WorldWideScience

Sample records for upper-division physics courses

  1. A Deliberate Practice Instructional Approach for Upper Division Physics Courses

    Science.gov (United States)

    Jones, David

    2015-05-01

    In upper division physics courses, an overarching educational goal is to have students think about and use the material much as a practicing physicist in the field does. Specifically, this would include knowledge (such as concepts, formalism, and instruments), approaches, and metacognitive skills that physicists use in solving ``typical'' (research context) problems to both understand and predict physical observations and accompanying models. Using an interactive instructional approach known as deliberate practice (described earlier in this session) we will discuss our work on how to provide students with the necessary practice and feedback to achieve these skills in a core DAMOP course of modern optics. We present the results of a direct and explicit comparison between this approach and traditional lecture-based instruction revealing evidence that a significant improvement of the students' mastery of these skills occurs when deliberate practice is employed. Our work was supported by the University of British Columbia through the CWSEI.

  2. Use of clickers and sustainable reform in upper-division physics courses

    Science.gov (United States)

    Dubson, Michael

    2008-03-01

    At the University of Colorado at Boulder, successful reforms of our freshmen and sophomore-level physics courses are now being extended to upper-division courses, including Mechanics, Math Methods, QM, E&M, and Thermal Physics. Our course reforms include clicker questions (ConcepTests) in lecture, peer instruction, and an added emphasis on conceptual understanding and qualitative reasoning on homework assignments and exams. Student feedback has been strongly positive, and I will argue that such conceptual training improves rather than dilutes, traditional, computationally-intensive problem-solving skills. In order for these reforms to be sustainable, reform efforts must begin with department-wide consensus and agreed-upon measures of success. I will discuss the design of good clicker questions and effective incorporation into upper-level courses, including examples from materials science. Condensed matter physics, which by nature involve intelligent use of approximation, particularly lends itself to conceptual training. I will demonstrate the use of a clicker system (made by iClicker) with audience-participation questions. Come prepared to think and interact, rather than just sit there!

  3. A Comprehensive Probability Project for the Upper Division One-Semester Probability Course Using Yahtzee

    Science.gov (United States)

    Wilson, Jason; Lawman, Joshua; Murphy, Rachael; Nelson, Marissa

    2011-01-01

    This article describes a probability project used in an upper division, one-semester probability course with third-semester calculus and linear algebra prerequisites. The student learning outcome focused on developing the skills necessary for approaching project-sized math/stat application problems. These skills include appropriately defining…

  4. Design and Implementation of Instructional Videos for Upper-Division Undergraduate Laboratory Courses

    Science.gov (United States)

    Schmidt-McCormack, Jennifer A.; Muniz, Marc N.; Keuter, Ellie C.; Shaw, Scott K.; Cole, Renée S.

    2017-01-01

    Well-designed laboratories can help students master content and science practices by successfully completing the laboratory experiments. Upper-division chemistry laboratory courses often present special challenges for instruction due to the instrument intensive nature of the experiments. To address these challenges, particularly those associated…

  5. ACER: A framework on the use of mathematics in upper-division physics

    Science.gov (United States)

    Caballero, Marcos D.; Wilcox, Bethany R.; Pepper, Rachel E.; Pollock, Steven J.

    2013-01-01

    At the University of Colorado Boulder, as part of our broader efforts to transform middle- and upper-division physics courses, we research students' difficulties with particular concepts, methods, and tools in classical mechanics, electromagnetism, and quantum mechanics. Unsurprisingly, a number of difficulties are related to students' use of mathematical tools (e.g., approximation methods). Previous work has documented a number of challenges that students must overcome to use mathematical tools fluently in introductory physics (e.g., mapping meaning onto mathematical symbols). We have developed a theoretical framework to facilitate connecting students' difficulties to challenges with specific mathematical and physical concepts. In this paper, we motivate the need for this framework and demonstrate its utility for both researchers and course instructors by applying it to frame results from interview data on students' use of Taylor approximations.

  6. Identity Statuses in Upper-Division Physics Students

    Science.gov (United States)

    Irving, Paul W.; Sayre, Eleanor C.

    2016-01-01

    We use the theories of identity statuses and communities of practice to describe three different case studies of students finding their paths through undergraduate physics and developing a physics subject-specific identity. Each case study demonstrates a unique path that reinforces the link between the theories of communities of practice and…

  7. Student ownership of projects in an upper-division optics laboratory course: A multiple case study of successful experiences

    Directory of Open Access Journals (Sweden)

    Dimitri R. Dounas-Frazer

    2017-12-01

    Full Text Available We investigate students’ sense of ownership of multiweek final projects in an upper-division optics lab course. Using a multiple case study approach, we describe three student projects in detail. Within-case analyses focused on identifying key issues in each project, and constructing chronological descriptions of those events. Cross-case analysis focused on identifying emergent themes with respect to five dimensions of project ownership: student agency, instructor mentorship, peer collaboration, interest and value, and affective responses. Our within- and cross-case analyses yielded three major findings. First, coupling division of labor with collective brainstorming can help balance student agency, instructor mentorship, and peer collaboration. Second, students’ interest in the project and perceptions of its value can increase over time; initial student interest in the project topic is not a necessary condition for student ownership of the project. Third, student ownership is characterized by a wide range of emotions that fluctuate as students alternate between extended periods of struggle and moments of success while working on their projects. These findings not only extend the literature on student ownership into a new educational domain—namely, upper-division physics labs—they also have concrete implications for the design of experimental physics projects in courses for which student ownership is a desired learning outcome. We describe the course and projects in sufficient detail that others can adapt our results to their particular contexts.

  8. Student ownership of projects in an upper-division optics laboratory course: A multiple case study of successful experiences

    Science.gov (United States)

    Dounas-Frazer, Dimitri R.; Stanley, Jacob T.; Lewandowski, H. J.

    2017-12-01

    We investigate students' sense of ownership of multiweek final projects in an upper-division optics lab course. Using a multiple case study approach, we describe three student projects in detail. Within-case analyses focused on identifying key issues in each project, and constructing chronological descriptions of those events. Cross-case analysis focused on identifying emergent themes with respect to five dimensions of project ownership: student agency, instructor mentorship, peer collaboration, interest and value, and affective responses. Our within- and cross-case analyses yielded three major findings. First, coupling division of labor with collective brainstorming can help balance student agency, instructor mentorship, and peer collaboration. Second, students' interest in the project and perceptions of its value can increase over time; initial student interest in the project topic is not a necessary condition for student ownership of the project. Third, student ownership is characterized by a wide range of emotions that fluctuate as students alternate between extended periods of struggle and moments of success while working on their projects. These findings not only extend the literature on student ownership into a new educational domain—namely, upper-division physics labs—they also have concrete implications for the design of experimental physics projects in courses for which student ownership is a desired learning outcome. We describe the course and projects in sufficient detail that others can adapt our results to their particular contexts.

  9. Using a Research-based Approach to Transform Upper-division Courses in Classical and Quantum Mechanics and E&M

    Science.gov (United States)

    Pollock, Steven

    2013-04-01

    At most universities, including the University of Colorado, upper-division physics courses are taught using a traditional lecture approach that does not make use of many of the instructional techniques that have been found to improve student learning at the introductory level. We are transforming several upper-division courses using principles of active engagement and learning theory, guided by the results of observations, interviews, and analysis of student work at CU and elsewhere. In this talk I outline these transformations, including the development of faculty consensus learning goals, clicker questions, tutorials, modified homeworks, and more. We present evidence of the effectiveness of these transformations relative to traditional courses, based on student grades, interviews, and through research-based assessments of student conceptual mastery and student attitudes. Our results suggest that many of the tools that have been effective in introductory courses are effective for our majors, and that further research is warranted in the upper-division environment. (See www.colorado.edu/sei/departments/physics.htm for materials)

  10. Using lab notebooks to examine students' engagement in modeling in an upper-division electronics lab course

    Science.gov (United States)

    Stanley, Jacob T.; Su, Weifeng; Lewandowski, H. J.

    2017-12-01

    We demonstrate how students' use of modeling can be examined and assessed using student notebooks collected from an upper-division electronics lab course. The use of models is a ubiquitous practice in undergraduate physics education, but the process of constructing, testing, and refining these models is much less common. We focus our attention on a lab course that has been transformed to engage students in this modeling process during lab activities. The design of the lab activities was guided by a framework that captures the different components of model-based reasoning, called the Modeling Framework for Experimental Physics. We demonstrate how this framework can be used to assess students' written work and to identify how students' model-based reasoning differed from activity to activity. Broadly speaking, we were able to identify the different steps of students' model-based reasoning and assess the completeness of their reasoning. Varying degrees of scaffolding present across the activities had an impact on how thoroughly students would engage in the full modeling process, with more scaffolded activities resulting in more thorough engagement with the process. Finally, we identified that the step in the process with which students had the most difficulty was the comparison between their interpreted data and their model prediction. Students did not use sufficiently sophisticated criteria in evaluating such comparisons, which had the effect of halting the modeling process. This may indicate that in order to engage students further in using model-based reasoning during lab activities, the instructor needs to provide further scaffolding for how students make these types of experimental comparisons. This is an important design consideration for other such courses attempting to incorporate modeling as a learning goal.

  11. Coupled Multiple-Response versus Free-Response Conceptual Assessment: An Example from Upper-Division Physics

    Science.gov (United States)

    Wilcox, Bethany R.; Pollock, Steven J.

    2014-01-01

    Free-response research-based assessments, like the Colorado Upper-division Electrostatics Diagnostic (CUE), provide rich, fine-grained information about students' reasoning. However, because of the difficulties inherent in scoring these assessments, the majority of the large-scale conceptual assessments in physics are multiple choice. To increase…

  12. Socratic dialogs and clicker use in an upper-division mechanics course

    Science.gov (United States)

    Kuo, H. Vincent; Kohl, Patrick B.; Carr, Lincoln D.

    2012-02-01

    The general problem of effectively using interactive engagement in non-introductory physics courses remains open. We present a three-year study comparing different approaches to lecturing in an intermediate mechanics course at the Colorado School of Mines. In the first year, the lectures were fairly traditional. In the second year the lectures were modified to include Socratic dialogs between the instructor and students. In the third year, the instructor used a personal response system and Peer Instruction-like pedagogy. All other course materials were nearly identical to an established traditional lecture course. We present results from a new instructor-constructed conceptual survey, exams, and course evaluations. We observe little change in student exam performance as lecture techniques varied, though students consistently stated clickers were "the best part of the course" from which they "learned the most." Indeed, when using clickers in this course, students were considerably more likely to become engaged than students in CSM introductory courses using the same methods.

  13. Designing and Evaluating a Climate Change Course for Upper-Division Engineers and Scientists

    Science.gov (United States)

    Samson, P. J.

    2002-12-01

    AOSS 300, GLOBAL ENVIRONMENTAL IMPACT OF TECHNOLOGICAL CHANGE, was created to provide a mechanism for scientific exploration of the unexpected global environmental side effects of technological innovation with emphasis on issues of the atmosphere and oceans. The course is specifically designed to contribute to the desired Accreditation Board for Engineering and Technology (ABET) outcomes that engineering and science graduates possess "the broad education necessary to understand the impact of solutions in a global and societal context." To facilitate this new course a new suite of coupled Flash/PHP/MySQL tools have been created that allow personalization of the students' learning space and interaction with faculty. Using these tools students are challenged to actively participate in the construction of knowledge through development of on-line portfolios that influence course content. This paper reports on lessons learned in the first semester that will guide further course development.

  14. A Portable Bioinformatics Course for Upper-Division Undergraduate Curriculum in Sciences

    Science.gov (United States)

    Floraino, Wely B.

    2008-01-01

    This article discusses the challenges that bioinformatics education is facing and describes a bioinformatics course that is successfully taught at the California State Polytechnic University, Pomona, to the fourth year undergraduate students in biological sciences, chemistry, and computer science. Information on lecture and computer practice…

  15. Coupled multiple-response versus free-response conceptual assessment: An example from upper-division physics

    Directory of Open Access Journals (Sweden)

    Bethany R. Wilcox

    2014-10-01

    Full Text Available Free-response research-based assessments, like the Colorado Upper-division Electrostatics Diagnostic (CUE, provide rich, fine-grained information about students’ reasoning. However, because of the difficulties inherent in scoring these assessments, the majority of the large-scale conceptual assessments in physics are multiple choice. To increase the scalability and usability of the CUE, we set out to create a new version of the assessment that preserves the insights afforded by a free-response format while exploiting the logistical advantages of a multiple-choice assessment. We used our extensive database of responses to the free-response CUE to construct distractors for a new version where students can select multiple responses and receive partial credit based on the accuracy and consistency of their selections. Here, we describe the development of this modified CUE format, which we call coupled multiple response (CMR, and present data from direct comparisons of both versions. We find that the two formats have the same average score and perform similarly on multiple measures of validity and reliability, suggesting that the new version is a potentially viable alternative to the original CUE for the purpose of large-scale research-based assessment. We also compare the details of student responses on each of the two versions. While the CMR version does not capture the full scope of potential student responses, nearly three-quarters of our students’ responses to the free-response version contained one or more elements that matched options provided on the CMR version.

  16. Colorado Upper-Division Electrostatics Diagnostic: A Conceptual Assessment for the Junior Level

    Science.gov (United States)

    Chasteen, Stephanie V.; Pepper, Rachel E.; Caballero, Marcos D.; Pollock, Steven J.; Perkins, Katherine K.

    2012-01-01

    As part of an effort to systematically improve our junior-level E&M I course, we have developed a tool to assess student conceptual learning of electrostatics at the upper division. Together with a group of physics faculty, we established a list of learning goals for the course that, with results from student observations and interviews,…

  17. The Effectiveness of "Pencasts" in Physics Courses

    Science.gov (United States)

    Weliweriya, Nandana; Sayre, Eleanor C.; Zollman, Dean A.

    2018-03-01

    Pencasts are videos of problem solving with narration by the problem solver. Pedagogically, students can create pencasts to illustrate their own problem solving to the instructor or to their peers. Pencasts have implications for teaching at multiple levels from elementary grades through university courses. In this article, we describe the use of pencasts in a university-level upper-division electromagnetic fields course usually taken by junior and senior physics majors. For each homework assignment, students created and submitted pencasts of ordinary problems several days before the problem set was due. We compare students' performance in the class (grades for pencast submission excluded) with the pencast submission rate. Students who submitted more pencasts tend to do better in the course. We conclude with some practical suggestions for implementing pencasts in other courses.

  18. "deutsche Sprache, gute Sprache...": Minorities in Germany and Their German-Language Literature for Upper-Division German.

    Science.gov (United States)

    Veteto-Conrad, Marilya

    1997-01-01

    Describes how the topic of minorities and minority literature can be integrated into an upper-division German course. Presents materials and approaches used in a recent fourth-year model minicourse. (28 references) (Author/CK)

  19. Physics 3204. Course Description.

    Science.gov (United States)

    Newfoundland and Labrador Dept. of Education.

    A description of the physics 3204 course in Newfoundland and Labrador is provided. The description includes: (1) statement of purpose, including general objectives of science education; (2) a list of six course objectives; (3) course content for units on sound, light, optical instruments, electrostatics, current electricity, Michael Faraday and…

  20. Upper-division student difficulties with the Dirac delta function

    Directory of Open Access Journals (Sweden)

    Bethany R. Wilcox

    2015-03-01

    Full Text Available The Dirac delta function is a standard mathematical tool that appears repeatedly in the undergraduate physics curriculum in multiple topical areas including electrostatics, and quantum mechanics. While Dirac delta functions are often introduced in order to simplify a problem mathematically, students still struggle to manipulate and interpret them. To characterize student difficulties with the delta function at the upper-division level, we examined students’ responses to traditional exam questions and a standardized conceptual assessment, and conducted think-aloud interviews. Our analysis was guided by an analytical framework that focuses on how students activate, construct, execute, and reflect on the Dirac delta function in the context of problem solving in physics. Here, we focus on student difficulties using the delta function to express charge distributions in the context of junior-level electrostatics. Common challenges included invoking the delta function spontaneously, translating a description of a charge distribution into a mathematical expression using delta functions, integrating 3D or non-Cartesian delta function expressions, and recognizing that the delta function can have units. We also briefly discuss implications of these difficulties for instruction.

  1. How gender and reformed introductory physics impacts student success in advanced physics courses and continuation in the physics major

    Directory of Open Access Journals (Sweden)

    Idaykis Rodriguez

    2016-08-01

    Full Text Available [This paper is part of the Focused Collection on Gender in Physics.] Active-learning approaches to teaching introductory physics have been found to improve student learning and affective gains on short-term outcomes [S. Freeman et al., Proc. Natl. Acad. Sci. U.S.A. 111, 8410 (2014]; however, whether or not the benefits of active learning impact women to the same degree as men has been a point of concern [A. Madsen, S. B. McKagan, and E. C. Sayre, Phys. Rev. ST Phys. Educ. Res. 9, 020121 (2013]. Further, the long-term impacts of active-learning experiences are also understudied. At Florida International University, a Hispanic-majority institution, we have implemented Modeling Instruction (MI and the Integrated Science Learning Environment (ISLE in introductory physics classes for the past decade. In this empirical paper, we report on a longitudinal investigation of student performance and persistence in upper level physics courses after having previously experienced MI or ISLE in their introductory physics courses, and disaggregate students by gender. Using survival analysis methods, we find women who declare physics as a major are more likely than men to graduate with a physics degree. Women are also just as likely as men to pass through the upper division courses, with the highest failure risk for both men and women occurring in the first semester of upper-division course taking. These results reinforce the need to expand considerations of performance outcomes to be longitudinal to measure the effectiveness of the entire physics experience.

  2. How gender and reformed introductory physics impacts student success in advanced physics courses and continuation in the physics major

    Science.gov (United States)

    Rodriguez, Idaykis; Potvin, Geoff; Kramer, Laird H.

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] Active-learning approaches to teaching introductory physics have been found to improve student learning and affective gains on short-term outcomes [S. Freeman et al., Proc. Natl. Acad. Sci. U.S.A. 111, 8410 (2014)]; however, whether or not the benefits of active learning impact women to the same degree as men has been a point of concern [A. Madsen, S. B. McKagan, and E. C. Sayre, Phys. Rev. ST Phys. Educ. Res. 9, 020121 (2013)]. Further, the long-term impacts of active-learning experiences are also understudied. At Florida International University, a Hispanic-majority institution, we have implemented Modeling Instruction (MI) and the Integrated Science Learning Environment (ISLE) in introductory physics classes for the past decade. In this empirical paper, we report on a longitudinal investigation of student performance and persistence in upper level physics courses after having previously experienced MI or ISLE in their introductory physics courses, and disaggregate students by gender. Using survival analysis methods, we find women who declare physics as a major are more likely than men to graduate with a physics degree. Women are also just as likely as men to pass through the upper division courses, with the highest failure risk for both men and women occurring in the first semester of upper-division course taking. These results reinforce the need to expand considerations of performance outcomes to be longitudinal to measure the effectiveness of the entire physics experience.

  3. Modeling Human Serum Albumin Tertiary Structure to Teach Upper-Division Chemistry Students Bioinformatics and Homology Modeling Basics

    Science.gov (United States)

    Petrovic, Dus?an; Zlatovic´, Mario

    2015-01-01

    A homology modeling laboratory experiment has been developed for an introductory molecular modeling course for upper-division undergraduate chemistry students. With this experiment, students gain practical experience in homology model preparation and assessment as well as in protein visualization using the educational version of PyMOL…

  4. A Study of Faculty Approaches to Teaching Undergraduate Physical Chemistry Courses

    Science.gov (United States)

    Mack, Michael Ryan

    Chemistry education researchers have not adequately studied teaching and learning experiences at all levels in the undergraduate chemistry curriculum leaving gaps in discipline-based STEM education communities understanding about how the upper- division curricula works (National Research Council, 2012b; Towns, 2013). This study explored faculty approaches to teaching in upper-division physical chemistry course settings using an interview-based methodology. Two conceptualizations of approaches to teaching emerged from a phenomenographic analysis of interview transcripts: (1) faculty beliefs about the purposes for teaching physical chemistry and (2) their conceptions of their role as an instructor in these course settings. Faculty who reported beliefs predominantly centered on helping students develop conceptual knowledge and problem-solving skills in physical chemistry often worked with didactic models of teaching, which emphasized the transfer of expert knowledge to students. When faculty expressed beliefs that were more inclusive of conceptual, epistemic, and social learning goals in science education they often described more student-centered models of teaching and learning, which put more responsibilities on them to facilitate students' interactive engagement with the material and peers during regularly scheduled class time. Knowledge of faculty thinking, as evinced in a rich description of their accounts of their experience, provides researchers and professional developers with useful information about the potential opportunities or barriers that exist for helping faculty align their beliefs and goals for teaching with research-based instructional strategies.

  5. Supplemental Instruction in Physical Chemistry I

    Science.gov (United States)

    Toby, Ellen; Scott, Timothy P.; Migl, David; Kolodzeji, Elizabeth

    2016-01-01

    Physical chemistry I at Texas A&M University is an upper division course requiring mathematical and analytical skills. As such, this course poses a major problem for many Chemistry, Engineering, Biochemistry and Genetics majors. Comparisons between participants and non-participants in Supplemental Instruction for physical chemistry were made…

  6. A course in theoretical physics

    CERN Document Server

    Shepherd, P J

    2013-01-01

    This book is a comprehensive account of five extended modules covering the key branches of twentieth-century theoretical physics, taught by the author over a period of three decades to students on bachelor and master university degree courses in both physics and theoretical physics. The modules cover nonrelativistic quantum mechanics, thermal and statistical physics, many-body theory, classical field theory (including special relativity and electromagnetism), and, finally, relativistic quantum mechanics and gauge theories of quark and lepton interactions, all presented in a single, self-contained volume. In a number of universities, much of the material covered (for example, on Einstein’s general theory of relativity, on the BCS theory of superconductivity, and on the Standard Model, including the theory underlying the prediction of the Higgs boson) is taught in postgraduate courses to beginning PhD students. A distinctive feature of the book is that full, step-by-step mathematical proofs of all essentia...

  7. Challenges in a Physics Course

    DEFF Research Database (Denmark)

    Hernández, Carola Hernández; Ravn, Ole; Forero Shelton, Antonio Manu

    2014-01-01

    This article identifies and analyses some of the challenges that arose in a development process of changing from a content-based teaching environment to a student-centred environment in an undergraduate physics course for medicine and biology students at Universidad de los Andes. Through the use...

  8. Predicting Success in Upper-Division Business Communication Classes.

    Science.gov (United States)

    Wilson, Barbara; Plutsky, Susan

    1997-01-01

    Scores of 102 business communication students on the Descriptive Tests of Language Skills (DTLS) and grades on analytical reports, short assignments, and the overall course were examined. Females received higher course and report grades. The DTLS was a weak predictor of student performance. (SK)

  9. A course in classical physics

    CERN Document Server

    Bettini, Alessandro

    This first volume covers the mechanics of point particles, gravitation, extended systems (starting from the two-body system), the basic concepts of relativistic mechanics and the mechanics of rigid bodies and fluids. The four-volume textbook, which covers electromagnetism, mechanics, fluids and thermodynamics, and waves and light, is designed to reflect the typical syllabus during the first two years of a calculus-based university physics program. Throughout all four volumes, particular attention is paid to in-depth clarification of conceptual aspects, and to this end the historical roots of the principal concepts are traced. Writings by the founders of classical mechanics, G. Galilei and I. Newton, are reproduced, encouraging students to consult them. Emphasis is also consistently placed on the experimental basis of the concepts, highlighting the experimental nature of physics. Whenever feasible at the elementary level, concepts relevant to more advanced courses in modern physics are included. Each chapter b...

  10. Validation and analysis of the coupled multiple response Colorado upper-division electrostatics diagnostic

    Directory of Open Access Journals (Sweden)

    Bethany R. Wilcox

    2015-11-01

    Full Text Available Standardized conceptual assessment represents a widely used tool for educational researchers interested in student learning within the standard undergraduate physics curriculum. For example, these assessments are often used to measure student learning across educational contexts and instructional strategies. However, to support the large-scale implementation often required for cross-institutional testing, it is necessary for these instruments to have question formats that facilitate easy grading. Previously, we created a multiple-response version of an existing, validated, upper-division electrostatics diagnostic with the goal of increasing the instrument’s potential for large-scale implementation. Here, we report on the validity and reliability of this new version as an independent instrument. These findings establish the validity of the multiple-response version as measured by multiple test statistics including item difficulty, item discrimination, and internal consistency. Moreover, we demonstrate that the majority of student responses to the new version are internally consistent even when they are incorrect and provide an example of how the new format can be used to gain insight into student difficulties with specific content in electrostatics.

  11. Science Academies' Refresher Course in Experimental Physics

    Indian Academy of Sciences (India)

    2017-12-18

    Dec 18, 2017 ... A Refresher Course in Experimental Physics will be held at the Department of Physics, Panjab. University, Chandigarh held from 18 December 2017 to 2 January 2018 for the benefit of faculty involved in teaching undergraduate and postgraduate courses. The Course aims to familiarize the teachers with a ...

  12. The molecular biology capstone assessment: a concept assessment for upper-division molecular biology students.

    Science.gov (United States)

    Couch, Brian A; Wood, William B; Knight, Jennifer K

    2015-03-02

    Measuring students' conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in novel scenarios. Targeted at graduating students, the MBCA consists of 18 multiple-true/false (T/F) questions. Each question consists of a narrative stem followed by four T/F statements, which allows a more detailed assessment of student understanding than the traditional multiple-choice format. Questions were iteratively developed with extensive faculty and student feedback, including validation through faculty reviews and response validation through student interviews. The final assessment was taken online by 504 students in upper-division courses at seven institutions. Data from this administration indicate that the MBCA has acceptable levels of internal reliability (α=0.80) and test-retest stability (r=0.93). Students achieved a wide range of scores with a 67% overall average. Performance results suggest that students have an incomplete understanding of many molecular biology concepts and continue to hold incorrect conceptions previously documented among introductory-level students. By pinpointing areas of conceptual difficulty, the MBCA can provide faculty members with guidance for improving undergraduate biology programs. © 2015 B. A. Couch et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Holography as a Liberal Arts Physics Course

    Science.gov (United States)

    Huang, Jacob Wen-kuang

    1978-01-01

    Describes a liberal arts physics course for all majors interested in holography or to satisfy the general education requirements. An outline of the course and some experience of offering it are given. (Author/GA)

  14. Upper-Division Student Difficulties with the Dirac Delta Function

    Science.gov (United States)

    Wilcox, Bethany R.; Pollock, Steven J.

    2015-01-01

    The Dirac delta function is a standard mathematical tool that appears repeatedly in the undergraduate physics curriculum in multiple topical areas including electrostatics, and quantum mechanics. While Dirac delta functions are often introduced in order to simplify a problem mathematically, students still struggle to manipulate and interpret them.…

  15. A Model for the Development an Upper-Division Marketing Certificate Program: Professional Sales.

    Science.gov (United States)

    Grahn, Joyce L.

    The sequential components of a model for the development of an upper-division marketing certificate program in professional sales are described in this report as they were implemented at the University of Minnesota's General College during Fall 1980. After introductory material examining the responsibilities of the professional sales…

  16. Observations on Student Difficulties with Mathematics in Upper-Division Electricity and Magnetism

    Science.gov (United States)

    Pepper, Rachel E.; Chasteen, Stephanie V.; Pollock, Steven J.; Perkins, Katherine K.

    2012-01-01

    We discuss common difficulties in upper-division electricity and magnetism (E&M) in the areas of Gauss's law, vector calculus, and electric potential using both quantitative and qualitative evidence. We also show that many of these topical difficulties may be tied to student difficulties with mathematics. At the junior level, some students…

  17. Linking Science Fiction and Physics Courses

    Science.gov (United States)

    McBride, Krista K.

    2016-05-01

    Generally, cohorts or learning communities enrich higher learning in students. Learning communities consist of conventionally separate groups of students that meet together with common academic purposes and goals. Types of learning communities include paired courses with concurrent student enrollment, living-learning communities, and faculty learning communities. This article discusses a learning community of 21 students that I created with a colleague in the English department. The community encompasses two general education courses: an algebra-based physics course entitled "Intro to Physics" and a literature course entitled "Science Fiction, Science Fact." Students must enroll in both of these courses during the same semester. Additionally, I highlight advantages to linking these courses through surveying the assignments and course materials that we used in our learning community. Figure 1 shows the topics that are covered in both physics and literature courses.

  18. Microcomputers in a Beginning Tertiary Physics Course.

    Science.gov (United States)

    Pearce, J. M.; O'Brien, R.

    1986-01-01

    Describes a college-level physics course which focuses on both physics knowledge/skills and use of microcomputers. Types of experiments done with the computers and how students use the computers to treat data are considered. (JN)

  19. The Effect of Modeling and Visualization Resources on Student Understanding of Physical Hydrology

    Science.gov (United States)

    Marshall, Jilll A.; Castillo, Adam J.; Cardenas, M. Bayani

    2015-01-01

    We investigated the effect of modeling and visualization resources on upper-division, undergraduate and graduate students' performance on an open-ended assessment of their understanding of physical hydrology. The students were enrolled in one of five sections of a physical hydrology course. In two of the sections, students completed homework…

  20. Science Academies' Refresher Course in Statistical Physics

    Indian Academy of Sciences (India)

    The Course is aimed at college teachers of statistical physics at BSc/MSc level. ... teachers, with at least a masters degree in Physics/Mathematics/Engineering are ... Topics: There will be six courses dealing with, Basic principles and general ...

  1. Harvard Project Physics Newsletter 10. The Project Physics Course, Text.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    A short description of the availability of Harvard Project Physics course components is given as is a discussion of the growth of the use of Project Physics in schools, including some enrollment data and survey results. Locations of the 1970 and 1971 Summer Institutes are listed. Adaptations of Project Physics course outside the United States are…

  2. Refresher Course on Physics of Earthquakes -98 ...

    Indian Academy of Sciences (India)

    The objective of this course is to help teachers gain an understanding of the earhquake phenomenon and the physical processes involved in its genesis as well as offhe earthquake waves which propagate the energy released by the earthquake rupture outward from the source. The Course will begin with mathematical ...

  3. Science Academies' Refresher Course in Experimental Physics

    Indian Academy of Sciences (India)

    IAS Admin

    The Course is particularly aimed at teachers (from University and Colleges in and around Mizoram, Aizawl) teaching at UG/PG level. College/University teachers having at least a Master's degree in Physics are eligible to apply. The UGC has also approved of 2-week Refresher Courses of good standing for promotion of ...

  4. CT findings of a displaced left upper division bronchus in adults: Its importance for performing safe left pulmonary surgery

    Energy Technology Data Exchange (ETDEWEB)

    Oshiro, Yasuji, E-mail: oshiro4211@yahoo.co.jp [Department of Radiology, National Hospital Organization Okinawa Hospital, 20-14 Ganeko 3-chome, Ginowan city, Okinawa 901-2214 (Japan); Murayama, Sadayuki [Department of Radiology, University of the Ryukus School of Medicine, 207 Uehara, Nishihara-cho, Okinawa 903-0215 (Japan); Ohta, Morio [Department of Surgery, Nakagami Hospital, 6-25-5 Chibana, Okinawa-city, Okinawa 904-2195 (Japan); Teruya, Takao [Second Department of Surgery, University of the Ryukus School of Medicine, 207 Uehara, Nishihara-cho, Okinawa 903-0215 (Japan)

    2013-08-15

    Purpose: The aim of this study was to describe the CT findings of a displaced left upper division bronchus (DLUDB) in adults. Materials and methods: Ten patients with DLUDB were identified. The following CT features were assessed: origin of the DLUDB; distance between the origin of the DLUDB and the origin of the left upper lobe (LUL) bronchus; height of the origin of the DLUDB against the left pulmonary artery (LPA); difference of the main bronchial length; ventilated segment; course of the left pulmonary artery against the DLUDB; and presence of an accessory fissure or other anomalies. Results: DLUDB arose from the posterolateral or lateral aspect of the left main bronchus immediately proximal to the origin of the LUL bronchus. It tended to course along the posterior wall of the LPA and to ventilate the apicoposterior segment with or without the anterior segment. The LPA passed between the displaced bronchus and the lingular bronchus. The origin of the DLUDB was located lower than the inferior wall of the proximal LPA in 6 patients. The accessory fissure between the associated segment and remaining part of the LUL and right tracheal bronchus coexisted in 7 and 3 patients respectively. Conclusion: DLUDB has characteristic findings on CT. Radiologists should be aware of this entity and inform the surgeon as it can prevent serious complications in a patient who may undergo lobectomy of the left lung.

  5. CT findings of a displaced left upper division bronchus in adults: Its importance for performing safe left pulmonary surgery

    International Nuclear Information System (INIS)

    Oshiro, Yasuji; Murayama, Sadayuki; Ohta, Morio; Teruya, Takao

    2013-01-01

    Purpose: The aim of this study was to describe the CT findings of a displaced left upper division bronchus (DLUDB) in adults. Materials and methods: Ten patients with DLUDB were identified. The following CT features were assessed: origin of the DLUDB; distance between the origin of the DLUDB and the origin of the left upper lobe (LUL) bronchus; height of the origin of the DLUDB against the left pulmonary artery (LPA); difference of the main bronchial length; ventilated segment; course of the left pulmonary artery against the DLUDB; and presence of an accessory fissure or other anomalies. Results: DLUDB arose from the posterolateral or lateral aspect of the left main bronchus immediately proximal to the origin of the LUL bronchus. It tended to course along the posterior wall of the LPA and to ventilate the apicoposterior segment with or without the anterior segment. The LPA passed between the displaced bronchus and the lingular bronchus. The origin of the DLUDB was located lower than the inferior wall of the proximal LPA in 6 patients. The accessory fissure between the associated segment and remaining part of the LUL and right tracheal bronchus coexisted in 7 and 3 patients respectively. Conclusion: DLUDB has characteristic findings on CT. Radiologists should be aware of this entity and inform the surgeon as it can prevent serious complications in a patient who may undergo lobectomy of the left lung

  6. Introduction to Particle Physics course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    These lectures are an introduction to the ideas of particle physics, aimed at students and teachers with little or on knowledge of the subject. They form a broad basis that will be developed in more detail by the subsequent lecturers in the school. These four lectures are meant to present an overview of particle physics based on its historical evolution over the past century. It will be shown how concepts have evolved following progress in instrumentation and in theoretical ideas, from atoms to the elementary particles and their interactions, as they are known today.

  7. A Physics Course for Non-Physical Science Teachers

    Science.gov (United States)

    Cottle, Paul D.

    1997-11-01

    A two semester introductory physics sequence exclusively for undergraduates and graduate students in science education who were not seeking certification in physics was taught at Florida State for the first time in 1996-97. The course emphasized building understanding in both qualitative and quantitative aspects of physics through group learning approaches to laboratories and written problem assignments, assessments which required detailed written explanations, and frequent interactions between the instructor and individual students. This talk will briefly outline the structure of the course and some of the more interesting observations made by the group of science education graduate students and faculty who evaluated aspects of the course.

  8. Linked Psychology and Writing Courses across the Curriculum

    Science.gov (United States)

    Cargill, Kima; Kalikoff, Beth

    2007-01-01

    To enhance student performance, prevent attrition, and build a learning community, two courses were linked together by requiring concurrent enrollment. "Writing Effectively," an upper-division composition course, was linked with "Abnormal Psychology," an upper-division clinical psychology course, requiring concurrent enrollment in both. In short,…

  9. Introducion to Nuclear Physics course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    Atomic nuclei are made of nucleons, protons and neutrons, composed by quarks strongly interacting via gluons. How such complex objects as particles and nuclei are built? remains a fundamental question. A new "frontier" of subatomic physics is the exploration of exotic nuclei, elements and isotopes not stable enough to have survived on Earth. Exotic nuclei populated vast unknown regions of the nuclear chart where many unexpected structures have recently been discovered. Exotic nuclei synthesized in laboratory allow large variation of the neutron and proton chemical composition of nuclear systems needed to uncover the true nature of the subatomic structures and to understand the origin of elements in the Universe. This lecture will be an introduction to the open questions and key issues on the properties and structure of atomic nuclei and nuclear matter.

  10. Visceral subpleural hematoma of the left diaphragmatic surface following left upper division segmentectomy

    Directory of Open Access Journals (Sweden)

    Yasushi Mizukami

    2017-10-01

    Full Text Available Abstract Background Pulmonary visceral subpleural hematoma is rare. We report visceral subpleural hematoma of the left diaphragmatic surface following left upper division segmentectomy. This very rare case was difficult to distinguish from thoracic abscess. Case presentation A 68-year-old man with hypertension had undergone video-assisted thoracoscopic left upper division segmentectomy for suspected lung carcinoma. Deep vein thrombosis of the lower leg was identified and edoxaban, a so-called novel oral anticoagulant, was started on postoperative day 7. The chest drainage tube was removed on postoperative day 12 because of persistent air leakage, but fever appeared the same day. Computed tomography revealed a cavity with mixed air and fluid, so antibiotics were started on suspicion of abscess. Computed tomography-guided drainage was attempted, but proved unsuccessful. Fever continued and surgical investigation was therefore performed. Visceral subpleural hematoma was identified under the diaphragmatic surface of the left basal lung. We excised the pleura, then performed drainage and applied running sutures. The parenchyma and visceral pleura were covered with polyglycolic acid sheet and fibrin glue. Edoxaban was restarted on postoperative day 12 of video-assisted thoracoscopic surgery and no recurrence of hematoma has been revealed. Conclusions Visceral subpleural hematoma after thoracic surgery is extremely rare. Furthermore, correct diagnosis was difficult and surgery offered a good diagnostic and therapeutic procedure.

  11. Physical activity across the life-course

    DEFF Research Database (Denmark)

    Evans, Adam Brian; Nistrup, Anne; Allen-Collinson, Jacquelyn

    2018-01-01

    The subjective, lived elements of old age in physical activity promotion are central in defining how older people ascribe meaning to experiences of being active. Many such meanings are developed throughout the life course. From a longitudinal perspective, although continuity theory can be helpful...... be interdependent with how others define them, and how they define others. We offer recommendations about how this shift in perspective can empower older people to be active agents within figurations of physical activity promotion....

  12. An introductory course of particle physics

    CERN Document Server

    Pal, Palash B

    2014-01-01

    For graduate students unfamiliar with particle physics, this text teaches the basic techniques and fundamental theories related to the subject. It gives them the competence to work out various properties of fundamental particles, such as scattering cross-section and lifetime. The book also gives a lucid summary of the main ideas involved. Figure slides are available upon qualifying course adoption.

  13. Science Academies' Refresher Course in Statistical Physics

    Indian Academy of Sciences (India)

    The Course is aimed at college teachers of statistical physics at BSc/MSc level. It will cover basic principles and techniques, in a pedagogical manner, through lectures and tutorials, with illustrative problems. Some advanced topics, and common difficulties faced by students will also be discussed. College/University ...

  14. The role of applied physics in American introductory physics courses

    Science.gov (United States)

    Poduska, Ervin L.; Lunetta, Vincent N.

    1984-09-01

    To what extent should technology and applied physics be included in introductory physics courses? What is the proper balance between pure and applied physics? Should physics teachers devote precious time to socially relevant issues like nuclear power and alternative sources of energy? How much time should be spent, if any, on applications that are more relevant to the student's world like cars, music, television and refrigeration? Does including applications reduce or enhance student understanding of important classical topics? A response to these questions must be based on goals for physics teaching, on knowledge of how students learn and on the nature of the physics discipline. Since there is not enough time to teach everything in an introductory course, priorities must be determined.

  15. Transforming a fourth year modern optics course using a deliberate practice framework

    Directory of Open Access Journals (Sweden)

    David J. Jones

    2015-09-01

    Full Text Available [This paper is part of the Focused Collection on Upper Division Physics Courses.] We present a study of active learning pedagogies in an upper-division physics course. This work was guided by the principle of deliberate practice for the development of expertise, and this principle was used in the design of the materials and the orchestration of the classroom activities of the students. We present our process for efficiently converting a traditional lecture course based on instructor notes into activities for such a course with active learning methods. Ninety percent of the same material was covered and scores on common exam problems showed a 15% improvement with an effect size greater than 1 after the transformation. We observe that the improvement and the associated effect size is sustained after handing off the materials to a second instructor. Because the improvement on exam questions was independent of specific problem topics and because the material tested was so mathematically advanced and broad (including linear algebra, Fourier transforms, partial differential equations, and vector calculus, we expect the transformation process could be applied to most upper-division physics courses having a similar mathematical base.

  16. Transforming a fourth year modern optics course using a deliberate practice framework

    Science.gov (United States)

    Jones, David J.; Madison, Kirk W.; Wieman, Carl E.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] We present a study of active learning pedagogies in an upper-division physics course. This work was guided by the principle of deliberate practice for the development of expertise, and this principle was used in the design of the materials and the orchestration of the classroom activities of the students. We present our process for efficiently converting a traditional lecture course based on instructor notes into activities for such a course with active learning methods. Ninety percent of the same material was covered and scores on common exam problems showed a 15% improvement with an effect size greater than 1 after the transformation. We observe that the improvement and the associated effect size is sustained after handing off the materials to a second instructor. Because the improvement on exam questions was independent of specific problem topics and because the material tested was so mathematically advanced and broad (including linear algebra, Fourier transforms, partial differential equations, and vector calculus), we expect the transformation process could be applied to most upper-division physics courses having a similar mathematical base.

  17. A modern course in statistical physics

    CERN Document Server

    Reichl, Linda E

    2016-01-01

    "A Modern Course in Statistical Physics" is a textbook that illustrates the foundations of equilibrium and non-equilibrium statistical physics, and the universal nature of thermodynamic processes, from the point of view of contemporary research problems. The book treats such diverse topics as the microscopic theory of critical phenomena, superfluid dynamics, quantum conductance, light scattering, transport processes, and dissipative structures, all in the framework of the foundations of statistical physics and thermodynamics. It shows the quantum origins of problems in classical statistical physics. One focus of the book is fluctuations that occur due to the discrete nature of matter, a topic of growing importance for nanometer scale physics and biophysics. Another focus concerns classical and quantum phase transitions, in both monatomic and mixed particle systems. This fourth edition extends the range of topics considered to include, for example, entropic forces, electrochemical processes in biological syste...

  18. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  19. Synthesis of 10-Ethyl Flavin: A Multistep Synthesis Organic Chemistry Laboratory Experiment for Upper-Division Undergraduate Students

    Science.gov (United States)

    Sichula, Vincent A.

    2015-01-01

    A multistep synthesis of 10-ethyl flavin was developed as an organic chemistry laboratory experiment for upper-division undergraduate students. Students synthesize 10-ethyl flavin as a bright yellow solid via a five-step sequence. The experiment introduces students to various hands-on experimental organic synthetic techniques, such as column…

  20. An Experiment in Upper-Division Education. Planning for Higher Education; Vol. 4, No. 1:4/4 February 1975.

    Science.gov (United States)

    Lauper, Russell T.; Meskill, Victor P.

    In June 1973, the New York State Board of Regents approved the establishment of the Coordinate Campus proposed by two private institutions, the C.W. Post Center of Long Island University and St. Joseph's College. This report describes the general purpose and history of upper-division education and examines the experiment in interinstitutional…

  1. Equations in mathematical physics a practical course

    CERN Document Server

    Pikulin, Victor P

    2001-01-01

    This handbook is addressed to students of technology institutf's where a course on mathematical physics of relatively reduced volume is offered, as well as to engineers and scientists. The aim of the handbook is to treat (demonstrate) the basic methods for solving the simplest problems of classical mathematical physics. The most basic among the methods considered hrre i8 the superposition method. It allows one, based on particular linearly indepmdent HolutionH (solution "atoms"), to obtain the solution of a given problem. To that end the "Hupply" of solution atoms must be complete. This method is a development of the well-known method of particular solutions from the theory of ordinar~' differelltial equations. In contrast to the case of ordinary differential equations, where the number of linearly independent 80lutions is always finite, for a linear partial differrntial equation a complete "supply" of solution atoms is always infinite. This infinite set of Holutions may be discrete (for example, for regular ...

  2. Science Academies' 93rd Refresher Course in Experimental Physics

    Indian Academy of Sciences (India)

    A Refresher Course in Experimental Physics will be held at the Department of Physics, Indian. Institute of Technology Patna, Bihta, India from November 07–22, 2017 for the benefit of faculty involved in teaching undergraduate and postgraduate courses. Participants in this course will gain hands-on experience with about ...

  3. Elementary computer physics, a concentrated one-week course

    DEFF Research Database (Denmark)

    Christiansen, Gunnar Dan

    1978-01-01

    A concentrated one-week course (8 hours per day in 5 days) in elementary computer physics for students in their freshman university year is described. The aim of the course is to remove the constraints on traditional physics courses imposed by the necessity of only dealing with problems that have...... fields, and a lunar space vehicle are used as examples....

  4. Science Academies' 93rd Refresher Course in Experimental Physics

    Indian Academy of Sciences (India)

    2017-09-30

    Sep 30, 2017 ... A Refresher Course in Experimental Physics will be held at the Department of Physics, Indian. Institute of Technology Patna, Bihta, India from November 07–22, 2017 for the benefit of faculty involved in teaching undergraduate and postgraduate courses. Participants in this course will gain hands-on ...

  5. 30 years of Physics Education Research at the University of Washington

    Science.gov (United States)

    Shaffer, Peter S.

    2017-01-01

    Over the past 30 years, members of the UW Physics Education Group have examined student learning in courses serving a wide range of populations. Most of the focus has been on elementary, middle, and high school teachers and students in introductory university physics courses, but more recently, the effort has expanded to include physics majors in upper-division courses on quantum mechanics and electrodynamics. In general, the group has taken a practical approach that focuses on identifying instructional strategies that are effective at promoting conceptual understanding and student reasoning ability. Examples will be drawn from across these courses to illustrate common themes and connections.

  6. Students' views about the nature of experimental physics

    Science.gov (United States)

    Wilcox, Bethany R.; Lewandowski, H. J.

    2017-12-01

    The physics community explores and explains the physical world through a blend of theoretical and experimental studies. The future of physics as a discipline depends on training of students in both the theoretical and experimental aspects of the field. However, while student learning within lecture courses has been the subject of extensive research, lab courses remain relatively under-studied. In particular, there is little, if any, data available that address the effectiveness of physics lab courses at encouraging students to recognize the nature and importance of experimental physics within the discipline as a whole. To address this gap, we present the first large-scale, national study (Ninstitutions=75 and Nstudents=7167 ) of undergraduate physics lab courses through analysis of students' responses to a research-validated assessment designed to investigate students' beliefs about the nature of experimental physics. We find that students often enter and leave physics lab courses with ideas about experimental physics as practiced in their courses that are inconsistent with the views of practicing experimental physicists, and this trend holds at both the introductory and upper-division levels. Despite this inconsistency, we find that both introductory and upper-division students are able to accurately predict the expertlike response even in cases where their views about experimentation in their lab courses disagree. These finding have implications for the recruitment, retention, and adequate preparation of students in physics.

  7. Student views regarding online freshmen physics courses

    Science.gov (United States)

    Ramlo, Susan

    2017-10-01

    Background: Nationally, many public universities have started to move into the online course and program market that was previously associated with for-profit institutions of higher education. Public university administrators state that students seek the flexibility of online courses. But do students want to take courses online, especially freshmen-level science courses perceived to be difficult?

  8. Assessing learning in small sized physics courses

    Directory of Open Access Journals (Sweden)

    Emanuela Ene

    2018-01-01

    Full Text Available We describe the construction, validation, and testing of a concept inventory for an Introduction to Physics of Semiconductors course offered by the department of physics to undergraduate engineering students. By design, this inventory addresses both content knowledge and the ability to interpret content via different cognitive processes outlined in Bloom’s revised taxonomy. The primary challenge comes from the low number of test takers. We describe the Rasch modeling analysis for this concept inventory, and the results of the calibration on a small sample size, with the intention of providing a useful blueprint to other instructors. Our study involved 101 students from Oklahoma State University and fourteen faculty teaching or doing research in the field of semiconductors at seven universities. The items were written in four-option multiple-choice format. It was possible to calibrate a 30-item unidimensional scale precisely enough to characterize the student population enrolled each semester and, therefore, to allow the tailoring of the learning activities of each class. We show that this scale can be employed as an item bank from which instructors could extract short testlets and where we can add new items fitting the existing calibration.

  9. Assessing learning in small sized physics courses

    Science.gov (United States)

    Ene, Emanuela; Ackerson, Bruce J.

    2018-01-01

    We describe the construction, validation, and testing of a concept inventory for an Introduction to Physics of Semiconductors course offered by the department of physics to undergraduate engineering students. By design, this inventory addresses both content knowledge and the ability to interpret content via different cognitive processes outlined in Bloom's revised taxonomy. The primary challenge comes from the low number of test takers. We describe the Rasch modeling analysis for this concept inventory, and the results of the calibration on a small sample size, with the intention of providing a useful blueprint to other instructors. Our study involved 101 students from Oklahoma State University and fourteen faculty teaching or doing research in the field of semiconductors at seven universities. The items were written in four-option multiple-choice format. It was possible to calibrate a 30-item unidimensional scale precisely enough to characterize the student population enrolled each semester and, therefore, to allow the tailoring of the learning activities of each class. We show that this scale can be employed as an item bank from which instructors could extract short testlets and where we can add new items fitting the existing calibration.

  10. Science Academies' Refresher Course in Experimental Physics

    Indian Academy of Sciences (India)

    IAS Admin

    2016-02-20

    Students who wish to participate in this Refresher Course should submit their completed application form (in the prescribed format) by email or by post address (insaku2016@gmail.com),. (gulnoor.dar@gmail.com) or Course ...

  11. Science Academies' Refresher Course in Experimental Physics

    Indian Academy of Sciences (India)

    2017-12-18

    Dec 18, 2017 ... laws and principles and yield reasonably accurate results. The Refresher Course is jointly spon- sored by the Indian Academy of Sciences, ... Selected participants will be provided local hospitality during the Course in addition to course material. Outstation participants will be given three-tier A/c train fare.

  12. Particle physics: a new course for schools and colleges

    International Nuclear Information System (INIS)

    Swinbank, Elizabeth

    1992-01-01

    Some questions relating to the introduction of particle physics into post-GCSE courses are considered. A new project that is producing teacher and student materials to support teaching particle physics at this level is described. (author)

  13. The Teaching Effectiveness of a Relevant Physics Course

    Science.gov (United States)

    Hobson, Art

    1998-04-01

    If America is to achieve the science literacy that is ssential to industrialized democracy, all students must study such topics as scientific methodology, pseudoscience, critical thinking, ozone depletion, technological risk, and global warming. My large-enrollment liberal-arts physics course covers the great principles of physics along with several such philosophical and societal topics. Students find these topics relevant and fascinating, leading to strong course evaluations and large enrollments by non-scientists even in courses labeled physics. I will describe this course and present some evidence indicating that the course is effective in communicating physics and its interdisciplinary connections. A textbook, Physics: Concepts and Connections (Prentice Hall, 1995, 2nd edition to appear in June 1998), is available.

  14. Personality types and student performance in an introductory physics course

    Science.gov (United States)

    Harlow, Jason J. B.; Harrison, David M.; Justason, Michael; Meyertholen, Andrew; Wilson, Brian

    2017-12-01

    We measured the personality type of the students in a large introductory physics course of mostly life science students using the True Colors instrument. We found large correlations of personality type with performance on the precourse Force Concept Inventory (FCI), both term tests, the postcourse FCI, and the final examination. We also saw correlations with the normalized gain on the FCI. The personality profile of the students in this course is very different from the profile of the physics faculty and graduate students, and also very different from the profile of students taking the introductory physics course intended for physics majors and specialists.

  15. Students' Views About Potentially Offering Physics Courses Online

    Science.gov (United States)

    Ramlo, Susan E.

    2016-06-01

    Nationally, many public universities have started to move into the online course and program market that is most often associated with for-profit institutions of higher education. Administrators in public universities make statements regarding benefits to students' desire for flexibility and profit margins related to online courses. But do students attending a large public university want to take courses online especially science courses perceived to be difficult such as freshmen-level physics courses? This study took place at a large, public, Midwestern university and involved students enrolled in the first semester of a face-to-face, flipped physics course for engineering technology majors. Statements were collected from comments about online courses made by the university's administration and students in the course. Twenty students sorted 45 statements. Two student views emerged with one rejecting online courses in general and the other primarily rejecting online math, science, and technology courses, including physics. Students' descriptions of their previous online course experiences were used to inform the analyses and to assist in describing the two views that emerged in conjunction with the distinguishing statements. Consensus among the two views is also discussed. Overall, the results indicate a potential divergence between student views and what university administrators believe students want.

  16. CAS course on advanced accelerator physics in Trondheim, Norway

    CERN Multimedia

    CERN Accelerator School

    2013-01-01

    The CERN Accelerator School (CAS) and the Norwegian University of Science and Technology (NTNU) recently organised a course on advanced accelerator physics. The course was held in Trondheim, Norway, from 18 to 29 August 2013. Accommodation and lectures were at the Hotel Britannia and practical courses were held at the university.   The course's format included lectures in the mornings and practical courses in the afternoons. The lecture programme consisted of 32 lectures supplemented by discussion sessions, private study and tutorials. The practical courses provided "hands-on" experience in three topics: RF measurement techniques, beam instrumentation and diagnostics, and optics design and corrections. Participants selected one of the three courses and followed the chosen topic throughout the course. The programme concluded with seminars and a poster session.  70 students representing 21 nationalities were selected from over 90 applicants, with most participa...

  17. CERN Accelerator School: Registration open for Advanced Accelerator Physics course

    CERN Multimedia

    2015-01-01

    Registration is now open for the CERN Accelerator School’s Advanced Accelerator Physics course to be held in Warsaw, Poland from 27 September to 9 October 2015.   The course will be of interest to physicists and engineers who wish to extend their knowledge of accelerator physics. The programme offers core lectures on accelerator physics in the mornings and a practical course with hands-on tuition in the afternoons.  Further information can be found at: http://cas.web.cern.ch/cas/Poland2015/Warsaw-advert.html http://indico.cern.ch/event/361988/

  18. CERN Accelerator School: Registration open for Advanced Accelerator Physics course

    CERN Multimedia

    2015-01-01

    Registration is now open for the CERN Accelerator School’s Advanced Accelerator Physics course to be held in Warsaw, Poland from 27 September to 9 October 2015.   The course will be of interest to physicists and engineers who wish to extend their knowledge of Accelerator Physics. The programme offers core lectures on accelerator physics in the mornings and a practical course with hands-on tuition in the afternoons.  Further information can be found at: http://cas.web.cern.ch/cas/Poland2015/Warsaw-advert.html http://indico.cern.ch/event/361988/

  19. Lymph Node Metastases and Prognosis in Left Upper Division Non-Small Cell Lung Cancers: The Impact of Interlobar Lymph Node Metastasis

    Science.gov (United States)

    Kuroda, Hiroaki; Sakao, Yukinori; Mun, Mingyon; Uehara, Hirofumi; Nakao, Masayuki; Matsuura, Yousuke; Mizuno, Tetsuya; Sakakura, Noriaki; Motoi, Noriko; Ishikawa, Yuichi; Yatabe, Yasushi; Nakagawa, Ken; Okumura, Sakae

    2015-01-01

    Background Left upper division segmentectomy is one of the major pulmonary procedures; however, it is sometimes difficult to completely dissect interlobar lymph nodes. We attempted to clarify the prognostic importance of hilar and mediastinal nodes, especially of interlobar lymph nodes, in patients with primary non-small cell lung cancer (NSCLC) located in the left upper division. Methods We retrospectively studied patients with primary left upper lobe NSCLC undergoing surgical pulmonary resection (at least lobectomy) with radical lymphadenectomy. The representative evaluation of therapeutic value from the lymph node dissection was determined using Sasako’s method. This analysis was calculated by multiplying the frequency of metastasis to the station and the 5-year survival rate of the patients with metastasis to the station. Results We enrolled 417 patients (237 men, 180 women). Tumors were located in the lingular lobe and at the upper division of left upper lobe in 69 and 348 patients, respectively. The pathological nodal statuses were pN0 in 263 patients, pN1 in 70 patients, and pN2 in 84 patients. Lymph nodes #11 and #7 were significantly correlated with differences in node involvement in patients with left upper lobe NSCLC. Among those with left upper division NSCLC, the 5-year overall survival in pN1 was 31.5% for #10, 39.3% for #11, and 50.4% for #12U. The involvement of node #11 was 1.89-fold higher in the anterior segment than that in the apicoposterior segment. The therapeutic index of estimated benefit from lymph node dissection for #11 was 3.38, #4L was 1.93, and the aortopulmonary window was 4.86 in primary left upper division NSCLC. Conclusions Interlobar node involvement is not rare in left upper division NSCLC, occurring in >20% cases. Furthermore, dissection of interlobar nodes was found to be beneficial in patients with left upper division NSCLC. PMID:26247881

  20. Lymph Node Metastases and Prognosis in Left Upper Division Non-Small Cell Lung Cancers: The Impact of Interlobar Lymph Node Metastasis.

    Directory of Open Access Journals (Sweden)

    Hiroaki Kuroda

    Full Text Available Left upper division segmentectomy is one of the major pulmonary procedures; however, it is sometimes difficult to completely dissect interlobar lymph nodes. We attempted to clarify the prognostic importance of hilar and mediastinal nodes, especially of interlobar lymph nodes, in patients with primary non-small cell lung cancer (NSCLC located in the left upper division.We retrospectively studied patients with primary left upper lobe NSCLC undergoing surgical pulmonary resection (at least lobectomy with radical lymphadenectomy. The representative evaluation of therapeutic value from the lymph node dissection was determined using Sasako's method. This analysis was calculated by multiplying the frequency of metastasis to the station and the 5-year survival rate of the patients with metastasis to the station.We enrolled 417 patients (237 men, 180 women. Tumors were located in the lingular lobe and at the upper division of left upper lobe in 69 and 348 patients, respectively. The pathological nodal statuses were pN0 in 263 patients, pN1 in 70 patients, and pN2 in 84 patients. Lymph nodes #11 and #7 were significantly correlated with differences in node involvement in patients with left upper lobe NSCLC. Among those with left upper division NSCLC, the 5-year overall survival in pN1 was 31.5% for #10, 39.3% for #11, and 50.4% for #12U. The involvement of node #11 was 1.89-fold higher in the anterior segment than that in the apicoposterior segment. The therapeutic index of estimated benefit from lymph node dissection for #11 was 3.38, #4L was 1.93, and the aortopulmonary window was 4.86 in primary left upper division NSCLC.Interlobar node involvement is not rare in left upper division NSCLC, occurring in >20% cases. Furthermore, dissection of interlobar nodes was found to be beneficial in patients with left upper division NSCLC.

  1. Linking Science Fiction and Physics Courses

    Science.gov (United States)

    McBride, Krista K.

    2016-01-01

    Generally, cohorts or learning communities enrich higher learning in students. Learning communities consist of conventionally separate groups of students that meet together with common academic purposes and goals. Types of learning communities include paired courses with concurrent student enrollment, living-learning communities, and faculty…

  2. Forty Ninth Refresher Course in Experimental Physics

    Indian Academy of Sciences (India)

    IAS Admin

    tions, office address, mobile telephone number, e-mail address, a statement as to why they would like to attend the course and its usefulness to their career, and (in the case of faculty) teaching and research experience and a list of published papers if any. The application should be sent to Sri G Madhavan, Coordinator, ...

  3. Project for the Institution of an Advanced Course in Physics

    Science.gov (United States)

    Teodorani, M.; Nobili, G.

    2006-06-01

    A project for an advanced course in physics at the master level, is presented in great detail. The goal of this project is to create a specific and rigorous training for those who want to carry out experimental and theoretical research on "anomalies" in physical science, especially from the point of view of atmospheric physics, plasma physics, photonic physics, biophysics, astronomy and astrophysics. A specific training in powering mental skills is planned as well. The planned teaching program is presented as a two-year course where the following subjects are intended to be taught: cognitive techniques (I and II), radiation physics (I and II), biophysics (I and II), bioastronomy (I and II), history of physics (I and II), didactics of physics, physics of atmospheric plasmas, physics of non-stationary photonic events, physics of non-linear processes, complements of quantum mechanics, quantum informatics, research methodology in physics and astronomy, computer science methods in physics and astronomy, optoelectronics, radioelectronics. Detailed teaching programs, didactics methods, and performance evaluation, are presented for each subject. The technical content of this project is preceded by an ample introduction that shows all the reasons of this kind of physics course, particularly aimed at innovation in physical science.

  4. Basic course in theoretical physics. Vol. 1

    International Nuclear Information System (INIS)

    Dietze, H.D.

    1973-01-01

    This book is the first volume of an edition of two volumes which concern theoretical physics. In this volume the mechanics of a point mass, electric and magnetic fields, and the mechanics of two point, masses, rig: 1 bodies, and deformable 50 lids are considered. This book is suited for students who want to get some fundamental knowledge of theoretical physics. (HSI)

  5. Proceedings of CAS - CERN Accelerator School: Advanced Accelerator Physics Course

    International Nuclear Information System (INIS)

    Herr, W

    2014-01-01

    This report presents the proceedings of the Course on Advanced Accelerator Physics organized by the CERN Accelerator School. The course was held in Trondheim, Norway from 18 to 29 August 2013, in collaboration with the Norwegian University of Science and Technology. Its syllabus was based on previous courses and in particular on the course held in Berlin 2003 whose proceedings were published as CERN Yellow Report CERN-2006-002. The field has seen significant advances in recent years and some topics were presented in a new way and other topics were added. The lectures were supplemented with tutorials on key topics and 14 hours of hands on courses on Optics Design and Corrections, RF Measurement Techniques and Beam Instrumentation and Diagnostics. These courses are a key element of the Advanced Level Course

  6. CAS course on Advanced Accelerator Physics in Warsaw

    CERN Multimedia

    CERN Accelerator School

    2015-01-01

    The CERN Accelerator School (CAS) and the National Centre for Nuclear Research (NCBJ) recently organised a course on Advanced Accelerator Physics. The course was held in Warsaw, Poland from 27 September to 9 October 2015.    The course followed an established format with lectures in the mornings and practical courses in the afternoons. The lecture programme consisted of 34 lectures, supplemented by private study, tutorials and seminars. The practical courses provided ‘hands-on’ experience of three topics: ‘Beam Instrumentation and Diagnostics’, ‘RF Measurement Techniques’ and ‘Optics Design and Corrections’. Participants selected one of the three courses and followed their chosen topic throughout the duration of the school. Sixty-six students representing 18 nationalities attended this course, with most participants coming from European counties, but also from South Korea, Taiwan and Russia. Feedback from th...

  7. Designing for Enhanced Conceptual Understanding in an Online Physics Course

    Science.gov (United States)

    Dunlap, Joanna C.; Furtak, Thomas E.; Tucker, Susan A.

    2009-01-01

    The calculus-based, introductory physics course is the port of entry for any student interested in pursuing a college degree in the sciences, mathematics, or engineering. There is increasing demand for online delivery options that make the course more widely available, especially those that use best practices in student engagement. However,…

  8. Using Sport Education in a University Physical Activity Course

    Science.gov (United States)

    Blocker, Danielle; Wahl-Alexander, Zachary

    2018-01-01

    At a majority of colleges and universities around the country, basic activity courses are taught predicated on teaching students basic skills and instilling healthy habits. The purpose of this article is to outline and describe a physical conditioning course that utilized the sport education (SE) model and emphasized outside engagement to instill…

  9. Black Holes and Pulsars in the Introductory Physics Course

    Science.gov (United States)

    Orear, Jay; Salpeter, E. E.

    1973-01-01

    Discusses the phenomenon of formation of white dwarfs, neutron stars, and black holes from dying stars for the purpose of providing college teachers with materials usable in the introductory physics course. (CC)

  10. Refresher Course in Theoretical Physics at St. Stephen's College ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 5. Refresher Course in Theoretical Physics at St. Stephen's College University of Delhi, Delhi. Information and Announcements Volume 7 Issue 5 May 2002 pp 103-103 ...

  11. Femtophysics a short course on particle physics

    CERN Document Server

    Bowler, Michael George

    1990-01-01

    Provides an account of what is now known about physics at scales of 1013 to 1016 cm. The existence of spin half quarks interacting through colour fields is established fact, as is the structure unifying electromagnetic and weak interaction. In Femtophysics, the author explains the evidence and communicates the essential physics underlying these recent and remarkable developments. The approach throughout is to obtain results by applying trivial algebra to the content of simple and clear physical pictures. Thus, abstract and difficult concepts can be mastered pai

  12. International School of Subnuclear Physics 50th Course

    CERN Document Server

    What we would like LHC to give us; ISSP 2012

    2014-01-01

    This book is the proceedings of the International School of Subnuclear Physics, ISSP 2012, 50th Course — ERICE, 23 June 2013 — 2 July 2012. This course was devoted to the celebrations of the 50th Anniversary of the Subnuclear Physics School which was started in 1961 by Antonino Zichichi with John Bell at CERN and formally established in 1962 by Bell, Blackett, Weisskopf, Rabi and Zichichi in Geneva (CERN). The lectures covered the latest and most significant achievements in theoretical and in experimental subnuclear physics. Readership: Directed to experts and advanced-level students in the field of Theoretical and Experimental Subnuclear Physics.

  13. Gender-based performance differences in an introductory physics course

    Science.gov (United States)

    McKinnon, Mark Lee

    Cognitive research has indicated that the difference between males and females is negligible. Paradoxically, in traditionally-taught college level introductory physics courses, males have outperformed females. UC Davis' Physics 7A (the first class of a three-quarter Introduction to Physics sequence for Life-Science students), however, counters this trend since females perform similarly to males. The gender-based performance difference within the other two quarters (Physics 7B & 7C) of the radically restructured, active-learning physics sequence still echo the traditionally-taught courses. In one experiment, I modified the laboratory activity instructions of the Physics 7C course to encourage further group interaction. These modifications did not affect the gender-based performance difference. In a later experiment, I compared students' performance on different forms of assessment for certain physics concepts during the Physics 7C course. Over 500 students took weekly quizzes at different times. The students were given different quiz questions on the same topics. Several quiz questions seemed to favor males while others were more gender equitable. I highlighted comparisons between a few pairs of questions that assessed students' understanding of the same physical concept. Males tended to perform better in responding to questions that seemed to require spatial visualization. Questions that required greater understanding of the physical concept or scientific model were more gender neutral.

  14. Fundamental concepts in Particle Physics course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    The course will provide an introduction to some of the basic theoretical techniques used to describe the fundamental particles and their interactions. Of central importance to our understanding of these forces are the underlying symmetries of nature and I will review the nature of these symmetries and how they are used to build a predictive theory. I discuss how the combination of quantum mechanics and relativity leads to the quantum field theory (QFT) description of the states of matter and their interactions. The Feynman rules used to determine the QFT predictions for experimentally measurable processes are derived and applied to the calculation of decay widths and cross sections.

  15. Equations in mathematical physics a practical course

    CERN Document Server

    Pikulin, Victor P

    2001-01-01

    Many physical processes in fields such as mechanics, thermodynamics, electricity, magnetism or optics are described by means of partial differential equations. The aim of the present book is to demonstrate the basic methods for solving the classical linear problems in mathematical physics of elliptic, parabolic and hyperbolic type. In particular, the methods of conformal mappings, Fourier analysis and Green`s functions are considered, as well as the perturbation method and integral transformation method, among others. Every chapter contains concrete examples with a detailed analysis of their solution. The book is intended as a textbook for students in mathematical physics, but will also serve as a handbook for scientists and engineers.   ------------ [A] manual for future engineers must strongly differ from the textbook for pure mathematicians, and the book by Pikulin and Pohozaev is the good example. (…) The purpose (…)  is to offer quick access to the principal facts (…) This well written book is a...

  16. From Raw Data to Physics Results course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    It would be helpful for students to know: a) How measurements are made in physical detectors, for example how a tracking chamber "sees" a charged particle or how a calorimeter measures energy. b) That physics processes result in photons, leptons, etc., which we then want to detect and analyze. These series of lectures describes the work that lies between the raw data taken by the detector elements and the physics variables used to study particular reactions. We start with an example analysis to show the kinds of information needed. We then describe the fitting process used to extract values from the observed patterns in typical detectors. This is followed by a discussion of the various problems of pattern recognition in tracking, calorimetry and particle identification detectors. The role of Monte Carlo simulation in understanding the quality of the obtained information is examined. We discuss how the use of "composite" observables is required due to what our instrumentation and reconstruction can achieve. Th...

  17. A first course in mathematical physics

    CERN Document Server

    Whelan, Colm T

    2016-01-01

    The book assumes next to no prior knowledge of the topic. The first part introduces the core mathematics, always in conjunction with the physical context. In the second part of the book, a series of examples showcases some of the more conceptually advanced areas of physics, the presentation of which draws on the developments in the first part. A large number of problems helps students to hone their skills in using the presented mathematical methods. Solutions to the problems are available to instructors on an associated password-protected website for lecturers.

  18. Starting from Scratch and Getting Somewhere: Assessment of Oral Communication Proficiency in General Education across Lower and Upper Division Courses

    Science.gov (United States)

    Avanzino, Susan

    2010-01-01

    Communication departments are expected to conduct program level assessment, as well as assessment of communication in general education. Although the expectation for data-driven student learning assessment is growing, relatively few examples exist for doing so effectively. This article serves as a model to help faculty conduct effective assessment…

  19. Students Enrolled in Selected Upper-Division Agriculture Courses: An Examination of Computer Experiences, Self-Efficacy and Knowledge.

    Science.gov (United States)

    Johnson, Donald M.; Ferguson, James A.; Lester, Melissa L.

    2000-01-01

    Of 169 agriculture students surveyed, 79% had computer training, 66% owned computers; they had slightly above average computer self-efficacy, especially in word processing, electronic mail, and Internet use. However, 72.7% scored 60% or less on a test of computer knowledge. There was little correlation between self-efficacy and computer knowledge.…

  20. Science Academies' 82nd Refresher Course on Experimental Physics

    Indian Academy of Sciences (India)

    IAS Admin

    A Refresher Course in Experimental Physics will be held at Department of Physics, ... the participants to gain hands on experience with set of new experiments developed as a low cost kit by the Indian Academy of Sciences, Bangalore, Indian ...

  1. Science Academies' Refresher Course in Foundations of Physical ...

    Indian Academy of Sciences (India)

    Physical Chemistry is the branch of chemistry that deals with the mechanism, the rate and the energy transfer that occur when matter undergoes a change. Understanding the key concepts of physical chemistry is essential for solving practical problems in research and industrial appli- cations. A brief outline of the course is ...

  2. Charting the Course for Elementary Particle Physics

    Science.gov (United States)

    Richter, B.

    2007-02-16

    "It was the best of times; it was the worst of times" is the way Dickens begins the Tale of Two Cities. The line is appropriate to our time in particle physics. It is the best of times because we are in the midst of a revolution in understanding, the third to occur during my career. It is the worst of times because accelerator facilities are shutting down before new ones are opening, restricting the opportunity for experiments, and because of great uncertainty about future funding. My task today is to give you a view of the most important opportunities for our field under a scenario that is constrained by a tight budget. It is a time when we cannot afford the merely good, but must give first priority to the really important. The defining theme of particle physics is to learn what the universe is made of and how it all works. This definition spans the full range of size from the largest things to the smallest things. This particle physics revolution has its origins in experiments that look at both.

  3. Charting the Course for Elementary Particle Physics

    International Nuclear Information System (INIS)

    Richter, Burton

    2007-01-01

    ''It was the best of times; it was the worst of times'' is the way Dickens begins the Tale of Two Cities. The line is appropriate to our time in particle physics. It is the best of times because we are in the midst of a revolution in understanding, the third to occur during my career. It is the worst of times because accelerator facilities are shutting down before new ones are opening, restricting the opportunity for experiments, and because of great uncertainty about future funding. My task today is to give you a view of the most important opportunities for our field under a scenario that is constrained by a tight budget. It is a time when we cannot afford the merely good, but must give first priority to the really important. The defining theme of particle physics is to learn what the universe is made of and how it all works. This definition spans the full range of size from the largest things to the smallest things. This particle physics revolution has its origins in experiments that look at both

  4. A Lab-Based, Lecture-Free General Physics Course

    Science.gov (United States)

    Schneider, Mark B.

    1997-04-01

    The past four years have seen the development of a discovery style, lecture-free, lab-based General Physics course at Grinnell College. Similar in spirit to Priscilla Laws' Workshop Physics (P. Laws, Physics Today, Dec. 1991, p. 24.), this course is a calculus- based, two-semester sequence, which is offered in parallel with more conventional lecture sections, allowing students choice of pedagogical styles. This new course is taught without a text, allowing a somewhat atypical ordering of topics and the early inclusion of a modern introduction to quantum and statistical mechanics. A complete set of laboratory materials was developed at Grinnell for this course, with activities considerably different in most cases than Laws' activities. A quick overview of the pedagogical style and topics covered will be given, and then several specific activities will be described in greater detail. The course has been shown to be a popular and viable alternative to the more conventional sections for majors and non-majors; ongoing efforts to assess the course will be described, especially those that make comparisons between this course and more conventional sections.

  5. Undergraduate Physics Course Innovations and Their Impact on Student Learning

    Science.gov (United States)

    Iverson, Heidi L.; Briggs, Derek C.; Ruiz-Primo, Maria A.; Talbot, Robert M.; Shepard, Lorrie A.

    2009-11-01

    This paper presents results of an NSF project in which the goal is to provide a synthesis of research on instructional innovations that have been implemented in undergraduate courses in physics. The research questions guiding the project are: What constitutes the range of principal course innovations that are being implemented in undergraduate physics courses? What are the effects of these course innovations on student learning? The paper describes: (1) the literature search procedures used to gather over 400 innovation-related journal articles, (2) the procedures followed to analyze the studies within these articles, (3) the characteristics of the studies reported, and (4) the results from synthesizing the quantitative results of those studies that met our criteria for inclusion.

  6. Validation and Analysis of the Coupled Multiple Response Colorado Upper-Division Electrostatics Diagnostic

    Science.gov (United States)

    Wilcox, Bethany R.; Pollock, Steven J.

    2015-01-01

    Standardized conceptual assessment represents a widely used tool for educational researchers interested in student learning within the standard undergraduate physics curriculum. For example, these assessments are often used to measure student learning across educational contexts and instructional strategies. However, to support the large-scale…

  7. Multimedia Course on Nuclear Reactors Physics, Application to a Tailored On the Job Training Course

    International Nuclear Information System (INIS)

    Dies, Javier

    2014-01-01

    In order to improve education and training quality, a Multimedia on Nuclear Reactor Physics has been developed. In some institutions, this course is called Fundamentals of Nuclear Reactor Operation. Nowadays, this multimedia has about 800 slides and the text is in Spanish, English, French and Russian. Until now about 126 institutions from 53 countries have applied for the multimedia. The teacher uses the multimedia during his lectures. Students use it at home to study this course

  8. Instructors' Support of Student Autonomy in an Introductory Physics Course

    Science.gov (United States)

    Hall, Nicholas; Webb, David

    2014-12-01

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a self-determination theory perspective. A correlational study investigated whether certain aspects of the student experience correlated with how autonomy supportive (versus controlling) students perceived their instructors to be. An autonomy-supportive instructor acknowledges students' perspectives and feelings and provides students with information and opportunities for choice while minimizing external pressures (e.g., incentives or deadlines). It was found that the degree to which students perceived their instructors as autonomy supportive was positively correlated with student interest and enjoyment in learning physics (β =0.31***) and negatively correlated with student anxiety about taking physics (β =-0.23**). It was also positively correlated with how autonomous (versus controlled) students' reasons for studying physics became over the duration of the course (i.e., studying physics more because they wanted to versus had to; β =0.24***). This change in autonomous reasons for studying physics was in turn positively correlated with student performance in the course (β =0.17*). Additionally, the degree to which students perceived their instructors as autonomy supportive was directly correlated with performance for those students entering the course with relatively autonomous reasons for studying physics (β =0.25**). In summary, students who perceived their instructors as more autonomy supportive tended to have a more favorable motivational, affective, and performance experience in the course. The findings of the present study are consistent with experimental studies in other contexts that argue for autonomy-supportive instructor behaviors as the cause of a more favorable student experience.

  9. Investigating Quantum Mechanical Tunneling at the Nanoscale via Analogy: Development and Assessment of a Teaching Tool for Upper-Division Chemistry

    Science.gov (United States)

    Muniz, Marc N.; Oliver-Hoyo, Maria T.

    2014-01-01

    We report a novel educational activity designed to teach quantum mechanical tunneling to upper-division undergraduate students in the context of nanochemistry. The activity is based on a theoretical framework for analogy and is split into three parts that are linked pedagogically through the framework: classical ball-and-ramp system, tunneling…

  10. Current status and improvement of the nuclear physics experiment course for speciality of nuclear physics and nuclear technology

    International Nuclear Information System (INIS)

    Qu Guopu; Guo Lanying

    1999-01-01

    The author reviews the current status of the nuclear physics experiment course for speciality of nuclear physics and nuclear technology in higher education and expresses author's views on the future improvement of the nuclear physics experiment course

  11. Themes of nanoscience for the introductory physics course

    International Nuclear Information System (INIS)

    Planinsic, Gorazd; Lindell, Anssi; Remskar, Maja

    2009-01-01

    We present three experimental themes and one discussion theme that proved to be suitable for introducing nanoscience through topics that can be integrated into the existing introductory physics or teacher training courses. The experimental themes include two teaching models of an atomic force microscope (AFM) and an experiment with an elastic optical grating. They are all based on simple experiments that give also quantitative results and can be explained using basic physics theory.

  12. Themes of nanoscience for the introductory physics course

    Energy Technology Data Exchange (ETDEWEB)

    Planinsic, Gorazd [Faculty for Mathematics and Physics, University of Ljubljana (Slovenia); Lindell, Anssi [Department of Teacher Education, University of Jyvaskyla (Finland); Remskar, Maja [Josef Stefan Institute, Ljubljana (Slovenia)

    2009-07-15

    We present three experimental themes and one discussion theme that proved to be suitable for introducing nanoscience through topics that can be integrated into the existing introductory physics or teacher training courses. The experimental themes include two teaching models of an atomic force microscope (AFM) and an experiment with an elastic optical grating. They are all based on simple experiments that give also quantitative results and can be explained using basic physics theory.

  13. Science Academies' 83rd Refresher Course on Experimental Physics

    Indian Academy of Sciences (India)

    IAS Admin

    A Science Academies' Refresher Course in “Experimental Physics” will be held in the Department of Physics,. College of Arts, Science and Humanities, Mody University of Science and Technology, Lakshmangarh, District. Sikar (Rajasthan), from 29 December 2016 to 13 January 2017 for the benefit of faculty involved in ...

  14. Teaching and Understanding of Quantum Interpretations in Modern Physics Courses

    Science.gov (United States)

    Baily, Charles; Finkelstein, Noah D.

    2010-01-01

    Just as expert physicists vary in their personal stances on interpretation in quantum mechanics, instructors vary on whether and how to teach interpretations of quantum phenomena in introductory modern physics courses. In this paper, we document variations in instructional approaches with respect to interpretation in two similar modern physics…

  15. Expediency of Study of the Scientists' Biographies in Physics Course

    Science.gov (United States)

    Korsun, Igor

    2017-01-01

    The aim of this article is a justification of the expediency of study of the scientists' biographies in physics course. Study of the biographic materials is one of the ways of motivation of learning and development of morality, humanity, internationalism. The selection criteria of biographic material have been allocated and method of study of the…

  16. Evaluating University Physical Activity Courses from Student and Instructor Perspectives

    Science.gov (United States)

    Beaudoin, Christina; Parker, Tonya; Tiemersma, Karol; Lewis, Colleen

    2018-01-01

    This article presents the results of a survey of student and faculty perspectives within a university-level instructional physical activity (PA) program. The results revealed that students enrolled in the courses primarily for enjoyment and to stay fit. A majority of students ranked the quality of instruction as excellent, were interested in new…

  17. Fifty-Eighth Refresher Course in Experimental Physics

    Indian Academy of Sciences (India)

    IAS Admin

    the MSc level. Refresher Courses in Experimental Physics held so far have been highly successful and the experiments have been included in the curricula of several universities in the South. Over one hundred kits have been sold and are used in universities and institutions in the country. The total number of seats in the ...

  18. Undergraduate physics course innovations and their impact on student learning

    Science.gov (United States)

    Iverson, Heidi Louise

    Over the last several decades, the efficacy of the traditional lecture-based instructional model for undergraduate physics courses has been challenged. As a result, a large number of reform-oriented instructional innovations have been developed, enacted, and studied in undergraduate physics courses around the globe---all with the intended purpose of improving student learning. This thesis satisfies the need for a comprehensive synthesis of the effectiveness of these course innovations by analyzing: (1) the types of innovations that have been enacted, (2) the impact of these innovations on student learning, and (3) the common features of effective innovations. An exhaustive literature search for studies published after 1990 on undergraduate physics course innovations yielded 432 articles which were then coded with respect to the characteristics of the innovations used as well as the methodological characteristics of the studies. These codes facilitated a descriptive analysis which characterized the features of the pool of studies. These studies were then meta-analyzed in order to evaluate the effect of innovations on student learning. Finally, a case-study analysis was conducted in order to identify the critical characteristics of effective innovations. Results indicate that most innovations focus on introductory mechanics and use some combination of conceptually oriented tasks, collaborative learning, and technology. The overall effect of course innovations has been positive, but with the caveat that a large number of studies suffer from poor methodological designs and potential threats to validity. In addition, over half of the studies had to be eliminated from the meta-analysis because they did not report the data necessary for an effect size to be calculated. Despite these limitations the results of the meta-analysis indicated that there was one innovation which had particularly high effect sizes---Workshop/Studio Physics---an innovation which involves an

  19. Effects of Instructional Physical Activity Courses on Overall Physical Activity and Mood in University Students

    Science.gov (United States)

    Annesi, James J.; Porter, Kandice J.; Hill, Grant M.; Goldfine, Bernard D.

    2017-01-01

    Purpose: The aim of this research was to assess the association between university-based instructional physical activity (PA) courses and changes in overall PA levels and negative mood and their interrelations. The study also sought to determine the amount of change in PA required to significantly improve mood in course enrollees. Method:…

  20. A central European training course on reactor physics and kinetics - the 'Eugene Wigner Course' - Organisers view

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.; Matejka, K.; Sklenka, L.; Miglierini, M.; Sukods, C.

    2004-01-01

    Initiated by the 5th Framework Program of the European Commission, the European Nuclear Engineering Network (ENEN) is preparing the future European Nuclear Education schemes, degrees and requirements. To fully utilize the benefits of international cooperation and to promote the knowledge of students in nuclear engineering a 2.5 weeks course has been held, both in spring 2003 and 2004. The main emphasis of the course is to perform reactor physics and kinetics experiments on three different research- and training reactors in three different locations (Vienna, Prague, Budapest). The experimental work is preceded by theoretical lectures aiming to prepare the students for the experiments (Bratislava). The students' work will be evaluated, and upon success the students will get a certificate. The finally accepted credit (ECTS) value will be determined by the students' home university. The ENEN-recommended value is between 6 and 8 ECTS. The more detailed description of the course will be given in the full paper. (author)

  1. CAS CERN Accelerator School. Third advanced accelerator physics course

    International Nuclear Information System (INIS)

    Turner, S.

    1990-01-01

    The third version of the CERN Accelerator School's (CAS) advanced course on General Accelerator Physics was given at Uppsala University from 18-29 September, 1989. Its syllabus was based on the previous courses held in Oxford, 1985 and Berlin, 1987 whose proceedings were published as CERN Yellow Reports 87-03 and 89-01 respectively. However, the opportunity was taken to emphasize the physics of small accelerators and storage rings, to present some topics in new ways, and to introduce new seminars. Thus the lectures contained in the present volume include chromaticity, dynamic aperture, kinetic theory, Landau damping, ion-trapping, Schottky noise, laser cooling and small ring lattice problems while the seminars include interpretation of numerical tracking, internal targets and living with radiation. (orig.)

  2. Evaluating multiple-choice exams in large introductory physics courses

    OpenAIRE

    Gary Gladding; Tim Stelzer; Michael Scott

    2006-01-01

    The reliability and validity of professionally written multiple-choice exams have been extensively studied for exams such as the SAT, graduate record examination, and the force concept inventory. Much of the success of these multiple-choice exams is attributed to the careful construction of each question, as well as each response. In this study, the reliability and validity of scores from multiple-choice exams written for and administered in the large introductory physics courses at the Unive...

  3. The physical basis of electronics an introductory course

    CERN Document Server

    Harris, D J; Hammond, P

    1975-01-01

    The Physical Basis of Electronics: An Introductory Course, Second Edition is an 11-chapter text that discusses the physical concepts of electronic devices. This edition deals with the considerable advances in electronic techniques, from the introduction of field effect transistors to the development of integrated circuits. The opening chapters discuss the fundamentals of vacuum electronics and solid-state electronics. The subsequent chapters deal with the other components of electronic devices and their functions, including semiconductor diode and transistor as an amplifier and a switch. The d

  4. Video-based problems in introductory mechanics physics courses

    International Nuclear Information System (INIS)

    Gröber, Sebastian; Klein, Pascal; Kuhn, Jochen

    2014-01-01

    Introductory mechanics physics courses at the transition from school to university are a challenge for students. They are faced with an abrupt and necessary increase of theoretical content and requirements on their conceptual understanding of phyiscs. In order to support this transition we replaced part of the mandatory weekly theory-based paper-and-pencil problems with video analysis problems of equal content and level of difficulty. Video-based problems (VBP) are a new problem format for teaching physics from a linked sequence of theoretical and video-based experimental tasks. Experimental tasks are related to the well-known concept of video motion analysis. This introduction of an experimental part in recitations allows the establishment of theory–experiment interplay as well as connections between physical content and context fields such as nature, technique, everyday life and applied physics by conducting model-and context-related experiments. Furthermore, laws and formulas as predominantly representative forms are extended by the use of diagrams and vectors. In this paper we give general reasons for this approach, describe the structure and added values of VBP, and show that they cover a relevant part of mechanics courses at university. Emphasis is put on theory–experiment interplay as a structural added value of VBP to promote students' construction of knowledge and conceptual understanding. (paper)

  5. Massive Open Online Courses (MOOCs) for Physics - and for You?

    Science.gov (United States)

    Pritchard, David E.

    2014-03-01

    We will describe several of the currently available Massive Open Online Courses in Physics-the topics, level, author, and special features of each. Then we will discuss the interesting demographics of the students taking them, presenting evidence showing that students of widely different initial skills and students of all major demographic groups learn at least as much conceptual knowledge as students in a traditional classroom. We will present MOOC research on student habits, use of eTexts and other resources, and indicate what resources impart measured learning. We'll describe a collectivistic MOOC where you can help develop instructional and assessment resources that will be in a library for future use by you and other teachers. Many of these resources are designed for blending with on-campus introductory courses in college or Advanced Placement courses in High School. They will ultimately be displayed in a searchable library with lots of useful information from which you can assemble your own course in the free and open edX.org platform (or simply download them for in-class use). We Acknowledge support from NSF, a Google Faculty Award, and MIT.

  6. CAS CERN Accelerator School: Fourth general accelerator physics course

    International Nuclear Information System (INIS)

    Turner, S.

    1991-01-01

    The fourth CERN Accelerator School (CAS) basic course on General Accelerator Physics was given at KFA, Juelich, from 17 to 28 September 1990. Its syllabus was based on the previous similar courses held at Gif-sur-Yvette in 1984, Aarhus 1986, and Salamanca 1988, and whose proceedings were published as CERN Reports 85-19, 87-10, and 89-05, respectively. However, certain topics were treated in a different way, improved or extended, while new subjects were introduced. All of these appear in the present proceedings, which include lectures or seminars on the history and applications of accelerators, phase space and emittance, chromaticity, beam-beam effects, synchrotron radiation, radiation damping, tune measurement, transition, electron cooling, the designs of superconducting magnets, ring lattices, conventional RF cavities and ring RF systems, and an introduction to cyclotrons. (orig.)

  7. The Implementation of Physics Problem Solving Strategy Combined with Concept Map in General Physics Course

    Science.gov (United States)

    Hidayati, H.; Ramli, R.

    2018-04-01

    This paper aims to provide a description of the implementation of Physic Problem Solving strategy combined with concept maps in General Physics learning at Department of Physics, Universitas Negeri Padang. Action research has been conducted in two cycles where each end of the cycle is reflected and improved for the next cycle. Implementation of Physics Problem Solving strategy combined with concept map can increase student activity in solving general physics problem with an average increase of 15% and can improve student learning outcomes from 42,7 in the cycle I become 62,7 in cycle II in general physics at the Universitas Negeri Padang. In the future, the implementation of Physic Problem Solving strategy combined with concept maps will need to be considered in Physics courses.

  8. Expediency of Study of the Scientists' Biographies in Physics Course

    Directory of Open Access Journals (Sweden)

    Igor Korsun

    2017-04-01

    Full Text Available The aim of this article is a justification of the expediency of study of the scientists' biographies in physics course. Study of the biographic materials is one of the ways of motivation of learning and development of morality, humanity, internationalism. The selection criteria of biographic material have been allocated and method of study of the scientists' biographies has been described. Biographical data, scientific achievements and character traits are the components of “scientist's image”. Results proved that the use of the biographic materials raises the level of emotional component of learners' cognitive activity in physics teaching. Method of study of the scientists' biographies can be used in teaching of other school subjects.

  9. Peer Instruction in an Algebra-Based General Physics Course

    Science.gov (United States)

    Listerman, Thomas W.

    1999-10-01

    We have restructured our algebra-based general physics course to increase peer instruction. For the last three years each lecture has been followed by a recitation class. In recitation class students break up into small groups to work on "study guides" concerning the previous lecture. The recitation instructor is available to answer questions and to provide encouragement. The study guides ask qualitative and quantitative questions to lead students step-by-step through the material. Two completed study guides and a homework assignment are submitted each week for grading and the solutions are available later on the internet. Student surveys show the majority of students have a good attitude about the course, like to work in groups with their friends, and like the ready availability of the instructor for help. Both students and faculty seem to like the more frequent one-to-one contact of this format. We have also noticed that one student in each group tends to ask most of the questions and then "translates" the instructor's response into words the others understand. Lest you think "the millenium has arrived," student performance on multiple-choice tests has not improved markedly, some students strongly resist cooperation with others, and many students still think this is the hardest course they have ever taken.

  10. Evaluating multiple-choice exams in large introductory physics courses

    Directory of Open Access Journals (Sweden)

    Gary Gladding

    2006-07-01

    Full Text Available The reliability and validity of professionally written multiple-choice exams have been extensively studied for exams such as the SAT, graduate record examination, and the force concept inventory. Much of the success of these multiple-choice exams is attributed to the careful construction of each question, as well as each response. In this study, the reliability and validity of scores from multiple-choice exams written for and administered in the large introductory physics courses at the University of Illinois, Urbana-Champaign were investigated. The reliability of exam scores over the course of a semester results in approximately a 3% uncertainty in students’ total semester exam score. This semester test score uncertainty yields an uncertainty in the students’ assigned letter grade that is less than 1 / 3 of a letter grade. To study the validity of exam scores, a subset of students were ranked independently based on their multiple-choice score, graded explanations, and student interviews. The ranking of these students based on their multiple-choice score was found to be consistent with the ranking assigned by physics instructors based on the students’ written explanations ( r>0.94 at the 95% confidence level and oral interviews (r=0.94−0.09+0.06 .

  11. In-Service Physical Educators' Experiences of Online Adapted Physical Education Endorsement Courses.

    Science.gov (United States)

    Sato, Takahiro; Haegele, Justin A; Foot, Rachel

    2017-04-01

    The purpose of this study was to investigate in-service physical education (PE) teachers' experiences during online adapted physical education (APE) graduate courses. Based on andragogy theory (adult learning theory) we employed a descriptive qualitative methodology using an explanatory case study design. The participants (6 female and 3 male) were in-service PE teachers enrolled in an online graduate APE endorsement program. Data collection included journal reflection reports and face-to-face interviews. A constant comparative method was used to interpret the data. Three interrelated themes emerged from the participants' narratives. The first theme, instructor communication, exposes the advantages and disadvantages the participants perceived regarding communication while enrolled in the online APE graduate courses. The second theme, bulletin board discussion experiences, described participants' perceptions of the use of the bulletin board discussion forum. Lastly, the final theme, assessment experiences, described how the participants learned knowledge and skills through online courses related to assessment and evaluation.

  12. Methods of teaching the physics of climate change in undergraduate physics courses

    Science.gov (United States)

    Sadler, Michael

    2015-04-01

    Although anthropogenic climate change is generally accepted in the scientific community, there is considerable skepticism among the general population and, therefore, in undergraduate students of all majors. Students are often asked by their peers, family members, and others, whether they ``believe'' climate change is occurring and what should be done about it (if anything). I will present my experiences and recommendations for teaching the physics of climate change to both physics and non-science majors. For non-science majors, the basic approach is to try to develop an appreciation for the scientific method (particularly peer-reviewed research) in a course on energy and the environment. For physics majors, the pertinent material is normally covered in their undergraduate courses in modern physics and thermodynamics. Nevertheless, it helps to review the basics, e.g. introductory quantum mechanics (discrete energy levels of atomic systems), molecular spectroscopy, and blackbody radiation. I have done this in a separate elective topics course, titled ``Physics of Climate Change,'' to help the students see how their knowledge gives them insight into a topic that is very volatile (socially and politically).

  13. Plasmas: from space to laboratory. 'Introduction to plasma physics' course

    International Nuclear Information System (INIS)

    Savoini, Philippe

    2011-01-01

    This course addresses the different basic concepts of plasma physics. After an introduction which addresses the plasma state, basic equations, the different theoretical approaches (orbitals, kinetic, multi-fluid, magnetohydrodynamics), and the different characteristic scales, waves are addressed and presented as a disordered electromagnetism: existence of plasma waves, generalities on waves, relationship of formal dispersion of plasmas, plasma without magnetic field (longitudinal, transverse, or low frequency wave), plasma with magnetic field (parallel, perpendicular, or arbitrary propagation). The next parts present various approaches: the particle-based approach (case of constant and uniform magnetic fields, case of non-uniform magnetic fields), the statistical approach (elements of kinetic theory, the collision phenomenon, the equilibrium state), and the fluid approach (fluid equations according to the multi-fluid theory, comparison with the particle-based approach, presentation of magnetohydrodynamics as the single-fluid model, validity of MHD)

  14. CAS CERN Accelerator School third general accelerator physics course

    International Nuclear Information System (INIS)

    Turner, S.

    1989-01-01

    The general course on accelerator physics given in Salamanca, Spain, closely followed those organised by the CERN Accelerator School at Gif-sur-Yvette, Paris in 1984, and at Aarhus, Denmark in 1986 and whose proceedings were published as CERN Yellow Reports 85-19 (1985) and 87-10 (1987) respectively. However, certain topics were treated in a different way, improved or extended, while some new ones were introduced and it is all of these which are included in the present proceedings. The lectures include beam-cooling concepts, Liouville's theorem and emittance, emittance dilution in transfer lines, weak-betatron coupling, diagnostics, while the seminars are on positron and electron sources, linac structures and the LEP L3 experiment, together with industrial aspects of particle accelerators. Also included are errata and addenda to the Yellow Reports mentioned above. (orig.)

  15. CAS CERN Accelerator School second advanced accelerator physics course

    International Nuclear Information System (INIS)

    Turner, S.

    1989-01-01

    The advanced course on general accelerator physics given in West Berlin closely followed that organised by the CERN Accelerator School at Oxford in September 1985 and whose proceedings were published as CERN Yellow Report 87-03 (1987). However, certain subjects were treated in a different way, improved or extended, while some new ones were introduced and it is all of these which are included in the present proceedings. The lectures include particle-photon interactions, high-brilliance lattices and single/multiple Touschek effect, while the seminars are on the major accelerators presently under construction or proposed for the near future, applications of synchrotron radiation, free-electron lasers, cosmic accelerators and crystal beams. Also included are errata, and addenda to some of the lectures, of CERN 87-03. (orig.)

  16. Physics Myth Busting: A Lab-Centered Course for Non-Science Students

    Science.gov (United States)

    Madsen, Martin John

    2011-01-01

    There is ongoing interest in how and what we teach in physics courses for non-science students, so-called "physics for poets" courses. Art Hobson has effectively argued that teaching science literacy should be a key ingredient in these courses. Hobson uses Jon Millers definition of science literacy, which has two components: first, "a basic…

  17. The Primary Student Teachers' Views about a Blended Learning Application in a Basic Physics Course

    Science.gov (United States)

    Taskin Ekici, Fatma; Kara, Izzet; Ekici, Erhan

    2012-01-01

    In this study we present an overview of the undergraduate blended Physics course that has been supported by the Moodle platform. The course that has been applied is a basic physics course for primary student teachers. The aim of Moodle is to create an online learning environment which helps students to have a virtual space where they can share…

  18. Courses in Modern Physics for Non-science Majors, Future Science Teachers, and Biology Students

    Science.gov (United States)

    Zollman, Dean

    2001-03-01

    For the past 15 years Kansas State University has offered a course in modern physics for students who are not majoring in physics. This course carries a prerequisite of one physics course so that the students have a basic introduction in classical topics. The majors of students range from liberal arts to engineering. Future secondary science teachers whose first area of teaching is not physics can use the course as part of their study of science. The course has evolved from a lecture format to one which is highly interactive and uses a combination of hands-on activities, tutorials and visualizations, particularly the Visual Quantum Mechanics materials. Another course encourages biology students to continue their physics learning beyond the introductory course. Modern Miracle Medical Machines introduces the basic physics which underlie diagnosis techniques such as MRI and PET and laser surgical techniques. Additional information is available at http://www.phys.ksu.edu/perg/

  19. Development and evaluation of clicker methodology for introductory physics courses

    Science.gov (United States)

    Lee, Albert H.

    Many educators understand that lectures are cost effective but not learning efficient, so continue to search for ways to increase active student participation in this traditionally passive learning environment. In-class polling systems, or "clickers", are inexpensive and reliable tools allowing students to actively participate in lectures by answering multiple-choice questions. Students assess their learning in real time by observing instant polling summaries displayed in front of them. This in turn motivates additional discussions which increase the opportunity for active learning. We wanted to develop a comprehensive clicker methodology that creates an active lecture environment for a broad spectrum of students taking introductory physics courses. We wanted our methodology to incorporate many findings of contemporary learning science. It is recognized that learning requires active construction; students need to be actively involved in their own learning process. Learning also depends on preexisting knowledge; students construct new knowledge and understandings based on what they already know and believe. Learning is context dependent; students who have learned to apply a concept in one context may not be able to recognize and apply the same concept in a different context, even when both contexts are considered to be isomorphic by experts. On this basis, we developed question sequences, each involving the same concept but having different contexts. Answer choices are designed to address students preexisting knowledge. These sequences are used with the clickers to promote active discussions and multiple assessments. We have created, validated, and evaluated sequences sufficient in number to populate all of introductory physics courses. Our research has found that using clickers with our question sequences significantly improved student conceptual understanding. Our research has also found how to best measure student conceptual gain using research-based instruments

  20. On Developing the Writing Skills Course for Accounting Students

    Science.gov (United States)

    Firch, Tim; Campbell, Annhenrie; Lindsay, David H.; Garner, Don E.

    2010-01-01

    The CSU, Stanislaus, accounting program is providing a new course that meets the university-wide upper-division writing requirement and offers accounting students additional professional study. While a writing skills course is not unusual in a business program, few offer an alternative centered on the accounting body of knowledge. Undergraduate…

  1. Evaluation of the Physical Activity and Public Health Course for Practitioners

    Science.gov (United States)

    Evenson, Kelly R.; Brown, David R.; Pearce, Emily; Camplain, Ricky; Jernigan, Jan; Epping, Jacqueline; Shepard, Dennis M.; Dorn, Joan M.

    2016-01-01

    Purpose: From 1996 to 2013, a 6-day Physical Activity and Public Health Course for Practitioners has been offered yearly in the United States. An evaluation was conducted to assess the impact of the course on building public health capacity for physical activity and on shaping the physical activity and public health careers of fellows since taking…

  2. Instructors' Application of the Theory of Planned Behavior in Teaching Undergraduate Physical Education Courses

    Science.gov (United States)

    Filho, Paulo Jose Barbosa Gutierres; Monteiro, Maria Dolores Alves Ferreira; da Silva, Rudney; Hodge, Samuel R.

    2013-01-01

    The purpose of this study was to analyze adapted physical education instructors' views about the application of the theory of planned behavior (TpB) in teaching physical education undergraduate courses. Participants ("n" = 17) were instructors of adapted physical activity courses from twelve randomly selected institutions of higher…

  3. Introductory life science mathematics and quantitative neuroscience courses.

    Science.gov (United States)

    Duffus, Dwight; Olifer, Andrei

    2010-01-01

    We describe two sets of courses designed to enhance the mathematical, statistical, and computational training of life science undergraduates at Emory College. The first course is an introductory sequence in differential and integral calculus, modeling with differential equations, probability, and inferential statistics. The second is an upper-division course in computational neuroscience. We provide a description of each course, detailed syllabi, examples of content, and a brief discussion of the main issues encountered in developing and offering the courses.

  4. Inquiry-based course in physics and chemistry for preservice K-8 teachers

    Directory of Open Access Journals (Sweden)

    Michael E. Loverude

    2011-05-01

    Full Text Available We describe an inquiry-based course in physics and chemistry for preservice K-8 teachers developed at California State University Fullerton. The course is one of three developed primarily to enhance the science content understanding of prospective teachers. The course incorporates a number of innovative instructional strategies and is somewhat unusual for its interdisciplinary focus. We describe the course structure in detail, providing examples of course materials and assessment strategies. Finally, we provide research data illustrating both the need for the course and the effectiveness of the course in developing student understanding of selected topics. Student responses to various questions reflect a lack of understanding of many relatively simple physical science concepts, and a level of performance that is usually lower than that in comparable courses serving a general education audience. Additional data suggest that course activities improve student understanding of selected topics, often dramatically.

  5. PHYS 801 course notes. Introduction to nuclear physics

    International Nuclear Information System (INIS)

    Buskulic, Damir

    2013-01-01

    This document gathers notes taken during a course of nuclear physics given by Daniel Decamp in 2013. It addresses the nucleus general characteristics (nucleons), the issues of nucleus mass and of bound energy, the liquid drop model, and applications. The next part addresses the dimension of nuclei and nuclear density: Rutherford scattering (scattering of a charged particle by a nucleus, particle deflection angle), notion of cross section (probability of scattering at a given angle, experimental verifications, generalisation of the notion of cross section), and charge distribution within the nucleus (density of final states, differential cross section of elastic scattering, experimental results, nuclear density). The next part addresses radioactivity: generalities, energetic conditions, mass parabola, law of radioactivity (fundamental law, half-life, line width, decay products, natural radioactivity and radioactive families). The next parts address applications of radioactivity: carbon-14 dating, dating of rocks and meteorites), artificial radioactivity (notion of cross section, production of radioactive nuclei), the theoretical approach to radioactivity (semi-conventional BKW approach, other calculation method, Gramow's theory of radioactivity, Fermi's theory of radioactivity), and nuclear models with models based on independent particles (Fermi model, layer model and its applications) and collective models (rotational and vibrational models)

  6. Comparing the Attitudes of Pre-Health Professional and Engineering Students in Introductory Physics Courses

    Science.gov (United States)

    McKinney, Meghan

    2015-04-01

    This talk will discuss using the Colorado Learning Attitudes about Science Survey (CLASS) to compare student attitudes towards the study of physics of two different groups. Northern Illinois University has two levels of introductory mechanics courses, one geared towards biology majors and pre-health professionals, and one for engineering and physics majors. The course for pre-health professionals is an algebra based course, while the course for engineering and physics majors is a calculus based course. We've adapted the CLASS into a twenty question survey that measures student attitudes towards the practice of and conceptions about physics. The survey is administered as a pre and post assessment to look at student attitudes before and after their first course in physics.

  7. Over two decades of blended and online physics courses at Michigan State University

    Directory of Open Access Journals (Sweden)

    Gerd Kortemeyer

    2014-12-01

    Full Text Available In Fall 1992, our first physics course offered online homework. Over two decades later, we have seven physics courses online, spanning the whole range of introductory course offerings, with a total of over 1600 students in 2014. We found that several of the the purely online courses had better learning success than traditional lecture courses, as measured by exam scores. Particularly successful were online materials with embedded assessment. This result can be interpreted in different ways, but may serve as an indicator that during in-class lectures, we are oftentimes not taking advantage of the fact that we have the students on-site.

  8. Teaching problem‐solving in physics: a course in electromagnetism

    NARCIS (Netherlands)

    van Weeren, J.H.P.; de Mul, F.F.M.; Peters, M.J.; Kramers-Pals, Hennie; Roossink, H.J.

    1982-01-01

    In order to improve the teaching and learning situation in the course Electromagnetism for first‐year students at the Twente University of Technology, this course has been reconstructed. The main activity in the reconstruction has been directed towards developing means and instructional procedures

  9. Classroom culture in a course on History and Epistemology of Physics for prospective physics teachers

    Directory of Open Access Journals (Sweden)

    Neusa Teresinha Massoni

    2007-03-01

    Full Text Available This paper attempts to describe the construction process of a contextualized descriptive comprehension of the classroom culture of a subject on History and Epistemology of Physics pertaining to the curriculum of a teacher preparation course in a federal public university. In order to do that, participative observation of daily classroom activities was carried out during a one year period of time. The narrative of this process is extensive full of details that suggest some charges in students’ conceptions of science and, at the same time, how deeply rosted are some other ones.

  10. EDUCATIONAL WEB-QUEST IN NEW INTERNET-EDUCATION ELECTIVE COURSES IN PHYSICS

    Directory of Open Access Journals (Sweden)

    D. Grabchak

    2012-07-01

    Full Text Available The article reveals the essence of the concept of "educational web-Quest" proved its application in the study of elective courses in physics, methodical advice for teachers on the design features of elective courses in physics through the use of educational web-quest.

  11. The Examination of the Attitudes of Secondary School Students towards Physical Education Course

    Science.gov (United States)

    Keskin, Özkan; Hergüner, Gülten; Dönmez, Ahmet; Berisha, Milaim; Üçan, Erkan

    2017-01-01

    The aim of this study is to examine the attitudes of primary education students towards physical education courses according to certain variables. 640 students from elementary schools in the city center and several counties of Sakarya participated in the study. In the designating of the students' attitudes towards the physical education courses,…

  12. Basic Guidelines to Introduce Electric Circuit Simulation Software in a General Physics Course

    Science.gov (United States)

    Moya, A. A.

    2018-01-01

    The introduction of electric circuit simulation software for undergraduate students in a general physics course is proposed in order to contribute to the constructive learning of electric circuit theory. This work focuses on the lab exercises based on dc, transient and ac analysis in electric circuits found in introductory physics courses, and…

  13. The Impact of Postsecondary Fitness and Wellness Courses on Physical Activity Behaviors

    Science.gov (United States)

    Ellis, Joshua Charles

    2013-01-01

    Regular physical activity contributes to decreasing health risk factors. With the intent of establishing long-term behavioral changes that attribute to overall physical wellbeing, many U.S. universities offer fitness and wellness courses. The purpose of this study was to assess the impact of a postsecondary fitness and wellness course on physical…

  14. Evaluation of a course designed to teach physics to students of physiotherapy

    Science.gov (United States)

    Simpson, Ian A.; Singer, Kevin P.; Treagust, David; Zadnik, Marjan G.

    1990-01-01

    This paper describes the development and evaluation of a course in physiotherapy whereby the physics fundamental to the modalities of cold, heat and ultrasound therapies was integrated in lectures and actual physiotherapy activities. The design of the course is described together with the perceptions of physiotherapy students regarding the organisation of the course, safety aspects and how well the integration contributed to their understanding of the physics involved in electrotherapy.

  15. Professional Development Graduate Courses and a Masters of Arts in Physics Education with Web Based Course Components

    Science.gov (United States)

    Lindgren, Richard; Thornton, Stephen

    2010-02-01

    Professional development courses offered in physical/Earth science and physics by the Department of Physics are delivered by different venues to accommodate the needs of the K-12 teaching community. The majority of teachers take our courses off-site or through our distance-learning web-based program on the Internet for endorsement or recertification, but with a gradually increasing number enrolling in our 30 credit Masters of Arts in Physics Education degree (MAPE) program. The purpose of the Masters program is to provide increased physics content to those teachers who feel inadequately prepared to teach high school physics. The increase in numbers and success of this program is partly due to the convenience of taking online web-based courses which is made possible by using the latest communication technologies on the high speed internet. There is also a residential component of the MAPE program, which requires the candidates to earn 14 credits of calculus-based core physics in residence in the summer at the University. We have graduated a total of 91 teachers since the program began in 2000. )

  16. "Shut up and calculate": the available discursive positions in quantum physics courses

    Science.gov (United States)

    Johansson, Anders; Andersson, Staffan; Salminen-Karlsson, Minna; Elmgren, Maja

    2018-03-01

    Educating new generations of physicists is often seen as a matter of attracting good students, teaching them physics and making sure that they stay at the university. Sometimes, questions are also raised about what could be done to increase diversity in recruitment. Using a discursive perspective, in this study of three introductory quantum physics courses at two Swedish universities, we instead ask what it means to become a physicist, and whether certain ways of becoming a physicist and doing physics is privileged in this process. Asking the question of what discursive positions are made accessible to students, we use observations of lectures and problem solving sessions together with interviews with students to characterize the discourse in the courses. Many students seem to have high expectations for the quantum physics course and generally express that they appreciate the course more than other courses. Nevertheless, our analysis shows that the ways of being a "good quantum physics student" are limited by the dominating focus on calculating quantum physics in the courses. We argue that this could have negative consequences both for the education of future physicists and the discipline of physics itself, in that it may reproduce an instrumental "shut up and calculate"-culture of physics, as well as an elitist physics education. Additionally, many students who take the courses are not future physicists, and the limitation of discursive positions may also affect these students significantly.

  17. Designing and using multiple-possibility physics problems in physics courses

    Science.gov (United States)

    Shekoyan, Vazgen

    2012-02-01

    One important aspect of physics instruction is helping students develop better problem solving expertise. Besides enhancing the content knowledge, problems help students develop different cognitive abilities and skills. This presentation focuses on multiple-possibility problems (alternatively called ill-structured problems). These problems are different from traditional ``end of chapter'' single-possibility problems. They do not have one right answer and thus the student has to examine different possibilities, assumptions and evaluate the outcomes. To solve such problems one has to engage in a cognitive monitoring called epistemic cognition. It is an important part of thinking in real life. Physicists routinely use epistemic cognition when they solve problems. I have explored the instructional value of using such problems in introductory physics courses.

  18. A guided problem solving approach for teaching quantum physics in secondary school and physics introductory courses

    Directory of Open Access Journals (Sweden)

    Francisco Savall Alemany

    2017-01-01

    Full Text Available The effectiveness of the problem based teaching on the science learning has been highlighted by the didactic research. This teaching model is characterized by organizing the units around problems and by proposing a research plan to find a solution which requires concepts and models to be introduced in a functional way, as possible solutions to the problem. In this article we present a problem based unit for teaching quantum physics  in  introductory  physics  courses  and  we  analyze  in  detail  the  teaching  strategy  that  we  follow  to build a model to explain the emission and absorption of radiation.

  19. Determination of content of distance course of physics for secondary school

    Directory of Open Access Journals (Sweden)

    Kochergina Nina V.

    2016-01-01

    Full Text Available The approaches to the organization of e-learning in Russian schools are described in this article. The selection of a content of physics course for distance learning on the basis of three factors: a nature of a physics course, peculiarities of distance learning and laws of creation of learning tools is discovered in it. A model of a physics course for distance learning is presented in this article. An example of realization of the model of the physics course for distance learning for students of the 7th grade is given in it. The authors outline prospects of development of the content of general education courses and enlarging the number of students taking distance learning.

  20. A Methods-Based Biotechnology Course for Undergraduates

    Science.gov (United States)

    Chakrabarti, Debopam

    2009-01-01

    This new course in biotechnology for upper division undergraduates provides a comprehensive overview of the process of drug discovery that is relevant to biopharmaceutical industry. The laboratory exercises train students in both cell-free and cell-based assays. Oral presentations by the students delve into recent progress in drug discovery.…

  1. Developing a project-based computational physics course grounded in expert practice

    Science.gov (United States)

    Burke, Christopher J.; Atherton, Timothy J.

    2017-04-01

    We describe a project-based computational physics course developed using a backwards course design approach. From an initial competency-based model of problem solving in computational physics, we interviewed faculty who use these tools in their own research to determine indicators of expert practice. From these, a rubric was formulated that enabled us to design a course intended to allow students to learn these skills. We also report an initial implementation of the course and, by having the interviewees regrade student work, show that students acquired many of the expert practices identified.

  2. Teaching the Delightful Laws of Physics in a Survey Course

    Science.gov (United States)

    Hewitt, Paul G.

    2015-01-01

    How physics can be made interesting is a question that needs no answer. That's because physics is interesting! It's a field of study jam-packed with fascination and wonder. The general public has an enormous thirst for physics knowledge, as indicated by the great numbers who purchase science magazines and books and watch "NOVA" and other…

  3. Interactive fundamental physics. [THE REAL STUFF: The New Expanded Media Physics Course for secondary school students

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.L.

    1992-11-24

    THE REAL STUFF is an Expanded Media Physics Course aimed at students still in the formative early years of secondary school. Its consists of a working script for an interactive multimedia study unit in basic concepts of physics. The unit begins with a prologue on the Big Bang that sets the stage, and concludes with a lesson on Newton's first law of motion. The format is interactive, placing the individual student in control of a layered hypermedia'' structure that enables him or her to find a level of detail and difficulty that is comfortable and meaningful. The intent is to make physics relevant, intellectually accessible and fun. On-screen presenters and demonstrators will be females and males of various ages, ethnicities and backgrounds, and will include celebrities and physicists of note. A lean, layered design encourages repeated, cumulative study and makes the material useful for self-directed Teaming even by college students. THE REAL STUFF introduces a new science teaching paradigm, a way to teach science that will engage even students who have declined'' to be interested in science in the past. Increased participation in science by women, African-Americans and Spanish-speaking students is a particular goal.

  4. Physical Classroom Environment and Student Satisfaction with Courses

    Science.gov (United States)

    Han, Heesup; Kiatkawsin, Kiattipoom; Kim, Wansoo; Hong, Ju Hea

    2018-01-01

    The higher education market in South Korea has matured over recent decades. Higher education institutions have invested in many areas to boost the student experience. Student satisfaction has been identified as a key variable in explaining the holistic evaluation of the course. This study aims to fulfil a void in research by developing a study…

  5. Special Relativity and Magnetism in an Introductory Physics Course

    Science.gov (United States)

    Piccioni, R. G.

    2007-01-01

    Too often, students in introductory courses are left with the impression that Einstein's special theory of relativity comes into play only when the relative speed of two objects is an appreciable fraction of the speed of light ("c"). In fact, relativistic length contraction, along with Coulomb's law, accounts quantitatively for the force on a…

  6. Science Academies' Refresher Course in Foundations of Physical ...

    Indian Academy of Sciences (India)

    2017-12-31

    Dec 31, 2017 ... Physical Chemistry is the branch of chemistry that deals with the mechanism, the rate and the energy transfer that occur when matter undergoes a change. Understanding the key concepts of physical chemistry is essential for solving practical problems in research and industrial appli- cations. A brief outline ...

  7. International Training Course on Physical Protection (ITC-25) Report.

    Energy Technology Data Exchange (ETDEWEB)

    Overholt, Michelle Jungst [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    The goal of this evaluation repor t is to provide the informa tion necessary to improve the effectiveness of the ITC provided to the In ternational Atomic Energy Agency Member States. This report examines ITC-25 training content, delivery me thods, scheduling, and logistics. Ultimately, this report evaluates whether the course pr ovides the knowledge and skills necessary to meet the students' needs in the protection of nuclear materials and facilities.

  8. Subject Knowledge Enhancement Courses for Creating New Chemistry and Physics Teachers: The Students' Perceptions

    Science.gov (United States)

    Tynan, Richard; Jones, Robert Bryn; Mallaburn, Andrea; Clays, Ken

    2016-01-01

    Subject knowledge enhancement (SKE) courses are one option open in England to graduates with a science background whose first degree content is judged to be insufficient to train to become chemistry or physics teachers. Previous articles in "School Science Review" have discussed the structure of one type of extended SKE course offered at…

  9. Teaching a Chemistry MOOC with a Virtual Laboratory: Lessons Learned from an Introductory Physical Chemistry Course

    Science.gov (United States)

    O'Malley, Patrick J.; Agger, Jonathan R.; Anderson, Michael W.

    2015-01-01

    An analysis is presented of the experience and lessons learned of running a MOOC in introductory physical chemistry. The course was unique in allowing students to conduct experimental measurements using a virtual laboratory constructed using video and simulations. A breakdown of the student background and motivation for taking the course is…

  10. Transversality of Electromagnetic Waves in the Calculus--Based Introductory Physics Course

    Science.gov (United States)

    Burko, Lior M.

    2009-05-01

    Introductory calculus--based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation), and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes. We have successfully integrated this approach in the calculus--based introductory physics course at the University of Alabama in Huntsville.

  11. Teaching About Racial Equity in Introductory Physics Courses

    Science.gov (United States)

    Daane, Abigail R.; Decker, Sierra R.; Sawtelle, Vashti

    2017-09-01

    Even after you have decided to tackle a problem like racial equity, it may seem daunting to broach the subject in a physics classroom. After all, the idea of a (typically White) instructor in power tackling a sensitive topic such as social justice can be scary in any (mostly White) classroom. Not only that, but physics is typically viewed as a "culture with no culture." The physicist's quest for objectivity, along with a general focus on a fixed set of laws and formulae, support the treatment of this subject as untouched by people. Sometimes it is easier to ignore the problem and just focus on the Conservation of Energy Principle. However, ignoring the striking underrepresentation of ethnic/racial minorities and women in both the physics classroom and the field at large is a great disservice to all our students. We take the position that the persistence of representation disparities in physics is evidence that culture plays a role in who and what is involved in physics. Instructors have an opportunity to explicitly address the absence of equitable circumstances in classrooms and highlight the obstacles that contribute to the disparity (e.g., varied access to learning opportunities and support structures, dominant cultural norms, stereotype threat, implicit bias, hidden curricula, etc.). We acknowledge that incorporating these discussions in a physics classroom is fraught with difficulty, but we also believe that trying to lead these discussions is better than ignoring the problem. Furthermore, a set of resources for teachers interested in leading these discussions has been developing in the physics teacher community. Rifkin offers resources for leading a two-week unit on equity designed for secondary science classrooms. Here we describe another possible pathway for integrating a shorter equity unit into the traditional content of a (predominantly White) university physics classroom, addressing racial inequity and sharing common student responses that may arise.

  12. From F = ma to flying squirrels: curricular change in an introductory physics course.

    Science.gov (United States)

    O'Shea, Brian; Terry, Laura; Benenson, Walter

    2013-06-01

    We present outcomes from curricular changes made to an introductory calculus-based physics course whose audience is primarily life sciences majors, the majority of whom plan to pursue postbaccalaureate studies in medical and scientific fields. During the 2011-2012 academic year, we implemented a Physics of the Life Sciences curriculum centered on a draft textbook that takes a novel approach to teaching physics to life sciences majors. In addition, substantial revisions were made to the homework and hands-on components of the course to emphasize the relationship between physics and the life sciences and to help the students learn to apply physical intuition to life sciences-oriented problems. Student learning and attitudinal outcomes were assessed both quantitatively, using standard physics education research instruments, and qualitatively, using student surveys and a series of postsemester interviews. Students experienced high conceptual learning gains, comparable to other active learning-based physics courses. Qualitatively, a substantial fraction of interviewed students reported an increased interest in physics relative to the beginning of the semester. Furthermore, more than half of students self-reported that they could now relate physics topics to their majors and future careers, with interviewed subjects demonstrating a high level of ability to come up with examples of how physics affects living organisms and how it helped them to better understand content presented in courses in their major.

  13. Science Awareness and Science Literacy through the Basic Physics Course: Physics with a bit of Metaphysics?

    Science.gov (United States)

    Rusli, Aloysius

    2016-08-01

    Until the 1980s, it is well known and practiced in Indonesian Basic Physics courses, to present physics by its effective technicalities: The ideally elastic spring, the pulley and moving blocks, the thermodynamics of ideal engine models, theoretical electrostatics and electrodynamics with model capacitors and inductors, wave behavior and its various superpositions, and hopefully closed with a modern physics description. A different approach was then also experimented with, using the Hobson and Moore texts, stressing the alternative aim of fostering awareness, not just mastery, of science and the scientific method. This is hypothesized to be more in line with the changed attitude of the so-called Millenials cohort who are less attentive if not interested, and are more used to multi-tasking which suits their shorter span of attention. The upside is increased awareness of science and the scientific method. The downside is that they are getting less experience of the scientific method which intensely bases itself on critical observation, analytic thinking to set up conclusions or hypotheses, and checking consistency of the hypotheses with measured data. Another aspect is recognition that the human person encompasses both the reasoning capacity and the mental- spiritual-cultural capacity. This is considered essential, as the world grows even smaller due to increased communication capacity, causing strong interactions, nonlinear effects, and showing that value systems become more challenging and challenged due to physics / science and its cosmology, which is successfully based on the scientific method. So students should be made aware of the common basis of these two capacities: the assumptions, the reasoning capacity and the consistency assumption. This shows that the limits of science are their set of basic quantifiable assumptions, and the limits of the mental-spiritual-cultural aspects of life are their set of basic metaphysical (non-quantifiable) assumptions. The

  14. Science Awareness and Science Literacy through the Basic Physics Course: Physics with a bit of Metaphysics?

    International Nuclear Information System (INIS)

    Rusli, Aloysius

    2016-01-01

    Until the 1980s, it is well known and practiced in Indonesian Basic Physics courses, to present physics by its effective technicalities: The ideally elastic spring, the pulley and moving blocks, the thermodynamics of ideal engine models, theoretical electrostatics and electrodynamics with model capacitors and inductors, wave behavior and its various superpositions, and hopefully closed with a modern physics description. A different approach was then also experimented with, using the Hobson and Moore texts, stressing the alternative aim of fostering awareness, not just mastery, of science and the scientific method. This is hypothesized to be more in line with the changed attitude of the so-called Millenials cohort who are less attentive if not interested, and are more used to multi-tasking which suits their shorter span of attention. The upside is increased awareness of science and the scientific method. The downside is that they are getting less experience of the scientific method which intensely bases itself on critical observation, analytic thinking to set up conclusions or hypotheses, and checking consistency of the hypotheses with measured data. Another aspect is recognition that the human person encompasses both the reasoning capacity and the mental- spiritual-cultural capacity. This is considered essential, as the world grows even smaller due to increased communication capacity, causing strong interactions, nonlinear effects, and showing that value systems become more challenging and challenged due to physics / science and its cosmology, which is successfully based on the scientific method. So students should be made aware of the common basis of these two capacities: the assumptions, the reasoning capacity and the consistency assumption. This shows that the limits of science are their set of basic quantifiable assumptions, and the limits of the mental-spiritual-cultural aspects of life are their set of basic metaphysical (non-quantifiable) assumptions. The

  15. From Special Relativity to Feynman Diagrams A Course of Theoretical Particle Physics for Beginners

    CERN Document Server

    D'Auria, Riccardo

    2012-01-01

    This books aims at filling a gap between the basics courses of classical and quantum mechanics and advanced courses of (relativistic) quantum mechanics and field theory. Particular emphasis is given to the role of symmetry in modern theoretical physics. For this reason this book is particularly suited to those students who are interested in a deeper knowledge of modern developments in elementary particle physics and relativity, even if they choose not to specialize in this branch of research. This target of readers includes, besides experimental and applied physicists, also those engineers who need advanced notions of theoretical high energy physics, in view of future research activity in the field theory approach to condensed matter, in accelerator physics and in all those modern technology sectors which require a more advanced and sophisticated theoretical physics background. Courses motivated by these objectives are present in several polytechnic institutes around the world. The last chapters of this book,...

  16. Reforming a large lecture modern physics course for engineering majors using a PER-based design

    Science.gov (United States)

    McKagan, S. B.; Perkins, K. K.; Wieman, C. E.

    2007-01-01

    We have reformed a large lecture modern physics course for engineering majors by radically changing both the content and the learning techniques implemented in lecture and homework. Traditionally this course has been taught in a manner similar to the equivalent course for physics majors, focusing on mathematical solutions of abstract problems. Based on interviews with physics and engineering professors, we developed a syllabus and learning goals focused on content that was more useful to our actual student population: engineering majors. The content of this course emphasized reasoning development, model building, and connections to real world applications. In addition we implemented a variety of PER-based learning techniques, including peer instruction, collaborative homework sessions, and interactive simulations. We have assessed the effectiveness of reforms in this course using pre/post surveys on both content and beliefs. We have found significant improvements in both content knowledge and beliefs compared with the same course before implementing these reforms and a corresponding course for physics majors.

  17. IS IT NECESSARY TO TEACH THE THEORY OF RELATIVITY IN GENERAL PHYSICS COURSE

    Directory of Open Access Journals (Sweden)

    Sergey N. Kolgatin

    2015-01-01

    Full Text Available The aim of the present investigation is to discuss and study the general structure of the course of Physics at the high school in an extended sense. In a narrower sense, the author wonders about the necessity for inclusion of the section «Theory of Relativity» in the General Physics course, and discusses the possible site of this issue in the order of presentation.Methods. A method for designing Physics course in modern conditions requires certain sophistication from a lecturer. This is due to the strong reduction of Physics course occurred in recent years, and due to a number of objective and subjective reasons. Planning the course structure, one has to make the selection of most significant questions sacrificing minor and less significant issues. This process is particularly exacerbated by severe restrictions on the time allowed for the subject. It is necessary to re-examine the content of the course due to the recent reduction in lecture hours on Physics. In this case, it would be undesirable to neglect the substantial parts of the subject content which are important conceptually or in its applications, e.g. the Relativity Theory. The author discusses two ways of disposition of the relevant material in the course structure, and correlates them with the required level of Physics teaching. In the first approach the Relativity Theory course is considered as a part of Modern Mechanics and is placed in the first semester immediately following Kinematics. In the second approach, Relativistic Physics is presented as a result of deduction, as a generalized theory explaining the unity of the world and the objective existence of physical laws; in this case, the section is better to locate after Optics, immediately before Atomic Physics.Results. As a result of consideration, the author proves the conclusion that the inclusion of the Relativistic Theory course in a number of sections of General Physics is necessary. The author offers a list of

  18. Basic guidelines to introduce electric circuit simulation software in a general physics course

    Science.gov (United States)

    Moya, A. A.

    2018-05-01

    The introduction of electric circuit simulation software for undergraduate students in a general physics course is proposed in order to contribute to the constructive learning of electric circuit theory. This work focuses on the lab exercises based on dc, transient and ac analysis in electric circuits found in introductory physics courses, and shows how students can use the simulation software to do simple activities associated with a lab exercise itself and with related topics. By introducing electric circuit simulation programs in a general physics course as a brief activitiy complementing lab exercise, students develop basic skills in using simulation software, improve their knowledge on the topology of electric circuits and perceive that the technology contributes to their learning, all without reducing the time spent on the actual content of the course.

  19. Correlating student interest and high school preparation with learning and performance in an introductory university physics course

    OpenAIRE

    Jason J. B. Harlow; David M. Harrison; Andrew Meyertholen

    2014-01-01

    We have studied the correlation of student performance in a large first year university physics course with their reasons for taking the course and whether or not the student took a senior-level high school physics course. Performance was measured both by the Force Concept Inventory and by the grade on the final examination. Students who took the course primarily for their own interest outperformed students who took the course primarily because it was required, both on the Force Concept Inven...

  20. Evaluation of an advanced physical diagnosis course using consumer preferences methods: the nominal group technique.

    Science.gov (United States)

    Coker, Joshua; Castiglioni, Analia; Kraemer, Ryan R; Massie, F Stanford; Morris, Jason L; Rodriguez, Martin; Russell, Stephen W; Shaneyfelt, Terrance; Willett, Lisa L; Estrada, Carlos A

    2014-03-01

    Current evaluation tools of medical school courses are limited by the scope of questions asked and may not fully engage the student to think on areas to improve. The authors sought to explore whether a technique to study consumer preferences would elicit specific and prioritized information for course evaluation from medical students. Using the nominal group technique (4 sessions), 12 senior medical students prioritized and weighed expectations and topics learned in a 100-hour advanced physical diagnosis course (4-week course; February 2012). Students weighted their top 3 responses (top = 3, middle = 2 and bottom = 1). Before the course, 12 students identified 23 topics they expected to learn; the top 3 were review sensitivity/specificity and high-yield techniques (percentage of total weight, 18.5%), improving diagnosis (13.8%) and reinforce usual and less well-known techniques (13.8%). After the course, students generated 22 topics learned; the top 3 were practice and reinforce advanced maneuvers (25.4%), gaining confidence (22.5%) and learn the evidence (16.9%). The authors observed no differences in the priority of responses before and after the course (P = 0.07). In a physical diagnosis course, medical students elicited specific and prioritized information using the nominal group technique. The course met student expectations regarding education of the evidence-based physical examination, building skills and confidence on the proper techniques and maneuvers and experiential learning. The novel use for curriculum evaluation may be used to evaluate other courses-especially comprehensive and multicomponent courses.

  1. THE EMPLOYMENT OF COMPUTER TECHNOLOGIES IN LABORATORY COURSE ON PHYSICS

    Directory of Open Access Journals (Sweden)

    Liudmyla M. Nakonechna

    2010-08-01

    Full Text Available Present paper considers the questions on development of conceptually new virtual physical laboratory, the employment of which into secondary education schools will allow to check the theoretical knowledge of students before laboratory work and to acquire the modern methods and skills of experiment.

  2. The Project Physics Course (Modularized) for Grades 10-12.

    Science.gov (United States)

    Flint, William

    This report was produced by the Sedro-Woolley Project which has the goal of infusing environmental education into the whole curriculum of a school district. Included are assumptions which the author believes are appropriate to environmental education; a relating of these assumptions to some topics of chemistry and physics; an outline of specific…

  3. An Inquiry-based Course Using ``Physics?'' in Cartoons and Movies

    Science.gov (United States)

    Rogers, Michael

    2007-01-01

    Books, cartoons, movies, and video games provide engaging opportunities to get both science and nonscience students excited about physics. An easy way to use these media in one's classroom is to have students view clips and identify unusual events, odd physics, or list things that violate our understanding of the physics that governs our universe.1,2 These activities provide a lesson or two of material, but how does one create an entire course on examining the physics in books, cartoons, movies, and video games? Other approaches attempt to reconcile events in various media with our understanding of physics3-8 or use cartoons themselves to help explain physics topics.9

  4. Research and Teaching: Implementation of Interactive Engagement Teaching Methods in a Physical Oceanography Course

    Science.gov (United States)

    Keiner, Louis E.; Gilman, Craig

    2015-01-01

    This study measures the effects of increased faculty-student engagement on student learning, success rates, and perceptions in a Physical Oceanography course. The study separately implemented two teaching methods that had been shown to be successful in a different discipline, introductory physics. These methods were the use of interactive…

  5. Transversality of Electromagnetic Waves in the Calculus-Based Introductory Physics Course

    Science.gov (United States)

    Burko, Lior M.

    2008-01-01

    Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by…

  6. Development of Polytechnic Knowledge and Abilities in the Course of Studying Physics

    Science.gov (United States)

    Imashev, Gizatulla; Abykanova, Bakytgul T.; Rakhmetova, Mairagul T.; Tumysheva, Anar A.; Moldasheva, Raushan N.; Ilyasova, Sandugash S.; Shahimova, Aliya A.

    2016-01-01

    In this article one of aspects of physics course studying improvement at high schools--the problem of the development of polytechnic knowledge and abilities in modern conditions--is revealed. In this research, the role and place of polytechnic education in the improvement of teaching physics at high schools are revealed, the main pedagogical…

  7. Student Selection of the Textbook for an Introductory Physics Course

    Science.gov (United States)

    Dake, L. S.

    2007-01-01

    Several years ago I had to select a new textbook for my calculus-based introductory physics class. I subscribe to Just-in-Time Teaching methods,1 which require students to read the book before the material is covered in class. Thus, the readability of the text by the students is critical. However, I did not feel that I was the best judge of this…

  8. SALOME: An Accelerator for the Practical Course in Accelerator Physics

    OpenAIRE

    Miltchev, Velizar; Riebesehl, Daniel; Roßbach, Jörg; Trunk, Maximilian; Stein, Oliver

    2014-01-01

    SALOME (Simple Accelerator for Learning Optics and the Manipulation of Electrons) is a short low energy linear electron accelerator built by the University of Hamburg. The goal of this project is to give the students the possibility to obtain hands-on experience with the basics of accelerator physics. In this contribution the layout of the device will be presented. The most important components of the accelerator will be discussed and an overview of the planned demonstration experiments will ...

  9. A project-based course about outreach in a physics curriculum

    Science.gov (United States)

    Bobroff, Julien; Bouquet, Frédéric

    2016-07-01

    We describe an undergraduate course where physics students are asked to conceive an outreach project of their own. This project-based-learning course alternates between the project conception and teaching activities about outreach. It ends in a public show. Students decide the topic and format on their own. An analysis of the students’ productions over three years shows that all physics fields were equally covered, and various formats were used (experimental devices, animation or fiction movies, games, live events, photography). Some typical examples are described. We also analyse the benefits of this approach from the students’ perspective, through a survey done over three classes. Students showed an overall very good assessment of the course (average of 4.5(0.6) on an appreciation scale from 1 to 5) and recognised having developed outreach skills but also project-management and group-work know-how. They acknowledged this course to be a unique opportunity to share with an audience their interest in physics compared to other courses. They further mentioned that it served as an intermission in a classical academic curriculum. They also point out some challenges, especially the time-consuming issue. This survey together with the practical description of the course implementation should help other universities develop similar courses.

  10. Scale-Up: Improving Large Enrollment Physics Courses

    Science.gov (United States)

    Beichner, Robert

    1999-11-01

    The Student-Centered Activities for Large Enrollment University Physics (SCALE-UP) project is working to establish a learning environment that will promote increased conceptual understanding, improved problem-solving performance, and greater student satisfaction, while still maintaining class sizes of approximately 100. We are also addressing the new ABET engineering accreditation requirements for inquiry-based learning along with communication and team-oriented skills development. Results of studies of our latest classroom design, plans for future classroom space, and the current iteration of instructional materials will be discussed.

  11. Student Selection of the Textbook for an Introductory Physics Course

    Science.gov (United States)

    Dake, L. S.

    2007-10-01

    Several years ago I had to select a new textbook for my calculus-based introductory physics class. I subscribe to Just-in-Time Teaching methods, which require students to read the book before the material is covered in class. Thus, the readability of the text by the students is critical. However, I did not feel that I was the best judge of this factor, so I turned the textbook selection into a class project. The students unanimously chose one textbook, which I have now successfully used for three years. The project was decidedly worthwhile, and I gained considerable insight into what students prefer in a textbook.

  12. Do evidence-based active-engagement courses reduce the gender gap in introductory physics?

    Science.gov (United States)

    Karim, Nafis I.; Maries, Alexandru; Singh, Chandralekha

    2018-03-01

    Prior research suggests that using evidence-based pedagogies can not only improve learning for all students, it can also reduce the gender gap. We describe the impact of physics education research-based pedagogical techniques in flipped and active-engagement non-flipped courses on the gender gap observed with validated conceptual surveys. We compare male and female students’ performance in courses which make significant use of evidence-based active-engagement (EBAE) strategies with courses that primarily use lecture-based (LB) instruction. All courses had large enrolment and often had more than 100 students. The analysis of data for validated conceptual surveys presented here includes data from two-semester sequences of algebra-based and calculus-based introductory physics courses. The conceptual surveys used to assess student learning in the first and second semester courses were the force concept inventory and the conceptual survey of electricity and magnetism, respectively. In the research discussed here, the performance of male and female students in EBAE courses at a particular level is compared with LB courses in two situations: (I) the same instructor taught two courses, one of which was an EBAE course and the other an LB course, while the homework, recitations and final exams were kept the same; (II) student performance in all of the EBAE courses taught by different instructors was averaged and compared with LB courses of the same type also averaged over different instructors. In all cases, on conceptual surveys we find that students in courses which make significant use of active-engagement strategies, on average, outperformed students in courses of the same type using primarily lecture-based instruction even though there was no statistically significant difference on the pre-test before instruction. However, the gender gap persisted even in courses using EBAE methods. We also discuss correlations between the performance of male and female students on

  13. Students' network integration vs. persistence in introductory physics courses

    Science.gov (United States)

    Zwolak, Justyna; Brewe, Eric

    2017-01-01

    Society is constantly in flux, which demands the continuous development of our educational system to meet new challenges and impart the appropriate knowledge/skills to students. In order to improve student learning, among other things, the way we are teaching has significantly changed over the past few decades. We are moving away from traditional, lecture-based teaching towards more interactive, engagement-based strategies. A current, major challenge for universities is to increase student retention. While students' academic and social integration into an institution seems to be vital for student retention, research on the effect of interpersonal interactions is rare. I use of network analysis to investigate academic and social experiences of students in and beyond the classroom. In particular, there is a compelling case that transformed physics classes, such as Modeling Instruction (MI), promote persistence by the creation of learning communities that support the integration of students into the university. I will discuss recent results on pattern development in networks of MI students' interactions throughout the semester, as well as the effect of students' position within the network on their persistence in physics.

  14. A course in mathematical physics 2 classical field theory

    CERN Document Server

    Thirring, Walter

    1978-01-01

    In the past decade the language and methods ofmodern differential geometry have been increasingly used in theoretical physics. What seemed extravagant when this book first appeared 12 years ago, as lecture notes, is now a commonplace. This fact has strengthened my belief that today students of theoretical physics have to learn that language-and the sooner the better. Afterall, they willbe the professors ofthe twenty-first century and it would be absurd if they were to teach then the mathematics of the nineteenth century. Thus for this new edition I did not change the mathematical language. Apart from correcting some mistakes I have only added a section on gauge theories. In the last decade it has become evident that these theories describe fundamental interactions, and on the classical level their structure is suffi­ cientlyclear to qualify them for the minimum amount ofknowledge required by a theoretician. It is with much regret that I had to refrain from in­ corporating the interesting developments in Kal...

  15. How teaching practices are connected to student intention to enrol in upper secondary school physics courses

    Science.gov (United States)

    Juuti, Kalle; Lavonen, Jari

    2016-05-01

    Background: In developed countries, it is challenging for teachers to select pedagogical practices that encourage students to enrol in science and technology courses in upper secondary school. Purpose: Aiming to understand the enrolment dynamics, this study analyses sample-based data from Finland's National Assessment in Science to determine whether pedagogical approaches influence student intention to enrol in upper secondary school physics courses. Sample: This study examined a clustered sample of 2949 Finnish students in the final year of comprehensive school (15-16 years old). Methods: Through explorative factor analysis, we extracted several variables that were expected to influence student intention to enrol in physics courses. We applied partial correlation to determine the underlying interdependencies of the variables. Results: The analysis revealed that the main predictor of enrolment in upper secondary school physics courses is whether students feel that physics is important. Although statistically significant, partial correlations between variables were rather small. However, the analysis of partial correlations revealed that pedagogical practices influence inquiry and attitudinal factors. Pedagogical practices that emphasise science experimentation and the social construction of knowledge had the strongest influence. Conclusions: The research implies that to increase student enrolment in physics courses, the way students interpret the subject's importance needs to be addressed, which can be done by the pedagogical practices of discussion, teacher demonstrations, and practical work.

  16. Correlating Student Interest and High School Preparation with Learning and Performance in an Introductory University Physics Course

    Science.gov (United States)

    Harlow, Jason J.?B.; Harrison, David M.; Meyertholen, Andrew

    2014-01-01

    We have studied the correlation of student performance in a large first year university physics course with their reasons for taking the course and whether or not the student took a senior-level high school physics course. Performance was measured both by the Force Concept Inventory and by the grade on the final examination. Students who took the…

  17. Learning problem-solving skills in a distance education physics course

    Science.gov (United States)

    Rampho, G. J.; Ramorola, M. Z.

    2017-10-01

    In this paper we present the results of a study on the effectiveness of combinations of delivery modes of distance education in learning problem-solving skills in a distance education introductory physics course. A problem-solving instruction with the explicit teaching of a problem-solving strategy and worked-out examples were implemented in the course. The study used the ex post facto research design with stratified sampling to investigate the effect of the learning of a problem-solving strategy on the problem-solving performance. The number of problems attempted and the mean frequency of using a strategy in solving problems in the three course presentation modes were compared. The finding of the study indicated that combining the different course presentation modes had no statistically significant effect in the learning of problem-solving skills in the distance education course.

  18. Effects of Requiring Physical Fitness in a Lecture-Based College Course: Students' Attitudes toward Physical Activity

    Science.gov (United States)

    Esslinger, Keri A.; Grimes, Amanda R.; Pyle, Elizabeth

    2016-01-01

    In this study, we investigated students' attitudes toward physical activity (PA) when including a required PA component in a university-required personal wellness class. The study included (a) an experimental group of students enrolled in a personal wellness course in which there was a required PA requirement and (b) a control group of students…

  19. From quarks to the universe a short physics course

    CERN Document Server

    Economou, Eleftherios N

    2016-01-01

    This book takes the reader for a short journey over the structures of matter showing that their main properties can be obtained even at a quantitative level with a minimum background knowledge including first year calculus, the basic principles of quantum mechanics and the extensive use of dimensional analysis. The latter, besides some high school physics and mathematics, namely the atomic idea, the wave-particle duality and the minimization of energy as the condition for equilibrium are the basis of the book. Dimensional analysis employing the universal constants and combined with “a little imagination and thinking”, to quote Feynman, allow an amazing short-cut derivation of several quantitative results concerning the structures of matter. In the current 2nd edition, new material and more explanations with more detailed derivations were added to make the book more student-friendly. Many multiple-choice questions with the correct answers at the end of the book, solved and unsolved problems make the book a...

  20. The practice of problem-based investigative teaching reform in semiconductor physics course

    Science.gov (United States)

    Chen, Aiping; Wu, Gaojian; Gu, Dawei; Jiang, Hongying; Wang, Lei

    2017-08-01

    Semiconductor physics is an important basic course for the students of the majors of applied physics, optoelectronics, and microelectronics. The authors have been carrying out investigative-teaching reform in semiconductor physics teaching. Firstly, the teaching content was re-structured based on scientific problems. Secondly, the students were placed in groups to discuss different scientific problems and to present a few short science-reports. Thirdly, micro-lesson videos were produced for the students to study and analyze before or after class. With comparative analysis, we find out that the semiconductor-physics curriculum content was greatly enriched. In addition, the students' learning motivation and scientific thinking ability increased, and their innovation ability was improved. Overall, the teaching quality of the semiconductor physics course could be significantly improved.

  1. Transversality of electromagnetic waves in the calculus-based introductory physics course

    International Nuclear Information System (INIS)

    Burko, Lior M

    2008-01-01

    Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation) and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes

  2. Transversality of electromagnetic waves in the calculus-based introductory physics course

    Science.gov (United States)

    Burko, Lior M.

    2008-11-01

    Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation) and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes.

  3. A short course in quantum information theory. An approach from theoretical physics

    International Nuclear Information System (INIS)

    Diosi, L.

    2007-01-01

    This short and concise primer takes the vantage point of theoretical physics and the unity of physics. It sets out to strip the burgeoning field of quantum information science to its basics by linking it to universal concepts in physics. An extensive lecture rather than a comprehensive textbook, this volume is based on courses delivered over several years to advanced undergraduate and beginning graduate students, but essentially it addresses anyone with a working knowledge of basic quantum physics. Readers will find these lectures a most adequate entry point for theoretical studies in this field. (orig.)

  4. Distributed Collaborative Homework Activities in a Problem-Based Usability Engineering Course

    Science.gov (United States)

    Carroll, John M.; Jiang, Hao; Borge, Marcela

    2015-01-01

    Teams of students in an upper-division undergraduate Usability Engineering course used a collaborative environment to carry out a series of three distributed collaborative homework assignments. Assignments were case-based analyses structured using a jigsaw design; students were provided a collaborative software environment and introduced to a…

  5. In the Eye of the Storm: A Participatory Course on Coastal Storms

    Science.gov (United States)

    Curtis, Scott

    2013-01-01

    Storm disasters are amplified in the coastal environment due to population pressures and the power of the sea. The upper-division/graduate university course "Coastal Storms" was designed to equip future practitioners with the skills necessary to understand, respond to, and mitigate for these natural disasters. To accomplish this, "Coastal Storms"…

  6. Problem Solving in Physics: Undergraduates' Framing, Procedures, and Decision Making

    Science.gov (United States)

    Modir, Bahar

    In this dissertation I will start with the broad research question of what does problem solving in upper division physics look like? My focus in this study is on students' problem solving in physics theory courses. Some mathematical formalisms are common across all physics core courses such as using the process of separation of variables, doing Taylor series, or using the orthogonality properties of mathematical functions to set terms equal to zero. However, there are slight differences in their use of these mathematical formalisms across different courses, possibly because of how students map different physical systems to these processes. Thus, my first main research question aims to answer how students perform these recurring processes across upper division physics courses. I break this broad question into three particular research questions: What knowledge pieces do students use to make connections between physics and procedural math? How do students use their knowledge pieces coherently to provide reasoning strategies in estimation problems? How do students look ahead into the problem to read the information out of the physical scenario to align their use of math in physics? Building on the previous body of the literature, I will use the theory family of Knowledge in Pieces and provide evidence to expand this theoretical foundation. I will compare my study with previous studies and provide suggestions on how to generalize these theory expansions for future use. My experimental data mostly come from video-based classroom data. Students in groups of 2-4 students solve in-class problems in quantum mechanics and electromagnetic fields 1 courses collaboratively. In addition, I will analyze clinical interviews to demonstrate how a single case study student plays an epistemic game to estimate the total energy in a hurricane. My second research question is more focused on a particular instructional context. How do students frame problem solving in quantum mechanics? I

  7. Assessing the Effectiveness of Studio Physics in Introductory-Level Courses at Georgia State University

    Science.gov (United States)

    Upton, Brianna; Evans, John; Morrow, Cherilynn; Thoms, Brian

    2009-11-01

    Previous studies have shown that many students have misconceptions about basic concepts in physics. Moreover, it has been concluded that one of the challenges lies in the teaching methodology. To address this, Georgia State University has begun teaching studio algebra-based physics. Although many institutions have implemented studio physics, most have done so in calculus-based sequences. The effectiveness of the studio approach in an algebra-based introductory physics course needs further investigation. A 3-semester study assessing the effectiveness of studio physics in an algebra-based physics sequence has been performed. This study compares the results of student pre- and post-tests using the Force Concept Inventory. Using the results from this assessment tool, we will discuss the effectiveness of the studio approach to teaching physics at GSU.

  8. A life course examination of the physical environmental determinants of physical activity behaviour: A "Determinants of Diet and Physical Activity" (DEDIPAC) umbrella systematic literature review.

    Science.gov (United States)

    Carlin, Angela; Perchoux, Camille; Puggina, Anna; Aleksovska, Katina; Buck, Christoph; Burns, Con; Cardon, Greet; Chantal, Simon; Ciarapica, Donatella; Condello, Giancarlo; Coppinger, Tara; Cortis, Cristina; D'Haese, Sara; De Craemer, Marieke; Di Blasio, Andrea; Hansen, Sylvia; Iacoviello, Licia; Issartel, Johann; Izzicupo, Pascal; Jaeschke, Lina; Kanning, Martina; Kennedy, Aileen; Lakerveld, Jeroen; Chun Man Ling, Fiona; Luzak, Agnes; Napolitano, Giorgio; Nazare, Julie-Anne; Pischon, Tobias; Polito, Angela; Sannella, Alessandra; Schulz, Holger; Sohun, Rhoda; Steinbrecher, Astrid; Schlicht, Wolfgang; Ricciardi, Walter; MacDonncha, Ciaran; Capranica, Laura; Boccia, Stefania

    2017-01-01

    Participation in regular physical activity is associated with a multitude of health benefits across the life course. However, many people fail to meet PA recommendations. Despite a plethora of studies, the evidence regarding the environmental (physical) determinants of physical activity remains inconclusive. To identify the physical environmental determinants that influence PA across the life course. An online systematic literature search was conducted using MEDLINE, ISI Web of Science, Scopus and SPORTDiscus. The search was limited to studies published in English (January 2004 to April 2016). Only systematic literature reviews (SLRs) and meta-analyses (MAs) of observational studies, that investigated the association between physical determinants and physical activity outcomes, were eligible for inclusion. The extracted data were assessed on the importance of determinants, strength of evidence and methodological quality. The literature search identified 28 SLRs and 3 MAs on 67 physical environmental characteristics potentially related to physical activity that were eligible for inclusion. Among preschool children, a positive association was reported between availability of backyard space and outdoor toys/equipment in the home and overall physical activity. The availability of physical activity programs and equipment within schools, and neighbourhood features such as pedestrian and cyclist safety structure were positively associated with physical activity in children and adolescents. Negative street characteristics, for example, lack of sidewalks and streetlights, were negatively associated with physical activity in adults. Inconsistent associations were reported for the majority of reviewed determinants in adults. This umbrella SLR provided a comprehensive overview of the physical environment determinants of physical activity across the life course and has highlighted, particularly amongst youth, a number of key determinants that may be associated with overall

  9. Physical activity across the life-course: Socio-cultural approaches

    DEFF Research Database (Denmark)

    Evans, Adam Brian; Nistrup, Anne; Allen-Collinson, Jacquelyn

    2018-01-01

    The subjective, lived elements of old age in physical activity promotion are central in defining how older people ascribe meaning to experiences of being active. Many such meanings are developed throughout the life course. From a longitudinal perspective, although continuity theory can be helpful...... be interdependent with how others define them, and how they define others. We offer recommendations about how this shift in perspective can empower older people to be active agents within figurations of physical activity promotion....

  10. Effectiveness of a GUM-compliant course for teaching measurement in the introductory physics laboratory

    International Nuclear Information System (INIS)

    Pillay, Seshini; Buffler, Andy; Lubben, Fred; Allie, Saalih

    2008-01-01

    An evaluation of a course aimed at developing university students' understanding of the nature of scientific measurement and uncertainty is described. The course materials follow the framework for metrology as recommended in the Guide to the Expression of Uncertainty in Measurement (GUM). The evaluation of the course is based on responses to written questionnaires administered to a cohort of 76 first year physics students both pre- and post-instruction, which were interpreted in terms of 'point' or 'set' reasoning. These findings are compared with responses from a control group of 70 students who completed a similar laboratory course apart from the use of traditional approaches to measurement and data analysis. The results suggest that the GUM framework, together with the specific teaching strategies described, provides opportunities for more effective learning of measurement and uncertainty in the introductory laboratory

  11. Observations Of General Learning Patterns In An Upper-Level Thermal Physics Course

    Science.gov (United States)

    Meltzer, David E.

    2009-11-01

    I discuss some observations from using interactive-engagement instructional methods in an upper-level thermal physics course over a two-year period. From the standpoint of the subject matter knowledge of the upper-level students, there was a striking persistence of common learning difficulties previously observed in students enrolled in the introductory course, accompanied, however, by some notable contrasts between the groups. More broadly, I comment on comparisons and contrasts regarding general pedagogical issues among different student sub-populations, for example: differences in the receptivity of lower- and upper-level students to diagrammatic representations; varying receptivity to tutorial-style instructional approach within the upper-level population; and contrasting approaches to learning among physics and engineering sub-populations in the upper-level course with regard to use of symbolic notation, mathematical equations, and readiness to employ verbal explanations.

  12. Adding Vectors across the North: Development of Laboratory Component of Distance Education Physics Course

    Science.gov (United States)

    Spencer, V. K.; Solie, D. J.

    2010-12-01

    Bush Physics for the 21st Century (BP21) is a distance education physics course offered through the Interior Aleutians Campus of the University of Alaska Fairbanks. It provides an opportunity for rural Alaskan high school and community college students, many of whom have no other access to advanced science courses, to earn university science credit. The curriculum is mathematically rigorous and includes a laboratory component to prepare students who wish to pursue science and technology careers. The laboratory component has been developed during the past 3 years. Students learn lab safety, basic laboratory technique, experiment components and group collaboration. Experiments have place-based themes and involve skills that translate to rural Alaska when possible. Preliminary data on the general effectiveness of the labs have been analyzed and used to improve the course.

  13. A new course and textbook on Physical Models of Living Systems, for science and engineering undergraduates

    Science.gov (United States)

    Nelson, Philip

    2015-03-01

    I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in a broad range of science and engineering majors. Students acquire several research skills that are often not addressed in traditional courses: Basic modeling skills Probabilistic modeling skills Data analysis methods Computer programming using a general-purpose platform like MATLAB or Python Dynamical systems, particularly feedback control. These basic skills, which are relevant to nearly any field of science or engineering, are presented in the context of case studies from living systems, including: Virus dynamics Bacterial genetics and evolution of drug resistance Statistical inference Superresolution microscopy Synthetic biology Naturally evolved cellular circuits. Work supported by NSF Grants EF-0928048 and DMR-0832802.

  14. An undergraduate course, and new textbook, on ``Physical Models of Living Systems''

    Science.gov (United States)

    Nelson, Philip

    2015-03-01

    I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in several science and engineering departments. Students acquire several research skills that are often not addressed in traditional courses, including: basic modeling skills, probabilistic modeling skills, data analysis methods, computer programming using a general-purpose platform like MATLAB or Python, dynamical systems, particularly feedback control. These basic skills, which are relevant to nearly any field of science or engineering, are presented in the context of case studies from living systems, including: virus dynamics; bacterial genetics and evolution of drug resistance; statistical inference; superresolution microscopy; synthetic biology; naturally evolved cellular circuits. Publication of a new textbook by WH Freeman and Co. is scheduled for December 2014. Supported in part by EF-0928048 and DMR-0832802.

  15. Influence of Learning Strategy of Cognitive Conflict on Student Misconception in Computational Physics Course

    Science.gov (United States)

    Akmam, A.; Anshari, R.; Amir, H.; Jalinus, N.; Amran, A.

    2018-04-01

    Misconception is one of the factors causing students are not suitable in to choose a method for problem solving. Computational Physics course is a major subject in the Department of Physics FMIPA UNP Padang. The problem in Computational Physics learning lately is that students have difficulties in constructing knowledge. The indication of this problem was the student learning outcomes do not achieve mastery learning. The root of the problem is the ability of students to think critically weak. Student critical thinking can be improved using cognitive by conflict learning strategies. The research aims to determine the effect of cognitive conflict learning strategy to student misconception on the subject of Computational Physics Course at the Department of Physics, Faculty of Mathematics and Science, Universitas Negeri Padang. The experimental research design conducted after-before design cycles with a sample of 60 students by cluster random sampling. Data were analyzed using repeated Anova measurements. The cognitive conflict learning strategy has a significant effect on student misconception in the subject of Computational Physics Course.

  16. Persuading Girls to Take Elective Physical Science Courses in High School: Who Are the Credible Communicators?

    Science.gov (United States)

    Koballa, Thomas R., Jr.

    1988-01-01

    Identifies communicators whom eighth-grade girls perceive as credible regarding reasons for taking elective physical science courses in high school. Finds that father, woman science teacher, mother, and boy high school student are ranked highly. Attributes associated with the communicators were classified as prestige, trustworthiness, similarity,…

  17. Physical Computing for STEAM Education: Maker-Educators' Experiences in an Online Graduate Course

    Science.gov (United States)

    Hsu, Yu-Chang; Ching, Yu-Hui; Baldwin, Sally

    2018-01-01

    This research explored how K-16 educators learned physical computing, and developed as maker-educators in an online graduate course. With peer support and instructor guidance, these educators designed maker projects using Scratch and Makey Makey, and developed educational maker proposals with plans of teaching the topics of their choice in STEAM…

  18. "A Thing of Beauty Is a Joy Forever"? Returns to Physical Attractiveness over the Life Course

    Science.gov (United States)

    Jaeger, Mads Meier

    2011-01-01

    This article analyzes the effect of three aspects of physical attractiveness (facial attractiveness, Body Mass Index and height) on socio-economic and marital success over the life course. In a sample of high school graduates from Wisconsin followed from their late teens and until their mid-60s, I find that (1. taller men have higher earnings than…

  19. Relationships between the Physical Education Course Sportsmanship Behaviors with Tendency to Violence and Empathetic Ability

    Science.gov (United States)

    Koc, Yakup

    2017-01-01

    The aim of this study is to examine relationship between the physical education course sportsmanship behaviors, tendency to violence, and empathetic ability for elementary school students. The sample of study consists of randomly selected 919 elementary school students attending state schools in the province of Erzincan in 2013-2014 academic year.…

  20. Integrating a Single Tablet PC in Chemistry, Engineering, and Physics Courses

    Science.gov (United States)

    Rogers, James W.; Cox, James R.

    2008-01-01

    A tablet PC is a versatile computer that combines the computing power of a notebook with the pen functionality of a PDA (Cox and Rogers 2005b). The authors adopted tablet PC technology in order to improve the process and product of the lecture format in their chemistry, engineering, and physics courses. In this high-tech model, a single tablet PC…

  1. Cultivating the Capacity for Formal Reasoning: Objectives and Procedures in an Introductory Physical Science Course

    Science.gov (United States)

    Arons, A. B.

    1976-01-01

    Describes special factors and procedures which are utilized in an introductory physical science course for nonscience majors. It is designed to enable students who are at a concrete or transitional stage to attain the formal operational level of development. (Author/SL)

  2. A Game-Based Approach to an Entire Physical Chemistry Course

    Science.gov (United States)

    Daubenfeld, Thorsten; Zenker, Dietmar

    2015-01-01

    We designed, implemented, and evaluated a game-based learning approach to increase student motivation and achievement for an undergraduate physical chemistry course. By focusing only on the most important game aspects, the implementation was realized with a production ratio of 1:8 (study load in hours divided by production effort in hours).…

  3. Teachers' and students' reactions to the Revised Nuffield A-Level Physics Course (RNAP)

    Science.gov (United States)

    Sela, David

    1990-07-01

    A battery of questionnaires and interviews with teachers and students experienced in RNAP, produced statistical data on many aspects of the course that leads to some guidelines and suggestions for better use of the course design and materials. The patterns described in this article relate to the responses of almost 200 teachers and about 100 students who were teaching and studying RNAP course during school year 1987/8. Though many of them criticised some aspects of the course, generally they were very enthusiastic about it and most of the information they gave us was accurate and reliable. The A-level physics teachers can choose either a `traditional' course or RNAP. We found that most of them don't like to change from one course to another. In the few cases it was done, the reasons generally were like `changing of school', `decreasing number of A-level physics students' or similar reasons. Most of RNAP teachers were keen about the course, its objectives and the way it prepares the students toward higher education as physicists or in other areas. Though pointing out its weaknesses, when comparing it with a `traditional' course, they stress much upon its advantages. We found a tendency to favour the course for the able student than for the weak or the average one. There was more than a feeling among teachers that the less motivated student can better succeed in a `traditional' course. This feeling became even stronger along the interviews where some teachers pointed out the high proportion of the selective schools doing RNAP, which made it more difficult (according to their feeling) for the average student to get an A or B grade. In some of the teachers' opinions RNAP is less suitable for girls who prefer a more `straightforward' course. It is interesting to point out that more than 50% of the students found the course more difficult than they expected it to be. Only 5% found it to be easier than they had suggested. Another point to think about is that almost one

  4. Intrapair Comparison of Life-Course Appetite and Physical Activity in Elderly Danish Twins

    DEFF Research Database (Denmark)

    Løkkegaard, Laura Ekstrøm; Larsen, Lisbeth A; Christensen, Kaare

    2016-01-01

    . They were asked to compare their appetite and physical activity to that of their co-twins in different stages of life. On an individual level, we found a positive association between current self-reported physical activity and late-life survival for elderly twins. This was supported by the intrapair...... analyses, which revealed a positive association between midlife and current physical activity and late-life survival. A positive association between lower appetite and late-life survival was found generally over the life course in the individual level analyses but not in the intrapair analyses. Kappa...

  5. The effect of shape on drag: a physics exercise inspired by biology

    Science.gov (United States)

    Fingerut, Jonathan; Johnson, Nicholas; Mongeau, Eric; Habdas, Piotr

    2017-07-01

    As part of a biomechanics course aimed at upper-division biology and physics majors, but applicable to a range of student learning levels, this laboratory exercise provides an insight into the effect of shape on hydrodynamic performance, as well an introduction to computer aided design (CAD) and 3D printing. Students use hydrodynamic modeling software and simple CAD programs to design a shape with the least amount of drag based on strategies gleaned from the study of natural forms. Students then print the shapes using a 3D printer and test their shapes against their classmates in a friendly competition. From this exercise, students gain a more intuitive sense of the challenges that organisms face when moving through fluid environments, the physical phenomena involved in moving through fluids at high Reynolds numbers and observe how and why certain morphologies, such as streamlining, are common answers to the challenge of swimming at high speeds.

  6. Use of audio-visual methods in radiology and physics courses

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, P

    1987-03-15

    Today's medicine utilizes sophisticated equipment for radiological, biochemical and microbiological investigation procedures and analyses. Hence it is necessary that physicans have adequate scientific and technical knowledge of the apparatus they are using so that the equipment can be used in the most effective way. Partly this knowledge is obtained from science-orientated courses in the preclinical stage of the study program for medical students. To increase the motivation to study science-courses (medical physics) audio-visual methods are used to describe diagnostic and therapeutic procedures in the clinical routines.

  7. The use of audio-visual methods in radiology and physics courses

    International Nuclear Information System (INIS)

    Holmberg, P.

    1987-01-01

    Today's medicine utilizes sophisticated equipment for radiological, biochemical and microbiological investigation procedures and analyses. Hence it is necessary that physicans have adequate scientific and technical knowledge of the apparatus they are using so that the equipment can be used in the most effective way. Partly this knowledge is obtained from science-orientated courses in the preclinical stage of the study program for medical students. To increase the motivation to study science-courses (medical physics) audio-visual methods are used to describe diagnostic and therapeutic procedures in the clinical routines. (orig.)

  8. Development of a future teachers’ group in a Teaching Practice course of Physics and Biology

    Directory of Open Access Journals (Sweden)

    Alberto Villani

    2008-08-01

    Full Text Available This paper analyzes the development of a future teachers’ group in a Teaching Practice course of Physics and Biology. During the course the students should propose a collective and interdisciplinary planning for a set of classes to be taught in basic teaching of a public school. We will try to show the evolution of the group and the teachers’ contributions, interpreting them from the point of view of Bion (1970, Kaës (1997 and Winnicott’s (1975. We will conclude with some considerations on teachers' initial formation.

  9. The hologram and its utilization as a physics teaching tool for physics teaching in engineering courses

    OpenAIRE

    Toledo, Rolando Serra; Cruz, Gilda Vega; Zaldo, Angel Ferrat; Lunazzi, José J.; Magalhães, Daniel S.F.

    2009-01-01

    With the emergence and development of the white-light holograms, new possibilities were created for its utilization as a teaching tool due to the characteristic of producing a three-dimensional image which constitutes an optical duplicate of the object. In this work the distinctive aspects of the hologram are described and its utilization is analyzed in engineering courses, through the design and construction of a Didactic Exhibition of Holography. Con el surgimiento de los hologramas reco...

  10. Innovative Training of In-Service Teachers for Active Learning: A Short Teacher Development Course Based on Physics Education Research

    Science.gov (United States)

    Zavala, Genaro; Alarcon, Hugo; Benegas, Julio

    2007-01-01

    In this contribution we describe a short development course for in-service physics teachers. The course structure and materials are based on the results of educational research, and its main objective is to provide in-service teachers with a first contact with the active learning strategy "Tutorials in Introductory Physics," developed by…

  11. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-Health Students

    Science.gov (United States)

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-01-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia…

  12. A Comparison of Online, Video Synchronous, and Traditional Learning Modes for an Introductory Undergraduate Physics Course

    Science.gov (United States)

    Faulconer, E. K.; Griffith, J.; Wood, B.; Acharyya, S.; Roberts, D.

    2018-05-01

    While the equivalence between online and traditional classrooms has been well-researched, very little of this includes college-level introductory Physics. Only one study explored Physics at the whole-class level rather than specific course components such as a single lab or a homework platform. In this work, we compared the failure rate, grade distribution, and withdrawal rates in an introductory undergraduate Physics course across several learning modes including traditional face-to-face instruction, synchronous video instruction, and online classes. Statistically significant differences were found for student failure rates, grade distribution, and withdrawal rates but yielded small effect sizes. Post-hoc pair-wise test was run to determine differences between learning modes. Online students had a significantly lower failure rate than students who took the class via synchronous video classroom. While statistically significant differences were found for grade distributions, the pair-wise comparison yielded no statistically significance differences between learning modes when using the more conservative Bonferroni correction in post-hoc testing. Finally, in this study, student withdrawal rates were lowest for students who took the class in person (in-person classroom and synchronous video classroom) than online. Students that persist in an online introductory Physics class are more likely to achieve an A than in other modes. However, the withdrawal rate is higher from online Physics courses. Further research is warranted to better understand the reasons for higher withdrawal rates in online courses. Finding the root cause to help eliminate differences in student performance across learning modes should remain a high priority for education researchers and the education community as a whole.

  13. Adjusting a biochemistry course for physical education majors: A case study.

    Science.gov (United States)

    da Costa, Caetano; Torres, Bayardo B

    2004-03-01

    The purpose of this study was to investigate and analyze the events responsible for curricular characteristics that lead to positive outcomes in university teaching using a biochemistry course taught to physical education students as a model. The research was carried out as a case study, supported by questionnaires, classroom observation, document analysis, and interviews. The overall analyses of obtained data were validated by means of triangulation protocols, which proved the following reasons for the course achievements: 1) teaching staff deeply committed to the course; 2) contents adaptation to students' careers; 3) gradual adjustment of the teaching strategies and evaluation tools; 4) valorization of formative evaluation; and 5) providing a suitable affective milieu. Copyright © 2004 International Union of Biochemistry and Molecular Biology, Inc.

  14. Applying results from Physics Education Research in a large first-year service course

    Science.gov (United States)

    Ahrensmeier, Daria

    2012-10-01

    First-year service courses are among the most challenging teaching appointments, due to factors such as lack of motivation, lack of academic preparation, and huge class size. I will describe how the Labatorial Project at the University of Calgary strives to apply results from Physics Education research on inquiry-based learning, addressing misconceptions, peer instruction etc. to the small group sections of these courses. After a brief overview of the design and implementation of the labatorials for a first-year course for engineering students, I will focus on the aspects of change management and sustainability: how one initial change led to a sequence of related modifications, from the lectures to the exams and TA training, accompanied by a natural process of faculty professional development.

  15. Student learning of upper-level thermal and statistical physics: The derivation and use of the Boltzmann factor

    Science.gov (United States)

    Thompson, John

    2015-04-01

    As the Physical Review Focused Collection demonstrates, recent frontiers in physics education research include systematic investigations at the upper division. As part of a collaborative project, we have examined student understanding of several topics in upper-division thermal and statistical physics. A fruitful context for research is the Boltzmann factor in statistical mechanics: the standard derivation involves several physically justified mathematical steps as well as the invocation of a Taylor series expansion. We have investigated student understanding of the physical significance of the Boltzmann factor as well as its utility in various circumstances, and identified various lines of student reasoning related to the use of the Boltzmann factor. Results from written data as well as teaching interviews suggest that many students do not use the Boltzmann factor when answering questions related to probability in applicable physical situations, even after lecture instruction. We designed an inquiry-based tutorial activity to guide students through a derivation of the Boltzmann factor and to encourage deep connections between the physical quantities involved and the mathematics. Observations of students working through the tutorial suggest that many students at this level can recognize and interpret Taylor series expansions, but they often lack fluency in creating and using Taylor series appropriately, despite previous exposure in both calculus and physics courses. Our findings also suggest that tutorial participation not only increases the prevalence of relevant invocation of the Boltzmann factor, but also helps students gain an appreciation of the physical implications and meaning of the mathematical formalism behind the formula. Supported in part by NSF Grants DUE-0817282, DUE-0837214, and DUE-1323426.

  16. "Recombinant Protein of the Day": Using Daily Student Presentations to Add Real-World Aspects to a Biotechnology Course

    Science.gov (United States)

    Shaffer, Justin F.

    2013-01-01

    To provide a realistic view of the biotechnology industry for students, a novel course focusing on recombinant proteins and their importance in medicine, pharmaceuticals, industry, scientific research, and agriculture was developed. ''Designer Proteins and Society,'' an upper-division elective, was taught in the Fall 2012 semester to 16 junior,…

  17. Longitudinal course of physical and psychological symptoms after a natural disaster

    Directory of Open Access Journals (Sweden)

    Lars Wahlström

    2013-12-01

    Full Text Available Background: After disaster, physical symptoms are common although seldom recognized due to lack of knowledge of the course of symptoms and relation to more studied psychological symptoms. Objective: This study aimed to investigate the change in the reporting of different physical symptoms after a disaster, including possible factors for change, and whether psychological symptoms predict physical symptoms reporting at a later point in time. Method: A longitudinal study of citizens of Stockholm who survived the 2004 Indian Ocean tsunami. A total of 1,101 participants completed questionnaires on somatic symptoms, general distress, posttraumatic stress, exposure, and demographic details 14 months and 3 years after the disaster. Physical symptoms occurring daily or weekly during the last year were investigated in four symptom indices: neurological, cardiorespiratory, gastrointestinal, and musculoskeletal. We used generalized estimating equations (GEE analysis to determine odds ratios for a change in symptoms, and pathway analysis to predict the influence of psychological symptoms on physical symptoms. Results: There was a general decrease of reporting in all physical symptom indices except the musculoskeletal symptom index. The change in the neurological symptom index showed the strongest association with exposure, and for women. General distress and posttraumatic stress at 14 months postdisaster predicted physical symptoms at 3 years. Conclusion: Physical symptoms were predicted by psychological symptoms at an earlier time point, but in a considerable proportion of respondents, physical symptoms existed independently from psychological symptoms. Physicians should be observant on the possible connection of particular pseudoneurological symptoms with prior adversities.

  18. Students' network integration as a predictor of persistence in introductory physics courses

    Science.gov (United States)

    Zwolak, Justyna P.; Dou, Remy; Williams, Eric A.; Brewe, Eric

    2017-06-01

    Increasing student retention (successfully finishing a particular course) and persistence (continuing through a sequence of courses or the major area of study) is currently a major challenge for universities. While students' academic and social integration into an institution seems to be vital for student retention, research into the effect of interpersonal interactions is rare. We use network analysis as an approach to investigate academic and social experiences of students in the classroom. In particular, centrality measures identify patterns of interaction that contribute to integration into the university. Using these measures, we analyze how position within a social network in a Modeling Instruction (MI) course—an introductory physics course that strongly emphasizes interactive learning—predicts their persistence in taking a subsequent physics course. Students with higher centrality at the end of the first semester of MI are more likely to enroll in a second semester of MI. Moreover, we found that chances of successfully predicting individual student's persistence based on centrality measures are fairly high—up to 75%, making the centrality a good predictor of persistence. These findings suggest that increasing student social integration may help in improving persistence in science, technology, engineering, and mathematics fields.

  19. Economic stress and low leisure-time physical activity: Two life course hypotheses

    Directory of Open Access Journals (Sweden)

    Martin Lindström

    2018-04-01

    Full Text Available The aim was to investigate associations between economic stress in childhood and adulthood, and low leisure-time physical activity (LTPA in adulthood from two life course perspectives. The public health survey in Scania in the southernmost part of Sweden in 2012 is a cross-sectional study based on a stratified random sample with 28,029 respondents aged 18–80 (51.7% response rate. Associations between childhood and adult economic stress, and low LTPA were analyzed with logistic regressions. A 14.8% prevalence of men and 13.5% of women had low LTPA (sedentary lifestyle. Low LTPA was associated with higher age, being born abroad, low socioeconomic status, low trust, smoking, poor self-rated health, and economic stress in childhood and adulthood. The odds ratios of low LTPA increased with more accumulated economic stress across the life course in a dose-response relationship. There was no specific critical period (childhood or adulthood, because economic stress in childhood and adulthood were both associated with low LTPA but the associations were attenuated after the introduction of smoking and self-rated health. The accumulation hypothesis was supported because the odds ratios of low LTPA indicated a graded response to life course economic stress. The critical period hypothesis was thus not supported. Economic stress across the life course seems to be associated with low LTPA in adulthood. Keywords: Economic stress, Leisure-time physical activity, Accumulation, Critical period, Social capital, Sweden

  20. Social network analysis of a project-based introductory physics course

    Science.gov (United States)

    Oakley, Christopher

    2016-03-01

    Research suggests that students benefit from peer interaction and active engagement in the classroom. The quality, nature, effect of these interactions is currently being explored by Physics Education Researchers. Spelman College offers an introductory physics sequence that addresses content and research skills by engaging students in open-ended research projects, a form of Project-Based Learning. Students have been surveyed at regular intervals during the second semester of trigonometry-based course to determine the frequency of interactions in and out of class. These interactions can be with current or past students, tutors, and instructors. This line of inquiry focuses on metrics of Social Network analysis, such as centrality of participants as well as segmentation of groups. Further research will refine and highlight deeper questions regarding student performance in this pedagogy and course sequence.

  1. Toward a Neurobiological Basis for Understanding Learning in University Modeling Instruction Physics Courses

    Directory of Open Access Journals (Sweden)

    Eric Brewe

    2018-05-01

    Full Text Available Modeling Instruction (MI for University Physics is a curricular and pedagogical approach to active learning in introductory physics. A basic tenet of science is that it is a model-driven endeavor that involves building models, then validating, deploying, and ultimately revising them in an iterative fashion. MI was developed to provide students a facsimile in the university classroom of this foundational scientific practice. As a curriculum, MI employs conceptual scientific models as the basis for the course content, and thus learning in a MI classroom involves students appropriating scientific models for their own use. Over the last 10 years, substantial evidence has accumulated supporting MI's efficacy, including gains in conceptual understanding, odds of success, attitudes toward learning, self-efficacy, and social networks centered around physics learning. However, we still do not fully understand the mechanisms of how students learn physics and develop mental models of physical phenomena. Herein, we explore the hypothesis that the MI curriculum and pedagogy promotes student engagement via conceptual model building. This emphasis on conceptual model building, in turn, leads to improved knowledge organization and problem solving abilities that manifest as quantifiable functional brain changes that can be assessed with functional magnetic resonance imaging (fMRI. We conducted a neuroeducation study wherein students completed a physics reasoning task while undergoing fMRI scanning before (pre and after (post completing a MI introductory physics course. Preliminary results indicated that performance of the physics reasoning task was linked with increased brain activity notably in lateral prefrontal and parietal cortices that previously have been associated with attention, working memory, and problem solving, and are collectively referred to as the central executive network. Critically, assessment of changes in brain activity during the physics

  2. A Proposal for a Research-based Constructivist Physics-and-Pedagogy Course

    Science.gov (United States)

    Zirbel, Esther

    2006-12-01

    This poster proposes a research-based science-and-pedagogy course that will combine the learning of fundamental physics concepts with methods of how to teach these concepts. Entitled “Understanding the Cosmos: From Antiquity to the Modern Day,” the course will explore how people learn science concepts through the ages, and from childhood through adulthood. This course will use the historical-constructivist approach to illustrate how our understanding of scientific phenomena advanced as we progressed from simple 2-dimensional thinking (starting with the flat Earth concept) to 3-D thinking (learning about the structure of the solar system) to 4-D thinking (understanding space-time and theories about the Big Bang). While transitioning from Impetus to Aristotelian to Newtonian to Einsteinian thinking, students will learn the essence of scientific thinking and inquiry. The overall goal of this course is to excite students in the process of scientific discovery, help them develop scientific reasoning skills, and provide them with fulfilling experiences of truly understanding science concepts. This will be done by employing active engagement techniques (e.g., peer tutoring, Socratic dialogue, and think/pair/share methods) and by challenging students to articulate their thoughts clearly and persuasively. This course could be of value for anybody wanting to enter the teaching profession or simply for anybody who would like to deepen their science understanding.

  3. The first Italian doctorate (PhD Course) in Physics Education Research

    Science.gov (United States)

    Michelini, Marisa; Santi, Lorenzo

    2008-05-01

    The first PhD Italian course in Physics Education Research in Udine aims to qualify young researchers and teachers coming from all the Italian groups of research in the field. It becomes a context for developing research projects carried out following parallel research lines on: Teaching/Learning paths for didactic innovation, cognitive research, ICT for strategies to overcome conceptual knots in physics; E-learning for personalization; d) Computer on-line experiments and modelling; e) Teacher formation and training; f) Informal learning in science.

  4. Basic course theoretical physics. Vol. 5/1. Quantum mechanics - foundations. 7. upd. ed.

    International Nuclear Information System (INIS)

    Nolting, Wolfgang

    2009-01-01

    The favoured basic course theoretical physics covers in seven volumes all fields relevant for the diploma. Each volume mediates well thought the in each semester necessary theoretically-physical tools. Numerous exercise problem with extensive solutions serve for the deepening of the matter. The first part of the fifth volume begins with an inductive foundation of quantum mechanics in order to illustrate after a study and summary of the formal foundations of quantum mechanics on simple model systems the concepts and term formations. The present new edition was fundamentally worked out and supplemented. The meanwhile proved two-color presentation allows a very understandable and fast approach to the matter [de

  5. A short course in quantum information theory an approach from theoretical physics

    CERN Document Server

    Diosi, Lajos

    2011-01-01

    This short and concise primer takes the vantage point of theoretical physics and the unity of physics. It sets out to strip the burgeoning field of quantum information science to its basics by linking it to universal concepts in physics. An extensive lecture rather than a comprehensive textbook, this volume is based on courses delivered over several years to advanced undergraduate and beginning graduate students, but essentially it addresses anyone with a working knowledge of basic quantum physics. Readers will find these lectures a most adequate entry point for theoretical studies in this field. For the second edition, the authors has succeeded in adding many new topics while sticking to the conciseness of the overall approach. A new chapter on qubit thermodynamics has been added, while new sections and subsections have been incorporated in various chapter to deal with weak and time-continuous measurements, period-finding quantum algorithms and quantum error corrections. From the reviews of the first edition...

  6. Interesting Guided-Inquiry Labs for a Large-Enrollment, Active Learning Physics II Course

    Science.gov (United States)

    Wagoner, Kasey; Hynes, K. Mairin; Flanagan, Daniel

    2018-04-01

    Introductory physics labs often focus on a series of common experiments intending to teach the student the measurement side of physics. While these experiments have the potential to be quite instructive, we observed that our students often consider them to be boring and monotonous, which often leads to them being uninstructive. To combat this, we have designed a series of labs with two major goals: the experiments should be relevant to the students' world, and the labs should gently guide the students to develop the experimental process on their own. Meeting these goals is difficult, particularly in a course with large enrollment where labs are instructed by graduate students. We have had success meeting these goals in our classroom, where over the last decade our introductory physics course has transformed from a traditional, lecture-learning class to a flipped class based on the textbook Six Ideas that Shaped Physics. Here we describe the structure of the new labs we have designed to capitalize on our classroom success while overcoming the aforementioned difficulties. These new labs are more engaging and instructive for our introductory physics students.

  7. Freshman College Students’ Reasons for Enrolling in and Anticipated Benefits from a Basic College Physical Education Activity Course

    OpenAIRE

    Lackman, Jeremy; Smith, Matthew Lee; McNeill, Elisa Beth

    2015-01-01

    Background Given the rise in US obesity rates in adulthood, efforts are needed to assess physical activity engagement during the college years as a strategy to promote a lifetime of being physically active. This study identifies the reasons incoming college freshman enrolled in basic physical education activity courses (BPEAC) and the perceived benefits they anticipated receiving as a result of course participation. Methods Data collected from 302 college freshmen in September 2013...

  8. Teaching Physics to Environmental Science Majors Using a Flipped Course Approach

    Science.gov (United States)

    Hill, N. B.; Riha, S. J.; Wysocki, M. W.

    2014-12-01

    Coursework in physics provides a framework for quantitative reasoning and problem solving skill development in budding geoscientists. To make physical concepts more accessible and relevant to students majoring in environmental science, an environmental physics course was developed at Cornell University and offered for the first time during spring 2014. Principles of radiation, thermodynamics, and mechanics were introduced and applied to the atmosphere, hydrosphere, and lithosphere to describe energy and mass transfers in natural and built environments. Environmental physics was designed as a flipped course where students viewed online material outside of class and worked in groups in class to solve sustainability problems. Experiential learning, just-in-time teaching, and peer collaboration strategies were also utilized. In-class problems were drawn from both local and global environmental sustainability concerns. Problems included an investigation of Cornell's lake source cooling system, calculations on the energy consumed in irrigation with groundwater in the southwestern United States, and power generated by wind turbines at various locations around the world. Class attendance was high, with at least 84% of students present at each meeting. Survey results suggest that students enjoyed working in groups and found the in-class problems helpful for assimilating the assigned material. However, some students reported that the workload was too heavy and they preferred traditional lectures to the flipped classroom. The instructors were able to actively engage with students and quickly identify knowledge and skill gaps that needed to be addressed. Overall, the integration of current environmental problems and group work into an introductory physics course could help to inspire and motivate students as they advance their ability to analyze problems quantitatively.

  9. Postgraduate Course 'Physics Aspects of Nuclear Medicine'. Theoretical and practical intensive version. Preliminary results

    International Nuclear Information System (INIS)

    Lopez Diaz, A.; Gonzalez, G.J.; Torres, A.L.; Fraxedas, M.R.

    2007-01-01

    very good: the quality of conferences, excellent: the usefulness of different charters, very good: the support bibliography, and recommended the repetition of this kind of education and training. Conclusion: The first step of this Post-graduated course 'Introduction of basic physic aspects of Nuclear Medicine', was successful and satisfy the objective of education and training of medical physicist in Nuclear Medicine. (author)

  10. Integrating Web-Based Teaching Tools into Large University Physics Courses

    Science.gov (United States)

    Toback, David; Mershin, Andreas; Novikova, Irina

    2005-12-01

    Teaching students in our large, introductory, calculus-based physics courses to be good problem-solvers is a difficult task. Not only must students be taught to understand and use the physics concepts in a problem, they must become adept at turning the physical quantities into symbolic variables, translating the problem into equations, and "turning the crank" on the mathematics to find both a closed-form solution and a numerical answer. Physics education research has shown that students' poor math skills and instructors' lack of pen-and-paper homework grading resources, two problems we face at our institution, can have a significant impact on problem-solving skill development.2-4 While Interactive Engagement methods appear to be the preferred mode of instruction,5 for practical reasons we have not been able to widely implement them. In this paper, we describe three Internet-based "teaching-while-quizzing" tools we have developed and how they have been integrated into our traditional lecture course in powerful but easy to incorporate ways.6 These are designed to remediate students' math deficiencies, automate homework grading, and guide study time toward problem solving. Our intent is for instructors who face similar obstacles to adopt these tools, which are available upon request.7

  11. The influence of instructional interactions on students’ mental models about the quantization of physical observables: a modern physics course case

    Science.gov (United States)

    Didiş Körhasan, Nilüfer; Eryılmaz, Ali; Erkoç, Şakir

    2016-01-01

    Mental models are coherently organized knowledge structures used to explain phenomena. They interact with social environments and evolve with the interaction. Lacking daily experience with phenomena, the social interaction gains much more importance. In this part of our multiphase study, we investigate how instructional interactions influenced students’ mental models about the quantization of physical observables. Class observations and interviews were analysed by studying students’ mental models constructed in a modern physics course during an academic semester. The research revealed that students’ mental models were influenced by (1) the manner of teaching, including instructional methodologies and content specific techniques used by the instructor, (2) order of the topics and familiarity with concepts, and (3) peers.

  12. SU-E-E-01: ABR Diagnostic Radiology Core Exam: Was Our Redesigned Physics Course Successful in Teaching Physics to Radiology Residents?

    International Nuclear Information System (INIS)

    Kanal, K; Hoff, M; Dickinson, R; Zamora, D; Stewart, B

    2014-01-01

    Purpose: Our purpose is to evaluate the effectiveness of our two year physics course in preparing radiology residents for the American Board of Radiology (ABR) diagnostic radiology exam. Methods: We designed a new two-year physics course that integrates radiology clinical content and practice and is primarily based on the AAPM curriculum and RSNA/AAPM physics modules. Biweekly classes focus on relevant concepts from assigned reading and use audience response systems to encourage participation. Teaching efficiency is optimized through lecturer rotations of physicists, radiologists, and guest speakers. An emphasis is placed on clinical relevance by requiring lab work and providing equipment demonstrations. Periodic quiz were given during the course. The course website was also redesigned for usability, and physics review lectures were conducted two weeks before the board exam to refresh key concepts. At the completion of our first two-year course, we conducted a confidential evaluation of the faculty and course. The evaluation assessed metrics such as overall organization, clinical relevance of content, and level of difficulty, with a rating scale from poor to excellent. Results: Our evaluation indicated that the redesigned course provided effective board exam preparation, with most responses between good and excellent. There was some criticism on the course length and on chronological discontinuity, but the review lectures were appreciated by the residents. All of our residents passed the physics component of the ABR exam with scores exceeding the minimum passing score by a significant margin. Conclusion: The course evaluation and board exam results indicate that our new two-year course format provides valuable board exam preparation. This is possible thanks to the time and effort taken by the physics faculty on ensuring the residents get quality physics education

  13. CAS CERN Accelerator School. 5. Advanced accelerator physics course. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    Turner, S.

    1995-01-01

    The fifth CERN Accelerator School (CAS) advanced course on Accelerator Physics was given at the Paradise Hotel, Rhodes, Greece from 20 September to 1 October 1993. Its syllabus was based on the previous similar courses held at Oxford 1985, Berlin 1987, Uppsala 1989 and Noordwijkerhout 1991, and whose proceedings were published as CERN Reports 97-03, 89-01, 90-04 and 92-01, respectively. The present volumes are intended to replace and to bring up to date all the material in earlier publications. They contain not only all the lectures given in the Rhodes course but a number of important contributions to previous courses which are thought to be essential for a complete understanding of all aspects of the design and construction of particle accelerators at an advanced level. They include sections on Hamiltonian equations and accelerator optics, chromaticity and dynamic beam aperture, particle tracking, the kinetic theory, longitudinal beam optics, coherent instabilities, beam-beam dynamics, intra-beam scattering, beam cooling, Schottky noise, beam radiation, neutralisation, beam polarisation, radio-frequency quadrupoles, as well as chapters on space charge, superconducting magnets, crystal bending, beam-beam measurement and accelerator medical applications. (orig.)

  14. CAS CERN Accelerator School. 5. Advanced accelerator physics course. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    Turner, S.

    1995-01-01

    The fifth CERN Accelerator School (CAS) advanced course on Accelerator Physics was given at the Paradise Hotel, Rhodes, Greece from 20 September to 1 October 1993. Its syllabus was based on the previous similar courses held at Oxford 1985, Berlin 1987, Uppsala 1989 and Noordwijkerhout 1991, and whose proceedings were published as CERN Reports 87-03, 89-01, 90-04 and 92-01, respectively. The present volumes are intended to replace and to bring up to date all the material in earlier publications. They contain not only all the lectures given in the Rhodes course but a number of important contributions to previous courses which are thought to be essential for a complete understanding of all aspects of the design and construction of particle accelerators at an advanced level. They include sections on Hamiltonian equations and accelerator optics, chromaticity and dynamic beam aperture, particle tracking, the kinetic theory, longitudinal beam optics, coherent instabilities, beam-beam dynamics, intra-beam scattering, beam cooling, Schottky noise, beam radiation, neutralisation, beam polarisation, radio-frequency quadrupoles, as well as chapters on space charge, superconducting magnets, crystal bending, beam-beam measurement and accelerator medical applications. (orig.)

  15. CAS CERN Accelerator School. 5. Advanced accelerator physics course. Proceedings. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Turner, S [ed.

    1995-11-22

    The fifth CERN Accelerator School (CAS) advanced course on Accelerator Physics was given at the Paradise Hotel, Rhodes, Greece from 20 September to 1 October 1993. Its syllabus was based on the previous similar courses held at Oxford 1985, Berlin 1987, Uppsala 1989 and Noordwijkerhout 1991, and whose proceedings were published as CERN Reports 87-03, 89-01, 90-04 and 92-01, respectively. The present volumes are intended to replace and to bring up to date all the material in earlier publications. They contain not only all the lectures given in the Rhodes course but a number of important contributions to previous courses which are thought to be essential for a complete understanding of all aspects of the design and construction of particle accelerators at an advanced level. They include sections on Hamiltonian equations and accelerator optics, chromaticity and dynamic beam aperture, particle tracking, the kinetic theory, longitudinal beam optics, coherent instabilities, beam-beam dynamics, intra-beam scattering, beam cooling, Schottky noise, beam radiation, neutralisation, beam polarisation, radio-frequency quadrupoles, as well as chapters on space charge, superconducting magnets, crystal bending, beam-beam measurement and accelerator medical applications. (orig.).

  16. CAS CERN Accelerator School. 5. Advanced accelerator physics course. Proceedings. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Turner, S [ed.

    1995-11-22

    The fifth CERN Accelerator School (CAS) advanced course on Accelerator Physics was given at the Paradise Hotel, Rhodes, Greece from 20 September to 1 October 1993. Its syllabus was based on the previous similar courses held at Oxford 1985, Berlin 1987, Uppsala 1989 and Noordwijkerhout 1991, and whose proceedings were published as CERN Reports 97-03, 89-01, 90-04 and 92-01, respectively. The present volumes are intended to replace and to bring up to date all the material in earlier publications. They contain not only all the lectures given in the Rhodes course but a number of important contributions to previous courses which are thought to be essential for a complete understanding of all aspects of the design and construction of particle accelerators at an advanced level. They include sections on Hamiltonian equations and accelerator optics, chromaticity and dynamic beam aperture, particle tracking, the kinetic theory, longitudinal beam optics, coherent instabilities, beam-beam dynamics, intra-beam scattering, beam cooling, Schottky noise, beam radiation, neutralisation, beam polarisation, radio-frequency quadrupoles, as well as chapters on space charge, superconducting magnets, crystal bending, beam-beam measurement and accelerator medical applications. (orig.).

  17. Freshman College Students' Reasons for Enrolling in and Anticipated Benefits from a Basic College Physical Education Activity Course.

    Science.gov (United States)

    Lackman, Jeremy; Smith, Matthew Lee; McNeill, Elisa Beth

    2015-01-01

    Given the rise in US obesity rates in adulthood, efforts are needed to assess physical activity engagement during the college years as a strategy to promote a lifetime of being physically active. This study identifies the reasons incoming college freshman enrolled in basic physical education activity courses (BPEAC) and the perceived benefits they anticipated receiving as a result of course participation. Data collected from 302 college freshmen in September 2013 were analyzed. A paper-based questionnaire was administered to 78% of BPEAC sections offered at a large Southeastern University. Frequencies were presented for all participants, which were then compared by sex and course type. Kappa statistics were calculated to examine the concordance between participants' reasons for enrolling in the course and the benefits they anticipated from course enrollment. Diverse physical, mental, social, and academic reasons for enrolling in BPEAC were reported by study participants. Varied anticipated benefits from course participation were reported as well. Reported enrollment reasons and anticipated benefits differed by sex and course type. High concordance between matched enrollment reasons and anticipated benefits was observed. Implications highlight the need for universities to provide quality BPEAC, promote high-quality instruction, and offer a wide variety of physical education courses to meet the diverse needs of students.

  18. The analysis of the physical education teacher candidates’ attitudes towards school experience course: the case of Batman University

    Directory of Open Access Journals (Sweden)

    Enes IŞIKGÖZ

    2016-12-01

    Full Text Available Aim: The aim of this study is to analyse the attitudes of the physical education teacher candidates towards ‘Teacher Classroom Practice’ course present in programs for training teachers for sport high schools and for teachers of physical education. Material and Methods: The study group of this research was compiled of 60 students from 2015-2016 school year in Batman University, Physical Education and Sport High school Physical Education Department and Department for Sport High school Teachers, which attended the course “Teacher Classroom Practice”. The results of the research were collected with “Course for Teacher Classroom Practice Attitude Scale”. Besides descriptive statistics used for the analysis, Mann Whitney U test was used for the comparison between the results of different groups. Results: According to the results of the study, even though physical education teacher candidates’ attitudes towards the course showed positive results, an inconsistence was observed between the high school and practice school results. It was also observed that there are no significantly different reactions to the attitude of teacher candidates according to the gender or schools that participated the study. In the light of these results. Conclusion: It is observed that the general attitude levels of pre-service physical education teachers towards the school experience course are positively high. This is an expected and desired result in terms of showing that school experience course is a very important course in providing experience and chance of observing the profession of teaching beforehand in field.

  19. An Interdisciplinary Undergraduate Space Physics Course: Understanding the Process of Science Through One Field's Colorful History

    Science.gov (United States)

    Lopez, Ramon E.

    1996-01-01

    Science education in this country is in its greatest period of ferment since the post-Sputnik frenzy a generation ago. In that earlier time, however, educators' emphasis was on producing more scientists and engineers. Today we recognize that all Americans need a good science background. The ability to observe, measure, think quantitatively, and reach logical conclusions based on available evidence is a set of skills that everyone entering the workforce needs to acquire if our country is to be competitive in a global economy. Moreover, as public policy increasingly crystallizes around scientific issues, it is critical that citizens be educated in science so that they may provide informed debate and on these issues. In order to develop this idea more fully, I proposed to teach a historically based course about space physics as an honors course at the University of Maryland-College Park (UMCP). The honors program at UMCP was established to foster broad-based undergraduate courses that utilize innovative teaching techniques to provide exemplary education to a select group of students. I designed an introductory course that would have four basic goals: to acquaint students with geomagnetic and auroral phenomena and their relationship to the space environment; to examine issues related to the history of science using the evolution of the field as an example; to develop familiarity with basic skills such as describing and interpreting observations, analyzing scientific papers, and communicating the results of their own research; and to provide some understanding of basic physics, especially those aspect that play a role in the near-earth space environment.

  20. Course Notes: United States Particle Accelerator School Beam Physics with Intense Space-Charge

    International Nuclear Information System (INIS)

    Barnard, J.J.; Lund, S.M.

    2008-01-01

    The purpose of this course is to provide a comprehensive introduction to the physics of beams with intense space charge. This course is suitable for graduate students and researchers interested in accelerator systems that require sufficient high intensity where mutual particle interactions in the beam can no longer be neglected. This course is intended to give the student a broad overview of the dynamics of beams with strong space charge. The emphasis is on theoretical and analytical methods of describing the acceleration and transport of beams. Some aspects of numerical and experimental methods will also be covered. Students will become familiar with standard methods employed to understand the transverse and longitudinal evolution of beams with strong space charge. The material covered will provide a foundation to design practical architectures. In this course, we will introduce you to the physics of intense charged particle beams, focusing on the role of space charge. The topics include: particle equations of motion, the paraxial ray equation, and the Vlasov equation; 4-D and 2-D equilibrium distribution functions (such as the Kapchinskij-Vladimirskij, thermal equilibrium, and Neuffer distributions), reduced moment and envelope equation formulations of beam evolution; transport limits and focusing methods; the concept of emittance and the calculation of its growth from mismatches in beam envelope and from space-charge non-uniformities using system conservation constraints; the role of space-charge in producing beam halos; longitudinal space-charge effects including small amplitude and rarefaction waves; stable and unstable oscillation modes of beams (including envelope and kinetic modes); the role of space charge in the injector; and algorithms to calculate space-charge effects in particle codes. Examples of intense beams will be given primarily from the ion and proton accelerator communities with applications from, for example, heavy-ion fusion, spallation

  1. Designing a physical activity parenting course: Parental views on recruitment, content and delivery

    Science.gov (United States)

    2012-01-01

    Background Many children do not engage in sufficient levels of physical activity (PA) and spend too much time screen-viewing (SV). High levels of SV (e.g. watching TV, playing video games and surfing the internet) and low levels of PA have been associated with adverse health outcomes. Parenting courses may hold promise as an intervention medium to change children’s PA and SV. The current study was formative work conducted to design a new parenting programme to increase children’s PA and reduce their SV. Specifically, we focussed on interest in a course, desired content and delivery style, barriers and facilitators to participation and opinions on control group provision. Methods In-depth telephone interviews were conducted with thirty two parents (29 female) of 6–8 year olds. Data were analysed thematically. An anonymous online survey was also completed by 750 parents of 6–8 year old children and descriptive statistics calculated. Results Interview participants were interested in a parenting course because they wanted general parenting advice and ideas to help their children be physically active. Parents indicated that they would benefit from knowing how to quantify their child’s PA and SV levels. Parents wanted practical ideas of alternatives to SV. Most parents would be unable to attend unless childcare was provided. Schools were perceived to be a trusted source of information about parenting courses and the optimal recruitment location. In terms of delivery style, the majority of parents stated they would prefer a group-based approach that provided opportunities for peer learning and support with professional input. Survey participants reported the timing of classes and the provision of childcare were essential factors that would affect participation. In terms of designing an intervention, the most preferred control group option was the opportunity to attend the same course at a later date. Conclusions Parents are interested in PA/SV parenting

  2. Designing a physical activity parenting course: Parental views on recruitment, content and delivery

    Directory of Open Access Journals (Sweden)

    Jago Russell

    2012-07-01

    Full Text Available Abstract Background Many children do not engage in sufficient levels of physical activity (PA and spend too much time screen-viewing (SV. High levels of SV (e.g. watching TV, playing video games and surfing the internet and low levels of PA have been associated with adverse health outcomes. Parenting courses may hold promise as an intervention medium to change children’s PA and SV. The current study was formative work conducted to design a new parenting programme to increase children’s PA and reduce their SV. Specifically, we focussed on interest in a course, desired content and delivery style, barriers and facilitators to participation and opinions on control group provision. Methods In-depth telephone interviews were conducted with thirty two parents (29 female of 6–8 year olds. Data were analysed thematically. An anonymous online survey was also completed by 750 parents of 6–8 year old children and descriptive statistics calculated. Results Interview participants were interested in a parenting course because they wanted general parenting advice and ideas to help their children be physically active. Parents indicated that they would benefit from knowing how to quantify their child’s PA and SV levels. Parents wanted practical ideas of alternatives to SV. Most parents would be unable to attend unless childcare was provided. Schools were perceived to be a trusted source of information about parenting courses and the optimal recruitment location. In terms of delivery style, the majority of parents stated they would prefer a group-based approach that provided opportunities for peer learning and support with professional input. Survey participants reported the timing of classes and the provision of childcare were essential factors that would affect participation. In terms of designing an intervention, the most preferred control group option was the opportunity to attend the same course at a later date. Conclusions Parents are

  3. A short course in quantum information theory. An approach from theoretical physics. 2. ed.

    International Nuclear Information System (INIS)

    Diosi, Lajos

    2011-01-01

    This short and concise primer takes the vantage point of theoretical physics and the unity of physics. It sets out to strip the burgeoning field of quantum information science to its basics by linking it to universal concepts in physics. An extensive lecture rather than a comprehensive textbook, this volume is based on courses delivered over several years to advanced undergraduate and beginning graduate students, but essentially it addresses anyone with a working knowledge of basic quantum physics. Readers will find these lectures a most adequate entry point for theoretical studies in this field. For the second edition, the authors has succeeded in adding many new topics while sticking to the conciseness of the overall approach. A new chapter on qubit thermodynamics has been added, while new sections and subsections have been incorporated in various chapter to deal with weak and time-continuous measurements, period-finding quantum algorithms and quantum error corrections. From the reviews of the first edition: ''The best things about this book are its brevity and clarity. In around 100 pages it provides a tutorial introduction to quantum information theory, including problems and solutions.. it's worth a look if you want to quickly get up to speed with the language and central concepts of quantum information theory, including the background classical information theory.'' (Craig Savage, Australian Physics, Vol. 44 (2), 2007). (orig.)

  4. The use of physical and virtual manipulatives in an undergraduate mechanical engineering (Dynamics) course

    Science.gov (United States)

    Pan, Edward A.

    Science, technology, engineering, and mathematics (STEM) education is a national focus. Engineering education, as part of STEM education, needs to adapt to meet the needs of the nation in a rapidly changing world. Using computer-based visualization tools and corresponding 3D printed physical objects may help nontraditional students succeed in engineering classes. This dissertation investigated how adding physical or virtual learning objects (called manipulatives) to courses that require mental visualization of mechanical systems can aid student performance. Dynamics is one such course, and tends to be taught using lecture and textbooks with static diagrams of moving systems. Students often fail to solve the problems correctly and an inability to mentally visualize the system can contribute to student difficulties. This study found no differences between treatment groups on quantitative measures of spatial ability and conceptual knowledge. There were differences between treatments on measures of mechanical reasoning ability, in favor of the use of physical and virtual manipulatives over static diagrams alone. There were no major differences in student performance between the use of physical and virtual manipulatives. Students used the physical and virtual manipulatives to test their theories about how the machines worked, however their actual time handling the manipulatives was extremely limited relative to the amount of time they spent working on the problems. Students used the physical and virtual manipulatives as visual aids when communicating about the problem with their partners, and this behavior was also seen with Traditional group students who had to use the static diagrams and gesture instead. The explanations students gave for how the machines worked provided evidence of mental simulation; however, their causal chain analyses were often flawed, probably due to attempts to decrease cognitive load. Student opinions about the static diagrams and dynamic

  5. Developing the learning physical science curriculum: Adapting a small enrollment, laboratory and discussion based physical science course for large enrollments

    Science.gov (United States)

    Goldberg, Fred; Price, Edward; Robinson, Stephen; Boyd-Harlow, Danielle; McKean, Michael

    2012-06-01

    We report on the adaptation of the small enrollment, lab and discussion based physical science course, Physical Science and Everyday Thinking (PSET), for a large-enrollment, lecture-style setting. Like PSET, the new Learning Physical Science (LEPS) curriculum was designed around specific principles based on research on learning to meet the needs of nonscience students, especially prospective and practicing elementary and middle school teachers. We describe the structure of the two curricula and the adaptation process, including a detailed comparison of similar activities from the two curricula and a case study of a LEPS classroom implementation. In LEPS, short instructor-guided lessons replace lengthier small group activities, and movies, rather than hands-on investigations, provide the evidence used to support and test ideas. LEPS promotes student peer interaction as an important part of sense making via “clicker” questions, rather than small group and whole class discussions typical of PSET. Examples of student dialog indicate that this format is capable of generating substantive student discussion and successfully enacting the design principles. Field-test data show similar student content learning gains with the two curricula. Nevertheless, because of classroom constraints, some important practices of science that were an integral part of PSET were not included in LEPS.

  6. Developing the learning physical science curriculum: Adapting a small enrollment, laboratory and discussion based physical science course for large enrollments

    Directory of Open Access Journals (Sweden)

    Fred Goldberg1

    2012-05-01

    Full Text Available We report on the adaptation of the small enrollment, lab and discussion based physical science course, Physical Science and Everyday Thinking (PSET, for a large-enrollment, lecture-style setting. Like PSET, the new Learning Physical Science (LEPS curriculum was designed around specific principles based on research on learning to meet the needs of nonscience students, especially prospective and practicing elementary and middle school teachers. We describe the structure of the two curricula and the adaptation process, including a detailed comparison of similar activities from the two curricula and a case study of a LEPS classroom implementation. In LEPS, short instructor-guided lessons replace lengthier small group activities, and movies, rather than hands-on investigations, provide the evidence used to support and test ideas. LEPS promotes student peer interaction as an important part of sense making via “clicker” questions, rather than small group and whole class discussions typical of PSET. Examples of student dialog indicate that this format is capable of generating substantive student discussion and successfully enacting the design principles. Field-test data show similar student content learning gains with the two curricula. Nevertheless, because of classroom constraints, some important practices of science that were an integral part of PSET were not included in LEPS.

  7. Unequal Partnerships in Higher Education: Pedagogic Innovations in an Electronics within Physics Degree Course

    Directory of Open Access Journals (Sweden)

    Maddalena Taras

    2014-02-01

    Full Text Available This cross-European research partnership reports on supporting pro-active learning and teaching. The two-part project firstly explored student beliefs about electronics within a physics degree and secondly, the use of peer assessment of a Mathematica notebook to develop understandings of standards and quality. Student beliefs were explored because of the negative perceptions tutors thought students brought to the Engineering course within the Physics degree. The results showed that tutors’ fears were unfounded and that the students were highly motivated. Secondly, through peer assessment of a notebook, students developed critical understandings of standards and quality. Generally, students valued the content support and appreciated both the work of their peer and how this helped their own understanding.

  8. The effect of the flipped model on achievement in an introductory college physics course

    Science.gov (United States)

    Winter, Joshua Brian

    The flipped or inverted classroom model is one in which the time and place for traditional lecture and homework are reversed. Traditional lecture is replaced by online videos assigned as homework. This frees up time in class to be spent with more student centered activities such as discussion based concept questions and group problem solving. While growing in popularity, research on the effectiveness of this format is sparse. In this quasi-experimental study, two sections of an introductory algebra-based college physics course were examined over a five week period. Each section was taught with either the traditional or flipped model and physics knowledge achieved was compared using independent samples t-tests on both the instructor's unit exam and the Mechanics Baseline Test pre/posttest normalized gain. Results indicated that there was no statistically significant difference between the flipped model and the traditional lecture format. Avenues for further research are discussed.

  9. COMPARISON OF STUDENT SATISFACTION BETWEEN TRADITIONAL AND BLENDED TECHNOLOGY COURSE OFFERINGS IN PHYSICAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Nikolaos VERNADAKIS

    2012-01-01

    Full Text Available Blended learning With the concerns and dissatisfaction with e-learning, educators are searching for alternative instructional delivery solutions to relieve the above problems. The blended e-learning system has been presented as a promising alternative learning approach. While blended learning has been recognized as having a number of advantages, insufficient learning satisfaction is still an obstacle to its successful adoption. Therefore, the purpose of this study was to evaluate students’ satisfaction with blended learning course delivery compared to a traditional face-to-face class format in a general multimedia course in physical education. Forty six (n=46 undergraduate students, between the ages of 20-22 years old, were randomly assigned into two teaching method groups: Classroom Lecture Instruction (CLI and Blended Lecture Instruction (BLI. For the data collection at the end of this study, students completed an online satisfaction questionnaire.Independent sample t-test analysis was conducted to measure students’ satisfaction towards the CLI and BLI methods. Results indicated that a blended course delivery is preferred over the traditional lecture format. These finding suggest that students' satisfaction could increase when the instructor provides learning environments not only in a traditional classroom, but in an asynchronous online system as well.

  10. Persuading girls to take elective physical science courses in high school: Who are the credible communicators?

    Science.gov (United States)

    Koballa, Thomas R., Jr.

    Eighth-grade girls (N=257) randomly selected from nine different public junior high schools in central Texas were questioned in order to identify the communicators whom they perceive as highly credible regarding reasons for taking elective physical science courses in high school and the attributes associated with these communicators. Four persons were each identified by better than 10 percent of the sample as the best person to try to convince junior high school girls to take elective physical science courses in high school. In order of perceived credibility, these persons are father, woman science teacher, mother, and boy high school student. Slight variations in the order of perceived credibility were found when the responses from girls of the different ethnic groups represented in the sample (Caucasian, Hispanic, Black, and Asian) were examined separately. Attributes listed by the respondents for father, woman science teacher, mother, and boy high school student were examined and classified into the categories of prestige, trustworthiness, similarity, attractiveness, and power. Prestige and trustworthiness are the attributes associates most frequently with communicators identified as highly credible. Implications of the present study and suggestions for further research are discussed.

  11. Using a flipped classroom in an algebra-based physics course

    Science.gov (United States)

    Smith, Leigh

    2013-03-01

    The algebra-based physics course is taken by Biology students, Pre-Pharmacy, Pre-Medical, and other health related majors such as medical imaging, physical therapy, and so on. Nearly 500 students take the course each Semester. Student learning is adversely impacted by poor math backgrounds as well as extensive work schedules outside of the classroom. We have been researching the use of an intensive flipped-classroom approach where students spend one to two hours each week preparing for class by reading the book, completing a series of conceptual problems, and viewing videos which describe the material. In class, the new response system Learning Catalytics is used which allows much richer problems to be posed in class and includes sketching figures, numerical or symbolic entries, short answers, highlighting text, etc in addition to the standard multiple choice questions. We make direct comparison of student learning for 1200 sudents who have taken the same tests, 25% of which used the flipped classroom approach, and 75% who took a more standard lecture. There is significant evidence of improvements in student learning for students taking the flipped classroom approach over standard lectures. These benefits appear to impact students at all math backgrounds.

  12. Integration of Environmental Issues in a Physics Course: 'Physics by Inquiry' High School Teachers' Integration Models and Challenges

    Science.gov (United States)

    Kimori, David Abiya

    As we approach the second quarter of the twenty-first century, one may predict that the environment will be among the dominant themes in the political and educational discourse. Over the past three decades, particular perspectives regarding the environment have begun to emerge: (i) realization by human beings that we not only live on earth and use its resources at an increasingly high rate but we also actually belong to the earth and the total ecology of all living systems, (ii) there are strong interactions among different components of the large and complex systems that make up our environment, and (iii) the rising human population and its impact on the environment is a great concern (Hughes & Mason, 2014). Studies have revealed that although the students do not have a deep understanding of environmental issues and lack environmental awareness and attitudes necessary for protecting the environment, they have great concern for the environment (Chapman & Sharma, 2001; Fien, Yencken, & Sykes, 2002). However, addressing environmental issues in the classroom and other disciplines has never been an easy job for teachers (Pennock & Bardwell, 1994; Edelson, 2007). Using multiple case studies, this study investigated how three purposefully selected physics teachers teaching a 'Physics by Inquiry' course integrated environmental topics and issues in their classroom. Particularly this study looked at what integration models and practices the three physics teachers employed in integrating environmental topics and issues in their classroom and what challenges the teachers faced while integrating environmental topics in their classrooms. Data collection methods including field notes taken from observations, teachers' interviews and a collection of artifacts and documents were used. The data were coded analyzed and organized into codes and categories guided by Fogarty (1991) models of curriculum integration and Ham and Sewing (1988) four categories of barriers to environmental

  13. Just-in-Time Teaching in undergraduate physics courses: Implementation, learning, and perceptions

    Science.gov (United States)

    Dwyer, Jessica Hewitt

    Regardless of discipline, a decades-long battle has ensued within nearly every classroom in higher education: instructors getting students to come to class prepared to learn. In response to this clash between teacher expectations and frequent student neglect, a group of four physics education researchers developed a reformed instructional strategy called Just-in-Time Teaching (JiTT). This dissertation investigates the following three areas: 1) the fidelity with which undergraduate physics instructors implement JiTT, 2) whether student performance predicts student perception of their instructor's fidelity of JiTT implementation, and 3) whether student perception of their instructor's fidelity of JiTT implementation correlates with student views of their physics course. A blend of quantitative data (e.g., students grades, inventory scores, and questionnaire responses) are integrated with qualitative data (e.g., individual faculty interviews, student focus group discussions, and classroom observations). This study revealed no statistically significant relationship between instructors who spent time on a predefined JiTT critical component and their designation as a JiTT user or non-user. While JiTT users implemented the pedagogy in accordance with the creators' intended ideal vision, many also had trouble reconciling personal concerns about their role as a JiTT adopter and the anticipated demand of the innovation. I recommend that this population of faculty members can serve as a JiTT model for other courses, disciplines, and/or institutions. Student performance was not a predictor of student perception instructor fidelity of JiTT implementation. Additionally, the majority of students in this study reported they read their textbook prior to class and that JiTT assignments helped them prepare for in-class learning. I found evidence that exposure to the JiTT strategy may correlate with a more favorable student view of their physics course. Finally, according to students

  14. Cross Coursing in Mathematics: Physical Modelling in Differential Equations Crossing to Discrete Dynamical Systems

    Science.gov (United States)

    Winkel, Brian

    2012-01-01

    We give an example of cross coursing in which a subject or approach in one course in undergraduate mathematics is used in a completely different course. This situation crosses falling body modelling in an upper level differential equations course into a modest discrete dynamical systems unit of a first-year mathematics course. (Contains 1 figure.)

  15. Results of Using the Take-Away Technique on Students' Achievements and Attitudes in High School Physics and Physical Science Courses

    Science.gov (United States)

    Carifio, James; Doherty, Michael

    2012-01-01

    The Take-away Technique was used in High School Physics and Physical Science courses for the unit on Newtonian mechanics in a teacher (6) by grade level (4) partially crossed design (N = 272). All classes received the same IE instructional treatment. The experimental group (classrooms) did a short Take-away after each class summarizing the key…

  16. The Effect of "Physical Education and Sport Culture" Course on the Attitudes of Preservice Classroom Teachers towards Physical Education and Sports

    Science.gov (United States)

    Koç, Yakup

    2017-01-01

    The study aims to investigate the effect of "Physical Education and Sport Culture" (PESC) course on the attitudes of preservice classroom teachers towards physical education and sports. The one group pre-test post-test design among experimental models which is included in quantitative research designs was employed in the study. The study…

  17. CAS CERN accelerator school: 5. general accelerator physics course. Vol. 2. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1994-01-01

    The fifth CERN Accelerator School (CAS) basic course on General Accelerator Physics was given at the University of Jyvaeskylae, Finland, from 7 to 18 September 1992. Its syllabus was based on the previous similar courses held at Gif-sur-Yvette in 1984, Aarhus 1986, Salamanca 1988 and Juelich 1990, and whose proceedings were published as CERN Reports 85-19, 87-10, 89-05 and 91-04, respectively. However, certain topics were treated in a different way, improved or extended, while new subjects were introduced. As far as the proceedings of this school are concerned the opportunity was taken not only to include the lectures presented but also to select and revise the most appropriate chapters from the previous similar schools. In this way the present volumes constitute a rather complete introduction to all aspects of the design and construction of particle accelerators, including optics, emittance, luminosity, longitudinal and transverse beam dynamics, insertions, chromaticity, transfer lines, resonances, accelerating structures, tune shifts, coasting beams, lifetime, synchrotron radiation, radiation damping, beam-beam effects, diagnostics, cooling, ion and positron sources, RF and vacuum systems, injection and extraction, conventional, permanent and superconducting magnets, cyclotrons, RF linear accelerators, microtrons, as well as applications of particle accelerators (including therapy) and the history of accelerators. See hints under the relevant topics. (orig.)

  18. Development of multi-representation learning tools for the course of fundamental physics

    Science.gov (United States)

    Huda, C.; Siswanto, J.; Kurniawan, A. F.; Nuroso, H.

    2016-08-01

    This research is aimed at designing a learning tool based on multi-representation that can improve problem solving skills. It used the research and development approach. It was applied for the course of Fundamental Physics at Universitas PGRI Semarang for the 2014/2015 academic year. Results show gain analysis value of 0.68, which means some medium improvements. The result of t-test is shows a calculated value of 27.35 and a table t of 2.020 for df = 25 and α = 0.05. Results of pre-tests and post-tests increase from 23.45 to 76.15. Application of multi-representation learning tools significantly improves students’ grades.

  19. Mastery-style homework exercises in introductory physics courses: Implementation matters

    Science.gov (United States)

    Gutmann, Brianne; Gladding, Gary; Lundsgaard, Morten; Stelzer, Timothy

    2018-06-01

    Encouraged by positive clinical results at the University of Illinois, mastery-style homework was integrated into a large semester-long preparatory physics course via an online homework system that used narrated animated video solutions as correctives. This paper discusses the impact and evolution of the homework in its first two years. The first iteration revealed that students were frustrated and did not engage with the system in an effective way. Intending to reduce that frustration and quell negative behavior, the mastery requirement was relaxed, transfer between versions was reduced, and the addition of a direct discussion with students about the homework were implemented in its second year. The results showed that details of implementation can substantially affect students' behavior; large and statistically significant effects were observed as a reduction in frustration (with self-identified "frustrated" students dropping from 60% in 2014 to 30% in 2015) and improvement in performance (average student mastery rate of 59% to 69%).

  20. Using Raman Spectroscopy and Surface-Enhanced Raman Scattering to Identify Colorants in Art: An Experiment for an Upper-Division Chemistry Laboratory

    Science.gov (United States)

    Mayhew, Hannah E.; Frano, Kristen A.; Svoboda, Shelley A.; Wustholz, Kristin L.

    2015-01-01

    Surface-enhanced Raman scattering (SERS) studies of art represent an attractive way to introduce undergraduate students to concepts in nanoscience, vibrational spectroscopy, and instrumental analysis. Here, we present an undergraduate analytical or physical chemistry laboratory wherein a combination of normal Raman and SERS spectroscopy is used to…

  1. Investigation of high school male and female students‘ attitudes towards Physical Education and Sports course

    Directory of Open Access Journals (Sweden)

    Kadir PEPE

    2016-09-01

    Full Text Available Aim: The investigation has been made in order to define high school male and female students’ attitudes towards physical education and sports course. Material and Methods: The Research is in research screening model. The population of the study is consisted of Burdur province and high schools located in the selected district and the sample group consists of students studying at the 9th, 10th, 11th, 12th grade in these schools. The data have been obtained from the written sources and by using survey methods. The attitude scale of physical education and sports classes for secondary school students developed by Güllü and Güçlü (2007 has been used. Questionnaires have been applied to the sample group by being consulted with one to one by sampling method. 950 individuals in total, 522 women and 428 men, have answered to the questionnaire. The data obtained have been transferred to a computer for statistical process and as statistical procedures, frequency (% and Independent samples t- test, to determine the difference between variables, have been applied. In the detection of differences, reviews have been made by being adopting the significance level of 0.05 in compliance with the answer distributions given to each question and the averages. Results: According to the obtained data; according to the responses of the surveyed high school students studying in average, their attitudes are positive to physical education and sports lessons; it is seen that there is a significant relationship in the significance level of 0,05 in comparative statistical procedures (p <0.05 . Conclusion: As a result; we can say that students' attitudes towards physical education and sports classes participated in the survey are positive, but male students have more positive attitudes than female students.

  2. Class notes from the first international training course on the physical protection of nuclear facilities and materials

    Energy Technology Data Exchange (ETDEWEB)

    Herrington, P.B. (ed.)

    1979-05-01

    The International Training Course on Physical Protection of Nuclear Facilities and Materials was intended for representatives from the developing countries who are responsible for preparing regulations and designing and assessing physical protection systems. The first part of the course consists of lectures on the objectives, organizational characteristics, and licensing and regulations requirements of a state system of physical protection. Since the participants may have little experience in nuclear energy, background information is provided on the topics of nuclear materials, radiation hazards, reactor systems, and reactor operations. Transportation of nuclear materials is addressed and emphasis is placed on regulations. Included in these discussions are presentations by guest speakers from countries outside the United States of America who present their countries' threat to nuclear facilities. Effectiveness evaluation methodology is introduced to the participants by means of instructions which teach them how to use logic trees and the EASI (Estimate of Adversary Sequence Interruption) program. The following elements of a physical protection system are discussed: barriers, protective force, intrusion detection systems, communications, and entry-control systems. Total systems concepts of physical protection system design are emphasized throughout the course. Costs, manpower/technology trade-offs, and other practical considerations are discussed. Approximately one-third of the course is devoted to practical exercises during which the attendees participatein problem solving. A hypothetical nuclear facility is introduced, and the attendees participate in the conceptual design of a physical protection system for the facility.

  3. Class notes from the first international training course on the physical protection of nuclear facilities and materials

    International Nuclear Information System (INIS)

    Herrington, P.B.

    1979-05-01

    The International Training Course on Physical Protection of Nuclear Facilities and Materials was intended for representatives from the developing countries who are responsible for preparing regulations and designing and assessing physical protection systems. The first part of the course consists of lectures on the objectives, organizational characteristics, and licensing and regulations requirements of a state system of physical protection. Since the participants may have little experience in nuclear energy, background information is provided on the topics of nuclear materials, radiation hazards, reactor systems, and reactor operations. Transportation of nuclear materials is addressed and emphasis is placed on regulations. Included in these discussions are presentations by guest speakers from countries outside the United States of America who present their countries' threat to nuclear facilities. Effectiveness evaluation methodology is introduced to the participants by means of instructions which teach them how to use logic trees and the EASI (Estimate of Adversary Sequence Interruption) program. The following elements of a physical protection system are discussed: barriers, protective force, intrusion detection systems, communications, and entry-control systems. Total systems concepts of physical protection system design are emphasized throughout the course. Costs, manpower/technology trade-offs, and other practical considerations are discussed. Approximately one-third of the course is devoted to practical exercises during which the attendees participatein problem solving. A hypothetical nuclear facility is introduced, and the attendees participate in the conceptual design of a physical protection system for the facility

  4. Physical activity students of the medical and non-medical degree courses

    Directory of Open Access Journals (Sweden)

    Lucyna Sochocka

    2013-06-01

    Full Text Available Introduction: Recognition of the multiple positive effects of the physical activity confirms its influence on human’s health. Undertaking of the health oriented conducts plays an important role in the promotion of the health and in the creating of the healthier future. Academic youth should be aware of the influence of certain activities on health. The aim of the research was to analyse the physical activity performed by the full-time students of the medical and nonmedical degree courses. Material and methods: The research was conducted at the turn of 2012 and 2013. The research group, containing 553 person (n4553, consisted of the students from six Polish, both medical and non-medical, university colleges. The research utilizes the method of the diagnostic survey. Technique of the research based on the poll whose questionnaire had been created by the authors for the purpose of the research. Accuracy of the research tool was established within the method of objective judges, splithalf method was used to determine reliability (according to Spearman-Brown result 0.86. In order to define the existence of the differences or correlations between analysed immeasurable parameters chi-squared and Fisher’s exact tests were used. Results: The substantial majority of the respondents – 79,5% (n4439 described themselves as physically active. The forms of activity that are performed most often among the students are: cycling – 40,5% (n4220, team sport – 27,1% (n4147, dog walking – 27,1% (n4147, group activities (aerobics, zumba, salsa – 21,2% (n4115 and swimming – 20,8% (n4113. The sex and the faculty of the studies are both important variables that have got statistically significant impact on the choice of the form of activity. Majority of the respondents – 78,3% (n4432 chooses the type of the physical activity basing on their likings and the amount of the spare time – 42,9% (n4237. Exercising of the physical activity is regarded as a

  5. Organizational aspects of an experimental program for physical education with a strengthened course in professional and applied physical training of future electrical engineers in the railway sector

    Directory of Open Access Journals (Sweden)

    Anzhelika Yefremova

    2017-06-01

    Full Text Available Purpose: to develop an optimized program for physical education with a strengthened course in professional and applied physical training (PAPT for students of railway universities. Material & Methods: analysis and generalization of scientific sources and program-normative documentation on physical education of the higher educational institution of railway transport, survey. Results: the results of the survey of railroad specialists are given. Pilot studies have determined the nature and conditions of professional activity of electrical engineers of railway transport. The experimental program on physical education with the strengthened course of the PAPT of students of railway universities was developed and theoretically justified. Conclusion: structure of the experimental program on physical education with the strengthened course of the PAPT included a theoretical section (8 hours, methodical and practical exercises (6 hours, a practical section (114 hours and a control section (12 hours. The program focuses on improving professionally important physical and psycho-physiological qualities and functions, psychomotor skills and physical performance. The basis of the practical section was the physical exercises from different sections of the current basic curriculum.

  6. A course in mathematical physics 3 quantum mechanics of atoms and molecules

    CERN Document Server

    Thirring, Walter

    1981-01-01

    In this third volume of A Course in Mathematical Physics I have attempted not simply to introduce axioms and derive quantum mechanics from them, but also to progress to relevant applications. Reading the axiomatic litera­ ture often gives one the impression that it largely consists of making refined axioms, thereby freeing physics from any trace of down-to-earth residue and cutting it off from simpler ways of thinking. The goal pursued here, however, is to come up with concrete results that can be compared with experimental facts. Everything else should be regarded only as a side issue, and has been chosen for pragmatic reasons. It is precisely with this in mind that I feel it appropriate to draw upon the most modern mathematical methods. Only by their means can the logical fabric of quantum theory be woven with a smooth structure; in their absence, rough spots would . inevitably appear, especially in the theory of unbounded operators, where the details are too intricate to be comprehended easily. Great care...

  7. Value Added: History of Physics in a ``Science, Technology, and Society'' General Education Undergraduate Course

    Science.gov (United States)

    Neuenschwander, Dwight

    2016-03-01

    In thirty years of teaching a capstone ``Science, Technology, and Society'' course to undergraduate students of all majors, I have found that, upon entering STS, to most of them the Manhattan Project seems about as remote as the Civil War; few can describe the difference between nuclear and large non-nuclear weapons. With similar lack of awareness, many students seem to think the Big Bang was dreamed up by science sorcerers. One might suppose that a basic mental picture of weapons that held entire populations hostage should be part of informed citizenship. One might also suppose that questions about origins, as they are put to nature through evidence-based reasoning, should be integral to a culture's identity. Over the years I have found the history of physics to be an effective tool for bringing such subjects to life for STS students. Upon hearing some of the history behind (for example) nuclear weapons and big bang cosmology, these students can better imagine themselves called upon to help in a Manhattan Project, or see themselves sleuthing about in a forensic science like cosmology. In this talk I share sample student responses to our class discussions on nuclear weapons, and on cosmology. The history of physics is too engaging to be appreciated only by physicists.

  8. Developing Statistical Physics Course Handout on Distribution Function Materials Based on Science, Technology, Engineering, and Mathematics

    Science.gov (United States)

    Riandry, M. A.; Ismet, I.; Akhsan, H.

    2017-09-01

    This study aims to produce a valid and practical statistical physics course handout on distribution function materials based on STEM. Rowntree development model is used to produce this handout. The model consists of three stages: planning, development and evaluation stages. In this study, the evaluation stage used Tessmer formative evaluation. It consists of 5 stages: self-evaluation, expert review, one-to-one evaluation, small group evaluation and field test stages. However, the handout is limited to be tested on validity and practicality aspects, so the field test stage is not implemented. The data collection technique used walkthroughs and questionnaires. Subjects of this study are students of 6th and 8th semester of academic year 2016/2017 Physics Education Study Program of Sriwijaya University. The average result of expert review is 87.31% (very valid category). One-to-one evaluation obtained the average result is 89.42%. The result of small group evaluation is 85.92%. From one-to-one and small group evaluation stages, averagestudent response to this handout is 87,67% (very practical category). Based on the results of the study, it can be concluded that the handout is valid and practical.

  9. Scientific reasoning abilities of nonscience majors in physics-based courses

    Science.gov (United States)

    Moore, J. Christopher; Rubbo, Louis J.

    2012-06-01

    We have found that non-STEM (science, technology, engineering, and mathematics) majors taking either a conceptual physics or astronomy course at two regional comprehensive institutions score significantly lower preinstruction on the Lawson’s Classroom Test of Scientific Reasoning (LCTSR) in comparison to national average STEM majors. Based on LCTSR score, the majority of non-STEM students can be classified as either concrete operational or transitional reasoners in Piaget’s theory of cognitive development, whereas in the STEM population formal operational reasoners are far more prevalent. In particular, non-STEM students demonstrate significant difficulty with proportional and hypothetico-deductive reasoning. Prescores on the LCTSR are correlated with normalized learning gains on various concept inventories. The correlation is strongest for content that can be categorized as mostly theoretical, meaning a lack of directly observable exemplars, and weakest for content categorized as mostly descriptive, where directly observable exemplars are abundant. Although the implementation of research-verified, interactive engagement pedagogy can lead to gains in content knowledge, significant gains in theoretical content (such as force and energy) are more difficult with non-STEM students. We also observe no significant gains on the LCTSR without explicit instruction in scientific reasoning patterns. These results further demonstrate that differences in student populations are important when comparing normalized gains on concept inventories, and the achievement of significant gains in scientific reasoning requires a reevaluation of the traditional approach to physics for non-STEM students.

  10. Profile of Scientific Ability of Chemistry Education Students in Basic Physics Course

    Science.gov (United States)

    Suastika, K. G.; Sudyana, I. N.; Lasiani, L.; Pebriyanto, Y.; Kurniawati, N.

    2017-09-01

    The weakness of scientific ability of students in college has been being a concern in this case, especially in terms of laboratory activities to support Laboratory Based Education. Scientific ability is a basic ability that must be dominated by students in basic physics lecturing process as a part of scientific method. This research aims to explore the indicators emergence of the scientific ability of students in Chemistry Education of Study Program, Faculty of Teaching and Education University of Palangka Raya through Inquiry Based Learning in basic physics courses. This research is a quantitative research by using descriptive method (descriptive-quantitative). Students are divided into three categories of group those are excellent group, low group, and heterogeneous group. The result shows that the excellent group and low group have same case that were occured decreasing in the percentage of achievement of scientific ability, while in heterogeneous group was increased. The differentiation of these results are caused by enthusiastic level of students in every group that can be seen in tables of scientific ability achievement aspects. By the results of this research, hoping in the future can be a references for further research about innovative learning strategies and models that can improve scientific ability and scientific reasoning especially for science teacher candidates.

  11. Scientific reasoning abilities of nonscience majors in physics-based courses

    Directory of Open Access Journals (Sweden)

    J. Christopher Moore

    2012-02-01

    Full Text Available We have found that non-STEM (science, technology, engineering, and mathematics majors taking either a conceptual physics or astronomy course at two regional comprehensive institutions score significantly lower preinstruction on the Lawson’s Classroom Test of Scientific Reasoning (LCTSR in comparison to national average STEM majors. Based on LCTSR score, the majority of non-STEM students can be classified as either concrete operational or transitional reasoners in Piaget’s theory of cognitive development, whereas in the STEM population formal operational reasoners are far more prevalent. In particular, non-STEM students demonstrate significant difficulty with proportional and hypothetico-deductive reasoning. Prescores on the LCTSR are correlated with normalized learning gains on various concept inventories. The correlation is strongest for content that can be categorized as mostly theoretical, meaning a lack of directly observable exemplars, and weakest for content categorized as mostly descriptive, where directly observable exemplars are abundant. Although the implementation of research-verified, interactive engagement pedagogy can lead to gains in content knowledge, significant gains in theoretical content (such as force and energy are more difficult with non-STEM students. We also observe no significant gains on the LCTSR without explicit instruction in scientific reasoning patterns. These results further demonstrate that differences in student populations are important when comparing normalized gains on concept inventories, and the achievement of significant gains in scientific reasoning requires a reevaluation of the traditional approach to physics for non-STEM students.

  12. Evaluation of an Adaptive Learning Technology in a First-year Extended Curriculum Programme Physics course

    Directory of Open Access Journals (Sweden)

    Moses Mushe Basitere

    2017-12-01

    Full Text Available Personalised, adaptive online learning platforms that form part of web-based proficiency tests play a major role in the improvement of the quality of learning in physics and assist learners in building proficiency, preparing for tests and using their time more effectively. In this study, the effectiveness of an adaptive learning platform, Wiley Plus ORION, was evaluated using proficiency test scores compared to paper-based test scores in a first-year introductory engineering physics course. Learners’ performance activities on the adaptive learning platform as well as their performance on the proficiency tests and their impact on the paper-based midterm averaged test were investigated using both qualitative and quantitative methods of data collection. A comparison between learners’ performance on the proficiency tests and a paper-based midterm test was done to evaluate whether there was a correlation between their performance on the proficiency tests and the midterm test. Focus group interviews were carried out with three categories of learners to elicit their experiences. Results showed that there was a positive relationship between high-performing learners’ proficiency score in the midterm averaged test and that the proficiency test enhanced learners’ performance in the paper-based midterm averaged test.

  13. IBPRO - A Novel Short-Duration Teaching Course in Advanced Physics and Biology Underlying Cancer Radiotherapy.

    Science.gov (United States)

    Joiner, Michael C; Tracey, Monica W; Kacin, Sara E; Burmeister, Jay W

    2017-06-01

    This article provides a summary and status report of the ongoing advanced education program IBPRO - Integrated course in Biology and Physics of Radiation Oncology. IBPRO is a five-year program funded by NCI. It addresses the recognized deficiency in the number of mentors available who have the required knowledge and skill to provide the teaching and training that is required for future radiation oncologists and researchers in radiation sciences. Each year, IBPRO brings together 50 attendees typically at assistant professor level and upwards, who are already qualified/certified radiation oncologists, medical physicists or biologists. These attendees receive keynote lectures and activities based on active learning strategies, merging together the clinical, biological and physics underpinnings of radiation oncology, at the forefront of the field. This experience is aimed at increasing collaborations, raising the level and amount of basic and applied research undertaken in radiation oncology, and enabling attendees to confidently become involved in the future teaching and training of researchers and radiation oncologists.

  14. E-COURSE BASED ON THE PLATFORM MOODLE IN TEACHING PHYSICS TO FUTURE SPECIALISTS OF RIVER AND SEA TRANSPORT

    Directory of Open Access Journals (Sweden)

    Cherniavskyі V.

    2017-03-01

    Full Text Available The article considers that the fastest way to include Ukraine into the global educational system is to create conditions for widespread use of the Internet for training purposes, which is considered the most perfect model of communication in the global information society. It is stated that one of the most common and most convenient forms of distance learning for marine institutions of higher education is electronic courses. Their main advantage over traditional forms of education is to provide the conditions for productive individual work of the students. It is shown that the problem of individual work is particularly relevant for marine education, due to the specific schedule of the educational process, including the presence of long-term shipboard training. It is defined the peculiarities of usage of e-learning courses in Physics for training of the specialists of river and sea transport. It is proposed the interpretation of the term "e-learning course in Physics" as an information model of a specific topic or section of "Physics", which displays the oriented basis of cognitive activity of the student, it provides organic and natural formation, regulates mental and emotional processes, predicts the opportunities for educational tasks solving by offered means for stimulating the development of personal cognitive capabilities. The requirements for e-learning courses in Physics are determined and their advantages over other innovative teaching methods towards the realization of methodological features of the educational process are highlighted. The structure of e-learning courses in Physics is proposed and the experience of e-courses using in Physics for bachelors of specialty "River and Sea transport" is described.

  15. Students' experiences with interactivity and learning in a high school physics multimedia distance learning course

    Science.gov (United States)

    Villarreal-Stewart, Irene

    The purpose guiding this research has been to learn about and describe the phenomena of interactivity from the learners' perspectives and to learn which of the interactivity affordances and practices were actually used by students and why in the process of learning physics using an interactive multimedia distance learning course system. The bigger purpose behind learning about and describing interactivity has been to gain knowledge and perspective for its instructional design to benefit the learner, the school as curriculum implementer, and instructional media designers to create better products. Qualitative methodology in the interpretivist tradition was used, that is, in-depth interviews and on-site observations, to gain understanding of interactivity from the learners' perspective and to gain understanding of the student learning context impacting and shaping the students' interactivity experiences. NVivo was used to sort, organize and index data. All data were read on three levels: literally, interpretively, and reflexively; and were read comparatively to other perspectives to get descriptions and interpretations that were holistic to the implementation and had potential insight to improve practice for instructional designers, teachers, administrators, specifically to improve the learning experience for students. Site-Specific Findings: Students watched videos, resisted using phone and e-mail, and worked math problems to demonstrate learning, which resulted in very little interactivity, virtually no dialogue about physics, no physical activity, one-way communication, multifaceted dissatisfaction, student need for teacher involvement in the learning enterprise, student appreciation for interactivity, and expressed desire for a real, live teacher. I also found that some students did experience the system as interactive, did experience learner control and self-directed learning, and despite dissatisfaction, liked and appreciated the course. Wider Applications

  16. Incorporating Geoethics in Introductory Earth System Science Courses

    Science.gov (United States)

    Schmitt, J.

    2014-12-01

    The integrative nature of Earth System Science courses provides extensive opportunities to introduce students to geoethical inquiry focused on globally significant societal issues. Geoscience education has traditionally lagged in its efforts to increase student awareness of the significance of geologic knowledge to understanding and responsibly confronting causes and possible solutions for emergent, newly emerging, and future problems of anthropogenic cause and consequence. Developing an understanding of the human impact on the earth system requires early (lower division) and for geoscience majors, repeated (upper division) curricular emphasis on the interactions of the lithosphere, hydrosphere, atmosphere, biosphere, and pedosphere across space and through time. Capturing the interest of university students in globally relevant earth system issues and their ethical dimensions while first learning about the earth system is an important initial step in bringing geoethical deliberation and awareness to the next generation of geoscientists. Development of a new introductory Earth System Science course replacing a traditional introductory Physical Geology course at Montana State University has involved abandonment of concept-based content organization in favor of a place-based approach incorporating examination of the complex interactions of earth system components and emergent issues and dilemmas deriving from the unique component interactions that characterize each locale. Thirteen different place-based week-long modules (using web- and classroom-based instruction) were developed to ensure cumulative broad coverage across the earth geographically and earth system components conceptually. Each place-based instructional module contains content of societal relevance requiring synthesis, critical evaluation, and reflection by students. Examples include making linkages between deforestation driven by economics and increased seismicity in Haiti, agriculture and development

  17. Energy balance and physical demands during an 8-week arduous military training course.

    Science.gov (United States)

    Richmond, Victoria L; Horner, Fleur E; Wilkinson, David M; Rayson, Mark P; Wright, Antony; Izard, Rachel

    2014-04-01

    This study assessed soldier's physical demands and energy balance during the Section Commanders' Battles Course (SCBC). Forty male soldiers were monitored during the 8-week tactics phase of the SCBC. Energy expenditure was measured using the doubly labeled water method. Cardiovascular strain (heart rate) and physical activity (using triaxial accelerometer) were also monitored. Average sized portions of meals were weighed, with all recipes and meals entered into a dietary analysis program to calculate the calorie content. Energy expenditure averaged 19.6 ± 1.8 MJ · d(-1) in weeks 2 to 3 and 21.3 ± 2.0 MJ · d(-1) in weeks 6 to 7. Soldiers lost 5.1 ± 2.6 kg body mass and body fat percent decreased from 23 ± 4% to 19 ± 5%. This average weight loss equates to an estimated energy deficit of 2.69 MJ · d(-1). The Army provided an estimated 14.0 ± 2.2 MJ · d(-1) in weeks 2 to 3 and 15.7 ± 2.2 MJ · d(-1) in weeks 6 to 7. Although this provision adheres to the minimum requirement of 13.8 MJ · d(-1) set by Army regulations, soldiers were in a theoretical 5.6 MJ · d(-1) energy deficit. The physical demands of SCBC were high, and soldiers were in energy deficit resulting in loss in body mass; primarily attributed to a loss in fat mass. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  18. Enrolment, Content and Assessment: A Review of Examinable Senior Secondary (16-19 Year Olds) Physical Education Courses: An International Perspective

    Science.gov (United States)

    Whittle, Rachael Jayne; Benson, Amanda Clare; Telford, Amanda

    2017-01-01

    Senior secondary physical education courses for certification continue to attract increasing student enrolments amidst international concerns for the state and status of physical education in schools. Curricula analysis of senior secondary physical education has typically focussed on courses in local contexts. This review aims to contribute to the…

  19. Monitored course at distance Nuclear Medicine: Introduction of Basic Physics Aspects. Preliminary results

    International Nuclear Information System (INIS)

    Lopez Diaz, A.; San Pedro, A.P.; Petrirena, G.

    2007-01-01

    Full text: This project try to evaluated the use of specialized multimedia product for a monitored education at distance of personnel who start to be close related with Nuclear Medicine Techniques like nurse, surgeons, specialized physician, oncologist, etc. The multimedia product included two items: Introduction to Nuclear Medicine Techniques and Basic aspects of radiation physics. Each item contents an audio visual conference (Power Point) and a charter (PDF): with theoretic aspects, understand verification questions and self-evaluation activities. The product need only a PC compatible with window 98 (or more advanced version), and 130MBy of memory spaced for archive. In order to verify the effectiveness of the distance course, we tested its results in 4 specialists: 1 nurse, 1 radio-pharmacist, 1 cardiologist and 1 neurologist. After consult and clarify their doubts, a final test was applied in order to check the knowledge acquired. With 100 point of maximum score and 60-point minimum to pass, the test contented 2 types of questions: true or false choice (with 50 aspects to verify, 1.5 point/ correct answer) and many correct choices (5 questions, 5 point/correct answer). The average result was 91.5 points/ students (89.5- 94 points); the four students pass the test with very good degree of comprehension (1 very good and 3 excellent). The course was polled about the quality of the material and their comprehension degree, asking the student to make suggestions if were needed. The average evaluation was 94 points (91-95 points). The suggestions made were: increase the number of examples and practical sequences, the understand verification questions and include monitored practical exercise. Conclusion: the product can be useful for a monitored education at distance of personnel who start to be related with Nuclear Medicine Techniques. Recommendation: The program should be enrich with the suggested things and extend to other important items like: radiation protection

  20. Design of multiple representations e-learning resources based on a contextual approach for the basic physics course

    Science.gov (United States)

    Bakri, F.; Muliyati, D.

    2018-05-01

    This research aims to design e-learning resources with multiple representations based on a contextual approach for the Basic Physics Course. The research uses the research and development methods accordance Dick & Carey strategy. The development carried out in the digital laboratory of Physics Education Department, Mathematics and Science Faculty, Universitas Negeri Jakarta. The result of the process of product development with Dick & Carey strategy, have produced e-learning design of the Basic Physics Course is presented in multiple representations in contextual learning syntax. The appropriate of representation used in the design of learning basic physics include: concept map, video, figures, data tables of experiment results, charts of data tables, the verbal explanations, mathematical equations, problem and solutions example, and exercise. Multiple representations are presented in the form of contextual learning by stages: relating, experiencing, applying, transferring, and cooperating.

  1. MO-E-18C-03: Incorporating Active Learning Into A Traditional Graduate Medical Physics Course

    Energy Technology Data Exchange (ETDEWEB)

    Burmeister, J [Wayne State University School of Medicine / Karmanos Cancer Center, Detroit, MI (United States)

    2014-06-15

    Purpose: To improve the ability of graduate students to learn medical physics concepts through the incorporation of active learning techniques. Methods: A traditional lecture-based radiological physics course was modified such that: (1) traditional (two-hour) lectures were provided online for students to watch prior to class, (2) a student was chosen randomly at the start of each class to give a two minute synopsis of the material and its relevance (two-minute drill), (3) lectures were significantly abbreviated and remaining classroom time used for group problem solving, and (4) videos of the abbreviated lectures were made available online for review. In the transition year, students were surveyed about the perceived effects of these changes on learning. Student performance was evaluated for 3 years prior to and 4 years after modification. Results: The survey tool used a five point scale from 1=Not True to 5=Very True. While nearly all students reviewed written materials prior to class (4.3±0.9), a minority watched the lectures (2.1±1.5). A larger number watched the abbreviated lectures for further clarification (3.6±1.6) and found it helpful in learning the content (4.2±1.0). Most felt that the two-minute drill helped them get more out of the lecture (3.9±0.8) and the problem solving contributed to their understanding of the content (4.1±0.8). However, no significant improvement in exam scores resulted from the modifications (mean scores well within 1 SD during study period). Conclusion: Students felt that active learning techniques improved their ability to learn the material in what is considered the most difficult course in the program. They valued the ability to review the abbreviated class lecture more than the opportunity to watch traditional lectures prior to class. While no significant changes in student performance were observed, aptitude variations across the student cohorts make it difficult to draw conclusions about the effectiveness of active

  2. MO-E-18C-03: Incorporating Active Learning Into A Traditional Graduate Medical Physics Course

    International Nuclear Information System (INIS)

    Burmeister, J

    2014-01-01

    Purpose: To improve the ability of graduate students to learn medical physics concepts through the incorporation of active learning techniques. Methods: A traditional lecture-based radiological physics course was modified such that: (1) traditional (two-hour) lectures were provided online for students to watch prior to class, (2) a student was chosen randomly at the start of each class to give a two minute synopsis of the material and its relevance (two-minute drill), (3) lectures were significantly abbreviated and remaining classroom time used for group problem solving, and (4) videos of the abbreviated lectures were made available online for review. In the transition year, students were surveyed about the perceived effects of these changes on learning. Student performance was evaluated for 3 years prior to and 4 years after modification. Results: The survey tool used a five point scale from 1=Not True to 5=Very True. While nearly all students reviewed written materials prior to class (4.3±0.9), a minority watched the lectures (2.1±1.5). A larger number watched the abbreviated lectures for further clarification (3.6±1.6) and found it helpful in learning the content (4.2±1.0). Most felt that the two-minute drill helped them get more out of the lecture (3.9±0.8) and the problem solving contributed to their understanding of the content (4.1±0.8). However, no significant improvement in exam scores resulted from the modifications (mean scores well within 1 SD during study period). Conclusion: Students felt that active learning techniques improved their ability to learn the material in what is considered the most difficult course in the program. They valued the ability to review the abbreviated class lecture more than the opportunity to watch traditional lectures prior to class. While no significant changes in student performance were observed, aptitude variations across the student cohorts make it difficult to draw conclusions about the effectiveness of active

  3. Bush Physics for the 21st Century, A Distance Delivery Physics Course Targeting Students in Rural Alaska and Across the North

    Science.gov (United States)

    Solie, D. J.; Spencer, V. K.

    2010-12-01

    Bush Physics for the 21st Century brings physics that is engaging to modern youth, and mathematically rigorous, to high school and college students in the remote and often road-less villages of Alaska where the opportunity to take a physics course has been nearly nonexistent. The primary goal of the course is to prepare rural (predominantly Alaska Native) students for success in university science and engineering degree programs and ultimately STEM careers. The course is delivered via video conference and web based electronic blackboard tailored to the needs of remote students. Kinetic, practical and culturally relevant place-based examples from traditional and modern northern life are used to engage students, and a rigorous and mathematical focus is stressed to strengthen problem solving skills. Simple hands-on-lab experiment kits are shipped to the students. In addition students conduct a Collaborative Research Experiment where they coordinate times of sun angle measurements with teams in other villages to determine their latitude and longitude as well as an estimate of the circumference of the earth. Connecting abstract mathematical symbols and equations to real physical objects and problems is one of the most difficult things to master in physics. We introduce Inuktitut symbols to complement the traditional Greek symbols in equations to strengthen the visual/conceptual connection with symbol and encourage an indigenous connection to the physical concepts. Results and observations from the first three pilot semesters (spring 2008, 2009 and 2010) will be presented.

  4. The entering results of formation of valeological competence of future teachers in the course of physical education

    Directory of Open Access Journals (Sweden)

    Borys Maksymchuk

    2016-12-01

    Full Text Available Purpose: the research consists in development, justification and experimental check of theoretical-methodical bases of formation of valeological competence of the process of physical education of students of pedagogical higher educational institutions. Material & Methods: the level of formation of valeological competence of future teachers in the course of physical education was determined by averaging of estimates by each experimental indicator during the skilled-experimental work. 497 students from 1 till 5 courses, 35 university graduates, working as teachers at schools of Vinnitsa, and 17 teachers of higher education institutions were involved in the forming experiment. Results: the low level of formation of valeological competence of future teachers in the course of physical education in all skilled groups, participating in the pedagogical experiment, creates the objective need of introduction of the developed experimental model of formation valeological competence of future teachers in the course of physical education and complex of reasonable pedagogical conditions. Conclusions: the carried-out entering test showed the similarity of experimental groups in the section of respondents on levels of formation of valeological competence, allows to consider output parameters leveled and to begin implementation of the chosen plan of experiment.

  5. Conceptual Mobility and Entrenchment in Introductory Geoscience Courses: New Questions Regarding Physics' and Chemistry's Role in Learning Earth Science Concepts

    Science.gov (United States)

    Anderson, Steven W.; Libarkin, Julie C.

    2016-01-01

    Nationwide pre- and posttesting of introductory courses with the Geoscience Concept Inventory (GCI) shows little gain for many of its questions. Analysis of more than 3,500 tests shows that 22 of the 73 GCI questions had gains of <0.03, and nearly half of these focused on basic physics and chemistry. We also discovered through an assessment of…

  6. Using a Disciplinary Discourse Lens to Explore How Representations Afford Meaning Making in a Typical Wave Physics Course

    Science.gov (United States)

    Enghag, Margareta; Forsman, Jonas; Linder, Cedric; MacKinnon, Allan; Moons, Ellen

    2013-01-01

    We carried out a case study in a wave physics course at a Swedish university in order to investigate the relations between the representations used in the lessons and the experience of meaning making in interview-discussions. The grounding of these interview-discussions also included obtaining a rich description of the lesson environment in terms…

  7. Design of Online Report Writing Based on Constructive and Cooperative Learning for a Course on Traditional General Physics Experiments

    Science.gov (United States)

    Lo, Hao-Chang

    2013-01-01

    The objective of this study was to develop an online report writing activity that was a constructive and cooperative learning process for a course on traditional general physics experiments. Wiki, a CMC authoring tool, was used to construct the writing platform. Fifty-eight undergraduate students (33 men and 25 women), working in randomly assigned…

  8. The Development of Open University New Generation Learning Model Using Research and Development for Atomic Physics Course PEFI4421

    Science.gov (United States)

    Prayekti

    2017-01-01

    This research was aimed at developing printed teaching materials of Atomic Physics PEFI4421 Course using Research and Development (R & D) model; which consisted of three major set of activities. The first set consisted of seven stages, the second set consisted of one stage, and the third set consisted of seven stages. This research study was…

  9. The Use of Microsoft Excel to Illustrate Wave Motion and Fraunhofer Diffraction in First Year Physics Courses

    Directory of Open Access Journals (Sweden)

    Garry Robinson

    2011-07-01

    Full Text Available In this paper we present an Excel package that can be used to demonstrate physical phenomena in which variables may be automatically adjusted in real-time. This is accomplished by interrogating the system clock through the use of an appropriate macro, and using the clock reading to update the relevant variable. The package has been used for a number of years in first year physics courses to illustrate two phenomena: i waves, including travelling waves, standing waves, the addition of waves and the interference of waves in general, and also Lissajous figures, and ii Fraunhofer diffraction and the effects of varying such quantities as the wavelength of the incoming light, the number of slits, the slit width and the slit separation. A number of illustrative examples, generated by the package and taken from a fist year physics course, are presented graphically. The package, which is available for downloading from the web, may be used interactively by the student and is easily modified by them. The use of Excel has the advantage that it is accessible to a much wider audience than if it were written in, say, Matlab. We envisage that it may be useful for first year university courses in wave motion and optics, and may also be useful in physics courses in the last year of secondary school. The package has been tested under Excel 2003, 2007 and 2010, and runs satisfactorily in all three versions.

  10. Workshop materials from the 2nd international training course on physical protection of nuclear facilities and materials, Module 13

    International Nuclear Information System (INIS)

    Martin, F.P.

    1980-04-01

    This course is intended for representatives of countries where nuclear power is being developed and whose responsibilities include the preparation of regulation and the design and evaluation of physical protection systems. This is the second of two volumes; the first volume is SAND-79-1090

  11. An Analysis on High School Students' Perceptions of Physics Courses in Terms of Gender (A Sample from Turkey)

    Science.gov (United States)

    Baran, Medine

    2016-01-01

    This study was carried out to determine high school students' perceptions of the courses of Physics and the factors influential on their perceptions with respect to gender. The research sample included 154 high school students (F:78; M:76). In the study, as the data collection tool, a structured interview form was used. The data collected in the…

  12. Primary Teachers' Particle Ideas and Explanations of Physical Phenomena: Effect of an In-Service Training Course

    Science.gov (United States)

    Papageorgiou, George; Stamovlasis, Dimitrios; Johnson, Phil Michael

    2010-01-01

    This paper presents a study concerning Greek primary school teachers' (n = 162) ideas about the particulate nature of matter and their explanations of physical phenomena. The study took place during an in-service training course where the effectiveness of a specially designed intervention was tested. A key feature was an approach based on the…

  13. A course in mathematical physics 1 and 2 classical dynamical systems and classical field theory

    CERN Document Server

    Thirring, Walter

    1992-01-01

    The last decade has seen a considerable renaissance in the realm of classical dynamical systems, and many things that may have appeared mathematically overly sophisticated at the time of the first appearance of this textbook have since become the everyday tools of working physicists. This new edition is intended to take this development into account. I have also tried to make the book more readable and to eradicate errors. Since the first edition already contained plenty of material for a one­ semester course, new material was added only when some of the original could be dropped or simplified. Even so, it was necessary to expand the chap­ ter with the proof of the K-A-M Theorem to make allowances for the cur­ rent trend in physics. This involved not only the use of more refined mathe­ matical tools, but also a reevaluation of the word "fundamental. " What was earlier dismissed as a grubby calculation is now seen as the consequence of a deep principle. Even Kepler's laws, which determine the radii of the ...

  14. Case study of a problem-based learning course of physics in a telecommunications engineering degree

    Science.gov (United States)

    Macho-Stadler, Erica; Jesús Elejalde-García, Maria

    2013-08-01

    Active learning methods can be appropriate in engineering, as their methodology promotes meta-cognition, independent learning and problem-solving skills. Problem-based learning is the educational process by which problem-solving activities and instructor's guidance facilitate learning. Its key characteristic involves posing a 'concrete problem' to initiate the learning process, generally implemented by small groups of students. Many universities have developed and used active methodologies successfully in the teaching-learning process. During the past few years, the University of the Basque Country has promoted the use of active methodologies through several teacher training programmes. In this paper, we describe and analyse the results of the educational experience using the problem-based learning (PBL) method in a physics course for undergraduates enrolled in the technical telecommunications engineering degree programme. From an instructors' perspective, PBL strengths include better student attitude in class and increased instructor-student and student-student interactions. The students emphasised developing teamwork and communication skills in a good learning atmosphere as positive aspects.

  15. CREATING AN INFORMATIONAL WEBSITE FOR PHYSICS ACADEMIC COURSE: WEB DESIGN SPECIFICS

    Directory of Open Access Journals (Sweden)

    Іryna A. Slipukhina

    2017-12-01

    Full Text Available The article is devoted to the analysis of means and methods of creating an educational informational website for the Physics academic course. The stages of technical task creation, design of the main and typical pages of the website, layout, programming, content filling and publication are considered. The analysis of libraries, frameworks and popular WordPress and Joomla CMSes has been carried out as well as usability testing. Features of ready-made tools suitable for efficient creation of such web applications are considered. The contents of the front end and back end components of the given specification, as well as their connection with AJAX, are determined. The features of the WordPress architecture and the location of JSON files for the transmission of structured information are revealed. An original Student Score plugin for WordPress, that allows managing the contents of the e-register and displaying them for a teacher and students, as well as plugins for managing electronic laboratory reporting and user administration have been created.

  16. Course for monitored education at distance: 'Introduction to basic aspects of radiation physics in NM'

    International Nuclear Information System (INIS)

    Lopez, Adlin; Palau, Aley; Petrirena, Gregorio; Cardenas, Ana Ivis

    2008-01-01

    Full text: Nuclear Medicine became a multimodality speciality, related with a lot of personnel not specialized in NM techniques: who have not training in radiation aspects. These projects try to evaluate the use of specialized multimedia product for a monitored education at distance of personnel who start to be related with Nuclear Medicine Techniques like nurses, surgeons, rheumatologists, etc. The multimedia product included two items: Introduction to Nuclear Medicine Techniques and Basic aspects of radiation physics. Each item contents an audio-visual conference (Power Point) and a charter (PDF): with theoretic aspects, understand verification questions and self-evaluation activities. The product need only a PC compatible with window 98 (or more advanced version), and 130MBy of memory spaced for archive. In order to verify the effectiveness of the distance course, we tested it in 10 students: 1 nurse, 1 radio-pharmacist, 1 cardiologist, 1 neurologist, 6 technologists. After consult and clarify their doubts, a final test was applied in order to check the knowledge acquired. With 100 point of maximum store and 60 point minimum to pass, the test contented 2 types of questions: true or false choice (with 50 aspects to verify 1.5 point/ correct answer) and many correct choices (5 questions, 5 point/correct answer). The average result was 85.6 points/ students: 6 -Excellent (90-100 points) , 3 -Very good (80-89 points) and 1 -Good (70-79 points). The course was polled about the quality of the material and their comprehension degree, asking the student to make suggestions if were needed. The average evaluation was 94 points (91-95 points). The suggestions made were: increase the number of examples and practical sequences, the understand verification questions and include monitored practical exercise. Conclusion: the product can be useful for a monitored education at distance of personnel who start to be related with Nuclear Medicine Techniques. Recommendation: The

  17. The General Philosophy Behind the New Integrated and Co-ordinated Science Courses in N.S.W. and the Science Foundation for Physics Textbook Series.

    Science.gov (United States)

    Messel, H.; Barker, E. N.

    Described are the science syllabuses and texts for the science courses written to fulfill the aims of the new system of education in the state of New South Wales, Australia. The science course was developed in two stages: (1) A four year integrated science syllabus for grades 7-10, and (2) separate courses in physics, chemistry, and biology with…

  18. Evaluation of 'Just4Mums' - A community based healthy eating and physical activity course for obese pregnant women.

    Science.gov (United States)

    Olander, Ellinor K; Atkinson, Lou; French, David P

    2014-07-01

    Current NICE guidelines state that women in England need to be supported regarding eating healthily and being physically active during pregnancy. In response to these guidelines, the Just4Mums service was developed - a free six week community-based course for obese (BMI⩾30) pregnant women. The service encouraged a healthy weight gain in pregnancy through the provision of information on healthy eating and opportunities to be physically active. The aim of this evaluation was to provide preliminary evidence on efficacy. Participants' were assessed at the beginning and end of the course, in terms of healthy eating and physical activity (PA) behaviour, mental well-being, and mediating variables (i.e. intentions, self-efficacy and attitudes towards healthy eating and PA). Thirty-four out of 60 women (57%) women completed the course. There were few differences between those women who completed and did not complete the course. After attending the service, the intention-to-treat analysis showed an improvement in healthy eating (higher intake of fruit and vegetables, lower intake of fast food), no change in PA, reduction in sedentary behaviour and an improvement in mental well-being. Participants also increased their attitude, intention and self-efficacy towards engaging in PA and intention to eat fruit and vegetables. These findings suggest that women who completed the Just4Mums service improved their health behaviours. More research is needed to identify why so many women dropped out of the service. Copyright © 2014.

  19. Prospection of implementation of distance learning for the course on fundamentals of Nuclear Physics at the graduate course of IPEN using free software infrastructure

    International Nuclear Information System (INIS)

    Tondim, Jose Egidio Marin

    2009-01-01

    In modern society, the utilization of technological resources and of the internet are of fundamental importance in ali areas and as such the educational activities have to follow this evolution. In this context, distance learning is a fundamental tool for educational development, being innovative and stimulating , offering a variety of resources that are complementary to the activities of the students. Also it is important to point out that distance learning can be brought to remote regions, of difficult access in many cases, so allowing a wide dissemination of knowledge and also implying in lower costs. The objective of this work is the prospection of the interest and viability of implantation of distance learning in the course on Fundamentals of Nuclear Physics at the pos-graduate course of IPEN, using free software infra-structure , by means of a pilot project on distance learning. The work was developed in three phases. In the first phase, a questionnaire was applied to the students , with the aim of finding out about their profiles and interest in distance learning, before they had contact with the pilot project. In the second phase, other students were interviewed , also with the objective of knowing their opinion about distance learning ,but after they had access to the pilot project. Finally,the professors of the graduate course of IPEN were consulted, also by means of a questionnaire, in order to know about their interest in the utilization of distance learning. The results obtained in the present work show that distance learning is a welcome pedagogical resource for students as well for teachers; these results will subsidize the future implementation of distance learning in the pos-graduate course of IPEN. (author)

  20. Students' Network Integration as a Predictor of Persistence in Introductory Physics Courses

    Science.gov (United States)

    Zwolak, Justyna P.; Dou, Remy; Williams, Eric A.; Brewe, Eric

    2017-01-01

    Increasing student retention (successfully finishing a particular course) and persistence (continuing through a sequence of courses or the major area of study) is currently a major challenge for universities. While students' academic and social integration into an institution seems to be vital for student retention, research into the effect of…

  1. Bush Physics for the 21st Century, A Distance Delivery Physics Course to Bridge the Gap in Rural Alaska and Across the North

    Science.gov (United States)

    Solie, D. J.; Spencer, V.

    2009-12-01

    Bush Physics for the 21st Century brings physics that is culturally connected, engaging to modern youth, and mathematically rigorous, to high school and college students in the remote and often road-less villages of Alaska. The primary goal of the course is to prepare rural (predominantly Alaska Native) students for success in university science and engineering degree programs and ultimately STEM careers. The course is currently delivered via video conference and web based electronic blackboard tailored to the needs of remote students. Practical, culturally relevant kinetic examples from traditional and modern northern life are used to engage students, and a rigorous and mathematical focus is stressed to strengthen problem solving skills. Simple hands-on-lab experiments are delivered to the students with the exercises completed on-line. In addition, students are teamed and required to perform a much more involved experimental study with the results presented by teams at the conclusion of the course. Connecting abstract mathematical symbols and equations to real physical objects and problems is one of the most difficult things to master in physics. Greek symbols are traditionally used in equations, however, to strengthen the visual/conceptual connection with symbol and encourage an indigenous connection to the concepts we have introduced Inuktitut symbols to complement the traditional Greek symbols. Results and observations from the first two pilot semesters (spring 2008 and 2009) will be presented.

  2. PHYSICAL OBJECT-ORIENTED MODELING IN DEVELOPMENT OF INDIVIDUALIZED TEACHING AND ORGANIZATION OF MINI-RESEARCH IN MECHANICS COURSES

    Directory of Open Access Journals (Sweden)

    Alexander S. Chirtsov

    2017-03-01

    Full Text Available Subject of Research. The paper presents a relatively simple method to develop interactive computer models of physical systems without computer programming skills or automatic generation of the numerical computer code for the complex physical systems. Developed computer models are available over the Internet for educational purposes and can be edited by users in an unlimited number of possibilities. An applicability of computer simulations for the massive open individualized teaching and an organization of undergraduate research are also discussed. Method. The presented approach employs an original physical object-oriented modeling method, which is an extension of object-oriented programming ideas to tasks of developing simulations of the complex physical systems. In this framework, a computer model of the physical system is constructed as a set of interconnected computer objects simulating the system components: particles and fields. Interactions between the system components are described by self-adapting algorithms that are specified during the model initiation stage and are set according to either the classical or relativistic approach. The utilized technique requires neither a priori knowledge regarding an evolution of the physical system nor a formulation of differential equations describing the physical system. Main Results. Testing of the numerical implementation and an accuracy of the algorithms was performed with the use of benchmarks with the known analytical solutions. The developed method - a physical reality constructor - has provided an opportunity to assemble a series of computer models to demonstrate physical phenomena studied in the high school and university mechanic courses. More than 150 original interactive models were included into the collections of multi-level multimedia resources to support teaching of the mechanics. The physical reality constructor was successfully tested to serve as a test bed for the independent

  3. A case study of successful e-learning: a web-based distance course in medical physics held for school teachers of the upper secondary level.

    Science.gov (United States)

    Jönsson, Bo-Anders

    2005-09-01

    Learning activities and course design in the new context of e-learning, such as in web-based courses involves a change both for teachers and students. The paper discusses factors important for e-learning to be successful. The development of an online course in medical physics and technology for high school teachers of physics, details of the course, and experience gained in connection with it are described. The course syllabus includes basics of radiation physics, imaging techniques using ionizing or non-ionizing radiation, and external and internal radiation therapy. The course has a highly didactic approach. The final task is for participants to design a course of their own centered on some topic of medical physics on the basis of the knowledge they have acquired. The aim of the course is to help the teachers integrate medical physics into their own teaching. This is seen as enhancing the interest of high school students in later studying physics, medical physics or some other branch of science at the university level, and as increasing the knowledge that they and people generally have of science. It is suggested that the basic approach taken can also have applicability to the training of medical, nursing or engineering students, and be used for continuing professional development in various areas.

  4. Science self-efficacy of African Americans enrolled in freshman level physical science courses in two historically black institutions

    Science.gov (United States)

    Prihoda, Belinda Ann

    2011-12-01

    Science education must be a priority for citizens to function and be productive in a global, technological society. African Americans receive fewer science degrees in proportion to the Caucasian population. The primary purposes of this study were to determine the difference between the pretest and posttest science self-efficacy scores of African-American nonscience majors, the difference between the pretest and posttest science self-efficacy scores of African-American science majors, the relationship between science self-efficacy and course grade, the relationship between gender and science self-efficacy score, and the relationship between science self-efficacy score and course withdrawal. This study utilized a Likert survey instrument. All participants were enrolled in freshman level courses in the physical sciences at a historically black institution: a college or university. Participants completed the pretest survey within two weeks after the 12th class day of the semester. Initially, 458 participants completed the pretest survey. The posttest was administered within two weeks before the final exam. Only 245 participants completed the posttest survey. Results indicate that there is a difference in science self-efficacy of science majors and nonscience majors. There was no significant difference between the pretest and posttest science self-efficacy scores of African-American science majors and nonscience majors. There was no significant relationship between science self-efficacy and course grade, gender and science self-efficacy score, and course withdrawal and science self-efficacy score.

  5. ROLE OF COMPUTER ORIENTED LABORATORY TRAINING COURSE IN PHYSICS FOR DEVELOPMENT OF KEY COMPETENCES OF FUTURE ENGINEERS

    Directory of Open Access Journals (Sweden)

    Iryna Slipukhina

    2014-06-01

    Full Text Available In the article the features of the core competencies, which are formed in the course study of Physics at the Technical University are described. Some features and examples of the use of computer-oriented laboratory work for the formation of technological competencies engineering students are highlighted. Definitely possible elements of interactive content notebook integrated with software analysis of the experimental data.

  6. A field study of data analysis exercises in a bachelor physics course using the internet platform VISPA

    International Nuclear Information System (INIS)

    Erdmann, Martin; Fischer, Robert; Glaser, Christian; Klingebiel, Dennis; Krause, Raphael; Kuempel, Daniel; Müller, Gero; Rieger, Marcel; Steggemann, Jan; Urban, Martin; Walz, David; Weidenhaupt, Klaus; Winchen, Tobias; Weltermann, Birgitta

    2014-01-01

    Bachelor of physics lectures on ‘Particle Physics and Astrophysics’ were complemented by exercises related to data analysis and data interpretation at the RWTH Aachen University recently. The students performed these exercises using the internet platform VISPA, which provides a development environment for physics data analyses. We describe the platform and its application within the physics course, and present the results of a student survey. The students’ acceptance of the learning project was positive. The level of acceptance was related to their individual preference for learning with a computer. Furthermore, students with good programming skills favour working individually, while students who attribute themselves as having low programming abilities favour working in teams. The students appreciated approaching actual research through the data analysis tasks. (paper)

  7. Learning physical biology via modeling and simulation: A new course and textbook for science and engineering undergraduates

    Science.gov (United States)

    Nelson, Philip

    To a large extent, undergraduate physical-science curricula remain firmly rooted in pencil-and-paper calculation, despite the fact that most research is done with computers. To a large extent, undergraduate life-science curricula remain firmly rooted in descriptive approaches, despite the fact that much current research involves quantitative modeling. Not only does our pedagogy not reflect current reality; it also creates a spurious barrier between the fields, reinforcing the narrow silos that prevent students from connecting them. I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in a broad range of science and engineering majors. Students acquire several research skills that are often not addressed in traditional undergraduate courses: •Basic modeling skills; •Probabilistic modeling skills; •Data analysis methods; •Computer programming using a general-purpose platform like MATLAB or Python; •Pulling datasets from the Web for analysis; •Data visualization; •Dynamical systems, particularly feedback control. Partially supported by the NSF under Grants EF-0928048 and DMR-0832802.

  8. USE OF TRANS-CONTEXTUAL MODEL-BASED PHYSICAL ACTIVITY COURSE IN DEVELOPING LEISURE-TIME PHYSICAL ACTIVITY BEHAVIOR OF UNIVERSITY STUDENTS.

    Science.gov (United States)

    Müftüler, Mine; İnce, Mustafa Levent

    2015-08-01

    This study examined how a physical activity course based on the Trans-Contextual Model affected the variables of perceived autonomy support, autonomous motivation, determinants of leisure-time physical activity behavior, basic psychological needs satisfaction, and leisure-time physical activity behaviors. The participants were 70 Turkish university students (M age=23.3 yr., SD=3.2). A pre-test-post-test control group design was constructed. Initially, the participants were randomly assigned into an experimental (n=35) and a control (n=35) group. The experimental group followed a 12 wk. trans-contextual model-based intervention. The participants were pre- and post-tested in terms of Trans-Contextual Model constructs and of self-reported leisure-time physical activity behaviors. Multivariate analyses showed significant increases over the 12 wk. period for perceived autonomy support from instructor and peers, autonomous motivation in leisure-time physical activity setting, positive intention and perceived behavioral control over leisure-time physical activity behavior, more fulfillment of psychological needs, and more engagement in leisure-time physical activity behavior in the experimental group. These results indicated that the intervention was effective in developing leisure-time physical activity and indicated that the Trans-Contextual Model is a useful way to conceptualize these relationships.

  9. Students' confidence in the ability to transfer basic math skills in introductory physics and chemistry courses at a community college

    Science.gov (United States)

    Quinn, Reginald

    2013-01-01

    The purpose of this study was to examine the confidence levels that community college students have in transferring basic math skills to science classes, as well as any factors that influence their confidence levels. This study was conducted with 196 students at a community college in central Mississippi. The study was conducted during the month of November after all of the students had taken their midterm exams and received midterm grades. The instrument used in this survey was developed and validated by the researcher. The instrument asks the students to rate how confident they were in working out specific math problems and how confident they were in working problems using those specific math skills in physics and chemistry. The instrument also provided an example problem for every confidence item. Results revealed that students' demographics were significant predictors in confidence scores. Students in the 18-22 year old range were less confident in solving math problems than others. Students who had retaken a math course were less confident than those who had not. Chemistry students were less confident in solving math problems than those in physics courses. Chemistry II students were less confident than those in Chemistry I and Principals of Chemistry. Students were least confident in solving problems involving logarithms and the most confident in solving algebra problems. In general, students felt that their math courses did not prepare them for the math problems encountered in science courses. There was no significant difference in confidence between students who had completed their math homework online and those who had completed their homework on paper. The researcher recommends that chemistry educators find ways of incorporating more mathematics in their courses especially logarithms and slope. Furthermore, math educators should incorporate more chemistry related applications to math class. Results of hypotheses testing, conclusions, discussions, and

  10. Fluid Mechanics Experiments as a Unifying Theme in the Physics Instrumentation Laboratory Course

    Science.gov (United States)

    Borrero-Echeverry, Daniel

    2017-11-01

    We discuss the transformation of a junior-level instrumentation laboratory course from a sequence of cookbook lab exercises to a semester-long, project-based course. In the original course, students conducted a series of activities covering the usual electronics topics (amplifiers, filters, oscillators, logic gates, etc.) and learned basic LabVIEW programming for data acquisition and analysis. Students complained that these topics seemed disconnected and not immediately applicable to ``real'' laboratory work. To provide a unifying theme, we restructured the course around the design, construction, instrumentation of a low-cost Taylor-Couette cell where fluid is sheared between rotating coaxial cylinders. The electronics labs were reworked to guide students from fundamental electronics through the design and construction of a stepper motor driver, which was used to actuate the cylinders. Some of the legacy labs were replaced with a module on computer-aided design (CAD) in which students designed parts for the apparatus, which they then built in the departmental machine shop. Signal processing topics like spectral analysis were introduced in the context of time-series analysis of video data acquired from flow visualization. The course culminated with a capstone project in which students conducted experiments of their own design on a variety of topics in rheology and nonlinear dynamics.

  11. The effectiveness of courses developed to recruit and retain minority students in the geology major at California State University, Sacramento

    Science.gov (United States)

    Hammersley, L. C.

    2014-12-01

    The lack of diversity in the geosciences has long been recognized as a problem. While improvements have been made, the proportion of Bachelor's degrees in the earth sciences awarded to Hispanic students in 2012 was only 5.6%, a huge disparity with the 17% of the U.S. population that is Hispanic. At California State University, Sacramento, 19% of the student population is Hispanic but, of the 61 students that earned an undergraduate degree in geology between 2005 and 2010, only four were Hispanic. In response to the lack of diversity in the geology major, we developed a new Geology of Mexico course with the goal of recruiting Hispanic students to the major. We present a quantitative evaluation of the effectiveness of this course in attracting Hispanic students, encouraging them to take more geology courses, and recruiting them to the major. Data was collected in the Geology of Mexico course and in the equivalent Physical Geology course. During the period evaluated, 93% of enrollment in Geology of Mexico was Hispanic compared with 18.5% in Physical Geology. We found that Hispanic students in Physical Geology earned lower grades than did nonminority students, while Hispanic students in Geology of Mexico earned grades comparable with nonminority students in Physical Geology. Overall, Geology of Mexico students also showed more positive attitude changes to the geosciences and were more likely to take another geology course. The recruitment rate into the major for Hispanic students in Geology of Mexico was comparable to the recruitment rate for nonminority students in Physical Geology. Since 2008, the proportion of Hispanic geology majors has risen from 4.5% to 14.1% and, notably, the proportion of underrepresented minorities has increased from 4.5% to 22.2%, reflecting a significant overall increase in diversity of the major. In order to increase retention of minority students, we developed a field course for new majors who were not yet ready for upper division courses

  12. Upcycling Secondary Physical Education: The Journey to Creating Goal-Oriented Courses

    Science.gov (United States)

    Nye, Susan; Williams, Jacqueline

    2017-01-01

    The ultimate goal of a quality physical education program is to develop physically literate individuals who demonstrate skill competencies, apply knowledge, demonstrate health-enhancing behaviors, exhibit prosocial behaviors, and recognize the value of physical activity for a lifetime. The development and implementation of goal-oriented physical…

  13. Not Just "Gym" Anymore: The Role of Journaling in Physical Education Courses

    Science.gov (United States)

    Rowland, Amy

    2007-01-01

    In this article, the author explores the use of journaling in high school physical education classes. An assistant professor of health and physical education, the author seeks to assist high school instructors with preparing students for the demands of college, both physical and intellectual. The author gives specific instructions on how best to…

  14. An Inquiry-Based Course Using "Physics?" in Cartoons and Movies

    Science.gov (United States)

    Rogers, Michael

    2007-01-01

    Books, cartoons, movies, and video games provide engaging opportunities to get both science and nonscience students excited about physics. An easy way to use these media in one's classroom is to have students view clips and identify unusual events, odd physics, or list things that violate our understanding of the physics that governs our universe.…

  15. Pre-hospital physical activity status affects in-hospital course of elderly patients with acute myocardial infarction.

    Science.gov (United States)

    Miyamoto, Takamichi; Obayashi, Tohru; Hattori, Eijirou; Yamauchi, Yasuteru; Niwa, Akihiro; Isobe, Mitsuaki

    2010-03-01

    The clinical course of elderly patients with acute myocardial infarction (AMI) can sometimes unexpectedly result in an adverse outcome even when therapy appears to be successful. We suspect that specific factors may characterize this worsening of status during hospitalization. This study examines whether the pre-hospital physical activity status of the elderly treated with percutaneous coronary intervention (PCI) for AMI affects their in-hospital course. We studied 110 consecutive patients, aged 80 or older, who had undergone emergent PCI for AMI. Patients were divided into two groups based on clinical presentation: Better Killip class (Killip classes I and II) and Worse Killip class (Killip classes III and IV). Patients were also divided into two groups based on pre-hospital physical activity status, determined retrospectively by review of medical records: Good physical activity (n=57) comprising those able to go out alone independently and Poor physical activity comprising those mainly confined to home (n=53). The overall in-hospital mortality rate was 9.1% for the study population. The Worse Killip class group had a higher in-hospital mortality rate than the Better Killip class group (27.8% vs 5.4%, respectively; p=0.0102). In addition, the Poor physical activity group had a higher in-hospital mortality rate than the Good physical activity group (15.1% vs. 3.5%, respectively; p=0.047). These data suggest that pre-hospital physical activity status in elderly patients with AMI may affect in-hospital mortality as well as Killip class.

  16. High School Physics Courses & Enrollments: Results from the 2012-13 Nationwide Survey of High School Physics Teachers. Focus On

    Science.gov (United States)

    White, Susan; Tesfaye, Casey Langer

    2014-01-01

    This report examines enrollments in high school physics during the 2012-13 school year. Based on data from the most recent survey (which includes both public and private high schools in the U.S.), it is estimated that 39% of the class of 2013 took high school physics before graduating. During the 2012-13 school year, 1.38 million students were…

  17. Conditions for building a community of practice in an advanced physics laboratory

    Science.gov (United States)

    Irving, Paul W.; Sayre, Eleanor C.

    2014-06-01

    We use the theory of communities of practice and the concept of accountable disciplinary knowledge to describe how a learning community develops in the context of an upper-division physics laboratory course. The change in accountable disciplinary knowledge motivates students' enculturation into a community of practice. The enculturation process is facilitated by four specific structural features of the course and supported by a primary instructional choice. The four structural features are "paucity of instructor time," "all in a room together," "long and difficult experiments," and "same experiments at different times." The instructional choice is the encouragement of the sharing and development of knowledge and understanding by the instructor. The combination of the instructional choice and structural features promotes the development of the learning community in which students engage in authentic practices of a physicist. This results in a classroom community that can provide students with the opportunity to have an accelerated trajectory towards being a more central participant of the community of a practice of physicists. We support our claims with video-based observations of laboratory classroom interactions and individual, semistructured interviews with students about their laboratory experiences and physics identity.

  18. Impact of Maple(TM) on the design, instruction and performance in an undergraduate physics mathematical methods course

    Science.gov (United States)

    Runge, Alan Paul

    1997-10-01

    A traditional undergraduate physics course on mathematical methods has been redesigned to incorporate the use of Maplesp{sc {TM}}, a computer algebra program, during all aspects of the course. Topics covered were: complex number theory; series approximations; matrix theory; partial differentiation; vector algebra; and vector calculus. Five undergraduate students were enrolled, from sophomore to senior in academic class standing. A qualitative case study methodology was used to describe the changes in the course design resulting from the incorporation of Maplesp{sc {TM}} and their impact on the instruction of the course, and to determine the effects on the students' learning and development of problem solving skills in physics using Maplesp{sc {TM}} as a problem solving tool. The impact of using Maplesp{sc {TM}} on the number and types of interactions is presented. The entire semester long course was included in this study. Each class session is described in detail. Examples of the Maplesp{sc {TM}} materials used are given. The use of the Maplesp{sc {TM}} program was allowed on all homework and exams with each student having their own computer during class. Constraints were made so that the assessment emphasis remained on the mathematics and the conceptual understanding of the problem solving methods. All of the students demonstrated some level of proficiency in using Maplesp{TM} to solve the assigned problems. Strategies for effectively using Maplesp{TM} were presented and were individualized by the students. The students reported positive and negative impacts of using Maplesp{sc {TM}}. All of the students satisfactorily completed the course requirements, receiving final course grades from B to A+. All of them continued to voluntarily use Maplesp{sc {TM}} during the following semester. Instructional methods used included various lecture techniques without Maplesp{sc {TM}} assistance, lectures and demonstrations using only Maplesp{sc {TM}}, and student tasks

  19. Evaluation of junior courses students’ level of mobilization of functional backlogs at the dosed physical activities at the pedagogical university

    Directory of Open Access Journals (Sweden)

    A.I. Bosenco

    2013-11-01

    Full Text Available A study of the functional capacity of the organism lower division students. The study involved 85 students of 1-2 courses, 14 of which were engaged and were part of the team of the University of volleyball. As a student of muscular work performed pedaling on bicycle. The energy level was determined by performing metered loads with changing facilities for closed cycle. The data characterizing the physiological "cost" of adaptation, the level of stress the body of students in different phases of muscular work. Developed and presented model characteristics of the energy level of the body of girls. Reviewed degree of mobilization of functional reserves under load for closed loop five-point scale. Defined physical condition of students during the first year. The recommendations of the evaluation and prediction of the actual state of the physical health of students and improve physical education in high school.

  20. How Teaching Practices Are Connected to Student Intention to Enrol in Upper Secondary School Physics Courses

    Science.gov (United States)

    Juuti, Kalle; Lavonen, Jari

    2016-01-01

    Background: In developed countries, it is challenging for teachers to select pedagogical practices that encourage students to enrol in science and technology courses in upper secondary school. Purpose: Aiming to understand the enrolment dynamics, this study analyses sample-based data from Finland's National Assessment in Science to determine…

  1. 77 FR 67367 - Announcement of Physical Activity Guidelines Mid-Course Report Availability and Public Comment...

    Science.gov (United States)

    2012-11-09

    ... Council on Fitness, Sports and Nutrition (PCFSN) was convened to complete the PAG Mid- course Report. The subcommittee was tasked with reviewing the evidence on intervention strategies that have been shown to be... INFORMATION: A subcommittee of the President's Council on Fitness, Sports and Nutrition (PCFSN) was created...

  2. Student Views about a Flipped Physics Course: A Tool for Program Evaluation and Improvement

    Science.gov (United States)

    Ramlo, Susan

    2015-01-01

    Flipped classrooms are a relatively new teaching strategy where the typical lecture and homework elements of a course are reversed. Although flipped classrooms are gaining popularity, evaluations of this type of pedagogical model are limited. The purpose of this study was to investigate student views related to the effectiveness of a flipped…

  3. 137th International School of Physics "Enrico Fermi" : Course : Heavy Flavour Physics: a Probe of Nature's Grand Design

    CERN Document Server

    Moroni, Luigi

    1998-01-01

    The lectures collected in this book present a comprehensive review of the current knowledge of heavy-quark physics, from the points of view of both theory and experiment. Heavy Flavour Physics has accomplished enormous progress during the last few years: the last heavy quark has been discovered and the quality of the collected data on the other relatively lighter quarks has dramatically improved. On the theory side, noticeable progress has been reported on new calculations of decay rates based on various techniques, such as QCD sum rules, heavy-quark mass expansion and lattice QCD. The theory of heavy quark production is constantly improving and awaiting new results. Nevertheless there are strong reasons to believe that the Standard Model of High Energy Physics is incomplete. It exhibits very peculiar patterns for which it offers no explanation. The basic constituents of matter are arranged into three seemingly identical generations or families of quarks and leptons, differing merely in their masses. The patt...

  4. An Investigation of How a Physics Professional Development Course Influenced the Teaching Practices of Five Elementary School Teachers

    Science.gov (United States)

    Harlow, Danielle B.

    2014-02-01

    This paper reports the results of an investigation of how a professional development content course based on the Physics and Everyday Thinking (PET) curriculum affected the teaching practices of five case study elementary school teachers. The findings of this study highlight different ways that teachers use what they learn in content courses to teach science to elementary children. While some teachers transferred pedagogical practices along with the content, others transformed the content to be useful in already existing pedagogical frameworks, and still others show little or no evidence of transfer. The range of transfer is explained by considering how each teacher interacted with the learning context (the PET curriculum) and their initial ideas about teaching science.

  5. What do we need to know to predict ENSO? Student-centered learning in a Master course in Climate Physics

    Science.gov (United States)

    Lübbecke, Joke; Glessmer, Mirjam

    2017-04-01

    An important learning outcome of a Master of Sciences program is to empower students to understand which information they need, how they can gain the required knowledge and skills, and how to apply those to solve a given scientific problem. In designing a class on the El-Nino-Southern-Oscillation (ENSO) for students in the Climate Physics program at Kiel University, Germany, we have implemented various active learning strategies to meet this goal. The course is guided by an overarching question, embedded in a short story: What would we need to know to successfully predict ENSO? The students identify desired learning outcomes and collaboratively construct a concept map which then serves as a structure for the 12 weeks of the course, where each individual topic is situated in the larger context of the students' own concept map. Each learning outcome of the course is therefore directly motivated by a need to know expressed by the students themselves. During each session, students are actively involved in the learning process. They work individually or in small groups, for example testing different index definitions, analyzing data sets, setting up simple numerical models and planning and constructing hands-on experiments to demonstrate physical processes involved in the formation of El Niño events. The instructor's role is to provide the necessary background information and guide the students where it is needed. Insights are shared between groups as students present their findings to each other and combine the information, for example by cooperatively constructing a world map displaying the impacts of ENSO or by exchanging experts on different ENSO oscillator theories between groups. Development of this course was supported by the PerLe Fonds for teaching innovations at Kiel University. A preliminary evaluation has been very positive with students in particular appreciating their active involvement in the class.

  6. The Earth System Course at the University of Oklahoma: Science and Pedagogy Aimed at Pre-service Teachers

    Science.gov (United States)

    Postawko, S.; Soreghan, M.; Marek, E.

    2005-12-01

    Traditionally, education majors at the University of Oklahoma took either Introduction to Physical Geology or Introduction to Meteorology to fulfill their physical sciences requirement. Science education majors were required to take both courses. These courses are large-enrollment lecture type courses, with required lab sections taught by graduate teaching assistants. Beginning in 1997, faculty from the Colleges of Education and Geosciences at the University of Oklahoma began working together to provide effective earth science education for pre-service teachers. The first step in this collaboration was the development of a new course on The Earth System that focuses on Earth as a whole rather than on the more narrow focus of either the geology or meteorology courses. The new course, which was taught for the first time in the Spring of 2001, covers a number of major themes related to Earth Science, including the Carbon Cycle, Earth Materials, Plate Tectonics, Atmosphere and Oceans. The particular concepts within each theme were chosen based on two criteria: 1) alignment with content advocated by national (NSES) and state (Priority Academic Student Skills-PASS) standards; and 2) they are amenable to a learning cycle pedagogical approach. Besides an interdisciplinary approach to the content, the new course features pedagogical innovations. In lieu of independent laboratory and lecture times, we scheduled two class periods of longer duration, so that active learning, involving hands-on activities and experiments were possible throughout each class period. The activities modeled the learning-cycle approach with an exploration, concept invention, and an expansion phase (Marek and Cavallo, 1997). Therefore, the pre-service teachers experienced the learning cycle in practice prior to learning the theory in their upper division "methods" course. In the first 3 years that the course was taught, students were given surveys early in the semester and at the end of the semester

  7. Prediction of Basic Math Course Failure Rate in the Physics, Meteorology, Mathematics, Actuarial Sciences and Pharmacy Degree Programs

    Directory of Open Access Journals (Sweden)

    Luis Rojas-Torres

    2014-09-01

    Full Text Available This paper summarizes a study conducted in 2013 with the purpose of predicting the failure rate of math courses taken by Pharmacy, Mathematics, Actuarial Science, Physics and Meteorology students at Universidad de Costa Rica (UCR. Using the Logistics Regression statistical techniques applied to the 2010 cohort, failure rates were predicted of students in the aforementioned programs in one of their Math introductory courses (Calculus 101 for Physics and Meteorology, Math Principles for Mathematics and Actuarial Science and Applied Differential Equations for Pharmacy. For these models, the UCR admission average, the student’s genre, and the average correct answers in the Quantitative Skills Test were used as predictor variables. The most important variable for all models was the Quantitative Skills Test, and the model with the highest correct classification rate was the Logistics Regression. For the estimated Physics-Meteorology, Pharmacy and Mathematics-Actuarial Science models, correct classifications were 89.8%, 73.6%, and 93.9%, respectively.

  8. Unhealthy lifestyles during the life course : association with physical decline in late life

    NARCIS (Netherlands)

    Pluijm, Saskia M; Visser, Marjolein; Puts, Martine T E; Dik, Miranda G; Schalk, Bianca W M; van Schoor, Natasja M; Schaap, Laura A; Bosscher, Ruud J; Deeg, Dorly J H

    BACKGROUND AND AIMS: This study aimed at examining the association between unhealthy lifestyle in young age, midlife and/or old age and physical decline in old age, and between chronic exposure to an unhealthy lifestyle throughout life and physical decline in old age. METHODS: The study sample

  9. Teaching Quantum Interpretations: Revisiting the Goals and Practices of Introductory Quantum Physics Courses

    Science.gov (United States)

    Baily, Charles; Finkelstein, Noah D.

    2015-01-01

    Most introductory quantum physics instructors would agree that transitioning students from classical to quantum thinking is an important learning goal, but may disagree on whether or how this can be accomplished. Although (and perhaps because) physicists have long debated the physical interpretation of quantum theory, many instructors choose to…

  10. Influence of a Physical Education Methods Course on Elementary Education Majors' Knowledge of Fundamental Movement Skills

    Science.gov (United States)

    Hart, Melanie A.

    2005-01-01

    With an increase concern for childhood obesity, many individuals and organizations are emphasizing the importance of quality physical education. The need for quality physical education at the elementary level is extremely important as research has shown a relationship between the performance of fundamental movement skills and children's body…

  11. Advantages and Challenges of Using Physics Curricula as a Model for Reforming an Undergraduate Biology Course

    Science.gov (United States)

    Donovan, D. A.; Atkins, L. J.; Salter, I. Y.; Gallagher, D. J.; Kratz, R. F.; Rousseau, J. V.; Nelson, G. D.

    2013-01-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life…

  12. Application of the K-W-L Teaching and Learning Method to an Introductory Physics Course

    Science.gov (United States)

    Wrinkle, Cheryl Schaefer; Manivannan, Mani K.

    2009-01-01

    The K-W-L method of teaching is a simple method that actively engages students in their own learning. It has been used with kindergarten and elementary grades to teach other subjects. The authors have successfully used it to teach physics at the college level. In their introductory physics labs, the K-W-L method helped students think about what…

  13. Senior high school female students' interest in physics as a course ...

    African Journals Online (AJOL)

    The study of females interest in physics is an issue of international concern. Of the sciences, physics is the subject in which the increase in the number of females involved has been particularly low. The term 'interest' may usually refers to preference to engage in some types of activities rather than others. This study ...

  14. IEEE NSS 2008 Short Course: How to use the Grid for Physics and Medical Applications

    CERN Document Server

    Moscicki, J T; Lechner, A

    2008-01-01

    This course is intended to introduce the Grid technology to scientists and engineers with no experience in this field. Participants will gain practical skills on how to quickly make use of distributed computing resources for their applications. The class begins will an introduction to the Grid technology and an overview of existing Grid applications. A case study will show the details of a real medical Geant 4 simulation running on the Grid. Hands-on exercises will give practical experience with using the application oriented tools such as Ganga (http://cern.ch/ganga) and DIANE (http://cern.ch/diane) to support solving scientific problems. The participants will have an opportunity to get involved into using the Grid beyond the scope of the course and get further support for their applications.

  15. The course of physical functional limitations and occupational conditions in a middle-aged working population in France

    Directory of Open Access Journals (Sweden)

    de Stampa Matthieu

    2012-04-01

    Full Text Available Abstract Background Physical functional limitations (PFL have mainly been studied in older populations. The aim of this study was to better understand the course of PFL and associations with occupational factors by gender in a middle-aged working population. Methods The data came from 16,950 workers in the ESTEV (Enquête Santé Travail et Vieillissement cohort in France. PFL were assessed using the physical abilities section of the Nottingham Health Profile. Occupational conditions were measured with a self-administered questionnaire covering physical and psychosocial factors in 1990 and 1995. Multivariate analyses were used to assess the associations. Results The PFL appearance rate in 1995 was the same by gender (6.3%; the rate of PFL recovery was higher in men (23.9% versus 20.9%. Age was an independent factor of PFL at age 47 years or older in both genders after adjusting for confounding factors. The PFL appearance rate in 1995 was higher with physical occupational exposure in 1990, such as awkward work with a dose relation in both genders, while the PFL recovery rate decreased significantly only for men. Exposure to psychosocial occupational conditions, such as having the means to produce quality work in 1990, was significantly associated with a decreased PFL appearance rate in 1995 in both genders, and having high decision latitude in 1990 was associated with a decreased PFL appearance rate in 1995 only in men. Changes in exposure to occupational factors between 1990 and 1995 were associated with the PFL appearance and recovery rates in 1995 in both genders. Conclusions After five years, the course of PFL in this working population changed and was associated with physical and psychosocial occupational factors. Relationships were stronger for the PFL appearance rate in both genders and were weaker for recovery from PFL, mainly among women.

  16. Atomic and molecular physics - Ions in solids - Laser systems. Courses, corrected exercises and problems Level M1/M2

    International Nuclear Information System (INIS)

    Cremer, Georgette-Laura; Moncorge, Richard; Chesnel, Jean-Yves; Adoui, Lamri; Lelievre, Gerard

    2010-01-01

    This document proposes the table of contents and a brief presentation of a course book for students in atomic and molecular physics. After some generalities on energy quantification and on photon momentum / Compton Effect, the different chapters address topics like hydrogen and helium atoms, alkalis, alkaline-earth, atoms with several valence electrons, the atom-radiation interaction, molecule and ion spectroscopy in solids, and the most significant laser systems using an active media based on atoms, ions or molecules in a diluted environment. Each chapter contains exercises and problems

  17. Basic course in theoretical physics. Vol. 2. Grundkurs in Theoretischer Physik. Bd. 2

    Energy Technology Data Exchange (ETDEWEB)

    Dietze, H D

    1975-01-01

    This book is the second volume of an edition of two volumes which concern theoretical physics. In this volume electrodynamics, the foundations of special relativity theory, and elementary quantum mechanics are introduced.

  18. Exploring physics students' engagement with online instructional videos in an introductory mechanics course

    Science.gov (United States)

    Lin, Shih-Yin; Aiken, John M.; Seaton, Daniel T.; Douglas, Scott S.; Greco, Edwin F.; Thoms, Brian D.; Schatz, Michael F.

    2017-12-01

    The advent of new educational technologies has stimulated interest in using online videos to deliver content in university courses. We examined student engagement with 78 online videos that we created and were incorporated into a one-semester flipped introductory mechanics course at the Georgia Institute of Technology. We found that students were more engaged with videos that supported laboratory activities than with videos that presented lecture content. In particular, the percentage of students accessing laboratory videos was consistently greater than 80% throughout the semester. On the other hand, the percentage of students accessing lecture videos dropped to less than 40% by the end of the term. Moreover, the fraction of students accessing the entirety of a video decreases when videos become longer in length, and this trend is more prominent for the lecture videos than the laboratory videos. The results suggest that students may access videos based on perceived value: students appear to consider the laboratory videos as essential for successfully completing the laboratories while they appear to consider the lecture videos as something more akin to supplemental material. In this study, we also found that there was little correlation between student engagement with the videos and their incoming background. There was also little correlation found between student engagement with the videos and their performance in the course. An examination of the in-video content suggests that students engaged more with concrete information that is explicitly required for assignment completion (e.g., actions required to complete laboratory work, or formulas or mathematical expressions needed to solve particular problems) and less with content that is considered more conceptual in nature. It was also found that students' in-video accesses usually increased toward the embedded interaction points. However, students did not necessarily access the follow-up discussion of these

  19. NSF Support for Physics at the Undergraduate Level: A View from Inside

    Science.gov (United States)

    McBride, Duncan

    2015-03-01

    NSF has supported a wide range of projects in physics that involve undergraduate students. These projects include NSF research grants in which undergraduates participate; Research Experiences for Undergraduates (REU) centers and supplements; and education grants that range from upper-division labs that may include research, to curriculum development for upper- and lower-level courses and labs, to courses for non-majors, to Physics Education Research (PER). The NSF Divisions of Physics, Materials Research, and Astronomy provide most of the disciplinary research support, with some from other parts of NSF. I recently retired as the permanent physicist in NSF's Division of Undergraduate Education (DUE), which supports the education grants. I was responsible for a majority of DUE's physics grants and was involved with others overseen by a series of physics rotators. There I worked in programs entitled Instrumentation and Laboratory Improvement (ILI); Course and Curriculum Development (CCD); Course, Curriculum, and Laboratory Improvement (CCLI); Transforming Undergraduate STEM Education (TUES); and Improving Undergraduate STEM Education (IUSE). NSF support has enabled physics Principal Investigators to change and improve substantially the way physics is taught and the way students learn physics. The most important changes are increased undergraduate participation in physics research; more teaching using interactive engagement methods in classes; and growth of PER as a legitimate field of physics research as well as outcomes from PER that guide physics teaching. In turn these have led, along with other factors, to students who are better-prepared for graduate school and work, and to increases in the number of undergraduate physics majors. In addition, students in disciplines that physics directly supports, notably engineering and chemistry, and increasingly biology, are better and more broadly prepared to use their physics education in these fields. I will describe NSF

  20. Advantages and challenges of using physics curricula as a model for reforming an undergraduate biology course.

    Science.gov (United States)

    Donovan, D A; Atkins, L J; Salter, I Y; Gallagher, D J; Kratz, R F; Rousseau, J V; Nelson, G D

    2013-06-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life sciences context. While some approaches were easily adapted, others provided significant challenges. Among these challenges were: representations of energy, introducing definitions, the placement of Scientists' Ideas, and the replicability of data. In modifying the curriculum to address these challenges, we have come to see them as speaking to deeper differences between the disciplines, namely that introductory physics--for example, Newton's laws, magnetism, light--is a science of pairwise interaction, while introductory biology--for example, photosynthesis, evolution, cycling of matter in ecosystems--is a science of linked processes, and we suggest that this is how the two disciplines are presented in introductory classes. We illustrate this tension through an analysis of our adaptations of the physics curriculum for instruction on the cycling of matter and energy; we show that modifications of the physics curriculum to address the biological framework promotes strong gains in student understanding of these topics, as evidenced by analysis of student work.

  1. Undergraduate Labs for Biological Physics: Brownian Motion and Optical Trapping

    Science.gov (United States)

    Chu, Kelvin; Laughney, A.; Williams, J.

    2006-12-01

    We describe a set of case-study driven labs for an upper-division biological physics course. These labs are motivated by case-studies and consist of inquiry-driven investigations of Brownian motion and optical-trapping experiments. Each lab incorporates two innovative educational techniques to drive the process and application aspects of scientific learning. Case studies are used to encourage students to think independently and apply the scientific method to a novel lab situation. Student input from this case study is then used to decide how to best do the measurement, guide the project and ultimately evaluate the success of the program. Where appropriate, visualization and simulation using VPython is used. Direct visualization of Brownian motion allows students to directly calculate Avogadro's number or the Boltzmann constant. Following case-study driven discussion, students use video microscopy to measure the motion of latex spheres in different viscosity fluids arrive at a good approximation of NA or kB. Optical trapping (laser tweezer) experiments allow students to investigate the consequences of 100-pN forces on small particles. The case study consists of a discussion of the Boltzmann distribution and equipartition theorem followed by a consideration of the shape of the potential. Students can then use video capture to measure the distribution of bead positions to determine the shape and depth of the trap. This work supported by NSF DUE-0536773.

  2. Exoplanet Science in the Classroom: Learning Activities for an Introductory Physics Course

    Science.gov (United States)

    Della-Rose, Devin; Carlson, Randall; de La Harpe, Kimberly; Novotny, Steven; Polsgrove, Daniel

    2018-03-01

    Discovery of planets outside our solar system, known as extra-solar planets or exoplanets for short, has been at the forefront of astronomical research for over 25 years. Reports of new discoveries have almost become routine; however, the excitement surrounding them has not. Amazingly, as groundbreaking as exoplanet science is, the basic physics is quite accessible to first-year physics students, as discussed in previous TPT articles. To further illustrate this point, we developed an iOS application that generates synthetic exoplanet data to provide students and teachers with interactive learning activities. Using introductory physics concepts, we demonstrate how to estimate exoplanet mass, radius, and density from the app output. These calculations form the basis for a diverse range of classroom activities. We conclude with a summary of exoplanet science resources for teachers.

  3. NATO Advanced Study Institute: Marie Curie Training Course: Applications of Random Matrices in Physics

    CERN Document Server

    Kazakov, Vladimir; Serban, Didina; Wiegmann, Paul; Zabrodin, Anton

    2006-01-01

    Random matrices are widely and successfully used in physics for almost 60-70 years, beginning with the works of Dyson and Wigner. Although it is an old subject, it is constantly developing into new areas of physics and mathematics. It constitutes now a part of the general culture of a theoretical physicist. Mathematical methods inspired by random matrix theory become more powerful, sophisticated and enjoy rapidly growing applications in physics. Recent examples include the calculation of universal correlations in the mesoscopic system, new applications in disordered and quantum chaotic systems, in combinatorial and growth models, as well as the recent breakthrough, due to the matrix models, in two dimensional gravity and string theory and the non-abelian gauge theories. The book consists of the lectures of the leading specialists and covers rather systematically many of these topics. It can be useful to the specialists in various subjects using random matrices, from PhD students to confirmed scientists.

  4. The teaching of physics and related courses to residents in radiation oncology

    International Nuclear Information System (INIS)

    Dunscombe, P.

    1989-01-01

    A survey of physics and related teaching to radiation oncology residents in 21 Canadian cancer centres was undertaken in December 1987 and January 1988. This survey illustrates a very considerable variation in the formal teaching of physics to aspiring radiation oncologists with, for example, the number of hours offered ranging from 40 to 160 in those 10 centres that have a training program. It would appear to be of benefit to radiation oncology residents, those charged with teaching them, and the radiation oncology community as a whole, to develop specific guidelines for this aspect of resident education. (8 refs., tab.)

  5. From physical to virtual: interpersonal relations generating networks among students of a graduate course

    Directory of Open Access Journals (Sweden)

    Roberto Vilmar Satur

    2015-09-01

    Full Text Available Introduction: Nowadays, the social networks are more present in people’s daily lives, especially students, becoming a reality in the educational environment. More than entertainment, these networks have been a valuable interaction tools to passing information through. Objective: In this scenario, the aim of this research is to observe the interpersonal and intragroup interaction abilities in a group of undergraduate students in a public university in order to understand the formation and expansion of social networks initiated through personal contact and extended to the virtual universe. In that sense, it aims specifically at mapping the students interpersonal interactions in the creation of social networks and the expansion of their relations. It describes which are the most used forms of interaction and it gets a basic profile data of the actors. Methodology: To better understand the reality of these subjects it has been adopted as an instrument of data collection, a questionnaire consisting of closed questions directed to students of the course mentioned. A total of 95 student names were enrolled in the course in last May, who could be marked by the respondents. The survey was carried out throughout June 2014 and tallied 71 answered questionnaires. After the data collection, the data were tabulate and it was applied the Gephi software. Results: The results show a tendency to form an extensive network within the course, but it is more intense among certain students, forming small groups and the existence of actors-bridge. The article also showed that there was a clear transposition from the personal relationship contact to the virtual environment. Conclusion: Social networks can increasingly serve as a space for communication and interaction, although the use of these networks in education is related to the teaching and learning process, making advances in the ways of interaction and access to information and search among its users

  6. Innovation and Persistence: The Evaluation of the C.U.P.L.E. Studio Physics Course.

    Science.gov (United States)

    Cooper, Marie A.; O'Donnell, Angela M.

    The last decade has seen the development of a number of computer-based interactive physics programs at the university level. Set in a cognitive apprenticeship framework, such programs view the instructor as a mentor, and the essential learning constructed in a collaborative process. It is expected that such programs, grounded as they are in…

  7. Developmental Trajectories of Motivation in Physical Education: Course, Demographic Differences, and Antecedents

    Science.gov (United States)

    Ntoumanis, Nikos; Barkoukis, Vassilis; Thogersen-Ntoumani, Cecilie

    2009-01-01

    This study investigated changes in student motivation to participate in physical education and some determinants of these changes over a period of 3 years. Measures were taken twice a year, from age 13 until age 15, from a sample of Greek junior high school students. Multilevel modeling analyses showed significant decreases in task-involving…

  8. The Role of Online Homework in Low-Enrollment College Introductory Physics Courses

    Science.gov (United States)

    Lazarova, Krassi

    2015-01-01

    Studying physics for nonphysics majors at college level is usually a process of learning new problem-solving skills and sometimes seems a frustrating experience. In an attempt to provide students with more learning resources, online homework was required to supplement the instruction. This study reveals the role of the online homework assignments…

  9. Enhancing Student Motivation in College and University Physical Activity Courses Using Instructional Alignment Practices

    Science.gov (United States)

    Kim, MooSong; Cardinal, Bradley J.; Yun, Joonkoo

    2015-01-01

    Motivation is a key factor in promoting students' active engagement in regular physical activity. According to self-determination theory -- one of the prominent motivational theories -- for this to occur, students' basic psychological needs must be met (i.e., their need for autonomy, competence and relatedness). Students' self-determined…

  10. Elements of Warfare in the Sixth- and Seventh-Grade Physics Course

    Science.gov (United States)

    Enokhovich, A. S.

    1973-01-01

    Mechanical movement, pressure, floating bodies, heat phenomena, electrical phenomena, when applied to military problems "for the patriotic edification and military instruction of the children" excite interest and place theory on concrete foundations. Examples of applied physical concepts follow in this article. (Author/JH)

  11. New Pedagogy in Introductory Physics and Upper-level AMO Courses

    Science.gov (United States)

    Wieman, Carl

    2005-05-01

    In recent decades the need for science education has expanded in its scope and grown in its importance. We need to reevaluate science teaching to see how it can better meet these needs. Scientists often abandon the powerful intellectual tools they routinely use in their science when they go to teach science. They fall back on tradition and highly subjective judgments of the instructor (known in other contexts as ``superstition"). I will discuss the advantages of approaching the teaching of physics like a physics experiment. This approach includes: collecting and utilizing valid quantitative data (both one's own and those from the research of others), using quantitative statistical analysis to extract information from experiments involving imperfectly controlled degrees of freedom, and taking advantage of useful new technology. This discussion will include a review of some of the key findings of researchers about how people learn in general and how they learn physics specifically, and how these findings can be used to improve teaching practices. As time permits, I will also cover some surprising results my education research group has found on the study of how student beliefs shape and are shaped by their physics classes and the effective use of technology.

  12. The use of quizStar application for online examination in basic physics course

    Science.gov (United States)

    Kustijono, R.; Budiningarti, H.

    2018-03-01

    The purpose of the study is to produce an online Basic Physics exam system using the QuizStar application. This is a research and development with ADDIE model. The steps are: 1) analysis; 2) design; 3) development; 4) implementation; 5) evaluation. System feasibility is reviewed for its validity, practicality, and effectiveness. The subjects of research are 60 Physics Department students of Universitas Negeri Surabaya. The data analysis used is a descriptive statistic. The validity, practicality, and effectiveness scores are measured using a Likert scale. Criteria feasible if the total score of all aspects obtained is ≥ 61%. The results obtained from the online test system by using QuizStar developed are 1) conceptually feasible to use; 2) the system can be implemented in the Basic Physics assessment process, and the existing constraints can be overcome; 3) student's response to system usage is in a good category. The results conclude that QuizStar application is eligible to be used for online Basic Physics exam system.

  13. "Shut up and Calculate": The Available Discursive Positions in Quantum Physics Courses

    Science.gov (United States)

    Johansson, Anders; Andersson, Staffan; Salminen-Karlsson, Minna; Elmgren, Maja

    2018-01-01

    Educating new generations of physicists is often seen as a matter of attracting good students, teaching them physics and making sure that they stay at the university. Sometimes, questions are also raised about what could be done to increase diversity in recruitment. Using a discursive perspective, in this study of three introductory quantum…

  14. A Web-based Quantum Mechanics Course for first Year Graduate Students in Physics

    Science.gov (United States)

    Breinig, M.

    1996-11-01

    All class materials for the 1996 graduate Quantum Mechanics course at the University of Tennessee are distributed over the Internet (http://electron4.phys.utk.edu). Complete class notes are available in PDF format. Homework problems and solutions are distributed in PDF format or as scanned notes. Students need Web access using a graphical browser with a PDF reader plug-in (Adobe Acrobat) installed. The news and mail clients must be able to display attachments, such as graphics files, inline. A class news group has been set up. Students use this news group to discus class material, homework problems, and anything else of interest among themselves. Numerical solutions are presented in the form of Java programs.

  15. CERN Accelerator School & ELETTRA Synchrotron Light Laboratory announce a course on "Accelerator Physics" (Intermediate level), at the Abdus Salam International Center for Theoretical Physics, Adriatico Guesthouse, Trieste, Italy, 2 - 14 October 2005

    CERN Multimedia

    2005-01-01

    The Intermediate level course is clearly conceived as the logical continuation of the Introductory level course for those being active in the field of Accelerator Physics. However, it is also often considered as an excellent opportunity to either discover and receive a basic training in a new field, or for refreshing or keeping up-to-date people's expertise in the field.

  16. A course in mathematical statistics and large sample theory

    CERN Document Server

    Bhattacharya, Rabi; Patrangenaru, Victor

    2016-01-01

    This graduate-level textbook is primarily aimed at graduate students of statistics, mathematics, science, and engineering who have had an undergraduate course in statistics, an upper division course in analysis, and some acquaintance with measure theoretic probability. It provides a rigorous presentation of the core of mathematical statistics. Part I of this book constitutes a one-semester course on basic parametric mathematical statistics. Part II deals with the large sample theory of statistics — parametric and nonparametric, and its contents may be covered in one semester as well. Part III provides brief accounts of a number of topics of current interest for practitioners and other disciplines whose work involves statistical methods. Large Sample theory with many worked examples, numerical calculations, and simulations to illustrate theory Appendices provide ready access to a number of standard results, with many proofs Solutions given to a number of selected exercises from Part I Part II exercises with ...

  17. Calabi-Yau varieties: arithmetic, geometry and physics lecture notes on concentrated graduate courses

    CERN Document Server

    Schütt, Matthias; Yui, Noriko

    2015-01-01

    This volume presents a lively introduction to the rapidly developing and vast research areas surrounding Calabi–Yau varieties and string theory. With its coverage of the various perspectives of a wide area of topics such as Hodge theory, Gross–Siebert program, moduli problems, toric approach, and arithmetic aspects, the book gives a comprehensive overview of the current streams of mathematical research in the area. The contributions in this book are based on lectures that took place during workshops with the following thematic titles: “Modular Forms Around String Theory,” “Enumerative Geometry and Calabi–Yau Varieties,” “Physics Around Mirror Symmetry,” “Hodge Theory in String Theory.” The book is ideal for graduate students and researchers learning about Calabi–Yau varieties as well as physics students and string theorists who wish to learn the mathematics behind these varieties.

  18. Physical activity in the elderly who underwent joint replacement surgery in the course of rheumatic diseases

    Directory of Open Access Journals (Sweden)

    Agnieszka Prusinowska

    2016-07-01

    Full Text Available According to the forecasts of the Central Statistical Office of Poland, in 2030 people at the age of 65 and older will account for 23.8%, i.e. their number will amount to approx. 8.5 m people. Geriatric rheumatic patients more often decide to undergo surgical joint replacement. According to the National Health Fund, the number of joint replacement services provided in 2014 increased by 93%, as compared to 2005. Improving the physical performance of this constantly expanding group of patients requires taking into account many factors to raise their functional status, reduce the risk of falling, teach rules of proper functioning with an artificial joint and encourage unassisted physical activity. Restoring fitness and independence is a difficult but necessary task due to an increasing number of seniors with replaced joint.

  19. The changing role of health physicists as reflected by changes in professional health physics training courses

    International Nuclear Information System (INIS)

    Brown, L.D.

    1996-01-01

    Health Physics is a profession with long, honourable traditions; and this paper could be subtitled 'Health Physics - The First 100 Years'. The discovery of X-rays by Conrad Roentgen in 1895 and of natural radioactivity by Henri Becquerel in 1896, was followed two years later by the isolation of radium by Marie and Pierre Curie and then during the last years of the nineteenth century, by explosive world wide growth in the utilisation of both these new discoveries for medical diagnostic and therapeutic purposes The fact that these new medical tools carried associated risks was very quickly learned. Physicians who most enthusiastically adopted them often experienced severe skin injuries to heavily exposed digits, and there are numerous photographs of the hands of such individuals after experiencing several amputations. Regrettably mans ultimately fatal radiation induced cancers also began to appear before the end of the last century, by the first world par there were 200 of these and the death toll already exceeded 50. In the face of this two edged weapon it is not surprising that many of the physicians and medical physicists working in this area turned a great deal of their attention from the exploitation of the new technologies to the protection of their colleagues. These individuals were the pioneer health physicists and. although this name was not used at the time, their background experience in both medicine and physics laid scientific foundations for the new discipline which have remained its keystone ever since. (author)

  20. Examining gender differences on FCI performance in algebra and calculus based physics courses

    Science.gov (United States)

    Kreutzer, Kimberley; Boudreaux, Andrew

    2009-05-01

    The Force Concept Inventory (FCI) has been widely used to asses student understanding of Newtonian principles. Studies have shown a marked difference in the performance of men and women on both pre- and post-tests [1,2] and also indicate that experiential based instruction may lead to a reduction in this gender gap [1,3]. This poster presents FCI data collected at Western Washington University. Initial analysis of gender differences are consistent with those reported nationally. We also discuss factors that may contribute to the differences in performance and propose instructional strategies that are designed to address the gender gap. [4pt] [1] M. Lorenzo, et. al., ``Reducing the gender gap in the physics classroom,'' AJP 74(2), 118-122 (2006) [0pt] [2] J. Docktor and K. Heller, ``Gender Differences in Both Force Concept Inventory and Introductory Physics Performance,'' Proceedings at the 2008 PERC [0pt] [3] S. Pollack, et. al., ``Reducing the gender gap in the physics classroom: How sufficient is interactive engagement?'' PRST-PER 3 (2007)

  1. Injuries and their probable causes in undergraduates of the Physical Education course at the State University of Maringá

    Directory of Open Access Journals (Sweden)

    Alberto Saturno Madureira

    2008-06-01

    Full Text Available The aim of this study to analyse the occurrence of injuries in undergraduates of the Physical Education Course at the State University of Maringá. Types of injuries were diagnosed, the opinion of students and professors with regard to their probable causes was taken and the factors that could render injuries less damaging were identified. Research was carried out in the second semester of 1991 when 231 students were regularly enlisted. Data were collected by means of questionnaires for professors and for students. Forty injury cases were verified, 13 with males and 27 with females. The most common type of injury was bruises (55% followed by strain (18%. The inferior members were the most affected region. Judo was the subject in which the greatest number of injuries occurred. Students stated that salient probable causes were: agressivity of colleages in practical exercises (33% and defective sports facilities (25%. In the professors opinion, however, the two chief causes were: students’ distraction (20% and physical inability (20%. The establishment of an Internal Commission for the Prevention of Accidents has been suggested made up of professors, under graduate students and personnel of the Physical Education Department at the State University of Maringá. Its aims are to carry out a following up of this situation, to promote the prevention of injuries and to suggest possible improvements in the premises.

  2. Lectures in relativistic quantum mechanics an introductory course for postgraduates in particle physics

    CERN Document Server

    Azfar, Farrukh

    2017-01-01

    This book is based on a series of lectures taught by the author to all incoming first year Oxford University postgraduates in experimental particle physics. It begins by deriving the Dirac equation and incorporating the electro-magnetic interaction and calculating several bread and butter processes at tree level using the Feynman Stueckelberg approach: Mott scattering, electron-electron scattering, electron-positron scattering, Compton scattering, Bremsstrahlung and electron-positron to muon-anti-muon. The intention is for the student to become fluent in detail with all the steps leading to the calculation of these processes. Every step is motivated using the most basic arguments.

  3. Exploring the clinical course of neck pain in physical therapy: a longitudinal study.

    Science.gov (United States)

    Walton, David M; Eilon-Avigdor, Yaara; Wonderham, Michael; Wilk, Piotr

    2014-02-01

    To investigate the short-term trajectory of recovery from mechanical neck pain, and predictors of trajectory. Prospective, longitudinal cohort study with 5 repeated measurements over 4 weeks. Community-based physical therapy clinics. Convenience sample of community-dwelling adults (N=50) with uncomplicated mechanical neck disorders of any duration. Usual physical therapy care. Neck Disability Index (NDI), numeric rating scale (NRS) of pain intensity. A total of 50 consecutive subjects provided 5 data points over 4 weeks. Exploratory modeling using latent class growth analysis revealed a linear trend in improvement, at a mean of 1.5 NDI points and 0.5 NRS points per week. Within the NDI trajectory, 3 latent classes were identified, each with a unique trend: worsening (14.5%), rapid improvement (19.6%), and slow improvement (65.8%). Within the NRS trajectory, 2 unique trends were identified: stable (48.0%) and improving (52.0%). Predictors of trajectory class suggest that it may be possible to predict the trajectory. Results are described in view of the sample size. The mean trajectory of improvement in neck pain adequately fits a linear model and suggests slow but stable improvement over the short term. However, up to 3 different trajectories have been identified that suggest neck pain, and recovery thereof, is not homogenous. This may hold value for the design of clinical trials. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. Costs of success: Financial implications of implementation of active learning in introductory physics courses for students and administrators

    Science.gov (United States)

    Brewe, Eric; Dou, Remy; Shand, Robert

    2018-02-01

    Although active learning is supported by strong evidence of efficacy in undergraduate science instruction, institutions of higher education have yet to embrace comprehensive change. Costs of transforming instruction are regularly cited as a key factor in not adopting active-learning instructional practices. Some cite that alternative methods to stadium-style, lecture-based education are not financially viable to an academic department. This paper examines that argument by presenting an ingredients approach to estimating costs of two instructional methods used in introductory university physics courses at a large public U.S. university. We use a metric common in educational economics, cost effectiveness (CE), which is the total cost per student passing the class. We then compare the CE of traditional, passive-learning lecture courses to those of a well-studied, active-learning curriculum (Modeling Instruction) as a way of evaluating the claim that active learning is cost prohibitive. Our findings are that the Modeling Instruction approach has a higher cost per passing student (MI = 1 ,030 /passing student vs Trad = 790 /passing student). These results are discussed from perspectives of university administrators, students, and taxpayers. We consider how MI would need to adapt in order to make the benefits of active learning (particularly higher pass rates and gains on multiple measured student outcomes) available in a cost-neutral setting. This approach aims to provide a methodology to better inform decision makers balancing financial, personnel, and curricular considerations.

  5. Performance of Physical Examination Skills in Medical Students during Diagnostic Medicine Course in a University Hospital of Northwest China

    Science.gov (United States)

    Li, Yan; Li, Na; Han, Qunying; He, Shuixiang; Bae, Ricard S.; Liu, Zhengwen; Lv, Yi; Shi, Bingyin

    2014-01-01

    This study was conducted to evaluate the performance of physical examination (PE) skills during our diagnostic medicine course and analyze the characteristics of the data collected to provide information for practical guidance to improve the quality of teaching. Seventy-two fourth-year medical students were enrolled in the study. All received an assessment of PE skills after receiving a 17-week formal training course and systematic teaching. Their performance was evaluated and recorded in detail using a checklist, which included 5 aspects of PE skills: examination techniques, communication and care skills, content items, appropriateness of examination sequence, and time taken. Error frequency and type were designated as the assessment parameters in the survey. The results showed that the distribution and the percentage in examination errors between male and female students and among the different body parts examined were significantly different (pexaminations was higher than in abdominal (0.867) and head, neck and nervous system examinations (0.917). Female students had a lower average error frequency than males in cardiac examinations (p = 0.041). Additionally, error in examination techniques was the highest type of error among the 5 aspects of PE skills irrespective of participant gender and assessment content (pexaminations and examination techniques may be included in the main focus of improving the teaching of diagnostics in these medical students. PMID:25329685

  6. Costs of success: Financial implications of implementation of active learning in introductory physics courses for students and administrators

    Directory of Open Access Journals (Sweden)

    Eric Brewe

    2018-02-01

    Full Text Available Although active learning is supported by strong evidence of efficacy in undergraduate science instruction, institutions of higher education have yet to embrace comprehensive change. Costs of transforming instruction are regularly cited as a key factor in not adopting active-learning instructional practices. Some cite that alternative methods to stadium-style, lecture-based education are not financially viable to an academic department. This paper examines that argument by presenting an ingredients approach to estimating costs of two instructional methods used in introductory university physics courses at a large public U.S. university. We use a metric common in educational economics, cost effectiveness (CE, which is the total cost per student passing the class. We then compare the CE of traditional, passive-learning lecture courses to those of a well-studied, active-learning curriculum (Modeling Instruction as a way of evaluating the claim that active learning is cost prohibitive. Our findings are that the Modeling Instruction approach has a higher cost per passing student (MI=$1,030/passing student vs Trad=$790/passing student. These results are discussed from perspectives of university administrators, students, and taxpayers. We consider how MI would need to adapt in order to make the benefits of active learning (particularly higher pass rates and gains on multiple measured student outcomes available in a cost-neutral setting. This approach aims to provide a methodology to better inform decision makers balancing financial, personnel, and curricular considerations.

  7. Multi-level Discourse Analysis in a Physics Teaching Methods Course from the Psychological Perspective of Activity Theory

    Science.gov (United States)

    Vieira, Rodrigo Drumond; Kelly, Gregory J.

    2014-11-01

    In this paper, we present and apply a multi-level method for discourse analysis in science classrooms. This method is based on the structure of human activity (activity, actions, and operations) and it was applied to study a pre-service physics teacher methods course. We argue that such an approach, based on a cultural psychological perspective, affords opportunities for analysts to perform a theoretically based detailed analysis of discourse events. Along with the presentation of analysis, we show and discuss how the articulation of different levels offers interpretative criteria for analyzing instructional conversations. We synthesize the results into a model for a teacher's practice and discuss the implications and possibilities of this approach for the field of discourse analysis in science classrooms. Finally, we reflect on how the development of teachers' understanding of their activity structures can contribute to forms of progressive discourse of science education.

  8. Main regularities of teaching course "Non-traditional methods of recovery at physical culture and sports"

    Directory of Open Access Journals (Sweden)

    Podrigalo L.V.

    2012-04-01

    Full Text Available It is analysed features and conformities to the law selected teaching, cooperant forming of bases health-improvement-rehabilitation thoughts for specialists on physical education. Their realization is carried out due to complex connection of necessary theoretical knowledge with a capture practical skills and abilities. Basic conformities to the law of exposition of object are selected. From position of differentiation of spheres of activity of physician and doctor on a rehabilitation is making healthy, being measures on renewal of capacity. From point of complex approach is a construction of the health and restoration system, being based on the mode and use basic physiological hygienical factors. From position of practical orientation is a capture the algorithm of activity under various conditions due to the decision of situational tasks.

  9. Analysis of tutoring in Calculus and Physics: a case study in Engineering courses

    Directory of Open Access Journals (Sweden)

    Jeronimo Becker Flores

    2017-05-01

    Full Text Available In this article, we analyzed the Calculus and Physics’ tutoring developed by a Higher Education Institution (HEI. The research consists of a qualitative approach of a type of case study. We began from the analytical reading of a theoretical basis which was relevant to the theme and then, we performed interviews with the professors responsible for the monitoring. The material was analyzed in the light of the Discursive Textual Analysis (DTA. As main results, we indicated that, in spite of the commonalities, there is no integrated work between Calculus and Physics subjects. In addition, we aimed the need of a reconciled pedagogical role among teachers, scholarship students and common ones. We also considered the need of future studies that reinforce and increase the discussions developed here.

  10. DEVELOPMENT OF EDUCATION AND INFORMATION PORTAL OF PHYSICS ACADEMIC COURSE: WEB DESIGN FEATURES

    Directory of Open Access Journals (Sweden)

    Іryna A. Slipukhina

    2018-04-01

    Full Text Available The purpose of this article is to present the main components and features of designing an educational and informational portal for students. Selection of personal trajectory is realized through the use of personal account, which includes electronic laboratory reports, information materials on studying progress, means of communication with a teacher, etc. The created portal allows the administrator to easily monitor and check laboratory reports, keep an e-journal with grades. To develop the website design, functional modules and components, the Adobe Photoshop ™ environment was used, as well as the HTML and CSS layout of the web portal. The modern Bootstrap technology was applied to adapt the web page interface. The didactic opportunities of using this portal as a part of personalization process in teaching physics were considered.

  11. Investigating Students' Ideas About X-rays While Developing Teaching Materials for a Medical Physics Course

    International Nuclear Information System (INIS)

    Kalita, Spartak; Zollman, Dean

    2007-01-01

    The goal of the Modern Miracle Medical Machines project is to promote pre-med students' interest in physics by using the context of contemporary medical imaging. The X-ray medical imaging learning module will be a central part of this effort. To investigate students' transfer of learning in this context we have conducted a series of clinical and teaching interviews. In the latter interview, some of the proposed learning materials were used. The students brought to our discussion pieces of knowledge transferred from very different sources such as their own X-ray experiences, previous learning and the mass media. This transfer seems to result in more or less firm mental models which often are not always internally consistent or coherent

  12. Time course for the recovery of physical performance, blood hemoglobin, and ferritin content after blood donation

    DEFF Research Database (Denmark)

    Ziegler, Andreas K; Grand, Johannes; Stangerup, Ida

    2015-01-01

    BACKGROUND: It is widely accepted that blood donation negatively affects endurance performance, but data on physical recovery after a standard blood donation are scarce. This study aimed to elucidate the temporary impact of blood donation on endurance performance, measured as peak oxygen uptake (VO......2peak ) and time trial (TT) performance. STUDY DESIGN AND METHODS: VO2peak , TT performance, blood, iron, and anthropometric variables were determined before (baseline) and 3, 7, 14, and 28 days after blood donation in 19 healthy men. RESULTS: VO2peak was reduced by 6.5% from 49.7 ± 2 m......L/kg/min at baseline to 46.3 ± 2 mL/kg/min on Day 3 (p donation. Blood hemoglobin (Hb) concentration declined 7.9% from 9.3 ± 0.11 mmol...

  13. Information Resources in High-Energy Physics Surveying the Present Landscape and Charting the Future Course

    CERN Document Server

    Gentil-Beccot, Anne; Mele, Salvatore; Holtkamp, Annette; O'Connell, Heath B; Brooks, Travis C

    2009-01-01

    Access to previous results is of paramount importance in the scientific process. Recent progress in information management focuses on building e-infrastructures for the optimization of the research workflow, through both policy-driven and user-pulled dynamics. For decades, High-Energy Physics (HEP) has pioneered innovative solutions in the field of information management and dissemination. In light of a transforming information environment, it is important to assess the current usage of information resources by researchers and HEP provides a unique test-bed for this assessment. A survey of about 10% of practitioners in the field reveals usage trends and information needs. Community-based services, such as the pioneering arXiv and SPIRES systems, largely answer the need of the scientists, with a limited but increasing fraction of younger users relying on Google. Commercial services offered by publishers or database vendors are essentially unused in the field. The survey offers an insight into the most importan...

  14. Using Physical Organic Chemistry To Shape the Course of Electrochemical Reactions.

    Science.gov (United States)

    Moeller, Kevin D

    2018-05-09

    While organic electrochemistry can look quite different to a chemist not familiar with the technique, the reactions are at their core organic reactions. As such, they are developed and optimized using the same physical organic chemistry principles employed during the development of any other organic reaction. Certainly, the electron transfer that triggers the reactions can require a consideration of new "wrinkles" to those principles, but those considerations are typically minimal relative to the more traditional approaches needed to manipulate the pathways available to the reactive intermediates formed downstream of that electron transfer. In this review, three very different synthetic challenges-the generation and trapping of radical cations, the development of site-selective reactions on microelectrode arrays, and the optimization of current in a paired electrolysis-are used to illustrate this point.

  15. Opposite patterns of change in perception of imagined and physically induced pain over the course of repeated thermal stimulations.

    Science.gov (United States)

    Gács, B; Szolcsányi, T; Csathó, Á

    2017-08-01

    Individuals frequently show habituation to repeated noxious heat. However, given the defensive function of human pain processing, it is reasonable to assume that individuals anticipate that they would become increasingly sensitive to repeated thermal pain stimuli. No previous studies have, however, been addressed to this assumption. Therefore, in the current study, we investigated how healthy human individuals imagine the intensity of repeated thermal pain stimulations, and compared this with the intensity ratings given after physically induced thermal pain trials. Healthy participants (N = 20) gave pain intensity ratings in two conditions: imagined and real thermal pain. In the real pain condition, thermal pain stimuli of two intensities (minimal and moderate pain) were delivered in four consecutive trials. The duration of the peak temperature was 20 s, and stimulation was always delivered to the same location. In each trial, participants rated the pain intensity twice, 5 and 15 s after the onset of the peak temperature. In the imagined pain condition, participants were subjected to a reference pain stimulus and then asked to imagine and rate the same sequence of stimulations as in the induced pain condition. Ratings of imagined pain and physically induced pain followed opposite courses over repeated stimulations: Ratings of imagined pain indicated sensitization, whereas ratings for physically induced pain indicated habituation. The findings were similar for minimal and moderate pain intensities. The findings suggest that, rather than habituating to pain, healthy individuals imagine that they would become increasingly sensitive to repeated thermal pain stimuli. This study identified opposite patterns of change in perception of imagined pain (sensitization) and physically induced pain (habituation). The findings show that individuals anticipate that they would become increasingly sensitive to repeated pain stimuli, which might also have clinical implications.

  16. The Impact of Library Tutorials on the Information Literacy Skills of Occupational Therapy and Physical Therapy Students in an Evidence-Based Practice Course: A Rubric Assessment.

    Science.gov (United States)

    Schweikhard, April J; Hoberecht, Toni; Peterson, Alyssa; Randall, Ken

    2018-01-01

    This study measures how online library instructional tutorials implemented into an evidence-based practice course have impacted the information literacy skills of occupational and physical therapy graduate students. Through a rubric assessment of final course papers, this study compares differences in students' search strategies and cited sources pre- and post-implementation of the tutorials. The population includes 180 randomly selected graduate students from before and after the library tutorials were introduced into the course curriculum. Results indicate a statistically significant increase in components of students' searching skills and ability to find higher levels of evidence after completing the library tutorials.

  17. How are learning physics and student beliefs about learning physics connected? Measuring epistemological self-reflection in an introductory course and investigating its relationship to conceptual learning

    Science.gov (United States)

    May, David B.

    2002-11-01

    To explore students' epistemological beliefs in a variety of conceptual domains in physics, and in a specific and novel context of measurement, this Dissertation makes use of Weekly Reports, a class assignment in which students reflect in writing on what they learn each week and how they learn it. Reports were assigned to students in the introductory physics course for honors engineering majors at The Ohio State University in two successive years. The Weekly Reports of several students from the first year were analyzed for the kinds of epistemological beliefs exhibited therein, called epistemological self-reflection, and a coding scheme was developed for categorizing and quantifying this reflection. The connection between epistemological self-reflection and conceptual learning in physics seen in a pilot study was replicated in a larger study, in which the coded reflections from the Weekly Reports of thirty students were correlated with their conceptual learning gains. Although the total amount of epistemological self-reflection was not found to be related to conceptual gain, different kinds of epistemological self-reflection were. Describing learning physics concepts in terms of logical reasoning and making personal connections were positively correlated with gains; describing learning from authority figures or by observing phenomena without making inferences were negatively correlated. Linear regression equations were determined in order to quantify the effects on conceptual gain of specific ways of describing learning. In an experimental test of this model, the regression equations and the Weekly Report coding scheme developed from the first year's data were used to predict the conceptual gains of thirty students from the second year. The prediction was unsuccessful, possibly because these students were not given as much feedback on their reflections as were the first-year students. These results show that epistemological beliefs are important factors affecting

  18. Prospection of implementation of distance learning at IPEN/CNEN-SP for the course on fundamentals of nuclear physics using infrastructure of free software

    Energy Technology Data Exchange (ETDEWEB)

    Tondin, Jose Egidio M.; Menezes, Mario O. de; Vasconcellos, Marina B.A.; Osso Junior, Joao A., E-mail: mbvascon@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    The main objective of the present work is to prospect the implementation of the methods and techniques of distance learning to the course of Fundamentals of Nuclear Physics,which is obligatory for all students of the graduate course of IPEN/CNEN-SP (USP - Area of Nuclear Technology). It was chosen the free software MOODLE (Modular Object-Oriented Dynamic Learning Environment), created in 2001, which allows the collaborative educational work by means of internet navigation. The first part of the present work was to prepare a pilot project for the implantation of distance learning for the course on Fundamentals of Nuclear Physics at the graduate course of IPEN/CNEN-SP, by inserting in the platform all the lecture presentations prepared by the teacher responsible for the course, as well as papers related to the subject, videos, exercises and tests. A total of 118 students at MSc and PhD levels of IPEN participated of the research, as well as 16 professors responsible for several courses at IPEN. The data collection comprised the following phases: questionnaires about the profile of the students, utilization of the course inserted in the Moodle platform, opinion of the students about the use of the platform and opinion of the professors about distance learning. (author)

  19. Prospection of implementation of distance learning at IPEN/CNEN-SP for the course on fundamentals of nuclear physics using infrastructure of free software

    International Nuclear Information System (INIS)

    Tondin, Jose Egidio M.; Menezes, Mario O. de; Vasconcellos, Marina B.A.; Osso Junior, Joao A.

    2009-01-01

    The main objective of the present work is to prospect the implementation of the methods and techniques of distance learning to the course of Fundamentals of Nuclear Physics,which is obligatory for all students of the graduate course of IPEN/CNEN-SP (USP - Area of Nuclear Technology). It was chosen the free software MOODLE (Modular Object-Oriented Dynamic Learning Environment), created in 2001, which allows the collaborative educational work by means of internet navigation. The first part of the present work was to prepare a pilot project for the implantation of distance learning for the course on Fundamentals of Nuclear Physics at the graduate course of IPEN/CNEN-SP, by inserting in the platform all the lecture presentations prepared by the teacher responsible for the course, as well as papers related to the subject, videos, exercises and tests. A total of 118 students at MSc and PhD levels of IPEN participated of the research, as well as 16 professors responsible for several courses at IPEN. The data collection comprised the following phases: questionnaires about the profile of the students, utilization of the course inserted in the Moodle platform, opinion of the students about the use of the platform and opinion of the professors about distance learning. (author)

  20. Information resources in high-energy physics. Surveying the present landscape and charting the future course

    Energy Technology Data Exchange (ETDEWEB)

    Gentil-Beccot, A.; Mele, S. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Holtkamp, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); O' Connell, H.B. [Fermi National Accelerator Lab., Batavia, IL (United States); Brooks, T.C. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    2008-04-15

    Access to previous results is of paramount importance in the scientific process. Recent progress in information management focuses on building e-infrastructures for the optimization of the research workflow, through both policy-driven and user-pulled dynamics. For decades, High-Energy Physics (HEP) has pioneered innovative solutions in the eld of infor- mation management and dissemination. In light of a transforming information environment, it is important to assess the current usage of information resources by researchers and HEP provides a unique test-bed for this assessment. A survey of about 10% of practitioners in the eld reveals usage trends and information needs. Community-based services, such as the pioneering arXiv and SPIRES systems, largely answer the need of the scientists, with a limited but increasing fraction of younger users relying on Google. Commercial services offered by publishers or database vendors are essentially unused in the eld. The survey o ers an in- sight into the most important features that users require to optimize their research workflow. These results inform the future evolution of information management in HEP and, as these researchers are traditionally 'early adopters' of innovation in scholarly communication, can inspire developments of disciplinary repositories serving other communities. (orig.)

  1. 132nd International School of Physics "Enrico Fermi" : Course on Dark Matter in the Universe

    CERN Document Server

    Primack, Joel R; Provenzale, A; International School of Physics "Enrico Fermi" : Course on Dark Matter in the Universe; Scuola Internazionale di Fisica "Enrico Fermi"

    1996-01-01

    Physics and astrophysics came to dark matter through many different routes, finally accepting it, but often with some distaste. It has been noticed that the existence of dark matter is yet another displacement of humans from the centre of the Universe: not only do our planet and our sun have no central position in the Universe, not only are humans just animals (although with a 'specialized' central nervous system), but even the material of which we are made is only a marginal component of the cosmic substance! If this is the right attitude to take, scientists feeling distaste for dark matter are much like Galileo Galilei's colleagues who refused to look through the telescope to watch the Medici planets. Nevertheless, astronomers, when required to take a ballot in favour of some cosmological model, often still vote for 'pure baryonic' with substantial majorities, although most cosmologists assume that a 'cold' component of dark matter plays a role in producing the world as we observe it. Among the many subject...

  2. Evaluation of the Usability of Different Virtual Lab Software Used in Physics Courses

    Directory of Open Access Journals (Sweden)

    O. Karagoz

    2010-11-01

    Full Text Available In recent years the use of virtual lab software has become ubiquitous in education settings. The purpose of the current study is to de¬velop an Evaluation Scale to allow the easy and fast assessment of virtual lab software. During the development of the Evaluation Scale, theoretical and experimental studies investigating the effects of different software on learn¬ing, particularly in terms of usability, were utilized. The Evaluation Scale was created by adding new attributes to pre-existing scales, and comprises three sections – attributes related to the interface of the software; attributes related to its use as a material in education; and attributes related to product and ser¬vice support – and 79 items. Testing of the Evaluation Scale was carried out using two different virtual lab programmes, with the help of a checklist. The evaluation was carried out by physics teachers and academics that had previ¬ously used similar software, and consistency between the results was consid¬ered to represent inter-rater reliability. At the end of the study, the usability of the Evaluation Scale was tested, and the instructor evaluations regarding the usability characteristics considered sufficient and that require improvement in virtual lab software were also investigated.

  3. Information resources in high-energy physics. Surveying the present landscape and charting the future course

    International Nuclear Information System (INIS)

    Gentil-Beccot, A.; Mele, S.; Holtkamp, A.; O'Connell, H.B.; Brooks, T.C.

    2008-04-01

    Access to previous results is of paramount importance in the scientific process. Recent progress in information management focuses on building e-infrastructures for the optimization of the research workflow, through both policy-driven and user-pulled dynamics. For decades, High-Energy Physics (HEP) has pioneered innovative solutions in the eld of infor- mation management and dissemination. In light of a transforming information environment, it is important to assess the current usage of information resources by researchers and HEP provides a unique test-bed for this assessment. A survey of about 10% of practitioners in the eld reveals usage trends and information needs. Community-based services, such as the pioneering arXiv and SPIRES systems, largely answer the need of the scientists, with a limited but increasing fraction of younger users relying on Google. Commercial services offered by publishers or database vendors are essentially unused in the eld. The survey o ers an in- sight into the most important features that users require to optimize their research workflow. These results inform the future evolution of information management in HEP and, as these researchers are traditionally ''early adopters'' of innovation in scholarly communication, can inspire developments of disciplinary repositories serving other communities. (orig.)

  4. Information resources in high-energy physics. Surveying the present landscape and charting the future course

    Energy Technology Data Exchange (ETDEWEB)

    Gentil-Beccot, A; Mele, S [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Holtkamp, A [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); O' Connell, H B [Fermi National Accelerator Lab., Batavia, IL (United States); Brooks, T C [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    2008-04-15

    Access to previous results is of paramount importance in the scientific process. Recent progress in information management focuses on building e-infrastructures for the optimization of the research workflow, through both policy-driven and user-pulled dynamics. For decades, High-Energy Physics (HEP) has pioneered innovative solutions in the eld of infor- mation management and dissemination. In light of a transforming information environment, it is important to assess the current usage of information resources by researchers and HEP provides a unique test-bed for this assessment. A survey of about 10% of practitioners in the eld reveals usage trends and information needs. Community-based services, such as the pioneering arXiv and SPIRES systems, largely answer the need of the scientists, with a limited but increasing fraction of younger users relying on Google. Commercial services offered by publishers or database vendors are essentially unused in the eld. The survey o ers an in- sight into the most important features that users require to optimize their research workflow. These results inform the future evolution of information management in HEP and, as these researchers are traditionally 'early adopters' of innovation in scholarly communication, can inspire developments of disciplinary repositories serving other communities. (orig.)

  5. Information Resources in High-Energy Physics: Surveying the Present Landscape and Charting the Future Course

    Energy Technology Data Exchange (ETDEWEB)

    Gentil-Beccot, Anne; Mele, Salvatore; Holtkamp, Annette; O' Connell, Heath B.; Brooks, Travis C.

    2008-04-22

    Access to previous results is of paramount importance in the scientific process. Recent progress in information management focuses on building e-infrastructures for the optimization of the research workflow, through both policy-driven and user-pulled dynamics. For decades, High-Energy Physics (HEP) has pioneered innovative solutions in the field of information management and dissemination. In light of a transforming information environment, it is important to assess the current usage of information resources by researchers and HEP provides a unique test-bed for this assessment. A survey of about 10% of practitioners in the field reveals usage trends and information needs. Community-based services, such as the pioneering arXiv and SPIRES systems, largely answer the need of the scientists, with a limited but increasing fraction of younger users relying on Google. Commercial services offered by publishers or database vendors are essentially unused in the field. The survey offers an insight into the most important features that users require to optimize their research workflow. These results inform the future evolution of information management in HEP and, as these researchers are traditionally 'early adopters' of innovation in scholarly communication, can inspire developments of disciplinary repositories serving other communities.

  6. International School of Physics Enrico Fermi : Course 190 : Frontiers in Modern Optics

    CERN Document Server

    Dudley, J; Clerici, M

    2016-01-01

    The year 2015 was designated by the United Nations General Assembly as the Year of Light and Light-based Technologies, and also marks the anniversaries of a number of significant historical events related to light. In 1015, Ibn Al-Haytham published his book of optics; in 1815, Fresnel first proposed the notion that light is actually a wave; James Clerk Maxwell then firmly established this concept with his electromagnetic theory of light propagation; and Einstein announced his discovery of the photoelectric effect, demonstrating that light is made of photons in 1905, followed in 1915 by his general theory of relativity, in which light plays a central role. This book presents lectures from the International School of Physics Enrico Fermi summer school: Frontiers in Modern Optics, held in Varenna, Italy, in June and July 2014. The school attempted to give a broad and modern overview of the field of optics in a series of lectures addressing ongoing topics of research. Subject areas include: nonlinear optics; lig...

  7. Information Resources in High-Energy Physics: Surveying the Present Landscape and Charting the Future Course

    International Nuclear Information System (INIS)

    Gentil-Beccot, Anne; Mele, Salvatore; Holtkamp, Annette; O'Connell, Heath B.; Brooks, Travis C.

    2008-01-01

    Access to previous results is of paramount importance in the scientific process. Recent progress in information management focuses on building e-infrastructures for the optimization of the research workflow, through both policy-driven and user-pulled dynamics. For decades, High-Energy Physics (HEP) has pioneered innovative solutions in the field of information management and dissemination. In light of a transforming information environment, it is important to assess the current usage of information resources by researchers and HEP provides a unique test-bed for this assessment. A survey of about 10% of practitioners in the field reveals usage trends and information needs. Community-based services, such as the pioneering arXiv and SPIRES systems, largely answer the need of the scientists, with a limited but increasing fraction of younger users relying on Google. Commercial services offered by publishers or database vendors are essentially unused in the field. The survey offers an insight into the most important features that users require to optimize their research workflow. These results inform the future evolution of information management in HEP and, as these researchers are traditionally 'early adopters' of innovation in scholarly communication, can inspire developments of disciplinary repositories serving other communities

  8. Distance educational technologies as means of increase of student’s motivation in the learning of general physics course

    Science.gov (United States)

    Gubkin, M. K.; Ivanov, D. A.; Ivanova, I. V.; Spivak, V. S.

    2017-11-01

    The Department of General physics and nuclear fusion, National Research University “Moscow Power Engineering Institute”, developed a set of tests (over 1000 questions) for the current control of knowledge of students in the section “Electricity and magnetism” of the General physics course using the internet distance learning system “Prometheus” (fourth generation). Under this section of the proposed test tasks are divided into sections corresponding to the topics section. These tasks include quality issues, design tasks, tasks with a choice of answers (one of many, many of many), the job with the selection region in the figure, tasks with detailed answer. The variety of tasks allows the teacher not only to objectively assess the student acquired knowledge but also to develop his problem-solving skills, to learn to be fluent in theory. The results of testing conducted for several years, show the high interest of students in the repeated independent execution of tasks and correlate well with the results of intermediate certification (exams).

  9. Measurement of the magnetic field of small magnets with a smartphone: a very economical laboratory practice for introductory physics courses

    International Nuclear Information System (INIS)

    Arribas, Enrique; Escobar, Isabel; Suarez, Carmen P; Najera, Alberto; Beléndez, Augusto

    2015-01-01

    In this work, we propose an inexpensive laboratory practice for an introductory physics course laboratory for any grade of science and engineering study. This practice was very well received by our students, where a smartphone (iOS, Android, or Windows) is used together with mini magnets (similar to those used on refrigerator doors), a 20 cm long school rule, a paper, and a free application (app) that needs to be downloaded and installed that measures magnetic fields using the smartphone’s magnetic field sensor or magnetometer. The apps we have used are: Magnetometer (iOS), Magnetometer Metal Detector, and Physics Toolbox Magnetometer (Android). Nothing else is needed. Cost of this practice: free. The main purpose of the practice is that students determine the dependence of the component x of the magnetic field produced by different magnets (including ring magnets and sphere magnets). We obtained that the dependency of the magnetic field with the distance is of the form x –3 , in total agreement with the theoretical analysis. The secondary objective is to apply the technique of least squares fit to obtain this exponent and the magnetic moment of the magnets, with the corresponding absolute error. (paper)

  10. Measurement of the magnetic field of small magnets with a smartphone: a very economical laboratory practice for introductory physics courses

    Science.gov (United States)

    Arribas, Enrique; Escobar, Isabel; Suarez, Carmen P.; Najera, Alberto; Beléndez, Augusto

    2015-11-01

    In this work, we propose an inexpensive laboratory practice for an introductory physics course laboratory for any grade of science and engineering study. This practice was very well received by our students, where a smartphone (iOS, Android, or Windows) is used together with mini magnets (similar to those used on refrigerator doors), a 20 cm long school rule, a paper, and a free application (app) that needs to be downloaded and installed that measures magnetic fields using the smartphone’s magnetic field sensor or magnetometer. The apps we have used are: Magnetometer (iOS), Magnetometer Metal Detector, and Physics Toolbox Magnetometer (Android). Nothing else is needed. Cost of this practice: free. The main purpose of the practice is that students determine the dependence of the component x of the magnetic field produced by different magnets (including ring magnets and sphere magnets). We obtained that the dependency of the magnetic field with the distance is of the form x-3, in total agreement with the theoretical analysis. The secondary objective is to apply the technique of least squares fit to obtain this exponent and the magnetic moment of the magnets, with the corresponding absolute error.

  11. A comparison of student outcomes in a physical therapy neurologic rehabilitation course based on delivery mode: hybrid vs traditional.

    Science.gov (United States)

    Veneri, Diana A; Gannotti, Mary

    2014-01-01

    Physical therapy (PT) educators have been charged by the American Physical Therapy Association's Vision 2020 with the aim of developing critically reflective knowledge about teaching and learning using innovative teaching methods. Computer-assisted learning (CAL) affords the opportunity to supplement face-to-face teaching methods. The purpose of this study was to compare student performance and preferred instruction mode between a hybrid model using CAL modules and a traditional lecture-based model. The posttest-only control design used mixed methods to assess two successive student cohorts (2011 and 2012). Cohort 1 was instructed using only traditional teaching methods of lecture and laboratory experiences, while Cohort 2 was taught using both traditional teaching methods and the CAL modules created for 10 content areas. Students viewed each CAL module after the in-class lecture, prior to the corresponding laboratory. Student performance was assessed with weekly 10-question quizzes. One-minute papers and focus group discussions were administered to Cohort 2 to gauge satisfaction and perceptions of the CAL modules. Results revealed that the mean quiz grades for Cohort 2 were higher than those for Cohort 1, 86.1 vs 80.4. When comparing final exam grades and final grades for the course between groups, a statistically significant difference exists with the final exam grade, pInnovative, interactive, and varied teaching methodologies will serve to better engage students as lifelong learners.

  12. Developing Web-oriented Homework System to Assess Students’ Introductory Physics Course Performance and Compare to Paper-based Peer Homework

    Directory of Open Access Journals (Sweden)

    Neset DEMIRCI

    2006-07-01

    Full Text Available The World Wide Web influences education and our lives in many ways. Nowadays, Web-based homework has been becoming widespread practice in physics courses and some other courses as well. Although are some disputes whether this is an encouraging or risky development for student learning, there is limited research assessing the pedagogical effect of changing the medium from written, hand-graded homework to online oriented, computer-graded homework. In this study, web-oriented homework system is developed to assess students’ introductory physics course performance. Later on, these results are compared with paper-based (peer homework performance for mid enrollment physics courses. One of two identical sections of introductory physics course students received paper-based, hand graded group homework while the other received the individual web-based homework. Then two groups’ on conceptual and problem-solving performance measures are compared. No significant differences were found in students’ Force Concept Inventory (FCI test scores; however, average homework performance scores were significant that could be attributed to the homework method used in favor of paper-based peer homework group.

  13. Computational physics problem solving with Python

    CERN Document Server

    Landau, Rubin H; Bordeianu, Cristian C

    2015-01-01

    The use of computation and simulation has become an essential part of the scientific process. Being able to transform a theory into an algorithm requires significant theoretical insight, detailed physical and mathematical understanding, and a working level of competency in programming. This upper-division text provides an unusually broad survey of the topics of modern computational physics from a multidisciplinary, computational science point of view. Its philosophy is rooted in learning by doing (assisted by many model programs), with new scientific materials as well as with the Python progr

  14. Implementation of Inquiry-Based Tutorials in AN Introductory Physics Course: the Role of the Graduate Teaching Assistant.

    Science.gov (United States)

    Thoresen, Carol Wiggins

    1994-01-01

    This study determined if the training provided physics teaching assistants was sufficient to accomplish the objectives of inquiry-based tutorials for an introductory physics course. Qualitative research methods were used: (1) to determine if the Physics by Inquiry method was modeled; (2) to describe the process from the teaching assistant perspective; (3) to determine TA opinions on training methods; (4) to develop a frame of reference to better understand the role of TA's as instructional support staff. The study determined that the teaching assistants verbalized appropriate instructional actions, but were observed to use a predominantly didactic teaching style. TA's held a variety of perceptions and beliefs about inquiry -based learning and how science is learned. They felt comfortable in the role of tutorial instructor. They were satisfied with the training methods provided and had few suggestions to change or improve training for future tutorial instructors. A concurrent theme of teacher action dependent on teacher beliefs was sustained throughout the study. The TA's actions, as tutorial instructors, reflected their educational beliefs, student background and learning experiences. TA's performance as tutorial instructors depended on what they think and believe about learning science. Practical implications exist for training teaching assistants to be tutorial instructors. Some recommendations may be appropriate for TA's required to use instructional methods that they have not experienced as students. Interview prospective teaching assistants to determine educational experience and beliefs. Employ inexperienced teaching assistants whose perspectives match the proposed instructional role and who might be more receptive to modeling. Incorporate training into staff meetings. Provide time for TA's to experience the instructional model with simulation or role play as students and as instructors, accompanied by conference discussion. Use strategies known to enhance

  15. Teaching possibilities of some elements of Albert Einstein's Gravitation theory in frame of physics courses taught at technical universities

    International Nuclear Information System (INIS)

    Iordache, Dan-Alexandru

    2005-01-01

    As in the period of creation of the 'monumental' works of A. Einstein (1905-1920, mainly), when many outstanding physicists [theoreticians, inclusively, as Albert Einstein (alumni of the Polytechnics from Geneva), as Paul Adrian Maurice Dirac, Alexandru Proca (alumni of Bucharest Polytechnics), et al., finished their academic studies to different Polytechnics Universities, presently many students of technical Universities obtained (as high-school students) some outstanding results in the Physics field. Particularly, the leadership of the Faculty of Control Systems and Computers of the Bucharest University has found that 'the best students in their divisions are winners at the Physics Olympics Contests'. These students and many of their colleagues (those with special scientific aptitudes) want to know more details about the most difficult scientific creation of Albert Einstein: the Gravitation Theory. Taking into account that the Einstein's Gravitation Theory is particularly difficult (from mathematical point of view, especially), and the duration of the Physics study in our technical universities is so restricted (totally 42 to 98 teaching hours, depending on the technical division profile), we have to answer to the question: what elements of the Einstein's gravity theory could be presented in frame of Physics courses taught in our technical universities? After accomplishing our analysis, we concluded as possible and useful - for the scientific training of the best students 'engineers' - the assimilation of the following elements of the Einstein's gravity theory: - The time and space concepts in the Einstein's gravitation theory, in connection with the equation of electromagnetic waves in ideal media and - eventually - in relation with the Larmor's theory of the electrical dipole radiation [which needs the expressions in curvilinear coordinates of the gradient and divergence (the main elements of the mathematical theory of fields)]; - The applications of the

  16. Psychological determinants of physical activity across the life course: A "DEterminants of DIet and Physical ACtivity" (DEDIPAC umbrella systematic literature review.

    Directory of Open Access Journals (Sweden)

    Cristina Cortis

    Full Text Available Low levels of physical activity (PA are reported to contribute to the occurrence of non-communicable diseases over the life course. Although psychological factors have been identified as an important category concerning PA behavior, knowledge on psychological determinants of PA is still inconclusive. Therefore, the aim of this umbrella systematic literature review (SLR was to summarize and synthesize the scientific evidence on psychological determinants of PA behavior across the life course. A systematic online search was conducted on MEDLINE, ISI Web of Science, Scopus, and SPORTDiscus databases. The search was limited to studies published in English from January 2004 to April 2016. SLRs and meta-analyses (MAs of observational studies investigating the association of psychological variables and PA were considered eligible. Extracted data were evaluated based on importance of determinants, strength of evidence, and methodological quality. The full protocol is available from PROSPERO (Record ID: CRD42015010616. Twenty reviews (14 SLRs and 6 MAs, mostly of moderate methodological quality, were found eligible. Convincing evidence was found for self-efficacy (positive association with PA in children and adolescents, and stress (negative association with PA regardless of age. Most of the evidence revealing an association between psychological determinants and PA is probable and limited, mainly due to differences in the definition of PA and of psychological determinants across reviews. Thus, scholars are urged to reach a consensus on clear definitions of relevant psychological determinants of PA, subsuming cultural biases and allowing the possibility to obtain clear interpretations and generalizability of findings. Finally, most psychological determinants should be considered within a larger framework of other multi-level determinants that may interact or mediate some of the effects.

  17. Astronomical Data in Undergraduate courses

    Science.gov (United States)

    Clarkson, William I.; Swift, Carrie; Hughes, Kelli; Burke, Christopher J. F.; Burgess, Colin C.; Elrod, Aunna V.; Howard, Brittany; Stahl, Lucas; Matzke, David; Bord, Donald J.

    2016-06-01

    We present status and plans for our ongoing efforts to develop data analysis and problem-solving skills through Undergraduate Astronomy instruction. While our initiatives were developed with UM-Dearborn’s student body primarily in mind, they should be applicable for a wide range of institution and of student demographics. We focus here on two strands of our effort.Firstly, students in our Introductory Astronomy (ASTR 130) general-education course now perform several “Data Investigations”, in which they interrogate the Hubble Legacy Archive to illustrate important course concepts. This was motivated in part by the realization that typical public data archives now include tools to interrogate the observations that are sufficiently accessible that introductory astronomy students can use them to perform real science, albeit mostly at a descriptive level. We are continuing to refine these investigations, and, most importantly, to critically assess their effectiveness in terms of the student learning outcomes we wish to achieve. This work is supported by grant HST-EO-13758, provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.Secondly, at the advanced-undergraduate level, students taking courses in our Astronomy minor are encouraged to gain early experience in techniques of astronomical observation and analysis that are used by professionals. We present two example projects from the Fall 2015 iteration of our upper-division course ASTR330 (The Cosmic Distance Ladder), one involving Solar System measurements, the second producing calibrated aperture photometry. For both projects students conducted, analysed, and interpreted observations using our 0.4m campus telescope, and used many of the same analysis tools as professional astronomers. This work is supported partly from a Research Initiation and Seed grant from the

  18. EFFECTS OF COOPERATIVE LEARNING MODEL TYPE STAD JUST-IN TIME BASED ON THE RESULTS OF LEARNING TEACHING PHYSICS COURSE IN PHYSICS SCHOOL IN PHYSICS PROGRAM FACULTY UNIMED

    Directory of Open Access Journals (Sweden)

    Teguh Febri Sudarma

    2013-06-01

    Full Text Available Research was aimed to determine: (1 Students’ learning outcomes that was taught with just in time teaching based STAD cooperative learning method and STAD cooperative learning method (2 Students’ outcomes on Physics subject that had high learning activity compared with low learning activity. The research sample was random by raffling four classes to get two classes. The first class taught with just in time teaching based STAD cooperative learning method, while the second class was taught with STAD cooperative learning method. The instrument used was conceptual understanding that had been validated with 7 essay questions. The average gain values of students learning results with just in time teaching based STAD cooperative learning method 0,47 higher than average gain values of students learning results with STAD cooperative learning method. The high learning activity and low learning activity gave different learning results. In this case the average gain values of students learning results with just in time teaching based STAD cooperative learning method 0,48 higher than average gain values of students learning results with STAD cooperative learning method. There was interaction between learning model and learning activity to the physics learning result test in students

  19. Feasibility online survey to estimate physical activity level among the students studying professional courses: a cross-sectional online survey.

    Science.gov (United States)

    Sudha, Bhumika; Samuel, Asir John; Narkeesh, Kanimozhi

    2018-02-01

    The aim of the study was to estimate the physical activity (PA) level among the professional college students in North India. One hundred three professional college students in the age group of 18-25 years were recruited by simple random sampling for this cross-sectional online survey. The survey was advertised on the social networking sites (Facebook, WhatsApp) through a link www.surveymonkey.com/r/MG-588BY. A Short Form of International Physical Activity Questionnaire was used for this survey study. The questionnaire included total 8 questions on the basis of previous 7 days. The questionnaire consists of 3 main categories which were vigorous, moderate and high PA. Time spent in each activity level was multiplied with the metabolic equivalent of task (MET), which has previously set to 8.0 for vigorous activity, 4.0 for moderate activity, 3.3 for walking, and 1.5 for sitting. By multiplying MET with number of days and minutes performed weekly, amount of each activity level was calculated and measured as MET-min/wk. Further by adding MET minutes for each activity level, total MET-min/wk was calculated. Total number of 100 students participated in this study, and it was shown that all professional course students show different levels in PA. The total PA level among professional college students, which includes, physiotherapy, dental, medical, nursing, lab technician, pharmacy, management, law, engineering, were 434.4 (0-7,866), 170.3 (0-1,129), 87.7 (0-445), 102.8 (0-180), 469 (0-1,164), 0 (0-0), 645 (0-1,836), 337 (0-1,890), 396 (0-968) MET-min/wk respectively. PA levels among professional college students in North India have been established.

  20. The Effectiveness of Problem-Based Learning in the Web-Based Environment for the Delivery of an Undergraduate Physics Course

    Science.gov (United States)

    Atan, Hanafi; Sulaiman, Fauziah; Idrus, Rozhan M.

    2005-01-01

    This paper reports the investigation of the effectiveness of Problem-Based Learning (PBL) within a web-based environment in the delivery of an undergraduate Physics course. The effectiveness was evaluated by comparing the performances and the perceptions of the sample students (n=67) using the web-based PBL and comparing the outcomes with those of…

  1. Free Radical Addition Polymerization Kinetics without Steady-State Approximations: A Numerical Analysis for the Polymer, Physical, or Advanced Organic Chemistry Course

    Science.gov (United States)

    Iler, H. Darrell; Brown, Amber; Landis, Amanda; Schimke, Greg; Peters, George

    2014-01-01

    A numerical analysis of the free radical addition polymerization system is described that provides those teaching polymer, physical, or advanced organic chemistry courses the opportunity to introduce students to numerical methods in the context of a simple but mathematically stiff chemical kinetic system. Numerical analysis can lead students to an…

  2. Verbal abuse, like physical and sexual abuse, in childhood is associated with an earlier onset and more difficult course of bipolar disorder

    NARCIS (Netherlands)

    Post, R.M.; Altshuler, L.L.; Kupka, R.W.; McElroy, S.L.; Frye, M.A.; Rowe, M.; Leverich, G.S.; Grunze, H.; Suppes, T.; Keck, P.E.; Nolen, W.A.

    2015-01-01

    Objectives: Physical or sexual abuse in childhood is known to have an adverse effect on the course of bipolar disorder, but the impact of verbal abuse has not been well elucidated. Methods: We examined the occurrence and frequency (never to frequently) of each type of abuse in childhood in 634 US

  3. Verbal abuse, like physical and sexual abuse, in childhood is associated with an earlier onset and more difficult course of bipolar disorder

    NARCIS (Netherlands)

    Post, Robert M.; Altshuler, Lori L.; Kupka, Ralph; McElroy, Susan L.; Frye, Mark A.; Rowe, Michael; Leverich, Gabriele S.; Grunze, Heinz; Suppes, Trisha; Keck, Paul E.; Nolen, Willem A.

    ObjectivesPhysical or sexual abuse in childhood is known to have an adverse effect on the course of bipolar disorder, but the impact of verbal abuse has not been well elucidated. MethodsWe examined the occurrence and frequency (never to frequently) of each type of abuse in childhood in 634 US adult

  4. Potential Teachers' Appropriate and Inappropriate Application of Pedagogical Resources in a Model-Based Physics Course: A "Knowledge in Pieces" Perspective on Teacher Learning

    Science.gov (United States)

    Harlow, Danielle B.; Bianchini, Julie A.; Swanson, Lauren H.; Dwyer, Hilary A.

    2013-01-01

    We used a "knowledge in pieces" perspective on teacher learning to document undergraduates' pedagogical resources in a model-based physics course for potential teachers. We defined pedagogical resources as small, discrete ideas about teaching science that are applied appropriately or inappropriately in specific contexts. Neither…

  5. Assessment of Student Performance in a PSI College Physics Course Using Ausubel's Learning Theory as a Theoretical Framework for Content Organization.

    Science.gov (United States)

    Moriera, M. A.

    1979-01-01

    David Ausubel's learning theory was used as a framework for the content organization of an experimental Personalized System of Instruction (PSI) course in physics. Evaluation suggests that the combination of PSI as a method of instruction and Ausubel's theory for organization might result in better learning outcomes. (Author/JMD)

  6. Comparison of the effectiveness of collaborative groups and peer instruction in a large introductory physics course for science majors

    International Nuclear Information System (INIS)

    Kalman, C.S.; Milner-Bolotin, M.; Antimitova, T.

    2010-01-01

    We report on an experiment comparing examinations of concepts using slightly modified peer instruction (MPI) interventions with a conceptual conflict strategy based on collaborative groups (CG). Four interventions were utilized in two sections of an introductory physics course for science students. Both instructors and strategies were alternated in the two classes so that instructor dependence could be factored out and so that each class could serve as both an experimental and a control group. The gain on the Force Concept Inventory (FCI) used as a pre- and post-test is essentially the same in both classes. The instructors were experienced in use of MPI, but this was the first time that these instructors had used a collaborative group activity in their classes and only used it for the two interventions in each class described in this paper. CG appears to be more effective as a teaching method than PI. It also should be noted that the effectiveness of both teaching methods seems to be instructor independent as long as the instructors followed the same protocol. (author)

  7. Learner-Centered Teaching and Improving Learning by Writing Down the Statement of Problems in an Introductory Physics Course

    Science.gov (United States)

    Aurora, Tarlok

    2005-04-01

    In a calculus-based introductory physics course, students were assigned to write the statements of word problems (along with the accompanying diagrams if any), analyze these, identify important concepts/equations and try to solve these end-of- chapter homework problems. They were required to bring to class their written assignment until the chapter was completed in lecture. These were quickly checked at the beginning of the class. In addition, re-doing selected solved examples in the textbook were assigned as homework. Where possible, students were asked to look for similarities between the solved-examples and the end-of-the-chapter problems, or occasionally these were brought to the students' attention. It was observed that many students were able to solve several of the solved-examples on the test even though the instructor had not solved these in class. This was seen as an improvement over the previous years. It made the students more responsible for their learning. Another benefit was that it alleviated the problems previously created by many students not bringing the textbooks to class. It allowed more time for problem solving/discussions in class.

  8. Interprofessional, simulation-based technology-enhanced learning to improve physical healthcare in psychiatry: The RAMPPS course.

    Science.gov (United States)

    Akroyd, Mike; Jordan, Gary; Rowlands, Paul

    2016-06-01

    People with serious mental illness have reduced life expectancy compared with a control population, much of which is accounted for by significant physical comorbidity. Frontline clinical staff in mental health often lack confidence in recognition, assessment and management of such 'medical' problems. Simulation provides one way for staff to practise these skills in a safe setting. We produced a multidisciplinary simulation course around recognition and assessment of medical problems in psychiatric settings. We describe an audit of strategic and design aspects of the recognition and assessment of medical problems in psychiatric settings, using the Department of Health's 'Framework for Technology Enhanced Learning' as our audit standards. At the same time, as highlighting areas where recognition and assessment of medical problems in psychiatric settings adheres to these identified principles, such as the strategic underpinning of the approach, and the means by which information is collected, reviewed and shared, it also helps us to identify areas where we can improve. © The Author(s) 2014.

  9. Comparison of the effectiveness of collaborative groups and peer instruction in a large introductory physics course for science majors

    Energy Technology Data Exchange (ETDEWEB)

    Kalman, C.S., E-mail: Calvin.Kalman@concordia.ca [Concordia Univ., Dept. of Physics, Montreal, QC (Canada); Milner-Bolotin, M. [Univ. of British Columbia, Dept. of Curriculum and Pedagogy, Vancouver, BC (Canada); Antimitova, T. [Ryerson Univ., Dept. of Physics, Toronto, ON (Canada)

    2010-05-15

    We report on an experiment comparing examinations of concepts using slightly modified peer instruction (MPI) interventions with a conceptual conflict strategy based on collaborative groups (CG). Four interventions were utilized in two sections of an introductory physics course for science students. Both instructors and strategies were alternated in the two classes so that instructor dependence could be factored out and so that each class could serve as both an experimental and a control group. The gain on the Force Concept Inventory (FCI) used as a pre- and post-test is essentially the same in both classes. The instructors were experienced in use of MPI, but this was the first time that these instructors had used a collaborative group activity in their classes and only used it for the two interventions in each class described in this paper. CG appears to be more effective as a teaching method than PI. It also should be noted that the effectiveness of both teaching methods seems to be instructor independent as long as the instructors followed the same protocol. (author)

  10. An introduction to beam physics

    CERN Document Server

    Berz, Martin; Wan, Weishi

    2015-01-01

    The field of beam physics touches many areas of physics, engineering, and the sciences. In general terms, beams describe ensembles of particles with initial conditions similar enough to be treated together as a group so that the motion is a weakly nonlinear perturbation of a chosen reference particle. Particle beams are used in a variety of areas, ranging from electron microscopes, particle spectrometers, medical radiation facilities, powerful light sources, and astrophysics to large synchrotrons and storage rings such as the LHC at CERN. An Introduction to Beam Physics is based on lectures given at Michigan State University’s Department of Physics and Astronomy, the online VUBeam program, the U.S. Particle Accelerator School, the CERN Academic Training Programme, and various other venues. It is accessible to beginning graduate and upper-division undergraduate students in physics, mathematics, and engineering. The book begins with a historical overview of methods for generating and accelerating beams, high...

  11. Astronomy Courses which Emphasize Communication Skills

    Science.gov (United States)

    Dinerstein, H. L.

    1998-12-01

    The ability to communicate effectively, both in oral and written form, is crucial for success in almost any career path. Furthermore, being able to effectively communicate information requires a high level of conceptual mastery of the material. For these reasons, I have incorporated practice in communication into courses at a variety of levels, ranging from non-science-major undergraduate courses to graduate courses. I briefly describe the content of these courses, particularly the communication-related component. The first, Ast 309N, ``Astronomy Bizarre: Stars and Stellar Evolution," is an elective which follows one semester of general introductory astronomy for non-majors. Instead of homework problems, the students complete a sequence of writing assignments of graduated complexity, beginning with simple tasks such as writing abstracts and critiques of assigned readings, and moving on to writing term papers which require literature research and a short science fiction story incorporating accurate depictions of relativistic effects. In Ast 175/275, a ``Journal Club" course for upper-division astronomy majors, students read articles in the professional literature and give short oral presentations to the rest of the class. To build up their understanding of a topic, we work through the ``paper trail" of key papers on topics with exciting recent developments, such as extrasolar planets, gravitational lenses, or gamma-ray bursts. Finally, in a seminar course for first-semester astronomy graduate students (Ast 185C) that broadly addresses professional development issues, I include a practice AAS oral session, with the students giving 5-minute presentations on a journal paper of their choice. This seminar course also examines career paths and employment trends, the peer review process for papers and proposals, professional norms and ethics, and other topics. Syllabi for these and other courses I teach regularly can be found from my home page (http://www.as.utexas.edu/astronomy/people/dinerstein).

  12. Meeting the Challenge of Instructor Shortages: A Blended Teaching and Learning Model for a Neuroscience Course in a Doctor of Physical Therapy Program.

    Science.gov (United States)

    Ge, Weiqing

    2018-01-01

    Physical therapy workforce shortages are expected to increase for all 50 states through 2030. There is a recognized nationwide unprecedented shortage of well-prepared physical therapy instructors. One practical solution can be to share instructors among Doctor of Physical Therapy (DPT) programs using a blended teaching and learning model. The purpose of this project was to evaluate the effectiveness of a blended teaching and learning model for a neuroscience course in a DPT program. Faculty members from two DPT programs collaborated to develop, implement, and evaluate a blended teaching and learning model. The Blackboard Learning Management System (LMS) was available at both institutions and chosen as the learning platform. The design of this research study was retrospective nonexperimental observational. The overall feedback from the students was positive. Most students (91.6%) strongly agreed or agreed that the content of the course was appropriate for learning neuroscience. The students taking this blended course performed slightly better than the students taking the traditional course, though there was no significant difference (p=0.06). The results support the use of a blended teaching and learning model to meet faculty shortage challenges. Future research with a larger sample size is necessary.

  13. Influences of Learning Environment Characteristics on Student Learning During Authentic Science Inquiry in an Introductory Physical Geology Course

    Science.gov (United States)

    Miller, H. R.; Sell, K. S.; Herbert, B. E.

    2004-12-01

    Shifts in learning goals in introductory earth science courses to greater emphasis on critical thinking and the nature of science has led to the adoption of new pedagogical techniques, including inquiry-based learning (IBL). IBL is thought to support understanding of the nature of science and foster development of scientific reasoning and critical thinking skills by modeling authentic science inquiry. Implementation of new pedagogical techniques do not occur without influence, instruction and learning occurs in a complex learning environment, referring to the social, physical, mental, and pedagogical contexts. This study characterized the impact of an IBL module verses a traditionally structured laboratory exercise in an introductory physical geology class at Texas A&M University. Student activities in this study included manipulation of large-scale data sets, use of multiple representations, and exposure to ill-constrained problems common to the Texas Gulf Coast system. Formative assessment data collected included an initial survey of self efficacy, student demographics, content knowledge and a pre-mental model expression. Summative data collected included a post-test, post-mental model expression, final laboratory report, and a post-survey on student attitudes toward the module. Mental model expressions and final reports were scored according to a validated rubric instrument (Cronbrach alpha: 0.84-0.98). Nine lab sections were randomized into experimental and control groups. Experimental groups were taught using IBL pedagogical techniques, while the control groups were taught using traditional laboratory "workbook" techniques. Preliminary assessment based on rubric scores for pre-tests using Student's t-test (N ˜ 140) indicated that the experimental and control groups were not significantly different (ρ > 0.05), therefore, the learning environment likely impacted student's ability to succeed. A non-supportive learning environment, including student attitudes

  14. Identifying and addressing specific student difficulties in advanced thermal physics

    Science.gov (United States)

    Smith, Trevor I.

    As part of an ongoing multi-university research study on student understanding of concepts in thermal physics at the upper division, I identified several student difficulties with topics related to heat engines (especially the Carnot cycle), as well as difficulties related to the Boltzmann factor. In an effort to address these difficulties, I developed two guided-inquiry worksheet activities (a.k.a. tutorials) for use in advanced undergraduate thermal physics courses. Both tutorials seek to improve student understanding of the utility and physical background of a particular mathematical expression. One tutorial focuses on a derivation of Carnot's theorem regarding the limit on thermodynamic efficiency, starting from the Second Law of Thermodynamics. The other tutorial helps students gain an appreciation for the origin of the Boltzmann factor and when it is applicable; focusing on the physical justification of its mathematical derivation, with emphasis on the connections between probability, multiplicity, entropy, and energy. Student understanding of the use and physical implications of Carnot's theorem and the Boltzmann factor was assessed using written surveys both before and after tutorial instruction within the advanced thermal physics courses at the University of Maine and at other institutions. Classroom tutorial sessions at the University of Maine were videotaped to allow in-depth scrutiny of student successes and failures following tutorial prompts. I also interviewed students on various topics related to the Boltzmann factor to gain a more complete picture of their understanding and inform tutorial revisions. Results from several implementations of my tutorials at the University of Maine indicate that students did not have a robust understanding of these physical principles after lectures alone, and that they gain a better understanding of relevant topics after tutorial instruction; Fisher's exact tests yield statistically significant improvement at the

  15. Nearly 1.4 Million High School Physics Students--Enrollments in AP and Second-Year Courses up 26% Even though Number of Graduates down in 2012-13

    Science.gov (United States)

    White, Susan; Tesfaye, Casey Langer

    2014-01-01

    Since 1987, the Statistical Research Center at the American Institute of Physics has regularly conducted a nationwide survey of high school physics teachers to take a closer look at physics in U.S. high schools. We contact all of the teachers who teach at least one physics course at a nationally representative sample of all U.S. high schools-both…

  16. The influence of previous subject experience on interactions during peer instruction in an introductory physics course: A mixed methods analysis

    Science.gov (United States)

    Vondruska, Judy A.

    Over the past decade, peer instruction and the introduction of student response systems has provided a means of improving student engagement and achievement in large-lecture settings. While the nature of the student discourse occurring during peer instruction is less understood, existing studies have shown student ideas about the subject, extraneous cues, and confidence level appear to matter in the student-student discourse. Using a mixed methods research design, this study examined the influence of previous subject experience on peer instruction in an introductory, one-semester Survey of Physics course. Quantitative results indicated students in discussion pairs where both had previous subject experience were more likely to answer clicker question correctly both before and after peer discussion compared to student groups where neither partner had previous subject experience. Students in mixed discussion pairs were not statistically different in correct response rates from the other pairings. There was no statistically significant difference between the experience pairs on unit exam scores or the Peer Instruction Partner Survey. Although there was a statistically significant difference between the pre-MPEX and post-MPEX scores, there was no difference between the members of the various subject experience peer discussion pairs. The qualitative study, conducted after the quantitative study, helped to inform the quantitative results by exploring the nature of the peer interactions through survey questions and a series of focus groups discussions. While the majority of participants described a benefit to the use of clickers in the lecture, their experience with their discussion partners varied. Students with previous subject experience tended to describe peer instruction more positively than students who did not have previous subject experience, regardless of the experience level of their partner. They were also more likely to report favorable levels of comfort with

  17. Post-graduated course 'Basic aspects of medical physics in nuclear medicine': theoretical/practical intensive version: preliminary results

    International Nuclear Information System (INIS)

    Lopez, Adlin; Gonzalez, Joaquin; Torres, Leonel; Fraxedas, Roberto; Varela, Consuelo; Freixas, Vivian.

    2008-01-01

    Full text: Using national and international recommendation about human resource in nuclear medicine, a group of experts organized a national course for the education and training of physicist who works in Cuban hospital, adapted to national condition and practice of nuclear medicine. The program was approved for National Authorities in Nuclear Security and University School in Medicine and content three intensive theoretic and practical courses (15 days of full time duration each), complemented with 4 months full time in Nuclear Medicine Service monitored by accredited expert and 2 months at distance with practical task. The theoretical/practical intensive courses have final evaluation: combining practical exercise and write final test. When all docent activities finish the students should pass a final evaluation by a testing board composed for (at least) three accredited experts. The first theoretical/practical course included 19 physicists who work in hospital, the second 17 and the third 16 students. With 100 point of maximum score and 60 point minimum to pass, the partial final tests included: true or false choice (with 10 aspects to verify, 1 point/correct answer) and questions to write developed answer. The average result was 83.02 points/ students (range 65-100 points). The students evaluated satisfactory the quality of different courses (in anonymous poll), reporting like very good; the quality of conferences, excellent; the usefulness of different charters, very good; the support bibliography, and recommended the repetition of this kind of education and training in order to warranty the human resource, in the same way and content, and included others item in the future. Conclusion: the theoretical/practice intensive courses of this post-graduated course were successful and satisfied the objective of education and training of medical physicist in nuclear medicine. (author)

  18. Effectiveness of a mining simulation cooperative learning activity on the cognitive and affective achievement of students in a lower division physical geology course: A confluent approach

    Science.gov (United States)

    Tolhurst, Jeffrey Wayne

    Most students enrolled in lower division physical geology courses are non-majors and tend to finish the course with little appreciation of what it is geologists really do. They may also be expected to analyze, synthesize, and apply knowledge from previous laboratory experiences with little or no instruction and/or practice in utilizing the critical thinking skills necessary to do so. This study sought to answer two research questions: (1) do physical geology students enrolled in a course designed around a mining simulation activity perform better cognitively than students who are taught the same curriculum in the traditional fashion; and (2) do students enrolled in the course gain a greater appreciation of physical geology and the work that geologists do. Eighty students enrolled in the course at Columbia College, Sonora, California over a two year period. During the first year, thirty-one students were taught the traditional physical geology curriculum. During the second year, forty-nine students were taught the traditional curriculum up until week nine, then they were taught a cooperative learning mining simulation activity for three weeks. A static group, split plot, repeated measures design was used. Pre- and post-tests were administered to students in both the control and treatment groups. The cognitive assessment instrument was validated by content area experts in the University of South Carolina Geological Sciences Department. Students were given raw lithologic, gravimetric, topographic, and environmental data with which to construct maps and perform an overlay analysis. They were tested on the cognitive reasoning and spatial analysis they used to make decisions about where to test drill for valuable metallic ores. The affective instrument used a six point Likert scale to assess students' perceived enjoyment, interest, and importance of the material. Gains scores analysis of cognitive achievement data showed a mean of 2.43 for the control group and 4.47 for

  19. An understanding about the process of communicative interactions in Joint Planning Groups among professors of the physics degree course based on Theory of Communicative Acts

    Directory of Open Access Journals (Sweden)

    João Ricardo Neves da Silva

    2016-04-01

    Full Text Available This article presents the results of a study that aims to understand the possibilities from the accession of professors who teach specific topics of physics and physics teaching in the teachers formation degree in a Joint Planning Group about the relations among their disciplines. The study was built from the establishment and monitoring of a group of professors who met regularly during a year to plan their courses in the degree in physics together. Based on the theoretical perspective of the Theory of Communicative Acts, by Jürgen Habermas, the analysis aimed to understand the planning process through the use of language as a means of inter-subjective interaction and intention of understanding through the use of valid claims. The possibilities presented enable conceptualize the elements of a Joint Planning Group from the perspective of joint construction of concepts and practices, actions coordinating and theming of the practice in a an environment that enables communicative acts.

  20. Changes in self-reported symptoms of depression and physical well-being in healthy individuals following a Taiji beginner course - Results of a randomized controlled trial.

    Science.gov (United States)

    Schitter, Agnes Maria; Nedeljkovic, Marko; Ausfeld-Hafter, Brigitte; Fleckenstein, Johannes

    2016-04-01

    Taiji is a mind-body practice being increasingly investigated for its therapeutic benefits in a broad range of mental and physical conditions. The aim of this study was to investigate the potential preventive effects of Taiji practice in healthy individuals with regard to their depressive symptomatology and physical well-being. Seventy healthy Taiji novices were randomly assigned to a Taiji intervention group, that is, Taiji beginner course (Yang-Style Taiji, 2 h per week, 12 weeks) or a control group comprised of the waiting list for the course. Self-reported symptoms of depression (CES-D) and physical well-being (FEW-16) were assessed at baseline, at the end of the intervention, as well as 2 months later. The included participants had a mean age of 35.5 years. Physical well-being in the Taiji group significantly increased when comparing baseline to follow-up (FEW-16 sum score T(27) = 3.94, P = 0.001, 95% CI 0.17 to 0.55). Pearson's correlation coefficients displayed a strong negative relationship between self-reported symptoms of depression and physical well-being (P's healthy individuals, with improvements pronouncing over time. Physical well-being was shown to have a strong relationship with depressive symptoms. Based on these results, the consideration of Taiji as one therapeutic option in the development of multimodal approaches in the prevention of depression seems justifiable.

  1. Learning the 'grammar of science': The influence of a physical science content course on teachers' understanding of the nature of science

    Science.gov (United States)

    Hanuscin, Deborah L.

    This research examined the development of practicing K--8 teachers' views of the nature of science (NOS) within a physical science content course. Reforms in science education have called for the teaching of science as inquiry. In order to achieve the vision of the reforms, teachers must understand science, both a body of knowledge and as a process, but also the very nature of science itself-or the values and assumptions inherent in the construction of scientific knowledge. NOS has been deemed a critical component of scientific literacy, with implications for making informed decisions about scientific claims. Research has indicated that despite the emphasis of reforms, teachers generally do not possess accurate views of NOS. Recent work in science education has led to the recommendation that efforts undertaken within teacher education programs to improve teachers' understanding of NOS can be enhanced through relevant coursework in other academic areas, including the sciences. The purpose of this dissertation was to provide an empirical basis for this recommendation, by examining the development of teachers' views of NOS within a physical science content course. To this end, the researcher employed qualitative methodology including participant observation, interview, document analysis, and questionnaire to assess teacher participants' views of the nature of science and the impact of their experience in the content course on these views. As a result of this research, implications for both the course design and science teacher education have been described. In addition, various aspects of the community of practice that characterizes the classroom that inhibit the development of understandings about the nature of science are identified. It is argued that instruction in NOS should be approached from the perspective that builds bridges between the communities of practice of learners and of scientists.

  2. Using concept mapping in the development of the EU-PAD framework (EUropean-Physical Activity Determinants across the life course): a DEDIPAC-study.

    Science.gov (United States)

    Condello, Giancarlo; Ling, Fiona Chun Man; Bianco, Antonino; Chastin, Sebastien; Cardon, Greet; Ciarapica, Donatella; Conte, Daniele; Cortis, Cristina; De Craemer, Marieke; Di Blasio, Andrea; Gjaka, Masar; Hansen, Sylvia; Holdsworth, Michelle; Iacoviello, Licia; Izzicupo, Pascal; Jaeschke, Lina; Leone, Liliana; Manoni, Livia; Menescardi, Cristina; Migliaccio, Silvia; Nazare, Julie-Anne; Perchoux, Camille; Pesce, Caterina; Pierik, Frank; Pischon, Tobias; Polito, Angela; Puggina, Anna; Sannella, Alessandra; Schlicht, Wolfgang; Schulz, Holger; Simon, Chantal; Steinbrecher, Astrid; MacDonncha, Ciaran; Capranica, Laura

    2016-11-09

    A large proportion of European children, adults and older adults do not engage in sufficient physical activity (PA). Understanding individual and contextual factors associated with PA behaviours is essential for the identification and implementation of effective preventative environments, policies, and programmes that can promote an active lifestyle across life course and can potentially improve health. The current paper intends to provide 1) a multi-disciplinary, Pan-European and life course view of key determinants of PA behaviours and 2) a proposal of how these factors may cluster. After gathering a list of 183 potential PA behaviours-associated factors and a consensus meeting to unify/consolidate terminology, a concept mapping software was used to collate European experts' views of 106 identified factors for youth (impact on PA behaviours across the life course. Priority for research was also assessed for each cluster. The concept mapping resulted in six distinct clusters, broadly merged in two themes: 1) the 'Person', which included clusters 'Intra-Personal Context and Wellbeing' and 'Family and Social Economic Status' (42 % of all factors) and 2) the 'Society', which included the remaining four clusters 'Policy and Provision', 'Cultural Context and Media', 'Social Support and Modelling', and 'Supportive Environment' (58 % of all factors). Overall, 25 factors were rated as the most impactful on PA behaviours across the life course and being the most modifiable. They were mostly situated in the 'Intra-Personal Context and Wellbeing' cluster. Furthermore, 16 of them were rated as top priority for research. The current framework provides a preliminary overview of factors which may account for PA behaviour across the life course and are most relevant to the European community. These insights could potentially be a foundation for future Pan-European research on how these factors might interact with each other, and assist policy makers to identify appropriate

  3. Use of Individual Feedback during Human Gross Anatomy Course for Enhancing Professional Behaviors in Doctor of Physical Therapy Students

    Science.gov (United States)

    Youdas, James W.; Krause, David A.; Hellyer, Nathan J.; Rindflesch, Aaron B.; Hollman, John H.

    2013-01-01

    Medical professionals and public consumers expect that new physical therapy graduates possess cognitive, technical, and behavioral skills required to provide safe and high-quality care to patients. The purpose of this study was to determine if a repertoire of ten professional behaviors assessed at the beginning of doctorate of physical therapy…

  4. The Use of Textbooks for Advanced-Level GCE Courses in Physics, Chemistry and Biology by Sixth-Form Students.

    Science.gov (United States)

    Newton, D. P.

    1984-01-01

    A survey of sixth-form students to determine the level of A-level textbook use in physics, chemistry, and biology in English schools found that texts are used primarily after the lesson, at the student's discretion, and with great variations between students. Biology texts were used most, and physics texts used least. (MBR)

  5. 20th International Training Course (ITC-20) on the physical protection of nuclear facilities and materials evaluation report.

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Amanda Ann

    2008-09-01

    The goal of this evaluation report is to provide the information necessary to improve the effectiveness of the ITC provided to the International Atomic Energy Agency Member States. This report examines ITC-20 training content, delivery methods, scheduling, and logistics. Ultimately, this report evaluates whether the course provides the knowledge and skills necessary to meet the participants needs in the protection of nuclear materials and facilities.

  6. Professional practical knowledge on the evolution of a collage physics course in the school research approach, in the light of the gradualness hypothesis

    Directory of Open Access Journals (Sweden)

    John Freddy Ramírez Casallas

    2012-09-01

    Full Text Available Since 2001 an experience in physics teaching regarding the research school model has been carried out inside the engineering program of an university. The complexity in its development in the Colombian region of Tolima has demanded to respond specific difficulties; such as the recognition and overcoming of the training problems that bring our students to the classroom. In previous reports has been based and proposed the development of a physical with a regional sense in which it is essential the gradual approach to this model (gradualness hypothesis based on the premise that the majority of students have had access to a traditional teaching of the subject during secondary education. This report is intended, based on a process of practice systematization to introduce, conceptualize, support and raise interesting concerns around the successful development the course has had, since an option close to the traditional to one oriented by school research tasks.

  7. The Use of Classroom Assessment to Explore Problem Solving Skills Based on Pre-Service Teachers’ Cognitive Style Dimension in Basic Physics Course

    Science.gov (United States)

    Rahmawati; Rustaman, Nuryani Y.; Hamidah, Ida; Rusdiana, Dadi

    2017-02-01

    The aim of this study was to explore the use of assessment strategy which can measure problem solving skills of pre-service teachers based on their cognitive style in basic physics course. The sample consisted of 95 persons (male = 15, female = 75). This study used an exploratory research with observation techniques by interview, questionnaire, and test. The results indicated that the lecturer only used paper-pencil test assessment strategy to measure pre-service teachers’ achievement and also used conventional learning strategy. It means that the lecturer did not measure pre-services’ thinking process in learning, like problem solving skills. One of the factors which can influence student problem solving skills is cognitive style as an internal factor. Field Dependent (FD) and Field Independent (FI) are two cognitive styles which were measured with using Group Embedded Figure Test (GEFT) test. The result showed that 82% of pre-service teachers were FD cognitive style and only 18% of pre-service teachers had FI cognitive style. Furthermore, these findings became the fundamental design to develop a problem solving assessment model to measure pre-service teachers’ problem solving skills and process in basic physics course.

  8. Open-ended Laboratory Investigations in a High School Physics Course: The difficulties and rewards of implementing inquiry-based learning in a physics lab

    Science.gov (United States)

    Szott, Aaron

    2014-01-01

    often closed-ended. The outcomes are known in advance and students replicate procedures recommended by the teacher. Over the years, I have come to appreciate the great opportunities created by allowing students investigative freedom in physics laboratories. I have realized that a laboratory environment in which students are free to conduct investigations using procedures of their own design can provide them with varied and rich opportunities for discovery. This paper describes what open-ended laboratory investigations have added to my high school physics classes. I will provide several examples of open-ended laboratories and discuss the benefits they conferred on students and teacher alike.

  9. The dynamics of physical and mental health of students of economic specialties in the course of employment aqua

    Directory of Open Access Journals (Sweden)

    N. V. Petrenko

    2013-11-01

    Full Text Available The objective was to determine the effect of fitness classes for aqua to physical and mental fitness of students of economic specialties. The volume of the experimental sample consisted of 69 female students basic medical group aged 17-18 years. Analysis of the results was carried out according to the Harvard step test, and the results of the speed and accuracy of processing visual information using alphabetical table Anfimova. Comparative analysis of the data showed the trend more pronounced positive changes in the physical and mental health of students of the experimental group 1 and experimental group 2. The low level of the index of physical performance within 42.39 was observed in the control group. Increase speed and accuracy of processing visual information in the control group not observed.

  10. Practice makes pretty good: assessment of primary literature reading abilities across multiple large-enrollment biology laboratory courses.

    Science.gov (United States)

    Sato, Brian K; Kadandale, Pavan; He, Wenliang; Murata, Paige M N; Latif, Yama; Warschauer, Mark

    2014-01-01

    Primary literature is essential for scientific communication and is commonly utilized in undergraduate biology education. Despite this, there is often little time spent training our students how to critically analyze a paper. To address this, we introduced a primary literature module in multiple upper-division laboratory courses. In this module, instructors conduct classroom discussions that dissect a paper as researchers do. While previous work has identified classroom interventions that improve primary literature comprehension within a single course, our goal was to determine whether including a scientific paper module in our classes could produce long-term benefits. On the basis of performance in an assessment exam, we found that our module resulted in longitudinal gains, including increased comprehension and critical-thinking abilities in subsequent lab courses. These learning gains were specific to courses utilizing our module, as no longitudinal gains were seen in students who had taken other upper-division labs that lacked extensive primary literature discussion. In addition, we assessed whether performance on our assessment correlated with a variety of factors, including grade point average, course performance, research background, and self-reported confidence in understanding of the article. Furthermore, all of the study conclusions are independent of biology disciplines, as we observe similar trends within each course. © 2014 B. K. Sato et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. A Mathematical Sciences Program at an Upper-Division Campus.

    Science.gov (United States)

    Swetz, Frank J.

    1978-01-01

    The conception, objectives, contents, and limitations of a degree program in the mathematical sciences at Pennsylvania State University, Capitol Campus, are discussed. Career goals that may be pursued include: managerial, science, education, actuarial, and computer. (MP)

  12. Using concept mapping in the development of the EU-PAD framework (EUropean-Physical Activity Determinants across the life course: a DEDIPAC-study

    Directory of Open Access Journals (Sweden)

    Giancarlo Condello

    2016-11-01

    Full Text Available Abstract Background A large proportion of European children, adults and older adults do not engage in sufficient physical activity (PA. Understanding individual and contextual factors associated with PA behaviours is essential for the identification and implementation of effective preventative environments, policies, and programmes that can promote an active lifestyle across life course and can potentially improve health. The current paper intends to provide 1 a multi-disciplinary, Pan-European and life course view of key determinants of PA behaviours and 2 a proposal of how these factors may cluster. Methods After gathering a list of 183 potential PA behaviours-associated factors and a consensus meeting to unify/consolidate terminology, a concept mapping software was used to collate European experts’ views of 106 identified factors for youth (<19 years, adults (19–64 years, and older adults (≥65 years. The analysis evaluated common trends in the clustering of factors and the ratings of the distinct factors’ expected modifiability and population-level impact on PA behaviours across the life course. Priority for research was also assessed for each cluster. Results The concept mapping resulted in six distinct clusters, broadly merged in two themes: 1 the ‘Person’, which included clusters ‘Intra-Personal Context and Wellbeing’ and ‘Family and Social Economic Status’ (42 % of all factors and 2 the ‘Society’, which included the remaining four clusters ‘Policy and Provision’, ‘Cultural Context and Media’, ‘Social Support and Modelling’, and ‘Supportive Environment’ (58 % of all factors. Overall, 25 factors were rated as the most impactful on PA behaviours across the life course and being the most modifiable. They were mostly situated in the ‘Intra-Personal Context and Wellbeing’ cluster. Furthermore, 16 of them were rated as top priority for research. Conclusions The current framework provides a

  13. Examining the Contribution of Physical Education and Sports Courses in the Secondary School to the Sportsmanship Behaviours in Terms of Some Variables

    Directory of Open Access Journals (Sweden)

    Serkan HACICAFEROĞLU

    2015-08-01

    Full Text Available This study was carried out in order to determine the contribution of the physical education and sports classes in the secondary school to the sportsmanship behaviours in terms of some variables. The population of the study, which was carried out using a general screening model, consists of students from the government - dependent secondary schools in the county, of Malatya Battalgazi, and its sampling consists of 670 students, studying at “Atatürk, Barbaros, Türk Telekom, Türkiye’m and Vakifbank” public secondary schools in the city centre of Malatya, chosen from the these schools by a random method. In the research, "Physical Education Courses Sportsmanship Behaviours Scale" is used as a data collec ting tool. Analysis of data obtained from the research was conducted with the help of a SPSS 20 package program and arithmetic mean, t - test and one - way analysis of variance (ANOVA were used in the calculation. As the result of the study, relying on the an swers the students have given to the scale it has been determined that the overall arithmetic mean of the scale was lower than expected, that the views on the contribution of the physical education and sports classes to sportsmanship behaviours were equiva lent to each other depending on the demographic variables of gender and father’s education level, however, there were significant differences among students depending on the grade level.

  14. Influence of the course prescription of sodium succinate on functional state and general physical working ability of footballers organism during the training sessions

    Directory of Open Access Journals (Sweden)

    Олексій Володимирович Чернєв

    2015-09-01

    Full Text Available Pharmacological purpose of metabotropic preparations including burshtin acid and its derivative succinate sodium copes with the number of tasks the main of which is an activation of alternative ways of energoproduction at the work of submaximal and maximal force and preliminary training of the separate links of metabolism.The task of research is to ascertain changes that take place in functional state of sportsmen during long physical loadings and optimization of the work of cardiovascular system (CVS and prophylaxis of psychical strains with the help of succinate sodium.Methods and organization of research. There were examined 84 sportsmen to ascertain changes that take place in the functional state of sportsmen during the long physical loadings and optimization of the work of CVS with the help of succinate sodium. Examinations took place during the training sessions (TS in January, February and July 2012-2013 years.Results of research and its discussion. There was studied an efficiency of the course use of succinate sodium in footballers 100 mg 3 times a day during 14 days. Energetic supply of processes of intracellular homeostasis in erythrocytes realizes by means of ATP that is created in the process of glycolysis. According to the results of research after course prescription of succinate sodium in sportsmen the content of ATP in erythrocytes increased and an amount of ADP and AMP decreased. An improvement of general metabolic situation under an influence of succinate sodium was proved by the decrease of products of reactions of peroxidation in blood plasma of footballers.These results indicated an essential antiacidotic effect of the course use of succinate sodium by footballers after loading in anaerobic and glycolytic zone of intensity. At the same time there was ascertain in our research that the use of succinate sodium had a positive effect on the dynamics of lactate content during the processes of renewal after training in aerobic

  15. A conceptual framework for international service-learning course planning: promoting a foundation for ethical practice in the physical therapy and occupational therapy professions.

    Science.gov (United States)

    Lattanzi, Jill Black; Pechak, Celia

    2011-01-01

    As physical therapy (PT) and occupational therapy (OT) educational programs endeavor to foster core values of social responsibility, justice, and altruism in an increasingly global community, the incorporation of local and international service-learning (ISL) into the curriculum is growing. Much of the research has focused on the measurement of student learning, with little written about the impact on the host community. Proponents of global health initiatives are calling for consideration of all stakeholders to ensure ethical practice. This paper explores the current literature related to PT and OT ISL and builds a conceptual framework for ISL course planning. The essential phases in the framework include: 1) pre-experience planning/preparation stage, 2) field immersion experience stage, and 3) postexperience stage. The essential elements are: 1) cultural competency training, 2) communication and coordination with community, 3) comprehensive assessment, and 4) strategic planning. The authors suggest this framework as a practical tool to structure ISL courses with an explicit emphasis on ethical concerns. Additionally, they seek to foster more dialogue and action related to the promotion of ethical practices in ISL in PT and OT education programs.

  16. Interprofessional, simulation-based technology-enhanced learning to improve physical health care in psychiatry: The recognition and assessment of medical problems in psychiatric settings course.

    Science.gov (United States)

    Akroyd, Mike; Jordan, Gary; Rowlands, Paul

    2016-06-01

    People with serious mental illness have reduced life expectancy compared with a control population, much of which is accounted for by significant physical comorbidity. Frontline clinical staff in mental health often lack confidence in recognition, assessment and management of such 'medical' problems. Simulation provides one way for staff to practise these skills in a safe setting. We produced a multidisciplinary simulation course around recognition and assessment of medical problems in psychiatric settings. We describe an audit of strategic and design aspects of the recognition and assessment of medical problems in psychiatric settings course, using the Department of Health's 'Framework for Technology Enhanced Learning' as our audit standards. At the same time as highlighting areas where recognition and assessment of medical problems in psychiatric settings adheres to these identified principles, such as the strategic underpinning of the approach, and the means by which information is collected, reviewed and shared, it also helps us to identify areas where we can improve. © The Author(s) 2014.

  17. Promoting Learning Achievement, Problem Solving, and Learning Curiosity of High School Students: Empirical Thai Study of Self-directed Learning in Physics Course

    Directory of Open Access Journals (Sweden)

    Wittaya Worapun

    2017-11-01

    Full Text Available Three phases of this research were employed to study learning achievement, problem solving, and learning curiosity among 43 students in the 11th grade through self-directed learning in a Physics course. Research instruments included: a learning achievement test, a test of curiosity, observations using anecdotal evidence of curiosity, and a test of problem solving ability. The findings show that six components of self-directed learning were evident, i.e. principles and basic concepts, syntax, social system, principle of reaction, and support system. It was found that five main procedures of self-directed learning were applicable in a management model: diagnosis, strategies, growth in habit, taking action, and summarizing and assessing. Students gained in their learning achievement ; furthermore, their posttest scores in problem solving were greater than their pretest scores at .05 level of statistical significance.

  18. Late-life deficits in cognitive, physical and emotional functions, childhood intelligence and occupational profile: a life-course examination of the Aberdeen 1936 Birth Cohort (ABC1936).

    Science.gov (United States)

    Chapko, Dorota; Staff, Roger T; McNeil, Christopher J; Whalley, Lawrence J; Black, Corri; Murray, Alison D

    2016-07-01

    the 'triad of impairment' phenomenon describes the co-occurrence of age-related cognitive, emotional and physical functioning deficits. We investigated how occupational profile and childhood intelligence contribute to the triad of impairment in late life. we analysed data of a subsample of the Aberdeen Birth Cohort of 1936 (n = 346). Data were collected on participants' childhood intelligence, late-life cognitive ability, physical functioning, depressive symptoms and main lifetime occupation. We summarised the various occupational and impairment measures into two latent variables, 'occupational profile' and the 'triad of impairment'. We used a series of data reduction approaches and structural equation models (SEMs) of increasing complexity to test both the validity of the models and to understand causal relationships between the life-course risks for the triad of impairment. occupational profile had a significant effect on the triad of impairment independent of childhood intelligence. Childhood intelligence was the predominant influence on the triad of impairment and exerted its effect directly and indirectly via its influence on occupation. The direct effect of childhood intelligence exceeded the independent influence of the occupational profile on impairment by a factor of 1.7-1.8 and was greater by a factor of ∼4 from the indirect pathway (via occupation). childhood intelligence was the predominant influence on the triad of impairment in late life, independently of the occupational profile. Efforts to reduce impairment in older adults should be informed by a life-course approach with special attention to the early-life environment. © The Author 2016. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. PRE-EXÁMENES COMO UNA ESTRATEGIA DIDÁCTICA EN LOS CURSOS DE FÍSICA (SAMPLE TEST AS A TEACHING STRATEGY IN PHYSICS COURSES

    Directory of Open Access Journals (Sweden)

    Morales Ríos Herbert

    2010-04-01

    Full Text Available Resumen:Se describe la experiencia del uso de pre-exámenes o exámenes de prueba como una estrategia didáctica para el mejoramiento en el rendimiento y en el desempeño estudiantil en los cursos propios de la carrera de física. El objetivo principal de la experiencia era determinar, a priori, las deficiencias, tanto matemáticas como físicas, que tiene el estudiantado, corregirlas antes de administrarle el examen definitivo y establecer una evaluación formativa en el curso. En particular, el tema evaluado era el de oscilaciones lineales del curso de Mecánica Teórica. Se detalla en qué consiste dicha estrategia, la motivación de su implementación y los roles tanto docente como estudiantil. Se analizan los resultados de la experiencia para concluir con las bondades, limitaciones y proyecciones futuras del uso de los pre-exámenes, con el fin de mostrarlos como una herramienta más dentro de la labor docente universitaria.Abstract:We discuss our experience of using sample tests as a teaching strategy that allows us to improve the student grades in courses that belong to the College Physics Program. The main purpose of our experience was to find out the common mistakes both in mathematics and in physics made by the students and to correct them before the actual test, so that we could accomplish a formative evaluation. In particular, the evaluated subject was linear oscillations in the Classical Mechanics course. We describe what the strategy consists of, our motivation for using it and both the professor and the student roles. We analyze our results obtained in its implementation to conclude with the pros and cons of this teaching strategy and also with its future applications as a useful tool for improving college teaching.

  20. International school of plasma physics course on instabilities and confinement in toroidal plasmas. Varenna (Italy), September 27-October 9, 1971

    International Nuclear Information System (INIS)

    1974-11-01

    The lectures of a Varenna Summer School about the theme Instabilities and Confinement in toroidal Plasmas are given. The topics included are: high-beta toroidal pinches, non-MHD instabilities and anomalous transport, analogy between turbulent transfer in velocity space and plasma collisioned transport in real space, the magnetohydrodynamic approach of plasma confinement in closed magnetic configurations, properties of isodynamical equilibrium configurations and their generalization, transport theory for toroidal plasmas, plasma physics, low-β toroidal machines, the neoclassical theory of transit time magnetic pumping, radio frequency heating of toroidal plasmas, plasma heating at lower hybrid frequency, RF-plasma heating with L-structures, numerical simulation, dynamical stabilization of low frequency waves in inhomogeneous plasmas, dynamic and feedback stabilization of plasmas and problems with nuclear fusion reactors

  1. MO-DE-BRA-01: Flipped Physics Courses Within a Radiologic Technologist Program: Video Production and Long Term Outcomes

    International Nuclear Information System (INIS)

    Oshiro, T; Donaghy, M; Slechta, A

    2016-01-01

    Purpose: To determine if the flipped class format has an effect on examination results for a radiologic technologist (RT) program and discuss benefits from creating video resources. Methods: From 2001–2015, students had taken both a radiological physics and quality control (QC) class as a part of their didactic training. In 2005/2006, the creation of videos of didactic lectures and QC test demonstrations allowed for a flip where content was studied at home while exercises and reviews were done in-class. Final examinations were retrospectively reviewed from this timeframe. 12 multiple choice physics questions (MCP) and 5 short answer QC questions (SAQC) were common to pre and post flip exams. The RT program’s ARRT exam scores were also obtained and compared to national averages. Results: In total, 36 lecture videos and 65 quality control videos were created for the flipped content. Data was ∼2.4GB and distributed to students via USB or CD media. For MCP questions, scores improved by 7.9% with the flipped format and significance (Student’s t-test, p<0.05) was found for 3 of the 12 questions. SAQC questions showed improvement by 14.6% and significance was found for 2 of the 5 questions. Student enrollment increased from ∼14 (2001–2004) to ∼23 students (2005–15). Content was continuously added post-flip due to the efficiency of delivery. The QC class in 2003 covered 45 test setups in-class while 65 were covered with video segments in 2014. Flipped materials are currently being repurposed. In 2015, this video content was restructured into an ARRT exam review guide and in 2016, the content was reorganized for fluoroscopy training for physicians. Conclusion: We believe that flipped classes can improve efficiency of content delivery and improve student performance even with an increase in class size. This format allows for flexibility in learning as well as re-use in multiple applications.

  2. MO-DE-BRA-01: Flipped Physics Courses Within a Radiologic Technologist Program: Video Production and Long Term Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Oshiro, T [UCLA, Los Angeles, CA (United States); Donaghy, M [California State University, Northridge, Northridge, CA (United States); Slechta, A [California State University, Northridge, Northridge, CA (United States)

    2016-06-15

    Purpose: To determine if the flipped class format has an effect on examination results for a radiologic technologist (RT) program and discuss benefits from creating video resources. Methods: From 2001–2015, students had taken both a radiological physics and quality control (QC) class as a part of their didactic training. In 2005/2006, the creation of videos of didactic lectures and QC test demonstrations allowed for a flip where content was studied at home while exercises and reviews were done in-class. Final examinations were retrospectively reviewed from this timeframe. 12 multiple choice physics questions (MCP) and 5 short answer QC questions (SAQC) were common to pre and post flip exams. The RT program’s ARRT exam scores were also obtained and compared to national averages. Results: In total, 36 lecture videos and 65 quality control videos were created for the flipped content. Data was ∼2.4GB and distributed to students via USB or CD media. For MCP questions, scores improved by 7.9% with the flipped format and significance (Student’s t-test, p<0.05) was found for 3 of the 12 questions. SAQC questions showed improvement by 14.6% and significance was found for 2 of the 5 questions. Student enrollment increased from ∼14 (2001–2004) to ∼23 students (2005–15). Content was continuously added post-flip due to the efficiency of delivery. The QC class in 2003 covered 45 test setups in-class while 65 were covered with video segments in 2014. Flipped materials are currently being repurposed. In 2015, this video content was restructured into an ARRT exam review guide and in 2016, the content was reorganized for fluoroscopy training for physicians. Conclusion: We believe that flipped classes can improve efficiency of content delivery and improve student performance even with an increase in class size. This format allows for flexibility in learning as well as re-use in multiple applications.

  3. Prognostic value of one-year course of symptoms of anxiety and depression in patients with coronary heart disease: Role of physical activity and unmet medical need.

    Science.gov (United States)

    Rothenbacher, Dietrich; Jaensch, Andrea; Mons, Ute; Hahmann, Harry; Becker, Thomas; Koenig, Wolfgang; Brenner, Hermann

    2015-09-01

    Symptoms of depression and anxiety contribute to determining prognosis of patients with coronary heart disease. We evaluated the association of the one-year course of symptoms of anxiety and depressive symptoms with fatal and non-fatal cardiovascular disease-events during 10-year follow-up and assessed the utilization of anti-depressant and psycholeptic medication. Prospective cohort study in coronary heart disease patients aged 30-70 years with stable coronary heart disease. Symptoms of anxiety and depression were evaluated at baseline and follow-up using the Hospital Anxiety and Depression Scale. Associations with fatal and non-fatal cardiovascular disease events were determined by a Cox-proportional hazards model. Nine hundred and ninety-six patients were included in this study. Of the 862 patients with a normal depression symptom score at baseline 10.3% had an increased score at one-year follow-up. Of those with an elevated symptom score at baseline, 62.7% still had an elevated score after one year. During follow-up (median 8.9 years) fatal and non-fatal cardiovascular disease events were observed in 152 patients. One year course of depressive symptoms was associated with cardiovascular disease events during follow-up (p-value for trend 0.029); for example, patients with an increase of depressive symptoms had a hazard ratio of 1.93 (95% confidence interval 1.08-3.34) compared with patients with a normal score at baseline as well as at one-year follow-up. However, if physical activity was considered as a covariate, the HRs attenuated and the association was no longer statistically significant. The utilization of anti-depressant medication in the overall population was low (overall 2%). The study supports a role of the one year course of symptoms of depression for long-term prognosis of patients with known coronary heart disease, which might be partly mediated by lack of physical activity. © The European Society of Cardiology 2014.

  4. A systemic analysis of cheating in an undergraduate engineering mechanics course.

    Science.gov (United States)

    Bertram Gallant, Tricia; Van Den Einde, Lelli; Ouellette, Scott; Lee, Sam

    2014-03-01

    Cheating in the undergraduate classroom is not a new problem, and it is recognized as one that is endemic to the education system. This paper examines the highly normative behavior of using unauthorized assistance (e.g., a solutions manual or a friend) on an individual assignment within the context of an upper division undergraduate course in engineering mechanics. The findings indicate that there are varying levels of accepting responsibility among the students (from denial to tempered to full) and that acceptance of responsibility can lead to identification of learning and necessary behavioral changes. The findings have implications for institutions and engineering faculty, in particular the need for consistent academic integrity education and the teaching of professional integrity and ethics.

  5. Mechanisms Underlying the Association Between Early-Life Adversity and Physical Health: Charting a Course for the Future.

    Science.gov (United States)

    Bush, Nicole R; Lane, Richard D; McLaughlin, Katie A

    Early-life adversities (ELA) are associated with subsequent pervasive alterations across a wide range of neurobiological systems and psychosocial factors that contribute to accelerated onset of health problems and diseases. In this article, we provide an integrated perspective on recent developments in research on ELA, based on the articles published in this Special Issue of Psychosomatic Medicine. We focus on the following: 1) the distinction between specific versus general aspects of ELA with regard to the nature of exposure (e.g., physical and sexual abuse, emotional abuse or neglect, relative socioeconomic deprivation), biological and behavioral correlates of ELA, and differences across diseases; 2) the importance of timing in the critical phases of exposure to ELA; and 3) adaptive versus dysfunctional responses to ELA and their consequences for biological and behavioral risk factors for adverse health outcomes. This article concludes with outlining important new targets for research in this area, including the neurobiology of affect as a mechanism linking ELA to adverse health outcomes, and the need for large-scale longitudinal investigations of multisystem processes relevant to ELA in diverse samples, starting prenatally, continuing to late adolescence, and with long-term follow-up assessments that enable evaluation of incident disease outcomes.

  6. PHYSICS

    CERN Multimedia

    P. Sphicas

    There have been three physics meetings since the last CMS week: “physics days” on March 27-29, the Physics/ Trigger week on April 23-27 and the most recent physics days on May 22-24. The main purpose of the March physics days was to finalize the list of “2007 analyses”, i.e. the few topics that the physics groups will concentrate on for the rest of this calendar year. The idea is to carry out a full physics exercise, with CMSSW, for select physics channels which test key features of the physics objects, or represent potential “day 1” physics topics that need to be addressed in advance. The list of these analyses was indeed completed and presented in the plenary meetings. As always, a significant amount of time was also spent in reviewing the status of the physics objects (reconstruction) as well as their usage in the High-Level Trigger (HLT). The major event of the past three months was the first “Physics/Trigger week” in Apri...

  7. NATO Advanced Study Institute on Physical Processes in Laser-Materials Interaction, which was the 9th course of the Europhysics School of Quantum Electronics

    CERN Document Server

    1983-01-01

    It is a pleasure to write a few words as an introduction to the proceedings of the 1980 NATO ASI on "Physical Processes in Laser­ Naterial Interaction." This ASI is the ninth course of a series devoted to lasers and their applications, held under the responsibility of the Quantum Electronics Division of the European Physical Society, and for this reason known as the "Europhysics School of Quantum Electronics." Since 1971 the School has been operating with the joint direc­ tion of myself as representative of the academic research, and Dr. D. Roess (formerly with Siemens AEG, Munich, and now with Sick, Optik und Electronik, GmbH, Munich) for the industrial applications. Indeed the aim of the School is to alternate fundamental and applied frontier topics in the area of quantum electronics and modern optics, in order to introduce young research people from universities and industrial R&D laboratories to the new aspects of research opened by the laser.

  8. PHYSICS

    CERN Multimedia

    D. Acosta

    2010-01-01

    A remarkable amount of progress has been made in Physics since the last CMS Week in June given the exponential growth in the delivered LHC luminosity. The first major milestone was the delivery of a variety of results to the ICHEP international conference held in Paris this July. For this conference, CMS prepared 15 Physics Analysis Summaries on physics objects and 22 Summaries on new and interesting physics measurements that exploited the luminosity recorded by the CMS detector. The challenge was incorporating the largest batch of luminosity that was delivered only days before the conference (300 nb-1 total). The physics covered from this initial running period spanned hadron production measurements, jet production and properties, electroweak vector boson production, and even glimpses of the top quark. Since then, the accumulated integrated luminosity has increased by a factor of more than 100, and all groups have been working tremendously hard on analysing this dataset. The September Physics Week was held ...

  9. Beliefs and Attitudes about Science and Mathematics in Pre-Service Elementary Teachers, STEM, and Non-STEM Majors in Undergraduate Physics Courses

    Science.gov (United States)

    Michaluk, Lynnette; Stoiko, Rachel; Stewart, Gay; Stewart, John

    2018-04-01

    Elementary teachers often hold inaccurate beliefs about the Nature of Science (NoS) and have negative attitudes toward science and mathematics. Using a pre-post design, the current study examined beliefs about the NoS, attitudes toward science and mathematics, and beliefs about the teaching of mathematics and science in a large sample study ( N = 343) of pre-service teachers receiving a curriculum-wide intervention to improve these factors in comparison with Science, Technology, Engineering, and Mathematics (STEM) and non-STEM majors in other physics courses ( N = 6697) who did not receive the intervention, over a 10-year period. Pre-service teachers evidenced initially more negative attitudes about mathematics and science than STEM majors and slightly more positive attitudes than non-STEM majors. Their attitudes toward mathematics and science and beliefs about the NoS were more similar to non-STEM than STEM majors. Pre-service teachers initially evidenced more positive beliefs about the teaching of mathematics and science, and their beliefs even increased slightly over the course of the semester, while these beliefs in other groups remained the same. Beliefs about the NoS and the teaching of mathematics and science were significantly negatively correlated for STEM and non-STEM majors, but were not significantly correlated for pre-service teachers. Beliefs about the NoS and attitudes toward mathematics and science were significantly positively correlated for both pre-service teachers and STEM students pursing the most mathematically demanding STEM majors. Attitudes toward science and mathematics were significantly positively correlated with accurate beliefs about the teaching of mathematics and science for all student groups.

  10. PHYSICS

    CERN Multimedia

    J. Incandela

    There have been numerous developments in the physics area since the September CMS week. The biggest single event was the Physics/Trigger week in the end of Octo¬ber, whereas in terms of ongoing activities the “2007 analyses” went into high gear. This was in parallel with participation in CSA07 by the physics groups. On the or¬ganizational side, the new conveners of the physics groups have been selected, and a new database for man¬aging physics analyses has been deployed. Physics/Trigger week The second Physics-Trigger week of 2007 took place during the week of October 22-26. The first half of the week was dedicated to working group meetings. The ple¬nary Joint Physics-Trigger meeting took place on Wednesday afternoon and focused on the activities of the new Trigger Studies Group (TSG) and trigger monitoring. Both the Physics and Trigger organizations are now focused on readiness for early data-taking. Thus, early trigger tables and preparations for calibr...

  11. PHYSICS

    CERN Multimedia

    P. Sphicas

    The CPT project came to an end in December 2006 and its original scope is now shared among three new areas, namely Computing, Offline and Physics. In the physics area the basic change with respect to the previous system (where the PRS groups were charged with detector and physics object reconstruction and physics analysis) was the split of the detector PRS groups (the old ECAL-egamma, HCAL-jetMET, Tracker-btau and Muons) into two groups each: a Detector Performance Group (DPG) and a Physics Object Group. The DPGs are now led by the Commissioning and Run Coordinator deputy (Darin Acosta) and will appear in the correspond¬ing column in CMS bulletins. On the physics side, the physics object groups are charged with the reconstruction of physics objects, the tuning of the simulation (in collaboration with the DPGs) to reproduce the data, the provision of code for the High-Level Trigger, the optimization of the algorithms involved for the different physics analyses (in collaboration with the analysis gr...

  12. An Assessment of the Factors that Influence the Promotion and Delivery of Sport, Fitness, and Health Courses: Contributors of Marketing to Physical Education.

    Science.gov (United States)

    Armstrong, Ketra L.; O'Bryant, Camille; Costa, Carla

    2002-01-01

    Examined the demographics of college students enrolled in sport, fitness, and health program (SFHP) courses, investigating frequency of enrollment in courses, reasons for enrolling, and evaluation of course quality. Student surveys indicated that the main reasons for enrolling related to skill development or enhancement of knowledge about health…

  13. PHYSICS

    CERN Multimedia

    Submitted by

    Physics Week: plenary meeting on physics groups plans for startup (14–15 May 2008) The Physics Objects (POG) and Physics Analysis (PAG) Groups presented their latest developments at the plenary meeting during the Physics Week. In the presentations particular attention was given to startup plans and readiness for data-taking. Many results based on the recent cosmic run were shown. A special Workshop on SUSY, described in a separate section, took place the day before the plenary. At the meeting, we had also two special DPG presentations on “Tracker and Muon alignment with CRAFT” (Ernesto Migliore) and “Calorimeter studies with CRAFT” (Chiara Rovelli). We had also a report from Offline (Andrea Rizzi) and Computing (Markus Klute) on the San Diego Workshop, described elsewhere in this bulletin. Tracking group (Boris Mangano). The level of sophistication of the tracking software increased significantly over the last few months: V0 (K0 and Λ) reconstr...

  14. The Development, Field Testing and Evaluation of Three Hierarchies of Behaviorally Stated Objectives for the Chemistry Content of a Course of Instruction in Physical Science for Pre-Service Nursing Students.

    Science.gov (United States)

    Love, Robert Alden

    The purpose of this research was to develop hierarchies of behavioral objectives for the chemistry content of a one-semester course in physical science for preservice associate degree nursing students. Each of three content objectives was expressed by a series of behaviorally stated objectives which included a terminal objective for a unit of…

  15. Challenges in examining area effects across the life course on physical capability in mid-life: findings from the 1946 British Birth Cohort.

    Science.gov (United States)

    Murray, Emily T; Southall, Humphrey; Aucott, Paula; Tilling, Kate; Kuh, Diana; Hardy, Rebecca; Ben-Shlomo, Yoav

    2012-03-01

    A major limitation of past work linking area socioeconomic conditions to health in mid-life has been the reliance on single point in time measurement of area. Using the MRC National Survey of Health and Development, this study for the first time linked place of residence at three major life periods of childhood (1950), young adulthood (1972), and mid-life (1999) to area-socioeconomic data from the nearest census years. Using objective measures of physical capability as the outcome, the purpose of this study was to highlight four methodological challenges of attrition bias, secular changes in socio-economic measures, historical data availability, and changing reporting units over time. In general, standing balance and chair rise time showed clear cross-sectional associations with residing in areas with high deprivation. However, it was the process of overcoming the methodological challenges, which led to the conclusion that in this example percent low social class occupations was the most appropriate measure to use when extending cross-sectional analysis of standing balance and chair rise to life course investigation. Published by Elsevier Ltd.

  16. Physics IB diploma course companion

    CERN Document Server

    Kirk, Tim

    2010-01-01

    A student-friendly text that takes an active approach to learning and will help students link theory with the world around them, fostering critical and knowledgeable thinkers. A free CD contains further exercises, ideas for practical work and a bank of interactive multiple choice quizzes.

  17. Collision course for frontier physics

    International Nuclear Information System (INIS)

    Bown, W.

    1993-01-01

    Following the cancellation of the United States (U.S.) superconducting supercollider project, the large hadron collider, due to be built at CERN near Geneva, is the last remaining experimental device capable of enabling scientists to understand the subatomic building blocks of matter and how the Universe began. Support for the project is growing as disappointed U.S. scientists affirm the central importance of this fundamental research, as the only means of testing theories as they develop. Many scientists fear that short term economic considerations may prevent this search for knowledge. (UK)

  18. PHYSICS

    CERN Multimedia

    D. Futyan

    A lot has transpired on the “Physics” front since the last CMS Bulletin. The summer was filled with preparations of new Monte Carlo samples based on CMSSW_3, the finalization of all the 10 TeV physics analyses [in total 50 analyses were approved] and the preparations for the Physics Week in Bologna. A couple weeks later, the “October Exercise” commenced and ran through an intense two-week period. The Physics Days in October were packed with a number of topics that are relevant to data taking, in a number of “mini-workshops”: the luminosity measurement, the determination of the beam spot and the measurement of the missing transverse energy (MET) were the three main topics.  Physics Week in Bologna The second physics week in 2009 took place in Bologna, Italy, on the week of Sep 7-11. The aim of the week was to review and establish how ready we are to do physics with the early collisions at the LHC. The agenda of the week was thus pac...

  19. PHYSICS

    CERN Multimedia

    D. Futyan

    A lot has transpired on the “Physics” front since the last CMS Bulletin. The summer was filled with preparations of new Monte Carlo samples based on CMSSW_3, the finalization of all the 10 TeV physics analyses [in total 50 analyses were approved] and the preparations for the Physics Week in Bologna. A couple weeks later, the “October Exercise” commenced and ran through an intense two-week period. The Physics Days in October were packed with a number of topics that are relevant to data taking, in a number of “mini-workshops”: the luminosity measurement, the determination of the beam spot and the measurement of the missing transverse energy (MET) were the three main topics.   Physics Week in Bologna The second physics week in 2009 took place in Bologna, Italy, on the week of Sep 7-11. The aim of the week was to review and establish (we hoped) the readiness of CMS to do physics with the early collisions at the LHC. The agenda of the...

  20. Assessment of the effects of student response systems on student learning and attitudes over a broad range of biology courses.

    Science.gov (United States)

    Preszler, Ralph W; Dawe, Angus; Shuster, Charles B; Shuster, Michèle

    2007-01-01

    With the advent of wireless technology, new tools are available that are intended to enhance students' learning and attitudes. To assess the effectiveness of wireless student response systems in the biology curriculum at New Mexico State University, a combined study of student attitudes and performance was undertaken. A survey of students in six biology courses showed that strong majorities of students had favorable overall impressions of the use of student response systems and also thought that the technology improved their interest in the course, attendance, and understanding of course content. Students in lower-division courses had more strongly positive overall impressions than did students in upper-division courses. To assess the effects of the response systems on student learning, the number of in-class questions was varied within each course throughout the semester. Students' performance was compared on exam questions derived from lectures with low, medium, or high numbers of in-class questions. Increased use of the response systems in lecture had a positive influence on students' performance on exam questions across all six biology courses. Students not only have favorable opinions about the use of student response systems, increased use of these systems increases student learning.

  1. PHYSICS

    CERN Multimedia

    J. Incandela

    The all-plenary format of the CMS week in Cyprus gave the opportunity to the conveners of the physics groups to present the plans of each physics analysis group for tackling early physics analyses. The presentations were complete, so all are encouraged to browse through them on the Web. There is a wealth of information on what is going on, by whom and on what basis and priority. The CMS week was followed by two CMS “physics events”, the ICHEP08 days and the physics days in July. These were two weeks dedicated to either the approval of all the results that would be presented at ICHEP08, or to the review of all the other Monte-Carlo based analyses that were carried out in the context of our preparations for analysis with the early LHC data (the so-called “2008 analyses”). All this was planned in the context of the beginning of a ramp down of these Monte Carlo efforts, in anticipation of data.  The ICHEP days are described below (agenda and talks at: http://indic...

  2. PHYSICS

    CERN Multimedia

    Joe Incandela

    There have been two plenary physics meetings since the December CMS week. The year started with two workshops, one on the measurements of the Standard Model necessary for “discovery physics” as well as one on the Physics Analysis Toolkit (PAT). Meanwhile the tail of the “2007 analyses” is going through the last steps of approval. It is expected that by the end of January all analyses will have converted to using the data from CSA07 – which include the effects of miscalibration and misalignment. January Physics Days The first Physics Days of 2008 took place on January 22-24. The first two days were devoted to comprehensive re¬ports from the Detector Performance Groups (DPG) and Physics Objects Groups (POG) on their planning and readiness for early data-taking followed by approvals of several recent studies. Highlights of POG presentations are included below while the activities of the DPGs are covered elsewhere in this bulletin. January 24th was devo...

  3. Field studies courses open

    Science.gov (United States)

    Fourteen month-long courses combining applied academics with training in field research methodology are being offered this summer by the School for Field Studies. The courses, held in eight countries during May, June, July, and August, provide unique opportunities for participants to work as a team under primitive conditions.‘Our courses bind together the academic challenge of the research problem, the physical challenge of the site itself, and the interpersonal challenge of the expedition team in a dynamic way so that both cognitive and affective learning are accelerated,’ according to Jim Elder, the school's director.

  4. Physics

    CERN Document Server

    Cullen, Katherine

    2005-01-01

    Defined as the scientific study of matter and energy, physics explains how all matter behaves. Separated into modern and classical physics, the study attracts both experimental and theoretical physicists. From the discovery of the process of nuclear fission to an explanation of the nature of light, from the theory of special relativity to advancements made in particle physics, this volume profiles 10 pioneers who overcame tremendous odds to make significant breakthroughs in this heavily studied branch of science. Each chapter contains relevant information on the scientist''s childhood, research, discoveries, and lasting contributions to the field and concludes with a chronology and a list of print and Internet references specific to that individual.

  5. ClueConnect: a word array game to promote student comprehension of key terminology in an introductory anatomy and physiology course.

    Science.gov (United States)

    Burleson, Kathryn M; Olimpo, Jeffrey T

    2016-06-01

    The sheer amount of terminology and conceptual knowledge required for anatomy and physiology can be overwhelming for students. Educational games are one approach to reinforce such knowledge. In this activity, students worked collaboratively to review anatomy and physiology concepts by creating arrays of descriptive tiles to define a term. Once guessed, students located the structure or process within diagrams of the body. The game challenged students to think about course vocabulary in novel ways and to use their collective knowledge to get their classmates to guess the terms. Comparison of pretest/posttest/delayed posttest data revealed that students achieved statistically significant learning gains for each unit after playing the game, and a survey of student perceptions demonstrated that the game was helpful for learning vocabulary as well as fun to play. The game is easily adaptable for a variety of lower- and upper-division courses. Copyright © 2016 The American Physiological Society.

  6. The VTLA System of Course Delivery and Faculty Development in Materials Education

    Science.gov (United States)

    Berrettini, Robert; Roy, Rustum

    1996-01-01

    There is a national need for high-quality, upper division courses that address critical topics in materials synthesis, particularly those beyond the present expertise of the typical university department's faculty. A new project has been started to test a novel distance education and faculty development system, called Video Tape Live Audio (VTLA). This, if successful, would at once enlarge the national Materials Science and Engineering (MSE) student cohort studying material synthesis and develop faculty expertise at the receiving sites. The mechanics for the VTLA scheme are as follows: A course is designed in the field selected for emphasis and for which there is likely to be considerable demand, in this example 'Ceramic Materials Synthesis: Theory and Case Studies'. One of the very best researcher/teachers records lectures of TV studio quality with appropriate visuals. Universities and colleges which wish to offer the course agree to offer it at the same hour at least once a week. The videotaped lectures and accompanying text, readings and visuals are shipped to the professor in charge, who has an appropriate background. The professor arranges the classroom TV presentation equipment and supervises the course. Video lectures are played during regular course hours twice a week with time for discussion by the supervising professor. Typically the third weekly classroom period is scheduled by all sites at a common designated hour, during which the course author/presenter answers questions, provides greater depth, etc. on a live audio link to all course sites. Questions are submitted by fax and e-mail prior to the audio tutorial. coordinating professors at various sites have separate audio teleconferences at the beginning and end of the course, dealing with the philosophical and pedagogical approach to the course, content and mechanics. Following service once or twice as an 'apprentice' to the course, the coordinating professors may then offer it without the necessity

  7. PHYSICS

    CERN Multimedia

    Guenther Dissertori

    The time period between the last CMS week and this June was one of intense activity with numerous get-together targeted at addressing specific issues on the road to data-taking. The two series of workshops, namely the “En route to discoveries” series and the “Vertical Integration” meetings continued.   The first meeting of the “En route to discoveries” sequence (end 2007) had covered the measurements of the Standard Model signals as necessary prerequisite to any claim of signals beyond the Standard Model. The second meeting took place during the Feb CMS week and concentrated on the commissioning of the Physics Objects, whereas the third occurred during the April Physics Week – and this time the theme was the strategy for key new physics signatures. Both of these workshops are summarized below. The vertical integration meetings also continued, with two DPG-physics get-togethers on jets and missing ET and on electrons and photons. ...

  8. PHYSICS

    CERN Multimedia

    Chris Hill

    2012-01-01

    The months that have passed since the last CMS Bulletin have been a very busy and exciting time for CMS physics. We have gone from observing the very first 8TeV collisions produced by the LHC to collecting a dataset of the collisions that already exceeds that recorded in all of 2011. All in just a few months! Meanwhile, the analysis of the 2011 dataset and publication of the subsequent results has continued. These results come from all the PAGs in CMS, including searches for the Higgs boson and other new phenomena, that have set the most stringent limits on an ever increasing number of models of physics beyond the Standard Model including dark matter, Supersymmetry, and TeV-scale gravity scenarios, top-quark physics where CMS has overtaken the Tevatron in the precision of some measurements, and bottom-quark physics where CMS made its first discovery of a new particle, the Ξ*0b baryon (candidate event pictured below). Image 2:  A Ξ*0b candidate event At the same time POGs and PAGs...

  9. PHYSICS

    CERN Multimedia

    D. Acosta

    2011-01-01

    Since the last CMS Week, all physics groups have been extremely active on analyses based on the full 2010 dataset, with most aiming for a preliminary measurement in time for the winter conferences. Nearly 50 analyses were approved in a “marathon” of approval meetings during the first two weeks of March, and the total number of approved analyses reached 90. The diversity of topics is very broad, including precision QCD, Top, and electroweak measurements, the first observation of single Top production at the LHC, the first limits on Higgs production at the LHC including the di-tau final state, and comprehensive searches for new physics in a wide range of topologies (so far all with null results unfortunately). Most of the results are based on the full 2010 pp data sample, which corresponds to 36 pb-1 at √s = 7 TeV. This report can only give a few of the highlights of a very rich physics program, which is listed below by physics group...

  10. Effect of modified atmosphere packaging on the course of physical and chemical changes in chilled muscle tissue of silver carp (Hypophthalmichthys molitrix, V.).

    Science.gov (United States)

    Jezek, F; Buchtová, H

    2012-01-01

    The effect of two types of modified atmosphere (MA1: 69% N2, 25% CO2, 5% O2, 1% CO; MA2: 70% N2, 30% CO2) on changes in physical and chemical parameters (pH, a(w)--water activity, TVBN - total volatile basic nitrogen, TMA - trimethylamine, FFA - free fatty acids, PV - peroxide value, TBA--thiobarbituric acid) in muscle tissues of the silver carp was monitored in the study. The samples were stored at temperatures +2 +/- 2 degrees C for 18 days. Changes in gas volumes (CO2 and O2) in MAs were also monitored. CO2 levels increased in MA1 but decreased in MA2. At the end of 18 days of storage, a significantly (P MA2 where water activity values showed considerable fluctuation. Variations in pH values in the two types of MA showed similar trends. Sample pH gradually decreased until day 9 of storage. On day 11, muscle tissue pH increased markedly and then began to decrease again. The overall decrease in pH values was more profound in samples packaged under MA1. TVBN and TMA levels in samples packaged under the two types of MAs remained almost identical until day 9 of the experiment. Later, however, significantly (P MA2. Faster rates of oxidation (P MA2 were observed on days 14 and 18 of the experiment, respectively. From the course of proteolytic and oxidative changes point of view, the more appropriate combination of gases for silver carp storage seems to be the mixture of 70% N2 and 30% CO2 (MA2), which allows for muscle storage of up to 9 days. We recommend TVBN as a suitable indicator of freshness, and TBA assay as a suitable indicator of the extent of oxidative processes.

  11. TECHNICAL COURSES

    CERN Multimedia

    Enseignement Technique; Technical Training; Monique Duval - Tel. 74924

    2000-01-01

    C++ for Particle Physicists By Paul KUNZ Please note that Paul Kunz will be giving his very popular and highly recommended C++ course again on 20 ­ 24 November. The course costs 200 CHF, and advance registration is required. People with CERN EDH accounts can apply electronically directly from the Web course description page : C++ for Particle Physicists Team Visitors should ask their Group Leader to send an e-mail to the DTO of EP Division, M. Burri, referring to the ‘C++ for Particle Physicists’ course and giving their name, CERN ID number, the Team account number to which the course fee should be charged, and VERY IMPORTANTLY an email address to which an invitation to the course can be sent.

  12. NEW COURSES

    CERN Document Server

    Enseignement Technique; Tél. 74924; Technical Training; Monique Duval; Tel. 74924

    2000-01-01

    C++ for Particle Physicists By Paul KUNZ Please note that Paul Kunz will be giving his very popular and highly recommended C++ course again on 20-24 November. The course costs 200 CHF, and advance registration is required. People with CERN EDH accounts can apply electronically directly from the Web course description page : http://www.cern.ch/Training/ENSTEC/P9798/Software/cpppp_e.htm Team Visitors should ask their Group Leader to send an e-mail to the DTO of EP Division, M. Burri, referring to the ‘C++ for Particle Physicists’ course and giving their name, CERN ID number, the Team account number to which the course fee should be charged, and VERY IMPORTANTLY an email address to which an invitation to the course can be sent.

  13. TECHNICAL COURSES

    CERN Multimedia

    Technical Training; Tel. 74924

    2000-01-01

    C++ for Particle Physicists By Paul KUNZ Please note that Paul Kunz will be giving his very popular and highly recommended C++ course again on 20 ­ 24 November. The course costs 200 CHF, and advance registration is required. People with CERN EDH accounts can apply electronically directly from the Web course description page : http://www.cern.ch/Training/ENSTEC/P9798/Software/cpppp_e.htm Team Visitors should ask their Group Leader to send an e-mail to the DTO of EP Division, M. Burri, referring to the ‘C++ for Particle Physicists’ course and giving their name, CERN ID number, the Team account number to which the course fee should be charged, and VERY IMPORTANTLY an email address to which an invitation to the course can be sent.

  14. PHYSICS

    CERN Multimedia

    Darin Acosta

    2010-01-01

    The collisions last year at 900 GeV and 2.36 TeV provided the long anticipated collider data to the CMS physics groups. Quite a lot has been accomplished in a very short time. Although the delivered luminosity was small, CMS was able to publish its first physics paper (with several more in preparation), and commence the commissioning of physics objects for future analyses. Many new performance results have been approved in advance of this CMS Week. One remarkable outcome has been the amazing agreement between out-of-the-box data with simulation at these low energies so early in the commissioning of the experiment. All of this is testament to the hard work and preparation conducted beforehand by many people in CMS. These analyses could not have happened without the dedicated work of the full collaboration on building and commissioning the detector, computing, and software systems combined with the tireless work of many to collect, calibrate and understand the data and our detector. To facilitate the efficien...

  15. PHYSICS

    CERN Multimedia

    D. Acosta

    2010-01-01

    The Physics Groups are actively engaged on analyses of the first data from the LHC at 7 TeV, targeting many results for the ICHEP conference taking place in Paris this summer. The first large batch of physics approvals is scheduled for this CMS Week, to be followed by four more weeks of approvals and analysis updates leading to the start of the conference in July. Several high priority analysis areas were organized into task forces to ensure sufficient coverage from the relevant detector, object, and analysis groups in the preparation of these analyses. Already some results on charged particle correlations and multiplicities in 7 TeV minimum bias collisions have been approved. Only one small detail remains before ICHEP: further integrated luminosity delivered by the LHC! Beyond the Standard Model measurements that can be done with these data, the focus changes to the search for new physics at the TeV scale and for the Higgs boson in the period after ICHEP. Particle Flow The PFT group is focusing on the ...

  16. PHYSICS

    CERN Multimedia

    the PAG conveners

    2011-01-01

    The delivered LHC integrated luminosity of more than 1 inverse femtobarn by summer and more than 5 by the end of 2011 has been a gold mine for the physics groups. With 2011 data, we have submitted or published 14 papers, 7 others are in collaboration-wide review, and 75 Physics Analysis Summaries have been approved already. They add to the 73 papers already published based on the 2010 and 2009 datasets. Highlights from each physics analysis group are described below. Heavy ions Many important results have been obtained from the first lead-ion collision run in 2010. The published measurements include the first ever indications of Υ excited state suppression (PRL synopsis), long-range correlation in PbPb, and track multiplicity over a wide η range. Preliminary results include the first ever measurement of isolated photons (showing no modification), J/ψ suppression including the separation of the non-prompt component, further study of jet fragmentation, nuclear modification factor...

  17. PHYSICS

    CERN Multimedia

    L. Demortier

    Physics-wise, the CMS week in December was dominated by discussions of the analyses that will be carried out in the “next six months”, i.e. while waiting for the first LHC collisions.  As presented in December, analysis approvals based on Monte Carlo simulation were re-opened, with the caveat that for this work to be helpful to the goals of CMS, it should be carried out using the new software (CMSSW_2_X) and associated samples.  By the end of the week, the goal for the physics groups was set to be the porting of our physics commissioning methods and plans, as well as the early analyses (based an integrated luminosity in the range 10-100pb-1) into this new software. Since December, the large data samples from CMSSW_2_1 were completed. A big effort by the production group gave a significant number of events over the end-of-year break – but also gave out the first samples with the fast simulation. Meanwhile, as mentioned in December, the arrival of 2_2 meant that ...

  18. PHYSICS

    CERN Multimedia

    C. Hill

    2012-01-01

      2012 has started off as a very busy year for the CMS Physics Groups. Planning for the upcoming higher luminosity/higher energy (8 TeV) operation of the LHC and relatively early Rencontres de Moriond are the high-priority activities for the group at the moment. To be ready for the coming 8-TeV data, CMS has made a concerted effort to perform and publish analyses on the 5 fb−1 dataset recorded in 2011. This has resulted in the submission of 16 papers already, including nine on the search for the Higgs boson. In addition, a number of preliminary results on the 2011 dataset have been released to the public. The Exotica and SUSY groups approved several searches for new physics in January, such as searches for W′ and exotic highly ionising particles. These were highlighted at a CERN seminar given on 24th  January. Many more analyses, from all the PAGs, including the newly formed SMP (Standard Model Physics) and FSQ (Forward and Small-x QCD), were approved in February. The ...

  19. PHYSICS

    CERN Document Server

    C. Hill

    2012-01-01

      The period since the last CMS Bulletin has been historic for CMS Physics. The pinnacle of our physics programme was an observation of a new particle – a strong candidate for a Higgs boson – which has captured worldwide interest and made a profound impact on the very field of particle physics. At the time of the discovery announcement on 4 July, 2012, prominent signals were observed in the high-resolution H→γγ and H→ZZ(4l) modes. Corroborating excess was observed in the H→W+W– mode as well. The fermionic channel analyses (H→bb, H→ττ), however, yielded less than the Standard Model (SM) expectation. Collectively, the five channels established the signal with a significance of five standard deviations. With the exception of the diphoton channel, these analyses have all been updated in the last months and several new channels have been added. With improved analyses and more than twice the i...

  20. Introduction to SSAC training course

    International Nuclear Information System (INIS)

    Keepin, G.R.

    1982-01-01

    The evolution and perspective of the present series of SSAC courses covering both item-dominant and bulk handling facilities (in the even and odd years respectively) are reviewed. The overall objective of the 1982 SSAC course will be discussed and the structure and format presented, together with a brief survey of the course curriculum. The major course components will be described, including lecture presentations, the workshop session, the tours to Los Alamos, including hands-on equipment demonstrations, and the field trip to the Palo Verde Nuclear Generating Station. Various course materials and physical facilities to be used will be described