full Text Available Duchenne Muscular Dystrophy (DMD is characterized by progressive muscle weakness that can lead to disability. Owing to functional difficulties faced by individuals with DMD, the use of assistive technology is essential to provide or facilitate functional abilities. In DMD, cardiac autonomic dysfunction has been reported in addition to musculoskeletal impairment. Consequently, the objective was to investigate acute cardiac autonomic responses, by Heart Rate Variability (HRV, during computer tasks in subjects with DMD.HRV was assessed by linear and nonlinear methods, using the heart rate monitor Polar RS800CX chest strap Electrocardiographic measuring device. Then, 45 subjects were included in the group with DMD and 45 in the healthy Typical Development (TD control group. They were assessed for twenty minutes at rest sitting, and five minutes after undergoing a task on the computer.Individuals with DMD had a statistically significant lower parasympathetic cardiac modulation at rest when compared to the control group, which further declined when undergoing the tasks on the computer.DMD patients presented decreased HRV and exhibited greater intensity of cardiac autonomic responses during computer tasks characterized by vagal withdrawal when compared to the healthy TD control subjects.

  1. Is applying the same exercise-based inpatient program to normal and reduced left ventricular function patients the best strategy after coronary surgery? A focus on autonomic cardiac response.

    Science.gov (United States)

    Mendes, Renata Gonçalves; Simões, Rodrigo Polaquini; Costa, Fernando de Souza Melo; Pantoni, Camila Bianca Falasco; Di Thommazo-Luporini, Luciana; Luzzi, Sérgio; Amaral-Neto, Othon; Arena, Ross; Catai, Aparecida Maria; Borghi-Silva, Audrey

    2014-01-01

    To assess whether the same exercise-based inpatient program applied to patients with normal and reduced left ventricular function (LVF) evokes a similar cardiac autonomic response after coronary artery bypass graft (CABG). Forty-four patients post-CABG, subgrouped according to normal LVF [LVFN: n = 23; left ventricular ejection fraction (LVEF) ≥ 55%] and reduced LVF (LVFR: n = 21; LVEF 35-54%), were included. All initiated the exercise protocol on post-operative day 1 (PO1), following a whole progressive program until discharge. Cardiac autonomic response was assessed by the indices of heart rate variability (HRV) at rest and during exercise (extremity range of motion and ambulation). During ambulation, lower values of HRV indices were found in the LVFR group compared with the LVFN group [standard deviation of all RR (STDRR; 6.1 ± 2.7 versus 8.9 ± 4.7 ms), baseline width of the RR histogram (TINN; 30.6 ± 14.8 versus 45.8 ± 24.9 ms), SD2 (14.8 ± 8.0 versus 21.3 ± 9.0 ms), Shannon entropy (3.6 ± 0.5 versus 3.9 ± 0.4) and correlation dimension (0.08 ± 0.2 versus 0.2 ± 0.2)]. Also, when comparing the ambulation to rest change, lower values were observed in the LVFR group for linear (STDRR, TINN, RR TRI, rMSSD) and non-linear (SD2 and correlation dimension) HRV indices (p exercise (extremity range of motion), for mean intervals between heart beats and heart rate. For patients with LVFN, the same inpatient exercise protocol triggered a more attenuated autonomic response compared with patients with LVFR. These findings have implications as to how exercise should be prescribed according to LVF in the early stages following recovery from CABG. Implications for Rehabilitation Exercise-based inpatient program, performed by post-CABG patients who have normal left ventricular function, triggered a more attenuated cardiac autonomic response compared with patients with reduced left ventricular function. Volume of the inpatient exercises should be prescribed according

  2. Association of evening smartphone use with cardiac autonomic nervous activity after awakening in adolescents living in high school dormitories.

    Science.gov (United States)

    Nose, Yoko; Fujinaga, Rina; Suzuki, Maki; Hayashi, Ikuyo; Moritani, Toshio; Kotani, Kazuhiko; Nagai, Narumi

    2017-04-01

    Smartphones are prevalently used among adolescents; however, nighttime exposure to blue-enriched light, through electric devices, is known to induce delays of the circadian rhythm phases and poor morning somatic conditions. We therefore investigated whether evening smartphone use may affect sleep-wake cycle and cardiac autonomic nervous system (ANS) activity after awaking in dormitory students. The participants were high school students, living under dormitory rules regarding the curfew, study, meals, lights-out, and wake-up times. The students were forbidden from the use of both television and personal computer in their private rooms, and only the use of a smartphone was permitted. According to prior assessment of smartphone use, we chose age-, sex-, exercise time-matched long (n = 22, >120 min) and short (n = 14, ≤60 min) groups and compared sleep-wake cycle and physiological parameters, such as cardiac ANS activity, blood pressure, and intra-aural temperature. All measurements were performed during 6:30 to 7:00 a.m. in the dormitories. Compared with the short group, the long group showed a significantly lower cardiac ANS activity (2727 ± 308 vs. 4455 ± 667 ms 2 , p = 0.030) with a tendency toward a high heart rate, in addition to later bedtimes during weekdays and more delayed wake-up times over the weekend. Blood pressure and intra-aural temperature did not differ between the groups. In this population, evening smartphone use may be associated with altered sleep-wake cycle and a diminished cardiac ANS activity after awakening could be affecting daytime activities.

  3. Cardiac autonomic imbalance by social stress in rodents: understanding putative biomarkers

    Directory of Open Access Journals (Sweden)

    Susan K Wood, Phd

    2014-08-01

    Full Text Available Exposure to stress or traumatic events can lead to the development of depression and anxiety disorders. In addition to the debilitating consequences on mental health, patients with psychiatric disorders also suffer from autonomic imbalance, making them susceptible to a variety of medical disorders. Emerging evidence utilizing spectral analysis of heart rate variability (HRV, a reliable noninvasive measure of cardiovascular autonomic regulation, indicates that patients with depression and various anxiety disorders (i.e., panic, social, generalized anxiety disorders, and post traumatic stress disorder are characterized by decreased HRV. Social stressors in rodents are ethologically relevant experimental stressors that recapitulate many of the dysfunctional behavioral and physiological changes that occur in psychological disorders. In this review, evidence from clinical studies and preclinical stress models identify putative biomarkers capable of precipitating the comorbidity between disorders of the mind and autonomic dysfunction. Specifically, the role of corticotropin releasing factor, neuropeptide Y and inflammation are investigated. The impetus for this review is to highlight stress-related biomarkers that may prove critical in the development of autonomic imbalance in stress -related psychiatric disorders.

  4. Cardiovascular autonomic neuropathy in non-diabetic Nigerian ...

    African Journals Online (AJOL)

    Five standard cardiovascular reflex (CVR) tests namely: heart rate response to deep breathing, Valsalva manoevre and posture, as well as blood pressure response to hand grip and posture were used to evaluate the cardiac autonomic functions. A pre-tested questionnaire was administered, with neurological examination ...

  5. Effects of inspiratory muscle exercise in the pulmonary function, autonomic modulation, and hemodynamic variables in older women with metabolic syndrome

    Science.gov (United States)

    Feriani, Daniele Jardim; Coelho, Hélio José; Scapini, Kátia Bilhar; de Moraes, Oscar Albuquerque; Mostarda, Cristiano; Ruberti, Olivia Moraes; Uchida, Marco Carlos; Caperuto, Érico Chagas; Irigoyen, Maria Cláudia; Rodrigues, Bruno

    2017-01-01

    The aim of the present study was to investigate the effects of inspiratory muscle exercise (IME) on metabolic and hemodynamic parameters, cardiac autonomic modulation and respiratory function of older women with metabolic syndrome (MS). For this, sixteen older women with MS and 12 aged-matched controls participated of the present study. Two days before and 2 days after the main experiment, fasting blood samples (i.e., total cholesterol, triglycerides and blood glucose), cardiac autonomic modulation (i.e., heart rate variability), and respiratory muscle function were obtained and evaluated. The sessions of physical exercise was based on a IME, which was performed during 7 days. Each session of IME was performed during 20 min, at 30% of maximal static inspiratory pressure. In the results, MS group presented higher levels of triglycerides, blood glucose, and systolic blood pressure when compared to control group. IME was not able to change these variables. However, although MS group showed impaired respiratory muscle strength and function, as well as cardiac autonomic modulation, IME was able to improve these parameters. Thus, the data showed that seven days of IME are capable to improve respiratory function and cardiac autonomic modulation of older women with MS. These results indicate that IME can be a profitable therapy to counteracting the clinical markers of MS, once repeated sessions of acute IME can cause chronical alterations on respiratory function and cardiac autonomic modulation. PMID:28503537

  6. Cardiac vagal tone, a non-invasive measure of parasympathetic tone, is a clinically relevant tool in Type 1 diabetes mellitus

    DEFF Research Database (Denmark)

    Brock, C; Jessen, N; Brock, B

    2017-01-01

    AIMS: To compare a novel index of parasympathetic tone, cardiac vagal tone, with established autonomic variables and to test the hypotheses that (1) cardiac vagal tone would be associated with established time and frequency domain measures of heart rate and (2) cardiac vagal tone would be lower...... identification of people with Type 1 diabetes who should undergo formal autonomic function testing....

  7. Intrinsic cardiac nervous system in tachycardia induced heart failure.

    Science.gov (United States)

    Arora, Rakesh C; Cardinal, Rene; Smith, Frank M; Ardell, Jeffrey L; Dell'Italia, Louis J; Armour, J Andrew

    2003-11-01

    The purpose of this study was to test the hypothesis that early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiac function. After 2 wk of rapid ventricular pacing in nine anesthetized canines, cardiac and right atrial neuronal function were evaluated in situ in response to enhanced cardiac sensory inputs, stimulation of extracardiac autonomic efferent neuronal inputs, and close coronary arterial administration of neurochemicals that included nicotine. Right atrial neuronal intracellular electrophysiological properties were then evaluated in vitro in response to synaptic activation and nicotine. Intrinsic cardiac nicotine-sensitive, neuronally induced cardiac responses were also evaluated in eight sham-operated, unpaced animals. Two weeks of rapid ventricular pacing reduced the cardiac index by 54%. Intrinsic cardiac neurons of paced hearts maintained their cardiac mechano- and chemosensory transduction properties in vivo. They also responded normally to sympathetic and parasympathetic preganglionic efferent neuronal inputs, as well as to locally administered alpha-or beta-adrenergic agonists or angiotensin II. The dose of nicotine needed to modify intrinsic cardiac neurons was 50 times greater in failure compared with normal preparations. That dose failed to alter monitored cardiovascular indexes in failing preparations. Phasic and accommodating neurons identified in vitro displayed altered intracellular membrane properties compared with control, including decreased membrane resistance, indicative of reduced excitability. Early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiodynamics. While maintaining its capacity to transduce cardiac mechano- and chemosensory inputs, as well as inputs from extracardiac autonomic efferent neurons, intrinsic cardiac nicotine-sensitive, local-circuit neurons differentially remodel such that their capacity to

  8. Myocardial ischaemia and the cardiac nervous system.

    Science.gov (United States)

    Armour, J A

    1999-01-01

    The intrinsic cardiac nervous system has been classically considered to contain only parasympathetic efferent postganglionic neurones which receive inputs from medullary parasympathetic efferent preganglionic neurones. In such a view, intrinsic cardiac ganglia act as simple relay stations of parasympathetic efferent neuronal input to the heart, the major autonomic control of the heart purported to reside solely in the brainstem and spinal cord. Data collected over the past two decades indicate that processing occurs within the mammalian intrinsic cardiac nervous system which involves afferent neurones, local circuit neurones (interconnecting neurones) as well as both sympathetic and parasympathetic efferent postganglionic neurones. As such, intrinsic cardiac ganglionic interactions represent the organ component of the hierarchy of intrathoracic nested feedback control loops which provide rapid and appropriate reflex coordination of efferent autonomic neuronal outflow to the heart. In such a concept, the intrinsic cardiac nervous system acts as a distributive processor, integrating parasympathetic and sympathetic efferent centrifugal information to the heart in addition to centripetal information arising from cardiac sensory neurites. A number of neurochemicals have been shown to influence the interneuronal interactions which occur within the intrathoracic cardiac nervous system. For instance, pharmacological interventions that modify beta-adrenergic or angiotensin II receptors affect cardiomyocyte function not only directly, but indirectly by influencing the capacity of intrathoracic neurones to regulate cardiomyocytes. Thus, current pharmacological management of heart disease may influence cardiomyocyte function directly as well as indirectly secondary to modifying the cardiac nervous system. This review presents a brief summary of developing concepts about the role of the cardiac nervous system in regulating the normal heart. In addition, it provides some

  9. Impact of traffic-related air pollution on acute changes in cardiac autonomic modulation during rest and physical activity: a cross-over study.

    Science.gov (United States)

    Cole-Hunter, Tom; Weichenthal, Scott; Kubesch, Nadine; Foraster, Maria; Carrasco-Turigas, Glòria; Bouso, Laura; Martínez, David; Westerdahl, Dane; de Nazelle, Audrey; Nieuwenhuijsen, Mark

    2016-01-01

    People are often exposed to traffic-related air pollution (TRAP) during physical activity (PA), but it is not clear if PA modifies the impact of TRAP on cardiac autonomic modulation. We conducted a panel study among 28 healthy adults in Barcelona, Spain to examine how PA may modify the impact of TRAP on cardiac autonomic regulation. Participants completed four 2-h exposure scenarios that included either rest or intermittent exercise in high- and low-traffic environments. Time- and frequency-domain measures of heart rate variability (HRV) were monitored during each exposure period along with continuous measures of TRAP. Linear mixed-effects models were used to estimate the impact of TRAP on HRV as well as potential effect modification by PA. Exposure to TRAP was associated with consistent decreases in HRV; however, exposure-response relationships were not always linear over the broad range of exposures. For example, each 10 μg/m(3) increase in black carbon was associated with a 23% (95% CI: -31, -13) decrease in high frequency power at the low-traffic site, whereas no association was observed at the high-traffic site. PA modified the impact of TRAP on HRV at the high-traffic site and tended to weaken inverse associations with measures reflecting parasympathetic modulation (P ≤ 0.001). Evidence of effect modification at the low-traffic site was less consistent. The strength and direction of the relationship between TRAP and HRV may vary across exposure gradients. PA may modify the impact of TRAP on HRV, particularly at higher concentrations.

  10. Cardiac Autonomic and Blood Pressure Responses to an Acute Foam Rolling Session.

    Science.gov (United States)

    Lastova, Kevin; Nordvall, Michael; Walters-Edwards, Michelle; Allnutt, Amy; Wong, Alexei

    2018-03-22

    Foam Rolling (FR) is a self-myofascial release method that has become extremely popular among athletes and fitness enthusiasts for its ability to improve flexibility and range of motion and alleviate delayed onset muscle soreness. However, the cardiac autonomic modulation and blood pressure (BP) responses induced by an acute FR session are currently unknown. The present study evaluated the effects of an acute session of FR exercise on heart rate variability (HRV) and BP responses in healthy individuals. Fifteen (M=8, F=7) healthy subjects completed either a FR or non-exercise control trial in randomized order. HRV and BP measurements were collected at baseline, 10 and 30 min after each trial. There were significant increases (P < 0.01) in markers of vagal tone (nHF) for 30 min after the FR trial, while no changes from baseline were observed following control. There were also significant decreases (P < 0.05) in markers of sympathetic activity (nLF), sympathovagal balance (nLF/nHF), systolic BP and diastolic BP at 10 and 30 min after the trial KB trial while no changes from baseline were observed after the control trial. Our findings indicate that FR decreases sympathovagal balance for 30 min post-intervention which is concurrent with an important hypotensive effect. Further research is warranted to evaluate the potential cardiovascular protective effects of FR in diverse populations.

  11. Cardiac autonomic tone during trandolapril-irbesartan low-dose combined therapy in hypertension: a pilot project.

    Science.gov (United States)

    Franchi, F; Lazzeri, C; Foschi, M; Tosti-Guerra, C; Barletta, G

    2002-08-01

    Pharmacological and clinical studies on the effects of angiotensin-converting enzyme (ACE) inhibitors support the idea of a central role played Angiotensin II which is able to cause cardiovascular and renal diseases also independently of its blood pressure elevating effects. The present investigation was aimed at evaluating the effect(s) of three different pharmacological regimens on both blood pressure and sympathetic drive in uncomplicated essential hypertension, by means of blood pressure laboratory measurements and ambulatory monitoring, 24-h heart rate variability and plasma noradrenaline levels. Thus, an ACE-inhibitor monotherapy (trandolapril, 2 mg/day), an AT(1)-receptor antagonist monotherapy (irbesartan, 300 mg/day), their low-dose combination (0.5 mg/day plus 150 mg/day, respectively) and placebo were given, in a randomised, single-blind, crossover fashion for a period of 3 weeks each to 12 mild essential hypertensives. Power spectral analysis (short recordings) and noradrenaline measurements were also performed in the supine position and after a postural challenge (60 degrees head-up tilting test: HUT). The low-dose combination therapy induced the greatest reduction in LF component and in LF/HF ratio, both in the resting and tilted positions, as well as in blood pressure. However, the physiological autonomic response to HUT was maintained. Noradrenaline plasma levels were lower after the combined therapy than after each drug alone. Our data demonstrate that in mild and uncomplicated essential hypertension, the chronic low-dose combination therapy with an ACE-inhibitor and an AT(1)-antagonist is more effective than the recommended full-dose monotherapy with either drug in influencing the autonomic regulation of the heart, suggesting a relative reduction in sympathetic drive both at cardiac and systemic levels.

  12. Association between Birth Characteristics and Cardiovascular Autonomic Function at Mid-Life.

    Directory of Open Access Journals (Sweden)

    Nelli Perkiömäki

    Full Text Available Low birth weight is associated with an increased risk of cardiovascular diseases in adulthood. As abnormal cardiac autonomic function is a common feature in cardiovascular diseases, we tested the hypothesis that low birth weight may also be associated with poorer cardiac autonomic function in middle-aged subjects.At the age of 46, the subjects of the Northern Finland Birth Cohort 1966 were invited to examinations including questionnaires about health status and life style and measurement of vagally-mediated heart rate variability (rMSSD from R-R intervals (RRi and spontaneous baroreflex sensitivity (BRS in both seated and standing positions. Maternal parameters had been collected in 1965-1966 since the 16th gestational week and birth variables immediately after delivery. For rMSSD, 1,799 men and 2,279 women without cardiorespiratory diseases and diabetes were included and 902 men and 1,020 women for BRS. The analyses were adjusted for maternal (age, anthropometry, socioeconomics, parity, gestational smoking and adult variables (life style, anthropometry, blood pressure, glycemic and lipid status potentially confounding the relationship between birth weight and autonomic function.In men, birth weight correlated negatively with seated (r = -0.058, p = 0.014 and standing rMSSD (r = -0.090, p<0.001, as well as with standing BRS (r = -0.092, p = 0.006. These observations were verified using relevant birth weight categories (<2,500 g; 2,500-3,999 g; ≥4,000 g. In women, birth weight was positively correlated with seated BRS (r = 0.081, p = 0.010, but none of the other measures of cardiovascular autonomic function. These correlations remained significant after adjustment for potential confounders (p<0.05 for all.In men, higher birth weight was independently associated with poorer cardiac autonomic function at mid-life. Same association was not observed in women. Our findings suggest that higher, not lower, birth weight in males may contribute to less

  13. AUTONOMIC NERVOUS ACTIVITY AND LIPID OXIDATION POSTEXERCISE WITH CAPSAICIN IN THE HUMANS

    Directory of Open Access Journals (Sweden)

    Ki Ok Shin

    2010-06-01

    Full Text Available This study evaluated the synergistic effects of acute exercise with capsaicin (200mg upon the restoration of cardiac autonomic functions and depolarization- repolarization interval as well as substrate oxidation. Nine healthy males [21.9(0.8 yrs] volunteered for this study. Cardiac autonomic activity, metabolic responses, and the ECG QT intervals were continuously measured during 5 min at rest and postexercise recovery after 30 min exercise at 50% VO2max on a stationary ergometer with placebo (ECON or capsaicin intake (ECAP, and no exercise control (NCON were randomized. Results indicated that the HF power reflecting parasympathetic activity significantly returned to the baseline much faster during ECAP than ECON trial during postexercise [122.1 (23.2 vs. 60.2 (11.7 %, p < 0.05]. The ECAP trial significantly decreased RQ [0.79(0.02 vs. 0.85 (0.03, p < 0.05] with significantly greater fat oxidation [69.3 (6.0 vs. 49.4 (10.8 %, p < 0.05] in comparison to NCON trial during 120 min postexercise recovery without any adverse effects on cardiac electrical stability as determined by trigger-averaged ECG QT interval analyses. We suggest that capsaicin before the exercise may contribute to the improvement of cardio-protective functions and metabolic responses as one of the beneficial supplements accelerating faster restoration of autonomic activity and enhanced lipolysis during postexercise recovery without any adverse effects on cardiac electrical stability

  14. Human autonomic rhythms: vagal cardiac mechanisms in tetraplegic subjects

    Science.gov (United States)

    Koh, J.; Brown, T. E.; Beightol, L. A.; Ha, C. Y.; Eckberg, D. L.

    1994-01-01

    1. We studied eight young men (age range: 20-37 years) with chronic, clinically complete high cervical spinal cord injuries and ten age-matched healthy men to determine how interruption of connections between the central nervous system and spinal sympathetic motoneurones affects autonomic cardiovascular control. 2. Baseline diastolic pressures and R-R intervals (heart periods) were similar in the two groups. Slopes of R-R interval responses to brief neck pressure changes were significantly lower in tetraplegic than in healthy subjects, but slopes of R-R interval responses to steady-state arterial pressure reductions and increases were comparable. Plasma noradrenaline levels did not change significantly during steady-state arterial pressure reductions in tetraplegic patients, but rose sharply in healthy subjects. The range of arterial pressure and R-R interval responses to vasoactive drugs (nitroprusside and phenylephrine) was significantly greater in tetraplegic than healthy subjects. 3. Resting R-R interval spectral power at respiratory and low frequencies was similar in the two groups. During infusions of vasoactive drugs, low-frequency R-R interval spectral power was directly proportional to arterial pressure in tetraplegic patients, but was unrelated to arterial pressure in healthy subjects. Vagolytic doses of atropine nearly abolished both low- and respiratory-frequency R-R interval spectral power in both groups. 4. Our conclusions are as follows. First, since tetraplegic patients have significant levels of low-frequency arterial pressure and R-R interval spectral power, human Mayer arterial pressure waves may result from mechanisms that do not involve stimulation of spinal sympathetic motoneurones by brainstem neurones. Second, since in tetraplegic patients, low-frequency R-R interval spectral power is proportional to arterial pressure, it is likely to be mediated by a baroreflex mechanism. Third, since low-frequency R-R interval rhythms were nearly abolished

  15. Insulin resistance and circadian rhythm of cardiac autonomic modulation

    Directory of Open Access Journals (Sweden)

    Cai Jianwen

    2010-12-01

    Full Text Available Abstract Background Insulin resistance (IR has been associated with cardiovascular diseases (CVD. Heart rate variability (HRV, an index of cardiac autonomic modulation (CAM, is also associated with CVD mortality and CVD morbidity. Currently, there are limited data about the impairment of IR on the circadian pattern of CAM. Therefore, we conducted this investigation to exam the association between IR and the circadian oscillations of CAM in a community-dwelling middle-aged sample. Method Homeostasis models of IR (HOMA-IR, insulin, and glucose were used to assess IR. CAM was measured by HRV analysis from a 24-hour electrocardiogram. Two stage modeling was used in the analysis. In stage one, for each individual we fit a cosine periodic model based on the 48 segments of HRV data. We obtained three individual-level cosine parameters that quantity the circadian pattern: mean (M, measures the overall average of a HRV index; amplitude (Â, measures the amplitude of the oscillation of a HRV index; and acrophase time (θ, measures the timing of the highest oscillation. At the second stage, we used a random-effects-meta-analysis to summarize the effects of IR variables on the three circadian parameters of HRV indices obtained in stage one of the analysis. Results In persons without type diabetes, the multivariate adjusted β (SE of log HOMA-IR and M variable for HRV were -0.251 (0.093, -0.245 (0.078, -0.19 (0.06, -4.89 (1.76, -3.35 (1.31, and 2.14 (0.995, for log HF, log LF, log VLF, SDNN, RMSSD and HR, respectively (all P Conclusion Elevated IR, among non-diabetics significantly impairs the overall mean levels of CAM. However, the  or θ of CAM were not significantly affected by IR, suggesting that the circadian mechanisms of CAM are not impaired. However, among persons with type 2 diabetes, a group clinically has more severe form of IR, the adverse effects of increased IR on all three HRV circadian parameters are much larger.

  16. Quantifying Effects of Pharmacological Blockers of Cardiac Autonomous Control Using Variability Parameters.

    Science.gov (United States)

    Miyabara, Renata; Berg, Karsten; Kraemer, Jan F; Baltatu, Ovidiu C; Wessel, Niels; Campos, Luciana A

    2017-01-01

    Objective: The aim of this study was to identify the most sensitive heart rate and blood pressure variability (HRV and BPV) parameters from a given set of well-known methods for the quantification of cardiovascular autonomic function after several autonomic blockades. Methods: Cardiovascular sympathetic and parasympathetic functions were studied in freely moving rats following peripheral muscarinic (methylatropine), β1-adrenergic (metoprolol), muscarinic + β1-adrenergic, α1-adrenergic (prazosin), and ganglionic (hexamethonium) blockades. Time domain, frequency domain and symbolic dynamics measures for each of HRV and BPV were classified through paired Wilcoxon test for all autonomic drugs separately. In order to select those variables that have a high relevance to, and stable influence on our target measurements (HRV, BPV) we used Fisher's Method to combine the p -value of multiple tests. Results: This analysis led to the following best set of cardiovascular variability parameters: The mean normal beat-to-beat-interval/value (HRV/BPV: meanNN), the coefficient of variation (cvNN = standard deviation over meanNN) and the root mean square differences of successive (RMSSD) of the time domain analysis. In frequency domain analysis the very-low-frequency (VLF) component was selected. From symbolic dynamics Shannon entropy of the word distribution (FWSHANNON) as well as POLVAR3, the non-linear parameter to detect intermittently decreased variability, showed the best ability to discriminate between the different autonomic blockades. Conclusion: Throughout a complex comparative analysis of HRV and BPV measures altered by a set of autonomic drugs, we identified the most sensitive set of informative cardiovascular variability indexes able to pick up the modifications imposed by the autonomic challenges. These indexes may help to increase our understanding of cardiovascular sympathetic and parasympathetic functions in translational studies of experimental diseases.

  17. Diastolic and autonomic dysfunction in early cirrhosis

    DEFF Research Database (Denmark)

    Dahl, Emilie Kristine; Møller, Søren; Kjær, Andreas

    2014-01-01

    OBJECTIVE. Presence of cardiac dysfunction in patients with advanced cirrhosis is widely accepted, but data in early stages of cirrhosis are limited. Systolic and diastolic functions, dynamics of QT-interval, and pro-atrial natriuretic peptide (pro-ANP) are investigated in patients with early stage...... cirrhosis during maximal β-adrenergic drive. MATERIAL AND METHODS. Nineteen patients with Child A (n = 12) and Child B cirrhosis (n = 7) and seven matched controls were studied during cardiac stress induced by increasing dosages of dobutamine and atropine. RESULTS. Pharmacological responsiveness was similar...... indicate that patients with early stage cirrhosis exhibit early diastolic and autonomic dysfunction as well as elevated pro-ANP. However, the cardiac chronotropic and inotropic responses to dobutamine stress were normal. The dynamics of ventricular repolarization appears normal in patients with early stage...

  18. The cardiac copper chaperone proteins Sco1 and CCS are up-regulated, but Cox 1 and Cox4 are down-regulated, by copper deficiency.

    Science.gov (United States)

    Getz, Jean; Lin, Dingbo; Medeiros, Denis M

    2011-10-01

    Copper is ferried in a cell complexed to chaperone proteins, and in the heart much copper is required for cytochrome c oxidase (Cox). It is not completely understood how copper status affects the levels of these proteins. Here we determined if dietary copper deficiency could up- or down-regulate select copper chaperone proteins and Cox subunits 1 and 4 in cardiac tissue of rats. Sixteen weanling male Long-Evans rats were randomized into treatment groups, one group receiving a copper-deficient diet (CCS, Sco1, Ctr1, Cox17, Cox1, and Cox4 by SDS-PAGE and Western blotting. No changes were observed in the concentrations of CTR1 and Cox17 between copper-adequate and copper-deficient rats. CCS and Sco1 were up-regulated and Cox1 and Cox4 were both down-regulated as a result of copper deficiency. These data suggest that select chaperone proteins and may be up-regulated, and Cox1 and 4 down-regulated, by a dietary copper deficiency, whereas others appear not to be affected by copper status.

  19. Cardiovascular autonomic function in Cushing's syndrome.

    Science.gov (United States)

    Fallo, F; Maffei, P; Dalla Pozza, A; Carli, M; Della Mea, P; Lupia, M; Rabbia, F; Sonino, N

    2009-01-01

    Cardiac autonomic dysfunction is associated with increased cardiovascular mortality. No data on sympathovagal balance are available in patients with Cushing's syndrome, in whom cardiovascular risk is high. We studied 10 patients with newly diagnosed Cushing's syndrome (1 male/9 females; age mean+/-SD, 47+/-10 yr) and 10 control subjects matched for age, sex, body mass index, and cardiovascular risk factors. In both groups there were 7 patients with arterial hypertension, 3 with diabetes mellitus, and 2 with obesity. Cardiac autonomic function was evaluated by analysis of short time heart rate variability (HRV) measures in frequency domain over 24-h, daytime, and nighttime. The 24-h ambulatory blood pressure monitoring and echocardiography were also performed. In comparison with controls, patients with Cushing's syndrome had lower 24-h (1.3+/-0.6 vs 3.7+/-1.5, mean+/-SD, p<0.01), daytime (2.0+/-1.4 vs 4.5+/-1.6, p<0.01), and night-time (1.0+/-0.4 vs 3.5+/-2.3, p<0.01) low-frequency/ high frequency (LF/HF) power ratio. In the presence of similar LF power, the difference was due to elevation in HF power in Cushing's syndrome compared to controls: 24-h, 12.7+/-6.7 vs 5.8+/-2.8, p<0.01; daytime, 10.2+/-7.3 vs 4.5+/-2.1, p<0.05; nighttime, 14.2+/-7.0 vs 7.8+/-4.7, p<0.05. Eight Cushing patients vs 4 controls had a non-dipping blood pressure profile. At echocardiography, Cushing patients had a greater left ventricular mass index and/or relative wall thickness, and impaired diastolic function, compared with controls. Compared to controls, patients with Cushing's syndrome showed a sympathovagal imbalance, characterized by a relatively increased parasympathetic activity. Whether this autonomic alteration is meant to counterbalance cortisol-induced effects on blood pressure and cardiac structure/function or has a different pathophysiological significance is still unknown.

  20. The Effect of Heart Rate on the Heart Rate Variability Response to Autonomic Interventions

    Directory of Open Access Journals (Sweden)

    George E Billman

    2013-08-01

    Full Text Available Heart rate variability (HRV, the beat-to-beat variation in either heart rate (HR or heart period (R-R interval, has become a popular clinical and investigational tool to quantify cardiac autonomic regulation. However, it is not widely appreciated that, due to the inverse curvilinear relationship between HR and R-R interval, HR per se can profoundly influence HRV. It is, therefore, critical to correct HRV for the prevailing HR particularly, as HR changes in response to autonomic neural activation or inhibition. The present study evaluated the effects of HR on the HRV response to autonomic interventions that either increased (submaximal exercise, n = 25 or baroreceptor reflex activation, n = 20 or reduced (pharmacological blockade: β-adrenergic receptor, muscarinic receptor antagonists alone and in combination, n = 25, or bilateral cervical vagotomy, n = 9 autonomic neural activity in a canine model. Both total (RR interval standard deviation, RRSD and the high frequency variability (HF, 0.2 to 1.04 Hz were determined before and in response to an autonomic intervention. All interventions that reduced or abolished cardiac parasympathetic regulation provoked large reductions in HRV even after HR correction [division by mean RRsec or (mean RRsec2 for RRSD and HF, respectively] while interventions that reduced HR yielded mixed results. β-adrenergic receptor blockade reduced HRV (RRSD but not HF while both RRSD and HF increased in response to increases in arterial blood (baroreceptor reflex activation even after HR correction. These data suggest that the physiological basis for HRV is revealed after correction for prevailing HR and, further, that cardiac parasympathetic activity is responsible for a major portion of the HRV in the dog.

  1. DISORDERS OF THE AUTONOMIC NERVOUS SYSTEM IN THE CARDIOLOGY PRACTICE: FOCUS ON THE ANALYSIS OF HEART RATE VARIABILITY

    Directory of Open Access Journals (Sweden)

    E. B. Akhmedova

    2015-09-01

    Full Text Available Heart rate variability (HRV in patients with ischemic heart disease, a life-threatening heart rhythm disorders, as well as diabetes mellitus (DM is considered. A significant association between the autonomic regulation of the cardiovascular system and death from cardiovascular causes is identified. The reactions of the autonomic nervous system (ANS can serve as a precipitating factor of arrhythmias in patients with heart disorders. Analysis of HRV at rest is the main and informative method for determination of the ANS disorders. HRV decreases greatly in patients with acute myocardial infarction, cardiac arrhythmia, and DM, predicting a high risk of death. The leading cause of death in diabetic patients is cardiac autonomic neuropathy, with the development of "silent" ischemia and painless myocardial infarction. Autonomic regulation of the heart rate should be assessed for early diagnosis and prevention of complications in the form of sudden death.

  2. Cardiac expression of microsomal triglyceride transfer protein is increased in obesity and serves to attenuate cardiac triglyceride accumulation

    DEFF Research Database (Denmark)

    Bartels, Emil D; Nielsen, Jan M; Hellgren, Lars I

    2009-01-01

    Obesity causes lipid accumulation in the heart and may lead to lipotoxic heart disease. Traditionally, the size of the cardiac triglyceride pool is thought to reflect the balance between uptake and beta-oxidation of fatty acids. However, triglycerides can also be exported from cardiomyocytes via...... secretion of apolipoproteinB-containing (apoB) lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP); the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism...... remain unknown, we investigated how cardiac lipoprotein synthesis affects cardiac expression of triglyceride metabolism-controlling genes, insulin sensitivity, and function in obese mice. Heart-specific ablation of MTP-A in mice using Cre-loxP technology impaired upregulation of MTP expression...

  3. Macrophage populations and cardiac sympathetic denervation during L-NAME-induced hypertension in rats

    DEFF Research Database (Denmark)

    Neves, S R S; Machado, C R S; Pinto, A M T

    2006-01-01

    The rat model of hypertension induced by prolonged treatment with Nomega-nitro-L-arginine methyl ester (L-NAME) has been extensively used. However, the effects on cardiac autonomic innervation are unknown. Here, the cardiac sympathetic innervation is analyzed in parallel with myocardial lesions a...

  4. [A role of the autonomic nervous system in cerebro-cardiac disorders].

    Science.gov (United States)

    Basantsova, N Yu; Tibekina, L M; Shishkin, A N

    The authors consider anatomical/physiological characteristics and a role of different autonomic CNS regions, including insula cortex, amygdala complex, anterior cingulate cortex, ventral medial prefrontal cortex, hypothalamus and epiphysis, involved in the regulation of cardiovascular activity. The damage of these structures, e.g., due to the acute disturbance of cerebral blood circulation, led to arrhythmia, including fatal arrhythmia, in previously intact myocardium; systolic and diastolic dysfunction, ischemic changes considered in the frames of cerebro-cardial syndrome. On the cellular level, the disturbance of autonomic regulation resulted in catechol amine excitotoxicity, oxidative stress and free radical myocardium injury.

  5. Medulla oblongata damage and cardiac autonomic dysfunction in Parkinson disease.

    Science.gov (United States)

    Pyatigorskaya, Nadya; Mongin, Marie; Valabregue, Romain; Yahia-Cherif, Lydia; Ewenczyk, Claire; Poupon, Cyril; Debellemaniere, Eden; Vidailhet, Marie; Arnulf, Isabelle; Lehéricy, Stephane

    2016-12-13

    To characterize medulla oblongata damage using diffusion tensor imaging (DTI) in Parkinson disease (PD) and correlate it with dysfunction of the cardiac sympathetic/vagal balance. Fifty-two patients with PD and 24 healthy controls were included in the study. All participants underwent clinical examination and 3T MRI using 3D T1-weighted imaging and DTI. DTI metrics were calculated within manually drawn regions of interest. Heart rate variability was evaluated using spectral analysis of the R-R cardiac interval during REM and slow-wave sleep based on continuous overnight electrocardiographic monitoring. Respiratory frequency was measured in 30-second contiguous epochs of REM and slow-wave sleep. The relationships between imaging and cardiac variables were calculated using partial correlations followed by the multiple comparisons permutation approach. The changes in heart rate and respiratory frequency variability from slow-wave sleep to REM sleep in healthy controls were no longer detectable in patients with PD. There were significant increases in the mean (p = 0.006), axial (p = 0.006), and radial diffusivities (p = 0.005) in the medulla oblongata of patients with PD. In PD, diffusion changes were specifically correlated with a lower heart rate and respiratory frequency variability during REM sleep. This study provides evidence that medulla oblongata damage underlies cardiac sympathetic/vagal balance and respiratory dysfunction in patients with PD. © 2016 American Academy of Neurology.

  6. Nature's Autonomous Oscillators

    Science.gov (United States)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  7. TRPA1 mediates changes in heart rate variability and cardiac mechanical function in mice exposed to acrolein

    Energy Technology Data Exchange (ETDEWEB)

    Kurhanewicz, Nicole [Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 (United States); McIntosh-Kastrinsky, Rachel [Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599 (United States); Tong, Haiyan; Ledbetter, Allen; Walsh, Leon; Farraj, Aimen [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Hazari, Mehdi, E-mail: hazari.mehdi@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711 (United States)

    2017-06-01

    Short-term exposure to ambient air pollution is linked with adverse cardiovascular effects. While previous research focused primarily on particulate matter-induced responses, gaseous air pollutants also contribute to cause short-term cardiovascular effects. Mechanisms underlying such effects have not been adequately described, however the immediate nature of the response suggests involvement of irritant neural activation and downstream autonomic dysfunction. Thus, this study examines the role of TRPA1, an irritant sensory receptor found in the airways, in the cardiac response of mice to acrolein and ozone. Conscious unrestrained wild-type C57BL/6 (WT) and TRPA1 knockout (KO) mice implanted with radiotelemeters were exposed once to 3 ppm acrolein, 0.3 ppm ozone, or filtered air. Heart rate (HR) and electrocardiogram (ECG) were recorded continuously before, during and after exposure. Analysis of ECG morphology, incidence of arrhythmia and heart rate variability (HRV) were performed. Cardiac mechanical function was assessed using a Langendorff perfusion preparation 24 h post-exposure. Acrolein exposure increased HRV independent of HR, as well as incidence of arrhythmia. Acrolein also increased left ventricular developed pressure in WT mice at 24 h post-exposure. Ozone did not produce any changes in cardiac function. Neither gas produced ECG effects, changes in HRV, arrhythmogenesis, or mechanical function in KO mice. These data demonstrate that a single exposure to acrolein causes cardiac dysfunction through TRPA1 activation and autonomic imbalance characterized by a shift toward parasympathetic modulation. Furthermore, it is clear from the lack of ozone effects that although gaseous irritants are capable of eliciting immediate cardiac changes, gas concentration and properties play important roles. - Highlights: • Acute acrolein exposure causes autonomic imbalance and altered CV function in mice. • TRPA1 mediates acrolein-induced autonomic nervous system cardiac

  8. TRPA1 mediates changes in heart rate variability and cardiac mechanical function in mice exposed to acrolein

    International Nuclear Information System (INIS)

    Kurhanewicz, Nicole; McIntosh-Kastrinsky, Rachel; Tong, Haiyan; Ledbetter, Allen; Walsh, Leon; Farraj, Aimen; Hazari, Mehdi

    2017-01-01

    Short-term exposure to ambient air pollution is linked with adverse cardiovascular effects. While previous research focused primarily on particulate matter-induced responses, gaseous air pollutants also contribute to cause short-term cardiovascular effects. Mechanisms underlying such effects have not been adequately described, however the immediate nature of the response suggests involvement of irritant neural activation and downstream autonomic dysfunction. Thus, this study examines the role of TRPA1, an irritant sensory receptor found in the airways, in the cardiac response of mice to acrolein and ozone. Conscious unrestrained wild-type C57BL/6 (WT) and TRPA1 knockout (KO) mice implanted with radiotelemeters were exposed once to 3 ppm acrolein, 0.3 ppm ozone, or filtered air. Heart rate (HR) and electrocardiogram (ECG) were recorded continuously before, during and after exposure. Analysis of ECG morphology, incidence of arrhythmia and heart rate variability (HRV) were performed. Cardiac mechanical function was assessed using a Langendorff perfusion preparation 24 h post-exposure. Acrolein exposure increased HRV independent of HR, as well as incidence of arrhythmia. Acrolein also increased left ventricular developed pressure in WT mice at 24 h post-exposure. Ozone did not produce any changes in cardiac function. Neither gas produced ECG effects, changes in HRV, arrhythmogenesis, or mechanical function in KO mice. These data demonstrate that a single exposure to acrolein causes cardiac dysfunction through TRPA1 activation and autonomic imbalance characterized by a shift toward parasympathetic modulation. Furthermore, it is clear from the lack of ozone effects that although gaseous irritants are capable of eliciting immediate cardiac changes, gas concentration and properties play important roles. - Highlights: • Acute acrolein exposure causes autonomic imbalance and altered CV function in mice. • TRPA1 mediates acrolein-induced autonomic nervous system cardiac

  9. Is Baseline Cardiac Autonomic Modulation Related to Performance and Physiological Responses Following a Supramaximal Judo Test?

    Science.gov (United States)

    Blasco-Lafarga, Cristina; Martínez-Navarro, Ignacio; Mateo-March, Manuel

    2013-01-01

    Little research exists concerning Heart Rate (HR) Variability (HRV) following supramaximal efforts focused on upper-body explosive strength-endurance. Since they may be very demanding, it seems of interest to analyse the relationship among performance, lactate and HR dynamics (i.e. HR, HRV and complexity) following them; as well as to know how baseline cardiac autonomic modulation mediates these relationships. The present study aimed to analyse associations between baseline and post-exercise HR dynamics following a supramaximal Judo test, and their relationship with lactate, in a sample of 22 highly-trained male judoists (20.70±4.56 years). A large association between the increase in HR from resting to exercise condition and performance suggests that individuals exerted a greater sympathetic response to achieve a better performance (Rating of Perceived Exertion: 20; post-exercise peak lactate: 11.57±2.24 mmol/L; 95.76±4.13 % of age-predicted HRmax). Athletes with higher vagal modulation and lower sympathetic modulation at rest achieved both a significant larger ∆HR and a faster post-exercise lactate removal. A enhanced resting parasympathetic modulation might be therefore related to a further usage of autonomic resources and a better immediate metabolic recovery during supramaximal exertions. Furthermore, analyses of variance displayed a persistent increase in α1 and a decrease in lnRMSSD along the 15 min of recovery, which are indicative of a diminished vagal modulation together with a sympathovagal balance leaning to sympathetic domination. Eventually, time-domain indices (lnRMSSD) showed no lactate correlations, while nonlinear indices (α1 and lnSaEn) appeared to be moderate to strongly correlated with it, thus pointing to shared mechanisms between neuroautonomic and metabolic regulation. PMID:24205273

  10. Potential Association of Triglyceride Glucose Index with Cardiac Autonomic Neuropathy in Type 2 Diabetes Mellitus Patients.

    Science.gov (United States)

    Akbar, Md; Bhandari, Uma; Habib, Anwar; Ahmad, Razi

    2017-07-01

    Cardiac autonomic neuropathy (CAN) is a common and most neglected complication of diabetes, estimated to be roughly 8% in recently diagnosed patients and greater than 50% in patients with chronic disease history. The insulin resistance (IR) itself is bidirectionally associated with increased risk of type 2 diabetes mellitus (T2DM) and CAN is a predisposing factor. The primary objective of the present study was aimed to find a correlation of triglyceride glucose index (TyG index) in CAN patients along with the prevalence of CAN in T2DM patients as a secondary objective. This prevalence study was conducted on 202 patients visiting the diabetic clinic of Hamdard Institute of Medical Sciences and Research, Jamia Hamdard (HIMSR) teaching hospital in New Delhi, India who fulfilled the inclusion criteria. The Ewings autonomic function test was used for diagnosis of CAN. TyG index was calculated for patients based on fasting levels of glucose and triglyceride. The CAN was diagnosed in 62 participants out of 202 T2DM patients (overall prevalence 30.7%). The mean ± standard deviation (SD) for TyG index was 10.3 ± 0.2 and 9.5 ± 0.2 in CAN positive, T2DM patients, respectively. The difference of TyG index, in CAN positive and T2DM patients, was highly significant (P index, duration, and age with patient groups. TyG index showed a positive correlation with heart rate during deep breathing (HRD), heart rate variation during standing (HRS), blood pressure (BP) response to handgrip and BP response to standing. Our finding highlights the TyG index, low-cost IR index, might be useful as an alternative tool for the early screening of patients at a high risk of diabetic neuropathy. © 2017 The Korean Academy of Medical Sciences.

  11. Cardiac autonomic function during sleep: effects of alcohol dependence and evidence of partial recovery with abstinence.

    Science.gov (United States)

    de Zambotti, Massimiliano; Willoughby, Adrian R; Baker, Fiona C; Sugarbaker, David S; Colrain, Ian M

    2015-06-01

    Chronic alcoholism is associated with the development of cardiac and peripheral autonomic nervous system (ANS) pathology. The aim of the present study was to evaluate the extent to which recovery in ANS function could be demonstrated over the first 4 months of abstinence. Fifteen alcoholics (7 women) were studied on three occasions: within a month of detoxification, at approximately 2 months post-detox, and at 4 months post-detox. Thirteen control subjects (6 women) were also studied on three occasions with inter-study intervals matching those of the alcoholics. Six alcoholics relapsed, 48.7 ± 27.9 days following the initial PSG session. ANS function was assessed in the first part of stable non-rapid eye movement sleep. Frequency-domain power spectral analysis of heart rate variability (HRV) produced variables including: heart rate (HR), total power (TP; an index representing total HR variability), High Frequency power (HFa; an index reflecting cardiac vagal modulation), HF proportion of total power (HFprop sympathovagal balance), and HF peak frequency (HFpf; an index reflecting respiration rate). Overall, high total and high frequency variability and low sympathovagal balance and myocardial contractility are considered as desired conditions to promote cardiovascular health. At initial assessment, alcoholics had a higher HR (p < 0.001) and respiratory rate (p < 0.01), and lower vagal activity (HFa; p < 0.01) than controls. Alcoholics showed evidence of recovery in HR (p = 0.039) and HFa (p = 0.031) with 4 months of abstinence. Alcoholics with higher TP at the initial visit showed a greater improvement in TP from the initial to the 4 month follow-up session (r = 0.75, p < 0.05). Alcoholics showed substantial recovery in HR and vagal modulation of HRV with 4 months of abstinence, with evidence that the extent of recovery in HRV may be partially determined by the extent of alcohol dependence-related insult to the cardiac ANS system. These data support other studies

  12. Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Chiarello, Carmelina; Bortoloso, Elena; Carpi, Andrea; Furlan, Sandra; Volpe, Pompeo, E-mail: pompeo.volpe@unipd.it

    2013-07-15

    Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α{sub 1}-adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1 h, and no up-regulation of Homer 1b/c, as judged by Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy. -- Highlights: • Homer 1a is constitutively expressed in cardiac tissue. • In HL-1 cells, norepinephrine activates signaling pathways leading to hypertrophy. • Homer 1a up-regulation is an early event of norepinephrine-induced hypertrophy. • Homer 1a plays a negative feedback regulation modulating pathological hypertrophy. • Over-expression of Homer 1a per se does not induce hypertrophy.

  13. Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy

    International Nuclear Information System (INIS)

    Chiarello, Carmelina; Bortoloso, Elena; Carpi, Andrea; Furlan, Sandra; Volpe, Pompeo

    2013-01-01

    Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α 1 -adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1 h, and no up-regulation of Homer 1b/c, as judged by Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy. -- Highlights: • Homer 1a is constitutively expressed in cardiac tissue. • In HL-1 cells, norepinephrine activates signaling pathways leading to hypertrophy. • Homer 1a up-regulation is an early event of norepinephrine-induced hypertrophy. • Homer 1a plays a negative feedback regulation modulating pathological hypertrophy. • Over-expression of Homer 1a per se does not induce hypertrophy

  14. Diesel Exhaust Inhalation Increases Cardiac Output, Bradyarrhythmias, and Parasympathetic Tone in Aged Heart Failure-Prone Rats

    Science.gov (United States)

    Acute air pollutant inhalation is linked to adverse cardiac events and death, and hospitalizations for heart failure. Diesel exhaust (DE) is a major air pollutant suspected to exacerbate preexisting cardiac conditions, in part, through autonomic and electrophysiologic disturbance...

  15. Neonatal autonomic function after pregnancy complications and early cardiovascular development.

    Science.gov (United States)

    Aye, Christina Y L; Lewandowski, Adam James; Oster, Julien; Upton, Ross; Davis, Esther; Kenworthy, Yvonne; Boardman, Henry; Yu, Grace Z; Siepmann, Timo; Adwani, Satish; McCormick, Kenny; Sverrisdottir, Yrsa B; Leeson, Paul

    2018-05-23

    Heart rate variability (HRV) has emerged as a predictor of later cardiac risk. This study tested whether pregnancy complications that may have long-term offspring cardiac sequelae are associated with differences in HRV at birth, and whether these HRV differences identify abnormal cardiovascular development in the postnatal period. Ninety-eight sleeping neonates had 5-min electrocardiogram recordings at birth. Standard time and frequency domain parameters were calculated and related to cardiovascular measures at birth and 3 months of age. Increasing prematurity, but not maternal hypertension or growth restriction, was associated with decreased HRV at birth, as demonstrated by a lower root mean square of the difference between adjacent NN intervals (rMSSD) and low (LF) and high-frequency power (HF), with decreasing gestational age (p < 0.001, p = 0.009 and p = 0.007, respectively). We also demonstrated a relative imbalance between sympathetic and parasympathetic tone, compared to the term infants. However, differences in autonomic function did not predict cardiovascular measures at either time point. Altered cardiac autonomic function at birth relates to prematurity rather than other pregnancy complications and does not predict cardiovascular developmental patterns during the first 3 months post birth. Long-term studies will be needed to understand the relevance to cardiovascular risk.

  16. Effects of Weekly Low-Frequency rTMS on Autonomic Measures in Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Manuel Fernando Casanova

    2014-10-01

    Full Text Available The term autism spectrum disorder (ASD describes a range of conditions characterized by impairments in social interactions, communication, and by restricted and repetitive behaviors. ASD may also present with symptoms suggestive of autonomic nervous system (ANS dysfunction. The objective of this study was to determine the effect of 18 sessions of low frequency repetitive transcranial magnetic stimulation (rTMS on autonomic function in children with ASD by recording electrocardiogram (EKG and electrodermal activity pre-, post- and during each rTMS session. The autonomic measures of interest in this study were R-R cardiointervals in EKG (R-R, time and frequency domain measures of heart rate variability (HRV and skin conductance level (SCL. HRV measures such as R-R intervals, standard deviation of cardiac intervals, pNN50 (percentage of cardiointervals>50 ms different from preceding interval, power of high frequency (HF and low frequency (LF components of HRV spectrum, LF/HF ratio, were then derived from the recorded EKG. We expected that the course of 18 weekly inhibitory low-frequency rTMS applied to the dorsolateral prefrontal cortex (DLPFC would enhance autonomic balance by facilitating frontal inhibition of limbic activity thus resulting in decreased overall heart rate, increased HRV (in a form of increased HF power, decreased LF power (resulting in decreased LF/HF ratio, and decreased SCL. Behavioral evaluations post-18 TMS showed decreased irritability, hyperactivity, stereotype behavior and compulsive behavior ratings while autonomic measures indicated a significant increase in cardiac interval variability and a decrease of tonic SCL. The results suggest that 18 sessions of low frequency rTMS in ASD results in increased cardiac vagal control and reduced sympathetic arousal.

  17. Effect of age on upregulation of the cardiac adrenergic beta receptors

    International Nuclear Information System (INIS)

    Tumer, N.; Houck, W.T.; Roberts, J.

    1990-01-01

    Radioligand binding studies were performed to determine whether upregulation of postjunctional beta receptors occurs in sympathectomized hearts of aged animals. Fischer 344 rats 6, 12, and 24 months of age (n = 10) were used in these experiments. To produce sympathectomy, rats were injected with 6-hydroxydopamine hydrobromide (6-OHDA; 2 x 50 mg/kg iv) on days 1 and 8; the animals were decapitated on day 15. The depletion of norepinephrine in the heart was about 86% in each age group. 125I-Iodopindolol (IPIN), a beta adrenergic receptor antagonist, was employed to determine the affinity and total number of beta adrenergic receptors in the ventricles of the rat heart. The maximal number of binding sites (Bmax) was significantly elevated by 37%, 48%, and 50% in hearts from sympathectomized 6-, 12-, and 24-month-old rats, respectively. These results indicate that beta receptor mechanisms in older hearts can respond to procedures that cause upregulation of the beta adrenergic receptors

  18. Complex Nonlinear Autonomic Nervous System Modulation Link Cardiac Autonomic Neuropathy and Peripheral Vascular Disease

    Directory of Open Access Journals (Sweden)

    Kinda eKhalaf

    2015-03-01

    Full Text Available Background: Physiological interactions are abundant within, and between, body systems. These interactions may evolve into discrete states during pathophysiological processes resulting from common mechanisms. An association between arterial stenosis, identified by low ankle-brachial pressure index (ABPI and cardiovascular disease (CVD as been reported. Whether an association between vascular calcification - characterized by high ABPI and a different pathophysiology - is similarly associated with CVD, has not been established. The current study aims to investigate the association between ABPI, and cardiac rhythm, as an indicator of cardiovascular health and functionality, utilising heart rate variability (HRV.Methods and Results: Two hundred and thirty six patients underwent ABPI assessment. Standard time and frequency domain, and non-linear HRV measures were determined from 5-minute electrocardiogram. ABPI data were divided into normal (n=101, low (n=67 and high (n=66 and compared to HRV measures.(DFAα1 and SampEn were significantly different between the low ABPI, high ABPI and control groups (p<0.05.Conclusion: A possible coupling between arterial stenosis and vascular calcification with decreased and increased HRV respectively was observed. Our results suggest a model for interpreting the relationship between vascular pathophysiology and cardiac rhythm. The cardiovascular system may be viewed as a complex system comprising a number of interacting subsystems. These cardiac and vascular subsystems/networks may be coupled and undergo transitions in response to internal or external perturbations. From a clinical perspective, the significantly increased sample entropy compared to the normal ABPI group and the decreased and increased complex correlation properties measured by DFA for the low and high ABPI groups respectively, may be useful indicators that a more holistic treatment approach in line with this more complex clinical picture is required.

  19. Cardiac Insulin Resistance and MicroRNA Modulators

    Directory of Open Access Journals (Sweden)

    Lakshmi Pulakat

    2012-01-01

    Full Text Available Cardiac insulin resistance is a metabolic and functional disorder that is often associated with obesity and/or the cardiorenal metabolic syndrome (CRS, and this disorder may be accentuated by chronic alcohol consumption. In conditions of over-nutrition, increased insulin (INS and angiotensin II (Ang II activate mammalian target for rapamycin (mTOR/p70 S6 kinase (S6K1 signaling, whereas chronic alcohol consumption inhibits mTOR/S6K1 activation in cardiac tissue. Although excessive activation of mTOR/S6K1 induces cardiac INS resistance via serine phosphorylation of INS receptor substrates (IRS-1/2, it also renders cardioprotection via increased Ang II receptor 2 (AT2R upregulation and adaptive hypertrophy. In the INS-resistant and hyperinsulinemic Zucker obese (ZO rat, a rodent model for CRS, activation of mTOR/S6K1signaling in cardiac tissue is regulated by protective feed-back mechanisms involving mTOR↔AT2R signaling loop and profile changes of microRNA that target S6K1. Such regulation may play a role in attenuating progressive heart failure. Conversely, alcohol-mediated inhibition of mTOR/S6K1, down-regulation of INS receptor and growth-inhibitory mir-200 family, and upregulation of mir-212 that promotes fetal gene program may exacerbate CRS-related cardiomyopathy.

  20. QTc prolongation in Black diabetic subjects with cardiac autonomic ...

    African Journals Online (AJOL)

    ed QT (QTc) in diabetic individuals with cardiac auto- .... standing compared to the R-R at the 15th beat (30:15) was calculated. Abnormal .... tion between QTc and age (Pearson's univariate analysis r=0.080 ..... Diagnosis and management of.

  1. Cardiac autonomic response following high-intensity running work-to-rest interval manipulation.

    Science.gov (United States)

    Cipryan, Lukas; Laursen, Paul B; Plews, Daniel J

    2016-10-01

    The cardiorespiratory, cardiac autonomic (via heart rate variability (HRV)) and plasma volume responses to varying sequences of high-intensity interval training (HIT) of consistent external work were investigated. Twelve moderately trained males underwent three HIT bouts and one control session. The HIT trials consisted of warm-up, followed by 12 min of 15 s, 30 s or 60 s work:relief HIT sequences at an exercise intensity of 100% of the individual velocity at [Formula: see text]O2max (v[Formula: see text]O2max), interspersed by relief intervals at 60% [Formula: see text]O2max (work/relief ratio = 1). HRV was evaluated via the square root of the mean sum of the squared differences between R-R intervals (rMSSD) before, 1 h, 3 h and 24 h after the exercise. Plasma volume was assessed before, immediately after, and 3 h and 24 h after. There were no substantial between-trial differences in acute cardiorespiratory responses. The rMSSD values remained decreased 1 h after the exercise cessation in all exercise groups. The rMSSD subsequently increased between 1 h and 3 h after exercise, with the most pronounced change in the 15/15 group. There were no relationships between HRV and plasma volume. All HIT protocols resulted in similar cardiorespiratory responses with slightly varying post-exercise HRV responses, with the 30/30 protocol eliciting the least disruption to post-exercise HRV. These post-exercise HRV findings suggest that the 30/30 sequence may be the preferable HIT prescription when the between-training period is limited.

  2. Methyl-CpG binding-protein 2 function in cholinergic neurons mediates cardiac arrhythmogenesis.

    Science.gov (United States)

    Herrera, José A; Ward, Christopher S; Wehrens, Xander H T; Neul, Jeffrey L

    2016-11-15

    Sudden unexpected death occurs in one quarter of deaths in Rett Syndrome (RTT), a neurodevelopmental disorder caused by mutations in Methyl-CpG-binding protein 2 (MECP2). People with RTT show a variety of autonomic nervous system (ANS) abnormalities and mouse models show similar problems including QTc interval prolongation and hypothermia. To explore the role of cardiac problems in sudden death in RTT, we characterized cardiac rhythm in mice lacking Mecp2 function. Male and female mutant mice exhibited spontaneous cardiac rhythm abnormalities including bradycardic events, sinus pauses, atrioventricular block, premature ventricular contractions, non-sustained ventricular arrhythmias, and increased heart rate variability. Death was associated with spontaneous cardiac arrhythmias and complete conduction block. Atropine treatment reduced cardiac arrhythmias in mutant mice, implicating overactive parasympathetic tone. To explore the role of MeCP2 within the parasympathetic neurons, we selectively removed MeCP2 function from cholinergic neurons (MeCP2 ChAT KO), which recapitulated the cardiac rhythm abnormalities, hypothermia, and early death seen in RTT male mice. Conversely, restoring MeCP2 only in cholinergic neurons rescued these phenotypes. Thus, MeCP2 in cholinergic neurons is necessary and sufficient for autonomic cardiac control, thermoregulation, and survival, and targeting the overactive parasympathetic system may be a useful therapeutic strategy to prevent sudden unexpected death in RTT.

  3. Metabolic and cardiovascular responses to epinephrine in diabetic autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J; Richter, E; Madsbad, S

    1987-01-01

    with autonomic neuropathy (P less than 0.01) but was unchanged in the other groups. Since cardiac output increased to a similar extent in the three groups, the decrease in blood pressure was due to a significantly larger decrease (P less than 0.01) in total peripheral vascular resistance in the patients......Norepinephrine-induced vasoconstriction, which is mediated by alpha-adrenergic receptors, is accentuated in patients with autonomic neuropathy. In contrast, responses mediated by beta-adrenergic receptors, including vasodilatation and metabolic changes, have not been evaluated in these patients....... To study these responses, we administered epinephrine in a graded intravenous infusion (0.5 to 5 micrograms per minute) to seven diabetic patients without neuropathy, seven diabetic patients with autonomic neuropathy, and seven normal subjects. Mean arterial pressure decreased significantly in the patients...

  4. Effect of Head-Down Bed Rest and Artificial Gravity Countermeasure on Cardiac Autonomic and Advanced Electrocardiographic Function

    Science.gov (United States)

    Schlegel, T. T.; Platts, S.; Stenger, M.; Ribeiro, C.; Natapoff, A.; Howarth, M.; Evans, J.

    2007-01-01

    To study the effects of 21 days of head-down bed rest (HDBR), with versus without an artificial gravity (AG) countermeasure, on cardiac autonomic and advanced electrocardiographic function. Fourteen healthy men participated in the study: seven experienced 21 days of HDBR alone ("HDBR controls") and seven the same degree and duration of HDBR but with approximately 1hr daily short-arm centrifugation as an AG countermeasure ("AG-treated"). Five minute supine high-fidelity 12-lead ECGs were obtained in all subjects: 1) 4 days before HDBR; 2) on the last day of HDBR; and 3) 7 days after HDBR. Besides conventional 12-lead ECG intervals and voltages, all of the following advanced ECG parameters were studied: 1) both stochastic (time and frequency domain) and deterministic heart rate variability (HRV); 2) beat-to-beat QT interval variability (QTV); 3) T-wave morphology, including signal-averaged T-wave residua (TWR) and principal component analysis ratios; 4) other SAECG-related parameters including high frequency QRS ECG and late potentials; and 5) several advanced ECG estimates of left ventricular (LV) mass. The most important results by repeated measures ANOVA were that: 1) Heart rates, Bazett-corrected QTc intervals, TWR, LF/HF power and the alpha 1 of HRV were significantly increased in both groups (i.e., by HDBR), but with no relevant HDBR*group differences; 2) All purely "vagally-mediated" parameters of HRV (e.g., RMSSD, HF power, Poincare SD1, etc.), PR intervals, and also several parameters of LV mass (Cornell and Sokolow-Lyon voltages, spatial ventricular activation times, ventricular gradients) were all significantly decreased in both groups (i.e., by HDBR), but again with no relevant HDBR*group differences); 3) All "generalized" or "vagal plus sympathetic" parameters of stochastic HRV (i.e., SDNN, total power, LF power) were significantly more decreased in the AG-treated group than in the HDBR-only group (i.e., here there was a relevant HDBR*group difference

  5. Methods of investigation for cardiac autonomic dysfunction in human research studies

    DEFF Research Database (Denmark)

    Bernardi, Luciano; Spallone, Vincenza; Stevens, Martin

    2011-01-01

    This consensus document provides evidence-based guidelines regarding the evaluation of diabetic cardiovascular autonomic neuropathy (CAN) for human research studies as a result of the work of the CAN Subcommittee of the Toronto Diabetic Neuropathy Expert Group. The CAN subcommittee critically...... reviewed the limitations and strengths of the available diagnostic approaches for CAN and the need for developing new tests for autonomic function. It was concluded that the most sensitive and specific approaches currently available to evaluate CAN in clinical research are: 1) heart rate variability, 2......) baroreflex sensitivity, 3) muscle sympathetic nerve activity, 4) plasma catecholamines, and 5) heart sympathetic imaging. It was also recommended that efforts should be undertaken to develop new non-invasive and safe CAN tests to be used in clinical research, with a higher sensitivity and specificity...

  6. Traditional Chinese Medicine ShenZhuGuanXin Granules Mitigate Cardiac Dysfunction and Promote Myocardium Angiogenesis in Myocardial Infarction Rats by Upregulating PECAM-1/CD31 and VEGF Expression

    Directory of Open Access Journals (Sweden)

    Dan-Ping Xu

    2017-01-01

    Full Text Available Background. Myocardial infarction (MI is the main cause of global mortality and morbidity despite the development of therapeutic approaches. ShenZhuGuanXin granules (SG have been shown to possess cardioprotective effects against coronary heart disease (CHD. However, little is known about its specific mechanism. The present study aimed to investigate the therapeutic effect of SG in cardiac dysfunction and to demonstrate whether SG can promote myocardium angiogenesis by establishing a rat model of myocardial infarction with left anterior descending ligating. Methods and Results. Three days after MI, rats were randomly divided into six groups: sham group (sham, MI group (MI, MI + low dose SG (SG-L group, MI + middle dose SG (SG-M group, MI + high dose SG (SG-H group, and MI + compound Danshen dropping pills (CDDP group as a positive control. Four weeks after administration, rats underwent hemodynamics and echocardiography study. Ventricle tissues were processed for histology and immunohistochemistry studies. Compared with MI group, SG treatment dose-dependently improved cardiac hemodynamic function, attenuated infarct size, increased microvessel density, and increased the expression of PECAM-1/CD31 and VEGF. Conclusions. SG dose-dependently improved cardiac hemodynamic function and attenuated infarct size by promoting angiogenesis through upregulating PECAM-1/CD31 and VEGF expression.

  7. Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha

    DEFF Research Database (Denmark)

    Brock, C; Brock, B; Aziz, Q

    2017-01-01

    -VNS, there was an increase in cardiac vagal tone and a reduction in tumor necrosis factor-α in comparison to baseline. No change was seen in blood pressure, cardiac sympathetic index or other cytokines. These preliminary data suggest that t-VNS exerts an autonomic and a subtle antitumor necrosis factor-α effect, which...

  8. Sitagliptin reduces cardiac apoptosis, hypertrophy and fibrosis primarily by insulin-dependent mechanisms in experimental type-II diabetes. Potential roles of GLP-1 isoforms.

    Directory of Open Access Journals (Sweden)

    Belén Picatoste

    Full Text Available BACKGROUND: Myocardial fibrosis is a key process in diabetic cardiomyopathy. However, their underlying mechanisms have not been elucidated, leading to a lack of therapy. The glucagon-like peptide-1 (GLP-1 enhancer, sitagliptin, reduces hyperglycemia but may also trigger direct effects on the heart. METHODS: Goto-Kakizaki (GK rats developed type-II diabetes and received sitagliptin, an anti-hyperglycemic drug (metformin or vehicle (n=10, each. After cardiac structure and function assessment, plasma and left ventricles were isolated for biochemical studies. Cultured cardiomyocytes and fibroblasts were used for in vitro assays. RESULTS: Untreated GK rats exhibited hyperglycemia, hyperlipidemia, plasma GLP-1 decrease, and cardiac cell-death, hypertrophy, fibrosis and prolonged deceleration time. Moreover, cardiac pro-apoptotic/necrotic, hypertrophic and fibrotic factors were up-regulated. Importantly, both sitagliptin and metformin lessened all these parameters. In cultured cardiomyocytes and cardiac fibroblasts, high-concentration of palmitate or glucose induced cell-death, hypertrophy and fibrosis. Interestingly, GLP-1 and its insulinotropic-inactive metabolite, GLP-1(9-36, alleviated these responses. In addition, despite a specific GLP-1 receptor was only detected in cardiomyocytes, GLP-1 isoforms attenuated the pro-fibrotic expression in cardiomyocytes and fibroblasts. In addition, GLP-1 receptor signalling may be linked to PPARδ activation, and metformin may also exhibit anti-apoptotic/necrotic and anti-fibrotic direct effects in cardiac cells. CONCLUSIONS: Sitagliptin, via GLP-1 stabilization, promoted cardioprotection in type-II diabetic hearts primarily by limiting hyperglycemia e hyperlipidemia. However, GLP-1 and GLP-1(9-36 promoted survival and anti-hypertrophic/fibrotic effects on cultured cardiac cells, suggesting cell-autonomous cardioprotective actions.

  9. Plasma DNA Mediate Autonomic Dysfunctions and White Matter Injuries in Patients with Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Meng-Hsiang Chen

    2017-01-01

    Full Text Available Background. Cardiovascular autonomic dysfunction is well known in Parkinson’s disease (PD presentation and it produces hypoperfusion of vital organs. The association between cardiovascular autonomic dysfunction and oxidative stress was examined in previous animal models. Oxidative stress and neuroinflammation were thought to have roles in PD pathogenesis. Owing to the relative low intrinsic antioxidative properties, brain white matter (WM is vulnerable to the oxidative stress. This study is conducted to examine possible relationships by using a hypothesis-driven mediation model. Methods. Twenty-nine patients with PD and 26 healthy controls participated in this study, with complete examinations of cardiac autonomic parameters, plasma DNA level, and WM integrity. A single-level three-variable mediation model was used to investigate the possible relationships. Results. The elevated serum oxidative stress biomarkers include plasma nuclear DNA and mitochondrial DNA, and poorer cardiac autonomic parameters and multiple regional microstructural WM changes are demonstrated. Further mediation analysis shows that plasma nuclear DNA served as the mediators between poorer baroreflex sensitivity and mean diffusivity changes in cingulum. Conclusions. These results provide a possible pathophysiology for how the poor baroreflex sensitivity and higher oxidative stress adversely impacted the WM integrity. This model could provide us with a piece of the puzzle of the entire PD pathogenesis.

  10. Autonomic cardiac regulation and morpho-physiological responses to eight week training preparation in junior soccer players

    Directory of Open Access Journals (Sweden)

    Michal Botek

    2014-09-01

    Full Text Available Background: Training preparation in soccer is thought to improve body composition and performance level, especially the maximal aerobic capacity (VO2max. However, an enhancement in performance may be attenuated by the increase of fatigue. Heart rate variability (HRV as a non-invasive index of autonomic nervous system (ANS activity has been considered to be a sensitive tool in fatigue assessment. Objective: This study was focused to evaluate the response of ANS activity and morpho-physiological parameters to eight week training preparation. Methods: Study included 12 trained soccer players aged 17.2 ± 1.2 years. Athletes underwent pre- and post-preparation testing that included the ANS activity assessment by spectral analysis of HRV in supine and upright position. Further, body composition was analyzed via electrical bio-impedance method and physiological parameters were assessed during maximal stress tests. ANS activity and subjective feeling of fatigue was assessed continuously within subsequent weeks of preparation. Results: No significant differences in all HRV variables within weeks were found. Pre vs. post analyses revealed a significant (p < .05 increase in body weight, fat free mass, body mass index, and peak power. A significant decline in mean maximal heart rate (HR and resting HR at standing was identified at the end of preparation. Since no significant changes between pre- post-preparation in the mean VO2max occurred, the positive correlation between the individual change in VO2max and the vagally related HRV [supine LnHF (r = .78, Ln rMSSD (r = .63, and the standing LnHF (r = .73, p < .05] was found. Conclusions: This study showed that an 8 week training program modified particularly fat free mass and short-term endurance, whereas both the autonomic cardiac regulation and the feeling of fatigue remained almost unaffected. Standing position seems to be more sensitive in terms of the HR response in relation to fatigue

  11. Up-regulation of alpha-smooth muscle actin in cardiomyocytes from non-hypertrophic and non-failing transgenic mouse hearts expressing N-terminal truncated cardiac troponin I

    Directory of Open Access Journals (Sweden)

    Stephanie Kern

    2014-01-01

    Full Text Available We previously reported that a restrictive N-terminal truncation of cardiac troponin I (cTnI-ND is up-regulated in the heart in adaptation to hemodynamic stresses. Over-expression of cTnI-ND in the hearts of transgenic mice revealed functional benefits such as increased relaxation and myocardial compliance. In the present study, we investigated the subsequent effect on myocardial remodeling. The alpha-smooth muscle actin (α-SMA isoform is normally expressed in differentiating cardiomyocytes and is a marker for myocardial hypertrophy in adult hearts. Our results show that in cTnI-ND transgenic mice of between 2 and 3 months of age (young adults, a significant level of α-SMA is expressed in the heart as compared with wild-type animals. Although blood vessel density was increased in the cTnI-ND heart, the mass of smooth muscle tissue did not correlate with the increased level of α-SMA. Instead, immunocytochemical staining and Western blotting of protein extracts from isolated cardiomyocytes identified cardiomyocytes as the source of increased α-SMA in cTnI-ND hearts. We further found that while a portion of the up-regulated α-SMA protein was incorporated into the sarcomeric thin filaments, the majority of SMA protein was found outside of myofibrils. This distribution pattern suggests dual functions for the up-regulated α-SMA as both a contractile component to affect contractility and as possible effector of early remodeling in non-hypertrophic, non-failing cTnI-ND hearts.

  12. Zebrafish heart as a model to study the integrative autonomic control of pacemaker function

    Science.gov (United States)

    Stoyek, Matthew R.; Quinn, T. Alexander; Croll, Roger P.

    2016-01-01

    The cardiac pacemaker sets the heart's primary rate, with pacemaker discharge controlled by the autonomic nervous system through intracardiac ganglia. A fundamental issue in understanding the relationship between neural activity and cardiac chronotropy is the identification of neuronal populations that control pacemaker cells. To date, most studies of neurocardiac control have been done in mammalian species, where neurons are embedded in and distributed throughout the heart, so they are largely inaccessible for whole-organ, integrative studies. Here, we establish the isolated, innervated zebrafish heart as a novel alternative model for studies of autonomic control of heart rate. Stimulation of individual cardiac vagosympathetic nerve trunks evoked bradycardia (parasympathetic activation) and tachycardia (sympathetic activation). Simultaneous stimulation of both vagosympathetic nerve trunks evoked a summative effect. Effects of nerve stimulation were mimicked by direct application of cholinergic and adrenergic agents. Optical mapping of electrical activity confirmed the sinoatrial region as the site of origin of normal pacemaker activity and identified a secondary pacemaker in the atrioventricular region. Strong vagosympathetic nerve stimulation resulted in a shift in the origin of initial excitation from the sinoatrial pacemaker to the atrioventricular pacemaker. Putative pacemaker cells in the sinoatrial and atrioventricular regions expressed adrenergic β2 and cholinergic muscarinic type 2 receptors. Collectively, we have demonstrated that the zebrafish heart contains the accepted hallmarks of vertebrate cardiac control, establishing this preparation as a viable model for studies of integrative physiological control of cardiac function by intracardiac neurons. PMID:27342878

  13. Music induces different cardiac autonomic arousal effects in young and older persons.

    Science.gov (United States)

    Hilz, Max J; Stadler, Peter; Gryc, Thomas; Nath, Juliane; Habib-Romstoeck, Leila; Stemper, Brigitte; Buechner, Susanne; Wong, Samuel; Koehn, Julia

    2014-07-01

    Autonomic arousal-responses to emotional stimuli change with age. Age-dependent autonomic responses to music-onset are undetermined. To determine whether cardiovascular-autonomic responses to "relaxing" or "aggressive" music differ between young and older healthy listeners. In ten young (22.8±1.7 years) and 10 older volunteers (61.7±7.7 years), we monitored respiration (RESP), RR-intervals (RRI), and systolic and diastolic blood pressure (BPsys, BPdia) during silence and 180second presentations of two "relaxing" and two "aggressive" classical-music excerpts. Between both groups, we compared RESP, RRI, BPs, spectral-powers of mainly sympathetic low-frequency (LF: 0.04-0.15Hz) and parasympathetic high-frequency (HF: 0.15-0.5Hz) RRI-oscillations, RRI-LF/HF-ratios, RRI-total-powers (TP-RRI), and BP-LF-powers during 30s of silence, 30s of music-onset, and the remaining 150s of music presentation (analysis-of-variance and post-hoc analysis; significance: pmusic-onset, "relaxing" music decreased RRI in older and increased BPsys in younger participants, while "aggressive" music decreased RRI and increased BPsys, LF-RRI, LF/HF-ratios, and TP-RRI in older, but increased BPsys and RESP and decreased HF-RRI and TP-RRI in younger participants. Signals did not differ between groups during the last 150s of music presentation. During silence, autonomic modulation was lower - but showed sympathetic predominance - in older than younger persons. Responses to music-onset, particularly "aggressive" music, reflect more of an arousal- than an emotional-response to music valence, with age-specific shifts of sympathetic-parasympathetic balance mediated by parasympathetic withdrawal in younger and by sympathetic activation in older participants. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Delayed autonomic neuropathy in a patient with diethylene glycol poisoning: a case report.

    Science.gov (United States)

    Kamada, Hiroki; Suzuki, Hideaki; Yamamoto, Saori; Nomura, Ryosuke; Kushimoto, Shigeki

    2017-07-01

    A 72-year-old man presented to our hospital after ingesting insecticide containing approximately 2 mL/kg diethylene glycol, which exceeded the lethal dose of 1 mL/kg. The patient recovered from critical symptoms on acute phase until day 3, but received artificial ventilation for muscle weakness secondary to sensorimotor neuropathy on days 11-54. Even after marked improvement from sensorimotor neuropathy, the patient continued to complain of orthostatic hypotension. Autonomic neuropathy was identified by positive result of a head-up tilt test, and reduction in coefficient of variation of R-R intervals and cardiac iodine-123-metaiodobenzylguanidine uptake for the assessment of cardiac sympathetic activity. The patient's symptoms fully recovered 2 years after the exposure to diethylene glycol. This case shows the first report of delayed autonomic neuropathy after recovery from severe sensorimotor neuropathy, and suggests the importance of continuous monitoring for late-onset neurological complications.

  15. Cardiac amyloidosis induces up-regulation of Deleted in Malignant Brain Tumors 1 (DMBT1)

    DEFF Research Database (Denmark)

    Müller, Hanna; Renner, Marcus; Bergmann, Frank

    2013-01-01

    Amyloidosis is a life-threatening protein misfolding disease and affects cardiac tissue, leading to heart failure, myocardial ischemia and arrhythmia. Amyloid deposits result in oxidative stress, inflammation and apoptosis. The purpose of this study was to examine the role of innate defense compo...... components, i.e., Deleted in Malignant Brain Tumors 1 (DMBT1) and the complement system, in different types of cardiac amyloidosis....

  16. Morphology of subcortical brain nuclei is associated with autonomic function in healthy humans.

    Science.gov (United States)

    Ruffle, James K; Coen, Steven J; Giampietro, Vincent; Williams, Steven C R; Apkarian, A Vania; Farmer, Adam D; Aziz, Qasim

    2018-01-01

    The autonomic nervous system (ANS) is a brain body interface which serves to maintain homeostasis by influencing a plethora of physiological processes, including metabolism, cardiorespiratory regulation and nociception. Accumulating evidence suggests that ANS function is disturbed in numerous prevalent clinical disorders, including irritable bowel syndrome and fibromyalgia. While the brain is a central hub for regulating autonomic function, the association between resting autonomic activity and subcortical morphology has not been comprehensively studied and thus was our aim. In 27 healthy subjects [14 male and 13 female; mean age 30 years (range 22-53 years)], we quantified resting ANS function using validated indices of cardiac sympathetic index (CSI) and parasympathetic cardiac vagal tone (CVT). High resolution structural magnetic resonance imaging scans were acquired, and differences in subcortical nuclei shape, that is, 'deformation', contingent on resting ANS activity were investigated. CSI positively correlated with outward deformation of the brainstem, right nucleus accumbens, right amygdala and bilateral pallidum (all thresholded to corrected P right amygdala and pallidum (all thresholded to corrected P Left and right putamen volume positively correlated with CVT (r = 0.62, P = 0.0047 and r = 0.59, P = 0.008, respectively), as did the brainstem (r = 0.46, P = 0.049). These data provide novel evidence that resting autonomic state is associated with differences in the shape and volume of subcortical nuclei. Thus, subcortical morphological brain differences in various disorders may partly be attributable to perturbation in autonomic function. Further work is warranted to investigate these findings in clinical populations. Hum Brain Mapp 39:381-392, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Regulation of cardiac microRNAs by serum response factor

    Directory of Open Access Journals (Sweden)

    Wei Jeanne Y

    2011-02-01

    Full Text Available Abstract Serum response factor (SRF regulates certain microRNAs that play a role in cardiac and skeletal muscle development. However, the role of SRF in the regulation of microRNA expression and microRNA biogenesis in cardiac hypertrophy has not been well established. In this report, we employed two distinct transgenic mouse models to study the impact of SRF on cardiac microRNA expression and microRNA biogenesis. Cardiac-specific overexpression of SRF (SRF-Tg led to altered expression of a number of microRNAs. Interestingly, downregulation of miR-1, miR-133a and upregulation of miR-21 occurred by 7 days of age in these mice, long before the onset of cardiac hypertrophy, suggesting that SRF overexpression impacted the expression of microRNAs which contribute to cardiac hypertrophy. Reducing cardiac SRF level using the antisense-SRF transgenic approach (Anti-SRF-Tg resulted in the expression of miR-1, miR-133a and miR-21 in the opposite direction. Furthermore, we observed that SRF regulates microRNA biogenesis, specifically the transcription of pri-microRNA, thereby affecting the mature microRNA level. The mir-21 promoter sequence is conserved among mouse, rat and human; one SRF binding site was found to be in the mir-21 proximal promoter region of all three species. The mir-21 gene is regulated by SRF and its cofactors, including myocardin and p49/Strap. Our study demonstrates that the downregulation of miR-1, miR-133a, and upregulation of miR-21 can be reversed by one single upstream regulator, SRF. These results may help to develop novel therapeutic interventions targeting microRNA biogenesis.

  18. Autonomic control of heart rate during orthostasis and the importance of orthostatic-tachycardia in the snake Python molurus.

    Science.gov (United States)

    Armelin, Vinicius Araújo; da Silva Braga, Victor Hugo; Abe, Augusto Shinya; Rantin, Francisco Tadeu; Florindo, Luiz Henrique

    2014-10-01

    Orthostasis dramatically influences the hemodynamics of terrestrial vertebrates, especially large and elongated animals such as snakes. When these animals assume a vertical orientation, gravity tends to reduce venous return, cardiac filling, cardiac output and blood pressure to the anterior regions of the body. The hypotension triggers physiological responses, which generally include vasomotor adjustments and tachycardia to normalize blood pressure. While some studies have focused on understanding the regulation of these vasomotor adjustments in ectothermic vertebrates, little is known about regulation and the importance of heart rate in these animals during orthostasis. We acquired heart rate and carotid pulse pressure (P PC) in pythons in their horizontal position, and during 30 and 60° inclinations while the animals were either untreated (control) or upon muscarinic cholinoceptor blockade and a double autonomic blockade. Double autonomic blockade completely eradicated the orthostatic-tachycardia, and without this adjustment, the P PC reduction caused by the tilts became higher than that which was observed in untreated animals. On the other hand, post-inclinatory vasomotor adjustments appeared to be of negligible importance in counterbalancing the hemodynamic effects of gravity. Finally, calculations of cardiac autonomic tones at each position revealed that the orthostatic-tachycardia is almost completely elicited by a withdrawal of vagal drive.

  19. Effects of local cardiac denervation on cardiac innervation and ventricular arrhythmia after chronic myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Xudong Liu

    Full Text Available Modulation of the autonomic nervous system (ANS has already been demonstrated to display antiarrhythmic effects in patients and animals with MI. In this study, we investigated whether local cardiac denervation has any beneficial effects on ventricular electrical stability and cardiac function in the chronic phase of MI.Twenty-one anesthetized dogs were randomly assigned into the sham-operated, MI and MI-ablation groups, respectively. Four weeks after local cardiac denervation, LSG stimulation was used to induce VPCs and VAs. The ventricular fibrillation threshold (VFT and the incidence of inducible VPCs were measured with electrophysiological protocol. Cardiac innervation was determined with immunohistochemical staining of growth associated protein-43 (GAP43 and tyrosine hydroxylase (TH. The global cardiac and regional ventricular function was evaluated with doppler echocardiography in this study.Four weeks after operation, the incidence of inducible VPC and VF in MI-ablation group were significantly reduced compared to the MI dogs (p<0.05. Moreover, local cardiac denervation significantly improved VFT in the infarcted border zone (p<0.05. The densities of GAP43 and TH-positive nerve fibers in the infarcted border zone in the MI-ablation group were lower than those in the MI group (p<0.05. However, the local cardiac denervation did not significantly improve cardiac function in the chronic phase of MI, determined by the left ventricle diameter (LV, left atrial diameter (LA, ejection fraction (EF.Summarily, in the chronic phase of MI, local cardiac denervation reduces the ventricular electrical instability, and attenuates spatial heterogeneity of sympathetic nerve reconstruction. Our study suggests that this methodology might decrease malignant ventricular arrhythmia in chronic MI, and has a great potential for clinical application.

  20. Cardiac Concomitants of Feedback and Prediction Error Processing in Reinforcement Learning

    Science.gov (United States)

    Kastner, Lucas; Kube, Jana; Villringer, Arno; Neumann, Jane

    2017-01-01

    Successful learning hinges on the evaluation of positive and negative feedback. We assessed differential learning from reward and punishment in a monetary reinforcement learning paradigm, together with cardiac concomitants of positive and negative feedback processing. On the behavioral level, learning from reward resulted in more advantageous behavior than learning from punishment, suggesting a differential impact of reward and punishment on successful feedback-based learning. On the autonomic level, learning and feedback processing were closely mirrored by phasic cardiac responses on a trial-by-trial basis: (1) Negative feedback was accompanied by faster and prolonged heart rate deceleration compared to positive feedback. (2) Cardiac responses shifted from feedback presentation at the beginning of learning to stimulus presentation later on. (3) Most importantly, the strength of phasic cardiac responses to the presentation of feedback correlated with the strength of prediction error signals that alert the learner to the necessity for behavioral adaptation. Considering participants' weight status and gender revealed obesity-related deficits in learning to avoid negative consequences and less consistent behavioral adaptation in women compared to men. In sum, our results provide strong new evidence for the notion that during learning phasic cardiac responses reflect an internal value and feedback monitoring system that is sensitive to the violation of performance-based expectations. Moreover, inter-individual differences in weight status and gender may affect both behavioral and autonomic responses in reinforcement-based learning. PMID:29163004

  1. Cardiac Concomitants of Feedback and Prediction Error Processing in Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Lucas Kastner

    2017-10-01

    Full Text Available Successful learning hinges on the evaluation of positive and negative feedback. We assessed differential learning from reward and punishment in a monetary reinforcement learning paradigm, together with cardiac concomitants of positive and negative feedback processing. On the behavioral level, learning from reward resulted in more advantageous behavior than learning from punishment, suggesting a differential impact of reward and punishment on successful feedback-based learning. On the autonomic level, learning and feedback processing were closely mirrored by phasic cardiac responses on a trial-by-trial basis: (1 Negative feedback was accompanied by faster and prolonged heart rate deceleration compared to positive feedback. (2 Cardiac responses shifted from feedback presentation at the beginning of learning to stimulus presentation later on. (3 Most importantly, the strength of phasic cardiac responses to the presentation of feedback correlated with the strength of prediction error signals that alert the learner to the necessity for behavioral adaptation. Considering participants' weight status and gender revealed obesity-related deficits in learning to avoid negative consequences and less consistent behavioral adaptation in women compared to men. In sum, our results provide strong new evidence for the notion that during learning phasic cardiac responses reflect an internal value and feedback monitoring system that is sensitive to the violation of performance-based expectations. Moreover, inter-individual differences in weight status and gender may affect both behavioral and autonomic responses in reinforcement-based learning.

  2. Exercise-induced ventricular arrhythmias and vagal dysfunction in Chagas disease patients with no apparent cardiac involvement

    Directory of Open Access Journals (Sweden)

    Henrique Silveira Costa

    2015-04-01

    Full Text Available INTRODUCTION : Exercise-induced ventricular arrhythmia (EIVA and autonomic imbalance are considered as early markers of heart disease in Chagas disease (ChD patients. The objective of the present study was to verify the differences in the occurrence of EIVA and autonomic maneuver indexes between healthy individuals and ChD patients with no apparent cardiac involvement. METHODS : A total of 75 ChD patients with no apparent cardiac involvement, aged 44.7 (8.5 years, and 38 healthy individuals, aged 44.0 (9.2 years, were evaluated using echocardiography, symptom-limited treadmill exercise testing and autonomic function tests. RESULTS : The occurrence of EIVA was higher in the chagasic group (48% than in the control group (23.7% during both the effort and the recovery phases. Frequent ventricular contractions occurred only in the patient group. Additionally, the respiratory sinus arrhythmia index was significantly lower in the chagasic individuals compared with the control group. CONCLUSIONS : ChD patients with no apparent cardiac involvement had a higher frequency of EIVA as well as more vagal dysfunction by respiratory sinus arrhythmia. These results suggest that even when asymptomatic, ChD patients possess important arrhythmogenic substrates and subclinical disease.

  3. Cardiac expression of microsomal triglyceride transfer protein is increased in obesity and serves to attenuate cardiac triglyceride accumulation.

    Directory of Open Access Journals (Sweden)

    Emil D Bartels

    Full Text Available Obesity causes lipid accumulation in the heart and may lead to lipotoxic heart disease. Traditionally, the size of the cardiac triglyceride pool is thought to reflect the balance between uptake and beta-oxidation of fatty acids. However, triglycerides can also be exported from cardiomyocytes via secretion of apolipoproteinB-containing (apoB lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP; the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism remain unknown, we investigated how cardiac lipoprotein synthesis affects cardiac expression of triglyceride metabolism-controlling genes, insulin sensitivity, and function in obese mice. Heart-specific ablation of MTP-A in mice using Cre-loxP technology impaired upregulation of MTP expression in response to increased fatty acid availability during fasting and fat feeding. This resulted in cardiac triglyceride accumulation but unaffected cardiac insulin-stimulated glucose uptake. Long-term fat-feeding of male C57Bl/6 mice increased cardiac triglycerides, induced cardiac expression of triglyceride metabolism-controlling genes and attenuated heart function. Abolishing cardiac triglyceride accumulation in fat-fed mice by overexpression of an apoB transgene in the heart prevented the induction of triglyceride metabolism-controlling genes and improved heart function. The results suggest that in obesity, the physiological increase of cardiac MTP expression serves to attenuate cardiac triglyceride accumulation albeit without major effects on cardiac insulin sensitivity. Nevertheless, the data suggest that genetically increased lipoprotein secretion prevents development of obesity-induced lipotoxic heart disease.

  4. Functional Imaging of Autonomic Regulation: Methods and Key Findings

    Directory of Open Access Journals (Sweden)

    Paul M Macey

    2016-01-01

    brain regions mediating postural and motoric actions, including respiration and cardiac output. The study of pathological processes associated with autonomic disruption shows susceptibilities of different brain structures to altered timing of neural function, notably in sleep disordered breathing, such as obstructive sleep apnea and congenital central hypoventilation syndrome. The cerebellum, in particular, serves coordination roles for vestibular stimuli and blood pressure changes, and shows both injury and substantially altered timing of responses to pressor challenges in sleep-disordered breathing conditions. The insights into central autonomic processing provided by

  5. Sildenafil prevents the up-regulation of transient receptor potential canonical channels in the development of cardiomyocyte hypertrophy

    International Nuclear Information System (INIS)

    Kiso, Hironori; Ohba, Takayoshi; Iino, Kenji; Sato, Kazuhiro; Terata, Yutaka; Murakami, Manabu; Ono, Kyoichi; Watanabe, Hiroyuki; Ito, Hiroshi

    2013-01-01

    Highlights: •Transient receptor potential canonical (TRPC1, 3 and 6) are up-regulated by ET-1. •Sildenafil inhibited hypertrophic responses (BNP, Ca entry, NFAT activation). •Sildenafil suppressed TRPC1, 3 and 6 expression. -- Abstract: Background: Transient receptor potential canonical (TRPCs) channels are up-regulated in the development of cardiac hypertrophy. Sildenafil inhibits TRPC6 activation and expression, leading to the prevention of cardiac hypertrophy. However, the effects of sildenafil on the expression of other TRPCs remain unknown. We hypothesized that in addition to its effects of TRPC6, sildenafil blocks the up-regulation of other TRPC channels to suppress cardiomyocyte hypertrophy. Methods and results: In cultured neonatal rat cardiomyocytes, a 48 h treatment with 10 nM endothelin (ET)-1 induced hypertrophic responses characterized by nuclear factor of activated T cells activation and enhancement of brain natriuretic peptide expression and cell surface area. Co-treatment with sildenafil (1 μM, 48 h) inhibited these ET-1-induced hypertrophic responses. Although ET-1 enhanced the gene expression of TRPCs, sildenafil inhibited the enhanced gene expression of TRPC1, C3 and C6. Moreover, co-treatment with sildenafil abolished the augmentation of SOCE in the hypertrophied cardiomyocytes. Conclusions: These results suggest that sildenafil inhibits cardiomyocyte hypertrophy by suppressing the up-regulation of TRPC expression

  6. Assessment of Autonomic Function by Phase Rectification of RRInterval Histogram Analysis in Chagas Disease

    Directory of Open Access Journals (Sweden)

    Olivassé Nasari Junior

    2015-06-01

    Full Text Available Background: In chronic Chagas disease (ChD, impairment of cardiac autonomic function bears prognostic implications. Phase‑rectification of RR-interval series isolates the sympathetic, acceleration phase (AC and parasympathetic, deceleration phase (DC influences on cardiac autonomic modulation. Objective: This study investigated heart rate variability (HRV as a function of RR-interval to assess autonomic function in healthy and ChD subjects. Methods: Control (n = 20 and ChD (n = 20 groups were studied. All underwent 60-min head-up tilt table test under ECG recording. Histogram of RR-interval series was calculated, with 100 ms class, ranging from 600–1100 ms. In each class, mean RR-intervals (MNN and root-mean-squared difference (RMSNN of consecutive normal RR-intervals that suited a particular class were calculated. Average of all RMSNN values in each class was analyzed as function of MNN, in the whole series (RMSNNT, and in AC (RMSNNAC and DC (RMSNNDC phases. Slopes of linear regression lines were compared between groups using Student t-test. Correlation coefficients were tested before comparisons. RMSNN was log-transformed. (α < 0.05. Results: Correlation coefficient was significant in all regressions (p < 0.05. In the control group, RMSNNT, RMSNNAC, and RMSNNDC significantly increased linearly with MNN (p < 0.05. In ChD, only RMSNNAC showed significant increase as a function of MNN, whereas RMSNNT and RMSNNDC did not. Conclusion: HRV increases in proportion with the RR-interval in healthy subjects. This behavior is lost in ChD, particularly in the DC phase, indicating cardiac vagal incompetence.

  7. Origin of heart rate variability and turbulence: an appraisal of autonomic modulation of cardiovascular function.

    Directory of Open Access Journals (Sweden)

    Federico eLombardi

    2011-12-01

    Full Text Available Assessment of autonomic modulation of sinus node by non-invasive techniques has provided relevant clinical information in patients with several cardiac and non-cardiac diseases and has facilitated the appraisal of neural regulatory mechanisms in normal and diseased subjects. The finding that even during resting conditions the heart period changes on a beat to beat basis and that after a premature ventricular beat there are small variations in RR interval whose measurements may be utilised to evaluate the autonomic modulation of sinus node, has provided unprecedented clinical and pathophysiological information. Heart rate variability (HRV and Heart Rate Turbulence (HRT have been extensively utilised in the clinical setting. To explain the negative predictive value of a reduced HRV it was determined that overall HRV was largely dependent on vagal mechanisms and that a reduction in HRV could reflect an increased sympathetic and a reduced vagal modulation of sinus node; i.e. an autonomic alteration favouring cardiac electrical instability. This initial interpretation was challenged by several findings indicating a greater complexity of the relationship between neural input and sinus node responsiveness as well as the possible interference with non-neural mechanisms.Under controlled conditions, however, the computation of low and high frequency components and of their ratio seems capable of providing adequate information on sympatho-vagal balance in normal subjects as well as in most patients with a preserved left ventricular function, thus providing a unique tool to investigate neural control mechanisms. Analysis on non-linear dynamics of HRV has also been utilised to describe the fractal like characteristic of the variability signal and proven effective to identify patients at risk for sudden cardiac death. A reduction on HRT parameters reflecting reduced baroreflex sensitivity as a likely result of a reduced vagal and of an increased sympathetic

  8. Do mobile phones pose a potential risk to autonomic modulation of the heart?

    Science.gov (United States)

    Barutcu, Irfan; Esen, Ali Metin; Kaya, Dayimi; Turkmen, Muhsin; Karakaya, Osman; Saglam, Mustafa; Melek, Mehmet; Çelik, Ataç; Kilit, Celal; Onrat, Ersel; Kirma, Cevat

    2011-11-01

    It has long been speculated that mobile phones may interact with the cardiac devices and thereby cardiovascular system may be a potential target for the electromagnetic fields emitted by the mobile phones. Therefore, the present study was designed to test possible effects of radiofrequency waves emitted by digital mobile phones on cardiac autonomic modulation by short-time heart rate variability (HRV) analysis. A total of 20 healthy young subjects were included to the study. All participants were rested in supine position at least for 15 minutes on a comfortable bed, and then time and frequency domain HRV parameters were recorded at baseline in supine position for 5 minutes. After completion of baseline records, by using a mobile GSM (Global System for Mobile Communication) phone, HRV parameters were recorded at turned off mode, at turned on mode, and at calling mode over 5 minutes periods for each stage. Neither time nor frequency domain HRV parameters altered significantly during off mode compare to their baseline values. Also, neither time nor frequency domain HRV parameters altered significantly during turned on and calling mode compared to their baseline values. Short-time exposure to electromagnetic fields emitted by mobile phone does not affect cardiac autonomic modulation in healthy subjects.

  9. Cardiac autonomic dysfunction is associated with high-risk albumin-to-creatinine ratio in young adolescents with type 1 diabetes in AdDIT (adolescent type 1 diabetes cardio-renal interventional trial).

    Science.gov (United States)

    Cho, Yoon Hi; Craig, Maria E; Davis, Elizabeth A; Cotterill, Andrew M; Couper, Jennifer J; Cameron, Fergus J; Benitez-Aguirre, Paul Z; Dalton, R Neil; Dunger, David B; Jones, Timothy W; Donaghue, Kim C

    2015-04-01

    This study examined the association between cardiac autonomic dysfunction and high albumin-to-creatinine ratio (ACR) in adolescents with type 1 diabetes. Adolescents recruited as part of a multicenter screening study (n = 445, 49% female, aged 10-17 years, mean duration 6.9 years; mean HbA1c 8.4%, 68 mmol/mol) underwent a 10-min continuous electrocardiogram recording for heart rate variability analysis. Time-domain heart rate variability measures included baseline heart rate, SD of the R-R interval (SDNN), and root mean squared difference of successive R-R intervals (RMSSD). Spectral analysis included sympathetic (low-frequency) and parasympathetic (high-frequency) components. Standardized ACR were calculated from six early morning urine collections using an established algorithm, reflecting age, sex, and duration, and stratified into ACR tertiles, where the upper tertile reflects higher nephropathy risk. The upper-tertile ACR group had a faster heart rate (76 vs. 73 bpm; P < 0.01) and less heart rate variability (SDNN 68 vs. 76 ms, P = 0.02; RMSSD 63 vs. 71 ms, P = 0.04). HbA1c was 8.5% (69 mmol/mmol) in the upper tertile vs. 8.3% (67 mmol/mol) in the lower tertiles (P = 0.07). In multivariable analysis, upper-tertile ACR was associated with faster heart rate (β = 2.5, 95% CI 0.2-4.8, P = 0.03) and lower RMSSD (β = -9.5, 95% CI -18.2 to -0.8, P = 0.03), independent of age and HbA1c. Adolescents at potentially higher risk for nephropathy show an adverse cardiac autonomic profile, indicating sympathetic overdrive, compared with the lower-risk group. Longitudinal follow-up of this cohort will further characterize the relationship between autonomic and renal dysfunction and the effect of interventions in this population. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  10. Exploring relationships for visceral and somatic pain with autonomic control and personality.

    Science.gov (United States)

    Paine, Peter; Kishor, Jessin; Worthen, Sian F; Gregory, Lloyd J; Aziz, Qasim

    2009-08-01

    The autonomic nervous system (ANS) integrates afferent and motor activity for homeostatic processes including pain. The aim of the study was to compare hitherto poorly characterised relations between brainstem autonomic control and personality in response to visceral and somatic pain. Eighteen healthy subjects (16 females, mean age 34) had recordings during rest and pain of heart rate (HR), cardiac vagal tone (CVT), cardiac sensitivity to baroreflex (CSB), skin conductance level (SC), cardiac sympathetic index (CSI) and mean blood pressure (MBP). Visceral pain was induced by balloon distension in proximal (PB) and distal (DB) oesophagus and somatic pain by nail-bed pressure (NBP). Eight painful stimuli were delivered at each site and unpleasantness and intensity measured. Personality was profiled with the Big Five inventory. (1) Oesophageal intubation evoked "fight-flight" responses: HR and sympathetic (CSI, SC, MBP) elevation with parasympathetic (CVT) withdrawal (pintrovert subjects had greater positive pain-related CVT slope change (neuroticism r 0.8, p<0.05; extroversion r -0.5, p<0.05). Pain-evoked heart rate increases were mediated by parasympathetic and sympathetic co-activation - a novel finding in humans but recently described in mammals too. Visceral pain-related parasympathetic change correlated with personality. ANS defence responses are nuanced and may relate to personality type for visceral pain. Clinical relevance of these findings warrants further exploration.

  11. High-Intensity Progressive Resistance Training Increases Strength With No Change in Cardiovascular Function and Autonomic Neural Regulation in Older Adults.

    Science.gov (United States)

    Kanegusuku, Hélcio; Queiroz, Andréia C; Silva, Valdo J; de Mello, Marco T; Ugrinowitsch, Carlos; Forjaz, Cláudia L

    2015-07-01

    The effects of high-intensity progressive resistance training (HIPRT) on cardiovascular function and autonomic neural regulation in older adults are unclear. To investigate this issue, 25 older adults were randomly divided into two groups: control (CON, N = 13, 63 ± 4 years; no training) and HIPRT (N = 12, 64 ± 4 years; 2 sessions/week, 7 exercises, 2–4 sets, 10–4 RM). Before and after four months, maximal strength, quadriceps cross-sectional area (QCSA), clinic and ambulatory blood pressures (BP), systemic hemodynamics, and cardiovascular autonomic modulation were measured. Maximal strength and QCSA increased in the HIPRT group and did not change in the CON group. Clinic and ambulatory BP, cardiac output, systemic vascular resistance, stroke volume, heart rate, and cardiac sympathovagal balance did not change in the HIPRT group or the CON group. In conclusion, HIPRT was effective at increasing muscle mass and strength without promoting changes in cardiovascular function or autonomic neural regulation.

  12. Role of autogenic relaxation in management of diabetic cardiovascular autonomic neuropathy in type II diabetes mellitus patients

    OpenAIRE

    Manish K. Verma; D. A. Biswas; Shambhavi Tripathi; N. S. Verma

    2016-01-01

    Background: Cardiac autonomic neuropathy (CAN) is a very common complication of Type II diabetes mellitus patients. Early detection and treatment of CAN is necessary for reduction of mortality and morbidity in type II diabetes patients. Methods: The study included 120 diagnosed cases of type 2 diabetes mellitus with autonomic neuropathy both male and female, with more than 5 years duration of disease. Age group of the study subjects was between 30 and ndash; 70 years. All the 120 diabet...

  13. Alterations of autonomic nervous activity and energy metabolism by capsaicin ingestion during aerobic exercise in healthy men.

    Science.gov (United States)

    Shin, Ki Ok; Moritani, Toshio

    2007-04-01

    We investigated whether capsaicin ingestion (150 mg) enhances substrate oxidation associated with thermogenic sympathetic activity as an energy metabolic modulator without causing prolongation of the cardiac OT interval during aerobic exercise in humans. Ten healthy males [24.4 (4.3) y] volunteered for this study. The cardiac autonomic nervous activities evaluated by means of heart rate variability of power spectral analysis, energy metabolism, and ECG QT interval were continuously measured during 5-min rest and 30-min exercise at 50% of maximal ventilatory threshold (50% VT(max)) on a stationary ergometer with placebo or capsaicin oral administration chosen at random. The results indicated that there were no significant differences in heart rate during rest or exercise between the two trials. Autonomic nervous activity increased in the capsaicin tablet trial during exercise, but the difference did not reach statistical significance. Capsaicin, however, significantly induced a lower respiratory gas exchange ratio [0.92 (0.02) vs. 0.94 (0.02), means (SE), p means (SE), p < 0.05] during exercise. On the other hand, the data on the cardiac OT interval showed no significant difference, indicating that oral administration of capsaicin did not cause any adverse effect on cardiac depolarization-repolarization. In conclusion, it may be considered that capsaicin consumption 1 h before low intensity exercise (50% VT(max)) is a valuable supplement for the treatment of individuals with hyperlipidemia and/or obesity because it improves lipolysis without any adverse effects on the cardiac depolarization and repolarization process.

  14. Cardiovascular autonomic dysfunction and carotid stiffness in adults with repaired tetralogy of Fallot.

    Science.gov (United States)

    Novaković, Marko; Prokšelj, Katja; Starc, Vito; Jug, Borut

    2017-06-01

    Adults after surgical repair of tetralogy of Fallot (ToF) may have impaired vascular and cardiac autonomic function. Thus, we wanted to assess interrelations between heart rate variability (HRV) and heart rate recovery (HRR), as parameters of cardiac autonomic function, and arterial stiffness, as a parameter of vascular function, in adults with repaired ToF as compared to healthy controls. In a case-control study of adults with repaired ToF and healthy age-matched controls we measured: 5-min HRV variability (with time and frequency domain data collected), carotid artery stiffness (through pulse-wave analysis using echo-tracking ultrasound) and post-exercise HRR (cycle ergometer exercise testing). Twenty-five patients with repaired ToF (mean age 38 ± 10 years) and 10 healthy controls (mean age 39 ± 8 years) were included. Selected HRR and HRV (time-domain) parameters, but not arterial stiffness were significantly reduced in adults after ToF repair. Moreover, a strong association between late/slow HRR (after 2, 3 and 4 min) and carotid artery stiffness was detected in ToF patients (r = -0.404, p = 0.045; r = -0.545, p = 0.005 and r = -0.545, p = 0.005, respectively), with statistical significance retained even after adjusting for age, gender, resting heart rate and β-blockers use (r = -0.393, p = 0.024 for HRR after 3 min). Autonomic cardiac function is impaired in patients with repaired ToF, and independently associated with vascular function in adults after ToF repair, but not in age-matched healthy controls. These results might help in introducing new predictors of cardiovascular morbidity in a growing population of adults after surgical repair of ToF.

  15. Enhancing Predictive Accuracy of Cardiac Autonomic Neuropathy Using Blood Biochemistry Features and Iterative Multitier Ensembles.

    Science.gov (United States)

    Abawajy, Jemal; Kelarev, Andrei; Chowdhury, Morshed U; Jelinek, Herbert F

    2016-01-01

    Blood biochemistry attributes form an important class of tests, routinely collected several times per year for many patients with diabetes. The objective of this study is to investigate the role of blood biochemistry for improving the predictive accuracy of the diagnosis of cardiac autonomic neuropathy (CAN) progression. Blood biochemistry contributes to CAN, and so it is a causative factor that can provide additional power for the diagnosis of CAN especially in the absence of a complete set of Ewing tests. We introduce automated iterative multitier ensembles (AIME) and investigate their performance in comparison to base classifiers and standard ensemble classifiers for blood biochemistry attributes. AIME incorporate diverse ensembles into several tiers simultaneously and combine them into one automatically generated integrated system so that one ensemble acts as an integral part of another ensemble. We carried out extensive experimental analysis using large datasets from the diabetes screening research initiative (DiScRi) project. The results of our experiments show that several blood biochemistry attributes can be used to supplement the Ewing battery for the detection of CAN in situations where one or more of the Ewing tests cannot be completed because of the individual difficulties faced by each patient in performing the tests. The results show that AIME provide higher accuracy as a multitier CAN classification paradigm. The best predictive accuracy of 99.57% has been obtained by the AIME combining decorate on top tier with bagging on middle tier based on random forest. Practitioners can use these findings to increase the accuracy of CAN diagnosis.

  16. Analysis of cardiac autonomic modulation of children with attention deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    de Carvalho TD

    2014-04-01

    Full Text Available Tatiana Dias de Carvalho,1,2 Rubens Wajnsztejn,3 Luiz Carlos de Abreu,2,7 Luiz Carlos Marques Vanderlei,4 Moacir Fernandes Godoy,5 Fernando Adami,2 Vitor E Valenti,6 Carlos B M Monteiro,2,7 Claudio Leone,7 Karen Cristina da Cruz Martins,2 Celso Ferreira11Departamento de Medicina, Disciplina de Cardiologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil; 2Laboratório de Escrita Científica da Faculdade de Medicina do ABC, FMABC, Santo André, Brazil; 3Núcleo Especializado em Aprendizagem, Programa de pós-graduação em Ciências da Saúde da Faculdade de Medicina do ABC, FMABC, Santo André, Brazil; 4Departamento de Fisioterapia da Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista, UNESP, Presidente Prudente, São Paulo, Brazil; 5Núcleo Transdisciplinar de Estudos do Caos e da Complexidade. Faculdade de Medicina de São José de Rio Preto, FAMERP, São José do Rio Preto, Brazil; 6Departamento de Fonoaudiologia da Faculdade de Filosofia e Ciências, Universidade Estadual Paulista, UNESP, Marília, Brazil; 7Departamento de Saúde Materno-Infantil da Faculdade de Saúde Pública da Universidade de São Paulo, São Paulo, BrazilBackground: Attention deficit hyperactivity disorder (ADHD is characterized by decreased attention span, impulsiveness, and hyperactivity. Autonomic nervous system imbalance was previously described in this population. We aim to compare the autonomic function of children with ADHD and controls by analyzing heart rate variability (HRV.Methods: Children rested in supine position with spontaneous breathing for 20 minutes. Heart rate was recorded beat by beat. HRV analysis was performed in the time and frequency domains and Poincaré plot.Results: Twenty-eight children with ADHD (22 boys, aged 9.964 years and 28 controls (15 boys, age 9.857 years participated in this study. It was determined that the mean and standard deviation of indexes which indicate parasympathetic activity is higher in

  17. Network interactions within the canine intrinsic cardiac nervous system: implications for reflex control of regional cardiac function

    Science.gov (United States)

    Beaumont, Eric; Salavatian, Siamak; Southerland, E Marie; Vinet, Alain; Jacquemet, Vincent; Armour, J Andrew; Ardell, Jeffrey L

    2013-01-01

    The aims of the study were to determine how aggregates of intrinsic cardiac (IC) neurons transduce the cardiovascular milieu versus responding to changes in central neuronal drive and to determine IC network interactions subsequent to induced neural imbalances in the genesis of atrial fibrillation (AF). Activity from multiple IC neurons in the right atrial ganglionated plexus was recorded in eight anaesthetized canines using a 16-channel linear microelectrode array. Induced changes in IC neuronal activity were evaluated in response to: (1) focal cardiac mechanical distortion; (2) electrical activation of cervical vagi or stellate ganglia; (3) occlusion of the inferior vena cava or thoracic aorta; (4) transient ventricular ischaemia, and (5) neurally induced AF. Low level activity (ranging from 0 to 2.7 Hz) generated by 92 neurons was identified in basal states, activities that displayed functional interconnectivity. The majority (56%) of IC neurons so identified received indirect central inputs (vagus alone: 25%; stellate ganglion alone: 27%; both: 48%). Fifty per cent transduced the cardiac milieu responding to multimodal stressors applied to the great vessels or heart. Fifty per cent of IC neurons exhibited cardiac cycle periodicity, with activity occurring primarily in late diastole into isovolumetric contraction. Cardiac-related activity in IC neurons was primarily related to direct cardiac mechano-sensory inputs and indirect autonomic efferent inputs. In response to mediastinal nerve stimulation, most IC neurons became excessively activated; such network behaviour preceded and persisted throughout AF. It was concluded that stochastic interactions occur among IC local circuit neuronal populations in the control of regional cardiac function. Modulation of IC local circuit neuronal recruitment may represent a novel approach for the treatment of cardiac disease, including atrial arrhythmias. PMID:23818689

  18. Ictal Cardiac Ryhthym Abnormalities.

    Science.gov (United States)

    Ali, Rushna

    2016-01-01

    Cardiac rhythm abnormalities in the context of epilepsy are a well-known phenomenon. However, they are under-recognized and often missed. The pathophysiology of these events is unclear. Bradycardia and asystole are preceded by seizure onset suggesting ictal propagation into the cortex impacting cardiac autonomic function, and the insula and amygdala being possible culprits. Sudden unexpected death in epilepsy (SUDEP) refers to the unanticipated death of a patient with epilepsy not related to status epilepticus, trauma, drowning, or suicide. Frequent refractory generalized tonic-clonic seizures, anti-epileptic polytherapy, and prolonged duration of epilepsy are some of the commonly identified risk factors for SUDEP. However, the most consistent risk factor out of these is an increased frequency of generalized tonic-clonic seizures (GTC). Prevention of SUDEP is extremely important in patients with chronic, generalized epilepsy. Since increased frequency of GTCS is the most consistently reported risk factor for SUDEP, effective seizure control is the most important preventive strategy.

  19. Cardiovascular autonomic control during short-term thermoneutral and cool head-out immersion.

    Science.gov (United States)

    Mourot, Laurent; Bouhaddi, Malika; Gandelin, Emmanuel; Cappelle, Sylvie; Dumoulin, Gilles; Wolf, Jean-Pierre; Rouillon, Jean Denis; Regnard, Jacques

    2008-01-01

    Moderately cold head-out water immersion stimulates both baro- and cold-receptors, and triggers complex and contradictory effects on the cardiovascular system and its autonomic nervous control. To assess the effects of water immersion and cold on cardiovascular status and related autonomic nervous activity. Hemodynamic variables and indexes of autonomic nervous activity (analysis of heart rate and blood pressure variability) were evaluated in 12 healthy subjects during 3 exposures of 20 min each in the upright position, i.e., in air (AIR, 24-25 degrees C), and during head-out water immersion at 35-36 degrees C (WIn) and 26-27 degrees C (WIc). Plasma noradrenaline, systolic and diastolic blood pressure, and total peripheral resistances were reduced during WIn compared to AIR (263.9 +/- 39.4 vs. 492.5 +/- 35.7 pg x ml(-1), 116.5 +/- 3.7 and 65.4 +/- 1.7 mmHg vs. 140.8 +/- 4.7 and 89.8 +/- 2.8 mmHg, 14.1 +/- 1.0 vs. 16.3 +/- 0.9 mmHg x L(-1) x min, respectively) while they were increased during WIc (530.8 +/- 84.7 pg ml(-1), 148.0 +/- 7.0 mmHg, 80.8 +/- 3.0 mmHg, and 25.8 +/- 1.9 mmHg x L(-1) x min, respectively). The blood pressure variability was reduced to the same extent during WIc and Win compared to AIR. Heart rate decreased during WIn (67.8 +/- 2.7 vs. 81.2 +/- 2.7 bpm during AIR), in parallel with an increased cardiac parasympathetic activity. This pattern was strengthened during WIc (55.3 +/- 2.2 bpm). Thermoneutral WI lowered sympathetic activity and arterial tone, while moderate whole-body skin cooling triggered vascular sympathetic activation. Conversely, both WI and cold triggered cardiac parasympathetic activation, highlighting a complex autonomic control of the cardiovascular system.

  20. Examining the role of TRPA1 in air pollution-induced cardiac arrhythmias and autonomic imbalance

    Science.gov (United States)

    Here we describe how air pollution causes cardiac arrhythmogenesis through sensory irritation in the airways. Time-series studies show the risk of adverse cardiac events increases significantly in the hours to days after expos...

  1. Heart failure-induced changes of voltage-gated Ca2+ channels and cell excitability in rat cardiac postganglionic neurons.

    Science.gov (United States)

    Tu, Huiyin; Liu, Jinxu; Zhang, Dongze; Zheng, Hong; Patel, Kaushik P; Cornish, Kurtis G; Wang, Wei-Zhong; Muelleman, Robert L; Li, Yu-Long

    2014-01-15

    Chronic heart failure (CHF) is characterized by decreased cardiac parasympathetic and increased cardiac sympathetic nerve activity. This autonomic imbalance increases the risk of arrhythmias and sudden death in patients with CHF. We hypothesized that the molecular and cellular alterations of cardiac postganglionic parasympathetic (CPP) neurons located in the intracardiac ganglia and sympathetic (CPS) neurons located in the stellate ganglia (SG) possibly link to the cardiac autonomic imbalance in CHF. Rat CHF was induced by left coronary artery ligation. Single-cell real-time PCR and immunofluorescent data showed that L (Ca(v)1.2 and Ca(v)1.3), P/Q (Ca(v)2.1), N (Ca(v)2.2), and R (Ca(v)2.3) types of Ca2+ channels were expressed in CPP and CPS neurons, but CHF decreased the mRNA and protein expression of only the N-type Ca2+ channels in CPP neurons, and it did not affect mRNA and protein expression of all Ca2+ channel subtypes in the CPS neurons. Patch-clamp recording confirmed that CHF reduced N-type Ca2+ currents and cell excitability in the CPP neurons and enhanced N-type Ca2+ currents and cell excitability in the CPS neurons. N-type Ca2+ channel blocker (1 μM ω-conotoxin GVIA) lowered Ca2+ currents and cell excitability in the CPP and CPS neurons from sham-operated and CHF rats. These results suggest that CHF reduces the N-type Ca2+ channel currents and cell excitability in the CPP neurons and enhances the N-type Ca2+ currents and cell excitability in the CPS neurons, which may contribute to the cardiac autonomic imbalance in CHF.

  2. Autonomic and Renal Alterations in the Offspring of Sleep-Restricted Mothers During Late Pregnancy

    Directory of Open Access Journals (Sweden)

    Joyce R.S. Raimundo

    Full Text Available OBJECTIVES: Considering that changes in the maternal environment may result in changes in progeny, the aim of this study was to investigate the influence of sleep restriction during the last week of pregnancy on renal function and autonomic responses in male descendants at an adult age. METHODS: After confirmation of pregnancy, female Wistar rats were randomly assigned to either a control or a sleep restriction group. The sleep-restricted rats were subjected to sleep restriction using the multiple platforms method for over 20 hours per day between the 14th and 20th day of pregnancy. After delivery, the litters were limited to 6 offspring that were designated as offspring from control and offspring from sleep-restricted mothers. Indirect measurements of systolic blood pressure (BPi, renal plasma flow, glomerular filtration rate, glomerular area and number of glomeruli per field were evaluated at three months of age. Direct measurements of cardiovascular function (heart rate and mean arterial pressure, cardiac sympathetic tone, cardiac parasympathetic tone, and baroreflex sensitivity were evaluated at four months of age. RESULTS: The sleep-restricted offspring presented increases in BPi, glomerular filtration rate and glomerular area compared with the control offspring. The sleep-restricted offspring also showed higher basal heart rate, increased mean arterial pressure, increased sympathetic cardiac tone, decreased parasympathetic cardiac tone and reduced baroreflex sensitivity. CONCLUSIONS: Our data suggest that reductions in sleep during the last week of pregnancy lead to alterations in cardiovascular autonomic regulation and renal morpho-functional changes in offspring, triggering increases in blood pressure.

  3. A STUDY ON CARDIOVASCULAR AUTONOMIC FUNCTIONS IN CAREGIVERS OF STROKE PATIENTS

    Directory of Open Access Journals (Sweden)

    Ghouse Mubarak

    2017-08-01

    Full Text Available BACKGROUND Stroke (cerebrovascular accident is an important cause of disability in countries like India and longterm care of these bedridden patients is usually undertaken by the family members. A caregiver is a person who takes responsibility for those who cannot completely care for themselves. Taking care of a chronically ill member in the family usually causes stress to the caregiver causing disturbances in the autonomic function. Thus, the present study is undertaken to find out the effect of longterm caregiving on cardiovascular autonomic functions in a caregiver. MATERIALS AND METHODS 57 caregivers of post-stroke bedridden patients, both male and female, were included in this longitudinal study. Parasympathetic activity was assessed by observing the heart rate changes to immediate standing from lying down position, heart rate changes during deep breathing and heart rate changes during Valsalva manoeuvre. Sympathetic activity was assessed by observing blood pressure changes on immediate standing from lying down position and blood pressure changes during sustained hand grip. RESULTS The results of the present study showed statistically significant decrease in Valsalva ratio, decrease in the heart rate following deep breathing and statistically significant increase in systolic blood pressure in response to immediate standing suggestive of autonomic imbalance. CONCLUSION Our findings suggest that longterm caregiving is accompanied by dysfunction of the cardiac autonomic nervous system, and these individuals are more prone to autonomic neuropathy.

  4. Imaging of metabolism and autonomic innervation of the heart by positron emission tomography

    International Nuclear Information System (INIS)

    Melon, P.; Schwaiger, M.

    1992-01-01

    Positron emission tomography (PET) allows, in combination with multiple radiopharmaceuticals, unique physiological and biochemical tissue characterization. Tracers of blood flow, metabolism and neuronal function have been employed with this technique for research application. More recently, PET has emerged in cardiology as useful for the detection of coronary artery disease and the evaluation of tissue viability. Metabolic tracers such as flourine-18 deoxyglucose (FDG) permit the specific delineation of ischaemically compromised myocardium. Clinical studies have indicated that the metabolic imaging is helpful in selecting patients for coronary artery bypass surgery or coronary angioplasty. More recent research work has concentrated on the use of carbon-11 acetate as a marker of myocardial oxygen consumption. Together with measurements of left ventricular performance, estimates of cardiac efficiency can be derived from dynamic 11 C-acetate studies. The non-invasive evaluation of the autonomic nervous system of the heart was limited in the past. With the introduction of radiopharmaceuticals which specifically bind to neuronal structures, the regional integrity of the autonomic nervous system of the heart can be evaluated with PET. Numerous tracers for pre- and postsynaptic binding sites have been synthesized. 11 C-Hydroxyephedrine represent a new catecholamine analogne which is stored in cardiac presynaptic sympathetic nerve terminals. Initial clinical studies with it suggest a promising role for PET in the study of the sympathetic nervous system in various cardiac diseases such as cardiomyopathy, ischaemic heart disease and diabetes mellitus. The specificity of the radiopharmaceuticals and the quantitative measurements of tissue tracer distribution provided by PET make this technology a very attractive research tool in the cardiovascular sciences with great promise in the area of cardiac metabolism and neurocardiology. (orig.)

  5. Heart rate variability response to mental arithmetic stress in patients with schizophrenia Autonomic response to stress in schizophrenia

    NARCIS (Netherlands)

    Castro, Mariana N.; Vigo, Daniel E.; Weidema, Hylke; Fahrer, Rodolfo D.; Chu, Elvina M.; De Achaval, Delfina; Nogues, Martin; Leiguarda, Ramon C.; Cardinali, Daniel P.; Guinjoan, Salvador N.

    Background: The vulnerability-stress hypothesis is an established model of schizophrenia symptom formation. We sought to characterise the pattern of the cardiac autonomic response to mental arithmetic stress in patients with stable schizophrenia. Methods: We performed heart rate variability (HRV)

  6. Strain-specific patterns of autonomic nervous system activity and heart failure susceptibility in mice.

    Science.gov (United States)

    Shusterman, Vladimir; Usiene, Irmute; Harrigal, Chivonne; Lee, Joon Sup; Kubota, Toru; Feldman, Arthur M; London, Barry

    2002-06-01

    Transgenic mice are widely used to study cardiac function, but strain-dependent differences in autonomic nervous system activity (ANSA) have not been explored. We compared 1) short-term pharmacological responses of cardiac rhythm in FVB vs. C57Black6/SV129 wild-type mice and 2) long-term physiological dynamics of cardiac rhythm and survival in tumor necrosis factor (TNF)-alpha transgenic mice with heart failure (TNF-alpha mice) on defined backgrounds. Ambulatory telemetry electrocardiographic recordings and response to saline, adrenergic, and cholinergic agents were examined in FVB and C57Black6/SV129 mice. In FVB mice, baseline heart rate (HR) was higher and did not change after injection of isoproterenol or atropine but decreased with propranolol. In C57Black6/SV129 mice, HR did not change with propranolol but increased with isoproterenol or atropine. Mean HR, but not indexes of HR variability, was an excellent predictor of response to autonomic agents. The proportion of surviving animals was higher in TNF-alpha mice on an FVB background than on a mixed FVB/C57Black6 background. The homeostatic states of ANSA are strain specific, which can explain the interstrain differences in mean HR, pharmacological responses, and survival of animals with congestive heart failure. Strain-specific differences should be considered in selecting the strains of mice used for transgenic and gene targeting experiments.

  7. miR-133a Enhances the Protective Capacity of Cardiac Progenitors Cells after Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Alberto Izarra

    2014-12-01

    Full Text Available miR-133a and miR-1 are known as muscle-specific microRNAs that are involved in cardiac development and pathophysiology. We have shown that both miR-1 and miR-133a are early and progressively upregulated during in vitro cardiac differentiation of adult cardiac progenitor cells (CPCs, but only miR-133a expression was enhanced under in vitro oxidative stress. miR-1 was demonstrated to favor differentiation of CPCs, whereas miR-133a overexpression protected CPCs against cell death, targeting, among others, the proapoptotic genes Bim and Bmf. miR-133a-CPCs clearly improved cardiac function in a rat myocardial infarction model by reducing fibrosis and hypertrophy and increasing vascularization and cardiomyocyte proliferation. The beneficial effects of miR-133a-CPCs seem to correlate with the upregulated expression of several relevant paracrine factors and the plausible cooperative secretion of miR-133a via exosomal transport. Finally, an in vitro heart muscle model confirmed the antiapoptotic effects of miR-133a-CPCs, favoring the structuration and contractile functionality of the artificial tissue.

  8. Postural tachycardia syndrome (POTS) and other autonomic disorders in antiphospholipid (Hughes) syndrome (APS).

    Science.gov (United States)

    Schofield, J R; Blitshteyn, S; Shoenfeld, Y; Hughes, G R V

    2014-06-01

    Antiphospholipid syndrome (APS) is an autoimmune hypercoagulable disorder that has been shown to cause a large number of cardiac and neurological manifestations. Two recent studies have demonstrated abnormalities in cardiovascular autonomic function testing in APS patients without other cardiovascular or autoimmune disease. However, an association between autonomic disorders such as postural tachycardia syndrome and APS has not previously been described. Data were obtained by retrospective chart review. We identified 15 patients who have been diagnosed with APS and an autonomic disorder. The median age of the patients at the time of data analysis was 39 years. The autonomic disorders seen in these patients included postural tachycardia syndrome, neurocardiogenic syncope and orthostatic hypotension. The majority of patients (14/15) were female and the majority (14/15) had non-thrombotic neurological manifestations of APS, most commonly migraine, memory loss and balance disorder. Many also had livedo reticularis (11/15) and Raynaud's phenomenon (nine of 15). In some patients, the autonomic manifestations improved with anticoagulation and/or anti-platelet therapy; in others they did not. Two patients with postural tachycardia syndrome who failed to improve with the usual treatment of APS have been treated with intravenous immunoglobulin with significant improvement in their autonomic symptoms. We believe that autonomic disorders in APS may represent an important clinical association with significant implications for treatment. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Aberrant Glycosylation in the Left Ventricle and Plasma of Rats with Cardiac Hypertrophy and Heart Failure.

    Directory of Open Access Journals (Sweden)

    Chiaki Nagai-Okatani

    Full Text Available Targeted proteomics focusing on post-translational modifications, including glycosylation, is a useful strategy for discovering novel biomarkers. To apply this strategy effectively to cardiac hypertrophy and resultant heart failure, we aimed to characterize glycosylation profiles in the left ventricle and plasma of rats with cardiac hypertrophy. Dahl salt-sensitive hypertensive rats, a model of hypertension-induced cardiac hypertrophy, were fed a high-salt (8% NaCl diet starting at 6 weeks. As a result, they exhibited cardiac hypertrophy at 12 weeks and partially impaired cardiac function at 16 weeks compared with control rats fed a low-salt (0.3% NaCl diet. Gene expression analysis revealed significant changes in the expression of genes encoding glycosyltransferases and glycosidases. Glycoproteome profiling using lectin microarrays indicated upregulation of mucin-type O-glycosylation, especially disialyl-T, and downregulation of core fucosylation on N-glycans, detected by specific interactions with Amaranthus caudatus and Aspergillus oryzae lectins, respectively. Upregulation of plasma α-l-fucosidase activity was identified as a biomarker candidate for cardiac hypertrophy, which is expected to support the existing marker, atrial natriuretic peptide and its related peptides. Proteomic analysis identified cysteine and glycine-rich protein 3, a master regulator of cardiac muscle function, as an O-glycosylated protein with altered glycosylation in the rats with cardiac hypertrophy, suggesting that alternations in O-glycosylation affect its oligomerization and function. In conclusion, our data provide evidence of significant changes in glycosylation pattern, specifically mucin-type O-glycosylation and core defucosylation, in the pathogenesis of cardiac hypertrophy and heart failure, suggesting that they are potential biomarkers for these diseases.

  10. Dependency of blood pressure upon cardiac filling in patients with severe postural hypotension

    DEFF Research Database (Denmark)

    Mehlsen, J; Haedersdal, C; Stokholm, K H

    1994-01-01

    by vasoconstriction. The reduction in cardiac output resulted from reductions in left ventricular end-diastolic volumes with unchanged left ventricular ejection fractions and only moderate increments in heart rate. The study was demonstrated that blood pressure is strongly dependent upon cardiac filling in severe......Autonomic denervation of the vascular bed results theoretically in a stronger dependency of blood pressure upon intravascular volume, and the study described aimed at an investigation of the relation between cardiac filling and arterial blood pressure in patients with severe postural hypotension....... Seven patients were studied during head-up tilt at three different tilt angles using intra-arterial blood pressure recordings and estimates of left ventricular volumes by radioisotope ventriculography. Blood pressure fell dramatically during head-up tilt due to reductions in cardiac output unopposed...

  11. Dependency of blood pressure upon cardiac filling in patients with severe postural hypotension

    DEFF Research Database (Denmark)

    Mehlsen, J; Haedersdal, C; Stokholm, K H

    1994-01-01

    Autonomic denervation of the vascular bed results theoretically in a stronger dependency of blood pressure upon intravascular volume, and the study described aimed at an investigation of the relation between cardiac filling and arterial blood pressure in patients with severe postural hypotension....... Seven patients were studied during head-up tilt at three different tilt angles using intra-arterial blood pressure recordings and estimates of left ventricular volumes by radioisotope ventriculography. Blood pressure fell dramatically during head-up tilt due to reductions in cardiac output unopposed...... by vasoconstriction. The reduction in cardiac output resulted from reductions in left ventricular end-diastolic volumes with unchanged left ventricular ejection fractions and only moderate increments in heart rate. The study was demonstrated that blood pressure is strongly dependent upon cardiac filling in severe...

  12. A dual character of flavonoids in influenza A virus replication and spread through modulating cell-autonomous immunity by MAPK signaling pathways

    Science.gov (United States)

    Dong, Wenjuan; Wei, Xiuli; Zhang, Fayun; Hao, Junfeng; Huang, Feng; Zhang, Chunling; Liang, Wei

    2014-01-01

    Flavonoids are well known as a large class of polyphenolic compounds, which have a variety of physiological activities, including anti-influenza virus activity. The influenza A/WSN/33 infected A549 cells have been used to screen anti-influenza virus drugs from natural flavonoid compounds library. Unexpectedly, some flavonoid compounds significantly inhibited virus replication, while the others dramatically promoted virus replication. In this study, we attempted to understand these differences between flavonoid compounds in their antivirus mechanisms. Hesperidin and kaempferol were chosen as representatives of both sides, each of which exhibited the opposite effects on influenza virus replication. Our investigation revealed that the opposite effects produced by hesperidin and kaempferol on influenza virus were due to inducing the opposite cell-autonomous immune responses by selectively modulating MAP kinase pathways: hesperidin up-regulated P38 and JNK expression and activation, thus resulting in the enhanced cell-autonomous immunity; while kaempferol dramatically down-regulated p38 and JNK expression and activation, thereby suppressing cell-autonomous immunity. In addition, hesperidin restricted RNPs export from nucleus by down-regulating ERK activation, but kaempferol promoted RNPs export by up-regulating ERK activation. Our findings demonstrate that a new generation of anti-influenza virus drugs could be developed based on selective modulation of MAP kinase pathways to stimulate cell-autonomous immunity. PMID:25429875

  13. Cardiovascular autonomic dysfunction in primary ovarian insufficiency: clinical and experimental evidence

    Science.gov (United States)

    Goldmeier, Silvia; De Angelis, Kátia; Rabello Casali, Karina; Vilodre, César; Consolim-Colombo, Fernanda; Belló Klein, Adriane; Plentz, Rodrigo; Spritzer, PoliMara; Irigoyen, Maria-Cláudia

    2014-01-01

    Objective: Women with primary ovarian insufficiency (POI) present an increased risk for cardiovascular disease. In this study we tested the hypothesis that POI in women under hormone therapy (HT) are associated with vascular vasodilatation attenuation and cardiovascular autonomic dysfunction and these impairments are related to changes in systemic antioxidant enzymes. Furthermore, the possibility that ovarian hormone deprivation can induce such changes and that HT cannot reverse all of those impairments was examined in an experimental model of POI. Methods: Fifteen control and 17 patients with primary ovarian insufficiency receiving HT were included in the study. To test the systemic and cardiac consequences of ovarian hormone deprivation, ovariectomy was induced in young female rats that were submitted or not to HT. Spectral analysis of RR interval and blood pressure signals were performed and oxidative stress parameters were determined. Results: POI women under HT have increased mean arterial pressure (94±10 vs. 86±5 mmHg) despite normal endothelial and autonomic modulation of vasculature. Additionally, they presented impaired baroreflex sensitivity (3.9±1.38 vs. 7.15±3.62 ms/mmHg) and reduced heart rate variability (2310±1173 vs. 3754±1921 ms2). Similar results obtained in ovariectomized female rats were accompanied by an increased lipoperoxidation (7433±1010 vs. 6180±289 cps/mg protein) and decreased antioxidant enzymes in cardiac tissue. As it was observed in women, the HT in animals did not restore hemodynamic and autonomic dysfunctions. Conclusion: These data provide clinical and experimental evidence that long term HT may not restore all cardiovascular risk factors associated with ovarian hormone deprivation. PMID:24349626

  14. AUTONOMIC CARDIOVASCULAR REGULATION DISORDERS IN PATIENTS WITH PSORIATIC ARTHRITIS

    Directory of Open Access Journals (Sweden)

    A. P. Rebrov

    2011-01-01

    Full Text Available Aim – to identify disorders of autonomic regulation of cardiac activity in patients with psoriatic arthritis (PsA by determining the heart rate variability (HRV, and also establish the relationship of HRV with systemic inflammation and traditional cardiovascular risk factors.Materials and methods. The study included 53 patients with PsA (mean age 43.64 ± 12.1 years, including 48.2 % men, mean disease durationwas 10.32 ± 10.2 years. The control group included 25 healthy volunteers (average age 46.7 ± 12.45 years, 49.1 % – men. Time andfrequency measures of HRV were analyzed. Active PsA was determined by an index DAS4, rate erythrocyte sedimentation rate (ESR, levels of C-reactive protein (CRP and fibrinogen. Patients with clinical manifestations of cardiovascular disease, and patients with symptomsof carotid atherosclerosis, detected by duplex study were excluded.Results. Deterioration of HRV in patients with PsA compared with those in patients of the control group, the availability of statistically significant reverse relationship of temporal and spectral parameters of HRV with PsA activity (ESR, CRP, entezit score, DAS4, duration of arthritis, the classical factors of cardiovascular risk were established.Conclusion. Patients with PsA had noted a violation of autonomic regulation of cardiac activity in the form of reduced HRV and activation of the sympathetic part of it. Identified changes were associated with activity of systemic inflammation and classical factors of cardiovascular risk.

  15. AUTONOMIC CARDIOVASCULAR REGULATION DISORDERS IN PATIENTS WITH PSORIATIC ARTHRITIS

    Directory of Open Access Journals (Sweden)

    A. P. Rebrov

    2014-07-01

    Full Text Available Aim – to identify disorders of autonomic regulation of cardiac activity in patients with psoriatic arthritis (PsA by determining the heart rate variability (HRV, and also establish the relationship of HRV with systemic inflammation and traditional cardiovascular risk factors.Materials and methods. The study included 53 patients with PsA (mean age 43.64 ± 12.1 years, including 48.2 % men, mean disease durationwas 10.32 ± 10.2 years. The control group included 25 healthy volunteers (average age 46.7 ± 12.45 years, 49.1 % – men. Time andfrequency measures of HRV were analyzed. Active PsA was determined by an index DAS4, rate erythrocyte sedimentation rate (ESR, levels of C-reactive protein (CRP and fibrinogen. Patients with clinical manifestations of cardiovascular disease, and patients with symptomsof carotid atherosclerosis, detected by duplex study were excluded.Results. Deterioration of HRV in patients with PsA compared with those in patients of the control group, the availability of statistically significant reverse relationship of temporal and spectral parameters of HRV with PsA activity (ESR, CRP, entezit score, DAS4, duration of arthritis, the classical factors of cardiovascular risk were established.Conclusion. Patients with PsA had noted a violation of autonomic regulation of cardiac activity in the form of reduced HRV and activation of the sympathetic part of it. Identified changes were associated with activity of systemic inflammation and classical factors of cardiovascular risk.

  16. Autonomic and Vascular Control in Prehypertensive Subjects with a Family History of Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    Josária Ferraz Amaral

    2018-02-01

    Full Text Available Abstract Background: Individuals with a family history of systemic arterial hypertension (FHSAH and / or prehypertension have a higher risk of developing this pathology. Objective: To evaluate the autonomic and vascular functions of prehypertensive patients with FHSAH. Methods: Twenty-five young volunteers with FHSAH, 14 normotensive and 11 prehypertensive subjects were submitted to vascular function evaluation by forearm vascular conductance(VC during resting and reactive hyperemia (Hokanson® and cardiac and peripheral autonomic modulation, quantified, respectively, by spectral analysis of heart rate (ECG and systolic blood pressure (SBP (FinometerPRO®. The transfer function analysis was used to measure the gain and response time of baroreflex. The statistical significance adopted was p ≤ 0.05. Results: Pre-hypertensive individuals, in relation to normotensive individuals, have higher VC both at rest (3.48 ± 1.26 vs. 2.67 ± 0.72 units, p = 0.05 and peak reactive hyperemia (25, 02 ± 8.18 vs. 18.66 ± 6.07 units, p = 0.04. The indices of cardiac autonomic modulation were similar between the groups. However, in the peripheral autonomic modulation, greater variability was observed in prehypertensive patients compared to normotensive individuals (9.4 [4.9-12.7] vs. 18.3 [14.8-26.7] mmHg2; p < 0.01 and higher spectral components of very low (6.9 [2.0-11.1] vs. 13.5 [10.7-22.4] mmHg2, p = 0.01 and low frequencies (1.7 [1.0-3.0] vs. 3.0 [2.0-4.0] mmHg2, p = 0.04 of SBP. Additionally, we observed a lower gain of baroreflex control in prehypertensive patients compared to normotensive patients (12.16 ± 4.18 vs. 18.23 ± 7.11 ms/mmHg, p = 0.03, but similar delay time (-1.55 ± 0.66 vs. -1.58 ± 0.72 s, p = 0.90. Conclusion: Prehypertensive patients with FHSAH have autonomic dysfunction and increased vascular conductance when compared to normotensive patients with the same risk factor.

  17. Evaluation of cardiac autonomic nerves by iodine-123 metaiodobenzylguanidine scintigraphy and ambulatory electrocardiography in patients after arterial switch operations

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Hajime; Maeda, Masanobu; Miyahara, Ken [Shakaihoken Chukyo Hospital, Nagoya (Japan)] [and others

    2000-05-01

    The autonomic cardiac nerves reach the heart after passing through the vicinity of the aortic root and the pulmonary trunk. The arterial switch operation (ASO) completely transects the ascending aorta and the pulmonary trunk. Therefore, this surgical procedure virtually denerves the heart. Cardiac sympathetic denervation and reinnervation were evaluated in patients after ASO using iodine-123 metaiodobenzylguanidine (MIBG) myocardial scintigraphy and parasympathetic denervation and reinnervation using ambulatory electrocardiography [Holter electrocardiogram (ECG)]. MIBG scintigraphy was performed in 14 patients who underwent ASO (ASO group) and 3 patients who underwent other open heart surgery (control group). All patients in the ASO group underwent the operation in the neonatal or infantile period. Planar and single photon emission computed tomography (SPECT) images of the myocardium were obtained. Defect score was determined by the SPECT images as a semi-quantitative index. The mean interval between ASO and MIBG scintigraphy was 25.6{+-}14.6 months. Holter ECG was also performed in 14 patients in the ASO group and 19 age-matched normal children. The Holter ECGs were plotted on a Lorenz plot. The H index, which is related to vagal tone for the cardiovascular system, was calculated from the R-R intervals. The mean interval between the ASO and Holter ECG was 8.3{+-}9.7 months. MIBG scintigraphy in the control group demonstrated an almost normal homogeneous tracer uptake, but showed extremely reduced tracer uptake and significantly higher defect score in the ASO group. The extent and degree of the reduction of MIBG uptake improved with time after the ASO. The heart-to-mediastinum MIBG count ratio tended to increase with time. The H index of the ASO group was lower than that of normal children (<12 months: Control group 0.0280{+-}0.0068 vs ASO group 0.0219{+-}0.0083), and gradually increased with time (1-3 years: 0.0470{+-}0.0157 vs 0.0314{+-}0.0124). (author)

  18. Evaluation of cardiac autonomic nerves by iodine-123 metaiodobenzylguanidine scintigraphy and ambulatory electrocardiography in patients after arterial switch operations

    International Nuclear Information System (INIS)

    Sakurai, Hajime; Maeda, Masanobu; Miyahara, Ken

    2000-01-01

    The autonomic cardiac nerves reach the heart after passing through the vicinity of the aortic root and the pulmonary trunk. The arterial switch operation (ASO) completely transects the ascending aorta and the pulmonary trunk. Therefore, this surgical procedure virtually denerves the heart. Cardiac sympathetic denervation and reinnervation were evaluated in patients after ASO using iodine-123 metaiodobenzylguanidine (MIBG) myocardial scintigraphy and parasympathetic denervation and reinnervation using ambulatory electrocardiography [Holter electrocardiogram (ECG)]. MIBG scintigraphy was performed in 14 patients who underwent ASO (ASO group) and 3 patients who underwent other open heart surgery (control group). All patients in the ASO group underwent the operation in the neonatal or infantile period. Planar and single photon emission computed tomography (SPECT) images of the myocardium were obtained. Defect score was determined by the SPECT images as a semi-quantitative index. The mean interval between ASO and MIBG scintigraphy was 25.6±14.6 months. Holter ECG was also performed in 14 patients in the ASO group and 19 age-matched normal children. The Holter ECGs were plotted on a Lorenz plot. The H index, which is related to vagal tone for the cardiovascular system, was calculated from the R-R intervals. The mean interval between the ASO and Holter ECG was 8.3±9.7 months. MIBG scintigraphy in the control group demonstrated an almost normal homogeneous tracer uptake, but showed extremely reduced tracer uptake and significantly higher defect score in the ASO group. The extent and degree of the reduction of MIBG uptake improved with time after the ASO. The heart-to-mediastinum MIBG count ratio tended to increase with time. The H index of the ASO group was lower than that of normal children (<12 months: Control group 0.0280±0.0068 vs ASO group 0.0219±0.0083), and gradually increased with time (1-3 years: 0.0470±0.0157 vs 0.0314±0.0124). (author)

  19. A non-cardiomyocyte autonomous mechanism of cardioprotection involving the SLO1 BK channel

    Directory of Open Access Journals (Sweden)

    Andrew P. Wojtovich

    2013-03-01

    Full Text Available Opening of BK-type Ca2+ activated K+ channels protects the heart against ischemia-reperfusion (IR injury. However, the location of BK channels responsible for cardioprotection is debated. Herein we confirmed that openers of the SLO1 BK channel, NS1619 and NS11021, were protective in a mouse perfused heart model of IR injury. As anticipated, deletion of the Slo1 gene blocked this protection. However, in an isolated cardiomyocyte model of IR injury, protection by NS1619 and NS11021 was insensitive to Slo1 deletion. These data suggest that protection in intact hearts occurs by a non-cardiomyocyte autonomous, SLO1-dependent, mechanism. In this regard, an in-situ assay of intrinsic cardiac neuronal function (tachycardic response to nicotine revealed that NS1619 preserved cardiac neurons following IR injury. Furthermore, blockade of synaptic transmission by hexamethonium suppressed cardioprotection by NS1619 in intact hearts. These results suggest that opening SLO1 protects the heart during IR injury, via a mechanism that involves intrinsic cardiac neurons. Cardiac neuronal ion channels may be useful therapeutic targets for eliciting cardioprotection.

  20. On the Evolution of the Cardiac Pacemaker

    Directory of Open Access Journals (Sweden)

    Silja Burkhard

    2017-04-01

    Full Text Available The rhythmic contraction of the heart is initiated and controlled by an intrinsic pacemaker system. Cardiac contractions commence at very early embryonic stages and coordination remains crucial for survival. The underlying molecular mechanisms of pacemaker cell development and function are still not fully understood. Heart form and function show high evolutionary conservation. Even in simple contractile cardiac tubes in primitive invertebrates, cardiac function is controlled by intrinsic, autonomous pacemaker cells. Understanding the evolutionary origin and development of cardiac pacemaker cells will help us outline the important pathways and factors involved. Key patterning factors, such as the homeodomain transcription factors Nkx2.5 and Shox2, and the LIM-homeodomain transcription factor Islet-1, components of the T-box (Tbx, and bone morphogenic protein (Bmp families are well conserved. Here we compare the dominant pacemaking systems in various organisms with respect to the underlying molecular regulation. Comparative analysis of the pathways involved in patterning the pacemaker domain in an evolutionary context might help us outline a common fundamental pacemaker cell gene programme. Special focus is given to pacemaker development in zebrafish, an extensively used model for vertebrate development. Finally, we conclude with a summary of highly conserved key factors in pacemaker cell development and function.

  1. On the Evolution of the Cardiac Pacemaker

    Science.gov (United States)

    Burkhard, Silja; van Eif, Vincent; Garric, Laurence; Christoffels, Vincent M.; Bakkers, Jeroen

    2017-01-01

    The rhythmic contraction of the heart is initiated and controlled by an intrinsic pacemaker system. Cardiac contractions commence at very early embryonic stages and coordination remains crucial for survival. The underlying molecular mechanisms of pacemaker cell development and function are still not fully understood. Heart form and function show high evolutionary conservation. Even in simple contractile cardiac tubes in primitive invertebrates, cardiac function is controlled by intrinsic, autonomous pacemaker cells. Understanding the evolutionary origin and development of cardiac pacemaker cells will help us outline the important pathways and factors involved. Key patterning factors, such as the homeodomain transcription factors Nkx2.5 and Shox2, and the LIM-homeodomain transcription factor Islet-1, components of the T-box (Tbx), and bone morphogenic protein (Bmp) families are well conserved. Here we compare the dominant pacemaking systems in various organisms with respect to the underlying molecular regulation. Comparative analysis of the pathways involved in patterning the pacemaker domain in an evolutionary context might help us outline a common fundamental pacemaker cell gene programme. Special focus is given to pacemaker development in zebrafish, an extensively used model for vertebrate development. Finally, we conclude with a summary of highly conserved key factors in pacemaker cell development and function. PMID:29367536

  2. Diminished responsiveness to dobutamine as an inotrope in mice with cecal ligation and puncture-induced sepsis: attribution to phosphodiesterase 4 upregulation.

    Science.gov (United States)

    Sakai, Mari; Suzuki, Tokiko; Tomita, Kengo; Yamashita, Shigeyuki; Palikhe, Sailesh; Hattori, Kohshi; Yoshimura, Naoki; Matsuda, Naoyuki; Hattori, Yuichi

    2017-06-01

    Dobutamine has been used in septic shock for many years as an only inotrope, but its benefit has been questioned. We weighed the effects of dobutamine and milrinone as inotropes in mice with cecal ligation and puncture (CLP)-induced polymicrobial sepsis. CLP-induced septic mice exhibited significant cardiac inflammation, as indicated by greatly increased mRNAs of proinflammatory cytokines and robust infiltration of inflammatory cells in the ventricular myocardium. Elevations of plasma cardiac troponin-I showed cardiac injury in CLP mice. Noninvasive echocardiographic assessment of cardiac function revealed that despite preserved left ventricular function in the presence of fluid replacement, the dobutamine inotropic response was significantly impaired in CLP mice compared with sham-operated controls. By contrast, milrinone exerted inotropic effects in sham-operated and CLP mice in an equally effective manner. Surface expression levels of β 1 -adrenoceptors and α-subunits of three main G protein families in the myocardium were unaffected by CLP-induced sepsis. Plasma cAMP levels were significantly elevated in both sham-operated and CLP mice in response to milrinone but only in sham-operated controls in response to dobutamine. Of phosphodiesterase (PDE) isoforms, PDE4D, but not PDE3A, both of which are responsible for cardiac cAMP hydrolysis, was significantly upregulated in CLP mouse myocardium. We define a novel mechanism for the impaired responsiveness to dobutamine as an inotrope in sepsis, and understanding the role of PDE4D in modulating cardiac functional responsiveness in sepsis may open the potential of a PDE4D-targeted therapeutic option in septic patients with low cardiac output who have a need for inotropic support. NEW & NOTEWORTHY Advisability of the usefulness of dobutamine in septic shock management is limited. Here, we reveal that the effect of dobutamine as a positive inotrope is impaired in mice with cecal ligation and puncture-induced sepsis

  3. Nocturnal antihypertensive treatment in patients with type 1 diabetes with autonomic neuropathy and non-dipping of blood pressure during night time

    DEFF Research Database (Denmark)

    Hjortkær, Henrik; Jensen, Tonny; Kofoed, Klaus

    2014-01-01

    INTRODUCTION: Cardiac autonomic neuropathy (CAN) and elevated nocturnal blood pressure are independent risk factors for cardiovascular disease in patients with diabetes. Previously, associations between CAN, non-dipping of nocturnal blood pressure and coronary artery calcification have been...

  4. Early MEK1/2 Inhibition after Global Cerebral Ischemia in Rats Reduces Brain Damage and Improves Outcome by Preventing Delayed Vasoconstrictor Receptor Upregulation

    DEFF Research Database (Denmark)

    Johansson, Sara Ellinor; Larsen, Stine Schmidt; Povlsen, Gro Klitgaard

    2014-01-01

    BACKGROUND: Global cerebral ischemia following cardiac arrest is associated with increased cerebral vasoconstriction and decreased cerebral blood flow, contributing to delayed neuronal cell death and neurological detriments in affected patients. We hypothesize that upregulation of contractile ETB...... and 5-HT1B receptors, previously demonstrated in cerebral arteries after experimental global ischemia, are a key mechanism behind insufficient perfusion of the post-ischemic brain, proposing blockade of this receptor upregulation as a novel target for prevention of cerebral hypoperfusion and delayed...... neuronal cell death after global cerebral ischemia. The aim was to characterize the time-course of receptor upregulation and associated neuronal damage after global ischemia and investigate whether treatment with the MEK1/2 inhibitor U0126 can prevent cerebrovascular receptor upregulation and thereby...

  5. PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction

    Science.gov (United States)

    Knight, Walter E.; Chen, Si; Zhang, Yishuai; Oikawa, Masayoshi; Wu, Meiping; Zhou, Qian; Miller, Clint L.; Cai, Yujun; Mickelsen, Deanne M.; Moravec, Christine; Small, Eric M.; Abe, Junichi; Yan, Chen

    2016-01-01

    Cyclic nucleotide phosphodiesterase 1C (PDE1C) represents a major phosphodiesterase activity in human myocardium, but its function in the heart remains unknown. Using genetic and pharmacological approaches, we studied the expression, regulation, function, and underlying mechanisms of PDE1C in the pathogenesis of cardiac remodeling and dysfunction. PDE1C expression is up-regulated in mouse and human failing hearts and is highly expressed in cardiac myocytes but not in fibroblasts. In adult mouse cardiac myocytes, PDE1C deficiency or inhibition attenuated myocyte death and apoptosis, which was largely dependent on cyclic AMP/PKA and PI3K/AKT signaling. PDE1C deficiency also attenuated cardiac myocyte hypertrophy in a PKA-dependent manner. Conditioned medium taken from PDE1C-deficient cardiac myocytes attenuated TGF-β–stimulated cardiac fibroblast activation through a mechanism involving the crosstalk between cardiac myocytes and fibroblasts. In vivo, cardiac remodeling and dysfunction induced by transverse aortic constriction, including myocardial hypertrophy, apoptosis, cardiac fibrosis, and loss of contractile function, were significantly attenuated in PDE1C-knockout mice relative to wild-type mice. These results indicate that PDE1C activation plays a causative role in pathological cardiac remodeling and dysfunction. Given the continued development of highly specific PDE1 inhibitors and the high expression level of PDE1C in the human heart, our findings could have considerable therapeutic significance. PMID:27791092

  6. Clonidine, an α2 receptor agonist, diminishes GABAergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus

    OpenAIRE

    Philbin, Kerry E.; Bateman, Ryan J.; Mendelowitz, David

    2010-01-01

    In hypertension there is an autonomic imbalance in which sympathetic activity dominates over parasympathetic control. Parasympathetic activity to the heart originates from cardiac vagal neurons located in the nucleus ambiguus. Pre-sympathetic neurons that project to sympathetic neurons in the spinal cord are located in the ventral brainstem in close proximity to cardiac vagal neurons, and many of these pre-sympathetic neurons are catecholaminergic. In addition to their projection to the spina...

  7. Physiology of school burnout in medical students: Hemodynamic and autonomic functioning

    Directory of Open Access Journals (Sweden)

    Ross W. May

    2016-09-01

    Full Text Available This study investigated the relationship between burnout and hemodynamic and autonomic functioning in both medical students (N = 55 and premedical undergraduate students (N = 77. Questionnaires screened for health related issues and assessed school burnout and negative affect symptomatology (anxiety and depression. Continuous beat-to-beat blood pressure (BP through finger plethysmography and electrocardiogram (ECG monitoring was conducted during conditions of baseline and cardiac stress induced via the cold pressor task to produce hemodynamic, heart rate variability, and blood pressure variability indices. Independent sample t-tests demonstrated that medical students had significantly higher school burnout scores compared to their undergraduate counterparts. Controlling for age, BMI, anxiety and depressive symptoms, multiple regression analyses indicated that school burnout was a stronger predictor of elevated hemodynamics (blood pressure, decreased heart rate variability, decreased markers of vagal activity and increased markers of sympathetic tone at baseline for medical students than for undergraduates. Analyses of physiological values collected during the cold pressor task indicated greater cardiac hyperactivity for medical students than for undergraduates. The present study supports previous research linking medical school burnout to hemodynamic and autonomic functioning, suggests biomarkers for medical school burnout, and provides evidence that burnout may be implicated as a physiological risk factor in medical students. Study limitations and potential intervention avenues are discussed.

  8. Hyperglycemia can delay left ventricular dysfunction but not autonomic damage after myocardial infarction in rodents

    Directory of Open Access Journals (Sweden)

    Brum Patricia C

    2011-04-01

    Full Text Available Abstract Background Although clinical diabetes mellitus is obviously a high risk factor for myocardial infarction (MI, in experimental studies disagreement exists about the sensitivity to ischemic injury of an infarcted myocardium. Recently, our group demonstrated that diabetic animals presented better cardiac function recovery and cellular resistance to ischemic injury than nondiabetics. In the present study, we evaluated the chronic effects of MI on left ventricular (LV and autonomic functions in streptozotocin (STZ diabetic rats. Methods Male Wistar rats were divided into 4 groups: control (C, n = 15, diabetes (D, n = 16, MI (I, n = 21, and diabetes + MI (DI, n = 30. MI was induced 15 days after diabetes (STZ induction. Ninety days after MI, LV and autonomic functions were evaluated (8 animals each group. Left ventricular homogenates were analyzed by Western blotting to evaluate the expression of calcium handling proteins. Results MI area was similar in infarcted groups (~43%. Ejection fraction and +dP/dt were reduced in I compared with DI. End-diastolic pressure was additionally increased in I compared with DI. Compared with DI, I had increased Na+-Ca2+ exchange and phospholamban expression (164% and decreased phosphorylated phospholamban at serine16 (65% and threonine17 (70% expression. Nevertheless, diabetic groups had greater autonomic dysfunction, observed by baroreflex sensitivity and pulse interval variability reductions. Consequently, the mortality rate was increased in DI compared with I, D, and C groups. Conclusions LV dysfunction in diabetic animals was attenuated after 90 days of myocardial infarction and was associated with a better profile of calcium handling proteins. However, this positive adaptation was not able to reduce the mortality rate of DI animals, suggesting that autonomic dysfunction is associated with increased mortality in this group. Therefore, it is possible that the better cardiac function has been transitory

  9. Exercise training starting at weaning age preserves cardiac pacemaker function in adulthood of diet-induced obese rats.

    Science.gov (United States)

    Carvalho de Lima, Daniel; Guimarães, Juliana Bohnen; Rodovalho, Gisele Vieira; Silveira, Simonton Andrade; Haibara, Andrea Siqueira; Coimbra, Cândido Celso

    2014-08-01

    Peripheral sympathetic overdrive in young obese subjects contributes to further aggravation of insulin resistance, diabetes, and hypertension, thus inducing worsening clinical conditions in adulthood. Exercise training has been considered a strategy to repair obesity autonomic dysfunction, thereby reducing the cardiometabolic risk. Therefore, the aim of this study was to assess the effect of early exercise training, starting immediately after weaning, on cardiac autonomic control in diet-induced obese rats. Male Wistar rats (weaning) were divided into four groups: (i) a control group (n = 6); (ii) an exercise-trained control group (n = 6); (iii) a diet-induced obesity group (n = 6); and (iv) an exercise-trained diet-induced obesity group (n = 6). The development of obesity was induced by 9 weeks of palatable diet intake, and the training program was implemented in a motor-driven treadmill (5 times per week) during the same period. After this period, animals were submitted to vein and artery catheter implantation to assess cardiac autonomic balance by methylatropine (3 mg/kg) and propranolol (4 mg/kg) administration. Exercise training increased running performance in both groups (p Exercise training also prevented the increased resting heart rate in obese rats, which seemed to be related to cardiac pacemaker activity preservation (p exercise program beginning at weaning age prevents cardiovascular dysfunction in obese rats, indicating that exercise training may be used as a nonpharmacological therapeutic strategy for the treatment of cardiometabolic diseases.

  10. Cardiac Autonomic Nervous System Activation and Metabolic Profile in Young Children : The ABCD Study

    NARCIS (Netherlands)

    Vrijkotte, Tanja G M; van den Born, Bert-Jan H; Hoekstra, Christine M C A; Gademan, Maaike G J; van Eijsden, Manon; de Rooij, Susanne R; Twickler, Marcel T B

    2015-01-01

    BACKGROUND: In adults, increased sympathetic and decreased parasympathetic nervous system activity are associated with a less favorable metabolic profile. Whether this is already determined at early age is unknown. Therefore, we aimed to assess the association between autonomic nervous system

  11. Sudden cardiac death in multiple sclerosis caused by active demyelination of the medulla oblongata

    NARCIS (Netherlands)

    Hengstman, G.J.D.; Kusters, B.

    2011-01-01

    Cardiovascular autonomic dysfunction is not uncommon in multiple sclerosis (MS) and is related to the involvement of the vegetative areas of cardiac innervations in the medulla oblongata. It has been suggested that this may contribute to the occurrence of sudden death in MS. In this case report, we

  12. Gritty people try harder: grit and effort-related cardiac autonomic activity during an active coping challenge.

    Science.gov (United States)

    Silvia, Paul J; Eddington, Kari M; Beaty, Roger E; Nusbaum, Emily C; Kwapil, Thomas R

    2013-05-01

    Grit, a recently proposed personality trait associated with persistence for long-range goals, predicts achievement in a wide range of important life outcomes. Using motivational intensity theory, the present research examined the physiological underpinnings of grit during an active coping task. Forty young adults completed the Short Grit Scale and worked on a self-paced mental effort task. Effort-related autonomic nervous system (ANS) activity was assessed using impedance cardiography, which yielded measures of sympathetic activity (pre-ejection period; PEP) and parasympathetic activity (respiratory sinus arrhythmia; RSA). Multilevel models revealed that people high on the Perseverance of Effort subscale showed autonomic coactivation: both PEP and RSA became stronger during the task, reflecting higher activity of both ANS divisions. The Consistency of Interest subscale, in contrast, predicted only weaker sympathetic activity (slower PEP). Taken together, the findings illuminate autonomic processes associated with how "gritty" people pursue goals, and they suggest that more attention should be paid to the facets' distinct effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Autonomic Dysfunction in Muscular Dystrophy: A Theoretical Framework for Muscle Reflex Involvement

    Directory of Open Access Journals (Sweden)

    Scott Alan Smith

    2014-02-01

    Full Text Available Muscular dystrophies are a heterogeneous group of genetically inherited disorders whose most prominent clinical feature is progressive degeneration of skeletal muscle. In several forms of the disease, the function of cardiac muscle is likewise affected. The primary defect in this group of diseases is caused by mutations in myocyte proteins important to cellular structure and/or performance. That being stated, a growing body of evidence suggests that the development of autonomic dysfunction may secondarily contribute to the generation of skeletal and cardio-myopathy in muscular dystrophy. Indeed, abnormalities in the regulation of both sympathetic and parasympathetic nerve activity have been reported in a number of muscular dystrophy variants. However, the mechanisms mediating this autonomic dysfunction remain relatively unknown. An autonomic reflex originating in skeletal muscle, the exercise pressor reflex, is known to contribute significantly to the control of sympathetic and parasympathetic activity when stimulated. Given the skeletal myopathy that develops with muscular dystrophy, it is logical to suggest that the function of this reflex might also be abnormal with the pathogenesis of disease. As such, it may contribute to or exacerbate the autonomic dysfunction that manifests. This possibility along with a basic description of exercise pressor reflex function in health and disease are reviewed. A better understanding of the mechanisms that possibly underlie autonomic dysfunction in muscular dystrophy may not only facilitate further research but could also lead to the identification of new therapeutic targets for the treatment of muscular dystrophy.

  14. Short-term exercise worsens cardiac oxidative stress and fibrosis in 8-month-old db/db mice by depleting cardiac glutathione.

    Science.gov (United States)

    Laher, Ismail; Beam, Julianne; Botta, Amy; Barendregt, Rebekah; Sulistyoningrum, Dian; Devlin, Angela; Rheault, Mark; Ghosh, Sanjoy

    2013-01-01

    Moderate exercise improves cardiac antioxidant status in young humans and animals with Type-2 diabetes (T2D). Given that both diabetes and advancing age synergistically decrease antioxidant expression in most tissues, it is unclear whether exercise can upregulate cardiac antioxidants in chronic animal models of T2D. To this end, 8-month-old T2D and normoglycemic mice were exercised for 3 weeks, and cardiac redox status was evaluated. As expected, moderate exercise increased cardiac antioxidants and attenuated oxidative damage in normoglycemic mice. In contrast, similar exercise protocol in 8-month-old db/db mice worsened cardiac oxidative damage, which was associated with a specific dysregulation of glutathione (GSH) homeostasis. Expression of enzymes for GSH biosynthesis [γ-glutamylcysteine synthase, glutathione reductase] as well as for GSH-mediated detoxification (glutathione peroxidase, glutathione-S-transferase) was lower, while toxic metabolites dependent on GSH for clearance (4-hydroxynonenal) were increased in exercised diabetic mice hearts. To validate GSH loss as an important factor for such aggravated damage, daily administration of GSH restored cardiac GSH levels in exercised diabetic mice. Such supplementation attenuated both oxidative damage and fibrotic changes in the myocardium. Expression of transforming growth factor beta (TGF-β) and its regulated genes which are responsible for such profibrotic changes were also attenuated with GSH supplementation. These novel findings in a long-term T2D animal model demonstrate that short-term exercise by itself can deplete cardiac GSH and aggravate cardiac oxidative stress. As GSH administration conferred protection in 8-month-old diabetic mice undergoing exercise, supplementation with GSH-enhancing agents may be beneficial in elderly diabetic patients undergoing exercise.

  15. Asymptomatic ST-depression during exercise testing in children and adolescents with type 1 diabetes mellitus and autonomic dysfunction

    Directory of Open Access Journals (Sweden)

    Dmitry Nikitich Laptev

    2015-04-01

    Full Text Available Aim. The aim of this study was to investigate cardiac autonomic function as assessed by ST dynamics during and post-exercise in children and adolescents with type 1 diabetes mellitus (T1DM. Materials and methods. The study included 71 young patients with T1DM. The patients were aged 9?18 years and had no history of macrovascular disease or renal disease, including microalbuminuria. Cardiac autonomic function was assessed using cardiovascular tests and 24-h ECG monitoring with automatic calculation of QT interval and heart rate variability parameters. Each patient underwent the physical working capacity 170 test. Results. The prevalence of cardiovascular autonomic neuropathy (CAN was 30.9%. The frequency of asymptomatic ST-segment depression increased during exercise in 10 (45.5% patients with CAN (CAN+ compared with 9 (18.4% patients without CAN (CAN-; p=0.042. During the recovery period, asymptomatic ST-segment depression was present in the first minute in 8 (36.4% CAN+ patients compared with 1 (2% CAN- patient (p=0.0003 and in the second minute in 5 (22.7% CAN+ patients compared with 1 (2% CAN- patient (p=0.0095. Conclusion. Children and adolescents with T1DM and impaired autonomic function have increased prevalence of asymptomatic ST-segment depression during and post-exercise. The presence of cardiovascular risk factors in children and adolescents with T1DM and CAN may contribute to the increased cardiovascular morbidity and mortality during adulthood in patients with T1DM.

  16. Asymptomatic ST-depression during exercise testing in children and adolescents with type 1 diabetes mellitus and autonomic dysfunction

    Directory of Open Access Journals (Sweden)

    Dmitry Nikitich Laptev

    2015-04-01

    Full Text Available Aim. The aim of this study was to investigate cardiac autonomic function as assessed by ST dynamics during and post-exercise in children and adolescents with type 1 diabetes mellitus (T1DM.Materials and methods. The study included 71 young patients with T1DM. The patients were aged 9–18 years and had no history of macrovascular disease or renal disease, including microalbuminuria. Cardiac autonomic function was assessed using cardiovascular tests and 24-h ECG monitoring with automatic calculation of QT interval and heart rate variability parameters. Each patient underwent the physical working capacity 170 test.Results. The prevalence of cardiovascular autonomic neuropathy (CAN was 30.9%. The frequency of asymptomatic ST-segment depression increased during exercise in 10 (45.5% patients with CAN (CAN+ compared with 9 (18.4% patients without CAN (CAN-; p=0.042. During the recovery period, asymptomatic ST-segment depression was present in the first minute in 8 (36.4% CAN+ patients compared with 1 (2% CAN- patient (p=0.0003 and in the second minute in 5 (22.7% CAN+ patients compared with 1 (2% CAN- patient (p=0.0095.Conclusion. Children and adolescents with T1DM and impaired autonomic function have increased prevalence of asymptomatic ST-segment depression during and post-exercise. The presence of cardiovascular risk factors in children and adolescents with T1DM and CAN may contribute to the increased cardiovascular morbidity and mortality during adulthood in patients with T1DM.

  17. Low to high frequency ratio of heart rate variability spectra fails to describe sympatho-vagal balance in cardiac patients.

    Science.gov (United States)

    Milicević, Goran

    2005-06-01

    Heart rate variability (HRV) reflects an influence of autonomic nervous system on heart work. In healthy subjects, ratio between low and high frequency components (LF/HF ratio) of HRV spectra represents a measure of sympatho-vagal balance. The ratio was defined by the authorities as an useful clinical tool, but it seems that it fails to summarise sympatho-vagal balance in a clinical setting. Value of the method was re-evaluated in several categories of cardiac patients. HRV was analysed from 24-hour Holter ECGs in 132 healthy subjects, and 2159 cardiac patients dichotomised by gender, median of age, diagnosis of myocardial infarction or coronary artery surgery, left ventricular systolic function and divided by overall HRV into several categories. In healthy subjects, LF/HF ratio correlated with overall HRV negatively, as expected. The paradoxical finding was obtained in cardiac patients; the lower the overall HRV and the time-domain indices of vagal modulation activity were the lower the LF/HF ratio was. If used as a measure of sympatho-vagal balance, long-term recordings of LF/HF ratio contradict to clinical finding and time-domain HRV indices in cardiac patients. The ratio cannot therefore be used as a reliable marker of autonomic activity in a clinical setting.

  18. Pioglitazone reverses down-regulation of cardiac PPARγ expression in Zucker diabetic fatty rats

    International Nuclear Information System (INIS)

    Pelzer, Theo; Jazbutyte, Virginija; Arias-Loza, Paula Anahi; Segerer, Stephan; Lichtenwald, Margit; Law, Marilyn P.; Schaefers, Michael; Ertl, Georg; Neyses, Ludwig

    2005-01-01

    Peroxisome proliferator-activated receptor-γ (PPARγ) plays a critical role in peripheral glucose homeostasis and energy metabolism, and inhibits cardiac hypertrophy in non-diabetic animal models. The functional role of PPARγ in the diabetic heart, however, is not fully understood. Therefore, we analyzed cardiac gene expression, metabolic control, and cardiac glucose uptake in male Zucker diabetic fatty rats (ZDF fa/fa) and lean ZDF rats (+/+) treated with the high affinity PPARγ agonist pioglitazone or placebo from 12 to 24 weeks of age. Hyperglycemia, hyperinsulinemia, and hypertriglyceridemia as well as lower cardiac PPARγ, glucose transporter-4 and α-myosin heavy chain expression levels were detected in diabetic ZDF rats compared to lean animals. Pioglitazone increased body weight and improved metabolic control, cardiac PPARγ, glut-4, and α-MHC expression levels in diabetic ZDF rats. Cardiac [ 18 F]fluorodeoxyglucose uptake was not detectable by micro-PET studies in untreated and pioglitazone treated ZDF fa/fa rats but was observed after administration of insulin to pioglitazone treated ZDF fa/fa rats. PPARγ agonists favorably affect cardiac gene expression in type-2 diabetic rats via activation and up-regulation of cardiac PPARγ expression whereas improvement of impaired cardiac glucose uptake in advanced type-2 diabetes requires co-administration of insulin

  19. Evaluation of cardiac denervation in patients with long-standing diabetes

    International Nuclear Information System (INIS)

    Khurram, M.; Khar, Hamama-tul-Bushra; Malik, M.F. Fazal-ur-Rehman; Javed, S.; Hassan, Z.; Minhas, Z.; Goraya, M.F.; Shakoor, A.

    2002-01-01

    Objective: Evaluation of cardiac autonomic dysfunction in long-standing diabetics, comparing patients treated with insulin and oral hypo glycemic agents. Design: Observational and comparative study between two treatment groups. Place and Duration of Study: At department of Medicine, Pakistan Institute of Medical Sciences, Islamabad, for 6 months. Subjects and Methods: Fifty diabetic patients of about 10 years illness were studied. Patients were divided into two groups, Group 1(13 males, 12 females; mean age 33.08 years) included those who received insulin, and Group II patients (12 males, 13 females; mean age 54.68 years) who received oral hypo glycemic agents for their diabetic illness. Evaluation of cardiac denervation in both the groups was done in terms of presence of resting tachycardia, loss of sinus arrhythmia and abnormalities of Valsava response. Results: At least some form of cardiac denervation was present in 62% of total subjects. 48% of Group I and 76 % of Group II patients. A significantly high number of patients treated with oral hypo glycemic agents had evidence of cardiac denervation when compared with patients who were treated with insulin (p < 0.05). Conclusion: Cardiac denervation is common in long-standing diabetics specifically in those treated with oral hypo glycemic agents. (author)

  20. Hemodynamic, morphometric and autonomic patterns in hypertensive rats - renin-angiotensin system modulation

    Directory of Open Access Journals (Sweden)

    Fernanda S. Zamo

    2010-01-01

    Full Text Available BACKGROUND: Spontaneously hypertensive rats develop left ventricular hypertrophy, increased blood pressure and blood pressure variability, which are important determinants of heart damage, like the activation of renin-angiotensin system. AIMS: To investigate the effects of the time-course of hypertension over 1 hemodynamic and autonomic patterns (blood pressure; blood pressure variability; heart rate; 2 left ventricular hypertrophy; and 3 local and systemic Renin-angiotensin system of the spontaneously hypertensive rats. METHODS: Male spontaneously hypertensive rats were randomized into two groups: young (n=13 and adult (n=12. Hemodynamic signals (blood pressure, heart rate, blood pressure variability (BPV and spectral analysis of the autonomic components of blood pressure were analyzed. LEFT ventricular hypertrophy was measured by the ratio of LV mass to body weight (mg/g, by myocyte diameter (μm and by relative fibrosis area (RFA, %. ACE and ACE2 activities were measured by fluorometry (UF/min, and plasma renin activity (PRA was assessed by a radioimmunoassay (ng/mL/h. Cardiac gene expressions of Agt, Ace and Ace2 were quantified by RT-PCR (AU. RESULTS: The time-course of hypertension in spontaneously hypertensive rats increased BPV and reduced the alpha index in adult spontaneously hypertensive rats. Adult rats showed increases in left ventricular hypertrophy and in RFA. Compared to young spontaneously hypertensive rats, adult spontaneously hypertensive rats had lower cardiac ACE and ACE2 activities, and high levels of PRA. No change was observed in gene expression of Renin-angiotensin system components. CONCLUSIONS: The observed autonomic dysfunction and modulation of Renin-angiotensin system activity are contributing factors to end-organ damage in hypertension and could be interacting. Our findings suggest that the management of hypertensive disease must start before blood pressure reaches the highest stable levels and the consequent

  1. Synergistic effect of energy drinks and overweight/obesity on cardiac autonomic testing using the Valsalva maneuver in university students.

    Science.gov (United States)

    Majeed, Farrukh; Yar, Talay; Alsunni, Ahmed; Alhawaj, Ali Fouad; AlRahim, Ahmed; Alzaki, Muneer

    2017-01-01

    Obesity and caffeine consumption may lead to autonomic disturbances that can result in a wide range of cardiovascular disorders. To determine autonomic disturbances produced by the synergistic effects of overweight or obesity (OW/OB) and energy drinks. Cross-sectional, analytical. Physiology department at a university in Saudi Arabia. University students, 18-22 years of age, of normal weight (NW) and OW/OB were recruited by convenience sampling. Autonomic testing by the Valsalva ratio (VR) along with systolic and diastolic blood pressure, pulse pressure, and mean arterial blood pressure were measured at baseline (0 minute) and 60 minutes after energy drink consumption. Autonomic disturbance, hemodynamic changes. In 50 (27 males and 23 females) subjects, 21 NW and 29 OW/OB, a significant decrease in VR was observed in OW/OB subjects and in NW and OW/OB females at 60 minutes after energy drink consumption. Values of systolic and diastolic blood pressure, pulse pressure and mean arterial blood pressure were also significantly higher in OW/OB and in females as compared to NW and males. BMI was negatively correlated with VR and diastolic blood pressure at 60 minutes. Obesity and energy drinks alter autonomic functions. In some individuals, OW/OB may augment these effects. Due to time and resource restraints, only the acute effects of energy drinks were examined.

  2. Synergistic effects of low-intensity exercise conditioning and β-blockade on cardiovascular and autonomic adaptation in pre- and postmenopausal women with hypertension.

    Science.gov (United States)

    Goldie, Catherine L; Brown, C Ann; Hains, Sylvia M J; Parlow, Joel L; Birtwhistle, Richard

    2013-10-01

    The effects of a 12-week low-intensity exercise conditioning program (walking) on blood pressure (BP), heart rate (HR), rate-pressure product (RPP), and cardiac autonomic function were measured in 40 sedentary women with hypertension. Women were assigned to either an exercise group (n = 20) or a control group (n = 20), matched for β-blockade treatment. They underwent testing at the beginning and at the end of the 12-week study period in three conditions: supine rest, standing, and low-intensity steady state exercise. The exercise group participated in a 12-week, low-intensity walking program, while the control group continued with usual sedentary activity. Compared with the control group, women in the exercise group showed reductions in systolic and diastolic BP and RPP (i.e., the estimated cardiac workload). β-Blockers increased baroreflex sensitivity and lowered BP and HR in all participants; however, those in the exercise group showed the effects of both treatments: a greater reduction in HR and RPP. The combination of exercise training and β-blockade produces cardiac and autonomic adaptations that are not observed with either treatment alone, suggesting that β-blockade enhances the conditioning effects of low-intensity exercise in women with hypertension.

  3. Effect of overreaching on cognitive performance and related cardiac autonomic control.

    Science.gov (United States)

    Dupuy, O; Lussier, M; Fraser, S; Bherer, L; Audiffren, M; Bosquet, L

    2014-02-01

    The purpose of this study was to characterize the effect of a 2-week overload period immediately followed by a 1-week taper period on different cognitive processes including executive and nonexecutive functions, and related heart rate variability. Eleven male endurance athletes increased their usual training volume by 100% for 2 weeks, and decreased it by 50% for 1 week. A maximal graded test, a constant speed test at 85% of peak treadmill speed, and a Stroop task with the measurement of heart rate variability were performed at each period. All participants were considered as overreached. We found a moderate increase in the overall reaction time to the three conditions of the Stroop task after the overload period (816 ± 83 vs 892 ± 117 ms, P = 0.03) followed by a return to baseline after the taper period (820 ± 119 ms, P = 0.013). We found no association between cognitive performance and cardiac parasympathetic control at baseline, and no association between changes in these measures. Our findings clearly underscore the relevance of cognitive performance in the monitoring of overreaching in endurance athletes. However, contrary to our hypothesis, we did not find any relationship between executive performance and cardiac parasympathetic control. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Effects of prefrontal rTMS on autonomic reactions to affective pictures.

    Science.gov (United States)

    Berger, Christoph; Domes, Gregor; Balschat, Johannes; Thome, Johannes; Höppner, Jacqueline

    2017-02-01

    Repetitive transcranial magnetic stimulation (rTMS) can modulate the excitability of stimulated cortical areas, such as prefrontal areas involved in emotion regulation. Low frequency (LF) rTMS is expected to have inhibitory effects on prefrontal regions, and thereby should disinhibit limbic activity, resulting in enhanced emotional and autonomic reactions. For high frequency (HF) rTMS, the opposite pattern might be assumed. The objective of this study was to determine the effects of different rTMS frequencies applied to the right dlPFC on autonomic functions and on emotional perception. In a crossover design, two groups of 20 healthy young women were either stimulated with one session of LF rTMS (1 Hz) or one session of HF rTMS (10 Hz), compared to sham stimulation. We assessed phasic cardiac responses (PCR), skin conductance reactions (SCR), and emotional appraisal of emotional pictures as well as recognition memory after each rTMS application. After LF rTMS, PCR (heart rate deceleration) during presentation of pictures with negative and neutral valence was significantly increased compared to the presentation of positive pictures. In contrast, the modulatory effect of picture valence and arousal on the cardiac orienting response was absent after HF rTMS. Our results suggest that frontal LF rTMS indirectly activates the ANS via inhibition of the right dlPFC activity, likely by enhancing the sensory processing or attention to aversive and neutral stimuli.

  5. [Heart rate variability as a method of assessing the autonomic nervous system in polycystic ovary syndrome].

    Science.gov (United States)

    de Sá, Joceline Cássia Ferezini; Costa, Eduardo Caldas; da Silva, Ester; Azevedo, George Dantas

    2013-09-01

    Polycystic ovary syndrome (PCOS) is an endocrine disorder associated with several cardiometabolic risk factors, such as central obesity, insulin resistance, type 2 diabetes, metabolic syndrome, and hypertension. These factors are associated with adrenergic overactivity, which is an important prognostic factor for the development of cardiovascular disorders. Given the common cardiometabolic disturbances occurring in PCOS women, over the last years studies have investigated the cardiac autonomic control of these patients, mainly based on heart rate variability (HRV). Thus, in this review, we will discuss the recent findings of the studies that investigated the HRV of women with PCOS, as well as noninvasive methods of analysis of autonomic control starting from basic indexes related to this methodology.

  6. Impaired neural structure and function contributing to autonomic symptoms in congenital central hypoventilation syndrome.

    Science.gov (United States)

    Harper, Ronald M; Kumar, Rajesh; Macey, Paul M; Harper, Rebecca K; Ogren, Jennifer A

    2015-01-01

    Congenital central hypoventilation syndrome (CCHS) patients show major autonomic alterations in addition to their better-known breathing deficiencies. The processes underlying CCHS, mutations in the PHOX2B gene, target autonomic neuronal development, with frame shift extent contributing to symptom severity. Many autonomic characteristics, such as impaired pupillary constriction and poor temperature regulation, reflect parasympathetic alterations, and can include disturbed alimentary processes, with malabsorption and intestinal motility dyscontrol. The sympathetic nervous system changes can exert life-threatening outcomes, with dysregulation of sympathetic outflow leading to high blood pressure, time-altered and dampened heart rate and breathing responses to challenges, cardiac arrhythmia, profuse sweating, and poor fluid regulation. The central mechanisms contributing to failed autonomic processes are readily apparent from structural and functional magnetic resonance imaging studies, which reveal substantial cortical thinning, tissue injury, and disrupted functional responses in hypothalamic, hippocampal, posterior thalamic, and basal ganglia sites and their descending projections, as well as insular, cingulate, and medial frontal cortices, which influence subcortical autonomic structures. Midbrain structures are also compromised, including the raphe system and its projections to cerebellar and medullary sites, the locus coeruleus, and medullary reflex integrating sites, including the dorsal and ventrolateral medullary nuclei. The damage to rostral autonomic sites overlaps metabolic, affective and cognitive regulatory regions, leading to hormonal disruption, anxiety, depression, behavioral control, and sudden death concerns. The injuries suggest that interventions for mitigating hypoxic exposure and nutrient loss may provide cellular protection, in the same fashion as interventions in other conditions with similar malabsorption, fluid turnover, or hypoxic exposure.

  7. Impaired Neural Structure and Function Contributing to Autonomic Symptoms in Congenital Central Hypoventilation Syndrome

    Directory of Open Access Journals (Sweden)

    Ronald M Harper

    2015-10-01

    Full Text Available Congenital central hypoventilation syndrome (CCHS patients show major autonomic alterations in addition to their better-known breathing deficiencies. The processes underlying CCHS, mutations in the PHOX2B gene, target autonomic neuronal development, with frame shift extent contributing to symptom severity. Many autonomic characteristics, such as impaired pupillary constriction and poor temperature regulation, reflect parasympathetic alterations, and can include disturbed alimentary processes, with malabsorption and intestinal motility dyscontrol. The sympathetic nervous system changes can exert life-threatening outcomes, with dysregulation of sympathetic outflow leading to high blood pressure, time-altered and dampened heart rate and breathing responses to challenges, cardiac arrhythmia, profuse sweating, and poor fluid regulation. The central mechanisms contributing to failed autonomic processes are readily apparent from structural and functional magnetic resonance imaging studies, which reveal substantial cortical thinning, tissue injury, and disrupted functional responses in hypothalamic, hippocampal, posterior thalamic, and basal ganglia sites and their descending projections, as well as insular, cingulate, and medial frontal cortices, which influence subcortical autonomic structures. Midbrain structures are also compromised, including the raphe system and its projections to cerebellar and medullary sites, the locus coeruleus, and medullary reflex integrating sites, including the dorsal and ventrolateral medullary nuclei. The damage to rostral autonomic sites overlaps metabolic, affective and cognitive regulatory regions, leading to hormonal disruption, anxiety, depression, behavioral control, and sudden death concerns. The injuries suggest that interventions for mitigating hypoxic exposure and nutrient loss may provide cellular protection, in the same fashion as interventions in other conditions with similar malabsorption, fluid turnover

  8. Sensitivity Analysis of Vagus Nerve Stimulation Parameters on Acute Cardiac Autonomic Responses: Chronotropic, Inotropic and Dromotropic Effects.

    Directory of Open Access Journals (Sweden)

    David Ojeda

    Full Text Available Although the therapeutic effects of Vagus Nerve Stimulation (VNS have been recognized in pre-clinical and pilot clinical studies, the effect of different stimulation configurations on the cardiovascular response is still an open question, especially in the case of VNS delivered synchronously with cardiac activity. In this paper, we propose a formal mathematical methodology to analyze the acute cardiac response to different VNS configurations, jointly considering the chronotropic, dromotropic and inotropic cardiac effects. A latin hypercube sampling method was chosen to design a uniform experimental plan, composed of 75 different VNS configurations, with different values for the main parameters (current amplitude, number of delivered pulses, pulse width, interpulse period and the delay between the detected cardiac event and VNS onset. These VNS configurations were applied to 6 healthy, anesthetized sheep, while acquiring the associated cardiovascular response. Unobserved VNS configurations were estimated using a Gaussian process regression (GPR model. In order to quantitatively analyze the effect of each parameter and their combinations on the cardiac response, the Sobol sensitivity method was applied to the obtained GPR model and inter-individual sensitivity markers were estimated using a bootstrap approach. Results highlight the dominant effect of pulse current, pulse width and number of pulses, which explain respectively 49.4%, 19.7% and 6.0% of the mean global cardiovascular variability provoked by VNS. More interestingly, results also quantify the effect of the interactions between VNS parameters. In particular, the interactions between current and pulse width provoke higher cardiac effects than the changes on the number of pulses alone (between 6 and 25% of the variability. Although the sensitivity of individual VNS parameters seems similar for chronotropic, dromotropic and inotropic responses, the interacting effects of VNS parameters

  9. Sleep Apnea and Nocturnal Cardiac Arrhythmia: A Populational Study

    Directory of Open Access Journals (Sweden)

    Fatima Dumas Cintra

    2014-11-01

    Full Text Available Background: The mechanisms associated with the cardiovascular consequences of obstructive sleep apnea include abrupt changes in autonomic tone, which can trigger cardiac arrhythmias. The authors hypothesized that nocturnal cardiac arrhythmia occurs more frequently in patients with obstructive sleep apnea. Objective: To analyze the relationship between obstructive sleep apnea and abnormal heart rhythm during sleep in a population sample. Methods: Cross-sectional study with 1,101 volunteers, who form a representative sample of the city of São Paulo. The overnight polysomnography was performed using an EMBLA® S7000 digital system during the regular sleep schedule of the individual. The electrocardiogram channel was extracted, duplicated, and then analyzed using a Holter (Cardio Smart® system. Results: A total of 767 participants (461 men with a mean age of 42.00 ± 0.53 years, were included in the analysis. At least one type of nocturnal cardiac rhythm disturbance (atrial/ventricular arrhythmia or beat was observed in 62.7% of the sample. The occurrence of nocturnal cardiac arrhythmias was more frequent with increased disease severity. Rhythm disturbance was observed in 53.3% of the sample without breathing sleep disorders, whereas 92.3% of patients with severe obstructive sleep apnea showed cardiac arrhythmia. Isolated atrial and ventricular ectopy was more frequent in patients with moderate/severe obstructive sleep apnea when compared to controls (p < 0.001. After controlling for potential confounding factors, age, sex and apnea-hypopnea index were associated with nocturnal cardiac arrhythmia. Conclusion: Nocturnal cardiac arrhythmia occurs more frequently in patients with obstructive sleep apnea and the prevalence increases with disease severity. Age, sex, and the Apnea-hypopnea index were predictors of arrhythmia in this sample.

  10. Multivariate pattern classification reveals autonomic and experiential representations of discrete emotions.

    Science.gov (United States)

    Kragel, Philip A; Labar, Kevin S

    2013-08-01

    Defining the structural organization of emotions is a central unresolved question in affective science. In particular, the extent to which autonomic nervous system activity signifies distinct affective states remains controversial. Most prior research on this topic has used univariate statistical approaches in attempts to classify emotions from psychophysiological data. In the present study, electrodermal, cardiac, respiratory, and gastric activity, as well as self-report measures were taken from healthy subjects during the experience of fear, anger, sadness, surprise, contentment, and amusement in response to film and music clips. Information pertaining to affective states present in these response patterns was analyzed using multivariate pattern classification techniques. Overall accuracy for classifying distinct affective states was 58.0% for autonomic measures and 88.2% for self-report measures, both of which were significantly above chance. Further, examining the error distribution of classifiers revealed that the dimensions of valence and arousal selectively contributed to decoding emotional states from self-report, whereas a categorical configuration of affective space was evident in both self-report and autonomic measures. Taken together, these findings extend recent multivariate approaches to study emotion and indicate that pattern classification tools may improve upon univariate approaches to reveal the underlying structure of emotional experience and physiological expression. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  11. Wnt signaling balances specification of the cardiac and pharyngeal muscle fields

    Science.gov (United States)

    Mandal, Amrita; Holowiecki, Andrew; Song, Yuntao Charlie; Waxman, Joshua S.

    2017-01-01

    Canonical Wnt/β-catenin (Wnt) signaling plays multiple conserved roles during fate specification of cardiac progenitors in developing vertebrate embryos. Although lineage analysis in ascidians and mice has indicated there is a close relationship between the cardiac second heart field (SHF) and pharyngeal muscle (PM) progenitors, the signals underlying directional fate decisions of the cells within the cardio-pharyngeal muscle field in vertebrates are not yet understood. Here, we examined the temporal requirements of Wnt signaling in cardiac and PM development. In contrast to a previous report in chicken embryos that suggested Wnt inhibits PM development during somitogenesis, we find that in zebrafish embryos Wnt signaling is sufficient to repress PM development during anterior-posterior patterning. Importantly, the temporal sensitivity of dorso-anterior PMs to increased Wnt signaling largely overlaps with when Wnt signaling promotes specification of the adjacent cardiac progenitors. Furthermore, we find that excess early Wnt signaling can cell autonomously promote expansion of the first heart field (FHF) progenitors at the expense of PM and SHF within the anterior lateral plate mesoderm (ALPM). Our study provides insight into an antagonistic developmental mechanism that balances the sizes of the adjacent cardiac and PM progenitor fields in early vertebrate embryos. PMID:28087459

  12. Autonomic headache with autonomic seizures: a case report.

    Science.gov (United States)

    Ozge, Aynur; Kaleagasi, Hakan; Yalçin Tasmertek, Fazilet

    2006-10-01

    The aim of the report is to present a case of an autonomic headache associated with autonomic seizures. A 19-year-old male who had had complex partial seizures for 15 years was admitted with autonomic complaints and left hemicranial headache, independent from seizures, that he had had for 2 years and were provoked by watching television. Brain magnetic resonance imaging showed right hippocampal sclerosis and electroencephalography revealed epileptic activity in right hemispheric areas. Treatment with valproic acid decreased the complaints. The headache did not fulfil the criteria for the diagnosis of trigeminal autonomic cephalalgias, and was different from epileptic headache, which was defined as a pressing type pain felt over the forehead for several minutes to a few hours. Although epileptic headache responds to anti-epileptics and the complaints of the present case decreased with antiepileptics, it has been suggested that the headache could be a non-trigeminal autonomic headache instead of an epileptic headache.

  13. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice

    DEFF Research Database (Denmark)

    Patrick, David M; Montgomery, Rusty L; Qi, Xiaoxia

    2010-01-01

    MicroRNAs inhibit mRNA translation or promote mRNA degradation by binding complementary sequences in 3' untranslated regions of target mRNAs. MicroRNA-21 (miR-21) is upregulated in response to cardiac stress, and its inhibition by a cholesterol-modified antagomir has been reported to prevent card...

  14. Sinoatrial tissue of crucian carp heart has only negative contractile responses to autonomic agonists

    Directory of Open Access Journals (Sweden)

    Hälinen Mervi

    2010-06-01

    Full Text Available Abstract Background In the anoxia-tolerant crucian carp (Carassius carassius cardiac activity varies according to the seasons. To clarify the role of autonomic nervous control in modulation of cardiac activity, responses of atrial contraction and heart rate (HR to carbacholine (CCh and isoprenaline (Iso were determined in fish acclimatized to winter (4°C, cold-acclimated, CA and summer (18°C, warm-acclimated, WA temperatures. Results Inhibitory action of CCh was much stronger on atrial contractility than HR. CCh reduced force of atrial contraction at an order of magnitude lower concentrations (EC50 2.75-3.5·10-8 M in comparison to its depressive effect on HR (EC50 1.23-2.02·10-7 M (P -8 M and 10-7 M CCh, respectively (P + current, IK,CCh, with an EC50 value of 3-4.5·10-7 M and inhibited Ca2+ current (ICa by 28 ± 8% and 51 ± 6% at 10-7 M and 10-6 M, respectively. These currents can explain the shortening of AP. Iso did not elicit any responses in crucian carp sinoatrial preparations nor did it have any effect on atrial ICa, probably due to the saturation of the β-adrenergic cascade in the basal state. Conclusion In the crucian carp, HR and force of atrial contraction show cardio-depressive responses to the cholinergic agonist, but do not have any responses to the β-adrenergic agonist. The scope of inhibitory regulation by CCh is increased by the high basal tone of the adenylate cyclase-cAMP cascade. Higher concentrations of CCh were required to induce IK,CCh and inhibit ICa than was needed for CCh's negative inotropic effect on atrial muscle suggesting that neither IK,CCh nor ICa alone can mediate CCh's actions but they might synergistically reduce AP duration and atrial force production. Autonomic responses were similar in CA winter fish and WA summer fish indicating that cardiac sensitivity to external modulation by the autonomic nervous system is not involved in seasonal acclimatization of the crucian carp heart to cold and anoxic

  15. Is it time for cardiac innervation imaging?

    Energy Technology Data Exchange (ETDEWEB)

    Knuuti, J. [Turku Univ., Turku (Finland) Turku PET Center; Sipola, P. [Kuopio Univ., Kuopio (Finland)

    2005-03-01

    The autonomic nervous system plays an important role in the regulation of cardiac function and the regional distribution of cardiac nerve terminals can be visualized using scintigraphic techniques. The most commonly used tracer is iodine-123-metaiodobenzylguanidine (MIBG) but C-11-hydroxyephedrine has also been used with PET. When imaging with MIBG, the ratio of heart-to-mediastinal counts is used as an index of tracer uptake, and regional distribution is also assessed from tomographic images. The rate of clearance of the tracer can also be measured and indicates the function of the adrenergic system. Innervation imaging has been applied in patients with susceptibility to arrythmias, coronary artery disease, hypertrophic and dilated cardiomyopathy and anthracycline induced cardiotoxicity. Abnormal adrenergic innervation or function appear to exist in many pathophysiological conditions indicating that sympathetic neurons are very susceptible to damage. Abnormal findings in innervation imaging also appear to have significant prognostic value especially in patients with cardiomyopathy. Recently, it has also been shown that innervation imaging can monitor drug-induced changes in cardiac adrenergic activity. Although innervation imaging holds great promise for clinical use, the method has not received wider clinical acceptance. Larger randomized studies are required to confirm the value of innervation imaging in various specific indications.

  16. Hemodynamic and autonomic nervous system responses to mixed meal ingestion in healthy young and old subjects and dysautonomic patients with postprandial hypotension

    Science.gov (United States)

    Lipsitz, L. A.; Ryan, S. M.; Parker, J. A.; Freeman, R.; Wei, J. Y.; Goldberger, A. L.

    1993-01-01

    BACKGROUND. Although postprandial hypotension is a common cause of falls and syncope in elderly persons and in patients with autonomic insufficiency, the pathophysiology of this disorder remains unknown. METHODS AND RESULTS. We examined the hemodynamic, splanchnic blood pool, plasma norepinephrine (NE), and heart rate (HR) power spectra responses to a standardized 400-kcal mixed meal in 11 healthy young (age, 26 +/- 5 years) and nine healthy elderly (age, 80 +/- 5 years) subjects and 10 dysautonomic patients with symptomatic postprandial hypotension (age, 65 +/- 16 years). Cardiac and splanchnic blood pools were determined noninvasively by radionuclide scans, and forearm vascular resistance was determined using venous occlusion plethysmography. In healthy young and old subjects, splanchnic blood volume increased, but supine blood pressure remained unchanged after the meal. In both groups, HR increased and systemic vascular resistance remained stable. Forearm vascular resistance and cardiac index increased after the meal in elderly subjects, whereas these responses were highly variable and of smaller magnitude in the young. Young subjects demonstrated postprandial increases in low-frequency HR spectral power, representing cardiac sympatho-excitation, but plasma NE remained unchanged. In elderly subjects, plasma NE increased after the meal but without changes in the HR power spectrum. Patients with dysautonomia had a large postprandial decline in blood pressure associated with no change in forearm vascular resistance, a fall in systemic vascular resistance, and reduction in left ventricular end diastolic volume index. HR increased in these patients but without changes in plasma NE or the HR power spectrum. CONCLUSIONS. 1) In healthy elderly subjects, the maintenance of blood pressure homeostasis after food ingestion is associated with an increase in HR, forearm vascular resistance, cardiac index, and plasma NE. In both young and old, systemic vascular resistance is

  17. Neurotransmission to parasympathetic cardiac vagal neurons in the brain stem is altered with left ventricular hypertrophy-induced heart failure.

    Science.gov (United States)

    Cauley, Edmund; Wang, Xin; Dyavanapalli, Jhansi; Sun, Ke; Garrott, Kara; Kuzmiak-Glancy, Sarah; Kay, Matthew W; Mendelowitz, David

    2015-10-01

    Hypertension, cardiac hypertrophy, and heart failure (HF) are widespread and debilitating cardiovascular diseases that affect nearly 23 million people worldwide. A distinctive hallmark of these cardiovascular diseases is autonomic imbalance, with increased sympathetic activity and decreased parasympathetic vagal tone. Recent device-based approaches, such as implantable vagal stimulators that stimulate a multitude of visceral sensory and motor fibers in the vagus nerve, are being evaluated as new therapeutic approaches for these and other diseases. However, little is known about how parasympathetic activity to the heart is altered with these diseases, and this lack of knowledge is an obstacle in the goal of devising selective interventions that can target and selectively restore parasympathetic activity to the heart. To identify the changes that occur within the brain stem to diminish the parasympathetic cardiac activity, left ventricular hypertrophy was elicited in rats by aortic pressure overload using a transaortic constriction approach. Cardiac vagal neurons (CVNs) in the brain stem that generate parasympathetic activity to the heart were identified with a retrograde tracer and studied using patch-clamp electrophysiological recordings in vitro. Animals with left cardiac hypertrophy had diminished excitation of CVNs, which was mediated both by an augmented frequency of spontaneous inhibitory GABAergic neurotransmission (with no alteration of inhibitory glycinergic activity) as well as a diminished amplitude and frequency of excitatory neurotransmission to CVNs. Opportunities to alter these network pathways and neurotransmitter receptors provide future targets of intervention in the goal to restore parasympathetic activity and autonomic balance to the heart in cardiac hypertrophy and other cardiovascular diseases. Copyright © 2015 the American Physiological Society.

  18. Hypoventilation improvement in an adult non-invasively ventilated patient with Rapid-onset Obesity with Hypothalamic Dysfunction Hypoventilation and Autonomic Dysregulation (ROHHAD).

    Science.gov (United States)

    Graziani, Alessandro; Casalini, Pierpaolo; Mirici-Cappa, Federica; Pezzi, Giuseppe; Giuseppe Stefanini, Francesco

    2016-01-01

    Rapid-onset Obesity with Hypothalamic Dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD) is a rare disease of unknown etiology, characterized by rapid-onset obesity in young children, hypoventilation, hypothalamic and autonomic dysfunction. Patients between the ages of 2 and 4 present with hyperphagia and weight gain, followed by neuro-hormonal dysfunction and central hypoventilation months or years later. Cardiac arrest may represent the fatal complication of alveolar hypoventilation and early mechanical ventilation is essential for the patient's life. In this paper, we describe a 22-year-old patient with ROHHAD syndrome who had an acute respiratory failure during nocturnal non-invasive ventilation (NIV).

  19. Distinct subsets of Eve-positive pericardial cells stabilise cardiac outflow and contribute to Hox gene-triggered heart morphogenesis in Drosophila.

    Science.gov (United States)

    Zmojdzian, Monika; de Joussineau, Svetlana; Da Ponte, Jean Philippe; Jagla, Krzysztof

    2018-01-17

    The Drosophila heart, composed of discrete subsets of cardioblasts and pericardial cells, undergoes Hox-triggered anterior-posterior morphogenesis, leading to a functional subdivision into heart proper and aorta, with its most anterior part forming a funnel-shaped cardiac outflow. Cardioblasts differentiate into Tin-positive 'working myocytes' and Svp-expressing ostial cells. However, developmental fates and functions of heart-associated pericardial cells remain elusive. Here, we show that the pericardial cells that express the transcription factor Even Skipped adopt distinct fates along the anterior-posterior axis. Among them, the most anterior Antp-Ubx-AbdA - negative cells form a novel cardiac outflow component we call the outflow hanging structure, whereas the Antp-expressing cells differentiate into wing heart precursors. Interestingly, Hox gene expression in the Even Skipped-positive cells not only underlies their antero-posterior diversification, but also influences heart morphogenesis in a non-cell-autonomous way. In brief, we identify a new cardiac outflow component derived from a subset of Even Skipped-expressing cells that stabilises the anterior heart tip, and demonstrate non-cell-autonomous effects of Hox gene expression in the Even Skipped-positive cells on heart morphogenesis. © 2018. Published by The Company of Biologists Ltd.

  20. Biofeedback on heart rate variability in cardiac rehabilitation: practical feasibility and psycho-physiological effects.

    Science.gov (United States)

    Climov, Daniela; Lysy, Camille; Berteau, Sylvain; Dutrannois, Jacques; Dereppe, Hubert; Brohet, Christian; Melin, Jacques

    2014-06-01

    Biofeedback is a self-regulation therapy by which the patient learns how to optimize the functioning of his autonomic nervous system. It has been applied to patients with various cardiovascular disorders. The purpose of this study was to investigate the practical feasibility and the psychophysiological effects of biofeedback applied to heart rate variability (HRV biofeedback) in order to increase cardiac coherence in coronary artery disease (CAD) patients participating in a cardiac rehabilitation programme. In this randomised and controlled study, 31 CAD patients were randomly assigned to an experimental or to a control group. The experimental group participated in a programme of 10 sessions of cardiac coherence biofeedback training, in addition to the rehabilitation programme. The control group participated in the usual cardiac rehabilitation programme only. Physiological variables (systolic and diastolic blood pressure, SDNN) and psychosocial variables (anxiety, depression, type D personality) were measured at the start and at the end of the programme in both groups. Statistical comparisons assessed the inter and intra group differences. The small sample size precludes any firm conclusions concerning the effect of cardiac coherence biofeedback on physiological or psychological variables. However, we observed a significant increase of the percentage of cardiac coherence, in relation with an increased SDNN index. Our study demonstrated the practical feasibility of cardiac coherence biofeedback training in CAD patients. Further research is desirable to investigate the potential benefit of cardiac coherence biofeedback as an adjunct to stress management in cardiac rehabilitation.

  1. Autonomic Neuropathy

    Science.gov (United States)

    ... risk of autonomic neuropathy. Other diseases. Amyloidosis, porphyria, hypothyroidism and cancer (usually due to side effects from treatment) may also increase the risk of autonomic neuropathy. ...

  2. A comparative study of lipid profile and autonomic functions in vegetarian and non-vegetarian postmenopausal women

    Directory of Open Access Journals (Sweden)

    Arunima Chaudhuri

    2013-01-01

    Full Text Available Background: The prevalence of dyslipedaemia, autonomic dysfunction leading to cardiovascular diseases, increases with menopause and an ageing population. Autonomic dysfunction as measured by lower heart rate variability is an established risk factor for cardiac death. Diet and nutrition have been extensively investigated as risk factors for major cardiovascular diseases and are also linked to other cardiovascular risk factors. Objectives: To compare lipid profile and autonomic functions of postmenopausal women on vegetarian and non- vegetarian diet. Materials and Methods: 120 Postmenopausal women (menopausal duration and age-matched without any gross systemic disease from an Industrial population were selected. Sixty women were on vegetarian diet and 60 on non-vegetarian diet. BMI and waist/hip ratios were calculated, lipid profile was analyzed, and autonomic function tests were carried out. A comparison was done between the two groups using Students t test. Pearson′s correlation coefficient was calculated between the independent variable (lipid profile parameters and the dependent variables (deep breath test, valsalva ratio, 30:15 ratio, OTT, IHG, CPT to understand the effect of lipid profile on autonomic control of heart. Results : Significant increases in total cholesterol, triglyceride, LDL, cholesterol/HDL ratio were noticed in women on non-vegetarian diet. Results of autonomic function tests, i.e. valsalva ratio, deep breath test, 30: 15R-R intervals ratio, isometric hand grip test, cold pressor test, and orthostatic tolerance test were significantly worsened in postmenopausal women on non-vegetarian diet. Conclusion: Dietary factors may be an important cause of alteration of lipid metabolism. Increased cholesterol decreases heart rate variability and increased LDL cholesterol decreases baroreceptor sensitivity thereby worsening autonomic functions in postmenopausal women.

  3. HSF1 and NF-κB p65 participate in the process of exercise preconditioning attenuating pressure overload-induced pathological cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tongyi [Department of Cardiothoracic Surgery, No. 401 Hospital of PLA, Qingdao (China); Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Zhang, Ben [Centre of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Region, Guangzhou (China); Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Yang, Fan; Cai, Chengliang; Wang, Guokun [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Han, Qingqi, E-mail: handoctor@gmail.com [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Zou, Liangjian, E-mail: zouliangjiansh@gmail.com [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China)

    2015-05-08

    Pathological cardiac hypertrophy, often accompanied by hypertension, aortic stenosis and valvular defects, is typically associated with myocyte remodeling and cardiac dysfunction. Exercise preconditioning (EP) has been proven to enhance the tolerance of the myocardium to cardiac ischemia-reperfusion injury. However, the effects of EP in pathological cardiac hypertrophy are rarely reported. 10-wk-old male Sprague–Dawley rats (n = 80) were randomly divided into four groups: sham, TAC, EP + sham and EP + TAC. Two EP groups were subjected to 4 weeks of treadmill training, and the EP + TAC and TAC groups were followed by TAC operations. The sham and EP + sham groups underwent the same operation without aortic constriction. Eight weeks after the surgery, we evaluated the effects of EP by echocardiography, morphology, and histology and observed the expressions of the associated proteins. Compared with the respective control groups, hypertrophy-related indicators were significantly increased in the TAC and EP + TAC groups (p < 0.05). However, between the TAC and EP + TAC groups, all of these changes were effectively inhibited by EP treatment (p < 0.05). Furthermore, EP treatment upregulated the expression of HSF1 and HSP70, increased the HSF1 levels in the nuclear fraction, inhibited the expression of the NF-κB p65 subunit, decreased the NF-κB p65 subunit levels in the nuclear fraction, and reduced the IL2 levels in the myocardia of rats. EP could effectively reduce the cardiac hypertrophic responses induced by TAC and may play a protective role by upregulating the expressions of HSF1 and HSP70, activating HSF1 and then inhibiting the expression of NF-κB p65 and nuclear translocation. - Highlights: • EP could effectively reduce the cardiac hypertrophic responses induced by TAC. • EP may play a protective role by upregulating the expressions of HSF1 and HSP70 and then activating HSF1. • EP may play a protective role by inhibiting the expression

  4. Cardiac arrest during gamete release in chum salmon regulated by the parasympathetic nerve system.

    Directory of Open Access Journals (Sweden)

    Yuya Makiguchi

    Full Text Available Cardiac arrest caused by startling stimuli, such as visual and vibration stimuli, has been reported in some animals and could be considered as an extraordinary case of bradycardia and defined as reversible missed heart beats. Variability of the heart rate is established as a balance between an autonomic system, namely cholinergic vagus inhibition, and excitatory adrenergic stimulation of neural and hormonal action in teleost. However, the cardiac arrest and its regulating nervous mechanism remain poorly understood. We show, by using electrocardiogram (ECG data loggers, that cardiac arrest occurs in chum salmon (Oncorhynchus keta at the moment of gamete release for 7.39+/-1.61 s in females and for 5.20+/-0.97 s in males. The increase in heart rate during spawning behavior relative to the background rate during the resting period suggests that cardiac arrest is a characteristic physiological phenomenon of the extraordinarily high heart rate during spawning behavior. The ECG morphological analysis showed a peaked and tall T-wave adjacent to the cardiac arrest, indicating an increase in potassium permeability in cardiac muscle cells, which would function to retard the cardiac action potential. Pharmacological studies showed that the cardiac arrest was abolished by injection of atropine, a muscarinic receptor antagonist, revealing that the cardiac arrest is a reflex response of the parasympathetic nerve system, although injection of sotalol, a beta-adrenergic antagonist, did not affect the cardiac arrest. We conclude that cardiac arrest during gamete release in spawning release in spawning chum salmon is a physiological reflex response controlled by the parasympathetic nervous system. This cardiac arrest represents a response to the gaping behavior that occurs at the moment of gamete release.

  5. Inflammatory and apoptotic remodeling in autonomic nervous system following myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Chen Gao

    Full Text Available Chronic myocardial infarction (MI triggers pathological remodeling in the heart and cardiac nervous system. Abnormal function of the autonomic nervous system (ANS, including stellate ganglia (SG and dorsal root ganglia (DRG contribute to increased sympathoexcitation, cardiac dysfunction and arrythmogenesis. ANS modulation is a therapeutic target for arrhythmia associated with cardiac injury. However, the molecular mechanism involved in the pathological remodeling in ANS following cardiac injury remains to be established.In this study, we performed transcriptome analysis by RNA-sequencing in thoracic SG and (T1-T4 DRG obtained from Yorkshire pigs following either acute (3 to 5 hours or chronic (8 weeks myocardial infarction. By differential expression and weighted gene co-expression network analysis (WGCNA, we identified significant transcriptome changes and specific gene modules in the ANS tissues in response to myocardial infarction at either acute or chronic phases. Both differential expressed genes and the member genes of the WGCNA gene module associated with post-infarct condition were significantly enriched for inflammatory signaling and apoptotic cell death. Targeted validation analysis supported a significant induction of inflammatory and apoptotic signal in both SG and DRG following myocardial infarction, along with cellular evidence of apoptosis induction based on TUNEL analysis. Importantly, these molecular changes were observed specifically in the thoracic segments but not in their counterparts obtained from lumbar sections.Myocardial injury leads to time-dependent global changes in gene expression in the innervating ANS. Induction of inflammatory gene expression and loss of neuron cell viability in SG and DRG are potential novel mechanisms contributing to abnormal ANS function which can promote cardiac arrhythmia and pathological remodeling in myocardium.

  6. Genetic autonomic disorders.

    Science.gov (United States)

    Axelrod, Felicia B

    2013-03-01

    Genetic disorders affecting the autonomic nervous system can result in abnormal development of the nervous system or they can be caused by neurotransmitter imbalance, an ion-channel disturbance or by storage of deleterious material. The symptoms indicating autonomic dysfunction, however, will depend upon whether the genetic lesion has disrupted peripheral or central autonomic centers or both. Because the autonomic nervous system is pervasive and affects every organ system in the body, autonomic dysfunction will result in impaired homeostasis and symptoms will vary. The possibility of genetic confirmation by molecular testing for specific diagnosis is increasing but treatments tend to remain only supportive and directed toward particular symptoms. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Valsartan attenuates cardiac and renal hypertrophy in rats with experimental cardiorenal syndrome possibly through down-regulating galectin-3 signaling.

    Science.gov (United States)

    Zhang, M-J; Gu, Y; Wang, H; Zhu, P-F; Liu, X-Y; Wu, J

    2016-01-01

    Aortocaval fistula (AV) induced chronic volume overload in rats with preexisting mild renal dysfunction (right kidney remove: UNX) could mimic the type 4 cardiorenal syndrome (CRS): chronic renocardiac syndrome. Galectin-3, a β-galactoside binding lectin, is an emerging biomarker in cardiovascular as well as renal diseases. We observed the impact of valsartan on cardiac and renal hypertrophy and galectin-3 changes in this model. Adult male Sprague-Dawley (SD) rats (200-250 g) were divided into S (Sham, n = 7), M (UNX+AV, n = 7) and M+V (UNX+AV+valsartan, n = 7) groups. Eight weeks later, cardiac function was measured by echocardiography. Renal outcome was measured by glomerular filtration rate, effective renal plasma flow, renal blood flow and 24 hours albuminuria. Immunohistochemistry and real-time PCR were used to evaluate the expressions of galectin-3 in heart and renal. Cardiac hypertrophy and renal hypertrophy as well as cardiac enlargement were evidenced in this AV shunt induced chronic volume overload rat model with preexisting mild renal dysfunction. Cardiac and renal hypertrophy were significantly attenuated but cardiac enlargement was unaffected by valsartan independent of its blood pressure lowering effect. 24 hours urine albumin was significantly increased, which was significantly reduced by valsartan in this model. Immunohistochemistry and real-time PCR evidenced significantly up-regulated galectin-3 expression in heart and kidney and borderline increased myocardial collagen I expression, which tended to be lower post valsartan treatment. Up-regulated galectin-3 signaling might also be involved in the pathogenesis in this CRS model. The beneficial effects of valsartan in terms of attenuating cardiac and renal hypertrophy and reducing 24 hours albumin in this model might partly be mediated through down-regulating galectin-3 signal pathway.

  8. Upregulation of vascular endothelial growth factor receptor-1 contributes to sevoflurane preconditioning–mediated cardioprotection

    Directory of Open Access Journals (Sweden)

    Qian B

    2018-04-01

    Full Text Available Bin Qian,1 Yang Yang,2 Yusheng Yao,3 Yanling Liao,3 Ying Lin3 1Department of Anesthesiology, People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; 2Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; 3Department of Anesthesiology, The Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China Purpose: Sevoflurane preconditioning (SPC can provide myocardial protective effects similar to ischemic preconditioning. However, the exact mechanism of SPC remains unclear. Previous studies indicate that vascular endothelial growth factor receptor 1 (VEGFR-1 is involved in ischemic preconditioning-mediated cardioprotection. This study was designed to determine the significance of VEGFR-1 signaling in SPC-mediated cardioprotection.Materials and methods: Myocardial ischemia–reperfusion (I/R rat model was established using the Langendorff isolated heart perfusion apparatus. Additionally, after 15 min of baseline equilibration, the isolated hearts were pretreated with 2.5% sevoflurane, 2.5% sevoflurane+MF1 10 µmol/L, or 2.5% sevoflurane+placental growth factor 10 µmol/L, and then subjected to 30 min of global ischemia and 120 min of reperfusion. The changes in hemodynamic parameters, myocardial infarct size, and the levels of creatine kinase-MB, lactate dehydrogenase, cardiac troponin-I, tumor necrosis factor-α, and interleukin 6 in the myocardium were evaluated.Results: Compared to the I/R group, pretreatment with 2.5% sevoflurane significantly improved the cardiac function, limited myocardial infarct size, reduced cardiac enzyme release, upregulated VEGFR-1 expression, and decreased inflammation. In addition, the selective VEGFR-1 agonist, placental growth factor, did not enhance the cardioprotection and anti-inflammation effects of sevoflurane, while the specific VEGFR-1 inhibitor, MF1, completely reversed these effects

  9. Cardiac vagal control and theoretical models of co-occurring depression and anxiety: A cross-sectional psychophysiological study of community elderly

    Directory of Open Access Journals (Sweden)

    Chen Hsi-Chung

    2012-07-01

    Full Text Available Abstract Background In order to elucidate the complex relationship between co-occurring depression and anxiety with cardiac autonomic function in the elderly, this study examined the correlation between cardiac vagal control (CVC and pre-defined, theoretical factors from the Hospital Anxiety and Depression Scale (HADS. Methods Three hundred fifty-four randomly selected Chinese male subjects aged ≥65 years and living in the community were enrolled. CVC was measured using a frequency-domain index of heart rate variability. Results Confirmatory factor analysis showed that the flat tripartite model of HADS provided a modest advantage in model fit when compared with other theoretical factor solutions. In the flat tripartite model, there was a significant negative association between anhedonic depression and CVC. In contrast, autonomic anxiety showed a significant positive correlation with CVC. In the hierarchical tripartite model, negative affectivity was not directly associated with CVC; instead, it had positive and negative indirect effects on CVC via autonomic anxiety and anhedonic depression, respectively. As scores for negative affectivity increased, these specific indirect effects diminished. Conclusions Among competing models of co-occurring depression and anxiety, constructs from tripartite models demonstrate fair conformity with the data but unique and distinct correlations with CVC. Negative affectivity may determine the relationship of anhedonic depression and autonomic anxiety with CVC. Separating affective symptoms under the constructs of the tripartite models helps disentangle complex associations between co-occurring depression and anxiety with CVC.

  10. Patients With Fibromyalgia Have Significant Autonomic Symptoms But Modest Autonomic Dysfunction.

    Science.gov (United States)

    Vincent, Ann; Whipple, Mary O; Low, Phillip A; Joyner, Michael; Hoskin, Tanya L

    2016-05-01

    Research suggests that disordered autonomic function may be one contributor to deconditioning reported in fibromyalgia; however, no study to date has assessed these variables simultaneously with comprehensive measures. To characterize physical fitness and autonomic function with the use of clinically validated measures and subjective questionnaires between patients with fibromyalgia and healthy controls. Cross-sectional, observational, controlled study. Community sample of patients with fibromyalgia and healthy controls. Thirty patients with fibromyalgia and 30 pain and fatigue-free controls. Participants completed a battery of self-report questionnaires and physiological measures, including clinically validated measures of physical fitness and autonomic function. Six-Minute Walk Test total distance, maximal oxygen consumption as assessed by cardiopulmonary exercise testing, total steps using activity monitor, Composite Autonomic Scoring Scale as assessed by Autonomic Reflex Screen, total metabolic equivalents per week using the International Physical Activity Questionnaire, and self-reported autonomic symptoms via the 31-item Composite Autonomic Symptom Score questionnaire. Autonomic function, as assessed by self-report, was significantly different between patients and controls (P physical activity was not significantly different between patients and controls (P = .99), but levels of moderate and vigorous physical activity as measured by actigraphy were significantly lower in patients (P = .012 and P = .047, respectively). Exercise capacity (6-Minute Walk) was poorer in patients (P = .0006), but there was no significant difference in maximal volume of oxygen consumption (P = .07). Patients with fibromyalgia report more severe symptoms across all domains, including physical activity and autonomic symptoms, compared with controls, but the objective assessments only showed modest differences. Our results suggest that patients with widespread subjective impairment of

  11. Dissociation of sad facial expressions and autonomic nervous system responding in boys with disruptive behavior disorders

    Science.gov (United States)

    Marsh, Penny; Beauchaine, Theodore P.; Williams, Bailey

    2009-01-01

    Although deficiencies in emotional responding have been linked to externalizing behaviors in children, little is known about how discrete response systems (e.g., expressive, physiological) are coordinated during emotional challenge among these youth. We examined time-linked correspondence of sad facial expressions and autonomic reactivity during an empathy-eliciting task among boys with disruptive behavior disorders (n = 31) and controls (n = 23). For controls, sad facial expressions were associated with reduced sympathetic (lower skin conductance level, lengthened cardiac preejection period [PEP]) and increased parasympathetic (higher respiratory sinus arrhythmia [RSA]) activity. In contrast, no correspondence between facial expressions and autonomic reactivity was observed among boys with conduct problems. Furthermore, low correspondence between facial expressions and PEP predicted externalizing symptom severity, whereas low correspondence between facial expressions and RSA predicted internalizing symptom severity. PMID:17868261

  12. YY1 Protects Cardiac Myocytes from Pathologic Hypertrophy by Interacting with HDAC5

    Science.gov (United States)

    Dockstader, Karen; McKinsey, Timothy A.

    2008-01-01

    YY1 is a transcription factor that can repress or activate the transcription of a variety of genes. Here, we show that the function of YY1 as a repressor in cardiac myocytes is tightly dependent on its ability to interact with histone deacetylase 5 (HDAC5). YY1 interacts with HDAC5, and overexpression of YY1 prevents HDAC5 nuclear export in response to hypertrophic stimuli and the increase in cell size and re-expression of fetal genes that accompany pathological cardiac hypertrophy. Knockdown of YY1 results in up-regulation of all genes present during fetal development and increases the cell size of neonatal cardiac myocytes. Moreover, overexpression of a YY1 deletion construct that does not interact with HDAC5 results in transcription activation, suggesting that HDAC5 is necessary for YY1 function as a transcription repressor. In support of this relationship, we show that knockdown of HDAC5 results in transcription activation by YY1. Finally, we show that YY1 interaction with HDAC5 is dependent on the HDAC5 phosphorylation domain and that overexpression of YY1 reduces HDAC5 phosphorylation in response to hypertrophic stimuli. Our results strongly suggest that YY1 functions as an antihypertrophic factor by preventing HDAC5 nuclear export and that up-regulation of YY1 in human heart failure may be a protective mechanism against pathological hypertrophy. PMID:18632988

  13. Computational study of ‘HUB’ microRNA in human cardiac diseases

    Science.gov (United States)

    Krishnan, Remya; Nair, Achuthsankar S.; Dhar, Pawan K.

    2017-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs ~22 nucleotides long that do not encode for proteins but have been reported to influence gene expression in normal and abnormal health conditions. Though a large body of scientific literature on miRNAs exists, their network level profile linking molecules with their corresponding phenotypes, is less explored. Here, we studied a network of 191 human miRNAs reported to play a role in 30 human cardiac diseases. Our aim was to study miRNA network properties like hubness and preferred associations, using data mining, network graph theory and statistical analysis. A total of 16 miRNAs were found to have a disease node connectivity of >5 edges (i.e., they were linked to more than 5 diseases) and were considered hubs in the miRNAcardiac disease network. Alternatively, when diseases were considered as hubs, >10 of miRNAs showed up on each ‘disease hub node’. Of all the miRNAs associated with diseases, 19 miRNAs (19/24= 79.1% of upregulated events) were found to be upregulated in atherosclerosis. The data suggest micro RNAs as early stage biological markers in cardiac conditions with potential towards microRNA based therapeutics. PMID:28479745

  14. Effect of Cushing's syndrome - Endogenous hypercortisolemia on cardiovascular autonomic functions.

    Science.gov (United States)

    Jyotsna, V P; Naseer, Ali; Sreenivas, V; Gupta, Nandita; Deepak, K K

    2011-02-24

    Cushing's syndrome is associated with increased cardiovascular morbidity and mortality. It's also associated with other cardiac risk factors like hypertension, diabetes mellitus and obesity. Cardiovascular autonomic function impairment could predict cardiovascular morbidity and mortality. Twenty five patients with Cushing's syndrome without diabetes and twenty five age matched healthy controls underwent a battery of cardiovascular autonomic function tests including deep breath test, Valsalva test, hand grip test, cold pressor test and response to standing from lying position. The rise in diastolic blood pressure on hand grip test and diastolic BP response to cold pressor test in Cushing's patients were significantly less compared to healthy controls (9.83 ± 3.90 vs 20.64 ± 9.55, p<0.001 and 10.09 ± 4.07 vs 15.33 ± 6.26, p<0.01 respectively). The E:I ratio on deep breathing test was also less in the patients in comparison to controls (1.36 ± 0.21 vs 1.53 ± 0.19, p<0.01). Seven patients underwent the same battery of tests 6 months after a curative surgery showing a trend towards normalization with significant improvement in expiratory to inspiratory ratio and sinus arrhythmia delta heart rate. To conclude, this study showed that chronic endogenous hypercortisolism in Cushing's is associated with an impaired sympathetic cardiovascular autonomic functioning. After a curative surgery, some of the parameters tend to improve. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Myostatin signaling is up-regulated in female patients with advanced heart failure.

    Science.gov (United States)

    Ishida, Junichi; Konishi, Masaaki; Saitoh, Masakazu; Anker, Markus; Anker, Stefan D; Springer, Jochen

    2017-07-01

    Myostatin, a negative regulator of skeletal muscle mass, is up-regulated in the myocardium of heart failure (HF) and increased myostatin is associated with weight loss in animal models with HF. Although there are disparities in pathophysiology and epidemiology between male and female patients with HF, it remains unclear whether there is gender difference in myostatin expression and whether it is associated with weight loss in HF patients. Heart tissue samples were collected from patients with advanced heart failure (n=31, female n=5) as well as healthy control donors (n=14, female n=6). Expression levels of myostatin and its related proteins in the heart were evaluated by western blotting analysis. Body mass index was significantly lower in female HF patients than in male counterparts (20.0±4.2 in female vs 25.2±3.8 in male, p=0.04). In female HF patients, both mature myostatin and pSmad2 were significantly up-regulated by 1.9 fold (p=0.05) and 2.5 fold (pmyostatin was not. There was no significant difference in protein expression related to myostatin signaling between male and female patients. In this study, myostatin and pSmad2 were significantly up-regulated in the failing heart of female patients, but not male patients, and female patients displayed lower body mass index. Enhanced myostatin signaling in female failing heart may causally contribute to pathogenesis of HF and cardiac cachexia. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Dihydrotestosterone induces pro-angiogenic factors and assists homing of MSC into the cardiac tissue.

    Science.gov (United States)

    Popa, Mirel-Adrian; Mihai, Maria-Cristina; Constantin, Alina; Şuică, Viorel; Ţucureanu, Cătălin; Costache, Raluca; Antohe, Felicia; Dubey, Raghvendra K; Simionescu, Maya

    2018-01-01

    The use of mesenchymal stem cells (MSC) as a therapeutic tool in cardiovascular diseases is promising. Since androgens exert some beneficial actions on the cardiovascular system, we tested our hypothesis that this hormone could promote MSC-mediated repair processes, also. Cultured MSCs isolated from Wharton's jelly were exposed to 30 nM dihydrotestosterone (DHT) for 1 or 4 days and the effects of the hormone on their growth/migration/adhesion and the underlying mechanisms were assessed. Results were obtained by real-time cell impedance measurements, and DNA quantification showed that DHT increased MSC proliferation by ~30%. As determined by xCELLigence system, DHT augmented (~2 folds) the migration of MSC toward cardiac tissue slices (at 12 h), and this effect was blocked by flutamide, an androgen receptor (AR) antagonist. Exposure of cells to DHT, upregulated the gene and protein expression of AR , EMMPRIN and MMP-9 and downregulated the expression of MMP-2 DHT significantly induced the release of nitric oxide by MSC (≥2-fold) and flutamide blocked this effect. When MSCs were co-cultured with cardiac slices, immunohistochemical analysis and qRT-PCR showed that the integration of DHT-stimulated MSC was significantly higher than that of in controls. In conclusion, our findings provide the first evidence that DHT promotes MSC growth, migration and integration into the cardiac slices. The modulating effects of DHT were associated with upregulation of ARs and of key molecules known to promote tissue remodeling and angiogenesis. Our findings suggest that priming of MSC with DHT may potentially increase their capability to regenerate cardiac tissue; in vivo studies are needed to confirm our in vitro findings. © 2018 Society for Endocrinology.

  17. Cardiac Autonomic Neuropathy May Play a Role in Pathogenesis of Atherosclerosis in Type 1 Diabetes Mellitus

    Czech Academy of Sciences Publication Activity Database

    Malá, Š.; Potočková, V.; Hoskovcová, L.; Pithová, P.; Brabec, Marek; Kulhánková, J.; Keil, R.; Riedlbauchová, L.; Brož, J.

    2017-01-01

    Roč. 134, December (2017), s. 139-144 ISSN 0168-8227 Institutional support: RVO:67985807 Keywords : autonomic neuropathy * diabetes mellitus * intima media thickness * atherosclerosis * heart rate variability Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Statistics and probability Impact factor: 3.639, year: 2016

  18. Vitamin D attenuates pressure overload-induced cardiac remodeling and dysfunction in mice.

    Science.gov (United States)

    Zhang, Liang; Yan, Xiao; Zhang, Yun-Long; Bai, Jie; Hidru, Tesfaldet Habtemariam; Wang, Qing-Shan; Li, Hui-Hua

    2018-04-01

    Vitamin D (VD) and its analogues play critical roles in metabolic and cardiovascular diseases. Recent studies have demonstrated that VD exerts a protective role in cardiovascular diseases. However, the beneficial effect of VD on pressure overload-induced cardiac remodeling and dysfunction and its underlying mechanisms are not fully elucidated. In this study, cardiac dysfunction and hypertrophic remodeling in mice were induced by pressure overload. Cardiac function was evaluated by echocardiography, and myocardial histology was detected by H&E and Masson's trichrome staining. Cardiomyocyte size was detected by wheat germ agglutinin staining. The protein levels of signaling mediators were examined by western blotting while mRNA expression of hypertrophic and fibrotic markers was examined by qPCR analysis. Oxidative stress was detected by dihydroethidine staining. Our results showed that administration of VD3 significantly ameliorates pressure overload-induced contractile dysfunction, cardiac hypertrophy, fibrosis and inflammation in mice. In addition, VD3 treatment also markedly inhibited cardiac oxidative stress and apoptosis. Moreover, protein levels of calcineurin A, ERK1/2, AKT, TGF-β, GRP78, cATF6, and CHOP were significantly reduced whereas SERCA2 level was upregulated in the VD3-treated hearts compared with control. These results suggest that VD3 attenuates cardiac remodeling and dysfunction induced by pressure overload, and this protective effect is associated with inhibition of multiple signaling pathways. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Resting spontaneous baroreflex sensitivity and cardiac autonomic control in anabolic androgenic steroid users

    OpenAIRE

    Santos, Marcelo R. dos; Sayegh, Ana L.C.; Armani, Rafael; Costa-Hong, Valéria; Souza, Francis R. de; Toschi-Dias, Edgar; Bortolotto, Luiz A.; Yonamine, Mauricio; Negrão, Carlos E.; Alves, Maria-Janieire N.N.

    2018-01-01

    OBJECTIVES: Misuse of anabolic androgenic steroids in athletes is a strategy used to enhance strength and skeletal muscle hypertrophy. However, its abuse leads to an imbalance in muscle sympathetic nerve activity, increased vascular resistance, and increased blood pressure. However, the mechanisms underlying these alterations are still unknown. Therefore, we tested whether anabolic androgenic steroids could impair resting baroreflex sensitivity and cardiac sympathovagal control. In addition, ...

  20. In patient's with Parkinson disease, autonomic symptoms are frequent and associated with other non-motor symptoms.

    Science.gov (United States)

    Arnao, Valentina; Cinturino, Antonio; Valentino, Francesca; Perini, Valentina; Mastrilli, Sergio; Bellavia, Gabriele; Savettieri, Giovanni; Realmuto, Sabrina; D'Amelio, Marco

    2015-10-01

    Autonomic symptoms and sleep disorders are common non-motor symptoms of Parkinson disease (PD), which are correlated with poor quality of life for patients. To assess the frequency of autonomic symptoms in a consecutive series of PD patients and to correlate them with other motor and non-motor symptoms. All consecutive non-demented PD patients who underwent an extensive evaluation including Hoehn and Yahr staging, Unified Parkinson's Disease Rating Scale, Beck's Depression Inventory, Neuropsychiatric Inventory, PDQ-39 Scale, the Parkinson's diseases Sleep Scale, the Epworth Sleepiness Scale and SCOPA-AUT scale were enrolled. Comorbidity has been also considered. Supine to standing position blood pressure and cardiac frequency changes were also measured. 135 PD patients were included (mean age at interview 67.7; mean disease duration: 5.3 years). Patients were stratified according to mean SCOPA-AUT scale score (13.1). Those with higher SCOPA-AUT scale score were significantly older, had longer disease duration, worse disease stage, worse quality of sleep, were more severely affected, and were also taking a higher dosage of levodopa. At multivariate analysis, older age, longer disease duration, and worse quality of sleep were independently associated with higher SCOPA-AUT scale scores. Our results remark the role of autonomic symptoms in PD. In our patient population, characterized by mild to moderate disease severity, most of the patients complained of autonomic nervous system involvement (84%). A significant association between autonomic symptoms and sleep disorders was also observed.

  1. Semi-Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — VisionThe Semi-Autonomous Systems Lab focuses on developing a comprehensive framework for semi-autonomous coordination of networked robotic systems. Semi-autonomous...

  2. Depression and reduced heart rate variability after cardiac surgery: the mediating role of emotion regulation.

    Science.gov (United States)

    Patron, Elisabetta; Messerotti Benvenuti, Simone; Favretto, Giuseppe; Gasparotto, Renata; Palomba, Daniela

    2014-02-01

    Heart rate variability (HRV), as an index of autonomic nervous system (ANS) functioning, is reduced by depression after cardiac surgery, but the underlying mechanisms of this relationship are poorly understood. Poor emotion regulation as a core symptom of depression has also been associated with altered ANS functioning. The present study aimed to examine whether emotion dysregulation could be a mediator of the depression-reduced HRV relationship observed after cardiac surgery. Self-reported emotion regulation and four-minute HRV were measured in 25 depressed and 43 nondepressed patients after cardiac surgery. Mediation analysis was conducted to evaluate emotion regulation as a mediator of the depression-reduced HRV relationship. Compared to nondepressed patients, those with depression showed lower standard deviation of normal-to-normal (NN) intervals (pbehavior partially mediated the effect of depression on LF n.u. and HF n.u. Results confirmed previous findings showing that depression is associated with reduced HRV, especially a reduced vagal tone and a sympathovagal imbalance, after cardiac surgery. This study also provides preliminary evidence that increased trait levels of suppression of emotion-expressive behavior may mediate the depression-related sympathovagal imbalance after cardiac surgery. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Predictive value of cardiac autonomic indexes and MIBG washout in ICD recipients with mild to moderate heart failure

    International Nuclear Information System (INIS)

    Koutelou, M.; Katsikis, A.; Livanis, E.; Georgiadis, M.; Voudris, V.; Flevari, P.; Kremastinos, D.; Theodorakis, G.

    2009-01-01

    We aimed at evaluating the combined use of heart rate variability (HRV), baroreflex sensitivity (BRS), and metaiodobenzylguanidine (MIBG) imaging in the risk stratification for sudden cardiac death (SCD) of patients with mild to moderate heart failure. Twenty-five patients (17 male and 8 female, mean age 63±5 years, mean left ventricular ejection fraction (LVEF) 36±3%) with a recently implanted cardioverter-defibrillator (ICD) and mild (NYHA I-II) heart failure due to either ischemic (n=15) or dilated (n=10) cardiomyopathy were studied. One week after ICD implantation they underwent baroreflex sensitivity (BRS) evaluation to bolus phenylephrine by the Oxford method, 24-h heart rate variability (HRV) assessment, and MIBG imaging. The mean patient follow-up was 32±10 months. Simple correlation and stepwise multiple regression analysis was performed to evaluate if the number of sustained ventricular tachycardia (cycle length <330 ms) or fibrillation episodes per month is related to one or more of MIBG, BRS, and HRV indexes and if MIBG % washout is related to HRV and/or BRS. The frequency of fast ventricular arrhythmic episodes (FVAE) demonstrated an inverse relation to BRS (p<0.0001), rMSSD (p=0.001), and pNN50 (p=0.0034), while it was positively related to low frequency (LF) (p<0.0001) and MIBG % washout (p=0.001). BRS, LF, rMSSD, and MIBG washout were also independent predictors of FVAE. MIBG washout was related to only one HRV marker (SDNN-I, p<0.0001), while no correlation was observed with BRS. In ICD recipients with well-compensated heart failure, autonomic markers derived from BRS, HRV, and MIBG studies are related to FVAE. These markers have limited inter-dependency and constitute useful means for SCD risk stratification in this subgroup of patients. (author)

  4. PET and SPET tracers for mapping the cardiac nervous system

    International Nuclear Information System (INIS)

    Langer, Oliver; Halldin, Christer

    2002-01-01

    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[ 18 F]fluorodopamine, (-)-6-[ 18 F]fluoronorepinephrine and (-)-[ 11 C]epinephrine, and radiolabelled catecholamine analogues, such as [ 123 I]meta-iodobenzylguanidine, [ 11 C]meta-hydroxyephedrine, [ 18 F]fluorometaraminol, [ 11 C]phenylephrine and meta-[ 76 Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[ 18 F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility for cardiac neuronal imaging. (orig.)

  5. Self-esteem fluctuations and cardiac vagal control in everyday life.

    Science.gov (United States)

    Schwerdtfeger, Andreas R; Scheel, Sophie-Marie

    2012-03-01

    It has been proposed that self-esteem buffers threat-responding. The same effect is ascribed to the vagus nerve, which is a primary nerve of the parasympathetic nervous system. Consequently, it has been suggested that self-esteem and cardiac vagal tone are interconnected on a trait, as well as on a state, level. In this study, we examined the relationship of vagal cardiac control and self-esteem fluctuations across a single day using ecological momentary assessment. Eighty-four participants were recruited, and self-esteem, negative affect, and vagal tone were recorded throughout a 22-hour period. Men provided higher self-esteem ratings than women, but the negative relationship between self-esteem and negative affect was stronger in women. Moreover, controlling for potential confounds (e.g., age, BMI, depressive symptoms, smoking status, regular physical activity), we observed that for men, self-esteem was significantly positively associated with cardiac vagal tone, whereas for women it was not. These findings suggest that the relationship between self-esteem and vagal innervation of the heart during daily life is sex-specific and might involve different central-autonomic pathways for men and women, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Mechanisms Regulating the Cardiac Output Response to Cyanide Infusion, a Model of Hypoxia

    Science.gov (United States)

    Liang, Chang-seng; Huckabee, William E.

    1973-01-01

    When tissue metabolic changes like those of hypoxia were induced by intra-aortic infusion of cyanide in dogs, cardiac output began to increase after 3 to 5 min, reached a peak (220% of the control value) at 15 min, and returned to control in 40 min. This pattern of cardiac output rise was not altered by vagotomy with or without atropine pretreatment. However, this cardiac output response could be differentiated into three phases by pretreating the animals with agents that block specific activities of the sympatho-adrenal system. First, ganglionic blockade produced by mecamylamine or sympathetic nerve blockade by bretylium abolished the middle phase of the cardiac output seen in the untreated animal, but early and late phases still could be discerned. Second, beta-adrenergic receptor blockade produced by propranolol shortened the total duration of the cardiac output rise by abolishing the late phase. Third, when given together, propranolol and mecamylamine (or bretylium) prevented most of the cardiac output rise that follows the early phase. When cyanide was given to splenectomized dogs, the duration of the cardiac output response was not shortened, but the response became biphasic, resembling that seen after chemical sympathectomy. A similar biphasic response of the cardiac output also resulted from splenic denervation; sham operation or nephrectomy had no effect on the monophasic pattern of the normal response. Splenic venous blood obtained from cyanide-treated dogs, when infused intraportally, caused an increase in cardiac output in recipient dogs; similar infusion of arterial blood had no effects. These results suggest that the cardiac output response to cyanide infusion consists of three components: an early phase, related neither to the autonomic nervous system nor to circulating catecholamines; a middle phase, caused by a nonadrenergic humoral substance released from the spleen by sympathetic stimulation; and a late phase, dependent upon adrenergic receptors

  7. Analysis of autonomic modulation of heart rate in patients with Parkinson's disease and elderly individuals submitted to game therapy training.

    Science.gov (United States)

    Rocha, Rodrigo Santiago Barbosa; De Oliveira Rocha, Larissa Salgado; Pena, Elza Sara Maués; Caldas, Laiz Cristinna Ponce; Moreno, Marlene Aparecida

    2018-01-01

    Elderly patients and individuals with Parkinson's disease have a reduction in autonomic heart rate modulation, which may influence the survival of these patients, and rehabilitation can minimize this event. We tested the hypothesis that rehabilitation protocol with game console would influence the cardiac autonomic modulation of patients with Parkinson's Disease. Eight-seven volunteers were divided into two groups, control (n = 45) and Parkinson's (n = 42), they completed the study 40 volunteers in the control group (CG) and 31 patients in the Parkinson group (PG), and subjected to 24 sessions of game therapy physiotherapy, thrice a week. Analysis of autonomic HR modulation was conducted before and after the rehabilitation program using a Polar RS800CX HR sensor. For the analysis of heart rate variability the data were transferred to the Kubios HRV 2.2 program. Statistical analysis was performed in the Biostat 5.2 program, the comparison of the data by ANOVA followed by Tukey test, and the general characteristics by the chi-square test. The critical value for rejecting the null hypothesis was set at P modulation of HR values. Subjects with PD exhibit less autonomic modulation of HR and the rehabilitation protocol with game therapy improved autonomic modulation of HR. Geriatr Gerontol Int 2018; 18: 20-25. © 2017 Japan Geriatrics Society.

  8. Evaluation of cardiovascular autonomic nervous functions in diabetics: Study in a rural teaching hospital

    Directory of Open Access Journals (Sweden)

    Ashutosh Pathak

    2017-01-01

    Full Text Available Introduction: Cardiovascular autonomic neuropathy (CAN is a least understood complication of diabetes which is often underdiagnosed. It causes resting tachycardia, orthostatic hypotension, and exercise intolerance and is associated with higher cardiovascular mortality in diabetic patients. This stresses the need of early diagnosis of CAN to prevent higher mortality rates. Materials and Methods: Fifty cases of diabetes mellitus with no clinical evidence of cardiac disease were subjected to cardiac autonomic function (CAF tests according to Ewing's criteria which included heart rate (HR variability during deep breathing, Valsalva maneuver ratio, HR response on standing, blood pressure (BP response to standing, and BP response to sustained handgrip to find the prevalence of CAN. Results: In this study, among 100 patients (50 case and 50 control, we found CAN in 52%. Out of which, parasympathetic neuropathy was seen in 52% of cases, and sympathetic neuropathy was seen in 26% of cases. CAF tests of HR variability during deep breathing, Valsalva maneuver ratio, HR response to standing, BP response to standing, and BP response to sustained handgrip found abnormal response in 68%, 40%, 52%, 12%, and 14%, respectively. Diabetic retinopathy and nephropathy were significantly associated with CAN (P = 0.0001, S. Conclusion: Prevalence of CAN among diabetics was 52%, and parasympathetic CAF tests are more sensitive for the detection of CAN than sympathetic CAF tests. Development of CAN in diabetic patients may lead to increased morbidity; thence, they should be routinely evaluated for CAN using these bedside tests.

  9. Increased natriuretic peptide receptor A and C gene expression in rats with pressure-overload cardiac hypertrophy

    DEFF Research Database (Denmark)

    Christoffersen, Tue E.H.; Aplin, Mark; Strom, Claes C.

    2006-01-01

    also affects cardiac hypertrophy and fibrosis. In this study we examined the expression of genes for the NPRs in rats with pressure-overload cardiac hypertrophy. The ANG II type 1 receptor was blocked with losartan (10 mg.kg(-1).day(-1)) to investigate a possible role of the renin-angiotensin system......RNAs for the natriuretic peptides or their receptors. Although increased gene expression does not necessarily convey a higher concentration of the protein, the data suggest that pressure overload is accompanied by upregulation of not only ANP and BNP but also their receptors NPR-A and NPR-C in the left ventricle....

  10. Role of interleukin-6 levels in cardiovascular autonomic dysfunction in type 2 diabetic patients

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, Tetsuji; Takahashi, Naohiko; Kakuma, Tetsuya; Hara, Masahide; Yoshimatsu, Hironobu [Oita University, Department of Internal Medicine 1, Faculty of Medicine, Yuhu, Oita (Japan); Yufu, Kunio; Anan, Futoshi; Nakagawa, Mikiko; Saikawa, Tetsunori [Oita University, Department of Cardiovascular Science, Oita (Japan)

    2008-09-15

    Increased serum interleukin-6 (IL-6) levels are associated with an increased risk of cardiovascular disease, and cardiovascular autonomic dysfunction is associated with high mortality in type 2 diabetic patients. However, the relationship between IL-6 levels and cardiovascular autonomic dysfunction has not been fully elucidated. The aim of this study was to determine whether serum IL-6 levels are associated with cardiovascular autonomic dysfunction in type 2 diabetic patients. Eighty type 2 diabetic patients who did not have organic heart disease were categorized into a high IL-6 group (>2.5 pg/ml, n= 0, age 59{+-}12 years) or a non-high IL-6 group (<2.5 pg/ml, n=40, 61{+-}12 years). Cardiac autonomic function was assessed by baroreflex sensitivity, heart rate variability, plasma norepinephrine concentrations and {sup 123}I-metaiodobenzylguanidine (MIBG) scintigraphy. The body mass index values (BMI), fasting insulin levels and homeostasis model assessment index values were higher in the high IL-6 group than in the non-high IL-6 group (p<0.01). Early and delayed {sup 123}I-MIBG myocardial uptake values were lower (p<0.01), and the percent washout rate of {sup 123}I-MIBG was higher (p<0.05) in the high IL-6 group than in the non-high IL-6 group. Furthermore, multiple regression analysis revealed that the IL-6 level was independently predicted by the BMI and the myocardial uptake of {sup 123}I-MIBG during the delayed phase. The results indicate that elevated IL-6 levels are associated with depressed cardiovascular autonomic function and obesity in type 2 diabetic patients. (orig.)

  11. Mammalian enabled (Mena) is a critical regulator of cardiac function.

    Science.gov (United States)

    Aguilar, Frédérick; Belmonte, Stephen L; Ram, Rashmi; Noujaim, Sami F; Dunaevsky, Olga; Protack, Tricia L; Jalife, Jose; Todd Massey, H; Gertler, Frank B; Blaxall, Burns C

    2011-05-01

    Mammalian enabled (Mena) of the Drosophila enabled/vasodilator-stimulated phosphoprotein gene family is a cytoskeletal protein implicated in actin regulation and cell motility. Cardiac Mena expression is enriched in intercalated discs (ICD), the critical intercellular communication nexus between adjacent muscle cells. We previously identified Mena gene expression to be a key predictor of human and murine heart failure (HF). To determine the in vivo function of Mena in the heart, we assessed Mena protein expression in multiple HF models and characterized the effects of genetic Mena deletion on cardiac structure and function. Immunoblot analysis revealed significant upregulation of Mena protein expression in left ventricle tissue from patients with end-stage HF, calsequestrin-overexpressing mice, and isoproterenol-infused mice. Characterization of the baseline cardiac function of adult Mena knockout mice (Mena(-/-)) via echocardiography demonstrated persistent cardiac dysfunction, including a significant reduction in percent fractional shortening compared with wild-type littermates. Electrocardiogram PR and QRS intervals were significantly prolonged in Mena(-/-) mice, manifested by slowed conduction on optical mapping studies. Ultrastructural analysis of Mena(-/-) hearts revealed disrupted organization and widening of ICD structures, mislocalization of the gap junction protein connexin 43 (Cx43) to the lateral borders of cardiomyoycytes, and increased Cx43 expression. Furthermore, the expression of vinculin (an adherens junction protein) was significantly reduced in Mena(-/-) mice. We report for the first time that genetic ablation of Mena results in cardiac dysfunction, highlighted by diminished contractile performance, disrupted ICD structure, and slowed electrical conduction.

  12. The role of cardiac vagal tone and inhibitory control in pre-schoolers' listening comprehension.

    Science.gov (United States)

    Scrimin, Sara; Patron, Elisabetta; Florit, Elena; Palomba, Daniela; Mason, Lucia

    2017-12-01

    This study investigated the role of basal cardiac activity and inhibitory control at the beginning of the school year in predicting oral comprehension at the end of the year in pre-schoolers. Forty-three, 4-year-olds participated in the study. At the beginning of the school year children's electrocardiogram at rest was registered followed by the assessment of inhibitory control as well as verbal working memory and verbal ability. At the end of the year all children were administered a listening comprehension ability measure. A stepwise regression showed a significant effect of basal cardiac vagal tone in predicting listening comprehension together with inhibitory control and verbal ability. These results are among the first to show the predictive role of basal cardiac vagal tone and inhibitory control in pre-schoolers' oral text comprehension, and offer new insight into the association between autonomic regulation of the heart, inhibitory control, and cognitive activity at a young age. © 2017 Wiley Periodicals, Inc.

  13. Genetic mutations in adipose triglyceride lipase and myocardial up-regulation of peroxisome proliferated activated receptor-γ in patients with triglyceride deposit cardiomyovasculopathy

    International Nuclear Information System (INIS)

    Hirano, Ken-ichi; Tanaka, Tatsuya; Ikeda, Yoshihiko; Yamaguchi, Satoshi; Zaima, Nobuhiro; Kobayashi, Kazuhiro; Suzuki, Akira; Sakata, Yasuhiko

    2014-01-01

    Highlights: •Triglyceride deposit cardiomyovasculopathy (TGCV) is a rare severe heart disease. •PPARγ is up-regulated in myocardium in patients with TGCV. •Possible vicious cycle for fatty acid may be involved in pathophysiology of TGCV. -- Abstract: Adipose triglyceride lipase (ATGL, also known as PNPLA2) is an essential molecule for hydrolysis of intracellular triglyceride (TG). Genetic ATGL deficiency is a rare multi-systemic neutral lipid storage disease. Information regarding its clinical profile and pathophysiology, particularly for cardiac involvement, is still very limited. A previous middle-aged ATGL-deficient patient in our institute (Case 1) with severe heart failure required cardiac transplantation (CTx) and exhibited a novel phenotype, “Triglyceride deposit cardiomyovasculopathy (TGCV)”. Here, we tried to elucidate molecular mechanism underlying TGCV. The subjects were two cases with TGCV, including our second case who was a 33-year-old male patient (Case 2) with congestive heart failure requiring CTx. Case 2 was homozygous for a point mutation in the 5′ splice donor site of intron 5 in the ATGL, which results in at least two types of mRNAs due to splicing defects. The myocardium of both patients (Cases 1 and 2) showed up-regulation of peroxisome proliferated activated receptors (PPARs), key transcription factors for metabolism of long chain fatty acids (LCFAs), which was in contrast to these molecules’ lower expression in ATGL-targeted mice. We investigated the intracellular metabolism of LCFAs under human ATGL-deficient conditions using patients’ passaged skin fibroblasts as a model. ATGL-deficient cells showed higher uptake and abnormal intracellular transport of LCFA, resulting in massive TG accumulation. We used these findings from cardiac specimens and cell-biological experiments to construct a hypothetical model to clarify the pathophysiology of the human disorder. In patients with TGCV, even when hydrolysis of intracellular TG

  14. Genetic mutations in adipose triglyceride lipase and myocardial up-regulation of peroxisome proliferated activated receptor-γ in patients with triglyceride deposit cardiomyovasculopathy

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Ken-ichi, E-mail: khirano@cnt-osaka.com [Laboratory of Cardiovascular Disease, Novel, Non-Invasive, and Nutritional Therapeutics (CNT), Graduate School of Medicine, Osaka University, 6-2-3, Furuedai, Suita, Osaka 565-0874 (Japan); Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871 (Japan); Tanaka, Tatsuya [Center for Medical Research and Education, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871 (Japan); Ikeda, Yoshihiko [Department of Pathology, National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita 565-8565 (Japan); Yamaguchi, Satoshi [Laboratory of Cardiovascular Disease, Novel, Non-Invasive, and Nutritional Therapeutics (CNT), Graduate School of Medicine, Osaka University, 6-2-3, Furuedai, Suita, Osaka 565-0874 (Japan); Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871 (Japan); Zaima, Nobuhiro [Department of Applied Biochemistry, Kinki University, 3327-204, Nakamachi, Nara 631-8505 (Japan); Kobayashi, Kazuhiro [Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Suzuki, Akira [Laboratory of Cardiovascular Disease, Novel, Non-Invasive, and Nutritional Therapeutics (CNT), Graduate School of Medicine, Osaka University, 6-2-3, Furuedai, Suita, Osaka 565-0874 (Japan); Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871 (Japan); Sakata, Yasuhiko [Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871 (Japan); Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1, Seiryo-cho, Aoba-ku, Sendai 980-8574 (Japan); and others

    2014-01-10

    Highlights: •Triglyceride deposit cardiomyovasculopathy (TGCV) is a rare severe heart disease. •PPARγ is up-regulated in myocardium in patients with TGCV. •Possible vicious cycle for fatty acid may be involved in pathophysiology of TGCV. -- Abstract: Adipose triglyceride lipase (ATGL, also known as PNPLA2) is an essential molecule for hydrolysis of intracellular triglyceride (TG). Genetic ATGL deficiency is a rare multi-systemic neutral lipid storage disease. Information regarding its clinical profile and pathophysiology, particularly for cardiac involvement, is still very limited. A previous middle-aged ATGL-deficient patient in our institute (Case 1) with severe heart failure required cardiac transplantation (CTx) and exhibited a novel phenotype, “Triglyceride deposit cardiomyovasculopathy (TGCV)”. Here, we tried to elucidate molecular mechanism underlying TGCV. The subjects were two cases with TGCV, including our second case who was a 33-year-old male patient (Case 2) with congestive heart failure requiring CTx. Case 2 was homozygous for a point mutation in the 5′ splice donor site of intron 5 in the ATGL, which results in at least two types of mRNAs due to splicing defects. The myocardium of both patients (Cases 1 and 2) showed up-regulation of peroxisome proliferated activated receptors (PPARs), key transcription factors for metabolism of long chain fatty acids (LCFAs), which was in contrast to these molecules’ lower expression in ATGL-targeted mice. We investigated the intracellular metabolism of LCFAs under human ATGL-deficient conditions using patients’ passaged skin fibroblasts as a model. ATGL-deficient cells showed higher uptake and abnormal intracellular transport of LCFA, resulting in massive TG accumulation. We used these findings from cardiac specimens and cell-biological experiments to construct a hypothetical model to clarify the pathophysiology of the human disorder. In patients with TGCV, even when hydrolysis of intracellular TG

  15. Role of the autonomic nervous system in rat liver regeneration.

    Science.gov (United States)

    Xu, Cunshuan; Zhang, Xinsheng; Wang, Gaiping; Chang, Cuifang; Zhang, Lianxing; Cheng, Qiuyan; Lu, Ailing

    2011-05-01

    To study the regulatory role of autonomic nervous system in rat regenerating liver, surgical operations of rat partial hepatectomy (PH) and its operation control (OC), sympathectomy combining partial hepatectomy (SPH), vagotomy combining partial hepatectomy (VPH), and total liver denervation combining partial hepatectomy (TDPH) were performed, then expression profiles of regenerating livers at 2 h after operation were detected using Rat Genome 230 2.0 array. It was shown that the expressions of 97 genes in OC, 230 genes in PH, 253 genes in SPH, 187 genes in VPH, and 177 genes in TDPH were significantly changed in biology. The relevance analysis showed that in SPH, genes involved in stimulus response, immunity response, amino acids and K(+) transport, amino acid catabolism, cell adhesion, cell proliferation mediated by JAK-STAT, Ca(+), and platelet-derived growth factor receptor, cell growth and differentiation through JAK-STAT were up-regulated, while the genes involved in chromatin assembly and disassembly, and cell apoptosis mediated by MAPK were down-regulated. In VPH, the genes associated with chromosome modification-related transcription factor, oxygen transport, and cell apoptosis mediated by MAPK pathway were up-regulated, but the genes associated with amino acid catabolism, histone acetylation-related transcription factor, and cell differentiation mediated by Wnt pathway were down-regulated. In TDPH, the genes related to immunity response, growth and development of regenerating liver, cell growth by MAPK pathway were up-regulated. Our data suggested that splanchnic and vagal nerves could regulate the expressions of liver regeneration-related genes.

  16. Heart Rate Variability and Autonomic Modulations in Preeclampsia.

    Directory of Open Access Journals (Sweden)

    Shaza M Musa

    Full Text Available Although the exact pathophysiology of preeclampsia is not well understood, autonomic nervous system imbalance is suggested as one of the main factors.To investigate heart rate variability (HRV and autonomic modulations in Sudanese pregnant women with preeclampsia.A case-control study (60 women in each arm was conducted at Omdurman Maternity Hospital-Sudan, during the period from June to August, 2014. Cases were women presented with preeclampsia and healthy pregnant women were the controls. Studied groups were matched for important determinants of HRV. Natural logarithm (Ln of total power (TP, high frequency (HF, low frequency (LF and very low frequency (VLF were used to determine HRV. Normalized low and high frequencies (LF Norm and HF Norm were used to evaluate sympathetic and parasympathetic autonomic modulations respectively.Patients with preeclampsia achieved significantly higher LF Norm [49.80 (16.25 vs. 44.55 (19.15, P = 0.044] and LnLF/HF [0.04 (0.68 vs. -0.28 (0.91, P = 0.023] readings, but lower HF Norm [49.08 (15.29 vs. 55.87 (19.56, P = 0.012], compared with healthy pregnant women. Although all other HRV measurements were higher in the patients with preeclampsia compared with the controls, only LnVLF [4.50 (1.19 vs. 4.01 (1.06, P = 0.017] and LnLF [4.01 (1.58 vs. 3.49 (1.23, P = 0.040] reached statistical significance.The study adds further evidence for the dominant cardiac sympathetic modulations on patients with preeclampsia, probably secondary to parasympathetic withdrawal in this group. However, the higher LnVLF and LnLF readings achieved by preeclamptic women compared with the controls are unexpected in the view that augmented sympathetic modulations usually depresses all HRV parameters including these two measures.

  17. Obesity-associated cardiac pathogenesis in broiler breeder hens: Development of metabolic cardiomyopathy.

    Science.gov (United States)

    Chen, C Y; Huang, Y F; Ko, Y J; Liu, Y J; Chen, Y H; Walzem, R L; Chen, S E

    2017-07-01

    Feed intake is typically restricted (R) in broiler hens to avoid obesity and improve egg production and livability. To determine whether improved heart health contributes to improved livability, fully adult 45-week-old R hens were allowed to consume feed to appetite (ad libitum; AL) up to 10 wk (70 d). Mortality, contractile functions, and morphology at 70 d, and measurements of cardiac hypertrophic remodeling at 7 d and 21 d were made and compared between R and AL hens. Outcomes for cardiac electrophysiology and mortality, reported separately, found increased mortality in AL hens in association with cardiac pathological hypertrophy and contractile dysfunction. The present study aimed to delineate metabolic cardiomyopathies underlying the etiology of obesity-associated cardiac pathology. Metabolic measurements were made in hens continued on R rations or assigned to AL feeding after 7 d and 21 days. AL feeding increased plasma insulin, glucose, and non-esterified fatty acid (NEFA) concentrations by 21 d (P hens was confirmed by cardiac triacylglycerol (TG) and ceramide accumulation consistent with up-regulation of related enzyme gene expressions, and by increased indices of oxidation stress (P hens, cardiac pyruvate dehydrogenase (PDH) activity and glucose transporter (GLUT) gene expressions increased progressively while carnitine palmitoyltransferase-1 (CPT-1) transcript levels in AL hens declined from 7 d to 21 d (P hens was further indicated by increased leukocyte infiltrates, interleukin-1β (IL-1β) and IL-6 production, cellular apoptosis, interstitial fibrosis, and expression of the heart failure marker myosin heavy chain (MHC-β; cardiac muscle beta) (P hens. © 2017 Poultry Science Association Inc.

  18. Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model.

    Directory of Open Access Journals (Sweden)

    Jessica Jen-Chu Wang

    2016-07-01

    Full Text Available We aimed to understand the genetic control of cardiac remodeling using an isoproterenol-induced heart failure model in mice, which allowed control of confounding factors in an experimental setting. We characterized the changes in cardiac structure and function in response to chronic isoproterenol infusion using echocardiography in a panel of 104 inbred mouse strains. We showed that cardiac structure and function, whether under normal or stress conditions, has a strong genetic component, with heritability estimates of left ventricular mass between 61% and 81%. Association analyses of cardiac remodeling traits, corrected for population structure, body size and heart rate, revealed 17 genome-wide significant loci, including several loci containing previously implicated genes. Cardiac tissue gene expression profiling, expression quantitative trait loci, expression-phenotype correlation, and coding sequence variation analyses were performed to prioritize candidate genes and to generate hypotheses for downstream mechanistic studies. Using this approach, we have validated a novel gene, Myh14, as a negative regulator of ISO-induced left ventricular mass hypertrophy in an in vivo mouse model and demonstrated the up-regulation of immediate early gene Myc, fetal gene Nppb, and fibrosis gene Lgals3 in ISO-treated Myh14 deficient hearts compared to controls.

  19. Iyengar Yoga Increases Cardiac Parasympathetic Nervous Modulation among Healthy Yoga Practitioners

    Directory of Open Access Journals (Sweden)

    Kerstin Khattab

    2007-01-01

    Full Text Available Relaxation techniques are established in managing of cardiac patients during rehabilitation aiming to reduce future adverse cardiac events. It has been hypothesized that relaxation-training programs may significantly improve cardiac autonomic nervous tone. However, this has not been proven for all available relaxation techniques. We tested this assumption by investigating cardiac vagal modulation during yoga.We examined 11 healthy yoga practitioners (7 women and 4 men, mean age: 43 ± 11; range: 26–58 years. Each individual was subjected to training units of 90 min once a week over five successive weeks. During two sessions, they practiced a yoga program developed for cardiac patients by B.K.S. Iyengar. On three sessions, they practiced a placebo program of relaxation. On each training day they underwent ambulatory 24 h Holter monitoring. The group of yoga practitioners was compared to a matched group of healthy individuals not practicing any relaxation techniques. Parameters of heart rate variability (HRV were determined hourly by a blinded observer. Mean RR interval (interval between two R-waves of the ECG was significantly higher during the time of yoga intervention compared to placebo and to control (P < 0.001 for both. The increase in HRV parameters was significantly higher during yoga exercise than during placebo and control especially for the parameters associated with vagal tone, i.e. mean standard deviation of NN (Normal Beat to Normal Beat of the ECG intervals for all 5-min intervals (SDNNi, P < 0.001 for both and root mean square successive difference (rMSSD, P < 0.01 for both. In conclusion, relaxation by yoga training is associated with a significant increase of cardiac vagal modulation. Since this method is easy to apply with no side effects, it could be a suitable intervention in cardiac rehabilitation programs.

  20. Sexual dimorphism in the fetal cardiac response to maternal nutrient restriction

    Energy Technology Data Exchange (ETDEWEB)

    Muralimanoharan, Sribalasubashini; Li, Cun; Nakayasu, Ernesto S.; Casey, Cameron P.; Metz, Thomas O.; Nathanielsz, Peter W.; Maloyan, Alina

    2017-07-01

    Poor maternal nutrition causes intrauterine growth restriction (IUGR); however, its effects on fetal cardiac development are unclear. We have developed a baboon model of moderate maternal undernutrition, leading to IUGR. We hypothesized that IUGR affects fetal cardiac structure and metabolism. Six control pregnant baboons ate ad-libitum (CTRL)) or 70% CTRL from 0.16 of gestation (G). Fetuses were euthanized at C-section at 0.9G under general anesthesia. Male but not female IUGR fetuses showed left ventricular fibrosis inversely correlated with birth weight. Expression of extracellular matrix protein TSP-1 was increased ( SMAD3 and ALK-1 were downregulated in male IUGRs with no difference in females. Autophagy was present in male IUGR evidenced by upregulation of ATG7 expression and lipidation LC3B. Global miRNA expression profiling revealed 56 annotated and novel cardiac miRNAs exclusively dysregulated in female IUGR, and 38 cardiac miRNAs were exclusively dysregulated in males (p<0.05). Fifteen (CTRL) and 23 (IUGR) miRNAs, were differentially expressed between males and. females (p<0.05) suggesting sexual dimorphism, which can be at least partially explained by differential expression of upstream transcription factors (e.g. HNF4α, and NFκB p50). Lipidomics analysis exhibited a net increase in diacylglycerol and plasmalogens, and a decrease in triglycerides and phosphatidylcholines. In summary, IUGR resulting from decreased maternal nutrition is associated with sex-dependent dysregulations in cardiac structure, miRNA expression, and lipid metabolism. If these changes persist postnatally, they may program offspring for higher later life cardiac risk.

  1. Diabetic retinopathy is associated with insulin resistance and cardiovascular autonomic dysfunction in type 2 diabetic patients

    International Nuclear Information System (INIS)

    Anan, Futoshi; Takayuki, Masaki; Takahashi, Naohiko; Nakagawa, Mikiko; Eshima, Nobuoki; Saikawa, Tetsunori; Yoshimatsu, Hironobu

    2009-01-01

    Diabetic retinopathy (DR) and cardiovascular autonomic dysfunction are associated with high mortality in type 2 diabetic patients. This preliminary study was therefore designed to test the hypothesis that DR is associated with insulin resistance and cardiovascular autonomic dysfunction in type 2 diabetic patients without insulin treatment. Seventy persons were diagnosed to have type 2 diabetes in the examination from June 2004 to May 2006. The study group consisted of 29 type 2 diabetic patients with DR (age: 58±6 years, mean±standard deviation (s.d.)) and 41 type 2 diabetic patients with no DR (NDR) (n=41, 58±5 years). Cardiovascular autonomic function was assessed by baroreflex sensitivity (BRS), heart rate variability, plasma norepinephrine concentration and cardiac 123 I-metaiodobenzylguanidine (MIBG) scintigraphic findings. DR patients had lower BRS, early and delayed 123 I-MIBG myocardial uptake values and higher percent washout rate (WR) of 123 I-MIBG than the NDR patients. With respect to metabolic findings, DR patients had higher fasting plasma insulin concentration (P 123 I-MIBG (P 123 I-MIBG are independently associated with DR in Japanese patients with type 2 diabetes mellitus. (author)

  2. Therapeutic Inhibition of miR-208a Improves Cardiac Function and Survival During Heart Failure

    Science.gov (United States)

    Montgomery, Rusty L.; Hullinger, Thomas G.; Semus, Hillary M.; Dickinson, Brent A.; Seto, Anita G.; Lynch, Joshua M.; Stack, Christianna; Latimer, Paul A.; Olson, Eric N.; van Rooij, Eva

    2012-01-01

    Background Diastolic dysfunction in response to hypertrophy is a major clinical syndrome with few therapeutic options. MicroRNAs act as negative regulators of gene expression by inhibiting translation or promoting degradation of target mRNAs. Previously, we reported that genetic deletion of the cardiac-specific miR-208a prevents pathological cardiac remodeling and upregulation of Myh7 in response to pressure overload. Whether this miRNA might contribute to diastolic dysfunction or other forms of heart disease is currently unknown. Methods and Results Here, we show that systemic delivery of an antisense oligonucleotide induces potent and sustained silencing of miR-208a in the heart. Therapeutic inhibition of miR-208a by subcutaneous delivery of antimiR-208a during hypertension-induced heart failure in Dahl hypertensive rats dose-dependently prevents pathological myosin switching and cardiac remodeling while improving cardiac function, overall health, and survival. Transcriptional profiling indicates that antimiR-208a evokes prominent effects on cardiac gene expression; plasma analysis indicates significant changes in circulating levels of miRNAs on antimiR-208a treatment. Conclusions These studies indicate the potential of oligonucleotide-based therapies for modulating cardiac miRNAs and validate miR-208 as a potent therapeutic target for the modulation of cardiac function and remodeling during heart disease progression. PMID:21900086

  3. Autonomic nervous system profile in fibromyalgia patients and its modulation by exercise: a mini review.

    Science.gov (United States)

    Kulshreshtha, Poorvi; Deepak, Kishore K

    2013-03-01

    This review imparts an impressionistic tone to our current understanding of autonomic nervous system abnormalities in fibromyalgia. In the wake of symptoms present in patients with fibromyalgia (FM), autonomic dysfunction seems plausible in fibromyalgia. A popular notion is that of a relentless sympathetic hyperactivity and hyporeactivity based on heart rate variability (HRV) analyses and responses to various physiological stimuli. However, some exactly opposite findings suggesting normal/hypersympathetic reactivity in patients with fibromyalgia do exist. This heterogeneous picture along with multiple comorbidities accounts for the quantitative and qualitative differences in the degree of dysautonomia present in patients with FM. We contend that HRV changes in fibromyalgia may not actually represent increased cardiac sympathetic tone. Normal muscle sympathetic nerve activity (MSNA) and normal autonomic reactivity tests in patients with fibromyalgia suggest defective vascular end organ in fibromyalgia. Previously, we proposed a model linking deconditioning with physical inactivity resulting from widespread pain in patients with fibromyalgia. Deconditioning also modulates the autonomic nervous system (high sympathetic tone and a low parasympathetic tone). A high peripheral sympathetic tone causes regional ischaemia, which in turn results in widespread pain. Thus, vascular dysregulation and hypoperfusion in patients with FM give rise to ischaemic pain leading to physical inactivity. Microvascular abnormalities are also found in patients with FM. Therapeutic interventions (e.g. exercise) that result in vasodilatation and favourable autonomic alterations have proven to be effective. In this review, we focus on the vascular end organ in patients with fibromyalgia in particular and its modulation by exercise in general. © 2012 The Authors Clinical Physiology and Functional Imaging © 2012 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  4. Extracellular high-mobility group box 1 mediates pressure overload-induced cardiac hypertrophy and heart failure.

    Science.gov (United States)

    Zhang, Lei; Liu, Ming; Jiang, Hong; Yu, Ying; Yu, Peng; Tong, Rui; Wu, Jian; Zhang, Shuning; Yao, Kang; Zou, Yunzeng; Ge, Junbo

    2016-03-01

    Inflammation plays a key role in pressure overload-induced cardiac hypertrophy and heart failure, but the mechanisms have not been fully elucidated. High-mobility group box 1 (HMGB1), which is increased in myocardium under pressure overload, may be involved in pressure overload-induced cardiac injury. The objectives of this study are to determine the role of HMGB1 in cardiac hypertrophy and cardiac dysfunction under pressure overload. Pressure overload was imposed on the heart of male wild-type mice by transverse aortic constriction (TAC), while recombinant HMGB1, HMGB1 box A (a competitive antagonist of HMGB1) or PBS was injected into the LV wall. Moreover, cardiac myocytes were cultured and given sustained mechanical stress. Transthoracic echocardiography was performed after the operation and sections for histological analyses were generated from paraffin-embedded hearts. Relevant proteins and genes were detected. Cardiac HMGB1 expression was increased after TAC, which was accompanied by its translocation from nucleus to both cytoplasm and intercellular space. Exogenous HMGB1 aggravated TAC-induced cardiac hypertrophy and cardiac dysfunction, as demonstrated by echocardiographic analyses, histological analyses and foetal cardiac genes detection. Nevertheless, the aforementioned pathological change induced by TAC could partially be reversed by HMGB1 inhibition. Consistent with the in vivo observations, mechanical stress evoked the release and synthesis of HMGB1 in cultured cardiac myocytes. This study indicates that the activated and up-regulated HMGB1 in myocardium, which might partially be derived from cardiac myocytes under pressure overload, may be of crucial importance in pressure overload-induced cardiac hypertrophy and cardiac dysfunction. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  5. Novel therapeutic effects of sesamin on diabetes-induced cardiac dysfunction

    Science.gov (United States)

    Thuy, Tran Duong; Phan, Nam Nhut; Wang, Chih-Yang; Yu, Han-Gang; Wang, Shu-Yin; Huang, Pung-Ling; Do, Yi-Yin; Lin, Yen-Chang

    2017-01-01

    Diabetes is a risk factor that increases the occurrence and severity of cardiovascular events. Cardiovascular complications are the leading cause of mortality of 75% of patients with diabetes >40 years old. Sesamin, the bioactive compound extracted from Sesamum indicum, is a natural compound that has diverse beneficial effects on hypoglycemia and reducing cholesterol. The aim of this study is to investigate sesamin effects to diabetes-inducing cardiac hypertrophy. In the present study bioinformatics analysis demonstrated cardiac hypertrophy signaling may be the most important pathway for upregulating genes in sesamin-treated groups. To verify the bioinformatics prediction, sesamin was used as the main bioactive compound to attenuate the impact of diabetes induced by streptozotocin (STZ) on cardiac function in a rat model. The results revealed that oral administration of sesamin for 4 weeks (100 and 200 mg/kg body weight) marginally improved blood glucose levels, body weight and significantly ameliorated the effects on heart rate and blood pressure in rats with type 1 diabetes relative to control rats. The QT interval of sesamin was also reduced relative to the control group. The findings indicated that sesamin has potential cardioprotective effects in the STZ-induced diabetes model. This suggested that this can be used as a novel treatment for patients with diabetes with cardiac dysfunction complication. PMID:28358428

  6. Funções autonômica cardíaca e mecânica ventricular na cardiopatia chagásica crônica assintomática Cardiac autonomic and ventricular mechanical functions in asymptomatic chronic chagasic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Daniel França Vasconcelos

    2012-02-01

    Full Text Available FUNDAMENTO: A associação das funções autonômica cardíaca e ventricular sisto-diastólica variavelmente alteradas ainda é controversa e pouco explorada na cardiopatia chagásica crônica. OBJETIVO: Avaliar em que extensão as funções autonômica cardíaca e mecânica ventricular estão alteradas e se ambas estão relacionadas na cardiopatia chagásica assintomática. MÉTODOS: EM 13 cardiopatas chagásicos assintomáticos e 15 indivíduos normais (grupo controle, foram avaliadas e correlacionadas a modulação autonômica da variabilidade da frequência cardíaca durante cinco minutos, nos domínios temporal e espectral, nas posições supina e ortostática, e a função ventricular com base em variáveis morfofuncionais Doppler ecocardiográficas. A análise estatística empregou o teste de Mann-Whitney e a correlação de Spearman. RESULTADOS: Em ambas as posições, os índices temporais (p = 0,0004-0,01 e as áreas espectrais total (p = 0,0007-0,005 e absoluta, de baixa e alta frequências (p = 0,0001-0,002, mostraram-se menores no grupo chagásico. O balanço vagossimpático mostrou-se semelhante em ambas as posturas (p = 0,43-0,89. As variáveis ecocardiográficas não diferiram entre os grupos (p = 0,13-0,82, exceto o diâmetro sistólico final do ventrículo esquerdo que se mostrou maior (p = 0,04, correlacionando-se diretamente com os reduzidos índices da modulação autonômica global (p = 0,01-0,04 e parassimpática (p = 0,002-0,01, nos pacientes chagásicos, em posição ortostática. CONCLUSÃO: AS DEpressões simpática e parassimpática com balanço preservado associaram-se apenas a um indicador de disfunção ventricular. Isso sugere que a disfunção autonômica cardíaca pode preceder e ser independentemente mais severa que a disfunção ventricular, não havendo associação causal entre ambos os distúrbios na cardiopatia chagásica crônica.BACKGROUND: The association of variably altered cardiac autonomic and

  7. Muscle metaboreflex and autonomic regulation of heart rate in humans

    DEFF Research Database (Denmark)

    Fisher, James P; Adlan, Ahmed M; Shantsila, Alena

    2013-01-01

    ) conditions, but attenuated with β-adrenergic blockade (0.2 ± 1 beats min(-1); P > 0.05 vs. rest). Thus muscle metaboreflex activation-mediated increases in HR are principally attributable to increased cardiac sympathetic activity, and only following exercise with a large muscle mass (PEI following leg......We elucidated the autonomic mechanisms whereby heart rate (HR) is regulated by the muscle metaboreflex. Eight male participants (22 ± 3 years) performed three exercise protocols: (1) enhanced metaboreflex activation with partial flow restriction (bi-lateral thigh cuff inflation) during leg cycling...... exercise, (2) isolated muscle metaboreflex activation (post-exercise ischaemia; PEI) following leg cycling exercise, (3) isometric handgrip followed by PEI. Trials were undertaken under control (no drug), β1-adrenergic blockade (metoprolol) and parasympathetic blockade (glycopyrrolate) conditions. HR...

  8. Testing for autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J

    1984-01-01

    Autonomic neuropathy is a common complication in long-term diabetes, about 30% of the patients showing measurable signs of autonomic dysfunction after 10 years duration of disease. The diagnosis is often difficult to establish because clinical symptoms generally occur late in the course of the di......Autonomic neuropathy is a common complication in long-term diabetes, about 30% of the patients showing measurable signs of autonomic dysfunction after 10 years duration of disease. The diagnosis is often difficult to establish because clinical symptoms generally occur late in the course...

  9. Clinical application of l-123 MlBG cardiac imaging

    International Nuclear Information System (INIS)

    Kang, Do Young

    2004-01-01

    Cardiac neurotransmission imaging allows in vivo assessment of presynaptic reuptake, neurotransmitter storage and postsynaptic receptors. Among the various neurotransmitter, I-123 MlBG is most available and relatively well-established. Metaiodobenzylguanidine (MIBG) is an analogue of the false neurotransmitter guanethidine. It is taken up to adrenergic neurons by uptake-1 mechanism as same as norepinephrine. As tagged with I-123, it can be used to image sympathetic function in various organs including heart with planar or SPECT techniques. I-123 MIBG imaging has a unique advantage to evaluate myocardial neuronal activity in which the heart has no significant structural abnormality or even no functional derangement measured with other conventional examination. In patients with cardiomyopathy and heart failure, this imaging has most sensitive technique to predict prognosis and treatment response of betablocker or ACE inhibitor. In diabetic patients, it allow very early detection of autonomic neuropathy. In patients with dangerous arrhythmia such as ventricular tachycardia or fibrillation, MIBG imaging may be only an abnormal result among various exams. In patients with ischemic heart disease, sympathetic derangement may be used as the method of risk stratification. In heart transplanted patients, sympathetic reinnervation is well evaluated. Adriamycin-induced cardiotoxicity is detected earlier than ventricular dysfunction with sympathetic dysfunction. Neurodegenerative disorder such as Parkinson's disease or dementia with Lewy bodies has also cardiac sympathetic dysfunction. Noninvasive assessment of cardiac sympathetic nerve activity with l-123 MlBG imaging may be improve understanding of the pathophysiology of cardiac disease and make a contribution to predict survival and therapy efficacy

  10. Clinical application of l-123 MlBG cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Young [College of Medicine, Donga Univ., Busan (Korea, Republic of)

    2004-10-01

    Cardiac neurotransmission imaging allows in vivo assessment of presynaptic reuptake, neurotransmitter storage and postsynaptic receptors. Among the various neurotransmitter, I-123 MlBG is most available and relatively well-established. Metaiodobenzylguanidine (MIBG) is an analogue of the false neurotransmitter guanethidine. It is taken up to adrenergic neurons by uptake-1 mechanism as same as norepinephrine. As tagged with I-123, it can be used to image sympathetic function in various organs including heart with planar or SPECT techniques. I-123 MIBG imaging has a unique advantage to evaluate myocardial neuronal activity in which the heart has no significant structural abnormality or even no functional derangement measured with other conventional examination. In patients with cardiomyopathy and heart failure, this imaging has most sensitive technique to predict prognosis and treatment response of betablocker or ACE inhibitor. In diabetic patients, it allow very early detection of autonomic neuropathy. In patients with dangerous arrhythmia such as ventricular tachycardia or fibrillation, MIBG imaging may be only an abnormal result among various exams. In patients with ischemic heart disease, sympathetic derangement may be used as the method of risk stratification. In heart transplanted patients, sympathetic reinnervation is well evaluated. Adriamycin-induced cardiotoxicity is detected earlier than ventricular dysfunction with sympathetic dysfunction. Neurodegenerative disorder such as Parkinson's disease or dementia with Lewy bodies has also cardiac sympathetic dysfunction. Noninvasive assessment of cardiac sympathetic nerve activity with l-123 MlBG imaging may be improve understanding of the pathophysiology of cardiac disease and make a contribution to predict survival and therapy efficacy.

  11. Autonomic Neuropathy—a Prospective Cohort Study of Symptoms and E/I Ratio in Normal Glucose Tolerance, Impaired Glucose Tolerance, and Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Malin Zimmerman

    2018-03-01

    Full Text Available BackgroundAutonomic neuropathy in diabetes, in addition to causing a range of symptoms originating from the autonomic nervous system, may increase cardiovascular morbidity. Our aim was to study the progression of autonomic neuropathy, based on symptom score and evaluation of an autonomic test, in persons with normal and impaired glucose tolerance and in patients with type 2 diabetes (T2D.MethodsParticipants were recruited in 2003/2004 with a follow-up in 2014. The participants’ glucose tolerance was categorized using oral glucose tolerance tests. Symptoms were evaluated using an autonomic symptom score (ASS, ECG was used to test cardiac autonomic function based on the expiration/inspiration ratio (E/I ratio, and blood samples were taken on both occasions.ResultsASSs were higher at follow-up in the T2D patients than in the normal glucose tolerance group (mean 1.21 ± 1.30 vs. 0.79 ± 0.7; p < 0.05. E/I ratio did not deteriorate more than could be expected as an aging effect in well-controlled T2D. No relationship was found between E/I ratio and HbA1c or ASS.ConclusionThe presence of autonomic symptoms increased over time in T2D patients, but the symptoms did not correlate with the E/I ratio in this metabolically well-controlled cohort. ASSs can be a useful clinical tool when assessing the progression of autonomic dysfunction in patients with abnormal glucose metabolism.

  12. Role of Training and Detraining on Inflammatory and Metabolic Profile in Infarcted Rats: Influences of Cardiovascular Autonomic Nervous System

    Science.gov (United States)

    Santana, Aline Alves; Santamarina, Aline Boveto; Oyama, Lila Missae; Caperuto, Érico Chagas; de Souza, Cláudio Teodoro; Barboza, Catarina de Andrade; Rocha, Leandro Yanase; Figueroa, Diego; Mostarda, Cristiano; Irigoyen, Maria Cláudia; Lira, Fábio Santos

    2014-01-01

    The aim of this study was to evaluate the effects of exercise training (ET, 50–70% of VO2 max, 5 days/week) and detraining (DT) on inflammatory and metabolic profile after myocardial infarction (MI) in rats. Male Wistar rats were divided into control (C, n = 8), sedentary infarcted (SI, n = 9), trained infarcted (TI, n = 10; 3 months of ET), and detrained infarcted (DI, n = 11; 2 months of ET + 1 month of DT). After ET and DT protocols, ventricular function and inflammation, cardiovascular autonomic modulation (spectral analysis), and adipose tissue inflammation and lipolytic pathway were evaluated. ET after MI improved cardiac and vascular autonomic modulation, and these benefits were correlated with reduced inflammatory cytokines on the heart and adipose tissue. These positive changes were sustained even after 1 month of detraining. No expressive changes were observed in oxidative stress and lipolytic pathway in experimental groups. In conclusion, our results strongly suggest that the autonomic improvement promoted by ET, and maintained even after the detraining period, was associated with reduced inflammatory profile in the left ventricle and adipose tissue of rats subjected to MI. These data encourage enhancing cardiovascular autonomic function as a therapeutic strategy for the treatment of inflammatory process triggered by MI. PMID:25045207

  13. Role of Training and Detraining on Inflammatory and Metabolic Profile in Infarcted Rats: Influences of Cardiovascular Autonomic Nervous System

    Directory of Open Access Journals (Sweden)

    Bruno Rodrigues

    2014-01-01

    Full Text Available The aim of this study was to evaluate the effects of exercise training (ET, 50–70% of VO2 max, 5 days/week and detraining (DT on inflammatory and metabolic profile after myocardial infarction (MI in rats. Male Wistar rats were divided into control (C, n=8, sedentary infarcted (SI, n=9, trained infarcted (TI,  n=10; 3 months of ET, and detrained infarcted (DI, n=11; 2 months of ET + 1 month of DT. After ET and DT protocols, ventricular function and inflammation, cardiovascular autonomic modulation (spectral analysis, and adipose tissue inflammation and lipolytic pathway were evaluated. ET after MI improved cardiac and vascular autonomic modulation, and these benefits were correlated with reduced inflammatory cytokines on the heart and adipose tissue. These positive changes were sustained even after 1 month of detraining. No expressive changes were observed in oxidative stress and lipolytic pathway in experimental groups. In conclusion, our results strongly suggest that the autonomic improvement promoted by ET, and maintained even after the detraining period, was associated with reduced inflammatory profile in the left ventricle and adipose tissue of rats subjected to MI. These data encourage enhancing cardiovascular autonomic function as a therapeutic strategy for the treatment of inflammatory process triggered by MI.

  14. Cardiac remodeling in the mouse model of Marfan syndrome develops into two distinctive phenotypes.

    Science.gov (United States)

    Tae, Hyun-Jin; Petrashevskaya, Natalia; Marshall, Shannon; Krawczyk, Melissa; Talan, Mark

    2016-01-15

    Marfan syndrome (MFS) is a systemic disorder of connective tissue caused by mutations in fibrillin-1. Cardiac dysfunction in MFS has not been characterized halting the development of therapies of cardiac complication in MFS. We aimed to study the age-dependent cardiac remodeling in the mouse model of MFS FbnC1039G+/- mouse [Marfan heterozygous (HT) mouse] and its association with valvular regurgitation. Marfan HT mice of 2-4 mo demonstrated a mild hypertrophic cardiac remodeling with predominant decline of diastolic function and increased transforming growth factor-β canonical (p-SMAD2/3) and noncanonical (p-ERK1/2 and p-p38 MAPK) signaling and upregulation of hypertrophic markers natriuretic peptides atrium natriuretic peptide and brain natriuretic peptide. Among older HT mice (6-14 mo), cardiac remodeling was associated with two distinct phenotypes, manifesting either dilated or constricted left ventricular chamber. Dilatation of left ventricular chamber was accompanied by biochemical evidence of greater mechanical stress, including elevated ERK1/2 and p38 MAPK phosphorylation and higher brain natriuretic peptide expression. The aortic valve regurgitation was registered in 20% of the constricted group and 60% of the dilated group, whereas mitral insufficiency was observed in 40% of the constricted group and 100% of the dilated group. Cardiac dysfunction was not associated with the increase of interstitial fibrosis and nonmyocyte proliferation. In the mouse model fibrillin-1, haploinsufficiency results in the early onset of nonfibrotic hypertrophic cardiac remodeling and dysfunction, independently from valvular abnormalities. MFS heart is vulnerable to stress-induced cardiac dilatation in the face of valvular regurgitation, and stress-activated MAPK signals represent a potential target for cardiac management in MFS.

  15. Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling

    International Nuclear Information System (INIS)

    Voelkl, Jakob; Alesutan, Ioana; Pakladok, Tatsiana; Viereck, Robert; Feger, Martina; Mia, Sobuj; Schönberger, Tanja; Noegel, Angelika A.; Gawaz, Meinrad; Lang, Florian

    2014-01-01

    Highlights: • Cardiac Anxa7 expression was up-regulated following TAC. • The hypertrophic response following TAC was augmented in Anxa7-deficient mice. • Silencing of Anxa7 increased indicators of HL-1 cardiomyocytes hypertrophy. • Silencing of Anxa7 induced Nfatc1 nuclear translocation. • Silencing of Anxa7 enhanced NFAT-dependent transcriptional activity. - Abstract: Annexin A7 (Anxa7) is a cytoskeletal protein interacting with Ca 2+ signaling which in turn is a crucial factor for cardiac remodeling following cardiac injury. The present study explored whether Anxa7 participates in the regulation of cardiac stress signaling. To this end, mice lacking functional Anxa7 (anxa7 −/− ) and wild-type mice (anxa7 +/+ ) were investigated following pressure overload by transverse aortic constriction (TAC). In addition, HL-1 cardiomyocytes were silenced with Anxa7 siRNA and treated with isoproterenol. Transcript levels were determined by quantitative RT-PCR, transcriptional activity by luciferase reporter assay and protein abundance by Western blotting and confocal microscopy. As a result, TAC treatment increased the mRNA and protein levels of Anxa7 in wild-type mice. Moreover, TAC increased heart weight to body weight ratio and the cardiac mRNA levels of αSka, Nppb, Col1a1, Col3a1 and Rcan1, effects more pronounced in anxa7 −/− mice than in anxa7 +/+ mice. Silencing of Anxa7 in HL-1 cardiomyocytes significantly increased nuclear localization of Nfatc1. Furthermore, Anxa7 silencing increased NFAT-dependent transcriptional activity as well as αSka, Nppb, and Rcan1 mRNA levels both, under control conditions and following β-adrenergic stimulation by isoproterenol. These observations point to an important role of annexin A7 in the regulation of cardiac NFAT activity and hypertrophic response following cardiac stress conditions

  16. Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling

    Energy Technology Data Exchange (ETDEWEB)

    Voelkl, Jakob; Alesutan, Ioana; Pakladok, Tatsiana; Viereck, Robert; Feger, Martina; Mia, Sobuj [Department of Physiology, University of Tübingen, Tübingen (Germany); Schönberger, Tanja [Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen (Germany); Noegel, Angelika A. [Center for Biochemistry, Institute of Biochemistry I, University of Cologne, Köln (Germany); Gawaz, Meinrad [Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen (Germany); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tübingen, Tübingen (Germany)

    2014-02-28

    Highlights: • Cardiac Anxa7 expression was up-regulated following TAC. • The hypertrophic response following TAC was augmented in Anxa7-deficient mice. • Silencing of Anxa7 increased indicators of HL-1 cardiomyocytes hypertrophy. • Silencing of Anxa7 induced Nfatc1 nuclear translocation. • Silencing of Anxa7 enhanced NFAT-dependent transcriptional activity. - Abstract: Annexin A7 (Anxa7) is a cytoskeletal protein interacting with Ca{sup 2+} signaling which in turn is a crucial factor for cardiac remodeling following cardiac injury. The present study explored whether Anxa7 participates in the regulation of cardiac stress signaling. To this end, mice lacking functional Anxa7 (anxa7{sup −/−}) and wild-type mice (anxa7{sup +/+}) were investigated following pressure overload by transverse aortic constriction (TAC). In addition, HL-1 cardiomyocytes were silenced with Anxa7 siRNA and treated with isoproterenol. Transcript levels were determined by quantitative RT-PCR, transcriptional activity by luciferase reporter assay and protein abundance by Western blotting and confocal microscopy. As a result, TAC treatment increased the mRNA and protein levels of Anxa7 in wild-type mice. Moreover, TAC increased heart weight to body weight ratio and the cardiac mRNA levels of αSka, Nppb, Col1a1, Col3a1 and Rcan1, effects more pronounced in anxa7{sup −/−} mice than in anxa7{sup +/+} mice. Silencing of Anxa7 in HL-1 cardiomyocytes significantly increased nuclear localization of Nfatc1. Furthermore, Anxa7 silencing increased NFAT-dependent transcriptional activity as well as αSka, Nppb, and Rcan1 mRNA levels both, under control conditions and following β-adrenergic stimulation by isoproterenol. These observations point to an important role of annexin A7 in the regulation of cardiac NFAT activity and hypertrophic response following cardiac stress conditions.

  17. Synaptic Plasticity in Cardiac Innervation and Its Potential Role in Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Jesse L. Ashton

    2018-03-01

    Full Text Available Synaptic plasticity is defined as the ability of synapses to change their strength of transmission. Plasticity of synaptic connections in the brain is a major focus of neuroscience research, as it is the primary mechanism underpinning learning and memory. Beyond the brain however, plasticity in peripheral neurons is less well understood, particularly in the neurons innervating the heart. The atria receive rich innervation from the autonomic branch of the peripheral nervous system. Sympathetic neurons are clustered in stellate and cervical ganglia alongside the spinal cord and extend fibers to the heart directly innervating the myocardium. These neurons are major drivers of hyperactive sympathetic activity observed in heart disease, ventricular arrhythmias, and sudden cardiac death. Both pre- and postsynaptic changes have been observed to occur at synapses formed by sympathetic ganglion neurons, suggesting that plasticity at sympathetic neuro-cardiac synapses is a major contributor to arrhythmias. Less is known about the plasticity in parasympathetic neurons located in clusters on the heart surface. These neuronal clusters, termed ganglionated plexi, or “little brains,” can independently modulate neural control of the heart and stimulation that enhances their excitability can induce arrhythmia such as atrial fibrillation. The ability of these neurons to alter parasympathetic activity suggests that plasticity may indeed occur at the synapses formed on and by ganglionated plexi neurons. Such changes may not only fine-tune autonomic innervation of the heart, but could also be a source of maladaptive plasticity during atrial fibrillation.

  18. Forward Programming of Cardiac Stem Cells by Homogeneous Transduction with MYOCD plus TBX5.

    Directory of Open Access Journals (Sweden)

    Elisa Belian

    Full Text Available Adult cardiac stem cells (CSCs express many endogenous cardiogenic transcription factors including members of the Gata, Hand, Mef2, and T-box family. Unlike its DNA-binding targets, Myocardin (Myocd-a co-activator not only for serum response factor, but also for Gata4 and Tbx5-is not expressed in CSCs. We hypothesised that its absence was a limiting factor for reprogramming. Here, we sought to investigate the susceptibility of adult mouse Sca1+ side population CSCs to reprogramming by supplementing the triad of GATA4, MEF2C, and TBX5 (GMT, and more specifically by testing the effect of the missing co-activator, Myocd. Exogenous factors were expressed via doxycycline-inducible lentiviral vectors in various combinations. High throughput quantitative RT-PCR was used to test expression of 29 cardiac lineage markers two weeks post-induction. GMT induced more than half the analysed cardiac transcripts. However, no protein was detected for the induced sarcomeric genes Actc1, Myh6, and Myl2. Adding MYOCD to GMT affected only slightly the breadth and level of gene induction, but, importantly, triggered expression of all three proteins examined (α-cardiac actin, atrial natriuretic peptide, sarcomeric myosin heavy chains. MYOCD + TBX was the most effective pairwise combination in this system. In clonal derivatives homogenously expressing MYOCD + TBX at high levels, 93% of cardiac transcripts were up-regulated and all five proteins tested were visualized.(1 GMT induced cardiac genes in CSCs, but not cardiac proteins under the conditions used. (2 Complementing GMT with MYOCD induced cardiac protein expression, indicating a more complete cardiac differentiation program. (3 Homogeneous transduction with MYOCD + TBX5 facilitated the identification of differentiating cells and the validation of this combinatorial reprogramming strategy. Together, these results highlight the pivotal importance of MYOCD in driving CSCs toward a cardiac muscle fate.

  19. Cumulative stress and autonomic dysregulation in a community sample.

    Science.gov (United States)

    Lampert, Rachel; Tuit, Keri; Hong, Kwang-Ik; Donovan, Theresa; Lee, Forrester; Sinha, Rajita

    2016-05-01

    Whether cumulative stress, including both chronic stress and adverse life events, is associated with decreased heart rate variability (HRV), a non-invasive measure of autonomic status which predicts poor cardiovascular outcomes, is unknown. Healthy community dwelling volunteers (N = 157, mean age 29 years) participated in the Cumulative Stress/Adversity Interview (CAI), a 140-item event interview measuring cumulative adversity including major life events, life trauma, recent life events and chronic stressors, and underwent 24-h ambulatory ECG monitoring. HRV was analyzed in the frequency domain and standard deviation of NN intervals (SDNN) calculated. Initial simple regression analyses revealed that total cumulative stress score, chronic stressors and cumulative adverse life events (CALE) were all inversely associated with ultra low-frequency (ULF), very low-frequency (VLF) and low-frequency (LF) power and SDNN (all p accounting for additional appreciable variance. For VLF and LF, both total cumulative stress and chronic stress significantly contributed to the variance alone but were not longer significant after adjusting for race and health behaviors. In summary, total cumulative stress, and its components of adverse life events and chronic stress were associated with decreased cardiac autonomic function as measured by HRV. Findings suggest one potential mechanism by which stress may exert adverse effects on mortality in healthy individuals. Primary preventive strategies including stress management may prove beneficial.

  20. Titin isoform switching is a major cardiac adaptive response in hibernating grizzly bears.

    Science.gov (United States)

    Nelson, O Lynne; Robbins, Charles T; Wu, Yiming; Granzier, Henk

    2008-07-01

    The hibernation phenomenon captures biological as well as clinical interests to understand how organs adapt. Here we studied how hibernating grizzly bears (Ursus arctos horribilis) tolerate extremely low heart rates without developing cardiac chamber dilation. We evaluated cardiac filling function in unanesthetized grizzly bears by echocardiography during the active and hibernating period. Because both collagen and titin are involved in altering diastolic function, we investigated both in the myocardium of active and hibernating grizzly bears. Heart rates were reduced from 84 beats/min in active bears to 19 beats/min in hibernating bears. Diastolic volume, stroke volume, and left ventricular ejection fraction were not different. However, left ventricular muscle mass was significantly lower (300 +/- 12 compared with 402 +/- 14 g; P = 0.003) in the hibernating bears, and as a result the diastolic volume-to-left ventricular muscle mass ratio was significantly greater. Early ventricular filling deceleration times (106.4 +/- 14 compared with 143.2 +/- 20 ms; P = 0.002) were shorter during hibernation, suggesting increased ventricular stiffness. Restrictive pulmonary venous flow patterns supported this conclusion. Collagen type I and III comparisons did not reveal differences between the two groups of bears. In contrast, the expression of titin was altered by a significant upregulation of the stiffer N2B isoform at the expense of the more compliant N2BA isoform. The mean ratio of N2BA to N2B titin was 0.73 +/- 0.07 in the active bears and decreased to 0.42 +/- 0.03 (P = 0.006) in the hibernating bears. The upregulation of stiff N2B cardiac titin is a likely explanation for the increased ventricular stiffness that was revealed by echocardiography, and we propose that it plays a role in preventing chamber dilation in hibernating grizzly bears. Thus our work identified changes in the alternative splicing of cardiac titin as a major adaptive response in hibernating grizzly

  1. Overview of the Autonomic Nervous System

    Science.gov (United States)

    ... be reversible or progressive. Anatomy of the autonomic nervous system The autonomic nervous system is the part of ... organs they connect with. Function of the autonomic nervous system The autonomic nervous system controls internal body processes ...

  2. Impact of early detection and treatment of diabetes on the 6-year prevalence of cardiac autonomic neuropathy in people with screen-detected diabetes

    DEFF Research Database (Denmark)

    Charles, Morten; Fleischer, J; Witte, Daniel Rinse

    2013-01-01

    Baggrund: Der er begrænset viden om hvordan tidlig multifaktoriel behandling forbedrer konsekvenser af diabetes. Kardiel autonom neuropati (KAN) hos personer med diabetes indikerer omfattende skade på det autonome nervesystem og er relateret til mortalitet og livskvalitet. I dette studie fra...... ADDITION Danmark undersøgte vi effekten af tidlig opsporing og efterfølgende intensive behandling af type 2 diabetes i almen praksis på hyppigheden af kardiel autonom neuropati 6 år efter diagnose. Resultater: Prævalensen af tidlig KAN var 15,1% i rutine behandlingsgruppen (RG) og 15.5% i intensive...... kardiovaskulære risikofaktorer er således ikke nok til at forebygge at mange diabetes patienter udvikler KAN....

  3. Inhibition of miR-155 Protects Against LPS-induced Cardiac Dysfunction and Apoptosis in Mice

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2016-01-01

    Full Text Available Sepsis-induced myocardial dysfunction represents a major cause of death in intensive care units. Dysregulated microRNAs (miR-155 has been implicated in multiple cardiovascular diseases and miR-155 can be induced by lipopolysaccharide (LPS. However, the role of miR-155 in LPS-induced cardiac dysfunction is unclear. Septic cardiac dysfunction in mice was induced by intraperitoneal injection of LPS (5 mg/kg and miR-155 was found to be significantly increased in heart challenged with LPS. Pharmacological inhibition of miR-155 using antagomiR improved cardiac function and suppressed cardiac apoptosis induced by LPS in mice as determined by echocardiography, terminal deoxynucleotidyl transferase nick-end labeling (TUNEL assay, and Western blot for Bax and Bcl-2, while overexpression of miR-155 using agomiR had inverse effects. Pea15a was identified as a target gene of miR-155, mediating its effects in controlling apoptosis of cardiomyocytes as evidenced by luciferase reporter assays, quantitative real time-polymerase chain reaction, Western blot, and TUNEL staining. Noteworthy, miR-155 was also found to be upregulated in the plasma of patients with septic cardiac dysfunction compared to sepsis patients without cardiac dysfunction, indicating a potential clinical relevance of miR-155. The receiver-operator characteristic curve indicated that plasma miR-155 might be a biomarker for sepsis patients developing cardiac dysfunction. Therefore, inhibition of miR-155 represents a novel therapy for septic myocardial dysfunction.

  4. Monitor of cardiac events implemented in PDA platform

    International Nuclear Information System (INIS)

    Bustamante, John; Saenz, Jose F; Amaya, Adrian

    2007-01-01

    Ambulatory monitoring of electrocardiac events constitutes a valuable tool in the diagnosis of cardiac arrhythmias involved in pathologic processes such as myocardiopathies, post-infarction stages, autonomous cardiac system injuries, etc.; unfortunately, its extensive use is not possible yet, due to the high costs that imply the acquisition of these equipment. For this purpose, through the utilization of personal digital assistants, a monitor of cardiac events with pre and post-symptomatic recording capacity, electrocardiographic signal visualization in real time, automatic recording of bradycardias and tachycardias and the possibility of annotation of symptoms by the patient, is designed and developed. It consists of a hardware component for the acquisition and treatment of the signals, software for the monitoring in Palm OSO platform and an appliance for the discharge and analysis of the stored data. Prototype validations were realized through an electrocardiographic simulator, an arrhythmia simulator Based on arrhythmia data base registers of the Massachusetts Institute of Technology and 8eth Israel Hospital and on pilot tests of healthy people and of patients with arrhythmias. In this preliminary report, we show the way in which the developed prototype constitutes a viable alternative for ambulatory monitoring of arrhythmia, taking advantages of the storage capacity, processing and visualization that have the actual digital assistances with the additional advantages that its use is not restricted to only one utility and its economic accessibility is facilitated due to its wide commercial availability

  5. Differential gene expression of cardiac ion channels in human dilated cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Maria Micaela Molina-Navarro

    Full Text Available BACKGROUND: Dilated cardiomyopathy (DCM is characterized by idiopathic dilation and systolic contractile dysfunction of the cardiac chambers. The present work aimed to study the alterations in gene expression of ion channels involved in cardiomyocyte function. METHODS AND RESULTS: Microarray profiling using the Affymetrix Human Gene® 1.0 ST array was performed using 17 RNA samples, 12 from DCM patients undergoing cardiac transplantation and 5 control donors (CNT. The analysis focused on 7 cardiac ion channel genes, since this category has not been previously studied in human DCM. SCN2B was upregulated, while KCNJ5, KCNJ8, CLIC2, CLCN3, CACNB2, and CACNA1C were downregulated. The RT-qPCR (21 DCM and 8 CNT samples validated the gene expression of SCN2B (p < 0.0001, KCNJ5 (p < 0.05, KCNJ8 (p < 0.05, CLIC2 (p < 0.05, and CACNB2 (p < 0.05. Furthermore, we performed an IPA analysis and we found a functional relationship between the different ion channels studied in this work. CONCLUSION: This study shows a differential expression of ion channel genes involved in cardiac contraction in DCM that might partly underlie the changes in left ventricular function observed in these patients. These results could be the basis for new genetic therapeutic approaches.

  6. Overexpression of Cardiac-Specific Kinase TNNI3K Promotes Mouse Embryonic Stem Cells Differentiation into Cardiomyocytes.

    Science.gov (United States)

    Wang, Yin; Wang, Shi-Qiang; Wang, Li-Peng; Yao, Yu-Hong; Ma, Chun-Yan; Ding, Jin-Feng; Ye, Jue; Meng, Xian-Min; Li, Jian-Jun; Xu, Rui-Xia

    2017-01-01

    Backgroud/Aims: The biological function of cardiac troponin I-interacting kinase (TNNI3K), a cardiac-specific functional kinase, is largely unknown. We investigated the effect of human TNNI3K (hTNNI3K) on the differentiation of mouse embryonic stem cells (mESCs) into cardiomyocytes. First, the time-space expression of endogenous Tnni3k was detected by real-time polymerase chain reaction (PCR) and western blotting at 16 different time-points over a period of 28 days. Further, action potentials and calcium current with/without 5 µM nifedipine were measured by patch clamp for mESC-derived cardiomyocytes. HTNNI3K and mouse-derived siRNA were transfected into mESC using lentivirus vector to induce hTNNI3K overexpression and knock-down, respectively. The number of troponin-T (cTnT) positive cells was greater in the group with TNNI3K overexpression as compared to that in control group, while less such cells were detected in the mTnni3k knock-down group as evaluated on flow cytometry (FCM) and ImageXpress Micro system. After upregulation of connexin43, cardiac troponin-I (Ctni), Ctni, Gata4 were detected in mESCs with TNNI3K overexpression; however, overexpression of α-Actinin and Mlc2v was not detected. Interestingly, Ctnt, connexin40 and connexin45, the markers of ventricular, atrial, and pacemaker cells, respectively, were detected in by real-time PCR in TNNI3K overexpression group. our study indicated that TNNI3K overexpression promoted mESC differentiating into beating cardiomyocytes and induced up-regulating expression of cTnT by PKCε signal pathway, which suggested a modulation of TNNI3K activity as a potential therapeutic approach for ischemic cardiac disease. © 2017 The Author(s) Published by S. Karger AG, Basel.

  7. Effects of creatine supplementation on cardiac autonomic functions in bodybuilders.

    Science.gov (United States)

    Mert, Kadir Uğur; Ilgüy, Serdar; Dural, Muhammet; Mert, Gurbet Özge; Özakin, Engin

    2017-06-01

    Bodybuilder-type workouts may affect heart rate variability (HRV), which has considerable potential to assess the role of autonomic nervous system (ANS). A scientifically designed approach is necessary for bodybuilders to achieve better results while protecting their health. In this study, we aimed to investigate HRV parameters in bodybuilders compared to healthy control subjects and effects of creatine supplementation. A total of 48 male participants (16 controls, 16 supplement (-), 16 supplement (+)) were evaluated in our study. Bodybuilders who were taking creatine supplementation were enrolled in supplement (+) group. HRV parameters were measured from 24-hour Holter recordings of all participants. When mean heart rates were compared with control group (71.5 ± 12.6 beats/min), statistically significant difference was revealed in supplement (-) group (61.8 ± 6.8 beats/min; P = 0.022) unlike supplement (+) group (69.63 ± 14.1 beats/min; P = 0.650). HRV analyses revealed significant parasympathetic shift in supplement (-) group. No significant difference was demonstrated on HRV parameters, except high frequency (P = 0.029) in supplement (+) group. Conclusively, elevated parasympathetic modulation, which is favorable cardiovascular outcome of exercise, was demonstrated in bodybuilders. However, our study also revealed that creatine supplementation attenuates this favorable effect in ANS by limiting elevation of parasympathetic modulation. Although the sympathetic slight shift is attributed to creatine supplementation, it cannot be discriminated from the effects of over training. © 2017 Wiley Periodicals, Inc.

  8. Children with Autism Show Altered Autonomic Adaptation to Novel and Familiar Social Partners.

    Science.gov (United States)

    Neuhaus, Emily; Bernier, Raphael A; Beauchaine, Theodore P

    2016-05-01

    Social deficits are fundamental to autism spectrum disorder (ASD), and a growing body of research implicates altered functioning of the autonomic nervous system (ANS), including both sympathetic and parasympathetic branches. However, few studies have explored both branches concurrently in ASD, particularly within the context of social interaction. The current study investigates patterns of change in indices of sympathetic (pre-ejection period; PEP) and parasympathetic (respiratory sinus arrhythmia; RSA) cardiac influence as boys (ages 8-11 years) with (N = 18) and without (N = 18) ASD engage in dyadic social interaction with novel and familiar social partners. Groups showed similar patterns of autonomic change during interaction with the novel partner, but differed in heart rate, PEP, and RSA reactivity while interacting with a familiar partner. Boys without ASD evinced decreasing sympathetic and increasing parasympathetic influence, whereas boys with ASD increased in sympathetic influence. Boys without ASD also demonstrated more consistent ANS responses across partners than those with ASD, with parasympathetic responding differentiating familiar and novel interaction partners. Finally, PEP slopes with a familiar partner correlated with boys' social skills. Implications include the importance of considering autonomic state during clinical assessment and treatment, and the potential value of regulation strategies as a complement to intervention programs aiming to support social cognition and behavior. Autism Res 2016, 9: 579-591. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  9. Cardiac molecular-acclimation mechanisms in response to swimming-induced exercise in Atlantic salmon.

    Directory of Open Access Journals (Sweden)

    Vicente Castro

    Full Text Available Cardiac muscle is a principal target organ for exercise-induced acclimation mechanisms in fish and mammals, given that sustained aerobic exercise training improves cardiac output. Yet, the molecular mechanisms underlying such cardiac acclimation have been scarcely investigated in teleosts. Consequently, we studied mechanisms related to cardiac growth, contractility, vascularization, energy metabolism and myokine production in Atlantic salmon pre-smolts resulting from 10 weeks exercise-training at three different swimming intensities: 0.32 (control, 0.65 (medium intensity and 1.31 (high intensity body lengths s(-1. Cardiac responses were characterized using growth, immunofluorescence and qPCR analysis of a large number of target genes encoding proteins with significant and well-characterized function. The overall stimulatory effect of exercise on cardiac muscle was dependent on training intensity, with changes elicited by high intensity training being of greater magnitude than either medium intensity or control. Higher protein levels of PCNA were indicative of cardiac growth being driven by cardiomyocyte hyperplasia, while elevated cardiac mRNA levels of MEF2C, GATA4 and ACTA1 suggested cardiomyocyte hypertrophy. In addition, up-regulation of EC coupling-related genes suggested that exercised hearts may have improved contractile function, while higher mRNA levels of EPO and VEGF were suggestive of a more efficient oxygen supply network. Furthermore, higher mRNA levels of PPARα, PGC1α and CPT1 all suggested a higher capacity for lipid oxidation, which along with a significant enlargement of mitochondrial size in cardiac myocytes of the compact layer of fish exercised at high intensity, suggested an enhanced energetic support system. Training also elevated transcription of a set of myokines and other gene products related to the inflammatory process, such as TNFα, NFκB, COX2, IL1RA and TNF decoy receptor. This study provides the first

  10. Visually induced nausea causes characteristic changes in cerebral, autonomic and endocrine function in humans.

    Science.gov (United States)

    Farmer, Adam D; Ban, Vin F; Coen, Steven J; Sanger, Gareth J; Barker, Gareth J; Gresty, Michael A; Giampietro, Vincent P; Williams, Steven C; Webb, Dominic L; Hellström, Per M; Andrews, Paul L R; Aziz, Qasim

    2015-03-01

    An integrated understanding of the physiological mechanisms involved in the genesis of nausea remains lacking. We aimed to describe the psychophysiological changes accompanying visually induced motion sickness, using a motion video, hypothesizing that differences would be evident between subjects who developed nausea in comparison to those who did not. A motion, or a control, stimulus was presented to 98 healthy subjects in a randomized crossover design. Validated questionnaires and a visual analogue scale (VAS) were used for the assessment of anxiety and nausea. Autonomic and electrogastrographic activity were measured at baseline and continuously thereafter. Plasma vasopressin and ghrelin were measured in response to the motion video. Subjects were stratified into quartiles based on VAS nausea scores, with the upper and lower quartiles considered to be nausea sensitive and resistant, respectively. Twenty-eight subjects were exposed to the motion video during functional neuroimaging. During the motion video, nausea-sensitive subjects had lower normogastria/tachygastria ratio and cardiac vagal tone but higher cardiac sympathetic index in comparison to the control video. Furthermore, nausea-sensitive subjects had decreased plasma ghrelin and demonstrated increased activity of the left anterior cingulate cortex. Nausea VAS scores correlated positively with plasma vasopressin and left inferior frontal and middle occipital gyri activity and correlated negatively with plasma ghrelin and brain activity in the right cerebellar tonsil, declive, culmen, lingual gyrus and cuneus. This study demonstrates that the subjective sensation of nausea is associated with objective changes in autonomic, endocrine and brain networks, and thus identifies potential objective biomarkers and targets for therapeutic interventions. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  11. Premature Ventricular Contraction Coupling Interval Variability Destabilizes Cardiac Neuronal and Electrophysiological Control: Insights From Simultaneous Cardioneural Mapping.

    Science.gov (United States)

    Hamon, David; Rajendran, Pradeep S; Chui, Ray W; Ajijola, Olujimi A; Irie, Tadanobu; Talebi, Ramin; Salavatian, Siamak; Vaseghi, Marmar; Bradfield, Jason S; Armour, J Andrew; Ardell, Jeffrey L; Shivkumar, Kalyanam

    2017-04-01

    Variability in premature ventricular contraction (PVC) coupling interval (CI) increases the risk of cardiomyopathy and sudden death. The autonomic nervous system regulates cardiac electrical and mechanical indices, and its dysregulation plays an important role in cardiac disease pathogenesis. The impact of PVCs on the intrinsic cardiac nervous system, a neural network on the heart, remains unknown. The objective was to determine the effect of PVCs and CI on intrinsic cardiac nervous system function in generating cardiac neuronal and electric instability using a novel cardioneural mapping approach. In a porcine model (n=8), neuronal activity was recorded from a ventricular ganglion using a microelectrode array, and cardiac electrophysiological mapping was performed. Neurons were functionally classified based on their response to afferent and efferent cardiovascular stimuli, with neurons that responded to both defined as convergent (local reflex processors). Dynamic changes in neuronal activity were then evaluated in response to right ventricular outflow tract PVCs with fixed short, fixed long, and variable CI. PVC delivery elicited a greater neuronal response than all other stimuli ( P <0.001). Compared with fixed short and long CI, PVCs with variable CI had a greater impact on neuronal response ( P <0.05 versus short CI), particularly on convergent neurons ( P <0.05), as well as neurons receiving sympathetic ( P <0.05) and parasympathetic input ( P <0.05). The greatest cardiac electric instability was also observed after variable (short) CI PVCs. Variable CI PVCs affect critical populations of intrinsic cardiac nervous system neurons and alter cardiac repolarization. These changes may be critical for arrhythmogenesis and remodeling, leading to cardiomyopathy. © 2017 American Heart Association, Inc.

  12. A Secure, Scalable and Elastic Autonomic Computing Systems Paradigm: Supporting Dynamic Adaptation of Self-* Services from an Autonomic Cloud

    Directory of Open Access Journals (Sweden)

    Abdul Jaleel

    2018-05-01

    Full Text Available Autonomic computing embeds self-management features in software systems using external feedback control loops, i.e., autonomic managers. In existing models of autonomic computing, adaptive behaviors are defined at the design time, autonomic managers are statically configured, and the running system has a fixed set of self-* capabilities. An autonomic computing design should accommodate autonomic capability growth by allowing the dynamic configuration of self-* services, but this causes security and integrity issues. A secure, scalable and elastic autonomic computing system (SSE-ACS paradigm is proposed to address the runtime inclusion of autonomic managers, ensuring secure communication between autonomic managers and managed resources. Applying the SSE-ACS concept, a layered approach for the dynamic adaptation of self-* services is presented with an online ‘Autonomic_Cloud’ working as the middleware between Autonomic Managers (offering the self-* services and Autonomic Computing System (requiring the self-* services. A stock trading and forecasting system is used for simulation purposes. The security impact of the SSE-ACS paradigm is verified by testing possible attack cases over the autonomic computing system with single and multiple autonomic managers running on the same and different machines. The common vulnerability scoring system (CVSS metric shows a decrease in the vulnerability severity score from high (8.8 for existing ACS to low (3.9 for SSE-ACS. Autonomic managers are introduced into the system at runtime from the Autonomic_Cloud to test the scalability and elasticity. With elastic AMs, the system optimizes the Central Processing Unit (CPU share resulting in an improved execution time for business logic. For computing systems requiring the continuous support of self-management services, the proposed system achieves a significant improvement in security, scalability, elasticity, autonomic efficiency, and issue resolving time

  13. Update on the slow delayed rectifier potassium current (I(Ks)): role in modulating cardiac function.

    Science.gov (United States)

    Liu, Zhenzhen; Du, Lupei; Li, Minyong

    2012-01-01

    The slow delayed rectifier current (I(Ks)) is the slow component of cardiac delayed rectifier current and is critical for the late phase repolarization of cardiac action potential. This current is also an important target for Sympathetic Nervous System (SNS) to regulate the cardiac electivity to accommodate to heart rate alterations in response to exercise or emotional stress and can be up-regulated by β- adrenergic or other signal molecules. I(Ks) channel is originated by the co-assembly of pore-forming KCNQ1 α-subunit and accessory KCNE1 β-subunit. Mutations in any subunit can bring about severe long QT syndrome (LQT-1, LQT-5) as characterized by deliquium, seizures and sudden death. This review summarizes the normal physiological functions and molecular basis of I(Ks) channels, as well as illustrates up-to-date development on its blockers and activators. Therefore, the current extensive survey should generate fundamental understanding of the role of I(Ks) channel in modulating cardiac function and donate some instructions to the progression of I(Ks) blockers and activators as potential antiarrhythmic agents or pharmacological tools to determine the physiological and pathological function of I(Ks).

  14. Exercise Ameliorates High Fat Diet Induced Cardiac Dysfunction by Increasing Interleukin 10

    Directory of Open Access Journals (Sweden)

    Varun eKesherwani

    2015-04-01

    Full Text Available Increasing evidence suggests that a sedentary lifestyle and a high fat diet (HFD leads to cardiomyopathy. Moderate exercise ameliorates cardiac dysfunction, however underlying molecular mechanisms are poorly understood. Increased inflammation due to induction of pro-inflammatory cytokine such as tumor necrosis factor-alpha (TNF-α and attenuation of anti-inflammatory cytokine such as interleukin10 (IL-10 contributes to cardiac dysfunction in obese and diabetics. We hypothesized that exercise training ameliorates HFD- induced cardiac dysfunction by mitigating obesity and inflammation through upregulation of IL-10 and downregulation of TNF-α. To test this hypothesis, eight week old, female C57BL/6J mice were fed with HFD and exercised (swimming 1hr/day for 5 days/week for eight weeks. The four treatment groups: normal diet (ND, HFD, HFD + exercise (HFD + Ex and ND + Ex were analyzed for mean body weight, blood glucose level, TNF-α, IL-10, cardiac fibrosis by Masson Trichrome, and cardiac dysfunction by echocardiography. Mean body weights were increased in HFD but comparatively less in HFD + Ex. The level of TNF-α was elevated and IL-10 was downregulated in HFD but ameliorated in HFD + Ex. Cardiac fibrosis increased in HFD and was attenuated by exercise in the HFD + Ex group. The percentage ejection fraction and fractional shortening were decreased in HFD but comparatively increased in HFD + Ex. There was no difference between ND and ND + Ex for the above parameters except an increase in IL-10 level following exercise. Based on these results, we conclude that exercise mitigates HFD- induced cardiomyopathy by decreasing obesity, inducing IL-10, and reducing TNF-α in mice.

  15. Short-term results of a 5-week comprehensive cardiac rehabilitation program after first-time myocardial infarction.

    Science.gov (United States)

    Fallavollita, Luca; Marsili, Bruno; Castelli, Sandro; Cucchi, Francesca; Santillo, Elpidio; Marini, Luciano; Balestrini, Fabrizio

    2016-03-01

    A prospective single-center interventional cohort study was conducted to evaluate the effects of a 5-week comprehensive cardiac rehabilitation program on terms exercise capacity, quality of life, echocardiographic findings and autonomic modulation after first-time myocardial infarction. We studied 37 consecutive post-myocardial infartion patients (mean age 66 years). All patients began a 5-week cardiac rehabilitation supervised training. The exercise program consisted of 40 minutes of training, three times a week, on a cycle ergometer at 60-80% of the maximal heart rate. At baseline and after training program we analyzed: the distance walked after the Six-Minutes Walking Test (6MWT); quality of life (QoL) assesed using the Psychological General Well-Being Inventory (PGWBI) questionnaire; echocardiographic finding and autonomic balance assesed heart rate variability (HRV). We observed statistically significant improvement in exercise capacity (from 423±94 to 496±13 m; P<0.05). Also we observed statistically significant improvements in the many PGWBI dimensions; particularly, anxiety +5.8% (from 18.11±5.2 to 19.12±4.4); depression +6.0% (from 12.00±3.0 to 12.73±2.4); positive well-being +6% (from 11.55±3.5 to 12.23±4.0); general health +10.3% (from 9.48±3.5 to 10.46±2.87); vitality +6.8% (from 12.96±4.2 to 13.85±4.2). Finally, we observed changes in HRV indices after training program: RR (from 903±169 ms to 952±163 ms; P<0.05), pNN50% (from 4.74±4.89 to 6.23±5.53; P<0.05), in time-domain; LF (from 274±169 to 362±233 ms2; P<0,05); HF (from 214±154 to 314±194 ms2; P<0.05) and LF/HF (from 1.53±0.54 to 1.24±0.47; P<0.05) in frequency-domain. The study suggest that a cardiac rehabilitation program in postmyocardial infarction improves exercise capacity, QoL and autonomic modulation.

  16. [Sports medical aspects in cardiac risk stratification--heart rate variability and exercise capacity].

    Science.gov (United States)

    Banzer, W; Lucki, K; Bürklein, M; Rosenhagen, A; Vogt, L

    2006-12-01

    The present study investigates the association of the predicted CHD-risk (PROCAM) with the individual endurance capacity and heart rate variability (HRV) in a population-based sample of sedentary elderly. After stratification, in 57 men (48.1+/-9.5 yrs.) with an overall PROCAM-risk or =10% (50.8+/-5.6 points) cycle ergometries and short-term HRV analysis of time (RRMEAN, SDNN, RMSSD) and frequency domain parameters (LF, HF, TP, LF/HF) were conducted. Additionally the autonomic stress index (SI) was calculated. Nonparametric tests were used for statistical correlation analysis (Spearman rho) and group comparisons (Mann-Whitney). For endurance capacity [W/kg] (r=-0.469, pHRV analysis in risk stratification and outline the interrelation of a decreased exercise capacity and autonomic function with a raised individual 10-year cardiac risk. As an independent parameter of the vegetative regulatory state the stress index may contribute to an increased practical relevance of short-time HRV analysis.

  17. Autonomic computing enabled cooperative networked design

    CERN Document Server

    Wodczak, Michal

    2014-01-01

    This book introduces the concept of autonomic computing driven cooperative networked system design from an architectural perspective. As such it leverages and capitalises on the relevant advancements in both the realms of autonomic computing and networking by welding them closely together. In particular, a multi-faceted Autonomic Cooperative System Architectural Model is defined which incorporates the notion of Autonomic Cooperative Behaviour being orchestrated by the Autonomic Cooperative Networking Protocol of a cross-layer nature. The overall proposed solution not only advocates for the inc

  18. The effects of long-term microgravity on autonomic regulation of blood circulation in crewmembers of the international space station

    Directory of Open Access Journals (Sweden)

    Roman М. Baevsky

    2014-11-01

    Full Text Available The article presents the results of space experiment “Pneumocard”. The investigation involved all 25 Russian members of the ISS crew. The total of 226 sessions were made including 130 aboard the ISS, 50 prior to launch and 46 on return from mission. The objective was to study effects of the spaceflight factors on autonomic regulation of blood circulation, respiration and cardiac contractility during long-duration mission. The purpose was to secure new research data that would clarify our present view of adaptation mechanisms. Registered were the following signals: electrocardiogram, impedance cardiogram, seismic cardiogram, pneumotachogram, finger photoplethysmogram. A set of hard- and software was used. Autonomic regulation of blood circulation by HRV analysis was investigated. It was shown that at the onset of a space mission parasympathetic involvement in regulation increases typically with subsequent mobilization of additional functional reserve. It guided the development of a functional states mathematical model incorporating the established types of autonomic regulation. Our data evidence that the combination of HRV analysis, pre-nosology diagnosis and probabilistic estimate of the pathology risk can reinforce the medical care program in space missions.

  19. Obesity, metabolic dysfunction and cardiac fibrosis: pathophysiologic pathways, molecular mechanisms and therapeutic opportunities

    Science.gov (United States)

    Cavalera, Michele; Wang, Junhong; Frangogiannis, Nikolaos G

    2014-01-01

    Cardiac fibrosis is strongly associated with obesity and metabolic dysfunction and may contribute to the increased incidence of heart failure, atrial arrhythmias and sudden cardiac death in obese subjects. Our review discusses the evidence linking obesity and myocardial fibrosis in animal models and human patients, focusing on the fundamental pathophysiologic alterations that may trigger fibrogenic signaling, the cellular effectors of fibrosis and the molecular signals that may regulate the fibrotic response. Obesity is associated with a wide range of pathophysiologic alterations (such as pressure and volume overload, metabolic dysregulation, neurohumoral activation and systemic inflammation); their relative role in mediating cardiac fibrosis is poorly defined. Activation of fibroblasts likely plays a major role in obesity-associated fibrosis; however, inflammatory cells, cardiomyocytes and vascular cells may also contribute to fibrogenic signaling. Several molecular processes have been implicated in regulation of the fibrotic response in obesity. Activation of the Renin-Angiotensin-Aldosterone System, induction of Transforming Growth Factor-β, oxidative stress, advanced glycation end-products (AGEs), endothelin-1, Rho-kinase signaling, leptin-mediated actions and upregulation of matricellular proteins (such as thrombospondin-1) may play a role in the development of fibrosis in models of obesity and metabolic dysfunction. Moreover, experimental evidence suggests that obesity and insulin resistance profoundly affect the fibrotic and remodeling response following cardiac injury. Understanding the pathways implicated in obesity-associated fibrosis may lead to development of novel therapies to prevent heart failure and to attenuate post-infarction cardiac remodeling in obese patients. PMID:24880146

  20. The Impact of Early Life Stress on Growth and Cardiovascular Risk: A Possible Example for Autonomic Imprinting?

    Science.gov (United States)

    Buchhorn, Reiner; Meint, Sebastian; Willaschek, Christian

    2016-01-01

    Early life stress is imprinting regulatory properties with life-long consequences. We investigated heart rate variability in a group of small children with height below the third percentile, who experienced an episode of early life stress due to heart failure or intra uterine growth retardation. These children appear to develop autonomic dysfunction in later life. Compared to the healthy control group heart rate variability (HRV) is reduced on average in a group of 101 children with short stature. Low HRV correlates to groups of children born small for gestational age (SGA), children with cardiac growth failure and children with congenital syndromes, but not to those with constitutional growth delay (CGD), who had normal HRV. Reduced HRV indicated by lower RMSSD and High Frequency (HF)-Power is indicating reduced vagal activity as a sign of autonomic imbalance. It is not short stature itself, but rather the underlying diseases that are the cause for reduced HRV in children with height below the third percentile. These high risk children-allocated in the groups with an adverse autonomic imprinting in utero or infancy (SGA, congenital heart disease and congenital syndromes)-have the highest risk for 'stress diseases' such as cardiovascular disease in later life. The incidence of attention deficit disorder is remarkably high in our group of short children.

  1. Does Virtual Reality-based Kinect Dance Training Paradigm Improve Autonomic Nervous System Modulation in Individuals with Chronic Stroke?

    Science.gov (United States)

    Sampaio, Luciana Maria Malosá; Subramaniam, Savitha; Arena, Ross; Bhatt, Tanvi

    2016-10-01

    Physical inactivity and low resting heart rate variability (HRV) are associated with an increased cardiovascular deconditioning, risk of secondary stroke and mortality. Aerobic dance is a multidimensional physical activity and recent research supports its application as a valid alternative cardiovascular training. Furthermore, technological advances have facilitated the emergence of new approaches for exercise training holding promise, especially those methods that integrate rehabilitation with virtual gaming. The purpose of this study was to evaluate cardiac autonomic modulation in individuals with chronic stroke post-training using a virtual reality - based aerobic dance training paradigm. Eleven community-dwelling individuals with hemiparetic stroke [61.7( ± 4.3) years] received a virtual reality-based dance paradigm for 6 weeks using the commercially available Kinect dance video game "Just Dance 3." The training was delivered in a high-intensity tapering method with the first two weeks consisting of 5 sessions/week, next two weeks of 3 sessions/week and last two weeks of 2 sessions/week, with a total of 20 sessions. Data obtained for HRV analysis pre- and post-intervention consists of HRV for ten minutes in (1) supine resting position; (2) quiet standing. High-frequency (HF) power measures as indicators of cardiac parasympathetic activity, low-frequency (LF) power of parasympathetic-sympathetic balance and LF/HF of sympatho-vagal balance were calculated. YMCA submaximal cycle Ergometer test was used to acquire VO 2 max pre- and post-intervention. Changes in physical activity during dance training were assessed using Omran HJ-321 Tri-Axis Pedometer. After training, participants demonstrated a significant improvement in autonomic modulation in the supine position, indicating an improvement in LF=48.4 ( ± 20.1) to 40.3 ( ± 8.0), p =0.03; HF=51.5 ( ± 19) to 59.7 ( ± 8), p = 0.02 and LF/HF=1.6 ( ± 1.9) to 0.8 ( ± 0.26), p =0.05]. Post-training the

  2. Diet and exercise training reduce blood pressure and improve autonomic modulation in women with prehypertension.

    Science.gov (United States)

    Sales, Allan R K; Silva, Bruno M; Neves, Fabricia J; Rocha, Natália G; Medeiros, Renata F; Castro, Renata R T; Nóbrega, Antonio C L

    2012-09-01

    Despite mortality from heart disease has been decreasing, the decline in death in women remains lower than in men. Hypertension (HT) is a major risk factor for cardiovascular disease. Therefore, approaches to prevent or delay the onset of HT would be valuable in women. Given this background, we investigated the effect of diet and exercise training on blood pressure (BP) and autonomic modulation in women with prehypertension (PHT). Ten women with PHT (39 ± 6 years, mean ± standard deviation) and ten with normotension (NT) (35 ± 11 years) underwent diet and exercise training for 12 weeks. Autonomic modulation was assessed through heart rate (HR) and systolic BP (SBP) variability, using time and frequency domain analyses. At preintervention, women with PHT had higher SBP (PHT: 128 ± 7 vs. NT: 111 ± 6 mmHg, p 0.05). Moreover, reduction in SBP was associated with augmentation in SDNN (r = -0.46, p diet and exercise training reduced SBP in women with PHT, and this was associated with augmentation in parasympathetic and probably reduction in sympathetic cardiac modulation.

  3. Cardiac c-Kit Biology Revealed by Inducible Transgenesis.

    Science.gov (United States)

    Gude, Natalie A; Firouzi, Fareheh; Broughton, Kathleen M; Ilves, Kelli; Nguyen, Kristine P; Payne, Christina R; Sacchi, Veronica; Monsanto, Megan M; Casillas, Alexandria R; Khalafalla, Farid G; Wang, Bingyan J; Ebeid, David E; Alvarez, Roberto; Dembitsky, Walter P; Bailey, Barbara A; van Berlo, Jop; Sussman, Mark A

    2018-06-22

    Biological significance of c-Kit as a cardiac stem cell marker and role(s) of c-Kit+ cells in myocardial development or response to pathological injury remain unresolved because of varied and discrepant findings. Alternative experimental models are required to contextualize and reconcile discordant published observations of cardiac c-Kit myocardial biology and provide meaningful insights regarding clinical relevance of c-Kit signaling for translational cell therapy. The main objectives of this study are as follows: demonstrating c-Kit myocardial biology through combined studies of both human and murine cardiac cells; advancing understanding of c-Kit myocardial biology through creation and characterization of a novel, inducible transgenic c-Kit reporter mouse model that overcomes limitations inherent to knock-in reporter models; and providing perspective to reconcile disparate viewpoints on c-Kit biology in the myocardium. In vitro studies confirm a critical role for c-Kit signaling in both cardiomyocytes and cardiac stem cells. Activation of c-Kit receptor promotes cell survival and proliferation in stem cells and cardiomyocytes of either human or murine origin. For creation of the mouse model, the cloned mouse c-Kit promoter drives Histone2B-EGFP (enhanced green fluorescent protein; H2BEGFP) expression in a doxycycline-inducible transgenic reporter line. The combination of c-Kit transgenesis coupled to H2BEGFP readout provides sensitive, specific, inducible, and persistent tracking of c-Kit promoter activation. Tagging efficiency for EGFP+/c-Kit+ cells is similar between our transgenic versus a c-Kit knock-in mouse line, but frequency of c-Kit+ cells in cardiac tissue from the knock-in model is 55% lower than that from our transgenic line. The c-Kit transgenic reporter model reveals intimate association of c-Kit expression with adult myocardial biology. Both cardiac stem cells and a subpopulation of cardiomyocytes express c-Kit in uninjured adult heart

  4. Cardiac regeneration therapy: connections to cardiac physiology.

    Science.gov (United States)

    Takehara, Naofumi; Matsubara, Hiroaki

    2011-12-01

    Without heart transplantation, a large number of patients with failing hearts worldwide face poor outcomes. By means of cardiomyocyte regeneration, cardiac regeneration therapy is emerging with great promise as a means for restoring loss of cardiac function. However, the limited success of clinical trials using bone marrow-derived cells and myoblasts with heterogeneous constituents, transplanted at a wide range of cell doses, has led to disagreement on the efficacy of cell therapy. It is therefore essential to reevaluate the evidence for the efficacy of cell-based cardiac regeneration therapy, focusing on targets, materials, and methodologies. Meanwhile, the revolutionary innovation of cardiac regeneration therapy is sorely needed to help the millions of people who suffer heart failure from acquired loss of cardiomyocytes. Cardiac regeneration has been used only in limited species or as a developing process in the rodent heart; now, the possibility of cardiomyocyte turnover in the human heart is being revisited. In the pursuit of this concept, the use of cardiac stem/progenitor stem cells in the cardiac niche must be focused to usher in a second era of cardiac regeneration therapy for the severely injured heart. In addition, tissue engineering and cellular reprogramming will advance the next era of treatment that will enable current cell-based therapy to progress to "real" cardiac regeneration therapy. Although many barriers remain, the prevention of refractory heart failure through cardiac regeneration is now becoming a realistic possibility.

  5. Hyperbaric environment up-regulates CD15s expression on leukocytes, down-regulates CD77 expression on renal cells and up-regulates CD34 expression on pulmonary and cardiac cells in rat

    Directory of Open Access Journals (Sweden)

    Danka Đevenica

    2016-08-01

    Full Text Available Objective(s: The aim of this study was to estimate effects of hyperbaric (HB treatment by determination of CD15s and CD11b leukocyte proinflammatory markers expression.  In addition, this study describes changes in CD77 and CD34 expression on rat endothelial cells in renal, pulmonary and cardiac tissue following exposure to hyperbaric pressure. Materials and Methods:Expression of CD11b and CD15s on leukocytes, as well as CD77 and CD34 expression on endothelial cells in cell suspensions of renal, pulmonary and cardiac tissue in rats after hyperbaric treatment and in control rats were determined by flow cytometry. Results: Hyperbaric treatment significantly increased percentage of leukocytes expressing CD15s+CD11b- (from 1.71±1.11 to 23.42±2.85, P

  6. Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity

    Science.gov (United States)

    Ryu, Yuhee; Jin, Li; Kee, Hae Jin; Piao, Zhe Hao; Cho, Jae Yeong; Kim, Gwi Ran; Choi, Sin Young; Lin, Ming Quan; Jeong, Myung Ho

    2016-01-01

    Gallic acid, a type of phenolic acid, has been shown to have beneficial effects in inflammation, vascular calcification, and metabolic diseases. The present study was aimed at determining the effect and regulatory mechanism of gallic acid in cardiac hypertrophy and fibrosis. Cardiac hypertrophy was induced by isoproterenol (ISP) in mice and primary neonatal cardiomyocytes. Gallic acid pretreatment attenuated concentric cardiac hypertrophy. It downregulated the expression of atrial natriuretic peptide, brain natriuretic peptide, and beta-myosin heavy chain in vivo and in vitro. Moreover, it prevented interstitial collagen deposition and expression of fibrosis-associated genes. Upregulation of collagen type I by Smad3 overexpression was observed in cardiac myoblast H9c2 cells but not in cardiac fibroblasts. Gallic acid reduced the DNA binding activity of phosphorylated Smad3 in Smad binding sites of collagen type I promoter in rat cardiac fibroblasts. Furthermore, it decreased the ISP-induced phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal regulated kinase (ERK) protein in mice. JNK2 overexpression reduced collagen type I and Smad3 expression as well as GATA4 expression in H9c2 cells and cardiac fibroblasts. Gallic acid might be a novel therapeutic agent for the prevention of cardiac hypertrophy and fibrosis by regulating the JNK2 and Smad3 signaling pathway. PMID:27703224

  7. Testosterone-mediated upregulation of delayed rectifier potassium channel in cardiomyocytes causes abbreviation of QT intervals in rats.

    Science.gov (United States)

    Masuda, Kimiko; Takanari, Hiroki; Morishima, Masaki; Ma, FangFang; Wang, Yan; Takahashi, Naohiko; Ono, Katsushige

    2018-01-13

    Men have shorter rate-corrected QT intervals (QTc) than women, especially at the period of adolescence or later. The aim of this study was to elucidate the long-term effects of testosterone on cardiac excitability parameters including electrocardiogram (ECG) and potassium channel current. Testosterone shortened QT intervals in ECG in castrated male rats, not immediately after, but on day 2 or later. Expression of Kv7.1 (KCNQ1) mRNA was significantly upregulated by testosterone in cardiomyocytes of male and female rats. Short-term application of testosterone was without effect on delayed rectifier potassium channel current (I Ks ), whereas I Ks was significantly increased in cardiomyocytes treated with dihydrotestosterone for 24 h, which was mimicked by isoproterenol (24 h). Gene-selective inhibitors of a transcription factor SP1, mithramycin, abolished the effects of testosterone on Kv7.1. Testosterone increases Kv7.1-I Ks possibly through a pathway related to a transcription factor SP1, suggesting a genomic effect of testosterone as an active factor for cardiac excitability.

  8. Clonidine, an alpha2-receptor agonist, diminishes GABAergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus.

    Science.gov (United States)

    Philbin, Kerry E; Bateman, Ryan J; Mendelowitz, David

    2010-08-06

    In hypertension, there is an autonomic imbalance in which sympathetic activity dominates over parasympathetic control. Parasympathetic activity to the heart originates from cardiac vagal neurons located in the nucleus ambiguus. Presympathetic neurons that project to sympathetic neurons in the spinal cord are located in the ventral brainstem in close proximity to cardiac vagal neurons, and many of these presympathetic neurons are catecholaminergic. In addition to their projection to the spinal cord, many of these presympathetic neurons have axon collaterals that arborize into neighboring cardiorespiratory locations and likely release norepinephrine onto nearby neurons. Activation of alpha(2)-adrenergic receptors in the central nervous system evokes a diverse range of physiological effects, including reducing blood pressure. This study tests whether clonidine, an alpha(2)-adrenergic receptor agonist, alters excitatory glutamatergic, and/or inhibitory GABAergic or glycinergic synaptic neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Cardiac vagal neurons were identified in an in vitro brainstem slice preparation, and synaptic events were recording using whole cell voltage clamp methodologies. Clonidine significantly inhibited GABAergic neurotransmission but had no effect on glycinergic or glutamatergic pathways to cardiac vagal neurons. This diminished inhibitory GABAergic neurotransmission to cardiac vagal neurons would increase parasympathetic activity to the heart, decreasing heart rate and blood pressure. The results presented here provide a cellular substrate for the clinical use of clonidine as a treatment for hypertension as well as a role in alleviating posttraumatic stress disorder by evoking an increase in parasympathetic cardiac vagal activity, and a decrease in heart rate and blood pressure. Copyright 2010 Elsevier B.V. All rights reserved.

  9. The electrophysiological effects of nicotinic and electrical stimulation of intrinsic cardiac ganglia in the absence of extrinsic autonomic nerves in the rabbit heart.

    Science.gov (United States)

    Allen, Emily; Coote, John H; Grubb, Blair D; Batten, Trevor Fc; Pauza, Dainius H; Ng, G André; Brack, Kieran E

    2018-05-22

    The intrinsic cardiac nervous system (ICNS) is a rich network of cardiac nerves that converge to form distinct ganglia and extend across the heart and is capable of influencing cardiac function. To provide a picture of the neurotransmitter/neuromodulator profile of the rabbit ICNS and determine the action of spatially divergent ganglia on cardiac electrophysiology. Nicotinic or electrical stimulation was applied at discrete sites of the intrinsic cardiac nerve plexus in the Langendorff perfused rabbit heart. Functional effects on sinus rate and atrioventricular conduction were measured. Immunohistochemistry for choline acetyltransferase (ChAT), tyrosine hydroxylase (TH) and/or neuronal nitric oxide synthase (nNOS) was performed on whole-mount preparations. Stimulation within all ganglia produced either bradycardia, tachycardia or a biphasic brady-tachycardia. Electrical stimulation of the right atrial (RA) and right neuronal cluster (RNC) regions produced the greatest chronotropic responses. Significant prolongation of atrioventricular conduction (AVC) was predominant at the pulmonary vein-caudal vein region (PVCV). Neurons immunoreactive (IR) only for ChAT, or TH or nNOS were consistently located within the limits of the hilum and at the roots of the right cranial and right pulmonary veins. ChAT-IR neurons were most abundant (1946±668 neurons). Neurons IR solely for nNOS were distributed within ganglia. Stimulation of intrinsic ganglia, shown to be of phenotypic complexity but predominantly of cholinergic nature, indicates that clusters of neurons are capable of independent selective effects on cardiac electrophysiology, therefore providing a potential therapeutic target for the prevention and treatment of cardiac disease. Copyright © 2018. Published by Elsevier Inc.

  10. Cardiac impairment evaluated by transesophageal echocardiography and invasive measurements in rats undergoing sinoaortic denervation.

    Directory of Open Access Journals (Sweden)

    Raquel A Sirvente

    Full Text Available BACKGROUND: Sympathetic hyperactivity may be related to left ventricular (LV dysfunction and baro- and chemoreflex impairment in hypertension. However, cardiac function, regarding the association of hypertension and baroreflex dysfunction, has not been previously evaluated by transesophageal echocardiography (TEE using intracardiac echocardiographic catheter. METHODS AND RESULTS: We evaluated exercise tests, baroreflex sensitivity and cardiovascular autonomic control, cardiac function, and biventricular invasive pressures in rats 10 weeks after sinoaortic denervation (SAD. The rats (n = 32 were divided into 4 groups: 16 Wistar (W with (n = 8 or without SAD (n = 8 and 16 spontaneously hypertensive rats (SHR with (n = 8 or without SAD (SHRSAD (n = 8. Blood pressure (BP and heart rate (HR did not change between the groups with or without SAD; however, compared to W, SHR groups had higher BP levels and BP variability was increased. Exercise testing showed that SHR had better functional capacity compared to SAD and SHRSAD. Echocardiography showed left ventricular (LV concentric hypertrophy; segmental systolic and diastolic biventricular dysfunction; indirect signals of pulmonary arterial hypertension, mostly evident in SHRSAD. The end-diastolic right ventricular (RV pressure increased in all groups compared to W, and the end-diastolic LV pressure increased in SHR and SHRSAD groups compared to W, and in SHRSAD compared to SAD. CONCLUSIONS: Our results suggest that baroreflex dysfunction impairs cardiac function, and increases pulmonary artery pressure, supporting a role for baroreflex dysfunction in the pathogenesis of hypertensive cardiac disease. Moreover, TEE is a useful and feasible noninvasive technique that allows the assessment of cardiac function, particularly RV indices in this model of cardiac disease.

  11. Insights into the background of autonomic medicine.

    Science.gov (United States)

    Laranjo, Sérgio; Geraldes, Vera; Oliveira, Mário; Rocha, Isabel

    2017-10-01

    Knowledge of the physiology underlying the autonomic nervous system is pivotal for understanding autonomic dysfunction in clinical practice. Autonomic dysfunction may result from primary modifications of the autonomic nervous system or be secondary to a wide range of diseases that cause severe morbidity and mortality. Together with a detailed history and physical examination, laboratory assessment of autonomic function is essential for the analysis of various clinical conditions and the establishment of effective, personalized and precise therapeutic schemes. This review summarizes the main aspects of autonomic medicine that constitute the background of cardiovascular autonomic dysfunction. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Calculation of cardiac pressures using left ventricular ejection fraction (LVEF) derived from radionuclide angiography

    International Nuclear Information System (INIS)

    Hommer, E.

    1981-01-01

    An attempt has been made to develop formulas to determine cardiac pressures in an undisturbed flow in patients without valvular or shunt diseases. These are based entirely on the results of left ventricular ejection fraction rates, permitting pressure analysis of several compartments at the same tine. According to BORER et al. they also enable determination of left ventricular 'Functional Reserve' after bycycle exercise as well as left ventricular 'Relaxation Reserve'. They support the views of NYHA in determining the grades of cardiac insufficiency proving the system- and low-pressure participation. A single formula for pulmonary flow can determine the pulmonary arterial pressure. The left ventricular enddiastolic pressure can also be exclusively calculated by values of left ventricular functions, thus both formulas may be used in disorders of the mitral valves. The possibility to calculate pressures of all the compartments of the heart from left ventricular ejection rate shows, that in undisturbed flow global heart function depends on left ventricular function. Therefore the mutual dependence of these formulas presents an intercompartimental pressure regulation of the heart through pulmonary flow and pulmonary vascular pressure, which leaves an aspect of autonomous cardiac regulation open to discussion. (orig.) [de

  13. Chronic obstructive pulmonary disease severity and its association with obstructive sleep apnea syndrome: impact on cardiac autonomic modulation and functional capacity

    Directory of Open Access Journals (Sweden)

    Zangrando KTL

    2018-04-01

    Full Text Available Katiany Thays Lopes Zangrando,1 Renata Trimer,2 Luiz Carlos Soares de Carvalho Jr,1 Guilherme Peixoto Tinoco Arêas,1 Flávia Cristina Rossi Caruso,1 Ramona Cabiddu,1 Meliza Goi Roscani,3 Fabíola Paula Galhardo Rizzatti,3 Audrey Borghi-Silva1 1Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of São Carlos, São Carlos, São Paulo, Brazil; 2Physical Education and Health Department, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil; 3Medicine Department, Federal University of São Carlos, São Carlos, São Paulo, Brazil Background: The study was conducted to determine the impact of chronic obstructive pulmonary disease (COPD in association with obstructive sleep apnea syndrome (OSAS on cardiac autonomic control and functional capacity. Subjects and methods: The study was a cross-sectional prospective controlled clinical study. Heart rate variability indices of 24 COPD (n = 12 and COPD+OSAS (n = 12 patients were evaluated and compared by electrocardiographic recordings acquired during rest, active postural maneuver (APM, respiratory sinus arrhythmia maneuver (RSA-m, and the 6-minute walk test (6MWT. Results: The COPD group presented higher parasympathetic modulation during APM when compared to the COPD+OSAS group (P = 0.02. The COPD+OSAS group presented higher sympathetic modulation during RSA-m when compared to the COPD group (P = 0.00. The performance during 6MWT was similarly impaired in both groups, despite the greater severity of the COPD group. Conclusion: Subjects with COPD+OSAS present marked sympathetic modulation, and the presence of OSAS in COPD subjects has a negative impact on functional capacity regardless of the severity of lung disease. Keywords: COPD, OSAS, COPD+OSAS, functional capacity

  14. Differential effects of high-fat and high-carbohydrate isoenergetic meals on cardiac autonomic nervous system activity in lean and obese women.

    Science.gov (United States)

    Tentolouris, N; Tsigos, C; Perea, D; Koukou, E; Kyriaki, D; Kitsou, E; Daskas, S; Daifotis, Z; Makrilakis, K; Raptis, S A; Katsilambros, N

    2003-11-01

    Food ingestion can influence autonomic nervous system activity. This study compares the effects of 2 different isoenergetic meals on sympathetic nervous system (SNS) activity, assessed by heart rate variability (HRV) and plasma norepinephrine (NE) levels, in lean and obese women. Fifteen lean and 15 obese healthy women were examined on 2 occasions: after a carbohydrate (CHO)-rich and after a fat-rich test meal. Measurements of blood pressure, heart rate, resting energy expenditure, plasma glucose, lipids, insulin, leptin, and NE, as well as spectral analysis of the HRV, were performed at baseline and every 1 hour for 3 hours after meals. At baseline, obese women had higher SNS activity than lean controls (higher values of low-to-high frequency ratio [LF/HF], 1.52 +/- 0.31 v 0.78 +/- 0.13, P=.04; and plasma NE levels, 405.6 +/- 197.9 v 240.5 +/- 95.8 pg/mL, Pmeal a greater increase in LF/HF and in plasma NE levels was observed in lean, compared to obese women (1.21 +/- 0.6 v 0.32 +/- 0.06, P=.04; and 102.9 +/- 35.4 v 38.7 +/- 12.3 pg/mL, P=.01, respectively), while no differences were observed after the fat-rich meal. Meal-induced thermogenesis was higher after the CHO-rich as compared to the fat-rich meal and was comparable between lean and obese women. Changes in HRV were not associated with the thermogenic response to the test meals. In conclusion, consumption of a CHO-rich meal causes greater cardiac SNS activation in lean than in obese women, while fat ingestion does not result in any appreciable change in either group. SNS activation does not appear to influence the thermic effect of the food in either lean or obese women.

  15. High-fat feeding in cardiomyocyte-restricted PPARdelta knockout mice leads to cardiac overexpression of lipid metabolic genes but fails to rescue cardiac phenotypes.

    Science.gov (United States)

    Li, Yuquan; Cheng, Lihong; Qin, Qianhong; Liu, Jian; Lo, Woo-kuen; Brako, Lowrence A; Yang, Qinglin

    2009-10-01

    Peroxisome proliferator-activated receptor delta (PPARdelta) is an essential determinant of basal myocardial fatty acid oxidation (FAO) and bioenergetics. We wished to determine whether increased lipid loading affects the PPARdelta deficient heart in transcriptional regulation of FAO and in the development of cardiac pathology. Cardiomyocyte-restricted PPARdelta knockout (CR-PPARdelta(-/-)) and control (alpha-MyHC-Cre) mice were subjected to 48 h of fasting and to a long-term maintenance on a (28 weeks) high-fat diet (HFD). The expression of key FAO proteins in heart was examined. Serum lipid profiles, cardiac pathology, and changes of various transduction signaling pathways were also examined. Mice subjected to fasting exhibited upregulated transcript expression of FAO genes in the CR-PPARdelta(-/-) hearts. Moreover, long-term HFD in CR-PPARdelta(-/-) mice induced a strikingly greater transcriptional response. After HFD, genes encoding key FAO enzymes were expressed remarkably more in CR-PPARdelta(-/-) hearts than in those of control mice. Despite the marked rise of FAO gene expression, corresponding protein expression remained low in the CR-PPARdelta(-/-) heart, accompanied by abnormalities in sarcomere structures and mitochondria that were similar to those of CR-PPARdelta(-/-) hearts with regular chow feeding. The CR-PPARdelta(-/-) mice displayed increased expression of PPARgamma co-activator-1alpha (PGC-1alpha) and PPARalpha in the heart with deactivated Akt and p42/44 MAPK signaling in response to HFD. We conclude that PPARdelta is an essential determinant of myocardial FAO. Increased lipid intake activates cardiac expression of FAO genes via PPARalpha/PGC-1alpha pathway, albeit it is not sufficient to improve cardiac pathology due to PPARdelta deficiency.

  16. Preparing hearts and minds: cardiac slowing and a cortical inhibitory network.

    Science.gov (United States)

    Jennings, J R; van der Molen, M W; Tanase, C

    2009-11-01

    Preparing for a cued, speeded response induces a set of physiological changes. A review of the psychophysiology of preparation suggested that inhibition of action was an important process among the constellation of changes constituting attentive preparation. The current experiment combined event-related functional magnetic resonance imaging and cardiac inter-beat interval measures in an experiment that compared preparing for a response, watching stimuli without responding, and responding in the absence of preparation. Ten college-aged participants were tested in an initial psychophysiological experiment followed by two scanning sessions during which reverse spiral imaging was performed concurrent with inter-beat interval measurement. Two analytic approaches were used to confirm blood oxygenation level dependent responses during preparation, and these converged to show inferior prefrontal and related subthalamic nuclei activity in the context of other known changes related to brain attentional networks. Subthalamic nuclei changes were related to the depth of preparatory cardiac deceleration. This pattern of findings suggests that preparation involves the activation of a complex inhibitory neural network implicating brain and autonomic nervous systems.

  17. Parental role in decision making about pediatric cardiac transplantation: familial and ethical considerations.

    Science.gov (United States)

    Higgins, S S

    2001-10-01

    Parents of children with complex or terminal heart conditions often face agonizing decisions about cardiac transplantation. There are differences in the level of involvement that parents prefer when making such decisions. The purpose of this study was to identify and describe parents' preferences for their roles in decisions related to cardiac transplantation. A prospective ethnographic method was used to study 24 parents of 15 children prior to their decision of accepting or rejecting the transplant option for their children. Findings revealed that the style of parent decision making ranged from a desire to make an independent, autonomous choice to a wish for an authoritarian, paternalistic choice. Nurses and physicians can best support families in this situation, showing sensitivity to the steps that parents use to make their decisions. An ethical model of decision making is proposed that includes respect for differences in beliefs and values of all persons involved in the transplantation discussion. Copyright 2001 by W.B. Saunders Company

  18. Autonomic Nervous System Disorders

    Science.gov (United States)

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  19. Autonomous authority in relation to the staff regulations of autonomous parliaments

    Directory of Open Access Journals (Sweden)

    Rafael Cano Silva

    2018-04-01

    Full Text Available The statutes of Autonomous Parliaments are parliamentary administrative norms approved by each legislative chamber by virtue of their parliamentary autonomy. However, the parliamentary autonomy of each autonomous parliament does not have the same normative aspect for these purposes. It is studied in this article as despite having the Constitution as a common element, it is essential the special attribution that each autonomous chamber has and that the jurisprudence, both of the Constitutional Court, and that of the Supreme Court, has put in value, question that is included in the section related to the jurisprudence. In conclusion, the bureaucratic organization, in what refers to personal media, may be substantially different in each one of the legislative assemblies, as analyzed in the conclusions of this study.

  20. Sleep habits, alertness, cortisol levels, and cardiac autonomic activity in short-distance bus drivers: differences between morning and afternoon shifts.

    Science.gov (United States)

    Diez, Joaquín J; Vigo, Daniel E; Lloret, Santiago Pérez; Rigters, Stephanie; Role, Noelia; Cardinali, Daniel P; Chada, Daniel Pérez

    2011-07-01

    To evaluate sleep, alertness, salivary cortisol levels, and autonomic activity in the afternoon and morning shifts of a sample of short-distance bus drivers. A sample of 47 bus drivers was evaluated. Data regarding subjects and working characteristics, alertness (psychomotor vigilance task), sleep habits (Pittsburgh Sleep Quality Index, Epworth Sleepiness Scale, Actigraphy), endocrine stress response (salivary cortisol), and autonomic activity (heart-rate variability) were collected. Sleep restriction was highly prevalent. Drivers in the morning shift slept 1 hour less than those in the afternoon shift, showed lower reaction time performance, a flattening of cortisol morning-evening difference, and higher overweight prevalence. The differences found between morning and afternoon shifts point out to the need of the implementation of educational strategies to compensate the sleep loss associated with an early work schedule.

  1. From neurovascular coupling to neurovascular cascade: a study on neural, autonomic and vascular transients in attention

    International Nuclear Information System (INIS)

    Bari, V; Calcagnile, P; Molteni, E; Cerutti, S; Bianchi, A M; Re, R; Contini, D; Caffini, M; Torricelli, A; Cubeddu, R; Spinelli, L

    2012-01-01

    Mental processes bring about neural, vascular and autonomic changes in the brain cortex. Due to the different nature of these modifications, their onsets show no synchrony and time dynamics is often strongly dissimilar. After acquiring data from a group of 16 subjects, we estimated temporal correlation between task and signals in order to assess possible influences induced by an attentive task on electroencephalographic (EEG), heart rate variability (HRV), oxy- and deoxy-haemoglobin concentration signals. We also investigated correlations and time delays between couples of different biological signals. This allowed for the isolation of a subgroup of subjects showing similar tracks. Cardiac frequency and deoxy-haemoglobin signals displayed a strong positive correlation with the task design, while EEG alpha rhythm and oxygenation showed a negative correlation. Neural electrical response was nearly instantaneous with respect to the task progression, and autonomic response showed a mean delay of about 15 s and a slower hemodynamic response (mean delay above 20 s) was finally induced. Globally, the task elicited a cascade of responses, in which delays can be quantified. (paper)

  2. Halogenated anaesthetics and cardiac protection in cardiac and non-cardiac anaesthesia

    Directory of Open Access Journals (Sweden)

    Landoni Giovanni

    2009-01-01

    Full Text Available Volatile anaesthetic agents have direct protective properties against ischemic myocardial damage. The implementation of these properties during clinical anaesthesia can provide an additional tool in the treatment or prevention, or both, of ischemic cardiac dysfunction in the perioperative period. A recent meta-analysis showed that desflurane and sevoflurane reduce postoperative mortality and incidence of myocardial infarction following cardiac surgery, with significant advantages in terms of postoperative cardiac troponin release, need for inotrope support, time on mechanical ventilation, intensive care unit and overall hospital stay. Multicentre, randomised clinical trials had previously demonstrated that the use of desflurane can reduce the postoperative release of cardiac troponin I, the need for inotropic support, and the number of patients requiring prolonged hospitalisation following coronary artery bypass graft surgery either with and without cardiopulmonary bypass. The American College of Cardiology/American Heart Association Guidelines recommend volatile anaesthetic agents during non-cardiac surgery for the maintenance of general anaesthesia in patients at risk for myocardial infarction. Nonetheless, e vidence in non-coronary surgical settings is contradictory and will be reviewed in this paper together with the mechanisms of cardiac protection by volatile agents.

  3. Hypertrophy of Neurons Within Cardiac Ganglia in Human, Canine, and Rat Heart Failure: The Potential Role of Nerve Growth Factor

    OpenAIRE

    Singh, Sanjay; Sayers, Scott; Walter, James S.; Thomas, Donald; Dieter, Robert S.; Nee, Lisa M.; Wurster, Robert D.

    2013-01-01

    Background Autonomic imbalances including parasympathetic withdrawal and sympathetic overactivity are cardinal features of heart failure regardless of etiology; however, mechanisms underlying these imbalances remain unknown. Animal model studies of heart and visceral organ hypertrophy predict that nerve growth factor levels should be elevated in heart failure; whether this is so in human heart failure, though, remains unclear. We tested the hypotheses that neurons in cardiac ganglia are hyper...

  4. Formal Verification of Autonomous Vehicle Platooning

    OpenAIRE

    Kamali, Maryam; Dennis, Louise A.; McAree, Owen; Fisher, Michael; Veres, Sandor M.

    2016-01-01

    The coordination of multiple autonomous vehicles into convoys or platoons is expected on our highways in the near future. However, before such platoons can be deployed, the new autonomous behaviors of the vehicles in these platoons must be certified. An appropriate representation for vehicle platooning is as a multi-agent system in which each agent captures the "autonomous decisions" carried out by each vehicle. In order to ensure that these autonomous decision-making agents in vehicle platoo...

  5. Autonomous Landing on Moving Platforms

    KAUST Repository

    Mendoza Chavez, Gilberto

    2016-08-01

    This thesis investigates autonomous landing of a micro air vehicle (MAV) on a nonstationary ground platform. Unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs) are becoming every day more ubiquitous. Nonetheless, many applications still require specialized human pilots or supervisors. Current research is focusing on augmenting the scope of tasks that these vehicles are able to accomplish autonomously. Precise autonomous landing on moving platforms is essential for self-deployment and recovery of MAVs, but it remains a challenging task for both autonomous and piloted vehicles. Model Predictive Control (MPC) is a widely used and effective scheme to control constrained systems. One of its variants, output-feedback tube-based MPC, ensures robust stability for systems with bounded disturbances under system state reconstruction. This thesis proposes a MAV control strategy based on this variant of MPC to perform rapid and precise autonomous landing on moving targets whose nominal (uncommitted) trajectory and velocity are slowly varying. The proposed approach is demonstrated on an experimental setup.

  6. Monosodium glutamate neonatal treatment induces cardiovascular autonomic function changes in rodents

    Directory of Open Access Journals (Sweden)

    Signorá Peres Konrad

    2012-10-01

    Full Text Available OBJECTIVES: The aim of this study was to evaluate cardiovascular autonomic function in a rodent obesity model induced by monosodium glutamate injections during the first seven days of life. METHOD: The animals were assigned to control (control, n = 10 and monosodium glutamate (monosodium glutamate, n = 13 groups. Thirty-three weeks after birth, arterial and venous catheters were implanted for arterial pressure measurements, drug administration, and blood sampling. Baroreflex sensitivity was evaluated according to the tachycardic and bradycardic responses induced by sodium nitroprusside and phenylephrine infusion, respectively. Sympathetic and vagal effects were determined by administering methylatropine and propranolol. RESULTS: Body weight, Lee index, and epididymal white adipose tissue values were higher in the monosodium glutamate group in comparison to the control group. The monosodium glutamate-treated rats displayed insulin resistance, as shown by a reduced glucose/insulin index (-62.5%, an increased area under the curve of total insulin secretion during glucose overload (39.3%, and basal hyperinsulinemia. The mean arterial pressure values were higher in the monosodium glutamate rats, whereas heart rate variability (>7 times, bradycardic responses (>4 times, and vagal (~38% and sympathetic effects (~36% were reduced as compared to the control group. CONCLUSION: Our results suggest that obesity induced by neonatal monosodium glutamate treatment impairs cardiac autonomic function and most likely contributes to increased arterial pressure and insulin resistance.

  7. Cardiac Coherence, Self-Regulation, Autonomic Stability and Psychosocial Well-being

    Directory of Open Access Journals (Sweden)

    Rollin eMcCraty

    2014-09-01

    Full Text Available The ability to alter one’s emotional responses is central to overall well-being and to effectively meeting the demands of life. One of the chief symptoms of events such as trauma, that overwhelm our capacities to successfully handle and adapt to them, is a shift in our internal baseline reference such that there ensues a repetitive activation of the traumatic event. This can result in high vigilance and over-sensitivity to environmental signals which are reflected in inappropriate emotional responses and autonomic nervous system dynamics. In this article we discuss the perspective that one’s ability to self-regulate the quality of feeling and emotion of one’s moment-to-moment experience is intimately tied to our physiology, and the reciprocal interactions among physiological, cognitive and emotional systems. These interactions form the basis of information processing networks in which communication between systems occurs through the generation and transmission of rhythms and patterns of activity. Our discussion emphasizes the communication pathways between the heart and brain, as well as how these are related to cognitive and emotional function and self-regulatory capacity. We discuss the hypothesis that self-induced positive emotions increase the coherence in bodily processes, which is reflected in the pattern of the heart’s rhythm. This shift in the heart rhythm in turn plays an important role in facilitating higher cognitive functions, creating emotional stability and facilitating states of calm. Over time, this establishes a new inner-baseline reference, a type of implicit memory that organizes perception, feelings and behavior. Without establishing a new baseline reference, people are at risk of getting stuck in familiar, yet unhealthy emotional and behavioral patterns and living their lives through the automatic filters of past familiar or traumatic experience.

  8. Maternal Diet-Induced Obesity Programmes Cardiac Dysfunction in Male Mice Independently of Post-Weaning Diet.

    Science.gov (United States)

    Loche, Elena; Blackmore, Heather L; Carpenter, Asha A M; Beeson, Jessica H; Pinnock, Adele; Ashmore, Thomas J; Aiken, Catherine E; de Almeida-Faria, Juliana; Schoonejans, Josca; Giussani, Dino A; Fernandez-Twinn, Denise S; Ozanne, Susan E

    2018-04-04

    Obesity during pregnancy increases risk of cardiovascular disease (CVD) in the offspring and individuals exposed to over-nutrition during fetal life are likely to be exposed to a calorie-rich environment postnatally. Here, we established the consequences of combined exposure to a maternal and post-weaning obesogenic diet on offspring cardiac structure and function using an established mouse model of maternal diet-induced obesity. The impact of the maternal and postnatal environment on the offspring metabolic profile, arterial blood pressure, cardiac structure and function was assessed in 8-week old C57BL/6 male mice. Measurement of cardiomyocyte cell area, the transcriptional re-activation of cardiac fetal genes as well as genes involved in the regulation of contractile function and matrix remodelling in the adult heart were determined as potential mediators of effects on cardiac function. In the adult offspring: a post-weaning obesogenic diet coupled with exposure to maternal obesity increased serum insulin (P<0.0001) and leptin levels (P<0.0001); maternal obesity (P=0.001) and a post-weaning obesogenic diet (P=0.002) increased absolute heart weight; maternal obesity (P=0.01) and offspring obesity (P=0.01) caused cardiac dysfunction but effects were not additive; cardiac dysfunction resulting from maternal obesity was associated with re-expression of cardiac fetal genes (Myh7:Myh6 ratio; P=0.0004), however these genes were not affected by offspring diet; maternal obesity (P=0.02) and offspring obesity (P=0.05) caused hypertension and effects were additive. Maternal diet-induced obesity and offspring obesity independently promote cardiac dysfunction and hypertension in adult male progeny. Exposure to maternal obesity alone programmed cardiac dysfunction, associated with hallmarks of pathological left ventricular hypertrophy, including increased cardiomyocyte area, upregulation of fetal genes and remodelling of cardiac structure. These data highlight that the

  9. Cardiac Autonomic Modulations and Psychological Correlates in the Yukon Arctic Ultra: The Longest and the Coldest Ultramarathon

    Directory of Open Access Journals (Sweden)

    Lea C. Rundfeldt

    2018-02-01

    Full Text Available Studies on human physical performance in extreme environments have effectively approached the investigation of adaptation mechanisms and their physiological limits. As scientific interest in the interplay between physiological and psychological aspects of performance is growing, we aimed to investigate cardiac autonomic control, by means of heart rate variability, and psychological correlates, in competitors of a subarctic ultramarathon, taking place over a 690 km course (temperatures between +5 and −47°C. At baseline (PRE, after 277 km (D1, 383 km (D2, and post-race (POST, 690 km, heart rate (HR recordings (supine, 15 min, psychometric measurements (Profile of Mood States/POMS, Borg fatigue, and Karolinska Sleepiness Scale scores both upon arrival and departure were obtained in 16 competitors (12 men, 4 women, 38.6 ± 9.5 years. As not all participants reached the finish line, comparison of finishers (FIN, n = 10 and non-finishers (NON, n = 6, allowed differential assessment of performance. Resting HR increased overall significantly at D1 (FIN +15.9; NON +14.0 bpm, due to a significant decrease in parasympathetic drive. This decrease was in FIN only partially recovered toward POST. In FIN only, baseline HR was negatively correlated with mean velocity [r −0.63 (P.04] and parasympathetic drive [pNN50+: r −0.67 (P.03], a lower HR and a higher vagal tone predicting a better performance. Moreover, in FIN, a persistent increase of the long-term self-similarity coefficient, assessed by detrended fluctuation analysis (DFAα2, was retrieved, possibly due to higher alertness. As for psychometrics, at D1, POMS Vigor decreased (FIN: −7.0; NON: −3.8, while Fatigue augmented (FIN: +6.9; NON: +5.0. Sleepiness increased only in NON, while Borg scales did not exhibit changes. Baseline comparison of mood states with normative data for athletes displayed significantly higher positive mood in our athletes. Results show that: the race conditions induced

  10. Elimination of remaining undifferentiated induced pluripotent stem cells in the process of human cardiac cell sheet fabrication using a methionine-free culture condition.

    Science.gov (United States)

    Matsuura, Katsuhisa; Kodama, Fumiko; Sugiyama, Kasumi; Shimizu, Tatsuya; Hagiwara, Nobuhisa; Okano, Teruo

    2015-03-01

    Cardiac tissue engineering is a promising method for regenerative medicine. Although we have developed human cardiac cell sheets by integration of cell sheet-based tissue engineering and scalable bioreactor culture, the risk of contamination by induced pluripotent stem (iPS) cells in cardiac cell sheets remains unresolved. In the present study, we established a novel culture method to fabricate human cardiac cell sheets with a decreased risk of iPS cell contamination while maintaining viabilities of iPS cell-derived cells, including cardiomyocytes and fibroblasts, using a methionine-free culture condition. When cultured in the methionine-free condition, human iPS cells did not survive without feeder cells and could not proliferate or form colonies on feeder cells or in coculture with cells for cardiac cell sheet fabrication. When iPS cell-derived cells after the cardiac differentiation were transiently cultured in the methionine-free condition, gene expression of OCT3/4 and NANOG was downregulated significantly compared with that in the standard culture condition. Furthermore, in fabricated cardiac cell sheets, spontaneous and synchronous beating was observed in the whole area while maintaining or upregulating the expression of various cardiac and extracellular matrix genes. These findings suggest that human iPS cells are methionine dependent and a methionine-free culture condition for cardiac cell sheet fabrication might reduce the risk of iPS cell contamination.

  11. Effects of an isotonic beverage on autonomic regulation during and after exercise

    Directory of Open Access Journals (Sweden)

    Moreno Isadora Lessa

    2013-01-01

    Full Text Available Abstract Background With prolonged physical activity, it is important to maintain adequate fluid balance. The impact of consuming isotonic drinks during and after exercise on the autonomic regulation of cardiac function is unclear. This study aimed to analyze the effects of consuming an isotonic drink on heart rate variability (HRV during and after prolonged exercise. Methods Thirty-one young males (21.55 ± 1.89 yr performed three different protocols (48 h interval between each stage: I maximal exercise test to determine the load for the protocols; II Control protocol (CP and; III. Experimental protocol (EP. The protocols consisted of 10 min at rest with the subject in the supine position, 90 min of treadmill exercise (60% of VO2 peak and 60 min of rest placed in the dorsal decubitus position. No rehydration beverage consumption was allowed during CP. During EP, however, the subjects were given an isotonic solution (Gatorade, Brazil containing carbohydrate (30 g, sodium (225 mg, chloride (210 mg and potassium (60 mg per 500 ml of the drink. For analysis of HRV data, time and frequency domain indices were investigated. HRV was recorded at rest (5–10 min, during exercise (25–30 min, 55–60 min and 85–90 min and post-exercise (5–10 min, 15–20 min, 25–30 min, 40–45 min and 55–60 min. Results Regardless of hydration, alterations in the SNS and PSNS were observed, revealing an increase in the former and a decrease in the latter. Hydrating with isotonic solution during recovery induced significant changes in cardiac autonomic modulation, promoting faster recovery of linear HRV indices. Conclusion Hydration with isotonic solution did not significantly influence HRV during exercise; however, after exercise it promoted faster recovery of linear indices.

  12. Autonomic Neuropathy in Diabetes Mellitus

    OpenAIRE

    Verrotti, Alberto; Prezioso, Giovanni; Scattoni, Raffaella; Chiarelli, Francesco

    2014-01-01

    Diabetic autonomic neuropathy (DAN) is a serious and common complication of diabetes, often overlooked and misdiagnosed. It is a systemic-wide disorder that may be asymptomatic in the early stages. The most studied and clinically important form of DAN is cardiovascular autonomic neuropathy defined as the impairment of autonomic control of the cardiovascular system in patients with diabetes after exclusion of other causes. The reported prevalence of DAN varies widely depending on inconsistent ...

  13. Discerning non-autonomous dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Clemson, Philip T.; Stefanovska, Aneta, E-mail: aneta@lancaster.ac.uk

    2014-09-30

    Structure and function go hand in hand. However, while a complex structure can be relatively safely broken down into the minutest parts, and technology is now delving into nanoscales, the function of complex systems requires a completely different approach. Here the complexity clearly arises from nonlinear interactions, which prevents us from obtaining a realistic description of a system by dissecting it into its structural component parts. At best, the result of such investigations does not substantially add to our understanding or at worst it can even be misleading. Not surprisingly, the dynamics of complex systems, facilitated by increasing computational efficiency, is now readily tackled in the case of measured time series. Moreover, time series can now be collected in practically every branch of science and in any structural scale—from protein dynamics in a living cell to data collected in astrophysics or even via social networks. In searching for deterministic patterns in such data we are limited by the fact that no complex system in the real world is autonomous. Hence, as an alternative to the stochastic approach that is predominantly applied to data from inherently non-autonomous complex systems, theory and methods specifically tailored to non-autonomous systems are needed. Indeed, in the last decade we have faced a huge advance in mathematical methods, including the introduction of pullback attractors, as well as time series methods that cope with the most important characteristic of non-autonomous systems—their time-dependent behaviour. Here we review current methods for the analysis of non-autonomous dynamics including those for extracting properties of interactions and the direction of couplings. We illustrate each method by applying it to three sets of systems typical for chaotic, stochastic and non-autonomous behaviour. For the chaotic class we select the Lorenz system, for the stochastic the noise-forced Duffing system and for the non-autonomous

  14. Discerning non-autonomous dynamics

    International Nuclear Information System (INIS)

    Clemson, Philip T.; Stefanovska, Aneta

    2014-01-01

    Structure and function go hand in hand. However, while a complex structure can be relatively safely broken down into the minutest parts, and technology is now delving into nanoscales, the function of complex systems requires a completely different approach. Here the complexity clearly arises from nonlinear interactions, which prevents us from obtaining a realistic description of a system by dissecting it into its structural component parts. At best, the result of such investigations does not substantially add to our understanding or at worst it can even be misleading. Not surprisingly, the dynamics of complex systems, facilitated by increasing computational efficiency, is now readily tackled in the case of measured time series. Moreover, time series can now be collected in practically every branch of science and in any structural scale—from protein dynamics in a living cell to data collected in astrophysics or even via social networks. In searching for deterministic patterns in such data we are limited by the fact that no complex system in the real world is autonomous. Hence, as an alternative to the stochastic approach that is predominantly applied to data from inherently non-autonomous complex systems, theory and methods specifically tailored to non-autonomous systems are needed. Indeed, in the last decade we have faced a huge advance in mathematical methods, including the introduction of pullback attractors, as well as time series methods that cope with the most important characteristic of non-autonomous systems—their time-dependent behaviour. Here we review current methods for the analysis of non-autonomous dynamics including those for extracting properties of interactions and the direction of couplings. We illustrate each method by applying it to three sets of systems typical for chaotic, stochastic and non-autonomous behaviour. For the chaotic class we select the Lorenz system, for the stochastic the noise-forced Duffing system and for the non-autonomous

  15. Cardiac fusion and complex congenital cardiac defects in thoracopagus twins: diagnostic value of cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Park, Jeong-Jun [University of Ulsan College of Medicine, Asan Medical Center, Department of Pediatric Cardiac Surgery, Seoul (Korea, Republic of); Kim, Ellen Ai-Rhan [University of Ulsan College of Medicine, Asan Medical Center, Division of Neonatology, Department of Pediatrics, Seoul (Korea, Republic of); Won, Hye-Sung [University of Ulsan College of Medicine, Asan Medical Center, Department of Obstetrics and Gynecology, Seoul (Korea, Republic of)

    2014-09-15

    Most thoracopagus twins present with cardiac fusion and associated congenital cardiac defects, and assessment of this anatomy is of critical importance in determining patient care and outcome. Cardiac CT with electrocardiographic triggering provides an accurate and quick morphological assessment of both intracardiac and extracardiac structures in newborns, making it the best imaging modality to assess thoracopagus twins during the neonatal period. In this case report, we highlight the diagnostic value of cardiac CT in thoracopagus twins with an interatrial channel and complex congenital cardiac defects. (orig.)

  16. Structural Discrimination and Autonomous Vehicles

    DEFF Research Database (Denmark)

    Liu, Hin-Yan

    2016-01-01

    This paper examines the potential for structural discrimination to be woven into the fabric of autonomous vehicle developments, which remain underexplored and undiscussed. The prospect for structural discrimination arises as a result of the coordinated modes of autonomous vehicle behaviour...... individual identity, and potentially relative worth, to autonomous vehicles engaging in a crash damage calculus. At the risk of introducing these ideas into the development of autonomous vehicles, this paper hopes to spark a debate to foreclose these eventualities....... that is prescribed by its code. This leads to the potential for individuated outcomes to be networked and thereby multiplied consistently to any number of vehicles implementing such a code. The aggregated effects of such algorithmic policy preferences will thus cumulate in the reallocation of benefits and burdens...

  17. Is autonomic modulation different between European and Chinese astronauts?

    Science.gov (United States)

    Liu, Jiexin; Li, Yongzhi; Verheyden, Bart; Chen, Shanguang; Chen, Zhanghuang; Gai, Yuqing; Liu, Jianzhong; Gao, Jianyi; Xie, Qiong; Yuan, Ming; Li, Qin; Li, Li; Aubert, André E

    2015-01-01

    The objective was to investigate autonomic control in groups of European and Chinese astronauts and to identify similarities and differences. Beat-to-beat heart rate and finger blood pressure, brachial blood pressure, and respiratory frequency were measured from 10 astronauts (five European taking part in three different space missions and five Chinese astronauts taking part in two different space missions). Data recording was performed in the supine and standing positions at least 10 days before launch, and 1, 3, and 10 days after return. Cross-correlation analysis of heart rate and systolic pressure was used to assess cardiac baroreflex modulation. A fixed breathing protocol was performed to measure respiratory sinus arrhythmia and low-frequency power of systolic blood pressure variability. Although baseline cardiovascular parameters before spaceflight were similar in all astronauts in the supine position, a significant increase in sympathetic activity and a decrease in vagal modulation occurred in the European astronauts when standing; spaceflight resulted in a remarkable vagal decrease in European astronauts only. Similar baseline supine and standing values for heart rate, mean arterial pressure, and respiratory frequency were shown in both groups. Standing autonomic control was based on a balance of higher vagal and sympathetic modulation in European astronauts. Post-spaceflight orthostatic tachycardia was observed in all European astronauts, whereas post-spaceflight orthostatic tachycardia was significantly reduced in Chinese astronauts. The basis for orthostatic intolerance is not apparent; however, many possibilities can be considered and need to be further investigated, such as genetic diversities between races, astronaut selection, training, and nutrition, etc.

  18. Is autonomic modulation different between European and Chinese astronauts?

    Directory of Open Access Journals (Sweden)

    Jiexin Liu

    Full Text Available The objective was to investigate autonomic control in groups of European and Chinese astronauts and to identify similarities and differences.Beat-to-beat heart rate and finger blood pressure, brachial blood pressure, and respiratory frequency were measured from 10 astronauts (five European taking part in three different space missions and five Chinese astronauts taking part in two different space missions. Data recording was performed in the supine and standing positions at least 10 days before launch, and 1, 3, and 10 days after return. Cross-correlation analysis of heart rate and systolic pressure was used to assess cardiac baroreflex modulation. A fixed breathing protocol was performed to measure respiratory sinus arrhythmia and low-frequency power of systolic blood pressure variability.Although baseline cardiovascular parameters before spaceflight were similar in all astronauts in the supine position, a significant increase in sympathetic activity and a decrease in vagal modulation occurred in the European astronauts when standing; spaceflight resulted in a remarkable vagal decrease in European astronauts only. Similar baseline supine and standing values for heart rate, mean arterial pressure, and respiratory frequency were shown in both groups. Standing autonomic control was based on a balance of higher vagal and sympathetic modulation in European astronauts.Post-spaceflight orthostatic tachycardia was observed in all European astronauts, whereas post-spaceflight orthostatic tachycardia was significantly reduced in Chinese astronauts. The basis for orthostatic intolerance is not apparent; however, many possibilities can be considered and need to be further investigated, such as genetic diversities between races, astronaut selection, training, and nutrition, etc.

  19. Decentralized Control of Autonomous Vehicles

    Science.gov (United States)

    2003-01-01

    Autonomous Vehicles by John S. Baras, Xiaobo Tan, Pedram Hovareshti CSHCN TR 2003-8 (ISR TR 2003-14) Report Documentation Page Form ApprovedOMB No. 0704...AND SUBTITLE Decentralized Control of Autonomous Vehicles 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Decentralized Control of Autonomous Vehicles ∗ John S. Baras, Xiaobo Tan, and Pedram

  20. Public Health, Ethics, and Autonomous Vehicles.

    Science.gov (United States)

    Fleetwood, Janet

    2017-04-01

    With the potential to save nearly 30 000 lives per year in the United States, autonomous vehicles portend the most significant advance in auto safety history by shifting the focus from minimization of postcrash injury to collision prevention. I have delineated the important public health implications of autonomous vehicles and provided a brief analysis of a critically important ethical issue inherent in autonomous vehicle design. The broad expertise, ethical principles, and values of public health should be brought to bear on a wide range of issues pertaining to autonomous vehicles.

  1. RAGE-dependent activation of gene expression of superoxide dismutase and vanins by AGE-rich extracts in mice cardiac tissue and murine cardiac fibroblasts.

    Science.gov (United States)

    Leuner, Beatrice; Ruhs, Stefanie; Brömme, Hans-Jürgen; Bierhaus, Angelika; Sel, Saadettin; Silber, Rolf-Edgar; Somoza, Veronika; Simm, Andreas; Nass, Norbert

    2012-10-01

    Advanced glycation end products (AGEs) are stable compounds formed from initial Maillard reaction products. They are considered as markers for ageing and often associated with age-related, degenerative diseases. Bread crust represents an established model for nutritional compounds rich in AGEs and is able to induce antioxidative defense genes such as superoxide dismutases and vanins in cardiac cells. The aim of this study was to investigate to what extend the receptor for AGEs (RAGE) contributes to this response. Signal transduction in response to bread crust extract was analysed in cardiac fibroblasts derived from C57/B6-NCrl (RAGE +/+) and the corresponding RAGE-knock out C57/B6-NCrl mouse strain (RAGE -/-). Activation of superoxide dismutases in animals was then analysed upon bread crust feeding in these two mice strains. Cardiac fibroblasts from RAGE -/- mice did not express RAGE, but the expression of AGER-1 and AGER-3 was up-regulated, whereas the expression of SR-B1 was down-regulated. RAGE -/- cells were less sensitive to BCE in terms of MAP-kinase phosphorylation and NF-κB reporter gene activation. Bread crust extract induced mRNA levels of MnSOD and Vnn-1 were also reduced in RAGE -/- cells, whereas Vnn-3 mRNA accumulation seemed to be RAGE receptor independent. In bread crust feeding experiments, RAGE -/- mice did not exhibit an activation of MnSOD-mRNA and -protein accumulation as observed for the RAGE +/+ animals. In conclusion, RAGE was clearly a major factor for the induction of antioxidant defense signals derived from bread crust in cardiac fibroblast and mice. Nevertheless higher doses of bread crust extract could overcome the RAGE dependency in cell cultures, indicating that additional mechanisms are involved in BCE-mediated activation of SOD and vanin expression.

  2. Nonuniform cardiac denervation observed by 11C-meta-hydroxyephedrine PET in 6-OHDA-treated monkeys.

    Science.gov (United States)

    Joers, Valerie; Seneczko, Kailie; Goecks, Nichole C; Kamp, Timothy J; Hacker, Timothy A; Brunner, Kevin G; Engle, Jonathan W; Barnhart, Todd E; Nickles, R Jerome; Holden, James E; Emborg, Marina E

    2012-01-01

    Parkinson's disease presents nonmotor complications such as autonomic dysfunction that do not respond to traditional anti-parkinsonian therapies. The lack of established preclinical monkey models of Parkinson's disease with cardiac dysfunction hampers development and testing of new treatments to alleviate or prevent this feature. This study aimed to assess the feasibility of developing a model of cardiac dysautonomia in nonhuman primates and preclinical evaluations tools. Five rhesus monkeys received intravenous injections of 6-hydroxydopamine (total dose: 50 mg/kg). The animals were evaluated before and after with a battery of tests, including positron emission tomography with the norepinephrine analog (11)C-meta-hydroxyephedrine. Imaging 1 week after neurotoxin treatment revealed nearly complete loss of specific radioligand uptake. Partial progressive recovery of cardiac uptake found between 1 and 10 weeks remained stable between 10 and 14 weeks. In all five animals, examination of the pattern of uptake (using Logan plot analysis to create distribution volume maps) revealed a persistent region-specific significant loss in the inferior wall of the left ventricle at 10 (P<0.001) and 14 weeks (P<0.01) relative to the anterior wall. Blood levels of dopamine, norepinephrine (P<0.05), epinephrine, and 3,4-dihydroxyphenylacetic acid (P<0.01) were notably decreased after 6-hydroxydopamine at all time points. These results demonstrate that systemic injection of 6-hydroxydopamine in nonhuman primates creates a nonuniform but reproducible pattern of cardiac denervation as well as a persistent loss of circulating catecholamines, supporting the use of this method to further develop a monkey model of cardiac dysautonomia.

  3. Nonuniform cardiac denervation observed by 11C-meta-hydroxyephedrine PET in 6-OHDA-treated monkeys.

    Directory of Open Access Journals (Sweden)

    Valerie Joers

    Full Text Available Parkinson's disease presents nonmotor complications such as autonomic dysfunction that do not respond to traditional anti-parkinsonian therapies. The lack of established preclinical monkey models of Parkinson's disease with cardiac dysfunction hampers development and testing of new treatments to alleviate or prevent this feature. This study aimed to assess the feasibility of developing a model of cardiac dysautonomia in nonhuman primates and preclinical evaluations tools. Five rhesus monkeys received intravenous injections of 6-hydroxydopamine (total dose: 50 mg/kg. The animals were evaluated before and after with a battery of tests, including positron emission tomography with the norepinephrine analog (11C-meta-hydroxyephedrine. Imaging 1 week after neurotoxin treatment revealed nearly complete loss of specific radioligand uptake. Partial progressive recovery of cardiac uptake found between 1 and 10 weeks remained stable between 10 and 14 weeks. In all five animals, examination of the pattern of uptake (using Logan plot analysis to create distribution volume maps revealed a persistent region-specific significant loss in the inferior wall of the left ventricle at 10 (P<0.001 and 14 weeks (P<0.01 relative to the anterior wall. Blood levels of dopamine, norepinephrine (P<0.05, epinephrine, and 3,4-dihydroxyphenylacetic acid (P<0.01 were notably decreased after 6-hydroxydopamine at all time points. These results demonstrate that systemic injection of 6-hydroxydopamine in nonhuman primates creates a nonuniform but reproducible pattern of cardiac denervation as well as a persistent loss of circulating catecholamines, supporting the use of this method to further develop a monkey model of cardiac dysautonomia.

  4. Higher exercise intensity delays postexercise recovery of impedance-derived cardiac sympathetic activity.

    Science.gov (United States)

    Michael, Scott; Jay, Ollie; Graham, Kenneth S; Davis, Glen M

    2017-08-01

    Systolic time intervals (STIs) provide noninvasive insights into cardiac sympathetic neural activity (cSNA). As the effect of exercise intensity on postexercise STI recovery is unclear, this study investigated the STI recovery profile after different exercise intensities. Eleven healthy males cycled for 8 min at 3 separate intensities: LOW (40%-45%), MOD (75%-80%), and HIGH (90%-95%) of heart-rate (HR) reserve. Bio-impedance cardiography was used to assess STIs - primarily pre-ejection period (PEP; inversely correlated with cSNA), as well as left ventricular ejection time (LVET) and PEP:LVET - during 10 min seated recovery immediately postexercise. Heart-rate variability (HRV), i.e., natural-logarithm of root mean square of successive differences (Ln-RMSSD), was calculated as an index of cardiac parasympathetic neural activity (cPNA). Higher preceding exercise intensity elicited a slower recovery of HR and Ln-RMSSD (p return to baseline by 10 min following any intensity (p ≤ 0.009). Recovery of STIs was also slower following higher intensity exercise (p ≤ 0.002). By 30 s postexercise, higher preceding intensity resulted in a lower PEP (98 ± 14 ms, 75 ± 6 ms, 66 ± 5 ms for LOW, MOD, and HIGH, respectively, p fashion. While exercise intensity must be considered, acute recovery may be a valuable period during which to concurrently monitor these noninvasive indices, to identify potentially abnormal cardiac autonomic responses.

  5. Ceramide-induced TCR up-regulation

    DEFF Research Database (Denmark)

    Menné, C; Lauritsen, Jens Peter Holst; Dietrich, J

    2000-01-01

    to increase T cell responsiveness. The purpose of this study was to identify and characterize potential pathways for TCR up-regulation. We found that ceramide affected TCR recycling dynamics and induced TCR up-regulation in a concentration- and time-dependent manner. Experiments applying phosphatase......The TCR is a constitutively recycling receptor meaning that a constant fraction of TCR from the plasma membrane is transported inside the cell at the same time as a constant fraction of TCR from the intracellular pool is transported to the plasma membrane. TCR recycling is affected by protein...... kinase C activity. Thus, an increase in protein kinase C activity affects TCR recycling kinetics leading to a new TCR equilibrium with a reduced level of TCR expressed at the T cell surface. Down-regulation of TCR expression compromises T cell activation. Conversely, TCR up-regulation is expected...

  6. Completion report : Effect of Comprehensive Yogic Breathing program on type 2 diabetes: A randomized control trial

    Directory of Open Access Journals (Sweden)

    V P Jyotsna

    2014-01-01

    Full Text Available Background: Yoga has been shown to be benefi cial in diabetes in many studies, though randomized control trials are few. The aim of this randomized control trial was to see the effect of Sudarshan Kriya and related practices (comprehensive yogic breathing program on quality of life, glycemic control, and cardiac autonomic functions in diabetes. Diabetes mellitus is a risk factor for sudden cardiac death. Cardiac autonomic neuropathy has been implicated in the causation of sudden cardiac death. Therefore, a maneuver to prevent progression of cardiac autonomic neuropathy holds signifi cance. Materials and Methods: A total of 120 patients of diabetes on oral medication and diet and exercise advice were randomized into two groups: (1 Continued to receive standard treatment for diabetes. (2 Patients administered comprehensive yogic breathing program and monitored to regularly practice yoga in addition to standard treatment of diabetes. At 6 months, quality of life and postprandial plasma glucose signifi cantly improved in the group practicing yoga compared to baseline, but there was no significant improvement in the fasting plasma glucose and glycated hemoglobin. Results: On per protocol analysis, sympathetic cardiac autonomic functions signifi cantly improved from baseline in the group practicing comprehensive yogic breathing. Conclusion: This randomized control trial points towards the beneficial effect of yogic breathing program in preventing progression of cardiac neuropathy. This has important implications as cardiac autonomic neuropathy has been considered as one of the factors for sudden cardiac deaths.Keywords: comprehensive yogic breathing program, diabetes mellitus, cardiac autonomic function

  7. Therapeutic effect of a novel Wnt pathway inhibitor on cardiac regeneration after myocardial infarction.

    Science.gov (United States)

    Yang, Dezhong; Fu, Wenbin; Li, Liangpeng; Xia, Xuewei; Liao, Qiao; Yue, Rongchuan; Chen, Hongmei; Chen, Xiongwen; An, Songzhu; Zeng, Chunyu; Wang, Wei Eric

    2017-12-15

    After myocardial infarction (MI), the heart is difficult to repair because of great loss of cardiomyoctyes and lack of cardiac regeneration. Novel drug candidates that aim at reducing pathological remodeling and stimulating cardiac regeneration are highly desirable. In the present study, we identified if and how a novel porcupine inhibitor CGX1321 influenced MI and cardiac regeneration. Permanent ligation of left anterior descending (LAD) coronary artery was performed in mice to induce MI injury. Cardiac function was measured by echocardiography, infarct size was examined by TTC staining. Fibrosis was evaluated with Masson's trichrome staining and vimentin staining. As a result, CGX1321 administration blocked the secretion of Wnt proteins, and inhibited both canonical and non-canonical Wnt signaling pathways. CGX1321 improved cardiac function, reduced myocardial infarct size, and fibrosis of post-MI hearts. CGX1321 significantly increased newly formed cardiomyocytes in infarct border zone of post-MI hearts, evidenced by the increased EdU + cardiomyocytes. Meanwhile, CGX1321 increased Ki67 + and phosphohistone H3 (PH3 + ) cardiomyocytes in culture, indicating enhanced cardiomyocyte proliferation. The mRNA microarray showed that CGX1321 up-regulated cell cycle regulating genes such as Ccnb1 and Ccne1 CGX1321 did not alter YAP protein phosphorylation and nuclear translocation in cardiomyocytes. In conclusion, porcupine inhibitor CGX1321 reduces MI injury by limiting fibrosis and promoting regeneration. It promotes cardiomyocyte proliferation by stimulating cell cycle regulating genes with a Hippo/YAP-independent pathway. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  8. Cardiac-specific overexpression of insulin-like growth factor I (IGF-1) rescues lipopolysaccharide-induced cardiac dysfunction and activation of stress signaling in murine cardiomyocytes.

    Science.gov (United States)

    Zhao, Peng; Turdi, Subat; Dong, Feng; Xiao, Xiaoyan; Su, Guohai; Zhu, Xinglei; Scott, Glenda I; Ren, Jun

    2009-07-01

    Lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, plays a key role in cardiac dysfunction in sepsis. Low circulating levels of insulin-like growth factor 1 (IGF-1) are found in sepsis, although the influence of IGF-1 on septic cardiac defect is unknown. This study was designed to examine the impact of IGF-1 on LPS-induced cardiac contractile and intracellular Ca2+ dysfunction, activation of stress signal and endoplasmic reticulum (ER) stress. Mechanical and intracellular Ca2+ properties were examined in cardiomyocytes from Fast Violet B and cardiac-specific IGF-1 overexpression mice treated with or without LPS (4 mg kg(-1), 6 h). Reactive oxygen species (ROS), protein carbonyl formation and apoptosis were measured. Activation of mitogen-activated protein kinase pathways (p38, c-jun N-terminal kinase [JNK] and extracellular signal-related kinase [ERK]), ER stress and apoptotic markers were evaluated using Western blot analysis. Our results revealed decreased peak shortening and maximal velocity of shortening/relengthening and prolonged duration of relengthening in LPS-treated Fast Violet B cardiomyocytes associated with reduced intracellular Ca2+ decay. Accumulation of ROS protein carbonyl and apoptosis were elevated after LPS treatment. Western blot analysis revealed activated p38 and JNK, up-regulated Bax, and the ER stress markers GRP78 and Gadd153 in LPS-treated mouse hearts without any change in ERK and Bcl-2. Total protein expression of p38, JNK, and ERK was unaffected by either LPS or IGF-1. Interestingly, these LPS-induced changes in mechanical and intracellular Ca2+ properties, ROS, protein carbonyl, apoptosis, stress signal activation, and ER stress markers were effectively ablated by IGF-1. In vitro LPS exposure (1 microg mL(-1)) produced cardiomyocyte mechanical dysfunction reminiscent of the in vivo setting, which was alleviated by exogenous IGF-1 (50 nM). These data collectively suggested a beneficial of IGF-1 in

  9. Behavioural domain knowledge transfer for autonomous agents

    CSIR Research Space (South Africa)

    Rosman, Benjamin S

    2014-11-01

    Full Text Available , and Behavior Transfer in Autonomous Robots, AAAI 2014 Fall Symposium Series, 13-15 November 2014 Behavioural Domain Knowledge Transfer for Autonomous Agents Benjamin Rosman Mobile Intelligent Autonomous Systems Modelling and Digital Science Council...

  10. Current challenges in autonomous vehicle development

    Science.gov (United States)

    Connelly, J.; Hong, W. S.; Mahoney, R. B., Jr.; Sparrow, D. A.

    2006-05-01

    The field of autonomous vehicles is a rapidly growing one, with significant interest from both government and industry sectors. Autonomous vehicles represent the intersection of artificial intelligence (AI) and robotics, combining decision-making with real-time control. Autonomous vehicles are desired for use in search and rescue, urban reconnaissance, mine detonation, supply convoys, and more. The general adage is to use robots for anything dull, dirty, dangerous or dumb. While a great deal of research has been done on autonomous systems, there are only a handful of fielded examples incorporating machine autonomy beyond the level of teleoperation, especially in outdoor/complex environments. In an attempt to assess and understand the current state of the art in autonomous vehicle development, a few areas where unsolved problems remain became clear. This paper outlines those areas and provides suggestions for the focus of science and technology research. The first step in evaluating the current state of autonomous vehicle development was to develop a definition of autonomy. A number of autonomy level classification systems were reviewed. The resulting working definitions and classification schemes used by the authors are summarized in the opening sections of the paper. The remainder of the report discusses current approaches and challenges in decision-making and real-time control for autonomous vehicles. Suggested research focus areas for near-, mid-, and long-term development are also presented.

  11. Deficiency of Smad7 enhances cardiac remodeling induced by angiotensin II infusion in a mouse model of hypertension.

    Directory of Open Access Journals (Sweden)

    Li Hua Wei

    Full Text Available Smad7 has been shown to negatively regulate fibrosis and inflammation, but its role in angiotensin II (Ang II-induced hypertensive cardiac remodeling remains unknown. Therefore, the present study investigated the role of Smad7 in hypertensive cardiopathy induced by angiotensin II infusion. Hypertensive cardiac disease was induced in Smad7 gene knockout (KO and wild-type (WT mice by subcutaneous infusion of Ang II (1.46 mg/kg/day for 28 days. Although equal levels of high blood pressure were developed in both Smad7 KO and WT mice, Smad7 KO mice developed more severe cardiac injury as demonstrated by impairing cardiac function including a significant increase in left ventricular (LV mass (P<0.01,reduction of LV ejection fraction(P<0.001 and fractional shortening(P<0.001. Real-time PCR, Western blot and immunohistochemistry detected that deletion of Smad7 significantly enhanced Ang II-induced cardiac fibrosis and inflammation, including upregulation of collagen I, α-SMA, interleukin-1β, TNF-α, and infiltration of CD3(+ T cells and F4/80(+ macrophages. Further studies revealed that enhanced activation of the Sp1-TGFβ/Smad3-NF-κB pathways and downregulation of miR-29 were mechanisms though which deletion of Smad7 promoted Ang II-mediated cardiac remodeling. In conclusions, Smad7 plays a protective role in AngII-mediated cardiac remodeling via mechanisms involving the Sp1-TGF-β/Smad3-NF.κB-miR-29 regulatory network.

  12. Premature Ventricular Contraction Coupling Interval Variability Destabilizes Cardiac Neuronal and Electrophysiological Control: Insights from Simultaneous Cardio-Neural Mapping

    Science.gov (United States)

    Hamon, David; Rajendran, Pradeep S.; Chui, Ray W.; Ajijola, Olujimi A.; Irie, Tadanobu; Talebi, Ramin; Salavatian, Siamak; Vaseghi, Marmar; Bradfield, Jason S.; Armour, J. Andrew; Ardell, Jeffrey L.; Shivkumar, Kalyanam

    2017-01-01

    Background Variability in premature ventricular contraction (PVC) coupling interval (CI) increases the risk of cardiomyopathy and sudden death. The autonomic nervous system regulates cardiac electrical and mechanical indices, and its dysregulation plays an important role in cardiac disease pathogenesis. The impact of PVCs on the intrinsic cardiac nervous system (ICNS), a neural network on the heart, remains unknown. The objective was to determine the effect of PVCs and CI on ICNS function in generating cardiac neuronal and electrical instability using a novel cardio-neural mapping approach. Methods and Results In a porcine model (n=8) neuronal activity was recorded from a ventricular ganglion using a microelectrode array, and cardiac electrophysiological mapping was performed. Neurons were functionally classified based on their response to afferent and efferent cardiovascular stimuli, with neurons that responded to both defined as convergent (local reflex processors). Dynamic changes in neuronal activity were then evaluated in response to right ventricular outflow tract PVCs with fixed short, fixed long, and variable CI. PVC delivery elicited a greater neuronal response than all other stimuli (P<0.001). Compared to fixed short and long CI, PVCs with variable CI had a greater impact on neuronal response (P<0.05 versus short CI), particularly on convergent neurons (P<0.05), as well as neurons receiving sympathetic (P<0.05) and parasympathetic input (P<0.05). The greatest cardiac electrical instability was also observed following variable (short) CI PVCs. Conclusions Variable CI PVCs affect critical populations of ICNS neurons and alter cardiac repolarization. These changes may be critical for arrhythmogenesis and remodeling leading to cardiomyopathy. PMID:28408652

  13. Compact autonomous navigation system (CANS)

    Science.gov (United States)

    Hao, Y. C.; Ying, L.; Xiong, K.; Cheng, H. Y.; Qiao, G. D.

    2017-11-01

    Autonomous navigation of Satellite and constellation has series of benefits, such as to reduce operation cost and ground station workload, to avoid the event of crises of war and natural disaster, to increase spacecraft autonomy, and so on. Autonomous navigation satellite is independent of ground station support. Many systems are developed for autonomous navigation of satellite in the past 20 years. Along them American MANS (Microcosm Autonomous Navigation System) [1] of Microcosm Inc. and ERADS [2] [3] (Earth Reference Attitude Determination System) of Honeywell Inc. are well known. The systems anticipate a series of good features of autonomous navigation and aim low cost, integrated structure, low power consumption and compact layout. The ERADS is an integrated small 3-axis attitude sensor system with low cost and small volume. It has the Earth center measurement accuracy higher than the common IR sensor because the detected ultraviolet radiation zone of the atmosphere has a brightness gradient larger than that of the IR zone. But the ERADS is still a complex system because it has to eliminate many problems such as making of the sapphire sphere lens, birefringence effect of sapphire, high precision image transfer optical fiber flattener, ultraviolet intensifier noise, and so on. The marginal sphere FOV of the sphere lens of the ERADS is used to star imaging that may be bring some disadvantages., i.e. , the image energy and attitude measurements accuracy may be reduced due to the tilt image acceptance end of the fiber flattener in the FOV. Besides Japan, Germany and Russia developed visible earth sensor for GEO [4] [5]. Do we have a way to develop a cheaper/easier and more accurate autonomous navigation system that can be used to all LEO spacecraft, especially, to LEO small and micro satellites? To return this problem we provide a new type of the system—CANS (Compact Autonomous Navigation System) [6].

  14. Edaravone inhibits pressure overload-induced cardiac fibrosis and dysfunction by reducing expression of angiotensin II AT1 receptor

    Directory of Open Access Journals (Sweden)

    Zhang WW

    2017-10-01

    Full Text Available Wei-Wei Zhang,1,2 Feng Bai,1 Jin Wang,1 Rong-Hua Zheng,1 Li-Wang Yang,1 Erskine A James,3 Zhi-Qing Zhao1,4 1Department of Physiology, Shanxi Medical University, 2Department of Anesthesiology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, China; 3Department of Internal Medicine, Navicent Health, Macon, 4Department of Basic Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA Abstract: Angiotensin II (Ang II is known to be involved in the progression of ventricular dysfunction and heart failure by eliciting cardiac fibrosis. The purpose of this study was to demonstrate whether treatment with an antioxidant compound, edaravone, reduces cardiac fibrosis and improves ventricular function by inhibiting Ang II AT1 receptor. The study was conducted in a rat model of transverse aortic constriction (TAC. In control, rats were subjected to 8 weeks of TAC. In treated rats, edaravone (10 mg/kg/day or Ang II AT1 receptor blocker, telmisartan (10 mg/kg/day was administered by intraperitoneal injection or gastric gavage, respectively, during TAC. Relative to the animals with TAC, edaravone reduced myocardial malonaldehyde level and increased superoxide dismutase activity. Protein level of the AT1 receptor was reduced and the AT2 receptor was upregulated, as evidenced by the reduced ratio of AT1 over AT2 receptor (0.57±0.2 vs 3.16±0.39, p<0.05 and less locally expressed AT1 receptor in the myocardium. Furthermore, the protein level of angiotensin converting enzyme 2 was upregulated. In coincidence with these changes, edaravone significantly decreased the populations of macrophages and myofibroblasts in the myocardium, which were accompanied by reduced levels of transforming growth factor beta 1 and Smad2/3. Collagen I synthesis was inhibited and collagen-rich fibrosis was attenuated. Relative to the TAC group, cardiac systolic function was preserved, as shown by increased left ventricular systolic pressure (204±51 vs 110±19

  15. Ventricular fibrillation cardiac arrest produces a chronic striatal hyperdopaminergic state that is worsened by methylphenidate treatment.

    Science.gov (United States)

    Nora, Gerald J; Harun, Rashed; Fine, David F; Hutchison, Daniel; Grobart, Adam C; Stezoski, Jason P; Munoz, Miranda J; Kochanek, Patrick M; Leak, Rehana K; Drabek, Tomas; Wagner, Amy K

    2017-07-01

    Cardiac arrest survival rates have improved with modern resuscitation techniques, but many survivors experience impairments associated with hypoxic-ischemic brain injury (HIBI). Currently, little is understood about chronic changes in striatal dopamine (DA) systems after HIBI. Given the common empiric clinical use of DA enhancing agents in neurorehabilitation, investigation evaluating dopaminergic alterations after cardiac arrest (CA) is necessary to optimize rehabilitation approaches. We hypothesized that striatal DA neurotransmission would be altered chronically after ventricular fibrillation cardiac arrest (VF-CA). Fast-scan cyclic voltammetry was used with median forebrain bundle (MFB) maximal electrical stimulations (60Hz, 10s) in rats to characterize presynaptic components of DA neurotransmission in the dorsal striatum (D-Str) and nucleus accumbens 14 days after a 5-min VF-CA when compared to Sham or Naïve. VF-CA increased D-Str-evoked overflow [DA], total [DA] released, and initial DA release rate versus controls, despite also increasing maximal velocity of DA reuptake (V max ). Methylphenidate (10 mg/kg), a DA transporter inhibitor, was administered to VF-CA and Shams after establishing a baseline, pre-drug 60 Hz, 5 s stimulation response. Methylphenidate increased initial evoked overflow [DA] more-so in VF-CA versus Sham and reduced D-Str V max in VF-CA but not Shams; these findings are consistent with upregulated striatal DA transporter in VF-CA versus Sham. Our work demonstrates that 5-min VF-CA increases electrically stimulated DA release with concomitant upregulation of DA reuptake 2 weeks after brief VF-CA insult. Future work should elucidate how CA insult duration, time after insult, and insult type influence striatal DA neurotransmission and related cognitive and motor functions. © 2017 International Society for Neurochemistry.

  16. Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis.

    Science.gov (United States)

    Zhou, Hao; Zhang, Ying; Hu, Shunying; Shi, Chen; Zhu, Pingjun; Ma, Qiang; Jin, Qinhua; Cao, Feng; Tian, Feng; Chen, Yundai

    2017-08-01

    The cardiac microvascular system, which is primarily composed of monolayer endothelial cells, is the site of blood supply and nutrient exchange to cardiomyocytes. However, microvascular ischemia/reperfusion injury (IRI) following percutaneous coronary intervention is a woefully neglected topic, and few strategies are available to reverse such pathologies. Here, we studied the effects of melatonin on microcirculation IRI and elucidated the underlying mechanism. Melatonin markedly reduced infarcted area, improved cardiac function, restored blood flow, and lower microcirculation perfusion defects. Histological analysis showed that cardiac microcirculation endothelial cells (CMEC) in melatonin-treated mice had an unbroken endothelial barrier, increased endothelial nitric oxide synthase expression, unobstructed lumen, reduced inflammatory cell infiltration, and less endothelial damage. In contrast, AMP-activated protein kinase α (AMPKα) deficiency abolished the beneficial effects of melatonin on microvasculature. In vitro, IRI activated dynamin-related protein 1 (Drp1)-dependent mitochondrial fission, which subsequently induced voltage-dependent anion channel 1 (VDAC1) oligomerization, hexokinase 2 (HK2) liberation, mitochondrial permeability transition pore (mPTP) opening, PINK1/Parkin upregulation, and ultimately mitophagy-mediated CMEC death. However, melatonin strengthened CMEC survival via activation of AMPKα, followed by p-Drp1 S616 downregulation and p-Drp1 S37 upregulation, which blunted Drp1-dependent mitochondrial fission. Suppression of mitochondrial fission by melatonin recovered VDAC1-HK2 interaction that prevented mPTP opening and PINK1/Parkin activation, eventually blocking mitophagy-mediated cellular death. In summary, this study confirmed that melatonin protects cardiac microvasculature against IRI. The underlying mechanism may be attributed to the inhibitory effects of melatonin on mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis via activation

  17. Effects of Escitalopram on Autonomic Function in Posttraumatic Stress Disorder Among Veterans of Operations Enduring Freedom and Iraqi Freedom (OEF/OIF).

    Science.gov (United States)

    Ramaswamy, Sriram; Selvaraj, Vithyalakshmi; Driscoll, David; Madabushi, Jayakrishna S; Bhatia, Subhash C; Yeragani, Vikram

    2015-01-01

    Posttraumatic stress disorder is a chronic, debilitating condition that has become a growing concern among combat veterans. Previous research suggests that posttraumatic stress disorder disrupts normal autonomic responding and may increase the risk of cardiovascular disease and mortality. Measures of heart rate variability and QT interval variability have been used extensively to characterize sympathetic and parasympathetic influences on heart rate in a variety of psychiatric populations. The objective of this study was to better understand the effects of pharmacological treatment on autonomic reactivity in posttraumatic stress disorder. A 12-week, Phase IV, prospective, open-label trial of escitalopram in veterans with combat-related posttraumatic stress disorder and comorbid depression. An outpatient mental health clinic at a Veterans Affairs Medical Center. Eleven male veterans of Operations Enduring Freedom and Iraqi Freedom diagnosed with posttraumatic stress disorder and comorbid depression. Autonomic reactivity was measured by examining heart rate variability and QT interval variability. Treatment safety and efficacy were also evaluated pre- and post-treatment. We observed a reduction in posttraumatic stress disorder and depression symptoms from pre- to post-treatment, and escitalopram was generally well tolerated in our sample. In addition, we observed a decrease in high frequency heart rate variability and an increase in QT variability, indicating a reduction in cardiac vagal function and heightened sympathetic activation. These findings suggest that escitalopram treatment in patients with posttraumatic stress disorder and depression can trigger changes in autonomic reactivity that may adversely impact cardiovascular health.

  18. The influence of resistance exercise with emphasis on specific contractions (concentric vs. eccentric on muscle strength and post-exercise autonomic modulation: a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Mariana O. Gois

    2014-01-01

    Full Text Available Background: Compared to eccentric contractions, concentric contractions result in higher cardiovascular stress. However, we do not know how these two types of contractions influence cardiac autonomic modulation during the post-exercise recovery period. Objective: to compare the effect of resistance training that is performed with concentric vs. eccentric emphasis on muscle strength and on post-exercise recovery which was assessed by examining heart rate variability (HRV, for the knee extensor muscle group in young healthy adults. Methods: For this study, 105 men between 18 and 30 years of age were randomized into 4 groups: concentric control (CONCC, eccentric control (ECCC, concentric training (CONCT and eccentric training (ECCT. The CONCC and ECCC groups underwent one session of resistance exercise (RE using the knee extensor muscle group (3 sets of 1 repetition at 100% of the maximal repetition [1MR] and the CONCT and ECCT groups performed 10 training sessions. The HRV was analyzed at baseline and across four recovery periods (T1, T2, T3 and T4. Results: The ECCT group exhibited increased muscle strength at the end of the study. Regarding cardiac autonomic modulation, the CONCC and ECCC groups exhibited increases in overall variability (SDNN and SD2 at T1 compared to baseline, and the ECCT group demonstrated increases in variables reflecting vagal modulation and the recovery process (RMSSD, SD1 and HF [ms2] at T1, T2 and T4 compared to baseline. Conclusions: Resistance training with emphasis on eccentric contractions promoted strength gain and an increase in cardiac vagal modulation during recovery compared to baseline.

  19. Novel mechanism of cardiac protection by valsartan: synergetic roles of TGF-β1 and HIF-1α in Ang II-mediated fibrosis after myocardial infarction.

    Science.gov (United States)

    Sui, Xizhong; Wei, Hongchao; Wang, Dacheng

    2015-08-01

    Transforming growth factor (TGF)-β1 is a known factor in angiotensin II (Ang II)-mediated cardiac fibrosis after myocardial infarction (MI). Hypoxia inducible factor-1 (Hif-1α) was recently demonstrated to involve in the tissue fibrosis and influenced by Ang II. However, whether Hif-1α contributed to the Ang II-mediated cardiac fibrosis after MI, and whether interaction or synergetic roles between Hif-1α and TGF-β pathways existed in the process was unclear. In vitro, cardiac cells were incubated under hypoxia or Ang II to mimic ischaemia. In vivo, valsartan was intravenously injected into Sprague-Dawley rats with MI daily for 1 week; saline and hydralazine (another anti-hypertensive agent like valsartan) was used as control. The fibrosis-related proteins were detected by Western blotting. Cardiac structure and function were assessed with multimodality methods. We demonstrated in vitro that hypoxia would induce the up-regulation of Ang II, TGF-β/Smad and Hif-1α, which further induced collagen accumulation. By blocking with valsartan, a blocker of Ang II type I (AT1) receptor, we confirmed that the up-regulation of TGF-β/Smad and Hif-1α was through the Ang II-mediated pathway. By administering TGF-β or dimethyloxalylglycine, we determined that both TGF-β/Smad and Hif-1α contributed to Ang II-mediated collagen accumulation and a synergetic effect between them was observed. Consistent with in vitro results, valsartan significantly attenuated the expression of TGF-β/Smad, Hif-1α and fibrosis-related protein in rats after MI. Heart function, infarcted size, wall thickness as well as myocardial vascularization of ischaemic hearts were also significantly improved by valsartan compared with saline and hydralazine. Our study may provide novel insights into the mechanisms of Ang II-induced cardiac fibrosis as well as into the cardiac protection of valsartan. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and

  20. Human Supervision of Multiple Autonomous Vehicles

    Science.gov (United States)

    2013-03-22

    AFRL-RH-WP-TR-2013-0143 HUMAN SUPERVISION OF MULTIPLE AUTONOMOUS VEHICLES Heath A. Ruff Ball...REPORT TYPE Interim 3. DATES COVERED (From – To) 09-16-08 – 03-22-13 4. TITLE AND SUBTITLE HUMAN SUPERVISION OF MULTIPLE AUTONOMOUS VEHICLES 5a...Supervision of Multiple Autonomous Vehicles To support the vision of a system that enables a single operator to control multiple next-generation

  1. A Priori User Acceptance and the Perceived Driving Pleasure in Semi-autonomous and Autonomous Vehicles

    DEFF Research Database (Denmark)

    Bjørner, Thomas

    The aim of this minor pilot study is, from a sociological user perspective, to explore a priori user acceptance and the perceived driving pleasure in semi- autonomous and autonomous vehicles. The methods used were 13 in-depth interviews while having participants watch video examples within four...... different scenarios. After each scenario, two different numerical rating scales were used. There was a tendency toward positive attitudes regarding semi- autonomous driving systems, especially the use of a parking assistant and while driving in city traffic congestion. However, there were also major...

  2. Intelligent autonomous systems 12. Vol. 2. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sukhan [Sungkyunkwan Univ., Gyeonggi-Do (Korea, Republic of). College of Information and Communication Engineering; Yoon, Kwang-Joon [Konkuk Univ., Seoul (Korea, Republic of); Cho, Hyungsuck [Daegu Gyeongbuk Institute of Science and Technology, Daegu (Korea, Republic of); Lee, Jangmyung (eds.) [Pusan National Univ. (Korea, Republic of). Dept. of Electronics Engineering

    2013-02-01

    Recent research in Intelligent and Autonomous Systems. Volume 2 of the proceedings of the 12th International Conference IAS-12, held June 26-29, 2012, jeju Island, Korea. Written by leading experts in the field. Intelligent autonomous systems are emerged as a key enabler for the creation of a new paradigm of services to humankind, as seen by the recent advancement of autonomous cars licensed for driving in our streets, of unmanned aerial and underwater vehicles carrying out hazardous tasks on-site, and of space robots engaged in scientific as well as operational missions, to list only a few. This book aims at serving the researchers and practitioners in related fields with a timely dissemination of the recent progress on intelligent autonomous systems, based on a collection of papers presented at the 12th International Conference on Intelligent Autonomous Systems, held in Jeju, Korea, June 26-29, 2012. With the theme of ''Intelligence and Autonomy for the Service to Humankind, the conference has covered such diverse areas as autonomous ground, aerial, and underwater vehicles, intelligent transportation systems, personal/domestic service robots, professional service robots for surgery/rehabilitation, rescue/security and space applications, and intelligent autonomous systems for manufacturing and healthcare. This volume 2 includes contributions devoted to Service Robotics and Human-Robot Interaction and Autonomous Multi-Agent Systems and Life Engineering.

  3. Arterial Stiffness and Autonomic Modulation After Free-Weight Resistance Exercises in Resistance Trained Individuals.

    Science.gov (United States)

    Kingsley, J Derek; Mayo, Xián; Tai, Yu Lun; Fennell, Curtis

    2016-12-01

    Kingsley, JD, Mayo, X, Tai, YL, and Fennell, C. Arterial stiffness and autonomic modulation after free-weight resistance exercises in resistance trained individuals. J Strength Cond Res 30(12): 3373-3380, 2016-We investigated the effects of an acute bout of free-weight, whole-body resistance exercise consisting of the squat, bench press, and deadlift on arterial stiffness and cardiac autonomic modulation in 16 (aged 23 ± 3 years; mean ± SD) resistance-trained individuals. Arterial stiffness, autonomic modulation, and baroreflex sensitivity (BRS) were assessed at rest and after 3 sets of 10 repetitions at 75% 1-repetition maximum on each exercise with 2 minutes of rest between sets and exercises. Arterial stiffness was analyzed using carotid-femoral pulse wave velocity (cf-PWV). Linear heart rate variability (log transformed [ln] absolute and normalized units [nu] of low-frequency [LF] and high-frequency [HF] power) and nonlinear heart rate complexity (Sample Entropy [SampEn], Lempel-Ziv Entropy [LZEn]) were measured to determine autonomic modulation. BRS was measured by the sequence method. A 2 × 2 repeated measures analysis of variance (ANOVA) was used to analyze time (rest, recovery) across condition (acute resistance exercise, control). There were significant increases in cf-PWV (p = 0.05), heart rate (p = 0.0001), normalized LF (LFnu; p = 0.001), and the LF/HF ratio (p = 0.0001). Interactions were also noted for ln HF (p = 0.006), HFnu (p = 0.0001), SampEn (p = 0.001), LZEn (p = 0.005), and BRS (p = 0.0001) such that they significantly decreased during recovery from the resistance exercise compared with rest and the control. There was no effect on ln total power, or ln LF. These data suggest that a bout of resistance exercise using free-weights increases arterial stiffness and reduces vagal activity and BRS in comparison with a control session. Vagal tone may not be fully recovered up to 30 minutes after a resistance exercise bout.

  4. Cardiac tamponade: contrast reflux as an indicator of cardiac chamber equalization

    Directory of Open Access Journals (Sweden)

    Nauta Foeke Jacob

    2012-05-01

    Full Text Available Abstract Background Traumatic hemopericardium remains a rare entity; it does however commonly cause cardiac tamponade which remains a major cause of death in traumatic blunt cardiac injury. Objectives We present a case of blunt chest trauma complicated by cardiac tamponade causing cardiac chamber equalization revealed by reflux of contrast. Case report A 29-year-old unidentified male suffered blunt chest trauma in a motor vehicle collision. Computed tomography (CT demonstrated a periaortic hematoma and hemopericardium. Significant contrast reflux was seen in the inferior vena cava and hepatic veins suggesting a change in cardiac chamber pressures. After intensive treatment including cardiac massage this patient expired of cardiac arrest. Conclusion Reflux of contrast on CT imaging can be an indicator of traumatic cardiac tamponade.

  5. Living cardiac patch: the elixir for cardiac regeneration.

    Science.gov (United States)

    Lakshmanan, Rajesh; Krishnan, Uma Maheswari; Sethuraman, Swaminathan

    2012-12-01

    A thorough understanding of the cellular and muscle fiber orientation in left ventricular cardiac tissue is of paramount importance for the generation of artificial cardiac patches to treat the ischemic myocardium. The major challenge faced during cardiac patch engineering is to choose a perfect combination of three entities; cells, scaffolds and signaling molecules comprising the tissue engineering triad for repair and regeneration. This review provides an overview of various scaffold materials, their mechanical properties and fabrication methods utilized in cardiac patch engineering. Stem cell therapies in clinical trials and the commercially available cardiac patch materials were summarized in an attempt to provide a recent perspective in the treatment of heart failure. Various tissue engineering strategies employed thus far to construct viable thick cardiac patches is schematically illustrated. Though many strategies have been proposed for fabrication of various cardiac scaffold materials, the stage and severity of the disease condition demands the incorporation of additional cues in a suitable scaffold material. The scaffold may be nanofibrous patch, hydrogel or custom designed films. Integration of stem cells and biomolecular cues along with the scaffold may provide the right microenvironment for the repair of unhealthy left ventricular tissue as well as promote its regeneration.

  6. Autonomous Star Tracker Algorithms

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren

    1998-01-01

    Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances.......Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances....

  7. Transient receptor potential vanilloid-3 (TRPV3) activation plays a central role in cardiac fibrosis induced by pressure overload in rats via TGF-β1 pathway.

    Science.gov (United States)

    Liu, Yan; Qi, Hanping; E, Mingyao; Shi, Pilong; Zhang, Qianhui; Li, Shuzhi; Wang, Ye; Cao, Yonggang; Chen, Yunping; Ba, Lina; Gao, Jingquan; Huang, Wei; Sun, Hongli

    2018-02-01

    Cardiac fibrosis is a common pathologic change along with pressure overload. Recent studies indicated that transient receptor potential (TRP) channels played multiple roles in heart. However, the functional role of transient receptor potential vanilloid-3 (TRPV3) in cardiac fibrosis remained unclear. The present study was designed to investigate the relationship between TRPV3 activation and pressure overload-induced cardiac fibrosis. Pressure overload rats were successfully established by abdominal aortic constriction (AAC), and cardiac fibrosis was simulated by 100 nM angiotensin II (Ang II) in neonatal cardiac fibroblasts. Echocardiographic parameters, cardiac fibroblast proliferation, cell cycle, intracellular calcium concentration ([Ca 2+ ] i ), and the protein expressions of collagen I, collagen III, transforming growth factor beta 1 (TGF-β 1 ), cyclin E, and cyclin-dependent kinase 2 (CDK2) were measured. Echocardiographic and histological measurements suggested that the activation of TRPV3 exacerbated the cardiac dysfunction and increased interstitial fibrosis in pressure overload rats. Further results showed that TRPV3 activation upregulated the expressions of collagen I, collagen III, TGF-β 1 , cyclin E, and CDK2 in vivo and in vitro. At the same time, blocking TGF-β 1 pathway could partially reverse the effect of TRPV3 activation. These results suggested that TRPV3 activation exacerbated cardiac fibrosis by promoting cardiac fibroblast proliferation through TGF-β 1 /CDK2/cyclin E pathway in the pressure-overloaded rat hearts.

  8. Correlation between cardiac autonomic modulation in response to orthostatic stress and indicators of quality of life, physical capacity, and physical activity in healthy individuals.

    Science.gov (United States)

    Gonçalves, Thiago R; Farinatti, Paulo de Tarso Veras; Gurgel, Jonas L; da Silva Soares, Pedro P

    2015-05-01

    Increased heart rate variability (HRV) at rest is frequently associated to maximal oxygen uptake (VO2max), physical activity, and markers of quality of life (QoL). However, the HRV has not been observed during physical exercise or orthostatic (ORT) challenge. This study investigated the associations of HRV changes (ΔHRV) from rest at supine (SUP) to ORT positions with (VO2max), physical activity level, and QoL in young adults. Cardiac autonomic modulation was assessed by spectral analysis of R-R time series measured from SUP to ORT positions in 15 healthy volunteers (26 ± 7 years). Questionnaires were applied for evaluation of QoL (SF-36 score), to estimate (VO2max), and to quantify physical activity (Baecke Sport Score). All HRV indices at SUP, but not ORT, strongly correlated to QoL, estimated (VO2max), and physical activity. The ΔHRV from SUP to ORT showed significant correlations with all questionnaire scores (r = 0.52-0.61 for low frequency and r = -0.61 to -0.65 for high frequency, p ≤ 0.05). Higher vagal activity at rest and greater changes in adrenergic and parasympathetic modulation from SUP to ORT were detected in the volunteers exhibiting higher scores of QoL, estimated (VO2max), and physical activity. Taken together, the level of neural adaptations from resting SUP position to active standing, and physical activity and QoL questionnaires seem to be a simple approach to understand the physiological and lifestyle adaptations to exercise that may be applied to a large sample of subjects in almost any sports facilities at a low cost.

  9. Effect of Sleep/Wake Cycle on Autonomic Regulation

    International Nuclear Information System (INIS)

    Jabeen, S.

    2015-01-01

    Objective: To evaluate the association between irregular sleep/wake cycle in shift workers and autonomic regulation. Study Design: Cross-sectional, analytical study. Place and Duration of Study: Dow University Hospital, Karachi, from August to November 2013. Methodology: All health care providers working in rotating shifts making a total (n=104) were included. Instrument was an integrated questionnaire applied to assess autonomic regulation, taken from Kroz et al. on scoring criteria, ranging from 18 - 54, where higher rating signifies strong autonomic regulation, indicating a stable Autonomic Nervous System (ANS) and vice versa. Participants were interviewed and their response was recorded by the investigator. Influence of sleep misalignment was measured quantitatively to extract index of autonomic activity. Results: There was a reduced trend in autonomic strength amongst shift workers. The mean score obtained on the Autonomic Scale was 37.8 ± 5.9. Conclusion: Circadian misalignment has an injurious influence on ANS which might be valuable in controlling autonomic dysfunction that leads to fatal triggers in rotating shift workers. (author)

  10. Regulation of cardiac remodeling by cardiac Na/K-ATPase isoforms

    Directory of Open Access Journals (Sweden)

    Lijun Catherine Liu

    2016-09-01

    Full Text Available Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na+/K+-ATPase has multiple α isoforms (1-3. The expression of the α subunit of the Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1 the distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes. (2 the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling.

  11. Physics Simulation Software for Autonomous Propellant Loading and Gas House Autonomous System Monitoring

    Science.gov (United States)

    Regalado Reyes, Bjorn Constant

    2015-01-01

    1. Kennedy Space Center (KSC) is developing a mobile launching system with autonomous propellant loading capabilities for liquid-fueled rockets. An autonomous system will be responsible for monitoring and controlling the storage, loading and transferring of cryogenic propellants. The Physics Simulation Software will reproduce the sensor data seen during the delivery of cryogenic fluids including valve positions, pressures, temperatures and flow rates. The simulator will provide insight into the functionality of the propellant systems and demonstrate the effects of potential faults. This will provide verification of the communications protocols and the autonomous system control. 2. The High Pressure Gas Facility (HPGF) stores and distributes hydrogen, nitrogen, helium and high pressure air. The hydrogen and nitrogen are stored in cryogenic liquid state. The cryogenic fluids pose several hazards to operators and the storage and transfer equipment. Constant monitoring of pressures, temperatures and flow rates are required in order to maintain the safety of personnel and equipment during the handling and storage of these commodities. The Gas House Autonomous System Monitoring software will be responsible for constantly observing and recording sensor data, identifying and predicting faults and relaying hazard and operational information to the operators.

  12. Particles Alter Diesel Exhaust Gases-Induced Hypotension, Cardiac Arrhythmia,Conduction Disturbance, and Autonomic Imbalance in Heart Failure-Prone Rats

    Science.gov (United States)

    Epidemiologic studies indicate that acute exposures to vehicular traffic and particulate matter (PM) air pollution are key causes of fatal cardiac arrhythmia, especially in those with preexisting cardiovascular disease. Researchers point to electrophysiologic dysfunction and auto...

  13. Mining in the Future: Autonomous Robotics for Safer Mines

    CSIR Research Space (South Africa)

    Shahdi, A

    2012-10-01

    Full Text Available ? Require less support infrastructure ? Advanced sensors ? CSIR 2012 Slide 4 Degree of Autonomy ? Teleoperation ? Semi-autonomous ? Autonomous ? CSIR 2012 Slide 5 Mobile Intelligent Autonomous Systems Group ? The Mobile Intelligent Autonomous...

  14. Contribution of the autonomic nervous system to blood pressure and heart rate variability changes in early experimental hyperthyroidism.

    Science.gov (United States)

    Safa-Tisseront, V; Ponchon, P; Laude, D; Elghozi, J L

    1998-07-10

    A great deal of uncertainty persists regarding the exact nature of the interaction between autonomic nervous system activity and thyroid hormones in the control of heart rate and blood pressure. We now report on thyrotoxicosis produced by daily intraperitoneal (i.p.) injection of L-thyroxine (0.5 mg/kg body wt. in 1 ml of 5 mM NaOH for 5 days). Control rats received i.p. daily injections of the thyroxine solvent. In order to estimate the degree of autonomic activation in hyperthyroidism, specific blockers were administered intravenously: atropine (0.5 mg/kg), prazosin (1 mg/kg), atenolol (1 mg/kg) or the combination of atenolol and atropine. A jet of air was administered in other animals to induce sympathoactivation. Eight animals were studied in each group. The dose and duration of L-thyroxine treatment was sufficient to induce a significant degree of hyperthyroidism with accompanying tachycardia, systolic blood pressure elevation, increased pulse pressure, cardiac hypertrophy, weight loss, tachypnea and hyperthermia. In addition, the intrinsic heart period observed after double blockade (atenolol + atropine) was markedly decreased after treatment with L-thyroxine (121.5+/-3.6 ms vs. 141.2+/-3.7 ms, P hyperthyroidism and in these rats the jet of air did not significantly affect the heart period level. The thyrotoxicosis was associated with a reduction of the 0.4 Hz component of blood pressure variability (analyses on 102.4 s segments, modulus 1.10+/-0.07 vs. 1.41+/-0.06 mm Hg, P hyperthyroidism. The marked rise in the intrinsic heart rate could be the main determinant of tachycardia. The blood pressure elevation may reflexly induce vagal activation and sympathetic (vascular and cardiac) inhibition.

  15. From cooperative to autonomous vehicles

    NARCIS (Netherlands)

    van der Sande, T.P.J.; Nijmeijer, H.; Fossen, T.I.; Pettersen, K.Y.; Nijmeijer, H.

    2017-01-01

    What defines an autonomous vehicle? In this chapter the authors will try to answer this question and formulate the limitations of driver assistance systems as well as for—conditionally—autonomous vehicles . First a short summary of the levels of automation as provided by the society of automotive

  16. Efficacy and safety of aldose reductase inhibitor for the treatment of diabetic cardiovascular autonomic neuropathy: systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Xin Hu

    Full Text Available BACKGROUND: Aldose reductase inhibitors (ARIs can block the metabolism of the polyol pathway, and have been used to slow or reverse the progression of diabetic cardiovascular autonomic neuropathy (DCAN. The purpose of this study was to review the effectiveness and safety of ARIs in the treatment of DCAN as determined by five cardiac autonomic neuropathy function tests. METHODS: CENTRAL, MEDLINE, EMBASE, Scopus databases (inception to May 2012 were searched to identify randomized controlled trials (RCTs and non-randomized controlled trials (non-RCTs investigating ARIs for the treatment of DCAN with an English-language restriction. The data were analyzed using RevMan 5.0, and the heterogeneity between the trials was evaluated using the Cochrane's Q-test as well as the I² test. The type of model (random or fixed used for analysis was based on heterogeneity. Weighted mean differences (WMD with 95% confidence intervals (CI were computed for the five cardiac automatic neuropathy function tests to evaluate the effects. RESULTS: Ten articles met the prerequisites for this review. Analysis of the results showed that ARIs significantly improved function in at least three of the five automatic neuropathy tests, including the resting heart rate variation coefficients (WMD = 0.25, 95%CI 0.02 to 0.48, P = 0.040; the 30∶15 ratio (WMD = 0.06, 95%CI 0.01 to 0.10, P = 0.010 and the postural systolic blood pressure change (WMD = -5.94, 95%CI -7.31 to -4.57, P = 0.001. The expiration/inspiration ratio showed a marginally significant benefit (WMD = 0.05, 95%CI 0.00 to 0.09, P = 0.040. Glycaemic control was not significantly affected by ARIs. Adverse effects of ARIs except for Tolerestat were minimal. CONCLUSIONS: Based on these results, we conclude that ARIs could ameliorate cardiac automatic neuropathy especially mild or asymptomatic DCAN but need further investigation.

  17. Initial Efficacy of a Cardiac Rehabilitation Transition Program: Cardiac TRUST

    Science.gov (United States)

    Zullo, Melissa; Boxer, Rebecca; Moore, Shirley M.

    2012-01-01

    Patients recovering from cardiac events are increasingly using postacute care, such as home health care and skilled nursing facility services. The purpose of this pilot study was to test the initial efficacy, feasibility, and safety of a specially designed postacute care transitional rehabilitation intervention for cardiac patients. Cardiac Transitional Rehabilitation Using Self- Management Techniques (Cardiac TRUST) is a family-focused intervention that includes progressive low-intensity walking and education in self-management skills to facilitate recovery following a cardiac event. Using a randomized two-group design, exercise self-efficacy, steps walked, and participation in an outpatient cardiac rehabilitation program were compared in a sample of 38 older adults; 17 who received the Cardiac TRUST program and 21 who received usual care only. At discharge from postacute care, the intervention group had a trend for higher levels of self-efficacy for exercise outcomes (X=39.1, SD=7.4) than the usual care group (X=34.5; SD=7.0) (t-test 1.9, p=.06). During the 6 weeks following discharge, compared with the usual care group, the intervention group had more attendance in out-patient cardiac rehabilitation (33% compared to 11.8%, F=7.1, p=.03) and a trend toward more steps walked during the first week (X=1,307, SD=652 compared to X=782, SD=544, t-test 1.8, p=.07). The feasibility of the intervention was better for the home health participants than for those in the skilled nursing facility and there were no safety concerns. The provision of cardiac-focused rehabilitation during postacute care has the potential to bridge the gap in transitional services from hospitalization to outpatient cardiac rehabilitation for these patients at high risk for future cardiac events. Further evidence of the efficacy of Cardiac TRUST is warranted. PMID:22084960

  18. Remodeling of intrinsic cardiac neurons: effects of β-adrenergic receptor blockade in guinea pig models of chronic heart disease.

    Science.gov (United States)

    Hardwick, Jean C; Southerland, E Marie; Girasole, Allison E; Ryan, Shannon E; Negrotto, Sara; Ardell, Jeffrey L

    2012-11-01

    Chronic heart disease induces remodeling of cardiac tissue and associated neuronal components. Treatment of chronic heart disease often involves pharmacological blockade of adrenergic receptors. This study examined the specific changes in neuronal sensitivity of guinea pig intrinsic cardiac neurons to autonomic modulators in animals with chronic cardiac disease, in the presence or absence of adrenergic blockage. Myocardial infarction (MI) was produced by ligature of the coronary artery and associated vein on the dorsal surface of the heart. Pressure overload (PO) was induced by a banding of the descending dorsal aorta (∼20% constriction). Animals were allowed to recover for 2 wk and then implanted with an osmotic pump (Alzet) containing either timolol (2 mg·kg(-1)·day(-1)) or vehicle, for a total of 6-7 wk of drug treatment. At termination, intracellular recordings from individual neurons in whole mounts of the cardiac plexus were used to assess changes in physiological responses. Timolol treatment did not inhibit the increased sensitivity to norepinephrine seen in both MI and PO animals, but it did inhibit the stimulatory effects of angiotensin II on the norepinephrine-induced increases in neuronal excitability. Timolol treatment also inhibited the increase in synaptically evoked action potentials observed in PO animals with stimulation of fiber tract bundles. These results demonstrate that β-adrenergic blockade can inhibit specific aspects of remodeling within the intrinsic cardiac plexus. In addition, this effect was preferentially observed with active cardiac disease states, indicating that the β-receptors were more influential on remodeling during dynamic disease progression.

  19. Urban air pollution produces up-regulation of myocardial inflammatory genes and dark chocolate provides cardioprotection.

    Science.gov (United States)

    Villarreal-Calderon, Rodolfo; Reed, William; Palacios-Moreno, Juan; Keefe, Sheyla; Herritt, Lou; Brooks, Diane; Torres-Jardón, Ricardo; Calderón-Garcidueñas, Lilian

    2012-05-01

    Air pollution is a serious environmental problem. Elderly subjects show increased cardiac morbidity and mortality associated with air pollution exposure. Mexico City (MC) residents are chronically exposed to high concentrations of fine particulate matter (PM(2.5)) and PM-associated lipopolysaccharides (PM-LPS). To test the hypothesis that chronic exposure to urban pollution produces myocardial inflammation, female Balb-c mice age 4 weeks were exposed for 16 months to two distinctly different polluted areas within MC: southwest (SW) and northwest (NW). SW mice were given either no treatment or chocolate 2g/9.5 mg polyphenols/3 times per week. Results were compared to mice kept in clean air. Key inflammatory mediator genes: cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the LPS receptor CD14 (cluster of differentiation antigen 14) were measured by real-time polymerase chain reaction. Also explored were target NFκB (nuclear factor κB), oxidative stress and antioxidant defense genes. TNF-α, IL-6, and COX-2 were significantly increased in both NW and SWMC mice (p=0.0001). CD14 was up-regulated in SW mice in keeping with the high exposures to particulate matter associated endotoxin. Chocolate administration resulted in a significant down-regulation of TNF-α (p<0.0001), IL-6 (p=0.01), and IL-1β (p=0.02). The up-regulation of antioxidant enzymes and the down-regulation of potent oxidases, toll-like receptors, and pro-apoptotic signaling genes completed the protective profile. Exposure to air pollution produces up-regulation of inflammatory myocardial genes and endotoxin plays a key role in the inflammatory response. Regular consumption of dark chocolate may reduce myocardial inflammation and have cardioprotective properties in the setting of air pollution exposures. Copyright © 2010 Elsevier GmbH. All rights reserved.

  20. Cardiac fibroblast transcriptome analyses support a role for interferogenic, profibrotic, and inflammatory genes in anti-SSA/Ro-associated congenital heart block.

    Science.gov (United States)

    Clancy, Robert M; Markham, Androo J; Jackson, Tanisha; Rasmussen, Sara E; Blumenberg, Miroslav; Buyon, Jill P

    2017-09-01

    The signature lesion of SSA/Ro autoantibody-associated congenital heart block (CHB) is fibrosis and a macrophage infiltrate, supporting an experimental focus on cues influencing the fibroblast component. The transcriptomes of human fetal cardiac fibroblasts were analyzed using two complementary approaches. Cardiac injury conditions were simulated in vitro by incubating human fetal cardiac fibroblasts with supernatants from macrophages transfected with the SSA/Ro-associated noncoding Y ssRNA. The top 10 upregulated transcripts in the stimulated fibroblasts reflected a type I interferon (IFN) response [e.g., IFN-induced protein 44-like (IFI44L), of MX dynamin-like GTPase (MX)1, MX2, and radical S -adenosyl methionine domain containing 2 (Rsad2)]. Within the fibrotic pathway, transcript levels of endothelin-1 (EDN1), phosphodiesterase (PDE)4D, chemokine (C-X-C motif) ligand (CXCL)2, and CXCL3 were upregulated, while others, including adenomedullin, RAP guanine nucleotide exchange factor 3 (RAPGEF3), tissue inhibitor of metalloproteinase (TIMP)1, TIMP3, and dual specificity phosphatase 1, were downregulated. Agnostic Database for Annotation, Visualization and Integrated Discovery analysis revealed a significant increase in inflammatory genes, including complement C3A receptor 1 (C3AR1), F2R-like thrombin/trypsin receptor 3, and neutrophil cytosolic factor 2. In addition, stimulated fibroblasts expressed high levels of phospho-MADS box transcription enhancer factor 2 [a substrate of MAPK5 (ERK5)], which was inhibited by BIX-02189, a specific inhibitor of ERK5. Translation to human disease leveraged an unprecedented opportunity to interrogate the transcriptome of fibroblasts freshly isolated and cell sorted without stimulation from a fetal heart with CHB and a matched healthy heart. Consistent with the in vitro data, five IFN response genes were among the top 10 most highly expressed transcripts in CHB fibroblasts. In addition, the expression of matrix-related genes

  1. Autonomous Learner Model Resource Book

    Science.gov (United States)

    Betts, George T.; Carey, Robin J.; Kapushion, Blanche M.

    2016-01-01

    "Autonomous Learner Model Resource Book" includes activities and strategies to support the development of autonomous learners. More than 40 activities are included, all geared to the emotional, social, cognitive, and physical development of students. Teachers may use these activities and strategies with the entire class, small groups, or…

  2. [Non-invasive evaluation of the cardiac autonomic nervous system by PET

    International Nuclear Information System (INIS)

    1992-01-01

    C-11 hydroxy ephedrine, introduced as the first clinically usable norepinephrine analogue, studies employing normal volunteers and patients with various cardiac disorders was found to valuable as a nonadreneric tracer. Simultaneously, animal studies been used to assess its use following ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threohydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, we are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve our ability to identify abnormalides. We are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. We are developing radiopharmaceuticals, for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in our institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by, preliminary PET data

  3. Immunosuppression in cardiac graft rejection: A human in vitro model to study the potential use of new immunomodulatory drugs

    International Nuclear Information System (INIS)

    Crescioli, Clara; Squecco, Roberta; Cosmi, Lorenzo; Sottili, Mariangela; Gelmini, Stefania; Borgogni, Elisa; Sarchielli, Erica; Scolletta, Sabino; Francini, Fabio; Annunziato, Francesco; Vannelli, Gabriella Barbara; Serio, Mario

    2008-01-01

    CXCL10-CXCR3 axis plays a pivotal role in cardiac allograft rejection, so that targeting CXCL10 without inducing generalized immunosuppression may be of therapeutic significance in allotransplantation. Since the role of resident cells in cardiac rejection is still unclear, we aimed to establish reliable human cardiomyocyte cultures to investigate Th1 cytokine-mediated response in allograft rejection. We used human fetal cardiomyocytes (Hfcm) isolated from fetal hearts, obtained after legal abortions. Hfcm expressed specific cardiac lineage markers, specific cardiac structural proteins, typical cardiac currents and generated ventricular action potentials. Thus, Hfcm represent a reliable in vitro tool for allograft rejection research, since they resemble the features of mature cells. Hfcm secreted CXCL10 in response to IFNγ and TNFαα; this effect was magnified by cytokine combination. Cytokine synergy was associated to a significant TNFα-induced up-regulation of IFNγR. The response of Hfcm to some currently used immunosuppressive drugs compared to rosiglitazone, a peroxisome proliferator-activated receptor γ agonist and Th1-mediated response inhibitor, was also evaluated. Only micophenolic acid and rosiglitazone halved CXCL10 secretion by Hfcm. Given the pivotal role of IFNγ-induced chemokines in Th1-mediated allograft rejection, these preliminary results suggest that the combined effects of immunosuppressive agents and rosiglitazone could be potentially beneficial to patients receiving heart transplants

  4. Cybersecurity for aerospace autonomous systems

    Science.gov (United States)

    Straub, Jeremy

    2015-05-01

    High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.

  5. Human embryonic stem cell derived mesenchymal progenitors express cardiac markers but do not form contractile cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Christophe M Raynaud

    Full Text Available Mesenchymal progenitors or stromal cells have shown promise as a therapeutic strategy for a range of diseases including heart failure. In this context, we explored the growth and differentiation potential of mesenchymal progenitors (MPs derived in vitro from human embryonic stem cells (hESCs. Similar to MPs isolated from bone marrow, hESC derived MPs (hESC-MPs efficiently differentiated into archetypical mesenchymal derivatives such as chondrocytes and adipocytes. Upon treatment with 5-Azacytidine or TGF-β1, hESC-MPs modified their morphology and up-regulated expression of key cardiac transcription factors such as NKX2-5, MEF2C, HAND2 and MYOCD. Nevertheless, NKX2-5+ hESC-MP derivatives did not form contractile cardiomyocytes, raising questions concerning the suitability of these cells as a platform for cardiomyocyte replacement therapy. Gene profiling experiments revealed that, although hESC-MP derived cells expressed a suite of cardiac related genes, they lacked the complete repertoire of genes associated with bona fide cardiomyocytes. Our results suggest that whilst agents such as TGF-β1 and 5-Azacytidine can induce expression of cardiac related genes, but treated cells retain a mesenchymal like phenotype.

  6. Are Cardiac Autonomic Nervous System Activity and Perceived Stress Related to Functional Somatic Symptoms in Adolescents? The TRAILS Study

    NARCIS (Netherlands)

    Janssens, Karin A. M.; Riese, Harriette; Van Roon, Arie M.; Hunfeld, Joke A. M.; Groot, Paul F. C.; Oldehinkel, Albertine J.; Rosmalen, Judith G. M.

    2016-01-01

    Objective Stressors have been related to medically insufficiently explained or functional somatic symptoms (FSS). However, the underlying mechanism of this association is largely unclear. In the current study, we examined whether FSS are associated with different perceived stress and cardiac

  7. Human-induced pluripotent stem cell-derived cardiomyocytes from cardiac progenitor cells: effects of selective ion channel blockade.

    Science.gov (United States)

    Altomare, Claudia; Pianezzi, Enea; Cervio, Elisabetta; Bolis, Sara; Biemmi, Vanessa; Benzoni, Patrizia; Camici, Giovanni G; Moccetti, Tiziano; Barile, Lucio; Vassalli, Giuseppe

    2016-12-01

    Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes are likely to revolutionize electrophysiological approaches to arrhythmias. Recent evidence suggests the somatic cell origin of hiPSCs may influence their differentiation potential. Owing to their cardiomyogenic potential, cardiac-stromal progenitor cells (CPCs) are an interesting cellular source for generation of hiPSC-derived cardiomyocytes. The effect of ionic current blockade in hiPSC-derived cardiomyocytes generated from CPCs has not been characterized yet. Human-induced pluripotent stem cell-derived cardiomyocytes were generated from adult CPCs and skin fibroblasts from the same individuals. The effect of selective ionic current blockade on spontaneously beating hiPSC-derived cardiomyocytes was assessed using multi-electrode arrays. Cardiac-stromal progenitor cells could be reprogrammed into hiPSCs, then differentiated into hiPSC-derived cardiomyocytes. Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin showed higher upregulation of cardiac-specific genes compared with those of fibroblastic origin. Human-induced pluripotent stem cell-derived cardiomyocytes of both somatic cell origins exhibited sensitivity to tetrodotoxin, a blocker of Na +  current (I Na ), nifedipine, a blocker of L-type Ca 2+  current (I CaL ), and E4031, a blocker of the rapid component of delayed rectifier K +  current (I Kr ). Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin exhibited sensitivity to JNJ303, a blocker of the slow component of delayed rectifier K +  current (I Ks ). In hiPSC-derived cardiomyocytes of cardiac origin, I Na , I CaL , I Kr , and I Ks were present as tetrodotoxin-, nifedipine-, E4031-, and JNJ303-sensitive currents, respectively. Although cardiac differentiation efficiency was improved in hiPSCs of cardiac vs. non-cardiac origin, no major functional differences were observed between hiPSC-derived cardiomyocytes of different somatic

  8. Temporal patterns of cardiac performance and genes encoding heat shock proteins and metabolic sensors of an intertidal limpet Cellana toreuma during sublethal heat stress.

    Science.gov (United States)

    Zhang, Shu; Han, Guo-dong; Dong, Yun-wei

    2014-04-01

    Intertidal invertebrates develop effective physiological adaptations to cope with the rapidly changing thermal environment in the intertidal zone. In the present study, the temporal patterns of heart rate, protein carbonyl groups, and genes encoding heat shock proteins (hsp70 and hsp90) and metabolic sensors (ampkα, ampkβ and sirt1) were measured to study the effect of sublethal heat stress on the cardiac function, oxidative stress, heat shock response and cellular metabolism of an intertidal limpet Cellana toreuma. All the physiological parameters are sensitive to temperature and duration of heat stress. Spearman correlation analysis revealed that the correlations between heart rate and levels of heat shock proteins mRNA and metabolic sensors mRNA were statistically significant. These results further suggest that cardiac function plays crucial roles in cellular energy metabolism and heat shock responses. The significant increase of protein carbonyl groups at 34°C after 4h exposure indicated that the failure of cardiac function and the increase of anaerobic metabolism partly leads to the increase of protein carbonyl groups. Generally, the physiological responses to heat stress are sensitive to temperature and are energy-consumptive, as indicated by the upregulation of metabolic sensors mRNA. However, the upregulation of heat shock proteins and metabolic sensors at the post-transcriptional level and related functions need to be confirmed in further experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The Human Element and Autonomous Ships

    Directory of Open Access Journals (Sweden)

    Sauli Ahvenjärvi

    2016-09-01

    Full Text Available The autonomous ship technology has become a “hot” topic in the discussion about more efficient, environmentally friendly and safer sea transportation solutions. The time is becoming mature for the introduction of commercially sensible solutions for unmanned and fully autonomous cargo and passenger ships. Safety will be the most interesting and important aspect in this development. The utilization of the autonomous ship technology will have many effects on the safety, both positive and negative. It has been announced that the goal is to make the safety of an unmanned ship better that the safety of a manned ship. However, it must be understood that the human element will still be present when fully unmanned ships are being used. The shore-based control of a ship contains new safety aspects and an interesting question will be the interaction of manned and unmanned ships in the same traffic area. The autonomous ship technology should therefore be taken into account on the training of seafarers. Also it should not be forgotten that every single control algorithm and rule of the internal decision making logic of the autonomously navigating ship has been designed and coded by a human software engineer. Thus the human element is present also in this point of the lifetime navigation system of the autonomous ship.

  10. Linear Analysis of Autonomic Activity and Its Correlation with Creatine Kinase-MB in Overt Thyroid Dysfunctions.

    Science.gov (United States)

    Mavai, Manisha; Singh, Yogendra Raj; Gupta, R C; Mathur, Sandeep K; Bhandari, Bharti

    2018-04-01

    Autonomic activity may be deranged in thyroid dysfunctions and may lead to cardiovascular morbidity and mortality. Myopathy is a common manifestation in thyroid disorders and may be associated with raised serum creatine kinase (CK). We hypothesized that cardiovascular abnormality in thyroid dysfunction may manifest as raised CK-MB. This study was designed to investigate the correlation of CK and its isoform CK-MB with thyroid profile and linear parameters of heart rate variability (HRV). The study was conducted on 35 hypothyroid and hyperthyroid patients each, and 25 age-matched healthy controls. Autonomic activity was assessed by simple short term 5-min HRV. Biochemical evaluation of serum thyroid profile, CK-NAC and CK-MB were estimated in all the subjects. Our results demonstrated low HRV in hypo- as well as hyperthyroid patients. We observed significantly higher serum CK levels in hypothyroid patients when compared to hyperthyroids and controls. However, no significant differences were observed in CK-MB levels in the three groups. Significant positive correlation of CK with TSH and negative correlation with some HRV parameters (LF power, HF power, total power, SDNN, RMSSD) was observed in hypothyroid patients. Whereas correlation of CK-MB with thyroid profile as well as HRV parameters was non-significant in all the groups. Based on the CK and CK-MB findings and their correlation, we conclude that the cardiovascular changes seen in thyroid dysfunctions may primarily be due to autonomic imbalance without apparent cardiac muscle involvement. Whereas, raised CK levels indicate predominantly skeletal muscle involvement in hypothyroid patients.

  11. Morphologic Changes in Autonomic Nerves in Diabetic Autonomic Neuropathy

    Directory of Open Access Journals (Sweden)

    Heung Yong Jin

    2015-12-01

    Full Text Available Diabetic neuropathy is one of the major complications of diabetes, and it increases morbidity and mortality in patients with both type 1 diabetes mellitus (T1DM and type 2 diabetes mellitus (T2DM. Because the autonomic nervous system, for example, parasympathetic axons, has a diffuse and wide distribution, we do not know the morphological changes that occur in autonomic neural control and their exact mechanisms in diabetic patients with diabetic autonomic neuropathy (DAN. Although the prevalence of sympathetic and parasympathetic neuropathy is similar in T1DM versus T2DM patients, sympathetic nerve function correlates with parasympathetic neuropathy only in T1DM patients. The explanation for these discrepancies might be that parasympathetic nerve function was more severely affected among T2DM patients. As parasympathetic nerve damage seems to be more advanced than sympathetic nerve damage, it might be that parasympathetic neuropathy precedes sympathetic neuropathy in T2DM, which was Ewing's concept. This could be explained by the intrinsic morphologic difference. Therefore, the morphological changes in the sympathetic and parasympathetic nerves of involved organs in T1DM and T2DM patients who have DAN should be evaluated. In this review, evaluation methods for morphological changes in the epidermal nerves of skin, and the intrinsic nerves of the stomach will be discussed.

  12. Heart rate variability alters cardiac repolarization and electromechanical dynamics.

    Science.gov (United States)

    Phadumdeo, Vrishti M; Weinberg, Seth H

    2018-04-07

    Heart rate continuously varies due to autonomic regulation, stochasticity in pacemaking, and circadian rhythm, collectively termed heart rate variability (HRV), during normal physiological conditions. Low HRV is clinically associated with an elevated risk of cardiac arrhythmias. Alternans, a beat-to-beat alternation in action potential duration (APD) and/or intracellular calcium (Ca) transient, is a well-known risk factor associated with cardiac arrhythmias that is typically studied under conditions of a constant pacing rate, i.e., the absence of HRV. In this study, we investigate the effects of HRV on the interplay between APD, Ca, and electromechanical properties, employing a nonlinear discrete-time map model that governs APD and intracellular Ca cycling with a stochastic pacing period. We find that HRV can decrease variation in APD and peak Ca at fast pacing rates for which alternans is present. Further, increased HRV typically disrupts the alternating pattern for both APD and peak Ca and weakens the correlation between APD and peak Ca, thus decoupling Ca-mediated instabilities from repolarization alternation. We find that the efficacy of these effects is regulated by the sarcoplasmic reticulum Ca uptake rate. Overall, these results demonstrate that HRV disrupts arrhythmogenic alternans and suggests that HRV may be a significant factor in preventing life-threatening arrhythmias. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Cardiac tumors: optimal cardiac MR sequences and spectrum of imaging appearances.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2012-02-01

    OBJECTIVE: This article reviews the optimal cardiac MRI sequences for and the spectrum of imaging appearances of cardiac tumors. CONCLUSION: Recent technologic advances in cardiac MRI have resulted in the rapid acquisition of images of the heart with high spatial and temporal resolution and excellent myocardial tissue characterization. Cardiac MRI provides optimal assessment of the location, functional characteristics, and soft-tissue features of cardiac tumors, allowing accurate differentiation of benign and malignant lesions.

  14. Connected and autonomous vehicles 2040 vision.

    Science.gov (United States)

    2014-07-01

    The Pennsylvania Department of Transportation (PennDOT) commissioned a one-year project, Connected and Autonomous : Vehicles 2040 Vision, with researchers at Carnegie Mellon University (CMU) to assess the implications of connected and : autonomous ve...

  15. Autonomous Operations System: Development and Application

    Science.gov (United States)

    Toro Medina, Jaime A.; Wilkins, Kim N.; Walker, Mark; Stahl, Gerald M.

    2016-01-01

    Autonomous control systems provides the ability of self-governance beyond the conventional control system. As the complexity of mechanical and electrical systems increases, there develops a natural drive for developing robust control systems to manage complicated operations. By closing the bridge between conventional automated systems to knowledge based self-awareness systems, nominal control of operations can evolve into relying on safe critical mitigation processes to support any off-nominal behavior. Current research and development efforts lead by the Autonomous Propellant Loading (APL) group at NASA Kennedy Space Center aims to improve cryogenic propellant transfer operations by developing an automated control and health monitoring system. As an integrated systems, the center aims to produce an Autonomous Operations System (AOS) capable of integrating health management operations with automated control to produce a fully autonomous system.

  16. Cardiac gated ventilation

    International Nuclear Information System (INIS)

    Hanson, C.W. III; Hoffman, E.A.

    1995-01-01

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. The authors evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50 msec scan aperture. Multi slice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. The authors observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a non-failing model of the heart

  17. ROV90 - A prototype autonomous inspection vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Roedseth, Oe.J.; Hallset, J.O.

    1991-04-01

    Simple autonomous inspection vehicles are suitable for operations where the cost, danger to humans, or area of operation prohibits the use of conventional underwater technology. Autonomous vehicles are, however, in their infancy and few such vehicles are available. There are still some problems to be overcome before this technology becomes useful in commercial applications. We have built ROV90 to investigate these problems. It is a test bed for experimenting with the different parts of an autonomous underwater vehicle. ROV90 will be able to autonomously follow prominent features in the real world, man made or natural. Examples are pipelines or walls in tunnels. ROV90 is tethered, but we are planning to use experience and results from ROV90 to develop av ''real'' autonomous underwater vehicle (AUV) called PISCIS. 11 refs., 8 figs.

  18. Physiological changes in human cardiac sympathetic innervation and activity assessed by 123I-metaiodobenzylguanidine (MIBG) imaging

    International Nuclear Information System (INIS)

    Sakata, Kazuyuki; Iida, Kei; Mochizuki, Nao; Ito, Michitoshi; Nakaya, Yoshihiro

    2009-01-01

    Physiologic changes in the human sympathetic nervous system (SNS) may be associated with cardiovascular diseases, so the present study assessed the age and gender differences in global cardiac SNS in normal subjects. The 163 subjects (74 men, 89 women; age range 40-89 years) whose coronary arteriogram was normal, and who had no other cardiac or neurohormonal diseases, and no medication affecting the autonomic nervous system were included. All study subjects underwent metaiodobenzylguanidine imaging. Both initial and delayed heart-to-mediastinum (H/M) ratios had a significant gender difference and showed a progressive decrease with aging. In addition, the initial H/M ratio had a significant positive correlation with the delayed H/M ratio (r=0.89, P<0.0001). Females (50-59 years) demonstrated significantly higher delayed H/M ratio than males of the same age. After the age of 60, the delayed H/M ratio in females progressively decreased with aging, similar to males. As for the washout rate, both genders had a significantly progressive increase with aging. In addition, there was a significant decrease in the delayed H/M ratio in 10 females with surgical menopause compared with 15 age-matched females without surgical menopause. Cardiac SNS appears to be regulated by various physiological factors. (author)

  19. Autonomous Cryogenic Load Operations: KSC Autonomous Test Engineer

    Science.gov (United States)

    Shrading, Nicholas J.

    2012-01-01

    The KSC Autonomous Test Engineer (KATE) program has a long history at KSC. Now a part of the Autonomous Cryogenic Load Operations (ACLO) mission, this software system has been sporadically developed over the past 20+ years. Originally designed to provide health and status monitoring for a simple water-based fluid system, it was proven to be a capable autonomous test engineer for determining sources of failure in. the system, As part.of a new goal to provide this same anomaly-detection capability for a complicated cryogenic fluid system, software engineers, physicists, interns and KATE experts are working to upgrade the software capabilities and graphical user interface. Much progress was made during this effort to improve KATE. A display ofthe entire cryogenic system's graph, with nodes for components and edges for their connections, was added to the KATE software. A searching functionality was added to the new graph display, so that users could easily center their screen on specific components. The GUI was also modified so that it displayed information relevant to the new project goals. In addition, work began on adding new pneumatic and electronic subsystems into the KATE knowledgebase, so that it could provide health and status monitoring for those systems. Finally, many fixes for bugs, memory leaks, and memory errors were implemented and the system was moved into a state in which it could be presented to stakeholders. Overall, the KATE system was improved and necessary additional features were added so that a presentation of the program and its functionality in the next few months would be a success.

  20. Zinc-finger protein 418 overexpression protects against cardiac hypertrophy and fibrosis.

    Directory of Open Access Journals (Sweden)

    Liming Pan

    Full Text Available This study aimed to investigated the effect and mechanism of zinc-finger protein 418 (ZNF418 on cardiac hypertrophy caused by aortic banding (AB, phenylephrine (PE or angiotensin II (Ang II in vivo and in vitro.The expression of ZNF418 in hearts of patients with dilated cardiomyopathy (DCM or hypertrophic cardiomyopathy (HCM and AB-induced cardiac hypertrophy mice, as well as in Ang II- or PE-induced hypertrophic primary cardiomyocytes was detected by western blotting. Then, the expression of ZNF418 was up-regulated or down-regulated in AB-induced cardiac hypertrophy mice and Ang II -induced hypertrophic primary cardiomyocytes. The hypertrophic responses and fibrosis were evaluated by echocardiography and histological analysis. The mRNA levels of hypertrophy markers and fibrotic markers were detected by RT-qPCR. Furthermore, the phosphorylation and total levels of c-Jun were measured by western blotting.ZNF418 was markedly down-regulated in hearts of cardiac hypertrophy and hypertrophic primary cardiomyocytes. Down-regulated ZNF418 exacerbated the myocyte size and fibrosis, moreover increased the mRNA levels of ANP, BNP, β-MHC, MCIP1.4, collagen 1a, collagen III, MMP-2 and fibronection in hearts of AB-treated ZNF418 knockout mice or Ang II-treated cardiomyocytes with AdshZNF418. Conversely, these hypertrophic responses were reduced in the ZNF418 transgenic (TG mice treated by AB and the AdZNF418-transfected primary cardiomyocytes treated by Ang II. Additionally, the deficiency of ZNF418 enhanced the phosphorylation level of c-jun, and overexpression of ZNF418 suppressed the phosphorylation level of c-jun in vivo and in vitro.ZNF418 maybe attenuate hypertrophic responses by inhibiting the activity of c-jun/AP-1.

  1. In vitro epigenetic reprogramming of human cardiac mesenchymal stromal cells into functionally competent cardiovascular precursors.

    Directory of Open Access Journals (Sweden)

    Matteo Vecellio

    Full Text Available Adult human cardiac mesenchymal-like stromal cells (CStC represent a relatively accessible cell type useful for therapy. In this light, their conversion into cardiovascular precursors represents a potential successful strategy for cardiac repair. The aim of the present work was to reprogram CStC into functionally competent cardiovascular precursors using epigenetically active small molecules. CStC were exposed to low serum (5% FBS in the presence of 5 µM all-trans Retinoic Acid (ATRA, 5 µM Phenyl Butyrate (PB, and 200 µM diethylenetriamine/nitric oxide (DETA/NO, to create a novel epigenetically active cocktail (EpiC. Upon treatment the expression of markers typical of cardiac resident stem cells such as c-Kit and MDR-1 were up-regulated, together with the expression of a number of cardiovascular-associated genes including KDR, GATA6, Nkx2.5, GATA4, HCN4, NaV1.5, and α-MHC. In addition, profiling analysis revealed that a significant number of microRNA involved in cardiomyocyte biology and cell differentiation/proliferation, including miR 133a, 210 and 34a, were up-regulated. Remarkably, almost 45% of EpiC-treated cells exhibited a TTX-sensitive sodium current and, to a lower extent in a few cells, also the pacemaker I(f current. Mechanistically, the exposure to EpiC treatment introduced global histone modifications, characterized by increased levels of H3K4Me3 and H4K16Ac, as well as reduced H4K20Me3 and H3s10P, a pattern compatible with reduced proliferation and chromatin relaxation. Consistently, ChIP experiments performed with H3K4me3 or H3s10P histone modifications revealed the presence of a specific EpiC-dependent pattern in c-Kit, MDR-1, and Nkx2.5 promoter regions, possibly contributing to their modified expression. Taken together, these data indicate that CStC may be epigenetically reprogrammed to acquire molecular and biological properties associated with competent cardiovascular precursors.

  2. Cardiac function and cognition in older community-dwelling cardiac patients.

    Science.gov (United States)

    Eggermont, Laura H P; Aly, Mohamed F A; Vuijk, Pieter J; de Boer, Karin; Kamp, Otto; van Rossum, Albert C; Scherder, Erik J A

    2017-11-01

    Cognitive deficits have been reported in older cardiac patients. An underlying mechanism for these findings may be reduced cardiac function. The relationship between cardiac function as represented by different echocardiographic measures and different cognitive function domains in older cardiac patients remains unknown. An older (≥70 years) heterogeneous group of 117 community-dwelling cardiac patients under medical supervision by a cardiologist underwent thorough echocardiographic assessment including left ventricular ejection fraction, cardiac index, left atrial volume index, left ventricular mass index, left ventricular diastolic function, and valvular calcification. During a home visit, a neuropsychological assessment was performed within 7.1 ± 3.8 months after echocardiographic assessment; the neuropsychological assessment included three subtests of a word-learning test (encoding, recall, recognition) to examine one memory function domain and three executive function tests, including digit span backwards, Trail Making Test B minus A, and the Stroop colour-word test. Regression analyses showed no significant linear or quadratic associations between any of the echocardiographic functions and the cognitive function measures. None of the echocardiographic measures as representative of cardiac function was correlated with memory or executive function in this group of community-dwelling older cardiac patients. These findings contrast with those of previous studies. © 2017 Japanese Psychogeriatric Society.

  3. Cardiac function and cognition in older community-dwelling cardiac patients

    NARCIS (Netherlands)

    Eggermont, Laura H.P.; Aly, Mohamed F.A.; Vuijk, Pieter J.; de Boer, Karin; Kamp, Otto; van Rossum, Albert C.; Scherder, Erik J.A.

    2017-01-01

    Background: Cognitive deficits have been reported in older cardiac patients. An underlying mechanism for these findings may be reduced cardiac function. The relationship between cardiac function as represented by different echocardiographic measures and different cognitive function domains in older

  4. Autonomous power networks based power system

    International Nuclear Information System (INIS)

    Jokic, A.; Van den Bosch, P.P.J.

    2006-01-01

    This paper presented the concept of autonomous networks to cope with this increased complexity in power systems while enhancing market-based operation. The operation of future power systems will be more challenging and demanding than present systems because of increased uncertainties, less inertia in the system, replacement of centralized coordinating activities by decentralized parties and the reliance on dynamic markets for both power balancing and system reliability. An autonomous network includes the aggregation of networked producers and consumers in a relatively small area with respect to the overall system. The operation of an autonomous network is coordinated and controlled with one central unit acting as an interface between internal producers/consumers and the rest of the power system. In this study, the power balance problem and system reliability through provision of ancillary services was formulated as an optimization problem for the overall autonomous networks based power system. This paper described the simulation of an optimal autonomous network dispatching in day ahead markets, based on predicted spot prices for real power, and two ancillary services. It was concluded that large changes occur in a power systems structure and operation, most of them adding to the uncertainty and complexity of the system. The introduced concept of an autonomous power network-based power system was shown to be a realistic and consistent approach to formulate and operate a market-based dispatch of both power and ancillary services. 9 refs., 4 figs

  5. Advancing Autonomous Operations for Deep Space Vehicles

    Science.gov (United States)

    Haddock, Angie T.; Stetson, Howard K.

    2014-01-01

    Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.

  6. Down-regulation of fibroblast growth factor 2 and its co-receptors heparan sulfate proteoglycans by resveratrol underlies the improvement of cardiac dysfunction in experimental diabetes.

    Science.gov (United States)

    Strunz, Célia Maria Cássaro; Roggerio, Alessandra; Cruz, Paula Lázara; Pacanaro, Ana Paula; Salemi, Vera Maria Cury; Benvenuti, Luiz Alberto; Mansur, Antonio de Pádua; Irigoyen, Maria Cláudia

    2017-02-01

    Cardiac remodeling in diabetes involves cardiac hypertrophy and fibrosis, and fibroblast growth factor 2 (FGF2) is an important mediator of this process. Resveratrol, a polyphenolic antioxidant, reportedly promotes the improvement of cardiac dysfunction in diabetic rats. However, little information exists linking the amelioration of the cardiac function promoted by resveratrol and the expression of FGF2 and its co-receptors, heparan sulfate proteoglycans (HSPGs: Glypican-1 and Syndecan-4), in cardiac muscle of Type 2 diabetic rats. Diabetes was induced experimentally by the injection of streptozotocin and nicotinamide, and the rats were treated with resveratrol for 6 weeks. According to our results, there is an up-regulation of the expression of genes and/or proteins of Glypican-1, Syndecan-4, FGF2, peroxisome proliferator-activated receptor gamma and AMP-activated protein kinase in diabetic rats. On the other hand, resveratrol treatment promoted the attenuation of left ventricular diastolic dysfunction and the down-regulation of the expression of all proteins under study. The trigger for the changes in gene expression and protein synthesis promoted by resveratrol was the presence of diabetes. The negative modulation conducted by resveratrol on FGF2 and HSPGs expression, which are involved in cardiac remodeling, underlies the amelioration of cardiac function. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Empagliflozin lessened cardiac injury and reduced visceral adipocyte hypertrophy in prediabetic rats with metabolic syndrome.

    Science.gov (United States)

    Kusaka, Hiroaki; Koibuchi, Nobutaka; Hasegawa, Yu; Ogawa, Hisao; Kim-Mitsuyama, Shokei

    2016-11-11

    The potential benefit of SGLT2 inhibitors in metabolic syndrome is with prediabetic stage unclear. This work was undertaken to investigate the non-glycemic effect of empagliflozin on metabolic syndrome rats with prediabetes. SHR/NDmcr-cp(+/+) rats (SHRcp), a model of metabolic syndrome with prediabetes, were given empagliflozin for 10 weeks to examine the effects on urinary sodium and water balance, visceral and subcutaneous adipocyte, and cardiac injury. Further, the effect of empagliflozin on blood pressure and autonomic nervous system was continuously investigated by using radiotelemetry system. Empagliflozin significantly reduced urinary sodium and water balance of SHRcp only within 1 week of the treatment, but later than 1 week did not alter them throughout the treatment. Empagliflozin significantly reduced body weight of SHRcp, which was mainly attributed to the significant reduction of subcutaneous fat mass. Empagliflozin significantly reduced the size of visceral adipocytes and increased the number of smaller size of adipocytes, which was associated with the attenuation of oxidative stress. Empagliflozin ameliorated cardiac hypertrophy and fibrosis of SHRcp, in association with the attenuation of cardiac oxidative stress and inflammation. However, empagliflozin did not significantly change blood pressure, heart rate, sympathetic activity, or baroreceptor function, as evidenced by radiotelemetry analysis. Our present work provided the evidence that SGLT2 inhibition reduced visceral adipocytes hypertrophy and ameliorated cardiac injury in prediabetic metabolic syndrome rat, independently of diuretic effect or blood pressure lowering effect. Thus, SGLT2 inhibition seems to be a promising therapeutic strategy for prediabetic metabolic syndrome.

  8. Autonomous Science Analysis with the New Millennium Program-Autonomous Sciencecraft Experiment

    Science.gov (United States)

    Doggett, T.; Davies, A. G.; Castano, R. A.; Baker, V. R.; Dohm, J. M.; Greeley, R.; Williams, K. K.; Chien, S.; Sherwood, R.

    2002-12-01

    The NASA New Millennium Program (NMP) is a testbed for new, high-risk technologies, including new software and hardware. The Autonomous Sciencecraft Experiment (ASE) will fly on the Air Force Research Laboratory TechSat-21 mission in 2006 is such a NMP mission, and is managed by the Jet Propulsion Laboratory, California Institute of Technology. TechSat-21 consists of three satellites, each equipped with X-band Synthetic Aperture Radar (SAR) that will occupy a 13-day repeat track Earth orbit. The main science objectives of ASE are to demonstrate that process-related change detection and feature identification can be conducted autonomously during space flight, leading to autonomous onboard retargeting of the spacecraft. This mission will observe transient geological and environmental processes using SAR. Examples of geologic processes that may be observed and investigated include active volcanism, the movement of sand dunes and transient features in desert environments, water flooding, and the formation and break-up of lake ice. Science software onboard the spacecraft will allow autonomous processing and formation of SAR images and extraction of scientific information. The subsequent analyses, performed on images formed onboard from the SAR data, will include feature identification using scalable feature "templates" for each target, change detection through comparison of current and archived images, and science discovery, a search for other features of interest in each image. This approach results in obtaining the same science return for a reduced amount of resource use (such as downlink) when compared to that from a mission operating without ASE technology. Redundant data is discarded. The science-driven goals of ASE will evolve during the ASE mission through onboard replanning software that can re-task satellite operations. If necessary, as a result of a discovery made autonomously by onboard science processing, existing observation sequences will be pre-empted to

  9. Autonomous search

    CERN Document Server

    Hamadi, Youssef; Saubion, Frédéric

    2012-01-01

    Autonomous combinatorial search (AS) represents a new field in combinatorial problem solving. Its major standpoint and originality is that it considers that problem solvers must be capable of self-improvement operations. This is the first book dedicated to AS.

  10. Nanotized PPARα Overexpression Targeted to Hypertrophied Myocardium Improves Cardiac Function by Attenuating the p53-GSK3β-Mediated Mitochondrial Death Pathway.

    Science.gov (United States)

    Rana, Santanu; Datta, Ritwik; Chaudhuri, Ratul Datta; Chatterjee, Emeli; Chawla-Sarkar, Mamta; Sarkar, Sagartirtha

    2018-05-09

    Metabolic remodeling of cardiac muscles during pathological hypertrophy is characterized by downregulation of fatty acid oxidation (FAO) regulator, peroxisome proliferator-activated receptor alpha (PPARα). Thereby, we hypothesized that a cardiac-specific induction of PPARα might restore the FAO-related protein expression and resultant energy deficit. In the present study, consequences of PPARα augmentation were evaluated for amelioration of chronic oxidative stress, myocyte apoptosis, and cardiac function during pathological cardiac hypertrophy. Nanotized PPARα overexpression targeted to myocardium was done by a stearic acid-modified carboxymethyl-chitosan (CMC) conjugated to a 20-mer myocyte-targeted peptide (CMCP). Overexpression of PPARα ameliorated pathological hypertrophy and improved cardiac function. Augmented PPARα in hypertrophied myocytes revealed downregulated p53 acetylation (lys 382), leading to reduced apoptosis. Such cells showed increased binding of PPARα with p53 that in turn reduced interaction of p53 with glycogen synthase kinase-3β (GSK3β), which upregulated inactive phospho-GSK3β (serine [Ser]9) expression within mitochondrial protein fraction. Altogether, the altered molecular milieu in PPARα-overexpressed hypertrophy groups restored mitochondrial structure and function both in vitro and in vivo. Cardiomyocyte-targeted overexpression of a protein of interest (PPARα) by nanotized plasmid has been described for the first time in this study. Our data provide a novel insight towards regression of pathological hypertrophy by ameliorating mitochondrial oxidative stress in targeted PPARα-overexpressed myocardium. PPARα-overexpression during pathological hypertrophy showed substantial betterment of mitochondrial structure and function, along with downregulated apoptosis. Myocardium-targeted overexpression of PPARα during pathological cardiac hypertrophy led to an overall improvement of cardiac energy deficit and subsequent cardiac

  11. Perception, Planning, Control, and Coordination for Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Scott Drew Pendleton

    2017-02-01

    Full Text Available Autonomous vehicles are expected to play a key role in the future of urban transportation systems, as they offer potential for additional safety, increased productivity, greater accessibility, better road efficiency, and positive impact on the environment. Research in autonomous systems has seen dramatic advances in recent years, due to the increases in available computing power and reduced cost in sensing and computing technologies, resulting in maturing technological readiness level of fully autonomous vehicles. The objective of this paper is to provide a general overview of the recent developments in the realm of autonomous vehicle software systems. Fundamental components of autonomous vehicle software are reviewed, and recent developments in each area are discussed.

  12. Energy homeostasis, autonomic activity and obesity

    NARCIS (Netherlands)

    Scheurink, AJW; Balkan, B; Nyakas, C; vanDijk, G; Steffens, AB; Bohus, B

    1995-01-01

    Obesity is often accompanied by alterations in both sympathetic and parasympathetic autonomic functions. The present paper summarizes the results of a number of studies designed to investigate autonomic functioning in normal, genetically, and experimentally obese rats, Particular emphasis is given

  13. The effects of proton pump inhibitors on autonomic tone in patients with erosive and non-erosive esophagitis.

    Science.gov (United States)

    Jones, E L; Perring, S; Khattab, A; Allenby-Smith, O

    2016-05-01

    Reduction in autonomic tone as measured by heart rate variability (HRV) has been associated with various inflammatory conditions including reflux disease. The nature of and permanence of this damage have not been fully assessed. Fourteen individuals with non-erosive reflux disease (NERD) and 10 individuals with erosive reflux disease (ERD) as identified on endoscopy were assessed for HRV prior to starting a course of proton pump inhibitor (PPI) therapy and 8 weeks from the start of PPI therapy. Reflux symptoms were significantly improved by PPI therapy (p = 0.001), with no significant difference in reflux symptoms between the NERD and ERD groups either before (p = 0.45) or following therapy (p = 0.17). The ERD group displayed reduced HRV prior to PPI therapy as compared with a non-symptomatic group. There was significant improvement of HRV resulting from PPI therapy in the ERD group as measured by inspiration/expiration ratio on forced breathing (p = 0.02), Valsalva ratio (p = 0.03), and extended metronome-guided breathing at 6 breaths per minute (p = 0.03). While a similar pattern was seen in the NERD group, the effects were not as strong and did not reach statistical significance. The results are consistent with a growing body of evidence that cardiac autonomic neuropathy as measured by HRV is associated with gastro-esophageal reflux disease and also suggest that successful treatment of the inflammation can lead to reversal of the deterioration of autonomic tone associated with that inflammation. © 2016 John Wiley & Sons Ltd.

  14. Effect of Roux-en-Y gastric bypass surgery on ventricular function and cardiac risk factors in obese patients: a systematic review

    Directory of Open Access Journals (Sweden)

    Alireza Abdollahi Moghaddam

    2016-03-01

    Full Text Available Introduction: Weight gain and obesity are two important public health problems, which are associated with many diseases such as cardiovascular disorders. Various policies such as bariatric surgery have been proposed for the treatment of morbid obesity. Methods: PubMed and Scopus were searched thoroughly with the following search terms (roux-en-y gastric bypass surgery AND (ventricular function, OR cardiac risk factors OR heart AND (BMI OR body mass index to find the articles in which the effect of roux-en-Y gastric bypass (RYGB surgery had been evaluated in severely obese patients.Result: Out of 120 articles which were found in PubMed, and 28 records which were found in Scopus, only 18 articles fully met the inclusion criteria. Out of 2740 participants in the included studied, 1706 were patients with body mass index (BMI over 40 kg/m2 who had undergone RYGB surgery, and 1034 were control participants. Results of the studies showed that RYGB surgery could reduce BMI, and cardiac risk factors, and improve diastolic function, systolic and diastolic blood pressures, and aortic function, postoperatively.Discussion: Obesity is associated with increased risk of cardiovascular diseases, impaired cardiac function, and hypertension. It is shown that RYGB surgery reduces the serum level of biochemical markers of cardiac diseases. Cardiac structure, parasympathetic indices of autonomic function, coronary circulatory function, hypertension, epicardial fat thickness, and ventricular performance improve after bariatric surgery.Conclusions: It is concluded that RYGB surgery is an effective strategy to improve ventricular function and cardiac risk factors in morbid obese patients.

  15. Role of heat shock transcription factor 1(HSF1)-upregulated macrophage in ameliorating pressure overload-induced heart failure in mice.

    Science.gov (United States)

    Du, Peizhao; Chang, Yaowei; Dai, Fangjie; Wei, Chunyan; Zhang, Qi; Li, Jiming

    2018-08-15

    In order to explore the role of macrophages in HSF1-mediated alleviation of heart failure, mice model of pressure overload-induced heart failure was established using transverse aortic constriction (TAC). Changes in cardiac function and morphology were studied in TAC and SHAM groups using ultrasonic device, tissue staining, electron microscopy, real-time quantitative polymerase chain reaction (RT-QPCR), and Western blotting. We found that mice in the TAC group showed evidence of impaired cardiac function and aggravation of fibrosis on ultrasonic and histopathological examination when compared to those in the SHAM group. The expressions of HSF1, LC3II/LC3I, Becline-1 and HIF-1, as well as autophagosome formation in TAC group were greater than that in SHAM group. On sub-group analyses in the TAC group, improved cardiac function and alleviation of fibrosis was observed in the HSF1 TG subgroup as compared to that in the wild type subgroup. Expressions of LC3II/LC3I, Becline-1 and HIF-1, too showed an obvious increase; and increased autophagosome formation was observed on electron microscopy. Opposite results were observed in the HSF1 KO subgroup. These results collectively suggest that in the pressure overload heart failure model, HSF1 promoted formation of macrophages by inducing upregulation of HIF-1 expression, through which heart failure was ameliorated. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Research Institute for Autonomous Precision Guided Systems

    National Research Council Canada - National Science Library

    Rogacki, John R

    2007-01-01

    ... vehicles, cooperative flight of autonomous aerial vehicles using GPS and vision information, cooperative and sharing of information in search missions involving multiple autonomous agents, multi-scale...

  17. The profound effects of microcystin on cardiac antioxidant enzymes, mitochondrial function and cardiac toxicity in rat

    International Nuclear Information System (INIS)

    Qiu Tong; Xie Ping; Liu Ying; Li Guangyu; Xiong Qian; Hao Le; Li Huiying

    2009-01-01

    Deaths from microcystin toxication have widely been attributed to hypovolemic shock due to hepatic interstitial hemorrhage, while some recent studies suggest that cardiogenic complication is also involved. So far, information on cardiotoxic effects of MC has been rare and the underlying mechanism is still puzzling. The present study examined toxic effects of microcystins on heart muscle of rats intravenously injected with extracted MC at two doses, 0.16LD 50 (14 μg MC-LReq kg -1 body weight) and 1LD 50 (87 μg MC-LReq kg -1 body weight). In the dead rats, both TTC staining and maximum elevations of troponin I levels confirmed myocardial infarction after MC exposure, besides a serious interstitial hemorrhage in liver. In the 1LD 50 dose group, the coincident falls in heart rate and blood pressure were related to mitochondria dysfunction in heart, while increases in creatine kinase and troponin I levels indicated cardiac cell injury. The corresponding pathological alterations were mainly characterized as loss of adherence between cardiac myocytes and swollen or ruptured mitochondria at the ultrastructural level. MC administration at a dose of 1LD 50 not only enhanced activities and up-regulated mRNA transcription levels of antioxidant enzymes, but also increased GSH content. At both doses, level of lipid peroxides increased obviously, suggesting serious oxidative stress in mitochondria. Simultaneously, complex I and III were significantly inhibited, indicating blocks in electron flow along the mitochondrial respiratory chain in heart. In conclusion, the findings of this study implicate a role for MC-induced cardiotoxicity as a potential factor that should be considered when evaluating the mechanisms of death associated with microcystin intoxication in Brazil

  18. Using the Initial Systolic Time Interval to assess cardiac autonomic function in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Jan H. Meijer

    2011-12-01

    Full Text Available The Initial Systolic Time Interval (ISTI has been defined as the time difference between the peak electrical and peak mechanical activity of the heart. ISTI is obtained from the electro-cardiogram and the impedance cardiogram. The response of ISTI while breathing at rest and to a deep breathing stimulus was studied in a group of patients suffering from Parkinson's disease (PD and a group of healthy control subjects. ISTI showed substantial variability during these manoeuvres. The tests showed that the variability of RR and ISTI was substantially different between PD patients and controls. It is hypothesized that in PD patients the sympathetic system compensates for the loss of regulatory control function of the blood-pressure by the parasympathetic system. It is concluded that ISTI is a practical, additional and independent parameter that can be used to assist other tests in evaluating autonomic control of the heart in PD patients.doi:10.5617/jeb.216 J Electr Bioimp, vol. 2, pp. 98-101, 2011

  19. Hypocretin-1 (orexin A) prevents the effects of hypoxia/hypercapnia and enhances the GABAergic pathway from the lateral paragigantocellular nucleus to cardiac vagal neurons in the nucleus ambiguus.

    Science.gov (United States)

    Dergacheva, O; Philbin, K; Bateman, R; Mendelowitz, D

    2011-02-23

    Hypocretins (orexins) are hypothalamic neuropeptides that play a crucial role in regulating sleep/wake states and autonomic functions including parasympathetic cardiac activity. We have recently demonstrated stimulation of the lateral paragigantocellular nucleus (LPGi), the nucleus which is thought to play a role in rapid eye movement (REM) sleep control, activates an inhibitory pathway to preganglionic cardiac vagal neurons in the nucleus ambiguus (NA). In this study we test the hypothesis that hypocretin-1 modulates the inhibitory neurotransmission to cardiac vagal neurons evoked by stimulation of the LPGi using whole-cell patch-clamp recordings in an in vitro brain slice preparation from rats. Activation of hypocretin-1 receptors produced a dose-dependent and long-term facilitation of GABAergic postsynaptic currents evoked by electrical stimulation of the LPGi. Hypoxia/hypercapnia diminished LPGi-evoked GABAergic current in cardiac vagal neurons and this inhibition by hypoxia/hypercapnia was prevented by pre-application of hypocretin-1. The action of hypocretin-1 was blocked by the hypocretin-1 receptor antagonist SB-334867. Facilitation of LPGi-evoked GABAergic current in cardiac vagal neurons under both normal condition and during hypoxia/hypercapnia could be the mechanism by which hypocretin-1 affects parasympathetic cardiac function and heart rate during REM sleep. Furthermore, our findings indicate a new potential mechanism that might be involved in the cardiac arrhythmias, bradycardia, and sudden cardiac death that can occur during sleep. Copyright © 2011. Published by Elsevier Ltd.

  20. Cytokine-induced oxidative stress in cardiac inflammation and heart failure – how the ubiquitin proteasome system targets this vicious cycle

    Directory of Open Access Journals (Sweden)

    Antje eVoigt

    2013-03-01

    Full Text Available The ubiquitin proteasome system (UPS is critical for the regulation of many intracellular processes necessary for cell function and survival. The absolute requirement of the UPS for the maintenance of protein homeostasis and thereby for the regulation of protein quality control is reflected by the fact that deviation of proteasome function from the norm was reported in cardiovascular pathologies. Inflammation is a major factor contributing to cardiac pathology. Herein, cytokines induce protein translation and the production of free radicals, thereby challenging the cellular protein equilibrium. Here, we discuss current knowledge on the mechanisms of UPS-functional adaptation in response to oxidative stress in cardiac inflammation. The increasing pool of oxidant-damaged degradation-prone proteins in cardiac pathology accounts for the need for enhanced protein turnover by the UPS. This process is accomplished by an up-regulation of the ubiquitylation machinery and the induction of immunoproteasomes. Thereby, the inflamed heart muscle is cleared from accumulating misfolded proteins. Current advances on immunoproteasome-specific inhibitors in this field question the impact of the proteasome as a therapeutic target in heart failure.

  1. Pro-inflammatory cytokines upregulate sympathoexcitatory mechanisms in the subfornical organ of the rat

    Science.gov (United States)

    Wei, Shun-Guang; Yu, Yang; Zhang, Zhi-Hua; Felder, Robert B.

    2015-01-01

    Our previous work indicated that the subfornical organ (SFO) is an important brain sensor of blood-borne pro-inflammatory cytokines, mediating their central effects on autonomic and cardiovascular function. However, the mechanisms by which SFO mediates the central effects of circulating pro-inflammatory cytokines remain unclear. We hypothesized that pro-inflammatory cytokines act within the SFO to upregulate the expression of excitatory and inflammatory mediators that drive sympathetic nerve activity. In urethane-anesthetized Sprague-Dawley rats, direct microinjection of TNF-α (25 ng) or IL-1β (25 ng) into SFO increased mean blood pressure, heart rate and renal sympathetic nerve activity within 15–20 minutes, mimicking the response to systemically administered pro-inflammatory cytokines. Pretreatment of SFO with microinjections of the angiotensin II type 1 receptor (AT1R) blocker losartan (1 µg), angiotensin-converting enzyme (ACE) inhibitor captopril (1 µg) or cyclooxygenase (COX)-2 inhibitor NS-398 (2 µg) attenuated those responses. Four hours after the SFO microinjection of TNF-α (25 ng) or IL-1β (25 ng), mRNA for ACE, AT1R, TNF-α and the p55 TNF-α receptor TNFR1, IL-1β and the IL-1R receptor, and COX-2 had increased in SFO, and mRNA for ACE, AT1R and COX-2 had increased downstream in the hypothalamic paraventricular nucleus. Confocal immunofluorescent images revealed that immunoreactivity for TNFR1 and the IL-1 receptor accessory protein, a subunit of the IL-1 receptor, co-localized with ACE, AT1R-like, COX-2 and prostaglandin E2 EP3 receptor immunoreactivity in SFO neurons. These data suggest that pro-inflammatory cytokines act within the SFO to upregulate the expression of inflammatory and excitatory mediators that drive sympathetic excitation. PMID:25776070

  2. Adaptive Control Allocation for Fault Tolerant Overactuated Autonomous Vehicles

    Science.gov (United States)

    2007-11-01

    Tolerant Overactuated Autonomous Vehicles Casavola, A.; Garone, E. (2007) Adaptive Control Allocation for Fault Tolerant Overactuated Autonomous ...Adaptive Control Allocation for Fault Tolerant Overactuated Autonomous Vehicles 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Tolerant Overactuated Autonomous Vehicles 3.2 - 2 RTO-MP-AVT-145 UNCLASSIFIED/UNLIMITED Control allocation problem (CAP) - Given a virtual input v(t

  3. Overfeeding, autonomic regulation and metabolic consequences.

    NARCIS (Netherlands)

    Scheurink, A.J.W.; Balkan, B; Strubbe, J.H.; van Dijk, G.; Steffens, A.B

    The autonomic nervous system plays an important role in the regulation of body processes in health and disease. Overfeeding and obesity (a disproportional increase of the fat mass of the body) are often accompanied by alterations in both sympathetic and parasympathetic autonomic functions. The

  4. Detecting early cardiac dysfunction with radionuclide cardiac blood-pool imaging

    International Nuclear Information System (INIS)

    Wu Kegui; Chen Daguang; Lin Haoxue

    1992-01-01

    Cardiac function was measured by radionuclide cardiac blood-pool imaging in 15 normal persons, 19 cases of hypertension, 32 cases of coronary heart disease, 35 cases of coronary heart disease combined with hypertension and 44 cases of myocardial infarction. Significant differences have been found in indices of cardiac function between normal subjects and patients with coronary heart disease and coronary heart disease combined with hypertension, even though the patients were without any clinical sin of cardiac failure. Lowered regional EF and decreased ventricular was motion were found in 38.8% of patients, while 65.7%of patients revealed marked abnormality in MFR. The results indicate that latent cardiac dysfunction is common in patients with coronary heart disease. The earliest change is diastolic function abnormalities

  5. Cardiac and renal upregulation of Nox2 and NF-κB and repression of Nox4 and Nrf2 in season- and diabetes-mediated models of vascular oxidative stress in guinea-pig and rat.

    Science.gov (United States)

    Gajos-Draus, Anna; Duda, Monika; Beręsewicz, Andrzej

    2017-11-01

    The superoxide-forming NADPH oxidase homologues, Nox1, Nox2, and Nox5, seem to mediate the pro-atherosclerotic vascular phenotype. The hydrogen peroxide-forming Nox4 afforded vascular protection, likely via NF-E2-related factor-2 (Nrf2) activation and/or Nox2 downregulation in transgenic mice. We hypothesized that oxidative stress in the intact vasculature involves, aside from the upregulation of the superoxide-forming Noxs, the downregulation of the Nox4/Nrf2 pathway. Guinea-pigs and rats were studied either in winter or in summer, and the streptozotocin diabetic rats in winter. Plasma nitrite, and superoxide production by isolated hearts were measured, while frozen tissues served in biochemical analyses. Summer in both species and diabetes in rats downregulated myocardial Nox4 while reciprocally upregulating Nox2 and Nox5 in guinea-pigs, and Nox2 in rats. Simultaneously, myocardial Nrf2 activity and the expression of the Nrf2-directed heme oxygenase-1 and endothelial NO synthase were reduced while activity of the nuclear factor κ B (NF- κ B) and the expression of NF- κ B-directed inducible NO synthase and the vascular cell adhesion molecule-1 were increased. Cardiac superoxide production was increased while plasma nitrite was decreased reciprocally. Analogous disregulation of Noxs, Nrf2, and NF- κ B, occurred in diabetic rat kidneys. Given the diversity of the experimental settings and the uniform pattern of the responses, we speculate that: (1) chronic vascular oxidative stress is a nonspecific (model-, species-, organ-independent) response involving the induction of Nox2 (and Nox5 in guinea-pigs) and the NF- κ B pathway, and the repression of Nox4 and the Nrf2 pathway; and (2) the systems Nox2-NF- κ B and Nox4-Nrf2 regulate each other negatively. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  6. Cardiac Function Remains Impaired Despite Reversible Cardiac Remodeling after Acute Experimental Viral Myocarditis

    Directory of Open Access Journals (Sweden)

    Peter Moritz Becher

    2017-01-01

    Full Text Available Background. Infection with Coxsackievirus B3 induces myocarditis. We aimed to compare the acute and chronic phases of viral myocarditis to identify the immediate effects of cardiac inflammation as well as the long-term effects after resolved inflammation on cardiac fibrosis and consequently on cardiac function. Material and Methods. We infected C57BL/6J mice with Coxsackievirus B3 and determined the hemodynamic function 7 as well as 28 days after infection. Subsequently, we analyzed viral burden and viral replication in the cardiac tissue as well as the expression of cytokines and matrix proteins. Furthermore, cardiac fibroblasts were infected with virus to investigate if viral infection alone induces profibrotic signaling. Results. Severe cardiac inflammation was determined and cardiac fibrosis was consistently colocalized with inflammation during the acute phase of myocarditis. Declined cardiac inflammation but no significantly improved hemodynamic function was observed 28 days after infection. Interestingly, cardiac fibrosis declined to basal levels as well. Both cardiac inflammation and fibrosis were reversible, whereas the hemodynamic function remains impaired after healed viral myocarditis in C57BL/6J mice.

  7. Current role of cardiac and extra-cardiac pathologies in clinically indicated cardiac computed tomography with emphasis on status before pulmonary vein isolation

    Energy Technology Data Exchange (ETDEWEB)

    Sohns, J.M.; Lotz, J. [Goettingen University Medical Center (Germany). Inst. for Diagnostic and Interventional Radiology; German Center for Cardiovascular Research (DZHK), Goettingen (Germany); Menke, J.; Staab, W.; Fasshauer, M.; Kowallick, J.T.; Zwaka, P.A.; Schwarz, A. [Goettingen University Medical Center (Germany). Inst. for Diagnostic and Interventional Radiology; Spiro, J. [Koeln University Hospital (Germany). Radiology; Bergau, L.; Unterberg-Buchwald, C. [Goettingen University Medical Center (Germany). Cardiology and Pneumology

    2014-09-15

    Purpose: The aim of this study was to assess the incidence of cardiac and significant extra-cardiac findings in clinical computed tomography of the heart in patients with atrial fibrillation before pulmonary vein isolation (PVI). Materials and Methods: 224 patients (64 ± 10 years; male 63%) with atrial fibrillation were examined by cardiac 64-slice multidetector CT before PVI. Extra-cardiac findings were classified as 'significant' if they were recommended to additional diagnostics or therapy, and otherwise as 'non-significant'. Additionally, cardiac findings were documented in detail. Results: A total of 724 cardiac findings were identified in 203 patients (91% of patients). Additionally, a total of 619 extra-cardiac findings were identified in 179 patients (80% of patients). Among these extra-cardiac findings 196 (32%) were 'significant', and 423 (68%) were 'non-significant'. In 2 patients (1%) a previously unknown malignancy was detected (esophageal cancer and lung cancer, local stage, no metastasis). 203 additional imaging diagnostics followed to clarify the 'significant' findings (124 additional CT, costs 38,314.69 US dollars). Overall, there were 3.2 cardiac and 2.8 extra-cardiac findings per patient. Extra-cardiac findings appear significantly more frequently in patients over 60 years old, in smokers and in patients with a history of cardiac findings (p < 0.05). Conclusion: Cardiac CT scans before PVI should be screened for extracardiac incidental findings that could have important clinical implications for each patient. (orig.)

  8. Autonomic dysfunction in different subtypes of multiple system atrophy.

    Science.gov (United States)

    Schmidt, Claudia; Herting, Birgit; Prieur, Silke; Junghanns, Susann; Schweitzer, Katherine; Globas, Christoph; Schöls, Ludger; Reichmann, Heinz; Berg, Daniela; Ziemssen, Tjalf

    2008-09-15

    Multiple system atrophy (MSA) can clinically be divided into the cerebellar (MSA-C) and the parkinsonian (MSA-P) variant. However, till now, it is unknown whether autonomic dysfunction in these two entities differs regarding severity and profile. We compared the pattern of autonomic dysfunction in 12 patients with MSA-C and 26 with MSA-P in comparison with 27 age- and sex-matched healthy controls using a standard battery of autonomic function tests and a structured anamnesis of the autonomic nervous system. MSA-P patients complained significantly more often about the symptoms of autonomic dysfunctions than MSA-C patients, especially regarding vasomotor, secretomotor, and gastrointestinal subsystems. However, regarding cardiovascular, sudomotor pupil, urogenital, and sleep subsystems, there were no significant quantitative or qualitative differences as analyzed by autonomic anamnesis and testing. Our results suggest that there are only minor differences in the pattern of autonomic dysfunction between the two clinical MSA phenotypes. (c) 2007 Movement Disorder Society.

  9. Positive effect of combined exercise training in a model of metabolic syndrome and menopause: autonomic, inflammatory, and oxidative stress evaluations.

    Science.gov (United States)

    Conti, Filipe Fernandes; Brito, Janaina de Oliveira; Bernardes, Nathalia; Dias, Danielle da Silva; Malfitano, Christiane; Morris, Mariana; Llesuy, Susana Francisca; Irigoyen, Maria-Cláudia; De Angelis, Kátia

    2015-12-15

    It is now well established that after menopause cardiometabolic disorders become more common. Recently, resistance exercise has been recommended as a complement to aerobic (combined training, CT) for the treatment of cardiometabolic diseases. The aim of this study was to evaluate the effects of CT in hypertensive ovariectomized rats undergoing fructose overload in blood pressure variability (BPV), inflammation, and oxidative stress parameters. Female rats were divided into the following groups (n = 8/group): sedentary normotensive Wistar rats (C), and sedentary (FHO) or trained (FHOT) ovariectomized spontaneously hypertensive rats undergoing and fructose overload. CT was performed on a treadmill and ladder adapted to rats in alternate days (8 wk; 40-60% maximal capacity). Arterial pressure (AP) was directly measured. Oxidative stress and inflammation were measured on cardiac and renal tissues. The association of risk factors (hypertension + ovariectomy + fructose) promoted increase in insulin resistance, mean AP (FHO: 174 ± 4 vs. C: 108 ± 1 mmHg), heart rate (FHO: 403 ± 12 vs. C: 352 ± 11 beats/min), BPV, cardiac inflammation (tumor necrosis factor-α-FHO: 65.8 ± 9.9 vs. C: 23.3 ± 4.3 pg/mg protein), and oxidative stress cardiac and renal tissues. However, CT was able to reduce mean AP (FHOT: 158 ± 4 mmHg), heart rate (FHOT: 303 ± 5 beats/min), insulin resistance, and sympathetic modulation. Moreover, the trained rats presented increased nitric oxide bioavailability, reduced tumor necrosis factor-α (FHOT: 33.1 ± 4.9 pg/mg protein), increased IL-10 in cardiac tissue and reduced lipoperoxidation, and increased antioxidant defenses in cardiac and renal tissues. In conclusion, the association of risk factors promoted an additional impairment in metabolic, cardiovascular, autonomic, inflammatory, and oxidative stress parameters and combined exercise training was able to attenuate these dysfunctions. Copyright © 2015 the American Physiological Society.

  10. Effect of maturation on hemodynamic and autonomic control recovery following maximal running exercise in highly-trained young soccer players

    Directory of Open Access Journals (Sweden)

    Martin eBuchheit

    2011-10-01

    Full Text Available The purpose of this study was to examine the effect of maturation on post-exercise hemodynamic and autonomic responses. Fifty-five highly-trained young male soccer players (12-18 yr classified as pre-, circum- or post-peak height velocity (PHV performed a graded running test to exhaustion on a treadmill. Before (Pre and after (5th-10th min, Post exercise, heart rate (HR, stroke volume (SV, cardiac ouput (CO, arterial pressure (AP and total peripheral resistance (TPR were monitored. Parasympathetic (high-frequency [HFRR] of HR variability (HRV and baroreflex sensitivity [Ln BRS] and sympathetic activity (low-frequency [LFSAP] of systolic AP variability were estimated. Post-exercise blood lactate [La]b, the HR recovery (HRR time constant and parasympathetic reactivation (time varying HRV analysis were assessed. In all three groups, exercise resulted in increased HR, CO, AP and LFSAP (P<0.001, decreased SV, HFRR and Ln BRS (all P<0.001, and no change in TPRI (P=0.98. There was no ‘maturation x time’ interaction for any of the hemodynamic or autonomic variables (all P>0.22. After exercise, pre-PHV players displayed lower SV, CO and [La]b, faster HRR and greater parasympathetic reactivation compared with circum- and post-PHV players. Multiple regression analysis showed that lean muscle mass, [La]b and Pre parasympathetic activity were the strongest predictors of HRR (r2=0.62, P<0.001. While pre-PHV players displayed a faster HRR and greater post-exercise parasympathetic reactivation, maturation had little influence on the hemodynamic and autonomic responses following maximal running exercise. HRR relates to lean muscle mass, blood acidosis and intrinsic parasympathetic function, with less evident impact of post-exercise autonomic function.

  11. Uncomplicated human type 2 diabetes is associated with meal-induced blood pressure lowering and cardiac output increase.

    Science.gov (United States)

    Smits, Mark M; Muskiet, Marcel H A; Tushuizen, Maarten E; Kwa, Kelly A A; Karemaker, John M; van Raalte, Daniël H; Diamant, Michaela

    2014-12-01

    Since many type 2 diabetes patients experience postprandial hypotension, the aim of this study was to unravel meal-related changes in systemic hemodynamics and autonomic nervous system (ANS)-balance. Forty-two age-matched males (15 type 2 diabetes; 12 metabolic syndrome; 15 controls) without overt autonomic neuropathy received a standardized high-fat mixed meal after an overnight fast. Hemodynamic variables were measured by finger plethysmography. Fourier analysis was used to calculate the low-/high-frequency (LF/HF)-ratio, a marker of autonomic nervous system-balance, and baroreceptor reflex sensitivity (BRS). Following the meal, diastolic blood pressure (DBP) decreased in type 2 diabetes patients only, paralleled by a significant decrement in systemic vascular resistance (SVR) and an increase in cardiac index. All groups showed an increase in postprandial heart rate. Controls, but not metabolic syndrome or type 2 diabetes patients, showed a meal-related increase in LF/HF-ratio. When combining all study subjects, homeostatic model assessment-insulin resistance (HOMA-IR) was inversely correlated with changes in DBP, SVR, LF/HF-ratio and BRS. Based on these data, we hypothesize that in patients with uncomplicated type 2 diabetes, insulin resistance hampers adequate meal-induced sympathetic activation, leading to a decrease in SVR and resulting in a postprandial drop in DBP. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. The Bering Autonomous Target Detection

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Denver, Troelz; Betto, Maurizio

    2003-01-01

    An autonomous asteroid target detection and tracking method has been developed. The method features near omnidirectionality and focus on high speed operations and completeness of search of the near space rather than the traditional faint object search methods, employed presently at the larger...... telescopes. The method has proven robust in operation and is well suited for use onboard spacecraft. As development target for the method and the associated instrumentation the asteroid research mission Bering has been used. Onboard a spacecraft, the autonomous detection is centered around the fully...... autonomous star tracker the Advanced Stellar Compass (ASC). One feature of this instrument is that potential targets are registered directly in terms of date, right ascension, declination, and intensity, which greatly facilitates both tracking search and registering. Results from ground and inflight tests...

  13. Autonomic Dysfunction in Patients with Mild to Moderate Alzheimer's Disease

    DEFF Research Database (Denmark)

    Jensen-Dahm, Christina; Waldemar, Gunhild; Staehelin Jensen, Troels

    2015-01-01

    BACKGROUND: Autonomic function has received little attention in Alzheimer's disease (AD). AD pathology has an impact on brain regions which are important for central autonomic control, but it is unclear if AD is associated with disturbance of autonomic function. OBJECTIVE: To investigate autonomic...

  14. Advanced Autonomous Systems for Space Operations

    Science.gov (United States)

    Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.

    2002-01-01

    New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not

  15. A Primer on Autonomous Aerial Vehicle Design.

    Science.gov (United States)

    Coppejans, Hugo H G; Myburgh, Herman C

    2015-12-02

    There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV), such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM) solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers.

  16. The amelioration of cardiac dysfunction after myocardial infarction by the injection of keratin biomaterials derived from human hair.

    Science.gov (United States)

    Shen, Deliang; Wang, Xiaofang; Zhang, Li; Zhao, Xiaoyan; Li, Jingyi; Cheng, Ke; Zhang, Jinying

    2011-12-01

    Cardiac dysfunction following acute myocardial infarction is a major cause of advanced cardiomyopathy. Conventional pharmacological therapies rely on prompt reperfusion and prevention of repetitive maladaptive pathways. Keratin biomaterials can be manufactured in an autologous fashion and are effective in various models of tissue regeneration. However, its potential application in cardiac regeneration has not been tested. Keratin biomaterials were derived from human hair and its structure morphology, carryover of beneficial factors, biocompatibility with cardiomyocytes, and in vivo degradation profile were characterized. After delivery into infarcted rat hearts, the keratin scaffolds were efficiently infiltrated by cardiomyocytes and endothelial cells. Injection of keratin biomaterials promotes angiogenesis but does not exacerbate inflammation in the post-MI hearts. Compared to control-injected animals, keratin biomaterials-injected animals exhibited preservation of cardiac function and attenuation of adverse ventricular remodeling over the 8 week following time course. Tissue western blot analysis revealed up-regulation of beneficial factors (BMP4, NGF, TGF-beta) in the keratin-injected hearts. The salient functional benefits, the simplicity of manufacturing and the potentially autologous nature of this biomaterial provide impetus for further translation to the clinic. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Cyber Security Considerations for Autonomous Tactical Wheeled Vehicles

    Science.gov (United States)

    2016-04-01

    Update Will Enable Autonomous Driving. Retrieved August 6, 2015, from http://spectrum.ieee.org/: http://spectrum.ieee.org/ cars -that-think...Cyber Security Considerations for Autonomous Tactical Wheeled Vehicles 1 UNCLASSIFIED Cyber Security Considerations for... Autonomous Tactical Wheeled Vehicles Sebastian C Iovannitti 4/1/2016 Submitted to Lawrence Technological University College of Management in

  18. Epidemiology and Outcomes After In-Hospital Cardiac Arrest After Pediatric Cardiac Surgery

    Science.gov (United States)

    Gupta, Punkaj; Jacobs, Jeffrey P.; Pasquali, Sara K.; Hill, Kevin D.; Gaynor, J. William; O’Brien, Sean M.; He, Max; Sheng, Shubin; Schexnayder, Stephen M.; Berg, Robert A.; Nadkarni, Vinay M.; Imamura, Michiaki; Jacobs, Marshall L.

    2014-01-01

    Background Multicenter data regarding cardiac arrest in children undergoing heart operations are limited. We describe epidemiology and outcomes associated with postoperative cardiac arrest in a large multiinstitutional cohort. Methods Patients younger than 18 years in the Society of Thoracic Surgeons Congenital Heart Surgery Database (2007 through 2012) were included. Patient factors, operative characteristics, and outcomes were described for patients with and without postoperative cardiac arrest. Multivariable models were used to evaluate the association of center volume with cardiac arrest rate and mortality after cardiac arrest, adjusting for patient and procedural factors. Results Of 70,270 patients (97 centers), 1,843 (2.6%) had postoperative cardiac arrest. Younger age, lower weight, and presence of preoperative morbidities (all p < 0.0001) were associated with cardiac arrest. Arrest rate increased with procedural complexity across common benchmark operations, ranging from 0.7% (ventricular septal defect repair) to 12.7% (Norwood operation). Cardiac arrest was associated with significant mortality risk across procedures, ranging from 15.4% to 62.3% (all p < 0.0001). In multivariable analysis, arrest rate was not associated with center volume (odds ratio, 1.06; 95% confidence interval, 0.71 to 1.57 in low- versus high-volume centers). However, mortality after cardiac arrest was higher in low-volume centers (odds ratio, 2.00; 95% confidence interval, 1.52 to 2.63). This association was present for both high- and low-complexity operations. Conclusions Cardiac arrest carries a significant mortality risk across the stratum of procedural complexity. Although arrest rates are not associated with center volume, lower-volume centers have increased mortality after cardiac arrest. Further study of mechanisms to prevent cardiac arrest and to reduce mortality in those with an arrest is warranted. PMID:25443018

  19. Purinergic modulation of adult guinea pig cardiomyocytes in long term cultures and co-cultures with extracardiac or intrinsic cardiac neurones.

    Science.gov (United States)

    Horackova, M; Huang, M H; Armour, J A

    1994-05-01

    To determine the capacity of ATP to modify cardiomyocytes directly or indirectly via peripheral autonomic neurones, the effects of various purinergic agents were studied on long term cultures of adult guinea pig ventricular myocytes and their co-cultures with extracardiac (stellate ganglion) or intrinsic cardiac neurones. Ventricular myocytes and cardiac neurones were enzymatically dissociated and plated together or alone (myocytes only). Myocyte cultures were used for experiments after three to six weeks. The electrical and contractile properties of cultured myocytes and myocyte-neuronal networks were investigated. The spontaneous beating frequency of ventricular myocytes co-cultured with stellate ganglion neurones increased by approximately 140% (p under control conditions, but when beta adrenergic receptors of tetrodotoxin sensitive neural responses were blocked, ATP induced greater augmentation (> 100%). In contrast, ATP induced much smaller effects in non-innervated myocyte cultures (approximately 26%, p UTP > MSATP > beta gamma ATP > alpha beta ATP. Adenosine (10(-4) M) attenuated the beating frequency of myocytes in both types of co-culture, while not significantly affecting non-innervated myocyte cultures. The experimental model used in this study showed that extrinsic and intrinsic cardiac neurones which possess P2 receptors can greatly enhance cardiac myocyte contractile rate when activated by ATP. Since adenosine reduced contractile rate in both types of co-cultures while not affecting non-innervated myocytes, it is concluded that some of these neurones possess P1 receptors.

  20. Exact Solutions for Certain Nonlinear Autonomous Ordinary Differential Equations of the Second Order and Families of Two-Dimensional Autonomous Systems

    Directory of Open Access Journals (Sweden)

    M. P. Markakis

    2010-01-01

    Full Text Available Certain nonlinear autonomous ordinary differential equations of the second order are reduced to Abel equations of the first kind ((Ab-1 equations. Based on the results of a previous work, concerning a closed-form solution of a general (Ab-1 equation, and introducing an arbitrary function, exact one-parameter families of solutions are derived for the original autonomous equations, for the most of which only first integrals (in closed or parametric form have been obtained so far. Two-dimensional autonomous systems of differential equations of the first order, equivalent to the considered herein autonomous forms, are constructed and solved by means of the developed analysis.